body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
92d6350e992c38d4fd651c897653aae987a12c872857fd246ca91a723b522db1
def hardness_ratio(base_dir, name, obsid_0, stn_target, num_bins, output_dir, color_map, wcs_fits, bin_file): "\n Calculate hardness ratio and plot\n params:\n base_dir -- path to base directory\n name -- name of cluster\n obsid_0 -- first obsid (doesn't actually matter which)\n stn_target -- target signal-to-noise ratio\n num_bins -- number of bins from WVT\n output_dir -- name of folder which contains region files for bins\n " if os.path.exists((base_dir + '/HR')): os.chdir((base_dir + '/HR')) else: os.mkdir((base_dir + '/HR')) os.chdir((base_dir + '/HR')) hr_file = open((('HR_' + str(stn_target)) + '.txt'), 'w+') hr_file.write('Bin,Hard_Counts,Soft_Counts,HR\n') for bin_i in range(int(num_bins)): reg_file = ((((((base_dir + '/') + obsid_0) + '/repro/') + output_dir) + str(bin_i)) + '.reg') shutil.copy(reg_file, (str(bin_i) + '.reg')) reg_file = (str(bin_i) + '.reg') (hard, soft) = calc_vals(wcs_fits, reg_file, str(bin_i)) HR = ((hard - soft) / (hard + soft)) hr_file.write((((((((str(bin_i) + ',') + str(hard)) + ',') + str(soft)) + ',') + str(HR)) + '\n')) hr_file.close() hardness_plot(bin_file, (('HR_' + str(stn_target)) + '.txt'), base_dir, name, color_map, stn_target, wcs_fits) return None
Calculate hardness ratio and plot params: base_dir -- path to base directory name -- name of cluster obsid_0 -- first obsid (doesn't actually matter which) stn_target -- target signal-to-noise ratio num_bins -- number of bins from WVT output_dir -- name of folder which contains region files for bins
TemperatureMapPipeline/Hardness_Ratio.py
hardness_ratio
crhea93/AstronomyTools
8
python
def hardness_ratio(base_dir, name, obsid_0, stn_target, num_bins, output_dir, color_map, wcs_fits, bin_file): "\n Calculate hardness ratio and plot\n params:\n base_dir -- path to base directory\n name -- name of cluster\n obsid_0 -- first obsid (doesn't actually matter which)\n stn_target -- target signal-to-noise ratio\n num_bins -- number of bins from WVT\n output_dir -- name of folder which contains region files for bins\n " if os.path.exists((base_dir + '/HR')): os.chdir((base_dir + '/HR')) else: os.mkdir((base_dir + '/HR')) os.chdir((base_dir + '/HR')) hr_file = open((('HR_' + str(stn_target)) + '.txt'), 'w+') hr_file.write('Bin,Hard_Counts,Soft_Counts,HR\n') for bin_i in range(int(num_bins)): reg_file = ((((((base_dir + '/') + obsid_0) + '/repro/') + output_dir) + str(bin_i)) + '.reg') shutil.copy(reg_file, (str(bin_i) + '.reg')) reg_file = (str(bin_i) + '.reg') (hard, soft) = calc_vals(wcs_fits, reg_file, str(bin_i)) HR = ((hard - soft) / (hard + soft)) hr_file.write((((((((str(bin_i) + ',') + str(hard)) + ',') + str(soft)) + ',') + str(HR)) + '\n')) hr_file.close() hardness_plot(bin_file, (('HR_' + str(stn_target)) + '.txt'), base_dir, name, color_map, stn_target, wcs_fits) return None
def hardness_ratio(base_dir, name, obsid_0, stn_target, num_bins, output_dir, color_map, wcs_fits, bin_file): "\n Calculate hardness ratio and plot\n params:\n base_dir -- path to base directory\n name -- name of cluster\n obsid_0 -- first obsid (doesn't actually matter which)\n stn_target -- target signal-to-noise ratio\n num_bins -- number of bins from WVT\n output_dir -- name of folder which contains region files for bins\n " if os.path.exists((base_dir + '/HR')): os.chdir((base_dir + '/HR')) else: os.mkdir((base_dir + '/HR')) os.chdir((base_dir + '/HR')) hr_file = open((('HR_' + str(stn_target)) + '.txt'), 'w+') hr_file.write('Bin,Hard_Counts,Soft_Counts,HR\n') for bin_i in range(int(num_bins)): reg_file = ((((((base_dir + '/') + obsid_0) + '/repro/') + output_dir) + str(bin_i)) + '.reg') shutil.copy(reg_file, (str(bin_i) + '.reg')) reg_file = (str(bin_i) + '.reg') (hard, soft) = calc_vals(wcs_fits, reg_file, str(bin_i)) HR = ((hard - soft) / (hard + soft)) hr_file.write((((((((str(bin_i) + ',') + str(hard)) + ',') + str(soft)) + ',') + str(HR)) + '\n')) hr_file.close() hardness_plot(bin_file, (('HR_' + str(stn_target)) + '.txt'), base_dir, name, color_map, stn_target, wcs_fits) return None<|docstring|>Calculate hardness ratio and plot params: base_dir -- path to base directory name -- name of cluster obsid_0 -- first obsid (doesn't actually matter which) stn_target -- target signal-to-noise ratio num_bins -- number of bins from WVT output_dir -- name of folder which contains region files for bins<|endoftext|>
c8fb87f77ec3f3d97a067964ecc0e69a0fba3b39c01289ddc00a145a0874a090
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs
Initializes class. Args: predict_fn: Function of blackbox that takes input, and returns prediction. feature_names: List of feature names. feature_types: List of feature types. **kwargs: Currently unused. Due for deprecation.
python/interpret-core/interpret/perf/curve.py
__init__
eddy-geek/interpret
2,674
python
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs<|docstring|>Initializes class. Args: predict_fn: Function of blackbox that takes input, and returns prediction. feature_names: List of feature names. feature_types: List of feature types. **kwargs: Currently unused. Due for deprecation.<|endoftext|>
1b0e1414e51ea27150705ae86553f31c1683f8a59ecee79a01ff516eae200dd1
def explain_perf(self, X, y, name=None): ' Produce precision-recall curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (precision, recall, thresh) = precision_recall_curve(y, scores) ap = average_precision_score(y, scores) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': recall, 'y_values': precision, 'threshold': thresh, 'auc': ap} internal_obj = {'overall': overall_dict, 'specific': None} return PRExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)
Produce precision-recall curves. Args: X: Numpy array for X to compare predict function against. y: Numpy vector for y to compare predict function against. name: User-defined explanation name. Returns: An explanation object.
python/interpret-core/interpret/perf/curve.py
explain_perf
eddy-geek/interpret
2,674
python
def explain_perf(self, X, y, name=None): ' Produce precision-recall curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (precision, recall, thresh) = precision_recall_curve(y, scores) ap = average_precision_score(y, scores) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': recall, 'y_values': precision, 'threshold': thresh, 'auc': ap} internal_obj = {'overall': overall_dict, 'specific': None} return PRExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)
def explain_perf(self, X, y, name=None): ' Produce precision-recall curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (precision, recall, thresh) = precision_recall_curve(y, scores) ap = average_precision_score(y, scores) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': recall, 'y_values': precision, 'threshold': thresh, 'auc': ap} internal_obj = {'overall': overall_dict, 'specific': None} return PRExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)<|docstring|>Produce precision-recall curves. Args: X: Numpy array for X to compare predict function against. y: Numpy vector for y to compare predict function against. name: User-defined explanation name. Returns: An explanation object.<|endoftext|>
c8fb87f77ec3f3d97a067964ecc0e69a0fba3b39c01289ddc00a145a0874a090
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs
Initializes class. Args: predict_fn: Function of blackbox that takes input, and returns prediction. feature_names: List of feature names. feature_types: List of feature types. **kwargs: Currently unused. Due for deprecation.
python/interpret-core/interpret/perf/curve.py
__init__
eddy-geek/interpret
2,674
python
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs
def __init__(self, predict_fn, feature_names=None, feature_types=None, **kwargs): ' Initializes class.\n\n Args:\n predict_fn: Function of blackbox that takes input, and returns prediction.\n feature_names: List of feature names.\n feature_types: List of feature types.\n **kwargs: Currently unused. Due for deprecation.\n ' self.predict_fn = predict_fn self.feature_names = feature_names self.feature_types = feature_types self.kwargs = kwargs<|docstring|>Initializes class. Args: predict_fn: Function of blackbox that takes input, and returns prediction. feature_names: List of feature names. feature_types: List of feature types. **kwargs: Currently unused. Due for deprecation.<|endoftext|>
c7b67264e1e950cf5913008052ff3de618d145986c3a9775501a1e49cde3776a
def explain_perf(self, X, y, name=None): ' Produce ROC curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (fpr, tpr, thresh) = roc_curve(y, scores) roc_auc = auc(fpr, tpr) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': fpr, 'y_values': tpr, 'threshold': thresh, 'auc': roc_auc} internal_obj = {'overall': overall_dict, 'specific': None} return ROCExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)
Produce ROC curves. Args: X: Numpy array for X to compare predict function against. y: Numpy vector for y to compare predict function against. name: User-defined explanation name. Returns: An explanation object.
python/interpret-core/interpret/perf/curve.py
explain_perf
eddy-geek/interpret
2,674
python
def explain_perf(self, X, y, name=None): ' Produce ROC curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (fpr, tpr, thresh) = roc_curve(y, scores) roc_auc = auc(fpr, tpr) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': fpr, 'y_values': tpr, 'threshold': thresh, 'auc': roc_auc} internal_obj = {'overall': overall_dict, 'specific': None} return ROCExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)
def explain_perf(self, X, y, name=None): ' Produce ROC curves.\n\n Args:\n X: Numpy array for X to compare predict function against.\n y: Numpy vector for y to compare predict function against.\n name: User-defined explanation name.\n\n Returns:\n An explanation object.\n ' if (name is None): name = gen_name_from_class(self) (X, y, self.feature_names, self.feature_types) = unify_data(X, y, self.feature_names, self.feature_types, missing_data_allowed=True) predict_fn = unify_predict_fn(self.predict_fn, X) scores = predict_fn(X) (fpr, tpr, thresh) = roc_curve(y, scores) roc_auc = auc(fpr, tpr) abs_residuals = np.abs((y - scores)) (counts, values) = np.histogram(abs_residuals, bins='doane') overall_dict = {'type': 'perf_curve', 'density': {'names': values, 'scores': counts}, 'scores': scores, 'x_values': fpr, 'y_values': tpr, 'threshold': thresh, 'auc': roc_auc} internal_obj = {'overall': overall_dict, 'specific': None} return ROCExplanation('perf', internal_obj, feature_names=self.feature_names, feature_types=self.feature_types, name=name)<|docstring|>Produce ROC curves. Args: X: Numpy array for X to compare predict function against. y: Numpy vector for y to compare predict function against. name: User-defined explanation name. Returns: An explanation object.<|endoftext|>
93bf0189516767d84dd81079ea99818b0b1093254deb76734819811bb82e8224
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector
Initializes class. Args: explanation_type: Type of explanation. internal_obj: A jsonable object that backs the explanation. feature_names: List of feature names. feature_types: List of feature types. name: User-defined name of explanation. selector: A dataframe whose indices correspond to explanation entries.
python/interpret-core/interpret/perf/curve.py
__init__
eddy-geek/interpret
2,674
python
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector<|docstring|>Initializes class. Args: explanation_type: Type of explanation. internal_obj: A jsonable object that backs the explanation. feature_names: List of feature names. feature_types: List of feature types. name: User-defined name of explanation. selector: A dataframe whose indices correspond to explanation entries.<|endoftext|>
11c58d30219a8eac82141b1a8cdaaa4a18ad52a15f7aaa23bbe0df6e8c7ba5ac
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None
Provides specific explanation data. Args: key: A number/string that references a specific data item. Returns: A serializable dictionary.
python/interpret-core/interpret/perf/curve.py
data
eddy-geek/interpret
2,674
python
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None<|docstring|>Provides specific explanation data. Args: key: A number/string that references a specific data item. Returns: A serializable dictionary.<|endoftext|>
2ae5b04764de64f389753e5b4cd98ac11d8783f9087e5f809f9d6776ee66d75f
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='FPR', ytitle='TPR', baseline=True, title=('ROC Curve: ' + self.name), auc_prefix='AUC')
Provides interactive visualizations. Args: key: Either a scalar or list that indexes the internal object for sub-plotting. If an overall visualization is requested, pass None. Returns: A Plotly figure.
python/interpret-core/interpret/perf/curve.py
visualize
eddy-geek/interpret
2,674
python
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='FPR', ytitle='TPR', baseline=True, title=('ROC Curve: ' + self.name), auc_prefix='AUC')
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='FPR', ytitle='TPR', baseline=True, title=('ROC Curve: ' + self.name), auc_prefix='AUC')<|docstring|>Provides interactive visualizations. Args: key: Either a scalar or list that indexes the internal object for sub-plotting. If an overall visualization is requested, pass None. Returns: A Plotly figure.<|endoftext|>
93bf0189516767d84dd81079ea99818b0b1093254deb76734819811bb82e8224
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector
Initializes class. Args: explanation_type: Type of explanation. internal_obj: A jsonable object that backs the explanation. feature_names: List of feature names. feature_types: List of feature types. name: User-defined name of explanation. selector: A dataframe whose indices correspond to explanation entries.
python/interpret-core/interpret/perf/curve.py
__init__
eddy-geek/interpret
2,674
python
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector
def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): ' Initializes class.\n\n Args:\n explanation_type: Type of explanation.\n internal_obj: A jsonable object that backs the explanation.\n feature_names: List of feature names.\n feature_types: List of feature types.\n name: User-defined name of explanation.\n selector: A dataframe whose indices correspond to explanation entries.\n ' self.explanation_type = explanation_type self._internal_obj = internal_obj self.feature_names = feature_names self.feature_types = feature_types self.name = name self.selector = selector<|docstring|>Initializes class. Args: explanation_type: Type of explanation. internal_obj: A jsonable object that backs the explanation. feature_names: List of feature names. feature_types: List of feature types. name: User-defined name of explanation. selector: A dataframe whose indices correspond to explanation entries.<|endoftext|>
11c58d30219a8eac82141b1a8cdaaa4a18ad52a15f7aaa23bbe0df6e8c7ba5ac
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None
Provides specific explanation data. Args: key: A number/string that references a specific data item. Returns: A serializable dictionary.
python/interpret-core/interpret/perf/curve.py
data
eddy-geek/interpret
2,674
python
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None
def data(self, key=None): ' Provides specific explanation data.\n\n Args:\n key: A number/string that references a specific data item.\n\n Returns:\n A serializable dictionary.\n ' if (key is None): return self._internal_obj['overall'] return None<|docstring|>Provides specific explanation data. Args: key: A number/string that references a specific data item. Returns: A serializable dictionary.<|endoftext|>
3a8924419b6f2cfb54f9f1dc2c5762156e77f491131f8801ad81dfccfda9c7f1
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='Recall', ytitle='Precision', baseline=False, title=('PR Curve: ' + self.name), auc_prefix='Average Precision')
Provides interactive visualizations. Args: key: Either a scalar or list that indexes the internal object for sub-plotting. If an overall visualization is requested, pass None. Returns: A Plotly figure.
python/interpret-core/interpret/perf/curve.py
visualize
eddy-geek/interpret
2,674
python
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='Recall', ytitle='Precision', baseline=False, title=('PR Curve: ' + self.name), auc_prefix='Average Precision')
def visualize(self, key=None): ' Provides interactive visualizations.\n\n Args:\n key: Either a scalar or list\n that indexes the internal object for sub-plotting.\n If an overall visualization is requested, pass None.\n\n Returns:\n A Plotly figure.\n ' from ..visual.plot import plot_performance_curve data_dict = self.data(key) if (data_dict is None): return None return plot_performance_curve(data_dict, xtitle='Recall', ytitle='Precision', baseline=False, title=('PR Curve: ' + self.name), auc_prefix='Average Precision')<|docstring|>Provides interactive visualizations. Args: key: Either a scalar or list that indexes the internal object for sub-plotting. If an overall visualization is requested, pass None. Returns: A Plotly figure.<|endoftext|>
1fe1785af4cc40b61a27d4c03137c9125961df6822aa85ff92b3038e1239a26e
def get_state(self, creds): '\n Get the state that belongs to a particular account.\n\n @param creds: The credentials which identify a particular account.\n @type creds: L{AWSCredentials}\n\n @return: The state for the account, creating it if necessary. The\n state will be whatever C{state_factory} returns.\n ' key = (creds.access_key, creds.secret_key) return self._state.setdefault(key, self.state_factory())
Get the state that belongs to a particular account. @param creds: The credentials which identify a particular account. @type creds: L{AWSCredentials} @return: The state for the account, creating it if necessary. The state will be whatever C{state_factory} returns.
txaws/testing/base.py
get_state
gmorell/txaws
24
python
def get_state(self, creds): '\n Get the state that belongs to a particular account.\n\n @param creds: The credentials which identify a particular account.\n @type creds: L{AWSCredentials}\n\n @return: The state for the account, creating it if necessary. The\n state will be whatever C{state_factory} returns.\n ' key = (creds.access_key, creds.secret_key) return self._state.setdefault(key, self.state_factory())
def get_state(self, creds): '\n Get the state that belongs to a particular account.\n\n @param creds: The credentials which identify a particular account.\n @type creds: L{AWSCredentials}\n\n @return: The state for the account, creating it if necessary. The\n state will be whatever C{state_factory} returns.\n ' key = (creds.access_key, creds.secret_key) return self._state.setdefault(key, self.state_factory())<|docstring|>Get the state that belongs to a particular account. @param creds: The credentials which identify a particular account. @type creds: L{AWSCredentials} @return: The state for the account, creating it if necessary. The state will be whatever C{state_factory} returns.<|endoftext|>
8533e71696129af0ee8156b9919985c907e8726a15e799a62a855821eb46e4fd
def client(self, creds, *a, **kw): '\n Get an in-memory verified fake client for this service.\n\n @param creds: The credentials to associate with the account. No\n authentication is performed but this identifies the state the\n client will find.\n @type creds: L{AWSCredentials}\n\n @return: A new client for this service along with the state object for\n the client.\n @rtype: L{tuple}\n ' client = self.client_factory(self, creds, *a, **kw) return (client, self.get_state(creds))
Get an in-memory verified fake client for this service. @param creds: The credentials to associate with the account. No authentication is performed but this identifies the state the client will find. @type creds: L{AWSCredentials} @return: A new client for this service along with the state object for the client. @rtype: L{tuple}
txaws/testing/base.py
client
gmorell/txaws
24
python
def client(self, creds, *a, **kw): '\n Get an in-memory verified fake client for this service.\n\n @param creds: The credentials to associate with the account. No\n authentication is performed but this identifies the state the\n client will find.\n @type creds: L{AWSCredentials}\n\n @return: A new client for this service along with the state object for\n the client.\n @rtype: L{tuple}\n ' client = self.client_factory(self, creds, *a, **kw) return (client, self.get_state(creds))
def client(self, creds, *a, **kw): '\n Get an in-memory verified fake client for this service.\n\n @param creds: The credentials to associate with the account. No\n authentication is performed but this identifies the state the\n client will find.\n @type creds: L{AWSCredentials}\n\n @return: A new client for this service along with the state object for\n the client.\n @rtype: L{tuple}\n ' client = self.client_factory(self, creds, *a, **kw) return (client, self.get_state(creds))<|docstring|>Get an in-memory verified fake client for this service. @param creds: The credentials to associate with the account. No authentication is performed but this identifies the state the client will find. @type creds: L{AWSCredentials} @return: A new client for this service along with the state object for the client. @rtype: L{tuple}<|endoftext|>
8b2dc35055cf381e7bbfb1771d14c31006b8e21a1815850c74a9362f8c8e3130
def rgChromaticity(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n rg Chromaticity\n http://en.wikipedia.org/wiki/Rg_chromaticity\n\n Also know as normalised RGB as per paper:\n Color-based object recognition, Theo Gevers and Arnold W.M. Smeulders,\n Pattern Recognition,number 3, pages 453-464, volume 32, 1999.\n ' rgChrom = img_as_float(rgb) r = (rgb[(:, :, 1)] + 1e-11) g = (rgb[(:, :, 0)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = ((r + g) + b) rgChrom[(:, :, 1)] = (r / divisor) rgChrom[(:, :, 0)] = (g / divisor) rgChrom[(:, :, 2)] = (b / divisor) return rgChrom
Converting an RGB image into normalized RGB removes the effect of any intensity variations. rg Chromaticity http://en.wikipedia.org/wiki/Rg_chromaticity Also know as normalised RGB as per paper: Color-based object recognition, Theo Gevers and Arnold W.M. Smeulders, Pattern Recognition,number 3, pages 453-464, volume 32, 1999.
ipfe/colour.py
rgChromaticity
michaelborck/ipfe
3
python
def rgChromaticity(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n rg Chromaticity\n http://en.wikipedia.org/wiki/Rg_chromaticity\n\n Also know as normalised RGB as per paper:\n Color-based object recognition, Theo Gevers and Arnold W.M. Smeulders,\n Pattern Recognition,number 3, pages 453-464, volume 32, 1999.\n ' rgChrom = img_as_float(rgb) r = (rgb[(:, :, 1)] + 1e-11) g = (rgb[(:, :, 0)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = ((r + g) + b) rgChrom[(:, :, 1)] = (r / divisor) rgChrom[(:, :, 0)] = (g / divisor) rgChrom[(:, :, 2)] = (b / divisor) return rgChrom
def rgChromaticity(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n rg Chromaticity\n http://en.wikipedia.org/wiki/Rg_chromaticity\n\n Also know as normalised RGB as per paper:\n Color-based object recognition, Theo Gevers and Arnold W.M. Smeulders,\n Pattern Recognition,number 3, pages 453-464, volume 32, 1999.\n ' rgChrom = img_as_float(rgb) r = (rgb[(:, :, 1)] + 1e-11) g = (rgb[(:, :, 0)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = ((r + g) + b) rgChrom[(:, :, 1)] = (r / divisor) rgChrom[(:, :, 0)] = (g / divisor) rgChrom[(:, :, 2)] = (b / divisor) return rgChrom<|docstring|>Converting an RGB image into normalized RGB removes the effect of any intensity variations. rg Chromaticity http://en.wikipedia.org/wiki/Rg_chromaticity Also know as normalised RGB as per paper: Color-based object recognition, Theo Gevers and Arnold W.M. Smeulders, Pattern Recognition,number 3, pages 453-464, volume 32, 1999.<|endoftext|>
17cc7fc41267ca118b6d5fb61e779e278cee95599378edcb354faec5d634f296
def normalisedRGB(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n L2 Norm (Euclidean norm)\n\n ' norm = img_as_float(rgb) r = (rgb[(:, :, 0)] + 1e-11) g = (rgb[(:, :, 1)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = np.sqrt(((np.square(r) + np.square(g)) + np.square(b))) norm[(:, :, 1)] = (r / divisor) norm[(:, :, 0)] = (g / divisor) norm[(:, :, 2)] = (b / divisor) return norm
Converting an RGB image into normalized RGB removes the effect of any intensity variations. L2 Norm (Euclidean norm)
ipfe/colour.py
normalisedRGB
michaelborck/ipfe
3
python
def normalisedRGB(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n L2 Norm (Euclidean norm)\n\n ' norm = img_as_float(rgb) r = (rgb[(:, :, 0)] + 1e-11) g = (rgb[(:, :, 1)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = np.sqrt(((np.square(r) + np.square(g)) + np.square(b))) norm[(:, :, 1)] = (r / divisor) norm[(:, :, 0)] = (g / divisor) norm[(:, :, 2)] = (b / divisor) return norm
def normalisedRGB(rgb): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n L2 Norm (Euclidean norm)\n\n ' norm = img_as_float(rgb) r = (rgb[(:, :, 0)] + 1e-11) g = (rgb[(:, :, 1)] + 1e-11) b = (rgb[(:, :, 2)] + 1e-11) divisor = np.sqrt(((np.square(r) + np.square(g)) + np.square(b))) norm[(:, :, 1)] = (r / divisor) norm[(:, :, 0)] = (g / divisor) norm[(:, :, 2)] = (b / divisor) return norm<|docstring|>Converting an RGB image into normalized RGB removes the effect of any intensity variations. L2 Norm (Euclidean norm)<|endoftext|>
d816128e94cb3be15565941202f129c7fc6f56fc26e887cb870e15234143b560
def linear_normalization(arr): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n Linear normalization\n http://en.wikipedia.org/wiki/Normalization_%28image_processing%29\n ' arr = arr.astype('float') for i in range(3): minval = arr[(..., i)].min() maxval = arr[(..., i)].max() if (minval != maxval): arr[(..., i)] -= minval arr[(..., i)] *= (255.0 / (maxval - minval)) return arr
Converting an RGB image into normalized RGB removes the effect of any intensity variations. Linear normalization http://en.wikipedia.org/wiki/Normalization_%28image_processing%29
ipfe/colour.py
linear_normalization
michaelborck/ipfe
3
python
def linear_normalization(arr): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n Linear normalization\n http://en.wikipedia.org/wiki/Normalization_%28image_processing%29\n ' arr = arr.astype('float') for i in range(3): minval = arr[(..., i)].min() maxval = arr[(..., i)].max() if (minval != maxval): arr[(..., i)] -= minval arr[(..., i)] *= (255.0 / (maxval - minval)) return arr
def linear_normalization(arr): '\n Converting an RGB image into normalized RGB removes the effect\n of any intensity variations.\n\n Linear normalization\n http://en.wikipedia.org/wiki/Normalization_%28image_processing%29\n ' arr = arr.astype('float') for i in range(3): minval = arr[(..., i)].min() maxval = arr[(..., i)].max() if (minval != maxval): arr[(..., i)] -= minval arr[(..., i)] *= (255.0 / (maxval - minval)) return arr<|docstring|>Converting an RGB image into normalized RGB removes the effect of any intensity variations. Linear normalization http://en.wikipedia.org/wiki/Normalization_%28image_processing%29<|endoftext|>
8d58395b0f936f57fe427f58d7b9362c0b79123fbc11bece84b36af7dbabea65
def ilevenshtein(seq1, seqs, max_dist=(- 1)): 'Compute the Levenshtein distance between the sequence `seq1` and the series\n\tof\tsequences `seqs`.\n\t\n\t\t`seq1`: the reference sequence\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`max_dist`: if provided and > 0, only the sequences which distance from\n\t\tthe reference sequence is lower or equal to this value will be returned.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tThe sequence objects in `seqs` are expected to be of the same kind than\n\tthe reference sequence in the C implementation; the same holds true for\n\t`ifast_comp`.\n\t' for seq2 in seqs: dist = levenshtein(seq1, seq2, max_dist=max_dist) if (dist != (- 1)): (yield (dist, seq2))
Compute the Levenshtein distance between the sequence `seq1` and the series of sequences `seqs`. `seq1`: the reference sequence `seqs`: a series of sequences (can be a generator) `max_dist`: if provided and > 0, only the sequences which distance from the reference sequence is lower or equal to this value will be returned. The return value is a series of pairs (distance, sequence). The sequence objects in `seqs` are expected to be of the same kind than the reference sequence in the C implementation; the same holds true for `ifast_comp`.
Backend/venv/lib/python3.6/site-packages/distance/_iterators.py
ilevenshtein
Pencroff/ai-hackathon
82
python
def ilevenshtein(seq1, seqs, max_dist=(- 1)): 'Compute the Levenshtein distance between the sequence `seq1` and the series\n\tof\tsequences `seqs`.\n\t\n\t\t`seq1`: the reference sequence\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`max_dist`: if provided and > 0, only the sequences which distance from\n\t\tthe reference sequence is lower or equal to this value will be returned.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tThe sequence objects in `seqs` are expected to be of the same kind than\n\tthe reference sequence in the C implementation; the same holds true for\n\t`ifast_comp`.\n\t' for seq2 in seqs: dist = levenshtein(seq1, seq2, max_dist=max_dist) if (dist != (- 1)): (yield (dist, seq2))
def ilevenshtein(seq1, seqs, max_dist=(- 1)): 'Compute the Levenshtein distance between the sequence `seq1` and the series\n\tof\tsequences `seqs`.\n\t\n\t\t`seq1`: the reference sequence\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`max_dist`: if provided and > 0, only the sequences which distance from\n\t\tthe reference sequence is lower or equal to this value will be returned.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tThe sequence objects in `seqs` are expected to be of the same kind than\n\tthe reference sequence in the C implementation; the same holds true for\n\t`ifast_comp`.\n\t' for seq2 in seqs: dist = levenshtein(seq1, seq2, max_dist=max_dist) if (dist != (- 1)): (yield (dist, seq2))<|docstring|>Compute the Levenshtein distance between the sequence `seq1` and the series of sequences `seqs`. `seq1`: the reference sequence `seqs`: a series of sequences (can be a generator) `max_dist`: if provided and > 0, only the sequences which distance from the reference sequence is lower or equal to this value will be returned. The return value is a series of pairs (distance, sequence). The sequence objects in `seqs` are expected to be of the same kind than the reference sequence in the C implementation; the same holds true for `ifast_comp`.<|endoftext|>
e78c93a29bee77167a966eb590b0ca6f436e0b1800749a169d4110b93a2ff85a
def ifast_comp(seq1, seqs, transpositions=False): 'Return an iterator over all the sequences in `seqs` which distance from\n\t`seq1` is lower or equal to 2. The sequences which distance from the\n\treference sequence is higher than that are dropped.\n\t\n\t\t`seq1`: the reference sequence.\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`transpositions` has the same sense than in `fast_comp`.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tYou might want to call `sorted()` on the iterator to get the results in a\n\tsignificant order:\n\t\n\t\t>>> g = ifast_comp("foo", ["fo", "bar", "foob", "foo", "foobaz"])\n\t\t>>> sorted(g)\n\t\t[(0, \'foo\'), (1, \'fo\'), (1, \'foob\')]\n\t' for seq2 in seqs: dist = fast_comp(seq1, seq2, transpositions) if (dist != (- 1)): (yield (dist, seq2))
Return an iterator over all the sequences in `seqs` which distance from `seq1` is lower or equal to 2. The sequences which distance from the reference sequence is higher than that are dropped. `seq1`: the reference sequence. `seqs`: a series of sequences (can be a generator) `transpositions` has the same sense than in `fast_comp`. The return value is a series of pairs (distance, sequence). You might want to call `sorted()` on the iterator to get the results in a significant order: >>> g = ifast_comp("foo", ["fo", "bar", "foob", "foo", "foobaz"]) >>> sorted(g) [(0, 'foo'), (1, 'fo'), (1, 'foob')]
Backend/venv/lib/python3.6/site-packages/distance/_iterators.py
ifast_comp
Pencroff/ai-hackathon
82
python
def ifast_comp(seq1, seqs, transpositions=False): 'Return an iterator over all the sequences in `seqs` which distance from\n\t`seq1` is lower or equal to 2. The sequences which distance from the\n\treference sequence is higher than that are dropped.\n\t\n\t\t`seq1`: the reference sequence.\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`transpositions` has the same sense than in `fast_comp`.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tYou might want to call `sorted()` on the iterator to get the results in a\n\tsignificant order:\n\t\n\t\t>>> g = ifast_comp("foo", ["fo", "bar", "foob", "foo", "foobaz"])\n\t\t>>> sorted(g)\n\t\t[(0, \'foo\'), (1, \'fo\'), (1, \'foob\')]\n\t' for seq2 in seqs: dist = fast_comp(seq1, seq2, transpositions) if (dist != (- 1)): (yield (dist, seq2))
def ifast_comp(seq1, seqs, transpositions=False): 'Return an iterator over all the sequences in `seqs` which distance from\n\t`seq1` is lower or equal to 2. The sequences which distance from the\n\treference sequence is higher than that are dropped.\n\t\n\t\t`seq1`: the reference sequence.\n\t\t`seqs`: a series of sequences (can be a generator)\n\t\t`transpositions` has the same sense than in `fast_comp`.\n\t\n\tThe return value is a series of pairs (distance, sequence).\n\t\n\tYou might want to call `sorted()` on the iterator to get the results in a\n\tsignificant order:\n\t\n\t\t>>> g = ifast_comp("foo", ["fo", "bar", "foob", "foo", "foobaz"])\n\t\t>>> sorted(g)\n\t\t[(0, \'foo\'), (1, \'fo\'), (1, \'foob\')]\n\t' for seq2 in seqs: dist = fast_comp(seq1, seq2, transpositions) if (dist != (- 1)): (yield (dist, seq2))<|docstring|>Return an iterator over all the sequences in `seqs` which distance from `seq1` is lower or equal to 2. The sequences which distance from the reference sequence is higher than that are dropped. `seq1`: the reference sequence. `seqs`: a series of sequences (can be a generator) `transpositions` has the same sense than in `fast_comp`. The return value is a series of pairs (distance, sequence). You might want to call `sorted()` on the iterator to get the results in a significant order: >>> g = ifast_comp("foo", ["fo", "bar", "foob", "foo", "foobaz"]) >>> sorted(g) [(0, 'foo'), (1, 'fo'), (1, 'foob')]<|endoftext|>
86e0ea376c2dc3cc84b4060d225b595bd9fe0a74892a930df03101a81811b807
def addRecord(temp, press, humd, mois): 'Add a new record to the database' conn = sqlite3.connect('/home/pi/sensors.db') cur = conn.cursor() cur.execute('insert into sensors (temperature, pressure, humidity, moisture) values (?, ?, ?, ?)', (temp, press, humd, mois)) conn.commit() conn.close()
Add a new record to the database
scripts/record-sensors.py
addRecord
hairyspider/tomcam
0
python
def addRecord(temp, press, humd, mois): conn = sqlite3.connect('/home/pi/sensors.db') cur = conn.cursor() cur.execute('insert into sensors (temperature, pressure, humidity, moisture) values (?, ?, ?, ?)', (temp, press, humd, mois)) conn.commit() conn.close()
def addRecord(temp, press, humd, mois): conn = sqlite3.connect('/home/pi/sensors.db') cur = conn.cursor() cur.execute('insert into sensors (temperature, pressure, humidity, moisture) values (?, ?, ?, ?)', (temp, press, humd, mois)) conn.commit() conn.close()<|docstring|>Add a new record to the database<|endoftext|>
0c23a45926f2a20744d14b5080526a5ef1e2bf9fe5af76c515e84e04acdc6ebc
def nepmaster(version='2', param=''): '\n Launch master in NEP_WS\n\n Parameters\n ----------\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n param : string\n Can be "local", or "network"\n ' if (os.environ.get('OS', '') == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() script = 'master' command = (((((('python ' + nep_ws) + '/') + script) + '.py') + ' ') + param) if (os.environ.get('OS', '') == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run()
Launch master in NEP_WS Parameters ---------- version : string Python version, 0 for default, 2 for Python 2 and 3 for Python 3 param : string Can be "local", or "network"
nep/helpers.py
nepmaster
enriquecoronadozu/NEP
5
python
def nepmaster(version='2', param=): '\n Launch master in NEP_WS\n\n Parameters\n ----------\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n param : string\n Can be "local", or "network"\n ' if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() script = 'master' command = (((((('python ' + nep_ws) + '/') + script) + '.py') + ' ') + param) if (os.environ.get('OS', ) == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run()
def nepmaster(version='2', param=): '\n Launch master in NEP_WS\n\n Parameters\n ----------\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n param : string\n Can be "local", or "network"\n ' if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() script = 'master' command = (((((('python ' + nep_ws) + '/') + script) + '.py') + ' ') + param) if (os.environ.get('OS', ) == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run()<|docstring|>Launch master in NEP_WS Parameters ---------- version : string Python version, 0 for default, 2 for Python 2 and 3 for Python 3 param : string Can be "local", or "network"<|endoftext|>
7ebbd1edfd3b78684243e93d3df5d2106acc6cd9548a76432b648e4055bf555f
def neprun(module, script, parameters, version='2'): '\n Launch a python script in NEP_WS\n\n Parameters\n ----------\n module : string\n Module name\n\n script : string\n Script name\n\n script : parameters\n Additional command line parameters\n\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n ' try: if (os.environ.get('OS', '') == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() command = (((((((('python ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print(('To run: ' + command)) if (os.environ.get('OS', '') == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run() except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) time.sleep(3) return False
Launch a python script in NEP_WS Parameters ---------- module : string Module name script : string Script name script : parameters Additional command line parameters version : string Python version, 0 for default, 2 for Python 2 and 3 for Python 3
nep/helpers.py
neprun
enriquecoronadozu/NEP
5
python
def neprun(module, script, parameters, version='2'): '\n Launch a python script in NEP_WS\n\n Parameters\n ----------\n module : string\n Module name\n\n script : string\n Script name\n\n script : parameters\n Additional command line parameters\n\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n ' try: if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() command = (((((((('python ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print(('To run: ' + command)) if (os.environ.get('OS', ) == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run() except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) time.sleep(3) return False
def neprun(module, script, parameters, version='2'): '\n Launch a python script in NEP_WS\n\n Parameters\n ----------\n module : string\n Module name\n\n script : string\n Script name\n\n script : parameters\n Additional command line parameters\n\n version : string\n Python version, 0 for default, 2 for Python 2 and 3 for Python 3\n\n ' try: if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE nep_ws = nep.getNEPpath() command = (((((((('python ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print(('To run: ' + command)) if (os.environ.get('OS', ) == 'Windows_NT'): if (version == '2'): print('Running in Python 2') command = (((((((('py -2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('py -3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) print('Windows launcher in new console .......') Popen(command, creationflags=CREATE_NEW_CONSOLE) else: print('OSX launcher .......') if (version == '2'): print('Running in Python 2') command = (((((((('python2 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) elif (version == '3'): print('Running in Python 3') command = (((((((('python3 ' + nep_ws) + '/') + module) + '/') + script) + '.py') + ' ') + parameters) import applescript tell = 'tell application "Terminal" to do script ' complete = (((tell + '"') + command) + '"') applescript.AppleScript(complete).run() except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) time.sleep(3) return False<|docstring|>Launch a python script in NEP_WS Parameters ---------- module : string Module name script : string Script name script : parameters Additional command line parameters version : string Python version, 0 for default, 2 for Python 2 and 3 for Python 3<|endoftext|>
1178116a44f11ab4de7a6063292df7f230c4e2019bdced639601d9d8d5534bd0
def masterRegister(node, topic, master_ip='127.0.0.1', master_port=7000, socket='subscriber', mode='many2many', pid='none', data_type='json'): ' Register topic in master node\n \n Parameters\n ----------\n\n node: string\n Node name\n\n topic : string\n Topic to register\n\n master_ip : string \n IP of the master node service\n\n master_port : int\n Port of the master node service\n\n socket: string\n Socket type. Example "surveyor", "publisher", "subscriber", "respondent", "client", "server"\n\n mode: string\n Parameter only for Publish/Subscriber pattern. Options are "one2many", "many2one" and "many2many".\n \n mode: pid\n PID identifier\n\n data_type: json\n message type\n\n Returns\n ----------\n\n result : bool\n Only if True socket can be connected\n\n port : string\n Port used to connect the socket\n\n ip : string\n IP used to connect the socket\n \n ' topic = topic client = nep.client(master_ip, master_port, transport='ZMQ', debug=False) time.sleep(0.01) message = {'node': node, 'topic': topic, 'mode': mode, 'socket': socket, 'pid': pid, 'msg_type': data_type} client.send_info(message) response = client.listen_info() try: topic_id = response['topic'] if (topic_id == topic): port = response['port'] if ('ip' in response): ip = response['ip'] else: ip = '127.0.0.1' state = response['state'] if (state == 'success'): return (True, port, ip) else: print('NEP ERROR: wrong socket configuration') return (False, port, ip) except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) print('NEP ERROR: wrong response from master') return (False, 'none', 'none') print('NEP ERROR: wrong topic from master') return (False, 'none', 'none')
Register topic in master node Parameters ---------- node: string Node name topic : string Topic to register master_ip : string IP of the master node service master_port : int Port of the master node service socket: string Socket type. Example "surveyor", "publisher", "subscriber", "respondent", "client", "server" mode: string Parameter only for Publish/Subscriber pattern. Options are "one2many", "many2one" and "many2many". mode: pid PID identifier data_type: json message type Returns ---------- result : bool Only if True socket can be connected port : string Port used to connect the socket ip : string IP used to connect the socket
nep/helpers.py
masterRegister
enriquecoronadozu/NEP
5
python
def masterRegister(node, topic, master_ip='127.0.0.1', master_port=7000, socket='subscriber', mode='many2many', pid='none', data_type='json'): ' Register topic in master node\n \n Parameters\n ----------\n\n node: string\n Node name\n\n topic : string\n Topic to register\n\n master_ip : string \n IP of the master node service\n\n master_port : int\n Port of the master node service\n\n socket: string\n Socket type. Example "surveyor", "publisher", "subscriber", "respondent", "client", "server"\n\n mode: string\n Parameter only for Publish/Subscriber pattern. Options are "one2many", "many2one" and "many2many".\n \n mode: pid\n PID identifier\n\n data_type: json\n message type\n\n Returns\n ----------\n\n result : bool\n Only if True socket can be connected\n\n port : string\n Port used to connect the socket\n\n ip : string\n IP used to connect the socket\n \n ' topic = topic client = nep.client(master_ip, master_port, transport='ZMQ', debug=False) time.sleep(0.01) message = {'node': node, 'topic': topic, 'mode': mode, 'socket': socket, 'pid': pid, 'msg_type': data_type} client.send_info(message) response = client.listen_info() try: topic_id = response['topic'] if (topic_id == topic): port = response['port'] if ('ip' in response): ip = response['ip'] else: ip = '127.0.0.1' state = response['state'] if (state == 'success'): return (True, port, ip) else: print('NEP ERROR: wrong socket configuration') return (False, port, ip) except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) print('NEP ERROR: wrong response from master') return (False, 'none', 'none') print('NEP ERROR: wrong topic from master') return (False, 'none', 'none')
def masterRegister(node, topic, master_ip='127.0.0.1', master_port=7000, socket='subscriber', mode='many2many', pid='none', data_type='json'): ' Register topic in master node\n \n Parameters\n ----------\n\n node: string\n Node name\n\n topic : string\n Topic to register\n\n master_ip : string \n IP of the master node service\n\n master_port : int\n Port of the master node service\n\n socket: string\n Socket type. Example "surveyor", "publisher", "subscriber", "respondent", "client", "server"\n\n mode: string\n Parameter only for Publish/Subscriber pattern. Options are "one2many", "many2one" and "many2many".\n \n mode: pid\n PID identifier\n\n data_type: json\n message type\n\n Returns\n ----------\n\n result : bool\n Only if True socket can be connected\n\n port : string\n Port used to connect the socket\n\n ip : string\n IP used to connect the socket\n \n ' topic = topic client = nep.client(master_ip, master_port, transport='ZMQ', debug=False) time.sleep(0.01) message = {'node': node, 'topic': topic, 'mode': mode, 'socket': socket, 'pid': pid, 'msg_type': data_type} client.send_info(message) response = client.listen_info() try: topic_id = response['topic'] if (topic_id == topic): port = response['port'] if ('ip' in response): ip = response['ip'] else: ip = '127.0.0.1' state = response['state'] if (state == 'success'): return (True, port, ip) else: print('NEP ERROR: wrong socket configuration') return (False, port, ip) except Exception as e: (exc_type, exc_obj, exc_tb) = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) print('NEP ERROR: wrong response from master') return (False, 'none', 'none') print('NEP ERROR: wrong topic from master') return (False, 'none', 'none')<|docstring|>Register topic in master node Parameters ---------- node: string Node name topic : string Topic to register master_ip : string IP of the master node service master_port : int Port of the master node service socket: string Socket type. Example "surveyor", "publisher", "subscriber", "respondent", "client", "server" mode: string Parameter only for Publish/Subscriber pattern. Options are "one2many", "many2one" and "many2many". mode: pid PID identifier data_type: json message type Returns ---------- result : bool Only if True socket can be connected port : string Port used to connect the socket ip : string IP used to connect the socket<|endoftext|>
0c6798bcea0af1445e5ce6c162ae4cfac4818813da7543fbdb837542d0eacb73
def getNEPpath(): ' Get path to NEP Workspace\n\n Returns\n ----------\n\n path : string\n Current workspace path\n\n ' import os return os.environ['NEP_WS']
Get path to NEP Workspace Returns ---------- path : string Current workspace path
nep/helpers.py
getNEPpath
enriquecoronadozu/NEP
5
python
def getNEPpath(): ' Get path to NEP Workspace\n\n Returns\n ----------\n\n path : string\n Current workspace path\n\n ' import os return os.environ['NEP_WS']
def getNEPpath(): ' Get path to NEP Workspace\n\n Returns\n ----------\n\n path : string\n Current workspace path\n\n ' import os return os.environ['NEP_WS']<|docstring|>Get path to NEP Workspace Returns ---------- path : string Current workspace path<|endoftext|>
1de59a12b78b136ecafb0246d9a14b8c809bcd1409f23171e76f159f8bb3825e
def setNEPpath(new_path): ' Set path to NEP Workspace\n\n Parameters\n ----------\n\n new_path: string\n New path for NEP workspace\n\n ' import os if (os.environ.get('OS', '') == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE command = (('setx NEP_WS "' + new_path) + '"') Popen(command, creationflags=CREATE_NEW_CONSOLE) os.environ['NEP_WS'] = new_path
Set path to NEP Workspace Parameters ---------- new_path: string New path for NEP workspace
nep/helpers.py
setNEPpath
enriquecoronadozu/NEP
5
python
def setNEPpath(new_path): ' Set path to NEP Workspace\n\n Parameters\n ----------\n\n new_path: string\n New path for NEP workspace\n\n ' import os if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE command = (('setx NEP_WS "' + new_path) + '"') Popen(command, creationflags=CREATE_NEW_CONSOLE) os.environ['NEP_WS'] = new_path
def setNEPpath(new_path): ' Set path to NEP Workspace\n\n Parameters\n ----------\n\n new_path: string\n New path for NEP workspace\n\n ' import os if (os.environ.get('OS', ) == 'Windows_NT'): from subprocess import CREATE_NEW_CONSOLE command = (('setx NEP_WS "' + new_path) + '"') Popen(command, creationflags=CREATE_NEW_CONSOLE) os.environ['NEP_WS'] = new_path<|docstring|>Set path to NEP Workspace Parameters ---------- new_path: string New path for NEP workspace<|endoftext|>
66f74da86cb4da1b15e5634c6e48d6070c87e9f9cbd9e70b5b0e0d71fc5d1a9c
def getMyIP(): ' Get current IP address of the PC\n\n Returns\n ----------\n\n ip : string\n Current IP\n\n ' import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) cw_ip = s.getsockname()[0] s.close() return str(cw_ip)
Get current IP address of the PC Returns ---------- ip : string Current IP
nep/helpers.py
getMyIP
enriquecoronadozu/NEP
5
python
def getMyIP(): ' Get current IP address of the PC\n\n Returns\n ----------\n\n ip : string\n Current IP\n\n ' import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) cw_ip = s.getsockname()[0] s.close() return str(cw_ip)
def getMyIP(): ' Get current IP address of the PC\n\n Returns\n ----------\n\n ip : string\n Current IP\n\n ' import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) cw_ip = s.getsockname()[0] s.close() return str(cw_ip)<|docstring|>Get current IP address of the PC Returns ---------- ip : string Current IP<|endoftext|>
5b05e8dbb59c5cd9359bf54100c82cf60a677ef3d077e744a32337c8536b50fd
def json2dict(s, **kwargs): 'Convert JSON to python dictionary. See jsonapi.jsonmod.loads for details on kwargs.\n \n Parameters\n ----------\n s: string\n string with the content of the json data\n\n Returns:\n ----------\n dict: dictionary\n dictionary with the content of the json data\n ' if (sys.version_info[0] == 3): return simplejson.loads(s, **kwargs) elif ((str is unicode) and isinstance(s, bytes)): s = s.decode('utf8') return simplejson.loads(s, **kwargs)
Convert JSON to python dictionary. See jsonapi.jsonmod.loads for details on kwargs. Parameters ---------- s: string string with the content of the json data Returns: ---------- dict: dictionary dictionary with the content of the json data
nep/helpers.py
json2dict
enriquecoronadozu/NEP
5
python
def json2dict(s, **kwargs): 'Convert JSON to python dictionary. See jsonapi.jsonmod.loads for details on kwargs.\n \n Parameters\n ----------\n s: string\n string with the content of the json data\n\n Returns:\n ----------\n dict: dictionary\n dictionary with the content of the json data\n ' if (sys.version_info[0] == 3): return simplejson.loads(s, **kwargs) elif ((str is unicode) and isinstance(s, bytes)): s = s.decode('utf8') return simplejson.loads(s, **kwargs)
def json2dict(s, **kwargs): 'Convert JSON to python dictionary. See jsonapi.jsonmod.loads for details on kwargs.\n \n Parameters\n ----------\n s: string\n string with the content of the json data\n\n Returns:\n ----------\n dict: dictionary\n dictionary with the content of the json data\n ' if (sys.version_info[0] == 3): return simplejson.loads(s, **kwargs) elif ((str is unicode) and isinstance(s, bytes)): s = s.decode('utf8') return simplejson.loads(s, **kwargs)<|docstring|>Convert JSON to python dictionary. See jsonapi.jsonmod.loads for details on kwargs. Parameters ---------- s: string string with the content of the json data Returns: ---------- dict: dictionary dictionary with the content of the json data<|endoftext|>
4bf656201f500e26c5a39359cd8a2fc35f8a658543a93866e35e87ebc27cbd2e
def dict2json(o, **kwargs): ' Load object from JSON bytes (utf-8). See jsonapi.jsonmod.dumps for details on kwargs.\n \n Parameters\n ----------\n o: dictionary\n dictionary to convert\n \n\n Returns:\n ----------\n s: string\n string in json format\n\n ' if ('separators' not in kwargs): kwargs['separators'] = (',', ':') s = simplejson.dumps(o, **kwargs) import sys if (sys.version_info[0] == 3): if isinstance(s, str): s = s.encode('utf8') elif isinstance(s, unicode): s = s.encode('utf8') return s
Load object from JSON bytes (utf-8). See jsonapi.jsonmod.dumps for details on kwargs. Parameters ---------- o: dictionary dictionary to convert Returns: ---------- s: string string in json format
nep/helpers.py
dict2json
enriquecoronadozu/NEP
5
python
def dict2json(o, **kwargs): ' Load object from JSON bytes (utf-8). See jsonapi.jsonmod.dumps for details on kwargs.\n \n Parameters\n ----------\n o: dictionary\n dictionary to convert\n \n\n Returns:\n ----------\n s: string\n string in json format\n\n ' if ('separators' not in kwargs): kwargs['separators'] = (',', ':') s = simplejson.dumps(o, **kwargs) import sys if (sys.version_info[0] == 3): if isinstance(s, str): s = s.encode('utf8') elif isinstance(s, unicode): s = s.encode('utf8') return s
def dict2json(o, **kwargs): ' Load object from JSON bytes (utf-8). See jsonapi.jsonmod.dumps for details on kwargs.\n \n Parameters\n ----------\n o: dictionary\n dictionary to convert\n \n\n Returns:\n ----------\n s: string\n string in json format\n\n ' if ('separators' not in kwargs): kwargs['separators'] = (',', ':') s = simplejson.dumps(o, **kwargs) import sys if (sys.version_info[0] == 3): if isinstance(s, str): s = s.encode('utf8') elif isinstance(s, unicode): s = s.encode('utf8') return s<|docstring|>Load object from JSON bytes (utf-8). See jsonapi.jsonmod.dumps for details on kwargs. Parameters ---------- o: dictionary dictionary to convert Returns: ---------- s: string string in json format<|endoftext|>
b34144a7bad97228cff0548ec109f87978b2affb69eff2ccdbff58d101db3628
def read_json(json_file): ' Read a json file and return a string \n \n Parameters\n ----------\n json file:string\n Path + name + extension of the json file\n\n Returns:\n ----------\n json_data: string\n string with the content of the json data\n\n ' json_data = open(json_file).read() return json_data
Read a json file and return a string Parameters ---------- json file:string Path + name + extension of the json file Returns: ---------- json_data: string string with the content of the json data
nep/helpers.py
read_json
enriquecoronadozu/NEP
5
python
def read_json(json_file): ' Read a json file and return a string \n \n Parameters\n ----------\n json file:string\n Path + name + extension of the json file\n\n Returns:\n ----------\n json_data: string\n string with the content of the json data\n\n ' json_data = open(json_file).read() return json_data
def read_json(json_file): ' Read a json file and return a string \n \n Parameters\n ----------\n json file:string\n Path + name + extension of the json file\n\n Returns:\n ----------\n json_data: string\n string with the content of the json data\n\n ' json_data = open(json_file).read() return json_data<|docstring|>Read a json file and return a string Parameters ---------- json file:string Path + name + extension of the json file Returns: ---------- json_data: string string with the content of the json data<|endoftext|>
452b666f3d04b9822df40795b62a9544f73ed517beae520aa1131e3f43256e1a
def getFiles(path): ' Get a list of files that are inside a folder\n \n Parameters\n ----------\n path: string\n path of the folder\n\n Returns:\n ----------\n onlyfiles: list \n list of strings with the name of the files in the folder\n\n ' onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] return onlyfiles
Get a list of files that are inside a folder Parameters ---------- path: string path of the folder Returns: ---------- onlyfiles: list list of strings with the name of the files in the folder
nep/helpers.py
getFiles
enriquecoronadozu/NEP
5
python
def getFiles(path): ' Get a list of files that are inside a folder\n \n Parameters\n ----------\n path: string\n path of the folder\n\n Returns:\n ----------\n onlyfiles: list \n list of strings with the name of the files in the folder\n\n ' onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] return onlyfiles
def getFiles(path): ' Get a list of files that are inside a folder\n \n Parameters\n ----------\n path: string\n path of the folder\n\n Returns:\n ----------\n onlyfiles: list \n list of strings with the name of the files in the folder\n\n ' onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] return onlyfiles<|docstring|>Get a list of files that are inside a folder Parameters ---------- path: string path of the folder Returns: ---------- onlyfiles: list list of strings with the name of the files in the folder<|endoftext|>
db54f8d0c78dd4d8964bfa42bb27ba0199185c1046fee3b0654cf17557002b39
def fetch_url(url, fname): ' save a url to a local file ' fin = req.urlopen(url) data = fin.read() with open(fname, mode='wb') as fout: fout.write(data)
save a url to a local file
matt_file.py
fetch_url
decareano/boto3
0
python
def fetch_url(url, fname): ' ' fin = req.urlopen(url) data = fin.read() with open(fname, mode='wb') as fout: fout.write(data)
def fetch_url(url, fname): ' ' fin = req.urlopen(url) data = fin.read() with open(fname, mode='wb') as fout: fout.write(data)<|docstring|>save a url to a local file<|endoftext|>
24df0b9410f8a28f9ec41e6c38555a62d753962923cfe89ab29bb8a16bf0fc75
def __init__(self, blob_data_payment_rate, db_dir=None, lbryid=None, peer_manager=None, dht_node_port=None, known_dht_nodes=None, peer_finder=None, hash_announcer=None, blob_dir=None, blob_manager=None, peer_port=None, use_upnp=True, rate_limiter=None, wallet=None, dht_node_class=node.Node, blob_tracker_class=None, payment_rate_manager_class=None, is_generous=True): "@param blob_data_payment_rate: The default payment rate for blob data\n\n @param db_dir: The directory in which levelDB files should be stored\n\n @param lbryid: The unique ID of this node\n\n @param peer_manager: An object which keeps track of all known\n peers. If None, a PeerManager will be created\n\n @param dht_node_port: The port on which the dht node should\n listen for incoming connections\n\n @param known_dht_nodes: A list of nodes which the dht node\n should use to bootstrap into the dht\n\n @param peer_finder: An object which is used to look up peers\n that are associated with some hash. If None, a\n DHTPeerFinder will be used, which looks for peers in the\n distributed hash table.\n\n @param hash_announcer: An object which announces to other\n peers that this peer is associated with some hash. If\n None, and peer_port is not None, a DHTHashAnnouncer will\n be used. If None and peer_port is None, a\n DummyHashAnnouncer will be used, which will not actually\n announce anything.\n\n @param blob_dir: The directory in which blobs will be\n stored. If None and blob_manager is None, blobs will be\n stored in memory only.\n\n @param blob_manager: An object which keeps track of downloaded\n blobs and provides access to them. If None, and blob_dir\n is not None, a DiskBlobManager will be used, with the\n given blob_dir. If None and blob_dir is None, a\n TempBlobManager will be used, which stores blobs in memory\n only.\n\n @param peer_port: The port on which other peers should connect\n to this peer\n\n @param use_upnp: Whether or not to try to open a hole in the\n firewall so that outside peers can connect to this peer's\n peer_port and dht_node_port\n\n @param rate_limiter: An object which keeps track of the amount\n of data transferred to and from this peer, and can limit\n that rate if desired\n\n @param wallet: An object which will be used to keep track of\n expected payments and which will pay peers. If None, a\n wallet which uses the Point Trader system will be used,\n which is meant for testing only\n\n " self.db_dir = db_dir self.lbryid = lbryid self.peer_manager = peer_manager self.dht_node_port = dht_node_port self.known_dht_nodes = known_dht_nodes if (self.known_dht_nodes is None): self.known_dht_nodes = [] self.peer_finder = peer_finder self.hash_announcer = hash_announcer self.blob_dir = blob_dir self.blob_manager = blob_manager self.blob_tracker = None self.blob_tracker_class = (blob_tracker_class or BlobAvailabilityTracker) self.peer_port = peer_port self.use_upnp = use_upnp self.rate_limiter = rate_limiter self.external_ip = '127.0.0.1' self.upnp_redirects = [] self.wallet = wallet self.dht_node_class = dht_node_class self.dht_node = None self.base_payment_rate_manager = BasePaymentRateManager(blob_data_payment_rate) self.payment_rate_manager = None self.payment_rate_manager_class = (payment_rate_manager_class or NegotiatedPaymentRateManager) self.is_generous = is_generous
@param blob_data_payment_rate: The default payment rate for blob data @param db_dir: The directory in which levelDB files should be stored @param lbryid: The unique ID of this node @param peer_manager: An object which keeps track of all known peers. If None, a PeerManager will be created @param dht_node_port: The port on which the dht node should listen for incoming connections @param known_dht_nodes: A list of nodes which the dht node should use to bootstrap into the dht @param peer_finder: An object which is used to look up peers that are associated with some hash. If None, a DHTPeerFinder will be used, which looks for peers in the distributed hash table. @param hash_announcer: An object which announces to other peers that this peer is associated with some hash. If None, and peer_port is not None, a DHTHashAnnouncer will be used. If None and peer_port is None, a DummyHashAnnouncer will be used, which will not actually announce anything. @param blob_dir: The directory in which blobs will be stored. If None and blob_manager is None, blobs will be stored in memory only. @param blob_manager: An object which keeps track of downloaded blobs and provides access to them. If None, and blob_dir is not None, a DiskBlobManager will be used, with the given blob_dir. If None and blob_dir is None, a TempBlobManager will be used, which stores blobs in memory only. @param peer_port: The port on which other peers should connect to this peer @param use_upnp: Whether or not to try to open a hole in the firewall so that outside peers can connect to this peer's peer_port and dht_node_port @param rate_limiter: An object which keeps track of the amount of data transferred to and from this peer, and can limit that rate if desired @param wallet: An object which will be used to keep track of expected payments and which will pay peers. If None, a wallet which uses the Point Trader system will be used, which is meant for testing only
lbrynet/core/Session.py
__init__
shyba/lbry
1
python
def __init__(self, blob_data_payment_rate, db_dir=None, lbryid=None, peer_manager=None, dht_node_port=None, known_dht_nodes=None, peer_finder=None, hash_announcer=None, blob_dir=None, blob_manager=None, peer_port=None, use_upnp=True, rate_limiter=None, wallet=None, dht_node_class=node.Node, blob_tracker_class=None, payment_rate_manager_class=None, is_generous=True): "@param blob_data_payment_rate: The default payment rate for blob data\n\n @param db_dir: The directory in which levelDB files should be stored\n\n @param lbryid: The unique ID of this node\n\n @param peer_manager: An object which keeps track of all known\n peers. If None, a PeerManager will be created\n\n @param dht_node_port: The port on which the dht node should\n listen for incoming connections\n\n @param known_dht_nodes: A list of nodes which the dht node\n should use to bootstrap into the dht\n\n @param peer_finder: An object which is used to look up peers\n that are associated with some hash. If None, a\n DHTPeerFinder will be used, which looks for peers in the\n distributed hash table.\n\n @param hash_announcer: An object which announces to other\n peers that this peer is associated with some hash. If\n None, and peer_port is not None, a DHTHashAnnouncer will\n be used. If None and peer_port is None, a\n DummyHashAnnouncer will be used, which will not actually\n announce anything.\n\n @param blob_dir: The directory in which blobs will be\n stored. If None and blob_manager is None, blobs will be\n stored in memory only.\n\n @param blob_manager: An object which keeps track of downloaded\n blobs and provides access to them. If None, and blob_dir\n is not None, a DiskBlobManager will be used, with the\n given blob_dir. If None and blob_dir is None, a\n TempBlobManager will be used, which stores blobs in memory\n only.\n\n @param peer_port: The port on which other peers should connect\n to this peer\n\n @param use_upnp: Whether or not to try to open a hole in the\n firewall so that outside peers can connect to this peer's\n peer_port and dht_node_port\n\n @param rate_limiter: An object which keeps track of the amount\n of data transferred to and from this peer, and can limit\n that rate if desired\n\n @param wallet: An object which will be used to keep track of\n expected payments and which will pay peers. If None, a\n wallet which uses the Point Trader system will be used,\n which is meant for testing only\n\n " self.db_dir = db_dir self.lbryid = lbryid self.peer_manager = peer_manager self.dht_node_port = dht_node_port self.known_dht_nodes = known_dht_nodes if (self.known_dht_nodes is None): self.known_dht_nodes = [] self.peer_finder = peer_finder self.hash_announcer = hash_announcer self.blob_dir = blob_dir self.blob_manager = blob_manager self.blob_tracker = None self.blob_tracker_class = (blob_tracker_class or BlobAvailabilityTracker) self.peer_port = peer_port self.use_upnp = use_upnp self.rate_limiter = rate_limiter self.external_ip = '127.0.0.1' self.upnp_redirects = [] self.wallet = wallet self.dht_node_class = dht_node_class self.dht_node = None self.base_payment_rate_manager = BasePaymentRateManager(blob_data_payment_rate) self.payment_rate_manager = None self.payment_rate_manager_class = (payment_rate_manager_class or NegotiatedPaymentRateManager) self.is_generous = is_generous
def __init__(self, blob_data_payment_rate, db_dir=None, lbryid=None, peer_manager=None, dht_node_port=None, known_dht_nodes=None, peer_finder=None, hash_announcer=None, blob_dir=None, blob_manager=None, peer_port=None, use_upnp=True, rate_limiter=None, wallet=None, dht_node_class=node.Node, blob_tracker_class=None, payment_rate_manager_class=None, is_generous=True): "@param blob_data_payment_rate: The default payment rate for blob data\n\n @param db_dir: The directory in which levelDB files should be stored\n\n @param lbryid: The unique ID of this node\n\n @param peer_manager: An object which keeps track of all known\n peers. If None, a PeerManager will be created\n\n @param dht_node_port: The port on which the dht node should\n listen for incoming connections\n\n @param known_dht_nodes: A list of nodes which the dht node\n should use to bootstrap into the dht\n\n @param peer_finder: An object which is used to look up peers\n that are associated with some hash. If None, a\n DHTPeerFinder will be used, which looks for peers in the\n distributed hash table.\n\n @param hash_announcer: An object which announces to other\n peers that this peer is associated with some hash. If\n None, and peer_port is not None, a DHTHashAnnouncer will\n be used. If None and peer_port is None, a\n DummyHashAnnouncer will be used, which will not actually\n announce anything.\n\n @param blob_dir: The directory in which blobs will be\n stored. If None and blob_manager is None, blobs will be\n stored in memory only.\n\n @param blob_manager: An object which keeps track of downloaded\n blobs and provides access to them. If None, and blob_dir\n is not None, a DiskBlobManager will be used, with the\n given blob_dir. If None and blob_dir is None, a\n TempBlobManager will be used, which stores blobs in memory\n only.\n\n @param peer_port: The port on which other peers should connect\n to this peer\n\n @param use_upnp: Whether or not to try to open a hole in the\n firewall so that outside peers can connect to this peer's\n peer_port and dht_node_port\n\n @param rate_limiter: An object which keeps track of the amount\n of data transferred to and from this peer, and can limit\n that rate if desired\n\n @param wallet: An object which will be used to keep track of\n expected payments and which will pay peers. If None, a\n wallet which uses the Point Trader system will be used,\n which is meant for testing only\n\n " self.db_dir = db_dir self.lbryid = lbryid self.peer_manager = peer_manager self.dht_node_port = dht_node_port self.known_dht_nodes = known_dht_nodes if (self.known_dht_nodes is None): self.known_dht_nodes = [] self.peer_finder = peer_finder self.hash_announcer = hash_announcer self.blob_dir = blob_dir self.blob_manager = blob_manager self.blob_tracker = None self.blob_tracker_class = (blob_tracker_class or BlobAvailabilityTracker) self.peer_port = peer_port self.use_upnp = use_upnp self.rate_limiter = rate_limiter self.external_ip = '127.0.0.1' self.upnp_redirects = [] self.wallet = wallet self.dht_node_class = dht_node_class self.dht_node = None self.base_payment_rate_manager = BasePaymentRateManager(blob_data_payment_rate) self.payment_rate_manager = None self.payment_rate_manager_class = (payment_rate_manager_class or NegotiatedPaymentRateManager) self.is_generous = is_generous<|docstring|>@param blob_data_payment_rate: The default payment rate for blob data @param db_dir: The directory in which levelDB files should be stored @param lbryid: The unique ID of this node @param peer_manager: An object which keeps track of all known peers. If None, a PeerManager will be created @param dht_node_port: The port on which the dht node should listen for incoming connections @param known_dht_nodes: A list of nodes which the dht node should use to bootstrap into the dht @param peer_finder: An object which is used to look up peers that are associated with some hash. If None, a DHTPeerFinder will be used, which looks for peers in the distributed hash table. @param hash_announcer: An object which announces to other peers that this peer is associated with some hash. If None, and peer_port is not None, a DHTHashAnnouncer will be used. If None and peer_port is None, a DummyHashAnnouncer will be used, which will not actually announce anything. @param blob_dir: The directory in which blobs will be stored. If None and blob_manager is None, blobs will be stored in memory only. @param blob_manager: An object which keeps track of downloaded blobs and provides access to them. If None, and blob_dir is not None, a DiskBlobManager will be used, with the given blob_dir. If None and blob_dir is None, a TempBlobManager will be used, which stores blobs in memory only. @param peer_port: The port on which other peers should connect to this peer @param use_upnp: Whether or not to try to open a hole in the firewall so that outside peers can connect to this peer's peer_port and dht_node_port @param rate_limiter: An object which keeps track of the amount of data transferred to and from this peer, and can limit that rate if desired @param wallet: An object which will be used to keep track of expected payments and which will pay peers. If None, a wallet which uses the Point Trader system will be used, which is meant for testing only<|endoftext|>
80b0394c7811fadb7687b7e72477b90d990788434e70f924b8f7daad48ae2d68
def setup(self): 'Create the blob directory and database if necessary, start all desired services' log.debug('Setting up the lbry session') if (self.lbryid is None): self.lbryid = generate_id() if (self.wallet is None): from lbrynet.core.PTCWallet import PTCWallet self.wallet = PTCWallet(self.db_dir) if (self.peer_manager is None): self.peer_manager = PeerManager() if (self.use_upnp is True): d = self._try_upnp() else: d = defer.succeed(True) if (self.peer_finder is None): d.addCallback((lambda _: self._setup_dht())) elif ((self.hash_announcer is None) and (self.peer_port is not None)): log.warning('The server has no way to advertise its available blobs.') self.hash_announcer = DummyHashAnnouncer() d.addCallback((lambda _: self._setup_other_components())) return d
Create the blob directory and database if necessary, start all desired services
lbrynet/core/Session.py
setup
shyba/lbry
1
python
def setup(self): log.debug('Setting up the lbry session') if (self.lbryid is None): self.lbryid = generate_id() if (self.wallet is None): from lbrynet.core.PTCWallet import PTCWallet self.wallet = PTCWallet(self.db_dir) if (self.peer_manager is None): self.peer_manager = PeerManager() if (self.use_upnp is True): d = self._try_upnp() else: d = defer.succeed(True) if (self.peer_finder is None): d.addCallback((lambda _: self._setup_dht())) elif ((self.hash_announcer is None) and (self.peer_port is not None)): log.warning('The server has no way to advertise its available blobs.') self.hash_announcer = DummyHashAnnouncer() d.addCallback((lambda _: self._setup_other_components())) return d
def setup(self): log.debug('Setting up the lbry session') if (self.lbryid is None): self.lbryid = generate_id() if (self.wallet is None): from lbrynet.core.PTCWallet import PTCWallet self.wallet = PTCWallet(self.db_dir) if (self.peer_manager is None): self.peer_manager = PeerManager() if (self.use_upnp is True): d = self._try_upnp() else: d = defer.succeed(True) if (self.peer_finder is None): d.addCallback((lambda _: self._setup_dht())) elif ((self.hash_announcer is None) and (self.peer_port is not None)): log.warning('The server has no way to advertise its available blobs.') self.hash_announcer = DummyHashAnnouncer() d.addCallback((lambda _: self._setup_other_components())) return d<|docstring|>Create the blob directory and database if necessary, start all desired services<|endoftext|>
00475c5ff1721a839e12bcbcfc98f1f9103e52b8a40453959a2eea94403a021c
def shut_down(self): 'Stop all services' log.info('Shutting down %s', self) ds = [] if (self.blob_tracker is not None): ds.append(defer.maybeDeferred(self.blob_tracker.stop)) if (self.dht_node is not None): ds.append(defer.maybeDeferred(self.dht_node.stop)) if (self.rate_limiter is not None): ds.append(defer.maybeDeferred(self.rate_limiter.stop)) if (self.peer_finder is not None): ds.append(defer.maybeDeferred(self.peer_finder.stop)) if (self.hash_announcer is not None): ds.append(defer.maybeDeferred(self.hash_announcer.stop)) if (self.wallet is not None): ds.append(defer.maybeDeferred(self.wallet.stop)) if (self.blob_manager is not None): ds.append(defer.maybeDeferred(self.blob_manager.stop)) if (self.use_upnp is True): ds.append(defer.maybeDeferred(self._unset_upnp)) return defer.DeferredList(ds)
Stop all services
lbrynet/core/Session.py
shut_down
shyba/lbry
1
python
def shut_down(self): log.info('Shutting down %s', self) ds = [] if (self.blob_tracker is not None): ds.append(defer.maybeDeferred(self.blob_tracker.stop)) if (self.dht_node is not None): ds.append(defer.maybeDeferred(self.dht_node.stop)) if (self.rate_limiter is not None): ds.append(defer.maybeDeferred(self.rate_limiter.stop)) if (self.peer_finder is not None): ds.append(defer.maybeDeferred(self.peer_finder.stop)) if (self.hash_announcer is not None): ds.append(defer.maybeDeferred(self.hash_announcer.stop)) if (self.wallet is not None): ds.append(defer.maybeDeferred(self.wallet.stop)) if (self.blob_manager is not None): ds.append(defer.maybeDeferred(self.blob_manager.stop)) if (self.use_upnp is True): ds.append(defer.maybeDeferred(self._unset_upnp)) return defer.DeferredList(ds)
def shut_down(self): log.info('Shutting down %s', self) ds = [] if (self.blob_tracker is not None): ds.append(defer.maybeDeferred(self.blob_tracker.stop)) if (self.dht_node is not None): ds.append(defer.maybeDeferred(self.dht_node.stop)) if (self.rate_limiter is not None): ds.append(defer.maybeDeferred(self.rate_limiter.stop)) if (self.peer_finder is not None): ds.append(defer.maybeDeferred(self.peer_finder.stop)) if (self.hash_announcer is not None): ds.append(defer.maybeDeferred(self.hash_announcer.stop)) if (self.wallet is not None): ds.append(defer.maybeDeferred(self.wallet.stop)) if (self.blob_manager is not None): ds.append(defer.maybeDeferred(self.blob_manager.stop)) if (self.use_upnp is True): ds.append(defer.maybeDeferred(self._unset_upnp)) return defer.DeferredList(ds)<|docstring|>Stop all services<|endoftext|>
3821980932ffbd3d0d37b8590daf69f8c6c9b0ea5424683ff2e10d6ce3561c42
def markdown(text, **kwargs): 'Convert a markdown string to HTML and return HTML as a unicode string.\n\n This is a shortcut function for `Markdown` class to cover the most\n basic use case. It initializes an instance of Markdown, loads the\n necessary extensions and runs the parser on the given text.\n\n Keyword arguments:\n\n * text: Markdown formatted text as Unicode or ASCII string.\n * Any arguments accepted by the Markdown class.\n\n Returns: An HTML document as a string.\n\n ' md = Markdown(**kwargs) return md.convert(text)
Convert a markdown string to HTML and return HTML as a unicode string. This is a shortcut function for `Markdown` class to cover the most basic use case. It initializes an instance of Markdown, loads the necessary extensions and runs the parser on the given text. Keyword arguments: * text: Markdown formatted text as Unicode or ASCII string. * Any arguments accepted by the Markdown class. Returns: An HTML document as a string.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
markdown
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def markdown(text, **kwargs): 'Convert a markdown string to HTML and return HTML as a unicode string.\n\n This is a shortcut function for `Markdown` class to cover the most\n basic use case. It initializes an instance of Markdown, loads the\n necessary extensions and runs the parser on the given text.\n\n Keyword arguments:\n\n * text: Markdown formatted text as Unicode or ASCII string.\n * Any arguments accepted by the Markdown class.\n\n Returns: An HTML document as a string.\n\n ' md = Markdown(**kwargs) return md.convert(text)
def markdown(text, **kwargs): 'Convert a markdown string to HTML and return HTML as a unicode string.\n\n This is a shortcut function for `Markdown` class to cover the most\n basic use case. It initializes an instance of Markdown, loads the\n necessary extensions and runs the parser on the given text.\n\n Keyword arguments:\n\n * text: Markdown formatted text as Unicode or ASCII string.\n * Any arguments accepted by the Markdown class.\n\n Returns: An HTML document as a string.\n\n ' md = Markdown(**kwargs) return md.convert(text)<|docstring|>Convert a markdown string to HTML and return HTML as a unicode string. This is a shortcut function for `Markdown` class to cover the most basic use case. It initializes an instance of Markdown, loads the necessary extensions and runs the parser on the given text. Keyword arguments: * text: Markdown formatted text as Unicode or ASCII string. * Any arguments accepted by the Markdown class. Returns: An HTML document as a string.<|endoftext|>
267d3a987965fe080fbcf6fae30813ad2453685078037c0c0195dbee100f157d
def markdownFromFile(**kwargs): 'Read markdown code from a file and write it to a file or a stream.\n\n This is a shortcut function which initializes an instance of Markdown,\n and calls the convertFile method rather than convert.\n\n Keyword arguments:\n\n * input: a file name or readable object.\n * output: a file name or writable object.\n * encoding: Encoding of input and output.\n * Any arguments accepted by the Markdown class.\n\n ' md = Markdown(**kwargs) md.convertFile(kwargs.get('input', None), kwargs.get('output', None), kwargs.get('encoding', None))
Read markdown code from a file and write it to a file or a stream. This is a shortcut function which initializes an instance of Markdown, and calls the convertFile method rather than convert. Keyword arguments: * input: a file name or readable object. * output: a file name or writable object. * encoding: Encoding of input and output. * Any arguments accepted by the Markdown class.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
markdownFromFile
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def markdownFromFile(**kwargs): 'Read markdown code from a file and write it to a file or a stream.\n\n This is a shortcut function which initializes an instance of Markdown,\n and calls the convertFile method rather than convert.\n\n Keyword arguments:\n\n * input: a file name or readable object.\n * output: a file name or writable object.\n * encoding: Encoding of input and output.\n * Any arguments accepted by the Markdown class.\n\n ' md = Markdown(**kwargs) md.convertFile(kwargs.get('input', None), kwargs.get('output', None), kwargs.get('encoding', None))
def markdownFromFile(**kwargs): 'Read markdown code from a file and write it to a file or a stream.\n\n This is a shortcut function which initializes an instance of Markdown,\n and calls the convertFile method rather than convert.\n\n Keyword arguments:\n\n * input: a file name or readable object.\n * output: a file name or writable object.\n * encoding: Encoding of input and output.\n * Any arguments accepted by the Markdown class.\n\n ' md = Markdown(**kwargs) md.convertFile(kwargs.get('input', None), kwargs.get('output', None), kwargs.get('encoding', None))<|docstring|>Read markdown code from a file and write it to a file or a stream. This is a shortcut function which initializes an instance of Markdown, and calls the convertFile method rather than convert. Keyword arguments: * input: a file name or readable object. * output: a file name or writable object. * encoding: Encoding of input and output. * Any arguments accepted by the Markdown class.<|endoftext|>
db3070d5298143f6f22d0fc6d322878a1b4f4da95b6bcdf270534fab3f64c16e
def __init__(self, **kwargs): '\n Creates a new Markdown instance.\n\n Keyword arguments:\n\n * extensions: A list of extensions.\n If an item is an instance of a subclass of `markdown.extension.Extension`, the instance will be used\n as-is. If an item is of type string, first an entry point will be loaded. If that fails, the string is\n assumed to use Python dot notation (`path.to.module:ClassName`) to load a markdown.Extension subclass. If\n no class is specified, then a `makeExtension` function is called within the specified module.\n * extension_configs: Configuration settings for extensions.\n * output_format: Format of output. Supported formats are:\n * "xhtml": Outputs XHTML style tags. Default.\n * "html": Outputs HTML style tags.\n * tab_length: Length of tabs in the source. Default: 4\n\n ' self.tab_length = kwargs.get('tab_length', 4) self.ESCAPED_CHARS = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '#', '+', '-', '.', '!'] self.block_level_elements = ['address', 'article', 'aside', 'blockquote', 'details', 'div', 'dl', 'fieldset', 'figcaption', 'figure', 'footer', 'form', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'header', 'hgroup', 'hr', 'main', 'menu', 'nav', 'ol', 'p', 'pre', 'section', 'table', 'ul', 'canvas', 'colgroup', 'dd', 'body', 'dt', 'group', 'iframe', 'li', 'legend', 'math', 'map', 'noscript', 'output', 'object', 'option', 'progress', 'script', 'style', 'tbody', 'td', 'textarea', 'tfoot', 'th', 'thead', 'tr', 'video'] self.registeredExtensions = [] self.docType = '' self.stripTopLevelTags = True self.build_parser() self.references = {} self.htmlStash = util.HtmlStash() self.registerExtensions(extensions=kwargs.get('extensions', []), configs=kwargs.get('extension_configs', {})) self.set_output_format(kwargs.get('output_format', 'xhtml')) self.reset()
Creates a new Markdown instance. Keyword arguments: * extensions: A list of extensions. If an item is an instance of a subclass of `markdown.extension.Extension`, the instance will be used as-is. If an item is of type string, first an entry point will be loaded. If that fails, the string is assumed to use Python dot notation (`path.to.module:ClassName`) to load a markdown.Extension subclass. If no class is specified, then a `makeExtension` function is called within the specified module. * extension_configs: Configuration settings for extensions. * output_format: Format of output. Supported formats are: * "xhtml": Outputs XHTML style tags. Default. * "html": Outputs HTML style tags. * tab_length: Length of tabs in the source. Default: 4
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
__init__
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def __init__(self, **kwargs): '\n Creates a new Markdown instance.\n\n Keyword arguments:\n\n * extensions: A list of extensions.\n If an item is an instance of a subclass of `markdown.extension.Extension`, the instance will be used\n as-is. If an item is of type string, first an entry point will be loaded. If that fails, the string is\n assumed to use Python dot notation (`path.to.module:ClassName`) to load a markdown.Extension subclass. If\n no class is specified, then a `makeExtension` function is called within the specified module.\n * extension_configs: Configuration settings for extensions.\n * output_format: Format of output. Supported formats are:\n * "xhtml": Outputs XHTML style tags. Default.\n * "html": Outputs HTML style tags.\n * tab_length: Length of tabs in the source. Default: 4\n\n ' self.tab_length = kwargs.get('tab_length', 4) self.ESCAPED_CHARS = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '#', '+', '-', '.', '!'] self.block_level_elements = ['address', 'article', 'aside', 'blockquote', 'details', 'div', 'dl', 'fieldset', 'figcaption', 'figure', 'footer', 'form', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'header', 'hgroup', 'hr', 'main', 'menu', 'nav', 'ol', 'p', 'pre', 'section', 'table', 'ul', 'canvas', 'colgroup', 'dd', 'body', 'dt', 'group', 'iframe', 'li', 'legend', 'math', 'map', 'noscript', 'output', 'object', 'option', 'progress', 'script', 'style', 'tbody', 'td', 'textarea', 'tfoot', 'th', 'thead', 'tr', 'video'] self.registeredExtensions = [] self.docType = self.stripTopLevelTags = True self.build_parser() self.references = {} self.htmlStash = util.HtmlStash() self.registerExtensions(extensions=kwargs.get('extensions', []), configs=kwargs.get('extension_configs', {})) self.set_output_format(kwargs.get('output_format', 'xhtml')) self.reset()
def __init__(self, **kwargs): '\n Creates a new Markdown instance.\n\n Keyword arguments:\n\n * extensions: A list of extensions.\n If an item is an instance of a subclass of `markdown.extension.Extension`, the instance will be used\n as-is. If an item is of type string, first an entry point will be loaded. If that fails, the string is\n assumed to use Python dot notation (`path.to.module:ClassName`) to load a markdown.Extension subclass. If\n no class is specified, then a `makeExtension` function is called within the specified module.\n * extension_configs: Configuration settings for extensions.\n * output_format: Format of output. Supported formats are:\n * "xhtml": Outputs XHTML style tags. Default.\n * "html": Outputs HTML style tags.\n * tab_length: Length of tabs in the source. Default: 4\n\n ' self.tab_length = kwargs.get('tab_length', 4) self.ESCAPED_CHARS = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '#', '+', '-', '.', '!'] self.block_level_elements = ['address', 'article', 'aside', 'blockquote', 'details', 'div', 'dl', 'fieldset', 'figcaption', 'figure', 'footer', 'form', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'header', 'hgroup', 'hr', 'main', 'menu', 'nav', 'ol', 'p', 'pre', 'section', 'table', 'ul', 'canvas', 'colgroup', 'dd', 'body', 'dt', 'group', 'iframe', 'li', 'legend', 'math', 'map', 'noscript', 'output', 'object', 'option', 'progress', 'script', 'style', 'tbody', 'td', 'textarea', 'tfoot', 'th', 'thead', 'tr', 'video'] self.registeredExtensions = [] self.docType = self.stripTopLevelTags = True self.build_parser() self.references = {} self.htmlStash = util.HtmlStash() self.registerExtensions(extensions=kwargs.get('extensions', []), configs=kwargs.get('extension_configs', {})) self.set_output_format(kwargs.get('output_format', 'xhtml')) self.reset()<|docstring|>Creates a new Markdown instance. Keyword arguments: * extensions: A list of extensions. If an item is an instance of a subclass of `markdown.extension.Extension`, the instance will be used as-is. If an item is of type string, first an entry point will be loaded. If that fails, the string is assumed to use Python dot notation (`path.to.module:ClassName`) to load a markdown.Extension subclass. If no class is specified, then a `makeExtension` function is called within the specified module. * extension_configs: Configuration settings for extensions. * output_format: Format of output. Supported formats are: * "xhtml": Outputs XHTML style tags. Default. * "html": Outputs HTML style tags. * tab_length: Length of tabs in the source. Default: 4<|endoftext|>
2e31637ebb02999913e80f48a727fc926d0a603e39ea8ad932de81ad4f89d66f
def build_parser(self): ' Build the parser from the various parts. ' self.preprocessors = build_preprocessors(self) self.parser = build_block_parser(self) self.inlinePatterns = build_inlinepatterns(self) self.treeprocessors = build_treeprocessors(self) self.postprocessors = build_postprocessors(self) return self
Build the parser from the various parts.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
build_parser
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def build_parser(self): ' ' self.preprocessors = build_preprocessors(self) self.parser = build_block_parser(self) self.inlinePatterns = build_inlinepatterns(self) self.treeprocessors = build_treeprocessors(self) self.postprocessors = build_postprocessors(self) return self
def build_parser(self): ' ' self.preprocessors = build_preprocessors(self) self.parser = build_block_parser(self) self.inlinePatterns = build_inlinepatterns(self) self.treeprocessors = build_treeprocessors(self) self.postprocessors = build_postprocessors(self) return self<|docstring|>Build the parser from the various parts.<|endoftext|>
a040e840e8dadfff417f5029d104f215856d70bff712a3456d9ef832f1215e8f
def registerExtensions(self, extensions, configs): '\n Register extensions with this instance of Markdown.\n\n Keyword arguments:\n\n * extensions: A list of extensions, which can either\n be strings or objects.\n * configs: A dictionary mapping extension names to config options.\n\n ' for ext in extensions: if isinstance(ext, str): ext = self.build_extension(ext, configs.get(ext, {})) if isinstance(ext, Extension): ext._extendMarkdown(self) logger.debug(('Successfully loaded extension "%s.%s".' % (ext.__class__.__module__, ext.__class__.__name__))) elif (ext is not None): raise TypeError('Extension "{}.{}" must be of type: "{}.{}"'.format(ext.__class__.__module__, ext.__class__.__name__, Extension.__module__, Extension.__name__)) return self
Register extensions with this instance of Markdown. Keyword arguments: * extensions: A list of extensions, which can either be strings or objects. * configs: A dictionary mapping extension names to config options.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
registerExtensions
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def registerExtensions(self, extensions, configs): '\n Register extensions with this instance of Markdown.\n\n Keyword arguments:\n\n * extensions: A list of extensions, which can either\n be strings or objects.\n * configs: A dictionary mapping extension names to config options.\n\n ' for ext in extensions: if isinstance(ext, str): ext = self.build_extension(ext, configs.get(ext, {})) if isinstance(ext, Extension): ext._extendMarkdown(self) logger.debug(('Successfully loaded extension "%s.%s".' % (ext.__class__.__module__, ext.__class__.__name__))) elif (ext is not None): raise TypeError('Extension "{}.{}" must be of type: "{}.{}"'.format(ext.__class__.__module__, ext.__class__.__name__, Extension.__module__, Extension.__name__)) return self
def registerExtensions(self, extensions, configs): '\n Register extensions with this instance of Markdown.\n\n Keyword arguments:\n\n * extensions: A list of extensions, which can either\n be strings or objects.\n * configs: A dictionary mapping extension names to config options.\n\n ' for ext in extensions: if isinstance(ext, str): ext = self.build_extension(ext, configs.get(ext, {})) if isinstance(ext, Extension): ext._extendMarkdown(self) logger.debug(('Successfully loaded extension "%s.%s".' % (ext.__class__.__module__, ext.__class__.__name__))) elif (ext is not None): raise TypeError('Extension "{}.{}" must be of type: "{}.{}"'.format(ext.__class__.__module__, ext.__class__.__name__, Extension.__module__, Extension.__name__)) return self<|docstring|>Register extensions with this instance of Markdown. Keyword arguments: * extensions: A list of extensions, which can either be strings or objects. * configs: A dictionary mapping extension names to config options.<|endoftext|>
01f8f9667625dfdfafcc8188d599e1c51a3bc762b4abd9aae523473bdc24a2bd
def build_extension(self, ext_name, configs): '\n Build extension from a string name, then return an instance.\n\n First attempt to load an entry point. The string name must be registered as an entry point in the\n `markdown.extensions` group which points to a subclass of the `markdown.extensions.Extension` class.\n If multiple distributions have registered the same name, the first one found is returned.\n\n If no entry point is found, assume dot notation (`path.to.module:ClassName`). Load the specified class and\n return an instance. If no class is specified, import the module and call a `makeExtension` function and return\n the Extension instance returned by that function.\n ' configs = dict(configs) entry_points = [ep for ep in util.INSTALLED_EXTENSIONS if (ep.name == ext_name)] if entry_points: ext = entry_points[0].load() return ext(**configs) (ext_name, class_name) = (ext_name.split(':', 1) if (':' in ext_name) else (ext_name, '')) try: module = importlib.import_module(ext_name) logger.debug(('Successfully imported extension module "%s".' % ext_name)) except ImportError as e: message = ('Failed loading extension "%s".' % ext_name) e.args = ((message,) + e.args[1:]) raise if class_name: return getattr(module, class_name)(**configs) else: try: return module.makeExtension(**configs) except AttributeError as e: message = e.args[0] message = ("Failed to initiate extension '%s': %s" % (ext_name, message)) e.args = ((message,) + e.args[1:]) raise
Build extension from a string name, then return an instance. First attempt to load an entry point. The string name must be registered as an entry point in the `markdown.extensions` group which points to a subclass of the `markdown.extensions.Extension` class. If multiple distributions have registered the same name, the first one found is returned. If no entry point is found, assume dot notation (`path.to.module:ClassName`). Load the specified class and return an instance. If no class is specified, import the module and call a `makeExtension` function and return the Extension instance returned by that function.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
build_extension
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def build_extension(self, ext_name, configs): '\n Build extension from a string name, then return an instance.\n\n First attempt to load an entry point. The string name must be registered as an entry point in the\n `markdown.extensions` group which points to a subclass of the `markdown.extensions.Extension` class.\n If multiple distributions have registered the same name, the first one found is returned.\n\n If no entry point is found, assume dot notation (`path.to.module:ClassName`). Load the specified class and\n return an instance. If no class is specified, import the module and call a `makeExtension` function and return\n the Extension instance returned by that function.\n ' configs = dict(configs) entry_points = [ep for ep in util.INSTALLED_EXTENSIONS if (ep.name == ext_name)] if entry_points: ext = entry_points[0].load() return ext(**configs) (ext_name, class_name) = (ext_name.split(':', 1) if (':' in ext_name) else (ext_name, )) try: module = importlib.import_module(ext_name) logger.debug(('Successfully imported extension module "%s".' % ext_name)) except ImportError as e: message = ('Failed loading extension "%s".' % ext_name) e.args = ((message,) + e.args[1:]) raise if class_name: return getattr(module, class_name)(**configs) else: try: return module.makeExtension(**configs) except AttributeError as e: message = e.args[0] message = ("Failed to initiate extension '%s': %s" % (ext_name, message)) e.args = ((message,) + e.args[1:]) raise
def build_extension(self, ext_name, configs): '\n Build extension from a string name, then return an instance.\n\n First attempt to load an entry point. The string name must be registered as an entry point in the\n `markdown.extensions` group which points to a subclass of the `markdown.extensions.Extension` class.\n If multiple distributions have registered the same name, the first one found is returned.\n\n If no entry point is found, assume dot notation (`path.to.module:ClassName`). Load the specified class and\n return an instance. If no class is specified, import the module and call a `makeExtension` function and return\n the Extension instance returned by that function.\n ' configs = dict(configs) entry_points = [ep for ep in util.INSTALLED_EXTENSIONS if (ep.name == ext_name)] if entry_points: ext = entry_points[0].load() return ext(**configs) (ext_name, class_name) = (ext_name.split(':', 1) if (':' in ext_name) else (ext_name, )) try: module = importlib.import_module(ext_name) logger.debug(('Successfully imported extension module "%s".' % ext_name)) except ImportError as e: message = ('Failed loading extension "%s".' % ext_name) e.args = ((message,) + e.args[1:]) raise if class_name: return getattr(module, class_name)(**configs) else: try: return module.makeExtension(**configs) except AttributeError as e: message = e.args[0] message = ("Failed to initiate extension '%s': %s" % (ext_name, message)) e.args = ((message,) + e.args[1:]) raise<|docstring|>Build extension from a string name, then return an instance. First attempt to load an entry point. The string name must be registered as an entry point in the `markdown.extensions` group which points to a subclass of the `markdown.extensions.Extension` class. If multiple distributions have registered the same name, the first one found is returned. If no entry point is found, assume dot notation (`path.to.module:ClassName`). Load the specified class and return an instance. If no class is specified, import the module and call a `makeExtension` function and return the Extension instance returned by that function.<|endoftext|>
dbd1934600db4df9416490968535393c37ba4706f2e70c7796fb75ad3dd35144
def registerExtension(self, extension): ' This gets called by the extension ' self.registeredExtensions.append(extension) return self
This gets called by the extension
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
registerExtension
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def registerExtension(self, extension): ' ' self.registeredExtensions.append(extension) return self
def registerExtension(self, extension): ' ' self.registeredExtensions.append(extension) return self<|docstring|>This gets called by the extension<|endoftext|>
53e720c5d1965c68f0577ded91e56a98556503005692ef583b9218e57c45f9e4
def reset(self): '\n Resets all state variables so that we can start with a new text.\n ' self.htmlStash.reset() self.references.clear() for extension in self.registeredExtensions: if hasattr(extension, 'reset'): extension.reset() return self
Resets all state variables so that we can start with a new text.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
reset
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def reset(self): '\n \n ' self.htmlStash.reset() self.references.clear() for extension in self.registeredExtensions: if hasattr(extension, 'reset'): extension.reset() return self
def reset(self): '\n \n ' self.htmlStash.reset() self.references.clear() for extension in self.registeredExtensions: if hasattr(extension, 'reset'): extension.reset() return self<|docstring|>Resets all state variables so that we can start with a new text.<|endoftext|>
feda5539b78e20517a104f3dd58d24b47635f6db0f208b427d0d9d6986329448
def set_output_format(self, format): ' Set the output format for the class instance. ' self.output_format = format.lower().rstrip('145') try: self.serializer = self.output_formats[self.output_format] except KeyError as e: valid_formats = list(self.output_formats.keys()) valid_formats.sort() message = ('Invalid Output Format: "%s". Use one of %s.' % (self.output_format, (('"' + '", "'.join(valid_formats)) + '"'))) e.args = ((message,) + e.args[1:]) raise return self
Set the output format for the class instance.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
set_output_format
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def set_output_format(self, format): ' ' self.output_format = format.lower().rstrip('145') try: self.serializer = self.output_formats[self.output_format] except KeyError as e: valid_formats = list(self.output_formats.keys()) valid_formats.sort() message = ('Invalid Output Format: "%s". Use one of %s.' % (self.output_format, (('"' + '", "'.join(valid_formats)) + '"'))) e.args = ((message,) + e.args[1:]) raise return self
def set_output_format(self, format): ' ' self.output_format = format.lower().rstrip('145') try: self.serializer = self.output_formats[self.output_format] except KeyError as e: valid_formats = list(self.output_formats.keys()) valid_formats.sort() message = ('Invalid Output Format: "%s". Use one of %s.' % (self.output_format, (('"' + '", "'.join(valid_formats)) + '"'))) e.args = ((message,) + e.args[1:]) raise return self<|docstring|>Set the output format for the class instance.<|endoftext|>
9a6f59a369bda7ff2986389b067be3847b044868076ef4c47d1a46aa4bcae801
def is_block_level(self, tag): 'Check if the tag is a block level HTML tag.' if isinstance(tag, str): return (tag.lower().rstrip('/') in self.block_level_elements) return False
Check if the tag is a block level HTML tag.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
is_block_level
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def is_block_level(self, tag): if isinstance(tag, str): return (tag.lower().rstrip('/') in self.block_level_elements) return False
def is_block_level(self, tag): if isinstance(tag, str): return (tag.lower().rstrip('/') in self.block_level_elements) return False<|docstring|>Check if the tag is a block level HTML tag.<|endoftext|>
ad829f479243c7a863f28809720344ca2c66188f15f8b0268bdb4ca519c21772
def convert(self, source): '\n Convert markdown to serialized XHTML or HTML.\n\n Keyword arguments:\n\n * source: Source text as a Unicode string.\n\n Markdown processing takes place in five steps:\n\n 1. A bunch of "preprocessors" munge the input text.\n 2. BlockParser() parses the high-level structural elements of the\n pre-processed text into an ElementTree.\n 3. A bunch of "treeprocessors" are run against the ElementTree. One\n such treeprocessor runs InlinePatterns against the ElementTree,\n detecting inline markup.\n 4. Some post-processors are run against the text after the ElementTree\n has been serialized into text.\n 5. The output is written to a string.\n\n ' if (not source.strip()): return '' try: source = str(source) except UnicodeDecodeError as e: e.reason += '. -- Note: Markdown only accepts unicode input!' raise self.lines = source.split('\n') for prep in self.preprocessors: self.lines = prep.run(self.lines) root = self.parser.parseDocument(self.lines).getroot() for treeprocessor in self.treeprocessors: newRoot = treeprocessor.run(root) if (newRoot is not None): root = newRoot output = self.serializer(root) if self.stripTopLevelTags: try: start = ((output.index(('<%s>' % self.doc_tag)) + len(self.doc_tag)) + 2) end = output.rindex(('</%s>' % self.doc_tag)) output = output[start:end].strip() except ValueError as e: if output.strip().endswith(('<%s />' % self.doc_tag)): output = '' else: raise ValueError(('Markdown failed to strip top-level tags. Document=%r' % output.strip())) from e for pp in self.postprocessors: output = pp.run(output) return output.strip()
Convert markdown to serialized XHTML or HTML. Keyword arguments: * source: Source text as a Unicode string. Markdown processing takes place in five steps: 1. A bunch of "preprocessors" munge the input text. 2. BlockParser() parses the high-level structural elements of the pre-processed text into an ElementTree. 3. A bunch of "treeprocessors" are run against the ElementTree. One such treeprocessor runs InlinePatterns against the ElementTree, detecting inline markup. 4. Some post-processors are run against the text after the ElementTree has been serialized into text. 5. The output is written to a string.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
convert
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def convert(self, source): '\n Convert markdown to serialized XHTML or HTML.\n\n Keyword arguments:\n\n * source: Source text as a Unicode string.\n\n Markdown processing takes place in five steps:\n\n 1. A bunch of "preprocessors" munge the input text.\n 2. BlockParser() parses the high-level structural elements of the\n pre-processed text into an ElementTree.\n 3. A bunch of "treeprocessors" are run against the ElementTree. One\n such treeprocessor runs InlinePatterns against the ElementTree,\n detecting inline markup.\n 4. Some post-processors are run against the text after the ElementTree\n has been serialized into text.\n 5. The output is written to a string.\n\n ' if (not source.strip()): return try: source = str(source) except UnicodeDecodeError as e: e.reason += '. -- Note: Markdown only accepts unicode input!' raise self.lines = source.split('\n') for prep in self.preprocessors: self.lines = prep.run(self.lines) root = self.parser.parseDocument(self.lines).getroot() for treeprocessor in self.treeprocessors: newRoot = treeprocessor.run(root) if (newRoot is not None): root = newRoot output = self.serializer(root) if self.stripTopLevelTags: try: start = ((output.index(('<%s>' % self.doc_tag)) + len(self.doc_tag)) + 2) end = output.rindex(('</%s>' % self.doc_tag)) output = output[start:end].strip() except ValueError as e: if output.strip().endswith(('<%s />' % self.doc_tag)): output = else: raise ValueError(('Markdown failed to strip top-level tags. Document=%r' % output.strip())) from e for pp in self.postprocessors: output = pp.run(output) return output.strip()
def convert(self, source): '\n Convert markdown to serialized XHTML or HTML.\n\n Keyword arguments:\n\n * source: Source text as a Unicode string.\n\n Markdown processing takes place in five steps:\n\n 1. A bunch of "preprocessors" munge the input text.\n 2. BlockParser() parses the high-level structural elements of the\n pre-processed text into an ElementTree.\n 3. A bunch of "treeprocessors" are run against the ElementTree. One\n such treeprocessor runs InlinePatterns against the ElementTree,\n detecting inline markup.\n 4. Some post-processors are run against the text after the ElementTree\n has been serialized into text.\n 5. The output is written to a string.\n\n ' if (not source.strip()): return try: source = str(source) except UnicodeDecodeError as e: e.reason += '. -- Note: Markdown only accepts unicode input!' raise self.lines = source.split('\n') for prep in self.preprocessors: self.lines = prep.run(self.lines) root = self.parser.parseDocument(self.lines).getroot() for treeprocessor in self.treeprocessors: newRoot = treeprocessor.run(root) if (newRoot is not None): root = newRoot output = self.serializer(root) if self.stripTopLevelTags: try: start = ((output.index(('<%s>' % self.doc_tag)) + len(self.doc_tag)) + 2) end = output.rindex(('</%s>' % self.doc_tag)) output = output[start:end].strip() except ValueError as e: if output.strip().endswith(('<%s />' % self.doc_tag)): output = else: raise ValueError(('Markdown failed to strip top-level tags. Document=%r' % output.strip())) from e for pp in self.postprocessors: output = pp.run(output) return output.strip()<|docstring|>Convert markdown to serialized XHTML or HTML. Keyword arguments: * source: Source text as a Unicode string. Markdown processing takes place in five steps: 1. A bunch of "preprocessors" munge the input text. 2. BlockParser() parses the high-level structural elements of the pre-processed text into an ElementTree. 3. A bunch of "treeprocessors" are run against the ElementTree. One such treeprocessor runs InlinePatterns against the ElementTree, detecting inline markup. 4. Some post-processors are run against the text after the ElementTree has been serialized into text. 5. The output is written to a string.<|endoftext|>
d469e6da67c8e31bfe700cff011140db21cea3f7d96fc8e95ce76a77902ae46f
def convertFile(self, input=None, output=None, encoding=None): "Converts a markdown file and returns the HTML as a unicode string.\n\n Decodes the file using the provided encoding (defaults to utf-8),\n passes the file content to markdown, and outputs the html to either\n the provided stream or the file with provided name, using the same\n encoding as the source file. The 'xmlcharrefreplace' error handler is\n used when encoding the output.\n\n **Note:** This is the only place that decoding and encoding of unicode\n takes place in Python-Markdown. (All other code is unicode-in /\n unicode-out.)\n\n Keyword arguments:\n\n * input: File object or path. Reads from stdin if `None`.\n * output: File object or path. Writes to stdout if `None`.\n * encoding: Encoding of input and output files. Defaults to utf-8.\n\n " encoding = (encoding or 'utf-8') if input: if isinstance(input, str): input_file = codecs.open(input, mode='r', encoding=encoding) else: input_file = codecs.getreader(encoding)(input) text = input_file.read() input_file.close() else: text = sys.stdin.read() if (not isinstance(text, str)): text = text.decode(encoding) text = text.lstrip('\ufeff') html = self.convert(text) if output: if isinstance(output, str): output_file = codecs.open(output, 'w', encoding=encoding, errors='xmlcharrefreplace') output_file.write(html) output_file.close() else: writer = codecs.getwriter(encoding) output_file = writer(output, errors='xmlcharrefreplace') output_file.write(html) else: html = html.encode(encoding, 'xmlcharrefreplace') try: sys.stdout.buffer.write(html) except AttributeError: sys.stdout.write(html) return self
Converts a markdown file and returns the HTML as a unicode string. Decodes the file using the provided encoding (defaults to utf-8), passes the file content to markdown, and outputs the html to either the provided stream or the file with provided name, using the same encoding as the source file. The 'xmlcharrefreplace' error handler is used when encoding the output. **Note:** This is the only place that decoding and encoding of unicode takes place in Python-Markdown. (All other code is unicode-in / unicode-out.) Keyword arguments: * input: File object or path. Reads from stdin if `None`. * output: File object or path. Writes to stdout if `None`. * encoding: Encoding of input and output files. Defaults to utf-8.
pasta-django/venv/lib/python3.8/site-packages/markdown/core.py
convertFile
rabeloalcantaraigor/Curso-API-DRF
14,668
python
def convertFile(self, input=None, output=None, encoding=None): "Converts a markdown file and returns the HTML as a unicode string.\n\n Decodes the file using the provided encoding (defaults to utf-8),\n passes the file content to markdown, and outputs the html to either\n the provided stream or the file with provided name, using the same\n encoding as the source file. The 'xmlcharrefreplace' error handler is\n used when encoding the output.\n\n **Note:** This is the only place that decoding and encoding of unicode\n takes place in Python-Markdown. (All other code is unicode-in /\n unicode-out.)\n\n Keyword arguments:\n\n * input: File object or path. Reads from stdin if `None`.\n * output: File object or path. Writes to stdout if `None`.\n * encoding: Encoding of input and output files. Defaults to utf-8.\n\n " encoding = (encoding or 'utf-8') if input: if isinstance(input, str): input_file = codecs.open(input, mode='r', encoding=encoding) else: input_file = codecs.getreader(encoding)(input) text = input_file.read() input_file.close() else: text = sys.stdin.read() if (not isinstance(text, str)): text = text.decode(encoding) text = text.lstrip('\ufeff') html = self.convert(text) if output: if isinstance(output, str): output_file = codecs.open(output, 'w', encoding=encoding, errors='xmlcharrefreplace') output_file.write(html) output_file.close() else: writer = codecs.getwriter(encoding) output_file = writer(output, errors='xmlcharrefreplace') output_file.write(html) else: html = html.encode(encoding, 'xmlcharrefreplace') try: sys.stdout.buffer.write(html) except AttributeError: sys.stdout.write(html) return self
def convertFile(self, input=None, output=None, encoding=None): "Converts a markdown file and returns the HTML as a unicode string.\n\n Decodes the file using the provided encoding (defaults to utf-8),\n passes the file content to markdown, and outputs the html to either\n the provided stream or the file with provided name, using the same\n encoding as the source file. The 'xmlcharrefreplace' error handler is\n used when encoding the output.\n\n **Note:** This is the only place that decoding and encoding of unicode\n takes place in Python-Markdown. (All other code is unicode-in /\n unicode-out.)\n\n Keyword arguments:\n\n * input: File object or path. Reads from stdin if `None`.\n * output: File object or path. Writes to stdout if `None`.\n * encoding: Encoding of input and output files. Defaults to utf-8.\n\n " encoding = (encoding or 'utf-8') if input: if isinstance(input, str): input_file = codecs.open(input, mode='r', encoding=encoding) else: input_file = codecs.getreader(encoding)(input) text = input_file.read() input_file.close() else: text = sys.stdin.read() if (not isinstance(text, str)): text = text.decode(encoding) text = text.lstrip('\ufeff') html = self.convert(text) if output: if isinstance(output, str): output_file = codecs.open(output, 'w', encoding=encoding, errors='xmlcharrefreplace') output_file.write(html) output_file.close() else: writer = codecs.getwriter(encoding) output_file = writer(output, errors='xmlcharrefreplace') output_file.write(html) else: html = html.encode(encoding, 'xmlcharrefreplace') try: sys.stdout.buffer.write(html) except AttributeError: sys.stdout.write(html) return self<|docstring|>Converts a markdown file and returns the HTML as a unicode string. Decodes the file using the provided encoding (defaults to utf-8), passes the file content to markdown, and outputs the html to either the provided stream or the file with provided name, using the same encoding as the source file. The 'xmlcharrefreplace' error handler is used when encoding the output. **Note:** This is the only place that decoding and encoding of unicode takes place in Python-Markdown. (All other code is unicode-in / unicode-out.) Keyword arguments: * input: File object or path. Reads from stdin if `None`. * output: File object or path. Writes to stdout if `None`. * encoding: Encoding of input and output files. Defaults to utf-8.<|endoftext|>
c223d00b38f52040c69a15db75d553eb08b79493d25381c09b6690cbb6ef2497
def sample(self, sample_file): ' Samples to a file. Useful for visualizing the learning process.\n\n Use with:\n\n ffmpeg -i samples/grid-%06d.png -vcodec libx264 -crf 22 -threads 0 grid1-7.mp4\n\n to create a video of the learning process.\n ' sample_list = self.sampler.sample(sample_file, self.args.save_samples) return sample_list
Samples to a file. Useful for visualizing the learning process. Use with: ffmpeg -i samples/grid-%06d.png -vcodec libx264 -crf 22 -threads 0 grid1-7.mp4 to create a video of the learning process.
hypergan/cli.py
sample
SlipknotTN/HyperGAN
0
python
def sample(self, sample_file): ' Samples to a file. Useful for visualizing the learning process.\n\n Use with:\n\n ffmpeg -i samples/grid-%06d.png -vcodec libx264 -crf 22 -threads 0 grid1-7.mp4\n\n to create a video of the learning process.\n ' sample_list = self.sampler.sample(sample_file, self.args.save_samples) return sample_list
def sample(self, sample_file): ' Samples to a file. Useful for visualizing the learning process.\n\n Use with:\n\n ffmpeg -i samples/grid-%06d.png -vcodec libx264 -crf 22 -threads 0 grid1-7.mp4\n\n to create a video of the learning process.\n ' sample_list = self.sampler.sample(sample_file, self.args.save_samples) return sample_list<|docstring|>Samples to a file. Useful for visualizing the learning process. Use with: ffmpeg -i samples/grid-%06d.png -vcodec libx264 -crf 22 -threads 0 grid1-7.mp4 to create a video of the learning process.<|endoftext|>
7bd4e6fbb29c66ca383c21d1e5fd892a37fc5b5f3e5861fce22fdf8964a9c1df
def setup_platform(hass, config, add_devices, discovery_info=None): 'Set up the smart mi fan platform.' import miio host = config.get(CONF_HOST) name = config.get(CONF_NAME) token = config.get(CONF_TOKEN) devices = config.get(CONF_SWITCHES, {}) persistent_notification = loader.get_component('persistent_notification') @asyncio.coroutine def _learn_command(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return ir_remote.send('start_ir_learn', [30]) _LOGGER.info('Press the key you want HASS to learn') start_time = utcnow() while ((utcnow() - start_time) < timedelta(seconds=DEFAULT_TIMEOUT)): code = ir_remote.send('get_ir_learn_result', []) if (code[0] != '(null)'): log_msg = ('Recieved packet is: %s' % code[0]) _LOGGER.info(log_msg) persistent_notification.async_create(hass, log_msg, title='Mi_ACpartner switch') ir_remote.send('end_ir_learn', [30]) return (yield from asyncio.sleep(1, loop=hass.loop)) _LOGGER.error('Did not received any signal.') persistent_notification.async_create(hass, 'Did not received any signal', title='Mi_ACpartner switch') @asyncio.coroutine def _send_packet(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return packets = call.data.get('packet', []) for packet in packets: for retry in range(DEFAULT_RETRY): try: ir_remote.send('send_ir_code', [str(packet)]) break except ValueError: _LOGGER.error('Failed to send packet to device.') ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') hass.services.register(DOMAIN, ((SERVICE_LEARN + '_') + host.replace('.', '_')), _learn_command) hass.services.register(DOMAIN, ((SERVICE_SEND + '_') + host.replace('.', '_')), _send_packet) switches = [] for (object_id, device_config) in devices.items(): switches.append(ChuangmiIRSwitch(ir_remote, device_config.get(CONF_NAME, object_id), device_config.get(CONF_COMMAND_ON), device_config.get(CONF_COMMAND_OFF), 'mdi:volume-high')) add_devices(switches)
Set up the smart mi fan platform.
custom_components/switch/mi_acpartner_ir.py
setup_platform
mac-zhou/homeassistant-mi-acpartner
135
python
def setup_platform(hass, config, add_devices, discovery_info=None): import miio host = config.get(CONF_HOST) name = config.get(CONF_NAME) token = config.get(CONF_TOKEN) devices = config.get(CONF_SWITCHES, {}) persistent_notification = loader.get_component('persistent_notification') @asyncio.coroutine def _learn_command(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return ir_remote.send('start_ir_learn', [30]) _LOGGER.info('Press the key you want HASS to learn') start_time = utcnow() while ((utcnow() - start_time) < timedelta(seconds=DEFAULT_TIMEOUT)): code = ir_remote.send('get_ir_learn_result', []) if (code[0] != '(null)'): log_msg = ('Recieved packet is: %s' % code[0]) _LOGGER.info(log_msg) persistent_notification.async_create(hass, log_msg, title='Mi_ACpartner switch') ir_remote.send('end_ir_learn', [30]) return (yield from asyncio.sleep(1, loop=hass.loop)) _LOGGER.error('Did not received any signal.') persistent_notification.async_create(hass, 'Did not received any signal', title='Mi_ACpartner switch') @asyncio.coroutine def _send_packet(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return packets = call.data.get('packet', []) for packet in packets: for retry in range(DEFAULT_RETRY): try: ir_remote.send('send_ir_code', [str(packet)]) break except ValueError: _LOGGER.error('Failed to send packet to device.') ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') hass.services.register(DOMAIN, ((SERVICE_LEARN + '_') + host.replace('.', '_')), _learn_command) hass.services.register(DOMAIN, ((SERVICE_SEND + '_') + host.replace('.', '_')), _send_packet) switches = [] for (object_id, device_config) in devices.items(): switches.append(ChuangmiIRSwitch(ir_remote, device_config.get(CONF_NAME, object_id), device_config.get(CONF_COMMAND_ON), device_config.get(CONF_COMMAND_OFF), 'mdi:volume-high')) add_devices(switches)
def setup_platform(hass, config, add_devices, discovery_info=None): import miio host = config.get(CONF_HOST) name = config.get(CONF_NAME) token = config.get(CONF_TOKEN) devices = config.get(CONF_SWITCHES, {}) persistent_notification = loader.get_component('persistent_notification') @asyncio.coroutine def _learn_command(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return ir_remote.send('start_ir_learn', [30]) _LOGGER.info('Press the key you want HASS to learn') start_time = utcnow() while ((utcnow() - start_time) < timedelta(seconds=DEFAULT_TIMEOUT)): code = ir_remote.send('get_ir_learn_result', []) if (code[0] != '(null)'): log_msg = ('Recieved packet is: %s' % code[0]) _LOGGER.info(log_msg) persistent_notification.async_create(hass, log_msg, title='Mi_ACpartner switch') ir_remote.send('end_ir_learn', [30]) return (yield from asyncio.sleep(1, loop=hass.loop)) _LOGGER.error('Did not received any signal.') persistent_notification.async_create(hass, 'Did not received any signal', title='Mi_ACpartner switch') @asyncio.coroutine def _send_packet(call): ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') return packets = call.data.get('packet', []) for packet in packets: for retry in range(DEFAULT_RETRY): try: ir_remote.send('send_ir_code', [str(packet)]) break except ValueError: _LOGGER.error('Failed to send packet to device.') ir_remote = miio.device(host, token) if (not ir_remote): _LOGGER.error('Failed to connect to device.') hass.services.register(DOMAIN, ((SERVICE_LEARN + '_') + host.replace('.', '_')), _learn_command) hass.services.register(DOMAIN, ((SERVICE_SEND + '_') + host.replace('.', '_')), _send_packet) switches = [] for (object_id, device_config) in devices.items(): switches.append(ChuangmiIRSwitch(ir_remote, device_config.get(CONF_NAME, object_id), device_config.get(CONF_COMMAND_ON), device_config.get(CONF_COMMAND_OFF), 'mdi:volume-high')) add_devices(switches)<|docstring|>Set up the smart mi fan platform.<|endoftext|>
a236d6c37eea148c7561c61d1998bb050e8920f7de10f4d1f36fca2422e9af17
def __init__(self, device, name, command_on, command_off, icon): 'Initialize the switch.' self._name = name self._state = False self._command_on = (command_on or None) self._command_off = (command_off or None) self._device = device self._icon = icon
Initialize the switch.
custom_components/switch/mi_acpartner_ir.py
__init__
mac-zhou/homeassistant-mi-acpartner
135
python
def __init__(self, device, name, command_on, command_off, icon): self._name = name self._state = False self._command_on = (command_on or None) self._command_off = (command_off or None) self._device = device self._icon = icon
def __init__(self, device, name, command_on, command_off, icon): self._name = name self._state = False self._command_on = (command_on or None) self._command_off = (command_off or None) self._device = device self._icon = icon<|docstring|>Initialize the switch.<|endoftext|>
b266a171d582c1290c045c84c1a435b8e5deb36d2a825bfb56ab6f4c44a7e41a
@property def icon(self): 'Return the icon to use for device if any.' return self._icon
Return the icon to use for device if any.
custom_components/switch/mi_acpartner_ir.py
icon
mac-zhou/homeassistant-mi-acpartner
135
python
@property def icon(self): return self._icon
@property def icon(self): return self._icon<|docstring|>Return the icon to use for device if any.<|endoftext|>
db2111d58663d126541e4a6d9f51b1697d1b084e7340679be31742a3030c3ce1
@property def name(self): 'Return the name of the switch.' return self._name
Return the name of the switch.
custom_components/switch/mi_acpartner_ir.py
name
mac-zhou/homeassistant-mi-acpartner
135
python
@property def name(self): return self._name
@property def name(self): return self._name<|docstring|>Return the name of the switch.<|endoftext|>
454edd0c9bd544b7c99a905d438af854cb21d01f1f906d621c0bd328f39e3b17
@property def assumed_state(self): 'Return true if unable to access real state of entity.' return True
Return true if unable to access real state of entity.
custom_components/switch/mi_acpartner_ir.py
assumed_state
mac-zhou/homeassistant-mi-acpartner
135
python
@property def assumed_state(self): return True
@property def assumed_state(self): return True<|docstring|>Return true if unable to access real state of entity.<|endoftext|>
53669033a44cc2b7f0c0eb1c203b1e7a7c81e72e96769d5c38bc62208b72137f
@property def should_poll(self): 'No polling needed.' return False
No polling needed.
custom_components/switch/mi_acpartner_ir.py
should_poll
mac-zhou/homeassistant-mi-acpartner
135
python
@property def should_poll(self): return False
@property def should_poll(self): return False<|docstring|>No polling needed.<|endoftext|>
627e3004244c927368bebd4854458a6563ba3db2cadfff4b4804f631ffe09428
@property def is_on(self): 'Return true if device is on.' return self._state
Return true if device is on.
custom_components/switch/mi_acpartner_ir.py
is_on
mac-zhou/homeassistant-mi-acpartner
135
python
@property def is_on(self): return self._state
@property def is_on(self): return self._state<|docstring|>Return true if device is on.<|endoftext|>
c93e1f1feb18de07875a1f1efa91525deefa7d92a297b6f9abfd0b698e2583ec
def turn_on(self, **kwargs): 'Turn the device on.' if self._sendpacket(self._command_on): self._state = True self.schedule_update_ha_state()
Turn the device on.
custom_components/switch/mi_acpartner_ir.py
turn_on
mac-zhou/homeassistant-mi-acpartner
135
python
def turn_on(self, **kwargs): if self._sendpacket(self._command_on): self._state = True self.schedule_update_ha_state()
def turn_on(self, **kwargs): if self._sendpacket(self._command_on): self._state = True self.schedule_update_ha_state()<|docstring|>Turn the device on.<|endoftext|>
e0b811e93f3e1eb66f3ea8e8e46400bab787304e47507c2d31f2a020e9eb9a4a
def turn_off(self, **kwargs): 'Turn the device off.' if self._sendpacket(self._command_off): self._state = False self.schedule_update_ha_state()
Turn the device off.
custom_components/switch/mi_acpartner_ir.py
turn_off
mac-zhou/homeassistant-mi-acpartner
135
python
def turn_off(self, **kwargs): if self._sendpacket(self._command_off): self._state = False self.schedule_update_ha_state()
def turn_off(self, **kwargs): if self._sendpacket(self._command_off): self._state = False self.schedule_update_ha_state()<|docstring|>Turn the device off.<|endoftext|>
fefcc9d224f155aefc3614e58e6bf13cc44383b97057d7380e6bd3af6f09143e
def _sendpacket(self, packet): 'Send packet to device.' if (packet is None): _LOGGER.debug('Empty packet.') return True try: self._device.send('send_ir_code', [str(packet)]) _LOGGER.info(str(packet)) except ValueError as error: _LOGGER.error(error) return False return True
Send packet to device.
custom_components/switch/mi_acpartner_ir.py
_sendpacket
mac-zhou/homeassistant-mi-acpartner
135
python
def _sendpacket(self, packet): if (packet is None): _LOGGER.debug('Empty packet.') return True try: self._device.send('send_ir_code', [str(packet)]) _LOGGER.info(str(packet)) except ValueError as error: _LOGGER.error(error) return False return True
def _sendpacket(self, packet): if (packet is None): _LOGGER.debug('Empty packet.') return True try: self._device.send('send_ir_code', [str(packet)]) _LOGGER.info(str(packet)) except ValueError as error: _LOGGER.error(error) return False return True<|docstring|>Send packet to device.<|endoftext|>
b3270baa21b5bef766d37052e1fb9a69849b78fff8fc034f633ccdf1e663e16c
def is_guild_admin(member: discord.Member) -> bool: '\n Shorthand for member.guild_permissions.administrator\n :param member: discord.Memeber to check if admin\n ' return member.guild_permissions.administrator
Shorthand for member.guild_permissions.administrator :param member: discord.Memeber to check if admin
src/permission_management/admin.py
is_guild_admin
kesslermaximilian/JustOneBot
1
python
def is_guild_admin(member: discord.Member) -> bool: '\n Shorthand for member.guild_permissions.administrator\n :param member: discord.Memeber to check if admin\n ' return member.guild_permissions.administrator
def is_guild_admin(member: discord.Member) -> bool: '\n Shorthand for member.guild_permissions.administrator\n :param member: discord.Memeber to check if admin\n ' return member.guild_permissions.administrator<|docstring|>Shorthand for member.guild_permissions.administrator :param member: discord.Memeber to check if admin<|endoftext|>
23c26c297f22cfbb3e147c5a4b5d395b9c6acc48425c632dfb46611a722e5269
def session_spaces(self, kernel_space): ' Generators unique _MM_SESSION_SPACE objects\n referenced by active processes. \n \n @param space: a kernel AS for process enumeration\n \n @yields _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' seen = [] for proc in tasks.pslist(kernel_space): if ((proc.SessionId != None) and (proc.SessionId.v() not in seen)): ps_ad = proc.get_process_address_space() if (ps_ad != None): seen.append(proc.SessionId.v()) (yield obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad))
Generators unique _MM_SESSION_SPACE objects referenced by active processes. @param space: a kernel AS for process enumeration @yields _MM_SESSION_SPACE instantiated from the session space native_vm.
volatility/volatility/plugins/gui/sessions.py
session_spaces
williamclot/MemoryVisualizer
2
python
def session_spaces(self, kernel_space): ' Generators unique _MM_SESSION_SPACE objects\n referenced by active processes. \n \n @param space: a kernel AS for process enumeration\n \n @yields _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' seen = [] for proc in tasks.pslist(kernel_space): if ((proc.SessionId != None) and (proc.SessionId.v() not in seen)): ps_ad = proc.get_process_address_space() if (ps_ad != None): seen.append(proc.SessionId.v()) (yield obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad))
def session_spaces(self, kernel_space): ' Generators unique _MM_SESSION_SPACE objects\n referenced by active processes. \n \n @param space: a kernel AS for process enumeration\n \n @yields _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' seen = [] for proc in tasks.pslist(kernel_space): if ((proc.SessionId != None) and (proc.SessionId.v() not in seen)): ps_ad = proc.get_process_address_space() if (ps_ad != None): seen.append(proc.SessionId.v()) (yield obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad))<|docstring|>Generators unique _MM_SESSION_SPACE objects referenced by active processes. @param space: a kernel AS for process enumeration @yields _MM_SESSION_SPACE instantiated from the session space native_vm.<|endoftext|>
6518c3cfd1b825bea7322675bb87745581d8dd0d59e9a24258018cf11c81c228
def find_session_space(self, kernel_space, session_id): ' Get a session address space by its ID. \n \n @param space: a kernel AS for process enumeration\n @param session_id: the session ID to find.\n \n @returns _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' for proc in tasks.pslist(kernel_space): if (proc.SessionId == session_id): ps_ad = proc.get_process_address_space() if (ps_ad != None): return obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad) return obj.NoneObject('Cannot locate a session')
Get a session address space by its ID. @param space: a kernel AS for process enumeration @param session_id: the session ID to find. @returns _MM_SESSION_SPACE instantiated from the session space native_vm.
volatility/volatility/plugins/gui/sessions.py
find_session_space
williamclot/MemoryVisualizer
2
python
def find_session_space(self, kernel_space, session_id): ' Get a session address space by its ID. \n \n @param space: a kernel AS for process enumeration\n @param session_id: the session ID to find.\n \n @returns _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' for proc in tasks.pslist(kernel_space): if (proc.SessionId == session_id): ps_ad = proc.get_process_address_space() if (ps_ad != None): return obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad) return obj.NoneObject('Cannot locate a session')
def find_session_space(self, kernel_space, session_id): ' Get a session address space by its ID. \n \n @param space: a kernel AS for process enumeration\n @param session_id: the session ID to find.\n \n @returns _MM_SESSION_SPACE instantiated from the \n session space native_vm. \n ' for proc in tasks.pslist(kernel_space): if (proc.SessionId == session_id): ps_ad = proc.get_process_address_space() if (ps_ad != None): return obj.Object('_MM_SESSION_SPACE', offset=proc.Session.v(), vm=ps_ad) return obj.NoneObject('Cannot locate a session')<|docstring|>Get a session address space by its ID. @param space: a kernel AS for process enumeration @param session_id: the session ID to find. @returns _MM_SESSION_SPACE instantiated from the session space native_vm.<|endoftext|>
a208e5e3a500767d57cfa6e54affc5cc4620d2e97248a80cb4d625c3cfc2bcd1
def __init__(self, executor, job_id, qobj, backend_name, job_tags=None, job_name=None): 'Initialize a fake job.' self._job_id = job_id self._status = ApiJobStatus.CREATING self.qobj = qobj self._future = executor.submit(self._auto_progress) self._result = None self._backend_name = backend_name self._job_tags = job_tags self._job_name = job_name
Initialize a fake job.
test/fake_account_client.py
__init__
jwoehr/qiskit-ibmq-provider
199
python
def __init__(self, executor, job_id, qobj, backend_name, job_tags=None, job_name=None): self._job_id = job_id self._status = ApiJobStatus.CREATING self.qobj = qobj self._future = executor.submit(self._auto_progress) self._result = None self._backend_name = backend_name self._job_tags = job_tags self._job_name = job_name
def __init__(self, executor, job_id, qobj, backend_name, job_tags=None, job_name=None): self._job_id = job_id self._status = ApiJobStatus.CREATING self.qobj = qobj self._future = executor.submit(self._auto_progress) self._result = None self._backend_name = backend_name self._job_tags = job_tags self._job_name = job_name<|docstring|>Initialize a fake job.<|endoftext|>
f4db3b497a1f73ada98b4eac6e4863904a4ead9df16e7eeb35bb9f0db86098c5
def _auto_progress(self): 'Automatically update job status.' for status in self._job_progress: time.sleep(0.5) self._status = status if (self._status == ApiJobStatus.COMPLETED): new_result = copy.deepcopy(VALID_RESULT_RESPONSE) for _ in range(len(self.qobj['experiments'])): valid_result = copy.deepcopy(VALID_RESULT) counts = randrange(1024) valid_result['data']['counts'] = {'0x0': counts, '0x3': (1024 - counts)} new_result['results'].append(valid_result) new_result['job_id'] = self._job_id new_result['backend_name'] = self._backend_name self._result = new_result
Automatically update job status.
test/fake_account_client.py
_auto_progress
jwoehr/qiskit-ibmq-provider
199
python
def _auto_progress(self): for status in self._job_progress: time.sleep(0.5) self._status = status if (self._status == ApiJobStatus.COMPLETED): new_result = copy.deepcopy(VALID_RESULT_RESPONSE) for _ in range(len(self.qobj['experiments'])): valid_result = copy.deepcopy(VALID_RESULT) counts = randrange(1024) valid_result['data']['counts'] = {'0x0': counts, '0x3': (1024 - counts)} new_result['results'].append(valid_result) new_result['job_id'] = self._job_id new_result['backend_name'] = self._backend_name self._result = new_result
def _auto_progress(self): for status in self._job_progress: time.sleep(0.5) self._status = status if (self._status == ApiJobStatus.COMPLETED): new_result = copy.deepcopy(VALID_RESULT_RESPONSE) for _ in range(len(self.qobj['experiments'])): valid_result = copy.deepcopy(VALID_RESULT) counts = randrange(1024) valid_result['data']['counts'] = {'0x0': counts, '0x3': (1024 - counts)} new_result['results'].append(valid_result) new_result['job_id'] = self._job_id new_result['backend_name'] = self._backend_name self._result = new_result<|docstring|>Automatically update job status.<|endoftext|>
715395286d4ca3c3811a9232a886bc4f6e552955ecc81955161e65baa9030209
def data(self): 'Return job data.' data = {'job_id': self._job_id, 'kind': 'q-object', 'status': self._status.value, 'creation_date': '2019-01-01T13:15:58.425972', '_backend_info': {'name': self._backend_name}} if self._job_tags: data['tags'] = self._job_tags.copy() if self._job_name: data['name'] = self._job_name return data
Return job data.
test/fake_account_client.py
data
jwoehr/qiskit-ibmq-provider
199
python
def data(self): data = {'job_id': self._job_id, 'kind': 'q-object', 'status': self._status.value, 'creation_date': '2019-01-01T13:15:58.425972', '_backend_info': {'name': self._backend_name}} if self._job_tags: data['tags'] = self._job_tags.copy() if self._job_name: data['name'] = self._job_name return data
def data(self): data = {'job_id': self._job_id, 'kind': 'q-object', 'status': self._status.value, 'creation_date': '2019-01-01T13:15:58.425972', '_backend_info': {'name': self._backend_name}} if self._job_tags: data['tags'] = self._job_tags.copy() if self._job_name: data['name'] = self._job_name return data<|docstring|>Return job data.<|endoftext|>
18cef473718005bcd6593f8bd0ca81aafe67790fab8e2b18e23ad8edd716f211
def cancel(self): 'Cancel the job.' self._future.cancel() wait([self._future]) self._status = ApiJobStatus.CANCELLED self._result = None
Cancel the job.
test/fake_account_client.py
cancel
jwoehr/qiskit-ibmq-provider
199
python
def cancel(self): self._future.cancel() wait([self._future]) self._status = ApiJobStatus.CANCELLED self._result = None
def cancel(self): self._future.cancel() wait([self._future]) self._status = ApiJobStatus.CANCELLED self._result = None<|docstring|>Cancel the job.<|endoftext|>
cae6c557197eff0f9ae4fdd4df6417d877d65ebe116b6d8efcbb4bbf147ac36f
def result(self): 'Return job result.' if (not self._result): raise RequestsApiError('Result is not available') return self._result
Return job result.
test/fake_account_client.py
result
jwoehr/qiskit-ibmq-provider
199
python
def result(self): if (not self._result): raise RequestsApiError('Result is not available') return self._result
def result(self): if (not self._result): raise RequestsApiError('Result is not available') return self._result<|docstring|>Return job result.<|endoftext|>
526d5537655214e1ae490cf7930084c7bde1c8dcbe547526d9978f8da3b4bec0
def status(self): 'Return job status.' return self._status
Return job status.
test/fake_account_client.py
status
jwoehr/qiskit-ibmq-provider
199
python
def status(self): return self._status
def status(self): return self._status<|docstring|>Return job status.<|endoftext|>
4b5288aed731366923415a8a27666f9b92beeb21764bae63540bd11175284abd
def name(self): 'Return job name.' return self._job_name
Return job name.
test/fake_account_client.py
name
jwoehr/qiskit-ibmq-provider
199
python
def name(self): return self._job_name
def name(self): return self._job_name<|docstring|>Return job name.<|endoftext|>
8c5f5a4a2526b3fbe87838964ed228c99bf314186a7d1656a3beed09c7f3200a
def data(self): 'Return job data.' data = super().data() data['new_field'] = 'foo' return data
Return job data.
test/fake_account_client.py
data
jwoehr/qiskit-ibmq-provider
199
python
def data(self): data = super().data() data['new_field'] = 'foo' return data
def data(self): data = super().data() data['new_field'] = 'foo' return data<|docstring|>Return job data.<|endoftext|>
50706f5866d5a35f5f758962f10943b795b0b847f411a628232a2a91c7aa962e
def data(self): 'Return job data.' data = super().data() del data['job_id'] return data
Return job data.
test/fake_account_client.py
data
jwoehr/qiskit-ibmq-provider
199
python
def data(self): data = super().data() del data['job_id'] return data
def data(self): data = super().data() del data['job_id'] return data<|docstring|>Return job data.<|endoftext|>
f33605549d84ac194c42b814f1a9c6126642e50c56c59bd48c456c61db9e4176
def data(self): 'Return job data.' data = super().data() if (self.status() == ApiJobStatus.ERROR_RUNNING_JOB): data['error'] = {'message': 'Job failed.', 'code': 1234} return data
Return job data.
test/fake_account_client.py
data
jwoehr/qiskit-ibmq-provider
199
python
def data(self): data = super().data() if (self.status() == ApiJobStatus.ERROR_RUNNING_JOB): data['error'] = {'message': 'Job failed.', 'code': 1234} return data
def data(self): data = super().data() if (self.status() == ApiJobStatus.ERROR_RUNNING_JOB): data['error'] = {'message': 'Job failed.', 'code': 1234} return data<|docstring|>Return job data.<|endoftext|>
d8e0a22c6f29f825be41b7726d5303806a717fb7ad793c3354eb6a89d171e158
def __init__(self, job_limit=(- 1), job_class=BaseFakeJob): 'Initialize a fake account client.' self._jobs = {} self._results_retrieved = set() self._job_limit = job_limit self._executor = ThreadPoolExecutor() self._job_class = job_class if isinstance(self._job_class, list): self._job_class.reverse()
Initialize a fake account client.
test/fake_account_client.py
__init__
jwoehr/qiskit-ibmq-provider
199
python
def __init__(self, job_limit=(- 1), job_class=BaseFakeJob): self._jobs = {} self._results_retrieved = set() self._job_limit = job_limit self._executor = ThreadPoolExecutor() self._job_class = job_class if isinstance(self._job_class, list): self._job_class.reverse()
def __init__(self, job_limit=(- 1), job_class=BaseFakeJob): self._jobs = {} self._results_retrieved = set() self._job_limit = job_limit self._executor = ThreadPoolExecutor() self._job_class = job_class if isinstance(self._job_class, list): self._job_class.reverse()<|docstring|>Initialize a fake account client.<|endoftext|>
82398fac2189e16b9c10192f19ecf82d7e1a943ec16ae20b102a44a0b8a4833c
def list_jobs_statuses(self, limit, skip, descending=True, extra_filter=None): 'Return a list of statuses of jobs.' job_data = [] for job in list(self._jobs.values())[skip:(skip + limit)]: job_data.append(job.data()) if (not descending): job_data.reverse() return job_data
Return a list of statuses of jobs.
test/fake_account_client.py
list_jobs_statuses
jwoehr/qiskit-ibmq-provider
199
python
def list_jobs_statuses(self, limit, skip, descending=True, extra_filter=None): job_data = [] for job in list(self._jobs.values())[skip:(skip + limit)]: job_data.append(job.data()) if (not descending): job_data.reverse() return job_data
def list_jobs_statuses(self, limit, skip, descending=True, extra_filter=None): job_data = [] for job in list(self._jobs.values())[skip:(skip + limit)]: job_data.append(job.data()) if (not descending): job_data.reverse() return job_data<|docstring|>Return a list of statuses of jobs.<|endoftext|>
6bdc6cdc5c3ff79547351cf3cac391e6cad98c09dc6a77d13857082353a7cb84
def job_submit(self, backend_name, qobj_dict, job_name, job_tags, *_args, **_kwargs): 'Submit a Qobj to a device.' if ((self._job_limit != (- 1)) and (self._unfinished_jobs() >= self._job_limit)): raise RequestsApiError('400 Client Error: Bad Request for url: <url>. Reached maximum number of concurrent jobs, Error code: 3458.') new_job_id = uuid.uuid4().hex job_class = (self._job_class.pop() if isinstance(self._job_class, list) else self._job_class) new_job = job_class(executor=self._executor, job_id=new_job_id, qobj=qobj_dict, backend_name=backend_name, job_tags=job_tags, job_name=job_name) self._jobs[new_job_id] = new_job return new_job.data()
Submit a Qobj to a device.
test/fake_account_client.py
job_submit
jwoehr/qiskit-ibmq-provider
199
python
def job_submit(self, backend_name, qobj_dict, job_name, job_tags, *_args, **_kwargs): if ((self._job_limit != (- 1)) and (self._unfinished_jobs() >= self._job_limit)): raise RequestsApiError('400 Client Error: Bad Request for url: <url>. Reached maximum number of concurrent jobs, Error code: 3458.') new_job_id = uuid.uuid4().hex job_class = (self._job_class.pop() if isinstance(self._job_class, list) else self._job_class) new_job = job_class(executor=self._executor, job_id=new_job_id, qobj=qobj_dict, backend_name=backend_name, job_tags=job_tags, job_name=job_name) self._jobs[new_job_id] = new_job return new_job.data()
def job_submit(self, backend_name, qobj_dict, job_name, job_tags, *_args, **_kwargs): if ((self._job_limit != (- 1)) and (self._unfinished_jobs() >= self._job_limit)): raise RequestsApiError('400 Client Error: Bad Request for url: <url>. Reached maximum number of concurrent jobs, Error code: 3458.') new_job_id = uuid.uuid4().hex job_class = (self._job_class.pop() if isinstance(self._job_class, list) else self._job_class) new_job = job_class(executor=self._executor, job_id=new_job_id, qobj=qobj_dict, backend_name=backend_name, job_tags=job_tags, job_name=job_name) self._jobs[new_job_id] = new_job return new_job.data()<|docstring|>Submit a Qobj to a device.<|endoftext|>
9031da2602ab6df90989c1a06eb115890642013ccbc2131b5867be03b8e639c4
def job_download_qobj(self, job_id, *_args, **_kwargs): 'Retrieve and return a Qobj.' return copy.deepcopy(self._get_job(job_id).qobj)
Retrieve and return a Qobj.
test/fake_account_client.py
job_download_qobj
jwoehr/qiskit-ibmq-provider
199
python
def job_download_qobj(self, job_id, *_args, **_kwargs): return copy.deepcopy(self._get_job(job_id).qobj)
def job_download_qobj(self, job_id, *_args, **_kwargs): return copy.deepcopy(self._get_job(job_id).qobj)<|docstring|>Retrieve and return a Qobj.<|endoftext|>
8aa2195dcd00ac266b56b183930da04a246b6e8d82b98b32a7661d2586d217d7
def job_result(self, job_id, *_args, **_kwargs): 'Return a random job result.' if (job_id in self._results_retrieved): raise ValueError('Result already retrieved for job {}!'.format(job_id)) self._results_retrieved.add(job_id) return self._get_job(job_id).result()
Return a random job result.
test/fake_account_client.py
job_result
jwoehr/qiskit-ibmq-provider
199
python
def job_result(self, job_id, *_args, **_kwargs): if (job_id in self._results_retrieved): raise ValueError('Result already retrieved for job {}!'.format(job_id)) self._results_retrieved.add(job_id) return self._get_job(job_id).result()
def job_result(self, job_id, *_args, **_kwargs): if (job_id in self._results_retrieved): raise ValueError('Result already retrieved for job {}!'.format(job_id)) self._results_retrieved.add(job_id) return self._get_job(job_id).result()<|docstring|>Return a random job result.<|endoftext|>
d856f4c6950da0b2ddc6ff7cf19281c656c89ff05117721284f05ddbae863089
def job_get(self, job_id, *_args, **_kwargs): 'Return information about a job.' return self._get_job(job_id).data()
Return information about a job.
test/fake_account_client.py
job_get
jwoehr/qiskit-ibmq-provider
199
python
def job_get(self, job_id, *_args, **_kwargs): return self._get_job(job_id).data()
def job_get(self, job_id, *_args, **_kwargs): return self._get_job(job_id).data()<|docstring|>Return information about a job.<|endoftext|>
c7585b62c276fb09a7e8df066a82ccc8d79718d3d297009887b071b7988a2011
def job_status(self, job_id, *_args, **_kwargs): 'Return the status of a job.' return {'status': self._get_job(job_id).status().value}
Return the status of a job.
test/fake_account_client.py
job_status
jwoehr/qiskit-ibmq-provider
199
python
def job_status(self, job_id, *_args, **_kwargs): return {'status': self._get_job(job_id).status().value}
def job_status(self, job_id, *_args, **_kwargs): return {'status': self._get_job(job_id).status().value}<|docstring|>Return the status of a job.<|endoftext|>
f937be69afbbd276396a3b36d1825c4ad1ebd022ca81132885c1f31d765a8c68
def job_final_status(self, job_id, *_args, **_kwargs): 'Wait until the job progress to a final state.' job = self._get_job(job_id) status = job.status() while (status not in API_JOB_FINAL_STATES): time.sleep(0.5) status = job.status() if _kwargs.get('status_queue', None): data = {'status': status.value} if (status is ApiJobStatus.QUEUED): data['infoQueue'] = {'status': 'PENDING_IN_QUEUE', 'position': 1} _kwargs['status_queue'].put(data) return self.job_status(job_id)
Wait until the job progress to a final state.
test/fake_account_client.py
job_final_status
jwoehr/qiskit-ibmq-provider
199
python
def job_final_status(self, job_id, *_args, **_kwargs): job = self._get_job(job_id) status = job.status() while (status not in API_JOB_FINAL_STATES): time.sleep(0.5) status = job.status() if _kwargs.get('status_queue', None): data = {'status': status.value} if (status is ApiJobStatus.QUEUED): data['infoQueue'] = {'status': 'PENDING_IN_QUEUE', 'position': 1} _kwargs['status_queue'].put(data) return self.job_status(job_id)
def job_final_status(self, job_id, *_args, **_kwargs): job = self._get_job(job_id) status = job.status() while (status not in API_JOB_FINAL_STATES): time.sleep(0.5) status = job.status() if _kwargs.get('status_queue', None): data = {'status': status.value} if (status is ApiJobStatus.QUEUED): data['infoQueue'] = {'status': 'PENDING_IN_QUEUE', 'position': 1} _kwargs['status_queue'].put(data) return self.job_status(job_id)<|docstring|>Wait until the job progress to a final state.<|endoftext|>
a185881baedff00626b4bba40ade263d2729a7146a34b99db7e89b2d98a97c29
def job_properties(self, *_args, **_kwargs): 'Return the backend properties of a job.' return FakePoughkeepsie().properties()
Return the backend properties of a job.
test/fake_account_client.py
job_properties
jwoehr/qiskit-ibmq-provider
199
python
def job_properties(self, *_args, **_kwargs): return FakePoughkeepsie().properties()
def job_properties(self, *_args, **_kwargs): return FakePoughkeepsie().properties()<|docstring|>Return the backend properties of a job.<|endoftext|>
db0e811ad3b3e3220e281db1c15b99c9a7847bebea37fa06a6c6997744566dd8
def job_cancel(self, job_id, *_args, **_kwargs): 'Submit a request for cancelling a job.' self._get_job(job_id).cancel() return {'cancelled': True}
Submit a request for cancelling a job.
test/fake_account_client.py
job_cancel
jwoehr/qiskit-ibmq-provider
199
python
def job_cancel(self, job_id, *_args, **_kwargs): self._get_job(job_id).cancel() return {'cancelled': True}
def job_cancel(self, job_id, *_args, **_kwargs): self._get_job(job_id).cancel() return {'cancelled': True}<|docstring|>Submit a request for cancelling a job.<|endoftext|>
ac0fe8769945c650da40d16f774d350c7dd5940ac9cfce67ea93376547957582
def backend_job_limit(self, *_args, **_kwargs): 'Return the job limit for the backend.' return {'maximumJobs': self._job_limit, 'runningJobs': self._unfinished_jobs()}
Return the job limit for the backend.
test/fake_account_client.py
backend_job_limit
jwoehr/qiskit-ibmq-provider
199
python
def backend_job_limit(self, *_args, **_kwargs): return {'maximumJobs': self._job_limit, 'runningJobs': self._unfinished_jobs()}
def backend_job_limit(self, *_args, **_kwargs): return {'maximumJobs': self._job_limit, 'runningJobs': self._unfinished_jobs()}<|docstring|>Return the job limit for the backend.<|endoftext|>
290ad6d2c10f6d8e9c0aa13ddea91798208a67a498b38086e101134047e9096a
def job_update_attribute(self, job_id, attr_name, attr_value, *_args, **_kwargs): 'Update the specified job attribute with the given value.' job = self._get_job(job_id) if (attr_name == 'name'): job._job_name = attr_value if (attr_name == 'tags'): job._job_tags = attr_value.copy() return {attr_name: attr_value}
Update the specified job attribute with the given value.
test/fake_account_client.py
job_update_attribute
jwoehr/qiskit-ibmq-provider
199
python
def job_update_attribute(self, job_id, attr_name, attr_value, *_args, **_kwargs): job = self._get_job(job_id) if (attr_name == 'name'): job._job_name = attr_value if (attr_name == 'tags'): job._job_tags = attr_value.copy() return {attr_name: attr_value}
def job_update_attribute(self, job_id, attr_name, attr_value, *_args, **_kwargs): job = self._get_job(job_id) if (attr_name == 'name'): job._job_name = attr_value if (attr_name == 'tags'): job._job_tags = attr_value.copy() return {attr_name: attr_value}<|docstring|>Update the specified job attribute with the given value.<|endoftext|>
ef5cefbac515a4f7db2a52aef51ad469c53c2da2dd36226854e569e451ba3a50
def tear_down(self): 'Clean up job threads.' for job_id in list(self._jobs.keys()): try: self._jobs[job_id].cancel() except KeyError: pass
Clean up job threads.
test/fake_account_client.py
tear_down
jwoehr/qiskit-ibmq-provider
199
python
def tear_down(self): for job_id in list(self._jobs.keys()): try: self._jobs[job_id].cancel() except KeyError: pass
def tear_down(self): for job_id in list(self._jobs.keys()): try: self._jobs[job_id].cancel() except KeyError: pass<|docstring|>Clean up job threads.<|endoftext|>
59252f40e16571e58e1b8673f9cfc54236b11f203cd013eb4ce7ede44d418e27
def _unfinished_jobs(self): 'Return the number of unfinished jobs.' return sum((1 for job in self._jobs.values() if (job.status() not in API_JOB_FINAL_STATES)))
Return the number of unfinished jobs.
test/fake_account_client.py
_unfinished_jobs
jwoehr/qiskit-ibmq-provider
199
python
def _unfinished_jobs(self): return sum((1 for job in self._jobs.values() if (job.status() not in API_JOB_FINAL_STATES)))
def _unfinished_jobs(self): return sum((1 for job in self._jobs.values() if (job.status() not in API_JOB_FINAL_STATES)))<|docstring|>Return the number of unfinished jobs.<|endoftext|>
e7e6312c71d29353e63e277291e3dbb45892ccf0a8e3ce151127244f9f41e169
def _get_job(self, job_id): 'Return job if found.' if (job_id not in self._jobs): raise RequestsApiError('Job not found. Error code: 3250.') return self._jobs[job_id]
Return job if found.
test/fake_account_client.py
_get_job
jwoehr/qiskit-ibmq-provider
199
python
def _get_job(self, job_id): if (job_id not in self._jobs): raise RequestsApiError('Job not found. Error code: 3250.') return self._jobs[job_id]
def _get_job(self, job_id): if (job_id not in self._jobs): raise RequestsApiError('Job not found. Error code: 3250.') return self._jobs[job_id]<|docstring|>Return job if found.<|endoftext|>
06c5b4d8e4283b6b7c457e2491433ef38eeabeb8021415c725518e169a8fe570
def __init__(self, max_fail_count=(- 1)): 'JobSubmitFailClient constructor.' self._fail_count = max_fail_count super().__init__()
JobSubmitFailClient constructor.
test/fake_account_client.py
__init__
jwoehr/qiskit-ibmq-provider
199
python
def __init__(self, max_fail_count=(- 1)): self._fail_count = max_fail_count super().__init__()
def __init__(self, max_fail_count=(- 1)): self._fail_count = max_fail_count super().__init__()<|docstring|>JobSubmitFailClient constructor.<|endoftext|>
c27110a172142b3f26aed663070531ae767e10e414b9741f5c19d6c9bf99cf68
def job_submit(self, *_args, **_kwargs): 'Failing job submit.' if (self._fail_count != 0): self._fail_count -= 1 raise RequestsApiError('Job submit failed!') return super().job_submit(*_args, **_kwargs)
Failing job submit.
test/fake_account_client.py
job_submit
jwoehr/qiskit-ibmq-provider
199
python
def job_submit(self, *_args, **_kwargs): if (self._fail_count != 0): self._fail_count -= 1 raise RequestsApiError('Job submit failed!') return super().job_submit(*_args, **_kwargs)
def job_submit(self, *_args, **_kwargs): if (self._fail_count != 0): self._fail_count -= 1 raise RequestsApiError('Job submit failed!') return super().job_submit(*_args, **_kwargs)<|docstring|>Failing job submit.<|endoftext|>
4a7dc3470947496bbcc219b8fa82af67fbb213e97bae13bff5b7102ece3aeef4
def __init__(self, *args, max_fail_count=(- 1), **kwargs): 'JobTimeoutClient constructor.' self._fail_count = max_fail_count super().__init__(*args, **kwargs)
JobTimeoutClient constructor.
test/fake_account_client.py
__init__
jwoehr/qiskit-ibmq-provider
199
python
def __init__(self, *args, max_fail_count=(- 1), **kwargs): self._fail_count = max_fail_count super().__init__(*args, **kwargs)
def __init__(self, *args, max_fail_count=(- 1), **kwargs): self._fail_count = max_fail_count super().__init__(*args, **kwargs)<|docstring|>JobTimeoutClient constructor.<|endoftext|>
be725bbcdd80f862edabc14afc3f5fee5b945ede789f181ca59258536cebbb95
def job_final_status(self, job_id, *_args, **_kwargs): 'Wait until the job progress to a final state.' if (self._fail_count != 0): self._fail_count -= 1 raise UserTimeoutExceededError('Job timed out!') return super().job_final_status(job_id, *_args, **_kwargs)
Wait until the job progress to a final state.
test/fake_account_client.py
job_final_status
jwoehr/qiskit-ibmq-provider
199
python
def job_final_status(self, job_id, *_args, **_kwargs): if (self._fail_count != 0): self._fail_count -= 1 raise UserTimeoutExceededError('Job timed out!') return super().job_final_status(job_id, *_args, **_kwargs)
def job_final_status(self, job_id, *_args, **_kwargs): if (self._fail_count != 0): self._fail_count -= 1 raise UserTimeoutExceededError('Job timed out!') return super().job_final_status(job_id, *_args, **_kwargs)<|docstring|>Wait until the job progress to a final state.<|endoftext|>
6ef4a166a0b64f8f408f5077ee1b958a0d7edc5bce3d3d9b693f43ac5347a37f
def get_quotes(): '\n function that gets the json response from the base url\n ' with urllib.request.urlopen(base_url) as url: data = url.read() response = json.loads(data) results = process_quote(response) return results
function that gets the json response from the base url
blog/request.py
get_quotes
petermirithu/blog_site
0
python
def get_quotes(): '\n \n ' with urllib.request.urlopen(base_url) as url: data = url.read() response = json.loads(data) results = process_quote(response) return results
def get_quotes(): '\n \n ' with urllib.request.urlopen(base_url) as url: data = url.read() response = json.loads(data) results = process_quote(response) return results<|docstring|>function that gets the json response from the base url<|endoftext|>
41a4249abca8fbe5d53bf15727143b4c5668d8aabea31e071ce102986d22b925
def process_quote(item): '\n function that processes the response from json format\n ' results = [] author = item.get('author') quote = item.get('quote') quote_object = Quote(author, quote) results.append(quote_object) return results
function that processes the response from json format
blog/request.py
process_quote
petermirithu/blog_site
0
python
def process_quote(item): '\n \n ' results = [] author = item.get('author') quote = item.get('quote') quote_object = Quote(author, quote) results.append(quote_object) return results
def process_quote(item): '\n \n ' results = [] author = item.get('author') quote = item.get('quote') quote_object = Quote(author, quote) results.append(quote_object) return results<|docstring|>function that processes the response from json format<|endoftext|>
e6ae353071262792e6edb2a6d24ed77fab70baa322ed67a364e689e044a94e44
def kernel_zhao(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n\n :param s: time point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: value at time point s\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (s >= 0): if (s <= s0): return c0 else: return (c0 * ((s / s0) ** (- (1.0 + theta)))) else: return 0
Calculates Zhao kernel for given value. :param s: time point to evaluate :param s0: initial reaction time :param theta: empirically determined constant :return: value at time point s
tideh/functions.py
kernel_zhao
sebaruehl/TiDeH
0
python
def kernel_zhao(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n\n :param s: time point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: value at time point s\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (s >= 0): if (s <= s0): return c0 else: return (c0 * ((s / s0) ** (- (1.0 + theta)))) else: return 0
def kernel_zhao(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n\n :param s: time point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: value at time point s\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (s >= 0): if (s <= s0): return c0 else: return (c0 * ((s / s0) ** (- (1.0 + theta)))) else: return 0<|docstring|>Calculates Zhao kernel for given value. :param s: time point to evaluate :param s0: initial reaction time :param theta: empirically determined constant :return: value at time point s<|endoftext|>
56a686165733a9d1b52bbf74bfe0a280bda82cf45b5282f221235e12821c0288
def kernel_zhao_vec(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n Optimized using nd-arrays and vectorization.\n\n :param s: time points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: values at given time points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(s) res[(s < 0)] = 0 res[((s <= s0) & (s >= 0))] = c0 res[(s > s0)] = (c0 * ((res[(s > s0)] / s0) ** (- (1.0 + theta)))) return res
Calculates Zhao kernel for given value. Optimized using nd-arrays and vectorization. :param s: time points to evaluate, should be a nd-array :param s0: initial reaction time :param theta: empirically determined constant :return: values at given time points
tideh/functions.py
kernel_zhao_vec
sebaruehl/TiDeH
0
python
def kernel_zhao_vec(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n Optimized using nd-arrays and vectorization.\n\n :param s: time points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: values at given time points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(s) res[(s < 0)] = 0 res[((s <= s0) & (s >= 0))] = c0 res[(s > s0)] = (c0 * ((res[(s > s0)] / s0) ** (- (1.0 + theta)))) return res
def kernel_zhao_vec(s, s0=0.08333, theta=0.242): '\n Calculates Zhao kernel for given value.\n Optimized using nd-arrays and vectorization.\n\n :param s: time points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: values at given time points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(s) res[(s < 0)] = 0 res[((s <= s0) & (s >= 0))] = c0 res[(s > s0)] = (c0 * ((res[(s > s0)] / s0) ** (- (1.0 + theta)))) return res<|docstring|>Calculates Zhao kernel for given value. Optimized using nd-arrays and vectorization. :param s: time points to evaluate, should be a nd-array :param s0: initial reaction time :param theta: empirically determined constant :return: values at given time points<|endoftext|>
66fe2176b748fabb50b0ba8d2d9d136c0bc6f325d7925b8074c37ec33da2bc95
def kernel_primitive_zhao(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n\n :param x: point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: primitive evaluated at x\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (x < 0): return 0 elif (x <= s0): return (c0 * x) else: return (c0 * (s0 + ((s0 * (1 - ((x / s0) ** (- theta)))) / theta)))
Calculates the primitive of the Zhao kernel for given values. :param x: point to evaluate :param s0: initial reaction time :param theta: empirically determined constant :return: primitive evaluated at x
tideh/functions.py
kernel_primitive_zhao
sebaruehl/TiDeH
0
python
def kernel_primitive_zhao(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n\n :param x: point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: primitive evaluated at x\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (x < 0): return 0 elif (x <= s0): return (c0 * x) else: return (c0 * (s0 + ((s0 * (1 - ((x / s0) ** (- theta)))) / theta)))
def kernel_primitive_zhao(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n\n :param x: point to evaluate\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: primitive evaluated at x\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) if (x < 0): return 0 elif (x <= s0): return (c0 * x) else: return (c0 * (s0 + ((s0 * (1 - ((x / s0) ** (- theta)))) / theta)))<|docstring|>Calculates the primitive of the Zhao kernel for given values. :param x: point to evaluate :param s0: initial reaction time :param theta: empirically determined constant :return: primitive evaluated at x<|endoftext|>
f453187073d70bb3c91c14634e0efe33605e0dba44ec3d2f839abc190f0a3d1c
def kernel_primitive_zhao_vec(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n Optimized using nd-arrays and vectorization.\n\n :param x: points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :param c0: normalization constant\n :return: primitives evaluated at given points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(x) res[(x < 0)] = 0 res[((x <= s0) & (x >= 0))] = (c0 * res[((x <= s0) & (x >= 0))]) res[(x > s0)] = (c0 * (s0 + ((s0 * (1 - ((res[(x > s0)] / s0) ** (- theta)))) / theta))) return res
Calculates the primitive of the Zhao kernel for given values. Optimized using nd-arrays and vectorization. :param x: points to evaluate, should be a nd-array :param s0: initial reaction time :param theta: empirically determined constant :param c0: normalization constant :return: primitives evaluated at given points
tideh/functions.py
kernel_primitive_zhao_vec
sebaruehl/TiDeH
0
python
def kernel_primitive_zhao_vec(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n Optimized using nd-arrays and vectorization.\n\n :param x: points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :param c0: normalization constant\n :return: primitives evaluated at given points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(x) res[(x < 0)] = 0 res[((x <= s0) & (x >= 0))] = (c0 * res[((x <= s0) & (x >= 0))]) res[(x > s0)] = (c0 * (s0 + ((s0 * (1 - ((res[(x > s0)] / s0) ** (- theta)))) / theta))) return res
def kernel_primitive_zhao_vec(x, s0=0.08333, theta=0.242): '\n Calculates the primitive of the Zhao kernel for given values.\n Optimized using nd-arrays and vectorization.\n\n :param x: points to evaluate, should be a nd-array\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :param c0: normalization constant\n :return: primitives evaluated at given points\n ' c0 = ((1.0 / s0) / (1 - (1.0 / (- theta)))) res = np.copy(x) res[(x < 0)] = 0 res[((x <= s0) & (x >= 0))] = (c0 * res[((x <= s0) & (x >= 0))]) res[(x > s0)] = (c0 * (s0 + ((s0 * (1 - ((res[(x > s0)] / s0) ** (- theta)))) / theta))) return res<|docstring|>Calculates the primitive of the Zhao kernel for given values. Optimized using nd-arrays and vectorization. :param x: points to evaluate, should be a nd-array :param s0: initial reaction time :param theta: empirically determined constant :param c0: normalization constant :return: primitives evaluated at given points<|endoftext|>
1b4b73e6c79f17c42c85f14bbb31fbbb23196962e37b981d63f43ab903fca7c4
def integral_zhao(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n\n :param x1: start\n :param x2: end\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integral of Zhao function\n ' return (kernel_primitive_zhao(x2, s0, theta) - kernel_primitive_zhao(x1, s0, theta))
Calculates definite integral of Zhao function. :param x1: start :param x2: end :param s0: initial reaction time :param theta: empirically determined constant :return: integral of Zhao function
tideh/functions.py
integral_zhao
sebaruehl/TiDeH
0
python
def integral_zhao(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n\n :param x1: start\n :param x2: end\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integral of Zhao function\n ' return (kernel_primitive_zhao(x2, s0, theta) - kernel_primitive_zhao(x1, s0, theta))
def integral_zhao(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n\n :param x1: start\n :param x2: end\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integral of Zhao function\n ' return (kernel_primitive_zhao(x2, s0, theta) - kernel_primitive_zhao(x1, s0, theta))<|docstring|>Calculates definite integral of Zhao function. :param x1: start :param x2: end :param s0: initial reaction time :param theta: empirically determined constant :return: integral of Zhao function<|endoftext|>
45d4f18d893a4a471a7e89977963e0e251fc1298817773bf6cf00a9f034b76a0
def integral_zhao_vec(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n Optimized using nd-arrays and vectorization.\n\n x1 and x2 should be nd-arrays of same size.\n\n :param x1: start values\n :param x2: end values\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integrals of Zhao function\n ' return (kernel_primitive_zhao_vec(x2, s0, theta) - kernel_primitive_zhao_vec(x1, s0, theta))
Calculates definite integral of Zhao function. Optimized using nd-arrays and vectorization. x1 and x2 should be nd-arrays of same size. :param x1: start values :param x2: end values :param s0: initial reaction time :param theta: empirically determined constant :return: integrals of Zhao function
tideh/functions.py
integral_zhao_vec
sebaruehl/TiDeH
0
python
def integral_zhao_vec(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n Optimized using nd-arrays and vectorization.\n\n x1 and x2 should be nd-arrays of same size.\n\n :param x1: start values\n :param x2: end values\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integrals of Zhao function\n ' return (kernel_primitive_zhao_vec(x2, s0, theta) - kernel_primitive_zhao_vec(x1, s0, theta))
def integral_zhao_vec(x1, x2, s0=0.08333, theta=0.242): '\n Calculates definite integral of Zhao function.\n Optimized using nd-arrays and vectorization.\n\n x1 and x2 should be nd-arrays of same size.\n\n :param x1: start values\n :param x2: end values\n :param s0: initial reaction time\n :param theta: empirically determined constant\n :return: integrals of Zhao function\n ' return (kernel_primitive_zhao_vec(x2, s0, theta) - kernel_primitive_zhao_vec(x1, s0, theta))<|docstring|>Calculates definite integral of Zhao function. Optimized using nd-arrays and vectorization. x1 and x2 should be nd-arrays of same size. :param x1: start values :param x2: end values :param s0: initial reaction time :param theta: empirically determined constant :return: integrals of Zhao function<|endoftext|>
8da6ba90113d86be0ceb56ae4ed72bc90a5a4046b019e071849117832e14c0ed
def infectious_rate_tweets(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n\n :param t: point to evaluate function at (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for time t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * sin((((48 / tm) * pi) * (((t + t0) / 24) + phi0)))))) * exp(((- t) / (24 * taum))))
Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array in the form of [(lower r0, lower taum), (upper r0, upper taum)]. Converted to hours. :param t: point to evaluate function at (in hours) :param p0: base rate :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what time a full circle passed, in hours) :param bounds: bounds for r0 and taum :return: infectiousness for time t
tideh/functions.py
infectious_rate_tweets
sebaruehl/TiDeH
0
python
def infectious_rate_tweets(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n\n :param t: point to evaluate function at (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for time t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * sin((((48 / tm) * pi) * (((t + t0) / 24) + phi0)))))) * exp(((- t) / (24 * taum))))
def infectious_rate_tweets(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n\n :param t: point to evaluate function at (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for time t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * sin((((48 / tm) * pi) * (((t + t0) / 24) + phi0)))))) * exp(((- t) / (24 * taum))))<|docstring|>Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array in the form of [(lower r0, lower taum), (upper r0, upper taum)]. Converted to hours. :param t: point to evaluate function at (in hours) :param p0: base rate :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what time a full circle passed, in hours) :param bounds: bounds for r0 and taum :return: infectiousness for time t<|endoftext|>
cb51467bc9cd8c8401e8e8005c91db46ac03e376ef1ef12278ba3ab2489eedb3
def infectious_rate_tweets_vec(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bound should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n Vectorized version.\n\n :param t: points to evaluate function at, should be a nd-array (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for given t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0)))))) * np.exp(((- t) / (24.0 * taum))))
Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bound should be passed as an array in the form of [(lower r0, lower taum), (upper r0, upper taum)]. Converted to hours. Vectorized version. :param t: points to evaluate function at, should be a nd-array (in hours) :param p0: base rate :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what time a full circle passed, in hours) :param bounds: bounds for r0 and taum :return: infectiousness for given t
tideh/functions.py
infectious_rate_tweets_vec
sebaruehl/TiDeH
0
python
def infectious_rate_tweets_vec(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bound should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n Vectorized version.\n\n :param t: points to evaluate function at, should be a nd-array (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for given t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0)))))) * np.exp(((- t) / (24.0 * taum))))
def infectious_rate_tweets_vec(t, p0=0.001, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0, bounds=None): '\n Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bound should be passed as an array\n in the form of [(lower r0, lower taum), (upper r0, upper taum)].\n Converted to hours.\n Vectorized version.\n\n :param t: points to evaluate function at, should be a nd-array (in hours)\n :param p0: base rate\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what time a full circle passed, in hours)\n :param bounds: bounds for r0 and taum\n :return: infectiousness for given t\n ' if (bounds is not None): if (not (bounds[0][0] < r0 < bounds[1][0])): r0 = max(bounds[0][0], (bounds[1][0] * sigmoid((taum / bounds[1][0])))) if (not (bounds[0][1] < taum < bounds[1][1])): taum = max(bounds[0][1], (bounds[1][1] * sigmoid((taum / bounds[1][1])))) return ((p0 * (1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0)))))) * np.exp(((- t) / (24.0 * taum))))<|docstring|>Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bound should be passed as an array in the form of [(lower r0, lower taum), (upper r0, upper taum)]. Converted to hours. Vectorized version. :param t: points to evaluate function at, should be a nd-array (in hours) :param p0: base rate :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what time a full circle passed, in hours) :param bounds: bounds for r0 and taum :return: infectiousness for given t<|endoftext|>
e099e83d297d7eff4cfa4a2ddb3441e3bf4c71ecbd4fffb2c10cf9fac909903b
def infectious_rate_dv_p0(t, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0): '\n Derivation of infectious rate after p0.\n\n Required for direct maximum likelihood estimation.\n\n :param t: points to evaluate function at, shoult be nd-arrays (in hours)\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what a fill circle passed, on hours)\n :return: infectious rate derived after p0\n ' return ((1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0))))) * np.exp(((- t) / (24.0 * taum))))
Derivation of infectious rate after p0. Required for direct maximum likelihood estimation. :param t: points to evaluate function at, shoult be nd-arrays (in hours) :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what a fill circle passed, on hours) :return: infectious rate derived after p0
tideh/functions.py
infectious_rate_dv_p0
sebaruehl/TiDeH
0
python
def infectious_rate_dv_p0(t, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0): '\n Derivation of infectious rate after p0.\n\n Required for direct maximum likelihood estimation.\n\n :param t: points to evaluate function at, shoult be nd-arrays (in hours)\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what a fill circle passed, on hours)\n :return: infectious rate derived after p0\n ' return ((1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0))))) * np.exp(((- t) / (24.0 * taum))))
def infectious_rate_dv_p0(t, r0=0.424, phi0=0.125, taum=2.0, t0=0, tm=24.0): '\n Derivation of infectious rate after p0.\n\n Required for direct maximum likelihood estimation.\n\n :param t: points to evaluate function at, shoult be nd-arrays (in hours)\n :param r0: amplitude\n :param phi0: shift (in days)\n :param taum: decay/freshness (in days)\n :param t0: start time of observation (in hours)\n :param tm: cyclic property (after what a fill circle passed, on hours)\n :return: infectious rate derived after p0\n ' return ((1.0 - (r0 * np.sin((((48.0 / tm) * np.pi) * (((t + t0) / 24.0) + phi0))))) * np.exp(((- t) / (24.0 * taum))))<|docstring|>Derivation of infectious rate after p0. Required for direct maximum likelihood estimation. :param t: points to evaluate function at, shoult be nd-arrays (in hours) :param r0: amplitude :param phi0: shift (in days) :param taum: decay/freshness (in days) :param t0: start time of observation (in hours) :param tm: cyclic property (after what a fill circle passed, on hours) :return: infectious rate derived after p0<|endoftext|>
c41601ec166ab822e27d8f57bd1ba57d74a9b7aa37d29cdd199a327085d59cbf
def sigmoid(x): '\n Calculates sigmoid function for value x.\n ' return (1 / (1 + exp((- x))))
Calculates sigmoid function for value x.
tideh/functions.py
sigmoid
sebaruehl/TiDeH
0
python
def sigmoid(x): '\n \n ' return (1 / (1 + exp((- x))))
def sigmoid(x): '\n \n ' return (1 / (1 + exp((- x))))<|docstring|>Calculates sigmoid function for value x.<|endoftext|>