body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
824d26f49c186501d879d3395043cf0e091ac50813e242638197dd4e405dd8a3
def test_join_on_eq_with_pos_dt_outside_window(self): '\n Should get 0 answers because N matches but 0 within dt window\n ' dt = 8 (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) dt = np.int64(8) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt', int(0)) self.assertEqual(0, I.size) self.assertEqual(0, J.size)
Should get 0 answers because N matches but 0 within dt window
tests/join_test.py
test_join_on_eq_with_pos_dt_outside_window
mcdobe100/arkouda
0
python
def test_join_on_eq_with_pos_dt_outside_window(self): '\n \n ' dt = 8 (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) dt = np.int64(8) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt', int(0)) self.assertEqual(0, I.size) self.assertEqual(0, J.size)
def test_join_on_eq_with_pos_dt_outside_window(self): '\n \n ' dt = 8 (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) dt = np.int64(8) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt') self.assertEqual(0, I.size) self.assertEqual(0, J.size) (I, J) = ak.join_on_eq_with_dt(self.a2, self.a1, self.t1, self.t2, dt, 'pos_dt', int(0)) self.assertEqual(0, I.size) self.assertEqual(0, J.size)<|docstring|>Should get 0 answers because N matches but 0 within dt window<|endoftext|>
672a15693f7febbcb8be0f7993750a267acc86e7d8dc944d8ec740a5b076acc1
def test_error_handling(self): '\n Tests error TypeError and ValueError handling\n ' with self.assertRaises(TypeError): ak.join_on_eq_with_dt([list(range(0, 11))], self.a1, self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, list(range(0, 11))], self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, list(range(0, 11))], self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, self.t1, list(range(0, 11))], 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, self.t2, '8', 'pos_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'ab_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'abs_dt', (- 1))
Tests error TypeError and ValueError handling
tests/join_test.py
test_error_handling
mcdobe100/arkouda
0
python
def test_error_handling(self): '\n \n ' with self.assertRaises(TypeError): ak.join_on_eq_with_dt([list(range(0, 11))], self.a1, self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, list(range(0, 11))], self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, list(range(0, 11))], self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, self.t1, list(range(0, 11))], 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, self.t2, '8', 'pos_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'ab_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'abs_dt', (- 1))
def test_error_handling(self): '\n \n ' with self.assertRaises(TypeError): ak.join_on_eq_with_dt([list(range(0, 11))], self.a1, self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, list(range(0, 11))], self.t1, self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, list(range(0, 11))], self.t2, 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt([self.a1, self.a1, self.t1, list(range(0, 11))], 8, 'pos_dt') with self.assertRaises(TypeError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, self.t2, '8', 'pos_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'ab_dt') with self.assertRaises(ValueError): ak.join_on_eq_with_dt(self.a1, self.a1, self.t1, (self.t1 * 10), 8, 'abs_dt', (- 1))<|docstring|>Tests error TypeError and ValueError handling<|endoftext|>
1199d277d3d6d89c30dec59411d5eede6d96d499cf37956440694d58182d224c
def train(self, inputs, targets): '\n :param inputs: Tensor[batch, channels, timestep]\n :param targets: Tensor[batch, channels, timestep]\n ' outputs = self.net(inputs) loss = self.loss(outputs.view(self.in_channels, (- 1)).transpose(0, 1), targets.long().view((- 1))) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.data[0]
:param inputs: Tensor[batch, channels, timestep] :param targets: Tensor[batch, channels, timestep]
wavenet/model.py
train
wusq121/wavenet
2
python
def train(self, inputs, targets): '\n :param inputs: Tensor[batch, channels, timestep]\n :param targets: Tensor[batch, channels, timestep]\n ' outputs = self.net(inputs) loss = self.loss(outputs.view(self.in_channels, (- 1)).transpose(0, 1), targets.long().view((- 1))) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.data[0]
def train(self, inputs, targets): '\n :param inputs: Tensor[batch, channels, timestep]\n :param targets: Tensor[batch, channels, timestep]\n ' outputs = self.net(inputs) loss = self.loss(outputs.view(self.in_channels, (- 1)).transpose(0, 1), targets.long().view((- 1))) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.data[0]<|docstring|>:param inputs: Tensor[batch, channels, timestep] :param targets: Tensor[batch, channels, timestep]<|endoftext|>
1245eae19cfe365babd2e4919c0f1c51fbc87c9c97e218f254edd19d9993f328
@home.route('/logout') def logout(): '点击退出 进入登录页面' return redirect(url_for('home.login'))
点击退出 进入登录页面
app/home/views.py
logout
summerliu1024/flask_movie
1
python
@home.route('/logout') def logout(): return redirect(url_for('home.login'))
@home.route('/logout') def logout(): return redirect(url_for('home.login'))<|docstring|>点击退出 进入登录页面<|endoftext|>
ee72416e894d0c9209830f1b47a9d4f4477267ce70470c96a75fa6268198a48a
def basic_tag2version(*, tag: str, **kwargs: Any) -> str: 'Implements the ``"basic"`` ``tag2version`` method' try: rmprefix = str_guard(kwargs.pop('rmprefix'), 'tool.versioningit.tag2version.rmprefix') except KeyError: pass else: tag = strip_prefix(tag, rmprefix) try: rmsuffix = str_guard(kwargs.pop('rmsuffix'), 'tool.versioningit.tag2version.rmsuffix') except KeyError: pass else: tag = strip_suffix(tag, rmsuffix) require_match = bool(kwargs.pop('require-match', False)) try: regex = str_guard(kwargs.pop('regex'), 'tool.versioningit.tag2version.regex') except KeyError: pass else: m = re.search(regex, tag) if (m is None): if require_match: raise InvalidTagError(f'tag2version.regex did not match tag {tag!r}') else: log.info('tag2version.regex did not match tag %r; leaving unmodified', tag) else: if ('version' in m.groupdict()): tag = m['version'] else: tag = m[0] if (tag is None): raise InvalidTagError("'version' group in tool.versioningit.tag2version.regex did not participate in match") warn_extra_fields(kwargs, 'tool.versioningit.tag2version', ['rmprefix', 'rmsuffix', 'regex', 'require-match']) return tag.lstrip('v')
Implements the ``"basic"`` ``tag2version`` method
src/versioningit/basics.py
basic_tag2version
jenshnielsen/versioningit
17
python
def basic_tag2version(*, tag: str, **kwargs: Any) -> str: try: rmprefix = str_guard(kwargs.pop('rmprefix'), 'tool.versioningit.tag2version.rmprefix') except KeyError: pass else: tag = strip_prefix(tag, rmprefix) try: rmsuffix = str_guard(kwargs.pop('rmsuffix'), 'tool.versioningit.tag2version.rmsuffix') except KeyError: pass else: tag = strip_suffix(tag, rmsuffix) require_match = bool(kwargs.pop('require-match', False)) try: regex = str_guard(kwargs.pop('regex'), 'tool.versioningit.tag2version.regex') except KeyError: pass else: m = re.search(regex, tag) if (m is None): if require_match: raise InvalidTagError(f'tag2version.regex did not match tag {tag!r}') else: log.info('tag2version.regex did not match tag %r; leaving unmodified', tag) else: if ('version' in m.groupdict()): tag = m['version'] else: tag = m[0] if (tag is None): raise InvalidTagError("'version' group in tool.versioningit.tag2version.regex did not participate in match") warn_extra_fields(kwargs, 'tool.versioningit.tag2version', ['rmprefix', 'rmsuffix', 'regex', 'require-match']) return tag.lstrip('v')
def basic_tag2version(*, tag: str, **kwargs: Any) -> str: try: rmprefix = str_guard(kwargs.pop('rmprefix'), 'tool.versioningit.tag2version.rmprefix') except KeyError: pass else: tag = strip_prefix(tag, rmprefix) try: rmsuffix = str_guard(kwargs.pop('rmsuffix'), 'tool.versioningit.tag2version.rmsuffix') except KeyError: pass else: tag = strip_suffix(tag, rmsuffix) require_match = bool(kwargs.pop('require-match', False)) try: regex = str_guard(kwargs.pop('regex'), 'tool.versioningit.tag2version.regex') except KeyError: pass else: m = re.search(regex, tag) if (m is None): if require_match: raise InvalidTagError(f'tag2version.regex did not match tag {tag!r}') else: log.info('tag2version.regex did not match tag %r; leaving unmodified', tag) else: if ('version' in m.groupdict()): tag = m['version'] else: tag = m[0] if (tag is None): raise InvalidTagError("'version' group in tool.versioningit.tag2version.regex did not participate in match") warn_extra_fields(kwargs, 'tool.versioningit.tag2version', ['rmprefix', 'rmsuffix', 'regex', 'require-match']) return tag.lstrip('v')<|docstring|>Implements the ``"basic"`` ``tag2version`` method<|endoftext|>
c45cecc7853bda2c0a6dd0955d9bda2d978213647c8beae0d3c64adcfb1dd8c0
def basic_format(*, description: VCSDescription, version: str, next_version: str, **kwargs: Any) -> str: 'Implements the ``"basic"`` ``format`` method' branch: Optional[str] if (description.branch is not None): branch = re.sub('[^A-Za-z0-9.]', '.', description.branch) else: branch = None fields = {**description.fields, 'branch': branch, 'version': version, 'next_version': next_version} formats = {**DEFAULT_FORMATS, **kwargs} try: fmt = formats[description.state] except KeyError: raise ConfigError(f'No format string for {description.state!r} state found in tool.versioningit.format') return fmt.format_map(fields)
Implements the ``"basic"`` ``format`` method
src/versioningit/basics.py
basic_format
jenshnielsen/versioningit
17
python
def basic_format(*, description: VCSDescription, version: str, next_version: str, **kwargs: Any) -> str: branch: Optional[str] if (description.branch is not None): branch = re.sub('[^A-Za-z0-9.]', '.', description.branch) else: branch = None fields = {**description.fields, 'branch': branch, 'version': version, 'next_version': next_version} formats = {**DEFAULT_FORMATS, **kwargs} try: fmt = formats[description.state] except KeyError: raise ConfigError(f'No format string for {description.state!r} state found in tool.versioningit.format') return fmt.format_map(fields)
def basic_format(*, description: VCSDescription, version: str, next_version: str, **kwargs: Any) -> str: branch: Optional[str] if (description.branch is not None): branch = re.sub('[^A-Za-z0-9.]', '.', description.branch) else: branch = None fields = {**description.fields, 'branch': branch, 'version': version, 'next_version': next_version} formats = {**DEFAULT_FORMATS, **kwargs} try: fmt = formats[description.state] except KeyError: raise ConfigError(f'No format string for {description.state!r} state found in tool.versioningit.format') return fmt.format_map(fields)<|docstring|>Implements the ``"basic"`` ``format`` method<|endoftext|>
82bb5f371b8c337dbabe1a9f0dff1b6b5eaa1e60ab7196b33b85d814a5c3f0b8
def basic_write(*, project_dir: Union[(str, Path)], version: str, **kwargs: Any) -> None: 'Implements the ``"basic"`` ``write`` method' try: filename = str_guard(kwargs.pop('file'), 'tool.versioningit.write.file') except KeyError: log.debug("No 'file' field in tool.versioningit.write; not writing anything") return path = Path(project_dir, filename) encoding = str_guard(kwargs.pop('encoding', 'utf-8'), 'tool.versioningit.write.encoding') try: template = str_guard(kwargs.pop('template'), 'tool.versioningit.write.template') except KeyError: if (path.suffix == '.py'): template = '__version__ = "{version}"' elif ((path.suffix == '.txt') or (path.suffix == '')): template = '{version}' else: raise ConfigError(f'tool.versioningit.write.template not specified and file has unknown suffix {path.suffix!r}') warn_extra_fields(kwargs, 'tool.versioningit.write', ['file', 'encoding', 'template']) log.debug('Ensuring parent directories of %s exist', path) path.parent.mkdir(parents=True, exist_ok=True) log.info('Writing version %s to file %s', version, path) path.write_text((template.format(version=version) + '\n'), encoding=encoding)
Implements the ``"basic"`` ``write`` method
src/versioningit/basics.py
basic_write
jenshnielsen/versioningit
17
python
def basic_write(*, project_dir: Union[(str, Path)], version: str, **kwargs: Any) -> None: try: filename = str_guard(kwargs.pop('file'), 'tool.versioningit.write.file') except KeyError: log.debug("No 'file' field in tool.versioningit.write; not writing anything") return path = Path(project_dir, filename) encoding = str_guard(kwargs.pop('encoding', 'utf-8'), 'tool.versioningit.write.encoding') try: template = str_guard(kwargs.pop('template'), 'tool.versioningit.write.template') except KeyError: if (path.suffix == '.py'): template = '__version__ = "{version}"' elif ((path.suffix == '.txt') or (path.suffix == )): template = '{version}' else: raise ConfigError(f'tool.versioningit.write.template not specified and file has unknown suffix {path.suffix!r}') warn_extra_fields(kwargs, 'tool.versioningit.write', ['file', 'encoding', 'template']) log.debug('Ensuring parent directories of %s exist', path) path.parent.mkdir(parents=True, exist_ok=True) log.info('Writing version %s to file %s', version, path) path.write_text((template.format(version=version) + '\n'), encoding=encoding)
def basic_write(*, project_dir: Union[(str, Path)], version: str, **kwargs: Any) -> None: try: filename = str_guard(kwargs.pop('file'), 'tool.versioningit.write.file') except KeyError: log.debug("No 'file' field in tool.versioningit.write; not writing anything") return path = Path(project_dir, filename) encoding = str_guard(kwargs.pop('encoding', 'utf-8'), 'tool.versioningit.write.encoding') try: template = str_guard(kwargs.pop('template'), 'tool.versioningit.write.template') except KeyError: if (path.suffix == '.py'): template = '__version__ = "{version}"' elif ((path.suffix == '.txt') or (path.suffix == )): template = '{version}' else: raise ConfigError(f'tool.versioningit.write.template not specified and file has unknown suffix {path.suffix!r}') warn_extra_fields(kwargs, 'tool.versioningit.write', ['file', 'encoding', 'template']) log.debug('Ensuring parent directories of %s exist', path) path.parent.mkdir(parents=True, exist_ok=True) log.info('Writing version %s to file %s', version, path) path.write_text((template.format(version=version) + '\n'), encoding=encoding)<|docstring|>Implements the ``"basic"`` ``write`` method<|endoftext|>
f01d0ce7ea7861336c21c2f5aab0c180a42f65bea002af57191df8ef6defbc84
@staticmethod def generate_bonus_points(point_value, num_codes): 'Generates a set of random codes for the bonus points with the given\n point value.' values = 'EXAMPLE_KEY' header = 'BONUS' header += '-' header += str(point_value) header += '-' for _ in range(0, num_codes): bonus = BonusPoint(point_value=point_value, code=header.lower(), create_date=datetime.datetime.now()) valid = False while (not valid): for value in random.sample(values, 5): bonus.code += value try: bonus.save() valid = True except IntegrityError: bonus.code = header
Generates a set of random codes for the bonus points with the given point value.
makahiki/apps/widgets/bonus_points/models.py
generate_bonus_points
justinslee/Wai-Not-Makahiki
1
python
@staticmethod def generate_bonus_points(point_value, num_codes): 'Generates a set of random codes for the bonus points with the given\n point value.' values = 'EXAMPLE_KEY' header = 'BONUS' header += '-' header += str(point_value) header += '-' for _ in range(0, num_codes): bonus = BonusPoint(point_value=point_value, code=header.lower(), create_date=datetime.datetime.now()) valid = False while (not valid): for value in random.sample(values, 5): bonus.code += value try: bonus.save() valid = True except IntegrityError: bonus.code = header
@staticmethod def generate_bonus_points(point_value, num_codes): 'Generates a set of random codes for the bonus points with the given\n point value.' values = 'EXAMPLE_KEY' header = 'BONUS' header += '-' header += str(point_value) header += '-' for _ in range(0, num_codes): bonus = BonusPoint(point_value=point_value, code=header.lower(), create_date=datetime.datetime.now()) valid = False while (not valid): for value in random.sample(values, 5): bonus.code += value try: bonus.save() valid = True except IntegrityError: bonus.code = header<|docstring|>Generates a set of random codes for the bonus points with the given point value.<|endoftext|>
be187069a0543c9c45905978fb8dbf029f118dbfaf82fd130251ca2d3e82b30b
@wise def idris_python(main_file_or_project_entry: str, packages: str='cam', idris: 'idris executable path'='idris', o: 'output .cam file'='<nocam>'): '\n You can specify multiple packages by\n idris-python --packages "cam base effect"\n ' packages = (e.strip() for e in packages.split(' ')) out_cam = (o != '<nocam>') if (not out_cam): o = tempfile.mkstemp(suffix='.cam')[1] p = Path(main_file_or_project_entry) if (p.suffix == '.idr'): ins = [str(p.absolute())] else: p = p.absolute() with p.open('r') as f: config = toml.load(f) config = config['idris-cam'] assert (config.get('backend', 'python') == 'python'), 'The backend is specified' modules = config['modules'] p: Path = p.parent ins = [] for m in modules: ins.append(str(p.joinpath('src', *m.split('.')))) proc = Popen([idris, '--codegen', 'cam', *ins, '-o', o, '-p', *packages], stdout=PIPE, stderr=PIPE) (stdout, stderr) = proc.communicate(timeout=30) stdout = stdout.decode() if stdout: print(stdout) if (proc.returncode is not 0): print(stderr.decode()) return 1 if (not out_cam): common_abstract_machine_python_loader([o]) return 0
You can specify multiple packages by idris-python --packages "cam base effect"
idris_python/cli.py
idris_python
thautwarm/idris-python
30
python
@wise def idris_python(main_file_or_project_entry: str, packages: str='cam', idris: 'idris executable path'='idris', o: 'output .cam file'='<nocam>'): '\n You can specify multiple packages by\n idris-python --packages "cam base effect"\n ' packages = (e.strip() for e in packages.split(' ')) out_cam = (o != '<nocam>') if (not out_cam): o = tempfile.mkstemp(suffix='.cam')[1] p = Path(main_file_or_project_entry) if (p.suffix == '.idr'): ins = [str(p.absolute())] else: p = p.absolute() with p.open('r') as f: config = toml.load(f) config = config['idris-cam'] assert (config.get('backend', 'python') == 'python'), 'The backend is specified' modules = config['modules'] p: Path = p.parent ins = [] for m in modules: ins.append(str(p.joinpath('src', *m.split('.')))) proc = Popen([idris, '--codegen', 'cam', *ins, '-o', o, '-p', *packages], stdout=PIPE, stderr=PIPE) (stdout, stderr) = proc.communicate(timeout=30) stdout = stdout.decode() if stdout: print(stdout) if (proc.returncode is not 0): print(stderr.decode()) return 1 if (not out_cam): common_abstract_machine_python_loader([o]) return 0
@wise def idris_python(main_file_or_project_entry: str, packages: str='cam', idris: 'idris executable path'='idris', o: 'output .cam file'='<nocam>'): '\n You can specify multiple packages by\n idris-python --packages "cam base effect"\n ' packages = (e.strip() for e in packages.split(' ')) out_cam = (o != '<nocam>') if (not out_cam): o = tempfile.mkstemp(suffix='.cam')[1] p = Path(main_file_or_project_entry) if (p.suffix == '.idr'): ins = [str(p.absolute())] else: p = p.absolute() with p.open('r') as f: config = toml.load(f) config = config['idris-cam'] assert (config.get('backend', 'python') == 'python'), 'The backend is specified' modules = config['modules'] p: Path = p.parent ins = [] for m in modules: ins.append(str(p.joinpath('src', *m.split('.')))) proc = Popen([idris, '--codegen', 'cam', *ins, '-o', o, '-p', *packages], stdout=PIPE, stderr=PIPE) (stdout, stderr) = proc.communicate(timeout=30) stdout = stdout.decode() if stdout: print(stdout) if (proc.returncode is not 0): print(stderr.decode()) return 1 if (not out_cam): common_abstract_machine_python_loader([o]) return 0<|docstring|>You can specify multiple packages by idris-python --packages "cam base effect"<|endoftext|>
91b48d7f86a98a9d2314182e2d65455737805bb6c31e7ee6f0b6e2fda5beeb98
@wise def common_abstract_machine_python_loader(filename): '\n The .cam file loader.\n ' return load_cam(filename, LinkSession())
The .cam file loader.
idris_python/cli.py
common_abstract_machine_python_loader
thautwarm/idris-python
30
python
@wise def common_abstract_machine_python_loader(filename): '\n \n ' return load_cam(filename, LinkSession())
@wise def common_abstract_machine_python_loader(filename): '\n \n ' return load_cam(filename, LinkSession())<|docstring|>The .cam file loader.<|endoftext|>
0785b11e222aef42b93e471ef825337406f6f22d745e0ca95300ce42e67bafce
def get_signal_name(signum): 'Returns the signal name of the given signal number.' return _signames[signum]
Returns the signal name of the given signal number.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
get_signal_name
anthonyricci123/python-telegram-bot-heroku
2
python
def get_signal_name(signum): return _signames[signum]
def get_signal_name(signum): return _signames[signum]<|docstring|>Returns the signal name of the given signal number.<|endoftext|>
acaf122e5e0a8270bce09421659eca3e7a02fe4dafc19ea435d314e78ce524a5
def escape_markdown(text, version=1, entity_type=None): '\n Helper function to escape telegram markup symbols.\n\n Args:\n text (:obj:`str`): The text.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``.\n entity_type (:obj:`str`, optional): For the entity types ``PRE``, ``CODE`` and the link\n part of ``TEXT_LINKS``, only certain characters need to be escaped in ``MarkdownV2``.\n See the official API documentation for details. Only valid in combination with\n ``version=2``, will be ignored else.\n ' if (int(version) == 1): escape_chars = '\\*_`\\[' elif (int(version) == 2): if ((entity_type == 'pre') or (entity_type == 'code')): escape_chars = '`\\\\' elif (entity_type == 'text_link'): escape_chars = ')\\\\' else: escape_chars = '_*\\[\\]()~`>\\#\\+\\-=|{}\\.!' else: raise ValueError('Markdown version musst be either 1 or 2!') return re.sub(('([%s])' % escape_chars), '\\\\\\1', text)
Helper function to escape telegram markup symbols. Args: text (:obj:`str`): The text. version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown. Either ``1`` or ``2``. Defaults to ``1``. entity_type (:obj:`str`, optional): For the entity types ``PRE``, ``CODE`` and the link part of ``TEXT_LINKS``, only certain characters need to be escaped in ``MarkdownV2``. See the official API documentation for details. Only valid in combination with ``version=2``, will be ignored else.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
escape_markdown
anthonyricci123/python-telegram-bot-heroku
2
python
def escape_markdown(text, version=1, entity_type=None): '\n Helper function to escape telegram markup symbols.\n\n Args:\n text (:obj:`str`): The text.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``.\n entity_type (:obj:`str`, optional): For the entity types ``PRE``, ``CODE`` and the link\n part of ``TEXT_LINKS``, only certain characters need to be escaped in ``MarkdownV2``.\n See the official API documentation for details. Only valid in combination with\n ``version=2``, will be ignored else.\n ' if (int(version) == 1): escape_chars = '\\*_`\\[' elif (int(version) == 2): if ((entity_type == 'pre') or (entity_type == 'code')): escape_chars = '`\\\\' elif (entity_type == 'text_link'): escape_chars = ')\\\\' else: escape_chars = '_*\\[\\]()~`>\\#\\+\\-=|{}\\.!' else: raise ValueError('Markdown version musst be either 1 or 2!') return re.sub(('([%s])' % escape_chars), '\\\\\\1', text)
def escape_markdown(text, version=1, entity_type=None): '\n Helper function to escape telegram markup symbols.\n\n Args:\n text (:obj:`str`): The text.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``.\n entity_type (:obj:`str`, optional): For the entity types ``PRE``, ``CODE`` and the link\n part of ``TEXT_LINKS``, only certain characters need to be escaped in ``MarkdownV2``.\n See the official API documentation for details. Only valid in combination with\n ``version=2``, will be ignored else.\n ' if (int(version) == 1): escape_chars = '\\*_`\\[' elif (int(version) == 2): if ((entity_type == 'pre') or (entity_type == 'code')): escape_chars = '`\\\\' elif (entity_type == 'text_link'): escape_chars = ')\\\\' else: escape_chars = '_*\\[\\]()~`>\\#\\+\\-=|{}\\.!' else: raise ValueError('Markdown version musst be either 1 or 2!') return re.sub(('([%s])' % escape_chars), '\\\\\\1', text)<|docstring|>Helper function to escape telegram markup symbols. Args: text (:obj:`str`): The text. version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown. Either ``1`` or ``2``. Defaults to ``1``. entity_type (:obj:`str`, optional): For the entity types ``PRE``, ``CODE`` and the link part of ``TEXT_LINKS``, only certain characters need to be escaped in ``MarkdownV2``. See the official API documentation for details. Only valid in combination with ``version=2``, will be ignored else.<|endoftext|>
8e2278491923f04cb09c650efeff9fb6907fbac63afd7ea8f8564abe263e1fff
def _datetime_to_float_timestamp(dt_obj): 'Converts a datetime object to a float timestamp (with sub-second precision).\n If the datetime object is timezone-naive, it is assumed to be in UTC.' if (dt_obj.tzinfo is None): dt_obj = dt_obj.replace(tzinfo=dtm.timezone.utc) return dt_obj.timestamp()
Converts a datetime object to a float timestamp (with sub-second precision). If the datetime object is timezone-naive, it is assumed to be in UTC.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
_datetime_to_float_timestamp
anthonyricci123/python-telegram-bot-heroku
2
python
def _datetime_to_float_timestamp(dt_obj): 'Converts a datetime object to a float timestamp (with sub-second precision).\n If the datetime object is timezone-naive, it is assumed to be in UTC.' if (dt_obj.tzinfo is None): dt_obj = dt_obj.replace(tzinfo=dtm.timezone.utc) return dt_obj.timestamp()
def _datetime_to_float_timestamp(dt_obj): 'Converts a datetime object to a float timestamp (with sub-second precision).\n If the datetime object is timezone-naive, it is assumed to be in UTC.' if (dt_obj.tzinfo is None): dt_obj = dt_obj.replace(tzinfo=dtm.timezone.utc) return dt_obj.timestamp()<|docstring|>Converts a datetime object to a float timestamp (with sub-second precision). If the datetime object is timezone-naive, it is assumed to be in UTC.<|endoftext|>
5c8a91f76ec70876d7b10b775570a974091335d296343843f1bae667a23a2197
def to_float_timestamp(t, reference_timestamp=None): '\n Converts a given time object to a float POSIX timestamp.\n Used to convert different time specifications to a common format. The time object\n can be relative (i.e. indicate a time increment, or a time of day) or absolute.\n Any objects from the :class:`datetime` module that are timezone-naive will be assumed\n to be in UTC.\n\n ``None`` s are left alone (i.e. ``to_float_timestamp(None)`` is ``None``).\n\n Args:\n t (int | float | datetime.timedelta | datetime.datetime | datetime.time):\n Time value to convert. The semantics of this parameter will depend on its type:\n\n * :obj:`int` or :obj:`float` will be interpreted as "seconds from ``reference_t``"\n * :obj:`datetime.timedelta` will be interpreted as\n "time increment from ``reference_t``"\n * :obj:`datetime.datetime` will be interpreted as an absolute date/time value\n * :obj:`datetime.time` will be interpreted as a specific time of day\n\n reference_timestamp (float, optional): POSIX timestamp that indicates the absolute time\n from which relative calculations are to be performed (e.g. when ``t`` is given as an\n :obj:`int`, indicating "seconds from ``reference_t``"). Defaults to now (the time at\n which this function is called).\n\n If ``t`` is given as an absolute representation of date & time (i.e. a\n ``datetime.datetime`` object), ``reference_timestamp`` is not relevant and so its\n value should be ``None``. If this is not the case, a ``ValueError`` will be raised.\n\n Returns:\n (float | None) The return value depends on the type of argument ``t``. If ``t`` is\n given as a time increment (i.e. as a obj:`int`, :obj:`float` or\n :obj:`datetime.timedelta`), then the return value will be ``reference_t`` + ``t``.\n\n Else if it is given as an absolute date/time value (i.e. a :obj:`datetime.datetime`\n object), the equivalent value as a POSIX timestamp will be returned.\n\n Finally, if it is a time of the day without date (i.e. a :obj:`datetime.time`\n object), the return value is the nearest future occurrence of that time of day.\n\n Raises:\n TypeError: if `t`\'s type is not one of those described above\n ' if (reference_timestamp is None): reference_timestamp = time.time() elif isinstance(t, dtm.datetime): raise ValueError('t is an (absolute) datetime while reference_timestamp is not None') if isinstance(t, dtm.timedelta): return (reference_timestamp + t.total_seconds()) elif isinstance(t, Number): return (reference_timestamp + t) elif isinstance(t, dtm.time): if (t.tzinfo is not None): reference_dt = dtm.datetime.fromtimestamp(reference_timestamp, tz=t.tzinfo) else: reference_dt = dtm.datetime.utcfromtimestamp(reference_timestamp) reference_date = reference_dt.date() reference_time = reference_dt.timetz() if (reference_time > t): reference_date += dtm.timedelta(days=1) return _datetime_to_float_timestamp(dtm.datetime.combine(reference_date, t)) elif isinstance(t, dtm.datetime): return _datetime_to_float_timestamp(t) raise TypeError('Unable to convert {} object to timestamp'.format(type(t).__name__))
Converts a given time object to a float POSIX timestamp. Used to convert different time specifications to a common format. The time object can be relative (i.e. indicate a time increment, or a time of day) or absolute. Any objects from the :class:`datetime` module that are timezone-naive will be assumed to be in UTC. ``None`` s are left alone (i.e. ``to_float_timestamp(None)`` is ``None``). Args: t (int | float | datetime.timedelta | datetime.datetime | datetime.time): Time value to convert. The semantics of this parameter will depend on its type: * :obj:`int` or :obj:`float` will be interpreted as "seconds from ``reference_t``" * :obj:`datetime.timedelta` will be interpreted as "time increment from ``reference_t``" * :obj:`datetime.datetime` will be interpreted as an absolute date/time value * :obj:`datetime.time` will be interpreted as a specific time of day reference_timestamp (float, optional): POSIX timestamp that indicates the absolute time from which relative calculations are to be performed (e.g. when ``t`` is given as an :obj:`int`, indicating "seconds from ``reference_t``"). Defaults to now (the time at which this function is called). If ``t`` is given as an absolute representation of date & time (i.e. a ``datetime.datetime`` object), ``reference_timestamp`` is not relevant and so its value should be ``None``. If this is not the case, a ``ValueError`` will be raised. Returns: (float | None) The return value depends on the type of argument ``t``. If ``t`` is given as a time increment (i.e. as a obj:`int`, :obj:`float` or :obj:`datetime.timedelta`), then the return value will be ``reference_t`` + ``t``. Else if it is given as an absolute date/time value (i.e. a :obj:`datetime.datetime` object), the equivalent value as a POSIX timestamp will be returned. Finally, if it is a time of the day without date (i.e. a :obj:`datetime.time` object), the return value is the nearest future occurrence of that time of day. Raises: TypeError: if `t`'s type is not one of those described above
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
to_float_timestamp
anthonyricci123/python-telegram-bot-heroku
2
python
def to_float_timestamp(t, reference_timestamp=None): '\n Converts a given time object to a float POSIX timestamp.\n Used to convert different time specifications to a common format. The time object\n can be relative (i.e. indicate a time increment, or a time of day) or absolute.\n Any objects from the :class:`datetime` module that are timezone-naive will be assumed\n to be in UTC.\n\n ``None`` s are left alone (i.e. ``to_float_timestamp(None)`` is ``None``).\n\n Args:\n t (int | float | datetime.timedelta | datetime.datetime | datetime.time):\n Time value to convert. The semantics of this parameter will depend on its type:\n\n * :obj:`int` or :obj:`float` will be interpreted as "seconds from ``reference_t``"\n * :obj:`datetime.timedelta` will be interpreted as\n "time increment from ``reference_t``"\n * :obj:`datetime.datetime` will be interpreted as an absolute date/time value\n * :obj:`datetime.time` will be interpreted as a specific time of day\n\n reference_timestamp (float, optional): POSIX timestamp that indicates the absolute time\n from which relative calculations are to be performed (e.g. when ``t`` is given as an\n :obj:`int`, indicating "seconds from ``reference_t``"). Defaults to now (the time at\n which this function is called).\n\n If ``t`` is given as an absolute representation of date & time (i.e. a\n ``datetime.datetime`` object), ``reference_timestamp`` is not relevant and so its\n value should be ``None``. If this is not the case, a ``ValueError`` will be raised.\n\n Returns:\n (float | None) The return value depends on the type of argument ``t``. If ``t`` is\n given as a time increment (i.e. as a obj:`int`, :obj:`float` or\n :obj:`datetime.timedelta`), then the return value will be ``reference_t`` + ``t``.\n\n Else if it is given as an absolute date/time value (i.e. a :obj:`datetime.datetime`\n object), the equivalent value as a POSIX timestamp will be returned.\n\n Finally, if it is a time of the day without date (i.e. a :obj:`datetime.time`\n object), the return value is the nearest future occurrence of that time of day.\n\n Raises:\n TypeError: if `t`\'s type is not one of those described above\n ' if (reference_timestamp is None): reference_timestamp = time.time() elif isinstance(t, dtm.datetime): raise ValueError('t is an (absolute) datetime while reference_timestamp is not None') if isinstance(t, dtm.timedelta): return (reference_timestamp + t.total_seconds()) elif isinstance(t, Number): return (reference_timestamp + t) elif isinstance(t, dtm.time): if (t.tzinfo is not None): reference_dt = dtm.datetime.fromtimestamp(reference_timestamp, tz=t.tzinfo) else: reference_dt = dtm.datetime.utcfromtimestamp(reference_timestamp) reference_date = reference_dt.date() reference_time = reference_dt.timetz() if (reference_time > t): reference_date += dtm.timedelta(days=1) return _datetime_to_float_timestamp(dtm.datetime.combine(reference_date, t)) elif isinstance(t, dtm.datetime): return _datetime_to_float_timestamp(t) raise TypeError('Unable to convert {} object to timestamp'.format(type(t).__name__))
def to_float_timestamp(t, reference_timestamp=None): '\n Converts a given time object to a float POSIX timestamp.\n Used to convert different time specifications to a common format. The time object\n can be relative (i.e. indicate a time increment, or a time of day) or absolute.\n Any objects from the :class:`datetime` module that are timezone-naive will be assumed\n to be in UTC.\n\n ``None`` s are left alone (i.e. ``to_float_timestamp(None)`` is ``None``).\n\n Args:\n t (int | float | datetime.timedelta | datetime.datetime | datetime.time):\n Time value to convert. The semantics of this parameter will depend on its type:\n\n * :obj:`int` or :obj:`float` will be interpreted as "seconds from ``reference_t``"\n * :obj:`datetime.timedelta` will be interpreted as\n "time increment from ``reference_t``"\n * :obj:`datetime.datetime` will be interpreted as an absolute date/time value\n * :obj:`datetime.time` will be interpreted as a specific time of day\n\n reference_timestamp (float, optional): POSIX timestamp that indicates the absolute time\n from which relative calculations are to be performed (e.g. when ``t`` is given as an\n :obj:`int`, indicating "seconds from ``reference_t``"). Defaults to now (the time at\n which this function is called).\n\n If ``t`` is given as an absolute representation of date & time (i.e. a\n ``datetime.datetime`` object), ``reference_timestamp`` is not relevant and so its\n value should be ``None``. If this is not the case, a ``ValueError`` will be raised.\n\n Returns:\n (float | None) The return value depends on the type of argument ``t``. If ``t`` is\n given as a time increment (i.e. as a obj:`int`, :obj:`float` or\n :obj:`datetime.timedelta`), then the return value will be ``reference_t`` + ``t``.\n\n Else if it is given as an absolute date/time value (i.e. a :obj:`datetime.datetime`\n object), the equivalent value as a POSIX timestamp will be returned.\n\n Finally, if it is a time of the day without date (i.e. a :obj:`datetime.time`\n object), the return value is the nearest future occurrence of that time of day.\n\n Raises:\n TypeError: if `t`\'s type is not one of those described above\n ' if (reference_timestamp is None): reference_timestamp = time.time() elif isinstance(t, dtm.datetime): raise ValueError('t is an (absolute) datetime while reference_timestamp is not None') if isinstance(t, dtm.timedelta): return (reference_timestamp + t.total_seconds()) elif isinstance(t, Number): return (reference_timestamp + t) elif isinstance(t, dtm.time): if (t.tzinfo is not None): reference_dt = dtm.datetime.fromtimestamp(reference_timestamp, tz=t.tzinfo) else: reference_dt = dtm.datetime.utcfromtimestamp(reference_timestamp) reference_date = reference_dt.date() reference_time = reference_dt.timetz() if (reference_time > t): reference_date += dtm.timedelta(days=1) return _datetime_to_float_timestamp(dtm.datetime.combine(reference_date, t)) elif isinstance(t, dtm.datetime): return _datetime_to_float_timestamp(t) raise TypeError('Unable to convert {} object to timestamp'.format(type(t).__name__))<|docstring|>Converts a given time object to a float POSIX timestamp. Used to convert different time specifications to a common format. The time object can be relative (i.e. indicate a time increment, or a time of day) or absolute. Any objects from the :class:`datetime` module that are timezone-naive will be assumed to be in UTC. ``None`` s are left alone (i.e. ``to_float_timestamp(None)`` is ``None``). Args: t (int | float | datetime.timedelta | datetime.datetime | datetime.time): Time value to convert. The semantics of this parameter will depend on its type: * :obj:`int` or :obj:`float` will be interpreted as "seconds from ``reference_t``" * :obj:`datetime.timedelta` will be interpreted as "time increment from ``reference_t``" * :obj:`datetime.datetime` will be interpreted as an absolute date/time value * :obj:`datetime.time` will be interpreted as a specific time of day reference_timestamp (float, optional): POSIX timestamp that indicates the absolute time from which relative calculations are to be performed (e.g. when ``t`` is given as an :obj:`int`, indicating "seconds from ``reference_t``"). Defaults to now (the time at which this function is called). If ``t`` is given as an absolute representation of date & time (i.e. a ``datetime.datetime`` object), ``reference_timestamp`` is not relevant and so its value should be ``None``. If this is not the case, a ``ValueError`` will be raised. Returns: (float | None) The return value depends on the type of argument ``t``. If ``t`` is given as a time increment (i.e. as a obj:`int`, :obj:`float` or :obj:`datetime.timedelta`), then the return value will be ``reference_t`` + ``t``. Else if it is given as an absolute date/time value (i.e. a :obj:`datetime.datetime` object), the equivalent value as a POSIX timestamp will be returned. Finally, if it is a time of the day without date (i.e. a :obj:`datetime.time` object), the return value is the nearest future occurrence of that time of day. Raises: TypeError: if `t`'s type is not one of those described above<|endoftext|>
b56288df6f21a02f3136ee6d773e9d3a011d2e1d7b2c2886122367681b53a427
def to_timestamp(dt_obj, reference_timestamp=None): '\n Wrapper over :func:`to_float_timestamp` which returns an integer (the float value truncated\n down to the nearest integer).\n\n See the documentation for :func:`to_float_timestamp` for more details.\n ' return (int(to_float_timestamp(dt_obj, reference_timestamp)) if (dt_obj is not None) else None)
Wrapper over :func:`to_float_timestamp` which returns an integer (the float value truncated down to the nearest integer). See the documentation for :func:`to_float_timestamp` for more details.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
to_timestamp
anthonyricci123/python-telegram-bot-heroku
2
python
def to_timestamp(dt_obj, reference_timestamp=None): '\n Wrapper over :func:`to_float_timestamp` which returns an integer (the float value truncated\n down to the nearest integer).\n\n See the documentation for :func:`to_float_timestamp` for more details.\n ' return (int(to_float_timestamp(dt_obj, reference_timestamp)) if (dt_obj is not None) else None)
def to_timestamp(dt_obj, reference_timestamp=None): '\n Wrapper over :func:`to_float_timestamp` which returns an integer (the float value truncated\n down to the nearest integer).\n\n See the documentation for :func:`to_float_timestamp` for more details.\n ' return (int(to_float_timestamp(dt_obj, reference_timestamp)) if (dt_obj is not None) else None)<|docstring|>Wrapper over :func:`to_float_timestamp` which returns an integer (the float value truncated down to the nearest integer). See the documentation for :func:`to_float_timestamp` for more details.<|endoftext|>
f50f8112ffce0b36eb7efbc0a40f6718ef2261e162fc5b01c93a805b5da35f32
def from_timestamp(unixtime, tzinfo=dtm.timezone.utc): '\n Converts an (integer) unix timestamp to a timezone aware datetime object.\n ``None`` s are left alone (i.e. ``from_timestamp(None)`` is ``None``).\n\n Args:\n unixtime (int): integer POSIX timestamp\n tzinfo (:obj:`datetime.tzinfo`, optional): The timezone, the timestamp is to be converted\n to. Defaults to UTC.\n\n Returns:\n timezone aware equivalent :obj:`datetime.datetime` value if ``timestamp`` is not\n ``None``; else ``None``\n ' if (unixtime is None): return None if (tzinfo is not None): return dtm.datetime.fromtimestamp(unixtime, tz=tzinfo) else: return dtm.datetime.utcfromtimestamp(unixtime)
Converts an (integer) unix timestamp to a timezone aware datetime object. ``None`` s are left alone (i.e. ``from_timestamp(None)`` is ``None``). Args: unixtime (int): integer POSIX timestamp tzinfo (:obj:`datetime.tzinfo`, optional): The timezone, the timestamp is to be converted to. Defaults to UTC. Returns: timezone aware equivalent :obj:`datetime.datetime` value if ``timestamp`` is not ``None``; else ``None``
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
from_timestamp
anthonyricci123/python-telegram-bot-heroku
2
python
def from_timestamp(unixtime, tzinfo=dtm.timezone.utc): '\n Converts an (integer) unix timestamp to a timezone aware datetime object.\n ``None`` s are left alone (i.e. ``from_timestamp(None)`` is ``None``).\n\n Args:\n unixtime (int): integer POSIX timestamp\n tzinfo (:obj:`datetime.tzinfo`, optional): The timezone, the timestamp is to be converted\n to. Defaults to UTC.\n\n Returns:\n timezone aware equivalent :obj:`datetime.datetime` value if ``timestamp`` is not\n ``None``; else ``None``\n ' if (unixtime is None): return None if (tzinfo is not None): return dtm.datetime.fromtimestamp(unixtime, tz=tzinfo) else: return dtm.datetime.utcfromtimestamp(unixtime)
def from_timestamp(unixtime, tzinfo=dtm.timezone.utc): '\n Converts an (integer) unix timestamp to a timezone aware datetime object.\n ``None`` s are left alone (i.e. ``from_timestamp(None)`` is ``None``).\n\n Args:\n unixtime (int): integer POSIX timestamp\n tzinfo (:obj:`datetime.tzinfo`, optional): The timezone, the timestamp is to be converted\n to. Defaults to UTC.\n\n Returns:\n timezone aware equivalent :obj:`datetime.datetime` value if ``timestamp`` is not\n ``None``; else ``None``\n ' if (unixtime is None): return None if (tzinfo is not None): return dtm.datetime.fromtimestamp(unixtime, tz=tzinfo) else: return dtm.datetime.utcfromtimestamp(unixtime)<|docstring|>Converts an (integer) unix timestamp to a timezone aware datetime object. ``None`` s are left alone (i.e. ``from_timestamp(None)`` is ``None``). Args: unixtime (int): integer POSIX timestamp tzinfo (:obj:`datetime.tzinfo`, optional): The timezone, the timestamp is to be converted to. Defaults to UTC. Returns: timezone aware equivalent :obj:`datetime.datetime` value if ``timestamp`` is not ``None``; else ``None``<|endoftext|>
477af4322cbccb0e0f94f3fbeca4ba3a8774653ff04bf1e9ac9af784144f0e56
def mention_html(user_id, name): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n\n Returns:\n :obj:`str`: The inline mention for the user as html.\n " if isinstance(user_id, int): return u'<a href="tg://user?id={}">{}</a>'.format(user_id, escape(name))
Args: user_id (:obj:`int`) The user's id which you want to mention. name (:obj:`str`) The name the mention is showing. Returns: :obj:`str`: The inline mention for the user as html.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
mention_html
anthonyricci123/python-telegram-bot-heroku
2
python
def mention_html(user_id, name): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n\n Returns:\n :obj:`str`: The inline mention for the user as html.\n " if isinstance(user_id, int): return u'<a href="tg://user?id={}">{}</a>'.format(user_id, escape(name))
def mention_html(user_id, name): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n\n Returns:\n :obj:`str`: The inline mention for the user as html.\n " if isinstance(user_id, int): return u'<a href="tg://user?id={}">{}</a>'.format(user_id, escape(name))<|docstring|>Args: user_id (:obj:`int`) The user's id which you want to mention. name (:obj:`str`) The name the mention is showing. Returns: :obj:`str`: The inline mention for the user as html.<|endoftext|>
83373e0138c841106b59834d113c020795a958d278a80b0f06a56bb4d547441f
def mention_markdown(user_id, name, version=1): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``\n\n Returns:\n :obj:`str`: The inline mention for the user as markdown.\n " if isinstance(user_id, int): return u'[{}](tg://user?id={})'.format(escape_markdown(name, version=version), user_id)
Args: user_id (:obj:`int`) The user's id which you want to mention. name (:obj:`str`) The name the mention is showing. version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown. Either ``1`` or ``2``. Defaults to ``1`` Returns: :obj:`str`: The inline mention for the user as markdown.
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
mention_markdown
anthonyricci123/python-telegram-bot-heroku
2
python
def mention_markdown(user_id, name, version=1): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``\n\n Returns:\n :obj:`str`: The inline mention for the user as markdown.\n " if isinstance(user_id, int): return u'[{}](tg://user?id={})'.format(escape_markdown(name, version=version), user_id)
def mention_markdown(user_id, name, version=1): "\n Args:\n user_id (:obj:`int`) The user's id which you want to mention.\n name (:obj:`str`) The name the mention is showing.\n version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown.\n Either ``1`` or ``2``. Defaults to ``1``\n\n Returns:\n :obj:`str`: The inline mention for the user as markdown.\n " if isinstance(user_id, int): return u'[{}](tg://user?id={})'.format(escape_markdown(name, version=version), user_id)<|docstring|>Args: user_id (:obj:`int`) The user's id which you want to mention. name (:obj:`str`) The name the mention is showing. version (:obj:`int` | :obj:`str`): Use to specify the version of telegrams Markdown. Either ``1`` or ``2``. Defaults to ``1`` Returns: :obj:`str`: The inline mention for the user as markdown.<|endoftext|>
88e3f31fd9b7af812a0f9743516aa6a6e5422fb690c9975ccb06b12c4c175ead
def effective_message_type(entity): '\n Extracts the type of message as a string identifier from a :class:`telegram.Message` or a\n :class:`telegram.Update`.\n\n Args:\n entity (:obj:`Update` | :obj:`Message`) The ``update`` or ``message`` to extract from\n\n Returns:\n str: One of ``Message.MESSAGE_TYPES``\n\n ' from telegram import Message from telegram import Update if isinstance(entity, Message): message = entity elif isinstance(entity, Update): message = entity.effective_message else: raise TypeError('entity is not Message or Update (got: {})'.format(type(entity))) for i in Message.MESSAGE_TYPES: if getattr(message, i, None): return i return None
Extracts the type of message as a string identifier from a :class:`telegram.Message` or a :class:`telegram.Update`. Args: entity (:obj:`Update` | :obj:`Message`) The ``update`` or ``message`` to extract from Returns: str: One of ``Message.MESSAGE_TYPES``
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
effective_message_type
anthonyricci123/python-telegram-bot-heroku
2
python
def effective_message_type(entity): '\n Extracts the type of message as a string identifier from a :class:`telegram.Message` or a\n :class:`telegram.Update`.\n\n Args:\n entity (:obj:`Update` | :obj:`Message`) The ``update`` or ``message`` to extract from\n\n Returns:\n str: One of ``Message.MESSAGE_TYPES``\n\n ' from telegram import Message from telegram import Update if isinstance(entity, Message): message = entity elif isinstance(entity, Update): message = entity.effective_message else: raise TypeError('entity is not Message or Update (got: {})'.format(type(entity))) for i in Message.MESSAGE_TYPES: if getattr(message, i, None): return i return None
def effective_message_type(entity): '\n Extracts the type of message as a string identifier from a :class:`telegram.Message` or a\n :class:`telegram.Update`.\n\n Args:\n entity (:obj:`Update` | :obj:`Message`) The ``update`` or ``message`` to extract from\n\n Returns:\n str: One of ``Message.MESSAGE_TYPES``\n\n ' from telegram import Message from telegram import Update if isinstance(entity, Message): message = entity elif isinstance(entity, Update): message = entity.effective_message else: raise TypeError('entity is not Message or Update (got: {})'.format(type(entity))) for i in Message.MESSAGE_TYPES: if getattr(message, i, None): return i return None<|docstring|>Extracts the type of message as a string identifier from a :class:`telegram.Message` or a :class:`telegram.Update`. Args: entity (:obj:`Update` | :obj:`Message`) The ``update`` or ``message`` to extract from Returns: str: One of ``Message.MESSAGE_TYPES``<|endoftext|>
c4cf00ce30313ccfdbc052de31f246760e1acb41363bdaf29c45dfccf156ba86
def create_deep_linked_url(bot_username, payload=None, group=False): '\n Creates a deep-linked URL for this ``bot_username`` with the specified ``payload``.\n See https://core.telegram.org/bots#deep-linking to learn more.\n\n The ``payload`` may consist of the following characters: ``A-Z, a-z, 0-9, _, -``\n\n Note:\n Works well in conjunction with\n ``CommandHandler("start", callback, filters = Filters.regex(\'payload\'))``\n\n Examples:\n ``create_deep_linked_url(bot.get_me().username, "some-params")``\n\n Args:\n bot_username (:obj:`str`): The username to link to\n payload (:obj:`str`, optional): Parameters to encode in the created URL\n group (:obj:`bool`, optional): If `True` the user is prompted to select a group to add the\n bot to. If `False`, opens a one-on-one conversation with the bot. Defaults to `False`.\n\n Returns:\n :obj:`str`: An URL to start the bot with specific parameters\n ' if ((bot_username is None) or (len(bot_username) <= 3)): raise ValueError('You must provide a valid bot_username.') base_url = 'https://t.me/{}'.format(bot_username) if (not payload): return base_url if (len(payload) > 64): raise ValueError('The deep-linking payload must not exceed 64 characters.') if (not re.match('^[A-Za-z0-9_-]+$', payload)): raise ValueError('Only the following characters are allowed for deep-linked URLs: A-Z, a-z, 0-9, _ and -') if group: key = 'startgroup' else: key = 'start' return '{0}?{1}={2}'.format(base_url, key, payload)
Creates a deep-linked URL for this ``bot_username`` with the specified ``payload``. See https://core.telegram.org/bots#deep-linking to learn more. The ``payload`` may consist of the following characters: ``A-Z, a-z, 0-9, _, -`` Note: Works well in conjunction with ``CommandHandler("start", callback, filters = Filters.regex('payload'))`` Examples: ``create_deep_linked_url(bot.get_me().username, "some-params")`` Args: bot_username (:obj:`str`): The username to link to payload (:obj:`str`, optional): Parameters to encode in the created URL group (:obj:`bool`, optional): If `True` the user is prompted to select a group to add the bot to. If `False`, opens a one-on-one conversation with the bot. Defaults to `False`. Returns: :obj:`str`: An URL to start the bot with specific parameters
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
create_deep_linked_url
anthonyricci123/python-telegram-bot-heroku
2
python
def create_deep_linked_url(bot_username, payload=None, group=False): '\n Creates a deep-linked URL for this ``bot_username`` with the specified ``payload``.\n See https://core.telegram.org/bots#deep-linking to learn more.\n\n The ``payload`` may consist of the following characters: ``A-Z, a-z, 0-9, _, -``\n\n Note:\n Works well in conjunction with\n ``CommandHandler("start", callback, filters = Filters.regex(\'payload\'))``\n\n Examples:\n ``create_deep_linked_url(bot.get_me().username, "some-params")``\n\n Args:\n bot_username (:obj:`str`): The username to link to\n payload (:obj:`str`, optional): Parameters to encode in the created URL\n group (:obj:`bool`, optional): If `True` the user is prompted to select a group to add the\n bot to. If `False`, opens a one-on-one conversation with the bot. Defaults to `False`.\n\n Returns:\n :obj:`str`: An URL to start the bot with specific parameters\n ' if ((bot_username is None) or (len(bot_username) <= 3)): raise ValueError('You must provide a valid bot_username.') base_url = 'https://t.me/{}'.format(bot_username) if (not payload): return base_url if (len(payload) > 64): raise ValueError('The deep-linking payload must not exceed 64 characters.') if (not re.match('^[A-Za-z0-9_-]+$', payload)): raise ValueError('Only the following characters are allowed for deep-linked URLs: A-Z, a-z, 0-9, _ and -') if group: key = 'startgroup' else: key = 'start' return '{0}?{1}={2}'.format(base_url, key, payload)
def create_deep_linked_url(bot_username, payload=None, group=False): '\n Creates a deep-linked URL for this ``bot_username`` with the specified ``payload``.\n See https://core.telegram.org/bots#deep-linking to learn more.\n\n The ``payload`` may consist of the following characters: ``A-Z, a-z, 0-9, _, -``\n\n Note:\n Works well in conjunction with\n ``CommandHandler("start", callback, filters = Filters.regex(\'payload\'))``\n\n Examples:\n ``create_deep_linked_url(bot.get_me().username, "some-params")``\n\n Args:\n bot_username (:obj:`str`): The username to link to\n payload (:obj:`str`, optional): Parameters to encode in the created URL\n group (:obj:`bool`, optional): If `True` the user is prompted to select a group to add the\n bot to. If `False`, opens a one-on-one conversation with the bot. Defaults to `False`.\n\n Returns:\n :obj:`str`: An URL to start the bot with specific parameters\n ' if ((bot_username is None) or (len(bot_username) <= 3)): raise ValueError('You must provide a valid bot_username.') base_url = 'https://t.me/{}'.format(bot_username) if (not payload): return base_url if (len(payload) > 64): raise ValueError('The deep-linking payload must not exceed 64 characters.') if (not re.match('^[A-Za-z0-9_-]+$', payload)): raise ValueError('Only the following characters are allowed for deep-linked URLs: A-Z, a-z, 0-9, _ and -') if group: key = 'startgroup' else: key = 'start' return '{0}?{1}={2}'.format(base_url, key, payload)<|docstring|>Creates a deep-linked URL for this ``bot_username`` with the specified ``payload``. See https://core.telegram.org/bots#deep-linking to learn more. The ``payload`` may consist of the following characters: ``A-Z, a-z, 0-9, _, -`` Note: Works well in conjunction with ``CommandHandler("start", callback, filters = Filters.regex('payload'))`` Examples: ``create_deep_linked_url(bot.get_me().username, "some-params")`` Args: bot_username (:obj:`str`): The username to link to payload (:obj:`str`, optional): Parameters to encode in the created URL group (:obj:`bool`, optional): If `True` the user is prompted to select a group to add the bot to. If `False`, opens a one-on-one conversation with the bot. Defaults to `False`. Returns: :obj:`str`: An URL to start the bot with specific parameters<|endoftext|>
9c382ebfbc45ea6183f989659a2eb63918fe2e322dbb3b68dc0346e4e4c783ef
def encode_conversations_to_json(conversations): 'Helper method to encode a conversations dict (that uses tuples as keys) to a\n JSON-serializable way. Use :attr:`_decode_conversations_from_json` to decode.\n\n Args:\n conversations (:obj:`dict`): The conversations dict to transofrm to JSON.\n\n Returns:\n :obj:`str`: The JSON-serialized conversations dict\n ' tmp = {} for (handler, states) in conversations.items(): tmp[handler] = {} for (key, state) in states.items(): tmp[handler][json.dumps(key)] = state return json.dumps(tmp)
Helper method to encode a conversations dict (that uses tuples as keys) to a JSON-serializable way. Use :attr:`_decode_conversations_from_json` to decode. Args: conversations (:obj:`dict`): The conversations dict to transofrm to JSON. Returns: :obj:`str`: The JSON-serialized conversations dict
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
encode_conversations_to_json
anthonyricci123/python-telegram-bot-heroku
2
python
def encode_conversations_to_json(conversations): 'Helper method to encode a conversations dict (that uses tuples as keys) to a\n JSON-serializable way. Use :attr:`_decode_conversations_from_json` to decode.\n\n Args:\n conversations (:obj:`dict`): The conversations dict to transofrm to JSON.\n\n Returns:\n :obj:`str`: The JSON-serialized conversations dict\n ' tmp = {} for (handler, states) in conversations.items(): tmp[handler] = {} for (key, state) in states.items(): tmp[handler][json.dumps(key)] = state return json.dumps(tmp)
def encode_conversations_to_json(conversations): 'Helper method to encode a conversations dict (that uses tuples as keys) to a\n JSON-serializable way. Use :attr:`_decode_conversations_from_json` to decode.\n\n Args:\n conversations (:obj:`dict`): The conversations dict to transofrm to JSON.\n\n Returns:\n :obj:`str`: The JSON-serialized conversations dict\n ' tmp = {} for (handler, states) in conversations.items(): tmp[handler] = {} for (key, state) in states.items(): tmp[handler][json.dumps(key)] = state return json.dumps(tmp)<|docstring|>Helper method to encode a conversations dict (that uses tuples as keys) to a JSON-serializable way. Use :attr:`_decode_conversations_from_json` to decode. Args: conversations (:obj:`dict`): The conversations dict to transofrm to JSON. Returns: :obj:`str`: The JSON-serialized conversations dict<|endoftext|>
f159739109dbdc9806c06b84995cb33975ec8f8c302ab9de6b168102e727cf3c
def decode_conversations_from_json(json_string): 'Helper method to decode a conversations dict (that uses tuples as keys) from a\n JSON-string created with :attr:`_encode_conversations_to_json`.\n\n Args:\n json_string (:obj:`str`): The conversations dict as JSON string.\n\n Returns:\n :obj:`dict`: The conversations dict after decoding\n ' tmp = json.loads(json_string) conversations = {} for (handler, states) in tmp.items(): conversations[handler] = {} for (key, state) in states.items(): conversations[handler][tuple(json.loads(key))] = state return conversations
Helper method to decode a conversations dict (that uses tuples as keys) from a JSON-string created with :attr:`_encode_conversations_to_json`. Args: json_string (:obj:`str`): The conversations dict as JSON string. Returns: :obj:`dict`: The conversations dict after decoding
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
decode_conversations_from_json
anthonyricci123/python-telegram-bot-heroku
2
python
def decode_conversations_from_json(json_string): 'Helper method to decode a conversations dict (that uses tuples as keys) from a\n JSON-string created with :attr:`_encode_conversations_to_json`.\n\n Args:\n json_string (:obj:`str`): The conversations dict as JSON string.\n\n Returns:\n :obj:`dict`: The conversations dict after decoding\n ' tmp = json.loads(json_string) conversations = {} for (handler, states) in tmp.items(): conversations[handler] = {} for (key, state) in states.items(): conversations[handler][tuple(json.loads(key))] = state return conversations
def decode_conversations_from_json(json_string): 'Helper method to decode a conversations dict (that uses tuples as keys) from a\n JSON-string created with :attr:`_encode_conversations_to_json`.\n\n Args:\n json_string (:obj:`str`): The conversations dict as JSON string.\n\n Returns:\n :obj:`dict`: The conversations dict after decoding\n ' tmp = json.loads(json_string) conversations = {} for (handler, states) in tmp.items(): conversations[handler] = {} for (key, state) in states.items(): conversations[handler][tuple(json.loads(key))] = state return conversations<|docstring|>Helper method to decode a conversations dict (that uses tuples as keys) from a JSON-string created with :attr:`_encode_conversations_to_json`. Args: json_string (:obj:`str`): The conversations dict as JSON string. Returns: :obj:`dict`: The conversations dict after decoding<|endoftext|>
d190e5430e1b143fbf8fe79b642c58024dff15abf218cc403a82e27a3b987b11
def decode_user_chat_data_from_json(data): 'Helper method to decode chat or user data (that uses ints as keys) from a\n JSON-string.\n\n Args:\n data (:obj:`str`): The user/chat_data dict as JSON string.\n\n Returns:\n :obj:`dict`: The user/chat_data defaultdict after decoding\n ' tmp = defaultdict(dict) decoded_data = json.loads(data) for (user, data) in decoded_data.items(): user = int(user) tmp[user] = {} for (key, value) in data.items(): try: key = int(key) except ValueError: pass tmp[user][key] = value return tmp
Helper method to decode chat or user data (that uses ints as keys) from a JSON-string. Args: data (:obj:`str`): The user/chat_data dict as JSON string. Returns: :obj:`dict`: The user/chat_data defaultdict after decoding
venv/lib/python3.8/site-packages/telegram/utils/helpers.py
decode_user_chat_data_from_json
anthonyricci123/python-telegram-bot-heroku
2
python
def decode_user_chat_data_from_json(data): 'Helper method to decode chat or user data (that uses ints as keys) from a\n JSON-string.\n\n Args:\n data (:obj:`str`): The user/chat_data dict as JSON string.\n\n Returns:\n :obj:`dict`: The user/chat_data defaultdict after decoding\n ' tmp = defaultdict(dict) decoded_data = json.loads(data) for (user, data) in decoded_data.items(): user = int(user) tmp[user] = {} for (key, value) in data.items(): try: key = int(key) except ValueError: pass tmp[user][key] = value return tmp
def decode_user_chat_data_from_json(data): 'Helper method to decode chat or user data (that uses ints as keys) from a\n JSON-string.\n\n Args:\n data (:obj:`str`): The user/chat_data dict as JSON string.\n\n Returns:\n :obj:`dict`: The user/chat_data defaultdict after decoding\n ' tmp = defaultdict(dict) decoded_data = json.loads(data) for (user, data) in decoded_data.items(): user = int(user) tmp[user] = {} for (key, value) in data.items(): try: key = int(key) except ValueError: pass tmp[user][key] = value return tmp<|docstring|>Helper method to decode chat or user data (that uses ints as keys) from a JSON-string. Args: data (:obj:`str`): The user/chat_data dict as JSON string. Returns: :obj:`dict`: The user/chat_data defaultdict after decoding<|endoftext|>
03c5956be5bd9de73cb73f511c4ec4c6dab58f2553de0d25dabd279a1f0e1648
def cuwb_data_csv(): '\n 1 minute of CUWB data\n 6 People\n 3 w/o acceleration data\n 5 Trays\n :return:\n ' return (os.path.dirname(os.path.realpath(__file__)) + '/fixtures/uwb.csv')
1 minute of CUWB data 6 People 3 w/o acceleration data 5 Trays :return:
tests/conftest.py
cuwb_data_csv
WildflowerSchools/wf-process-cuwb-data
0
python
def cuwb_data_csv(): '\n 1 minute of CUWB data\n 6 People\n 3 w/o acceleration data\n 5 Trays\n :return:\n ' return (os.path.dirname(os.path.realpath(__file__)) + '/fixtures/uwb.csv')
def cuwb_data_csv(): '\n 1 minute of CUWB data\n 6 People\n 3 w/o acceleration data\n 5 Trays\n :return:\n ' return (os.path.dirname(os.path.realpath(__file__)) + '/fixtures/uwb.csv')<|docstring|>1 minute of CUWB data 6 People 3 w/o acceleration data 5 Trays :return:<|endoftext|>
03721504319f55ce958359a65eabc9bf461eb1798a315bac21f77e1a2227aaee
def plot(self, figure=None, plot_class=None, domain=((- 5), 5), **opts): 'Uses McUtils to plot the wavefunction on the passed figure (makes a new one if none)\n\n :param figure:\n :type figure: Graphics | Graphics3D\n :return:\n :rtype:\n ' discrete = np.linspace(*domain, 100) data = self.evaluate(discrete, **opts) if (plot_class is None): plot_class = Plot return plot_class(discrete, data, figure=figure, **opts)
Uses McUtils to plot the wavefunction on the passed figure (makes a new one if none) :param figure: :type figure: Graphics | Graphics3D :return: :rtype:
Psience/BasisReps/Wavefunctions.py
plot
McCoyGroup/Coordinerds
0
python
def plot(self, figure=None, plot_class=None, domain=((- 5), 5), **opts): 'Uses McUtils to plot the wavefunction on the passed figure (makes a new one if none)\n\n :param figure:\n :type figure: Graphics | Graphics3D\n :return:\n :rtype:\n ' discrete = np.linspace(*domain, 100) data = self.evaluate(discrete, **opts) if (plot_class is None): plot_class = Plot return plot_class(discrete, data, figure=figure, **opts)
def plot(self, figure=None, plot_class=None, domain=((- 5), 5), **opts): 'Uses McUtils to plot the wavefunction on the passed figure (makes a new one if none)\n\n :param figure:\n :type figure: Graphics | Graphics3D\n :return:\n :rtype:\n ' discrete = np.linspace(*domain, 100) data = self.evaluate(discrete, **opts) if (plot_class is None): plot_class = Plot return plot_class(discrete, data, figure=figure, **opts)<|docstring|>Uses McUtils to plot the wavefunction on the passed figure (makes a new one if none) :param figure: :type figure: Graphics | Graphics3D :return: :rtype:<|endoftext|>
ed48204ca6cbc97217048ed2ebd9206f9df4f9623046f2b4608d733102b5fd27
def expect(self, operator): '\n Provides expectation values of operators, but the operators have to be Operator objects...\n basically all the logic is inside the operator, but this is worth it for use in ExpansionWavefunction\n We can also potentially add support for ExpansionOperators or SymbolicOperators in the future that are\n able to very cleanly reuse stuff like the `p` matrix that a RepresentationBasis defines\n\n :param operator: the operator to take the expectation of\n :type operator: Operator\n ' return operator[(self.index, self.index)]
Provides expectation values of operators, but the operators have to be Operator objects... basically all the logic is inside the operator, but this is worth it for use in ExpansionWavefunction We can also potentially add support for ExpansionOperators or SymbolicOperators in the future that are able to very cleanly reuse stuff like the `p` matrix that a RepresentationBasis defines :param operator: the operator to take the expectation of :type operator: Operator
Psience/BasisReps/Wavefunctions.py
expect
McCoyGroup/Coordinerds
0
python
def expect(self, operator): '\n Provides expectation values of operators, but the operators have to be Operator objects...\n basically all the logic is inside the operator, but this is worth it for use in ExpansionWavefunction\n We can also potentially add support for ExpansionOperators or SymbolicOperators in the future that are\n able to very cleanly reuse stuff like the `p` matrix that a RepresentationBasis defines\n\n :param operator: the operator to take the expectation of\n :type operator: Operator\n ' return operator[(self.index, self.index)]
def expect(self, operator): '\n Provides expectation values of operators, but the operators have to be Operator objects...\n basically all the logic is inside the operator, but this is worth it for use in ExpansionWavefunction\n We can also potentially add support for ExpansionOperators or SymbolicOperators in the future that are\n able to very cleanly reuse stuff like the `p` matrix that a RepresentationBasis defines\n\n :param operator: the operator to take the expectation of\n :type operator: Operator\n ' return operator[(self.index, self.index)]<|docstring|>Provides expectation values of operators, but the operators have to be Operator objects... basically all the logic is inside the operator, but this is worth it for use in ExpansionWavefunction We can also potentially add support for ExpansionOperators or SymbolicOperators in the future that are able to very cleanly reuse stuff like the `p` matrix that a RepresentationBasis defines :param operator: the operator to take the expectation of :type operator: Operator<|endoftext|>
d1eca41dcec149db90a722d0dc1116bba5e574b27c148d063eae97ebc2eba230
def expectation(self, op, other): 'Computes the expectation value of operator op over the wavefunction other and self\n\n :param other: the other wavefunction\n :type other: AnalyticWavefunction\n :param op: the operator to take the matrix element of\n :type op: Operator\n :return:\n :rtype:\n ' o = Representation(op, ...) return o[(self.index, other.index)]
Computes the expectation value of operator op over the wavefunction other and self :param other: the other wavefunction :type other: AnalyticWavefunction :param op: the operator to take the matrix element of :type op: Operator :return: :rtype:
Psience/BasisReps/Wavefunctions.py
expectation
McCoyGroup/Coordinerds
0
python
def expectation(self, op, other): 'Computes the expectation value of operator op over the wavefunction other and self\n\n :param other: the other wavefunction\n :type other: AnalyticWavefunction\n :param op: the operator to take the matrix element of\n :type op: Operator\n :return:\n :rtype:\n ' o = Representation(op, ...) return o[(self.index, other.index)]
def expectation(self, op, other): 'Computes the expectation value of operator op over the wavefunction other and self\n\n :param other: the other wavefunction\n :type other: AnalyticWavefunction\n :param op: the operator to take the matrix element of\n :type op: Operator\n :return:\n :rtype:\n ' o = Representation(op, ...) return o[(self.index, other.index)]<|docstring|>Computes the expectation value of operator op over the wavefunction other and self :param other: the other wavefunction :type other: AnalyticWavefunction :param op: the operator to take the matrix element of :type op: Operator :return: :rtype:<|endoftext|>
6f7f2fc043c0830d915928cc2387a16700488473895947219fd58d895c915345
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' return self.data
Computes the probability density of the current wavefunction :return: :rtype:
Psience/BasisReps/Wavefunctions.py
probability_density
McCoyGroup/Coordinerds
0
python
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' return self.data
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' return self.data<|docstring|>Computes the probability density of the current wavefunction :return: :rtype:<|endoftext|>
bfdffa351d65452865a239736266e3ad1a14477c674538ef4d677d7f84261e88
def __init__(self, energy, coefficients, basis_wfns): '\n :param energy: energy of the wavefunction\n :type energy: float\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[float]\n :param basis_wfns: basis functions for the expansion\n :type basis_wfns: Wavefunctions\n ' super().__init__(energy, {'coeffs': coefficients, 'basis': basis_wfns})
:param energy: energy of the wavefunction :type energy: float :param coefficients: expansion coefficients :type coefficients: Iterable[float] :param basis_wfns: basis functions for the expansion :type basis_wfns: Wavefunctions
Psience/BasisReps/Wavefunctions.py
__init__
McCoyGroup/Coordinerds
0
python
def __init__(self, energy, coefficients, basis_wfns): '\n :param energy: energy of the wavefunction\n :type energy: float\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[float]\n :param basis_wfns: basis functions for the expansion\n :type basis_wfns: Wavefunctions\n ' super().__init__(energy, {'coeffs': coefficients, 'basis': basis_wfns})
def __init__(self, energy, coefficients, basis_wfns): '\n :param energy: energy of the wavefunction\n :type energy: float\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[float]\n :param basis_wfns: basis functions for the expansion\n :type basis_wfns: Wavefunctions\n ' super().__init__(energy, {'coeffs': coefficients, 'basis': basis_wfns})<|docstring|>:param energy: energy of the wavefunction :type energy: float :param coefficients: expansion coefficients :type coefficients: Iterable[float] :param basis_wfns: basis functions for the expansion :type basis_wfns: Wavefunctions<|endoftext|>
d962f7c99155eb6f8a184248af9e5d124cf8e43cc0f99d447b5f512980eeeeb4
def evaluate(self, *args, **kwargs): '\n Evaluates the wavecfunction as any other linear expansion.\n\n :param args: coordinates + any other args the basis takes\n :type args:\n :param kwargs: any keyword arguments the basis takes\n :type kwargs:\n :return: values of the wavefunction\n :rtype:\n ' return np.dot(self.data['coeffs'], np.array([f(args, **kwargs) for f in self.data['basis']]))
Evaluates the wavecfunction as any other linear expansion. :param args: coordinates + any other args the basis takes :type args: :param kwargs: any keyword arguments the basis takes :type kwargs: :return: values of the wavefunction :rtype:
Psience/BasisReps/Wavefunctions.py
evaluate
McCoyGroup/Coordinerds
0
python
def evaluate(self, *args, **kwargs): '\n Evaluates the wavecfunction as any other linear expansion.\n\n :param args: coordinates + any other args the basis takes\n :type args:\n :param kwargs: any keyword arguments the basis takes\n :type kwargs:\n :return: values of the wavefunction\n :rtype:\n ' return np.dot(self.data['coeffs'], np.array([f(args, **kwargs) for f in self.data['basis']]))
def evaluate(self, *args, **kwargs): '\n Evaluates the wavecfunction as any other linear expansion.\n\n :param args: coordinates + any other args the basis takes\n :type args:\n :param kwargs: any keyword arguments the basis takes\n :type kwargs:\n :return: values of the wavefunction\n :rtype:\n ' return np.dot(self.data['coeffs'], np.array([f(args, **kwargs) for f in self.data['basis']]))<|docstring|>Evaluates the wavecfunction as any other linear expansion. :param args: coordinates + any other args the basis takes :type args: :param kwargs: any keyword arguments the basis takes :type kwargs: :return: values of the wavefunction :rtype:<|endoftext|>
99ef6389622297480fd6d03b86b32dfc498605645bc898c4ffaf20a5dcbf0353
def expect(self, operator): '\n Provides the expectation value of the operator `op`.\n Uses the basis to compute the reps and then expands with the expansion coeffs.\n\n :param operator:\n :type operator:\n :return:\n :rtype:\n ' op_vector = operator[(tuple((x.index for x in self.data['basis'])), tuple((x.index for x in self.data['basis'])))] return np.dot(self.data['coeffs'], op_vector)
Provides the expectation value of the operator `op`. Uses the basis to compute the reps and then expands with the expansion coeffs. :param operator: :type operator: :return: :rtype:
Psience/BasisReps/Wavefunctions.py
expect
McCoyGroup/Coordinerds
0
python
def expect(self, operator): '\n Provides the expectation value of the operator `op`.\n Uses the basis to compute the reps and then expands with the expansion coeffs.\n\n :param operator:\n :type operator:\n :return:\n :rtype:\n ' op_vector = operator[(tuple((x.index for x in self.data['basis'])), tuple((x.index for x in self.data['basis'])))] return np.dot(self.data['coeffs'], op_vector)
def expect(self, operator): '\n Provides the expectation value of the operator `op`.\n Uses the basis to compute the reps and then expands with the expansion coeffs.\n\n :param operator:\n :type operator:\n :return:\n :rtype:\n ' op_vector = operator[(tuple((x.index for x in self.data['basis'])), tuple((x.index for x in self.data['basis'])))] return np.dot(self.data['coeffs'], op_vector)<|docstring|>Provides the expectation value of the operator `op`. Uses the basis to compute the reps and then expands with the expansion coeffs. :param operator: :type operator: :return: :rtype:<|endoftext|>
d770bcea4c3e593041f3ddab45361fc9080bff3169b1f787dc458c1953565530
def expectation(self, op, other): '\n Computes the expectation value of operator `op` over the wavefunction `other` and `self`.\n **Note**: _the basis of `other`, `self`, and `op` are assumed to be the same_.\n\n :param op: an operator represented in the basis of the expansion\n :type op: Operator\n :param other: the other wavefunction to expand over\n :type other: ExpansionWavefunction\n :return:\n :rtype:\n ' op_matrix = op[(tuple((x.index for x in self.data['basis'])), tuple((o.index for o in other.basis)))] return np.dot(self.data('coeffs'), np.dot(op_matrix, other.coeffs))
Computes the expectation value of operator `op` over the wavefunction `other` and `self`. **Note**: _the basis of `other`, `self`, and `op` are assumed to be the same_. :param op: an operator represented in the basis of the expansion :type op: Operator :param other: the other wavefunction to expand over :type other: ExpansionWavefunction :return: :rtype:
Psience/BasisReps/Wavefunctions.py
expectation
McCoyGroup/Coordinerds
0
python
def expectation(self, op, other): '\n Computes the expectation value of operator `op` over the wavefunction `other` and `self`.\n **Note**: _the basis of `other`, `self`, and `op` are assumed to be the same_.\n\n :param op: an operator represented in the basis of the expansion\n :type op: Operator\n :param other: the other wavefunction to expand over\n :type other: ExpansionWavefunction\n :return:\n :rtype:\n ' op_matrix = op[(tuple((x.index for x in self.data['basis'])), tuple((o.index for o in other.basis)))] return np.dot(self.data('coeffs'), np.dot(op_matrix, other.coeffs))
def expectation(self, op, other): '\n Computes the expectation value of operator `op` over the wavefunction `other` and `self`.\n **Note**: _the basis of `other`, `self`, and `op` are assumed to be the same_.\n\n :param op: an operator represented in the basis of the expansion\n :type op: Operator\n :param other: the other wavefunction to expand over\n :type other: ExpansionWavefunction\n :return:\n :rtype:\n ' op_matrix = op[(tuple((x.index for x in self.data['basis'])), tuple((o.index for o in other.basis)))] return np.dot(self.data('coeffs'), np.dot(op_matrix, other.coeffs))<|docstring|>Computes the expectation value of operator `op` over the wavefunction `other` and `self`. **Note**: _the basis of `other`, `self`, and `op` are assumed to be the same_. :param op: an operator represented in the basis of the expansion :type op: Operator :param other: the other wavefunction to expand over :type other: ExpansionWavefunction :return: :rtype:<|endoftext|>
b5f577f2890813ae309743c42904094d47ffee7104673a9373127abae24c4d8d
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' raise NotImplementedError
Computes the probability density of the current wavefunction :return: :rtype:
Psience/BasisReps/Wavefunctions.py
probability_density
McCoyGroup/Coordinerds
0
python
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' raise NotImplementedError
def probability_density(self): 'Computes the probability density of the current wavefunction\n\n :return:\n :rtype:\n ' raise NotImplementedError<|docstring|>Computes the probability density of the current wavefunction :return: :rtype:<|endoftext|>
4049e00911980430fcc28d29b21fbf6acfd2456a74852112806a6f32327da501
def __init__(self, energies, coefficients, basis_wfns, **ops): '\n :param energies: energies for the stored wavefunctions\n :type energies: Iterable[float]\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[Iterable[float]]\n :param basis_wfns: wavefunctions to use as the basis for the expansion\n :type basis_wfns: Wavefunctions\n :param ops: extra options for feeding through to `Wavefunctions`\n :type ops:\n ' self._basis = basis_wfns if ('wavefunction_class' not in ops): ops['wavefunction_class'] = ExpansionWavefunction super().__init__(energies, coefficients, **ops)
:param energies: energies for the stored wavefunctions :type energies: Iterable[float] :param coefficients: expansion coefficients :type coefficients: Iterable[Iterable[float]] :param basis_wfns: wavefunctions to use as the basis for the expansion :type basis_wfns: Wavefunctions :param ops: extra options for feeding through to `Wavefunctions` :type ops:
Psience/BasisReps/Wavefunctions.py
__init__
McCoyGroup/Coordinerds
0
python
def __init__(self, energies, coefficients, basis_wfns, **ops): '\n :param energies: energies for the stored wavefunctions\n :type energies: Iterable[float]\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[Iterable[float]]\n :param basis_wfns: wavefunctions to use as the basis for the expansion\n :type basis_wfns: Wavefunctions\n :param ops: extra options for feeding through to `Wavefunctions`\n :type ops:\n ' self._basis = basis_wfns if ('wavefunction_class' not in ops): ops['wavefunction_class'] = ExpansionWavefunction super().__init__(energies, coefficients, **ops)
def __init__(self, energies, coefficients, basis_wfns, **ops): '\n :param energies: energies for the stored wavefunctions\n :type energies: Iterable[float]\n :param coefficients: expansion coefficients\n :type coefficients: Iterable[Iterable[float]]\n :param basis_wfns: wavefunctions to use as the basis for the expansion\n :type basis_wfns: Wavefunctions\n :param ops: extra options for feeding through to `Wavefunctions`\n :type ops:\n ' self._basis = basis_wfns if ('wavefunction_class' not in ops): ops['wavefunction_class'] = ExpansionWavefunction super().__init__(energies, coefficients, **ops)<|docstring|>:param energies: energies for the stored wavefunctions :type energies: Iterable[float] :param coefficients: expansion coefficients :type coefficients: Iterable[Iterable[float]] :param basis_wfns: wavefunctions to use as the basis for the expansion :type basis_wfns: Wavefunctions :param ops: extra options for feeding through to `Wavefunctions` :type ops:<|endoftext|>
ef723efc10ddbccff7b70dee5e31971933e6eb7668e43efd3ebf3cd06b267f8c
@staticmethod def Args(parser): 'Add arguments to the parser.\n\n Args:\n parser: argparse.ArgumentParser, This is a standard argparser parser with\n which you can register arguments. See the public argparse documentation\n for its capabilities.\n ' flags.AddZoneFlag(parser)
Add arguments to the parser. Args: parser: argparse.ArgumentParser, This is a standard argparser parser with which you can register arguments. See the public argparse documentation for its capabilities.
google-cloud-sdk/lib/surface/container/get_server_config.py
Args
KaranToor/MA450
1
python
@staticmethod def Args(parser): 'Add arguments to the parser.\n\n Args:\n parser: argparse.ArgumentParser, This is a standard argparser parser with\n which you can register arguments. See the public argparse documentation\n for its capabilities.\n ' flags.AddZoneFlag(parser)
@staticmethod def Args(parser): 'Add arguments to the parser.\n\n Args:\n parser: argparse.ArgumentParser, This is a standard argparser parser with\n which you can register arguments. See the public argparse documentation\n for its capabilities.\n ' flags.AddZoneFlag(parser)<|docstring|>Add arguments to the parser. Args: parser: argparse.ArgumentParser, This is a standard argparser parser with which you can register arguments. See the public argparse documentation for its capabilities.<|endoftext|>
aa2fb6d3e5f051e598083314d40b7a4ceb211bdf17660565bbde5f837d069f1c
def get_tf_tokenizer(module_handle): 'Creates a preprocessing function.' tokenization_info = get_tokenization_info(module_handle) table_initializer = tf.lookup.TextFileInitializer(filename=tokenization_info['vocab_file'], key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE, value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER) vocab_lookup_table = tf.lookup.StaticVocabularyTable(initializer=table_initializer, num_oov_buckets=1, lookup_key_dtype=tf.string) tokenizer = tf_text.BertTokenizer(vocab_lookup_table=vocab_lookup_table, lower_case=tokenization_info['do_lower_case']) return (tokenizer, vocab_lookup_table)
Creates a preprocessing function.
language/orqa/utils/bert_utils.py
get_tf_tokenizer
alsuhr-c/language
1,199
python
def get_tf_tokenizer(module_handle): tokenization_info = get_tokenization_info(module_handle) table_initializer = tf.lookup.TextFileInitializer(filename=tokenization_info['vocab_file'], key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE, value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER) vocab_lookup_table = tf.lookup.StaticVocabularyTable(initializer=table_initializer, num_oov_buckets=1, lookup_key_dtype=tf.string) tokenizer = tf_text.BertTokenizer(vocab_lookup_table=vocab_lookup_table, lower_case=tokenization_info['do_lower_case']) return (tokenizer, vocab_lookup_table)
def get_tf_tokenizer(module_handle): tokenization_info = get_tokenization_info(module_handle) table_initializer = tf.lookup.TextFileInitializer(filename=tokenization_info['vocab_file'], key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE, value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER) vocab_lookup_table = tf.lookup.StaticVocabularyTable(initializer=table_initializer, num_oov_buckets=1, lookup_key_dtype=tf.string) tokenizer = tf_text.BertTokenizer(vocab_lookup_table=vocab_lookup_table, lower_case=tokenization_info['do_lower_case']) return (tokenizer, vocab_lookup_table)<|docstring|>Creates a preprocessing function.<|endoftext|>
e7721fe82e7884a778bb1e49d6cf741da1bff3b8d6e09e551685707a77a9c84c
def tokenize_with_original_mapping(text_input, tokenizer): 'Tokenize with original mapping.' text_input = tf.regex_replace(text_input, '\\p{Cc}|\\p{Cf}', ' ') orig_tokens = tf_text.regex_split(text_input, bert_tokenizer._DELIM_REGEX_PATTERN, tokenizer._basic_tokenizer._keep_delim_regex_pattern, 'BertBasicTokenizer') normalized_tokens = orig_tokens normalized_text = text_input if tokenizer._basic_tokenizer._lower_case: def _do_lower_case(t): t = tf_text.case_fold_utf8(t) t = tf_text.normalize_utf8(t, 'NFD') t = tf.regex_replace(t, '\\p{Mn}', '') return t normalized_tokens = _do_lower_case(normalized_tokens) normalized_text = _do_lower_case(normalized_text) wordpieces = tokenizer._wordpiece_tokenizer.tokenize(normalized_tokens) orig_token_map = tf.ragged.range(orig_tokens.row_lengths()) orig_token_map = (tf.expand_dims(orig_token_map, 2) + tf.zeros_like(wordpieces)) wordpieces = wordpieces.merge_dims(1, 2) orig_token_map = orig_token_map.merge_dims(1, 2) return (orig_tokens, orig_token_map, wordpieces, normalized_text)
Tokenize with original mapping.
language/orqa/utils/bert_utils.py
tokenize_with_original_mapping
alsuhr-c/language
1,199
python
def tokenize_with_original_mapping(text_input, tokenizer): text_input = tf.regex_replace(text_input, '\\p{Cc}|\\p{Cf}', ' ') orig_tokens = tf_text.regex_split(text_input, bert_tokenizer._DELIM_REGEX_PATTERN, tokenizer._basic_tokenizer._keep_delim_regex_pattern, 'BertBasicTokenizer') normalized_tokens = orig_tokens normalized_text = text_input if tokenizer._basic_tokenizer._lower_case: def _do_lower_case(t): t = tf_text.case_fold_utf8(t) t = tf_text.normalize_utf8(t, 'NFD') t = tf.regex_replace(t, '\\p{Mn}', ) return t normalized_tokens = _do_lower_case(normalized_tokens) normalized_text = _do_lower_case(normalized_text) wordpieces = tokenizer._wordpiece_tokenizer.tokenize(normalized_tokens) orig_token_map = tf.ragged.range(orig_tokens.row_lengths()) orig_token_map = (tf.expand_dims(orig_token_map, 2) + tf.zeros_like(wordpieces)) wordpieces = wordpieces.merge_dims(1, 2) orig_token_map = orig_token_map.merge_dims(1, 2) return (orig_tokens, orig_token_map, wordpieces, normalized_text)
def tokenize_with_original_mapping(text_input, tokenizer): text_input = tf.regex_replace(text_input, '\\p{Cc}|\\p{Cf}', ' ') orig_tokens = tf_text.regex_split(text_input, bert_tokenizer._DELIM_REGEX_PATTERN, tokenizer._basic_tokenizer._keep_delim_regex_pattern, 'BertBasicTokenizer') normalized_tokens = orig_tokens normalized_text = text_input if tokenizer._basic_tokenizer._lower_case: def _do_lower_case(t): t = tf_text.case_fold_utf8(t) t = tf_text.normalize_utf8(t, 'NFD') t = tf.regex_replace(t, '\\p{Mn}', ) return t normalized_tokens = _do_lower_case(normalized_tokens) normalized_text = _do_lower_case(normalized_text) wordpieces = tokenizer._wordpiece_tokenizer.tokenize(normalized_tokens) orig_token_map = tf.ragged.range(orig_tokens.row_lengths()) orig_token_map = (tf.expand_dims(orig_token_map, 2) + tf.zeros_like(wordpieces)) wordpieces = wordpieces.merge_dims(1, 2) orig_token_map = orig_token_map.merge_dims(1, 2) return (orig_tokens, orig_token_map, wordpieces, normalized_text)<|docstring|>Tokenize with original mapping.<|endoftext|>
796a8a8899ae1151b2e4739dce974be0435187f28111341a9815d184dec81ee5
def pad_or_truncate_pair(token_ids_a, token_ids_b, sequence_length, cls_id, sep_id): 'Pad or truncate pair.' token_ids_a = token_ids_a[:(sequence_length - 3)] truncated_len_a = tf.size(token_ids_a) maximum_len_b = tf.maximum(((sequence_length - 3) - truncated_len_a), 0) token_ids_b = token_ids_b[:maximum_len_b] truncated_len_b = tf.size(token_ids_b) truncated_len_pair = (truncated_len_a + truncated_len_b) padding = tf.zeros([((sequence_length - 3) - truncated_len_pair)], tf.int32) token_ids = tf.concat([[cls_id], token_ids_a, [sep_id], token_ids_b, [sep_id], padding], 0) mask = tf.concat([tf.ones([(truncated_len_pair + 3)], tf.int32), padding], 0) segment_ids = tf.concat([tf.zeros([(truncated_len_a + 2)], tf.int32), tf.ones([(truncated_len_b + 1)], tf.int32), padding], 0) token_ids = tf.ensure_shape(token_ids, [sequence_length]) mask = tf.ensure_shape(mask, [sequence_length]) segment_ids = tf.ensure_shape(segment_ids, [sequence_length]) return (token_ids, mask, segment_ids)
Pad or truncate pair.
language/orqa/utils/bert_utils.py
pad_or_truncate_pair
alsuhr-c/language
1,199
python
def pad_or_truncate_pair(token_ids_a, token_ids_b, sequence_length, cls_id, sep_id): token_ids_a = token_ids_a[:(sequence_length - 3)] truncated_len_a = tf.size(token_ids_a) maximum_len_b = tf.maximum(((sequence_length - 3) - truncated_len_a), 0) token_ids_b = token_ids_b[:maximum_len_b] truncated_len_b = tf.size(token_ids_b) truncated_len_pair = (truncated_len_a + truncated_len_b) padding = tf.zeros([((sequence_length - 3) - truncated_len_pair)], tf.int32) token_ids = tf.concat([[cls_id], token_ids_a, [sep_id], token_ids_b, [sep_id], padding], 0) mask = tf.concat([tf.ones([(truncated_len_pair + 3)], tf.int32), padding], 0) segment_ids = tf.concat([tf.zeros([(truncated_len_a + 2)], tf.int32), tf.ones([(truncated_len_b + 1)], tf.int32), padding], 0) token_ids = tf.ensure_shape(token_ids, [sequence_length]) mask = tf.ensure_shape(mask, [sequence_length]) segment_ids = tf.ensure_shape(segment_ids, [sequence_length]) return (token_ids, mask, segment_ids)
def pad_or_truncate_pair(token_ids_a, token_ids_b, sequence_length, cls_id, sep_id): token_ids_a = token_ids_a[:(sequence_length - 3)] truncated_len_a = tf.size(token_ids_a) maximum_len_b = tf.maximum(((sequence_length - 3) - truncated_len_a), 0) token_ids_b = token_ids_b[:maximum_len_b] truncated_len_b = tf.size(token_ids_b) truncated_len_pair = (truncated_len_a + truncated_len_b) padding = tf.zeros([((sequence_length - 3) - truncated_len_pair)], tf.int32) token_ids = tf.concat([[cls_id], token_ids_a, [sep_id], token_ids_b, [sep_id], padding], 0) mask = tf.concat([tf.ones([(truncated_len_pair + 3)], tf.int32), padding], 0) segment_ids = tf.concat([tf.zeros([(truncated_len_a + 2)], tf.int32), tf.ones([(truncated_len_b + 1)], tf.int32), padding], 0) token_ids = tf.ensure_shape(token_ids, [sequence_length]) mask = tf.ensure_shape(mask, [sequence_length]) segment_ids = tf.ensure_shape(segment_ids, [sequence_length]) return (token_ids, mask, segment_ids)<|docstring|>Pad or truncate pair.<|endoftext|>
bec452472200c9f2502f2397ea1e1780834f826cf31173a104d6e758111c0a47
def colorize(string, color, bold=False, highlight=False): 'Colorize a string.\n\n This function was originally written by John Schulman.\n ' attr = [] num = color2num[color] if highlight: num += 10 attr.append(str(num)) if bold: attr.append('1') return ('\x1b[%sm%s\x1b[0m' % (';'.join(attr), string))
Colorize a string. This function was originally written by John Schulman.
spinup_bis/utils/logx.py
colorize
piojanu/spinningup_tf2
19
python
def colorize(string, color, bold=False, highlight=False): 'Colorize a string.\n\n This function was originally written by John Schulman.\n ' attr = [] num = color2num[color] if highlight: num += 10 attr.append(str(num)) if bold: attr.append('1') return ('\x1b[%sm%s\x1b[0m' % (';'.join(attr), string))
def colorize(string, color, bold=False, highlight=False): 'Colorize a string.\n\n This function was originally written by John Schulman.\n ' attr = [] num = color2num[color] if highlight: num += 10 attr.append(str(num)) if bold: attr.append('1') return ('\x1b[%sm%s\x1b[0m' % (';'.join(attr), string))<|docstring|>Colorize a string. This function was originally written by John Schulman.<|endoftext|>
fe1a4cc1abed9edd82a4f3e80a8bb4638fa50b5decb762fe26abc57156ca3e3c
def __init__(self, output_dir=None, output_fname='progress.txt', exp_name=None, neptune_kwargs=None): 'Initialize a Logger.\n\n Args:\n output_dir (string): A directory for saving results to. If\n ``None``, defaults to a temp directory of the form\n ``/tmp/experiments/somerandomnumber``.\n\n output_fname (string): Name for the tab-separated-value file\n containing metrics logged throughout a training run.\n Defaults to ``progress.txt``.\n\n exp_name (string): Experiment name. If you run multiple training\n runs and give them all the same ``exp_name``, the plotter\n will know to group them. (Use case: if you run the same\n hyperparameter configuration with multiple random seeds, you\n should give them all the same ``exp_name``.)\n\n neptune_kwargs (dict): Neptune init kwargs. If None, then Neptune\n logging is disabled.\n ' if (mpi_tools.proc_id() == 0): self.output_dir = (output_dir or ('/tmp/experiments/%i' % int(time.time()))) if osp.exists(self.output_dir): print(('Warning: Log dir %s already exists! Storing info there anyway.' % self.output_dir)) else: os.makedirs(self.output_dir) self.output_file = open(osp.join(self.output_dir, output_fname), 'w') atexit.register(self.output_file.close) print(colorize(('Logging data to %s' % self.output_file.name), 'green', bold=True)) if (neptune_kwargs is not None): import neptune.new as neptune self.neptune_run = neptune.init(**neptune_kwargs) else: self.neptune_run = None else: self.output_dir = None self.output_file = None self.neptune_run = None self.first_row = True self.log_headers = [] self.log_current_row = {} self.exp_name = exp_name
Initialize a Logger. Args: output_dir (string): A directory for saving results to. If ``None``, defaults to a temp directory of the form ``/tmp/experiments/somerandomnumber``. output_fname (string): Name for the tab-separated-value file containing metrics logged throughout a training run. Defaults to ``progress.txt``. exp_name (string): Experiment name. If you run multiple training runs and give them all the same ``exp_name``, the plotter will know to group them. (Use case: if you run the same hyperparameter configuration with multiple random seeds, you should give them all the same ``exp_name``.) neptune_kwargs (dict): Neptune init kwargs. If None, then Neptune logging is disabled.
spinup_bis/utils/logx.py
__init__
piojanu/spinningup_tf2
19
python
def __init__(self, output_dir=None, output_fname='progress.txt', exp_name=None, neptune_kwargs=None): 'Initialize a Logger.\n\n Args:\n output_dir (string): A directory for saving results to. If\n ``None``, defaults to a temp directory of the form\n ``/tmp/experiments/somerandomnumber``.\n\n output_fname (string): Name for the tab-separated-value file\n containing metrics logged throughout a training run.\n Defaults to ``progress.txt``.\n\n exp_name (string): Experiment name. If you run multiple training\n runs and give them all the same ``exp_name``, the plotter\n will know to group them. (Use case: if you run the same\n hyperparameter configuration with multiple random seeds, you\n should give them all the same ``exp_name``.)\n\n neptune_kwargs (dict): Neptune init kwargs. If None, then Neptune\n logging is disabled.\n ' if (mpi_tools.proc_id() == 0): self.output_dir = (output_dir or ('/tmp/experiments/%i' % int(time.time()))) if osp.exists(self.output_dir): print(('Warning: Log dir %s already exists! Storing info there anyway.' % self.output_dir)) else: os.makedirs(self.output_dir) self.output_file = open(osp.join(self.output_dir, output_fname), 'w') atexit.register(self.output_file.close) print(colorize(('Logging data to %s' % self.output_file.name), 'green', bold=True)) if (neptune_kwargs is not None): import neptune.new as neptune self.neptune_run = neptune.init(**neptune_kwargs) else: self.neptune_run = None else: self.output_dir = None self.output_file = None self.neptune_run = None self.first_row = True self.log_headers = [] self.log_current_row = {} self.exp_name = exp_name
def __init__(self, output_dir=None, output_fname='progress.txt', exp_name=None, neptune_kwargs=None): 'Initialize a Logger.\n\n Args:\n output_dir (string): A directory for saving results to. If\n ``None``, defaults to a temp directory of the form\n ``/tmp/experiments/somerandomnumber``.\n\n output_fname (string): Name for the tab-separated-value file\n containing metrics logged throughout a training run.\n Defaults to ``progress.txt``.\n\n exp_name (string): Experiment name. If you run multiple training\n runs and give them all the same ``exp_name``, the plotter\n will know to group them. (Use case: if you run the same\n hyperparameter configuration with multiple random seeds, you\n should give them all the same ``exp_name``.)\n\n neptune_kwargs (dict): Neptune init kwargs. If None, then Neptune\n logging is disabled.\n ' if (mpi_tools.proc_id() == 0): self.output_dir = (output_dir or ('/tmp/experiments/%i' % int(time.time()))) if osp.exists(self.output_dir): print(('Warning: Log dir %s already exists! Storing info there anyway.' % self.output_dir)) else: os.makedirs(self.output_dir) self.output_file = open(osp.join(self.output_dir, output_fname), 'w') atexit.register(self.output_file.close) print(colorize(('Logging data to %s' % self.output_file.name), 'green', bold=True)) if (neptune_kwargs is not None): import neptune.new as neptune self.neptune_run = neptune.init(**neptune_kwargs) else: self.neptune_run = None else: self.output_dir = None self.output_file = None self.neptune_run = None self.first_row = True self.log_headers = [] self.log_current_row = {} self.exp_name = exp_name<|docstring|>Initialize a Logger. Args: output_dir (string): A directory for saving results to. If ``None``, defaults to a temp directory of the form ``/tmp/experiments/somerandomnumber``. output_fname (string): Name for the tab-separated-value file containing metrics logged throughout a training run. Defaults to ``progress.txt``. exp_name (string): Experiment name. If you run multiple training runs and give them all the same ``exp_name``, the plotter will know to group them. (Use case: if you run the same hyperparameter configuration with multiple random seeds, you should give them all the same ``exp_name``.) neptune_kwargs (dict): Neptune init kwargs. If None, then Neptune logging is disabled.<|endoftext|>
3311710c2d0704d902e32d752bc5c44cbe8f27ee0c83b47203d8453e307a9c5d
def log(self, msg, color='green'): 'Print a colorized message to stdout.' if (mpi_tools.proc_id() == 0): print(colorize(msg, color, bold=True))
Print a colorized message to stdout.
spinup_bis/utils/logx.py
log
piojanu/spinningup_tf2
19
python
def log(self, msg, color='green'): if (mpi_tools.proc_id() == 0): print(colorize(msg, color, bold=True))
def log(self, msg, color='green'): if (mpi_tools.proc_id() == 0): print(colorize(msg, color, bold=True))<|docstring|>Print a colorized message to stdout.<|endoftext|>
cace6cbc8ec870e48e5f700eabe8b0d2d35de2faa358de793d152a40e298524e
def log_tabular(self, key, val): 'Log a value of some diagnostic.\n\n Call this only once for each diagnostic quantity, each iteration.\n After using ``log_tabular`` to store values for each diagnostic,\n make sure to call ``dump_tabular`` to write them out to file and\n stdout (otherwise they will not get saved anywhere).\n ' if self.first_row: self.log_headers.append(key) else: assert (key in self.log_headers), ("Trying to introduce a new key %s that you didn't include in the first iteration" % key) assert (key not in self.log_current_row), ('You already set %s this iteration. Maybe you forgot to call dump_tabular()' % key) self.log_current_row[key] = val
Log a value of some diagnostic. Call this only once for each diagnostic quantity, each iteration. After using ``log_tabular`` to store values for each diagnostic, make sure to call ``dump_tabular`` to write them out to file and stdout (otherwise they will not get saved anywhere).
spinup_bis/utils/logx.py
log_tabular
piojanu/spinningup_tf2
19
python
def log_tabular(self, key, val): 'Log a value of some diagnostic.\n\n Call this only once for each diagnostic quantity, each iteration.\n After using ``log_tabular`` to store values for each diagnostic,\n make sure to call ``dump_tabular`` to write them out to file and\n stdout (otherwise they will not get saved anywhere).\n ' if self.first_row: self.log_headers.append(key) else: assert (key in self.log_headers), ("Trying to introduce a new key %s that you didn't include in the first iteration" % key) assert (key not in self.log_current_row), ('You already set %s this iteration. Maybe you forgot to call dump_tabular()' % key) self.log_current_row[key] = val
def log_tabular(self, key, val): 'Log a value of some diagnostic.\n\n Call this only once for each diagnostic quantity, each iteration.\n After using ``log_tabular`` to store values for each diagnostic,\n make sure to call ``dump_tabular`` to write them out to file and\n stdout (otherwise they will not get saved anywhere).\n ' if self.first_row: self.log_headers.append(key) else: assert (key in self.log_headers), ("Trying to introduce a new key %s that you didn't include in the first iteration" % key) assert (key not in self.log_current_row), ('You already set %s this iteration. Maybe you forgot to call dump_tabular()' % key) self.log_current_row[key] = val<|docstring|>Log a value of some diagnostic. Call this only once for each diagnostic quantity, each iteration. After using ``log_tabular`` to store values for each diagnostic, make sure to call ``dump_tabular`` to write them out to file and stdout (otherwise they will not get saved anywhere).<|endoftext|>
0a69f961986feaf00b41205f9fe0810fdb04d1db1d90be4b6d34d148491aaa08
def save_config(self, config): "Log an experiment configuration.\n\n Call this once at the top of your experiment, passing in all important\n config vars as a dict. This will serialize the config to JSON, while\n handling anything which can't be serialized in a graceful way (writing\n as informative a string as possible).\n\n Example use:\n\n .. code-block:: python\n\n logger = EpochLogger(**logger_kwargs)\n logger.save_config(locals())\n " config_json = serialization_utils.convert_json(config) if (self.exp_name is not None): config_json['exp_name'] = self.exp_name if (mpi_tools.proc_id() == 0): output = json.dumps(config_json, separators=(',', ':\t'), indent=4, sort_keys=True) print(colorize('Saving config:\n', color='cyan', bold=True)) print(output) with open(osp.join(self.output_dir, 'config.json'), 'w') as out: out.write(output) if (self.neptune_run is not None): print(colorize('Saving config to Neptune...\n', color='cyan')) self.neptune_run['parameters'] = config_json
Log an experiment configuration. Call this once at the top of your experiment, passing in all important config vars as a dict. This will serialize the config to JSON, while handling anything which can't be serialized in a graceful way (writing as informative a string as possible). Example use: .. code-block:: python logger = EpochLogger(**logger_kwargs) logger.save_config(locals())
spinup_bis/utils/logx.py
save_config
piojanu/spinningup_tf2
19
python
def save_config(self, config): "Log an experiment configuration.\n\n Call this once at the top of your experiment, passing in all important\n config vars as a dict. This will serialize the config to JSON, while\n handling anything which can't be serialized in a graceful way (writing\n as informative a string as possible).\n\n Example use:\n\n .. code-block:: python\n\n logger = EpochLogger(**logger_kwargs)\n logger.save_config(locals())\n " config_json = serialization_utils.convert_json(config) if (self.exp_name is not None): config_json['exp_name'] = self.exp_name if (mpi_tools.proc_id() == 0): output = json.dumps(config_json, separators=(',', ':\t'), indent=4, sort_keys=True) print(colorize('Saving config:\n', color='cyan', bold=True)) print(output) with open(osp.join(self.output_dir, 'config.json'), 'w') as out: out.write(output) if (self.neptune_run is not None): print(colorize('Saving config to Neptune...\n', color='cyan')) self.neptune_run['parameters'] = config_json
def save_config(self, config): "Log an experiment configuration.\n\n Call this once at the top of your experiment, passing in all important\n config vars as a dict. This will serialize the config to JSON, while\n handling anything which can't be serialized in a graceful way (writing\n as informative a string as possible).\n\n Example use:\n\n .. code-block:: python\n\n logger = EpochLogger(**logger_kwargs)\n logger.save_config(locals())\n " config_json = serialization_utils.convert_json(config) if (self.exp_name is not None): config_json['exp_name'] = self.exp_name if (mpi_tools.proc_id() == 0): output = json.dumps(config_json, separators=(',', ':\t'), indent=4, sort_keys=True) print(colorize('Saving config:\n', color='cyan', bold=True)) print(output) with open(osp.join(self.output_dir, 'config.json'), 'w') as out: out.write(output) if (self.neptune_run is not None): print(colorize('Saving config to Neptune...\n', color='cyan')) self.neptune_run['parameters'] = config_json<|docstring|>Log an experiment configuration. Call this once at the top of your experiment, passing in all important config vars as a dict. This will serialize the config to JSON, while handling anything which can't be serialized in a graceful way (writing as informative a string as possible). Example use: .. code-block:: python logger = EpochLogger(**logger_kwargs) logger.save_config(locals())<|endoftext|>
6fb21d06ce94d73cf8ea036850936ac91ea2e6eefb867b0296841740bc61dbb7
def dump_tabular(self): 'Write all of the diagnostics from the current iteration.\n\n Writes both to stdout, and to the output file.\n ' if (mpi_tools.proc_id() == 0): vals = [] key_lens = [len(key) for key in self.log_headers] max_key_len = max(15, max(key_lens)) keystr = ('%' + ('%d' % max_key_len)) fmt = (('| ' + keystr) + 's | %15s |') n_slashes = (22 + max_key_len) print(('-' * n_slashes)) for key in self.log_headers: val = self.log_current_row.get(key, '') valstr = (('%8.3g' % val) if hasattr(val, '__float__') else val) print((fmt % (key, valstr))) vals.append(val) if (self.neptune_run is not None): step = self.log_current_row.get('TotalEnvInteracts') if ('Test' in key): nkey = ('test/' + key) else: nkey = ('train/' + key) self.neptune_run[nkey].log(val, step) print(('-' * n_slashes), flush=True) if (self.output_file is not None): if self.first_row: self.output_file.write(('\t'.join(self.log_headers) + '\n')) self.output_file.write(('\t'.join(map(str, vals)) + '\n')) self.output_file.flush() self.log_current_row.clear() self.first_row = False
Write all of the diagnostics from the current iteration. Writes both to stdout, and to the output file.
spinup_bis/utils/logx.py
dump_tabular
piojanu/spinningup_tf2
19
python
def dump_tabular(self): 'Write all of the diagnostics from the current iteration.\n\n Writes both to stdout, and to the output file.\n ' if (mpi_tools.proc_id() == 0): vals = [] key_lens = [len(key) for key in self.log_headers] max_key_len = max(15, max(key_lens)) keystr = ('%' + ('%d' % max_key_len)) fmt = (('| ' + keystr) + 's | %15s |') n_slashes = (22 + max_key_len) print(('-' * n_slashes)) for key in self.log_headers: val = self.log_current_row.get(key, ) valstr = (('%8.3g' % val) if hasattr(val, '__float__') else val) print((fmt % (key, valstr))) vals.append(val) if (self.neptune_run is not None): step = self.log_current_row.get('TotalEnvInteracts') if ('Test' in key): nkey = ('test/' + key) else: nkey = ('train/' + key) self.neptune_run[nkey].log(val, step) print(('-' * n_slashes), flush=True) if (self.output_file is not None): if self.first_row: self.output_file.write(('\t'.join(self.log_headers) + '\n')) self.output_file.write(('\t'.join(map(str, vals)) + '\n')) self.output_file.flush() self.log_current_row.clear() self.first_row = False
def dump_tabular(self): 'Write all of the diagnostics from the current iteration.\n\n Writes both to stdout, and to the output file.\n ' if (mpi_tools.proc_id() == 0): vals = [] key_lens = [len(key) for key in self.log_headers] max_key_len = max(15, max(key_lens)) keystr = ('%' + ('%d' % max_key_len)) fmt = (('| ' + keystr) + 's | %15s |') n_slashes = (22 + max_key_len) print(('-' * n_slashes)) for key in self.log_headers: val = self.log_current_row.get(key, ) valstr = (('%8.3g' % val) if hasattr(val, '__float__') else val) print((fmt % (key, valstr))) vals.append(val) if (self.neptune_run is not None): step = self.log_current_row.get('TotalEnvInteracts') if ('Test' in key): nkey = ('test/' + key) else: nkey = ('train/' + key) self.neptune_run[nkey].log(val, step) print(('-' * n_slashes), flush=True) if (self.output_file is not None): if self.first_row: self.output_file.write(('\t'.join(self.log_headers) + '\n')) self.output_file.write(('\t'.join(map(str, vals)) + '\n')) self.output_file.flush() self.log_current_row.clear() self.first_row = False<|docstring|>Write all of the diagnostics from the current iteration. Writes both to stdout, and to the output file.<|endoftext|>
137d4ee9648040386ff945737e9310ea83d0f6f9eec5c0d7f919d0beb768b421
def store(self, **kwargs): "Save something into the epoch_logger's current state.\n\n Provide an arbitrary number of keyword arguments with numerical\n values.\n " for (k, v) in kwargs.items(): if (k not in self.epoch_dict.keys()): self.epoch_dict[k] = [] self.epoch_dict[k].append(v)
Save something into the epoch_logger's current state. Provide an arbitrary number of keyword arguments with numerical values.
spinup_bis/utils/logx.py
store
piojanu/spinningup_tf2
19
python
def store(self, **kwargs): "Save something into the epoch_logger's current state.\n\n Provide an arbitrary number of keyword arguments with numerical\n values.\n " for (k, v) in kwargs.items(): if (k not in self.epoch_dict.keys()): self.epoch_dict[k] = [] self.epoch_dict[k].append(v)
def store(self, **kwargs): "Save something into the epoch_logger's current state.\n\n Provide an arbitrary number of keyword arguments with numerical\n values.\n " for (k, v) in kwargs.items(): if (k not in self.epoch_dict.keys()): self.epoch_dict[k] = [] self.epoch_dict[k].append(v)<|docstring|>Save something into the epoch_logger's current state. Provide an arbitrary number of keyword arguments with numerical values.<|endoftext|>
a19217b2850500ea4ef62b3d1bba97a54bda996e0af64e976b6a364d17c4771f
def log_tabular(self, key, val=None, with_min_and_max=False, average_only=False): 'Log a value or possibly the mean/std/min/max values of a diagnostic.\n\n Args:\n key (string): The name of the diagnostic. If you are logging a\n diagnostic whose state has previously been saved with\n ``store``, the key here has to match the key you used there.\n\n val: A value for the diagnostic. If you have previously saved\n values for this key via ``store``, do *not* provide a ``val``\n here.\n\n with_min_and_max (bool): If true, log min and max values of the\n diagnostic over the epoch.\n\n average_only (bool): If true, do not log the standard deviation\n of the diagnostic over the epoch.\n ' if (val is not None): super().log_tabular(key, val) else: v = self.epoch_dict[key] vals = (np.concatenate(v) if (isinstance(v[0], np.ndarray) and (len(v[0].shape) > 0)) else v) stats = mpi_tools.mpi_statistics_scalar(vals, with_min_and_max=with_min_and_max) super().log_tabular((key if average_only else ('Average' + key)), stats[0]) if (not average_only): super().log_tabular(('Std' + key), stats[1]) if with_min_and_max: super().log_tabular(('Max' + key), stats[3]) super().log_tabular(('Min' + key), stats[2]) self.epoch_dict[key] = []
Log a value or possibly the mean/std/min/max values of a diagnostic. Args: key (string): The name of the diagnostic. If you are logging a diagnostic whose state has previously been saved with ``store``, the key here has to match the key you used there. val: A value for the diagnostic. If you have previously saved values for this key via ``store``, do *not* provide a ``val`` here. with_min_and_max (bool): If true, log min and max values of the diagnostic over the epoch. average_only (bool): If true, do not log the standard deviation of the diagnostic over the epoch.
spinup_bis/utils/logx.py
log_tabular
piojanu/spinningup_tf2
19
python
def log_tabular(self, key, val=None, with_min_and_max=False, average_only=False): 'Log a value or possibly the mean/std/min/max values of a diagnostic.\n\n Args:\n key (string): The name of the diagnostic. If you are logging a\n diagnostic whose state has previously been saved with\n ``store``, the key here has to match the key you used there.\n\n val: A value for the diagnostic. If you have previously saved\n values for this key via ``store``, do *not* provide a ``val``\n here.\n\n with_min_and_max (bool): If true, log min and max values of the\n diagnostic over the epoch.\n\n average_only (bool): If true, do not log the standard deviation\n of the diagnostic over the epoch.\n ' if (val is not None): super().log_tabular(key, val) else: v = self.epoch_dict[key] vals = (np.concatenate(v) if (isinstance(v[0], np.ndarray) and (len(v[0].shape) > 0)) else v) stats = mpi_tools.mpi_statistics_scalar(vals, with_min_and_max=with_min_and_max) super().log_tabular((key if average_only else ('Average' + key)), stats[0]) if (not average_only): super().log_tabular(('Std' + key), stats[1]) if with_min_and_max: super().log_tabular(('Max' + key), stats[3]) super().log_tabular(('Min' + key), stats[2]) self.epoch_dict[key] = []
def log_tabular(self, key, val=None, with_min_and_max=False, average_only=False): 'Log a value or possibly the mean/std/min/max values of a diagnostic.\n\n Args:\n key (string): The name of the diagnostic. If you are logging a\n diagnostic whose state has previously been saved with\n ``store``, the key here has to match the key you used there.\n\n val: A value for the diagnostic. If you have previously saved\n values for this key via ``store``, do *not* provide a ``val``\n here.\n\n with_min_and_max (bool): If true, log min and max values of the\n diagnostic over the epoch.\n\n average_only (bool): If true, do not log the standard deviation\n of the diagnostic over the epoch.\n ' if (val is not None): super().log_tabular(key, val) else: v = self.epoch_dict[key] vals = (np.concatenate(v) if (isinstance(v[0], np.ndarray) and (len(v[0].shape) > 0)) else v) stats = mpi_tools.mpi_statistics_scalar(vals, with_min_and_max=with_min_and_max) super().log_tabular((key if average_only else ('Average' + key)), stats[0]) if (not average_only): super().log_tabular(('Std' + key), stats[1]) if with_min_and_max: super().log_tabular(('Max' + key), stats[3]) super().log_tabular(('Min' + key), stats[2]) self.epoch_dict[key] = []<|docstring|>Log a value or possibly the mean/std/min/max values of a diagnostic. Args: key (string): The name of the diagnostic. If you are logging a diagnostic whose state has previously been saved with ``store``, the key here has to match the key you used there. val: A value for the diagnostic. If you have previously saved values for this key via ``store``, do *not* provide a ``val`` here. with_min_and_max (bool): If true, log min and max values of the diagnostic over the epoch. average_only (bool): If true, do not log the standard deviation of the diagnostic over the epoch.<|endoftext|>
e3584e7537f54406bc693a061160327936ddf81c1a5d36de9c0e4c3128892a9c
def test_markdown_page(client: Client) -> None: 'Test markdown rendering.' response = client.get(reverse('about_test')) assert (response.status_code == 200) assert ('<h3>ReproHack History</h3>' in response.content.decode())
Test markdown rendering.
reprohack_hub/reprohack/tests/test_views.py
test_markdown_page
Joe-Heffer-Shef/reprohack_site
0
python
def test_markdown_page(client: Client) -> None: response = client.get(reverse('about_test')) assert (response.status_code == 200) assert ('<h3>ReproHack History</h3>' in response.content.decode())
def test_markdown_page(client: Client) -> None: response = client.get(reverse('about_test')) assert (response.status_code == 200) assert ('<h3>ReproHack History</h3>' in response.content.decode())<|docstring|>Test markdown rendering.<|endoftext|>
4a2e6f658956fcf717c1883fea175ffe8b8c37d95efa56adb87ce7d32dbd1818
def test_create_review(client: Client, user: User, review: Review) -> None: 'Test creating a review.' assert (user not in review.reviewers.all()) review_dict = model_to_dict(review) client.force_login(user) response = client.post(reverse('review_new'), review_dict, follow=True) assert (response.status_code == 200) rendered_response = response.render() assert (review.paper.title in rendered_response.content.decode()) assert (user in review.paper.review_set.last().reviewers.all()) assert (user not in review.reviewers.all())
Test creating a review.
reprohack_hub/reprohack/tests/test_views.py
test_create_review
Joe-Heffer-Shef/reprohack_site
0
python
def test_create_review(client: Client, user: User, review: Review) -> None: assert (user not in review.reviewers.all()) review_dict = model_to_dict(review) client.force_login(user) response = client.post(reverse('review_new'), review_dict, follow=True) assert (response.status_code == 200) rendered_response = response.render() assert (review.paper.title in rendered_response.content.decode()) assert (user in review.paper.review_set.last().reviewers.all()) assert (user not in review.reviewers.all())
def test_create_review(client: Client, user: User, review: Review) -> None: assert (user not in review.reviewers.all()) review_dict = model_to_dict(review) client.force_login(user) response = client.post(reverse('review_new'), review_dict, follow=True) assert (response.status_code == 200) rendered_response = response.render() assert (review.paper.title in rendered_response.content.decode()) assert (user in review.paper.review_set.last().reviewers.all()) assert (user not in review.reviewers.all())<|docstring|>Test creating a review.<|endoftext|>
91d0732ea4c346d2dd91804eec23d954602e8a5b614236470547343dc59fcc9f
def display_page(self, number: Optional[int]=None) -> None: 'Update page content and current page number, if possible.' img_lines = self.model.get_page_content(target_size=self.screen_size, number=number) if (img_lines is not None): self.view.set_page_content(img_lines) if (number is not None): self.model.current_page_number = number self.view.set_title_pagecount(number) self.model.page_region = None
Update page content and current page number, if possible.
pdftty/controller.py
display_page
kpj/pdftty
1
python
def display_page(self, number: Optional[int]=None) -> None: img_lines = self.model.get_page_content(target_size=self.screen_size, number=number) if (img_lines is not None): self.view.set_page_content(img_lines) if (number is not None): self.model.current_page_number = number self.view.set_title_pagecount(number) self.model.page_region = None
def display_page(self, number: Optional[int]=None) -> None: img_lines = self.model.get_page_content(target_size=self.screen_size, number=number) if (img_lines is not None): self.view.set_page_content(img_lines) if (number is not None): self.model.current_page_number = number self.view.set_title_pagecount(number) self.model.page_region = None<|docstring|>Update page content and current page number, if possible.<|endoftext|>
77b6b8337787f5961b97b51a3a1779802f18a9df9d3db1617cb9ac52a9f9a1ed
async def test_setup(hass: HomeAssistant, fritz: Mock): 'Test setup of platform.' device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_ON) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Alarm') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.WINDOW) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock on Device') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock via UI') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{SENSOR_DOMAIN}.{CONF_FAKE_NAME}_battery') assert state assert (state.state == '23') assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Battery') assert (state.attributes[ATTR_UNIT_OF_MEASUREMENT] == PERCENTAGE) assert (ATTR_STATE_CLASS not in state.attributes)
Test setup of platform.
tests/components/fritzbox/test_binary_sensor.py
test_setup
GrandMoff100/homeassistant-core
30,023
python
async def test_setup(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_ON) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Alarm') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.WINDOW) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock on Device') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock via UI') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{SENSOR_DOMAIN}.{CONF_FAKE_NAME}_battery') assert state assert (state.state == '23') assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Battery') assert (state.attributes[ATTR_UNIT_OF_MEASUREMENT] == PERCENTAGE) assert (ATTR_STATE_CLASS not in state.attributes)
async def test_setup(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_ON) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Alarm') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.WINDOW) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock on Device') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_OFF) assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Button Lock via UI') assert (state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.LOCK) assert (ATTR_STATE_CLASS not in state.attributes) state = hass.states.get(f'{SENSOR_DOMAIN}.{CONF_FAKE_NAME}_battery') assert state assert (state.state == '23') assert (state.attributes[ATTR_FRIENDLY_NAME] == f'{CONF_FAKE_NAME} Battery') assert (state.attributes[ATTR_UNIT_OF_MEASUREMENT] == PERCENTAGE) assert (ATTR_STATE_CLASS not in state.attributes)<|docstring|>Test setup of platform.<|endoftext|>
820a0650b07bc47681ad2a749bc411407b0fd8bb0a4186bba6f0f78dbbfa6c63
async def test_is_off(hass: HomeAssistant, fritz: Mock): 'Test state of platform.' device = FritzDeviceBinarySensorMock() device.present = False assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_UNAVAILABLE)
Test state of platform.
tests/components/fritzbox/test_binary_sensor.py
test_is_off
GrandMoff100/homeassistant-core
30,023
python
async def test_is_off(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() device.present = False assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_UNAVAILABLE)
async def test_is_off(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() device.present = False assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) state = hass.states.get(f'{ENTITY_ID}_alarm') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_on_device') assert state assert (state.state == STATE_UNAVAILABLE) state = hass.states.get(f'{ENTITY_ID}_button_lock_via_ui') assert state assert (state.state == STATE_UNAVAILABLE)<|docstring|>Test state of platform.<|endoftext|>
63a87277e56a4ad8f0ff769916cedd05399b9cd58c494f980ad25e4fe649f54a
async def test_update(hass: HomeAssistant, fritz: Mock): 'Test update without error.' device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)
Test update without error.
tests/components/fritzbox/test_binary_sensor.py
test_update
GrandMoff100/homeassistant-core
30,023
python
async def test_update(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)
async def test_update(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)<|docstring|>Test update without error.<|endoftext|>
015d0245ec854c10897fc5827ba000b1c5152dab74227d7284ac28104edcb007
async def test_update_error(hass: HomeAssistant, fritz: Mock): 'Test update with error.' device = FritzDeviceBinarySensorMock() device.update.side_effect = [mock.DEFAULT, HTTPError('Boom')] assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)
Test update with error.
tests/components/fritzbox/test_binary_sensor.py
test_update_error
GrandMoff100/homeassistant-core
30,023
python
async def test_update_error(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() device.update.side_effect = [mock.DEFAULT, HTTPError('Boom')] assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)
async def test_update_error(hass: HomeAssistant, fritz: Mock): device = FritzDeviceBinarySensorMock() device.update.side_effect = [mock.DEFAULT, HTTPError('Boom')] assert (await setup_config_entry(hass, MOCK_CONFIG[FB_DOMAIN][CONF_DEVICES][0], ENTITY_ID, device, fritz)) assert (fritz().update_devices.call_count == 1) assert (fritz().login.call_count == 1) next_update = (dt_util.utcnow() + timedelta(seconds=200)) async_fire_time_changed(hass, next_update) (await hass.async_block_till_done()) assert (fritz().update_devices.call_count == 2) assert (fritz().login.call_count == 1)<|docstring|>Test update with error.<|endoftext|>
2118b85026cacd949efdab79e276a5616b9e73efeb2f34076095cf2db26e3a1d
def is_member(user: User) -> bool: '\n Checks whether the given user is a member.\n A member must have a name starting with "L".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('L')
Checks whether the given user is a member. A member must have a name starting with "L". :param user: User :return: bool
Testing/unit_test/pytest_for_python/src/codes.py
is_member
Ziang-Lu/Software-Development-and-Design
1
python
def is_member(user: User) -> bool: '\n Checks whether the given user is a member.\n A member must have a name starting with "L".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('L')
def is_member(user: User) -> bool: '\n Checks whether the given user is a member.\n A member must have a name starting with "L".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('L')<|docstring|>Checks whether the given user is a member. A member must have a name starting with "L". :param user: User :return: bool<|endoftext|>
fa5455518707250e0922f379e1315a7a6a2b14c44e8ff5b48a037b5e8ab08ac4
def is_prime_member(user: User) -> bool: '\n Checks whether the given user is a prime member.\n A prime member must have a name starting with "W".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('W')
Checks whether the given user is a prime member. A prime member must have a name starting with "W". :param user: User :return: bool
Testing/unit_test/pytest_for_python/src/codes.py
is_prime_member
Ziang-Lu/Software-Development-and-Design
1
python
def is_prime_member(user: User) -> bool: '\n Checks whether the given user is a prime member.\n A prime member must have a name starting with "W".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('W')
def is_prime_member(user: User) -> bool: '\n Checks whether the given user is a prime member.\n A prime member must have a name starting with "W".\n :param user: User\n :return: bool\n ' if (not user): raise TypeError('user should not be None') return user.name.startswith('W')<|docstring|>Checks whether the given user is a prime member. A prime member must have a name starting with "W". :param user: User :return: bool<|endoftext|>
b928209e039133bb56d79f41b1149fa5f61e133e79576cebe6e26bb378969ef4
def __init__(self, name: str, pwd: str): '\n Constructor with parameter.\n :param name: str\n :param pwd: str\n ' print('This is a long long process of creating a user...') self._name = name self._pwd = pwd
Constructor with parameter. :param name: str :param pwd: str
Testing/unit_test/pytest_for_python/src/codes.py
__init__
Ziang-Lu/Software-Development-and-Design
1
python
def __init__(self, name: str, pwd: str): '\n Constructor with parameter.\n :param name: str\n :param pwd: str\n ' print('This is a long long process of creating a user...') self._name = name self._pwd = pwd
def __init__(self, name: str, pwd: str): '\n Constructor with parameter.\n :param name: str\n :param pwd: str\n ' print('This is a long long process of creating a user...') self._name = name self._pwd = pwd<|docstring|>Constructor with parameter. :param name: str :param pwd: str<|endoftext|>
93a8f435239bbc6efbc9490469dd07a93e70c1018bbbb4f2b96b23501f46769e
@property def name(self) -> str: '\n Accessor of name.\n :return: str\n ' return self._name
Accessor of name. :return: str
Testing/unit_test/pytest_for_python/src/codes.py
name
Ziang-Lu/Software-Development-and-Design
1
python
@property def name(self) -> str: '\n Accessor of name.\n :return: str\n ' return self._name
@property def name(self) -> str: '\n Accessor of name.\n :return: str\n ' return self._name<|docstring|>Accessor of name. :return: str<|endoftext|>
4f734f2e592931c6352888b2e9397adf337c4725fd017ffe63b6ff993c196fd4
@property def pwd(self) -> str: '\n Accessor of pwd.\n :return: str\n ' return self._pwd
Accessor of pwd. :return: str
Testing/unit_test/pytest_for_python/src/codes.py
pwd
Ziang-Lu/Software-Development-and-Design
1
python
@property def pwd(self) -> str: '\n Accessor of pwd.\n :return: str\n ' return self._pwd
@property def pwd(self) -> str: '\n Accessor of pwd.\n :return: str\n ' return self._pwd<|docstring|>Accessor of pwd. :return: str<|endoftext|>
66e924610d66234cb99114f2d53f3288df7eed3d11a5e8abaa142e0a7d54100f
def clean_up(self) -> None: '\n Dummy method to do some clean-up work.\n ' print('Doing some clean-up work...')
Dummy method to do some clean-up work.
Testing/unit_test/pytest_for_python/src/codes.py
clean_up
Ziang-Lu/Software-Development-and-Design
1
python
def clean_up(self) -> None: '\n \n ' print('Doing some clean-up work...')
def clean_up(self) -> None: '\n \n ' print('Doing some clean-up work...')<|docstring|>Dummy method to do some clean-up work.<|endoftext|>
13f855e78a628a7ebd87ded259359623560368fd84341a99a5288827bb565c92
def normalize(type_str): '\n TODO\n ' assert False
TODO
bimini/grammar.py
normalize
vaporydev/bimini
7
python
def normalize(type_str): '\n \n ' assert False
def normalize(type_str): '\n \n ' assert False<|docstring|>TODO<|endoftext|>
03cef274a461e659efbad5a7e5fd7a0d26b82c79808ac7bdb8edf16bef6b58c8
@functools.lru_cache(maxsize=None) def parse(self, type_str): '\n Parses a type string into an appropriate instance of\n :class:`~eth_abi.grammar.ABIType`. If a type string cannot be parsed,\n throws :class:`~eth_abi.exceptions.ParseError`.\n\n :param type_str: The type string to be parsed.\n :returns: An instance of :class:`~eth_abi.grammar.ABIType` containing\n information about the parsed type string.\n ' if (not isinstance(type_str, str)): raise TypeError('Can only parse string values: got {}'.format(type(type_str))) try: return super().parse(type_str) except parsimonious.ParseError as e: raise ParseError(e.text, e.pos, e.expr)
Parses a type string into an appropriate instance of :class:`~eth_abi.grammar.ABIType`. If a type string cannot be parsed, throws :class:`~eth_abi.exceptions.ParseError`. :param type_str: The type string to be parsed. :returns: An instance of :class:`~eth_abi.grammar.ABIType` containing information about the parsed type string.
bimini/grammar.py
parse
vaporydev/bimini
7
python
@functools.lru_cache(maxsize=None) def parse(self, type_str): '\n Parses a type string into an appropriate instance of\n :class:`~eth_abi.grammar.ABIType`. If a type string cannot be parsed,\n throws :class:`~eth_abi.exceptions.ParseError`.\n\n :param type_str: The type string to be parsed.\n :returns: An instance of :class:`~eth_abi.grammar.ABIType` containing\n information about the parsed type string.\n ' if (not isinstance(type_str, str)): raise TypeError('Can only parse string values: got {}'.format(type(type_str))) try: return super().parse(type_str) except parsimonious.ParseError as e: raise ParseError(e.text, e.pos, e.expr)
@functools.lru_cache(maxsize=None) def parse(self, type_str): '\n Parses a type string into an appropriate instance of\n :class:`~eth_abi.grammar.ABIType`. If a type string cannot be parsed,\n throws :class:`~eth_abi.exceptions.ParseError`.\n\n :param type_str: The type string to be parsed.\n :returns: An instance of :class:`~eth_abi.grammar.ABIType` containing\n information about the parsed type string.\n ' if (not isinstance(type_str, str)): raise TypeError('Can only parse string values: got {}'.format(type(type_str))) try: return super().parse(type_str) except parsimonious.ParseError as e: raise ParseError(e.text, e.pos, e.expr)<|docstring|>Parses a type string into an appropriate instance of :class:`~eth_abi.grammar.ABIType`. If a type string cannot be parsed, throws :class:`~eth_abi.exceptions.ParseError`. :param type_str: The type string to be parsed. :returns: An instance of :class:`~eth_abi.grammar.ABIType` containing information about the parsed type string.<|endoftext|>
a00bc9f24bde32eb14853b5170d7ee0a72d755859c9fe5d41eb2656595ebc5c1
def to_int(self) -> int: '转换为整数表示,用于串行化' mapping = {FrameType.MIN1: 1, FrameType.MIN5: 2, FrameType.MIN15: 3, FrameType.MIN30: 4, FrameType.MIN60: 5, FrameType.DAY: 6, FrameType.WEEK: 7, FrameType.MONTH: 8, FrameType.QUARTER: 9, FrameType.YEAR: 10} return mapping[self]
转换为整数表示,用于串行化
omicron/core/types.py
to_int
evimacs/omicron
4
python
def to_int(self) -> int: mapping = {FrameType.MIN1: 1, FrameType.MIN5: 2, FrameType.MIN15: 3, FrameType.MIN30: 4, FrameType.MIN60: 5, FrameType.DAY: 6, FrameType.WEEK: 7, FrameType.MONTH: 8, FrameType.QUARTER: 9, FrameType.YEAR: 10} return mapping[self]
def to_int(self) -> int: mapping = {FrameType.MIN1: 1, FrameType.MIN5: 2, FrameType.MIN15: 3, FrameType.MIN30: 4, FrameType.MIN60: 5, FrameType.DAY: 6, FrameType.WEEK: 7, FrameType.MONTH: 8, FrameType.QUARTER: 9, FrameType.YEAR: 10} return mapping[self]<|docstring|>转换为整数表示,用于串行化<|endoftext|>
722d64235f6bf59489110d9def0db7c85adfc652a0fcb3f2c6cde2bc6a2baab5
@staticmethod def from_int(frame_type: int) -> 'FrameType': '将整数表示的`frame_type`转换为`FrameType`类型' mapping = {1: FrameType.MIN1, 2: FrameType.MIN5, 3: FrameType.MIN15, 4: FrameType.MIN30, 5: FrameType.MIN60, 6: FrameType.DAY, 7: FrameType.WEEK, 8: FrameType.MONTH, 9: FrameType.QUARTER, 10: FrameType.YEAR} return mapping[frame_type]
将整数表示的`frame_type`转换为`FrameType`类型
omicron/core/types.py
from_int
evimacs/omicron
4
python
@staticmethod def from_int(frame_type: int) -> 'FrameType': mapping = {1: FrameType.MIN1, 2: FrameType.MIN5, 3: FrameType.MIN15, 4: FrameType.MIN30, 5: FrameType.MIN60, 6: FrameType.DAY, 7: FrameType.WEEK, 8: FrameType.MONTH, 9: FrameType.QUARTER, 10: FrameType.YEAR} return mapping[frame_type]
@staticmethod def from_int(frame_type: int) -> 'FrameType': mapping = {1: FrameType.MIN1, 2: FrameType.MIN5, 3: FrameType.MIN15, 4: FrameType.MIN30, 5: FrameType.MIN60, 6: FrameType.DAY, 7: FrameType.WEEK, 8: FrameType.MONTH, 9: FrameType.QUARTER, 10: FrameType.YEAR} return mapping[frame_type]<|docstring|>将整数表示的`frame_type`转换为`FrameType`类型<|endoftext|>
c6ba853096c7793898dec68e1cd0e6927895e9f9778b89be11990d813ee1493c
def zero_to_empty(raw_input): 'Return None when entry is 0' if (utils.is_empty(raw_input) or (raw_input == '0')): return None else: return raw_input
Return None when entry is 0
django/common/scripts/cleaning/zero_to_empty.py
zero_to_empty
arkhn/fhir-river
42
python
def zero_to_empty(raw_input): if (utils.is_empty(raw_input) or (raw_input == '0')): return None else: return raw_input
def zero_to_empty(raw_input): if (utils.is_empty(raw_input) or (raw_input == '0')): return None else: return raw_input<|docstring|>Return None when entry is 0<|endoftext|>
6f587b3b59a5be6846af2249fe4facf4a4f5b826f66403e6aa9b35b78460ecf8
@abc.abstractmethod def getType(self): '获得奖励类型' pass
获得奖励类型
plane_1.0/plane/award.py
getType
misaka46/Aircraft-war
0
python
@abc.abstractmethod def getType(self): pass
@abc.abstractmethod def getType(self): pass<|docstring|>获得奖励类型<|endoftext|>
86ae589f2514aacddb9a862732e13ef252424e521af317794ebef9a5bca50dcc
def getTime(): 'Get time in H:M:S format.' _bigTime = time.strftime('%H:%M:%S') return _bigTime
Get time in H:M:S format.
runbot.py
getTime
SuperShadowPlay/MCPD
0
python
def getTime(): _bigTime = time.strftime('%H:%M:%S') return _bigTime
def getTime(): _bigTime = time.strftime('%H:%M:%S') return _bigTime<|docstring|>Get time in H:M:S format.<|endoftext|>
47f0f3d2468b540ae526019b302c86a65f469077500d9bbc5284f6f111ac61d4
async def playerCountUpdate(): 'Bot status for player count in the sidebar and output.\n\n The top part of this function is for the sidebar player count,\n the bottom part is for the output channel (if requested).\n ' (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() sidebarCount = discord.Game('{0} Players Online'.format(serverStatus.players.online)) (await client.change_presence(status=discord.Status.online, activity=sidebarCount)) if (cEnableNames is True): mcQuery = mcServer.query() try: lastSetOfPlayers except NameError: lastSetOfPlayers = 'Notch' if ((cEnableOutput is True) and (cEnableNames is True)): if (cDynamicOutput is True): diffOfPlayers = (mcQuery.players.names != lastSetOfPlayers) if (diffOfPlayers is True): lastSetOfPlayers = mcQuery.players.names if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) if (diffOfPlayers is True): (await cOutputChannel.send(outputMessage)) elif (cDynamicOutput is False): if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) (await cOutputChannel.send(outputMessage)) (await asyncio.sleep(int(cRefresh)))
Bot status for player count in the sidebar and output. The top part of this function is for the sidebar player count, the bottom part is for the output channel (if requested).
runbot.py
playerCountUpdate
SuperShadowPlay/MCPD
0
python
async def playerCountUpdate(): 'Bot status for player count in the sidebar and output.\n\n The top part of this function is for the sidebar player count,\n the bottom part is for the output channel (if requested).\n ' (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() sidebarCount = discord.Game('{0} Players Online'.format(serverStatus.players.online)) (await client.change_presence(status=discord.Status.online, activity=sidebarCount)) if (cEnableNames is True): mcQuery = mcServer.query() try: lastSetOfPlayers except NameError: lastSetOfPlayers = 'Notch' if ((cEnableOutput is True) and (cEnableNames is True)): if (cDynamicOutput is True): diffOfPlayers = (mcQuery.players.names != lastSetOfPlayers) if (diffOfPlayers is True): lastSetOfPlayers = mcQuery.players.names if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) if (diffOfPlayers is True): (await cOutputChannel.send(outputMessage)) elif (cDynamicOutput is False): if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) (await cOutputChannel.send(outputMessage)) (await asyncio.sleep(int(cRefresh)))
async def playerCountUpdate(): 'Bot status for player count in the sidebar and output.\n\n The top part of this function is for the sidebar player count,\n the bottom part is for the output channel (if requested).\n ' (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() sidebarCount = discord.Game('{0} Players Online'.format(serverStatus.players.online)) (await client.change_presence(status=discord.Status.online, activity=sidebarCount)) if (cEnableNames is True): mcQuery = mcServer.query() try: lastSetOfPlayers except NameError: lastSetOfPlayers = 'Notch' if ((cEnableOutput is True) and (cEnableNames is True)): if (cDynamicOutput is True): diffOfPlayers = (mcQuery.players.names != lastSetOfPlayers) if (diffOfPlayers is True): lastSetOfPlayers = mcQuery.players.names if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) if (diffOfPlayers is True): (await cOutputChannel.send(outputMessage)) elif (cDynamicOutput is False): if (serverStatus.players.online != 0): playerNames = ', '.join(mcQuery.players.names) outputMessage = '\n{0} | {1} Players Online |\n{2}'.format(getTime(), serverStatus.players.online, playerNames) else: outputMessage = '{0} | No players online'.format(getTime()) (await cOutputChannel.send(outputMessage)) (await asyncio.sleep(int(cRefresh)))<|docstring|>Bot status for player count in the sidebar and output. The top part of this function is for the sidebar player count, the bottom part is for the output channel (if requested).<|endoftext|>
94d595ed8602675bd47c61113f7e43bf4b2c8b6f71491660dd40991e4c7936d2
@client.event async def on_message(message): 'On message portion, most of the actual programming is in this function.' if (message.author == client.user): return msgSplit = message.content.split() try: msgSplit[0] except IndexError: return if (cBasePrompt == '0'): cPrompt = (('<@' + str(client.user.id)) + '>') else: cPrompt = cBasePrompt if (msgSplit[0] == cPrompt): if (msgSplit[1].lower() == 'help'): (await message.channel.send('The commands available are:\n{0} Help - Displays this message\n{0} List - List the players online at {1}\n{0} Ping - Ping the bot\n{0} Source - Github Source Code'.format(cPrompt, cIP))) if (msgSplit[1].lower() == 'ping'): (await message.channel.send('Pong!')) print(((("Pong'ed user " + str(message.author)) + ' :: ') + str(getTime()))) if (msgSplit[1].lower() == 'list'): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if (serverStatus.players.online == 0): if (cSkipNoPlayers is False): (await message.channel.send(cNoPlayers.format(cIP))) elif ((cEnableNames is True) and ('{1}' in cMessageSend)): if (serverStatus.players.online != 0): onPlayers = serverStatus.players.online mcQuery = mcServer.query() (await messagge.channel.send(cMessageSend.format(onPlayers, ', '.join(mcQuery.players.names), cIP))) else: (await message.channel.send(cMessageSend.format(serverStatus.players.online))) if (msgSplit[1].lower() == 'source'): (await message.channel.send('MCPD v2.0, licensed under the MIT license.\nFull source code at:\nhttps://github.com/SuperShadowPlay/MCPD')) print(((str(message.author) + ' Requested Source :: ') + getTime()))
On message portion, most of the actual programming is in this function.
runbot.py
on_message
SuperShadowPlay/MCPD
0
python
@client.event async def on_message(message): if (message.author == client.user): return msgSplit = message.content.split() try: msgSplit[0] except IndexError: return if (cBasePrompt == '0'): cPrompt = (('<@' + str(client.user.id)) + '>') else: cPrompt = cBasePrompt if (msgSplit[0] == cPrompt): if (msgSplit[1].lower() == 'help'): (await message.channel.send('The commands available are:\n{0} Help - Displays this message\n{0} List - List the players online at {1}\n{0} Ping - Ping the bot\n{0} Source - Github Source Code'.format(cPrompt, cIP))) if (msgSplit[1].lower() == 'ping'): (await message.channel.send('Pong!')) print(((("Pong'ed user " + str(message.author)) + ' :: ') + str(getTime()))) if (msgSplit[1].lower() == 'list'): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if (serverStatus.players.online == 0): if (cSkipNoPlayers is False): (await message.channel.send(cNoPlayers.format(cIP))) elif ((cEnableNames is True) and ('{1}' in cMessageSend)): if (serverStatus.players.online != 0): onPlayers = serverStatus.players.online mcQuery = mcServer.query() (await messagge.channel.send(cMessageSend.format(onPlayers, ', '.join(mcQuery.players.names), cIP))) else: (await message.channel.send(cMessageSend.format(serverStatus.players.online))) if (msgSplit[1].lower() == 'source'): (await message.channel.send('MCPD v2.0, licensed under the MIT license.\nFull source code at:\nhttps://github.com/SuperShadowPlay/MCPD')) print(((str(message.author) + ' Requested Source :: ') + getTime()))
@client.event async def on_message(message): if (message.author == client.user): return msgSplit = message.content.split() try: msgSplit[0] except IndexError: return if (cBasePrompt == '0'): cPrompt = (('<@' + str(client.user.id)) + '>') else: cPrompt = cBasePrompt if (msgSplit[0] == cPrompt): if (msgSplit[1].lower() == 'help'): (await message.channel.send('The commands available are:\n{0} Help - Displays this message\n{0} List - List the players online at {1}\n{0} Ping - Ping the bot\n{0} Source - Github Source Code'.format(cPrompt, cIP))) if (msgSplit[1].lower() == 'ping'): (await message.channel.send('Pong!')) print(((("Pong'ed user " + str(message.author)) + ' :: ') + str(getTime()))) if (msgSplit[1].lower() == 'list'): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if (serverStatus.players.online == 0): if (cSkipNoPlayers is False): (await message.channel.send(cNoPlayers.format(cIP))) elif ((cEnableNames is True) and ('{1}' in cMessageSend)): if (serverStatus.players.online != 0): onPlayers = serverStatus.players.online mcQuery = mcServer.query() (await messagge.channel.send(cMessageSend.format(onPlayers, ', '.join(mcQuery.players.names), cIP))) else: (await message.channel.send(cMessageSend.format(serverStatus.players.online))) if (msgSplit[1].lower() == 'source'): (await message.channel.send('MCPD v2.0, licensed under the MIT license.\nFull source code at:\nhttps://github.com/SuperShadowPlay/MCPD')) print(((str(message.author) + ' Requested Source :: ') + getTime()))<|docstring|>On message portion, most of the actual programming is in this function.<|endoftext|>
c1b4bc6b92b1a798c9ccf7232660053180b9d0fba575d8c7a44d22fd4a8d62d3
async def printStatus(): 'Print the updating status to the console.' (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if ((cEnableNames is True) and ('{1}' in cMessageSend) and (serverStatus.players.online != 0)): mcQuery = mcServer.query() if (serverStatus.players.online == 1): print('{0} Player :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) else: print('{0} Players :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) elif (serverStatus.players.online == 1): print('{0} Player :: {1}'.format(serverStatus.players.online, getTime())) else: print('{0} Players :: {1}'.format(serverStatus.players.online, getTime())) (await asyncio.sleep(int(cRefresh)))
Print the updating status to the console.
runbot.py
printStatus
SuperShadowPlay/MCPD
0
python
async def printStatus(): (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if ((cEnableNames is True) and ('{1}' in cMessageSend) and (serverStatus.players.online != 0)): mcQuery = mcServer.query() if (serverStatus.players.online == 1): print('{0} Player :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) else: print('{0} Players :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) elif (serverStatus.players.online == 1): print('{0} Player :: {1}'.format(serverStatus.players.online, getTime())) else: print('{0} Players :: {1}'.format(serverStatus.players.online, getTime())) (await asyncio.sleep(int(cRefresh)))
async def printStatus(): (await client.wait_until_ready()) while (not client.is_closed()): mcServer = MinecraftServer(cIP, cPort) serverStatus = mcServer.status() if ((cEnableNames is True) and ('{1}' in cMessageSend) and (serverStatus.players.online != 0)): mcQuery = mcServer.query() if (serverStatus.players.online == 1): print('{0} Player :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) else: print('{0} Players :: {2} :: {1}'.format(serverStatus.players.online, ', '.join(mcQuery.players.names), getTime())) elif (serverStatus.players.online == 1): print('{0} Player :: {1}'.format(serverStatus.players.online, getTime())) else: print('{0} Players :: {1}'.format(serverStatus.players.online, getTime())) (await asyncio.sleep(int(cRefresh)))<|docstring|>Print the updating status to the console.<|endoftext|>
32be21fc59851e04c2a7a379b8bae07b1e100a2f7bc963fbedc6e65837755517
@client.event async def on_ready(): 'Log in and other such wonders.' print('Logged in as:') print(client.user.name) print(client.user.id) if (cBasePrompt == '0'): cPromptText = ('@' + client.user.name) else: cPromptText = str(cBasePrompt) print(('Prompt: ' + cPromptText)) print('------')
Log in and other such wonders.
runbot.py
on_ready
SuperShadowPlay/MCPD
0
python
@client.event async def on_ready(): print('Logged in as:') print(client.user.name) print(client.user.id) if (cBasePrompt == '0'): cPromptText = ('@' + client.user.name) else: cPromptText = str(cBasePrompt) print(('Prompt: ' + cPromptText)) print('------')
@client.event async def on_ready(): print('Logged in as:') print(client.user.name) print(client.user.id) if (cBasePrompt == '0'): cPromptText = ('@' + client.user.name) else: cPromptText = str(cBasePrompt) print(('Prompt: ' + cPromptText)) print('------')<|docstring|>Log in and other such wonders.<|endoftext|>
6472b01902a6f33901061fa1f1b3fb33370791e0f9d2f68d6f9894995cefb7a3
def predict_keras(img, alpha, rows): '\n params: img: an input image with shape (1, 224, 224, 3)\n note: Image has been preprocessed (x /= 127.5 - 1)\n Runs forward pass on network and returns logits and the inference time\n ' input_tensor = Input(shape=(rows, rows, 3)) model = MobileNetV2(input_tensor=input_tensor, include_top=True, weights='imagenet', alpha=alpha) tic = time.time() y_pred = model.predict(img.astype(np.float32)) y_pred = y_pred[0].ravel() toc = time.time() return (y_pred, (toc - tic))
params: img: an input image with shape (1, 224, 224, 3) note: Image has been preprocessed (x /= 127.5 - 1) Runs forward pass on network and returns logits and the inference time
test_mobilenet.py
predict_keras
JonathanCMitchell/mobilenet_v2_keras
94
python
def predict_keras(img, alpha, rows): '\n params: img: an input image with shape (1, 224, 224, 3)\n note: Image has been preprocessed (x /= 127.5 - 1)\n Runs forward pass on network and returns logits and the inference time\n ' input_tensor = Input(shape=(rows, rows, 3)) model = MobileNetV2(input_tensor=input_tensor, include_top=True, weights='imagenet', alpha=alpha) tic = time.time() y_pred = model.predict(img.astype(np.float32)) y_pred = y_pred[0].ravel() toc = time.time() return (y_pred, (toc - tic))
def predict_keras(img, alpha, rows): '\n params: img: an input image with shape (1, 224, 224, 3)\n note: Image has been preprocessed (x /= 127.5 - 1)\n Runs forward pass on network and returns logits and the inference time\n ' input_tensor = Input(shape=(rows, rows, 3)) model = MobileNetV2(input_tensor=input_tensor, include_top=True, weights='imagenet', alpha=alpha) tic = time.time() y_pred = model.predict(img.astype(np.float32)) y_pred = y_pred[0].ravel() toc = time.time() return (y_pred, (toc - tic))<|docstring|>params: img: an input image with shape (1, 224, 224, 3) note: Image has been preprocessed (x /= 127.5 - 1) Runs forward pass on network and returns logits and the inference time<|endoftext|>
9e1850770b4fe4aaf6bc5613fac9a1e77264254f0c5a08e3b79054354ab753cf
def predict_slim(img, checkpoint, rows): '\n params: img: a preprocessed image with shape (1, 224, 224, 3)\n checkpoint: the path to the frozen.pb checkpoint\n Runs a forward pass of the tensorflow slim mobilenetV2 model which has been frozen for inference\n returns: numpy array x, which are the logits, and the inference time\n ' gd = tf.GraphDef.FromString(open((checkpoint + '_frozen.pb'), 'rb').read()) (inp, predictions) = tf.import_graph_def(gd, return_elements=['input:0', 'MobilenetV2/Predictions/Reshape_1:0']) with tf.Session(graph=inp.graph): tic = time.time() y_pred = predictions.eval(feed_dict={inp: img}) y_pred = y_pred[0].ravel() y_pred = (y_pred[1:] / y_pred[1:].sum()) toc = time.time() return (y_pred, (toc - tic))
params: img: a preprocessed image with shape (1, 224, 224, 3) checkpoint: the path to the frozen.pb checkpoint Runs a forward pass of the tensorflow slim mobilenetV2 model which has been frozen for inference returns: numpy array x, which are the logits, and the inference time
test_mobilenet.py
predict_slim
JonathanCMitchell/mobilenet_v2_keras
94
python
def predict_slim(img, checkpoint, rows): '\n params: img: a preprocessed image with shape (1, 224, 224, 3)\n checkpoint: the path to the frozen.pb checkpoint\n Runs a forward pass of the tensorflow slim mobilenetV2 model which has been frozen for inference\n returns: numpy array x, which are the logits, and the inference time\n ' gd = tf.GraphDef.FromString(open((checkpoint + '_frozen.pb'), 'rb').read()) (inp, predictions) = tf.import_graph_def(gd, return_elements=['input:0', 'MobilenetV2/Predictions/Reshape_1:0']) with tf.Session(graph=inp.graph): tic = time.time() y_pred = predictions.eval(feed_dict={inp: img}) y_pred = y_pred[0].ravel() y_pred = (y_pred[1:] / y_pred[1:].sum()) toc = time.time() return (y_pred, (toc - tic))
def predict_slim(img, checkpoint, rows): '\n params: img: a preprocessed image with shape (1, 224, 224, 3)\n checkpoint: the path to the frozen.pb checkpoint\n Runs a forward pass of the tensorflow slim mobilenetV2 model which has been frozen for inference\n returns: numpy array x, which are the logits, and the inference time\n ' gd = tf.GraphDef.FromString(open((checkpoint + '_frozen.pb'), 'rb').read()) (inp, predictions) = tf.import_graph_def(gd, return_elements=['input:0', 'MobilenetV2/Predictions/Reshape_1:0']) with tf.Session(graph=inp.graph): tic = time.time() y_pred = predictions.eval(feed_dict={inp: img}) y_pred = y_pred[0].ravel() y_pred = (y_pred[1:] / y_pred[1:].sum()) toc = time.time() return (y_pred, (toc - tic))<|docstring|>params: img: a preprocessed image with shape (1, 224, 224, 3) checkpoint: the path to the frozen.pb checkpoint Runs a forward pass of the tensorflow slim mobilenetV2 model which has been frozen for inference returns: numpy array x, which are the logits, and the inference time<|endoftext|>
d9193621a5c0b80ca43c8457e63fda0d7b4876e56595907c050cbe462a32d4ed
def add(self, source, destination, port): '\n Adds a route from "source" to "destination".\n ' return self.paths.add(source, destination, port)
Adds a route from "source" to "destination".
cloudless/providers/aws_mock/paths.py
add
getcloudless/cloudless
8
python
def add(self, source, destination, port): '\n \n ' return self.paths.add(source, destination, port)
def add(self, source, destination, port): '\n \n ' return self.paths.add(source, destination, port)<|docstring|>Adds a route from "source" to "destination".<|endoftext|>
008bdb9384b033d1a79e7a94a7ad56c3725458c4d3d3282a883cde727fe71df2
def remove(self, source, destination, port): '\n Remove a route from "source" to "destination".\n ' return self.paths.remove(source, destination, port)
Remove a route from "source" to "destination".
cloudless/providers/aws_mock/paths.py
remove
getcloudless/cloudless
8
python
def remove(self, source, destination, port): '\n \n ' return self.paths.remove(source, destination, port)
def remove(self, source, destination, port): '\n \n ' return self.paths.remove(source, destination, port)<|docstring|>Remove a route from "source" to "destination".<|endoftext|>
64879b32cfc4cca7a06e52ba9d65da69c88af68b4de1aea4a9178dadaa4088ea
def list(self): '\n List all paths and return a dictionary structure representing a graph.\n ' return self.paths.list()
List all paths and return a dictionary structure representing a graph.
cloudless/providers/aws_mock/paths.py
list
getcloudless/cloudless
8
python
def list(self): '\n \n ' return self.paths.list()
def list(self): '\n \n ' return self.paths.list()<|docstring|>List all paths and return a dictionary structure representing a graph.<|endoftext|>
8b8f4c61383f9b5a4ef0e1cb10055c59dda2afb60b05ef1f6a7493cb2f6c7bf7
def internet_accessible(self, service, port): '\n Return true if the given service is accessible on the internet.\n ' return self.paths.internet_accessible(service, port)
Return true if the given service is accessible on the internet.
cloudless/providers/aws_mock/paths.py
internet_accessible
getcloudless/cloudless
8
python
def internet_accessible(self, service, port): '\n \n ' return self.paths.internet_accessible(service, port)
def internet_accessible(self, service, port): '\n \n ' return self.paths.internet_accessible(service, port)<|docstring|>Return true if the given service is accessible on the internet.<|endoftext|>
493943e53ad53265737004aceb9a3a8df8aa1e325b646686725c53d0200bd6db
def has_access(self, source, destination, port): '\n Return true if there is a route from "source" to "destination".\n ' return self.paths.has_access(source, destination, port)
Return true if there is a route from "source" to "destination".
cloudless/providers/aws_mock/paths.py
has_access
getcloudless/cloudless
8
python
def has_access(self, source, destination, port): '\n \n ' return self.paths.has_access(source, destination, port)
def has_access(self, source, destination, port): '\n \n ' return self.paths.has_access(source, destination, port)<|docstring|>Return true if there is a route from "source" to "destination".<|endoftext|>
d7f9a1827bd39a0e9abe4e221e617d39b97b9f964094ab775cde86bd2a1434dc
def get_full_name(self): "\n Returns the user's fullname\n " return self.fullname
Returns the user's fullname
users/models.py
get_full_name
rnovec/petgram-api
1
python
def get_full_name(self): "\n \n " return self.fullname
def get_full_name(self): "\n \n " return self.fullname<|docstring|>Returns the user's fullname<|endoftext|>
a6fb138b7b5a4c52b11e88ba00e59200e53541fc634bbedf670926d5f24b25db
def __init__(self, lrkey=None, **kwargs): '\n define local vars and send all other (keyworded) arguments to parent.\n ' if (lrkey is None): print('{}: using default value of lapse rate ({})'.format(self.__class__.__name__, self.lrkey)) else: self.lrkey = lrkey super().__init__(**kwargs)
define local vars and send all other (keyworded) arguments to parent.
solver/rce.py
__init__
msmithsm/rce
0
python
def __init__(self, lrkey=None, **kwargs): '\n \n ' if (lrkey is None): print('{}: using default value of lapse rate ({})'.format(self.__class__.__name__, self.lrkey)) else: self.lrkey = lrkey super().__init__(**kwargs)
def __init__(self, lrkey=None, **kwargs): '\n \n ' if (lrkey is None): print('{}: using default value of lapse rate ({})'.format(self.__class__.__name__, self.lrkey)) else: self.lrkey = lrkey super().__init__(**kwargs)<|docstring|>define local vars and send all other (keyworded) arguments to parent.<|endoftext|>
d51eae68e2bd30a6637ab3965444c8d4e33d59e937d1f4da33def7ae4587b057
def _convectiveadjustment(self, atms, flx, hr): '\n Apply convective adjustment\n ' tconv = self._lr(atms, self.lrkey) trad = atms.t.copy() atms.t = np.where((atms.p >= atms._ttl_pmax), tconv, np.maximum(tconv, atms.t)) try: iconv_top = (np.argwhere((tconv >= trad)).min() - 1) except ValueError: iconv_top = (len(atms) - 1) finally: atms.iconv = iconv_top return (atms, flx, hr)
Apply convective adjustment
solver/rce.py
_convectiveadjustment
msmithsm/rce
0
python
def _convectiveadjustment(self, atms, flx, hr): '\n \n ' tconv = self._lr(atms, self.lrkey) trad = atms.t.copy() atms.t = np.where((atms.p >= atms._ttl_pmax), tconv, np.maximum(tconv, atms.t)) try: iconv_top = (np.argwhere((tconv >= trad)).min() - 1) except ValueError: iconv_top = (len(atms) - 1) finally: atms.iconv = iconv_top return (atms, flx, hr)
def _convectiveadjustment(self, atms, flx, hr): '\n \n ' tconv = self._lr(atms, self.lrkey) trad = atms.t.copy() atms.t = np.where((atms.p >= atms._ttl_pmax), tconv, np.maximum(tconv, atms.t)) try: iconv_top = (np.argwhere((tconv >= trad)).min() - 1) except ValueError: iconv_top = (len(atms) - 1) finally: atms.iconv = iconv_top return (atms, flx, hr)<|docstring|>Apply convective adjustment<|endoftext|>
b6f78b3d6732fa5776f148a2b5ae026acc0a8eccadab1c736b24bc26dcc43cba
def get_data_as_dataframe(self, start_date: datetime, end_date: datetime, method: str, aggregate: str, query: str): '\n Returns data corresponding to the given query and from the specified time period.\n ' start_date_str = start_date.strftime('%Y.%m.%d %H:00:00') end_date_str = end_date.strftime('%Y.%m.%d %H:00:00') period_params = f"(IP_FROM_TIME='{start_date_str}',IP_TO_TIME='{end_date_str}',AGGREGATION_LEVEL='{aggregate}')" url = (f'{self.sap_service_url}/{self.service}.xsodata/{method}{period_params}/' + f'Execute?$format=json&$select={query}') headers = {'Authorization': f'Basic {self.base64_auth_api_key}'} response = requests.get(url, headers=headers) if response.ok: data = response.json() dataframe = pd.DataFrame(data['d']['results']) if ('__metadata' in dataframe.columns): dataframe.drop('__metadata', axis=1, inplace=True) return dataframe else: return None
Returns data corresponding to the given query and from the specified time period.
src/osiris/adapters/sap_service.py
get_data_as_dataframe
Open-Dataplatform/osiris-sdk
1
python
def get_data_as_dataframe(self, start_date: datetime, end_date: datetime, method: str, aggregate: str, query: str): '\n \n ' start_date_str = start_date.strftime('%Y.%m.%d %H:00:00') end_date_str = end_date.strftime('%Y.%m.%d %H:00:00') period_params = f"(IP_FROM_TIME='{start_date_str}',IP_TO_TIME='{end_date_str}',AGGREGATION_LEVEL='{aggregate}')" url = (f'{self.sap_service_url}/{self.service}.xsodata/{method}{period_params}/' + f'Execute?$format=json&$select={query}') headers = {'Authorization': f'Basic {self.base64_auth_api_key}'} response = requests.get(url, headers=headers) if response.ok: data = response.json() dataframe = pd.DataFrame(data['d']['results']) if ('__metadata' in dataframe.columns): dataframe.drop('__metadata', axis=1, inplace=True) return dataframe else: return None
def get_data_as_dataframe(self, start_date: datetime, end_date: datetime, method: str, aggregate: str, query: str): '\n \n ' start_date_str = start_date.strftime('%Y.%m.%d %H:00:00') end_date_str = end_date.strftime('%Y.%m.%d %H:00:00') period_params = f"(IP_FROM_TIME='{start_date_str}',IP_TO_TIME='{end_date_str}',AGGREGATION_LEVEL='{aggregate}')" url = (f'{self.sap_service_url}/{self.service}.xsodata/{method}{period_params}/' + f'Execute?$format=json&$select={query}') headers = {'Authorization': f'Basic {self.base64_auth_api_key}'} response = requests.get(url, headers=headers) if response.ok: data = response.json() dataframe = pd.DataFrame(data['d']['results']) if ('__metadata' in dataframe.columns): dataframe.drop('__metadata', axis=1, inplace=True) return dataframe else: return None<|docstring|>Returns data corresponding to the given query and from the specified time period.<|endoftext|>
84c3cd85d5c6f616b9eacd63580b492236f880efa554645108e8bc7910b3e8b7
def Equals(self, *__args): '\n Equals(self: HierarchicalVirtualizationConstraints,comparisonConstraints: HierarchicalVirtualizationConstraints) -> bool\n\n Equals(self: HierarchicalVirtualizationConstraints,oCompare: object) -> bool\n ' pass
Equals(self: HierarchicalVirtualizationConstraints,comparisonConstraints: HierarchicalVirtualizationConstraints) -> bool Equals(self: HierarchicalVirtualizationConstraints,oCompare: object) -> bool
release/stubs.min/System/Windows/Controls/__init___parts/HierarchicalVirtualizationConstraints.py
Equals
htlcnn/ironpython-stubs
182
python
def Equals(self, *__args): '\n Equals(self: HierarchicalVirtualizationConstraints,comparisonConstraints: HierarchicalVirtualizationConstraints) -> bool\n\n Equals(self: HierarchicalVirtualizationConstraints,oCompare: object) -> bool\n ' pass
def Equals(self, *__args): '\n Equals(self: HierarchicalVirtualizationConstraints,comparisonConstraints: HierarchicalVirtualizationConstraints) -> bool\n\n Equals(self: HierarchicalVirtualizationConstraints,oCompare: object) -> bool\n ' pass<|docstring|>Equals(self: HierarchicalVirtualizationConstraints,comparisonConstraints: HierarchicalVirtualizationConstraints) -> bool Equals(self: HierarchicalVirtualizationConstraints,oCompare: object) -> bool<|endoftext|>
a85998ec79c86fad76ba28b3f608ac7b259a02812801341eee32682bb060823a
def GetHashCode(self): ' GetHashCode(self: HierarchicalVirtualizationConstraints) -> int ' pass
GetHashCode(self: HierarchicalVirtualizationConstraints) -> int
release/stubs.min/System/Windows/Controls/__init___parts/HierarchicalVirtualizationConstraints.py
GetHashCode
htlcnn/ironpython-stubs
182
python
def GetHashCode(self): ' ' pass
def GetHashCode(self): ' ' pass<|docstring|>GetHashCode(self: HierarchicalVirtualizationConstraints) -> int<|endoftext|>
afbec9d4036cd220dba8b92f655293f0f39188798750e21688134b4cd99b3518
def __eq__(self, *args): ' x.__eq__(y) <==> x==y ' pass
x.__eq__(y) <==> x==y
release/stubs.min/System/Windows/Controls/__init___parts/HierarchicalVirtualizationConstraints.py
__eq__
htlcnn/ironpython-stubs
182
python
def __eq__(self, *args): ' ' pass
def __eq__(self, *args): ' ' pass<|docstring|>x.__eq__(y) <==> x==y<|endoftext|>
dcccb41d53b52c0ad8d56c0d3897f5fbdcc293dc83dc2c2e3e0daf8bb9724e0c
@staticmethod def __new__(self, cacheLength, cacheLengthUnit, viewport): '\n __new__(cls: type,cacheLength: VirtualizationCacheLength,cacheLengthUnit: VirtualizationCacheLengthUnit,viewport: Rect)\n\n __new__[HierarchicalVirtualizationConstraints]() -> HierarchicalVirtualizationConstraints\n ' pass
__new__(cls: type,cacheLength: VirtualizationCacheLength,cacheLengthUnit: VirtualizationCacheLengthUnit,viewport: Rect) __new__[HierarchicalVirtualizationConstraints]() -> HierarchicalVirtualizationConstraints
release/stubs.min/System/Windows/Controls/__init___parts/HierarchicalVirtualizationConstraints.py
__new__
htlcnn/ironpython-stubs
182
python
@staticmethod def __new__(self, cacheLength, cacheLengthUnit, viewport): '\n __new__(cls: type,cacheLength: VirtualizationCacheLength,cacheLengthUnit: VirtualizationCacheLengthUnit,viewport: Rect)\n\n __new__[HierarchicalVirtualizationConstraints]() -> HierarchicalVirtualizationConstraints\n ' pass
@staticmethod def __new__(self, cacheLength, cacheLengthUnit, viewport): '\n __new__(cls: type,cacheLength: VirtualizationCacheLength,cacheLengthUnit: VirtualizationCacheLengthUnit,viewport: Rect)\n\n __new__[HierarchicalVirtualizationConstraints]() -> HierarchicalVirtualizationConstraints\n ' pass<|docstring|>__new__(cls: type,cacheLength: VirtualizationCacheLength,cacheLengthUnit: VirtualizationCacheLengthUnit,viewport: Rect) __new__[HierarchicalVirtualizationConstraints]() -> HierarchicalVirtualizationConstraints<|endoftext|>
450ea4cbd9edeb66ffd2ced779ad7470dbe2f0845b1fdb03f1b912a6c980178f
def normalize_answer(s): 'Lower text and remove punctuation, articles and extra whitespace.' def remove_articles(text): return re.sub('\\b(a|an|the)\\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join((ch for ch in text if (ch not in exclude))) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
Lower text and remove punctuation, articles and extra whitespace.
evals/eval_xor_engspan.py
normalize_answer
gowtham1997/XORQA
62
python
def normalize_answer(s): def remove_articles(text): return re.sub('\\b(a|an|the)\\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return .join((ch for ch in text if (ch not in exclude))) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_answer(s): def remove_articles(text): return re.sub('\\b(a|an|the)\\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return .join((ch for ch in text if (ch not in exclude))) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))<|docstring|>Lower text and remove punctuation, articles and extra whitespace.<|endoftext|>
c5db299caeb94ecdf9e51d70e2c050385506eb16e38d7f990991ab1aa5ef0723
@pytest.fixture def klass(): 'Provide the CUT.' from agile_analytics import LeadTimeDistributionReporter return LeadTimeDistributionReporter
Provide the CUT.
tests/test_lead_reporter.py
klass
cmheisel/jira-agile-extractor
14
python
@pytest.fixture def klass(): from agile_analytics import LeadTimeDistributionReporter return LeadTimeDistributionReporter
@pytest.fixture def klass(): from agile_analytics import LeadTimeDistributionReporter return LeadTimeDistributionReporter<|docstring|>Provide the CUT.<|endoftext|>
9424a06aa4861f46f8a3d9c9c0957718fec7f30c1ab802246bd67c6ce8699bb7
def test_klass(klass): 'Ensure the fixture works.' assert klass
Ensure the fixture works.
tests/test_lead_reporter.py
test_klass
cmheisel/jira-agile-extractor
14
python
def test_klass(klass): assert klass
def test_klass(klass): assert klass<|docstring|>Ensure the fixture works.<|endoftext|>
ac8f212265ad8c18d6f5ee989f4c2d7c4c665f19680e0010bf7f3f326679dfdf
def test_date_selection(klass, datetime, tzutc): 'Ensure the CUT picks Sunday-Saturday date range' r = klass('Foo') r.start_date = datetime(2016, 5, 21, 0, 0, 0) r.end_date = datetime(2016, 6, 21, 11, 59, 59) assert (r.start_date == datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc)) assert (r.end_date == datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc))
Ensure the CUT picks Sunday-Saturday date range
tests/test_lead_reporter.py
test_date_selection
cmheisel/jira-agile-extractor
14
python
def test_date_selection(klass, datetime, tzutc): r = klass('Foo') r.start_date = datetime(2016, 5, 21, 0, 0, 0) r.end_date = datetime(2016, 6, 21, 11, 59, 59) assert (r.start_date == datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc)) assert (r.end_date == datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc))
def test_date_selection(klass, datetime, tzutc): r = klass('Foo') r.start_date = datetime(2016, 5, 21, 0, 0, 0) r.end_date = datetime(2016, 6, 21, 11, 59, 59) assert (r.start_date == datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc)) assert (r.end_date == datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc))<|docstring|>Ensure the CUT picks Sunday-Saturday date range<|endoftext|>
84432e1478c427b17a603382771672aec43d9c7a0251227bd731d88b58d5f48c
def test_filter(klass, days_agos, AnalyzedAgileTicket, tzutc): 'filter_issues ignores issues completed before the specified range.' issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] issue_out_of_range = AnalyzedAgileTicket(key='TEST-OOR', committed=dict(state='Committed', entered_at=days_agos[42]), started=dict(state='Started', entered_at=days_agos[44]), ended=dict(state='Ended', entered_at=days_agos[45])) issue_list.append(issue_out_of_range) r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) filtered_issues = r.filter_issues(issue_list) assert (r.start_date > issue_out_of_range.ended['entered_at']) assert (len(filtered_issues) == 2)
filter_issues ignores issues completed before the specified range.
tests/test_lead_reporter.py
test_filter
cmheisel/jira-agile-extractor
14
python
def test_filter(klass, days_agos, AnalyzedAgileTicket, tzutc): issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] issue_out_of_range = AnalyzedAgileTicket(key='TEST-OOR', committed=dict(state='Committed', entered_at=days_agos[42]), started=dict(state='Started', entered_at=days_agos[44]), ended=dict(state='Ended', entered_at=days_agos[45])) issue_list.append(issue_out_of_range) r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) filtered_issues = r.filter_issues(issue_list) assert (r.start_date > issue_out_of_range.ended['entered_at']) assert (len(filtered_issues) == 2)
def test_filter(klass, days_agos, AnalyzedAgileTicket, tzutc): issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] issue_out_of_range = AnalyzedAgileTicket(key='TEST-OOR', committed=dict(state='Committed', entered_at=days_agos[42]), started=dict(state='Started', entered_at=days_agos[44]), ended=dict(state='Ended', entered_at=days_agos[45])) issue_list.append(issue_out_of_range) r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) filtered_issues = r.filter_issues(issue_list) assert (r.start_date > issue_out_of_range.ended['entered_at']) assert (len(filtered_issues) == 2)<|docstring|>filter_issues ignores issues completed before the specified range.<|endoftext|>
2ab3d91cc44ae60359b7fa30f6b3e093199dd709532aa9a3c446723d16c584f7
def test_report_summary(klass, datetime, tzutc): 'report_on returns an object with meta data.' start_date = datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc) end_date = datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc) r = klass(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) expected = dict(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) assert (r.report_on([]).summary == expected)
report_on returns an object with meta data.
tests/test_lead_reporter.py
test_report_summary
cmheisel/jira-agile-extractor
14
python
def test_report_summary(klass, datetime, tzutc): start_date = datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc) end_date = datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc) r = klass(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) expected = dict(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) assert (r.report_on([]).summary == expected)
def test_report_summary(klass, datetime, tzutc): start_date = datetime(2016, 5, 15, 0, 0, 0, tzinfo=tzutc) end_date = datetime(2016, 6, 25, 11, 59, 59, tzinfo=tzutc) r = klass(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) expected = dict(title='Cycle Time Distribution Past 30 days', start_date=start_date, end_date=end_date) assert (r.report_on([]).summary == expected)<|docstring|>report_on returns an object with meta data.<|endoftext|>
5a3c1bc1550630676dab900a1d726c7488f3e29a942f65df713faec614ad836f
def test_report_table_empty(klass, days_agos): 'Ensure an empty list of tickets is handled.' expected = [['Lead Time', 'Tickets']] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on([]) assert (report.table == expected)
Ensure an empty list of tickets is handled.
tests/test_lead_reporter.py
test_report_table_empty
cmheisel/jira-agile-extractor
14
python
def test_report_table_empty(klass, days_agos): expected = [['Lead Time', 'Tickets']] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on([]) assert (report.table == expected)
def test_report_table_empty(klass, days_agos): expected = [['Lead Time', 'Tickets']] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on([]) assert (report.table == expected)<|docstring|>Ensure an empty list of tickets is handled.<|endoftext|>
c8e27c200a41bb2411e85ea843a9578d199247fb2ecc47575abe1d68a1042574
def test_report_table(klass, days_agos, AnalyzedAgileTicket, tzutc): 'report_on returns an object with a tabular represenation of the data' issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(4, 10): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[5]), started=dict(state='Started', entered_at=days_agos[4]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(11, 13): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[10]), started=dict(state='Started', entered_at=days_agos[9]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] expected = [['Lead Time', 'Tickets'], [1, 0], [2, 2], [3, 0], [4, 0], [5, 6], [6, 0], [7, 0], [8, 0], [9, 0], [10, 2]] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on(issue_list) assert (report.table == expected)
report_on returns an object with a tabular represenation of the data
tests/test_lead_reporter.py
test_report_table
cmheisel/jira-agile-extractor
14
python
def test_report_table(klass, days_agos, AnalyzedAgileTicket, tzutc): issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(4, 10): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[5]), started=dict(state='Started', entered_at=days_agos[4]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(11, 13): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[10]), started=dict(state='Started', entered_at=days_agos[9]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] expected = [['Lead Time', 'Tickets'], [1, 0], [2, 2], [3, 0], [4, 0], [5, 6], [6, 0], [7, 0], [8, 0], [9, 0], [10, 2]] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on(issue_list) assert (report.table == expected)
def test_report_table(klass, days_agos, AnalyzedAgileTicket, tzutc): issue_list_kwargs = [] for i in range(1, 3): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[2]), started=dict(state='Started', entered_at=days_agos[2]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(4, 10): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[5]), started=dict(state='Started', entered_at=days_agos[4]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) for i in range(11, 13): kwargs = dict(key='TEST-{}'.format(i), committed=dict(state='Committed', entered_at=days_agos[10]), started=dict(state='Started', entered_at=days_agos[9]), ended=dict(state='Ended', entered_at=days_agos[0])) issue_list_kwargs.append(kwargs) issue_list = [AnalyzedAgileTicket(**kwargs) for kwargs in issue_list_kwargs] expected = [['Lead Time', 'Tickets'], [1, 0], [2, 2], [3, 0], [4, 0], [5, 6], [6, 0], [7, 0], [8, 0], [9, 0], [10, 2]] r = klass(title='Cycle Time Distribution Past 30 days', start_date=days_agos[30], end_date=days_agos[0]) report = r.report_on(issue_list) assert (report.table == expected)<|docstring|>report_on returns an object with a tabular represenation of the data<|endoftext|>
0c52d0236b1f8069f3dfb9e2c60220c27725dcf2d7ff9c3d270f0c3454b935e9
def search(strings, chars): "Given a sequence of strings and an iterator of chars, return True\n if any of the strings would be a prefix of ''.join(chars); but\n only consume chars up to the end of the match." raise NotImplementedError
Given a sequence of strings and an iterator of chars, return True if any of the strings would be a prefix of ''.join(chars); but only consume chars up to the end of the match.
reference/regexercise/literals.py
search
JaDogg/__py_playground
1
python
def search(strings, chars): "Given a sequence of strings and an iterator of chars, return True\n if any of the strings would be a prefix of .join(chars); but\n only consume chars up to the end of the match." raise NotImplementedError
def search(strings, chars): "Given a sequence of strings and an iterator of chars, return True\n if any of the strings would be a prefix of .join(chars); but\n only consume chars up to the end of the match." raise NotImplementedError<|docstring|>Given a sequence of strings and an iterator of chars, return True if any of the strings would be a prefix of ''.join(chars); but only consume chars up to the end of the match.<|endoftext|>
c641cf0e82c19ea9a1e30af1e307bb646f5e4bbe03110af57db10326eef7db1d
def split_dataset(dataset: pd.DataFrame) -> Tuple[(pd.DataFrame, pd.DataFrame)]: 'Split dataset into training and validation datasets, based on the "train" column' training = dataset[dataset['train']] validation = dataset[(~ dataset['train'])] return (training, validation)
Split dataset into training and validation datasets, based on the "train" column
kitt/dataset.py
split_dataset
David-Ciz/kitt
2
python
def split_dataset(dataset: pd.DataFrame) -> Tuple[(pd.DataFrame, pd.DataFrame)]: training = dataset[dataset['train']] validation = dataset[(~ dataset['train'])] return (training, validation)
def split_dataset(dataset: pd.DataFrame) -> Tuple[(pd.DataFrame, pd.DataFrame)]: training = dataset[dataset['train']] validation = dataset[(~ dataset['train'])] return (training, validation)<|docstring|>Split dataset into training and validation datasets, based on the "train" column<|endoftext|>
ebe8417f117d198fd7c37ab63a0a5153b5af5f7d6ed6f3ef5b6d32112d489def
def edit_gui_py(content, html_id): 'Function that will change some element in html GUI and is callable from other py scripts.\n\n Args:\n content (str): New content.\n html_id (str): Id of changed element.\n ' import eel eel.edit_gui_js(content, html_id)
Function that will change some element in html GUI and is callable from other py scripts. Args: content (str): New content. html_id (str): Id of changed element.
predictit/gui_start.py
edit_gui_py
Malachov/predict-it
7
python
def edit_gui_py(content, html_id): 'Function that will change some element in html GUI and is callable from other py scripts.\n\n Args:\n content (str): New content.\n html_id (str): Id of changed element.\n ' import eel eel.edit_gui_js(content, html_id)
def edit_gui_py(content, html_id): 'Function that will change some element in html GUI and is callable from other py scripts.\n\n Args:\n content (str): New content.\n html_id (str): Id of changed element.\n ' import eel eel.edit_gui_js(content, html_id)<|docstring|>Function that will change some element in html GUI and is callable from other py scripts. Args: content (str): New content. html_id (str): Id of changed element.<|endoftext|>
574d41598c9060ec5fbd57d611a679b79c75f59401ddc20ec85500f8294c7cc9
def run_gui(): 'Start web based GUI.' import eel web_path = str((Path(__file__).resolve().parents[0] / 'files_for_GUI')) eel.init(web_path) this_path = Path(__file__).resolve().parents[1] this_path_string = str(this_path) sys.path.insert(0, this_path_string) config = predictit.config predictit.misc.GLOBAL_VARS.GUI = 1 config.update({'show_plot': False, 'save_plot': False, 'data': None, 'table_settings': {'tablefmt': 'html', 'floatfmt': '.3f', 'numalign': 'center', 'stralign': 'center'}}) @eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f''' Error in making predictions - {traceback.format_exc()} ''', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped') eel.start('index.html', port=0)
Start web based GUI.
predictit/gui_start.py
run_gui
Malachov/predict-it
7
python
def run_gui(): import eel web_path = str((Path(__file__).resolve().parents[0] / 'files_for_GUI')) eel.init(web_path) this_path = Path(__file__).resolve().parents[1] this_path_string = str(this_path) sys.path.insert(0, this_path_string) config = predictit.config predictit.misc.GLOBAL_VARS.GUI = 1 config.update({'show_plot': False, 'save_plot': False, 'data': None, 'table_settings': {'tablefmt': 'html', 'floatfmt': '.3f', 'numalign': 'center', 'stralign': 'center'}}) @eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f' Error in making predictions - {traceback.format_exc()} ', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped') eel.start('index.html', port=0)
def run_gui(): import eel web_path = str((Path(__file__).resolve().parents[0] / 'files_for_GUI')) eel.init(web_path) this_path = Path(__file__).resolve().parents[1] this_path_string = str(this_path) sys.path.insert(0, this_path_string) config = predictit.config predictit.misc.GLOBAL_VARS.GUI = 1 config.update({'show_plot': False, 'save_plot': False, 'data': None, 'table_settings': {'tablefmt': 'html', 'floatfmt': '.3f', 'numalign': 'center', 'stralign': 'center'}}) @eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f' Error in making predictions - {traceback.format_exc()} ', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped') eel.start('index.html', port=0)<|docstring|>Start web based GUI.<|endoftext|>
1bf499c7e894679510eaa6f8715e021d34751bd22c7867cce10ef805e1fe8173
@eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f''' Error in making predictions - {traceback.format_exc()} ''', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped')
Function that from web GUI button trigger the predictit main predict function and return results on GUI. Args: configured (dict): Some configuration values can be configured in GUI.
predictit/gui_start.py
make_predictions
Malachov/predict-it
7
python
@eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f' Error in making predictions - {traceback.format_exc()} ', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped')
@eel.expose def make_predictions(configured): 'Function that from web GUI button trigger the predictit main predict function and return results on GUI.\n\n Args:\n configured (dict): Some configuration values can be configured in GUI.\n ' config.update(mypythontools.misc.json_to_py(configured)) eel.edit_gui_js('Setup finished', 'progress_phase') try: results = predictit.main.predict() div = results.plot if config.print_result_details: eel.add_HTML_element(str(results.best), True, 'content', 'best_result', 'Best result') eel.add_HTML_element(div, False, 'content', 'ploted_results', 'Interactive plot', ['plot']) if config.print_table: eel.add_HTML_element(results.tables.detailed_results, False, 'content', 'models_table', 'Models results', 'table') eel.execute('ploted_results') eel.add_delete_button('content') eel.add_HTML_element(results.tables.time, False, 'content', 'time_parts_table', 'Time schema of prediction', 'table') eel.add_HTML_element(results.output, True, 'content', 'printed_output', 'Everything printed', 'pre-wrapped') except Exception: eel.add_HTML_element(f' Error in making predictions - {traceback.format_exc()} ', True, 'progress_phase', 'error-log', 'Error log', 'pre-wrapped')<|docstring|>Function that from web GUI button trigger the predictit main predict function and return results on GUI. Args: configured (dict): Some configuration values can be configured in GUI.<|endoftext|>
45274a98ef2a43301a7787176ac3f02eec94bc5597238d2f9217347f46d178cb
def test_score_screw_axes_equivalent_axes(): 'Test the score_screw_axes function (when equivalent axes present).' laue_group_info = laue_groups['P m -3'] reflections = flex.reflection_table() reflections['miller_index'] = flex.miller_index([(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)]) reflections['intensity'] = flex.double([0.05, 100.0, 0.02, 100.0]) reflections['variance'] = flex.double([1.0, 1.0, 1.0, 1.0]) (axes, scores) = score_screw_axes(laue_group_info, reflections) assert (len(scores) == 1) assert (len(axes) == 1) assert (axes[0].name == '21a') assert (scores[0] > 0.99)
Test the score_screw_axes function (when equivalent axes present).
tests/algorithms/symmetry/absences/test_laue_group_info.py
test_score_screw_axes_equivalent_axes
toastisme/dials
58
python
def test_score_screw_axes_equivalent_axes(): laue_group_info = laue_groups['P m -3'] reflections = flex.reflection_table() reflections['miller_index'] = flex.miller_index([(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)]) reflections['intensity'] = flex.double([0.05, 100.0, 0.02, 100.0]) reflections['variance'] = flex.double([1.0, 1.0, 1.0, 1.0]) (axes, scores) = score_screw_axes(laue_group_info, reflections) assert (len(scores) == 1) assert (len(axes) == 1) assert (axes[0].name == '21a') assert (scores[0] > 0.99)
def test_score_screw_axes_equivalent_axes(): laue_group_info = laue_groups['P m -3'] reflections = flex.reflection_table() reflections['miller_index'] = flex.miller_index([(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)]) reflections['intensity'] = flex.double([0.05, 100.0, 0.02, 100.0]) reflections['variance'] = flex.double([1.0, 1.0, 1.0, 1.0]) (axes, scores) = score_screw_axes(laue_group_info, reflections) assert (len(scores) == 1) assert (len(axes) == 1) assert (axes[0].name == '21a') assert (scores[0] > 0.99)<|docstring|>Test the score_screw_axes function (when equivalent axes present).<|endoftext|>
1ce0facb11e4596c96ac3e8e4d37652d90503905647e6dfc4b7dc236e3212226
def test_score_space_group(): 'Test scoring of space groups by combining axis scores.' laue_group = laue_groups['P 1 2/m 1'] axis_scores = [0.98] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 21'): assert (score == pytest.approx(0.98)) elif (sg == 'P 2'): assert (score == pytest.approx(0.02)) laue_group = laue_groups['P 4/m m m'] axis_scores = [0.95, 1.0, 0.95] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 41 21 2'): assert (score == pytest.approx(0.95)) elif (sg == 'P 42 21 2'): assert (score == pytest.approx((0.05 * 0.95))) elif (sg == 'P 4 21 2'): assert (score == pytest.approx((0.05 * 0.05))) else: assert (score == pytest.approx(0.0)) laue_group = laue_groups['P 6/m'] axis_scores = [0.95, 0.9, 0.85] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 61'): assert (score == pytest.approx(0.95)) elif (sg == 'P 62'): assert (score == pytest.approx((0.05 * 0.9))) elif (sg == 'P 63'): assert (score == pytest.approx((0.05 * 0.85))) elif (sg == 'P 6'): assert (score == pytest.approx(((0.05 * 0.1) * 0.15)))
Test scoring of space groups by combining axis scores.
tests/algorithms/symmetry/absences/test_laue_group_info.py
test_score_space_group
toastisme/dials
58
python
def test_score_space_group(): laue_group = laue_groups['P 1 2/m 1'] axis_scores = [0.98] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 21'): assert (score == pytest.approx(0.98)) elif (sg == 'P 2'): assert (score == pytest.approx(0.02)) laue_group = laue_groups['P 4/m m m'] axis_scores = [0.95, 1.0, 0.95] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 41 21 2'): assert (score == pytest.approx(0.95)) elif (sg == 'P 42 21 2'): assert (score == pytest.approx((0.05 * 0.95))) elif (sg == 'P 4 21 2'): assert (score == pytest.approx((0.05 * 0.05))) else: assert (score == pytest.approx(0.0)) laue_group = laue_groups['P 6/m'] axis_scores = [0.95, 0.9, 0.85] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 61'): assert (score == pytest.approx(0.95)) elif (sg == 'P 62'): assert (score == pytest.approx((0.05 * 0.9))) elif (sg == 'P 63'): assert (score == pytest.approx((0.05 * 0.85))) elif (sg == 'P 6'): assert (score == pytest.approx(((0.05 * 0.1) * 0.15)))
def test_score_space_group(): laue_group = laue_groups['P 1 2/m 1'] axis_scores = [0.98] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 21'): assert (score == pytest.approx(0.98)) elif (sg == 'P 2'): assert (score == pytest.approx(0.02)) laue_group = laue_groups['P 4/m m m'] axis_scores = [0.95, 1.0, 0.95] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 41 21 2'): assert (score == pytest.approx(0.95)) elif (sg == 'P 42 21 2'): assert (score == pytest.approx((0.05 * 0.95))) elif (sg == 'P 4 21 2'): assert (score == pytest.approx((0.05 * 0.05))) else: assert (score == pytest.approx(0.0)) laue_group = laue_groups['P 6/m'] axis_scores = [0.95, 0.9, 0.85] (space_groups, scores) = score_space_groups(axis_scores, laue_group) for (sg, score) in zip(space_groups, scores): if (sg == 'P 61'): assert (score == pytest.approx(0.95)) elif (sg == 'P 62'): assert (score == pytest.approx((0.05 * 0.9))) elif (sg == 'P 63'): assert (score == pytest.approx((0.05 * 0.85))) elif (sg == 'P 6'): assert (score == pytest.approx(((0.05 * 0.1) * 0.15)))<|docstring|>Test scoring of space groups by combining axis scores.<|endoftext|>