body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
0eeb6ed1fec646ea9834661ae1fd15fc7d2dbb729b6e1f013155448e47921428
def parse_table(table, idx_map: dict): '\n Remove unneccessary rows and convert\n undesirable string format to float\n ' nan_rows = table.isnull().all(axis=1) table = table.loc[(~ nan_rows)] idx = table.index.to_list() idx = DBC2SBC(idx) for (i, ix) in enumerate(idx): if (ix in idx_map.keys()): idx[i] = idx_map[ix] for (i, ix) in enumerate(idx): try: idx[i] = re.search(':([一-龥].*)', ix).group(1) except AttributeError: idx[i] = ix table.index = idx try: rename_cols = ['本月值', '本月同比', '累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols except ValueError: rename_cols = ['累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols for col in table.columns: table[col] = table[col].str.extract('((\\-|\\+)?\\d+(\\.\\d+)?)')[0] table[col] = table[col].astype('float64') return table
Remove unneccessary rows and convert undesirable string format to float
industry/industry.py
parse_table
linusqzdeng/macroind-crawler
0
python
def parse_table(table, idx_map: dict): '\n Remove unneccessary rows and convert\n undesirable string format to float\n ' nan_rows = table.isnull().all(axis=1) table = table.loc[(~ nan_rows)] idx = table.index.to_list() idx = DBC2SBC(idx) for (i, ix) in enumerate(idx): if (ix in idx_map.keys()): idx[i] = idx_map[ix] for (i, ix) in enumerate(idx): try: idx[i] = re.search(':([一-龥].*)', ix).group(1) except AttributeError: idx[i] = ix table.index = idx try: rename_cols = ['本月值', '本月同比', '累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols except ValueError: rename_cols = ['累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols for col in table.columns: table[col] = table[col].str.extract('((\\-|\\+)?\\d+(\\.\\d+)?)')[0] table[col] = table[col].astype('float64') return table
def parse_table(table, idx_map: dict): '\n Remove unneccessary rows and convert\n undesirable string format to float\n ' nan_rows = table.isnull().all(axis=1) table = table.loc[(~ nan_rows)] idx = table.index.to_list() idx = DBC2SBC(idx) for (i, ix) in enumerate(idx): if (ix in idx_map.keys()): idx[i] = idx_map[ix] for (i, ix) in enumerate(idx): try: idx[i] = re.search(':([一-龥].*)', ix).group(1) except AttributeError: idx[i] = ix table.index = idx try: rename_cols = ['本月值', '本月同比', '累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols except ValueError: rename_cols = ['累计值', '累计同比'] if (len(table.columns) == (len(rename_cols) + 1)): table = table.iloc[(:, 1:)] table.columns = rename_cols for col in table.columns: table[col] = table[col].str.extract('((\\-|\\+)?\\d+(\\.\\d+)?)')[0] table[col] = table[col].astype('float64') return table<|docstring|>Remove unneccessary rows and convert undesirable string format to float<|endoftext|>
d95c5656419f741b1052006a88179e44bd6d22883a0ff5724d5d2fc86122242a
def DBC2SBC(ustring_list): '全角转半角' ustring_list = list(map((lambda x: x.strip()), ustring_list)) normal_str_list = [] for i in range(len(ustring_list)): rstring = '' for uchar in ustring_list[i]: if (uchar == ' '): continue inside_code = ord(uchar) if (inside_code == 12288): inside_code = 32 else: inside_code -= 65248 if (not ((33 <= inside_code) and (inside_code <= 126))): rstring += uchar continue rstring += chr(inside_code) normal_str_list.append(rstring) return normal_str_list
全角转半角
industry/industry.py
DBC2SBC
linusqzdeng/macroind-crawler
0
python
def DBC2SBC(ustring_list): ustring_list = list(map((lambda x: x.strip()), ustring_list)) normal_str_list = [] for i in range(len(ustring_list)): rstring = for uchar in ustring_list[i]: if (uchar == ' '): continue inside_code = ord(uchar) if (inside_code == 12288): inside_code = 32 else: inside_code -= 65248 if (not ((33 <= inside_code) and (inside_code <= 126))): rstring += uchar continue rstring += chr(inside_code) normal_str_list.append(rstring) return normal_str_list
def DBC2SBC(ustring_list): ustring_list = list(map((lambda x: x.strip()), ustring_list)) normal_str_list = [] for i in range(len(ustring_list)): rstring = for uchar in ustring_list[i]: if (uchar == ' '): continue inside_code = ord(uchar) if (inside_code == 12288): inside_code = 32 else: inside_code -= 65248 if (not ((33 <= inside_code) and (inside_code <= 126))): rstring += uchar continue rstring += chr(inside_code) normal_str_list.append(rstring) return normal_str_list<|docstring|>全角转半角<|endoftext|>
01a4885f0f1e8b85ecc06c3d8ac8ef43e697a8fcc69e28475a7dd54f8fd7a55c
def main(page_num: int, bypass_pages: list=None): '\n Main loop of the crawler\n\n Params\n ------\n - page_num: int\n Total number of page to scrape \n - bypass_pages: list\n List of page number that you widh the program to ignore \n ' ua = UserAgent() headers = {'User-Agent': ua.random} search_page_url = 'http://www.stats.gov.cn/was5/web/search?page=1&channelid=288041&orderby=-DOCRELTIME&was_custom_expr=DOCTITLE%3D%28like%28%E5%B7%A5%E4%B8%9A%E5%A2%9E%E5%8A%A0%E5%80%BC%29%2Fsen%29&perpage=10&outlinepage=10' schema = 'http://www.stats.gov.cn/was5/web/' skip_pages = [] for i in range(page_num): results = pd.DataFrame() print(f'Fetching urls in page {(i + 1)}...') search_page_html = get_html(search_page_url, headers) (urllist, next_page_url) = parse_search_page(search_page_html) search_page_url = (schema + next_page_url) if (bypass_pages and ((i + 1) in bypass_pages)): print(f'Bypassing page {(i + 1)}') continue for (n, url) in enumerate(urllist[:2]): print(f'Page number: {(n + 1)}') table_html = get_html(url, headers) (title, table, release_dt, report_dt) = parse_html(table_html) try: table = parse_table(table, INDEX_MAP) output = redesign_table(table, release_dt, report_dt) results = pd.concat([results, output], ignore_index=True) except Exception as e: print('===Errors detected:', e) print(f'Skipping the page {title}') skip_pages.append(title) continue print('Collected all tables, going to next page...') results.to_csv(f'../data/industry_growth_page{(i + 1)}.csv', index=False) print('All done!')
Main loop of the crawler Params ------ - page_num: int Total number of page to scrape - bypass_pages: list List of page number that you widh the program to ignore
industry/industry.py
main
linusqzdeng/macroind-crawler
0
python
def main(page_num: int, bypass_pages: list=None): '\n Main loop of the crawler\n\n Params\n ------\n - page_num: int\n Total number of page to scrape \n - bypass_pages: list\n List of page number that you widh the program to ignore \n ' ua = UserAgent() headers = {'User-Agent': ua.random} search_page_url = 'http://www.stats.gov.cn/was5/web/search?page=1&channelid=288041&orderby=-DOCRELTIME&was_custom_expr=DOCTITLE%3D%28like%28%E5%B7%A5%E4%B8%9A%E5%A2%9E%E5%8A%A0%E5%80%BC%29%2Fsen%29&perpage=10&outlinepage=10' schema = 'http://www.stats.gov.cn/was5/web/' skip_pages = [] for i in range(page_num): results = pd.DataFrame() print(f'Fetching urls in page {(i + 1)}...') search_page_html = get_html(search_page_url, headers) (urllist, next_page_url) = parse_search_page(search_page_html) search_page_url = (schema + next_page_url) if (bypass_pages and ((i + 1) in bypass_pages)): print(f'Bypassing page {(i + 1)}') continue for (n, url) in enumerate(urllist[:2]): print(f'Page number: {(n + 1)}') table_html = get_html(url, headers) (title, table, release_dt, report_dt) = parse_html(table_html) try: table = parse_table(table, INDEX_MAP) output = redesign_table(table, release_dt, report_dt) results = pd.concat([results, output], ignore_index=True) except Exception as e: print('===Errors detected:', e) print(f'Skipping the page {title}') skip_pages.append(title) continue print('Collected all tables, going to next page...') results.to_csv(f'../data/industry_growth_page{(i + 1)}.csv', index=False) print('All done!')
def main(page_num: int, bypass_pages: list=None): '\n Main loop of the crawler\n\n Params\n ------\n - page_num: int\n Total number of page to scrape \n - bypass_pages: list\n List of page number that you widh the program to ignore \n ' ua = UserAgent() headers = {'User-Agent': ua.random} search_page_url = 'http://www.stats.gov.cn/was5/web/search?page=1&channelid=288041&orderby=-DOCRELTIME&was_custom_expr=DOCTITLE%3D%28like%28%E5%B7%A5%E4%B8%9A%E5%A2%9E%E5%8A%A0%E5%80%BC%29%2Fsen%29&perpage=10&outlinepage=10' schema = 'http://www.stats.gov.cn/was5/web/' skip_pages = [] for i in range(page_num): results = pd.DataFrame() print(f'Fetching urls in page {(i + 1)}...') search_page_html = get_html(search_page_url, headers) (urllist, next_page_url) = parse_search_page(search_page_html) search_page_url = (schema + next_page_url) if (bypass_pages and ((i + 1) in bypass_pages)): print(f'Bypassing page {(i + 1)}') continue for (n, url) in enumerate(urllist[:2]): print(f'Page number: {(n + 1)}') table_html = get_html(url, headers) (title, table, release_dt, report_dt) = parse_html(table_html) try: table = parse_table(table, INDEX_MAP) output = redesign_table(table, release_dt, report_dt) results = pd.concat([results, output], ignore_index=True) except Exception as e: print('===Errors detected:', e) print(f'Skipping the page {title}') skip_pages.append(title) continue print('Collected all tables, going to next page...') results.to_csv(f'../data/industry_growth_page{(i + 1)}.csv', index=False) print('All done!')<|docstring|>Main loop of the crawler Params ------ - page_num: int Total number of page to scrape - bypass_pages: list List of page number that you widh the program to ignore<|endoftext|>
3684315eb7b5ba7b26320dac54e161c5c4584632cda87b0043f7b076af2a8815
def _create_mesh_motion_solving_strategy(self): 'Create the mesh motion solving strategy.\n\n The mesh motion solving strategy must provide the functions defined in SolutionStrategy.\n ' raise Exception('Mesh motion solving strategy must be created by the derived class.')
Create the mesh motion solving strategy. The mesh motion solving strategy must provide the functions defined in SolutionStrategy.
applications/MeshMovingApplication/python_scripts/mesh_solver_base.py
_create_mesh_motion_solving_strategy
lkusch/Kratos
778
python
def _create_mesh_motion_solving_strategy(self): 'Create the mesh motion solving strategy.\n\n The mesh motion solving strategy must provide the functions defined in SolutionStrategy.\n ' raise Exception('Mesh motion solving strategy must be created by the derived class.')
def _create_mesh_motion_solving_strategy(self): 'Create the mesh motion solving strategy.\n\n The mesh motion solving strategy must provide the functions defined in SolutionStrategy.\n ' raise Exception('Mesh motion solving strategy must be created by the derived class.')<|docstring|>Create the mesh motion solving strategy. The mesh motion solving strategy must provide the functions defined in SolutionStrategy.<|endoftext|>
08b3ee57d10d44e14d598f357a25d9e58b85012ada840dc8ba8d0ecca9925a7f
def _set_and_fill_buffer(self): 'Prepare nodal solution step data containers and time step information. ' buffer_size = self.GetMinimumBufferSize() self.mesh_model_part.SetBufferSize(buffer_size) delta_time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME] time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.TIME] step = (- buffer_size) time = (time - (delta_time * buffer_size)) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time) for i in range(0, buffer_size): step = (step + 1) time = (time + delta_time) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step) self.mesh_model_part.CloneTimeStep(time) self.mesh_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] = False
Prepare nodal solution step data containers and time step information.
applications/MeshMovingApplication/python_scripts/mesh_solver_base.py
_set_and_fill_buffer
lkusch/Kratos
778
python
def _set_and_fill_buffer(self): ' ' buffer_size = self.GetMinimumBufferSize() self.mesh_model_part.SetBufferSize(buffer_size) delta_time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME] time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.TIME] step = (- buffer_size) time = (time - (delta_time * buffer_size)) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time) for i in range(0, buffer_size): step = (step + 1) time = (time + delta_time) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step) self.mesh_model_part.CloneTimeStep(time) self.mesh_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] = False
def _set_and_fill_buffer(self): ' ' buffer_size = self.GetMinimumBufferSize() self.mesh_model_part.SetBufferSize(buffer_size) delta_time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME] time = self.mesh_model_part.ProcessInfo[KratosMultiphysics.TIME] step = (- buffer_size) time = (time - (delta_time * buffer_size)) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time) for i in range(0, buffer_size): step = (step + 1) time = (time + delta_time) self.mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step) self.mesh_model_part.CloneTimeStep(time) self.mesh_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] = False<|docstring|>Prepare nodal solution step data containers and time step information.<|endoftext|>
ae3d1a5b28a20e919984313d7d449f6213510550f7c03a4a1b266f8a2c2f3954
def __CreateTimeIntegratorHelper(self): 'Initializing the helper-class for the time-integration\n ' mesh_vel_calc_setting = self.settings['mesh_velocity_calculation'] time_scheme = mesh_vel_calc_setting['time_scheme'].GetString() if (time_scheme == 'bdf1'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF1() elif (time_scheme == 'bdf2'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF2() elif (time_scheme == 'newmark'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.Newmark() elif (time_scheme == 'bossak'): if mesh_vel_calc_setting.Has('alpha_m'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak(alpha_m) else: self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak() elif (time_scheme == 'generalized_alpha'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() alpha_f = mesh_vel_calc_setting['alpha_f'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.GeneralizedAlpha(alpha_m, alpha_f) else: err_msg = 'The requested time scheme "{}" is not available for the calculation of the mesh velocity!\n'.format(time_scheme) err_msg += 'Available options are: "bdf1", "bdf2", "newmark", "bossak", "generalized_alpha"' raise Exception(err_msg)
Initializing the helper-class for the time-integration
applications/MeshMovingApplication/python_scripts/mesh_solver_base.py
__CreateTimeIntegratorHelper
lkusch/Kratos
778
python
def __CreateTimeIntegratorHelper(self): '\n ' mesh_vel_calc_setting = self.settings['mesh_velocity_calculation'] time_scheme = mesh_vel_calc_setting['time_scheme'].GetString() if (time_scheme == 'bdf1'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF1() elif (time_scheme == 'bdf2'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF2() elif (time_scheme == 'newmark'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.Newmark() elif (time_scheme == 'bossak'): if mesh_vel_calc_setting.Has('alpha_m'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak(alpha_m) else: self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak() elif (time_scheme == 'generalized_alpha'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() alpha_f = mesh_vel_calc_setting['alpha_f'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.GeneralizedAlpha(alpha_m, alpha_f) else: err_msg = 'The requested time scheme "{}" is not available for the calculation of the mesh velocity!\n'.format(time_scheme) err_msg += 'Available options are: "bdf1", "bdf2", "newmark", "bossak", "generalized_alpha"' raise Exception(err_msg)
def __CreateTimeIntegratorHelper(self): '\n ' mesh_vel_calc_setting = self.settings['mesh_velocity_calculation'] time_scheme = mesh_vel_calc_setting['time_scheme'].GetString() if (time_scheme == 'bdf1'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF1() elif (time_scheme == 'bdf2'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.BDF2() elif (time_scheme == 'newmark'): self.time_int_helper = KratosMultiphysics.TimeDiscretization.Newmark() elif (time_scheme == 'bossak'): if mesh_vel_calc_setting.Has('alpha_m'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak(alpha_m) else: self.time_int_helper = KratosMultiphysics.TimeDiscretization.Bossak() elif (time_scheme == 'generalized_alpha'): alpha_m = mesh_vel_calc_setting['alpha_m'].GetDouble() alpha_f = mesh_vel_calc_setting['alpha_f'].GetDouble() self.time_int_helper = KratosMultiphysics.TimeDiscretization.GeneralizedAlpha(alpha_m, alpha_f) else: err_msg = 'The requested time scheme "{}" is not available for the calculation of the mesh velocity!\n'.format(time_scheme) err_msg += 'Available options are: "bdf1", "bdf2", "newmark", "bossak", "generalized_alpha"' raise Exception(err_msg)<|docstring|>Initializing the helper-class for the time-integration<|endoftext|>
59761d93770f6cf7c62d5d5383bfa3dd028b658040eb336c8b303b7a14af819d
def urlopen(url, params=None, **kwargs): 'Thin wrapper around requests get content.\n\n See requests.get docs for the `params` and `kwargs` options.\n\n ' return io.BytesIO(requests.get(url, params=params, **kwargs).content)
Thin wrapper around requests get content. See requests.get docs for the `params` and `kwargs` options.
erddapy/utilities.py
urlopen
jmunroe/erddapy
0
python
def urlopen(url, params=None, **kwargs): 'Thin wrapper around requests get content.\n\n See requests.get docs for the `params` and `kwargs` options.\n\n ' return io.BytesIO(requests.get(url, params=params, **kwargs).content)
def urlopen(url, params=None, **kwargs): 'Thin wrapper around requests get content.\n\n See requests.get docs for the `params` and `kwargs` options.\n\n ' return io.BytesIO(requests.get(url, params=params, **kwargs).content)<|docstring|>Thin wrapper around requests get content. See requests.get docs for the `params` and `kwargs` options.<|endoftext|>
4b645b62d96812221995c4176d4062559f86bacc082f40ab50abccc662a441d2
@functools.lru_cache(maxsize=None) def _check_url_response(url): 'Shortcut to `raise_for_status` instead of fetching the whole content.' r = requests.head(url) r.raise_for_status() return url
Shortcut to `raise_for_status` instead of fetching the whole content.
erddapy/utilities.py
_check_url_response
jmunroe/erddapy
0
python
@functools.lru_cache(maxsize=None) def _check_url_response(url): r = requests.head(url) r.raise_for_status() return url
@functools.lru_cache(maxsize=None) def _check_url_response(url): r = requests.head(url) r.raise_for_status() return url<|docstring|>Shortcut to `raise_for_status` instead of fetching the whole content.<|endoftext|>
cc48637b25c2c9d5e9afbbfd387552ff1d74743fce1e4a377efe03c85fe66002
def _clean_response(response): 'Allow for `ext` or `.ext` format.\n\n The user can, for example, use either `.csv` or `csv` in the response kwarg.\n\n ' return response.lstrip('.')
Allow for `ext` or `.ext` format. The user can, for example, use either `.csv` or `csv` in the response kwarg.
erddapy/utilities.py
_clean_response
jmunroe/erddapy
0
python
def _clean_response(response): 'Allow for `ext` or `.ext` format.\n\n The user can, for example, use either `.csv` or `csv` in the response kwarg.\n\n ' return response.lstrip('.')
def _clean_response(response): 'Allow for `ext` or `.ext` format.\n\n The user can, for example, use either `.csv` or `csv` in the response kwarg.\n\n ' return response.lstrip('.')<|docstring|>Allow for `ext` or `.ext` format. The user can, for example, use either `.csv` or `csv` in the response kwarg.<|endoftext|>
c9175f1e5cba725fc0fac5ae99acfeff88c2db98ab10b9143ca03a29c97a70cb
def parse_dates(date_time): '\n ERDDAP ReSTful API standardizes the representation of dates as either ISO\n strings or seconds since 1970, but internally ERDDAPY uses datetime-like\n objects. `timestamp` returns the expected strings in seconds since 1970.\n\n ' date_time = parse_time_string(date_time) if isinstance(date_time, tuple): date_time = date_time[0] if (not date_time.tzinfo): date_time = pytz.utc.localize(date_time) else: date_time = date_time.astimezone(pytz.utc) return date_time.timestamp()
ERDDAP ReSTful API standardizes the representation of dates as either ISO strings or seconds since 1970, but internally ERDDAPY uses datetime-like objects. `timestamp` returns the expected strings in seconds since 1970.
erddapy/utilities.py
parse_dates
jmunroe/erddapy
0
python
def parse_dates(date_time): '\n ERDDAP ReSTful API standardizes the representation of dates as either ISO\n strings or seconds since 1970, but internally ERDDAPY uses datetime-like\n objects. `timestamp` returns the expected strings in seconds since 1970.\n\n ' date_time = parse_time_string(date_time) if isinstance(date_time, tuple): date_time = date_time[0] if (not date_time.tzinfo): date_time = pytz.utc.localize(date_time) else: date_time = date_time.astimezone(pytz.utc) return date_time.timestamp()
def parse_dates(date_time): '\n ERDDAP ReSTful API standardizes the representation of dates as either ISO\n strings or seconds since 1970, but internally ERDDAPY uses datetime-like\n objects. `timestamp` returns the expected strings in seconds since 1970.\n\n ' date_time = parse_time_string(date_time) if isinstance(date_time, tuple): date_time = date_time[0] if (not date_time.tzinfo): date_time = pytz.utc.localize(date_time) else: date_time = date_time.astimezone(pytz.utc) return date_time.timestamp()<|docstring|>ERDDAP ReSTful API standardizes the representation of dates as either ISO strings or seconds since 1970, but internally ERDDAPY uses datetime-like objects. `timestamp` returns the expected strings in seconds since 1970.<|endoftext|>
404021ef0fa8436b1ecdd6248cf1056a8a33cf8a7798853d0ae68d61b85745a5
def quote_string_constraints(kwargs): '\n For constraints of String variables,\n the right-hand-side value must be surrounded by double quotes.\n\n ' return {k: (f'"{v}"' if isinstance(v, str) else v) for (k, v) in kwargs.items()}
For constraints of String variables, the right-hand-side value must be surrounded by double quotes.
erddapy/utilities.py
quote_string_constraints
jmunroe/erddapy
0
python
def quote_string_constraints(kwargs): '\n For constraints of String variables,\n the right-hand-side value must be surrounded by double quotes.\n\n ' return {k: (f'"{v}"' if isinstance(v, str) else v) for (k, v) in kwargs.items()}
def quote_string_constraints(kwargs): '\n For constraints of String variables,\n the right-hand-side value must be surrounded by double quotes.\n\n ' return {k: (f'"{v}"' if isinstance(v, str) else v) for (k, v) in kwargs.items()}<|docstring|>For constraints of String variables, the right-hand-side value must be surrounded by double quotes.<|endoftext|>
b50aaaa1b9539cab047f56d22efd2986e065c8926491b0723030ee8dc3201598
def __init__(self, env): ' YOUR CODE HERE ' super().__init__() self.env = env
YOUR CODE HERE
hw4/controllers.py
__init__
zhenghaoz/cs294
4
python
def __init__(self, env): ' ' super().__init__() self.env = env
def __init__(self, env): ' ' super().__init__() self.env = env<|docstring|>YOUR CODE HERE<|endoftext|>
76c48bc864efb36b3e7a28c8bd5a55c880d0e525b51c49021feed67b98f886e1
def get_action(self, state): ' YOUR CODE HERE ' ' Your code should randomly sample an action uniformly from the action space ' return self.env.action_space.sample()
YOUR CODE HERE
hw4/controllers.py
get_action
zhenghaoz/cs294
4
python
def get_action(self, state): ' ' ' Your code should randomly sample an action uniformly from the action space ' return self.env.action_space.sample()
def get_action(self, state): ' ' ' Your code should randomly sample an action uniformly from the action space ' return self.env.action_space.sample()<|docstring|>YOUR CODE HERE<|endoftext|>
9f0289c112b603e90f632082f3c8968933d0499756fc905dd89eda952736c3c1
def get_action(self, state): ' YOUR CODE HERE ' ' Note: be careful to batch your simulations through the model for speed ' action_dim = self.env.action_space.shape[0] state_dim = self.env.observation_space.shape[0] path_actions = np.zeros([self.horizon, self.num_simulated_paths, action_dim]) path_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) path_next_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) states = (np.ones([self.num_simulated_paths, state_dim]) * state.reshape([(- 1), state_dim])) for i in range(self.horizon): path_states[i] = state path_actions[i] = np.asarray([self.env.action_space.sample() for _ in range(self.num_simulated_paths)]) states = self.dyn_model.predict(states, path_actions[i]) path_next_states[i] = states path_costs = trajectory_cost_fn(self.cost_fn, path_states, path_actions, path_next_states) best = np.argmin(path_costs) return path_actions[(0, best)]
YOUR CODE HERE
hw4/controllers.py
get_action
zhenghaoz/cs294
4
python
def get_action(self, state): ' ' ' Note: be careful to batch your simulations through the model for speed ' action_dim = self.env.action_space.shape[0] state_dim = self.env.observation_space.shape[0] path_actions = np.zeros([self.horizon, self.num_simulated_paths, action_dim]) path_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) path_next_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) states = (np.ones([self.num_simulated_paths, state_dim]) * state.reshape([(- 1), state_dim])) for i in range(self.horizon): path_states[i] = state path_actions[i] = np.asarray([self.env.action_space.sample() for _ in range(self.num_simulated_paths)]) states = self.dyn_model.predict(states, path_actions[i]) path_next_states[i] = states path_costs = trajectory_cost_fn(self.cost_fn, path_states, path_actions, path_next_states) best = np.argmin(path_costs) return path_actions[(0, best)]
def get_action(self, state): ' ' ' Note: be careful to batch your simulations through the model for speed ' action_dim = self.env.action_space.shape[0] state_dim = self.env.observation_space.shape[0] path_actions = np.zeros([self.horizon, self.num_simulated_paths, action_dim]) path_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) path_next_states = np.zeros([self.horizon, self.num_simulated_paths, state_dim]) states = (np.ones([self.num_simulated_paths, state_dim]) * state.reshape([(- 1), state_dim])) for i in range(self.horizon): path_states[i] = state path_actions[i] = np.asarray([self.env.action_space.sample() for _ in range(self.num_simulated_paths)]) states = self.dyn_model.predict(states, path_actions[i]) path_next_states[i] = states path_costs = trajectory_cost_fn(self.cost_fn, path_states, path_actions, path_next_states) best = np.argmin(path_costs) return path_actions[(0, best)]<|docstring|>YOUR CODE HERE<|endoftext|>
c810c4178dfbd489e2591001b6fe3ace18c87675a19109e571c33bff8de4f168
def process_sentence(self, sentence): '\n 处理句子,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' seg = Segment(sentence, d_store=self.d_store) seg.atom_segment() seg.word_match() words_graph = seg.get_words_graph() detection = OOVDetection(words_graph, self.d_store) detection.oov_detection() words_graph.generate_words_dag(self.d_store.bigram_dct) seg_words_result = words_graph.words_segment() pre_poss = 0 (best_words, best_tags) = (None, None) for seg_result in seg_words_result: words = seg_result['words'] tagging = POSTagging() tags = tagging.generate_pos_tags(words, self.d_store.core_dct, self.d_store.lexical_ctx) poss = self.compute_possibility(words, tags, self.d_store) if (poss > pre_poss): pre_poss = poss best_words = words best_tags = tags best_words = map((lambda w: w.content), best_words) return {'words': best_words[1:(- 1)], 'tags': best_tags[1:(- 1)]}
处理句子,返回分词和词性标注结果 返回格式:[(word, pos), (word, pos) ...(word, pos)]
pycseg/__init__.py
process_sentence
lizonghai/pycseg
4
python
def process_sentence(self, sentence): '\n 处理句子,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' seg = Segment(sentence, d_store=self.d_store) seg.atom_segment() seg.word_match() words_graph = seg.get_words_graph() detection = OOVDetection(words_graph, self.d_store) detection.oov_detection() words_graph.generate_words_dag(self.d_store.bigram_dct) seg_words_result = words_graph.words_segment() pre_poss = 0 (best_words, best_tags) = (None, None) for seg_result in seg_words_result: words = seg_result['words'] tagging = POSTagging() tags = tagging.generate_pos_tags(words, self.d_store.core_dct, self.d_store.lexical_ctx) poss = self.compute_possibility(words, tags, self.d_store) if (poss > pre_poss): pre_poss = poss best_words = words best_tags = tags best_words = map((lambda w: w.content), best_words) return {'words': best_words[1:(- 1)], 'tags': best_tags[1:(- 1)]}
def process_sentence(self, sentence): '\n 处理句子,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' seg = Segment(sentence, d_store=self.d_store) seg.atom_segment() seg.word_match() words_graph = seg.get_words_graph() detection = OOVDetection(words_graph, self.d_store) detection.oov_detection() words_graph.generate_words_dag(self.d_store.bigram_dct) seg_words_result = words_graph.words_segment() pre_poss = 0 (best_words, best_tags) = (None, None) for seg_result in seg_words_result: words = seg_result['words'] tagging = POSTagging() tags = tagging.generate_pos_tags(words, self.d_store.core_dct, self.d_store.lexical_ctx) poss = self.compute_possibility(words, tags, self.d_store) if (poss > pre_poss): pre_poss = poss best_words = words best_tags = tags best_words = map((lambda w: w.content), best_words) return {'words': best_words[1:(- 1)], 'tags': best_tags[1:(- 1)]}<|docstring|>处理句子,返回分词和词性标注结果 返回格式:[(word, pos), (word, pos) ...(word, pos)]<|endoftext|>
dec84e664d9fe00551a5558c7db61d407bce93450d755316a3fc0cfad8bc9f11
def process(self, content): '\n 处理文本,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' sentences = self._split_by(content, definitions.SEPERATOR_C_SENTENCE, contains_delimiter=True) results = {'words': [], 'tags': []} for sentence in sentences: result = self.process_sentence(sentence) results['words'].extend(result['words']) results['tags'].extend(result['tags']) return results
处理文本,返回分词和词性标注结果 返回格式:[(word, pos), (word, pos) ...(word, pos)]
pycseg/__init__.py
process
lizonghai/pycseg
4
python
def process(self, content): '\n 处理文本,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' sentences = self._split_by(content, definitions.SEPERATOR_C_SENTENCE, contains_delimiter=True) results = {'words': [], 'tags': []} for sentence in sentences: result = self.process_sentence(sentence) results['words'].extend(result['words']) results['tags'].extend(result['tags']) return results
def process(self, content): '\n 处理文本,返回分词和词性标注结果\n 返回格式:[(word, pos), (word, pos) ...(word, pos)]\n ' sentences = self._split_by(content, definitions.SEPERATOR_C_SENTENCE, contains_delimiter=True) results = {'words': [], 'tags': []} for sentence in sentences: result = self.process_sentence(sentence) results['words'].extend(result['words']) results['tags'].extend(result['tags']) return results<|docstring|>处理文本,返回分词和词性标注结果 返回格式:[(word, pos), (word, pos) ...(word, pos)]<|endoftext|>
49ebd6712111c4046d7daa7576c9749e3137470210a3456689c0248d79c43f58
def process_file(self, filename, out_filename=None): '\n 处理文件,结果写入文件或将结果返回\n ' results = {'words': [], 'tags': []} with codecs.open(filename, 'r', 'utf-8') as input_file: for line in input_file: print('PROCESS LINE:{}'.format(line)) result = self.process(line.strip()) print(self.format_result(result)) results['words'].extend(result['words']) results['tags'].extend(result['tags']) if (out_filename is None): return results else: with codecs.open(out_filename, 'w', 'utf-8') as output_file: output_file.write(self.format_result(results)) output_file.write('\n')
处理文件,结果写入文件或将结果返回
pycseg/__init__.py
process_file
lizonghai/pycseg
4
python
def process_file(self, filename, out_filename=None): '\n \n ' results = {'words': [], 'tags': []} with codecs.open(filename, 'r', 'utf-8') as input_file: for line in input_file: print('PROCESS LINE:{}'.format(line)) result = self.process(line.strip()) print(self.format_result(result)) results['words'].extend(result['words']) results['tags'].extend(result['tags']) if (out_filename is None): return results else: with codecs.open(out_filename, 'w', 'utf-8') as output_file: output_file.write(self.format_result(results)) output_file.write('\n')
def process_file(self, filename, out_filename=None): '\n \n ' results = {'words': [], 'tags': []} with codecs.open(filename, 'r', 'utf-8') as input_file: for line in input_file: print('PROCESS LINE:{}'.format(line)) result = self.process(line.strip()) print(self.format_result(result)) results['words'].extend(result['words']) results['tags'].extend(result['tags']) if (out_filename is None): return results else: with codecs.open(out_filename, 'w', 'utf-8') as output_file: output_file.write(self.format_result(results)) output_file.write('\n')<|docstring|>处理文件,结果写入文件或将结果返回<|endoftext|>
4ed3677338d1738588e3b8026d04429dc95e6b2b13650c00311395ba52497c23
def __init__(self, rootDirectory, filesToContents, rootModuleNames): "Initialize a codebase.\n\n Args:\n rootDirectory - the path to the root where the filesystem lives.\n For instance, if the code is in /home/ubuntu/code/typed_python,\n this would be '/home/ubuntu/code'\n filesToContents - a dict containing the filename (relative to\n rootDirectory) of each file, mapping to the byte contents.\n rootModuleNames - a list of root-level module names\n modules - None, or a dict from dotted module name to the actual\n module object, if its known.\n " self.rootDirectory = rootDirectory self.filesToContents = filesToContents self.rootModuleNames = rootModuleNames self._sha_hash = None
Initialize a codebase. Args: rootDirectory - the path to the root where the filesystem lives. For instance, if the code is in /home/ubuntu/code/typed_python, this would be '/home/ubuntu/code' filesToContents - a dict containing the filename (relative to rootDirectory) of each file, mapping to the byte contents. rootModuleNames - a list of root-level module names modules - None, or a dict from dotted module name to the actual module object, if its known.
typed_python/Codebase.py
__init__
APrioriInvestments/typed_python
105
python
def __init__(self, rootDirectory, filesToContents, rootModuleNames): "Initialize a codebase.\n\n Args:\n rootDirectory - the path to the root where the filesystem lives.\n For instance, if the code is in /home/ubuntu/code/typed_python,\n this would be '/home/ubuntu/code'\n filesToContents - a dict containing the filename (relative to\n rootDirectory) of each file, mapping to the byte contents.\n rootModuleNames - a list of root-level module names\n modules - None, or a dict from dotted module name to the actual\n module object, if its known.\n " self.rootDirectory = rootDirectory self.filesToContents = filesToContents self.rootModuleNames = rootModuleNames self._sha_hash = None
def __init__(self, rootDirectory, filesToContents, rootModuleNames): "Initialize a codebase.\n\n Args:\n rootDirectory - the path to the root where the filesystem lives.\n For instance, if the code is in /home/ubuntu/code/typed_python,\n this would be '/home/ubuntu/code'\n filesToContents - a dict containing the filename (relative to\n rootDirectory) of each file, mapping to the byte contents.\n rootModuleNames - a list of root-level module names\n modules - None, or a dict from dotted module name to the actual\n module object, if its known.\n " self.rootDirectory = rootDirectory self.filesToContents = filesToContents self.rootModuleNames = rootModuleNames self._sha_hash = None<|docstring|>Initialize a codebase. Args: rootDirectory - the path to the root where the filesystem lives. For instance, if the code is in /home/ubuntu/code/typed_python, this would be '/home/ubuntu/code' filesToContents - a dict containing the filename (relative to rootDirectory) of each file, mapping to the byte contents. rootModuleNames - a list of root-level module names modules - None, or a dict from dotted module name to the actual module object, if its known.<|endoftext|>
e5bb064c4e8057da73ac6eb6e56c76cf30b38e7c6bcfc8f2e78c154bcadc5437
def allModuleLevelValues(self): 'Iterate over all module-level values. Yields (name, object) pairs.' for (moduleName, module) in self.importModulesByName(self.moduleNames).items(): for item in dir(module): (yield (((moduleName + '.') + item), getattr(module, item)))
Iterate over all module-level values. Yields (name, object) pairs.
typed_python/Codebase.py
allModuleLevelValues
APrioriInvestments/typed_python
105
python
def allModuleLevelValues(self): for (moduleName, module) in self.importModulesByName(self.moduleNames).items(): for item in dir(module): (yield (((moduleName + '.') + item), getattr(module, item)))
def allModuleLevelValues(self): for (moduleName, module) in self.importModulesByName(self.moduleNames).items(): for item in dir(module): (yield (((moduleName + '.') + item), getattr(module, item)))<|docstring|>Iterate over all module-level values. Yields (name, object) pairs.<|endoftext|>
8ec0411523affbbc996ec1e0097fbed6afa1bcb95e85fb8ad7afff2d876d1cce
def markNative(self): 'Indicate that this codebase is already instantiated.' with _lock: for mname in self.rootModuleNames: _installed_rootlevel_modules[mname] = self _installed_codebases[self.sha_hash] = self
Indicate that this codebase is already instantiated.
typed_python/Codebase.py
markNative
APrioriInvestments/typed_python
105
python
def markNative(self): with _lock: for mname in self.rootModuleNames: _installed_rootlevel_modules[mname] = self _installed_codebases[self.sha_hash] = self
def markNative(self): with _lock: for mname in self.rootModuleNames: _installed_rootlevel_modules[mname] = self _installed_codebases[self.sha_hash] = self<|docstring|>Indicate that this codebase is already instantiated.<|endoftext|>
e09327afed0b7845ae87a20ed9822b07af9aea3aa651aaf3c756434ca309652a
@staticmethod def FromRootlevelPath(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): "Build a codebase from the path to the root directory containing a module.\n\n Args:\n rootPath (str) - the root path we're going to pull in. This should point\n to a directory with the name of the python module this codebase\n will represent.\n extensions (tuple of strings) - a list of file extensions with the files\n we want to grab\n maxTotalBytes - a maximum bytecount before we'll throw an exception\n suppressFun - a function from module path (a dotted name) that returns\n True if we should stop walking into the path.\n " (root, files, rootModuleNames) = Codebase._walkDiskRepresentation(rootPath, prefix=prefix, extensions=extensions, maxTotalBytes=maxTotalBytes, suppressFun=suppressFun) return Codebase(root, files, rootModuleNames)
Build a codebase from the path to the root directory containing a module. Args: rootPath (str) - the root path we're going to pull in. This should point to a directory with the name of the python module this codebase will represent. extensions (tuple of strings) - a list of file extensions with the files we want to grab maxTotalBytes - a maximum bytecount before we'll throw an exception suppressFun - a function from module path (a dotted name) that returns True if we should stop walking into the path.
typed_python/Codebase.py
FromRootlevelPath
APrioriInvestments/typed_python
105
python
@staticmethod def FromRootlevelPath(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): "Build a codebase from the path to the root directory containing a module.\n\n Args:\n rootPath (str) - the root path we're going to pull in. This should point\n to a directory with the name of the python module this codebase\n will represent.\n extensions (tuple of strings) - a list of file extensions with the files\n we want to grab\n maxTotalBytes - a maximum bytecount before we'll throw an exception\n suppressFun - a function from module path (a dotted name) that returns\n True if we should stop walking into the path.\n " (root, files, rootModuleNames) = Codebase._walkDiskRepresentation(rootPath, prefix=prefix, extensions=extensions, maxTotalBytes=maxTotalBytes, suppressFun=suppressFun) return Codebase(root, files, rootModuleNames)
@staticmethod def FromRootlevelPath(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): "Build a codebase from the path to the root directory containing a module.\n\n Args:\n rootPath (str) - the root path we're going to pull in. This should point\n to a directory with the name of the python module this codebase\n will represent.\n extensions (tuple of strings) - a list of file extensions with the files\n we want to grab\n maxTotalBytes - a maximum bytecount before we'll throw an exception\n suppressFun - a function from module path (a dotted name) that returns\n True if we should stop walking into the path.\n " (root, files, rootModuleNames) = Codebase._walkDiskRepresentation(rootPath, prefix=prefix, extensions=extensions, maxTotalBytes=maxTotalBytes, suppressFun=suppressFun) return Codebase(root, files, rootModuleNames)<|docstring|>Build a codebase from the path to the root directory containing a module. Args: rootPath (str) - the root path we're going to pull in. This should point to a directory with the name of the python module this codebase will represent. extensions (tuple of strings) - a list of file extensions with the files we want to grab maxTotalBytes - a maximum bytecount before we'll throw an exception suppressFun - a function from module path (a dotted name) that returns True if we should stop walking into the path.<|endoftext|>
813a53da7dc2d08523a72d5eb117b0268dbb44b16441bbfb2967bda76929cfca
@staticmethod def _walkDiskRepresentation(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): " Utility method that collects the code for a given root module.\n\n Parameters:\n -----------\n rootPath : str\n the root path for which to gather code\n\n suppressFun : a function(path) that returns True if the module path shouldn't\n be included in the codebase.\n\n Returns:\n --------\n tuple(parentDir:str, files:dict(str->str), modules:dict(str->module))\n parentDir:str is the path of the parent directory of the module\n files:dict(str->str) maps file paths (relative to the parentDir) to their contents\n modules:dict(str->module) maps module names to modules\n " (parentDir, moduleDir) = os.path.split(rootPath) files = {} total_bytes = [0] def walkDisk(path, so_far): if so_far.startswith('.'): return if (suppressFun is not None): if suppressFun(so_far): return for name in os.listdir(path): fullpath = os.path.join(path, name) so_far_with_name = (os.path.join(so_far, name) if so_far else name) if os.path.isdir(fullpath): walkDisk(fullpath, so_far_with_name) elif (os.path.splitext(name)[1] in extensions): with open(fullpath, 'r', encoding='utf-8') as f: try: contents = f.read() except UnicodeDecodeError: raise Exception(f'Failed to parse code in {fullpath} because of a unicode error.') total_bytes[0] += len(contents) if (total_bytes[0] > maxTotalBytes): raise Exception(('exceeded bytecount with %s of size %s' % (fullpath, len(contents)))) files[so_far_with_name] = contents walkDisk(os.path.abspath(rootPath), moduleDir) modules_by_name = Codebase.filesToModuleNames(files, prefix) rootLevelModuleNames = set([x.split('.')[0] for x in modules_by_name]) return (parentDir, files, rootLevelModuleNames)
Utility method that collects the code for a given root module. Parameters: ----------- rootPath : str the root path for which to gather code suppressFun : a function(path) that returns True if the module path shouldn't be included in the codebase. Returns: -------- tuple(parentDir:str, files:dict(str->str), modules:dict(str->module)) parentDir:str is the path of the parent directory of the module files:dict(str->str) maps file paths (relative to the parentDir) to their contents modules:dict(str->module) maps module names to modules
typed_python/Codebase.py
_walkDiskRepresentation
APrioriInvestments/typed_python
105
python
@staticmethod def _walkDiskRepresentation(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): " Utility method that collects the code for a given root module.\n\n Parameters:\n -----------\n rootPath : str\n the root path for which to gather code\n\n suppressFun : a function(path) that returns True if the module path shouldn't\n be included in the codebase.\n\n Returns:\n --------\n tuple(parentDir:str, files:dict(str->str), modules:dict(str->module))\n parentDir:str is the path of the parent directory of the module\n files:dict(str->str) maps file paths (relative to the parentDir) to their contents\n modules:dict(str->module) maps module names to modules\n " (parentDir, moduleDir) = os.path.split(rootPath) files = {} total_bytes = [0] def walkDisk(path, so_far): if so_far.startswith('.'): return if (suppressFun is not None): if suppressFun(so_far): return for name in os.listdir(path): fullpath = os.path.join(path, name) so_far_with_name = (os.path.join(so_far, name) if so_far else name) if os.path.isdir(fullpath): walkDisk(fullpath, so_far_with_name) elif (os.path.splitext(name)[1] in extensions): with open(fullpath, 'r', encoding='utf-8') as f: try: contents = f.read() except UnicodeDecodeError: raise Exception(f'Failed to parse code in {fullpath} because of a unicode error.') total_bytes[0] += len(contents) if (total_bytes[0] > maxTotalBytes): raise Exception(('exceeded bytecount with %s of size %s' % (fullpath, len(contents)))) files[so_far_with_name] = contents walkDisk(os.path.abspath(rootPath), moduleDir) modules_by_name = Codebase.filesToModuleNames(files, prefix) rootLevelModuleNames = set([x.split('.')[0] for x in modules_by_name]) return (parentDir, files, rootLevelModuleNames)
@staticmethod def _walkDiskRepresentation(rootPath, prefix=None, extensions=('.py',), maxTotalBytes=((100 * 1024) * 1024), suppressFun=None): " Utility method that collects the code for a given root module.\n\n Parameters:\n -----------\n rootPath : str\n the root path for which to gather code\n\n suppressFun : a function(path) that returns True if the module path shouldn't\n be included in the codebase.\n\n Returns:\n --------\n tuple(parentDir:str, files:dict(str->str), modules:dict(str->module))\n parentDir:str is the path of the parent directory of the module\n files:dict(str->str) maps file paths (relative to the parentDir) to their contents\n modules:dict(str->module) maps module names to modules\n " (parentDir, moduleDir) = os.path.split(rootPath) files = {} total_bytes = [0] def walkDisk(path, so_far): if so_far.startswith('.'): return if (suppressFun is not None): if suppressFun(so_far): return for name in os.listdir(path): fullpath = os.path.join(path, name) so_far_with_name = (os.path.join(so_far, name) if so_far else name) if os.path.isdir(fullpath): walkDisk(fullpath, so_far_with_name) elif (os.path.splitext(name)[1] in extensions): with open(fullpath, 'r', encoding='utf-8') as f: try: contents = f.read() except UnicodeDecodeError: raise Exception(f'Failed to parse code in {fullpath} because of a unicode error.') total_bytes[0] += len(contents) if (total_bytes[0] > maxTotalBytes): raise Exception(('exceeded bytecount with %s of size %s' % (fullpath, len(contents)))) files[so_far_with_name] = contents walkDisk(os.path.abspath(rootPath), moduleDir) modules_by_name = Codebase.filesToModuleNames(files, prefix) rootLevelModuleNames = set([x.split('.')[0] for x in modules_by_name]) return (parentDir, files, rootLevelModuleNames)<|docstring|>Utility method that collects the code for a given root module. Parameters: ----------- rootPath : str the root path for which to gather code suppressFun : a function(path) that returns True if the module path shouldn't be included in the codebase. Returns: -------- tuple(parentDir:str, files:dict(str->str), modules:dict(str->module)) parentDir:str is the path of the parent directory of the module files:dict(str->str) maps file paths (relative to the parentDir) to their contents modules:dict(str->module) maps module names to modules<|endoftext|>
2719045f456f2ef91e0976ec227ff10a43dbde4670c52e0399574c050b45c269
def instantiate(self, rootDirectory=None): 'Instantiate a codebase on disk\n\n Args:\n rootDirectory - if None, then pick a directory. otherwise,\n this is where to put the code. This directory must be\n persistent for the life of the process.\n ' if self.isInstantiated(): return if (self.rootDirectory is not None): raise Exception('Codebase is already instantiated, but not marked as such?') with _lock: if (self.sha_hash in _installed_codebases): return for rootMod in self.rootModuleNames: if (rootMod in _installed_rootlevel_modules): raise Exception(f'Module {rootMod} is instantiated in another codebase already') if (rootDirectory is None): rootDirectory = tempfile.TemporaryDirectory().name for (fpath, fcontents) in self.filesToContents.items(): (path, name) = os.path.split(fpath) fullpath = os.path.join(rootDirectory, path) if (not os.path.exists(fullpath)): os.makedirs(fullpath) with open(os.path.join(fullpath, name), 'wb') as f: f.write(fcontents.encode('utf-8')) sys.path = ([rootDirectory] + sys.path) for rootMod in self.rootModuleNames: _installed_rootlevel_modules[rootMod] = self _installed_codebases[self.sha_hash] = self self.rootDirectory = rootDirectory
Instantiate a codebase on disk Args: rootDirectory - if None, then pick a directory. otherwise, this is where to put the code. This directory must be persistent for the life of the process.
typed_python/Codebase.py
instantiate
APrioriInvestments/typed_python
105
python
def instantiate(self, rootDirectory=None): 'Instantiate a codebase on disk\n\n Args:\n rootDirectory - if None, then pick a directory. otherwise,\n this is where to put the code. This directory must be\n persistent for the life of the process.\n ' if self.isInstantiated(): return if (self.rootDirectory is not None): raise Exception('Codebase is already instantiated, but not marked as such?') with _lock: if (self.sha_hash in _installed_codebases): return for rootMod in self.rootModuleNames: if (rootMod in _installed_rootlevel_modules): raise Exception(f'Module {rootMod} is instantiated in another codebase already') if (rootDirectory is None): rootDirectory = tempfile.TemporaryDirectory().name for (fpath, fcontents) in self.filesToContents.items(): (path, name) = os.path.split(fpath) fullpath = os.path.join(rootDirectory, path) if (not os.path.exists(fullpath)): os.makedirs(fullpath) with open(os.path.join(fullpath, name), 'wb') as f: f.write(fcontents.encode('utf-8')) sys.path = ([rootDirectory] + sys.path) for rootMod in self.rootModuleNames: _installed_rootlevel_modules[rootMod] = self _installed_codebases[self.sha_hash] = self self.rootDirectory = rootDirectory
def instantiate(self, rootDirectory=None): 'Instantiate a codebase on disk\n\n Args:\n rootDirectory - if None, then pick a directory. otherwise,\n this is where to put the code. This directory must be\n persistent for the life of the process.\n ' if self.isInstantiated(): return if (self.rootDirectory is not None): raise Exception('Codebase is already instantiated, but not marked as such?') with _lock: if (self.sha_hash in _installed_codebases): return for rootMod in self.rootModuleNames: if (rootMod in _installed_rootlevel_modules): raise Exception(f'Module {rootMod} is instantiated in another codebase already') if (rootDirectory is None): rootDirectory = tempfile.TemporaryDirectory().name for (fpath, fcontents) in self.filesToContents.items(): (path, name) = os.path.split(fpath) fullpath = os.path.join(rootDirectory, path) if (not os.path.exists(fullpath)): os.makedirs(fullpath) with open(os.path.join(fullpath, name), 'wb') as f: f.write(fcontents.encode('utf-8')) sys.path = ([rootDirectory] + sys.path) for rootMod in self.rootModuleNames: _installed_rootlevel_modules[rootMod] = self _installed_codebases[self.sha_hash] = self self.rootDirectory = rootDirectory<|docstring|>Instantiate a codebase on disk Args: rootDirectory - if None, then pick a directory. otherwise, this is where to put the code. This directory must be persistent for the life of the process.<|endoftext|>
a4e9c5a6d29944f523fa7a1b217ba9548a7780803f80884e5902fe94f0ba472a
@staticmethod def importModulesByName(modules_by_name): ' Returns a dict mapping module names (str) to modules. ' modules = {} for mname in sorted(modules_by_name): try: modules[mname] = importlib.import_module(mname) except Exception as e: logging.getLogger(__name__).warn("Error importing module '%s' from codebase: %s", mname, e) return modules
Returns a dict mapping module names (str) to modules.
typed_python/Codebase.py
importModulesByName
APrioriInvestments/typed_python
105
python
@staticmethod def importModulesByName(modules_by_name): ' ' modules = {} for mname in sorted(modules_by_name): try: modules[mname] = importlib.import_module(mname) except Exception as e: logging.getLogger(__name__).warn("Error importing module '%s' from codebase: %s", mname, e) return modules
@staticmethod def importModulesByName(modules_by_name): ' ' modules = {} for mname in sorted(modules_by_name): try: modules[mname] = importlib.import_module(mname) except Exception as e: logging.getLogger(__name__).warn("Error importing module '%s' from codebase: %s", mname, e) return modules<|docstring|>Returns a dict mapping module names (str) to modules.<|endoftext|>
a794ab8e7f09338ba237a2b808c1dae3a203b08213c784e8774ab80b982ddc18
def sample_gaussian(mu, Sigma, N=1): '\n Draw N random row vectors from a Gaussian distribution\n\n Args:\n mu (numpy array [n x 1]): expected value vector\n Sigma (numpy array [n x n]): covariance matrix\n N (int): scalar number of samples\n\n Returns:\n M (numpy array [n x N]): samples from Gaussian distribtion\n\n ' N = int(N) n = len(mu) (U, s, V) = np.linalg.svd(Sigma) S = np.zeros(Sigma.shape) for i in range(min(Sigma.shape)): S[(i, i)] = math.sqrt(s[i]) M = np.random.normal(size=(n, N)) M = (np.dot(np.dot(U, S), M) + mu) return M
Draw N random row vectors from a Gaussian distribution Args: mu (numpy array [n x 1]): expected value vector Sigma (numpy array [n x n]): covariance matrix N (int): scalar number of samples Returns: M (numpy array [n x N]): samples from Gaussian distribtion
estimators.py
sample_gaussian
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def sample_gaussian(mu, Sigma, N=1): '\n Draw N random row vectors from a Gaussian distribution\n\n Args:\n mu (numpy array [n x 1]): expected value vector\n Sigma (numpy array [n x n]): covariance matrix\n N (int): scalar number of samples\n\n Returns:\n M (numpy array [n x N]): samples from Gaussian distribtion\n\n ' N = int(N) n = len(mu) (U, s, V) = np.linalg.svd(Sigma) S = np.zeros(Sigma.shape) for i in range(min(Sigma.shape)): S[(i, i)] = math.sqrt(s[i]) M = np.random.normal(size=(n, N)) M = (np.dot(np.dot(U, S), M) + mu) return M
def sample_gaussian(mu, Sigma, N=1): '\n Draw N random row vectors from a Gaussian distribution\n\n Args:\n mu (numpy array [n x 1]): expected value vector\n Sigma (numpy array [n x n]): covariance matrix\n N (int): scalar number of samples\n\n Returns:\n M (numpy array [n x N]): samples from Gaussian distribtion\n\n ' N = int(N) n = len(mu) (U, s, V) = np.linalg.svd(Sigma) S = np.zeros(Sigma.shape) for i in range(min(Sigma.shape)): S[(i, i)] = math.sqrt(s[i]) M = np.random.normal(size=(n, N)) M = (np.dot(np.dot(U, S), M) + mu) return M<|docstring|>Draw N random row vectors from a Gaussian distribution Args: mu (numpy array [n x 1]): expected value vector Sigma (numpy array [n x n]): covariance matrix N (int): scalar number of samples Returns: M (numpy array [n x N]): samples from Gaussian distribtion<|endoftext|>
9a2587ac779f761b87cb6cabed6cecd6fa8f65ad61c1b82997f08aa640a43212
def kinematic_state_observer(initial_cond, yaw_rates, inertial_accs, long_vs, T, alpha): '\n Not working yet!\n ' num_sol = len(T) states = np.zeros((2, num_sol)) states[(:, 0)] = np.squeeze(initial_cond[3:5]) C = np.array([1, 0]) B = np.identity(2) A = np.zeros((2, 2)) for i in range(1, num_sol): yaw_rate = yaw_rates[(i - 1)] A[(0, 1)] = yaw_rate A[(1, 0)] = (- yaw_rate) K = (1.0 * np.array([((2 * alpha) * math.fabs(yaw_rate)), (((alpha ** 2) - 1) * yaw_rate)])) states_dot = ((np.matmul((A - np.matmul(K, C)), states[(:, (i - 1))]) + np.matmul(B, inertial_accs[(:, (i - 1))])) + (K * long_vs[(i - 1)])) dt = (T[i] - T[(i - 1)]) states[(:, i)] = (states[(:, (i - 1))] + (dt * states_dot)) return states
Not working yet!
estimators.py
kinematic_state_observer
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def kinematic_state_observer(initial_cond, yaw_rates, inertial_accs, long_vs, T, alpha): '\n \n ' num_sol = len(T) states = np.zeros((2, num_sol)) states[(:, 0)] = np.squeeze(initial_cond[3:5]) C = np.array([1, 0]) B = np.identity(2) A = np.zeros((2, 2)) for i in range(1, num_sol): yaw_rate = yaw_rates[(i - 1)] A[(0, 1)] = yaw_rate A[(1, 0)] = (- yaw_rate) K = (1.0 * np.array([((2 * alpha) * math.fabs(yaw_rate)), (((alpha ** 2) - 1) * yaw_rate)])) states_dot = ((np.matmul((A - np.matmul(K, C)), states[(:, (i - 1))]) + np.matmul(B, inertial_accs[(:, (i - 1))])) + (K * long_vs[(i - 1)])) dt = (T[i] - T[(i - 1)]) states[(:, i)] = (states[(:, (i - 1))] + (dt * states_dot)) return states
def kinematic_state_observer(initial_cond, yaw_rates, inertial_accs, long_vs, T, alpha): '\n \n ' num_sol = len(T) states = np.zeros((2, num_sol)) states[(:, 0)] = np.squeeze(initial_cond[3:5]) C = np.array([1, 0]) B = np.identity(2) A = np.zeros((2, 2)) for i in range(1, num_sol): yaw_rate = yaw_rates[(i - 1)] A[(0, 1)] = yaw_rate A[(1, 0)] = (- yaw_rate) K = (1.0 * np.array([((2 * alpha) * math.fabs(yaw_rate)), (((alpha ** 2) - 1) * yaw_rate)])) states_dot = ((np.matmul((A - np.matmul(K, C)), states[(:, (i - 1))]) + np.matmul(B, inertial_accs[(:, (i - 1))])) + (K * long_vs[(i - 1)])) dt = (T[i] - T[(i - 1)]) states[(:, i)] = (states[(:, (i - 1))] + (dt * states_dot)) return states<|docstring|>Not working yet!<|endoftext|>
ef8048f2947caa0f23aafa5763edd23cb9be7a0574b5425f6b50aa0efc14ab04
def findCombinationsUtil(arr, index, num, reducedNum, output): '\n Find all combinations of < n numbers from 1 to num with repetition that add up to reducedNum \n\n Args:\n arr (list size n): current items that add up to <= reducedNum (in the 0th recursion)\n index (int): index of the next slot of arr list\n num (int): limit of what numbers to be chosen from -> [1, num]\n reducedNum (int): remaining number to add up to required sum\n output (list): for appending the results to\n\n ' if (reducedNum < 0): return if (reducedNum == 0): output.append(arr[:index]) return prev = (1 if (index == 0) else arr[(index - 1)]) for k in range(prev, (num + 1)): arr[index] = k findCombinationsUtil(arr, (index + 1), num, (reducedNum - k), output)
Find all combinations of < n numbers from 1 to num with repetition that add up to reducedNum Args: arr (list size n): current items that add up to <= reducedNum (in the 0th recursion) index (int): index of the next slot of arr list num (int): limit of what numbers to be chosen from -> [1, num] reducedNum (int): remaining number to add up to required sum output (list): for appending the results to
estimators.py
findCombinationsUtil
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def findCombinationsUtil(arr, index, num, reducedNum, output): '\n Find all combinations of < n numbers from 1 to num with repetition that add up to reducedNum \n\n Args:\n arr (list size n): current items that add up to <= reducedNum (in the 0th recursion)\n index (int): index of the next slot of arr list\n num (int): limit of what numbers to be chosen from -> [1, num]\n reducedNum (int): remaining number to add up to required sum\n output (list): for appending the results to\n\n ' if (reducedNum < 0): return if (reducedNum == 0): output.append(arr[:index]) return prev = (1 if (index == 0) else arr[(index - 1)]) for k in range(prev, (num + 1)): arr[index] = k findCombinationsUtil(arr, (index + 1), num, (reducedNum - k), output)
def findCombinationsUtil(arr, index, num, reducedNum, output): '\n Find all combinations of < n numbers from 1 to num with repetition that add up to reducedNum \n\n Args:\n arr (list size n): current items that add up to <= reducedNum (in the 0th recursion)\n index (int): index of the next slot of arr list\n num (int): limit of what numbers to be chosen from -> [1, num]\n reducedNum (int): remaining number to add up to required sum\n output (list): for appending the results to\n\n ' if (reducedNum < 0): return if (reducedNum == 0): output.append(arr[:index]) return prev = (1 if (index == 0) else arr[(index - 1)]) for k in range(prev, (num + 1)): arr[index] = k findCombinationsUtil(arr, (index + 1), num, (reducedNum - k), output)<|docstring|>Find all combinations of < n numbers from 1 to num with repetition that add up to reducedNum Args: arr (list size n): current items that add up to <= reducedNum (in the 0th recursion) index (int): index of the next slot of arr list num (int): limit of what numbers to be chosen from -> [1, num] reducedNum (int): remaining number to add up to required sum output (list): for appending the results to<|endoftext|>
dba86f3e1c143f0e7fff8105a601631c65508d427934a617ac5958d756676e83
def fit_data_rover_dynobj(dynamic_obj, vy=np.array([]), back_rotate=False): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9) using dynamic object.\n\n Args:\n dynamic_obj (RoverPartialDynEst or RoverDyn obj): dynamic object\n vy (numpy array [nt]): optionally, lateral velocity if observed; defaults to empty\n back_rotate (bool): produce linear and lateral velocities from rotating state coordinates? defaults to False\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n ' parameters = ([0] * 9) if ((dynamic_obj.state_dict['vx'] not in dynamic_obj.state_indices) or back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vx = dynamic_obj.cal_vxvy_from_coord(output=True)[(0, :)] else: vx = dynamic_obj.outputs[(dynamic_obj.state_indices.index(dynamic_obj.state_dict['vx']), :)] if (dynamic_obj.state_dict['vx'] in dynamic_obj.state_dot_indices): vx_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['vx'])) vxdot = dynamic_obj.outputs[(vx_dot_ind, :)] else: dts = np.diff(dynamic_obj.T) if (len(vx) < len(dynamic_obj.T)): dts = dts[:(len(vx) - 1)] vxdot = (np.diff(vx) / dts) last_ind = min(len(vx), len(vxdot)) diff = np.reshape((vx[:last_ind] - dynamic_obj.U[(1, :last_ind)]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot[:last_ind]), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (dynamic_obj.state_dict['theta'] in dynamic_obj.state_dot_indices): theta_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['theta'])) thetadot = dynamic_obj.outputs[(theta_dot_ind, :)] else: theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) thetadot = (np.diff(dynamic_obj.outputs[(theta_ind, :)]) / np.diff(dynamic_obj.T)) last_ind = min(len(thetadot), len(vx)) def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(thetadot[:last_ind], dynamic_obj.U[(0, :last_ind)], vx[:last_ind])) parameters[:4] = res_l.x if ((vy.shape[0] == 0) and back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vy = dynamic_obj.cal_vxvy_from_coord_wrapper(output=True)[(1, :)] if (vy.shape[0] == 0): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' x_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['x']) y_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['y']) theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) xdot = (np.diff(dynamic_obj.outputs[(x_ind, :)]) / np.diff(dynamic_obj.T)) ydot = (np.diff(dynamic_obj.outputs[(y_ind, :)]) / np.diff(dynamic_obj.T)) theta = dynamic_obj.outputs[(theta_ind, :)] last_ind = min(len(xdot), len(vx), len(theta), len(thetadot)) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot[:last_ind], ydot[:last_ind], vx[:last_ind], theta[:last_ind], thetadot[:last_ind])) parameters[7:9] = res_l.x else: last_ind = min(len(thetadot), len(vx), len(vy)) prod = (thetadot[:last_ind] * (vx[:last_ind] ** 2)) A_lat_vel = np.concatenate((thetadot[(:last_ind, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters
Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9) using dynamic object. Args: dynamic_obj (RoverPartialDynEst or RoverDyn obj): dynamic object vy (numpy array [nt]): optionally, lateral velocity if observed; defaults to empty back_rotate (bool): produce linear and lateral velocities from rotating state coordinates? defaults to False Returns: parameters (list): consists of parameters c1-c9 in that order
estimators.py
fit_data_rover_dynobj
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def fit_data_rover_dynobj(dynamic_obj, vy=np.array([]), back_rotate=False): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9) using dynamic object.\n\n Args:\n dynamic_obj (RoverPartialDynEst or RoverDyn obj): dynamic object\n vy (numpy array [nt]): optionally, lateral velocity if observed; defaults to empty\n back_rotate (bool): produce linear and lateral velocities from rotating state coordinates? defaults to False\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n ' parameters = ([0] * 9) if ((dynamic_obj.state_dict['vx'] not in dynamic_obj.state_indices) or back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vx = dynamic_obj.cal_vxvy_from_coord(output=True)[(0, :)] else: vx = dynamic_obj.outputs[(dynamic_obj.state_indices.index(dynamic_obj.state_dict['vx']), :)] if (dynamic_obj.state_dict['vx'] in dynamic_obj.state_dot_indices): vx_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['vx'])) vxdot = dynamic_obj.outputs[(vx_dot_ind, :)] else: dts = np.diff(dynamic_obj.T) if (len(vx) < len(dynamic_obj.T)): dts = dts[:(len(vx) - 1)] vxdot = (np.diff(vx) / dts) last_ind = min(len(vx), len(vxdot)) diff = np.reshape((vx[:last_ind] - dynamic_obj.U[(1, :last_ind)]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot[:last_ind]), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (dynamic_obj.state_dict['theta'] in dynamic_obj.state_dot_indices): theta_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['theta'])) thetadot = dynamic_obj.outputs[(theta_dot_ind, :)] else: theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) thetadot = (np.diff(dynamic_obj.outputs[(theta_ind, :)]) / np.diff(dynamic_obj.T)) last_ind = min(len(thetadot), len(vx)) def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(thetadot[:last_ind], dynamic_obj.U[(0, :last_ind)], vx[:last_ind])) parameters[:4] = res_l.x if ((vy.shape[0] == 0) and back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vy = dynamic_obj.cal_vxvy_from_coord_wrapper(output=True)[(1, :)] if (vy.shape[0] == 0): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' x_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['x']) y_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['y']) theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) xdot = (np.diff(dynamic_obj.outputs[(x_ind, :)]) / np.diff(dynamic_obj.T)) ydot = (np.diff(dynamic_obj.outputs[(y_ind, :)]) / np.diff(dynamic_obj.T)) theta = dynamic_obj.outputs[(theta_ind, :)] last_ind = min(len(xdot), len(vx), len(theta), len(thetadot)) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot[:last_ind], ydot[:last_ind], vx[:last_ind], theta[:last_ind], thetadot[:last_ind])) parameters[7:9] = res_l.x else: last_ind = min(len(thetadot), len(vx), len(vy)) prod = (thetadot[:last_ind] * (vx[:last_ind] ** 2)) A_lat_vel = np.concatenate((thetadot[(:last_ind, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters
def fit_data_rover_dynobj(dynamic_obj, vy=np.array([]), back_rotate=False): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9) using dynamic object.\n\n Args:\n dynamic_obj (RoverPartialDynEst or RoverDyn obj): dynamic object\n vy (numpy array [nt]): optionally, lateral velocity if observed; defaults to empty\n back_rotate (bool): produce linear and lateral velocities from rotating state coordinates? defaults to False\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n ' parameters = ([0] * 9) if ((dynamic_obj.state_dict['vx'] not in dynamic_obj.state_indices) or back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vx = dynamic_obj.cal_vxvy_from_coord(output=True)[(0, :)] else: vx = dynamic_obj.outputs[(dynamic_obj.state_indices.index(dynamic_obj.state_dict['vx']), :)] if (dynamic_obj.state_dict['vx'] in dynamic_obj.state_dot_indices): vx_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['vx'])) vxdot = dynamic_obj.outputs[(vx_dot_ind, :)] else: dts = np.diff(dynamic_obj.T) if (len(vx) < len(dynamic_obj.T)): dts = dts[:(len(vx) - 1)] vxdot = (np.diff(vx) / dts) last_ind = min(len(vx), len(vxdot)) diff = np.reshape((vx[:last_ind] - dynamic_obj.U[(1, :last_ind)]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot[:last_ind]), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (dynamic_obj.state_dict['theta'] in dynamic_obj.state_dot_indices): theta_dot_ind = (len(dynamic_obj.state_indices) + dynamic_obj.state_dot_indices.index(dynamic_obj.state_dict['theta'])) thetadot = dynamic_obj.outputs[(theta_dot_ind, :)] else: theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) thetadot = (np.diff(dynamic_obj.outputs[(theta_ind, :)]) / np.diff(dynamic_obj.T)) last_ind = min(len(thetadot), len(vx)) def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(thetadot[:last_ind], dynamic_obj.U[(0, :last_ind)], vx[:last_ind])) parameters[:4] = res_l.x if ((vy.shape[0] == 0) and back_rotate): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' vy = dynamic_obj.cal_vxvy_from_coord_wrapper(output=True)[(1, :)] if (vy.shape[0] == 0): assert ((dynamic_obj.state_dict['x'] in dynamic_obj.state_indices) and (dynamic_obj.state_dict['y'] in dynamic_obj.state_indices)), 'No source for vehicle coordinates from output data' x_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['x']) y_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['y']) theta_ind = dynamic_obj.state_indices.index(dynamic_obj.state_dict['theta']) xdot = (np.diff(dynamic_obj.outputs[(x_ind, :)]) / np.diff(dynamic_obj.T)) ydot = (np.diff(dynamic_obj.outputs[(y_ind, :)]) / np.diff(dynamic_obj.T)) theta = dynamic_obj.outputs[(theta_ind, :)] last_ind = min(len(xdot), len(vx), len(theta), len(thetadot)) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot[:last_ind], ydot[:last_ind], vx[:last_ind], theta[:last_ind], thetadot[:last_ind])) parameters[7:9] = res_l.x else: last_ind = min(len(thetadot), len(vx), len(vy)) prod = (thetadot[:last_ind] * (vx[:last_ind] ** 2)) A_lat_vel = np.concatenate((thetadot[(:last_ind, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:last_ind, np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters<|docstring|>Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9) using dynamic object. Args: dynamic_obj (RoverPartialDynEst or RoverDyn obj): dynamic object vy (numpy array [nt]): optionally, lateral velocity if observed; defaults to empty back_rotate (bool): produce linear and lateral velocities from rotating state coordinates? defaults to False Returns: parameters (list): consists of parameters c1-c9 in that order<|endoftext|>
17aeede8a37b93e2a669bad974a9c0cc25d65c14a5606595d93ec973c5c06995
def fit_data_rover(states, U, dt, vxdot=np.array([]), yawrate=np.array([]), vy=np.array([])): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9).\n\n Args:\n states (numpy array [4 x nt]): rover states consisting of x, y, theta and vx at different time instances\n U (numpy array [2 x nt]): input to the model at different time instances consisting of steering angle and commanded velocity\n vxdot (numpy array [nt]): optionally, linear longitudinal acceleration at different time instances\n yawrate (numpy array [nt]): optionally, yaw rate at different time instances\n vy (numpy array [nt]): optionally, lateral velocity if observed\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n\n ' parameters = ([0] * 9) if (vxdot.shape[0] == 0): vxdot = (np.diff(states[(3, :)]) / dt) else: vxdot = vxdot[:(- 1)] diff = np.reshape((states[(3, :(- 1))] - U[(1, :(- 1))]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (yawrate.shape[0] == 0): yawrate = (np.diff(states[(2, :)]) / dt) else: yawrate = yawrate[:(- 1)] def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(yawrate, U[(0, :(- 1))], states[(3, :(- 1))])) parameters[:4] = res_l.x if (vy.shape[0] == 0): xdot = (np.diff(states[(0, :)]) / dt) ydot = (np.diff(states[(1, :)]) / dt) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot, ydot, states[(3, :(- 1))], states[(2, :(- 1))], yawrate)) parameters[7:9] = res_l.x else: prod = (yawrate * (states[(3, :(- 1))] ** 2)) A_lat_vel = np.concatenate((yawrate[(:, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:(- 1), np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters
Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9). Args: states (numpy array [4 x nt]): rover states consisting of x, y, theta and vx at different time instances U (numpy array [2 x nt]): input to the model at different time instances consisting of steering angle and commanded velocity vxdot (numpy array [nt]): optionally, linear longitudinal acceleration at different time instances yawrate (numpy array [nt]): optionally, yaw rate at different time instances vy (numpy array [nt]): optionally, lateral velocity if observed Returns: parameters (list): consists of parameters c1-c9 in that order
estimators.py
fit_data_rover
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def fit_data_rover(states, U, dt, vxdot=np.array([]), yawrate=np.array([]), vy=np.array([])): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9).\n\n Args:\n states (numpy array [4 x nt]): rover states consisting of x, y, theta and vx at different time instances\n U (numpy array [2 x nt]): input to the model at different time instances consisting of steering angle and commanded velocity\n vxdot (numpy array [nt]): optionally, linear longitudinal acceleration at different time instances\n yawrate (numpy array [nt]): optionally, yaw rate at different time instances\n vy (numpy array [nt]): optionally, lateral velocity if observed\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n\n ' parameters = ([0] * 9) if (vxdot.shape[0] == 0): vxdot = (np.diff(states[(3, :)]) / dt) else: vxdot = vxdot[:(- 1)] diff = np.reshape((states[(3, :(- 1))] - U[(1, :(- 1))]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (yawrate.shape[0] == 0): yawrate = (np.diff(states[(2, :)]) / dt) else: yawrate = yawrate[:(- 1)] def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(yawrate, U[(0, :(- 1))], states[(3, :(- 1))])) parameters[:4] = res_l.x if (vy.shape[0] == 0): xdot = (np.diff(states[(0, :)]) / dt) ydot = (np.diff(states[(1, :)]) / dt) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot, ydot, states[(3, :(- 1))], states[(2, :(- 1))], yawrate)) parameters[7:9] = res_l.x else: prod = (yawrate * (states[(3, :(- 1))] ** 2)) A_lat_vel = np.concatenate((yawrate[(:, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:(- 1), np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters
def fit_data_rover(states, U, dt, vxdot=np.array([]), yawrate=np.array([]), vy=np.array([])): '\n Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9).\n\n Args:\n states (numpy array [4 x nt]): rover states consisting of x, y, theta and vx at different time instances\n U (numpy array [2 x nt]): input to the model at different time instances consisting of steering angle and commanded velocity\n vxdot (numpy array [nt]): optionally, linear longitudinal acceleration at different time instances\n yawrate (numpy array [nt]): optionally, yaw rate at different time instances\n vy (numpy array [nt]): optionally, lateral velocity if observed\n\n Returns:\n parameters (list): consists of parameters c1-c9 in that order\n\n ' parameters = ([0] * 9) if (vxdot.shape[0] == 0): vxdot = (np.diff(states[(3, :)]) / dt) else: vxdot = vxdot[:(- 1)] diff = np.reshape((states[(3, :(- 1))] - U[(1, :(- 1))]), [(- 1), 1]) A_long_accel = np.concatenate((np.ones((len(vxdot), 1)), diff, np.square(diff)), axis=1) parameters[4:7] = np.linalg.lstsq(A_long_accel, vxdot[(:, np.newaxis)], rcond=None)[0][(:, 0)].tolist() if (yawrate.shape[0] == 0): yawrate = (np.diff(states[(2, :)]) / dt) else: yawrate = yawrate[:(- 1)] def nls_yawrate(x, yaw_rate, steering_cmd, vx): return (yaw_rate - ((np.tan(((x[0] * steering_cmd) + x[1])) * vx) / (x[2] + (x[3] * (vx ** 2))))) x0 = np.array([1, 0, 1.775, 0]) res_l = least_squares(nls_yawrate, x0, args=(yawrate, U[(0, :(- 1))], states[(3, :(- 1))])) parameters[:4] = res_l.x if (vy.shape[0] == 0): xdot = (np.diff(states[(0, :)]) / dt) ydot = (np.diff(states[(1, :)]) / dt) def nls_xy(params, xdot, ydot, vx, yaw, yaw_rate): vy = (yaw_rate * (params[0] + (params[1] * (vx ** 2)))) res_x = (xdot - ((vx * np.cos(yaw)) - (vy * np.sin(yaw)))) res_y = (ydot - ((vx * np.sin(yaw)) + (vy * np.cos(yaw)))) return np.concatenate((res_x, res_y)).flatten() x0 = np.array([0.1, 0.1]) res_l = least_squares(nls_xy, x0, args=(xdot, ydot, states[(3, :(- 1))], states[(2, :(- 1))], yawrate)) parameters[7:9] = res_l.x else: prod = (yawrate * (states[(3, :(- 1))] ** 2)) A_lat_vel = np.concatenate((yawrate[(:, np.newaxis)], prod[(:, np.newaxis)]), axis=1) parameters[7:9] = np.linalg.lstsq(A_lat_vel, vy[(:(- 1), np.newaxis)], rcond=None)[0][(:, 0)].tolist() return parameters<|docstring|>Perform LS and NLS fitting parameters estimation for the rover dynamics (c1-c9). Args: states (numpy array [4 x nt]): rover states consisting of x, y, theta and vx at different time instances U (numpy array [2 x nt]): input to the model at different time instances consisting of steering angle and commanded velocity vxdot (numpy array [nt]): optionally, linear longitudinal acceleration at different time instances yawrate (numpy array [nt]): optionally, yaw rate at different time instances vy (numpy array [nt]): optionally, lateral velocity if observed Returns: parameters (list): consists of parameters c1-c9 in that order<|endoftext|>
def196033f688bf0d8256afb0b0089d900bcfaadacf1ae013069abd74d1384e2
def sample_nlds(z0, U, nt, f, h, num_out, Q=None, P0=None, R=None, Qu=None, additional_args_pm=[], additional_args_om=[], overwrite_inds=[], overwrite_vals=[]): '\n Retrieve ground truth, initial and output data (SNLDS: Stochastic non-linear dynamic system)\n\n Args:\n z0 (numpy array [n x 1]): initial ground truth condition\n U (numpy array [nu x nt]): inputs for the process and observation model\n nt (int): number of simulation steps\n f (function): function handle for one-time step forward propagating the state; expected signature f(state, input, noise, ...)\n h (function): function handle for retrieving the outputs of the system as a function of system states;\n expected signature h(state, input, noise, ...)\n num_out (int): number of outputs from function h\n Q (numpy array [nq x nq]): noise covariance matrix involved in the stochastic model f\n P0 (numpy array [n x n]): initial covariance for the initial estimate around the ground truth\n R (numpy array [nr x nr]): covariance matrix of the noise involved in h function\n Qu (numpy array [nqu x nqu]): noise covariance matrix involved in the input to the stochastic model f\n additional_args_pm (list): list of additional arguments to be passed to function f\n additional_args_om (list): list of additional arguments to be passed to function h\n overwrite_inds (list): list of state indices to be overwritten\n overwrite_vals (list): list of ground truth values to overwrite state propagation\n\n Returns:\n gt_states (numpy array [n x nt]): ground truth states at different time instances\n initial_cond (numpy array [n x 1]): initial condition from Gaussian distribution with mean z0 and covariance P0\n outputs (numpy array [num_out x nt]): simulated outputs of the system\n additional_args_pm_list (2d list [len(additional_args_pm) x nt]): additional arguments to be passed to \n function f at each time instant\n additional_args_om_list (2d list [len(additional_args_om) x nt]): additional arguments to be passed to\n function h at each time instant\n\n ' if (not len(U)): U = np.zeros((0, nt)) if (Q is None): Q = np.zeros((len(z0), len(z0))) if (Qu is None): Qu = np.zeros((U.shape[0], U.shape[0])) if (P0 is None): P0 = np.zeros((len(z0), len(z0))) if (R is None): R = np.zeros((num_out, num_out)) assert (U.shape[1] == nt), 'Expected input for all {} time instances but only received {}'.format(nt, U.shape[1]) assert (Q.shape == (len(z0), len(z0))), 'Inconsistent size of process noise matrix' assert (Qu.shape == (U.shape[0], U.shape[0])), 'Inconsistent size of input noise matrix' assert (P0.shape == (len(z0), len(z0))), 'Inconsistent size of initial covariance matrix' assert (R.shape == (num_out, num_out)), 'Inconsistent size of observation noise matrix' additional_args_pm_list = np.zeros((len(additional_args_pm), nt)).tolist() additional_args_om_list = np.zeros((len(additional_args_om), nt)).tolist() for (i, argument) in enumerate(additional_args_pm): if (not isinstance(argument, Iterable)): additional_args_pm_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for pm is provided, it should have the length of nt' additional_args_pm_list[i] = argument for (i, argument) in enumerate(additional_args_om): if (not isinstance(argument, Iterable)): additional_args_om_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for om is provided, it should have the length of nt' additional_args_om_list[i] = argument assert (len(overwrite_inds) == len(overwrite_vals)), 'Inconsitent sizes of information to be overwritten' for ind in overwrite_inds: assert ((ind >= 0) and (ind < len(z0))), 'Overwrite index not within range [{},{})'.format(0, len(z0)) overwrite_vals_array = np.zeros((len(overwrite_inds), nt)) for (i, val) in enumerate(overwrite_vals): if isinstance(val, Iterable): assert (len(val) == nt), 'Iterable information should have the length of nt' overwrite_vals_array[i] = val state_noise_samples = sample_gaussian(np.zeros(z0.shape), Q, nt) input_noise_samples = sample_gaussian(np.zeros((Qu.shape[0], 1)), Qu, nt) obs_noise_samples = sample_gaussian(np.zeros((num_out, 1)), R, nt) gt_states = np.zeros((z0.shape[0], nt)) gt_states[(:, 0:1)] = z0 initial_cond = sample_gaussian(z0, P0, 1) outputs = np.zeros((num_out, nt)) outputs[(:, 0)] = h(gt_states[(:, 0)], U[(:, 0)], obs_noise_samples[(:, 0)], *[sub[0] for sub in additional_args_om_list]) for i in range(1, nt): gt_states[(:, i)] = f(gt_states[(:, (i - 1))], U[(:, (i - 1))], state_noise_samples[(:, (i - 1))], input_noise_samples[(:, (i - 1))], *[sub[(i - 1)] for sub in additional_args_pm_list]) gt_states[(overwrite_inds, i)] = overwrite_vals_array[(:, i)] outputs[(:, i)] = h(gt_states[(:, i)], U[(:, i)], obs_noise_samples[(:, i)], *[sub[i] for sub in additional_args_om_list]) return (gt_states, initial_cond, outputs, additional_args_pm_list, additional_args_om_list)
Retrieve ground truth, initial and output data (SNLDS: Stochastic non-linear dynamic system) Args: z0 (numpy array [n x 1]): initial ground truth condition U (numpy array [nu x nt]): inputs for the process and observation model nt (int): number of simulation steps f (function): function handle for one-time step forward propagating the state; expected signature f(state, input, noise, ...) h (function): function handle for retrieving the outputs of the system as a function of system states; expected signature h(state, input, noise, ...) num_out (int): number of outputs from function h Q (numpy array [nq x nq]): noise covariance matrix involved in the stochastic model f P0 (numpy array [n x n]): initial covariance for the initial estimate around the ground truth R (numpy array [nr x nr]): covariance matrix of the noise involved in h function Qu (numpy array [nqu x nqu]): noise covariance matrix involved in the input to the stochastic model f additional_args_pm (list): list of additional arguments to be passed to function f additional_args_om (list): list of additional arguments to be passed to function h overwrite_inds (list): list of state indices to be overwritten overwrite_vals (list): list of ground truth values to overwrite state propagation Returns: gt_states (numpy array [n x nt]): ground truth states at different time instances initial_cond (numpy array [n x 1]): initial condition from Gaussian distribution with mean z0 and covariance P0 outputs (numpy array [num_out x nt]): simulated outputs of the system additional_args_pm_list (2d list [len(additional_args_pm) x nt]): additional arguments to be passed to function f at each time instant additional_args_om_list (2d list [len(additional_args_om) x nt]): additional arguments to be passed to function h at each time instant
estimators.py
sample_nlds
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def sample_nlds(z0, U, nt, f, h, num_out, Q=None, P0=None, R=None, Qu=None, additional_args_pm=[], additional_args_om=[], overwrite_inds=[], overwrite_vals=[]): '\n Retrieve ground truth, initial and output data (SNLDS: Stochastic non-linear dynamic system)\n\n Args:\n z0 (numpy array [n x 1]): initial ground truth condition\n U (numpy array [nu x nt]): inputs for the process and observation model\n nt (int): number of simulation steps\n f (function): function handle for one-time step forward propagating the state; expected signature f(state, input, noise, ...)\n h (function): function handle for retrieving the outputs of the system as a function of system states;\n expected signature h(state, input, noise, ...)\n num_out (int): number of outputs from function h\n Q (numpy array [nq x nq]): noise covariance matrix involved in the stochastic model f\n P0 (numpy array [n x n]): initial covariance for the initial estimate around the ground truth\n R (numpy array [nr x nr]): covariance matrix of the noise involved in h function\n Qu (numpy array [nqu x nqu]): noise covariance matrix involved in the input to the stochastic model f\n additional_args_pm (list): list of additional arguments to be passed to function f\n additional_args_om (list): list of additional arguments to be passed to function h\n overwrite_inds (list): list of state indices to be overwritten\n overwrite_vals (list): list of ground truth values to overwrite state propagation\n\n Returns:\n gt_states (numpy array [n x nt]): ground truth states at different time instances\n initial_cond (numpy array [n x 1]): initial condition from Gaussian distribution with mean z0 and covariance P0\n outputs (numpy array [num_out x nt]): simulated outputs of the system\n additional_args_pm_list (2d list [len(additional_args_pm) x nt]): additional arguments to be passed to \n function f at each time instant\n additional_args_om_list (2d list [len(additional_args_om) x nt]): additional arguments to be passed to\n function h at each time instant\n\n ' if (not len(U)): U = np.zeros((0, nt)) if (Q is None): Q = np.zeros((len(z0), len(z0))) if (Qu is None): Qu = np.zeros((U.shape[0], U.shape[0])) if (P0 is None): P0 = np.zeros((len(z0), len(z0))) if (R is None): R = np.zeros((num_out, num_out)) assert (U.shape[1] == nt), 'Expected input for all {} time instances but only received {}'.format(nt, U.shape[1]) assert (Q.shape == (len(z0), len(z0))), 'Inconsistent size of process noise matrix' assert (Qu.shape == (U.shape[0], U.shape[0])), 'Inconsistent size of input noise matrix' assert (P0.shape == (len(z0), len(z0))), 'Inconsistent size of initial covariance matrix' assert (R.shape == (num_out, num_out)), 'Inconsistent size of observation noise matrix' additional_args_pm_list = np.zeros((len(additional_args_pm), nt)).tolist() additional_args_om_list = np.zeros((len(additional_args_om), nt)).tolist() for (i, argument) in enumerate(additional_args_pm): if (not isinstance(argument, Iterable)): additional_args_pm_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for pm is provided, it should have the length of nt' additional_args_pm_list[i] = argument for (i, argument) in enumerate(additional_args_om): if (not isinstance(argument, Iterable)): additional_args_om_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for om is provided, it should have the length of nt' additional_args_om_list[i] = argument assert (len(overwrite_inds) == len(overwrite_vals)), 'Inconsitent sizes of information to be overwritten' for ind in overwrite_inds: assert ((ind >= 0) and (ind < len(z0))), 'Overwrite index not within range [{},{})'.format(0, len(z0)) overwrite_vals_array = np.zeros((len(overwrite_inds), nt)) for (i, val) in enumerate(overwrite_vals): if isinstance(val, Iterable): assert (len(val) == nt), 'Iterable information should have the length of nt' overwrite_vals_array[i] = val state_noise_samples = sample_gaussian(np.zeros(z0.shape), Q, nt) input_noise_samples = sample_gaussian(np.zeros((Qu.shape[0], 1)), Qu, nt) obs_noise_samples = sample_gaussian(np.zeros((num_out, 1)), R, nt) gt_states = np.zeros((z0.shape[0], nt)) gt_states[(:, 0:1)] = z0 initial_cond = sample_gaussian(z0, P0, 1) outputs = np.zeros((num_out, nt)) outputs[(:, 0)] = h(gt_states[(:, 0)], U[(:, 0)], obs_noise_samples[(:, 0)], *[sub[0] for sub in additional_args_om_list]) for i in range(1, nt): gt_states[(:, i)] = f(gt_states[(:, (i - 1))], U[(:, (i - 1))], state_noise_samples[(:, (i - 1))], input_noise_samples[(:, (i - 1))], *[sub[(i - 1)] for sub in additional_args_pm_list]) gt_states[(overwrite_inds, i)] = overwrite_vals_array[(:, i)] outputs[(:, i)] = h(gt_states[(:, i)], U[(:, i)], obs_noise_samples[(:, i)], *[sub[i] for sub in additional_args_om_list]) return (gt_states, initial_cond, outputs, additional_args_pm_list, additional_args_om_list)
def sample_nlds(z0, U, nt, f, h, num_out, Q=None, P0=None, R=None, Qu=None, additional_args_pm=[], additional_args_om=[], overwrite_inds=[], overwrite_vals=[]): '\n Retrieve ground truth, initial and output data (SNLDS: Stochastic non-linear dynamic system)\n\n Args:\n z0 (numpy array [n x 1]): initial ground truth condition\n U (numpy array [nu x nt]): inputs for the process and observation model\n nt (int): number of simulation steps\n f (function): function handle for one-time step forward propagating the state; expected signature f(state, input, noise, ...)\n h (function): function handle for retrieving the outputs of the system as a function of system states;\n expected signature h(state, input, noise, ...)\n num_out (int): number of outputs from function h\n Q (numpy array [nq x nq]): noise covariance matrix involved in the stochastic model f\n P0 (numpy array [n x n]): initial covariance for the initial estimate around the ground truth\n R (numpy array [nr x nr]): covariance matrix of the noise involved in h function\n Qu (numpy array [nqu x nqu]): noise covariance matrix involved in the input to the stochastic model f\n additional_args_pm (list): list of additional arguments to be passed to function f\n additional_args_om (list): list of additional arguments to be passed to function h\n overwrite_inds (list): list of state indices to be overwritten\n overwrite_vals (list): list of ground truth values to overwrite state propagation\n\n Returns:\n gt_states (numpy array [n x nt]): ground truth states at different time instances\n initial_cond (numpy array [n x 1]): initial condition from Gaussian distribution with mean z0 and covariance P0\n outputs (numpy array [num_out x nt]): simulated outputs of the system\n additional_args_pm_list (2d list [len(additional_args_pm) x nt]): additional arguments to be passed to \n function f at each time instant\n additional_args_om_list (2d list [len(additional_args_om) x nt]): additional arguments to be passed to\n function h at each time instant\n\n ' if (not len(U)): U = np.zeros((0, nt)) if (Q is None): Q = np.zeros((len(z0), len(z0))) if (Qu is None): Qu = np.zeros((U.shape[0], U.shape[0])) if (P0 is None): P0 = np.zeros((len(z0), len(z0))) if (R is None): R = np.zeros((num_out, num_out)) assert (U.shape[1] == nt), 'Expected input for all {} time instances but only received {}'.format(nt, U.shape[1]) assert (Q.shape == (len(z0), len(z0))), 'Inconsistent size of process noise matrix' assert (Qu.shape == (U.shape[0], U.shape[0])), 'Inconsistent size of input noise matrix' assert (P0.shape == (len(z0), len(z0))), 'Inconsistent size of initial covariance matrix' assert (R.shape == (num_out, num_out)), 'Inconsistent size of observation noise matrix' additional_args_pm_list = np.zeros((len(additional_args_pm), nt)).tolist() additional_args_om_list = np.zeros((len(additional_args_om), nt)).tolist() for (i, argument) in enumerate(additional_args_pm): if (not isinstance(argument, Iterable)): additional_args_pm_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for pm is provided, it should have the length of nt' additional_args_pm_list[i] = argument for (i, argument) in enumerate(additional_args_om): if (not isinstance(argument, Iterable)): additional_args_om_list[i] = ([argument] * nt) else: assert (len(argument) == nt), 'If iterable argument for om is provided, it should have the length of nt' additional_args_om_list[i] = argument assert (len(overwrite_inds) == len(overwrite_vals)), 'Inconsitent sizes of information to be overwritten' for ind in overwrite_inds: assert ((ind >= 0) and (ind < len(z0))), 'Overwrite index not within range [{},{})'.format(0, len(z0)) overwrite_vals_array = np.zeros((len(overwrite_inds), nt)) for (i, val) in enumerate(overwrite_vals): if isinstance(val, Iterable): assert (len(val) == nt), 'Iterable information should have the length of nt' overwrite_vals_array[i] = val state_noise_samples = sample_gaussian(np.zeros(z0.shape), Q, nt) input_noise_samples = sample_gaussian(np.zeros((Qu.shape[0], 1)), Qu, nt) obs_noise_samples = sample_gaussian(np.zeros((num_out, 1)), R, nt) gt_states = np.zeros((z0.shape[0], nt)) gt_states[(:, 0:1)] = z0 initial_cond = sample_gaussian(z0, P0, 1) outputs = np.zeros((num_out, nt)) outputs[(:, 0)] = h(gt_states[(:, 0)], U[(:, 0)], obs_noise_samples[(:, 0)], *[sub[0] for sub in additional_args_om_list]) for i in range(1, nt): gt_states[(:, i)] = f(gt_states[(:, (i - 1))], U[(:, (i - 1))], state_noise_samples[(:, (i - 1))], input_noise_samples[(:, (i - 1))], *[sub[(i - 1)] for sub in additional_args_pm_list]) gt_states[(overwrite_inds, i)] = overwrite_vals_array[(:, i)] outputs[(:, i)] = h(gt_states[(:, i)], U[(:, i)], obs_noise_samples[(:, i)], *[sub[i] for sub in additional_args_om_list]) return (gt_states, initial_cond, outputs, additional_args_pm_list, additional_args_om_list)<|docstring|>Retrieve ground truth, initial and output data (SNLDS: Stochastic non-linear dynamic system) Args: z0 (numpy array [n x 1]): initial ground truth condition U (numpy array [nu x nt]): inputs for the process and observation model nt (int): number of simulation steps f (function): function handle for one-time step forward propagating the state; expected signature f(state, input, noise, ...) h (function): function handle for retrieving the outputs of the system as a function of system states; expected signature h(state, input, noise, ...) num_out (int): number of outputs from function h Q (numpy array [nq x nq]): noise covariance matrix involved in the stochastic model f P0 (numpy array [n x n]): initial covariance for the initial estimate around the ground truth R (numpy array [nr x nr]): covariance matrix of the noise involved in h function Qu (numpy array [nqu x nqu]): noise covariance matrix involved in the input to the stochastic model f additional_args_pm (list): list of additional arguments to be passed to function f additional_args_om (list): list of additional arguments to be passed to function h overwrite_inds (list): list of state indices to be overwritten overwrite_vals (list): list of ground truth values to overwrite state propagation Returns: gt_states (numpy array [n x nt]): ground truth states at different time instances initial_cond (numpy array [n x 1]): initial condition from Gaussian distribution with mean z0 and covariance P0 outputs (numpy array [num_out x nt]): simulated outputs of the system additional_args_pm_list (2d list [len(additional_args_pm) x nt]): additional arguments to be passed to function f at each time instant additional_args_om_list (2d list [len(additional_args_om) x nt]): additional arguments to be passed to function h at each time instant<|endoftext|>
d143079353303749c0a3f0787b75fe5776dfc1c57871ecc831f09b93da2ba4e7
def test_pbgf_linear(n=10, m=5, nt=10): '\n Test the PointBasedFilter against KF when problem is linear. Raises error when mean and covariance from\n PBGF differs from that of KF.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): X1 = process_model(X1, [], 0.0, 0.0) P1 = (np.matmul(np.matmul(J, P1), J.T) + Q) z = (outputs[(:, i:(i + 1))] - observation_model(X1, [], 0.0)) S = (np.matmul(np.matmul(H, P1), H.T) + R) K = np.matmul(np.matmul(P1, H.T), np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(np.matmul(K, H), P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) import matplotlib.pyplot as plt plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()
Test the PointBasedFilter against KF when problem is linear. Raises error when mean and covariance from PBGF differs from that of KF. Args: n (int): dimensionality of problem; defaults to 10 m (int): number of outputs which are randomly selected from the states; defaults to 5 nt (int): number of filtering iterations; defaults to 10
estimators.py
test_pbgf_linear
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def test_pbgf_linear(n=10, m=5, nt=10): '\n Test the PointBasedFilter against KF when problem is linear. Raises error when mean and covariance from\n PBGF differs from that of KF.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): X1 = process_model(X1, [], 0.0, 0.0) P1 = (np.matmul(np.matmul(J, P1), J.T) + Q) z = (outputs[(:, i:(i + 1))] - observation_model(X1, [], 0.0)) S = (np.matmul(np.matmul(H, P1), H.T) + R) K = np.matmul(np.matmul(P1, H.T), np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(np.matmul(K, H), P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) import matplotlib.pyplot as plt plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()
def test_pbgf_linear(n=10, m=5, nt=10): '\n Test the PointBasedFilter against KF when problem is linear. Raises error when mean and covariance from\n PBGF differs from that of KF.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): X1 = process_model(X1, [], 0.0, 0.0) P1 = (np.matmul(np.matmul(J, P1), J.T) + Q) z = (outputs[(:, i:(i + 1))] - observation_model(X1, [], 0.0)) S = (np.matmul(np.matmul(H, P1), H.T) + R) K = np.matmul(np.matmul(P1, H.T), np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(np.matmul(K, H), P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) import matplotlib.pyplot as plt plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()<|docstring|>Test the PointBasedFilter against KF when problem is linear. Raises error when mean and covariance from PBGF differs from that of KF. Args: n (int): dimensionality of problem; defaults to 10 m (int): number of outputs which are randomly selected from the states; defaults to 5 nt (int): number of filtering iterations; defaults to 10<|endoftext|>
ccbd9b4e442c2dcbb6f839fae5b5538f2f2f655411945343431f032951430590
def test_pbgf_1d_linear(gt_const=10.0, initial_cov=10.0, q_cov=0.01, r_cov=1.0, nt=50): '\n Test the PBGF against KF when problem is linear. This problem is one-dimensional estimate of a random constant.\n\n Args:\n gt_const (float): parameter to be estimated; defaults to 10.0\n initial_cov (float): initial uncertainty of gt_const; defaults to 10.0\n q_cov (float): stochastic noise for evolution of the parameter; defaults to 1e-2, value of 0 implies parameter is constant\n r_cov (float): observation noise of the parameter; defaults to 1.0\n nt (int): number of filtering iterations; defaults to 50\n\n ' np.random.seed(0) X = np.array([[gt_const]]) P = (initial_cov * np.ones((1, 1))) def process_model(x, u=[], noise=0.0, input_noise=0.0): return (x + noise) def observation_model(x, u=[], noise=0.0): return (x + noise) R = np.array([[r_cov]]) Q = np.array([[q_cov]]) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, 1, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() est_history = np.zeros((nt, 1)) est_history[0] = x0.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): P1 = (P1 + Q) z = (outputs[(:, i:(i + 1))] - X1) S = (P1 + R) K = np.matmul(P1, np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(K, P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) est_history[i] = X1[:].copy() import matplotlib.pyplot as plt plt.plot(est_history, label='est_voltage') plt.plot(x_gt[(0, :)], linestyle='--', label='real_voltage') plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()
Test the PBGF against KF when problem is linear. This problem is one-dimensional estimate of a random constant. Args: gt_const (float): parameter to be estimated; defaults to 10.0 initial_cov (float): initial uncertainty of gt_const; defaults to 10.0 q_cov (float): stochastic noise for evolution of the parameter; defaults to 1e-2, value of 0 implies parameter is constant r_cov (float): observation noise of the parameter; defaults to 1.0 nt (int): number of filtering iterations; defaults to 50
estimators.py
test_pbgf_1d_linear
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def test_pbgf_1d_linear(gt_const=10.0, initial_cov=10.0, q_cov=0.01, r_cov=1.0, nt=50): '\n Test the PBGF against KF when problem is linear. This problem is one-dimensional estimate of a random constant.\n\n Args:\n gt_const (float): parameter to be estimated; defaults to 10.0\n initial_cov (float): initial uncertainty of gt_const; defaults to 10.0\n q_cov (float): stochastic noise for evolution of the parameter; defaults to 1e-2, value of 0 implies parameter is constant\n r_cov (float): observation noise of the parameter; defaults to 1.0\n nt (int): number of filtering iterations; defaults to 50\n\n ' np.random.seed(0) X = np.array([[gt_const]]) P = (initial_cov * np.ones((1, 1))) def process_model(x, u=[], noise=0.0, input_noise=0.0): return (x + noise) def observation_model(x, u=[], noise=0.0): return (x + noise) R = np.array([[r_cov]]) Q = np.array([[q_cov]]) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, 1, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() est_history = np.zeros((nt, 1)) est_history[0] = x0.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): P1 = (P1 + Q) z = (outputs[(:, i:(i + 1))] - X1) S = (P1 + R) K = np.matmul(P1, np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(K, P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) est_history[i] = X1[:].copy() import matplotlib.pyplot as plt plt.plot(est_history, label='est_voltage') plt.plot(x_gt[(0, :)], linestyle='--', label='real_voltage') plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()
def test_pbgf_1d_linear(gt_const=10.0, initial_cov=10.0, q_cov=0.01, r_cov=1.0, nt=50): '\n Test the PBGF against KF when problem is linear. This problem is one-dimensional estimate of a random constant.\n\n Args:\n gt_const (float): parameter to be estimated; defaults to 10.0\n initial_cov (float): initial uncertainty of gt_const; defaults to 10.0\n q_cov (float): stochastic noise for evolution of the parameter; defaults to 1e-2, value of 0 implies parameter is constant\n r_cov (float): observation noise of the parameter; defaults to 1.0\n nt (int): number of filtering iterations; defaults to 50\n\n ' np.random.seed(0) X = np.array([[gt_const]]) P = (initial_cov * np.ones((1, 1))) def process_model(x, u=[], noise=0.0, input_noise=0.0): return (x + noise) def observation_model(x, u=[], noise=0.0): return (x + noise) R = np.array([[r_cov]]) Q = np.array([[q_cov]]) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, 1, Q, P, R)[0:3] pbgf = PointBasedFilter('CKF', 2) X1 = x0.copy() X2 = x0.copy() P1 = P.copy() P2 = P.copy() est_history = np.zeros((nt, 1)) est_history[0] = x0.copy() mse = np.zeros((nt, 1)) mse[0] = np.mean(((X1 - x_gt[(:, 0)]) ** 2)) trace = np.zeros(mse.shape) trace[0] = np.trace(P1) for i in range(1, nt): P1 = (P1 + Q) z = (outputs[(:, i:(i + 1))] - X1) S = (P1 + R) K = np.matmul(P1, np.linalg.inv(S)) X1 += np.matmul(K, z) P1 -= np.matmul(K, P1) (X2, P2) = pbgf.predict_and_or_update(X2, P2, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) assert np.allclose(P1, P2), 'Covariance from KF and PBGF should be the same as problem is linear' assert np.allclose(X1, X2), 'Expected Value from KF and PBGF should be the same as problem is linear' mse[i] = np.mean(((X1 - x_gt[(:, i)]) ** 2)) trace[i] = np.trace(P1) est_history[i] = X1[:].copy() import matplotlib.pyplot as plt plt.plot(est_history, label='est_voltage') plt.plot(x_gt[(0, :)], linestyle='--', label='real_voltage') plt.plot(mse, marker='x', label='mse') plt.plot(trace, marker='o', label='trace') plt.grid(True, 'both') plt.legend() plt.show()<|docstring|>Test the PBGF against KF when problem is linear. This problem is one-dimensional estimate of a random constant. Args: gt_const (float): parameter to be estimated; defaults to 10.0 initial_cov (float): initial uncertainty of gt_const; defaults to 10.0 q_cov (float): stochastic noise for evolution of the parameter; defaults to 1e-2, value of 0 implies parameter is constant r_cov (float): observation noise of the parameter; defaults to 1.0 nt (int): number of filtering iterations; defaults to 50<|endoftext|>
05b3fd24879b4342d456d9c879be399145cfc7beb2f0fcc0ca87cd13e90a2144
def test_pbgf_fixed_lag_smoothing_linear(n=10, m=5, nt=10, lag_interval=5): '\n Test the PBGF smoothed estimate against filtered estimate. This problem is the same as that of test_pbgf_linear.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n lag_interval (int): lag interval for producing smoothed estimate\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf_filt = PointBasedFilter('CKF', 2) pbgf_smooth = PointBasedFixedLagSmoother('CKF', 2, lag_interval) pbgf_smooth_aug = PointBasedFixedLagSmootherAugmented('CKF', 2, lag_interval) X_filt = x0.copy() X_smooth = x0.copy() P_filt = P.copy() P_smooth = P.copy() pbgf_smooth.set_initial_cond(X_smooth, P_smooth) pbgf_smooth_aug.set_initial_cond(X_smooth, P_smooth) X_filt_hist = np.zeros((X_filt.shape[0], nt)) X_filt_hist[(:, 0:1)] = X_filt.copy() X_smooth_hist = np.zeros((X_smooth.shape[0], nt)) X_smooth_hist[(:, 0:1)] = X_smooth.copy() mse_filt = np.zeros((nt, 1)) error = (X_filt - x_gt[(:, 0:1)]) mse_filt[0] = np.mean((error ** 2)) nees_filt = np.zeros((nt, 1)) nees_filt[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) mse_smooth = np.zeros((nt, 1)) error = (X_smooth - x_gt[(:, 0:1)]) mse_smooth[0] = np.mean((error ** 2)) nees_smooth = np.zeros((nt, 1)) nees_smooth[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth)), error) dentropy_filt = np.zeros((nt, 1)) dentropy_filt[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) dentropy_smooth = np.zeros((nt, 1)) dentropy_smooth[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth)))) for i in range(1, nt): (X_filt, P_filt) = pbgf_filt.predict_and_or_update(X_filt, P_filt, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) X_filt_hist[(:, i:(i + 1))] = X_filt.copy() error = (X_filt - x_gt[(:, i:(i + 1))]) mse_filt[i] = np.mean((error ** 2)) nees_filt[i] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) dentropy_filt[i] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) (X_smooth_aug, P_smooth_aug) = pbgf_smooth_aug.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) (X_smooth_fi, P_smooth_fi, smooth_flag) = pbgf_smooth.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) if (smooth_flag and ((i - lag_interval) >= 0)): assert np.allclose(X_smooth_aug, X_smooth_fi[0]), 'Backward pass smoother mean is not equivalent to that from augmented implementation' assert np.allclose(P_smooth_aug, P_smooth_fi[0]), 'Backward pass smoother covariance is not equivalent to that from augmented implementation' X_smooth_hist[(:, (i - lag_interval):((i - lag_interval) + 1))] = X_smooth_fi[0].copy() error = (X_smooth_fi[0] - x_gt[(:, (i - lag_interval):((i - lag_interval) + 1))]) mse_smooth[(i - lag_interval)] = np.mean((error ** 2)) nees_smooth[(i - lag_interval)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[0])), error) dentropy_smooth[(i - lag_interval)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[0])))) if (i == (nt - 1)): for k in range(1, len(X_smooth_fi)): error = (X_smooth_fi[k] - x_gt[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))]) mse_smooth[((i - lag_interval) + k)] = np.mean((error ** 2)) nees_smooth[((i - lag_interval) + k)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[k])), error) dentropy_smooth[((i - lag_interval) + k)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[k])))) X_smooth_hist[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))] = X_smooth_fi[k].copy() assert np.allclose(X_smooth_fi[(- 1)], X_filt), 'Filtered mean from smoothing and filtering are not the same' assert np.allclose(P_smooth_fi[(- 1)], P_filt), 'Filtered covariance from smoothing and filtering are not the same' for i in range((nt - 1)): assert (dentropy_smooth[i] <= dentropy_filt[i]), 'Smoothed entropy should be lower than filtered estimate' import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.plot(mse_filt, marker='o', label='filtered') plt.plot(mse_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('MSE') plt.grid(True, 'both') plt.subplot(2, 1, 2) plt.plot(nees_filt, marker='o', label='filtered') plt.plot(nees_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('NEES') plt.grid(True, 'both') plt.show()
Test the PBGF smoothed estimate against filtered estimate. This problem is the same as that of test_pbgf_linear. Args: n (int): dimensionality of problem; defaults to 10 m (int): number of outputs which are randomly selected from the states; defaults to 5 nt (int): number of filtering iterations; defaults to 10 lag_interval (int): lag interval for producing smoothed estimate
estimators.py
test_pbgf_fixed_lag_smoothing_linear
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def test_pbgf_fixed_lag_smoothing_linear(n=10, m=5, nt=10, lag_interval=5): '\n Test the PBGF smoothed estimate against filtered estimate. This problem is the same as that of test_pbgf_linear.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n lag_interval (int): lag interval for producing smoothed estimate\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf_filt = PointBasedFilter('CKF', 2) pbgf_smooth = PointBasedFixedLagSmoother('CKF', 2, lag_interval) pbgf_smooth_aug = PointBasedFixedLagSmootherAugmented('CKF', 2, lag_interval) X_filt = x0.copy() X_smooth = x0.copy() P_filt = P.copy() P_smooth = P.copy() pbgf_smooth.set_initial_cond(X_smooth, P_smooth) pbgf_smooth_aug.set_initial_cond(X_smooth, P_smooth) X_filt_hist = np.zeros((X_filt.shape[0], nt)) X_filt_hist[(:, 0:1)] = X_filt.copy() X_smooth_hist = np.zeros((X_smooth.shape[0], nt)) X_smooth_hist[(:, 0:1)] = X_smooth.copy() mse_filt = np.zeros((nt, 1)) error = (X_filt - x_gt[(:, 0:1)]) mse_filt[0] = np.mean((error ** 2)) nees_filt = np.zeros((nt, 1)) nees_filt[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) mse_smooth = np.zeros((nt, 1)) error = (X_smooth - x_gt[(:, 0:1)]) mse_smooth[0] = np.mean((error ** 2)) nees_smooth = np.zeros((nt, 1)) nees_smooth[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth)), error) dentropy_filt = np.zeros((nt, 1)) dentropy_filt[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) dentropy_smooth = np.zeros((nt, 1)) dentropy_smooth[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth)))) for i in range(1, nt): (X_filt, P_filt) = pbgf_filt.predict_and_or_update(X_filt, P_filt, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) X_filt_hist[(:, i:(i + 1))] = X_filt.copy() error = (X_filt - x_gt[(:, i:(i + 1))]) mse_filt[i] = np.mean((error ** 2)) nees_filt[i] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) dentropy_filt[i] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) (X_smooth_aug, P_smooth_aug) = pbgf_smooth_aug.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) (X_smooth_fi, P_smooth_fi, smooth_flag) = pbgf_smooth.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) if (smooth_flag and ((i - lag_interval) >= 0)): assert np.allclose(X_smooth_aug, X_smooth_fi[0]), 'Backward pass smoother mean is not equivalent to that from augmented implementation' assert np.allclose(P_smooth_aug, P_smooth_fi[0]), 'Backward pass smoother covariance is not equivalent to that from augmented implementation' X_smooth_hist[(:, (i - lag_interval):((i - lag_interval) + 1))] = X_smooth_fi[0].copy() error = (X_smooth_fi[0] - x_gt[(:, (i - lag_interval):((i - lag_interval) + 1))]) mse_smooth[(i - lag_interval)] = np.mean((error ** 2)) nees_smooth[(i - lag_interval)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[0])), error) dentropy_smooth[(i - lag_interval)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[0])))) if (i == (nt - 1)): for k in range(1, len(X_smooth_fi)): error = (X_smooth_fi[k] - x_gt[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))]) mse_smooth[((i - lag_interval) + k)] = np.mean((error ** 2)) nees_smooth[((i - lag_interval) + k)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[k])), error) dentropy_smooth[((i - lag_interval) + k)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[k])))) X_smooth_hist[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))] = X_smooth_fi[k].copy() assert np.allclose(X_smooth_fi[(- 1)], X_filt), 'Filtered mean from smoothing and filtering are not the same' assert np.allclose(P_smooth_fi[(- 1)], P_filt), 'Filtered covariance from smoothing and filtering are not the same' for i in range((nt - 1)): assert (dentropy_smooth[i] <= dentropy_filt[i]), 'Smoothed entropy should be lower than filtered estimate' import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.plot(mse_filt, marker='o', label='filtered') plt.plot(mse_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('MSE') plt.grid(True, 'both') plt.subplot(2, 1, 2) plt.plot(nees_filt, marker='o', label='filtered') plt.plot(nees_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('NEES') plt.grid(True, 'both') plt.show()
def test_pbgf_fixed_lag_smoothing_linear(n=10, m=5, nt=10, lag_interval=5): '\n Test the PBGF smoothed estimate against filtered estimate. This problem is the same as that of test_pbgf_linear.\n\n Args:\n n (int): dimensionality of problem; defaults to 10\n m (int): number of outputs which are randomly selected from the states; defaults to 5\n nt (int): number of filtering iterations; defaults to 10\n lag_interval (int): lag interval for producing smoothed estimate\n\n ' np.random.seed(0) X = (5.0 * np.random.randn(n, 1)) P = (10.0 * np.random.randn(n, n)) P = np.matmul(P, P.T) dt = 0.05 J = (np.eye(n) + (dt * ((((- 2.0) * np.eye(n)) + np.diag(np.ones((n - 1)), 1)) + np.diag(np.ones((n - 1)), (- 1))))) def process_model(x, u, noise, input_noise): return (np.matmul(J, x) + noise) Q = (5.0 * np.eye(n)) out_loc = np.random.permutation(n)[:m] R = (1.0 * np.eye(m)) H = np.zeros((m, n)) l_ind = (out_loc + (np.arange(m) * n)) H.flat[l_ind] = 1.0 def observation_model(x, u, noise): return (np.matmul(H, x) + noise) (x_gt, x0, outputs) = sample_nlds(X, [], nt, process_model, observation_model, m, Q, P, R)[0:3] pbgf_filt = PointBasedFilter('CKF', 2) pbgf_smooth = PointBasedFixedLagSmoother('CKF', 2, lag_interval) pbgf_smooth_aug = PointBasedFixedLagSmootherAugmented('CKF', 2, lag_interval) X_filt = x0.copy() X_smooth = x0.copy() P_filt = P.copy() P_smooth = P.copy() pbgf_smooth.set_initial_cond(X_smooth, P_smooth) pbgf_smooth_aug.set_initial_cond(X_smooth, P_smooth) X_filt_hist = np.zeros((X_filt.shape[0], nt)) X_filt_hist[(:, 0:1)] = X_filt.copy() X_smooth_hist = np.zeros((X_smooth.shape[0], nt)) X_smooth_hist[(:, 0:1)] = X_smooth.copy() mse_filt = np.zeros((nt, 1)) error = (X_filt - x_gt[(:, 0:1)]) mse_filt[0] = np.mean((error ** 2)) nees_filt = np.zeros((nt, 1)) nees_filt[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) mse_smooth = np.zeros((nt, 1)) error = (X_smooth - x_gt[(:, 0:1)]) mse_smooth[0] = np.mean((error ** 2)) nees_smooth = np.zeros((nt, 1)) nees_smooth[0] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth)), error) dentropy_filt = np.zeros((nt, 1)) dentropy_filt[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) dentropy_smooth = np.zeros((nt, 1)) dentropy_smooth[0] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth)))) for i in range(1, nt): (X_filt, P_filt) = pbgf_filt.predict_and_or_update(X_filt, P_filt, process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) X_filt_hist[(:, i:(i + 1))] = X_filt.copy() error = (X_filt - x_gt[(:, i:(i + 1))]) mse_filt[i] = np.mean((error ** 2)) nees_filt[i] = np.matmul(np.matmul(error.T, np.linalg.inv(P_filt)), error) dentropy_filt[i] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_filt)))) (X_smooth_aug, P_smooth_aug) = pbgf_smooth_aug.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) (X_smooth_fi, P_smooth_fi, smooth_flag) = pbgf_smooth.predict_and_or_update(process_model, observation_model, Q, R, np.array([]), outputs[(:, i:(i + 1))]) if (smooth_flag and ((i - lag_interval) >= 0)): assert np.allclose(X_smooth_aug, X_smooth_fi[0]), 'Backward pass smoother mean is not equivalent to that from augmented implementation' assert np.allclose(P_smooth_aug, P_smooth_fi[0]), 'Backward pass smoother covariance is not equivalent to that from augmented implementation' X_smooth_hist[(:, (i - lag_interval):((i - lag_interval) + 1))] = X_smooth_fi[0].copy() error = (X_smooth_fi[0] - x_gt[(:, (i - lag_interval):((i - lag_interval) + 1))]) mse_smooth[(i - lag_interval)] = np.mean((error ** 2)) nees_smooth[(i - lag_interval)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[0])), error) dentropy_smooth[(i - lag_interval)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[0])))) if (i == (nt - 1)): for k in range(1, len(X_smooth_fi)): error = (X_smooth_fi[k] - x_gt[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))]) mse_smooth[((i - lag_interval) + k)] = np.mean((error ** 2)) nees_smooth[((i - lag_interval) + k)] = np.matmul(np.matmul(error.T, np.linalg.inv(P_smooth_fi[k])), error) dentropy_smooth[((i - lag_interval) + k)] = (((0.5 * n) * (1.0 + np.log((2 * math.pi)))) + (0.5 * np.log(np.linalg.det(P_smooth_fi[k])))) X_smooth_hist[(:, ((i - lag_interval) + k):(((i - lag_interval) + k) + 1))] = X_smooth_fi[k].copy() assert np.allclose(X_smooth_fi[(- 1)], X_filt), 'Filtered mean from smoothing and filtering are not the same' assert np.allclose(P_smooth_fi[(- 1)], P_filt), 'Filtered covariance from smoothing and filtering are not the same' for i in range((nt - 1)): assert (dentropy_smooth[i] <= dentropy_filt[i]), 'Smoothed entropy should be lower than filtered estimate' import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.plot(mse_filt, marker='o', label='filtered') plt.plot(mse_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('MSE') plt.grid(True, 'both') plt.subplot(2, 1, 2) plt.plot(nees_filt, marker='o', label='filtered') plt.plot(nees_smooth, marker='o', label='smoothed') plt.legend() plt.xlabel('Time instance') plt.ylabel('NEES') plt.grid(True, 'both') plt.show()<|docstring|>Test the PBGF smoothed estimate against filtered estimate. This problem is the same as that of test_pbgf_linear. Args: n (int): dimensionality of problem; defaults to 10 m (int): number of outputs which are randomly selected from the states; defaults to 5 nt (int): number of filtering iterations; defaults to 10 lag_interval (int): lag interval for producing smoothed estimate<|endoftext|>
b6c200801a91d433ac12624956004c85406a4cf5b36ca3b536faaad31f455a77
def predict_and_or_update(self, X, P, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update.\n algorithm reference: Algorithm 5.1, page 104 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X (numpy array [n x 1]): expected value of the states after prediction and update\n P (numpy array [n x n]): covariance of the states after prediction and update\n\n ' n = len(X) nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 if self.use_torch_tensor: Qu = torch.zeros((nqu, nqu), dtype=X.dtype, device=self.tensor_device) else: Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if self.use_torch_tensor: X1 = torch.cat((X, torch.zeros((((nq + nqu) + nr), 1), dtype=X.dtype, device=self.tensor_device)), dim=0) P1 = torch.block_diag(P, Q, Qu, R) else: X1 = np.concatenate((X, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(P, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) ia = np.arange(n) if predict_flag: ib = np.arange(n, (n + nq)) ic = np.arange((n + nq), ((n + nq) + nqu)) (X2, x2, P2, x2_cent) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, ic, additional_args_pm) else: X2 = X P2 = P x2 = x x2_cent = (x[(ia, :)] - X) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((n + nq) + nqu), (((n + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ia, ip, len(y), additional_args_om) if self.use_torch_tensor: Pxy = torch.matmul(torch.matmul(x2_cent, WeightMat), z2.T) K = torch.matmul(Pxy, torch.linalg.inv(Pz)) else: Pxy = np.matmul(np.matmul(x2_cent, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) if self.use_torch_tensor: X3 = (X2 + torch.matmul(K, innovation)) P3 = (P2 - torch.matmul(K, Pxy.T)) else: X3 = (X2 + np.matmul(K, innovation)) P3 = (P2 - np.matmul(K, Pxy.T)) else: X3 = X2 P3 = P2 return (X3, P3)
Perform one iteration of prediction and/or update. algorithm reference: Algorithm 5.1, page 104 of "Compressed Estimation in Coupled High-dimensional Processes" Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system u_next (*): next input required for function h, defaults to None which will take values of u Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X (numpy array [n x 1]): expected value of the states after prediction and update P (numpy array [n x n]): covariance of the states after prediction and update
estimators.py
predict_and_or_update
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def predict_and_or_update(self, X, P, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update.\n algorithm reference: Algorithm 5.1, page 104 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X (numpy array [n x 1]): expected value of the states after prediction and update\n P (numpy array [n x n]): covariance of the states after prediction and update\n\n ' n = len(X) nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 if self.use_torch_tensor: Qu = torch.zeros((nqu, nqu), dtype=X.dtype, device=self.tensor_device) else: Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if self.use_torch_tensor: X1 = torch.cat((X, torch.zeros((((nq + nqu) + nr), 1), dtype=X.dtype, device=self.tensor_device)), dim=0) P1 = torch.block_diag(P, Q, Qu, R) else: X1 = np.concatenate((X, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(P, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) ia = np.arange(n) if predict_flag: ib = np.arange(n, (n + nq)) ic = np.arange((n + nq), ((n + nq) + nqu)) (X2, x2, P2, x2_cent) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, ic, additional_args_pm) else: X2 = X P2 = P x2 = x x2_cent = (x[(ia, :)] - X) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((n + nq) + nqu), (((n + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ia, ip, len(y), additional_args_om) if self.use_torch_tensor: Pxy = torch.matmul(torch.matmul(x2_cent, WeightMat), z2.T) K = torch.matmul(Pxy, torch.linalg.inv(Pz)) else: Pxy = np.matmul(np.matmul(x2_cent, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) if self.use_torch_tensor: X3 = (X2 + torch.matmul(K, innovation)) P3 = (P2 - torch.matmul(K, Pxy.T)) else: X3 = (X2 + np.matmul(K, innovation)) P3 = (P2 - np.matmul(K, Pxy.T)) else: X3 = X2 P3 = P2 return (X3, P3)
def predict_and_or_update(self, X, P, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update.\n algorithm reference: Algorithm 5.1, page 104 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X (numpy array [n x 1]): expected value of the states after prediction and update\n P (numpy array [n x n]): covariance of the states after prediction and update\n\n ' n = len(X) nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 if self.use_torch_tensor: Qu = torch.zeros((nqu, nqu), dtype=X.dtype, device=self.tensor_device) else: Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if self.use_torch_tensor: X1 = torch.cat((X, torch.zeros((((nq + nqu) + nr), 1), dtype=X.dtype, device=self.tensor_device)), dim=0) P1 = torch.block_diag(P, Q, Qu, R) else: X1 = np.concatenate((X, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(P, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) ia = np.arange(n) if predict_flag: ib = np.arange(n, (n + nq)) ic = np.arange((n + nq), ((n + nq) + nqu)) (X2, x2, P2, x2_cent) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, ic, additional_args_pm) else: X2 = X P2 = P x2 = x x2_cent = (x[(ia, :)] - X) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((n + nq) + nqu), (((n + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ia, ip, len(y), additional_args_om) if self.use_torch_tensor: Pxy = torch.matmul(torch.matmul(x2_cent, WeightMat), z2.T) K = torch.matmul(Pxy, torch.linalg.inv(Pz)) else: Pxy = np.matmul(np.matmul(x2_cent, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) if self.use_torch_tensor: X3 = (X2 + torch.matmul(K, innovation)) P3 = (P2 - torch.matmul(K, Pxy.T)) else: X3 = (X2 + np.matmul(K, innovation)) P3 = (P2 - np.matmul(K, Pxy.T)) else: X3 = X2 P3 = P2 return (X3, P3)<|docstring|>Perform one iteration of prediction and/or update. algorithm reference: Algorithm 5.1, page 104 of "Compressed Estimation in Coupled High-dimensional Processes" Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system u_next (*): next input required for function h, defaults to None which will take values of u Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X (numpy array [n x 1]): expected value of the states after prediction and update P (numpy array [n x n]): covariance of the states after prediction and update<|endoftext|>
f020104f7d90076d0c3159a7dc9b31b3c7560b0dd99de0c3c1642884707c1ad2
def unscented_transformH(self, x, W, WeightMat, L, f, u, ia, iq, n, additional_args): '\n Function to propagate sigma/cubature points through observation function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n L (int): number of points\n f (function): function handle for the observation model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the observation noise in sigma/cubature points\n n (int): dimensionality of output or return from function f\n additional_args (list): list of additional arguments to be passed to the observation model\n\n Returns:\n Y (numpy array [n x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n x L]): Transformed sigma/cubature points\n P (numpy array [n x n]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n x L]): zero-mean Transformed sigma/cubature points\n\n ' if self.use_torch_tensor: Y = torch.zeros((n, 1), dtype=x.dtype, device=self.tensor_device) y = torch.zeros((n, L), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((n, 1)) y = np.zeros((n, L)) for k in range(L): y[(:, k)] = f(x[(ia, k)], u, x[(iq, k)], *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(:, k:(k + 1))]) else: Y += (W.flat[k] * y[(:, k:(k + 1))]) y1 = (y - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
Function to propagate sigma/cubature points through observation function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal L (int): number of points f (function): function handle for the observation model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the observation noise in sigma/cubature points n (int): dimensionality of output or return from function f additional_args (list): list of additional arguments to be passed to the observation model Returns: Y (numpy array [n x 1]): Expected value vector of the result from transformation function f y (numpy array [n x L]): Transformed sigma/cubature points P (numpy array [n x n]): Covariance matrix of the result from transformation function f y1 (numpy array [n x L]): zero-mean Transformed sigma/cubature points
estimators.py
unscented_transformH
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def unscented_transformH(self, x, W, WeightMat, L, f, u, ia, iq, n, additional_args): '\n Function to propagate sigma/cubature points through observation function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n L (int): number of points\n f (function): function handle for the observation model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the observation noise in sigma/cubature points\n n (int): dimensionality of output or return from function f\n additional_args (list): list of additional arguments to be passed to the observation model\n\n Returns:\n Y (numpy array [n x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n x L]): Transformed sigma/cubature points\n P (numpy array [n x n]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n x L]): zero-mean Transformed sigma/cubature points\n\n ' if self.use_torch_tensor: Y = torch.zeros((n, 1), dtype=x.dtype, device=self.tensor_device) y = torch.zeros((n, L), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((n, 1)) y = np.zeros((n, L)) for k in range(L): y[(:, k)] = f(x[(ia, k)], u, x[(iq, k)], *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(:, k:(k + 1))]) else: Y += (W.flat[k] * y[(:, k:(k + 1))]) y1 = (y - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
def unscented_transformH(self, x, W, WeightMat, L, f, u, ia, iq, n, additional_args): '\n Function to propagate sigma/cubature points through observation function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n L (int): number of points\n f (function): function handle for the observation model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the observation noise in sigma/cubature points\n n (int): dimensionality of output or return from function f\n additional_args (list): list of additional arguments to be passed to the observation model\n\n Returns:\n Y (numpy array [n x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n x L]): Transformed sigma/cubature points\n P (numpy array [n x n]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n x L]): zero-mean Transformed sigma/cubature points\n\n ' if self.use_torch_tensor: Y = torch.zeros((n, 1), dtype=x.dtype, device=self.tensor_device) y = torch.zeros((n, L), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((n, 1)) y = np.zeros((n, L)) for k in range(L): y[(:, k)] = f(x[(ia, k)], u, x[(iq, k)], *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(:, k:(k + 1))]) else: Y += (W.flat[k] * y[(:, k:(k + 1))]) y1 = (y - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)<|docstring|>Function to propagate sigma/cubature points through observation function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal L (int): number of points f (function): function handle for the observation model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the observation noise in sigma/cubature points n (int): dimensionality of output or return from function f additional_args (list): list of additional arguments to be passed to the observation model Returns: Y (numpy array [n x 1]): Expected value vector of the result from transformation function f y (numpy array [n x L]): Transformed sigma/cubature points P (numpy array [n x n]): Covariance matrix of the result from transformation function f y1 (numpy array [n x L]): zero-mean Transformed sigma/cubature points<|endoftext|>
a6a4e09e5d2cc14a4ca89cd6126d08606b66c6d757282558f8b7a55fd2830a83
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = len(ia) if self.use_torch_tensor: Y = torch.zeros((order, 1), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], (torch.zeros(u.shape, dtype=x.dtype, device=self.tensor_device) if self.use_torch_tensor else np.zeros(u.shape)), *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(np.arange(order), k:(k + 1))]) else: Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points
estimators.py
unscented_transformF
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = len(ia) if self.use_torch_tensor: Y = torch.zeros((order, 1), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], (torch.zeros(u.shape, dtype=x.dtype, device=self.tensor_device) if self.use_torch_tensor else np.zeros(u.shape)), *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(np.arange(order), k:(k + 1))]) else: Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = len(ia) if self.use_torch_tensor: Y = torch.zeros((order, 1), dtype=x.dtype, device=self.tensor_device) else: Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ia, k)] = f(x[(ia, k)], u, x[(iq, k)], (torch.zeros(u.shape, dtype=x.dtype, device=self.tensor_device) if self.use_torch_tensor else np.zeros(u.shape)), *additional_args) if self.use_torch_tensor: Y += (W[(0, k)] * y[(np.arange(order), k:(k + 1))]) else: Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) if self.use_torch_tensor: P = torch.matmul(torch.matmul(y1, WeightMat), y1.T) else: P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)<|docstring|>Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points<|endoftext|>
0c9d931e3464c9c48c00143da1fff0b9f531c192f95dbdcf0be804f155d2ad35
def sigmas2(self, X, P): '\n function to generate second order sigma points\n reference: Appendix G.1 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] Params = [(1 - (n / 3.0)), (1.0 / 6.0), math.sqrt(3.0)] L = ((2 * n) + 1) W = np.concatenate((np.array([[Params[0]]]), np.matlib.repmat(Params[1], 1, (2 * n))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) temp = np.zeros((n, L)) loc = np.arange(n) l_index = (((loc * L) + loc) + 1) temp.flat[l_index] = Params[2] l_index += n temp.flat[l_index] = (- Params[2]) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)
function to generate second order sigma points reference: Appendix G.1 of "Compressed Estimation in Coupled High-dimensional Processes" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): second order sigma point L (int): number of sigma points W (numpy array [1 x L]): 1D Weight array of sigma points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal
estimators.py
sigmas2
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def sigmas2(self, X, P): '\n function to generate second order sigma points\n reference: Appendix G.1 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] Params = [(1 - (n / 3.0)), (1.0 / 6.0), math.sqrt(3.0)] L = ((2 * n) + 1) W = np.concatenate((np.array([[Params[0]]]), np.matlib.repmat(Params[1], 1, (2 * n))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) temp = np.zeros((n, L)) loc = np.arange(n) l_index = (((loc * L) + loc) + 1) temp.flat[l_index] = Params[2] l_index += n temp.flat[l_index] = (- Params[2]) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)
def sigmas2(self, X, P): '\n function to generate second order sigma points\n reference: Appendix G.1 of "Compressed Estimation in Coupled High-dimensional Processes"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] Params = [(1 - (n / 3.0)), (1.0 / 6.0), math.sqrt(3.0)] L = ((2 * n) + 1) W = np.concatenate((np.array([[Params[0]]]), np.matlib.repmat(Params[1], 1, (2 * n))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) temp = np.zeros((n, L)) loc = np.arange(n) l_index = (((loc * L) + loc) + 1) temp.flat[l_index] = Params[2] l_index += n temp.flat[l_index] = (- Params[2]) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)<|docstring|>function to generate second order sigma points reference: Appendix G.1 of "Compressed Estimation in Coupled High-dimensional Processes" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): second order sigma point L (int): number of sigma points W (numpy array [1 x L]): 1D Weight array of sigma points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal<|endoftext|>
d9dd836d9c11c0cc6b8fbb3ab0ce89caf0f935f6d5d2cc7464e74ce23c39ad7a
def sigmas4(self, X, P): '\n function to generate fourth order sigma points\n Note: No analytical results exist for generating 4th order sigma points as it requires performing\n non-linear least square (see Appendix G.2 of "Compressed Estimation in Coupled High-dimensional Processes".\n\n A separate scheme is used here, see equation 5.20 instead.\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(1 + (((n ** 2) - (7.0 * n)) / 18.0))]]), np.matlib.repmat(((4 - n) / 18.0), 1, (2 * n)), np.matlib.repmat((1.0 / 36.0), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(3.0) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)
function to generate fourth order sigma points Note: No analytical results exist for generating 4th order sigma points as it requires performing non-linear least square (see Appendix G.2 of "Compressed Estimation in Coupled High-dimensional Processes". A separate scheme is used here, see equation 5.20 instead. Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): fourth order sigma point L (int): number of sigma points W (numpy array [1 x L]): 1D Weight array of sigma points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal
estimators.py
sigmas4
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def sigmas4(self, X, P): '\n function to generate fourth order sigma points\n Note: No analytical results exist for generating 4th order sigma points as it requires performing\n non-linear least square (see Appendix G.2 of "Compressed Estimation in Coupled High-dimensional Processes".\n\n A separate scheme is used here, see equation 5.20 instead.\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(1 + (((n ** 2) - (7.0 * n)) / 18.0))]]), np.matlib.repmat(((4 - n) / 18.0), 1, (2 * n)), np.matlib.repmat((1.0 / 36.0), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(3.0) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)
def sigmas4(self, X, P): '\n function to generate fourth order sigma points\n Note: No analytical results exist for generating 4th order sigma points as it requires performing\n non-linear least square (see Appendix G.2 of "Compressed Estimation in Coupled High-dimensional Processes".\n\n A separate scheme is used here, see equation 5.20 instead.\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order sigma point\n L (int): number of sigma points\n W (numpy array [1 x L]): 1D Weight array of sigma points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(1 + (((n ** 2) - (7.0 * n)) / 18.0))]]), np.matlib.repmat(((4 - n) / 18.0), 1, (2 * n)), np.matlib.repmat((1.0 / 36.0), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(3.0) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)<|docstring|>function to generate fourth order sigma points Note: No analytical results exist for generating 4th order sigma points as it requires performing non-linear least square (see Appendix G.2 of "Compressed Estimation in Coupled High-dimensional Processes". A separate scheme is used here, see equation 5.20 instead. Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): fourth order sigma point L (int): number of sigma points W (numpy array [1 x L]): 1D Weight array of sigma points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal<|endoftext|>
75c859d89cab1165e3822cf545207380f863ced94a82d294c2baf9799117c223
def cubature2(self, X, P): '\n function to generate second order cubature points\n reference: paper "Cubature Kalman Fitlers"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = (2 * n) W = np.matlib.repmat((1.0 / L), 1, L) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(n) temp = np.zeros((n, L)) loc = np.arange(n) l_index = ((loc * L) + loc) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)
function to generate second order cubature points reference: paper "Cubature Kalman Fitlers" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): second order cubature point L (int): number of cubature points W (numpy array [1 x L]): 1D Weight array of cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal
estimators.py
cubature2
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def cubature2(self, X, P): '\n function to generate second order cubature points\n reference: paper "Cubature Kalman Fitlers"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = (2 * n) W = np.matlib.repmat((1.0 / L), 1, L) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(n) temp = np.zeros((n, L)) loc = np.arange(n) l_index = ((loc * L) + loc) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)
def cubature2(self, X, P): '\n function to generate second order cubature points\n reference: paper "Cubature Kalman Fitlers"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): second order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = (2 * n) W = np.matlib.repmat((1.0 / L), 1, L) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt(n) temp = np.zeros((n, L)) loc = np.arange(n) l_index = ((loc * L) + loc) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, L)) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, L) x = (Y + np.matmul(sqP, temp)) return (x, L, W, WeightMat)<|docstring|>function to generate second order cubature points reference: paper "Cubature Kalman Fitlers" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): second order cubature point L (int): number of cubature points W (numpy array [1 x L]): 1D Weight array of cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal<|endoftext|>
f104d71b06cc4a8d95ab56bb845dc435bd75d5b1494d8ca29029e9db900c65d1
def cubature4(self, X, P): '\n function to generate fourth order cubature points\n reference: paper "High-degree cubature kalman filter"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(2.0 / (n + 2.0))]]), np.matlib.repmat(((4 - n) / (2.0 * ((n + 2) ** 2))), 1, (2 * n)), np.matlib.repmat((1.0 / ((n + 2.0) ** 2)), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt((n + 2.0)) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) s = (math.sqrt((n + 2.0)) / math.sqrt(2.0)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)
function to generate fourth order cubature points reference: paper "High-degree cubature kalman filter" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): fourth order cubature point L (int): number of cubature points W (numpy array [1 x L]): 1D Weight array of cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal
estimators.py
cubature4
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def cubature4(self, X, P): '\n function to generate fourth order cubature points\n reference: paper "High-degree cubature kalman filter"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(2.0 / (n + 2.0))]]), np.matlib.repmat(((4 - n) / (2.0 * ((n + 2) ** 2))), 1, (2 * n)), np.matlib.repmat((1.0 / ((n + 2.0) ** 2)), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt((n + 2.0)) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) s = (math.sqrt((n + 2.0)) / math.sqrt(2.0)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)
def cubature4(self, X, P): '\n function to generate fourth order cubature points\n reference: paper "High-degree cubature kalman filter"\n\n Args:\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n x (numpy array [n x L]): fourth order cubature point\n L (int): number of cubature points\n W (numpy array [1 x L]): 1D Weight array of cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n\n ' n = X.shape[0] L = ((2 * (n ** 2)) + 1) W = np.concatenate((np.array([[(2.0 / (n + 2.0))]]), np.matlib.repmat(((4 - n) / (2.0 * ((n + 2) ** 2))), 1, (2 * n)), np.matlib.repmat((1.0 / ((n + 2.0) ** 2)), 1, ((2 * (n ** 2)) - (2 * n)))), axis=1) WeightMat = np.diag(np.squeeze(W)) if self.use_torch_tensor: W = torch.from_numpy(W).to(self.tensor_device) WeightMat = torch.from_numpy(WeightMat).to(self.tensor_device) if self.use_torch_tensor: (U, D, _) = torch.linalg.svd(P) sqP = torch.matmul(U, torch.diag((D ** 0.5))) else: (U, D, _) = np.linalg.svd(P) sqP = np.matmul(U, np.diag((D ** 0.5))) s = math.sqrt((n + 2.0)) temp = np.zeros((n, ((2 * n) + 1))) loc = np.arange(n) l_index = (((loc * ((2 * n) + 1)) + loc) + 1) temp.flat[l_index] = s l_index += n temp.flat[l_index] = (- s) if self.use_torch_tensor: temp = torch.from_numpy(temp).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * n) + 1))) x = (Y + torch.matmul(sqP, temp)) else: Y = np.matlib.repmat(X, 1, ((2 * n) + 1)) x = (Y + np.matmul(sqP, temp)) s = (math.sqrt((n + 2.0)) / math.sqrt(2.0)) temp1 = np.zeros((n, ((2 * (n ** 2)) - (2 * n)))) count = comb(n, 2, exact=True) loc = np.fromiter(itertools.chain.from_iterable(itertools.combinations(range(n), 2)), int, count=(count * 2)).reshape((- 1), 2) l_index = ((loc * ((2 * (n ** 2)) - (2 * n))) + np.matlib.repmat(np.arange(count)[(:, np.newaxis)], 1, 2)) for i in itertools.product([1, 2], repeat=2): temp1.flat[l_index[(:, 0)]] = (((- 1) ** i[0]) * s) temp1.flat[l_index[(:, 1)]] = (((- 1) ** i[1]) * s) l_index += count if self.use_torch_tensor: temp1 = torch.from_numpy(temp1).to(self.tensor_device) Y = torch.tile(X, (1, ((2 * (n ** 2)) - (2 * n)))) x = torch.cat((x, (Y + torch.matmul(sqP, temp1))), dim=1) else: Y = np.matlib.repmat(X, 1, ((2 * (n ** 2)) - (2 * n))) x = np.concatenate((x, (Y + np.matmul(sqP, temp1))), axis=1) '\n if self.use_torch_tensor:\n temp2 = torch.cat((temp, temp1), dim=1)\n else:\n temp2 = np.concatenate((temp, temp1), axis=1)\n self.verifySigma(temp2, W, 5)\n print(self.verifyTransformedSigma(x, WeightMat, X, P))\n ' return (x, L, W, WeightMat)<|docstring|>function to generate fourth order cubature points reference: paper "High-degree cubature kalman filter" Args: X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: x (numpy array [n x L]): fourth order cubature point L (int): number of cubature points W (numpy array [1 x L]): 1D Weight array of cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal<|endoftext|>
079abdc9d99a5d03c1d105524f53abbcacda9c4280b4e89324f80d0df9b5ec0f
def verifyTransformedSigma(self, x, WeightMat, X, P): '\n Verify if the transformed sigma/cubature point captures the mean and covariance of the \n target Gaussian distribution\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n mean_close (bool): whether mean of the distibution is captured by the sigma/cubature points\n cov_close (bool): whether covariance of the distibution is captured by the sigma/cubature points\n\n ' sigma_mean = np.zeros(X.shape) if self.use_torch_tensor: W = np.diag(WeightMat.detach().numpy()) x_copy = x.detach().numpy() else: W = np.diag(WeightMat) x_copy = x for i in range(x.shape[1]): sigma_mean += (W[i] * x_copy[(:, i:(i + 1))]) if self.use_torch_tensor: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat.detach().numpy()), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X.detach().numpy(), sigma_mean) cov_close = np.allclose(P.detach().numpy(), sigma_cov) else: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X, sigma_mean) cov_close = np.allclose(P, sigma_cov) return (mean_close, cov_close)
Verify if the transformed sigma/cubature point captures the mean and covariance of the target Gaussian distribution Args: x (numpy array [n x L]): sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: mean_close (bool): whether mean of the distibution is captured by the sigma/cubature points cov_close (bool): whether covariance of the distibution is captured by the sigma/cubature points
estimators.py
verifyTransformedSigma
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def verifyTransformedSigma(self, x, WeightMat, X, P): '\n Verify if the transformed sigma/cubature point captures the mean and covariance of the \n target Gaussian distribution\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n mean_close (bool): whether mean of the distibution is captured by the sigma/cubature points\n cov_close (bool): whether covariance of the distibution is captured by the sigma/cubature points\n\n ' sigma_mean = np.zeros(X.shape) if self.use_torch_tensor: W = np.diag(WeightMat.detach().numpy()) x_copy = x.detach().numpy() else: W = np.diag(WeightMat) x_copy = x for i in range(x.shape[1]): sigma_mean += (W[i] * x_copy[(:, i:(i + 1))]) if self.use_torch_tensor: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat.detach().numpy()), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X.detach().numpy(), sigma_mean) cov_close = np.allclose(P.detach().numpy(), sigma_cov) else: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X, sigma_mean) cov_close = np.allclose(P, sigma_cov) return (mean_close, cov_close)
def verifyTransformedSigma(self, x, WeightMat, X, P): '\n Verify if the transformed sigma/cubature point captures the mean and covariance of the \n target Gaussian distribution\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal\n X (numpy array [n x 1]): mean of Gaussian distribution\n P (numpy array [n x n]): covariance matrix of Gaussian distribution\n\n Returns:\n mean_close (bool): whether mean of the distibution is captured by the sigma/cubature points\n cov_close (bool): whether covariance of the distibution is captured by the sigma/cubature points\n\n ' sigma_mean = np.zeros(X.shape) if self.use_torch_tensor: W = np.diag(WeightMat.detach().numpy()) x_copy = x.detach().numpy() else: W = np.diag(WeightMat) x_copy = x for i in range(x.shape[1]): sigma_mean += (W[i] * x_copy[(:, i:(i + 1))]) if self.use_torch_tensor: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat.detach().numpy()), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X.detach().numpy(), sigma_mean) cov_close = np.allclose(P.detach().numpy(), sigma_cov) else: sigma_cov = np.matmul(np.matmul((x_copy - sigma_mean), WeightMat), np.transpose((x_copy - sigma_mean))) mean_close = np.allclose(X, sigma_mean) cov_close = np.allclose(P, sigma_cov) return (mean_close, cov_close)<|docstring|>Verify if the transformed sigma/cubature point captures the mean and covariance of the target Gaussian distribution Args: x (numpy array [n x L]): sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights of the points on the diagonal X (numpy array [n x 1]): mean of Gaussian distribution P (numpy array [n x n]): covariance matrix of Gaussian distribution Returns: mean_close (bool): whether mean of the distibution is captured by the sigma/cubature points cov_close (bool): whether covariance of the distibution is captured by the sigma/cubature points<|endoftext|>
66d4a33434802d1f41d9c42808d590b463baf559930db102ea331f8c3481c2ca
def verifySigma(self, x, W, order=2): '\n Since originally the points of PBGF are generated from standard Gaussian distribution,\n check if moments up to specified order are being captured. Raises error when mismatch is found.\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n W (numpy array [1 x L or L x 1]): 1D Weight array of sigma/cubature points\n order (int): moment order in which the sampled points are generated from\n\n ' (n, L) = x.shape if self.use_torch_tensor: x_copy = x.detach().numpy() W_copy = W.detach().numpy() else: x_copy = x W_copy = W for i in range(1, (order + 1)): arr = ([0] * n) outputs = [] findCombinationsUtil(arr, 0, i, i, outputs) for output in outputs: theoretical_moment = 1.0 for power in output: theoretical_moment *= self.stdGaussMoment(power) if (theoretical_moment == 0): break elem_combinations = itertools.permutations(range(n), len(output)) for elem_combination in elem_combinations: moment = (W_copy * np.prod((x_copy[(elem_combination, :)] ** np.matlib.repmat(output, L, 1).T), axis=0)).sum() assert np.isclose(moment, theoretical_moment), 'The {}th moment with element {} and power {} yielded value of {} instead of {}'.format(i, elem_combination, output, moment, theoretical_moment)
Since originally the points of PBGF are generated from standard Gaussian distribution, check if moments up to specified order are being captured. Raises error when mismatch is found. Args: x (numpy array [n x L]): sigma/cubature points W (numpy array [1 x L or L x 1]): 1D Weight array of sigma/cubature points order (int): moment order in which the sampled points are generated from
estimators.py
verifySigma
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def verifySigma(self, x, W, order=2): '\n Since originally the points of PBGF are generated from standard Gaussian distribution,\n check if moments up to specified order are being captured. Raises error when mismatch is found.\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n W (numpy array [1 x L or L x 1]): 1D Weight array of sigma/cubature points\n order (int): moment order in which the sampled points are generated from\n\n ' (n, L) = x.shape if self.use_torch_tensor: x_copy = x.detach().numpy() W_copy = W.detach().numpy() else: x_copy = x W_copy = W for i in range(1, (order + 1)): arr = ([0] * n) outputs = [] findCombinationsUtil(arr, 0, i, i, outputs) for output in outputs: theoretical_moment = 1.0 for power in output: theoretical_moment *= self.stdGaussMoment(power) if (theoretical_moment == 0): break elem_combinations = itertools.permutations(range(n), len(output)) for elem_combination in elem_combinations: moment = (W_copy * np.prod((x_copy[(elem_combination, :)] ** np.matlib.repmat(output, L, 1).T), axis=0)).sum() assert np.isclose(moment, theoretical_moment), 'The {}th moment with element {} and power {} yielded value of {} instead of {}'.format(i, elem_combination, output, moment, theoretical_moment)
def verifySigma(self, x, W, order=2): '\n Since originally the points of PBGF are generated from standard Gaussian distribution,\n check if moments up to specified order are being captured. Raises error when mismatch is found.\n\n Args:\n x (numpy array [n x L]): sigma/cubature points\n W (numpy array [1 x L or L x 1]): 1D Weight array of sigma/cubature points\n order (int): moment order in which the sampled points are generated from\n\n ' (n, L) = x.shape if self.use_torch_tensor: x_copy = x.detach().numpy() W_copy = W.detach().numpy() else: x_copy = x W_copy = W for i in range(1, (order + 1)): arr = ([0] * n) outputs = [] findCombinationsUtil(arr, 0, i, i, outputs) for output in outputs: theoretical_moment = 1.0 for power in output: theoretical_moment *= self.stdGaussMoment(power) if (theoretical_moment == 0): break elem_combinations = itertools.permutations(range(n), len(output)) for elem_combination in elem_combinations: moment = (W_copy * np.prod((x_copy[(elem_combination, :)] ** np.matlib.repmat(output, L, 1).T), axis=0)).sum() assert np.isclose(moment, theoretical_moment), 'The {}th moment with element {} and power {} yielded value of {} instead of {}'.format(i, elem_combination, output, moment, theoretical_moment)<|docstring|>Since originally the points of PBGF are generated from standard Gaussian distribution, check if moments up to specified order are being captured. Raises error when mismatch is found. Args: x (numpy array [n x L]): sigma/cubature points W (numpy array [1 x L or L x 1]): 1D Weight array of sigma/cubature points order (int): moment order in which the sampled points are generated from<|endoftext|>
71450965e5fc49f17e5c0dd365d02957cabf3cf3c75b6defc78625b196c94612
def stdGaussMoment(self, order): '\n Calculate order-th moment of univariate standard Gaussian distribution (zero mean, 1 std)\n\n Args:\n order (int): scalar moment order\n\n Returns:\n prod (int): requested order-th moment of standard Gaussian distribution\n\n ' if (order % 2): return 0.0 else: prod = 1.0 for i in range(1, order, 2): prod *= i return prod
Calculate order-th moment of univariate standard Gaussian distribution (zero mean, 1 std) Args: order (int): scalar moment order Returns: prod (int): requested order-th moment of standard Gaussian distribution
estimators.py
stdGaussMoment
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def stdGaussMoment(self, order): '\n Calculate order-th moment of univariate standard Gaussian distribution (zero mean, 1 std)\n\n Args:\n order (int): scalar moment order\n\n Returns:\n prod (int): requested order-th moment of standard Gaussian distribution\n\n ' if (order % 2): return 0.0 else: prod = 1.0 for i in range(1, order, 2): prod *= i return prod
def stdGaussMoment(self, order): '\n Calculate order-th moment of univariate standard Gaussian distribution (zero mean, 1 std)\n\n Args:\n order (int): scalar moment order\n\n Returns:\n prod (int): requested order-th moment of standard Gaussian distribution\n\n ' if (order % 2): return 0.0 else: prod = 1.0 for i in range(1, order, 2): prod *= i return prod<|docstring|>Calculate order-th moment of univariate standard Gaussian distribution (zero mean, 1 std) Args: order (int): scalar moment order Returns: prod (int): requested order-th moment of standard Gaussian distribution<|endoftext|>
f4504ccf0a9c4e9df1369949c10f25349714974f90f2dc66a1806f32fbee66ba
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.filter_density.append((X.copy(), P.copy())) self.latest_action = 'update'
Set the initial condition of the smoother, i.e. the distribution at time zero. Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states
estimators.py
set_initial_cond
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.filter_density.append((X.copy(), P.copy())) self.latest_action = 'update'
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.filter_density.append((X.copy(), P.copy())) self.latest_action = 'update'<|docstring|>Set the initial condition of the smoother, i.e. the distribution at time zero. Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states<|endoftext|>
396be7fc702205c44ef00d09c9a92b6d82e60066925dff19d0b65749ffdde6fc
def predict_and_or_update(self, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n algorithm reference: Algorithm 10.6, page 162 of "Bayesian Filtering and Smoothing"\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' X_fi = ([[]] * (self.lag_interval + 1)) P_fi = ([[]] * (self.lag_interval + 1)) n = self.n nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if (self.latest_action == 'update'): X1 = np.concatenate((self.filter_density[(- 1)][0], self.filter_density[(- 1)][0], np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.filter_density[(- 1)][1], self.filter_density[(- 1)][1], Q, Qu, R) P1[(0:n, n:(2 * n))] = self.filter_density[(- 1)][1] P1[(n:(2 * n), 0:n)] = self.filter_density[(- 1)][1] else: X1 = np.concatenate((self.prevX, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.prevP, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: ia = np.arange(n) ib = np.arange(n, (2 * n)) iq = np.arange((2 * n), ((2 * n) + nq)) iqu = np.arange(((2 * n) + nq), (((2 * n) + nq) + nqu)) (X, x, P, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args_pm) self.prevX = X.copy() self.prevP = P.copy() X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] self.latest_action = 'predict' if len(y): if (self.latest_action == 'predict'): if (not self.backward_pass): self.pred_density.append((X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy())) self.gain.append(np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))]))) if (len(self.gain) >= self.lag_interval): self.backward_pass = True else: self.pred_density[:(- 1)] = self.pred_density[1:] self.pred_density[(- 1)] = (X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy()) self.gain[:(- 1)] = self.gain[1:] self.gain[(- 1)] = np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))])) for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange((((2 * n) + nq) + nqu), ((((2 * n) + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ib, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) X += np.matmul(K, innovation) P -= np.matmul(K, Pxy.T) X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] if self.backward_pass: for j in range((self.lag_interval - 1), (- 1), (- 1)): X_fi[j] = (self.filter_density[j][0] + np.matmul(self.gain[j], (X_fi[(j + 1)] - self.pred_density[j][0]))) P_fi[j] = (self.filter_density[j][1] + np.matmul(np.matmul(self.gain[j], (P_fi[(j + 1)] - self.pred_density[j][1])), self.gain[j].T)) if (self.latest_action == 'update'): self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) elif (len(self.gain) < self.lag_interval): self.filter_density.append((X[(ib, :)], P[(n:(2 * n), n:(2 * n))])) else: self.filter_density[:(- 1)] = self.filter_density[1:] self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) self.latest_action = 'update' return (X_fi, P_fi, self.backward_pass)
Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable. algorithm reference: Algorithm 10.6, page 162 of "Bayesian Filtering and Smoothing" Args: f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system u_next (*): next input required for function h, defaults to None which will take values of u Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially returned until a lag_length worth of observations have been cumulated.
estimators.py
predict_and_or_update
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def predict_and_or_update(self, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n algorithm reference: Algorithm 10.6, page 162 of "Bayesian Filtering and Smoothing"\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' X_fi = ([[]] * (self.lag_interval + 1)) P_fi = ([[]] * (self.lag_interval + 1)) n = self.n nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if (self.latest_action == 'update'): X1 = np.concatenate((self.filter_density[(- 1)][0], self.filter_density[(- 1)][0], np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.filter_density[(- 1)][1], self.filter_density[(- 1)][1], Q, Qu, R) P1[(0:n, n:(2 * n))] = self.filter_density[(- 1)][1] P1[(n:(2 * n), 0:n)] = self.filter_density[(- 1)][1] else: X1 = np.concatenate((self.prevX, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.prevP, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: ia = np.arange(n) ib = np.arange(n, (2 * n)) iq = np.arange((2 * n), ((2 * n) + nq)) iqu = np.arange(((2 * n) + nq), (((2 * n) + nq) + nqu)) (X, x, P, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args_pm) self.prevX = X.copy() self.prevP = P.copy() X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] self.latest_action = 'predict' if len(y): if (self.latest_action == 'predict'): if (not self.backward_pass): self.pred_density.append((X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy())) self.gain.append(np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))]))) if (len(self.gain) >= self.lag_interval): self.backward_pass = True else: self.pred_density[:(- 1)] = self.pred_density[1:] self.pred_density[(- 1)] = (X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy()) self.gain[:(- 1)] = self.gain[1:] self.gain[(- 1)] = np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))])) for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange((((2 * n) + nq) + nqu), ((((2 * n) + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ib, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) X += np.matmul(K, innovation) P -= np.matmul(K, Pxy.T) X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] if self.backward_pass: for j in range((self.lag_interval - 1), (- 1), (- 1)): X_fi[j] = (self.filter_density[j][0] + np.matmul(self.gain[j], (X_fi[(j + 1)] - self.pred_density[j][0]))) P_fi[j] = (self.filter_density[j][1] + np.matmul(np.matmul(self.gain[j], (P_fi[(j + 1)] - self.pred_density[j][1])), self.gain[j].T)) if (self.latest_action == 'update'): self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) elif (len(self.gain) < self.lag_interval): self.filter_density.append((X[(ib, :)], P[(n:(2 * n), n:(2 * n))])) else: self.filter_density[:(- 1)] = self.filter_density[1:] self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) self.latest_action = 'update' return (X_fi, P_fi, self.backward_pass)
def predict_and_or_update(self, f, h, Q, R, u, y, u_next=None, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n algorithm reference: Algorithm 10.6, page 162 of "Bayesian Filtering and Smoothing"\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n u_next (*): next input required for function h, defaults to None which will take values of u\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' X_fi = ([[]] * (self.lag_interval + 1)) P_fi = ([[]] * (self.lag_interval + 1)) n = self.n nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] if (self.latest_action == 'update'): X1 = np.concatenate((self.filter_density[(- 1)][0], self.filter_density[(- 1)][0], np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.filter_density[(- 1)][1], self.filter_density[(- 1)][1], Q, Qu, R) P1[(0:n, n:(2 * n))] = self.filter_density[(- 1)][1] P1[(n:(2 * n), 0:n)] = self.filter_density[(- 1)][1] else: X1 = np.concatenate((self.prevX, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.prevP, Q, Qu, R) if (u_next is None): u_next = u if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: ia = np.arange(n) ib = np.arange(n, (2 * n)) iq = np.arange((2 * n), ((2 * n) + nq)) iqu = np.arange(((2 * n) + nq), (((2 * n) + nq) + nqu)) (X, x, P, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args_pm) self.prevX = X.copy() self.prevP = P.copy() X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] self.latest_action = 'predict' if len(y): if (self.latest_action == 'predict'): if (not self.backward_pass): self.pred_density.append((X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy())) self.gain.append(np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))]))) if (len(self.gain) >= self.lag_interval): self.backward_pass = True else: self.pred_density[:(- 1)] = self.pred_density[1:] self.pred_density[(- 1)] = (X[(ib, :)].copy(), P[(n:(2 * n), n:(2 * n))].copy()) self.gain[:(- 1)] = self.gain[1:] self.gain[(- 1)] = np.matmul(P[(0:n, n:(2 * n))], np.linalg.inv(P[(n:(2 * n), n:(2 * n))])) for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange((((2 * n) + nq) + nqu), ((((2 * n) + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u_next, ib, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) X += np.matmul(K, innovation) P -= np.matmul(K, Pxy.T) X_fi[self.lag_interval] = X[(ib, :)] P_fi[self.lag_interval] = P[(n:(2 * n), n:(2 * n))] if self.backward_pass: for j in range((self.lag_interval - 1), (- 1), (- 1)): X_fi[j] = (self.filter_density[j][0] + np.matmul(self.gain[j], (X_fi[(j + 1)] - self.pred_density[j][0]))) P_fi[j] = (self.filter_density[j][1] + np.matmul(np.matmul(self.gain[j], (P_fi[(j + 1)] - self.pred_density[j][1])), self.gain[j].T)) if (self.latest_action == 'update'): self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) elif (len(self.gain) < self.lag_interval): self.filter_density.append((X[(ib, :)], P[(n:(2 * n), n:(2 * n))])) else: self.filter_density[:(- 1)] = self.filter_density[1:] self.filter_density[(- 1)] = (X[(ib, :)], P[(n:(2 * n), n:(2 * n))]) self.latest_action = 'update' return (X_fi, P_fi, self.backward_pass)<|docstring|>Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable. algorithm reference: Algorithm 10.6, page 162 of "Bayesian Filtering and Smoothing" Args: f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system u_next (*): next input required for function h, defaults to None which will take values of u Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially returned until a lag_length worth of observations have been cumulated.<|endoftext|>
742448c9b7dc6eef5df2445166d8784b6fe17c8e26ee0013d65bce2a08404f66
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the frozen states in sima/cubature points\n ib (numpy array [n_s x 1]): row indices of the dynamic states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = (len(ia) + len(ib)) Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the frozen states in sima/cubature points ib (numpy array [n_s x 1]): row indices of the dynamic states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points
estimators.py
unscented_transformF
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the frozen states in sima/cubature points\n ib (numpy array [n_s x 1]): row indices of the dynamic states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = (len(ia) + len(ib)) Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
def unscented_transformF(self, x, W, WeightMat, L, f, u, ia, ib, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n ia (numpy array [n_s x 1]): row indices of the frozen states in sima/cubature points\n ib (numpy array [n_s x 1]): row indices of the dynamic states in sima/cubature points\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' order = (len(ia) + len(ib)) Y = np.zeros((order, 1)) y = x for k in range(L): if len(iqu): y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(ib, k)] = f(x[(ib, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(order), k:(k + 1))]) y1 = (y[(np.arange(order), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)<|docstring|>Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f ia (numpy array [n_s x 1]): row indices of the frozen states in sima/cubature points ib (numpy array [n_s x 1]): row indices of the dynamic states in sima/cubature points iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points<|endoftext|>
101e800977e4d7dd3bd420e330d7411080395247fc38e6576262890e35613200
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.na = ((self.lag_interval + 1) * self.n) self.ia = np.arange(self.n) self.ib = np.arange(self.n, self.na) self.X_aug = np.tile(X, ((self.lag_interval + 1), 1)) self.P_aug = np.tile(P, ((self.lag_interval + 1), (self.lag_interval + 1)))
Set the initial condition of the smoother, i.e. the distribution at time zero. Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states
estimators.py
set_initial_cond
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.na = ((self.lag_interval + 1) * self.n) self.ia = np.arange(self.n) self.ib = np.arange(self.n, self.na) self.X_aug = np.tile(X, ((self.lag_interval + 1), 1)) self.P_aug = np.tile(P, ((self.lag_interval + 1), (self.lag_interval + 1)))
def set_initial_cond(self, X, P): '\n Set the initial condition of the smoother, i.e. the distribution at time zero.\n\n Args:\n X (numpy array [n x 1]): expected value of the states\n P (numpy array [n x n]): covariance of the states\n\n ' self.init_cond_set = True self.n = len(X) self.na = ((self.lag_interval + 1) * self.n) self.ia = np.arange(self.n) self.ib = np.arange(self.n, self.na) self.X_aug = np.tile(X, ((self.lag_interval + 1), 1)) self.P_aug = np.tile(P, ((self.lag_interval + 1), (self.lag_interval + 1)))<|docstring|>Set the initial condition of the smoother, i.e. the distribution at time zero. Args: X (numpy array [n x 1]): expected value of the states P (numpy array [n x n]): covariance of the states<|endoftext|>
a033fc1699f484b05eb623c1b88c6f9d272a0d3aac164e3f685b49dee23c32ef
def predict_and_or_update(self, f, h, Q, R, u, y, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] X1 = np.concatenate((self.X_aug, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.P_aug, Q, Qu, R) if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: iq = np.arange(self.na, (self.na + nq)) iqu = np.arange((self.na + nq), ((self.na + nq) + nqu)) (self.X_aug, x, self.P_aug, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, iq, iqu, additional_args_pm) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((self.na + nq) + nqu), (((self.na + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u, self.ia, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) self.X_aug += np.matmul(K, innovation) self.P_aug -= np.matmul(K, Pxy.T) return (self.X_aug[((self.n * self.lag_interval):, :)], self.P_aug[((self.n * self.lag_interval):, (self.n * self.lag_interval):)])
Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable. Args: f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially returned until a lag_length worth of observations have been cumulated.
estimators.py
predict_and_or_update
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def predict_and_or_update(self, f, h, Q, R, u, y, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] X1 = np.concatenate((self.X_aug, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.P_aug, Q, Qu, R) if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: iq = np.arange(self.na, (self.na + nq)) iqu = np.arange((self.na + nq), ((self.na + nq) + nqu)) (self.X_aug, x, self.P_aug, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, iq, iqu, additional_args_pm) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((self.na + nq) + nqu), (((self.na + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u, self.ia, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) self.X_aug += np.matmul(K, innovation) self.P_aug -= np.matmul(K, Pxy.T) return (self.X_aug[((self.n * self.lag_interval):, :)], self.P_aug[((self.n * self.lag_interval):, (self.n * self.lag_interval):)])
def predict_and_or_update(self, f, h, Q, R, u, y, Qu=None, additional_args_pm=[], additional_args_om=[], innovation_bound_func={}, predict_flag=True): '\n Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable.\n\n Args:\n f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...)\n h (function): function handle for the observation model; expected signature h(state, input, noise, ...)\n Q (numpy array [nq x nq]): process model noise covariance in the prediction step\n R (numpy array [nr x nr]): observation model noise covariance in the update step\n u (*): current input required for function f & possibly function h\n y (numpy array [nu x 1]): current measurement/output of the system\n Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step\n additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step\n additional_args_om (list): list of additional arguments to be passed to the observation model during the update step\n innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound\n innovation when needed\n predict_flag (bool): perform prediction? defaults to true\n\n Returns:\n X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update\n P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update\n smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially\n returned until a lag_length worth of observations have been cumulated.\n\n ' assert self.init_cond_set, 'User must specify the initial condition separately' nq = Q.shape[0] if (Qu is not None): nqu = Qu.shape[0] else: nqu = 0 Qu = np.zeros((nqu, nqu)) nr = R.shape[0] X1 = np.concatenate((self.X_aug, np.zeros((((nq + nqu) + nr), 1))), axis=0) P1 = block_diag(self.P_aug, Q, Qu, R) if (self.method == 'UKF'): if (self.order == 2): (x, L, W, WeightMat) = self.sigmas2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.sigmas4(X1, P1) elif (self.method == 'CKF'): if (self.order == 2): (x, L, W, WeightMat) = self.cubature2(X1, P1) elif (self.order == 4): (x, L, W, WeightMat) = self.cubature4(X1, P1) if predict_flag: iq = np.arange(self.na, (self.na + nq)) iqu = np.arange((self.na + nq), ((self.na + nq) + nqu)) (self.X_aug, x, self.P_aug, x1) = self.unscented_transformF(x, W, WeightMat, L, f, u, iq, iqu, additional_args_pm) if len(y): for key in innovation_bound_func: assert (key in range(len(y))), 'Key of innovation bound function dictionary should be within the length of the output' assert callable(innovation_bound_func[key]), 'Innovation bound function is not callable' ip = np.arange(((self.na + nq) + nqu), (((self.na + nq) + nqu) + nr)) (Z, _, Pz, z2) = self.unscented_transformH(x, W, WeightMat, L, h, u, self.ia, ip, len(y), additional_args_om) Pxy = np.matmul(np.matmul(x1, WeightMat), z2.T) K = np.matmul(Pxy, np.linalg.inv(Pz)) innovation = (y - Z) for key in innovation_bound_func: innovation[(key, :)] = innovation_bound_func[key](innovation[(key, :)]) self.X_aug += np.matmul(K, innovation) self.P_aug -= np.matmul(K, Pxy.T) return (self.X_aug[((self.n * self.lag_interval):, :)], self.P_aug[((self.n * self.lag_interval):, (self.n * self.lag_interval):)])<|docstring|>Perform one iteration of prediction and/or update + backward pass to produce smoothed estimate when applicable. Args: f (function): function handle for the process model; expected signature f(state, input, model noise, input noise, ...) h (function): function handle for the observation model; expected signature h(state, input, noise, ...) Q (numpy array [nq x nq]): process model noise covariance in the prediction step R (numpy array [nr x nr]): observation model noise covariance in the update step u (*): current input required for function f & possibly function h y (numpy array [nu x 1]): current measurement/output of the system Qu (numpy array [nqu x nqu]): input noise covariance in the prediction step additional_args_pm (list): list of additional arguments to be passed to the process model during the prediction step additional_args_om (list): list of additional arguments to be passed to the observation model during the update step innovation_bound_func (dict): dictionary with innovation index as keys and callable function as value to bound innovation when needed predict_flag (bool): perform prediction? defaults to true Returns: X_fi (numpy array [n x 1]): fixed-interval list of smoothed expected values of the states with recent prediction & update P_fi (numpy array [n x n]): fixed-interval list of smoothed covariance of the states with recent prediction & update smoothed_flag (bool): whether estimate returned is filtered or smoothed estimate; filtered estimate is initially returned until a lag_length worth of observations have been cumulated.<|endoftext|>
e9fc1fbf687a1bcdc9f49594de31c87ec92f79a060a5a5651849536f3199788d
def unscented_transformF(self, x, W, WeightMat, L, f, u, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' ic = (self.ib - self.n) Y = np.zeros((self.na, 1)) y = x for k in range(L): y[(self.ib, k)] = x[(ic, k)] if len(iqu): y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(self.na), k:(k + 1))]) y1 = (y[(np.arange(self.na), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points
estimators.py
unscented_transformF
karan-narula/System-Identification-Tools-for-Dynamic-System
5
python
def unscented_transformF(self, x, W, WeightMat, L, f, u, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' ic = (self.ib - self.n) Y = np.zeros((self.na, 1)) y = x for k in range(L): y[(self.ib, k)] = x[(ic, k)] if len(iqu): y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(self.na), k:(k + 1))]) y1 = (y[(np.arange(self.na), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)
def unscented_transformF(self, x, W, WeightMat, L, f, u, iq, iqu, additional_args): '\n Function to propagate sigma/cubature points through process model function.\n\n Args:\n x (numpy array [n_a x L]): sigma/cubature points\n W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points\n WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal\n L (int): number of points\n f (function): function handle for the process model; expected signature f(state, input, noise, ...)\n u (?): current input required for function f\n iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points\n iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points\n additional_args (list): list of additional arguments to be passed to the process model\n\n Returns:\n Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f\n y (numpy array [n_a x L]): Transformed sigma/cubature points\n P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f\n y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points\n\n ' ic = (self.ib - self.n) Y = np.zeros((self.na, 1)) y = x for k in range(L): y[(self.ib, k)] = x[(ic, k)] if len(iqu): y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], x[(iqu, k)], *additional_args) else: y[(self.ia, k)] = f(x[(self.ia, k)], u, x[(iq, k)], np.zeros(u.shape), *additional_args) Y += (W.flat[k] * y[(np.arange(self.na), k:(k + 1))]) y1 = (y[(np.arange(self.na), :)] - Y) P = np.matmul(np.matmul(y1, WeightMat), y1.T) return (Y, y, P, y1)<|docstring|>Function to propagate sigma/cubature points through process model function. Args: x (numpy array [n_a x L]): sigma/cubature points W (numpy array [L x 1 or 1 x L]: 1D Weight array of the sigma/cubature points WeightMat (numpy array [L x L]): weight matrix with weights in W of the points on the diagonal L (int): number of points f (function): function handle for the process model; expected signature f(state, input, noise, ...) u (?): current input required for function f iq (numpy array [n_q x 1]): row indices of the process noise in sigma/cubature points iqu (numpy array [n_qu x 1]): row indices of the input noise in sigma/cubature points additional_args (list): list of additional arguments to be passed to the process model Returns: Y (numpy array [n_s x 1]): Expected value vector of the result from transformation function f y (numpy array [n_a x L]): Transformed sigma/cubature points P (numpy array [n_s x n_s]): Covariance matrix of the result from transformation function f y1 (numpy array [n_s x L]): zero-mean Transformed sigma/cubature points<|endoftext|>
1988b3aec96e789a6374d4030eb1b8c828982129fbb43c3a145fe6b335fa1329
def from_name_to_parton(name_parton): '\n from string name, to parton object\n ' for parton in list_partons: if (name_parton == parton.name): return parton
from string name, to parton object
EoS_HRG/HRG.py
from_name_to_parton
pierre-moreau/EoS_HRG
0
python
def from_name_to_parton(name_parton): '\n \n ' for parton in list_partons: if (name_parton == parton.name): return parton
def from_name_to_parton(name_parton): '\n \n ' for parton in list_partons: if (name_parton == parton.name): return parton<|docstring|>from string name, to parton object<|endoftext|>
624853655aa591266f716e549997b5d6d89a8fd58b3f0cbf62d600dff9f92e73
def Bcharge(particle): '\n Return Baryon charge of the particle object\n ' if is_baryon(particle): pdg = particle.pdgid if (pdg > 0): Bcharge = 1 elif (pdg < 0): Bcharge = (- 1) else: Bcharge = 0 return Bcharge
Return Baryon charge of the particle object
EoS_HRG/HRG.py
Bcharge
pierre-moreau/EoS_HRG
0
python
def Bcharge(particle): '\n \n ' if is_baryon(particle): pdg = particle.pdgid if (pdg > 0): Bcharge = 1 elif (pdg < 0): Bcharge = (- 1) else: Bcharge = 0 return Bcharge
def Bcharge(particle): '\n \n ' if is_baryon(particle): pdg = particle.pdgid if (pdg > 0): Bcharge = 1 elif (pdg < 0): Bcharge = (- 1) else: Bcharge = 0 return Bcharge<|docstring|>Return Baryon charge of the particle object<|endoftext|>
c94926b1c48250c12a850d67bed87ae938dc691fb3d0653b0886dfeaa55ba5df
def Qcharge(particle): '\n Return electric charge of the paricle object\n ' Qcharge = particle.charge return int(Qcharge)
Return electric charge of the paricle object
EoS_HRG/HRG.py
Qcharge
pierre-moreau/EoS_HRG
0
python
def Qcharge(particle): '\n \n ' Qcharge = particle.charge return int(Qcharge)
def Qcharge(particle): '\n \n ' Qcharge = particle.charge return int(Qcharge)<|docstring|>Return electric charge of the paricle object<|endoftext|>
5a433b05da1bdf27093cc057bd57384165ff5b241e4fcc0c011be2ef02802182
def Scharge(particle): '\n Return strangeness of the particle object\n ' pdg = particle.pdgid if (pdg.has_strange or (not pdg.is_valid)): if is_meson(particle): try: match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) Scharge = (quark1.Scharge + quark2.Scharge) except: Scharge = 0 elif is_baryon(particle): match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) quark3 = from_name_to_parton(match.group(3)) Scharge = ((quark1.Scharge + quark2.Scharge) + quark3.Scharge) else: Scharge = 0 else: Scharge = 0 return int(Scharge)
Return strangeness of the particle object
EoS_HRG/HRG.py
Scharge
pierre-moreau/EoS_HRG
0
python
def Scharge(particle): '\n \n ' pdg = particle.pdgid if (pdg.has_strange or (not pdg.is_valid)): if is_meson(particle): try: match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) Scharge = (quark1.Scharge + quark2.Scharge) except: Scharge = 0 elif is_baryon(particle): match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) quark3 = from_name_to_parton(match.group(3)) Scharge = ((quark1.Scharge + quark2.Scharge) + quark3.Scharge) else: Scharge = 0 else: Scharge = 0 return int(Scharge)
def Scharge(particle): '\n \n ' pdg = particle.pdgid if (pdg.has_strange or (not pdg.is_valid)): if is_meson(particle): try: match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) Scharge = (quark1.Scharge + quark2.Scharge) except: Scharge = 0 elif is_baryon(particle): match = re.match('([A-Z,a-z]?)([A-Z,a-z]?)([A-Z,a-z]?)', particle.quarks) quark1 = from_name_to_parton(match.group(1)) quark2 = from_name_to_parton(match.group(2)) quark3 = from_name_to_parton(match.group(3)) Scharge = ((quark1.Scharge + quark2.Scharge) + quark3.Scharge) else: Scharge = 0 else: Scharge = 0 return int(Scharge)<|docstring|>Return strangeness of the particle object<|endoftext|>
3deec668f6f0633d55efa8b726d153755fa1f795b4eba68c170204490212f40b
def muk(particle, muB, muQ, muS): '\n Return the chemical potential of the particle object\n \\mu = B*_mu_B + Q*_mu_Q + S*_mu_S\n ' muk = (((Bcharge(particle) * muB) + (Qcharge(particle) * muQ)) + (Scharge(particle) * muS)) return muk
Return the chemical potential of the particle object \mu = B*_mu_B + Q*_mu_Q + S*_mu_S
EoS_HRG/HRG.py
muk
pierre-moreau/EoS_HRG
0
python
def muk(particle, muB, muQ, muS): '\n Return the chemical potential of the particle object\n \\mu = B*_mu_B + Q*_mu_Q + S*_mu_S\n ' muk = (((Bcharge(particle) * muB) + (Qcharge(particle) * muQ)) + (Scharge(particle) * muS)) return muk
def muk(particle, muB, muQ, muS): '\n Return the chemical potential of the particle object\n \\mu = B*_mu_B + Q*_mu_Q + S*_mu_S\n ' muk = (((Bcharge(particle) * muB) + (Qcharge(particle) * muQ)) + (Scharge(particle) * muS)) return muk<|docstring|>Return the chemical potential of the particle object \mu = B*_mu_B + Q*_mu_Q + S*_mu_S<|endoftext|>
2a42544646265e24dd5b595ba047a587091b4756c301ab21d524e4070eb9cb5c
def J(particle): '\n spin of the particle object\n ' xJ = particle.J if (xJ == None): if (('N(22' in particle.name) or ('Lambda(2350)' in particle.name)): xJ = (9 / 2) if (('Delta(2420)' in particle.name) or ('N(2600)' in particle.name)): xJ = (11 / 2) return xJ
spin of the particle object
EoS_HRG/HRG.py
J
pierre-moreau/EoS_HRG
0
python
def J(particle): '\n \n ' xJ = particle.J if (xJ == None): if (('N(22' in particle.name) or ('Lambda(2350)' in particle.name)): xJ = (9 / 2) if (('Delta(2420)' in particle.name) or ('N(2600)' in particle.name)): xJ = (11 / 2) return xJ
def J(particle): '\n \n ' xJ = particle.J if (xJ == None): if (('N(22' in particle.name) or ('Lambda(2350)' in particle.name)): xJ = (9 / 2) if (('Delta(2420)' in particle.name) or ('N(2600)' in particle.name)): xJ = (11 / 2) return xJ<|docstring|>spin of the particle object<|endoftext|>
53f69a6a8f43f5e58ab982752180ac148725b186b2bd956320c07c61e8c9bcf9
def d_spin(particle): '\n degeneracy factor of the particle object\n d = 2*J+1\n ' return ((2 * J(particle)) + 1)
degeneracy factor of the particle object d = 2*J+1
EoS_HRG/HRG.py
d_spin
pierre-moreau/EoS_HRG
0
python
def d_spin(particle): '\n degeneracy factor of the particle object\n d = 2*J+1\n ' return ((2 * J(particle)) + 1)
def d_spin(particle): '\n degeneracy factor of the particle object\n d = 2*J+1\n ' return ((2 * J(particle)) + 1)<|docstring|>degeneracy factor of the particle object d = 2*J+1<|endoftext|>
703218607001464aea0a94daf9c8541e3de5dc60d4c819986f3e1660d5620efc
def BW(m, M0, gamma): '\n Breit-Wigner spectral function\n PHYSICAL REVIEW C 98, 034906 (2018)\n ' BW = (((((2.0 * gamma) * M0) * m) / ((((m ** 2.0) - (M0 ** 2.0)) ** 2.0) + ((M0 * gamma) ** 2.0))) / pi) return BW
Breit-Wigner spectral function PHYSICAL REVIEW C 98, 034906 (2018)
EoS_HRG/HRG.py
BW
pierre-moreau/EoS_HRG
0
python
def BW(m, M0, gamma): '\n Breit-Wigner spectral function\n PHYSICAL REVIEW C 98, 034906 (2018)\n ' BW = (((((2.0 * gamma) * M0) * m) / ((((m ** 2.0) - (M0 ** 2.0)) ** 2.0) + ((M0 * gamma) ** 2.0))) / pi) return BW
def BW(m, M0, gamma): '\n Breit-Wigner spectral function\n PHYSICAL REVIEW C 98, 034906 (2018)\n ' BW = (((((2.0 * gamma) * M0) * m) / ((((m ** 2.0) - (M0 ** 2.0)) ** 2.0) + ((M0 * gamma) ** 2.0))) / pi) return BW<|docstring|>Breit-Wigner spectral function PHYSICAL REVIEW C 98, 034906 (2018)<|endoftext|>
003fce627e4c6389c9ecbc9d070fd6b861fd513c24b0610353074359e0579ee2
def print_info(part): '\n Print info of a particle object\n ' if (not isinstance(part, list)): print(f'{part} {part.pdgid}; mass {mass(part)} [GeV]; width {width(part)} [GeV]; J = {J(part)}; {part.quarks}; B,Q,S = {Bcharge(part)},{Qcharge(part)},{Scharge(part)}; anti = {(to_antiparticle(part) if has_anti(part) else False)}') else: for xpart in part: print_info(xpart)
Print info of a particle object
EoS_HRG/HRG.py
print_info
pierre-moreau/EoS_HRG
0
python
def print_info(part): '\n \n ' if (not isinstance(part, list)): print(f'{part} {part.pdgid}; mass {mass(part)} [GeV]; width {width(part)} [GeV]; J = {J(part)}; {part.quarks}; B,Q,S = {Bcharge(part)},{Qcharge(part)},{Scharge(part)}; anti = {(to_antiparticle(part) if has_anti(part) else False)}') else: for xpart in part: print_info(xpart)
def print_info(part): '\n \n ' if (not isinstance(part, list)): print(f'{part} {part.pdgid}; mass {mass(part)} [GeV]; width {width(part)} [GeV]; J = {J(part)}; {part.quarks}; B,Q,S = {Bcharge(part)},{Qcharge(part)},{Scharge(part)}; anti = {(to_antiparticle(part) if has_anti(part) else False)}') else: for xpart in part: print_info(xpart)<|docstring|>Print info of a particle object<|endoftext|>
78aa0d6ef5ef04c79cef69622056dc088fdff55d6e6dfc0bce84e4c056abc0b7
def threshold(list_part): '\n Average threshold energy for the particle\n sum of decay products weighted by the corresponding branching ratios (branch)\n ' mth_dict = {} for hadron in list_part: thres = 0.0 list_decays = part_decay(hadron) if (list_decays != None): for decay in list_decays: br = decay[0] children = decay[1] thres += (br * sum([mass(child) for child in children])) mth_dict.update({hadron.name: thres}) return mth_dict
Average threshold energy for the particle sum of decay products weighted by the corresponding branching ratios (branch)
EoS_HRG/HRG.py
threshold
pierre-moreau/EoS_HRG
0
python
def threshold(list_part): '\n Average threshold energy for the particle\n sum of decay products weighted by the corresponding branching ratios (branch)\n ' mth_dict = {} for hadron in list_part: thres = 0.0 list_decays = part_decay(hadron) if (list_decays != None): for decay in list_decays: br = decay[0] children = decay[1] thres += (br * sum([mass(child) for child in children])) mth_dict.update({hadron.name: thres}) return mth_dict
def threshold(list_part): '\n Average threshold energy for the particle\n sum of decay products weighted by the corresponding branching ratios (branch)\n ' mth_dict = {} for hadron in list_part: thres = 0.0 list_decays = part_decay(hadron) if (list_decays != None): for decay in list_decays: br = decay[0] children = decay[1] thres += (br * sum([mass(child) for child in children])) mth_dict.update({hadron.name: thres}) return mth_dict<|docstring|>Average threshold energy for the particle sum of decay products weighted by the corresponding branching ratios (branch)<|endoftext|>
0426ac0227211bde17880eb58486ffd8152471108d42b92eea2771d2c55b18dc
def norm_BW(): '\n Normalization factor for the spectral function of each particle\n ' norm = np.zeros(len((HRG_mesons + HRG_baryons))) for (ip, part) in enumerate((HRG_mesons + HRG_baryons)): xmass = mass(part) xwidth = width(part) if ((xwidth / xmass) <= thres_off): continue try: mthres = mth_all[part.name] except: mthres = (xmass - (2.0 * xwidth)) mth_all[part.name] = mthres mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) norm[ip] = integrate.quad(BW, mmin, mmax, args=(xmass, xwidth))[0] return dict(zip((HRG_mesons + HRG_baryons), norm))
Normalization factor for the spectral function of each particle
EoS_HRG/HRG.py
norm_BW
pierre-moreau/EoS_HRG
0
python
def norm_BW(): '\n \n ' norm = np.zeros(len((HRG_mesons + HRG_baryons))) for (ip, part) in enumerate((HRG_mesons + HRG_baryons)): xmass = mass(part) xwidth = width(part) if ((xwidth / xmass) <= thres_off): continue try: mthres = mth_all[part.name] except: mthres = (xmass - (2.0 * xwidth)) mth_all[part.name] = mthres mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) norm[ip] = integrate.quad(BW, mmin, mmax, args=(xmass, xwidth))[0] return dict(zip((HRG_mesons + HRG_baryons), norm))
def norm_BW(): '\n \n ' norm = np.zeros(len((HRG_mesons + HRG_baryons))) for (ip, part) in enumerate((HRG_mesons + HRG_baryons)): xmass = mass(part) xwidth = width(part) if ((xwidth / xmass) <= thres_off): continue try: mthres = mth_all[part.name] except: mthres = (xmass - (2.0 * xwidth)) mth_all[part.name] = mthres mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) norm[ip] = integrate.quad(BW, mmin, mmax, args=(xmass, xwidth))[0] return dict(zip((HRG_mesons + HRG_baryons), norm))<|docstring|>Normalization factor for the spectral function of each particle<|endoftext|>
46e34d0121ba5392a520472eb35d81d1a714eabc25e3a4cdef397eab533dd632
def HRG(T, muB, muQ, muS, **kwargs): '\n Calculation of the HRG EoS as a function of T,muB,muQ,muS\n kwargs:\n species = all, mesons, baryons -> which particles to include?\n offshell = True, False -> integration over mass for unstable particles?\n ' try: offshell = kwargs['offshell'] except: offshell = False try: eval_chi = kwargs['eval_chi'] except: eval_chi = False try: gammaS = kwargs['gammaS'] except: gammaS = 1 try: species = kwargs['species'] except: species = 'all' if (isinstance(T, float) or isinstance(T, np.float64)): p = 0.0 ndens = 0.0 nB = 0.0 nQ = 0.0 nS = 0.0 s = 0.0 e = 0.0 chi = np.zeros(len(list_chi)) flag_1part = False if (species == 'all'): list_part = (HRG_mesons + HRG_baryons) elif (species == 'mesons'): list_part = HRG_mesons elif (species == 'baryons'): list_part = HRG_baryons else: list_part = [to_particle(species)] flag_1part = True maxk = 100 for part in list_part: resultp = 0.0 resultn = 0.0 results = 0.0 resultpder = np.zeros(4) if flag_1part: antip = 0 else: antip = float(has_anti(part)) xmass = mass(part) xwidth = width(part) dg = d_spin(part) xmu = (muk(part, muB, muQ, muS) + np.log((gammaS ** abs(Scharge(part))))) fug = np.exp((xmu / T)) factB = ((- 1.0) ** Bcharge(part)) if (((xwidth / xmass) <= thres_off) or (not offshell)): factp = (((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) * (T ** 2.0)) facts = ((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) for k in range(1, (maxk + 1)): kn2 = kn(2, ((k * xmass) / T)) resultpk0 = (((factp * (factB ** (k + 1.0))) / (k ** 2.0)) * kn2) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) kn1 = kn(1, ((k * xmass) / T)) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * (((fug ** k) * (((k * xmass) * kn1) + (((4.0 * T) - (k * xmu)) * kn2))) + ((antip * (fug ** (- k))) * (((k * xmass) * kn1) + (((4.0 * T) + (k * xmu)) * kn2))))) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) else: mthres = mth_all[part.name] mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) xnorm = norm[part] def fp(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * kn(2, ((k * m) / T))) def fs(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * (((fug ** k) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) - (k * xmu)) * kn(2, ((k * m) / T))))) + ((antip * (fug ** (- k))) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) + (k * xmu)) * kn(2, ((k * m) / T))))))) factp = (((dg / (2.0 * (pi ** 2.0))) * (T ** 2.0)) / xnorm) facts = ((dg / (2.0 * (pi ** 2.0))) / xnorm) for k in range(1, (maxk + 1)): resultpk0 = (((integrate.quad(fp, mmin, mmax, epsrel=0.01, args=k)[0] * factp) * (factB ** (k + 1.0))) / (k ** 2.0)) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * integrate.quad(fs, mmin, mmax, epsrel=0.01, args=k)[0]) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) p += (resultp / (T ** 4.0)) ndens += (resultn / (T ** 3.0)) nB += ((Bcharge(part) * resultn) / (T ** 3.0)) nQ += ((Qcharge(part) * resultn) / (T ** 3.0)) nS += ((Scharge(part) * resultn) / (T ** 3.0)) s += (results / (T ** 3.0)) if eval_chi: for (ichi, xchi) in enumerate(list_chi): if (ichi == 0): chi[ichi] += (resultp / (T ** 4.0)) continue ii = BQS[xchi]['B'] jj = BQS[xchi]['Q'] kk = BQS[xchi]['S'] factBQS = (((Bcharge(part) ** ii) * (Qcharge(part) ** jj)) * (Scharge(part) ** kk)) chi[ichi] += ((factBQS * resultpder[int(((((ii + jj) + kk) / 2) - 1))]) / (T ** 4.0)) e = ((((s - p) + ((muB / T) * nB)) + ((muQ / T) * nQ)) + ((muS / T) * nS)) elif (isinstance(T, np.ndarray) or isinstance(T, list)): p = np.zeros_like(T) s = np.zeros_like(T) ndens = np.zeros_like(T) nB = np.zeros_like(T) nQ = np.zeros_like(T) nS = np.zeros_like(T) e = np.zeros_like(T) chi = np.zeros((len(list_chi), len(T))) for (i, xT) in enumerate(T): try: xmuB = muB[i] except: xmuB = muB try: xmuQ = muQ[i] except: xmuQ = muQ try: xmuS = muS[i] except: xmuS = muS result = HRG(xT, xmuB, xmuQ, xmuS, **kwargs) p[i] = result['P'] s[i] = result['s'] ndens[i] = result['n'] nB[i] = result['n_B'] nQ[i] = result['n_Q'] nS[i] = result['n_S'] e[i] = result['e'] chi[(:, i)] = result['chi'] else: raise Exception('Problem with input') return {'T': T, 'P': p, 's': s, 'n': ndens, 'n_B': nB, 'n_Q': nQ, 'n_S': nS, 'e': e, 'chi': chi, 'I': (e - (3 * p))}
Calculation of the HRG EoS as a function of T,muB,muQ,muS kwargs: species = all, mesons, baryons -> which particles to include? offshell = True, False -> integration over mass for unstable particles?
EoS_HRG/HRG.py
HRG
pierre-moreau/EoS_HRG
0
python
def HRG(T, muB, muQ, muS, **kwargs): '\n Calculation of the HRG EoS as a function of T,muB,muQ,muS\n kwargs:\n species = all, mesons, baryons -> which particles to include?\n offshell = True, False -> integration over mass for unstable particles?\n ' try: offshell = kwargs['offshell'] except: offshell = False try: eval_chi = kwargs['eval_chi'] except: eval_chi = False try: gammaS = kwargs['gammaS'] except: gammaS = 1 try: species = kwargs['species'] except: species = 'all' if (isinstance(T, float) or isinstance(T, np.float64)): p = 0.0 ndens = 0.0 nB = 0.0 nQ = 0.0 nS = 0.0 s = 0.0 e = 0.0 chi = np.zeros(len(list_chi)) flag_1part = False if (species == 'all'): list_part = (HRG_mesons + HRG_baryons) elif (species == 'mesons'): list_part = HRG_mesons elif (species == 'baryons'): list_part = HRG_baryons else: list_part = [to_particle(species)] flag_1part = True maxk = 100 for part in list_part: resultp = 0.0 resultn = 0.0 results = 0.0 resultpder = np.zeros(4) if flag_1part: antip = 0 else: antip = float(has_anti(part)) xmass = mass(part) xwidth = width(part) dg = d_spin(part) xmu = (muk(part, muB, muQ, muS) + np.log((gammaS ** abs(Scharge(part))))) fug = np.exp((xmu / T)) factB = ((- 1.0) ** Bcharge(part)) if (((xwidth / xmass) <= thres_off) or (not offshell)): factp = (((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) * (T ** 2.0)) facts = ((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) for k in range(1, (maxk + 1)): kn2 = kn(2, ((k * xmass) / T)) resultpk0 = (((factp * (factB ** (k + 1.0))) / (k ** 2.0)) * kn2) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) kn1 = kn(1, ((k * xmass) / T)) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * (((fug ** k) * (((k * xmass) * kn1) + (((4.0 * T) - (k * xmu)) * kn2))) + ((antip * (fug ** (- k))) * (((k * xmass) * kn1) + (((4.0 * T) + (k * xmu)) * kn2))))) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) else: mthres = mth_all[part.name] mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) xnorm = norm[part] def fp(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * kn(2, ((k * m) / T))) def fs(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * (((fug ** k) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) - (k * xmu)) * kn(2, ((k * m) / T))))) + ((antip * (fug ** (- k))) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) + (k * xmu)) * kn(2, ((k * m) / T))))))) factp = (((dg / (2.0 * (pi ** 2.0))) * (T ** 2.0)) / xnorm) facts = ((dg / (2.0 * (pi ** 2.0))) / xnorm) for k in range(1, (maxk + 1)): resultpk0 = (((integrate.quad(fp, mmin, mmax, epsrel=0.01, args=k)[0] * factp) * (factB ** (k + 1.0))) / (k ** 2.0)) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * integrate.quad(fs, mmin, mmax, epsrel=0.01, args=k)[0]) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) p += (resultp / (T ** 4.0)) ndens += (resultn / (T ** 3.0)) nB += ((Bcharge(part) * resultn) / (T ** 3.0)) nQ += ((Qcharge(part) * resultn) / (T ** 3.0)) nS += ((Scharge(part) * resultn) / (T ** 3.0)) s += (results / (T ** 3.0)) if eval_chi: for (ichi, xchi) in enumerate(list_chi): if (ichi == 0): chi[ichi] += (resultp / (T ** 4.0)) continue ii = BQS[xchi]['B'] jj = BQS[xchi]['Q'] kk = BQS[xchi]['S'] factBQS = (((Bcharge(part) ** ii) * (Qcharge(part) ** jj)) * (Scharge(part) ** kk)) chi[ichi] += ((factBQS * resultpder[int(((((ii + jj) + kk) / 2) - 1))]) / (T ** 4.0)) e = ((((s - p) + ((muB / T) * nB)) + ((muQ / T) * nQ)) + ((muS / T) * nS)) elif (isinstance(T, np.ndarray) or isinstance(T, list)): p = np.zeros_like(T) s = np.zeros_like(T) ndens = np.zeros_like(T) nB = np.zeros_like(T) nQ = np.zeros_like(T) nS = np.zeros_like(T) e = np.zeros_like(T) chi = np.zeros((len(list_chi), len(T))) for (i, xT) in enumerate(T): try: xmuB = muB[i] except: xmuB = muB try: xmuQ = muQ[i] except: xmuQ = muQ try: xmuS = muS[i] except: xmuS = muS result = HRG(xT, xmuB, xmuQ, xmuS, **kwargs) p[i] = result['P'] s[i] = result['s'] ndens[i] = result['n'] nB[i] = result['n_B'] nQ[i] = result['n_Q'] nS[i] = result['n_S'] e[i] = result['e'] chi[(:, i)] = result['chi'] else: raise Exception('Problem with input') return {'T': T, 'P': p, 's': s, 'n': ndens, 'n_B': nB, 'n_Q': nQ, 'n_S': nS, 'e': e, 'chi': chi, 'I': (e - (3 * p))}
def HRG(T, muB, muQ, muS, **kwargs): '\n Calculation of the HRG EoS as a function of T,muB,muQ,muS\n kwargs:\n species = all, mesons, baryons -> which particles to include?\n offshell = True, False -> integration over mass for unstable particles?\n ' try: offshell = kwargs['offshell'] except: offshell = False try: eval_chi = kwargs['eval_chi'] except: eval_chi = False try: gammaS = kwargs['gammaS'] except: gammaS = 1 try: species = kwargs['species'] except: species = 'all' if (isinstance(T, float) or isinstance(T, np.float64)): p = 0.0 ndens = 0.0 nB = 0.0 nQ = 0.0 nS = 0.0 s = 0.0 e = 0.0 chi = np.zeros(len(list_chi)) flag_1part = False if (species == 'all'): list_part = (HRG_mesons + HRG_baryons) elif (species == 'mesons'): list_part = HRG_mesons elif (species == 'baryons'): list_part = HRG_baryons else: list_part = [to_particle(species)] flag_1part = True maxk = 100 for part in list_part: resultp = 0.0 resultn = 0.0 results = 0.0 resultpder = np.zeros(4) if flag_1part: antip = 0 else: antip = float(has_anti(part)) xmass = mass(part) xwidth = width(part) dg = d_spin(part) xmu = (muk(part, muB, muQ, muS) + np.log((gammaS ** abs(Scharge(part))))) fug = np.exp((xmu / T)) factB = ((- 1.0) ** Bcharge(part)) if (((xwidth / xmass) <= thres_off) or (not offshell)): factp = (((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) * (T ** 2.0)) facts = ((dg / (2.0 * (pi ** 2.0))) * (xmass ** 2.0)) for k in range(1, (maxk + 1)): kn2 = kn(2, ((k * xmass) / T)) resultpk0 = (((factp * (factB ** (k + 1.0))) / (k ** 2.0)) * kn2) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) kn1 = kn(1, ((k * xmass) / T)) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * (((fug ** k) * (((k * xmass) * kn1) + (((4.0 * T) - (k * xmu)) * kn2))) + ((antip * (fug ** (- k))) * (((k * xmass) * kn1) + (((4.0 * T) + (k * xmu)) * kn2))))) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) else: mthres = mth_all[part.name] mmin = max(mthres, (xmass - (2.0 * xwidth))) mmax = (xmass + (2.0 * xwidth)) xnorm = norm[part] def fp(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * kn(2, ((k * m) / T))) def fs(m, k): return ((BW(m, xmass, xwidth) * (m ** 2.0)) * (((fug ** k) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) - (k * xmu)) * kn(2, ((k * m) / T))))) + ((antip * (fug ** (- k))) * (((k * m) * kn(1, ((k * m) / T))) + (((4.0 * T) + (k * xmu)) * kn(2, ((k * m) / T))))))) factp = (((dg / (2.0 * (pi ** 2.0))) * (T ** 2.0)) / xnorm) facts = ((dg / (2.0 * (pi ** 2.0))) / xnorm) for k in range(1, (maxk + 1)): resultpk0 = (((integrate.quad(fp, mmin, mmax, epsrel=0.01, args=k)[0] * factp) * (factB ** (k + 1.0))) / (k ** 2.0)) resultpk = (resultpk0 * ((fug ** k) + (antip * (fug ** (- k))))) if ((not eval_chi) and (abs((resultpk / (resultp + resultpk))) <= 0.005)): break elif (eval_chi and (abs(((resultpk * (k ** 4.0)) / ((resultpk * (k ** 4.0)) + resultpder[1]))) <= 0.005) and (abs(((resultpk * (k ** 6.0)) / ((resultpk * (k ** 6.0)) + resultpder[2]))) <= 0.005) and (abs(((resultpk * (k ** 8.0)) / ((resultpk * (k ** 8.0)) + resultpder[3]))) <= 0.005)): break resultp += resultpk resultn += (((resultpk0 * k) / T) * ((fug ** k) - (antip * (fug ** (- k))))) results += (((facts * (factB ** (k + 1.0))) / (k ** 2.0)) * integrate.quad(fs, mmin, mmax, epsrel=0.01, args=k)[0]) if eval_chi: resultpder += (resultpk * np.array([(k ** 2.0), (k ** 4.0), (k ** 6.0), (k ** 8.0)])) p += (resultp / (T ** 4.0)) ndens += (resultn / (T ** 3.0)) nB += ((Bcharge(part) * resultn) / (T ** 3.0)) nQ += ((Qcharge(part) * resultn) / (T ** 3.0)) nS += ((Scharge(part) * resultn) / (T ** 3.0)) s += (results / (T ** 3.0)) if eval_chi: for (ichi, xchi) in enumerate(list_chi): if (ichi == 0): chi[ichi] += (resultp / (T ** 4.0)) continue ii = BQS[xchi]['B'] jj = BQS[xchi]['Q'] kk = BQS[xchi]['S'] factBQS = (((Bcharge(part) ** ii) * (Qcharge(part) ** jj)) * (Scharge(part) ** kk)) chi[ichi] += ((factBQS * resultpder[int(((((ii + jj) + kk) / 2) - 1))]) / (T ** 4.0)) e = ((((s - p) + ((muB / T) * nB)) + ((muQ / T) * nQ)) + ((muS / T) * nS)) elif (isinstance(T, np.ndarray) or isinstance(T, list)): p = np.zeros_like(T) s = np.zeros_like(T) ndens = np.zeros_like(T) nB = np.zeros_like(T) nQ = np.zeros_like(T) nS = np.zeros_like(T) e = np.zeros_like(T) chi = np.zeros((len(list_chi), len(T))) for (i, xT) in enumerate(T): try: xmuB = muB[i] except: xmuB = muB try: xmuQ = muQ[i] except: xmuQ = muQ try: xmuS = muS[i] except: xmuS = muS result = HRG(xT, xmuB, xmuQ, xmuS, **kwargs) p[i] = result['P'] s[i] = result['s'] ndens[i] = result['n'] nB[i] = result['n_B'] nQ[i] = result['n_Q'] nS[i] = result['n_S'] e[i] = result['e'] chi[(:, i)] = result['chi'] else: raise Exception('Problem with input') return {'T': T, 'P': p, 's': s, 'n': ndens, 'n_B': nB, 'n_Q': nQ, 'n_S': nS, 'e': e, 'chi': chi, 'I': (e - (3 * p))}<|docstring|>Calculation of the HRG EoS as a function of T,muB,muQ,muS kwargs: species = all, mesons, baryons -> which particles to include? offshell = True, False -> integration over mass for unstable particles?<|endoftext|>
db1cfb66a2dd2478498e6707f8aeee190bd512fb70ad6517fd77d0100fd591cf
def HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs): '\n Calculate all particle number densities from HRG\n Includes decays as well.\n ' list_particles = (((HRG_mesons + HRG_baryons) + to_antiparticle(HRG_mesons)) + to_antiparticle(HRG_baryons)) list_particles.sort(reverse=True, key=(lambda part: mass(part))) try: offshell = kwargs['offshell'] except: offshell = False try: no_feeddown = kwargs['no_feeddown'] if (no_feeddown == 'all'): no_feeddown = [part.name for part in list_particles] except: no_feeddown = ['pi+', 'pi-', 'Lambda', 'Lambda~'] try: freezeout_decay = kwargs['freezeout_decay'] if (freezeout_decay == 'PHSD'): stables = ['eta'] freezeout_decay = True no_feeddown = [part.name for part in list_particles] except: freezeout_decay = True stables = [] init_dens = {} feeddown_dens = {} final_dens = {} if (EoS == 'nS0'): init_EoS = EoS_nS0(HRG, T, muB, gammaS=gammaS, offshell=offshell) muQ = init_EoS['muQ'] muS = init_EoS['muS'] for part in list_particles: part_dens = HRG(T, muB, muQ, muS, gammaS=gammaS, offshell=offshell, species=part.name)['n'] init_dens[part.name] = part_dens feeddown_dens[part.name] = 0.0 final_dens[part.name] = part_dens weak_decays = ['K0', 'Lambda', 'Sigma+', 'Sigma-', 'Xi-', 'Xi0', 'Omega-'] weak_decays += [to_antiparticle(to_particle(part)).name for part in weak_decays] if freezeout_decay: for parent in list_particles: list_decays = part_decay(parent) if (parent.name in stables): continue if ((parent.name == 'K0') or (parent.name == 'K~0')): list_decays = part_decay(to_particle('K(S)0')) fact_br = 0.5 else: fact_br = 1.0 if (list_decays != None): for decay in list_decays: br = (fact_br * decay[0]) children = decay[1] for child in children: try: final_dens[child.name] += (br * final_dens[parent.name]) if (parent.name in weak_decays): feeddown_dens[child.name] += (br * final_dens[parent.name]) except: pass for part in no_feeddown: final_dens[part] -= feeddown_dens[part] return final_dens
Calculate all particle number densities from HRG Includes decays as well.
EoS_HRG/HRG.py
HRG_freezout
pierre-moreau/EoS_HRG
0
python
def HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs): '\n Calculate all particle number densities from HRG\n Includes decays as well.\n ' list_particles = (((HRG_mesons + HRG_baryons) + to_antiparticle(HRG_mesons)) + to_antiparticle(HRG_baryons)) list_particles.sort(reverse=True, key=(lambda part: mass(part))) try: offshell = kwargs['offshell'] except: offshell = False try: no_feeddown = kwargs['no_feeddown'] if (no_feeddown == 'all'): no_feeddown = [part.name for part in list_particles] except: no_feeddown = ['pi+', 'pi-', 'Lambda', 'Lambda~'] try: freezeout_decay = kwargs['freezeout_decay'] if (freezeout_decay == 'PHSD'): stables = ['eta'] freezeout_decay = True no_feeddown = [part.name for part in list_particles] except: freezeout_decay = True stables = [] init_dens = {} feeddown_dens = {} final_dens = {} if (EoS == 'nS0'): init_EoS = EoS_nS0(HRG, T, muB, gammaS=gammaS, offshell=offshell) muQ = init_EoS['muQ'] muS = init_EoS['muS'] for part in list_particles: part_dens = HRG(T, muB, muQ, muS, gammaS=gammaS, offshell=offshell, species=part.name)['n'] init_dens[part.name] = part_dens feeddown_dens[part.name] = 0.0 final_dens[part.name] = part_dens weak_decays = ['K0', 'Lambda', 'Sigma+', 'Sigma-', 'Xi-', 'Xi0', 'Omega-'] weak_decays += [to_antiparticle(to_particle(part)).name for part in weak_decays] if freezeout_decay: for parent in list_particles: list_decays = part_decay(parent) if (parent.name in stables): continue if ((parent.name == 'K0') or (parent.name == 'K~0')): list_decays = part_decay(to_particle('K(S)0')) fact_br = 0.5 else: fact_br = 1.0 if (list_decays != None): for decay in list_decays: br = (fact_br * decay[0]) children = decay[1] for child in children: try: final_dens[child.name] += (br * final_dens[parent.name]) if (parent.name in weak_decays): feeddown_dens[child.name] += (br * final_dens[parent.name]) except: pass for part in no_feeddown: final_dens[part] -= feeddown_dens[part] return final_dens
def HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs): '\n Calculate all particle number densities from HRG\n Includes decays as well.\n ' list_particles = (((HRG_mesons + HRG_baryons) + to_antiparticle(HRG_mesons)) + to_antiparticle(HRG_baryons)) list_particles.sort(reverse=True, key=(lambda part: mass(part))) try: offshell = kwargs['offshell'] except: offshell = False try: no_feeddown = kwargs['no_feeddown'] if (no_feeddown == 'all'): no_feeddown = [part.name for part in list_particles] except: no_feeddown = ['pi+', 'pi-', 'Lambda', 'Lambda~'] try: freezeout_decay = kwargs['freezeout_decay'] if (freezeout_decay == 'PHSD'): stables = ['eta'] freezeout_decay = True no_feeddown = [part.name for part in list_particles] except: freezeout_decay = True stables = [] init_dens = {} feeddown_dens = {} final_dens = {} if (EoS == 'nS0'): init_EoS = EoS_nS0(HRG, T, muB, gammaS=gammaS, offshell=offshell) muQ = init_EoS['muQ'] muS = init_EoS['muS'] for part in list_particles: part_dens = HRG(T, muB, muQ, muS, gammaS=gammaS, offshell=offshell, species=part.name)['n'] init_dens[part.name] = part_dens feeddown_dens[part.name] = 0.0 final_dens[part.name] = part_dens weak_decays = ['K0', 'Lambda', 'Sigma+', 'Sigma-', 'Xi-', 'Xi0', 'Omega-'] weak_decays += [to_antiparticle(to_particle(part)).name for part in weak_decays] if freezeout_decay: for parent in list_particles: list_decays = part_decay(parent) if (parent.name in stables): continue if ((parent.name == 'K0') or (parent.name == 'K~0')): list_decays = part_decay(to_particle('K(S)0')) fact_br = 0.5 else: fact_br = 1.0 if (list_decays != None): for decay in list_decays: br = (fact_br * decay[0]) children = decay[1] for child in children: try: final_dens[child.name] += (br * final_dens[parent.name]) if (parent.name in weak_decays): feeddown_dens[child.name] += (br * final_dens[parent.name]) except: pass for part in no_feeddown: final_dens[part] -= feeddown_dens[part] return final_dens<|docstring|>Calculate all particle number densities from HRG Includes decays as well.<|endoftext|>
459fa0e26f826170fa677ee484d466902d2aafd8e7af84415e75eaefe533a95e
def fit_freezeout(dict_yield, **kwargs): '\n Extract freeze out parameters by fitting final heavy ion data (dN/dy)\n given in dict_yield. Construct ratios of different particles.\n ' try: chi2_plot = kwargs['chi2_plot'] except: chi2_plot = False try: freezeout_decay = kwargs['freezeout_decay'] except: freezeout_decay = True try: method = kwargs['method'] except: method = 'all' try: offshell = kwargs['offshell'] except: offshell = False try: EoS = kwargs['EoS'] except: EoS = 'all' list_part1 = ['pi-', 'K-', 'p~', 'Lambda~', 'Xi~+', 'K-', 'p~', 'Lambda', 'Xi~+'] list_part2 = ['pi+', 'K+', 'p', 'Lambda', 'Xi-', 'pi-', 'pi-', 'pi-', 'pi-'] list_part = ['pi+', 'pi-', 'K+', 'K-', 'p', 'p~', 'Lambda', 'Lambda~', 'Xi-', 'Xi~+'] data_yields = [] err_yields = [] final_part = [] for part in list_part: try: if ((dict_yield[part] != None) and (dict_yield[part] > 0.0)): data_yields.append(dict_yield[part]) err_yields.append(dict_yield[(part + '_err')]) final_part.append(part) except: pass data_ratios = [] err_ratios = [] final_part1 = [] final_part2 = [] for (part1, part2) in zip(list_part1, list_part2): try: if ((dict_yield[part1] != None) and (dict_yield[part1] > 0.0) and (dict_yield[part2] != None) and (dict_yield[part2] > 0.0)): ratio = (dict_yield[part1] / dict_yield[part2]) data_ratios.append(ratio) err_ratios.append((abs(ratio) * np.sqrt((((dict_yield[(part1 + '_err')] / dict_yield[part1]) ** 2.0) + ((dict_yield[(part2 + '_err')] / dict_yield[part2]) ** 2.0))))) final_part1.append(part1) final_part2.append(part2) except: pass def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result fix_T = False fix_muB = False fix_muQ = False fix_muS = False fix_gammaS = False fix_dVdy = False guess = (0.15, 0.05, 0.0, 0.05, 1.0, 2000.0) bounds = ((0.1, 0.2), (0, 0.6), ((- 0.2), 0.2), (0, 0.2), (0.0, 1.2), (100.0, 10000.0)) if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() print('\nfit from yields, full EoS:') fit_string1 = f'''$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\mu_{{Q}}={popt1[2]:.4f} \pm {perr1[2]:.4f}\ GeV$ $\mu_{{S}}={popt1[3]:.4f} \pm {perr1[3]:.4f}\ GeV$ $\gamma_{{S}}={popt1[4]:.2f} \pm {perr1[4]:.2f}$ $dV/dy={popt1[5]:.1f} \pm {perr1[5]:.1f} \ fm^3$''' print(fit_string1) thermo = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = HRG((popt1[0] + (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermoT2 = HRG((popt1[0] - (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt1[0], (popt1[1] + (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermomuB2 = HRG(popt1[0], (popt1[1] - (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt1[0], popt1[1], (popt1[2] + (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) thermomuQ2 = HRG(popt1[0], popt1[1], (popt1[2] - (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB1_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] + (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) thermomuS2 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] - (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB1_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] + (perr1[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] - (perr1[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None output_yields = {'fit_yields': np.array(list(zip(popt1, perr1))), 'fit_string_yields': fit_string1, 'result_yields': f_yields(xyields, *popt1), 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields': output_chi21, 'snB_yields': np.array([snB1, snB1_err])} else: output_yields = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() thermo = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=popt1[2], offshell=offshell) print('\nfit from yields, nS0 EoS:') fit_string1 = f'''$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\gamma_{{S}}={popt1[2]:.2f} \pm {perr1[2]:.2f}$ $dV/dy={popt1[3]:.1f} \pm {perr1[3]:.1f} \ fm^3$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$''' print(fit_string1) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt1[0] + (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt1[0] - (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt1[0], (popt1[1] + (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt1[0], (popt1[1] - (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] + (perr1[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] - (perr1[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None result_yields_nS0 = f_yields_nS0(xyields, *popt1) (Tch, muB, gammaS, dVdy) = popt1 (Tch_err, muB_err, gammaS_err, dVdy_err) = perr1 popt1 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS, dVdy]) perr1 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err, dVdy_err]) output_yields_nS0 = {'fit_yields_nS0': np.array(list(zip(popt1, perr1))), 'fit_string_yields_nS0': fit_string1, 'result_yields_nS0': result_yields_nS0, 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields_nS0': output_chi21, 'snB_yields_nS0': np.array([snB1, snB1_err])} else: output_yields_nS0 = {} if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() print('\nfit from ratios, full EoS:') fit_string2 = f'''$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\mu_{{Q}}={popt2[2]:.4f} \pm {perr2[2]:.4f}\ GeV$ $\mu_{{S}}={popt2[3]:.4f} \pm {perr2[3]:.4f}\ GeV$ $\gamma_{{S}}={popt2[4]:.2f} \pm {perr2[4]:.2f}$''' print(fit_string2) thermo = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = HRG((popt2[0] + (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermoT2 = HRG((popt2[0] - (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt2[0], (popt2[1] + (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermomuB2 = HRG(popt2[0], (popt2[1] - (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt2[0], popt2[1], (popt2[2] + (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) thermomuQ2 = HRG(popt2[0], popt2[1], (popt2[2] - (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB2_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] + (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) thermomuS2 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] - (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB2_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] + (perr2[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] - (perr2[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS]] else: output_chi22 = None output_ratios = {'fit_ratios': np.array(list(zip(popt2, perr2))), 'fit_string_ratios': fit_string2, 'result_ratios': f_ratios(xratios, *popt2), 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios': output_chi22, 'snB_ratios': np.array([snB2, snB2_err])} else: output_ratios = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() thermo = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=popt2[2], offshell=offshell) print('\nfit from ratios, nS0 EoS:') fit_string2 = f'''$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\gamma_{{S}}={popt2[2]:.2f} \pm {perr2[2]:.2f}$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$''' print(fit_string2) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt2[0] + (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt2[0] - (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt2[0], (popt2[1] + (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt2[0], (popt2[1] - (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] + (perr2[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] - (perr2[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS]] else: output_chi22 = None result_ratios_nS0 = f_ratios_nS0(xratios, *popt2) (Tch, muB, gammaS) = popt2 (Tch_err, muB_err, gammaS_err) = perr2 popt2 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS]) perr2 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err]) output_ratios_nS0 = {'fit_ratios_nS0': np.array(list(zip(popt2, perr2))), 'fit_string_ratios_nS0': fit_string2, 'result_ratios_nS0': result_ratios_nS0, 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios_nS0': output_chi22, 'snB_ratios_nS0': np.array([snB2, snB2_err])} else: output_ratios_nS0 = {} output = {} output.update(output_yields) output.update(output_ratios) output.update(output_yields_nS0) output.update(output_ratios_nS0) return output
Extract freeze out parameters by fitting final heavy ion data (dN/dy) given in dict_yield. Construct ratios of different particles.
EoS_HRG/HRG.py
fit_freezeout
pierre-moreau/EoS_HRG
0
python
def fit_freezeout(dict_yield, **kwargs): '\n Extract freeze out parameters by fitting final heavy ion data (dN/dy)\n given in dict_yield. Construct ratios of different particles.\n ' try: chi2_plot = kwargs['chi2_plot'] except: chi2_plot = False try: freezeout_decay = kwargs['freezeout_decay'] except: freezeout_decay = True try: method = kwargs['method'] except: method = 'all' try: offshell = kwargs['offshell'] except: offshell = False try: EoS = kwargs['EoS'] except: EoS = 'all' list_part1 = ['pi-', 'K-', 'p~', 'Lambda~', 'Xi~+', 'K-', 'p~', 'Lambda', 'Xi~+'] list_part2 = ['pi+', 'K+', 'p', 'Lambda', 'Xi-', 'pi-', 'pi-', 'pi-', 'pi-'] list_part = ['pi+', 'pi-', 'K+', 'K-', 'p', 'p~', 'Lambda', 'Lambda~', 'Xi-', 'Xi~+'] data_yields = [] err_yields = [] final_part = [] for part in list_part: try: if ((dict_yield[part] != None) and (dict_yield[part] > 0.0)): data_yields.append(dict_yield[part]) err_yields.append(dict_yield[(part + '_err')]) final_part.append(part) except: pass data_ratios = [] err_ratios = [] final_part1 = [] final_part2 = [] for (part1, part2) in zip(list_part1, list_part2): try: if ((dict_yield[part1] != None) and (dict_yield[part1] > 0.0) and (dict_yield[part2] != None) and (dict_yield[part2] > 0.0)): ratio = (dict_yield[part1] / dict_yield[part2]) data_ratios.append(ratio) err_ratios.append((abs(ratio) * np.sqrt((((dict_yield[(part1 + '_err')] / dict_yield[part1]) ** 2.0) + ((dict_yield[(part2 + '_err')] / dict_yield[part2]) ** 2.0))))) final_part1.append(part1) final_part2.append(part2) except: pass def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result fix_T = False fix_muB = False fix_muQ = False fix_muS = False fix_gammaS = False fix_dVdy = False guess = (0.15, 0.05, 0.0, 0.05, 1.0, 2000.0) bounds = ((0.1, 0.2), (0, 0.6), ((- 0.2), 0.2), (0, 0.2), (0.0, 1.2), (100.0, 10000.0)) if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() print('\nfit from yields, full EoS:') fit_string1 = f'$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\mu_{{Q}}={popt1[2]:.4f} \pm {perr1[2]:.4f}\ GeV$ $\mu_{{S}}={popt1[3]:.4f} \pm {perr1[3]:.4f}\ GeV$ $\gamma_{{S}}={popt1[4]:.2f} \pm {perr1[4]:.2f}$ $dV/dy={popt1[5]:.1f} \pm {perr1[5]:.1f} \ fm^3$' print(fit_string1) thermo = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = HRG((popt1[0] + (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermoT2 = HRG((popt1[0] - (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt1[0], (popt1[1] + (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermomuB2 = HRG(popt1[0], (popt1[1] - (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt1[0], popt1[1], (popt1[2] + (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) thermomuQ2 = HRG(popt1[0], popt1[1], (popt1[2] - (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB1_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] + (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) thermomuS2 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] - (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB1_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] + (perr1[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] - (perr1[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None output_yields = {'fit_yields': np.array(list(zip(popt1, perr1))), 'fit_string_yields': fit_string1, 'result_yields': f_yields(xyields, *popt1), 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields': output_chi21, 'snB_yields': np.array([snB1, snB1_err])} else: output_yields = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() thermo = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=popt1[2], offshell=offshell) print('\nfit from yields, nS0 EoS:') fit_string1 = f'$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\gamma_{{S}}={popt1[2]:.2f} \pm {perr1[2]:.2f}$ $dV/dy={popt1[3]:.1f} \pm {perr1[3]:.1f} \ fm^3$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$' print(fit_string1) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt1[0] + (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt1[0] - (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt1[0], (popt1[1] + (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt1[0], (popt1[1] - (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] + (perr1[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] - (perr1[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None result_yields_nS0 = f_yields_nS0(xyields, *popt1) (Tch, muB, gammaS, dVdy) = popt1 (Tch_err, muB_err, gammaS_err, dVdy_err) = perr1 popt1 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS, dVdy]) perr1 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err, dVdy_err]) output_yields_nS0 = {'fit_yields_nS0': np.array(list(zip(popt1, perr1))), 'fit_string_yields_nS0': fit_string1, 'result_yields_nS0': result_yields_nS0, 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields_nS0': output_chi21, 'snB_yields_nS0': np.array([snB1, snB1_err])} else: output_yields_nS0 = {} if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() print('\nfit from ratios, full EoS:') fit_string2 = f'$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\mu_{{Q}}={popt2[2]:.4f} \pm {perr2[2]:.4f}\ GeV$ $\mu_{{S}}={popt2[3]:.4f} \pm {perr2[3]:.4f}\ GeV$ $\gamma_{{S}}={popt2[4]:.2f} \pm {perr2[4]:.2f}$' print(fit_string2) thermo = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = HRG((popt2[0] + (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermoT2 = HRG((popt2[0] - (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt2[0], (popt2[1] + (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermomuB2 = HRG(popt2[0], (popt2[1] - (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt2[0], popt2[1], (popt2[2] + (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) thermomuQ2 = HRG(popt2[0], popt2[1], (popt2[2] - (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB2_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] + (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) thermomuS2 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] - (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB2_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] + (perr2[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] - (perr2[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS]] else: output_chi22 = None output_ratios = {'fit_ratios': np.array(list(zip(popt2, perr2))), 'fit_string_ratios': fit_string2, 'result_ratios': f_ratios(xratios, *popt2), 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios': output_chi22, 'snB_ratios': np.array([snB2, snB2_err])} else: output_ratios = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() thermo = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=popt2[2], offshell=offshell) print('\nfit from ratios, nS0 EoS:') fit_string2 = f'$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\gamma_{{S}}={popt2[2]:.2f} \pm {perr2[2]:.2f}$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$' print(fit_string2) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt2[0] + (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt2[0] - (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt2[0], (popt2[1] + (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt2[0], (popt2[1] - (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] + (perr2[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] - (perr2[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS]] else: output_chi22 = None result_ratios_nS0 = f_ratios_nS0(xratios, *popt2) (Tch, muB, gammaS) = popt2 (Tch_err, muB_err, gammaS_err) = perr2 popt2 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS]) perr2 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err]) output_ratios_nS0 = {'fit_ratios_nS0': np.array(list(zip(popt2, perr2))), 'fit_string_ratios_nS0': fit_string2, 'result_ratios_nS0': result_ratios_nS0, 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios_nS0': output_chi22, 'snB_ratios_nS0': np.array([snB2, snB2_err])} else: output_ratios_nS0 = {} output = {} output.update(output_yields) output.update(output_ratios) output.update(output_yields_nS0) output.update(output_ratios_nS0) return output
def fit_freezeout(dict_yield, **kwargs): '\n Extract freeze out parameters by fitting final heavy ion data (dN/dy)\n given in dict_yield. Construct ratios of different particles.\n ' try: chi2_plot = kwargs['chi2_plot'] except: chi2_plot = False try: freezeout_decay = kwargs['freezeout_decay'] except: freezeout_decay = True try: method = kwargs['method'] except: method = 'all' try: offshell = kwargs['offshell'] except: offshell = False try: EoS = kwargs['EoS'] except: EoS = 'all' list_part1 = ['pi-', 'K-', 'p~', 'Lambda~', 'Xi~+', 'K-', 'p~', 'Lambda', 'Xi~+'] list_part2 = ['pi+', 'K+', 'p', 'Lambda', 'Xi-', 'pi-', 'pi-', 'pi-', 'pi-'] list_part = ['pi+', 'pi-', 'K+', 'K-', 'p', 'p~', 'Lambda', 'Lambda~', 'Xi-', 'Xi~+'] data_yields = [] err_yields = [] final_part = [] for part in list_part: try: if ((dict_yield[part] != None) and (dict_yield[part] > 0.0)): data_yields.append(dict_yield[part]) err_yields.append(dict_yield[(part + '_err')]) final_part.append(part) except: pass data_ratios = [] err_ratios = [] final_part1 = [] final_part2 = [] for (part1, part2) in zip(list_part1, list_part2): try: if ((dict_yield[part1] != None) and (dict_yield[part1] > 0.0) and (dict_yield[part2] != None) and (dict_yield[part2] > 0.0)): ratio = (dict_yield[part1] / dict_yield[part2]) data_ratios.append(ratio) err_ratios.append((abs(ratio) * np.sqrt((((dict_yield[(part1 + '_err')] / dict_yield[part1]) ** 2.0) + ((dict_yield[(part2 + '_err')] / dict_yield[part2]) ** 2.0))))) final_part1.append(part1) final_part2.append(part2) except: pass def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result fix_T = False fix_muB = False fix_muQ = False fix_muS = False fix_gammaS = False fix_dVdy = False guess = (0.15, 0.05, 0.0, 0.05, 1.0, 2000.0) bounds = ((0.1, 0.2), (0, 0.6), ((- 0.2), 0.2), (0, 0.2), (0.0, 1.2), (100.0, 10000.0)) if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() print('\nfit from yields, full EoS:') fit_string1 = f'$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\mu_{{Q}}={popt1[2]:.4f} \pm {perr1[2]:.4f}\ GeV$ $\mu_{{S}}={popt1[3]:.4f} \pm {perr1[3]:.4f}\ GeV$ $\gamma_{{S}}={popt1[4]:.2f} \pm {perr1[4]:.2f}$ $dV/dy={popt1[5]:.1f} \pm {perr1[5]:.1f} \ fm^3$' print(fit_string1) thermo = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = HRG((popt1[0] + (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermoT2 = HRG((popt1[0] - (perr1[0] / 2.0)), popt1[1], popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt1[0], (popt1[1] + (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) thermomuB2 = HRG(popt1[0], (popt1[1] - (perr1[1] / 2.0)), popt1[2], popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt1[0], popt1[1], (popt1[2] + (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) thermomuQ2 = HRG(popt1[0], popt1[1], (popt1[2] - (perr1[2] / 2.0)), popt1[3], gammaS=popt1[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB1_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] + (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) thermomuS2 = HRG(popt1[0], popt1[1], popt1[2], (popt1[3] - (perr1[3] / 2.0)), gammaS=popt1[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB1_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] + (perr1[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt1[0], popt1[1], popt1[2], popt1[3], gammaS=(popt1[4] - (perr1[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None output_yields = {'fit_yields': np.array(list(zip(popt1, perr1))), 'fit_string_yields': fit_string1, 'result_yields': f_yields(xyields, *popt1), 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields': output_chi21, 'snB_yields': np.array([snB1, snB1_err])} else: output_yields = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'yields'))): xyields = np.arange(len(final_part)) least_squares = LeastSquares(xyields, data_yields, err_yields, f_yields_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], dVdy=guess[5], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], limit_dVdy=bounds[5], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS, fix_dVdy=fix_dVdy) m.migrad() m.hesse() popt1 = m.values.values() perr1 = m.errors.values() thermo = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=popt1[2], offshell=offshell) print('\nfit from yields, nS0 EoS:') fit_string1 = f'$T_{{ch}}={popt1[0]:.4f} \pm {perr1[0]:.4f}\ GeV$ $\mu_{{B}}={popt1[1]:.4f} \pm {perr1[1]:.4f}\ GeV$ $\gamma_{{S}}={popt1[2]:.2f} \pm {perr1[2]:.2f}$ $dV/dy={popt1[3]:.1f} \pm {perr1[3]:.1f} \ fm^3$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$' print(fit_string1) snB1 = (thermo['s'] / thermo['n_B']) snB1_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt1[0] + (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt1[0] - (perr1[0] / 2.0)), popt1[1], gammaS=popt1[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB1_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt1[0], (popt1[1] + (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt1[0], (popt1[1] - (perr1[1] / 2.0)), gammaS=popt1[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB1_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] + (perr1[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt1[0], popt1[1], gammaS=(popt1[2] - (perr1[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB1_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB1_err = np.sqrt(snB1_err) print(f's/n_B = {snB1} \pm {snB1_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') (ddVdy, fdVdy) = m.profile('dVdy') output_chi21 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS], [ddVdy, fdVdy]] else: output_chi21 = None result_yields_nS0 = f_yields_nS0(xyields, *popt1) (Tch, muB, gammaS, dVdy) = popt1 (Tch_err, muB_err, gammaS_err, dVdy_err) = perr1 popt1 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS, dVdy]) perr1 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err, dVdy_err]) output_yields_nS0 = {'fit_yields_nS0': np.array(list(zip(popt1, perr1))), 'fit_string_yields_nS0': fit_string1, 'result_yields_nS0': result_yields_nS0, 'data_yields': np.array(list(zip(data_yields, err_yields))), 'particle_yields': list(latex(final_part)), 'chi2_yields_nS0': output_chi21, 'snB_yields_nS0': np.array([snB1, snB1_err])} else: output_yields_nS0 = {} if (((EoS == 'all') or (EoS == 'full')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios) m = Minuit(least_squares, T=guess[0], muB=guess[1], muQ=guess[2], muS=guess[3], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_muQ=bounds[2], limit_muS=bounds[3], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_muQ=fix_muQ, fix_muS=fix_muS, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() print('\nfit from ratios, full EoS:') fit_string2 = f'$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\mu_{{Q}}={popt2[2]:.4f} \pm {perr2[2]:.4f}\ GeV$ $\mu_{{S}}={popt2[3]:.4f} \pm {perr2[3]:.4f}\ GeV$ $\gamma_{{S}}={popt2[4]:.2f} \pm {perr2[4]:.2f}$' print(fit_string2) thermo = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = HRG((popt2[0] + (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermoT2 = HRG((popt2[0] - (perr2[0] / 2.0)), popt2[1], popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = HRG(popt2[0], (popt2[1] + (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) thermomuB2 = HRG(popt2[0], (popt2[1] - (perr2[1] / 2.0)), popt2[2], popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermomuQ1 = HRG(popt2[0], popt2[1], (popt2[2] + (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) thermomuQ2 = HRG(popt2[0], popt2[1], (popt2[2] - (perr2[2] / 2.0)), popt2[3], gammaS=popt2[4], offshell=offshell) if ((thermomuQ1['n_B'] != 0.0) and (thermomuQ2['n_B'] != 0.0)): snB2_err += (((thermomuQ1['s'] / thermomuQ1['n_B']) - (thermomuQ2['s'] / thermomuQ2['n_B'])) ** 2.0) thermomuS1 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] + (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) thermomuS2 = HRG(popt2[0], popt2[1], popt2[2], (popt2[3] - (perr2[3] / 2.0)), gammaS=popt2[4], offshell=offshell) if ((thermomuS1['n_B'] != 0.0) and (thermomuS2['n_B'] != 0.0)): snB2_err += (((thermomuS1['s'] / thermomuS1['n_B']) - (thermomuS2['s'] / thermomuS2['n_B'])) ** 2.0) thermogammaS1 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] + (perr2[4] / 2.0)), offshell=offshell) thermogammaS2 = HRG(popt2[0], popt2[1], popt2[2], popt2[3], gammaS=(popt2[4] - (perr2[4] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dmuQ, fmuQ) = m.profile('muQ') (dmuS, fmuS) = m.profile('muS') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dmuQ, fmuQ], [dmuS, fmuS], [dgammaS, fgammaS]] else: output_chi22 = None output_ratios = {'fit_ratios': np.array(list(zip(popt2, perr2))), 'fit_string_ratios': fit_string2, 'result_ratios': f_ratios(xratios, *popt2), 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios': output_chi22, 'snB_ratios': np.array([snB2, snB2_err])} else: output_ratios = {} if (((EoS == 'all') or (EoS == 'nS0')) and ((method == 'all') or (method == 'ratios'))): xratios = np.arange(len(data_ratios)) least_squares = LeastSquares(xratios, data_ratios, err_ratios, f_ratios_nS0) m = Minuit(least_squares, T=guess[0], muB=guess[1], gammaS=guess[4], limit_T=bounds[0], limit_muB=bounds[1], limit_gammaS=bounds[4], fix_T=fix_T, fix_muB=fix_muB, fix_gammaS=fix_gammaS) m.migrad() m.hesse() popt2 = m.values.values() perr2 = m.errors.values() thermo = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=popt2[2], offshell=offshell) print('\nfit from ratios, nS0 EoS:') fit_string2 = f'$T_{{ch}}={popt2[0]:.4f} \pm {perr2[0]:.4f}\ GeV$ $\mu_{{B}}={popt2[1]:.4f} \pm {perr2[1]:.4f}\ GeV$ $\gamma_{{S}}={popt2[2]:.2f} \pm {perr2[2]:.2f}$ $\mu_{{Q}}={thermo['muQ']:.4f}\ GeV$ $\mu_{{S}}={thermo['muS']:.4f}\ GeV$' print(fit_string2) snB2 = (thermo['s'] / thermo['n_B']) snB2_err = 0.0 thermoT1 = EoS_nS0(HRG, (popt2[0] + (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) thermoT2 = EoS_nS0(HRG, (popt2[0] - (perr2[0] / 2.0)), popt2[1], gammaS=popt2[2], offshell=offshell) if ((thermoT1['n_B'] != 0.0) and (thermoT2['n_B'] != 0.0)): snB2_err += (((thermoT1['s'] / thermoT1['n_B']) - (thermoT2['s'] / thermoT2['n_B'])) ** 2.0) thermomuB1 = EoS_nS0(HRG, popt2[0], (popt2[1] + (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) thermomuB2 = EoS_nS0(HRG, popt2[0], (popt2[1] - (perr2[1] / 2.0)), gammaS=popt2[2], offshell=offshell) if ((thermomuB1['n_B'] != 0.0) and (thermomuB2['n_B'] != 0.0)): snB2_err += (((thermomuB1['s'] / thermomuB1['n_B']) - (thermomuB2['s'] / thermomuB2['n_B'])) ** 2.0) thermogammaS1 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] + (perr2[2] / 2.0)), offshell=offshell) thermogammaS2 = EoS_nS0(HRG, popt2[0], popt2[1], gammaS=(popt2[2] - (perr2[2] / 2.0)), offshell=offshell) if ((thermogammaS1['n_B'] != 0.0) and (thermogammaS2['n_B'] != 0.0)): snB2_err += (((thermogammaS1['s'] / thermogammaS1['n_B']) - (thermogammaS2['s'] / thermogammaS2['n_B'])) ** 2.0) snB2_err = np.sqrt(snB2_err) print(f's/n_B = {snB2} \pm {snB2_err}') if chi2_plot: (dT, fT) = m.profile('T') (dmuB, fmuB) = m.profile('muB') (dgammaS, fgammaS) = m.profile('gammaS') output_chi22 = [[dT, fT], [dmuB, fmuB], [dgammaS, fgammaS]] else: output_chi22 = None result_ratios_nS0 = f_ratios_nS0(xratios, *popt2) (Tch, muB, gammaS) = popt2 (Tch_err, muB_err, gammaS_err) = perr2 popt2 = np.array([Tch, muB, thermo['muQ'], thermo['muS'], gammaS]) perr2 = np.array([Tch_err, muB_err, 0.0, 0.0, gammaS_err]) output_ratios_nS0 = {'fit_ratios_nS0': np.array(list(zip(popt2, perr2))), 'fit_string_ratios_nS0': fit_string2, 'result_ratios_nS0': result_ratios_nS0, 'data_ratios': np.array(list(zip(data_ratios, err_ratios))), 'particle_ratios': list(zip(latex(final_part1), latex(final_part2))), 'chi2_ratios_nS0': output_chi22, 'snB_ratios_nS0': np.array([snB2, snB2_err])} else: output_ratios_nS0 = {} output = {} output.update(output_yields) output.update(output_ratios) output.update(output_yields_nS0) output.update(output_ratios_nS0) return output<|docstring|>Extract freeze out parameters by fitting final heavy ion data (dN/dy) given in dict_yield. Construct ratios of different particles.<|endoftext|>
8b73ee787db6a961b8ba2b7c6069e5b24aeeb91f6a482f7d759132f754856b52
def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result
Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume x is a dummy argument
EoS_HRG/HRG.py
f_yields
pierre-moreau/EoS_HRG
0
python
def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result
def f_yields(x, T, muB, muQ, muS, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result<|docstring|>Calculate the particle yields for fixed T,muB,muQ,muS,gammaS,volume x is a dummy argument<|endoftext|>
f284ede6122ce4e15a0cf60f1d54f96e38e5e62003bf1c45d7db317ff405ac29
def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result
Calculate the particle yields for fixed T,muB,gammaS,volume x is a dummy argument
EoS_HRG/HRG.py
f_yields_nS0
pierre-moreau/EoS_HRG
0
python
def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result
def f_yields_nS0(x, T, muB, gammaS, dVdy): '\n Calculate the particle yields for fixed T,muB,gammaS,volume\n x is a dummy argument\n ' result = np.zeros(len(final_part)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, part) in enumerate(final_part): yval = result_HRG[part] if (not freezeout_decay): if (part == 'Lambda'): yval += result_HRG['Sigma0'] elif (part == 'Lambda~'): yval += result_HRG['Sigma~0'] result[i] = (((yval * (T ** 3.0)) * dVdy) / (0.197 ** 3.0)) return result<|docstring|>Calculate the particle yields for fixed T,muB,gammaS,volume x is a dummy argument<|endoftext|>
d6322a5077366b8e4b3127596d2dd5da9389fb1ee722136f74dedaf32252f594
def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result
Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS x is a dummy argument
EoS_HRG/HRG.py
f_ratios
pierre-moreau/EoS_HRG
0
python
def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result
def f_ratios(x, T, muB, muQ, muS, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, muQ, muS, gammaS, EoS='full', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result<|docstring|>Calculate the ratios of particle yields for fixed T,muB,muQ,muS,gammaS x is a dummy argument<|endoftext|>
c449985e82872b80be7c14c873883c114678a139daa1f0c36e8d6973cf776958
def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result
Calculate the ratios of particle yields for fixed T,muB,gammaS x is a dummy argument
EoS_HRG/HRG.py
f_ratios_nS0
pierre-moreau/EoS_HRG
0
python
def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result
def f_ratios_nS0(x, T, muB, gammaS): '\n Calculate the ratios of particle yields for fixed T,muB,gammaS\n x is a dummy argument\n ' result = np.zeros(len(data_ratios)) result_HRG = HRG_freezout(T, muB, 0.0, 0.0, gammaS, EoS='nS0', **kwargs) for (i, (part1, part2)) in enumerate(zip(final_part1, final_part2)): yval1 = result_HRG[part1] yval2 = result_HRG[part2] if (not freezeout_decay): if (part1 == 'Lambda'): yval1 += result_HRG['Sigma0'] elif (part1 == 'Lambda~'): yval1 += result_HRG['Sigma~0'] if (part2 == 'Lambda'): yval2 += result_HRG['Sigma0'] elif (part2 == 'Lambda~'): yval2 += result_HRG['Sigma~0'] result[i] = (yval1 / yval2) return result<|docstring|>Calculate the ratios of particle yields for fixed T,muB,gammaS x is a dummy argument<|endoftext|>
51562280363fc6efd9789ec179b5b5876f14a0b55fb178f925167327101e810e
def write_output_dirs(labels2_map, seqdict, weightdict, output_dir, output_prefix): '\n For each partition, create <output_dir>/<output_prefix>_<partition>/in.fa and in.weights\n ' output_dirs = [] if (not os.path.exists(output_dir)): os.makedirs(output_dir) for (ncut_label, members) in labels2_map.items(): d2 = os.path.join(output_dir, ((output_prefix + '_') + str(ncut_label))) os.makedirs(d2) output_dirs.append(d2) with open(os.path.join(d2, 'in.fa'), 'w') as f: for seqid in members: f.write('>{0}\n{1}\n'.format(seqid, seqdict[seqid].seq)) with open(os.path.join(d2, 'in.weights'), 'w') as f: for seqid in members: f.write('{0}\t{1}\n'.format(seqid, weightdict[seqid])) return output_dirs
For each partition, create <output_dir>/<output_prefix>_<partition>/in.fa and in.weights
Cogent/process_kmer_to_graph.py
write_output_dirs
Zuhayr-PacBio/Cogent
60
python
def write_output_dirs(labels2_map, seqdict, weightdict, output_dir, output_prefix): '\n \n ' output_dirs = [] if (not os.path.exists(output_dir)): os.makedirs(output_dir) for (ncut_label, members) in labels2_map.items(): d2 = os.path.join(output_dir, ((output_prefix + '_') + str(ncut_label))) os.makedirs(d2) output_dirs.append(d2) with open(os.path.join(d2, 'in.fa'), 'w') as f: for seqid in members: f.write('>{0}\n{1}\n'.format(seqid, seqdict[seqid].seq)) with open(os.path.join(d2, 'in.weights'), 'w') as f: for seqid in members: f.write('{0}\t{1}\n'.format(seqid, weightdict[seqid])) return output_dirs
def write_output_dirs(labels2_map, seqdict, weightdict, output_dir, output_prefix): '\n \n ' output_dirs = [] if (not os.path.exists(output_dir)): os.makedirs(output_dir) for (ncut_label, members) in labels2_map.items(): d2 = os.path.join(output_dir, ((output_prefix + '_') + str(ncut_label))) os.makedirs(d2) output_dirs.append(d2) with open(os.path.join(d2, 'in.fa'), 'w') as f: for seqid in members: f.write('>{0}\n{1}\n'.format(seqid, seqdict[seqid].seq)) with open(os.path.join(d2, 'in.weights'), 'w') as f: for seqid in members: f.write('{0}\t{1}\n'.format(seqid, weightdict[seqid])) return output_dirs<|docstring|>For each partition, create <output_dir>/<output_prefix>_<partition>/in.fa and in.weights<|endoftext|>
820a6cb15e44fde1b92362dc5667bc911f556967234768b56eb68d197fe10e89
def family_finding(dist_filename, seqdict, output_prefix, has_pbid=False, weight_threshold=0.05, ncut_threshold=0.2): '\n Make a weighted (undirected) graph where each node is a sequence, each edge is k-mer similarity\n Then do normalized cut to find the family partitions\n\n For each partition, make <output_prefix>/<partition_number>/in.fa\n\n If the IDs are in PB id format (has genome answer), like PB.1.3\n then write that out as the "gene" (ground truth) label in graphml output for visualization\n ' nodelist = list(seqdict.keys()) nodelist = dict(((x, i) for (i, x) in enumerate(nodelist))) print('making weight graph from ', dist_filename, file=sys.stderr) G = pk.make_weighted_graph_from_mash_dist(nodelist, dist_filename, threshold=weight_threshold) for n in G: G.nodes[n]['labels'] = [n] print('graph contains {0} nodes, {1} edges'.format(G.number_of_nodes(), G.number_of_edges()), file=sys.stderr) nodelist = dict(((i, x) for (x, i) in nodelist.items())) print('performing ncut on graph....', file=sys.stderr) ncut_map = {} labels2_map = defaultdict((lambda : [])) for tmp_nodes in nx.connected_components(G): g = nx.Graph(nx.subgraph(G, tmp_nodes)) run_ncut(g, labels2_map, ncut_map, nodelist, ncut_threshold) seqid_unassigned = set(seqdict.keys()) with open((output_prefix + '.partition.txt'), 'w') as f: f.write('Partition\tSize\tMembers\n') for (k, v) in labels2_map.items(): print(k, v, file=sys.stderr) f.write('{0}_{1}\t{2}\t{3}\n'.format(output_prefix, k, len(v), ','.join(v))) for seqid in v: seqid_unassigned.remove(seqid) f.write('#unassigned:{0}\n'.format(','.join(seqid_unassigned))) if (not has_pbid): for n in G: G.nodes[n]['label'] = str(ncut_map[n]) G.nodes[n]['gene'] = str(nodelist[n]) G.nodes[n]['labels'] = str(G.nodes[n]['labels']) else: nodelist = np.array(nodelist) gene_answer = defaultdict((lambda : [])) for (i, seqid) in enumerate(nodelist): pbid = seqid.split('.')[1] gene_answer[pbid].append(i) if (i in G): G.nodes[i]['gene'] = str(pbid) G.nodes[i]['label'] = str(ncut_map[i]) labels = np.array([i for i in G.nodes()]) labels2 = np.array([ncut_map[i] for i in G.nodes()]) pos = nx.random_layout(G) nx.write_graphml(G, (output_prefix + '.graphml')) return labels2_map
Make a weighted (undirected) graph where each node is a sequence, each edge is k-mer similarity Then do normalized cut to find the family partitions For each partition, make <output_prefix>/<partition_number>/in.fa If the IDs are in PB id format (has genome answer), like PB.1.3 then write that out as the "gene" (ground truth) label in graphml output for visualization
Cogent/process_kmer_to_graph.py
family_finding
Zuhayr-PacBio/Cogent
60
python
def family_finding(dist_filename, seqdict, output_prefix, has_pbid=False, weight_threshold=0.05, ncut_threshold=0.2): '\n Make a weighted (undirected) graph where each node is a sequence, each edge is k-mer similarity\n Then do normalized cut to find the family partitions\n\n For each partition, make <output_prefix>/<partition_number>/in.fa\n\n If the IDs are in PB id format (has genome answer), like PB.1.3\n then write that out as the "gene" (ground truth) label in graphml output for visualization\n ' nodelist = list(seqdict.keys()) nodelist = dict(((x, i) for (i, x) in enumerate(nodelist))) print('making weight graph from ', dist_filename, file=sys.stderr) G = pk.make_weighted_graph_from_mash_dist(nodelist, dist_filename, threshold=weight_threshold) for n in G: G.nodes[n]['labels'] = [n] print('graph contains {0} nodes, {1} edges'.format(G.number_of_nodes(), G.number_of_edges()), file=sys.stderr) nodelist = dict(((i, x) for (x, i) in nodelist.items())) print('performing ncut on graph....', file=sys.stderr) ncut_map = {} labels2_map = defaultdict((lambda : [])) for tmp_nodes in nx.connected_components(G): g = nx.Graph(nx.subgraph(G, tmp_nodes)) run_ncut(g, labels2_map, ncut_map, nodelist, ncut_threshold) seqid_unassigned = set(seqdict.keys()) with open((output_prefix + '.partition.txt'), 'w') as f: f.write('Partition\tSize\tMembers\n') for (k, v) in labels2_map.items(): print(k, v, file=sys.stderr) f.write('{0}_{1}\t{2}\t{3}\n'.format(output_prefix, k, len(v), ','.join(v))) for seqid in v: seqid_unassigned.remove(seqid) f.write('#unassigned:{0}\n'.format(','.join(seqid_unassigned))) if (not has_pbid): for n in G: G.nodes[n]['label'] = str(ncut_map[n]) G.nodes[n]['gene'] = str(nodelist[n]) G.nodes[n]['labels'] = str(G.nodes[n]['labels']) else: nodelist = np.array(nodelist) gene_answer = defaultdict((lambda : [])) for (i, seqid) in enumerate(nodelist): pbid = seqid.split('.')[1] gene_answer[pbid].append(i) if (i in G): G.nodes[i]['gene'] = str(pbid) G.nodes[i]['label'] = str(ncut_map[i]) labels = np.array([i for i in G.nodes()]) labels2 = np.array([ncut_map[i] for i in G.nodes()]) pos = nx.random_layout(G) nx.write_graphml(G, (output_prefix + '.graphml')) return labels2_map
def family_finding(dist_filename, seqdict, output_prefix, has_pbid=False, weight_threshold=0.05, ncut_threshold=0.2): '\n Make a weighted (undirected) graph where each node is a sequence, each edge is k-mer similarity\n Then do normalized cut to find the family partitions\n\n For each partition, make <output_prefix>/<partition_number>/in.fa\n\n If the IDs are in PB id format (has genome answer), like PB.1.3\n then write that out as the "gene" (ground truth) label in graphml output for visualization\n ' nodelist = list(seqdict.keys()) nodelist = dict(((x, i) for (i, x) in enumerate(nodelist))) print('making weight graph from ', dist_filename, file=sys.stderr) G = pk.make_weighted_graph_from_mash_dist(nodelist, dist_filename, threshold=weight_threshold) for n in G: G.nodes[n]['labels'] = [n] print('graph contains {0} nodes, {1} edges'.format(G.number_of_nodes(), G.number_of_edges()), file=sys.stderr) nodelist = dict(((i, x) for (x, i) in nodelist.items())) print('performing ncut on graph....', file=sys.stderr) ncut_map = {} labels2_map = defaultdict((lambda : [])) for tmp_nodes in nx.connected_components(G): g = nx.Graph(nx.subgraph(G, tmp_nodes)) run_ncut(g, labels2_map, ncut_map, nodelist, ncut_threshold) seqid_unassigned = set(seqdict.keys()) with open((output_prefix + '.partition.txt'), 'w') as f: f.write('Partition\tSize\tMembers\n') for (k, v) in labels2_map.items(): print(k, v, file=sys.stderr) f.write('{0}_{1}\t{2}\t{3}\n'.format(output_prefix, k, len(v), ','.join(v))) for seqid in v: seqid_unassigned.remove(seqid) f.write('#unassigned:{0}\n'.format(','.join(seqid_unassigned))) if (not has_pbid): for n in G: G.nodes[n]['label'] = str(ncut_map[n]) G.nodes[n]['gene'] = str(nodelist[n]) G.nodes[n]['labels'] = str(G.nodes[n]['labels']) else: nodelist = np.array(nodelist) gene_answer = defaultdict((lambda : [])) for (i, seqid) in enumerate(nodelist): pbid = seqid.split('.')[1] gene_answer[pbid].append(i) if (i in G): G.nodes[i]['gene'] = str(pbid) G.nodes[i]['label'] = str(ncut_map[i]) labels = np.array([i for i in G.nodes()]) labels2 = np.array([ncut_map[i] for i in G.nodes()]) pos = nx.random_layout(G) nx.write_graphml(G, (output_prefix + '.graphml')) return labels2_map<|docstring|>Make a weighted (undirected) graph where each node is a sequence, each edge is k-mer similarity Then do normalized cut to find the family partitions For each partition, make <output_prefix>/<partition_number>/in.fa If the IDs are in PB id format (has genome answer), like PB.1.3 then write that out as the "gene" (ground truth) label in graphml output for visualization<|endoftext|>
a52ce826a55cff7ddd3121b53eaecc3527ca7d621e448b9b4700b65cff642629
@classmethod def validate(cls, value, allow_tuple=True): '\n Valid examples:\n\n all\n instances\n (suites, instances)\n ' def validate_single(v): if isinstance(v, str): return SortType(v.lower()).value if isinstance(v, SortType): return v.value raise ValueError('Invalid shuffle type value: {}'.format(v)) if (isinstance(value, (tuple, list)) and allow_tuple): values = [validate_single(v) for v in value] if ((SortType.ALL.value in values) and (len(values) > 1)): raise ValueError('Passing extra shuffle types along with `all` is a redundant operation.'.format(values)) return values return validate_single(value)
Valid examples: all instances (suites, instances)
testplan/testing/ordering.py
validate
ymn1k/testplan
0
python
@classmethod def validate(cls, value, allow_tuple=True): '\n Valid examples:\n\n all\n instances\n (suites, instances)\n ' def validate_single(v): if isinstance(v, str): return SortType(v.lower()).value if isinstance(v, SortType): return v.value raise ValueError('Invalid shuffle type value: {}'.format(v)) if (isinstance(value, (tuple, list)) and allow_tuple): values = [validate_single(v) for v in value] if ((SortType.ALL.value in values) and (len(values) > 1)): raise ValueError('Passing extra shuffle types along with `all` is a redundant operation.'.format(values)) return values return validate_single(value)
@classmethod def validate(cls, value, allow_tuple=True): '\n Valid examples:\n\n all\n instances\n (suites, instances)\n ' def validate_single(v): if isinstance(v, str): return SortType(v.lower()).value if isinstance(v, SortType): return v.value raise ValueError('Invalid shuffle type value: {}'.format(v)) if (isinstance(value, (tuple, list)) and allow_tuple): values = [validate_single(v) for v in value] if ((SortType.ALL.value in values) and (len(values) > 1)): raise ValueError('Passing extra shuffle types along with `all` is a redundant operation.'.format(values)) return values return validate_single(value)<|docstring|>Valid examples: all instances (suites, instances)<|endoftext|>
637fe6b2f158aa4518e23404c94f4307490a6869fd91b5fab1049706a3a64abb
def apply_mask(image, mask): 'apply mask to image' redImg = np.zeros(image.shape, image.dtype) redImg[(:, :)] = (0, 0, 255) redMask = cv2.bitwise_and(redImg, redImg, mask=mask) cv2.addWeighted(redMask, 1, image, 1, 0, image) return image
apply mask to image
gen_mask.py
apply_mask
mathiasaap/SegCaps
65
python
def apply_mask(image, mask): redImg = np.zeros(image.shape, image.dtype) redImg[(:, :)] = (0, 0, 255) redMask = cv2.bitwise_and(redImg, redImg, mask=mask) cv2.addWeighted(redMask, 1, image, 1, 0, image) return image
def apply_mask(image, mask): redImg = np.zeros(image.shape, image.dtype) redImg[(:, :)] = (0, 0, 255) redMask = cv2.bitwise_and(redImg, redImg, mask=mask) cv2.addWeighted(redMask, 1, image, 1, 0, image) return image<|docstring|>apply mask to image<|endoftext|>
592613fe5210a8cf610b234ecb303cf0ada7df0b08541f1010c79f0b35153fd3
def __init__(self, args, net_input_shape): '\n Create evaluation model and load the pre-train weights for inference.\n ' self.net_input_shape = net_input_shape weights_path = join(args.weights_path) (_, eval_model, _) = create_model(args, net_input_shape, enable_decoder=False) eval_model.load_weights(weights_path, by_name=True) self.model = eval_model
Create evaluation model and load the pre-train weights for inference.
gen_mask.py
__init__
mathiasaap/SegCaps
65
python
def __init__(self, args, net_input_shape): '\n \n ' self.net_input_shape = net_input_shape weights_path = join(args.weights_path) (_, eval_model, _) = create_model(args, net_input_shape, enable_decoder=False) eval_model.load_weights(weights_path, by_name=True) self.model = eval_model
def __init__(self, args, net_input_shape): '\n \n ' self.net_input_shape = net_input_shape weights_path = join(args.weights_path) (_, eval_model, _) = create_model(args, net_input_shape, enable_decoder=False) eval_model.load_weights(weights_path, by_name=True) self.model = eval_model<|docstring|>Create evaluation model and load the pre-train weights for inference.<|endoftext|>
c52eef061696adb1b183c2e6e5c0cc1c7c6600c5bd44b0340cf5e8f6d57a1928
def createUI(pWindowTitle, pApplyCallback): '\n This is a function that creates the user interface, where users can input the shape and size of petals,\n number of petals, and petal angle to create varioius pine cone like shapes\n ' windowID = 'PineCone' if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.window(windowID, title=pWindowTitle, sizeable=True, resizeToFitChildren=True) cmds.rowColumnLayout(numberOfColumns=3, columnWidth=[(1, 130), (2, 60), (3, 60)], columnOffset=[(1, 'right', 3)]) cmds.text(label='Petal Shape: ') petalShape = cmds.optionMenu() cmds.menuItem(label='Cone') cmds.menuItem(label='Cylinder') cmds.separator(h=10, style='none') cmds.text(label='# Petals per Layer: ') numPetals = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Angle: ') petalAngle = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Height: ') petalHeight = cmds.floatField() cmds.separator(h=10, style='none') cmds.text(label='Petal Radius: ') petalRadius = cmds.floatField() cmds.separator(h=10, style='none') cmds.button(label='Apply', command=functools.partial(pApplyCallback, petalShape, numPetals, petalHeight, petalRadius, petalAngle)) def cancelCallback(*pArgs): if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.button(label='Cancel', command=cancelCallback) cmds.showWindow()
This is a function that creates the user interface, where users can input the shape and size of petals, number of petals, and petal angle to create varioius pine cone like shapes
Pine Cone.py
createUI
dannygelman1/Pine-Cone-Generator
1
python
def createUI(pWindowTitle, pApplyCallback): '\n This is a function that creates the user interface, where users can input the shape and size of petals,\n number of petals, and petal angle to create varioius pine cone like shapes\n ' windowID = 'PineCone' if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.window(windowID, title=pWindowTitle, sizeable=True, resizeToFitChildren=True) cmds.rowColumnLayout(numberOfColumns=3, columnWidth=[(1, 130), (2, 60), (3, 60)], columnOffset=[(1, 'right', 3)]) cmds.text(label='Petal Shape: ') petalShape = cmds.optionMenu() cmds.menuItem(label='Cone') cmds.menuItem(label='Cylinder') cmds.separator(h=10, style='none') cmds.text(label='# Petals per Layer: ') numPetals = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Angle: ') petalAngle = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Height: ') petalHeight = cmds.floatField() cmds.separator(h=10, style='none') cmds.text(label='Petal Radius: ') petalRadius = cmds.floatField() cmds.separator(h=10, style='none') cmds.button(label='Apply', command=functools.partial(pApplyCallback, petalShape, numPetals, petalHeight, petalRadius, petalAngle)) def cancelCallback(*pArgs): if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.button(label='Cancel', command=cancelCallback) cmds.showWindow()
def createUI(pWindowTitle, pApplyCallback): '\n This is a function that creates the user interface, where users can input the shape and size of petals,\n number of petals, and petal angle to create varioius pine cone like shapes\n ' windowID = 'PineCone' if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.window(windowID, title=pWindowTitle, sizeable=True, resizeToFitChildren=True) cmds.rowColumnLayout(numberOfColumns=3, columnWidth=[(1, 130), (2, 60), (3, 60)], columnOffset=[(1, 'right', 3)]) cmds.text(label='Petal Shape: ') petalShape = cmds.optionMenu() cmds.menuItem(label='Cone') cmds.menuItem(label='Cylinder') cmds.separator(h=10, style='none') cmds.text(label='# Petals per Layer: ') numPetals = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Angle: ') petalAngle = cmds.intField() cmds.separator(h=10, style='none') cmds.text(label='Petal Height: ') petalHeight = cmds.floatField() cmds.separator(h=10, style='none') cmds.text(label='Petal Radius: ') petalRadius = cmds.floatField() cmds.separator(h=10, style='none') cmds.button(label='Apply', command=functools.partial(pApplyCallback, petalShape, numPetals, petalHeight, petalRadius, petalAngle)) def cancelCallback(*pArgs): if cmds.window(windowID, exists=True): cmds.deleteUI(windowID) cmds.button(label='Cancel', command=cancelCallback) cmds.showWindow()<|docstring|>This is a function that creates the user interface, where users can input the shape and size of petals, number of petals, and petal angle to create varioius pine cone like shapes<|endoftext|>
9164d8550281f2430a2e3c1a656384935abd9882fe9c791e1d17260855b1f458
def applyCallback(pPetalShape, pNumPetals, pPetalHeight, pPetalRadius, pPetalAngle, *pArgs): '\n This function generates pine cone like shapes from user input\n ' numberPetals = cmds.intField(pNumPetals, query=True, value=True) startH = cmds.floatField(pPetalHeight, query=True, value=True) startR = cmds.floatField(pPetalRadius, query=True, value=True) petalAngle = cmds.intField(pPetalAngle, query=True, value=True) petalShape = cmds.optionMenu(pPetalShape, query=True, value=True) if (petalShape == 'Cone'): result = cmds.polyCone(r=startR, h=startH, name='OG#') else: result = cmds.polyCylinder(r=startR, h=startH, name='OG#') cmds.move(0, (startH / 2), 0, result[0]) cmds.move(0, 0, 0, (result[0] + '.scalePivot'), (result[0] + '.rotatePivot'), absolute=True) cmds.rotate(petalAngle, 0, 0, result[0]) coneGroup = cmds.group(empty=True, name='Group') for i in range(1, numberPetals): resInstance = cmds.instance(result[0], name='instance#') cmds.rotate(petalAngle, 0, ((360 / numberPetals) * i), resInstance) cmds.parent(resInstance, coneGroup) cmds.parent(result, coneGroup) full = cmds.group(empty=True, name='full') for x in range(1, 5): dupInstance = cmds.instance(coneGroup, name='dup#') cmds.move(0, 0, (0.2 * x), dupInstance) cmds.scale((1 - (0.1 * x)), (1 - (0.1 * x)), (1 - (0.1 * x)), dupInstance) cmds.parent(dupInstance, full) cmds.parent(coneGroup, full)
This function generates pine cone like shapes from user input
Pine Cone.py
applyCallback
dannygelman1/Pine-Cone-Generator
1
python
def applyCallback(pPetalShape, pNumPetals, pPetalHeight, pPetalRadius, pPetalAngle, *pArgs): '\n \n ' numberPetals = cmds.intField(pNumPetals, query=True, value=True) startH = cmds.floatField(pPetalHeight, query=True, value=True) startR = cmds.floatField(pPetalRadius, query=True, value=True) petalAngle = cmds.intField(pPetalAngle, query=True, value=True) petalShape = cmds.optionMenu(pPetalShape, query=True, value=True) if (petalShape == 'Cone'): result = cmds.polyCone(r=startR, h=startH, name='OG#') else: result = cmds.polyCylinder(r=startR, h=startH, name='OG#') cmds.move(0, (startH / 2), 0, result[0]) cmds.move(0, 0, 0, (result[0] + '.scalePivot'), (result[0] + '.rotatePivot'), absolute=True) cmds.rotate(petalAngle, 0, 0, result[0]) coneGroup = cmds.group(empty=True, name='Group') for i in range(1, numberPetals): resInstance = cmds.instance(result[0], name='instance#') cmds.rotate(petalAngle, 0, ((360 / numberPetals) * i), resInstance) cmds.parent(resInstance, coneGroup) cmds.parent(result, coneGroup) full = cmds.group(empty=True, name='full') for x in range(1, 5): dupInstance = cmds.instance(coneGroup, name='dup#') cmds.move(0, 0, (0.2 * x), dupInstance) cmds.scale((1 - (0.1 * x)), (1 - (0.1 * x)), (1 - (0.1 * x)), dupInstance) cmds.parent(dupInstance, full) cmds.parent(coneGroup, full)
def applyCallback(pPetalShape, pNumPetals, pPetalHeight, pPetalRadius, pPetalAngle, *pArgs): '\n \n ' numberPetals = cmds.intField(pNumPetals, query=True, value=True) startH = cmds.floatField(pPetalHeight, query=True, value=True) startR = cmds.floatField(pPetalRadius, query=True, value=True) petalAngle = cmds.intField(pPetalAngle, query=True, value=True) petalShape = cmds.optionMenu(pPetalShape, query=True, value=True) if (petalShape == 'Cone'): result = cmds.polyCone(r=startR, h=startH, name='OG#') else: result = cmds.polyCylinder(r=startR, h=startH, name='OG#') cmds.move(0, (startH / 2), 0, result[0]) cmds.move(0, 0, 0, (result[0] + '.scalePivot'), (result[0] + '.rotatePivot'), absolute=True) cmds.rotate(petalAngle, 0, 0, result[0]) coneGroup = cmds.group(empty=True, name='Group') for i in range(1, numberPetals): resInstance = cmds.instance(result[0], name='instance#') cmds.rotate(petalAngle, 0, ((360 / numberPetals) * i), resInstance) cmds.parent(resInstance, coneGroup) cmds.parent(result, coneGroup) full = cmds.group(empty=True, name='full') for x in range(1, 5): dupInstance = cmds.instance(coneGroup, name='dup#') cmds.move(0, 0, (0.2 * x), dupInstance) cmds.scale((1 - (0.1 * x)), (1 - (0.1 * x)), (1 - (0.1 * x)), dupInstance) cmds.parent(dupInstance, full) cmds.parent(coneGroup, full)<|docstring|>This function generates pine cone like shapes from user input<|endoftext|>
af6227c45a366d109e963652a6f80e3ec5dcdc8b93491d5dce53900fe2cddcab
def nondimensional(): '\n Factory associated with NondimElasticQuasistatic.\n ' return NondimElasticQuasistatic()
Factory associated with NondimElasticQuasistatic.
spatialdata/units/NondimElasticQuasistatic.py
nondimensional
rwalkerlewis/spatialdata
6
python
def nondimensional(): '\n \n ' return NondimElasticQuasistatic()
def nondimensional(): '\n \n ' return NondimElasticQuasistatic()<|docstring|>Factory associated with NondimElasticQuasistatic.<|endoftext|>
2f8ebecb8fa225b4c4aeb137fc092f9dec8d71c8d19d0f1a8eca64b0cd737738
def __init__(self, name='nondimelasticquasistatic'): '\n Constructor.\n ' Nondimensional.__init__(self, name)
Constructor.
spatialdata/units/NondimElasticQuasistatic.py
__init__
rwalkerlewis/spatialdata
6
python
def __init__(self, name='nondimelasticquasistatic'): '\n \n ' Nondimensional.__init__(self, name)
def __init__(self, name='nondimelasticquasistatic'): '\n \n ' Nondimensional.__init__(self, name)<|docstring|>Constructor.<|endoftext|>
e66799a58642b5e54956c4fb342920078b9134317970f9c0dfd7e3391a444a09
def _configure(self): '\n Setup members using inventory.\n ' Nondimensional._configure(self) self.setLengthScale(self.inventory.lengthScale) self.setPressureScale(self.inventory.shearModulus) self.setTimeScale(self.inventory.relaxationTime) self.computeDensityScale()
Setup members using inventory.
spatialdata/units/NondimElasticQuasistatic.py
_configure
rwalkerlewis/spatialdata
6
python
def _configure(self): '\n \n ' Nondimensional._configure(self) self.setLengthScale(self.inventory.lengthScale) self.setPressureScale(self.inventory.shearModulus) self.setTimeScale(self.inventory.relaxationTime) self.computeDensityScale()
def _configure(self): '\n \n ' Nondimensional._configure(self) self.setLengthScale(self.inventory.lengthScale) self.setPressureScale(self.inventory.shearModulus) self.setTimeScale(self.inventory.relaxationTime) self.computeDensityScale()<|docstring|>Setup members using inventory.<|endoftext|>
525dea784f8279a628629bf0f02b84fb50b8f7b7a5ce9bb246cdc19b3f69df64
def write_database_integrity_violation(results, headers, reason_message, action_message=None): 'Emit a integrity violation warning and write the violating records to a log file in the current directory\n\n :param results: a list of tuples representing the violating records\n :param headers: a tuple of strings that will be used as a header for the log file. Should have the same length\n as each tuple in the results list.\n :param reason_message: a human readable message detailing the reason of the integrity violation\n :param action_message: an optional human readable message detailing a performed action, if any\n ' from datetime import datetime from tempfile import NamedTemporaryFile from tabulate import tabulate from aiida.cmdline.utils import echo from aiida.manage import configuration if configuration.PROFILE.is_test_profile: return if (action_message is None): action_message = 'nothing' with NamedTemporaryFile(prefix='migration-', suffix='.log', dir='.', delete=False, mode='w+') as handle: echo.echo('') echo.echo_warning('\n{}\nFound one or multiple records that violate the integrity of the database\nViolation reason: {}\nPerformed action: {}\nViolators written to: {}\n{}\n'.format(WARNING_BORDER, reason_message, action_message, handle.name, WARNING_BORDER)) handle.write(f'''# {datetime.utcnow().isoformat()} ''') handle.write(f'''# Violation reason: {reason_message} ''') handle.write(f'''# Performed action: {action_message} ''') handle.write('\n') handle.write(tabulate(results, headers))
Emit a integrity violation warning and write the violating records to a log file in the current directory :param results: a list of tuples representing the violating records :param headers: a tuple of strings that will be used as a header for the log file. Should have the same length as each tuple in the results list. :param reason_message: a human readable message detailing the reason of the integrity violation :param action_message: an optional human readable message detailing a performed action, if any
aiida/manage/database/integrity/utils.py
write_database_integrity_violation
azadoks/aiida-core
180
python
def write_database_integrity_violation(results, headers, reason_message, action_message=None): 'Emit a integrity violation warning and write the violating records to a log file in the current directory\n\n :param results: a list of tuples representing the violating records\n :param headers: a tuple of strings that will be used as a header for the log file. Should have the same length\n as each tuple in the results list.\n :param reason_message: a human readable message detailing the reason of the integrity violation\n :param action_message: an optional human readable message detailing a performed action, if any\n ' from datetime import datetime from tempfile import NamedTemporaryFile from tabulate import tabulate from aiida.cmdline.utils import echo from aiida.manage import configuration if configuration.PROFILE.is_test_profile: return if (action_message is None): action_message = 'nothing' with NamedTemporaryFile(prefix='migration-', suffix='.log', dir='.', delete=False, mode='w+') as handle: echo.echo() echo.echo_warning('\n{}\nFound one or multiple records that violate the integrity of the database\nViolation reason: {}\nPerformed action: {}\nViolators written to: {}\n{}\n'.format(WARNING_BORDER, reason_message, action_message, handle.name, WARNING_BORDER)) handle.write(f'# {datetime.utcnow().isoformat()} ') handle.write(f'# Violation reason: {reason_message} ') handle.write(f'# Performed action: {action_message} ') handle.write('\n') handle.write(tabulate(results, headers))
def write_database_integrity_violation(results, headers, reason_message, action_message=None): 'Emit a integrity violation warning and write the violating records to a log file in the current directory\n\n :param results: a list of tuples representing the violating records\n :param headers: a tuple of strings that will be used as a header for the log file. Should have the same length\n as each tuple in the results list.\n :param reason_message: a human readable message detailing the reason of the integrity violation\n :param action_message: an optional human readable message detailing a performed action, if any\n ' from datetime import datetime from tempfile import NamedTemporaryFile from tabulate import tabulate from aiida.cmdline.utils import echo from aiida.manage import configuration if configuration.PROFILE.is_test_profile: return if (action_message is None): action_message = 'nothing' with NamedTemporaryFile(prefix='migration-', suffix='.log', dir='.', delete=False, mode='w+') as handle: echo.echo() echo.echo_warning('\n{}\nFound one or multiple records that violate the integrity of the database\nViolation reason: {}\nPerformed action: {}\nViolators written to: {}\n{}\n'.format(WARNING_BORDER, reason_message, action_message, handle.name, WARNING_BORDER)) handle.write(f'# {datetime.utcnow().isoformat()} ') handle.write(f'# Violation reason: {reason_message} ') handle.write(f'# Performed action: {action_message} ') handle.write('\n') handle.write(tabulate(results, headers))<|docstring|>Emit a integrity violation warning and write the violating records to a log file in the current directory :param results: a list of tuples representing the violating records :param headers: a tuple of strings that will be used as a header for the log file. Should have the same length as each tuple in the results list. :param reason_message: a human readable message detailing the reason of the integrity violation :param action_message: an optional human readable message detailing a performed action, if any<|endoftext|>
65bc734b2a4f7cde654d79059594170d8b90c141417f3205f409ea9c5c89b499
def test_next_first(self): ' Delete the next patch with only unapplied patches ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() cmd = Delete(dir, quilt_pc=dir, quilt_patches=patches.dirname) cmd.delete_next() patches.read() self.assertTrue(patches.is_empty())
Delete the next patch with only unapplied patches
tests/test_delete.py
test_next_first
jayvdb/python-quilt
4
python
def test_next_first(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() cmd = Delete(dir, quilt_pc=dir, quilt_patches=patches.dirname) cmd.delete_next() patches.read() self.assertTrue(patches.is_empty())
def test_next_first(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() cmd = Delete(dir, quilt_pc=dir, quilt_patches=patches.dirname) cmd.delete_next() patches.read() self.assertTrue(patches.is_empty())<|docstring|>Delete the next patch with only unapplied patches<|endoftext|>
1cea31bcdc818d4eb4fb478d077e8a3dd38d3fa33990c2db7a236c5d5ba863a3
def test_next_after(self): ' Delete the successor to the topmost patch ' with tmp_series() as [dir, series]: series.add_patch(Patch('topmost')) series.add_patch(Patch('unapplied')) series.save() db = Db(dir) db.add_patch(Patch('topmost')) db.save() cmd = Delete(dir, db.dirname, series.dirname) cmd.delete_next() series.read() [patch] = series.patches() self.assertEqual(patch, Patch('topmost'))
Delete the successor to the topmost patch
tests/test_delete.py
test_next_after
jayvdb/python-quilt
4
python
def test_next_after(self): ' ' with tmp_series() as [dir, series]: series.add_patch(Patch('topmost')) series.add_patch(Patch('unapplied')) series.save() db = Db(dir) db.add_patch(Patch('topmost')) db.save() cmd = Delete(dir, db.dirname, series.dirname) cmd.delete_next() series.read() [patch] = series.patches() self.assertEqual(patch, Patch('topmost'))
def test_next_after(self): ' ' with tmp_series() as [dir, series]: series.add_patch(Patch('topmost')) series.add_patch(Patch('unapplied')) series.save() db = Db(dir) db.add_patch(Patch('topmost')) db.save() cmd = Delete(dir, db.dirname, series.dirname) cmd.delete_next() series.read() [patch] = series.patches() self.assertEqual(patch, Patch('topmost'))<|docstring|>Delete the successor to the topmost patch<|endoftext|>
a4c4c6d2579ac6830bcd12bad189e576ccf4902f15370f36175f2f034ef582aa
def test_no_backup_next(self): ' Remove the next patch without leaving a backup ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b'', patch) run_cli(DeleteCommand, dict(next=True, patch=None, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))
Remove the next patch without leaving a backup
tests/test_delete.py
test_no_backup_next
jayvdb/python-quilt
4
python
def test_no_backup_next(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b, patch) run_cli(DeleteCommand, dict(next=True, patch=None, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))
def test_no_backup_next(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b, patch) run_cli(DeleteCommand, dict(next=True, patch=None, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))<|docstring|>Remove the next patch without leaving a backup<|endoftext|>
6026d4dc99da5b45e69b6fc7beb62804736fbe30264ffc852ff424cab3ae2223
def test_no_backup_named(self): ' Remove a specified patch without leaving a backup ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b'', patch) run_cli(DeleteCommand, dict(patch='patch', next=False, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))
Remove a specified patch without leaving a backup
tests/test_delete.py
test_no_backup_named
jayvdb/python-quilt
4
python
def test_no_backup_named(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b, patch) run_cli(DeleteCommand, dict(patch='patch', next=False, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))
def test_no_backup_named(self): ' ' with tmp_series() as [dir, patches]: patches.add_patch(Patch('patch')) patches.save() patch = os.path.join(patches.dirname, 'patch') make_file(b, patch) run_cli(DeleteCommand, dict(patch='patch', next=False, remove=True, backup=False), patches.dirname, applied=dir) self.assertFalse(os.path.exists(patch)) self.assertFalse(os.path.exists((patch + '~')))<|docstring|>Remove a specified patch without leaving a backup<|endoftext|>
6b08d6af9354705e967472d1581f026fe81898524527344d536685b9607245dd
async def create(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return (await self.req.post(endpoint=endpoint, json=kwargs))
:param kwargs: :return:
paystackapi/dedicated_virtual_account.py
create
Ichinga-Samuel/async-paystackapi
0
python
async def create(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return (await self.req.post(endpoint=endpoint, json=kwargs))
async def create(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return (await self.req.post(endpoint=endpoint, json=kwargs))<|docstring|>:param kwargs: :return:<|endoftext|>
cdbd29c43f721b6da1381cfeb7b25e6a60f6f9d215eb45ad5641bbeda4dd3cc3
async def list(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return ((await self.req.get(endpoint=endpoint, params=kwargs)) if kwargs else (await self.req.get(endpoint=endpoint)))
:param kwargs: :return:
paystackapi/dedicated_virtual_account.py
list
Ichinga-Samuel/async-paystackapi
0
python
async def list(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return ((await self.req.get(endpoint=endpoint, params=kwargs)) if kwargs else (await self.req.get(endpoint=endpoint)))
async def list(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account' return ((await self.req.get(endpoint=endpoint, params=kwargs)) if kwargs else (await self.req.get(endpoint=endpoint)))<|docstring|>:param kwargs: :return:<|endoftext|>
36d0c8c9a9d3af4d69611f9501286e28dac90484a600345e52affe6cfd6f7eaa
async def fetch(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.get(endpoint=endpoint))
:param _id: :return:
paystackapi/dedicated_virtual_account.py
fetch
Ichinga-Samuel/async-paystackapi
0
python
async def fetch(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.get(endpoint=endpoint))
async def fetch(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.get(endpoint=endpoint))<|docstring|>:param _id: :return:<|endoftext|>
00e36f1638c0ced2ea71634319508641ef9796467dfc73e121d7869220b2dc0a
async def deactivate(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.delete(endpoint=endpoint))
:param _id: :return:
paystackapi/dedicated_virtual_account.py
deactivate
Ichinga-Samuel/async-paystackapi
0
python
async def deactivate(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.delete(endpoint=endpoint))
async def deactivate(self, *, _id): '\n\n :param _id:\n :return:\n ' endpoint = f'dedicated_account/{_id}' return (await self.req.delete(endpoint=endpoint))<|docstring|>:param _id: :return:<|endoftext|>
f611d032afa79ea5c6b0f336b368aea706670891c8db60e07bb589bcbc15c776
async def split(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.post(endpoint=endpoint, json=kwargs))
:param kwargs: :return:
paystackapi/dedicated_virtual_account.py
split
Ichinga-Samuel/async-paystackapi
0
python
async def split(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.post(endpoint=endpoint, json=kwargs))
async def split(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.post(endpoint=endpoint, json=kwargs))<|docstring|>:param kwargs: :return:<|endoftext|>
7124f9df24250bc55a0ee60cb9d2ffc0b33357acb8531cbaeec1f361739b456c
async def remove_split(self, *, account_number): '\n\n :param account_number:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.delete(endpoint=endpoint, json={'account_number': account_number}))
:param account_number: :return:
paystackapi/dedicated_virtual_account.py
remove_split
Ichinga-Samuel/async-paystackapi
0
python
async def remove_split(self, *, account_number): '\n\n :param account_number:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.delete(endpoint=endpoint, json={'account_number': account_number}))
async def remove_split(self, *, account_number): '\n\n :param account_number:\n :return:\n ' endpoint = 'dedicated_account/split' return (await self.req.delete(endpoint=endpoint, json={'account_number': account_number}))<|docstring|>:param account_number: :return:<|endoftext|>
948aecf7c1aed9ca251b02a111fa7b45ac19d29ef016d765d72ba6617688d61e
async def providers(self): '\n\n :return:\n ' endpoint = 'dedicated_account/available_providers' return (await self.req.get(endpoint=endpoint))
:return:
paystackapi/dedicated_virtual_account.py
providers
Ichinga-Samuel/async-paystackapi
0
python
async def providers(self): '\n\n \n ' endpoint = 'dedicated_account/available_providers' return (await self.req.get(endpoint=endpoint))
async def providers(self): '\n\n \n ' endpoint = 'dedicated_account/available_providers' return (await self.req.get(endpoint=endpoint))<|docstring|>:return:<|endoftext|>
ba7353bb99893b61c0936fb1abb45b842b1c44e1f94c1b5e1ba73f17f6231ef5
def parse_cfg_file(cfg_file: str): 'Read configuration file and parse it into list of blocks' lines = read_uncommented_lines(cfg_file) blocks = parse_cfg_list(lines) return blocks
Read configuration file and parse it into list of blocks
yolov3.py
parse_cfg_file
TalHadad/yolov3_tf2
0
python
def parse_cfg_file(cfg_file: str): lines = read_uncommented_lines(cfg_file) blocks = parse_cfg_list(lines) return blocks
def parse_cfg_file(cfg_file: str): lines = read_uncommented_lines(cfg_file) blocks = parse_cfg_list(lines) return blocks<|docstring|>Read configuration file and parse it into list of blocks<|endoftext|>
573849d54724dca4da6dddd6c4e653f065af93b3d2056f3387a2391728e9d8c7
def read_uncommented_lines(cfg_file: str) -> List: 'Read file lines to list and remove unnecessary characters like ‘\n’ and ‘#’.' with open(cfg_file, 'r') as file: lines = [line.rstrip('\n') for line in file if ((line != '\n') and (line[0] != '#'))] return lines
Read file lines to list and remove unnecessary characters like ‘ ’ and ‘#’.
yolov3.py
read_uncommented_lines
TalHadad/yolov3_tf2
0
python
def read_uncommented_lines(cfg_file: str) -> List: 'Read file lines to list and remove unnecessary characters like ‘\n’ and ‘#’.' with open(cfg_file, 'r') as file: lines = [line.rstrip('\n') for line in file if ((line != '\n') and (line[0] != '#'))] return lines
def read_uncommented_lines(cfg_file: str) -> List: 'Read file lines to list and remove unnecessary characters like ‘\n’ and ‘#’.' with open(cfg_file, 'r') as file: lines = [line.rstrip('\n') for line in file if ((line != '\n') and (line[0] != '#'))] return lines<|docstring|>Read file lines to list and remove unnecessary characters like ‘ ’ and ‘#’.<|endoftext|>
41646817b764f06b075b7f094a52ea27f9c48b5d18db950d0f892f6d90ab6240
def parse_cfg_list(cfg_list: List) -> List: 'Read attributes list and store them as key, value pairs in list blocks' holder = {} blocks = [] for cfg_item in cfg_list: if (cfg_item[0] == '['): cfg_item = ('type=' + cfg_item[1:(- 1)].rstrip()) if (len(holder) != 0): blocks.append(holder) holder = {} (key, value) = cfg_item.split('=') holder[key.rstrip()] = value.lstrip() blocks.append(holder) return blocks
Read attributes list and store them as key, value pairs in list blocks
yolov3.py
parse_cfg_list
TalHadad/yolov3_tf2
0
python
def parse_cfg_list(cfg_list: List) -> List: holder = {} blocks = [] for cfg_item in cfg_list: if (cfg_item[0] == '['): cfg_item = ('type=' + cfg_item[1:(- 1)].rstrip()) if (len(holder) != 0): blocks.append(holder) holder = {} (key, value) = cfg_item.split('=') holder[key.rstrip()] = value.lstrip() blocks.append(holder) return blocks
def parse_cfg_list(cfg_list: List) -> List: holder = {} blocks = [] for cfg_item in cfg_list: if (cfg_item[0] == '['): cfg_item = ('type=' + cfg_item[1:(- 1)].rstrip()) if (len(holder) != 0): blocks.append(holder) holder = {} (key, value) = cfg_item.split('=') holder[key.rstrip()] = value.lstrip() blocks.append(holder) return blocks<|docstring|>Read attributes list and store them as key, value pairs in list blocks<|endoftext|>
4106f396554b819497ac9c578f59a20c2e3d482c990e339e41ac43e0bde04ecf
def scan(self) -> bool: 'Find a device advertising the environmental sensor service.' found = None def callback(_found): nonlocal found found = _found self._addr_type = None self._addr = None self._scan_callback = callback self._ble.gap_scan(5000, 100000, 10000, True) while (found is None): time.sleep_ms(10) self._scan_callback = None return found
Find a device advertising the environmental sensor service.
tepra.py
scan
nnabeyang/tepra-lite-esp32
33
python
def scan(self) -> bool: found = None def callback(_found): nonlocal found found = _found self._addr_type = None self._addr = None self._scan_callback = callback self._ble.gap_scan(5000, 100000, 10000, True) while (found is None): time.sleep_ms(10) self._scan_callback = None return found
def scan(self) -> bool: found = None def callback(_found): nonlocal found found = _found self._addr_type = None self._addr = None self._scan_callback = callback self._ble.gap_scan(5000, 100000, 10000, True) while (found is None): time.sleep_ms(10) self._scan_callback = None return found<|docstring|>Find a device advertising the environmental sensor service.<|endoftext|>
44dcf4fd7b6bb86092d0985576641a2c8c55c411f101f7c793f202edddf63343
def connect(self): 'Connect to the specified device (otherwise use cached address from a scan).' if ((self._addr_type is None) or (self._addr is None)): return False self._ble.gap_connect(self._addr_type, self._addr) while (self._conn_handle is None): time.sleep_ms(10) return True
Connect to the specified device (otherwise use cached address from a scan).
tepra.py
connect
nnabeyang/tepra-lite-esp32
33
python
def connect(self): if ((self._addr_type is None) or (self._addr is None)): return False self._ble.gap_connect(self._addr_type, self._addr) while (self._conn_handle is None): time.sleep_ms(10) return True
def connect(self): if ((self._addr_type is None) or (self._addr is None)): return False self._ble.gap_connect(self._addr_type, self._addr) while (self._conn_handle is None): time.sleep_ms(10) return True<|docstring|>Connect to the specified device (otherwise use cached address from a scan).<|endoftext|>
11d6f469b1bd1d1f49573e318e9868d0d8d07aa7b1aeb6495f7dd480a3153ee5
def disconnect(self): 'Disconnect from current device.' if (not self._conn_handle): return self._ble.gap_disconnect(self._conn_handle) self._reset()
Disconnect from current device.
tepra.py
disconnect
nnabeyang/tepra-lite-esp32
33
python
def disconnect(self): if (not self._conn_handle): return self._ble.gap_disconnect(self._conn_handle) self._reset()
def disconnect(self): if (not self._conn_handle): return self._ble.gap_disconnect(self._conn_handle) self._reset()<|docstring|>Disconnect from current device.<|endoftext|>
f130263b1685090654939737df2e87d139793d9f268c61d157f9a7a68eb4dff1
def write(self, c: Characteristic, data: bytes): 'Send data without response.' if (not c.prop_write_without_response()): return if (self._conn_handle is None): return self._log('Writing without response: {}', hexstr(data)) self._ble.gattc_write(self._conn_handle, c.value_handle, data, 0) return
Send data without response.
tepra.py
write
nnabeyang/tepra-lite-esp32
33
python
def write(self, c: Characteristic, data: bytes): if (not c.prop_write_without_response()): return if (self._conn_handle is None): return self._log('Writing without response: {}', hexstr(data)) self._ble.gattc_write(self._conn_handle, c.value_handle, data, 0) return
def write(self, c: Characteristic, data: bytes): if (not c.prop_write_without_response()): return if (self._conn_handle is None): return self._log('Writing without response: {}', hexstr(data)) self._ble.gattc_write(self._conn_handle, c.value_handle, data, 0) return<|docstring|>Send data without response.<|endoftext|>
56c952c25ad486aee48b8aa6482b2b53d7cb0d76d3ed4dece871fc916f932a4a
def write_request(self, c: Characteristic, data: bytes, callback): 'Send data with response.' done = False if (not c.prop_write()): return if (self._conn_handle is None): return def callback_done(handle, status): nonlocal done done = True callback(handle, status) self._write_done_callback = callback_done self._log('Writing with response') self._ble.gattc_write(self._conn_handle, c.value_handle, data, 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return
Send data with response.
tepra.py
write_request
nnabeyang/tepra-lite-esp32
33
python
def write_request(self, c: Characteristic, data: bytes, callback): done = False if (not c.prop_write()): return if (self._conn_handle is None): return def callback_done(handle, status): nonlocal done done = True callback(handle, status) self._write_done_callback = callback_done self._log('Writing with response') self._ble.gattc_write(self._conn_handle, c.value_handle, data, 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return
def write_request(self, c: Characteristic, data: bytes, callback): done = False if (not c.prop_write()): return if (self._conn_handle is None): return def callback_done(handle, status): nonlocal done done = True callback(handle, status) self._write_done_callback = callback_done self._log('Writing with response') self._ble.gattc_write(self._conn_handle, c.value_handle, data, 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return<|docstring|>Send data with response.<|endoftext|>
5cc1371512180af45aa28756bd19827775ca8a0778ed2cccb0c31995946e2190
def write_cccd(self, c: Characteristic, indication=False, notification=False): 'Write the Client Characteristic Configuration Descriptor of a characteristic.' done = False if ((not c.prop_indicate()) and (not c.prop_notify())): return if (self._conn_handle is None): return def callback_done(*_): nonlocal done done = True self._write_done_callback = callback_done value = ((2 if indication else 0) + (1 if notification else 0)) self._ble.gattc_write(self._conn_handle, (c.value_handle + 1), bytes([value]), 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return
Write the Client Characteristic Configuration Descriptor of a characteristic.
tepra.py
write_cccd
nnabeyang/tepra-lite-esp32
33
python
def write_cccd(self, c: Characteristic, indication=False, notification=False): done = False if ((not c.prop_indicate()) and (not c.prop_notify())): return if (self._conn_handle is None): return def callback_done(*_): nonlocal done done = True self._write_done_callback = callback_done value = ((2 if indication else 0) + (1 if notification else 0)) self._ble.gattc_write(self._conn_handle, (c.value_handle + 1), bytes([value]), 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return
def write_cccd(self, c: Characteristic, indication=False, notification=False): done = False if ((not c.prop_indicate()) and (not c.prop_notify())): return if (self._conn_handle is None): return def callback_done(*_): nonlocal done done = True self._write_done_callback = callback_done value = ((2 if indication else 0) + (1 if notification else 0)) self._ble.gattc_write(self._conn_handle, (c.value_handle + 1), bytes([value]), 1) while (not done): time.sleep_ms(10) self._write_done_callback = None return<|docstring|>Write the Client Characteristic Configuration Descriptor of a characteristic.<|endoftext|>
885dd4f837e17eabeb55d0e0ee243f5f5e2b91563fe14704b6a0424b9f438311
def write_wait_notification(self, tx: Characteristic, tx_data: bytes, rx: Characteristic) -> Optional[bytes]: 'Write without response and wait for a notification' rx_data = None if ((not tx.prop_write_without_response()) or (not rx.prop_notify())): return rx_data if (self._conn_handle is None): return rx_data def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback self.write(tx, tx_data) while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data
Write without response and wait for a notification
tepra.py
write_wait_notification
nnabeyang/tepra-lite-esp32
33
python
def write_wait_notification(self, tx: Characteristic, tx_data: bytes, rx: Characteristic) -> Optional[bytes]: rx_data = None if ((not tx.prop_write_without_response()) or (not rx.prop_notify())): return rx_data if (self._conn_handle is None): return rx_data def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback self.write(tx, tx_data) while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data
def write_wait_notification(self, tx: Characteristic, tx_data: bytes, rx: Characteristic) -> Optional[bytes]: rx_data = None if ((not tx.prop_write_without_response()) or (not rx.prop_notify())): return rx_data if (self._conn_handle is None): return rx_data def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback self.write(tx, tx_data) while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data<|docstring|>Write without response and wait for a notification<|endoftext|>
8ed09a93fa56ac9fd14abf82a55ccb5473d3adb1a9b724abbb5be30d415b0a91
def wait_notification(self, rx: Characteristic) -> Optional[bytes]: 'Wait for a notification from the characteristic' rx_data = None if (not rx.prop_notify()): return if (self._conn_handle is None): return def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data
Wait for a notification from the characteristic
tepra.py
wait_notification
nnabeyang/tepra-lite-esp32
33
python
def wait_notification(self, rx: Characteristic) -> Optional[bytes]: rx_data = None if (not rx.prop_notify()): return if (self._conn_handle is None): return def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data
def wait_notification(self, rx: Characteristic) -> Optional[bytes]: rx_data = None if (not rx.prop_notify()): return if (self._conn_handle is None): return def callback(handle, d): nonlocal rx_data if (handle == rx.value_handle): rx_data = d self._notify_callback = callback while (rx_data is None): time.sleep_ms(10) self._notify_callback = None return rx_data<|docstring|>Wait for a notification from the characteristic<|endoftext|>