body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
c0f8f62ef290d770a0f3612b243341227fd0a5d5a9e0662a9d203426c2ec4374
def cconv2d(x, w, **kwargs): ' Performs convolution with complex inputs and weights\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use :py:func:`complex_convolution`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n\n Notes\n -----\n Uses tf.nn.conv2d which I believe is actually cross-correlation.\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError('Unknown argument {} for function tf.nn.conv2d'.format(key)) else: default_args[key] = val x = tf.cast(x, tf.complex64) w = tf.cast(w, tf.complex64) x_r = tf.real(x) x_i = tf.imag(x) w_r = tf.real(w) w_i = tf.imag(w) conv = (lambda x, w: tf.nn.conv2d(x, w, **default_args)) y_r = (conv(x_r, w_r) - conv(x_i, w_i)) y_i = (conv(x_i, w_r) + conv(x_r, w_i)) return tf.complex(y_r, y_i)
Performs convolution with complex inputs and weights Need to create the weights and feed to this function. If you want to have this done for you automatically, use :py:func:`complex_convolution`. Parameters ---------- x : tf tensor input tensor w : tf tensor weights tensor kwargs : (key, val) pairs Same as tf.nn.conv2d Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x Notes ----- Uses tf.nn.conv2d which I believe is actually cross-correlation.
tf_ops/general.py
cconv2d
fbcotter/tf_ops
0
python
def cconv2d(x, w, **kwargs): ' Performs convolution with complex inputs and weights\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use :py:func:`complex_convolution`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n\n Notes\n -----\n Uses tf.nn.conv2d which I believe is actually cross-correlation.\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError('Unknown argument {} for function tf.nn.conv2d'.format(key)) else: default_args[key] = val x = tf.cast(x, tf.complex64) w = tf.cast(w, tf.complex64) x_r = tf.real(x) x_i = tf.imag(x) w_r = tf.real(w) w_i = tf.imag(w) conv = (lambda x, w: tf.nn.conv2d(x, w, **default_args)) y_r = (conv(x_r, w_r) - conv(x_i, w_i)) y_i = (conv(x_i, w_r) + conv(x_r, w_i)) return tf.complex(y_r, y_i)
def cconv2d(x, w, **kwargs): ' Performs convolution with complex inputs and weights\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use :py:func:`complex_convolution`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n\n Notes\n -----\n Uses tf.nn.conv2d which I believe is actually cross-correlation.\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError('Unknown argument {} for function tf.nn.conv2d'.format(key)) else: default_args[key] = val x = tf.cast(x, tf.complex64) w = tf.cast(w, tf.complex64) x_r = tf.real(x) x_i = tf.imag(x) w_r = tf.real(w) w_i = tf.imag(w) conv = (lambda x, w: tf.nn.conv2d(x, w, **default_args)) y_r = (conv(x_r, w_r) - conv(x_i, w_i)) y_i = (conv(x_i, w_r) + conv(x_r, w_i)) return tf.complex(y_r, y_i)<|docstring|>Performs convolution with complex inputs and weights Need to create the weights and feed to this function. If you want to have this done for you automatically, use :py:func:`complex_convolution`. Parameters ---------- x : tf tensor input tensor w : tf tensor weights tensor kwargs : (key, val) pairs Same as tf.nn.conv2d Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x Notes ----- Uses tf.nn.conv2d which I believe is actually cross-correlation.<|endoftext|>
e2c146a479e5b6329339212aa23fa19a4be1db3d54ce70b593655cbf759a7d3d
def cconv2d_transpose(y, w, output_shape, **kwargs): ' Performs transpose convolution with complex outputs and weights.\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use\n :py:func:`complex_convolution_transpose`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d_transpose\n\n Notes\n -----\n Takes the complex conjugate of w before doing convolution. Uses\n tf.nn.conv2d_transpose which I believe is actually convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError(('Unknown argument {} for function '.format(key) + 'tf.nn.conv2d_transpose')) else: default_args[key] = val y = tf.cast(y, tf.complex64) w = tf.cast(w, tf.complex64) y_r = tf.real(y) y_i = tf.imag(y) w_r = tf.real(w) w_i = (- tf.imag(w)) conv = (lambda y, w: tf.nn.conv2d_transpose(y, w, output_shape, **default_args)) x_r = (conv(y_r, w_r) - conv(y_i, w_i)) x_i = (conv(y_i, w_r) + conv(y_r, w_i)) x_r = tf.reshape(x_r, output_shape) x_i = tf.reshape(x_i, output_shape) return tf.complex(x_r, x_i)
Performs transpose convolution with complex outputs and weights. Need to create the weights and feed to this function. If you want to have this done for you automatically, use :py:func:`complex_convolution_transpose`. Parameters ---------- x : tf tensor input tensor w : tf tensor weights tensor kwargs : (key, val) pairs Same as tf.nn.conv2d_transpose Notes ----- Takes the complex conjugate of w before doing convolution. Uses tf.nn.conv2d_transpose which I believe is actually convolution. Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x
tf_ops/general.py
cconv2d_transpose
fbcotter/tf_ops
0
python
def cconv2d_transpose(y, w, output_shape, **kwargs): ' Performs transpose convolution with complex outputs and weights.\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use\n :py:func:`complex_convolution_transpose`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d_transpose\n\n Notes\n -----\n Takes the complex conjugate of w before doing convolution. Uses\n tf.nn.conv2d_transpose which I believe is actually convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError(('Unknown argument {} for function '.format(key) + 'tf.nn.conv2d_transpose')) else: default_args[key] = val y = tf.cast(y, tf.complex64) w = tf.cast(w, tf.complex64) y_r = tf.real(y) y_i = tf.imag(y) w_r = tf.real(w) w_i = (- tf.imag(w)) conv = (lambda y, w: tf.nn.conv2d_transpose(y, w, output_shape, **default_args)) x_r = (conv(y_r, w_r) - conv(y_i, w_i)) x_i = (conv(y_i, w_r) + conv(y_r, w_i)) x_r = tf.reshape(x_r, output_shape) x_i = tf.reshape(x_i, output_shape) return tf.complex(x_r, x_i)
def cconv2d_transpose(y, w, output_shape, **kwargs): ' Performs transpose convolution with complex outputs and weights.\n\n Need to create the weights and feed to this function. If you want to have\n this done for you automatically, use\n :py:func:`complex_convolution_transpose`.\n\n Parameters\n ----------\n x : tf tensor\n input tensor\n w : tf tensor\n weights tensor\n kwargs : (key, val) pairs\n Same as tf.nn.conv2d_transpose\n\n Notes\n -----\n Takes the complex conjugate of w before doing convolution. Uses\n tf.nn.conv2d_transpose which I believe is actually convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' default_args = {'strides': [1, 1, 1, 1], 'padding': 'SAME', 'data_format': 'NHWC', 'name': None} for (key, val) in kwargs.items(): if (key not in default_args.keys()): raise KeyError(('Unknown argument {} for function '.format(key) + 'tf.nn.conv2d_transpose')) else: default_args[key] = val y = tf.cast(y, tf.complex64) w = tf.cast(w, tf.complex64) y_r = tf.real(y) y_i = tf.imag(y) w_r = tf.real(w) w_i = (- tf.imag(w)) conv = (lambda y, w: tf.nn.conv2d_transpose(y, w, output_shape, **default_args)) x_r = (conv(y_r, w_r) - conv(y_i, w_i)) x_i = (conv(y_i, w_r) + conv(y_r, w_i)) x_r = tf.reshape(x_r, output_shape) x_i = tf.reshape(x_i, output_shape) return tf.complex(x_r, x_i)<|docstring|>Performs transpose convolution with complex outputs and weights. Need to create the weights and feed to this function. If you want to have this done for you automatically, use :py:func:`complex_convolution_transpose`. Parameters ---------- x : tf tensor input tensor w : tf tensor weights tensor kwargs : (key, val) pairs Same as tf.nn.conv2d_transpose Notes ----- Takes the complex conjugate of w before doing convolution. Uses tf.nn.conv2d_transpose which I believe is actually convolution. Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x<|endoftext|>
8fdb0d8a8df9b8152f3b3c1533834930aa7c47ed980d2790842befef8a084c14
def separable_conv_with_pad(x, h_row, h_col, stride=1): ' Function to do spatial separable convolution.\n\n The filter weights must already be defined. It will use symmetric extension\n before convolution.\n\n Parameters\n ----------\n x : :py:class:`tf.Tensor` of shape [Batch, height, width, c]\n The input variable. Should be of shape\n h_row : tf tensor of shape [1, l, c_in, c_out]\n The spatial row filter\n h_col : tf tensor of shape [l, 1, c_in, c_out]\n The column filter.\n stride : int\n What stride to use on the convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' if tf.is_numeric_tensor(h_row): h_size = h_row.get_shape().as_list() else: h_size = h_row.shape assert (h_size[0] == 1) pad = (h_size[1] // 2) if ((h_size[1] % 2) == 0): y = tf.pad(x, [[0, 0], [0, 0], [(pad - 1), pad], [0, 0]], 'SYMMETRIC') else: y = tf.pad(x, [[0, 0], [0, 0], [pad, pad], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_row, strides=[1, stride, stride, 1], padding='VALID') if tf.is_numeric_tensor(h_col): h_size = h_col.get_shape().as_list() else: h_size = h_col.shape assert (h_size[1] == 1) pad = (h_size[0] // 2) if ((h_size[0] % 2) == 0): y = tf.pad(y, [[0, 0], [(pad - 1), pad], [0, 0], [0, 0]], 'SYMMETRIC') else: y = tf.pad(y, [[0, 0], [pad, pad], [0, 0], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_col, strides=[1, stride, stride, 1], padding='VALID') assert (x.get_shape().as_list()[1:3] == y.get_shape().as_list()[1:3]) return y
Function to do spatial separable convolution. The filter weights must already be defined. It will use symmetric extension before convolution. Parameters ---------- x : :py:class:`tf.Tensor` of shape [Batch, height, width, c] The input variable. Should be of shape h_row : tf tensor of shape [1, l, c_in, c_out] The spatial row filter h_col : tf tensor of shape [l, 1, c_in, c_out] The column filter. stride : int What stride to use on the convolution. Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x
tf_ops/general.py
separable_conv_with_pad
fbcotter/tf_ops
0
python
def separable_conv_with_pad(x, h_row, h_col, stride=1): ' Function to do spatial separable convolution.\n\n The filter weights must already be defined. It will use symmetric extension\n before convolution.\n\n Parameters\n ----------\n x : :py:class:`tf.Tensor` of shape [Batch, height, width, c]\n The input variable. Should be of shape\n h_row : tf tensor of shape [1, l, c_in, c_out]\n The spatial row filter\n h_col : tf tensor of shape [l, 1, c_in, c_out]\n The column filter.\n stride : int\n What stride to use on the convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' if tf.is_numeric_tensor(h_row): h_size = h_row.get_shape().as_list() else: h_size = h_row.shape assert (h_size[0] == 1) pad = (h_size[1] // 2) if ((h_size[1] % 2) == 0): y = tf.pad(x, [[0, 0], [0, 0], [(pad - 1), pad], [0, 0]], 'SYMMETRIC') else: y = tf.pad(x, [[0, 0], [0, 0], [pad, pad], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_row, strides=[1, stride, stride, 1], padding='VALID') if tf.is_numeric_tensor(h_col): h_size = h_col.get_shape().as_list() else: h_size = h_col.shape assert (h_size[1] == 1) pad = (h_size[0] // 2) if ((h_size[0] % 2) == 0): y = tf.pad(y, [[0, 0], [(pad - 1), pad], [0, 0], [0, 0]], 'SYMMETRIC') else: y = tf.pad(y, [[0, 0], [pad, pad], [0, 0], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_col, strides=[1, stride, stride, 1], padding='VALID') assert (x.get_shape().as_list()[1:3] == y.get_shape().as_list()[1:3]) return y
def separable_conv_with_pad(x, h_row, h_col, stride=1): ' Function to do spatial separable convolution.\n\n The filter weights must already be defined. It will use symmetric extension\n before convolution.\n\n Parameters\n ----------\n x : :py:class:`tf.Tensor` of shape [Batch, height, width, c]\n The input variable. Should be of shape\n h_row : tf tensor of shape [1, l, c_in, c_out]\n The spatial row filter\n h_col : tf tensor of shape [l, 1, c_in, c_out]\n The column filter.\n stride : int\n What stride to use on the convolution.\n\n Returns\n -------\n y : :py:class:`tf.Tensor`\n Result of applying convolution to x\n ' if tf.is_numeric_tensor(h_row): h_size = h_row.get_shape().as_list() else: h_size = h_row.shape assert (h_size[0] == 1) pad = (h_size[1] // 2) if ((h_size[1] % 2) == 0): y = tf.pad(x, [[0, 0], [0, 0], [(pad - 1), pad], [0, 0]], 'SYMMETRIC') else: y = tf.pad(x, [[0, 0], [0, 0], [pad, pad], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_row, strides=[1, stride, stride, 1], padding='VALID') if tf.is_numeric_tensor(h_col): h_size = h_col.get_shape().as_list() else: h_size = h_col.shape assert (h_size[1] == 1) pad = (h_size[0] // 2) if ((h_size[0] % 2) == 0): y = tf.pad(y, [[0, 0], [(pad - 1), pad], [0, 0], [0, 0]], 'SYMMETRIC') else: y = tf.pad(y, [[0, 0], [pad, pad], [0, 0], [0, 0]], 'SYMMETRIC') y = tf.nn.conv2d(y, h_col, strides=[1, stride, stride, 1], padding='VALID') assert (x.get_shape().as_list()[1:3] == y.get_shape().as_list()[1:3]) return y<|docstring|>Function to do spatial separable convolution. The filter weights must already be defined. It will use symmetric extension before convolution. Parameters ---------- x : :py:class:`tf.Tensor` of shape [Batch, height, width, c] The input variable. Should be of shape h_row : tf tensor of shape [1, l, c_in, c_out] The spatial row filter h_col : tf tensor of shape [l, 1, c_in, c_out] The column filter. stride : int What stride to use on the convolution. Returns ------- y : :py:class:`tf.Tensor` Result of applying convolution to x<|endoftext|>
c0b459b94a69d4569a72039a956877ce99e1e7952e052744e36950471885e2ae
def _get_var_name(x): ' Find the name of the variable by stripping off the scopes\n\n Notes\n -----\n A typical name will be scope1/scope2/.../name/kernel:0.\n This function serves to split off the scopes and return kernel\n ' split_colon = x.name.split(':')[0] slash_strs = split_colon.split('/') last_one = slash_strs[(- 1)] return last_one
Find the name of the variable by stripping off the scopes Notes ----- A typical name will be scope1/scope2/.../name/kernel:0. This function serves to split off the scopes and return kernel
tf_ops/general.py
_get_var_name
fbcotter/tf_ops
0
python
def _get_var_name(x): ' Find the name of the variable by stripping off the scopes\n\n Notes\n -----\n A typical name will be scope1/scope2/.../name/kernel:0.\n This function serves to split off the scopes and return kernel\n ' split_colon = x.name.split(':')[0] slash_strs = split_colon.split('/') last_one = slash_strs[(- 1)] return last_one
def _get_var_name(x): ' Find the name of the variable by stripping off the scopes\n\n Notes\n -----\n A typical name will be scope1/scope2/.../name/kernel:0.\n This function serves to split off the scopes and return kernel\n ' split_colon = x.name.split(':')[0] slash_strs = split_colon.split('/') last_one = slash_strs[(- 1)] return last_one<|docstring|>Find the name of the variable by stripping off the scopes Notes ----- A typical name will be scope1/scope2/.../name/kernel:0. This function serves to split off the scopes and return kernel<|endoftext|>
c34c5bd4aa383d5e5d5fc6b09df4758339f5b0d004a6844de49e5eb761fe2c63
def get_static_shape_dyn_batch(x): 'Returns a tensor representing the static shape of x but keeping the batch\n unkown' batch = tf.shape(x)[0] static = x.get_shape() return tf.concat([[batch], static[1:]], axis=0)
Returns a tensor representing the static shape of x but keeping the batch unkown
tf_ops/general.py
get_static_shape_dyn_batch
fbcotter/tf_ops
0
python
def get_static_shape_dyn_batch(x): 'Returns a tensor representing the static shape of x but keeping the batch\n unkown' batch = tf.shape(x)[0] static = x.get_shape() return tf.concat([[batch], static[1:]], axis=0)
def get_static_shape_dyn_batch(x): 'Returns a tensor representing the static shape of x but keeping the batch\n unkown' batch = tf.shape(x)[0] static = x.get_shape() return tf.concat([[batch], static[1:]], axis=0)<|docstring|>Returns a tensor representing the static shape of x but keeping the batch unkown<|endoftext|>
3d0a16b63247a21f6c1914203a23b6b7f69405195d454c13816ecf22a92f22df
def get_xavier_stddev(shape, uniform=False, factor=1.0, mode='FAN_AVG'): "Get the correct stddev for a set of weights\n\n When initializing a deep network, it is in principle advantageous to keep\n the scale of the input variance constant, so it does not explode or diminish\n by reaching the final layer. This initializer use the following formula:\n\n .. code:: python\n\n if mode='FAN_IN': # Count only number of input connections.\n n = fan_in\n elif mode='FAN_OUT': # Count only number of output connections.\n n = fan_out\n elif mode='FAN_AVG': # Average number of inputs and output connections.\n n = (fan_in + fan_out)/2.0\n truncated_normal(shape, 0.0, stddev=sqrt(factor/n))\n\n * To get `Delving Deep into Rectifiers`__, use::\n\n factor=2.0\n mode='FAN_IN'\n uniform=False\n\n __ http://arxiv.org/pdf/1502.01852v1.pdf\n\n * To get `Convolutional Architecture for Fast Feature Embedding`__ , use::\n\n factor=1.0\n mode='FAN_IN'\n uniform=True\n\n __ http://arxiv.org/abs/1408.5093\n\n * To get `Understanding the difficulty of training deep feedforward neural\n networks`__ use::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n __ http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf\n\n * To get `xavier_initializer` use either::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n or::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=False\n\n Parameters\n ----------\n factor: float\n A multiplicative factor.\n mode : str\n 'FAN_IN', 'FAN_OUT', 'FAN_AVG'.\n uniform : bool\n Whether to use uniform or normal distributed random initialization.\n seed : int\n Used to create random seeds. See `tf.set_random_seed`__\n for behaviour.\n\n __ https://www.tensorflow.org/api_docs/python/tf/set_random_seed\n\n dtype : tf.dtype\n The data type. Only floating point types are supported.\n\n Returns\n -------\n out : float\n The stddev/limit to use that generates tensors with unit variance.\n\n Raises\n ------\n ValueError : if `dtype` is not a floating point type.\n TypeError : if `mode` is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].\n " if shape: fan_in = (float(shape[(- 2)]) if (len(shape) > 1) else float(shape[(- 1)])) fan_out = float(shape[(- 1)]) else: fan_in = 1.0 fan_out = 1.0 for dim in shape[:(- 2)]: fan_in *= float(dim) fan_out *= float(dim) if (mode == 'FAN_IN'): n = fan_in elif (mode == 'FAN_OUT'): n = fan_out elif (mode == 'FAN_AVG'): n = ((fan_in + fan_out) / 2.0) if uniform: limit = math.sqrt(((3.0 * factor) / n)) return limit else: trunc_stddev = math.sqrt(((1.3 * factor) / n)) return trunc_stddev
Get the correct stddev for a set of weights When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. This initializer use the following formula: .. code:: python if mode='FAN_IN': # Count only number of input connections. n = fan_in elif mode='FAN_OUT': # Count only number of output connections. n = fan_out elif mode='FAN_AVG': # Average number of inputs and output connections. n = (fan_in + fan_out)/2.0 truncated_normal(shape, 0.0, stddev=sqrt(factor/n)) * To get `Delving Deep into Rectifiers`__, use:: factor=2.0 mode='FAN_IN' uniform=False __ http://arxiv.org/pdf/1502.01852v1.pdf * To get `Convolutional Architecture for Fast Feature Embedding`__ , use:: factor=1.0 mode='FAN_IN' uniform=True __ http://arxiv.org/abs/1408.5093 * To get `Understanding the difficulty of training deep feedforward neural networks`__ use:: factor=1.0 mode='FAN_AVG' uniform=True __ http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf * To get `xavier_initializer` use either:: factor=1.0 mode='FAN_AVG' uniform=True or:: factor=1.0 mode='FAN_AVG' uniform=False Parameters ---------- factor: float A multiplicative factor. mode : str 'FAN_IN', 'FAN_OUT', 'FAN_AVG'. uniform : bool Whether to use uniform or normal distributed random initialization. seed : int Used to create random seeds. See `tf.set_random_seed`__ for behaviour. __ https://www.tensorflow.org/api_docs/python/tf/set_random_seed dtype : tf.dtype The data type. Only floating point types are supported. Returns ------- out : float The stddev/limit to use that generates tensors with unit variance. Raises ------ ValueError : if `dtype` is not a floating point type. TypeError : if `mode` is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].
tf_ops/general.py
get_xavier_stddev
fbcotter/tf_ops
0
python
def get_xavier_stddev(shape, uniform=False, factor=1.0, mode='FAN_AVG'): "Get the correct stddev for a set of weights\n\n When initializing a deep network, it is in principle advantageous to keep\n the scale of the input variance constant, so it does not explode or diminish\n by reaching the final layer. This initializer use the following formula:\n\n .. code:: python\n\n if mode='FAN_IN': # Count only number of input connections.\n n = fan_in\n elif mode='FAN_OUT': # Count only number of output connections.\n n = fan_out\n elif mode='FAN_AVG': # Average number of inputs and output connections.\n n = (fan_in + fan_out)/2.0\n truncated_normal(shape, 0.0, stddev=sqrt(factor/n))\n\n * To get `Delving Deep into Rectifiers`__, use::\n\n factor=2.0\n mode='FAN_IN'\n uniform=False\n\n __ http://arxiv.org/pdf/1502.01852v1.pdf\n\n * To get `Convolutional Architecture for Fast Feature Embedding`__ , use::\n\n factor=1.0\n mode='FAN_IN'\n uniform=True\n\n __ http://arxiv.org/abs/1408.5093\n\n * To get `Understanding the difficulty of training deep feedforward neural\n networks`__ use::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n __ http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf\n\n * To get `xavier_initializer` use either::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n or::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=False\n\n Parameters\n ----------\n factor: float\n A multiplicative factor.\n mode : str\n 'FAN_IN', 'FAN_OUT', 'FAN_AVG'.\n uniform : bool\n Whether to use uniform or normal distributed random initialization.\n seed : int\n Used to create random seeds. See `tf.set_random_seed`__\n for behaviour.\n\n __ https://www.tensorflow.org/api_docs/python/tf/set_random_seed\n\n dtype : tf.dtype\n The data type. Only floating point types are supported.\n\n Returns\n -------\n out : float\n The stddev/limit to use that generates tensors with unit variance.\n\n Raises\n ------\n ValueError : if `dtype` is not a floating point type.\n TypeError : if `mode` is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].\n " if shape: fan_in = (float(shape[(- 2)]) if (len(shape) > 1) else float(shape[(- 1)])) fan_out = float(shape[(- 1)]) else: fan_in = 1.0 fan_out = 1.0 for dim in shape[:(- 2)]: fan_in *= float(dim) fan_out *= float(dim) if (mode == 'FAN_IN'): n = fan_in elif (mode == 'FAN_OUT'): n = fan_out elif (mode == 'FAN_AVG'): n = ((fan_in + fan_out) / 2.0) if uniform: limit = math.sqrt(((3.0 * factor) / n)) return limit else: trunc_stddev = math.sqrt(((1.3 * factor) / n)) return trunc_stddev
def get_xavier_stddev(shape, uniform=False, factor=1.0, mode='FAN_AVG'): "Get the correct stddev for a set of weights\n\n When initializing a deep network, it is in principle advantageous to keep\n the scale of the input variance constant, so it does not explode or diminish\n by reaching the final layer. This initializer use the following formula:\n\n .. code:: python\n\n if mode='FAN_IN': # Count only number of input connections.\n n = fan_in\n elif mode='FAN_OUT': # Count only number of output connections.\n n = fan_out\n elif mode='FAN_AVG': # Average number of inputs and output connections.\n n = (fan_in + fan_out)/2.0\n truncated_normal(shape, 0.0, stddev=sqrt(factor/n))\n\n * To get `Delving Deep into Rectifiers`__, use::\n\n factor=2.0\n mode='FAN_IN'\n uniform=False\n\n __ http://arxiv.org/pdf/1502.01852v1.pdf\n\n * To get `Convolutional Architecture for Fast Feature Embedding`__ , use::\n\n factor=1.0\n mode='FAN_IN'\n uniform=True\n\n __ http://arxiv.org/abs/1408.5093\n\n * To get `Understanding the difficulty of training deep feedforward neural\n networks`__ use::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n __ http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf\n\n * To get `xavier_initializer` use either::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=True\n\n or::\n\n factor=1.0\n mode='FAN_AVG'\n uniform=False\n\n Parameters\n ----------\n factor: float\n A multiplicative factor.\n mode : str\n 'FAN_IN', 'FAN_OUT', 'FAN_AVG'.\n uniform : bool\n Whether to use uniform or normal distributed random initialization.\n seed : int\n Used to create random seeds. See `tf.set_random_seed`__\n for behaviour.\n\n __ https://www.tensorflow.org/api_docs/python/tf/set_random_seed\n\n dtype : tf.dtype\n The data type. Only floating point types are supported.\n\n Returns\n -------\n out : float\n The stddev/limit to use that generates tensors with unit variance.\n\n Raises\n ------\n ValueError : if `dtype` is not a floating point type.\n TypeError : if `mode` is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].\n " if shape: fan_in = (float(shape[(- 2)]) if (len(shape) > 1) else float(shape[(- 1)])) fan_out = float(shape[(- 1)]) else: fan_in = 1.0 fan_out = 1.0 for dim in shape[:(- 2)]: fan_in *= float(dim) fan_out *= float(dim) if (mode == 'FAN_IN'): n = fan_in elif (mode == 'FAN_OUT'): n = fan_out elif (mode == 'FAN_AVG'): n = ((fan_in + fan_out) / 2.0) if uniform: limit = math.sqrt(((3.0 * factor) / n)) return limit else: trunc_stddev = math.sqrt(((1.3 * factor) / n)) return trunc_stddev<|docstring|>Get the correct stddev for a set of weights When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. This initializer use the following formula: .. code:: python if mode='FAN_IN': # Count only number of input connections. n = fan_in elif mode='FAN_OUT': # Count only number of output connections. n = fan_out elif mode='FAN_AVG': # Average number of inputs and output connections. n = (fan_in + fan_out)/2.0 truncated_normal(shape, 0.0, stddev=sqrt(factor/n)) * To get `Delving Deep into Rectifiers`__, use:: factor=2.0 mode='FAN_IN' uniform=False __ http://arxiv.org/pdf/1502.01852v1.pdf * To get `Convolutional Architecture for Fast Feature Embedding`__ , use:: factor=1.0 mode='FAN_IN' uniform=True __ http://arxiv.org/abs/1408.5093 * To get `Understanding the difficulty of training deep feedforward neural networks`__ use:: factor=1.0 mode='FAN_AVG' uniform=True __ http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf * To get `xavier_initializer` use either:: factor=1.0 mode='FAN_AVG' uniform=True or:: factor=1.0 mode='FAN_AVG' uniform=False Parameters ---------- factor: float A multiplicative factor. mode : str 'FAN_IN', 'FAN_OUT', 'FAN_AVG'. uniform : bool Whether to use uniform or normal distributed random initialization. seed : int Used to create random seeds. See `tf.set_random_seed`__ for behaviour. __ https://www.tensorflow.org/api_docs/python/tf/set_random_seed dtype : tf.dtype The data type. Only floating point types are supported. Returns ------- out : float The stddev/limit to use that generates tensors with unit variance. Raises ------ ValueError : if `dtype` is not a floating point type. TypeError : if `mode` is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].<|endoftext|>
f09f2193a7cbae820ab7574ad1e81e136e966eaac4506d432745ca6cc5a7be6d
def real_reg(w, wd=0.01, norm=2): ' Apply regularization on real weights\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor`\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=2)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if (norm == 2): reg_loss = tf.nn.l2_loss(w) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss
Apply regularization on real weights norm can be any positive float. Of course the most commonly used values would be 2 and 1 (for L2 and L1 regularization), but you can experiment by making it some value in between. A value of p returns: .. math:: wd \times \sum_{i} ||w_{i}||_{p}^{p} Parameters ---------- w : :py:class:`tf.Tensor` The weights to regularize wd : positive float, optional (default=0.01) Regularization parameter norm : positive float, optional (default=2) The norm to use for regularization. E.g. set norm=1 for the L1 norm. Returns ------- reg_loss : :py:class:`tf.Tensor` The loss. This method does not add anything to the REGULARIZATION_LOSSES collection. The calling function needs to do that. Raises ------ ValueError : If norm is less than 0
tf_ops/general.py
real_reg
fbcotter/tf_ops
0
python
def real_reg(w, wd=0.01, norm=2): ' Apply regularization on real weights\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor`\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=2)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if (norm == 2): reg_loss = tf.nn.l2_loss(w) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss
def real_reg(w, wd=0.01, norm=2): ' Apply regularization on real weights\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor`\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=2)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if (norm == 2): reg_loss = tf.nn.l2_loss(w) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss<|docstring|>Apply regularization on real weights norm can be any positive float. Of course the most commonly used values would be 2 and 1 (for L2 and L1 regularization), but you can experiment by making it some value in between. A value of p returns: .. math:: wd \times \sum_{i} ||w_{i}||_{p}^{p} Parameters ---------- w : :py:class:`tf.Tensor` The weights to regularize wd : positive float, optional (default=0.01) Regularization parameter norm : positive float, optional (default=2) The norm to use for regularization. E.g. set norm=1 for the L1 norm. Returns ------- reg_loss : :py:class:`tf.Tensor` The loss. This method does not add anything to the REGULARIZATION_LOSSES collection. The calling function needs to do that. Raises ------ ValueError : If norm is less than 0<|endoftext|>
a8f0e67d7e7a584ed68055acb84b608cfe2dc2a9166701803b9d4bd7743e4f09
def complex_reg(w, wd=0.01, norm=1): ' Apply regularization on complex weights.\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor` (dtype=complex)\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=1)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n\n Notes\n -----\n Can call this function with real weights too, making it perhaps a better\n de-facto function to call, as it able to handle both cases.\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if w.dtype.is_floating: return real_reg(w, wd, norm) if (norm == 2): reg_loss = (tf.nn.l2_loss(tf.real(w)) + tf.nn.l2_loss(tf.imag(w))) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss
Apply regularization on complex weights. norm can be any positive float. Of course the most commonly used values would be 2 and 1 (for L2 and L1 regularization), but you can experiment by making it some value in between. A value of p returns: .. math:: wd \times \sum_{i} ||w_{i}||_{p}^{p} Parameters ---------- w : :py:class:`tf.Tensor` (dtype=complex) The weights to regularize wd : positive float, optional (default=0.01) Regularization parameter norm : positive float, optional (default=1) The norm to use for regularization. E.g. set norm=1 for the L1 norm. Returns ------- reg_loss : :py:class:`tf.Tensor` The loss. This method does not add anything to the REGULARIZATION_LOSSES collection. The calling function needs to do that. Raises ------ ValueError : If norm is less than 0 Notes ----- Can call this function with real weights too, making it perhaps a better de-facto function to call, as it able to handle both cases.
tf_ops/general.py
complex_reg
fbcotter/tf_ops
0
python
def complex_reg(w, wd=0.01, norm=1): ' Apply regularization on complex weights.\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor` (dtype=complex)\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=1)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n\n Notes\n -----\n Can call this function with real weights too, making it perhaps a better\n de-facto function to call, as it able to handle both cases.\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if w.dtype.is_floating: return real_reg(w, wd, norm) if (norm == 2): reg_loss = (tf.nn.l2_loss(tf.real(w)) + tf.nn.l2_loss(tf.imag(w))) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss
def complex_reg(w, wd=0.01, norm=1): ' Apply regularization on complex weights.\n\n norm can be any positive float. Of course the most commonly used values\n would be 2 and 1 (for L2 and L1 regularization), but you can experiment by\n making it some value in between. A value of p returns:\n\n .. math::\n\n wd \\times \\sum_{i} ||w_{i}||_{p}^{p}\n\n\n Parameters\n ----------\n w : :py:class:`tf.Tensor` (dtype=complex)\n The weights to regularize\n wd : positive float, optional (default=0.01)\n Regularization parameter\n norm : positive float, optional (default=1)\n The norm to use for regularization. E.g. set norm=1 for the L1 norm.\n\n Returns\n -------\n reg_loss : :py:class:`tf.Tensor`\n The loss. This method does not add anything to the REGULARIZATION_LOSSES\n collection. The calling function needs to do that.\n\n Raises\n ------\n ValueError : If norm is less than 0\n\n Notes\n -----\n Can call this function with real weights too, making it perhaps a better\n de-facto function to call, as it able to handle both cases.\n ' if ((wd is None) or (wd == 0) or (norm is None)): return if (norm <= 0): raise ValueError('Can only take positive norms, not {}'.format(norm)) if w.dtype.is_floating: return real_reg(w, wd, norm) if (norm == 2): reg_loss = (tf.nn.l2_loss(tf.real(w)) + tf.nn.l2_loss(tf.imag(w))) elif (norm == 1): mag = tf.abs(w) reg_loss = tf.reduce_sum(mag) else: mag = tf.abs(w) reg_loss = ((1 / norm) * tf.reduce_sum((mag ** norm))) reg_loss = tf.multiply(reg_loss, wd, name='weight_loss') return reg_loss<|docstring|>Apply regularization on complex weights. norm can be any positive float. Of course the most commonly used values would be 2 and 1 (for L2 and L1 regularization), but you can experiment by making it some value in between. A value of p returns: .. math:: wd \times \sum_{i} ||w_{i}||_{p}^{p} Parameters ---------- w : :py:class:`tf.Tensor` (dtype=complex) The weights to regularize wd : positive float, optional (default=0.01) Regularization parameter norm : positive float, optional (default=1) The norm to use for regularization. E.g. set norm=1 for the L1 norm. Returns ------- reg_loss : :py:class:`tf.Tensor` The loss. This method does not add anything to the REGULARIZATION_LOSSES collection. The calling function needs to do that. Raises ------ ValueError : If norm is less than 0 Notes ----- Can call this function with real weights too, making it perhaps a better de-facto function to call, as it able to handle both cases.<|endoftext|>
e5aa3c837eb6559d5d55b198cc157e8f992bbb0eb40196cefe8fa6fc944dd007
def initialise(cosmo, data, command_line): '\n Main call to prepare the information for the NeuralNest run.\n ' varying_param_names = data.get_mcmc_parameters(['varying']) derived_param_names = data.get_mcmc_parameters(['derived']) if (getattr(command_line, (NN_prefix + 'sampler'), '').lower() == 'nested'): (is_flat, is_bound) = sampler.check_flat_bound_priors(data.mcmc_parameters, varying_param_names) if (not is_flat): raise io_mp.ConfigurationError(('Nested Sampling with NeuralNest is only possible with flat ' + 'priors. Sorry!')) if (not is_bound): raise io_mp.ConfigurationError((('Nested Sampling with NeuralNest is only possible for bound ' + 'parameters. Set reasonable bounds for them in the ".param"') + 'file.')) NN_folder = os.path.join(command_line.folder, NN_subfolder) if (not os.path.exists(NN_folder)): os.makedirs(NN_folder) run_num = (sum((os.path.isdir(os.path.join(NN_folder, i)) for i in os.listdir(NN_folder))) + 1) data.NN_arguments['x_dim'] = len(varying_param_names) data.NN_arguments['num_derived'] = len(derived_param_names) data.NN_arguments['verbose'] = True data.NN_arguments['log_dir'] = os.path.join(NN_folder, str(run_num)) data.NN_arguments['use_gpu'] = False data.NN_arguments['flow'] = 'nvp' data.NN_arguments['load_model'] = '' data.NN_arguments['batch_size'] = 100 if getattr(command_line, (NN_prefix + 'fastslow')): data.NN_arguments['num_slow'] = data.block_parameters[0] else: data.NN_arguments['num_slow'] = 0 for arg in NN_user_arguments: value = getattr(command_line, (NN_prefix + arg)) data.NN_arguments[arg] = value if (arg == 'switch'): if (value >= 0): data.NN_arguments['switch'] = value elif (data.NN_arguments['num_slow'] > 0): data.NN_arguments['switch'] = (1.0 / (5 * data.NN_arguments['num_slow'])) if (getattr(command_line, (NN_prefix + 'sampler'), '').lower() == 'mcmc'): data.NN_arguments['mcmc_steps'] = getattr(command_line, 'N') data.NN_param_names = varying_param_names base_name = os.path.join(NN_folder, 'base') if (run_num == 1): with open((base_name + name_arguments), 'w') as afile: for arg in data.NN_arguments: afile.write(' = '.join([str(arg), str(data.NN_arguments[arg])])) afile.write('\n') with open((base_name + name_paramnames), 'w') as pfile: pfile.write('\n'.join((data.NN_param_names + derived_param_names)))
Main call to prepare the information for the NeuralNest run.
montepython/NeuralNest.py
initialise
LBJ-Wade/montepython_public_NN
2
python
def initialise(cosmo, data, command_line): '\n \n ' varying_param_names = data.get_mcmc_parameters(['varying']) derived_param_names = data.get_mcmc_parameters(['derived']) if (getattr(command_line, (NN_prefix + 'sampler'), ).lower() == 'nested'): (is_flat, is_bound) = sampler.check_flat_bound_priors(data.mcmc_parameters, varying_param_names) if (not is_flat): raise io_mp.ConfigurationError(('Nested Sampling with NeuralNest is only possible with flat ' + 'priors. Sorry!')) if (not is_bound): raise io_mp.ConfigurationError((('Nested Sampling with NeuralNest is only possible for bound ' + 'parameters. Set reasonable bounds for them in the ".param"') + 'file.')) NN_folder = os.path.join(command_line.folder, NN_subfolder) if (not os.path.exists(NN_folder)): os.makedirs(NN_folder) run_num = (sum((os.path.isdir(os.path.join(NN_folder, i)) for i in os.listdir(NN_folder))) + 1) data.NN_arguments['x_dim'] = len(varying_param_names) data.NN_arguments['num_derived'] = len(derived_param_names) data.NN_arguments['verbose'] = True data.NN_arguments['log_dir'] = os.path.join(NN_folder, str(run_num)) data.NN_arguments['use_gpu'] = False data.NN_arguments['flow'] = 'nvp' data.NN_arguments['load_model'] = data.NN_arguments['batch_size'] = 100 if getattr(command_line, (NN_prefix + 'fastslow')): data.NN_arguments['num_slow'] = data.block_parameters[0] else: data.NN_arguments['num_slow'] = 0 for arg in NN_user_arguments: value = getattr(command_line, (NN_prefix + arg)) data.NN_arguments[arg] = value if (arg == 'switch'): if (value >= 0): data.NN_arguments['switch'] = value elif (data.NN_arguments['num_slow'] > 0): data.NN_arguments['switch'] = (1.0 / (5 * data.NN_arguments['num_slow'])) if (getattr(command_line, (NN_prefix + 'sampler'), ).lower() == 'mcmc'): data.NN_arguments['mcmc_steps'] = getattr(command_line, 'N') data.NN_param_names = varying_param_names base_name = os.path.join(NN_folder, 'base') if (run_num == 1): with open((base_name + name_arguments), 'w') as afile: for arg in data.NN_arguments: afile.write(' = '.join([str(arg), str(data.NN_arguments[arg])])) afile.write('\n') with open((base_name + name_paramnames), 'w') as pfile: pfile.write('\n'.join((data.NN_param_names + derived_param_names)))
def initialise(cosmo, data, command_line): '\n \n ' varying_param_names = data.get_mcmc_parameters(['varying']) derived_param_names = data.get_mcmc_parameters(['derived']) if (getattr(command_line, (NN_prefix + 'sampler'), ).lower() == 'nested'): (is_flat, is_bound) = sampler.check_flat_bound_priors(data.mcmc_parameters, varying_param_names) if (not is_flat): raise io_mp.ConfigurationError(('Nested Sampling with NeuralNest is only possible with flat ' + 'priors. Sorry!')) if (not is_bound): raise io_mp.ConfigurationError((('Nested Sampling with NeuralNest is only possible for bound ' + 'parameters. Set reasonable bounds for them in the ".param"') + 'file.')) NN_folder = os.path.join(command_line.folder, NN_subfolder) if (not os.path.exists(NN_folder)): os.makedirs(NN_folder) run_num = (sum((os.path.isdir(os.path.join(NN_folder, i)) for i in os.listdir(NN_folder))) + 1) data.NN_arguments['x_dim'] = len(varying_param_names) data.NN_arguments['num_derived'] = len(derived_param_names) data.NN_arguments['verbose'] = True data.NN_arguments['log_dir'] = os.path.join(NN_folder, str(run_num)) data.NN_arguments['use_gpu'] = False data.NN_arguments['flow'] = 'nvp' data.NN_arguments['load_model'] = data.NN_arguments['batch_size'] = 100 if getattr(command_line, (NN_prefix + 'fastslow')): data.NN_arguments['num_slow'] = data.block_parameters[0] else: data.NN_arguments['num_slow'] = 0 for arg in NN_user_arguments: value = getattr(command_line, (NN_prefix + arg)) data.NN_arguments[arg] = value if (arg == 'switch'): if (value >= 0): data.NN_arguments['switch'] = value elif (data.NN_arguments['num_slow'] > 0): data.NN_arguments['switch'] = (1.0 / (5 * data.NN_arguments['num_slow'])) if (getattr(command_line, (NN_prefix + 'sampler'), ).lower() == 'mcmc'): data.NN_arguments['mcmc_steps'] = getattr(command_line, 'N') data.NN_param_names = varying_param_names base_name = os.path.join(NN_folder, 'base') if (run_num == 1): with open((base_name + name_arguments), 'w') as afile: for arg in data.NN_arguments: afile.write(' = '.join([str(arg), str(data.NN_arguments[arg])])) afile.write('\n') with open((base_name + name_paramnames), 'w') as pfile: pfile.write('\n'.join((data.NN_param_names + derived_param_names)))<|docstring|>Main call to prepare the information for the NeuralNest run.<|endoftext|>
fc3bda68117645a768a7662835eb78e86c71e507ff2aa059a29f80d74931f36e
async def async_select_program(self, call) -> None: ' Service for selecting a program ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: program_key = data['program_key'] options = data.get('options') (await appliance.async_select_program(key=program_key, options=options))
Service for selecting a program
custom_components/home_connect_alt/services.py
async_select_program
code-echobase/home-connect-hass
0
python
async def async_select_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: program_key = data['program_key'] options = data.get('options') (await appliance.async_select_program(key=program_key, options=options))
async def async_select_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: program_key = data['program_key'] options = data.get('options') (await appliance.async_select_program(key=program_key, options=options))<|docstring|>Service for selecting a program<|endoftext|>
09dd5b6b35adbc044064d519c25d786c0edea92bc3b9cfb53eacedce7bebf5a6
async def async_start_program(self, call) -> None: ' Service for starting the currently selected program ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_start_program())
Service for starting the currently selected program
custom_components/home_connect_alt/services.py
async_start_program
code-echobase/home-connect-hass
0
python
async def async_start_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_start_program())
async def async_start_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_start_program())<|docstring|>Service for starting the currently selected program<|endoftext|>
24a2f7abc9552d2251bd021d1713a0a6a6867d7399cf58f1e477c099596e5bfa
async def async_stop_program(self, call) -> None: ' Service for stopping the currently active program ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_stop_active_program())
Service for stopping the currently active program
custom_components/home_connect_alt/services.py
async_stop_program
code-echobase/home-connect-hass
0
python
async def async_stop_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_stop_active_program())
async def async_stop_program(self, call) -> None: ' ' data = call.data appliance = self.get_appliance_from_device_id(data['device_id']) if appliance: (await appliance.async_stop_active_program())<|docstring|>Service for stopping the currently active program<|endoftext|>
d9af549ff94fc7f249a16e80698f68817c448e74e4c6a608f6ab9336312e08ca
def get_appliance_from_device_id(self, device_id): ' Helper function to get an appliance from the Home Assistant device_id ' device = self.dr.devices[device_id] haId = list(device.identifiers)[0][1] for (key, appliance) in self.homeconnect.appliances.items(): if (key.lower().replace('-', '_') == haId): return appliance return None
Helper function to get an appliance from the Home Assistant device_id
custom_components/home_connect_alt/services.py
get_appliance_from_device_id
code-echobase/home-connect-hass
0
python
def get_appliance_from_device_id(self, device_id): ' ' device = self.dr.devices[device_id] haId = list(device.identifiers)[0][1] for (key, appliance) in self.homeconnect.appliances.items(): if (key.lower().replace('-', '_') == haId): return appliance return None
def get_appliance_from_device_id(self, device_id): ' ' device = self.dr.devices[device_id] haId = list(device.identifiers)[0][1] for (key, appliance) in self.homeconnect.appliances.items(): if (key.lower().replace('-', '_') == haId): return appliance return None<|docstring|>Helper function to get an appliance from the Home Assistant device_id<|endoftext|>
7539d215a85dd21936d94dbd5cede58af5ca5b50d73f9753413d43829b6f80bd
def app_info(self, **kwargs): '重写此方法' self.name = kwargs.get('name', 'desktop') self.desc = kwargs.get('desc', 'ctpbee桌面端') self.icon = kwargs.get('icon', ':/icon/icon/bee_temp_grey.png') self.versions = kwargs.get('versions', {'1.0': 'https://github.com/ctpbee/ctpbee_desktop/archive/master.zip'}) self.install_version = kwargs.get('install_version', '1.0') self.app_url = kwargs.get('app_url', 'https://github.com/ctpbee/ctpbee_desktop')
重写此方法
app/honey/applications/example.py
app_info
ctpbee/bee-box
2
python
def app_info(self, **kwargs): self.name = kwargs.get('name', 'desktop') self.desc = kwargs.get('desc', 'ctpbee桌面端') self.icon = kwargs.get('icon', ':/icon/icon/bee_temp_grey.png') self.versions = kwargs.get('versions', {'1.0': 'https://github.com/ctpbee/ctpbee_desktop/archive/master.zip'}) self.install_version = kwargs.get('install_version', '1.0') self.app_url = kwargs.get('app_url', 'https://github.com/ctpbee/ctpbee_desktop')
def app_info(self, **kwargs): self.name = kwargs.get('name', 'desktop') self.desc = kwargs.get('desc', 'ctpbee桌面端') self.icon = kwargs.get('icon', ':/icon/icon/bee_temp_grey.png') self.versions = kwargs.get('versions', {'1.0': 'https://github.com/ctpbee/ctpbee_desktop/archive/master.zip'}) self.install_version = kwargs.get('install_version', '1.0') self.app_url = kwargs.get('app_url', 'https://github.com/ctpbee/ctpbee_desktop')<|docstring|>重写此方法<|endoftext|>
e3960fcd78c21a117b73c9968ec94adc9b215b9552db1d786f20f6ba43fd1a74
def orthonormalise(self, n_lyap, delay): '\n\t\tOrthonormalise separation functions (with Gram-Schmidt) and return their norms after orthogonalisation (but before normalisation).\n\t\t' vectors = np.split(np.arange(self.n, dtype=int), (n_lyap + 1))[1:] norms = [] for (i, vector) in enumerate(vectors): for j in range(i): sp = self.scalar_product(delay, vector, vectors[j]) self.subtract(vector, vectors[j], sp) norm = self.norm(delay, vector) if (norm > NORM_THRESHOLD): self.scale(vector, (1.0 / norm)) norms.append(norm) return np.array(norms)
Orthonormalise separation functions (with Gram-Schmidt) and return their norms after orthogonalisation (but before normalisation).
jitcdde/past.py
orthonormalise
neurophysik/jitcdde
49
python
def orthonormalise(self, n_lyap, delay): '\n\t\t\n\t\t' vectors = np.split(np.arange(self.n, dtype=int), (n_lyap + 1))[1:] norms = [] for (i, vector) in enumerate(vectors): for j in range(i): sp = self.scalar_product(delay, vector, vectors[j]) self.subtract(vector, vectors[j], sp) norm = self.norm(delay, vector) if (norm > NORM_THRESHOLD): self.scale(vector, (1.0 / norm)) norms.append(norm) return np.array(norms)
def orthonormalise(self, n_lyap, delay): '\n\t\t\n\t\t' vectors = np.split(np.arange(self.n, dtype=int), (n_lyap + 1))[1:] norms = [] for (i, vector) in enumerate(vectors): for j in range(i): sp = self.scalar_product(delay, vector, vectors[j]) self.subtract(vector, vectors[j], sp) norm = self.norm(delay, vector) if (norm > NORM_THRESHOLD): self.scale(vector, (1.0 / norm)) norms.append(norm) return np.array(norms)<|docstring|>Orthonormalise separation functions (with Gram-Schmidt) and return their norms after orthogonalisation (but before normalisation).<|endoftext|>
0f11de2211009e355dff01b3670705282405642abefed19d6506578aa047d4b7
def remove_projections(self, delay, vectors): '\n\t\tRemove projections of separation function to vectors and return norm after normalisation.\n\t\t' sep_func = np.arange(self.n_basic, (2 * self.n_basic), 1, dtype=int) assert np.all((sep_func == np.split(np.arange(self.n, dtype=int), (2 + (2 * len(vectors))))[1])) assert (self.n_basic == len(sep_func)) d = (len(vectors) * 2) def get_dummy(index): return np.arange(((index + 2) * self.n_basic), ((index + 3) * self.n_basic)) dummy_num = 0 len_dummies = 0 for anchor in self: for vector in vectors: dummy = get_dummy(dummy_num) for other_anchor in self: other_anchor.state[dummy] = np.zeros(self.n_basic) other_anchor.diff[dummy] = np.zeros(self.n_basic) anchor.state[dummy] = vector[0] anchor.diff[dummy] = vector[1] past_dummies = [get_dummy((((dummy_num - i) - 1) % d)) for i in range(len_dummies)] for past_dummy in past_dummies: sp = self.scalar_product(delay, dummy, past_dummy) self.subtract(dummy, past_dummy, sp) norm = self.norm(delay, dummy) if (norm > NORM_THRESHOLD): self.scale(dummy, (1.0 / norm)) sp = self.scalar_product(delay, sep_func, dummy) self.subtract(sep_func, dummy, sp) else: self.scale(dummy, 0.0) len_dummies += 1 dummy_num = ((dummy_num + 1) % d) if (len_dummies > len(vectors)): len_dummies -= len(vectors) for anchor in self: anchor.state[(2 * self.n_basic):] = 0.0 anchor.diff[(2 * self.n_basic):] = 0.0 norm = self.norm(delay, sep_func) self.scale(sep_func, (1.0 / norm)) return norm
Remove projections of separation function to vectors and return norm after normalisation.
jitcdde/past.py
remove_projections
neurophysik/jitcdde
49
python
def remove_projections(self, delay, vectors): '\n\t\t\n\t\t' sep_func = np.arange(self.n_basic, (2 * self.n_basic), 1, dtype=int) assert np.all((sep_func == np.split(np.arange(self.n, dtype=int), (2 + (2 * len(vectors))))[1])) assert (self.n_basic == len(sep_func)) d = (len(vectors) * 2) def get_dummy(index): return np.arange(((index + 2) * self.n_basic), ((index + 3) * self.n_basic)) dummy_num = 0 len_dummies = 0 for anchor in self: for vector in vectors: dummy = get_dummy(dummy_num) for other_anchor in self: other_anchor.state[dummy] = np.zeros(self.n_basic) other_anchor.diff[dummy] = np.zeros(self.n_basic) anchor.state[dummy] = vector[0] anchor.diff[dummy] = vector[1] past_dummies = [get_dummy((((dummy_num - i) - 1) % d)) for i in range(len_dummies)] for past_dummy in past_dummies: sp = self.scalar_product(delay, dummy, past_dummy) self.subtract(dummy, past_dummy, sp) norm = self.norm(delay, dummy) if (norm > NORM_THRESHOLD): self.scale(dummy, (1.0 / norm)) sp = self.scalar_product(delay, sep_func, dummy) self.subtract(sep_func, dummy, sp) else: self.scale(dummy, 0.0) len_dummies += 1 dummy_num = ((dummy_num + 1) % d) if (len_dummies > len(vectors)): len_dummies -= len(vectors) for anchor in self: anchor.state[(2 * self.n_basic):] = 0.0 anchor.diff[(2 * self.n_basic):] = 0.0 norm = self.norm(delay, sep_func) self.scale(sep_func, (1.0 / norm)) return norm
def remove_projections(self, delay, vectors): '\n\t\t\n\t\t' sep_func = np.arange(self.n_basic, (2 * self.n_basic), 1, dtype=int) assert np.all((sep_func == np.split(np.arange(self.n, dtype=int), (2 + (2 * len(vectors))))[1])) assert (self.n_basic == len(sep_func)) d = (len(vectors) * 2) def get_dummy(index): return np.arange(((index + 2) * self.n_basic), ((index + 3) * self.n_basic)) dummy_num = 0 len_dummies = 0 for anchor in self: for vector in vectors: dummy = get_dummy(dummy_num) for other_anchor in self: other_anchor.state[dummy] = np.zeros(self.n_basic) other_anchor.diff[dummy] = np.zeros(self.n_basic) anchor.state[dummy] = vector[0] anchor.diff[dummy] = vector[1] past_dummies = [get_dummy((((dummy_num - i) - 1) % d)) for i in range(len_dummies)] for past_dummy in past_dummies: sp = self.scalar_product(delay, dummy, past_dummy) self.subtract(dummy, past_dummy, sp) norm = self.norm(delay, dummy) if (norm > NORM_THRESHOLD): self.scale(dummy, (1.0 / norm)) sp = self.scalar_product(delay, sep_func, dummy) self.subtract(sep_func, dummy, sp) else: self.scale(dummy, 0.0) len_dummies += 1 dummy_num = ((dummy_num + 1) % d) if (len_dummies > len(vectors)): len_dummies -= len(vectors) for anchor in self: anchor.state[(2 * self.n_basic):] = 0.0 anchor.diff[(2 * self.n_basic):] = 0.0 norm = self.norm(delay, sep_func) self.scale(sep_func, (1.0 / norm)) return norm<|docstring|>Remove projections of separation function to vectors and return norm after normalisation.<|endoftext|>
b5c2cd2ec3c08d2ee3be4106c0ed9193819714f9f8d7419b9e806f4319081589
def normalise_indices(self, delay): '\n\t\tNormalise the separation function of the tangent indices and return the norm (before normalisation).\n\t\t' norm = self.norm(delay, self.tangent_indices) if (norm > NORM_THRESHOLD): self.scale(self.tangent_indices, (1.0 / norm)) return norm
Normalise the separation function of the tangent indices and return the norm (before normalisation).
jitcdde/past.py
normalise_indices
neurophysik/jitcdde
49
python
def normalise_indices(self, delay): '\n\t\t\n\t\t' norm = self.norm(delay, self.tangent_indices) if (norm > NORM_THRESHOLD): self.scale(self.tangent_indices, (1.0 / norm)) return norm
def normalise_indices(self, delay): '\n\t\t\n\t\t' norm = self.norm(delay, self.tangent_indices) if (norm > NORM_THRESHOLD): self.scale(self.tangent_indices, (1.0 / norm)) return norm<|docstring|>Normalise the separation function of the tangent indices and return the norm (before normalisation).<|endoftext|>
38ed7f66c861906d2b3ac85a14ffeb42eddc3630c59bf23b73c4df0c6a9541e9
def test_obtain_read_lock_with_no_existing_locks(self): ' Test that a lock can be obtained when no locks exist ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(instruction.variable_identifier, 'x2') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertEquals(len(self.data_manager.locks), 1) self.assertTrue(value)
Test that a lock can be obtained when no locks exist
tests/test_data_manager.py
test_obtain_read_lock_with_no_existing_locks
cfnyu/distributed_db
0
python
def test_obtain_read_lock_with_no_existing_locks(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(instruction.variable_identifier, 'x2') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertEquals(len(self.data_manager.locks), 1) self.assertTrue(value)
def test_obtain_read_lock_with_no_existing_locks(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(instruction.variable_identifier, 'x2') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertEquals(len(self.data_manager.locks), 1) self.assertTrue(value)<|docstring|>Test that a lock can be obtained when no locks exist<|endoftext|>
4d9853b808ad373c96ab8bf168b875956a6512681bed88a85aef0e75db72b0e5
def test_obtain_read_lock_with_existing_locks(self): ' Test that a lock can be obtained when other locks exist ' dummy_tran = Transaction('T3', TransactionType.READ_WRITE, 1) dummy_var = Variable(1, 4) dummy_var1 = Variable(1, 6) self.data_manager.locks['x4'] = [Lock(LockType.READ, dummy_tran, dummy_var)] self.data_manager.locks['x6'] = [Lock(LockType.WRITE, dummy_tran, dummy_var1)] transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(value)
Test that a lock can be obtained when other locks exist
tests/test_data_manager.py
test_obtain_read_lock_with_existing_locks
cfnyu/distributed_db
0
python
def test_obtain_read_lock_with_existing_locks(self): ' ' dummy_tran = Transaction('T3', TransactionType.READ_WRITE, 1) dummy_var = Variable(1, 4) dummy_var1 = Variable(1, 6) self.data_manager.locks['x4'] = [Lock(LockType.READ, dummy_tran, dummy_var)] self.data_manager.locks['x6'] = [Lock(LockType.WRITE, dummy_tran, dummy_var1)] transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(value)
def test_obtain_read_lock_with_existing_locks(self): ' ' dummy_tran = Transaction('T3', TransactionType.READ_WRITE, 1) dummy_var = Variable(1, 4) dummy_var1 = Variable(1, 6) self.data_manager.locks['x4'] = [Lock(LockType.READ, dummy_tran, dummy_var)] self.data_manager.locks['x6'] = [Lock(LockType.WRITE, dummy_tran, dummy_var1)] transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] self.assertTrue(variable.readable) self.assertFalse(('x2' in self.data_manager.locks)) value = self.data_manager.obtain_read_lock(transaction, instruction) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(value)<|docstring|>Test that a lock can be obtained when other locks exist<|endoftext|>
219c9d0634d66402f3404d26a81096a13fedb9be2e2f5f1a9dadb9f7205be7fa
def test_obtain_read_lock_when_variable_unreadable(self): ' Test that a lock cannot be obtained when the Variable Readable is set to False ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] variable.readable = False self.data_manager.variables['x2'] = variable self.assertFalse(self.data_manager.variables['x2'].readable) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))
Test that a lock cannot be obtained when the Variable Readable is set to False
tests/test_data_manager.py
test_obtain_read_lock_when_variable_unreadable
cfnyu/distributed_db
0
python
def test_obtain_read_lock_when_variable_unreadable(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] variable.readable = False self.data_manager.variables['x2'] = variable self.assertFalse(self.data_manager.variables['x2'].readable) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))
def test_obtain_read_lock_when_variable_unreadable(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') variable = self.data_manager.variables['x2'] variable.readable = False self.data_manager.variables['x2'] = variable self.assertFalse(self.data_manager.variables['x2'].readable) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))<|docstring|>Test that a lock cannot be obtained when the Variable Readable is set to False<|endoftext|>
c2644c0a6d43237c2266537b2921d26b44e3d1117add4fdc6b927059cf78de9f
def test_obtain_read_lock_with_ro_transaction(self): ' Test that a lock can be obtained when the Transaction Is Read-Only ' transaction = Transaction('T1', TransactionType.READ_ONLY, 1) instruction = Instruction('R(T1, x2)') self.assertTrue((transaction.transaction_type == TransactionType.READ_ONLY)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
Test that a lock can be obtained when the Transaction Is Read-Only
tests/test_data_manager.py
test_obtain_read_lock_with_ro_transaction
cfnyu/distributed_db
0
python
def test_obtain_read_lock_with_ro_transaction(self): ' ' transaction = Transaction('T1', TransactionType.READ_ONLY, 1) instruction = Instruction('R(T1, x2)') self.assertTrue((transaction.transaction_type == TransactionType.READ_ONLY)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
def test_obtain_read_lock_with_ro_transaction(self): ' ' transaction = Transaction('T1', TransactionType.READ_ONLY, 1) instruction = Instruction('R(T1, x2)') self.assertTrue((transaction.transaction_type == TransactionType.READ_ONLY)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))<|docstring|>Test that a lock can be obtained when the Transaction Is Read-Only<|endoftext|>
252f82fe740ad96e5adc102f011afbdcece183ac81aa911eba6562b68466a644
def test_obtain_read_lock_with_existing_read_lock(self): ' Test that a lock cannot be obtained when another Transaction has a lock ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) new_lock = self.data_manager.locks['x2'][0] self.assertTrue((new_lock.lock_type == LockType.READ)) self.assertEquals(new_lock.transaction.index, 1) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
Test that a lock cannot be obtained when another Transaction has a lock
tests/test_data_manager.py
test_obtain_read_lock_with_existing_read_lock
cfnyu/distributed_db
0
python
def test_obtain_read_lock_with_existing_read_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) new_lock = self.data_manager.locks['x2'][0] self.assertTrue((new_lock.lock_type == LockType.READ)) self.assertEquals(new_lock.transaction.index, 1) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
def test_obtain_read_lock_with_existing_read_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) new_lock = self.data_manager.locks['x2'][0] self.assertTrue((new_lock.lock_type == LockType.READ)) self.assertEquals(new_lock.transaction.index, 1) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))<|docstring|>Test that a lock cannot be obtained when another Transaction has a lock<|endoftext|>
6fd5612cd9a5bb6f6a7996c5992f8b7afdf9c421cb85268785468a611bbd80a6
def test_obtain_read_lock_with_existing_write_lock(self): ' Test that a lock cannot be obtained when another Transaction has a lock ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('W(T1,x2, 103)') self.data_manager.obtain_write_lock(instruction, transaction) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))
Test that a lock cannot be obtained when another Transaction has a lock
tests/test_data_manager.py
test_obtain_read_lock_with_existing_write_lock
cfnyu/distributed_db
0
python
def test_obtain_read_lock_with_existing_write_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('W(T1,x2, 103)') self.data_manager.obtain_write_lock(instruction, transaction) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))
def test_obtain_read_lock_with_existing_write_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('W(T1,x2, 103)') self.data_manager.obtain_write_lock(instruction, transaction) transaction = Transaction('T2', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(('x2' in self.data_manager.locks)) self.assertFalse(self.data_manager.obtain_read_lock(transaction, instruction))<|docstring|>Test that a lock cannot be obtained when another Transaction has a lock<|endoftext|>
db44160bf950dd3d3415671fcdee94afff7c5cfed2c59ed5c8e742b8f3249138
def test_obtain_read_lock_when_trans_has_exiting_lock(self): ' Test that a lock can be obtained when same Transaction requests the same lock ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
Test that a lock can be obtained when same Transaction requests the same lock
tests/test_data_manager.py
test_obtain_read_lock_when_trans_has_exiting_lock
cfnyu/distributed_db
0
python
def test_obtain_read_lock_when_trans_has_exiting_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))
def test_obtain_read_lock_when_trans_has_exiting_lock(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T2, x2)') self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction)) self.assertTrue(('x2' in self.data_manager.locks)) self.assertTrue(self.data_manager.obtain_read_lock(transaction, instruction))<|docstring|>Test that a lock can be obtained when same Transaction requests the same lock<|endoftext|>
c04f437d9c1065bbce8f7e87d49b5e917d6d6a1bfb355f52ec53cdfac9be0503
def test_read_with_no_locks(self): ' Test the read method, which should return the last committed value ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(self.data_manager.read(transaction, instruction), '20')
Test the read method, which should return the last committed value
tests/test_data_manager.py
test_read_with_no_locks
cfnyu/distributed_db
0
python
def test_read_with_no_locks(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(self.data_manager.read(transaction, instruction), '20')
def test_read_with_no_locks(self): ' ' transaction = Transaction('T1', TransactionType.READ_WRITE, 1) instruction = Instruction('R(T1, x2)') self.assertEquals(self.data_manager.read(transaction, instruction), '20')<|docstring|>Test the read method, which should return the last committed value<|endoftext|>
344a6db131e9468fbf7b1ffcba2089d5b5fc86b1b926a0bb86733bce6337346c
def test_entries_maintains_values_per_transaction(self): ' Ensure that entities is keeping the log of committed values per transaction ' self.assertEquals(self.data_manager.variables['x6'].value, '60') self.data_manager.write_new_data(2, 'x6', 999, 'T1') self.assertEquals(self.data_manager.variables['x6'].value, '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[1], '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[2], '999')
Ensure that entities is keeping the log of committed values per transaction
tests/test_data_manager.py
test_entries_maintains_values_per_transaction
cfnyu/distributed_db
0
python
def test_entries_maintains_values_per_transaction(self): ' ' self.assertEquals(self.data_manager.variables['x6'].value, '60') self.data_manager.write_new_data(2, 'x6', 999, 'T1') self.assertEquals(self.data_manager.variables['x6'].value, '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[1], '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[2], '999')
def test_entries_maintains_values_per_transaction(self): ' ' self.assertEquals(self.data_manager.variables['x6'].value, '60') self.data_manager.write_new_data(2, 'x6', 999, 'T1') self.assertEquals(self.data_manager.variables['x6'].value, '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[1], '60') self.assertEquals(self.data_manager.entries['T1']['x6'].written_values[2], '999')<|docstring|>Ensure that entities is keeping the log of committed values per transaction<|endoftext|>
a947e01e27bf9a62eccfa9c189e1ecf18023a9bf10337c7c58c84ba5d220d5be
def _get_serdesmode(self): '\n Getter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode
Getter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32) YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_get_serdesmode
shivharis/pybind
0
python
def _get_serdesmode(self): '\n Getter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode
def _get_serdesmode(self): '\n Getter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode<|docstring|>Getter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32) YANG Description: SFM Serdes Mode<|endoftext|>
099e26b8f59c84f45a6eaba86b3ed5a672bc8afdc668fe0c626413af1481fcae
def _set_serdesmode(self, v, load=False): '\n Setter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode', rest_name='serdesmode', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode", rest_name="serdesmode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode = t if hasattr(self, '_set'): self._set()
Setter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode() directly. YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_set_serdesmode
shivharis/pybind
0
python
def _set_serdesmode(self, v, load=False): '\n Setter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode', rest_name='serdesmode', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode", rest_name="serdesmode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode = t if hasattr(self, '_set'): self._set()
def _set_serdesmode(self, v, load=False): '\n Setter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode', rest_name='serdesmode', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode", rest_name="serdesmode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode = t if hasattr(self, '_set'): self._set()<|docstring|>Setter method for serdesmode, mapped from YANG variable /sfm_state/serdesmode/serdesmode (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode() directly. YANG Description: SFM Serdes Mode<|endoftext|>
e0d872c4e11aedb913163dcfaab8f4914a605d6e0fd33d588f3fb659dcf033f1
def _get_serdesmode_sfmid(self): '\n Getter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_sfmid
Getter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32) YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_get_serdesmode_sfmid
shivharis/pybind
0
python
def _get_serdesmode_sfmid(self): '\n Getter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_sfmid
def _get_serdesmode_sfmid(self): '\n Getter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_sfmid<|docstring|>Getter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32) YANG Description: SFM Serdes Mode<|endoftext|>
45c1de1e0de9973aa45d415ea50639c49aa7cb683ded32675c8e5bbb0f20a7cc
def _set_serdesmode_sfmid(self, v, load=False): '\n Setter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_sfmid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_sfmid() directly.\n\n YANG Description: SFM Serdes Mode\n ' parent = getattr(self, '_parent', None) if ((parent is not None) and (load is False)): raise AttributeError(('Cannot set keys directly when' + ' within an instantiated list')) if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-sfmid', rest_name='serdesmode-sfmid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_sfmid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-sfmid", rest_name="serdesmode-sfmid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_sfmid = t if hasattr(self, '_set'): self._set()
Setter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode_sfmid is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode_sfmid() directly. YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_set_serdesmode_sfmid
shivharis/pybind
0
python
def _set_serdesmode_sfmid(self, v, load=False): '\n Setter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_sfmid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_sfmid() directly.\n\n YANG Description: SFM Serdes Mode\n ' parent = getattr(self, '_parent', None) if ((parent is not None) and (load is False)): raise AttributeError(('Cannot set keys directly when' + ' within an instantiated list')) if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-sfmid', rest_name='serdesmode-sfmid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_sfmid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-sfmid", rest_name="serdesmode-sfmid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_sfmid = t if hasattr(self, '_set'): self._set()
def _set_serdesmode_sfmid(self, v, load=False): '\n Setter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_sfmid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_sfmid() directly.\n\n YANG Description: SFM Serdes Mode\n ' parent = getattr(self, '_parent', None) if ((parent is not None) and (load is False)): raise AttributeError(('Cannot set keys directly when' + ' within an instantiated list')) if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-sfmid', rest_name='serdesmode-sfmid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_sfmid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-sfmid", rest_name="serdesmode-sfmid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_sfmid = t if hasattr(self, '_set'): self._set()<|docstring|>Setter method for serdesmode_sfmid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_sfmid (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode_sfmid is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode_sfmid() directly. YANG Description: SFM Serdes Mode<|endoftext|>
973d585b61ab169ff9cb5198656127317b25e1f293824227acac73302b268e41
def _get_serdesmode_feid(self): '\n Getter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_feid
Getter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32) YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_get_serdesmode_feid
shivharis/pybind
0
python
def _get_serdesmode_feid(self): '\n Getter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_feid
def _get_serdesmode_feid(self): '\n Getter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n\n YANG Description: SFM Serdes Mode\n ' return self.__serdesmode_feid<|docstring|>Getter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32) YANG Description: SFM Serdes Mode<|endoftext|>
6a35a393b92b4f0cc5412735feca8f09d82eee2e57512f4251b25d579f36cdf5
def _set_serdesmode_feid(self, v, load=False): '\n Setter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_feid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_feid() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-feid', rest_name='serdesmode-feid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_feid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-feid", rest_name="serdesmode-feid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_feid = t if hasattr(self, '_set'): self._set()
Setter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode_feid is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode_feid() directly. YANG Description: SFM Serdes Mode
pybind/slxos/v16r_1_00b/sfm_state/serdesmode/__init__.py
_set_serdesmode_feid
shivharis/pybind
0
python
def _set_serdesmode_feid(self, v, load=False): '\n Setter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_feid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_feid() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-feid', rest_name='serdesmode-feid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_feid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-feid", rest_name="serdesmode-feid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_feid = t if hasattr(self, '_set'): self._set()
def _set_serdesmode_feid(self, v, load=False): '\n Setter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32)\n If this variable is read-only (config: false) in the\n source YANG file, then _set_serdesmode_feid is considered as a private\n method. Backends looking to populate this variable should\n do so via calling thisObj._set_serdesmode_feid() directly.\n\n YANG Description: SFM Serdes Mode\n ' if hasattr(v, '_utype'): v = v._utype(v) try: t = YANGDynClass(v, base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name='serdesmode-feid', rest_name='serdesmode-feid', parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-sysmgr-operational', defining_module='brocade-sysmgr-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({'error-string': 'serdesmode_feid must be of a type compatible with uint32', 'defined-type': 'uint32', 'generated-type': 'YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={\'range\': [\'0..4294967295\']}, int_size=32), is_leaf=True, yang_name="serdesmode-feid", rest_name="serdesmode-feid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace=\'urn:brocade.com:mgmt:brocade-sysmgr-operational\', defining_module=\'brocade-sysmgr-operational\', yang_type=\'uint32\', is_config=False)'}) self.__serdesmode_feid = t if hasattr(self, '_set'): self._set()<|docstring|>Setter method for serdesmode_feid, mapped from YANG variable /sfm_state/serdesmode/serdesmode_feid (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_serdesmode_feid is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serdesmode_feid() directly. YANG Description: SFM Serdes Mode<|endoftext|>
69722da69c2664f33919822bdb78ebdd7c819112935de527273321b937ea2ccd
def test_source_volume_missing_1(sevenmode): 'Test missing input params.' with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): ' no src qtree ' sevenmode.update_snapmirror('dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): ' no dst qtree ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')
Test missing input params.
tests/test_snapmirror_params.py
test_source_volume_missing_1
ifxit/nidho
11
python
def test_source_volume_missing_1(sevenmode): with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): ' no src qtree ' sevenmode.update_snapmirror('dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): ' no dst qtree ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')
def test_source_volume_missing_1(sevenmode): with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source filer ' sevenmode.update_snapmirror('dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): ' no source volume ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): ' no src qtree ' sevenmode.update_snapmirror('dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): ' no dst qtree ' sevenmode.update_snapmirror('dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')<|docstring|>Test missing input params.<|endoftext|>
bffe0bb063defd97022f67083e8424d29208a4a5488effa0220c5a1ce9553ba0
def test_source_volume_missing_2(sevenmode): 'Test missing input params.' with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')
Test missing input params.
tests/test_snapmirror_params.py
test_source_volume_missing_2
ifxit/nidho
11
python
def test_source_volume_missing_2(sevenmode): with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')
def test_source_volume_missing_2(sevenmode): with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_volume='vol', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_qtree='qtree') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', 'dst_qtree', source_filer='host', source_volume='vol') with pytest.raises(NidhoggException): sevenmode.update_snapmirror_with_snapshot('name', 'dst_volume', source_filer='host', source_volume='vol', source_qtree='qtree')<|docstring|>Test missing input params.<|endoftext|>
fe3c41802a62d0765c70cad8bf38189387cc920afac5d12b80e8a83325b058f4
def main() -> None: 'Process command line execution.' os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'the_htvms.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc if ((len(sys.argv) > 1) and (sys.argv[1] == 'run')): SiteManager(sys.argv[1:]).run_server() else: execute_from_command_line(sys.argv)
Process command line execution.
dramatic-dragonflies/manage.py
main
lavirlifiliol/summer-code-jam-2020
0
python
def main() -> None: os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'the_htvms.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc if ((len(sys.argv) > 1) and (sys.argv[1] == 'run')): SiteManager(sys.argv[1:]).run_server() else: execute_from_command_line(sys.argv)
def main() -> None: os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'the_htvms.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc if ((len(sys.argv) > 1) and (sys.argv[1] == 'run')): SiteManager(sys.argv[1:]).run_server() else: execute_from_command_line(sys.argv)<|docstring|>Process command line execution.<|endoftext|>
42b542dccf1c7f2da240196224a1f046a9062a12d7b9ae81beade4eac4ea314d
def prepare_server(self) -> None: 'Perform preparation tasks before running the server.' django.setup() if self.migrate: print('Applying migrations.') call_command('migrate', verbosity=self.verbosity) if self.collectstatic: print('Collecting static files.') call_command('collectstatic', interactive=False, clear=True, verbosity=self.verbosity)
Perform preparation tasks before running the server.
dramatic-dragonflies/manage.py
prepare_server
lavirlifiliol/summer-code-jam-2020
0
python
def prepare_server(self) -> None: django.setup() if self.migrate: print('Applying migrations.') call_command('migrate', verbosity=self.verbosity) if self.collectstatic: print('Collecting static files.') call_command('collectstatic', interactive=False, clear=True, verbosity=self.verbosity)
def prepare_server(self) -> None: django.setup() if self.migrate: print('Applying migrations.') call_command('migrate', verbosity=self.verbosity) if self.collectstatic: print('Collecting static files.') call_command('collectstatic', interactive=False, clear=True, verbosity=self.verbosity)<|docstring|>Perform preparation tasks before running the server.<|endoftext|>
d81d5d52b8fd998b1781e1e8c3c85bc83240ed248fa0671da3f5893515a76676
@staticmethod def perform_security_check() -> None: 'Perform django security tests.' print('Running security checks.') call_command('check', '--deploy', '--fail-level', 'WARNING')
Perform django security tests.
dramatic-dragonflies/manage.py
perform_security_check
lavirlifiliol/summer-code-jam-2020
0
python
@staticmethod def perform_security_check() -> None: print('Running security checks.') call_command('check', '--deploy', '--fail-level', 'WARNING')
@staticmethod def perform_security_check() -> None: print('Running security checks.') call_command('check', '--deploy', '--fail-level', 'WARNING')<|docstring|>Perform django security tests.<|endoftext|>
3c5ca71a88d8c0cb0a404f3a22a3271f3ef0da8d2822404ee36c6ed307c39ff7
def run_server(self) -> None: 'Prepare and run the web server.' in_reloader = (os.environ.get('RUN_MAIN') == 'true') if in_reloader: self.prepare_server() if self.check: self.perform_security_check() print('Starting server.') call_command('runserver', '0.0.0.0:5000') return
Prepare and run the web server.
dramatic-dragonflies/manage.py
run_server
lavirlifiliol/summer-code-jam-2020
0
python
def run_server(self) -> None: in_reloader = (os.environ.get('RUN_MAIN') == 'true') if in_reloader: self.prepare_server() if self.check: self.perform_security_check() print('Starting server.') call_command('runserver', '0.0.0.0:5000') return
def run_server(self) -> None: in_reloader = (os.environ.get('RUN_MAIN') == 'true') if in_reloader: self.prepare_server() if self.check: self.perform_security_check() print('Starting server.') call_command('runserver', '0.0.0.0:5000') return<|docstring|>Prepare and run the web server.<|endoftext|>
ee5f03d7199a8420149201cabf99281ef1680660d34d1bfc6d8b653f08e71755
def get_distance_matrix(mmcif_file, chain_id): '\n Given a protein structure in mmcif format and a chain id, extract the\n residue type, the coordinate of each residue, and the residue numbering.\n Compute all the pairwise euclidean distances among residues. Returns a\n dictionary containing all of these data.\n ' parser = PDB.MMCIFParser() structure = parser.get_structure('_', mmcif_file) out = {'residue': [], 'coordinates': [], 'resseq': [], 'icode': []} matching_chains = 0 for model in structure: if (model.id == 0): print('Processing model:', model.id) for chain in model: if (chain.id != chain_id): continue matching_chains += 1 for residue in chain.get_residues(): het_field = residue.id[0] if (het_field != ' '): continue out['residue'].append(residue.resname) if (residue.resname == 'GLY'): out['coordinates'].append(residue['CA'].get_coord()) else: out['coordinates'].append(residue['CB'].get_coord()) out['resseq'].append(residue.id[1]) out['icode'].append(residue.id[2]) else: print('Skipping model:', model.id) assert (matching_chains == 1) out['coordinates'] = np.array(out['coordinates'], dtype=float) out['resseq'] = np.array(out['resseq'], dtype=int) out['icode'] = np.array(out['icode'], dtype=str) out['icode'] = np.where((out['icode'] == ' '), 'nan', out['icode']) out['distance_matrix'] = spatial.distance_matrix(out['coordinates'], out['coordinates'], p=2) out['sequence'] = ''.join([SeqUtils.IUPACData.protein_letters_3to1[r.capitalize()] for r in out['residue']]) out['pdb_id'] = mmcif_file.split('.')[0] out['chain_id'] = chain_id return out
Given a protein structure in mmcif format and a chain id, extract the residue type, the coordinate of each residue, and the residue numbering. Compute all the pairwise euclidean distances among residues. Returns a dictionary containing all of these data.
python/pdb_to_distance_matrix.py
get_distance_matrix
saulpierotti/.bioscripts
0
python
def get_distance_matrix(mmcif_file, chain_id): '\n Given a protein structure in mmcif format and a chain id, extract the\n residue type, the coordinate of each residue, and the residue numbering.\n Compute all the pairwise euclidean distances among residues. Returns a\n dictionary containing all of these data.\n ' parser = PDB.MMCIFParser() structure = parser.get_structure('_', mmcif_file) out = {'residue': [], 'coordinates': [], 'resseq': [], 'icode': []} matching_chains = 0 for model in structure: if (model.id == 0): print('Processing model:', model.id) for chain in model: if (chain.id != chain_id): continue matching_chains += 1 for residue in chain.get_residues(): het_field = residue.id[0] if (het_field != ' '): continue out['residue'].append(residue.resname) if (residue.resname == 'GLY'): out['coordinates'].append(residue['CA'].get_coord()) else: out['coordinates'].append(residue['CB'].get_coord()) out['resseq'].append(residue.id[1]) out['icode'].append(residue.id[2]) else: print('Skipping model:', model.id) assert (matching_chains == 1) out['coordinates'] = np.array(out['coordinates'], dtype=float) out['resseq'] = np.array(out['resseq'], dtype=int) out['icode'] = np.array(out['icode'], dtype=str) out['icode'] = np.where((out['icode'] == ' '), 'nan', out['icode']) out['distance_matrix'] = spatial.distance_matrix(out['coordinates'], out['coordinates'], p=2) out['sequence'] = .join([SeqUtils.IUPACData.protein_letters_3to1[r.capitalize()] for r in out['residue']]) out['pdb_id'] = mmcif_file.split('.')[0] out['chain_id'] = chain_id return out
def get_distance_matrix(mmcif_file, chain_id): '\n Given a protein structure in mmcif format and a chain id, extract the\n residue type, the coordinate of each residue, and the residue numbering.\n Compute all the pairwise euclidean distances among residues. Returns a\n dictionary containing all of these data.\n ' parser = PDB.MMCIFParser() structure = parser.get_structure('_', mmcif_file) out = {'residue': [], 'coordinates': [], 'resseq': [], 'icode': []} matching_chains = 0 for model in structure: if (model.id == 0): print('Processing model:', model.id) for chain in model: if (chain.id != chain_id): continue matching_chains += 1 for residue in chain.get_residues(): het_field = residue.id[0] if (het_field != ' '): continue out['residue'].append(residue.resname) if (residue.resname == 'GLY'): out['coordinates'].append(residue['CA'].get_coord()) else: out['coordinates'].append(residue['CB'].get_coord()) out['resseq'].append(residue.id[1]) out['icode'].append(residue.id[2]) else: print('Skipping model:', model.id) assert (matching_chains == 1) out['coordinates'] = np.array(out['coordinates'], dtype=float) out['resseq'] = np.array(out['resseq'], dtype=int) out['icode'] = np.array(out['icode'], dtype=str) out['icode'] = np.where((out['icode'] == ' '), 'nan', out['icode']) out['distance_matrix'] = spatial.distance_matrix(out['coordinates'], out['coordinates'], p=2) out['sequence'] = .join([SeqUtils.IUPACData.protein_letters_3to1[r.capitalize()] for r in out['residue']]) out['pdb_id'] = mmcif_file.split('.')[0] out['chain_id'] = chain_id return out<|docstring|>Given a protein structure in mmcif format and a chain id, extract the residue type, the coordinate of each residue, and the residue numbering. Compute all the pairwise euclidean distances among residues. Returns a dictionary containing all of these data.<|endoftext|>
8ce1b61a33713c05b463135ef7fc4b1ff6a26b280fb4f88e4d1ea9725efb57c4
def main(args): '\n Main function\n ' assert os.path.isfile(args.i) assert args.i.endswith('.cif') assert (len(args.c) == 1) assert args.o.endswith('.pdb_distance_matrix.joblib.xz') assert (not os.path.isfile(args.o)) out_dict = get_distance_matrix(args.i, args.c) joblib.dump(out_dict, args.o)
Main function
python/pdb_to_distance_matrix.py
main
saulpierotti/.bioscripts
0
python
def main(args): '\n \n ' assert os.path.isfile(args.i) assert args.i.endswith('.cif') assert (len(args.c) == 1) assert args.o.endswith('.pdb_distance_matrix.joblib.xz') assert (not os.path.isfile(args.o)) out_dict = get_distance_matrix(args.i, args.c) joblib.dump(out_dict, args.o)
def main(args): '\n \n ' assert os.path.isfile(args.i) assert args.i.endswith('.cif') assert (len(args.c) == 1) assert args.o.endswith('.pdb_distance_matrix.joblib.xz') assert (not os.path.isfile(args.o)) out_dict = get_distance_matrix(args.i, args.c) joblib.dump(out_dict, args.o)<|docstring|>Main function<|endoftext|>
82a5babcb11c543c7c0150b10a32046cb2ab34bd3576ac360043ce89fa76c585
def parse_arguments(): '\n Parse command line arguments.\n ' description = ' '.join(__doc__.splitlines()[4:]) epilog = ', '.join(__doc__.splitlines()[1:4]) parser = argparse.ArgumentParser(description=description, epilog=epilog) parser.add_argument('-i', type=str, help='the mmcif file to be used', metavar='<file>', required=True) parser.add_argument('-o', type=str, help='the file where to save the joblib dump of the distance matrix', metavar='<file>', required=True) parser.add_argument('-c', type=str, help='the pdb chain id to be considered', metavar='<letter>', required=True) args = parser.parse_args() return args
Parse command line arguments.
python/pdb_to_distance_matrix.py
parse_arguments
saulpierotti/.bioscripts
0
python
def parse_arguments(): '\n \n ' description = ' '.join(__doc__.splitlines()[4:]) epilog = ', '.join(__doc__.splitlines()[1:4]) parser = argparse.ArgumentParser(description=description, epilog=epilog) parser.add_argument('-i', type=str, help='the mmcif file to be used', metavar='<file>', required=True) parser.add_argument('-o', type=str, help='the file where to save the joblib dump of the distance matrix', metavar='<file>', required=True) parser.add_argument('-c', type=str, help='the pdb chain id to be considered', metavar='<letter>', required=True) args = parser.parse_args() return args
def parse_arguments(): '\n \n ' description = ' '.join(__doc__.splitlines()[4:]) epilog = ', '.join(__doc__.splitlines()[1:4]) parser = argparse.ArgumentParser(description=description, epilog=epilog) parser.add_argument('-i', type=str, help='the mmcif file to be used', metavar='<file>', required=True) parser.add_argument('-o', type=str, help='the file where to save the joblib dump of the distance matrix', metavar='<file>', required=True) parser.add_argument('-c', type=str, help='the pdb chain id to be considered', metavar='<letter>', required=True) args = parser.parse_args() return args<|docstring|>Parse command line arguments.<|endoftext|>
75a53b7f92b132dd3548a84ab00f9b5f467325dba36ff06a8957e5f9bc1b8fc4
def __init__(self, *args, **kwargs): "\n Method is used to initialize the User mapping module and it's base module.\n\n Args:\n *args:\n **kwargs:\n " self.min_ver = None self.max_ver = None super(UserMappingModule, self).__init__(*args, **kwargs)
Method is used to initialize the User mapping module and it's base module. Args: *args: **kwargs:
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
__init__
Anillab/One-Minute-Pitch
4
python
def __init__(self, *args, **kwargs): "\n Method is used to initialize the User mapping module and it's base module.\n\n Args:\n *args:\n **kwargs:\n " self.min_ver = None self.max_ver = None super(UserMappingModule, self).__init__(*args, **kwargs)
def __init__(self, *args, **kwargs): "\n Method is used to initialize the User mapping module and it's base module.\n\n Args:\n *args:\n **kwargs:\n " self.min_ver = None self.max_ver = None super(UserMappingModule, self).__init__(*args, **kwargs)<|docstring|>Method is used to initialize the User mapping module and it's base module. Args: *args: **kwargs:<|endoftext|>
15d4251ae31bfe7b4a4a94bcf8f04a4c392633fd774dcb5978761f884176aab4
def get_nodes(self, gid, sid, did, fid, fsid): '\n Method is used to generate the browser collection node\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n ' (yield self.generate_browser_collection_node(fsid))
Method is used to generate the browser collection node Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: Foreign server ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
get_nodes
Anillab/One-Minute-Pitch
4
python
def get_nodes(self, gid, sid, did, fid, fsid): '\n Method is used to generate the browser collection node\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n ' (yield self.generate_browser_collection_node(fsid))
def get_nodes(self, gid, sid, did, fid, fsid): '\n Method is used to generate the browser collection node\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n ' (yield self.generate_browser_collection_node(fsid))<|docstring|>Method is used to generate the browser collection node Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: Foreign server ID<|endoftext|>
42908e6e8b56fe91d013a49570882d6b85b3ed05811aae63fed9ad0859fc4bcd
@property def node_inode(self): '\n node_inode\n\n Override this property to make the node as leaf node.\n ' return False
node_inode Override this property to make the node as leaf node.
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
node_inode
Anillab/One-Minute-Pitch
4
python
@property def node_inode(self): '\n node_inode\n\n Override this property to make the node as leaf node.\n ' return False
@property def node_inode(self): '\n node_inode\n\n Override this property to make the node as leaf node.\n ' return False<|docstring|>node_inode Override this property to make the node as leaf node.<|endoftext|>
cb8a64ff0dc5af05d33acee800489fd61e213248ee9930ef382f4f12f79fffb9
@property def script_load(self): '\n Load the module script for user mapping, when any of the foreign server node is initialized.\n\n Returns: node type of the server module.\n ' return servers.ServerModule.NODE_TYPE
Load the module script for user mapping, when any of the foreign server node is initialized. Returns: node type of the server module.
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
script_load
Anillab/One-Minute-Pitch
4
python
@property def script_load(self): '\n Load the module script for user mapping, when any of the foreign server node is initialized.\n\n Returns: node type of the server module.\n ' return servers.ServerModule.NODE_TYPE
@property def script_load(self): '\n Load the module script for user mapping, when any of the foreign server node is initialized.\n\n Returns: node type of the server module.\n ' return servers.ServerModule.NODE_TYPE<|docstring|>Load the module script for user mapping, when any of the foreign server node is initialized. Returns: node type of the server module.<|endoftext|>
9ca67c4c0fb2138137ace45583cef1c88b14b4d76fe6ec5b6523ff824df90910
@property def module_use_template_javascript(self): '\n Returns whether Jinja2 template is used for generating the javascript\n module.\n ' return False
Returns whether Jinja2 template is used for generating the javascript module.
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
module_use_template_javascript
Anillab/One-Minute-Pitch
4
python
@property def module_use_template_javascript(self): '\n Returns whether Jinja2 template is used for generating the javascript\n module.\n ' return False
@property def module_use_template_javascript(self): '\n Returns whether Jinja2 template is used for generating the javascript\n module.\n ' return False<|docstring|>Returns whether Jinja2 template is used for generating the javascript module.<|endoftext|>
33a8234c84cfcfa0d6e7e52761dc240a57c36e810ae6352c14bc2d3b1bc846f2
def module_js(self): '\n This property defines (if javascript) exists for this node.\n Override this property for your own logic.\n ' return make_response(render_template('user_mappings/js/user_mappings.js', _=gettext), 200, {'Content-Type': 'application/x-javascript'})
This property defines (if javascript) exists for this node. Override this property for your own logic.
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
module_js
Anillab/One-Minute-Pitch
4
python
def module_js(self): '\n This property defines (if javascript) exists for this node.\n Override this property for your own logic.\n ' return make_response(render_template('user_mappings/js/user_mappings.js', _=gettext), 200, {'Content-Type': 'application/x-javascript'})
def module_js(self): '\n This property defines (if javascript) exists for this node.\n Override this property for your own logic.\n ' return make_response(render_template('user_mappings/js/user_mappings.js', _=gettext), 200, {'Content-Type': 'application/x-javascript'})<|docstring|>This property defines (if javascript) exists for this node. Override this property for your own logic.<|endoftext|>
92deb6e9f2d494eb3cedaf101eb2ae4d2d5a749121e03f84fd35049d359c27dd
def check_precondition(f): '\n This function will behave as a decorator which will checks\n database connection before running view, it will also attaches\n manager,conn & template_path properties to self\n ' @wraps(f) def wrap(*args, **kwargs): self = args[0] self.manager = get_driver(PG_DEFAULT_DRIVER).connection_manager(kwargs['sid']) self.conn = self.manager.connection(did=kwargs['did']) self.template_path = 'user_mappings/sql/#{0}#'.format(self.manager.version) return f(*args, **kwargs) return wrap
This function will behave as a decorator which will checks database connection before running view, it will also attaches manager,conn & template_path properties to self
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
check_precondition
Anillab/One-Minute-Pitch
4
python
def check_precondition(f): '\n This function will behave as a decorator which will checks\n database connection before running view, it will also attaches\n manager,conn & template_path properties to self\n ' @wraps(f) def wrap(*args, **kwargs): self = args[0] self.manager = get_driver(PG_DEFAULT_DRIVER).connection_manager(kwargs['sid']) self.conn = self.manager.connection(did=kwargs['did']) self.template_path = 'user_mappings/sql/#{0}#'.format(self.manager.version) return f(*args, **kwargs) return wrap
def check_precondition(f): '\n This function will behave as a decorator which will checks\n database connection before running view, it will also attaches\n manager,conn & template_path properties to self\n ' @wraps(f) def wrap(*args, **kwargs): self = args[0] self.manager = get_driver(PG_DEFAULT_DRIVER).connection_manager(kwargs['sid']) self.conn = self.manager.connection(did=kwargs['did']) self.template_path = 'user_mappings/sql/#{0}#'.format(self.manager.version) return f(*args, **kwargs) return wrap<|docstring|>This function will behave as a decorator which will checks database connection before running view, it will also attaches manager,conn & template_path properties to self<|endoftext|>
775bb1a2dcbf818bde3ca111ba02db4930e2199489f25c2fbe79b154402e4466
@check_precondition def list(self, gid, sid, did, fid, fsid): '\n This function is used to list all the user mapping nodes within that collection.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) return ajax_response(response=res['rows'], status=200)
This function is used to list all the user mapping nodes within that collection. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
list
Anillab/One-Minute-Pitch
4
python
@check_precondition def list(self, gid, sid, did, fid, fsid): '\n This function is used to list all the user mapping nodes within that collection.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) return ajax_response(response=res['rows'], status=200)
@check_precondition def list(self, gid, sid, did, fid, fsid): '\n This function is used to list all the user mapping nodes within that collection.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) return ajax_response(response=res['rows'], status=200)<|docstring|>This function is used to list all the user mapping nodes within that collection. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID<|endoftext|>
3f56abff5141d6096623496c67ef0312ba707f1f4fffce7a3bf403f71783a592
@check_precondition def nodes(self, gid, sid, did, fid, fsid): '\n This function will used to create all the child node within that collection.\n Here it will create all the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' res = [] sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: res.append(self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) return make_json_response(data=res, status=200)
This function will used to create all the child node within that collection. Here it will create all the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
nodes
Anillab/One-Minute-Pitch
4
python
@check_precondition def nodes(self, gid, sid, did, fid, fsid): '\n This function will used to create all the child node within that collection.\n Here it will create all the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' res = [] sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: res.append(self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) return make_json_response(data=res, status=200)
@check_precondition def nodes(self, gid, sid, did, fid, fsid): '\n This function will used to create all the child node within that collection.\n Here it will create all the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' res = [] sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, conn=self.conn) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: res.append(self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) return make_json_response(data=res, status=200)<|docstring|>This function will used to create all the child node within that collection. Here it will create all the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID<|endoftext|>
04fed26bc6f10ead5ce2931fd183581f817345f7171ad5699a81f8b3be06ca06
@check_precondition def node(self, gid, sid, did, fid, fsid, umid): '\n This function will fetch properties of user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), conn=self.conn, umid=umid) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return make_json_response(data=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping'), status=200) return gone(gettext('Could not find the specified user mapping.'))
This function will fetch properties of user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
node
Anillab/One-Minute-Pitch
4
python
@check_precondition def node(self, gid, sid, did, fid, fsid, umid): '\n This function will fetch properties of user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), conn=self.conn, umid=umid) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return make_json_response(data=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping'), status=200) return gone(gettext('Could not find the specified user mapping.'))
@check_precondition def node(self, gid, sid, did, fid, fsid, umid): '\n This function will fetch properties of user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), conn=self.conn, umid=umid) (status, r_set) = self.conn.execute_2darray(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return make_json_response(data=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping'), status=200) return gone(gettext('Could not find the specified user mapping.'))<|docstring|>This function will fetch properties of user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID<|endoftext|>
c1b8b4e83a65c11548fae40ccd6986be41d7ad3419c8731760fbac007725b062
@check_precondition def properties(self, gid, sid, did, fid, fsid, umid): '\n This function will show the properties of the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') return ajax_response(response=res['rows'][0], status=200)
This function will show the properties of the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
properties
Anillab/One-Minute-Pitch
4
python
@check_precondition def properties(self, gid, sid, did, fid, fsid, umid): '\n This function will show the properties of the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') return ajax_response(response=res['rows'][0], status=200)
@check_precondition def properties(self, gid, sid, did, fid, fsid, umid): '\n This function will show the properties of the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') return ajax_response(response=res['rows'][0], status=200)<|docstring|>This function will show the properties of the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID<|endoftext|>
4013d8645bd4b0e95738c464c55849f81df67ac5da306a66c005a121b5052de3
@check_precondition def create(self, gid, sid, did, fid, fsid): '\n This function will create the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' required_args = ['name'] data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) for arg in required_args: if (arg not in data): return make_json_response(status=410, success=0, errormsg=gettext(('Could not find the required parameter (%s).' % arg))) try: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, data=data, conn=self.conn) (status, r_set) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return jsonify(node=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) except Exception as e: return internal_server_error(errormsg=str(e))
This function will create the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
create
Anillab/One-Minute-Pitch
4
python
@check_precondition def create(self, gid, sid, did, fid, fsid): '\n This function will create the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' required_args = ['name'] data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) for arg in required_args: if (arg not in data): return make_json_response(status=410, success=0, errormsg=gettext(('Could not find the required parameter (%s).' % arg))) try: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, data=data, conn=self.conn) (status, r_set) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return jsonify(node=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) except Exception as e: return internal_server_error(errormsg=str(e))
@check_precondition def create(self, gid, sid, did, fid, fsid): '\n This function will create the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n ' required_args = ['name'] data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) for arg in required_args: if (arg not in data): return make_json_response(status=410, success=0, errormsg=gettext(('Could not find the required parameter (%s).' % arg))) try: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) sql = render_template('/'.join([self.template_path, 'properties.sql']), fsid=fsid, data=data, conn=self.conn) (status, r_set) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=r_set) for row in r_set['rows']: return jsonify(node=self.blueprint.generate_browser_node(row['um_oid'], fsid, row['name'], icon='icon-user_mapping')) except Exception as e: return internal_server_error(errormsg=str(e))<|docstring|>This function will create the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID<|endoftext|>
d5763374d34306ef1a760195fa391f34ce1490571f396fe43a7cfcfe8d417aed
@check_precondition def update(self, gid, sid, did, fid, fsid, umid): '\n This function will update the data for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql sql = sql.strip('\n').strip(' ') (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return jsonify(node=self.blueprint.generate_browser_node(umid, fsid, name, icon=('icon-%s' % self.node_type))) except Exception as e: return internal_server_error(errormsg=str(e))
This function will update the data for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
update
Anillab/One-Minute-Pitch
4
python
@check_precondition def update(self, gid, sid, did, fid, fsid, umid): '\n This function will update the data for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql sql = sql.strip('\n').strip(' ') (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return jsonify(node=self.blueprint.generate_browser_node(umid, fsid, name, icon=('icon-%s' % self.node_type))) except Exception as e: return internal_server_error(errormsg=str(e))
@check_precondition def update(self, gid, sid, did, fid, fsid, umid): '\n This function will update the data for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' data = (request.form if request.form else json.loads(request.data, encoding='utf-8')) try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql sql = sql.strip('\n').strip(' ') (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return jsonify(node=self.blueprint.generate_browser_node(umid, fsid, name, icon=('icon-%s' % self.node_type))) except Exception as e: return internal_server_error(errormsg=str(e))<|docstring|>This function will update the data for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID<|endoftext|>
1ea67583b3e887e78bd01491bb50e537681ffe29d9daff0ff68387186fa457f8
@check_precondition def delete(self, gid, sid, did, fid, fsid, umid): '\n This function will delete the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' if (self.cmd == 'delete'): cascade = True else: cascade = False try: sql = render_template('/'.join([self.template_path, 'delete.sql']), fsid=fsid, conn=self.conn) (status, name) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=name) if (name is None): return make_json_response(status=410, success=0, errormsg=gettext('Error: Object not found.'), info=gettext('The specified foreign server could not be found.\n')) sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (not res['rows']): return make_json_response(status=410, success=0, errormsg=gettext('The specified user mapping could not be found.\n')) data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'delete.sql']), data=data, name=name, cascade=cascade, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return make_json_response(success=1, info=gettext('User Mapping dropped'), data={'id': umid, 'fsid': fsid, 'fid': fid, 'did': did, 'sid': sid, 'gid': gid}) except Exception as e: return internal_server_error(errormsg=str(e))
This function will delete the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
delete
Anillab/One-Minute-Pitch
4
python
@check_precondition def delete(self, gid, sid, did, fid, fsid, umid): '\n This function will delete the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' if (self.cmd == 'delete'): cascade = True else: cascade = False try: sql = render_template('/'.join([self.template_path, 'delete.sql']), fsid=fsid, conn=self.conn) (status, name) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=name) if (name is None): return make_json_response(status=410, success=0, errormsg=gettext('Error: Object not found.'), info=gettext('The specified foreign server could not be found.\n')) sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (not res['rows']): return make_json_response(status=410, success=0, errormsg=gettext('The specified user mapping could not be found.\n')) data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'delete.sql']), data=data, name=name, cascade=cascade, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return make_json_response(success=1, info=gettext('User Mapping dropped'), data={'id': umid, 'fsid': fsid, 'fid': fid, 'did': did, 'sid': sid, 'gid': gid}) except Exception as e: return internal_server_error(errormsg=str(e))
@check_precondition def delete(self, gid, sid, did, fid, fsid, umid): '\n This function will delete the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' if (self.cmd == 'delete'): cascade = True else: cascade = False try: sql = render_template('/'.join([self.template_path, 'delete.sql']), fsid=fsid, conn=self.conn) (status, name) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=name) if (name is None): return make_json_response(status=410, success=0, errormsg=gettext('Error: Object not found.'), info=gettext('The specified foreign server could not be found.\n')) sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (not res['rows']): return make_json_response(status=410, success=0, errormsg=gettext('The specified user mapping could not be found.\n')) data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'delete.sql']), data=data, name=name, cascade=cascade, conn=self.conn) (status, res) = self.conn.execute_scalar(sql) if (not status): return internal_server_error(errormsg=res) return make_json_response(success=1, info=gettext('User Mapping dropped'), data={'id': umid, 'fsid': fsid, 'fid': fid, 'did': did, 'sid': sid, 'gid': gid}) except Exception as e: return internal_server_error(errormsg=str(e))<|docstring|>This function will delete the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID<|endoftext|>
75e47ec24d34c62970dbd0d61c858904e294290143e0a69046bc274015a3e456
@check_precondition def msql(self, gid, sid, did, fid, fsid, umid=None): '\n This function is used to return modified SQL for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' data = {} for (k, v) in request.args.items(): try: data[k] = json.loads(v, encoding='utf-8') except ValueError: data[k] = v try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql if (sql == ''): sql = '--modified SQL' return make_json_response(data=sql, status=200) except Exception as e: return internal_server_error(errormsg=str(e))
This function is used to return modified SQL for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
msql
Anillab/One-Minute-Pitch
4
python
@check_precondition def msql(self, gid, sid, did, fid, fsid, umid=None): '\n This function is used to return modified SQL for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' data = {} for (k, v) in request.args.items(): try: data[k] = json.loads(v, encoding='utf-8') except ValueError: data[k] = v try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql if (sql == ): sql = '--modified SQL' return make_json_response(data=sql, status=200) except Exception as e: return internal_server_error(errormsg=str(e))
@check_precondition def msql(self, gid, sid, did, fid, fsid, umid=None): '\n This function is used to return modified SQL for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' data = {} for (k, v) in request.args.items(): try: data[k] = json.loads(v, encoding='utf-8') except ValueError: data[k] = v try: (sql, name) = self.get_sql(gid, sid, data, did, fid, fsid, umid) if (not isinstance(sql, (str, unicode))): return sql if (sql == ): sql = '--modified SQL' return make_json_response(data=sql, status=200) except Exception as e: return internal_server_error(errormsg=str(e))<|docstring|>This function is used to return modified SQL for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID<|endoftext|>
96d3f4070d348c337f3ad799d8b899dbc5204b685c3b55aef9b3c4382330b0f7
def get_sql(self, gid, sid, data, did, fid, fsid, umid=None): '\n This function will generate sql from model data.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n data: Contains the data of the selected user mapping node\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' required_args = ['name'] if (umid is not None): sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') old_data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] for arg in required_args: if (arg not in data): data[arg] = old_data[arg] is_valid_added_options = is_valid_changed_options = False if (('umoptions' in data) and ('added' in data['umoptions'])): (is_valid_added_options, data['umoptions']['added']) = validate_options(data['umoptions']['added'], 'umoption', 'umvalue') if (('umoptions' in data) and ('changed' in data['umoptions'])): (is_valid_changed_options, data['umoptions']['changed']) = validate_options(data['umoptions']['changed'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'update.sql']), data=data, o_data=old_data, is_valid_added_options=is_valid_added_options, is_valid_changed_options=is_valid_changed_options, fdwdata=fdw_data, conn=self.conn) return (sql, (data['name'] if ('name' in data) else old_data['name'])) else: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) fdw_data = res['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' return (sql, data['name'])
This function will generate sql from model data. Args: gid: Server Group ID sid: Server ID did: Database ID data: Contains the data of the selected user mapping node fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
get_sql
Anillab/One-Minute-Pitch
4
python
def get_sql(self, gid, sid, data, did, fid, fsid, umid=None): '\n This function will generate sql from model data.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n data: Contains the data of the selected user mapping node\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' required_args = ['name'] if (umid is not None): sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') old_data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] for arg in required_args: if (arg not in data): data[arg] = old_data[arg] is_valid_added_options = is_valid_changed_options = False if (('umoptions' in data) and ('added' in data['umoptions'])): (is_valid_added_options, data['umoptions']['added']) = validate_options(data['umoptions']['added'], 'umoption', 'umvalue') if (('umoptions' in data) and ('changed' in data['umoptions'])): (is_valid_changed_options, data['umoptions']['changed']) = validate_options(data['umoptions']['changed'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'update.sql']), data=data, o_data=old_data, is_valid_added_options=is_valid_added_options, is_valid_changed_options=is_valid_changed_options, fdwdata=fdw_data, conn=self.conn) return (sql, (data['name'] if ('name' in data) else old_data['name'])) else: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) fdw_data = res['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' return (sql, data['name'])
def get_sql(self, gid, sid, data, did, fid, fsid, umid=None): '\n This function will generate sql from model data.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n data: Contains the data of the selected user mapping node\n fid: foreign data wrapper ID\n fsid: foreign server ID\n umid: User mapping ID\n ' required_args = ['name'] if (umid is not None): sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') old_data = res['rows'][0] sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] for arg in required_args: if (arg not in data): data[arg] = old_data[arg] is_valid_added_options = is_valid_changed_options = False if (('umoptions' in data) and ('added' in data['umoptions'])): (is_valid_added_options, data['umoptions']['added']) = validate_options(data['umoptions']['added'], 'umoption', 'umvalue') if (('umoptions' in data) and ('changed' in data['umoptions'])): (is_valid_changed_options, data['umoptions']['changed']) = validate_options(data['umoptions']['changed'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'update.sql']), data=data, o_data=old_data, is_valid_added_options=is_valid_added_options, is_valid_changed_options=is_valid_changed_options, fdwdata=fdw_data, conn=self.conn) return (sql, (data['name'] if ('name' in data) else old_data['name'])) else: sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) fdw_data = res['rows'][0] is_valid_options = False if ('umoptions' in data): (is_valid_options, data['umoptions']) = validate_options(data['umoptions'], 'umoption', 'umvalue') sql = render_template('/'.join([self.template_path, 'create.sql']), data=data, fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' return (sql, data['name'])<|docstring|>This function will generate sql from model data. Args: gid: Server Group ID sid: Server ID did: Database ID data: Contains the data of the selected user mapping node fid: foreign data wrapper ID fsid: foreign server ID umid: User mapping ID<|endoftext|>
e50be2aca60a4e9e49e46f1d73bb3bc7b5db92ea6b4f5596e807bbee931cf363
@check_precondition def sql(self, gid, sid, did, fid, fsid, umid): '\n This function will generate sql to show it in sql pane for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) is_valid_options = False if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') if (len(res['rows'][0]['umoptions']) > 0): is_valid_options = True sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] sql = '' sql = render_template('/'.join([self.template_path, 'create.sql']), data=res['rows'][0], fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' sql_header = u'-- User Mapping : {0}\n\n-- DROP USER MAPPING FOR {0} SERVER {1}\n\n'.format(res['rows'][0]['name'], fdw_data['name']) sql = (sql_header + sql) return ajax_response(response=sql.strip('\n'))
This function will generate sql to show it in sql pane for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
sql
Anillab/One-Minute-Pitch
4
python
@check_precondition def sql(self, gid, sid, did, fid, fsid, umid): '\n This function will generate sql to show it in sql pane for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) is_valid_options = False if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') if (len(res['rows'][0]['umoptions']) > 0): is_valid_options = True sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] sql = sql = render_template('/'.join([self.template_path, 'create.sql']), data=res['rows'][0], fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' sql_header = u'-- User Mapping : {0}\n\n-- DROP USER MAPPING FOR {0} SERVER {1}\n\n'.format(res['rows'][0]['name'], fdw_data['name']) sql = (sql_header + sql) return ajax_response(response=sql.strip('\n'))
@check_precondition def sql(self, gid, sid, did, fid, fsid, umid): '\n This function will generate sql to show it in sql pane for the selected user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign data wrapper ID\n fsid: Foreign server ID\n umid: User mapping ID\n ' sql = render_template('/'.join([self.template_path, 'properties.sql']), umid=umid, conn=self.conn) (status, res) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res) if (len(res['rows']) == 0): return gone(gettext('Could not find the user mapping information.')) is_valid_options = False if (res['rows'][0]['umoptions'] is not None): res['rows'][0]['umoptions'] = tokenize_options(res['rows'][0]['umoptions'], 'umoption', 'umvalue') if (len(res['rows'][0]['umoptions']) > 0): is_valid_options = True sql = render_template('/'.join([self.template_path, 'properties.sql']), fserid=fsid, conn=self.conn) (status, res1) = self.conn.execute_dict(sql) if (not status): return internal_server_error(errormsg=res1) fdw_data = res1['rows'][0] sql = sql = render_template('/'.join([self.template_path, 'create.sql']), data=res['rows'][0], fdwdata=fdw_data, is_valid_options=is_valid_options, conn=self.conn) sql += '\n' sql_header = u'-- User Mapping : {0}\n\n-- DROP USER MAPPING FOR {0} SERVER {1}\n\n'.format(res['rows'][0]['name'], fdw_data['name']) sql = (sql_header + sql) return ajax_response(response=sql.strip('\n'))<|docstring|>This function will generate sql to show it in sql pane for the selected user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign data wrapper ID fsid: Foreign server ID umid: User mapping ID<|endoftext|>
979b1fbe9c37405f761a2581af37b3ed32c918515a20f7af6a8eebf4a34918ba
@check_precondition def dependents(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependents and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependents_result = self.get_dependents(self.conn, umid) return ajax_response(response=dependents_result, status=200)
This function get the dependents and return ajax response for the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: Foreign server ID umid: user mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
dependents
Anillab/One-Minute-Pitch
4
python
@check_precondition def dependents(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependents and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependents_result = self.get_dependents(self.conn, umid) return ajax_response(response=dependents_result, status=200)
@check_precondition def dependents(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependents and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: foreign data wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependents_result = self.get_dependents(self.conn, umid) return ajax_response(response=dependents_result, status=200)<|docstring|>This function get the dependents and return ajax response for the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: foreign data wrapper ID fsid: Foreign server ID umid: user mapping ID<|endoftext|>
d15152dfef4b3bebc9ec66b9d0b32c22ff5078f29d37b6797bf9a79605d0e29d
@check_precondition def dependencies(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependencies and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign Data Wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependencies_result = self.get_dependencies(self.conn, umid) return ajax_response(response=dependencies_result, status=200)
This function get the dependencies and return ajax response for the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign Data Wrapper ID fsid: Foreign server ID umid: user mapping ID
pgAdmin4/pgAdmin4/lib/python2.7/site-packages/pgadmin4/pgadmin/browser/server_groups/servers/databases/foreign_data_wrappers/foreign_servers/user_mapping/__init__.py
dependencies
Anillab/One-Minute-Pitch
4
python
@check_precondition def dependencies(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependencies and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign Data Wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependencies_result = self.get_dependencies(self.conn, umid) return ajax_response(response=dependencies_result, status=200)
@check_precondition def dependencies(self, gid, sid, did, fid, fsid, umid): '\n This function get the dependencies and return ajax response\n for the user mapping node.\n\n Args:\n gid: Server Group ID\n sid: Server ID\n did: Database ID\n fid: Foreign Data Wrapper ID\n fsid: Foreign server ID\n umid: user mapping ID\n ' dependencies_result = self.get_dependencies(self.conn, umid) return ajax_response(response=dependencies_result, status=200)<|docstring|>This function get the dependencies and return ajax response for the user mapping node. Args: gid: Server Group ID sid: Server ID did: Database ID fid: Foreign Data Wrapper ID fsid: Foreign server ID umid: user mapping ID<|endoftext|>
23f8288e5c754ba1a0686438fd2a0c622d7a70feae380a98e21154f40b997ed2
def __add__(self, other): 'operator.add as: a = x + y or a = a + i\n Here __add__ will return a new object copy after operation. \n :param other: An iterable as dict, Xunitrpt, et.\n :return: A new object of result Xunitrpt type\n ' z = Xunitrpt() z.case_dict = self.case_dict.copy() z.extend(other) return z
operator.add as: a = x + y or a = a + i Here __add__ will return a new object copy after operation. :param other: An iterable as dict, Xunitrpt, et. :return: A new object of result Xunitrpt type
src/cistat/model/xunit_report.py
__add__
maxwu/cistat
1
python
def __add__(self, other): 'operator.add as: a = x + y or a = a + i\n Here __add__ will return a new object copy after operation. \n :param other: An iterable as dict, Xunitrpt, et.\n :return: A new object of result Xunitrpt type\n ' z = Xunitrpt() z.case_dict = self.case_dict.copy() z.extend(other) return z
def __add__(self, other): 'operator.add as: a = x + y or a = a + i\n Here __add__ will return a new object copy after operation. \n :param other: An iterable as dict, Xunitrpt, et.\n :return: A new object of result Xunitrpt type\n ' z = Xunitrpt() z.case_dict = self.case_dict.copy() z.extend(other) return z<|docstring|>operator.add as: a = x + y or a = a + i Here __add__ will return a new object copy after operation. :param other: An iterable as dict, Xunitrpt, et. :return: A new object of result Xunitrpt type<|endoftext|>
5fede6cee1c86530117c586a52e6bece03865498db21fa070ea435b8d1fa5882
def __iadd__(self, other): ' operator.idd as: a += i\n :param other: An iterable as dict, Xunitrpt, et.\n :return: The original operand after updating with data from other.\n ' return self.extend(other)
operator.idd as: a += i :param other: An iterable as dict, Xunitrpt, et. :return: The original operand after updating with data from other.
src/cistat/model/xunit_report.py
__iadd__
maxwu/cistat
1
python
def __iadd__(self, other): ' operator.idd as: a += i\n :param other: An iterable as dict, Xunitrpt, et.\n :return: The original operand after updating with data from other.\n ' return self.extend(other)
def __iadd__(self, other): ' operator.idd as: a += i\n :param other: An iterable as dict, Xunitrpt, et.\n :return: The original operand after updating with data from other.\n ' return self.extend(other)<|docstring|>operator.idd as: a += i :param other: An iterable as dict, Xunitrpt, et. :return: The original operand after updating with data from other.<|endoftext|>
574496aab2db237b2b5c0528df60b3570595992e615f37c2c105475ab7ff8515
def accumulate_xunit_str(self, xunit=None): ' Update data in given XUnit str to current XUnitReport Object\n If supplied with malformed str or None, silently do nothing but return itself.\n :param xunit: XUnit in a string\n :return: XunitReport Object itself after the accumulation\n ' if ((not xunit) or (not Xunitrpt.is_xunit_report(xunit))): return self root = ET.fromstring(xunit) for e in root.iter('testcase'): tcname = ((e.get('classname', 'UnknownClass') + '.') + e.get('name', 'UnknownTest')) if (tcname not in self.case_dict): self[tcname] = Xunitrpt.DEFAULT_DICT.copy() self[tcname]['sum'] += 1 self[tcname]['time'] += float(e.get('time', 0)) tags = [child.tag for child in e] if (('failure' in tags) or ('error' in tags)): self[tcname]['fail'] += 1 elif ('skipped' in tags): self[tcname]['skip'] += 1 else: self[tcname]['pass'] += 1 self.cal_rate(tcname) return self
Update data in given XUnit str to current XUnitReport Object If supplied with malformed str or None, silently do nothing but return itself. :param xunit: XUnit in a string :return: XunitReport Object itself after the accumulation
src/cistat/model/xunit_report.py
accumulate_xunit_str
maxwu/cistat
1
python
def accumulate_xunit_str(self, xunit=None): ' Update data in given XUnit str to current XUnitReport Object\n If supplied with malformed str or None, silently do nothing but return itself.\n :param xunit: XUnit in a string\n :return: XunitReport Object itself after the accumulation\n ' if ((not xunit) or (not Xunitrpt.is_xunit_report(xunit))): return self root = ET.fromstring(xunit) for e in root.iter('testcase'): tcname = ((e.get('classname', 'UnknownClass') + '.') + e.get('name', 'UnknownTest')) if (tcname not in self.case_dict): self[tcname] = Xunitrpt.DEFAULT_DICT.copy() self[tcname]['sum'] += 1 self[tcname]['time'] += float(e.get('time', 0)) tags = [child.tag for child in e] if (('failure' in tags) or ('error' in tags)): self[tcname]['fail'] += 1 elif ('skipped' in tags): self[tcname]['skip'] += 1 else: self[tcname]['pass'] += 1 self.cal_rate(tcname) return self
def accumulate_xunit_str(self, xunit=None): ' Update data in given XUnit str to current XUnitReport Object\n If supplied with malformed str or None, silently do nothing but return itself.\n :param xunit: XUnit in a string\n :return: XunitReport Object itself after the accumulation\n ' if ((not xunit) or (not Xunitrpt.is_xunit_report(xunit))): return self root = ET.fromstring(xunit) for e in root.iter('testcase'): tcname = ((e.get('classname', 'UnknownClass') + '.') + e.get('name', 'UnknownTest')) if (tcname not in self.case_dict): self[tcname] = Xunitrpt.DEFAULT_DICT.copy() self[tcname]['sum'] += 1 self[tcname]['time'] += float(e.get('time', 0)) tags = [child.tag for child in e] if (('failure' in tags) or ('error' in tags)): self[tcname]['fail'] += 1 elif ('skipped' in tags): self[tcname]['skip'] += 1 else: self[tcname]['pass'] += 1 self.cal_rate(tcname) return self<|docstring|>Update data in given XUnit str to current XUnitReport Object If supplied with malformed str or None, silently do nothing but return itself. :param xunit: XUnit in a string :return: XunitReport Object itself after the accumulation<|endoftext|>
c3943e0d8dafdc8c1c074d3d57e87f08cc1cc0be273619834e4589c195954ec1
def get_scatter_roi(self, title='CIStat', sub_title='Test ROI'): ' Return chart object to present ROI of each test class\n Here it is called Test ROI, not class ROI. Because a new feature is under primary scoping to allow case \n statistics being aggregated at any given level. Which means folks can check which package or parent package\n is consuming the most or producing the most. Users can select the depth of aggregation.\n \n Currently the ROI is calculated by:\n Pass Rate: The height\n Case Number: The scatter symbol size\n - Symbol size represents the cost\n - In future, cost shall combine case number and test time.\n E.g. cost = a/(b/time + c/num)\n Label: Just distribute the labels evenly on X-axis\n ' names = self.keys() chart = Echart(title, sub_title) roi_ls = [[i, self[x]['rate'], self[x]['sum'], Xunitrpt.get_case_shortname(x), x] for (i, x) in enumerate(names)] max_case_num = sorted(roi_ls, key=operator.itemgetter(2), reverse=True)[0][2] logger.debug('max case num is {}'.format(max_case_num)) __MAX_RADIUS = 120 for x in roi_ls: chart.use(Scatter(x[4], [x[:3]], symbolSize=((x[2] * __MAX_RADIUS) / max_case_num))) chart.use(Axis('category', 'bottom', data=[x[3] for x in roi_ls])) chart.use(Axis('value', 'left', data=[((i + 1) * 0.1) for i in range(12)])) return chart
Return chart object to present ROI of each test class Here it is called Test ROI, not class ROI. Because a new feature is under primary scoping to allow case statistics being aggregated at any given level. Which means folks can check which package or parent package is consuming the most or producing the most. Users can select the depth of aggregation. Currently the ROI is calculated by: Pass Rate: The height Case Number: The scatter symbol size - Symbol size represents the cost - In future, cost shall combine case number and test time. E.g. cost = a/(b/time + c/num) Label: Just distribute the labels evenly on X-axis
src/cistat/model/xunit_report.py
get_scatter_roi
maxwu/cistat
1
python
def get_scatter_roi(self, title='CIStat', sub_title='Test ROI'): ' Return chart object to present ROI of each test class\n Here it is called Test ROI, not class ROI. Because a new feature is under primary scoping to allow case \n statistics being aggregated at any given level. Which means folks can check which package or parent package\n is consuming the most or producing the most. Users can select the depth of aggregation.\n \n Currently the ROI is calculated by:\n Pass Rate: The height\n Case Number: The scatter symbol size\n - Symbol size represents the cost\n - In future, cost shall combine case number and test time.\n E.g. cost = a/(b/time + c/num)\n Label: Just distribute the labels evenly on X-axis\n ' names = self.keys() chart = Echart(title, sub_title) roi_ls = [[i, self[x]['rate'], self[x]['sum'], Xunitrpt.get_case_shortname(x), x] for (i, x) in enumerate(names)] max_case_num = sorted(roi_ls, key=operator.itemgetter(2), reverse=True)[0][2] logger.debug('max case num is {}'.format(max_case_num)) __MAX_RADIUS = 120 for x in roi_ls: chart.use(Scatter(x[4], [x[:3]], symbolSize=((x[2] * __MAX_RADIUS) / max_case_num))) chart.use(Axis('category', 'bottom', data=[x[3] for x in roi_ls])) chart.use(Axis('value', 'left', data=[((i + 1) * 0.1) for i in range(12)])) return chart
def get_scatter_roi(self, title='CIStat', sub_title='Test ROI'): ' Return chart object to present ROI of each test class\n Here it is called Test ROI, not class ROI. Because a new feature is under primary scoping to allow case \n statistics being aggregated at any given level. Which means folks can check which package or parent package\n is consuming the most or producing the most. Users can select the depth of aggregation.\n \n Currently the ROI is calculated by:\n Pass Rate: The height\n Case Number: The scatter symbol size\n - Symbol size represents the cost\n - In future, cost shall combine case number and test time.\n E.g. cost = a/(b/time + c/num)\n Label: Just distribute the labels evenly on X-axis\n ' names = self.keys() chart = Echart(title, sub_title) roi_ls = [[i, self[x]['rate'], self[x]['sum'], Xunitrpt.get_case_shortname(x), x] for (i, x) in enumerate(names)] max_case_num = sorted(roi_ls, key=operator.itemgetter(2), reverse=True)[0][2] logger.debug('max case num is {}'.format(max_case_num)) __MAX_RADIUS = 120 for x in roi_ls: chart.use(Scatter(x[4], [x[:3]], symbolSize=((x[2] * __MAX_RADIUS) / max_case_num))) chart.use(Axis('category', 'bottom', data=[x[3] for x in roi_ls])) chart.use(Axis('value', 'left', data=[((i + 1) * 0.1) for i in range(12)])) return chart<|docstring|>Return chart object to present ROI of each test class Here it is called Test ROI, not class ROI. Because a new feature is under primary scoping to allow case statistics being aggregated at any given level. Which means folks can check which package or parent package is consuming the most or producing the most. Users can select the depth of aggregation. Currently the ROI is calculated by: Pass Rate: The height Case Number: The scatter symbol size - Symbol size represents the cost - In future, cost shall combine case number and test time. E.g. cost = a/(b/time + c/num) Label: Just distribute the labels evenly on X-axis<|endoftext|>
c931d4f9a53982302640777dbacd42a812bf4e58067a20a7d20164a627b2c8c4
def get_class_rpt(self): ' Generate Class level statistics in Xunitrpt type.\n :return: Xunitrpt object on classes\n ' clsrpt = Xunitrpt() for (k, v) in self: clsrpt += {Xunitrpt.get_class_name(k): v}.iteritems() return clsrpt
Generate Class level statistics in Xunitrpt type. :return: Xunitrpt object on classes
src/cistat/model/xunit_report.py
get_class_rpt
maxwu/cistat
1
python
def get_class_rpt(self): ' Generate Class level statistics in Xunitrpt type.\n :return: Xunitrpt object on classes\n ' clsrpt = Xunitrpt() for (k, v) in self: clsrpt += {Xunitrpt.get_class_name(k): v}.iteritems() return clsrpt
def get_class_rpt(self): ' Generate Class level statistics in Xunitrpt type.\n :return: Xunitrpt object on classes\n ' clsrpt = Xunitrpt() for (k, v) in self: clsrpt += {Xunitrpt.get_class_name(k): v}.iteritems() return clsrpt<|docstring|>Generate Class level statistics in Xunitrpt type. :return: Xunitrpt object on classes<|endoftext|>
9d277fa3df71ee4abad95345c181c23e711de44ae52e31c14a95b283d21af182
def get_variable_parent_name(var): 'Get the name of the parent if it exists or return the variable name otherwise.' if (hasattr(var, 'parent') and (var.parent is not None)): return var.parent.name else: return var.name
Get the name of the parent if it exists or return the variable name otherwise.
src/empirical_fire_modelling/cache/hashing.py
get_variable_parent_name
akuhnregnier/empirical-fire-modelling
0
python
def get_variable_parent_name(var): if (hasattr(var, 'parent') and (var.parent is not None)): return var.parent.name else: return var.name
def get_variable_parent_name(var): if (hasattr(var, 'parent') and (var.parent is not None)): return var.parent.name else: return var.name<|docstring|>Get the name of the parent if it exists or return the variable name otherwise.<|endoftext|>
92ca9825c3a93373a7e4e23844c6a7da87b0f3ca04e97112398cc113e04a526b
def as_dict(self): 'Return the flat dictionary as a dictionary.\n\n :rtype: dict\n\n ' dict_out = {} for key in self._values.keys(): value = self._values[key] if isinstance(value, FlatDict): if (value.former_type == list): dict_out[key] = [v for (k, v) in sorted(value.items())] pass elif (value.former_type == tuple): dict_out[key] = tuple((v for (k, v) in sorted(value.items()))) pass elif (value.former_type == dict): dict_out[key] = value.as_dict() else: dict_out[key] = value return dict_out
Return the flat dictionary as a dictionary. :rtype: dict
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
as_dict
IndigoDomotics/GhostXML
2
python
def as_dict(self): 'Return the flat dictionary as a dictionary.\n\n :rtype: dict\n\n ' dict_out = {} for key in self._values.keys(): value = self._values[key] if isinstance(value, FlatDict): if (value.former_type == list): dict_out[key] = [v for (k, v) in sorted(value.items())] pass elif (value.former_type == tuple): dict_out[key] = tuple((v for (k, v) in sorted(value.items()))) pass elif (value.former_type == dict): dict_out[key] = value.as_dict() else: dict_out[key] = value return dict_out
def as_dict(self): 'Return the flat dictionary as a dictionary.\n\n :rtype: dict\n\n ' dict_out = {} for key in self._values.keys(): value = self._values[key] if isinstance(value, FlatDict): if (value.former_type == list): dict_out[key] = [v for (k, v) in sorted(value.items())] pass elif (value.former_type == tuple): dict_out[key] = tuple((v for (k, v) in sorted(value.items()))) pass elif (value.former_type == dict): dict_out[key] = value.as_dict() else: dict_out[key] = value return dict_out<|docstring|>Return the flat dictionary as a dictionary. :rtype: dict<|endoftext|>
3255ea2549d890651d5817dffc5b4f0e0bfe693cc5a71eb9614dd6ac284de5e3
def clear(self): 'Remove all items from the flat dictionary.' self._values.clear()
Remove all items from the flat dictionary.
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
clear
IndigoDomotics/GhostXML
2
python
def clear(self): self._values.clear()
def clear(self): self._values.clear()<|docstring|>Remove all items from the flat dictionary.<|endoftext|>
4a503f103d1d16e527bdaf7856e39b245a1671ff048ff42d6881af29b5c9aabb
def copy(self): 'Return a shallow copy of the flat dictionary.\n\n :rtype: flatdict.FlatDict\n\n ' values = {} for key in self.keys(): values[key] = self.__getitem__(key) return values
Return a shallow copy of the flat dictionary. :rtype: flatdict.FlatDict
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
copy
IndigoDomotics/GhostXML
2
python
def copy(self): 'Return a shallow copy of the flat dictionary.\n\n :rtype: flatdict.FlatDict\n\n ' values = {} for key in self.keys(): values[key] = self.__getitem__(key) return values
def copy(self): 'Return a shallow copy of the flat dictionary.\n\n :rtype: flatdict.FlatDict\n\n ' values = {} for key in self.keys(): values[key] = self.__getitem__(key) return values<|docstring|>Return a shallow copy of the flat dictionary. :rtype: flatdict.FlatDict<|endoftext|>
a0b8ffac4d429595ce3f7af36f0b208f34ad82c20a4992dd47d177aa2d7be9bd
def get(self, key, d=None): 'Return the value for key if key is in the flat dictionary, else\n default. If default is not given, it defaults to ``None``, so that this\n method never raises a ``KeyError``.\n\n :param mixed key: The key to get\n :param mixed d: The default value\n :rtype: mixed\n\n ' if (key not in self.keys()): return self._values.get(key, d) return self.__getitem__(key)
Return the value for key if key is in the flat dictionary, else default. If default is not given, it defaults to ``None``, so that this method never raises a ``KeyError``. :param mixed key: The key to get :param mixed d: The default value :rtype: mixed
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
get
IndigoDomotics/GhostXML
2
python
def get(self, key, d=None): 'Return the value for key if key is in the flat dictionary, else\n default. If default is not given, it defaults to ``None``, so that this\n method never raises a ``KeyError``.\n\n :param mixed key: The key to get\n :param mixed d: The default value\n :rtype: mixed\n\n ' if (key not in self.keys()): return self._values.get(key, d) return self.__getitem__(key)
def get(self, key, d=None): 'Return the value for key if key is in the flat dictionary, else\n default. If default is not given, it defaults to ``None``, so that this\n method never raises a ``KeyError``.\n\n :param mixed key: The key to get\n :param mixed d: The default value\n :rtype: mixed\n\n ' if (key not in self.keys()): return self._values.get(key, d) return self.__getitem__(key)<|docstring|>Return the value for key if key is in the flat dictionary, else default. If default is not given, it defaults to ``None``, so that this method never raises a ``KeyError``. :param mixed key: The key to get :param mixed d: The default value :rtype: mixed<|endoftext|>
f5f716bcc4e5605b5947f0f09932e5ce3d86063a550c62649fc4a907fa157c2e
def has_key(self, key): 'Check to see if the flat dictionary has a specific key.\n\n :param mixed key: The key to check for\n :rtype: bool\n\n ' return (key in self.keys())
Check to see if the flat dictionary has a specific key. :param mixed key: The key to check for :rtype: bool
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
has_key
IndigoDomotics/GhostXML
2
python
def has_key(self, key): 'Check to see if the flat dictionary has a specific key.\n\n :param mixed key: The key to check for\n :rtype: bool\n\n ' return (key in self.keys())
def has_key(self, key): 'Check to see if the flat dictionary has a specific key.\n\n :param mixed key: The key to check for\n :rtype: bool\n\n ' return (key in self.keys())<|docstring|>Check to see if the flat dictionary has a specific key. :param mixed key: The key to check for :rtype: bool<|endoftext|>
33340a92503b54656aa16e7cc73da6d8f07aa529ecfc100ddbf1eb12180e6677
def items(self): "Return a copy of the flat dictionary's list of ``(key, value)``\n pairs.\n\n .. note:: CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the flat dictionary's history of insertions and deletions.\n\n :rtype: list\n\n " items = list() for key in self.keys(): items.append((key, self.__getitem__(key))) return items
Return a copy of the flat dictionary's list of ``(key, value)`` pairs. .. note:: CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the flat dictionary's history of insertions and deletions. :rtype: list
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
items
IndigoDomotics/GhostXML
2
python
def items(self): "Return a copy of the flat dictionary's list of ``(key, value)``\n pairs.\n\n .. note:: CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the flat dictionary's history of insertions and deletions.\n\n :rtype: list\n\n " items = list() for key in self.keys(): items.append((key, self.__getitem__(key))) return items
def items(self): "Return a copy of the flat dictionary's list of ``(key, value)``\n pairs.\n\n .. note:: CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the flat dictionary's history of insertions and deletions.\n\n :rtype: list\n\n " items = list() for key in self.keys(): items.append((key, self.__getitem__(key))) return items<|docstring|>Return a copy of the flat dictionary's list of ``(key, value)`` pairs. .. note:: CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the flat dictionary's history of insertions and deletions. :rtype: list<|endoftext|>
e352ece74cd6ceaf41702e43b8b82eb7246a023d25edff7b5a1f4da63914cd40
def iteritems(self): "Return an iterator over the flat dictionary's (key, value) pairs.\n See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iteritems()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for item in self.items(): (yield item)
Return an iterator over the flat dictionary's (key, value) pairs. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``iteritems()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
iteritems
IndigoDomotics/GhostXML
2
python
def iteritems(self): "Return an iterator over the flat dictionary's (key, value) pairs.\n See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iteritems()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for item in self.items(): (yield item)
def iteritems(self): "Return an iterator over the flat dictionary's (key, value) pairs.\n See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iteritems()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for item in self.items(): (yield item)<|docstring|>Return an iterator over the flat dictionary's (key, value) pairs. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``iteritems()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError<|endoftext|>
d4d3bdbfb65bfe239c3eaa2b646ed8d23ccc0cf17e09a56aca26525ff5f721de
def iterkeys(self): "Return an iterator over the flat dictionary's keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iterkeys()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield key)
Return an iterator over the flat dictionary's keys. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``iterkeys()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
iterkeys
IndigoDomotics/GhostXML
2
python
def iterkeys(self): "Return an iterator over the flat dictionary's keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iterkeys()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield key)
def iterkeys(self): "Return an iterator over the flat dictionary's keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``iterkeys()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield key)<|docstring|>Return an iterator over the flat dictionary's keys. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``iterkeys()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError<|endoftext|>
9738be90baab68fc8ab4973ae7bb36907f35dc59921a4bf53c878797ae63da89
def itervalues(self): "Return an iterator over the flat dictionary's values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``itervalues()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield self.__getitem__(key))
Return an iterator over the flat dictionary's values. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``itervalues()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
itervalues
IndigoDomotics/GhostXML
2
python
def itervalues(self): "Return an iterator over the flat dictionary's values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``itervalues()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield self.__getitem__(key))
def itervalues(self): "Return an iterator over the flat dictionary's values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n Using ``itervalues()`` while adding or deleting entries in the flat\n dictionary may raise a ``RuntimeError`` or fail to iterate over all\n entries.\n\n :rtype: Iterator\n :raises: RuntimeError\n\n " for key in self.keys(): (yield self.__getitem__(key))<|docstring|>Return an iterator over the flat dictionary's values. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. Using ``itervalues()`` while adding or deleting entries in the flat dictionary may raise a ``RuntimeError`` or fail to iterate over all entries. :rtype: Iterator :raises: RuntimeError<|endoftext|>
33ad4d414f696e8b244c202c8f5a856644a84827db166576ad0a2a1f579efedd
def keys(self): "Return a copy of the flat dictionary's list of keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " keys = list() for key in self._values.keys(): if isinstance(self._values[key], FlatDict): child_keys = self._values[key].keys() for child in child_keys: keys.append(self._key(key, child)) else: keys.append(key) return keys
Return a copy of the flat dictionary's list of keys. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. :rtype: list
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
keys
IndigoDomotics/GhostXML
2
python
def keys(self): "Return a copy of the flat dictionary's list of keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " keys = list() for key in self._values.keys(): if isinstance(self._values[key], FlatDict): child_keys = self._values[key].keys() for child in child_keys: keys.append(self._key(key, child)) else: keys.append(key) return keys
def keys(self): "Return a copy of the flat dictionary's list of keys. See the note for\n :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " keys = list() for key in self._values.keys(): if isinstance(self._values[key], FlatDict): child_keys = self._values[key].keys() for child in child_keys: keys.append(self._key(key, child)) else: keys.append(key) return keys<|docstring|>Return a copy of the flat dictionary's list of keys. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. :rtype: list<|endoftext|>
cfe76dc382942c5375598c58d188a6d23a5db5034e5aeb617d57c8f7bc1f2992
def pop(self, key, default=None): 'If key is in the flat dictionary, remove it and return its value,\n else return default. If default is not given and key is not in the\n dictionary, a ``KeyError`` is raised.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if ((key not in self.keys()) and (key not in self._values)): return default if (key in self._values): return self._values.pop(key, default) value = self.__getitem__(key) self.__delitem__(key) return value
If key is in the flat dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a ``KeyError`` is raised. :param mixed key: The key name :param mixed default: The default value :rtype: mixed
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
pop
IndigoDomotics/GhostXML
2
python
def pop(self, key, default=None): 'If key is in the flat dictionary, remove it and return its value,\n else return default. If default is not given and key is not in the\n dictionary, a ``KeyError`` is raised.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if ((key not in self.keys()) and (key not in self._values)): return default if (key in self._values): return self._values.pop(key, default) value = self.__getitem__(key) self.__delitem__(key) return value
def pop(self, key, default=None): 'If key is in the flat dictionary, remove it and return its value,\n else return default. If default is not given and key is not in the\n dictionary, a ``KeyError`` is raised.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if ((key not in self.keys()) and (key not in self._values)): return default if (key in self._values): return self._values.pop(key, default) value = self.__getitem__(key) self.__delitem__(key) return value<|docstring|>If key is in the flat dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a ``KeyError`` is raised. :param mixed key: The key name :param mixed default: The default value :rtype: mixed<|endoftext|>
8548802ca2b913d39b0e7bb38103b9de36fb26d4e74503de9a9659c302b59515
def setdefault(self, key, default=None): ' If key is in the flat dictionary, return its value. If not,\n insert key with a value of default and return default.\n default defaults to ``None``.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if (key not in self): self.__setitem__(key, default) return self.__getitem__(key)
If key is in the flat dictionary, return its value. If not, insert key with a value of default and return default. default defaults to ``None``. :param mixed key: The key name :param mixed default: The default value :rtype: mixed
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
setdefault
IndigoDomotics/GhostXML
2
python
def setdefault(self, key, default=None): ' If key is in the flat dictionary, return its value. If not,\n insert key with a value of default and return default.\n default defaults to ``None``.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if (key not in self): self.__setitem__(key, default) return self.__getitem__(key)
def setdefault(self, key, default=None): ' If key is in the flat dictionary, return its value. If not,\n insert key with a value of default and return default.\n default defaults to ``None``.\n\n :param mixed key: The key name\n :param mixed default: The default value\n :rtype: mixed\n\n ' if (key not in self): self.__setitem__(key, default) return self.__getitem__(key)<|docstring|>If key is in the flat dictionary, return its value. If not, insert key with a value of default and return default. default defaults to ``None``. :param mixed key: The key name :param mixed default: The default value :rtype: mixed<|endoftext|>
bfc6f220fb652f10a7bbdb947d2328f444f2edb5961d83ccc1b627301a3e61a9
def set_delimiter(self, delimiter): 'Override the default or passed in delimiter with a new value.\n\n :param str delimiter: The delimiter to use\n\n ' self._delimiter = delimiter for key in self._values.keys(): if isinstance(self._values[key], FlatDict): self._values[key].set_delimiter(delimiter)
Override the default or passed in delimiter with a new value. :param str delimiter: The delimiter to use
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
set_delimiter
IndigoDomotics/GhostXML
2
python
def set_delimiter(self, delimiter): 'Override the default or passed in delimiter with a new value.\n\n :param str delimiter: The delimiter to use\n\n ' self._delimiter = delimiter for key in self._values.keys(): if isinstance(self._values[key], FlatDict): self._values[key].set_delimiter(delimiter)
def set_delimiter(self, delimiter): 'Override the default or passed in delimiter with a new value.\n\n :param str delimiter: The delimiter to use\n\n ' self._delimiter = delimiter for key in self._values.keys(): if isinstance(self._values[key], FlatDict): self._values[key].set_delimiter(delimiter)<|docstring|>Override the default or passed in delimiter with a new value. :param str delimiter: The delimiter to use<|endoftext|>
85b2159f4dd9dfec4c029fd2edc5b80e26b1d047d70496d30ad8dd9f20adbd8f
def update(self, other=None, **kwargs): 'Update the flat dictionary with the key/value pairs from other,\n overwriting existing keys.\n\n ``update()`` accepts either another flat dictionary object or an\n iterable of key/value pairs (as tuples or other iterables of length\n two). If keyword arguments are specified, the flat dictionary is then\n updated with those key/value pairs: ``d.update(red=1, blue=2)``.\n\n :rtype: None\n\n ' values = (other or kwargs) if values: for key in values: self.__setitem__(key, values[key])
Update the flat dictionary with the key/value pairs from other, overwriting existing keys. ``update()`` accepts either another flat dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword arguments are specified, the flat dictionary is then updated with those key/value pairs: ``d.update(red=1, blue=2)``. :rtype: None
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
update
IndigoDomotics/GhostXML
2
python
def update(self, other=None, **kwargs): 'Update the flat dictionary with the key/value pairs from other,\n overwriting existing keys.\n\n ``update()`` accepts either another flat dictionary object or an\n iterable of key/value pairs (as tuples or other iterables of length\n two). If keyword arguments are specified, the flat dictionary is then\n updated with those key/value pairs: ``d.update(red=1, blue=2)``.\n\n :rtype: None\n\n ' values = (other or kwargs) if values: for key in values: self.__setitem__(key, values[key])
def update(self, other=None, **kwargs): 'Update the flat dictionary with the key/value pairs from other,\n overwriting existing keys.\n\n ``update()`` accepts either another flat dictionary object or an\n iterable of key/value pairs (as tuples or other iterables of length\n two). If keyword arguments are specified, the flat dictionary is then\n updated with those key/value pairs: ``d.update(red=1, blue=2)``.\n\n :rtype: None\n\n ' values = (other or kwargs) if values: for key in values: self.__setitem__(key, values[key])<|docstring|>Update the flat dictionary with the key/value pairs from other, overwriting existing keys. ``update()`` accepts either another flat dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword arguments are specified, the flat dictionary is then updated with those key/value pairs: ``d.update(red=1, blue=2)``. :rtype: None<|endoftext|>
bef2a195e987e3bb5fc0f8341daa224b78c829185be62becf7660787714289f6
def values(self): "Return a copy of the flat dictionary's list of values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " values = list() for key in self.keys(): values.append(self.__getitem__(key)) return values
Return a copy of the flat dictionary's list of values. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. :rtype: list
GhostXML.indigoPlugin/Contents/Server Plugin/flatdict.py
values
IndigoDomotics/GhostXML
2
python
def values(self): "Return a copy of the flat dictionary's list of values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " values = list() for key in self.keys(): values.append(self.__getitem__(key)) return values
def values(self): "Return a copy of the flat dictionary's list of values. See the note\n for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`.\n\n :rtype: list\n\n " values = list() for key in self.keys(): values.append(self.__getitem__(key)) return values<|docstring|>Return a copy of the flat dictionary's list of values. See the note for :py:class:`FlatDict.items() <flatdict.FlatDict.items>`. :rtype: list<|endoftext|>
c02d15ee3af03ce6e3c85bd2c5a744dc56984f4946d8b28d1dfe9e749eb2c28c
@login_manager.request_loader def authenticate_user(request): 'Require token for authentication to allow user to access resources' token = request.headers.get('Authorization') if token: try: data = auth_serializer.loads(token) except SignatureExpired: return None except BadSignature: return None user = User.query.get(data[0]) if ((user.password == data[2]) and user.logged_in): return user return None
Require token for authentication to allow user to access resources
blst/api.py
authenticate_user
collinmutembei/II
0
python
@login_manager.request_loader def authenticate_user(request): token = request.headers.get('Authorization') if token: try: data = auth_serializer.loads(token) except SignatureExpired: return None except BadSignature: return None user = User.query.get(data[0]) if ((user.password == data[2]) and user.logged_in): return user return None
@login_manager.request_loader def authenticate_user(request): token = request.headers.get('Authorization') if token: try: data = auth_serializer.loads(token) except SignatureExpired: return None except BadSignature: return None user = User.query.get(data[0]) if ((user.password == data[2]) and user.logged_in): return user return None<|docstring|>Require token for authentication to allow user to access resources<|endoftext|>
f193fbbbdf6de30c1db1cc89af958a03713dc3025547d4634744a5dc2a1e2ccc
def int_tested(*j, **hint): '\n Return all args as Python integers.\n\n In some cases a routine needs to work with integers\n but it is convenient to allow the user to pass a non-integer\n value or expression. In this case, the flag ``strict`` can be set\n to False. The default behavior is to raise an error if any argument\n cannot pass an int(arg) == arg test.\n\n Examples\n ========\n\n >>> from sympy.ntheory.residue_ntheory import int_tested\n >>> from sympy import sqrt\n >>> n = sqrt(10)\n >>> int_tested(n, strict=False)\n 3\n >>> int_tested(n)\n Traceback (most recent call last):\n ...\n ValueError: All arguments were not integers\n\n ' i = tuple([int(i) for i in j]) if hint.get('strict', True): if (i != j): raise ValueError('all arguments were not integers') if (len(i) == 1): return i[0] return i
Return all args as Python integers. In some cases a routine needs to work with integers but it is convenient to allow the user to pass a non-integer value or expression. In this case, the flag ``strict`` can be set to False. The default behavior is to raise an error if any argument cannot pass an int(arg) == arg test. Examples ======== >>> from sympy.ntheory.residue_ntheory import int_tested >>> from sympy import sqrt >>> n = sqrt(10) >>> int_tested(n, strict=False) 3 >>> int_tested(n) Traceback (most recent call last): ... ValueError: All arguments were not integers
sympy/ntheory/residue_ntheory.py
int_tested
goodok/sympy
2
python
def int_tested(*j, **hint): '\n Return all args as Python integers.\n\n In some cases a routine needs to work with integers\n but it is convenient to allow the user to pass a non-integer\n value or expression. In this case, the flag ``strict`` can be set\n to False. The default behavior is to raise an error if any argument\n cannot pass an int(arg) == arg test.\n\n Examples\n ========\n\n >>> from sympy.ntheory.residue_ntheory import int_tested\n >>> from sympy import sqrt\n >>> n = sqrt(10)\n >>> int_tested(n, strict=False)\n 3\n >>> int_tested(n)\n Traceback (most recent call last):\n ...\n ValueError: All arguments were not integers\n\n ' i = tuple([int(i) for i in j]) if hint.get('strict', True): if (i != j): raise ValueError('all arguments were not integers') if (len(i) == 1): return i[0] return i
def int_tested(*j, **hint): '\n Return all args as Python integers.\n\n In some cases a routine needs to work with integers\n but it is convenient to allow the user to pass a non-integer\n value or expression. In this case, the flag ``strict`` can be set\n to False. The default behavior is to raise an error if any argument\n cannot pass an int(arg) == arg test.\n\n Examples\n ========\n\n >>> from sympy.ntheory.residue_ntheory import int_tested\n >>> from sympy import sqrt\n >>> n = sqrt(10)\n >>> int_tested(n, strict=False)\n 3\n >>> int_tested(n)\n Traceback (most recent call last):\n ...\n ValueError: All arguments were not integers\n\n ' i = tuple([int(i) for i in j]) if hint.get('strict', True): if (i != j): raise ValueError('all arguments were not integers') if (len(i) == 1): return i[0] return i<|docstring|>Return all args as Python integers. In some cases a routine needs to work with integers but it is convenient to allow the user to pass a non-integer value or expression. In this case, the flag ``strict`` can be set to False. The default behavior is to raise an error if any argument cannot pass an int(arg) == arg test. Examples ======== >>> from sympy.ntheory.residue_ntheory import int_tested >>> from sympy import sqrt >>> n = sqrt(10) >>> int_tested(n, strict=False) 3 >>> int_tested(n) Traceback (most recent call last): ... ValueError: All arguments were not integers<|endoftext|>
f091f82fbc863e4c04dc840b1545b1edbed6b1b77723edbf2e616b3c11f77ff8
def n_order(a, n): 'Returns the order of ``a`` modulo ``n``.\n\n The order of ``a`` modulo ``n`` is the smallest integer\n ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.\n\n Examples\n ========\n\n >>> from sympy.ntheory import n_order\n >>> n_order(3, 7)\n 6\n >>> n_order(4, 7)\n 3\n ' (a, n) = int_tested(a, n) if (igcd(a, n) != 1): raise ValueError('The two numbers should be relatively prime') group_order = totient(n) factors = factorint(group_order) order = 1 if (a > n): a = (a % n) for (p, e) in factors.iteritems(): exponent = group_order for f in xrange(0, (e + 1)): if (((a ** exponent) % n) != 1): order *= (p ** ((e - f) + 1)) break exponent = (exponent // p) return order
Returns the order of ``a`` modulo ``n``. The order of ``a`` modulo ``n`` is the smallest integer ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``. Examples ======== >>> from sympy.ntheory import n_order >>> n_order(3, 7) 6 >>> n_order(4, 7) 3
sympy/ntheory/residue_ntheory.py
n_order
goodok/sympy
2
python
def n_order(a, n): 'Returns the order of ``a`` modulo ``n``.\n\n The order of ``a`` modulo ``n`` is the smallest integer\n ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.\n\n Examples\n ========\n\n >>> from sympy.ntheory import n_order\n >>> n_order(3, 7)\n 6\n >>> n_order(4, 7)\n 3\n ' (a, n) = int_tested(a, n) if (igcd(a, n) != 1): raise ValueError('The two numbers should be relatively prime') group_order = totient(n) factors = factorint(group_order) order = 1 if (a > n): a = (a % n) for (p, e) in factors.iteritems(): exponent = group_order for f in xrange(0, (e + 1)): if (((a ** exponent) % n) != 1): order *= (p ** ((e - f) + 1)) break exponent = (exponent // p) return order
def n_order(a, n): 'Returns the order of ``a`` modulo ``n``.\n\n The order of ``a`` modulo ``n`` is the smallest integer\n ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.\n\n Examples\n ========\n\n >>> from sympy.ntheory import n_order\n >>> n_order(3, 7)\n 6\n >>> n_order(4, 7)\n 3\n ' (a, n) = int_tested(a, n) if (igcd(a, n) != 1): raise ValueError('The two numbers should be relatively prime') group_order = totient(n) factors = factorint(group_order) order = 1 if (a > n): a = (a % n) for (p, e) in factors.iteritems(): exponent = group_order for f in xrange(0, (e + 1)): if (((a ** exponent) % n) != 1): order *= (p ** ((e - f) + 1)) break exponent = (exponent // p) return order<|docstring|>Returns the order of ``a`` modulo ``n``. The order of ``a`` modulo ``n`` is the smallest integer ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``. Examples ======== >>> from sympy.ntheory import n_order >>> n_order(3, 7) 6 >>> n_order(4, 7) 3<|endoftext|>
9ed21e800a408b6ab4562196f041874bda9021f7e606fedc541fdb46cd42bf11
def is_primitive_root(a, p): '\n Returns True if ``a`` is a primitive root of ``p``\n\n ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and\n totient(p) is the smallest positive number s.t.\n\n a**totient(p) cong 1 mod(p)\n\n Examples\n ========\n\n >>> from sympy.ntheory import is_primitive_root, n_order, totient\n >>> is_primitive_root(3, 10)\n True\n >>> is_primitive_root(9, 10)\n False\n >>> n_order(3, 10) == totient(10)\n True\n >>> n_order(9, 10) == totient(10)\n False\n\n ' (a, p) = int_tested(a, p) if (igcd(a, p) != 1): raise ValueError('The two numbers should be relatively prime') if (a > p): a = (a % p) if (n_order(a, p) == totient(p)): return True else: return False
Returns True if ``a`` is a primitive root of ``p`` ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and totient(p) is the smallest positive number s.t. a**totient(p) cong 1 mod(p) Examples ======== >>> from sympy.ntheory import is_primitive_root, n_order, totient >>> is_primitive_root(3, 10) True >>> is_primitive_root(9, 10) False >>> n_order(3, 10) == totient(10) True >>> n_order(9, 10) == totient(10) False
sympy/ntheory/residue_ntheory.py
is_primitive_root
goodok/sympy
2
python
def is_primitive_root(a, p): '\n Returns True if ``a`` is a primitive root of ``p``\n\n ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and\n totient(p) is the smallest positive number s.t.\n\n a**totient(p) cong 1 mod(p)\n\n Examples\n ========\n\n >>> from sympy.ntheory import is_primitive_root, n_order, totient\n >>> is_primitive_root(3, 10)\n True\n >>> is_primitive_root(9, 10)\n False\n >>> n_order(3, 10) == totient(10)\n True\n >>> n_order(9, 10) == totient(10)\n False\n\n ' (a, p) = int_tested(a, p) if (igcd(a, p) != 1): raise ValueError('The two numbers should be relatively prime') if (a > p): a = (a % p) if (n_order(a, p) == totient(p)): return True else: return False
def is_primitive_root(a, p): '\n Returns True if ``a`` is a primitive root of ``p``\n\n ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and\n totient(p) is the smallest positive number s.t.\n\n a**totient(p) cong 1 mod(p)\n\n Examples\n ========\n\n >>> from sympy.ntheory import is_primitive_root, n_order, totient\n >>> is_primitive_root(3, 10)\n True\n >>> is_primitive_root(9, 10)\n False\n >>> n_order(3, 10) == totient(10)\n True\n >>> n_order(9, 10) == totient(10)\n False\n\n ' (a, p) = int_tested(a, p) if (igcd(a, p) != 1): raise ValueError('The two numbers should be relatively prime') if (a > p): a = (a % p) if (n_order(a, p) == totient(p)): return True else: return False<|docstring|>Returns True if ``a`` is a primitive root of ``p`` ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and totient(p) is the smallest positive number s.t. a**totient(p) cong 1 mod(p) Examples ======== >>> from sympy.ntheory import is_primitive_root, n_order, totient >>> is_primitive_root(3, 10) True >>> is_primitive_root(9, 10) False >>> n_order(3, 10) == totient(10) True >>> n_order(9, 10) == totient(10) False<|endoftext|>
006f1a18c7626b8e7f579f218bac5a67f6998d3570dcf68bdce9c2ed1ab1dd6e
def is_quad_residue(a, p): '\n Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,\n i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd\n prime, an iterative method is used to make the determination:\n\n >>> from sympy.ntheory import is_quad_residue\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n >>> [j for j in range(7) if is_quad_residue(j, 7)]\n [0, 1, 2, 4]\n\n See Also\n ========\n\n legendre_symbol, jacobi_symbol\n ' (a, p) = int_tested(a, p) if (p < 1): raise ValueError('p must be > 0') if ((a >= p) or (a < 0)): a = (a % p) if ((a < 2) or (p < 3)): return True if (not isprime(p)): if ((p % 2) and (jacobi_symbol(a, p) == (- 1))): return False for i in range(2, ((p // 2) + 1)): if (((i ** 2) % p) == a): return True return False def square_and_multiply(a, n, p): if (n == 1): return a elif ((n % 2) == 1): return (((square_and_multiply(a, (n // 2), p) ** 2) * a) % p) else: return ((square_and_multiply(a, (n // 2), p) ** 2) % p) return ((square_and_multiply(a, ((p - 1) // 2), p) % p) == 1)
Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``, i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd prime, an iterative method is used to make the determination: >>> from sympy.ntheory import is_quad_residue >>> list(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] >>> [j for j in range(7) if is_quad_residue(j, 7)] [0, 1, 2, 4] See Also ======== legendre_symbol, jacobi_symbol
sympy/ntheory/residue_ntheory.py
is_quad_residue
goodok/sympy
2
python
def is_quad_residue(a, p): '\n Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,\n i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd\n prime, an iterative method is used to make the determination:\n\n >>> from sympy.ntheory import is_quad_residue\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n >>> [j for j in range(7) if is_quad_residue(j, 7)]\n [0, 1, 2, 4]\n\n See Also\n ========\n\n legendre_symbol, jacobi_symbol\n ' (a, p) = int_tested(a, p) if (p < 1): raise ValueError('p must be > 0') if ((a >= p) or (a < 0)): a = (a % p) if ((a < 2) or (p < 3)): return True if (not isprime(p)): if ((p % 2) and (jacobi_symbol(a, p) == (- 1))): return False for i in range(2, ((p // 2) + 1)): if (((i ** 2) % p) == a): return True return False def square_and_multiply(a, n, p): if (n == 1): return a elif ((n % 2) == 1): return (((square_and_multiply(a, (n // 2), p) ** 2) * a) % p) else: return ((square_and_multiply(a, (n // 2), p) ** 2) % p) return ((square_and_multiply(a, ((p - 1) // 2), p) % p) == 1)
def is_quad_residue(a, p): '\n Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,\n i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd\n prime, an iterative method is used to make the determination:\n\n >>> from sympy.ntheory import is_quad_residue\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n >>> [j for j in range(7) if is_quad_residue(j, 7)]\n [0, 1, 2, 4]\n\n See Also\n ========\n\n legendre_symbol, jacobi_symbol\n ' (a, p) = int_tested(a, p) if (p < 1): raise ValueError('p must be > 0') if ((a >= p) or (a < 0)): a = (a % p) if ((a < 2) or (p < 3)): return True if (not isprime(p)): if ((p % 2) and (jacobi_symbol(a, p) == (- 1))): return False for i in range(2, ((p // 2) + 1)): if (((i ** 2) % p) == a): return True return False def square_and_multiply(a, n, p): if (n == 1): return a elif ((n % 2) == 1): return (((square_and_multiply(a, (n // 2), p) ** 2) * a) % p) else: return ((square_and_multiply(a, (n // 2), p) ** 2) % p) return ((square_and_multiply(a, ((p - 1) // 2), p) % p) == 1)<|docstring|>Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``, i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd prime, an iterative method is used to make the determination: >>> from sympy.ntheory import is_quad_residue >>> list(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] >>> [j for j in range(7) if is_quad_residue(j, 7)] [0, 1, 2, 4] See Also ======== legendre_symbol, jacobi_symbol<|endoftext|>
e1fddf433a7e85f737b0c08db4a67a9e1fdff8b832addbc7bbb28e7d6e1df547
def legendre_symbol(a, p): '\n Returns\n =======\n\n 1. 0 if a is multiple of p\n 2. 1 if a is a quadratic residue of p\n 3. -1 otherwise\n\n p should be an odd prime by definition\n\n Examples\n ========\n\n >>> from sympy.ntheory import legendre_symbol\n >>> [legendre_symbol(i, 7) for i in range(7)]\n [0, 1, 1, -1, 1, -1, -1]\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n\n See Also\n ========\n\n is_quad_residue, jacobi_symbol\n\n ' (a, p) = int_tested(a, p) if ((not isprime(p)) or (p == 2)): raise ValueError('p should be an odd prime') (_, a) = divmod(a, p) if (not a): return 0 if is_quad_residue(a, p): return 1 else: return (- 1)
Returns ======= 1. 0 if a is multiple of p 2. 1 if a is a quadratic residue of p 3. -1 otherwise p should be an odd prime by definition Examples ======== >>> from sympy.ntheory import legendre_symbol >>> [legendre_symbol(i, 7) for i in range(7)] [0, 1, 1, -1, 1, -1, -1] >>> list(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] See Also ======== is_quad_residue, jacobi_symbol
sympy/ntheory/residue_ntheory.py
legendre_symbol
goodok/sympy
2
python
def legendre_symbol(a, p): '\n Returns\n =======\n\n 1. 0 if a is multiple of p\n 2. 1 if a is a quadratic residue of p\n 3. -1 otherwise\n\n p should be an odd prime by definition\n\n Examples\n ========\n\n >>> from sympy.ntheory import legendre_symbol\n >>> [legendre_symbol(i, 7) for i in range(7)]\n [0, 1, 1, -1, 1, -1, -1]\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n\n See Also\n ========\n\n is_quad_residue, jacobi_symbol\n\n ' (a, p) = int_tested(a, p) if ((not isprime(p)) or (p == 2)): raise ValueError('p should be an odd prime') (_, a) = divmod(a, p) if (not a): return 0 if is_quad_residue(a, p): return 1 else: return (- 1)
def legendre_symbol(a, p): '\n Returns\n =======\n\n 1. 0 if a is multiple of p\n 2. 1 if a is a quadratic residue of p\n 3. -1 otherwise\n\n p should be an odd prime by definition\n\n Examples\n ========\n\n >>> from sympy.ntheory import legendre_symbol\n >>> [legendre_symbol(i, 7) for i in range(7)]\n [0, 1, 1, -1, 1, -1, -1]\n >>> list(set([i**2 % 7 for i in range(7)]))\n [0, 1, 2, 4]\n\n See Also\n ========\n\n is_quad_residue, jacobi_symbol\n\n ' (a, p) = int_tested(a, p) if ((not isprime(p)) or (p == 2)): raise ValueError('p should be an odd prime') (_, a) = divmod(a, p) if (not a): return 0 if is_quad_residue(a, p): return 1 else: return (- 1)<|docstring|>Returns ======= 1. 0 if a is multiple of p 2. 1 if a is a quadratic residue of p 3. -1 otherwise p should be an odd prime by definition Examples ======== >>> from sympy.ntheory import legendre_symbol >>> [legendre_symbol(i, 7) for i in range(7)] [0, 1, 1, -1, 1, -1, -1] >>> list(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] See Also ======== is_quad_residue, jacobi_symbol<|endoftext|>
eeb5dba72a222b36f8d24eccbbfce745bcab4fc1cbc8bc09c94b44f481a21e7f
def jacobi_symbol(m, n): '\n Returns the product of the legendre_symbol(m, p)\n for all the prime factors, p, of n.\n\n Returns\n =======\n\n 1. 0 if m cong 0 mod(n)\n 2. 1 if x**2 cong m mod(n) has a solution\n 3. -1 otherwise\n\n Examples\n ========\n\n >>> from sympy.ntheory import jacobi_symbol, legendre_symbol\n >>> from sympy import Mul, S\n >>> jacobi_symbol(45, 77)\n -1\n >>> jacobi_symbol(60, 121)\n 1\n\n The relationship between the jacobi_symbol and legendre_symbol can\n be demonstrated as follows:\n\n >>> L = legendre_symbol\n >>> S(45).factors()\n {3: 2, 5: 1}\n >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1\n True\n\n See Also\n ========\n\n is_quad_residue, legendre_symbol\n ' (m, n) = int_tested(m, n) if (not (n % 2)): raise ValueError('n should be an odd integer') if ((m < 0) or (m > n)): m = (m % n) if (not m): return int((n == 1)) if ((n == 1) or (m == 1)): return 1 if (igcd(m, n) != 1): return 0 j = 1 s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) while (m != 1): if (((m % 4) == 3) and ((n % 4) == 3)): j *= (- 1) (m, n) = ((n % m), m) s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) return j
Returns the product of the legendre_symbol(m, p) for all the prime factors, p, of n. Returns ======= 1. 0 if m cong 0 mod(n) 2. 1 if x**2 cong m mod(n) has a solution 3. -1 otherwise Examples ======== >>> from sympy.ntheory import jacobi_symbol, legendre_symbol >>> from sympy import Mul, S >>> jacobi_symbol(45, 77) -1 >>> jacobi_symbol(60, 121) 1 The relationship between the jacobi_symbol and legendre_symbol can be demonstrated as follows: >>> L = legendre_symbol >>> S(45).factors() {3: 2, 5: 1} >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1 True See Also ======== is_quad_residue, legendre_symbol
sympy/ntheory/residue_ntheory.py
jacobi_symbol
goodok/sympy
2
python
def jacobi_symbol(m, n): '\n Returns the product of the legendre_symbol(m, p)\n for all the prime factors, p, of n.\n\n Returns\n =======\n\n 1. 0 if m cong 0 mod(n)\n 2. 1 if x**2 cong m mod(n) has a solution\n 3. -1 otherwise\n\n Examples\n ========\n\n >>> from sympy.ntheory import jacobi_symbol, legendre_symbol\n >>> from sympy import Mul, S\n >>> jacobi_symbol(45, 77)\n -1\n >>> jacobi_symbol(60, 121)\n 1\n\n The relationship between the jacobi_symbol and legendre_symbol can\n be demonstrated as follows:\n\n >>> L = legendre_symbol\n >>> S(45).factors()\n {3: 2, 5: 1}\n >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1\n True\n\n See Also\n ========\n\n is_quad_residue, legendre_symbol\n ' (m, n) = int_tested(m, n) if (not (n % 2)): raise ValueError('n should be an odd integer') if ((m < 0) or (m > n)): m = (m % n) if (not m): return int((n == 1)) if ((n == 1) or (m == 1)): return 1 if (igcd(m, n) != 1): return 0 j = 1 s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) while (m != 1): if (((m % 4) == 3) and ((n % 4) == 3)): j *= (- 1) (m, n) = ((n % m), m) s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) return j
def jacobi_symbol(m, n): '\n Returns the product of the legendre_symbol(m, p)\n for all the prime factors, p, of n.\n\n Returns\n =======\n\n 1. 0 if m cong 0 mod(n)\n 2. 1 if x**2 cong m mod(n) has a solution\n 3. -1 otherwise\n\n Examples\n ========\n\n >>> from sympy.ntheory import jacobi_symbol, legendre_symbol\n >>> from sympy import Mul, S\n >>> jacobi_symbol(45, 77)\n -1\n >>> jacobi_symbol(60, 121)\n 1\n\n The relationship between the jacobi_symbol and legendre_symbol can\n be demonstrated as follows:\n\n >>> L = legendre_symbol\n >>> S(45).factors()\n {3: 2, 5: 1}\n >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1\n True\n\n See Also\n ========\n\n is_quad_residue, legendre_symbol\n ' (m, n) = int_tested(m, n) if (not (n % 2)): raise ValueError('n should be an odd integer') if ((m < 0) or (m > n)): m = (m % n) if (not m): return int((n == 1)) if ((n == 1) or (m == 1)): return 1 if (igcd(m, n) != 1): return 0 j = 1 s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) while (m != 1): if (((m % 4) == 3) and ((n % 4) == 3)): j *= (- 1) (m, n) = ((n % m), m) s = trailing(m) m = (m >> s) if ((s % 2) and ((n % 8) in [3, 5])): j *= (- 1) return j<|docstring|>Returns the product of the legendre_symbol(m, p) for all the prime factors, p, of n. Returns ======= 1. 0 if m cong 0 mod(n) 2. 1 if x**2 cong m mod(n) has a solution 3. -1 otherwise Examples ======== >>> from sympy.ntheory import jacobi_symbol, legendre_symbol >>> from sympy import Mul, S >>> jacobi_symbol(45, 77) -1 >>> jacobi_symbol(60, 121) 1 The relationship between the jacobi_symbol and legendre_symbol can be demonstrated as follows: >>> L = legendre_symbol >>> S(45).factors() {3: 2, 5: 1} >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1 True See Also ======== is_quad_residue, legendre_symbol<|endoftext|>
164f792b287ec73f26b02fc6fd62e51e88673507708335095e9b5bede8e0fac8
def get_membership_degree(self, value: float): '\n for a given input value get the degrees of truth for each member available in the Membership object.\n\n :param value: float: value for which degrees of truth are of interest\n\n :return: returns memberships with an additional degree value\n ' if (value > self.max_value): value = self.max_value elif (value < self.min_value): value = self.min_value for (category, values) in self.memberships.items(): if ((value >= values['lower_end']) and (value <= values['upper_end'])): values['degree'] = float(values['coordinates']['degree_func'](value)) else: values['degree'] = 0 return self.memberships
for a given input value get the degrees of truth for each member available in the Membership object. :param value: float: value for which degrees of truth are of interest :return: returns memberships with an additional degree value
components/controller/membership.py
get_membership_degree
Perledition/fuzzy-controller
2
python
def get_membership_degree(self, value: float): '\n for a given input value get the degrees of truth for each member available in the Membership object.\n\n :param value: float: value for which degrees of truth are of interest\n\n :return: returns memberships with an additional degree value\n ' if (value > self.max_value): value = self.max_value elif (value < self.min_value): value = self.min_value for (category, values) in self.memberships.items(): if ((value >= values['lower_end']) and (value <= values['upper_end'])): values['degree'] = float(values['coordinates']['degree_func'](value)) else: values['degree'] = 0 return self.memberships
def get_membership_degree(self, value: float): '\n for a given input value get the degrees of truth for each member available in the Membership object.\n\n :param value: float: value for which degrees of truth are of interest\n\n :return: returns memberships with an additional degree value\n ' if (value > self.max_value): value = self.max_value elif (value < self.min_value): value = self.min_value for (category, values) in self.memberships.items(): if ((value >= values['lower_end']) and (value <= values['upper_end'])): values['degree'] = float(values['coordinates']['degree_func'](value)) else: values['degree'] = 0 return self.memberships<|docstring|>for a given input value get the degrees of truth for each member available in the Membership object. :param value: float: value for which degrees of truth are of interest :return: returns memberships with an additional degree value<|endoftext|>
d2f81b551a58a92f22e77b92bee6973fb8793a79223e0b5ae10320287877577d
def get_member(self, name: str): '\n get a member of the Membership object by it\'s name e.g "slow" if existing\n\n :param name: str: name of the member\n\n :return: dict of member, default or error case empty dict\n\n ' try: return self.memberships[name] except KeyError: print('name is not valid for this group') return dict()
get a member of the Membership object by it's name e.g "slow" if existing :param name: str: name of the member :return: dict of member, default or error case empty dict
components/controller/membership.py
get_member
Perledition/fuzzy-controller
2
python
def get_member(self, name: str): '\n get a member of the Membership object by it\'s name e.g "slow" if existing\n\n :param name: str: name of the member\n\n :return: dict of member, default or error case empty dict\n\n ' try: return self.memberships[name] except KeyError: print('name is not valid for this group') return dict()
def get_member(self, name: str): '\n get a member of the Membership object by it\'s name e.g "slow" if existing\n\n :param name: str: name of the member\n\n :return: dict of member, default or error case empty dict\n\n ' try: return self.memberships[name] except KeyError: print('name is not valid for this group') return dict()<|docstring|>get a member of the Membership object by it's name e.g "slow" if existing :param name: str: name of the member :return: dict of member, default or error case empty dict<|endoftext|>
3f351955712ebf490cc1fcd63da82609a6d7ceb94a23aa2708f42ef2cf4aabb6
def _contribute_max_min(self, value: float): '\n class internal function to find the x and y values of a Membership object over all members\n :param value: float: x coordinate value of a member\n\n :return: None\n ' if (value > self.max_value): self.max_value = value elif (value < self.min_value): self.min_value = value
class internal function to find the x and y values of a Membership object over all members :param value: float: x coordinate value of a member :return: None
components/controller/membership.py
_contribute_max_min
Perledition/fuzzy-controller
2
python
def _contribute_max_min(self, value: float): '\n class internal function to find the x and y values of a Membership object over all members\n :param value: float: x coordinate value of a member\n\n :return: None\n ' if (value > self.max_value): self.max_value = value elif (value < self.min_value): self.min_value = value
def _contribute_max_min(self, value: float): '\n class internal function to find the x and y values of a Membership object over all members\n :param value: float: x coordinate value of a member\n\n :return: None\n ' if (value > self.max_value): self.max_value = value elif (value < self.min_value): self.min_value = value<|docstring|>class internal function to find the x and y values of a Membership object over all members :param value: float: x coordinate value of a member :return: None<|endoftext|>
09fb0460bec9b77ba7b182733b68d403fd0bee69bd4ad50bff611cdb2fd2f1d7
def fit(self, members: dict, name: str=''): '\n make the initialization of the Memberships objects members.\n\n :param members: dict: holding all members and ist lower, center and upper values\n :param name: str: name of the Membership object. Empty string default\n\n :return: None\n ' self.memberships = members self.name = name for (category, values) in self.memberships.items(): for x in list(values.values()): self._contribute_max_min(x) x_values = list(values.values()) if (len(set(x_values[:2])) == 1): y_values = [1, 1, 0] elif (len(set(x_values[1:])) == 1): y_values = [0, 1, 1] else: y_values = [0, 1, 0] values['coordinates'] = {'x': x_values, 'y': y_values, 'degree_func': interp1d(x_values, y_values)}
make the initialization of the Memberships objects members. :param members: dict: holding all members and ist lower, center and upper values :param name: str: name of the Membership object. Empty string default :return: None
components/controller/membership.py
fit
Perledition/fuzzy-controller
2
python
def fit(self, members: dict, name: str=): '\n make the initialization of the Memberships objects members.\n\n :param members: dict: holding all members and ist lower, center and upper values\n :param name: str: name of the Membership object. Empty string default\n\n :return: None\n ' self.memberships = members self.name = name for (category, values) in self.memberships.items(): for x in list(values.values()): self._contribute_max_min(x) x_values = list(values.values()) if (len(set(x_values[:2])) == 1): y_values = [1, 1, 0] elif (len(set(x_values[1:])) == 1): y_values = [0, 1, 1] else: y_values = [0, 1, 0] values['coordinates'] = {'x': x_values, 'y': y_values, 'degree_func': interp1d(x_values, y_values)}
def fit(self, members: dict, name: str=): '\n make the initialization of the Memberships objects members.\n\n :param members: dict: holding all members and ist lower, center and upper values\n :param name: str: name of the Membership object. Empty string default\n\n :return: None\n ' self.memberships = members self.name = name for (category, values) in self.memberships.items(): for x in list(values.values()): self._contribute_max_min(x) x_values = list(values.values()) if (len(set(x_values[:2])) == 1): y_values = [1, 1, 0] elif (len(set(x_values[1:])) == 1): y_values = [0, 1, 1] else: y_values = [0, 1, 0] values['coordinates'] = {'x': x_values, 'y': y_values, 'degree_func': interp1d(x_values, y_values)}<|docstring|>make the initialization of the Memberships objects members. :param members: dict: holding all members and ist lower, center and upper values :param name: str: name of the Membership object. Empty string default :return: None<|endoftext|>
9983b758d4218d6eb30539a4ba61abe2daa61a847ca3923def651062d3f9fae6
def show(self): '\n plots all class members.\n\n :return: None but displays graph\n ' for (category, values) in self.memberships.items(): plt.plot(values['coordinates']['x'], values['coordinates']['y'], label=category) plt.title(self.name) plt.xticks(self.measure) plt.legend() plt.show()
plots all class members. :return: None but displays graph
components/controller/membership.py
show
Perledition/fuzzy-controller
2
python
def show(self): '\n plots all class members.\n\n :return: None but displays graph\n ' for (category, values) in self.memberships.items(): plt.plot(values['coordinates']['x'], values['coordinates']['y'], label=category) plt.title(self.name) plt.xticks(self.measure) plt.legend() plt.show()
def show(self): '\n plots all class members.\n\n :return: None but displays graph\n ' for (category, values) in self.memberships.items(): plt.plot(values['coordinates']['x'], values['coordinates']['y'], label=category) plt.title(self.name) plt.xticks(self.measure) plt.legend() plt.show()<|docstring|>plots all class members. :return: None but displays graph<|endoftext|>
24056e58902033fccd97c1d83f8f5feb00abd86009db64ac54b058a601794f7d
def normalize_context_key(string): 'Normalize context keys\n Function will normalize the string (remove white spaces and tailings)\n Args:\n string (str):\n Returns:\n Normalized string\n ' tmp = (string[:1].upper() + string[1:]) return tmp.replace(' ', '')
Normalize context keys Function will normalize the string (remove white spaces and tailings) Args: string (str): Returns: Normalized string
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
normalize_context_key
jon-athon/content
799
python
def normalize_context_key(string): 'Normalize context keys\n Function will normalize the string (remove white spaces and tailings)\n Args:\n string (str):\n Returns:\n Normalized string\n ' tmp = (string[:1].upper() + string[1:]) return tmp.replace(' ', )
def normalize_context_key(string): 'Normalize context keys\n Function will normalize the string (remove white spaces and tailings)\n Args:\n string (str):\n Returns:\n Normalized string\n ' tmp = (string[:1].upper() + string[1:]) return tmp.replace(' ', )<|docstring|>Normalize context keys Function will normalize the string (remove white spaces and tailings) Args: string (str): Returns: Normalized string<|endoftext|>
61db247f85ff7a27cd8a7ccbe09791f397f4de69bdd962498ac5719eebd0759b
def get_alert_command(client: MsClient, args: dict): 'Getting specified alert from API\n Args\n args (dict): dictionary containing commands args\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert = client.get_alert(resource_group_name, asc_location, alert_id) final_output = list() properties = alert.get('properties') if properties: basic_table_output = [{'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'Description': properties.get('description'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedTime': properties.get('reportedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'ConfidenceScore': properties.get('confidenceScore', 'None'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'CanBeInvestigated': properties.get('canBeInvestigated'), 'RemediationSteps': properties.get('remediationSteps'), 'VendorName': properties.get('vendorName'), 'AssociatedResource': properties.get('associatedResource'), 'AlertName': properties.get('alertName'), 'InstanceID': properties.get('instanceId', 'None'), 'ID': alert.get('name'), 'ExtendedProperties': properties.get('extendedProperties'), 'Entities': properties.get('entities'), 'SubscriptionID': properties.get('subscriptionId')}] md = tableToMarkdown('Azure Security Center - Get Alert - Basic Property', basic_table_output, ['DisplayName', 'CompromisedEntity', 'Description', 'DetectedTime', 'ReportedTime', 'ReportedSeverity', 'ConfidenceScore', 'State', 'ActionTaken', 'CanBeInvestigated', 'RemediationSteps', 'VendorName', 'AssociatedResource', 'AlertName', 'InstanceID', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': basic_table_output} basic_table_entry = {'Type': entryTypes['note'], 'Contents': alert, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md, 'EntryContext': ec} final_output.append(basic_table_entry) if (alert.get('properties') and alert.get('properties') and alert.get('properties').get('extendedProperties')): extended_properties = dict() properties = alert.get('properties') if isinstance(properties.get('extendedProperties'), dict): for (key, value) in alert['properties']['extendedProperties'].items(): extended_properties[normalize_context_key(key)] = value extended_table_entry = {'Type': entryTypes['note'], 'Contents': alert['properties']['extendedProperties'], 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Azure Security Center - Get Alert - Extended Property', extended_properties, removeNull=True)} final_output.append(extended_table_entry) entities = properties.get('entities') if entities: if isinstance(entities, dict): entities_table_output = list() for entity in entities: entities_table_output.append({'Content': ast.literal_eval(str(entity)), 'Type': entity['type']}) md = tableToMarkdown('Azure Security Center - Get Alert - Entity', entities_table_output, removeNull=True) entities_table_entry = {'Type': entryTypes['note'], 'Contents': alert.get('properties').get('entities'), 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md} final_output.append(entities_table_entry) demisto.results(final_output)
Getting specified alert from API Args args (dict): dictionary containing commands args
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
get_alert_command
jon-athon/content
799
python
def get_alert_command(client: MsClient, args: dict): 'Getting specified alert from API\n Args\n args (dict): dictionary containing commands args\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert = client.get_alert(resource_group_name, asc_location, alert_id) final_output = list() properties = alert.get('properties') if properties: basic_table_output = [{'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'Description': properties.get('description'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedTime': properties.get('reportedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'ConfidenceScore': properties.get('confidenceScore', 'None'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'CanBeInvestigated': properties.get('canBeInvestigated'), 'RemediationSteps': properties.get('remediationSteps'), 'VendorName': properties.get('vendorName'), 'AssociatedResource': properties.get('associatedResource'), 'AlertName': properties.get('alertName'), 'InstanceID': properties.get('instanceId', 'None'), 'ID': alert.get('name'), 'ExtendedProperties': properties.get('extendedProperties'), 'Entities': properties.get('entities'), 'SubscriptionID': properties.get('subscriptionId')}] md = tableToMarkdown('Azure Security Center - Get Alert - Basic Property', basic_table_output, ['DisplayName', 'CompromisedEntity', 'Description', 'DetectedTime', 'ReportedTime', 'ReportedSeverity', 'ConfidenceScore', 'State', 'ActionTaken', 'CanBeInvestigated', 'RemediationSteps', 'VendorName', 'AssociatedResource', 'AlertName', 'InstanceID', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': basic_table_output} basic_table_entry = {'Type': entryTypes['note'], 'Contents': alert, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md, 'EntryContext': ec} final_output.append(basic_table_entry) if (alert.get('properties') and alert.get('properties') and alert.get('properties').get('extendedProperties')): extended_properties = dict() properties = alert.get('properties') if isinstance(properties.get('extendedProperties'), dict): for (key, value) in alert['properties']['extendedProperties'].items(): extended_properties[normalize_context_key(key)] = value extended_table_entry = {'Type': entryTypes['note'], 'Contents': alert['properties']['extendedProperties'], 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Azure Security Center - Get Alert - Extended Property', extended_properties, removeNull=True)} final_output.append(extended_table_entry) entities = properties.get('entities') if entities: if isinstance(entities, dict): entities_table_output = list() for entity in entities: entities_table_output.append({'Content': ast.literal_eval(str(entity)), 'Type': entity['type']}) md = tableToMarkdown('Azure Security Center - Get Alert - Entity', entities_table_output, removeNull=True) entities_table_entry = {'Type': entryTypes['note'], 'Contents': alert.get('properties').get('entities'), 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md} final_output.append(entities_table_entry) demisto.results(final_output)
def get_alert_command(client: MsClient, args: dict): 'Getting specified alert from API\n Args\n args (dict): dictionary containing commands args\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert = client.get_alert(resource_group_name, asc_location, alert_id) final_output = list() properties = alert.get('properties') if properties: basic_table_output = [{'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'Description': properties.get('description'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedTime': properties.get('reportedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'ConfidenceScore': properties.get('confidenceScore', 'None'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'CanBeInvestigated': properties.get('canBeInvestigated'), 'RemediationSteps': properties.get('remediationSteps'), 'VendorName': properties.get('vendorName'), 'AssociatedResource': properties.get('associatedResource'), 'AlertName': properties.get('alertName'), 'InstanceID': properties.get('instanceId', 'None'), 'ID': alert.get('name'), 'ExtendedProperties': properties.get('extendedProperties'), 'Entities': properties.get('entities'), 'SubscriptionID': properties.get('subscriptionId')}] md = tableToMarkdown('Azure Security Center - Get Alert - Basic Property', basic_table_output, ['DisplayName', 'CompromisedEntity', 'Description', 'DetectedTime', 'ReportedTime', 'ReportedSeverity', 'ConfidenceScore', 'State', 'ActionTaken', 'CanBeInvestigated', 'RemediationSteps', 'VendorName', 'AssociatedResource', 'AlertName', 'InstanceID', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': basic_table_output} basic_table_entry = {'Type': entryTypes['note'], 'Contents': alert, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md, 'EntryContext': ec} final_output.append(basic_table_entry) if (alert.get('properties') and alert.get('properties') and alert.get('properties').get('extendedProperties')): extended_properties = dict() properties = alert.get('properties') if isinstance(properties.get('extendedProperties'), dict): for (key, value) in alert['properties']['extendedProperties'].items(): extended_properties[normalize_context_key(key)] = value extended_table_entry = {'Type': entryTypes['note'], 'Contents': alert['properties']['extendedProperties'], 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Azure Security Center - Get Alert - Extended Property', extended_properties, removeNull=True)} final_output.append(extended_table_entry) entities = properties.get('entities') if entities: if isinstance(entities, dict): entities_table_output = list() for entity in entities: entities_table_output.append({'Content': ast.literal_eval(str(entity)), 'Type': entity['type']}) md = tableToMarkdown('Azure Security Center - Get Alert - Entity', entities_table_output, removeNull=True) entities_table_entry = {'Type': entryTypes['note'], 'Contents': alert.get('properties').get('entities'), 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md} final_output.append(entities_table_entry) demisto.results(final_output)<|docstring|>Getting specified alert from API Args args (dict): dictionary containing commands args<|endoftext|>
0f18b51afcd9f33a3896b7d2af23435df7dc130017197030725aaf7bc17bd02c
def list_alerts_command(client: MsClient, args: dict): 'Getting all alerts\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') filter_query = args.get('filter') select_query = args.get('select') expand_query = args.get('expand') alerts = client.list_alerts(resource_group_name, asc_location, filter_query, select_query, expand_query).get('value') outputs = list() for alert in alerts: properties = alert.get('properties') if properties: outputs.append({'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'Description': properties.get('description'), 'ID': alert.get('name')}) md = tableToMarkdown('Azure Security Center - List Alerts', outputs, ['DisplayName', 'CompromisedEntity', 'DetectedTime', 'ReportedSeverity', 'State', 'ActionTaken', 'Description', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (md, ec, alerts)
Getting all alerts Args: client: args (dict): usually demisto.args()
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
list_alerts_command
jon-athon/content
799
python
def list_alerts_command(client: MsClient, args: dict): 'Getting all alerts\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') filter_query = args.get('filter') select_query = args.get('select') expand_query = args.get('expand') alerts = client.list_alerts(resource_group_name, asc_location, filter_query, select_query, expand_query).get('value') outputs = list() for alert in alerts: properties = alert.get('properties') if properties: outputs.append({'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'Description': properties.get('description'), 'ID': alert.get('name')}) md = tableToMarkdown('Azure Security Center - List Alerts', outputs, ['DisplayName', 'CompromisedEntity', 'DetectedTime', 'ReportedSeverity', 'State', 'ActionTaken', 'Description', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (md, ec, alerts)
def list_alerts_command(client: MsClient, args: dict): 'Getting all alerts\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') filter_query = args.get('filter') select_query = args.get('select') expand_query = args.get('expand') alerts = client.list_alerts(resource_group_name, asc_location, filter_query, select_query, expand_query).get('value') outputs = list() for alert in alerts: properties = alert.get('properties') if properties: outputs.append({'DisplayName': properties.get('alertDisplayName'), 'CompromisedEntity': properties.get('compromisedEntity'), 'DetectedTime': properties.get('detectedTimeUtc'), 'ReportedSeverity': properties.get('reportedSeverity'), 'State': properties.get('state'), 'ActionTaken': properties.get('actionTaken'), 'Description': properties.get('description'), 'ID': alert.get('name')}) md = tableToMarkdown('Azure Security Center - List Alerts', outputs, ['DisplayName', 'CompromisedEntity', 'DetectedTime', 'ReportedSeverity', 'State', 'ActionTaken', 'Description', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (md, ec, alerts)<|docstring|>Getting all alerts Args: client: args (dict): usually demisto.args()<|endoftext|>
79d6a7b04011934b5e2ad54149dd3849352d21b06b2c02173cad55fe6cab0dd3
def update_alert_command(client: MsClient, args: dict): 'Update given alert\n\n Args:\n client: MsClient\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert_update_action_type = args.get('alert_update_action_type') client.update_alert(resource_group_name, asc_location, alert_id, alert_update_action_type) outputs = {'ID': alert_id, 'ActionTaken': alert_update_action_type} ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (f'Alert - {alert_id} has been set to {alert_update_action_type}.', ec, None)
Update given alert Args: client: MsClient args (dict): usually demisto.args()
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
update_alert_command
jon-athon/content
799
python
def update_alert_command(client: MsClient, args: dict): 'Update given alert\n\n Args:\n client: MsClient\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert_update_action_type = args.get('alert_update_action_type') client.update_alert(resource_group_name, asc_location, alert_id, alert_update_action_type) outputs = {'ID': alert_id, 'ActionTaken': alert_update_action_type} ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (f'Alert - {alert_id} has been set to {alert_update_action_type}.', ec, None)
def update_alert_command(client: MsClient, args: dict): 'Update given alert\n\n Args:\n client: MsClient\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') asc_location = args.get('asc_location') alert_id = args.get('alert_id') alert_update_action_type = args.get('alert_update_action_type') client.update_alert(resource_group_name, asc_location, alert_id, alert_update_action_type) outputs = {'ID': alert_id, 'ActionTaken': alert_update_action_type} ec = {'AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)': outputs} return (f'Alert - {alert_id} has been set to {alert_update_action_type}.', ec, None)<|docstring|>Update given alert Args: client: MsClient args (dict): usually demisto.args()<|endoftext|>
a24c292f46d9cc37e910b5ed9b6a9865ca3c514b06ec8161156f2dbbde69ba6f
def list_locations_command(client: MsClient): 'Getting all locations\n ' locations = client.list_locations().get('value') outputs = list() if locations: for location in locations: if (location.get('properties') and location.get('properties').get('homeRegionName')): home_region_name = location.get('properties').get('homeRegionName') else: home_region_name = None outputs.append({'HomeRegionName': home_region_name, 'Name': location.get('name'), 'ID': location.get('id')}) md = tableToMarkdown('Azure Security Center - List Locations', outputs, ['HomeRegionName', 'Name', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Location(val.ID && val.ID === obj.ID)': outputs} return (md, ec, locations) else: return ('No locations found', None, None)
Getting all locations
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
list_locations_command
jon-athon/content
799
python
def list_locations_command(client: MsClient): '\n ' locations = client.list_locations().get('value') outputs = list() if locations: for location in locations: if (location.get('properties') and location.get('properties').get('homeRegionName')): home_region_name = location.get('properties').get('homeRegionName') else: home_region_name = None outputs.append({'HomeRegionName': home_region_name, 'Name': location.get('name'), 'ID': location.get('id')}) md = tableToMarkdown('Azure Security Center - List Locations', outputs, ['HomeRegionName', 'Name', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Location(val.ID && val.ID === obj.ID)': outputs} return (md, ec, locations) else: return ('No locations found', None, None)
def list_locations_command(client: MsClient): '\n ' locations = client.list_locations().get('value') outputs = list() if locations: for location in locations: if (location.get('properties') and location.get('properties').get('homeRegionName')): home_region_name = location.get('properties').get('homeRegionName') else: home_region_name = None outputs.append({'HomeRegionName': home_region_name, 'Name': location.get('name'), 'ID': location.get('id')}) md = tableToMarkdown('Azure Security Center - List Locations', outputs, ['HomeRegionName', 'Name', 'ID'], removeNull=True) ec = {'AzureSecurityCenter.Location(val.ID && val.ID === obj.ID)': outputs} return (md, ec, locations) else: return ('No locations found', None, None)<|docstring|>Getting all locations<|endoftext|>
1404d27cda31f7d74ccb542f56045538bc2aad9595e64d10a761e95c6f697212
def update_atp_command(client: MsClient, args: dict): 'Updating given Advanced Threat Protection (enable/disable)\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') is_enabled = args.get('is_enabled') storage_account = args.get('storage_account') response = client.update_atp(resource_group_name, storage_account, setting_name, is_enabled) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': response.get('properties').get('is_enabled')} md = tableToMarkdown('Azure Security Center - Update Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)
Updating given Advanced Threat Protection (enable/disable) Args: client: args (dict): usually demisto.args()
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
update_atp_command
jon-athon/content
799
python
def update_atp_command(client: MsClient, args: dict): 'Updating given Advanced Threat Protection (enable/disable)\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') is_enabled = args.get('is_enabled') storage_account = args.get('storage_account') response = client.update_atp(resource_group_name, storage_account, setting_name, is_enabled) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': response.get('properties').get('is_enabled')} md = tableToMarkdown('Azure Security Center - Update Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)
def update_atp_command(client: MsClient, args: dict): 'Updating given Advanced Threat Protection (enable/disable)\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') is_enabled = args.get('is_enabled') storage_account = args.get('storage_account') response = client.update_atp(resource_group_name, storage_account, setting_name, is_enabled) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': response.get('properties').get('is_enabled')} md = tableToMarkdown('Azure Security Center - Update Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)<|docstring|>Updating given Advanced Threat Protection (enable/disable) Args: client: args (dict): usually demisto.args()<|endoftext|>
4c97fbe7b0b7d80b412623bd0aaa2a8f517bd0daad237f4f37cae7d99f262bcc
def get_atp_command(client: MsClient, args: dict): 'Get given Advanced Threat Protection settings\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') storage_account = args.get('storage_account') response = client.get_atp(resource_group_name, storage_account, setting_name) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': (response['properties']['isEnabled'] if (response.get('properties') and response.get('properties').get('isEnabled')) else None)} md = tableToMarkdown('Azure Security Center - Get Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)
Get given Advanced Threat Protection settings Args: client: args (dict): usually demisto.args()
Packs/AzureSecurityCenter/Integrations/AzureSecurityCenter_v2/AzureSecurityCenter_v2.py
get_atp_command
jon-athon/content
799
python
def get_atp_command(client: MsClient, args: dict): 'Get given Advanced Threat Protection settings\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') storage_account = args.get('storage_account') response = client.get_atp(resource_group_name, storage_account, setting_name) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': (response['properties']['isEnabled'] if (response.get('properties') and response.get('properties').get('isEnabled')) else None)} md = tableToMarkdown('Azure Security Center - Get Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)
def get_atp_command(client: MsClient, args: dict): 'Get given Advanced Threat Protection settings\n\n Args:\n client:\n args (dict): usually demisto.args()\n ' resource_group_name = args.get('resource_group_name') setting_name = args.get('setting_name') storage_account = args.get('storage_account') response = client.get_atp(resource_group_name, storage_account, setting_name) outputs = {'ID': response.get('id'), 'Name': response.get('name'), 'IsEnabled': (response['properties']['isEnabled'] if (response.get('properties') and response.get('properties').get('isEnabled')) else None)} md = tableToMarkdown('Azure Security Center - Get Advanced Threat Detection Setting', outputs, ['ID', 'Name', 'IsEnabled'], removeNull=True) ec = {'AzureSecurityCenter.AdvancedThreatProtection(val.ID && val.ID === obj.ID)': outputs} return (md, ec, response)<|docstring|>Get given Advanced Threat Protection settings Args: client: args (dict): usually demisto.args()<|endoftext|>