body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
fc91cc189e0d6a7e42b417a788e5d1678b431e36778bb22535a6b6b45a3a62be
def __init__(self, ScenarioParameters, minBandwidth=0.01, maxHops=sys.maxsize, TimeStep=2, solverClockLimit=1e+75, solverDetTicksLimit=1e+75, solverParameters={}): "Inputs:\n - ScenarioParameters, a description of the PUFFER scenario parameters in JSON format.\n See sample_input and ScenarioGenerator.py for examples.\n - minBandwidth, also used to cluster the network in groups if mode\n 'Bandwidth' or 'BandwidthHops' is used. Default = 0.01\n - maxHops, used to cluster the network in groups if mode\n 'Hops' or 'BandwidthHops' is used. Default = sys.maxint\n - TimeStep: the time step of the MILP solver\n - solverClockLimit (default=1e75), the maximum time allotted to the solver\n (in seconds). Note that this is NOT a deterministic time limit.\n - solverDetTicksLimit (default=1e75), the maximum number of ticks allotted\n to the solver. Tics are an internal deterministic measure of solver\n progress: the mapping from ticks to time is machine- and\n load-specific. This limit should be used to ensure that multiple\n instances of the problem terminate simultaneously.\n - solverParameters, a dictionary of parameters for the MIP solver.\n Default: empty.\n\n " self.ScenarioParameters = json.loads(ScenarioParameters) self.minBandwidth = minBandwidth self.maxHops = maxHops self.TimeStep = TimeStep self.solverClockLimit = solverClockLimit self.solverDetTicksLimit = solverDetTicksLimit self.solverParameters = solverParameters self.BaseStationName = 'base_station' self.isPartitioned = False self.isSetUp = False self.isScheduled = False
Inputs: - ScenarioParameters, a description of the PUFFER scenario parameters in JSON format. See sample_input and ScenarioGenerator.py for examples. - minBandwidth, also used to cluster the network in groups if mode 'Bandwidth' or 'BandwidthHops' is used. Default = 0.01 - maxHops, used to cluster the network in groups if mode 'Hops' or 'BandwidthHops' is used. Default = sys.maxint - TimeStep: the time step of the MILP solver - solverClockLimit (default=1e75), the maximum time allotted to the solver (in seconds). Note that this is NOT a deterministic time limit. - solverDetTicksLimit (default=1e75), the maximum number of ticks allotted to the solver. Tics are an internal deterministic measure of solver progress: the mapping from ticks to time is machine- and load-specific. This limit should be used to ensure that multiple instances of the problem terminate simultaneously. - solverParameters, a dictionary of parameters for the MIP solver. Default: empty.
schedulers/mosaic_schedulers/common/examples/PUFFER/MILPProblemGenerator.py
__init__
nasa/MOSAIC
18
python
def __init__(self, ScenarioParameters, minBandwidth=0.01, maxHops=sys.maxsize, TimeStep=2, solverClockLimit=1e+75, solverDetTicksLimit=1e+75, solverParameters={}): "Inputs:\n - ScenarioParameters, a description of the PUFFER scenario parameters in JSON format.\n See sample_input and ScenarioGenerator.py for examples.\n - minBandwidth, also used to cluster the network in groups if mode\n 'Bandwidth' or 'BandwidthHops' is used. Default = 0.01\n - maxHops, used to cluster the network in groups if mode\n 'Hops' or 'BandwidthHops' is used. Default = sys.maxint\n - TimeStep: the time step of the MILP solver\n - solverClockLimit (default=1e75), the maximum time allotted to the solver\n (in seconds). Note that this is NOT a deterministic time limit.\n - solverDetTicksLimit (default=1e75), the maximum number of ticks allotted\n to the solver. Tics are an internal deterministic measure of solver\n progress: the mapping from ticks to time is machine- and\n load-specific. This limit should be used to ensure that multiple\n instances of the problem terminate simultaneously.\n - solverParameters, a dictionary of parameters for the MIP solver.\n Default: empty.\n\n " self.ScenarioParameters = json.loads(ScenarioParameters) self.minBandwidth = minBandwidth self.maxHops = maxHops self.TimeStep = TimeStep self.solverClockLimit = solverClockLimit self.solverDetTicksLimit = solverDetTicksLimit self.solverParameters = solverParameters self.BaseStationName = 'base_station' self.isPartitioned = False self.isSetUp = False self.isScheduled = False
def __init__(self, ScenarioParameters, minBandwidth=0.01, maxHops=sys.maxsize, TimeStep=2, solverClockLimit=1e+75, solverDetTicksLimit=1e+75, solverParameters={}): "Inputs:\n - ScenarioParameters, a description of the PUFFER scenario parameters in JSON format.\n See sample_input and ScenarioGenerator.py for examples.\n - minBandwidth, also used to cluster the network in groups if mode\n 'Bandwidth' or 'BandwidthHops' is used. Default = 0.01\n - maxHops, used to cluster the network in groups if mode\n 'Hops' or 'BandwidthHops' is used. Default = sys.maxint\n - TimeStep: the time step of the MILP solver\n - solverClockLimit (default=1e75), the maximum time allotted to the solver\n (in seconds). Note that this is NOT a deterministic time limit.\n - solverDetTicksLimit (default=1e75), the maximum number of ticks allotted\n to the solver. Tics are an internal deterministic measure of solver\n progress: the mapping from ticks to time is machine- and\n load-specific. This limit should be used to ensure that multiple\n instances of the problem terminate simultaneously.\n - solverParameters, a dictionary of parameters for the MIP solver.\n Default: empty.\n\n " self.ScenarioParameters = json.loads(ScenarioParameters) self.minBandwidth = minBandwidth self.maxHops = maxHops self.TimeStep = TimeStep self.solverClockLimit = solverClockLimit self.solverDetTicksLimit = solverDetTicksLimit self.solverParameters = solverParameters self.BaseStationName = 'base_station' self.isPartitioned = False self.isSetUp = False self.isScheduled = False<|docstring|>Inputs: - ScenarioParameters, a description of the PUFFER scenario parameters in JSON format. See sample_input and ScenarioGenerator.py for examples. - minBandwidth, also used to cluster the network in groups if mode 'Bandwidth' or 'BandwidthHops' is used. Default = 0.01 - maxHops, used to cluster the network in groups if mode 'Hops' or 'BandwidthHops' is used. Default = sys.maxint - TimeStep: the time step of the MILP solver - solverClockLimit (default=1e75), the maximum time allotted to the solver (in seconds). Note that this is NOT a deterministic time limit. - solverDetTicksLimit (default=1e75), the maximum number of ticks allotted to the solver. Tics are an internal deterministic measure of solver progress: the mapping from ticks to time is machine- and load-specific. This limit should be used to ensure that multiple instances of the problem terminate simultaneously. - solverParameters, a dictionary of parameters for the MIP solver. Default: empty.<|endoftext|>
bb8e5e87b7c90d90fcc7b86ef6a7923591fe406a4b8f94207a6b40d21c1eb8dd
def partition(self, mode='Bandwidth'): '\n Partitions the graph according to the latency or bandwidth between PUFFERs.\n Input: mode, the mode used to partition the network.\n Mode can be:\n - Bandwidth: removes all edges with bandwidth lower than\n self.minBandwidth and returns the resulting connected components.\n - Hops: returns clusters where all agents are within self.maxHops of\n each other.\n - BandwidthHops: filter by bandwidth and then cluster by hops\n ' Agents = self.ScenarioParameters['Agents'] G = nx.DiGraph() G.add_nodes_from(Agents) Links_list = [] if (mode == 'Bandwidth'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=len(G.nodes())) elif (mode == 'Hops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] _val = link.copy() _val['length'] = 1 Links_list.append((node0, node1, _val)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops, distance_label='length') elif (mode == 'BandwidthHops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops) else: raise NotImplementedError NetworkPartitioning.label_connected_components(G, self.ConnectedComponents, plot=False) self.G = G self.isPartitioned = True return self.ConnectedComponents
Partitions the graph according to the latency or bandwidth between PUFFERs. Input: mode, the mode used to partition the network. Mode can be: - Bandwidth: removes all edges with bandwidth lower than self.minBandwidth and returns the resulting connected components. - Hops: returns clusters where all agents are within self.maxHops of each other. - BandwidthHops: filter by bandwidth and then cluster by hops
schedulers/mosaic_schedulers/common/examples/PUFFER/MILPProblemGenerator.py
partition
nasa/MOSAIC
18
python
def partition(self, mode='Bandwidth'): '\n Partitions the graph according to the latency or bandwidth between PUFFERs.\n Input: mode, the mode used to partition the network.\n Mode can be:\n - Bandwidth: removes all edges with bandwidth lower than\n self.minBandwidth and returns the resulting connected components.\n - Hops: returns clusters where all agents are within self.maxHops of\n each other.\n - BandwidthHops: filter by bandwidth and then cluster by hops\n ' Agents = self.ScenarioParameters['Agents'] G = nx.DiGraph() G.add_nodes_from(Agents) Links_list = [] if (mode == 'Bandwidth'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=len(G.nodes())) elif (mode == 'Hops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] _val = link.copy() _val['length'] = 1 Links_list.append((node0, node1, _val)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops, distance_label='length') elif (mode == 'BandwidthHops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops) else: raise NotImplementedError NetworkPartitioning.label_connected_components(G, self.ConnectedComponents, plot=False) self.G = G self.isPartitioned = True return self.ConnectedComponents
def partition(self, mode='Bandwidth'): '\n Partitions the graph according to the latency or bandwidth between PUFFERs.\n Input: mode, the mode used to partition the network.\n Mode can be:\n - Bandwidth: removes all edges with bandwidth lower than\n self.minBandwidth and returns the resulting connected components.\n - Hops: returns clusters where all agents are within self.maxHops of\n each other.\n - BandwidthHops: filter by bandwidth and then cluster by hops\n ' Agents = self.ScenarioParameters['Agents'] G = nx.DiGraph() G.add_nodes_from(Agents) Links_list = [] if (mode == 'Bandwidth'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=len(G.nodes())) elif (mode == 'Hops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] _val = link.copy() _val['length'] = 1 Links_list.append((node0, node1, _val)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops, distance_label='length') elif (mode == 'BandwidthHops'): for link in self.ScenarioParameters['CommunicationNetwork']: node0 = link['origin'] node1 = link['destination'] if (link['bandwidth'] >= self.minBandwidth): Links_list.append((node0, node1, link)) G.add_edges_from(Links_list) self.ConnectedComponents = NetworkPartitioning.partition_by_latency(G, max_diameter=self.maxHops) else: raise NotImplementedError NetworkPartitioning.label_connected_components(G, self.ConnectedComponents, plot=False) self.G = G self.isPartitioned = True return self.ConnectedComponents<|docstring|>Partitions the graph according to the latency or bandwidth between PUFFERs. Input: mode, the mode used to partition the network. Mode can be: - Bandwidth: removes all edges with bandwidth lower than self.minBandwidth and returns the resulting connected components. - Hops: returns clusters where all agents are within self.maxHops of each other. - BandwidthHops: filter by bandwidth and then cluster by hops<|endoftext|>
568a7507d9c6104014825fd3e28bbdc64fd641040f8d0efb9e7579c51f3fba68
def buildScheduler(self): ' Creates the problem instance to be solved by the scheduler as a JSON file' if (self.isPartitioned is False): self.partition() ScenarioParameters = self.ScenarioParameters BaseStationName = self.BaseStationName agent = ScenarioParameters['Agent'] AgentNames = [agent] for component in self.ConnectedComponents: if (agent in component): AgentNames = component break self.AgentNames = AgentNames self.agent = agent PufferNames = list(AgentNames) if (BaseStationName in PufferNames): PufferNames.remove(BaseStationName) Thor_s = ScenarioParameters['Time']['TimeHorizon'] TimeStep = self.TimeStep Thor = int((float(Thor_s) / float(TimeStep))) InfeasibleTime = (2 * Thor_s) CommWindowsBandwidth = {} for t in range(Thor): CommWindowsBandwidth[t] = {} for Agent1 in AgentNames: CommWindowsBandwidth[t][Agent1] = {} for Agent2 in AgentNames: CommWindowsBandwidth[t][Agent1][Agent2] = 0 for link in ScenarioParameters['CommunicationNetwork']: Agent1 = link['origin'] Agent2 = link['destination'] for t in range(Thor): if ((Agent1 in AgentNames) and (Agent2 in AgentNames)): CommWindowsBandwidth[t][Agent1][Agent2] = link['bandwidth'] achievable_science_in_horizon = 3 pufferScienceAvailability = {} for puffer in PufferNames: in_science_zone = ScenarioParameters['AgentStates'][puffer]['in_science_zone'] if ('samples' in ScenarioParameters['AgentStates'][puffer].keys()): puffer_samples = ScenarioParameters['AgentStates'][puffer]['samples'] else: puffer_samples = achievable_science_in_horizon pufferScienceAvailability[puffer] = (puffer_samples * in_science_zone) PufferTaskReward_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['TaskReward']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['TaskReward']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['TaskReward']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['TaskReward']['send_drive_cmd']} PufferTaskReward_science = {'take_sample': ScenarioParameters['Tasks']['TaskReward']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['TaskReward']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['TaskReward']['store_sample']} PufferOptionalTask_housekeeping = {'short_range_image': False, 'vo_localization': False, 'plan_path': False, 'send_drive_cmd': False} PufferOptionalTask_science = {'take_sample': True, 'analyze_sample': True, 'store_sample': True} PufferProductSizes_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['ProductsSize']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['ProductsSize']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['ProductsSize']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['ProductsSize']['send_drive_cmd']} PufferProductSizes_science = {'take_sample': ScenarioParameters['Tasks']['ProductsSize']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['ProductsSize']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['ProductsSize']['store_sample']} pufferOwnHousekeepingTasks = ['short_range_image', 'vo_localization', 'plan_path', 'send_drive_cmd'] pufferOwnScienceTasks = ['take_sample', 'analyze_sample', 'store_sample'] RelocatableTasks = ['vo_localization', 'plan_path', 'analyze_sample', 'store_sample'] PufferDependencyList_housekeeping = {'short_range_image': [[]], 'vo_localization': [['short_range_image']], 'plan_path': [['vo_localization']], 'send_drive_cmd': [['plan_path']]} PufferDependencyList_science = {'take_sample': [[]], 'analyze_sample': [['take_sample']], 'store_sample': [['analyze_sample']]} PufferIncompatibleTasks_housekeeping = [] PufferIncompatibleTasks_science = [] AllOptionalTasks = {} AllTaskReward = {} AllProductSizes = {} AllDependencyList = {} AllIncompatibleTasks = [] for pufferName in PufferNames: Temp_PufferOptionalTask = {('{}:'.format(pufferName) + k): v for (k, v) in PufferOptionalTask_housekeeping.items()} Temp_PufferTaskReward = {('{}:'.format(pufferName) + k): v for (k, v) in PufferTaskReward_housekeeping.items()} Temp_PufferProductSizes = {('{}:'.format(pufferName) + k): v for (k, v) in PufferProductSizes_housekeeping.items()} for scienceNo in range(pufferScienceAvailability[pufferName]): Temp_PufferOptionalTask.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferOptionalTask_science.items()}) Temp_PufferTaskReward.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferTaskReward_science.items()}) Temp_PufferProductSizes.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferProductSizes_science.items()}) for (k, v) in PufferDependencyList_housekeeping.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:'.format(pufferName) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:'.format(pufferName) + k): AllDeps}) for scienceNo in range(pufferScienceAvailability[pufferName]): for (k, v) in PufferDependencyList_science.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:{}'.format(pufferName, scienceNo) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:{}'.format(pufferName, scienceNo) + k): AllDeps}) for BadPairing in PufferIncompatibleTasks_housekeeping: Temp_BadPairing = [('{}:'.format(pufferName) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) for scienceNo in range(pufferScienceAvailability[pufferName]): for BadPairing in PufferIncompatibleTasks_science: Temp_BadPairing = [('{}:{}'.format(pufferName, scienceNo) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) AllOptionalTasks.update(Temp_PufferOptionalTask) AllTaskReward.update(Temp_PufferTaskReward) AllProductSizes.update(Temp_PufferProductSizes) AllComputationTime = {} AllComputationLoad = {} AllInitialInformation = {} for pufferName in PufferNames: for task in pufferOwnHousekeepingTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:'.format(pufferName) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:'.format(pufferName) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:'.format(pufferName) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][otherPuffer] = False for scienceNo in range(pufferScienceAvailability[pufferName]): for task in pufferOwnScienceTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = False for (task, val) in AllComputationTime.items(): for (agent, tasktime) in val.items(): AllComputationTime[task][agent] = int(np.ceil((float(tasktime) / float(TimeStep)))) AllTaskColors = {} PufferTaskList_housekeeping = PufferOptionalTask_housekeeping.keys() PufferTaskList_science = PufferOptionalTask_science.keys() PufferNo = 0 N_puffers = len(PufferNames) for pufferName in PufferNames: TempPufferHSVColor = np.array([(float(PufferNo) / float(N_puffers)), 0.0, 0.85]) PufferTaskCounter = 0 NumPufferTasks = len((list(PufferTaskList_housekeeping) + list(PufferTaskList_science))) for PufferTask in PufferTaskList_housekeeping: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) AllTaskColors[('{}:'.format(pufferName) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 for PufferTask in PufferTaskList_science: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) for scienceNo in range(pufferScienceAvailability[pufferName]): AllTaskColors[('{}:{}'.format(pufferName, scienceNo) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 PufferNo += 1 self.AllTaskColors = AllTaskColors Tasks = MOSAICSolver.MILPTasks(OptionalTasks=AllOptionalTasks, TaskReward=AllTaskReward, ProductsSize=AllProductSizes, DependencyList=AllDependencyList, IncompatibleTasks=AllIncompatibleTasks) AgentCapabilities = MOSAICSolver.MILPAgentCapabilities(ComputationTime=AllComputationTime, ComputationLoad=AllComputationLoad, InitialInformation=AllInitialInformation) self.Tasks = Tasks self.AgentCapabilities = AgentCapabilities self.Thor = Thor self.isSetUp = True
Creates the problem instance to be solved by the scheduler as a JSON file
schedulers/mosaic_schedulers/common/examples/PUFFER/MILPProblemGenerator.py
buildScheduler
nasa/MOSAIC
18
python
def buildScheduler(self): ' ' if (self.isPartitioned is False): self.partition() ScenarioParameters = self.ScenarioParameters BaseStationName = self.BaseStationName agent = ScenarioParameters['Agent'] AgentNames = [agent] for component in self.ConnectedComponents: if (agent in component): AgentNames = component break self.AgentNames = AgentNames self.agent = agent PufferNames = list(AgentNames) if (BaseStationName in PufferNames): PufferNames.remove(BaseStationName) Thor_s = ScenarioParameters['Time']['TimeHorizon'] TimeStep = self.TimeStep Thor = int((float(Thor_s) / float(TimeStep))) InfeasibleTime = (2 * Thor_s) CommWindowsBandwidth = {} for t in range(Thor): CommWindowsBandwidth[t] = {} for Agent1 in AgentNames: CommWindowsBandwidth[t][Agent1] = {} for Agent2 in AgentNames: CommWindowsBandwidth[t][Agent1][Agent2] = 0 for link in ScenarioParameters['CommunicationNetwork']: Agent1 = link['origin'] Agent2 = link['destination'] for t in range(Thor): if ((Agent1 in AgentNames) and (Agent2 in AgentNames)): CommWindowsBandwidth[t][Agent1][Agent2] = link['bandwidth'] achievable_science_in_horizon = 3 pufferScienceAvailability = {} for puffer in PufferNames: in_science_zone = ScenarioParameters['AgentStates'][puffer]['in_science_zone'] if ('samples' in ScenarioParameters['AgentStates'][puffer].keys()): puffer_samples = ScenarioParameters['AgentStates'][puffer]['samples'] else: puffer_samples = achievable_science_in_horizon pufferScienceAvailability[puffer] = (puffer_samples * in_science_zone) PufferTaskReward_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['TaskReward']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['TaskReward']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['TaskReward']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['TaskReward']['send_drive_cmd']} PufferTaskReward_science = {'take_sample': ScenarioParameters['Tasks']['TaskReward']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['TaskReward']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['TaskReward']['store_sample']} PufferOptionalTask_housekeeping = {'short_range_image': False, 'vo_localization': False, 'plan_path': False, 'send_drive_cmd': False} PufferOptionalTask_science = {'take_sample': True, 'analyze_sample': True, 'store_sample': True} PufferProductSizes_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['ProductsSize']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['ProductsSize']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['ProductsSize']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['ProductsSize']['send_drive_cmd']} PufferProductSizes_science = {'take_sample': ScenarioParameters['Tasks']['ProductsSize']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['ProductsSize']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['ProductsSize']['store_sample']} pufferOwnHousekeepingTasks = ['short_range_image', 'vo_localization', 'plan_path', 'send_drive_cmd'] pufferOwnScienceTasks = ['take_sample', 'analyze_sample', 'store_sample'] RelocatableTasks = ['vo_localization', 'plan_path', 'analyze_sample', 'store_sample'] PufferDependencyList_housekeeping = {'short_range_image': [[]], 'vo_localization': [['short_range_image']], 'plan_path': [['vo_localization']], 'send_drive_cmd': [['plan_path']]} PufferDependencyList_science = {'take_sample': [[]], 'analyze_sample': [['take_sample']], 'store_sample': [['analyze_sample']]} PufferIncompatibleTasks_housekeeping = [] PufferIncompatibleTasks_science = [] AllOptionalTasks = {} AllTaskReward = {} AllProductSizes = {} AllDependencyList = {} AllIncompatibleTasks = [] for pufferName in PufferNames: Temp_PufferOptionalTask = {('{}:'.format(pufferName) + k): v for (k, v) in PufferOptionalTask_housekeeping.items()} Temp_PufferTaskReward = {('{}:'.format(pufferName) + k): v for (k, v) in PufferTaskReward_housekeeping.items()} Temp_PufferProductSizes = {('{}:'.format(pufferName) + k): v for (k, v) in PufferProductSizes_housekeeping.items()} for scienceNo in range(pufferScienceAvailability[pufferName]): Temp_PufferOptionalTask.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferOptionalTask_science.items()}) Temp_PufferTaskReward.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferTaskReward_science.items()}) Temp_PufferProductSizes.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferProductSizes_science.items()}) for (k, v) in PufferDependencyList_housekeeping.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:'.format(pufferName) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:'.format(pufferName) + k): AllDeps}) for scienceNo in range(pufferScienceAvailability[pufferName]): for (k, v) in PufferDependencyList_science.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:{}'.format(pufferName, scienceNo) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:{}'.format(pufferName, scienceNo) + k): AllDeps}) for BadPairing in PufferIncompatibleTasks_housekeeping: Temp_BadPairing = [('{}:'.format(pufferName) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) for scienceNo in range(pufferScienceAvailability[pufferName]): for BadPairing in PufferIncompatibleTasks_science: Temp_BadPairing = [('{}:{}'.format(pufferName, scienceNo) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) AllOptionalTasks.update(Temp_PufferOptionalTask) AllTaskReward.update(Temp_PufferTaskReward) AllProductSizes.update(Temp_PufferProductSizes) AllComputationTime = {} AllComputationLoad = {} AllInitialInformation = {} for pufferName in PufferNames: for task in pufferOwnHousekeepingTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:'.format(pufferName) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:'.format(pufferName) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:'.format(pufferName) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][otherPuffer] = False for scienceNo in range(pufferScienceAvailability[pufferName]): for task in pufferOwnScienceTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = False for (task, val) in AllComputationTime.items(): for (agent, tasktime) in val.items(): AllComputationTime[task][agent] = int(np.ceil((float(tasktime) / float(TimeStep)))) AllTaskColors = {} PufferTaskList_housekeeping = PufferOptionalTask_housekeeping.keys() PufferTaskList_science = PufferOptionalTask_science.keys() PufferNo = 0 N_puffers = len(PufferNames) for pufferName in PufferNames: TempPufferHSVColor = np.array([(float(PufferNo) / float(N_puffers)), 0.0, 0.85]) PufferTaskCounter = 0 NumPufferTasks = len((list(PufferTaskList_housekeeping) + list(PufferTaskList_science))) for PufferTask in PufferTaskList_housekeeping: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) AllTaskColors[('{}:'.format(pufferName) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 for PufferTask in PufferTaskList_science: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) for scienceNo in range(pufferScienceAvailability[pufferName]): AllTaskColors[('{}:{}'.format(pufferName, scienceNo) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 PufferNo += 1 self.AllTaskColors = AllTaskColors Tasks = MOSAICSolver.MILPTasks(OptionalTasks=AllOptionalTasks, TaskReward=AllTaskReward, ProductsSize=AllProductSizes, DependencyList=AllDependencyList, IncompatibleTasks=AllIncompatibleTasks) AgentCapabilities = MOSAICSolver.MILPAgentCapabilities(ComputationTime=AllComputationTime, ComputationLoad=AllComputationLoad, InitialInformation=AllInitialInformation) self.Tasks = Tasks self.AgentCapabilities = AgentCapabilities self.Thor = Thor self.isSetUp = True
def buildScheduler(self): ' ' if (self.isPartitioned is False): self.partition() ScenarioParameters = self.ScenarioParameters BaseStationName = self.BaseStationName agent = ScenarioParameters['Agent'] AgentNames = [agent] for component in self.ConnectedComponents: if (agent in component): AgentNames = component break self.AgentNames = AgentNames self.agent = agent PufferNames = list(AgentNames) if (BaseStationName in PufferNames): PufferNames.remove(BaseStationName) Thor_s = ScenarioParameters['Time']['TimeHorizon'] TimeStep = self.TimeStep Thor = int((float(Thor_s) / float(TimeStep))) InfeasibleTime = (2 * Thor_s) CommWindowsBandwidth = {} for t in range(Thor): CommWindowsBandwidth[t] = {} for Agent1 in AgentNames: CommWindowsBandwidth[t][Agent1] = {} for Agent2 in AgentNames: CommWindowsBandwidth[t][Agent1][Agent2] = 0 for link in ScenarioParameters['CommunicationNetwork']: Agent1 = link['origin'] Agent2 = link['destination'] for t in range(Thor): if ((Agent1 in AgentNames) and (Agent2 in AgentNames)): CommWindowsBandwidth[t][Agent1][Agent2] = link['bandwidth'] achievable_science_in_horizon = 3 pufferScienceAvailability = {} for puffer in PufferNames: in_science_zone = ScenarioParameters['AgentStates'][puffer]['in_science_zone'] if ('samples' in ScenarioParameters['AgentStates'][puffer].keys()): puffer_samples = ScenarioParameters['AgentStates'][puffer]['samples'] else: puffer_samples = achievable_science_in_horizon pufferScienceAvailability[puffer] = (puffer_samples * in_science_zone) PufferTaskReward_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['TaskReward']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['TaskReward']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['TaskReward']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['TaskReward']['send_drive_cmd']} PufferTaskReward_science = {'take_sample': ScenarioParameters['Tasks']['TaskReward']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['TaskReward']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['TaskReward']['store_sample']} PufferOptionalTask_housekeeping = {'short_range_image': False, 'vo_localization': False, 'plan_path': False, 'send_drive_cmd': False} PufferOptionalTask_science = {'take_sample': True, 'analyze_sample': True, 'store_sample': True} PufferProductSizes_housekeeping = {'short_range_image': ScenarioParameters['Tasks']['ProductsSize']['short_range_image'], 'vo_localization': ScenarioParameters['Tasks']['ProductsSize']['vo_localization'], 'plan_path': ScenarioParameters['Tasks']['ProductsSize']['plan_path'], 'send_drive_cmd': ScenarioParameters['Tasks']['ProductsSize']['send_drive_cmd']} PufferProductSizes_science = {'take_sample': ScenarioParameters['Tasks']['ProductsSize']['take_sample'], 'analyze_sample': ScenarioParameters['Tasks']['ProductsSize']['analyze_sample'], 'store_sample': ScenarioParameters['Tasks']['ProductsSize']['store_sample']} pufferOwnHousekeepingTasks = ['short_range_image', 'vo_localization', 'plan_path', 'send_drive_cmd'] pufferOwnScienceTasks = ['take_sample', 'analyze_sample', 'store_sample'] RelocatableTasks = ['vo_localization', 'plan_path', 'analyze_sample', 'store_sample'] PufferDependencyList_housekeeping = {'short_range_image': [[]], 'vo_localization': [['short_range_image']], 'plan_path': [['vo_localization']], 'send_drive_cmd': [['plan_path']]} PufferDependencyList_science = {'take_sample': [[]], 'analyze_sample': [['take_sample']], 'store_sample': [['analyze_sample']]} PufferIncompatibleTasks_housekeeping = [] PufferIncompatibleTasks_science = [] AllOptionalTasks = {} AllTaskReward = {} AllProductSizes = {} AllDependencyList = {} AllIncompatibleTasks = [] for pufferName in PufferNames: Temp_PufferOptionalTask = {('{}:'.format(pufferName) + k): v for (k, v) in PufferOptionalTask_housekeeping.items()} Temp_PufferTaskReward = {('{}:'.format(pufferName) + k): v for (k, v) in PufferTaskReward_housekeeping.items()} Temp_PufferProductSizes = {('{}:'.format(pufferName) + k): v for (k, v) in PufferProductSizes_housekeeping.items()} for scienceNo in range(pufferScienceAvailability[pufferName]): Temp_PufferOptionalTask.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferOptionalTask_science.items()}) Temp_PufferTaskReward.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferTaskReward_science.items()}) Temp_PufferProductSizes.update({('{}:{}'.format(pufferName, scienceNo) + k): v for (k, v) in PufferProductSizes_science.items()}) for (k, v) in PufferDependencyList_housekeeping.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:'.format(pufferName) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:'.format(pufferName) + k): AllDeps}) for scienceNo in range(pufferScienceAvailability[pufferName]): for (k, v) in PufferDependencyList_science.items(): AllDeps = [] for ConjDependency in v: AllDeps.append([('{}:{}'.format(pufferName, scienceNo) + DisjDependency) for DisjDependency in ConjDependency]) AllDependencyList.update({('{}:{}'.format(pufferName, scienceNo) + k): AllDeps}) for BadPairing in PufferIncompatibleTasks_housekeeping: Temp_BadPairing = [('{}:'.format(pufferName) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) for scienceNo in range(pufferScienceAvailability[pufferName]): for BadPairing in PufferIncompatibleTasks_science: Temp_BadPairing = [('{}:{}'.format(pufferName, scienceNo) + Task) for Task in BadPairing] AllIncompatibleTasks.append(Temp_BadPairing) AllOptionalTasks.update(Temp_PufferOptionalTask) AllTaskReward.update(Temp_PufferTaskReward) AllProductSizes.update(Temp_PufferProductSizes) AllComputationTime = {} AllComputationLoad = {} AllInitialInformation = {} for pufferName in PufferNames: for task in pufferOwnHousekeepingTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:'.format(pufferName) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:'.format(pufferName) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:'.format(pufferName) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnHousekeepingTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:'.format(pufferName) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:'.format(pufferName) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:'.format(pufferName) + task)][otherPuffer] = False for scienceNo in range(pufferScienceAvailability[pufferName]): for task in pufferOwnScienceTasks: tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][pufferName].get(task, InfeasibleTime) AllComputationTime.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: tasktime}}) AllComputationLoad.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: 1.0}}) AllInitialInformation.update({('{}:{}'.format(pufferName, scienceNo) + task): {pufferName: False}}) if (BaseStationName in AgentNames): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][BaseStationName].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][BaseStationName] = False for otherPuffer in PufferNames: if (otherPuffer != pufferName): for task in pufferOwnScienceTasks: if (task in RelocatableTasks): tasktime = ScenarioParameters['AgentCapabilities']['ComputationTime'][otherPuffer].get(task, InfeasibleTime) else: tasktime = InfeasibleTime AllComputationTime[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = tasktime AllComputationLoad[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = 1.0 AllInitialInformation[('{}:{}'.format(pufferName, scienceNo) + task)][otherPuffer] = False for (task, val) in AllComputationTime.items(): for (agent, tasktime) in val.items(): AllComputationTime[task][agent] = int(np.ceil((float(tasktime) / float(TimeStep)))) AllTaskColors = {} PufferTaskList_housekeeping = PufferOptionalTask_housekeeping.keys() PufferTaskList_science = PufferOptionalTask_science.keys() PufferNo = 0 N_puffers = len(PufferNames) for pufferName in PufferNames: TempPufferHSVColor = np.array([(float(PufferNo) / float(N_puffers)), 0.0, 0.85]) PufferTaskCounter = 0 NumPufferTasks = len((list(PufferTaskList_housekeeping) + list(PufferTaskList_science))) for PufferTask in PufferTaskList_housekeeping: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) AllTaskColors[('{}:'.format(pufferName) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 for PufferTask in PufferTaskList_science: TempTaskHSVColor = np.array([0.0, (0.2 + (0.8 * (1.0 - (float(PufferTaskCounter) / float((NumPufferTasks - 1)))))), 0.0]) TaskRGBColor = np.array(colorsys.hsv_to_rgb((TempPufferHSVColor[0] + TempTaskHSVColor[0]), (TempPufferHSVColor[1] + TempTaskHSVColor[1]), (TempPufferHSVColor[2] + TempTaskHSVColor[2]))) for scienceNo in range(pufferScienceAvailability[pufferName]): AllTaskColors[('{}:{}'.format(pufferName, scienceNo) + PufferTask)] = TaskRGBColor PufferTaskCounter += 1 PufferNo += 1 self.AllTaskColors = AllTaskColors Tasks = MOSAICSolver.MILPTasks(OptionalTasks=AllOptionalTasks, TaskReward=AllTaskReward, ProductsSize=AllProductSizes, DependencyList=AllDependencyList, IncompatibleTasks=AllIncompatibleTasks) AgentCapabilities = MOSAICSolver.MILPAgentCapabilities(ComputationTime=AllComputationTime, ComputationLoad=AllComputationLoad, InitialInformation=AllInitialInformation) self.Tasks = Tasks self.AgentCapabilities = AgentCapabilities self.Thor = Thor self.isSetUp = True<|docstring|>Creates the problem instance to be solved by the scheduler as a JSON file<|endoftext|>
ecaa708018c61063a5891a42c2cec6def92c09ff92395a07cda7fbf344cde12e
def _apply_prediction(G, func, ebunch=None): 'Applies the given function to each edge in the specified iterable\n of edges.\n\n `G` is an instance of :class:`networkx.Graph`.\n\n `ebunch` is an iterable of pairs of nodes. If not specified, all\n non-edges in the graph `G` will be used.\n\n ' if (ebunch is None): ebunch = nx.non_edges(G) return sorted([(u, v, func(G, u, v)) for (u, v) in ebunch], key=(lambda t: t[2]), reverse=True)
Applies the given function to each edge in the specified iterable of edges. `G` is an instance of :class:`networkx.Graph`. `ebunch` is an iterable of pairs of nodes. If not specified, all non-edges in the graph `G` will be used.
networkx/algorithms/link_prediction.py
_apply_prediction
MingshanJia/networkx
10
python
def _apply_prediction(G, func, ebunch=None): 'Applies the given function to each edge in the specified iterable\n of edges.\n\n `G` is an instance of :class:`networkx.Graph`.\n\n `ebunch` is an iterable of pairs of nodes. If not specified, all\n non-edges in the graph `G` will be used.\n\n ' if (ebunch is None): ebunch = nx.non_edges(G) return sorted([(u, v, func(G, u, v)) for (u, v) in ebunch], key=(lambda t: t[2]), reverse=True)
def _apply_prediction(G, func, ebunch=None): 'Applies the given function to each edge in the specified iterable\n of edges.\n\n `G` is an instance of :class:`networkx.Graph`.\n\n `ebunch` is an iterable of pairs of nodes. If not specified, all\n non-edges in the graph `G` will be used.\n\n ' if (ebunch is None): ebunch = nx.non_edges(G) return sorted([(u, v, func(G, u, v)) for (u, v) in ebunch], key=(lambda t: t[2]), reverse=True)<|docstring|>Applies the given function to each edge in the specified iterable of edges. `G` is an instance of :class:`networkx.Graph`. `ebunch` is an iterable of pairs of nodes. If not specified, all non-edges in the graph `G` will be used.<|endoftext|>
85fd6632a1a63d27ea1c5011e52cbc3058ab79d93632f5dc7e9caabe1eab6aef
@not_implemented_for('multigraph') def resource_allocation_index(G, ebunch=None): 'Compute the resource allocation index of all node pairs in ebunch.\n\n Resource allocation index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{|\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Resource allocation index will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their resource allocation index.\n\n References\n ----------\n .. [1] T. Zhou, L. Lu, Y.-C. Zhang.\n Predicting missing links via local information.\n Eur. Phys. J. B 71 (2009) 623.\n https://arxiv.org/pdf/0901.0553.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / G.degree(w)) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / G.degree(w)) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)
Compute the resource allocation index of all node pairs in ebunch. Resource allocation index of `u` and `v` is defined as .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their resource allocation index. References ---------- .. [1] T. Zhou, L. Lu, Y.-C. Zhang. Predicting missing links via local information. Eur. Phys. J. B 71 (2009) 623. https://arxiv.org/pdf/0901.0553.pdf
networkx/algorithms/link_prediction.py
resource_allocation_index
MingshanJia/networkx
10
python
@not_implemented_for('multigraph') def resource_allocation_index(G, ebunch=None): 'Compute the resource allocation index of all node pairs in ebunch.\n\n Resource allocation index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{|\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Resource allocation index will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their resource allocation index.\n\n References\n ----------\n .. [1] T. Zhou, L. Lu, Y.-C. Zhang.\n Predicting missing links via local information.\n Eur. Phys. J. B 71 (2009) 623.\n https://arxiv.org/pdf/0901.0553.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / G.degree(w)) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / G.degree(w)) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('multigraph') def resource_allocation_index(G, ebunch=None): 'Compute the resource allocation index of all node pairs in ebunch.\n\n Resource allocation index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{|\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Resource allocation index will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their resource allocation index.\n\n References\n ----------\n .. [1] T. Zhou, L. Lu, Y.-C. Zhang.\n Predicting missing links via local information.\n Eur. Phys. J. B 71 (2009) 623.\n https://arxiv.org/pdf/0901.0553.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / G.degree(w)) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / G.degree(w)) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the resource allocation index of all node pairs in ebunch. Resource allocation index of `u` and `v` is defined as .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their resource allocation index. References ---------- .. [1] T. Zhou, L. Lu, Y.-C. Zhang. Predicting missing links via local information. Eur. Phys. J. B 71 (2009) 623. https://arxiv.org/pdf/0901.0553.pdf<|endoftext|>
7cdeecfee710f0c5c0a8554e449f5d666478b17adcfcdebffdfd85155b2b0967
@not_implemented_for('multigraph') def jaccard_coefficient(G, ebunch=None): 'Compute the Jaccard coefficient of all node pairs in ebunch.\n\n Jaccard coefficient of nodes `u` and `v` is defined as\n\n .. math::\n\n \\frac{|\\Gamma(u) \\cap \\Gamma(v)|}{|\\Gamma(u) \\cup \\Gamma(v)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Jaccard coefficient will be computed for each pair of nodes\n given in the iterable. The pairs must be given as 2-tuples\n (u, v) where u and v are nodes in the graph. If ebunch is None\n then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Jaccard coefficient.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): union_size = len((set(G._succ[u]) | set(G._pred[v]))) if (union_size == 0): return 0 return (len(list(nx.directed_common_neighbors(G, u, v))) / union_size) else: union_size = len((set(G[u]) | set(G[v]))) if (union_size == 0): return 0 return (len(list(nx.common_neighbors(G, u, v))) / union_size) return _apply_prediction(G, predict, ebunch)
Compute the Jaccard coefficient of all node pairs in ebunch. Jaccard coefficient of nodes `u` and `v` is defined as .. math:: \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient. References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
networkx/algorithms/link_prediction.py
jaccard_coefficient
MingshanJia/networkx
10
python
@not_implemented_for('multigraph') def jaccard_coefficient(G, ebunch=None): 'Compute the Jaccard coefficient of all node pairs in ebunch.\n\n Jaccard coefficient of nodes `u` and `v` is defined as\n\n .. math::\n\n \\frac{|\\Gamma(u) \\cap \\Gamma(v)|}{|\\Gamma(u) \\cup \\Gamma(v)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Jaccard coefficient will be computed for each pair of nodes\n given in the iterable. The pairs must be given as 2-tuples\n (u, v) where u and v are nodes in the graph. If ebunch is None\n then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Jaccard coefficient.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): union_size = len((set(G._succ[u]) | set(G._pred[v]))) if (union_size == 0): return 0 return (len(list(nx.directed_common_neighbors(G, u, v))) / union_size) else: union_size = len((set(G[u]) | set(G[v]))) if (union_size == 0): return 0 return (len(list(nx.common_neighbors(G, u, v))) / union_size) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('multigraph') def jaccard_coefficient(G, ebunch=None): 'Compute the Jaccard coefficient of all node pairs in ebunch.\n\n Jaccard coefficient of nodes `u` and `v` is defined as\n\n .. math::\n\n \\frac{|\\Gamma(u) \\cap \\Gamma(v)|}{|\\Gamma(u) \\cup \\Gamma(v)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Jaccard coefficient will be computed for each pair of nodes\n given in the iterable. The pairs must be given as 2-tuples\n (u, v) where u and v are nodes in the graph. If ebunch is None\n then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Jaccard coefficient.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): union_size = len((set(G._succ[u]) | set(G._pred[v]))) if (union_size == 0): return 0 return (len(list(nx.directed_common_neighbors(G, u, v))) / union_size) else: union_size = len((set(G[u]) | set(G[v]))) if (union_size == 0): return 0 return (len(list(nx.common_neighbors(G, u, v))) / union_size) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the Jaccard coefficient of all node pairs in ebunch. Jaccard coefficient of nodes `u` and `v` is defined as .. math:: \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient. References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf<|endoftext|>
5cbf3ffc338010bc36d709bcecd497780f00eff2f218157a42352db27a97989e
@not_implemented_for('multigraph') def adamic_adar_index(G, ebunch=None): 'Compute the Adamic-Adar index of all node pairs in ebunch.\n\n Adamic-Adar index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{\\log |\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n This index leads to zero-division for nodes only connected via self-loops.\n It is intended to be used when no self-loops are present.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Adamic-Adar index will be computed for each pair of nodes given\n in the iterable. The pairs must be given as 2-tuples (u, v)\n where u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Adamic-Adar index.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / log(G.degree(w))) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / log(G.degree(w))) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)
Compute the Adamic-Adar index of all node pairs in ebunch. Adamic-Adar index of `u` and `v` is defined as .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. This index leads to zero-division for nodes only connected via self-loops. It is intended to be used when no self-loops are present. Parameters ---------- G : graph NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index. References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
networkx/algorithms/link_prediction.py
adamic_adar_index
MingshanJia/networkx
10
python
@not_implemented_for('multigraph') def adamic_adar_index(G, ebunch=None): 'Compute the Adamic-Adar index of all node pairs in ebunch.\n\n Adamic-Adar index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{\\log |\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n This index leads to zero-division for nodes only connected via self-loops.\n It is intended to be used when no self-loops are present.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Adamic-Adar index will be computed for each pair of nodes given\n in the iterable. The pairs must be given as 2-tuples (u, v)\n where u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Adamic-Adar index.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / log(G.degree(w))) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / log(G.degree(w))) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('multigraph') def adamic_adar_index(G, ebunch=None): 'Compute the Adamic-Adar index of all node pairs in ebunch.\n\n Adamic-Adar index of `u` and `v` is defined as\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{1}{\\log |\\Gamma(w)|}\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n This index leads to zero-division for nodes only connected via self-loops.\n It is intended to be used when no self-loops are present.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Adamic-Adar index will be computed for each pair of nodes given\n in the iterable. The pairs must be given as 2-tuples (u, v)\n where u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their Adamic-Adar index.\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n ' def predict(G, u, v): if G.is_directed(): return sum(((1 / log(G.degree(w))) for w in nx.directed_common_neighbors(G, u, v))) else: return sum(((1 / log(G.degree(w))) for w in nx.common_neighbors(G, u, v))) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the Adamic-Adar index of all node pairs in ebunch. Adamic-Adar index of `u` and `v` is defined as .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|} where $\Gamma(u)$ denotes the set of neighbors of $u$. This index leads to zero-division for nodes only connected via self-loops. It is intended to be used when no self-loops are present. Parameters ---------- G : graph NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index. References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf<|endoftext|>
aadb93424500f36691a3c5b74813da3ef2b29c5dc89a79715b6f9231ab66075a
@not_implemented_for('directed') @not_implemented_for('multigraph') def preferential_attachment(G, ebunch=None): "Compute the preferential attachment score of all node pairs in ebunch.\n\n Preferential attachment score of `u` and `v` is defined as\n\n .. math::\n\n |\\Gamma(u)| |\\Gamma(v)|\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Preferential attachment score will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their preferential attachment score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.complete_graph(5)\n >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 1) -> 16\n (2, 3) -> 16\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n " def predict(u, v): return (G.degree(u) * G.degree(v)) return _apply_prediction(G, predict, ebunch)
Compute the preferential attachment score of all node pairs in ebunch. Preferential attachment score of `u` and `v` is defined as .. math:: |\Gamma(u)| |\Gamma(v)| where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score. Examples -------- >>> import networkx as nx >>> G = nx.complete_graph(5) >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p}') (0, 1) -> 16 (2, 3) -> 16 References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
networkx/algorithms/link_prediction.py
preferential_attachment
MingshanJia/networkx
10
python
@not_implemented_for('directed') @not_implemented_for('multigraph') def preferential_attachment(G, ebunch=None): "Compute the preferential attachment score of all node pairs in ebunch.\n\n Preferential attachment score of `u` and `v` is defined as\n\n .. math::\n\n |\\Gamma(u)| |\\Gamma(v)|\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Preferential attachment score will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their preferential attachment score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.complete_graph(5)\n >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 1) -> 16\n (2, 3) -> 16\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n " def predict(u, v): return (G.degree(u) * G.degree(v)) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('directed') @not_implemented_for('multigraph') def preferential_attachment(G, ebunch=None): "Compute the preferential attachment score of all node pairs in ebunch.\n\n Preferential attachment score of `u` and `v` is defined as\n\n .. math::\n\n |\\Gamma(u)| |\\Gamma(v)|\n\n where $\\Gamma(u)$ denotes the set of neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n Preferential attachment score will be computed for each pair of\n nodes given in the iterable. The pairs must be given as\n 2-tuples (u, v) where u and v are nodes in the graph. If ebunch\n is None then all non-existent edges in the graph will be used.\n Default value: None.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their preferential attachment score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.complete_graph(5)\n >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 1) -> 16\n (2, 3) -> 16\n\n References\n ----------\n .. [1] D. Liben-Nowell, J. Kleinberg.\n The Link Prediction Problem for Social Networks (2004).\n http://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n " def predict(u, v): return (G.degree(u) * G.degree(v)) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the preferential attachment score of all node pairs in ebunch. Preferential attachment score of `u` and `v` is defined as .. math:: |\Gamma(u)| |\Gamma(v)| where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score. Examples -------- >>> import networkx as nx >>> G = nx.complete_graph(5) >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p}') (0, 1) -> 16 (2, 3) -> 16 References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf<|endoftext|>
b4b3ce8634cf221d9f94068e5ebcb629f566d57b7ae956e778f70c1c42f99b65
@not_implemented_for('directed') @not_implemented_for('multigraph') def cn_soundarajan_hopcroft(G, ebunch=None, community='community'): "Count the number of common neighbors of all node pairs in ebunch\n using community information.\n\n For two nodes $u$ and $v$, this function computes the number of\n common neighbors and bonus one for each common neighbor belonging to\n the same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n |\\Gamma(u) \\cap \\Gamma(v)| + \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} f(w)\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.path_graph(3)\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 0\n >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 2) -> 2\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) cnbors = list(nx.common_neighbors(G, u, v)) neighbors = (sum(((_community(G, w, community) == Cu) for w in cnbors)) if (Cu == Cv) else 0) return (len(cnbors) + neighbors) return _apply_prediction(G, predict, ebunch)
Count the number of common neighbors of all node pairs in ebunch using community information. For two nodes $u$ and $v$, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as $u$ and $v$. Mathematically, .. math:: |\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w) where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Examples -------- >>> import networkx as nx >>> G = nx.path_graph(3) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 0 >>> G.nodes[2]['community'] = 0 >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p}') (0, 2) -> 2 References ---------- .. [1] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150
networkx/algorithms/link_prediction.py
cn_soundarajan_hopcroft
MingshanJia/networkx
10
python
@not_implemented_for('directed') @not_implemented_for('multigraph') def cn_soundarajan_hopcroft(G, ebunch=None, community='community'): "Count the number of common neighbors of all node pairs in ebunch\n using community information.\n\n For two nodes $u$ and $v$, this function computes the number of\n common neighbors and bonus one for each common neighbor belonging to\n the same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n |\\Gamma(u) \\cap \\Gamma(v)| + \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} f(w)\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.path_graph(3)\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 0\n >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 2) -> 2\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) cnbors = list(nx.common_neighbors(G, u, v)) neighbors = (sum(((_community(G, w, community) == Cu) for w in cnbors)) if (Cu == Cv) else 0) return (len(cnbors) + neighbors) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('directed') @not_implemented_for('multigraph') def cn_soundarajan_hopcroft(G, ebunch=None, community='community'): "Count the number of common neighbors of all node pairs in ebunch\n using community information.\n\n For two nodes $u$ and $v$, this function computes the number of\n common neighbors and bonus one for each common neighbor belonging to\n the same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n |\\Gamma(u) \\cap \\Gamma(v)| + \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} f(w)\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.path_graph(3)\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 0\n >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p}')\n (0, 2) -> 2\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) cnbors = list(nx.common_neighbors(G, u, v)) neighbors = (sum(((_community(G, w, community) == Cu) for w in cnbors)) if (Cu == Cv) else 0) return (len(cnbors) + neighbors) return _apply_prediction(G, predict, ebunch)<|docstring|>Count the number of common neighbors of all node pairs in ebunch using community information. For two nodes $u$ and $v$, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as $u$ and $v$. Mathematically, .. math:: |\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w) where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Examples -------- >>> import networkx as nx >>> G = nx.path_graph(3) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 0 >>> G.nodes[2]['community'] = 0 >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p}') (0, 2) -> 2 References ---------- .. [1] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150<|endoftext|>
c15aba16ba16812423b01adb1f75cfea2068f8b5d0814f3ed9e2c368d2cd1aa1
@not_implemented_for('directed') @not_implemented_for('multigraph') def ra_index_soundarajan_hopcroft(G, ebunch=None, community='community'): "Compute the resource allocation index of all node pairs in\n ebunch using community information.\n\n For two nodes $u$ and $v$, this function computes the resource\n allocation index considering only common neighbors belonging to the\n same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{f(w)}{|\\Gamma(w)|}\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 1\n >>> G.nodes[3]['community'] = 0\n >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 3) -> 0.50000000\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = nx.common_neighbors(G, u, v) return sum(((1 / G.degree(w)) for w in cnbors if (_community(G, w, community) == Cu))) return _apply_prediction(G, predict, ebunch)
Compute the resource allocation index of all node pairs in ebunch using community information. For two nodes $u$ and $v$, this function computes the resource allocation index considering only common neighbors belonging to the same community as $u$ and $v$. Mathematically, .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|} where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Examples -------- >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 0 >>> G.nodes[2]['community'] = 1 >>> G.nodes[3]['community'] = 0 >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 3) -> 0.50000000 References ---------- .. [1] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150
networkx/algorithms/link_prediction.py
ra_index_soundarajan_hopcroft
MingshanJia/networkx
10
python
@not_implemented_for('directed') @not_implemented_for('multigraph') def ra_index_soundarajan_hopcroft(G, ebunch=None, community='community'): "Compute the resource allocation index of all node pairs in\n ebunch using community information.\n\n For two nodes $u$ and $v$, this function computes the resource\n allocation index considering only common neighbors belonging to the\n same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{f(w)}{|\\Gamma(w)|}\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 1\n >>> G.nodes[3]['community'] = 0\n >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 3) -> 0.50000000\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = nx.common_neighbors(G, u, v) return sum(((1 / G.degree(w)) for w in cnbors if (_community(G, w, community) == Cu))) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('directed') @not_implemented_for('multigraph') def ra_index_soundarajan_hopcroft(G, ebunch=None, community='community'): "Compute the resource allocation index of all node pairs in\n ebunch using community information.\n\n For two nodes $u$ and $v$, this function computes the resource\n allocation index considering only common neighbors belonging to the\n same community as $u$ and $v$. Mathematically,\n\n .. math::\n\n \\sum_{w \\in \\Gamma(u) \\cap \\Gamma(v)} \\frac{f(w)}{|\\Gamma(w)|}\n\n where $f(w)$ equals 1 if $w$ belongs to the same community as $u$\n and $v$ or 0 otherwise and $\\Gamma(u)$ denotes the set of\n neighbors of $u$.\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The score will be computed for each pair of nodes given in the\n iterable. The pairs must be given as 2-tuples (u, v) where u\n and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their score.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 0\n >>> G.nodes[2]['community'] = 1\n >>> G.nodes[3]['community'] = 0\n >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 3) -> 0.50000000\n\n References\n ----------\n .. [1] Sucheta Soundarajan and John Hopcroft.\n Using community information to improve the precision of link\n prediction methods.\n In Proceedings of the 21st international conference companion on\n World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.\n http://doi.acm.org/10.1145/2187980.2188150\n " def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = nx.common_neighbors(G, u, v) return sum(((1 / G.degree(w)) for w in cnbors if (_community(G, w, community) == Cu))) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the resource allocation index of all node pairs in ebunch using community information. For two nodes $u$ and $v$, this function computes the resource allocation index considering only common neighbors belonging to the same community as $u$ and $v$. Mathematically, .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|} where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Examples -------- >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 0 >>> G.nodes[2]['community'] = 1 >>> G.nodes[3]['community'] = 0 >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 3) -> 0.50000000 References ---------- .. [1] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150<|endoftext|>
1920145d2565f44ae34c4a0673935a4b2f4c90dfbc0598e7ba3c9484a9f97b31
@not_implemented_for('directed') @not_implemented_for('multigraph') def within_inter_cluster(G, ebunch=None, delta=0.001, community='community'): "Compute the ratio of within- and inter-cluster common neighbors\n of all node pairs in ebunch.\n\n For two nodes `u` and `v`, if a common neighbor `w` belongs to the\n same community as them, `w` is considered as within-cluster common\n neighbor of `u` and `v`. Otherwise, it is considered as\n inter-cluster common neighbor of `u` and `v`. The ratio between the\n size of the set of within- and inter-cluster common neighbors is\n defined as the WIC measure. [1]_\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The WIC measure will be computed for each pair of nodes given in\n the iterable. The pairs must be given as 2-tuples (u, v) where\n u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n delta : float, optional (default = 0.001)\n Value to prevent division by zero in case there is no\n inter-cluster common neighbor between two nodes. See [1]_ for\n details. Default value: 0.001.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their WIC measure.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 1\n >>> G.nodes[2]['community'] = 0\n >>> G.nodes[3]['community'] = 0\n >>> G.nodes[4]['community'] = 0\n >>> preds = nx.within_inter_cluster(G, [(0, 4)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.99800200\n >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.33333333\n\n References\n ----------\n .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.\n Link prediction in complex networks based on cluster information.\n In Proceedings of the 21st Brazilian conference on Advances in\n Artificial Intelligence (SBIA'12)\n https://doi.org/10.1007/978-3-642-34459-6_10\n " if (delta <= 0): raise nx.NetworkXAlgorithmError('Delta must be greater than zero') def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = set(nx.common_neighbors(G, u, v)) within = {w for w in cnbors if (_community(G, w, community) == Cu)} inter = (cnbors - within) return (len(within) / (len(inter) + delta)) return _apply_prediction(G, predict, ebunch)
Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. For two nodes `u` and `v`, if a common neighbor `w` belongs to the same community as them, `w` is considered as within-cluster common neighbor of `u` and `v`. Otherwise, it is considered as inter-cluster common neighbor of `u` and `v`. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. [1]_ Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. delta : float, optional (default = 0.001) Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See [1]_ for details. Default value: 0.001. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their WIC measure. Examples -------- >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)]) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 1 >>> G.nodes[2]['community'] = 0 >>> G.nodes[3]['community'] = 0 >>> G.nodes[4]['community'] = 0 >>> preds = nx.within_inter_cluster(G, [(0, 4)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 4) -> 1.99800200 >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 4) -> 1.33333333 References ---------- .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA'12) https://doi.org/10.1007/978-3-642-34459-6_10
networkx/algorithms/link_prediction.py
within_inter_cluster
MingshanJia/networkx
10
python
@not_implemented_for('directed') @not_implemented_for('multigraph') def within_inter_cluster(G, ebunch=None, delta=0.001, community='community'): "Compute the ratio of within- and inter-cluster common neighbors\n of all node pairs in ebunch.\n\n For two nodes `u` and `v`, if a common neighbor `w` belongs to the\n same community as them, `w` is considered as within-cluster common\n neighbor of `u` and `v`. Otherwise, it is considered as\n inter-cluster common neighbor of `u` and `v`. The ratio between the\n size of the set of within- and inter-cluster common neighbors is\n defined as the WIC measure. [1]_\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The WIC measure will be computed for each pair of nodes given in\n the iterable. The pairs must be given as 2-tuples (u, v) where\n u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n delta : float, optional (default = 0.001)\n Value to prevent division by zero in case there is no\n inter-cluster common neighbor between two nodes. See [1]_ for\n details. Default value: 0.001.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their WIC measure.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 1\n >>> G.nodes[2]['community'] = 0\n >>> G.nodes[3]['community'] = 0\n >>> G.nodes[4]['community'] = 0\n >>> preds = nx.within_inter_cluster(G, [(0, 4)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.99800200\n >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.33333333\n\n References\n ----------\n .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.\n Link prediction in complex networks based on cluster information.\n In Proceedings of the 21st Brazilian conference on Advances in\n Artificial Intelligence (SBIA'12)\n https://doi.org/10.1007/978-3-642-34459-6_10\n " if (delta <= 0): raise nx.NetworkXAlgorithmError('Delta must be greater than zero') def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = set(nx.common_neighbors(G, u, v)) within = {w for w in cnbors if (_community(G, w, community) == Cu)} inter = (cnbors - within) return (len(within) / (len(inter) + delta)) return _apply_prediction(G, predict, ebunch)
@not_implemented_for('directed') @not_implemented_for('multigraph') def within_inter_cluster(G, ebunch=None, delta=0.001, community='community'): "Compute the ratio of within- and inter-cluster common neighbors\n of all node pairs in ebunch.\n\n For two nodes `u` and `v`, if a common neighbor `w` belongs to the\n same community as them, `w` is considered as within-cluster common\n neighbor of `u` and `v`. Otherwise, it is considered as\n inter-cluster common neighbor of `u` and `v`. The ratio between the\n size of the set of within- and inter-cluster common neighbors is\n defined as the WIC measure. [1]_\n\n Parameters\n ----------\n G : graph\n A NetworkX undirected graph.\n\n ebunch : iterable of node pairs, optional (default = None)\n The WIC measure will be computed for each pair of nodes given in\n the iterable. The pairs must be given as 2-tuples (u, v) where\n u and v are nodes in the graph. If ebunch is None then all\n non-existent edges in the graph will be used.\n Default value: None.\n\n delta : float, optional (default = 0.001)\n Value to prevent division by zero in case there is no\n inter-cluster common neighbor between two nodes. See [1]_ for\n details. Default value: 0.001.\n\n community : string, optional (default = 'community')\n Nodes attribute name containing the community information.\n G[u][community] identifies which community u belongs to. Each\n node belongs to at most one community. Default value: 'community'.\n\n Returns\n -------\n piter : iterator\n An iterator of 3-tuples in the form (u, v, p) where (u, v) is a\n pair of nodes and p is their WIC measure.\n\n Examples\n --------\n >>> import networkx as nx\n >>> G = nx.Graph()\n >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])\n >>> G.nodes[0]['community'] = 0\n >>> G.nodes[1]['community'] = 1\n >>> G.nodes[2]['community'] = 0\n >>> G.nodes[3]['community'] = 0\n >>> G.nodes[4]['community'] = 0\n >>> preds = nx.within_inter_cluster(G, [(0, 4)])\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.99800200\n >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)\n >>> for u, v, p in preds:\n ... print(f'({u}, {v}) -> {p:.8f}')\n (0, 4) -> 1.33333333\n\n References\n ----------\n .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.\n Link prediction in complex networks based on cluster information.\n In Proceedings of the 21st Brazilian conference on Advances in\n Artificial Intelligence (SBIA'12)\n https://doi.org/10.1007/978-3-642-34459-6_10\n " if (delta <= 0): raise nx.NetworkXAlgorithmError('Delta must be greater than zero') def predict(u, v): Cu = _community(G, u, community) Cv = _community(G, v, community) if (Cu != Cv): return 0 cnbors = set(nx.common_neighbors(G, u, v)) within = {w for w in cnbors if (_community(G, w, community) == Cu)} inter = (cnbors - within) return (len(within) / (len(inter) + delta)) return _apply_prediction(G, predict, ebunch)<|docstring|>Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. For two nodes `u` and `v`, if a common neighbor `w` belongs to the same community as them, `w` is considered as within-cluster common neighbor of `u` and `v`. Otherwise, it is considered as inter-cluster common neighbor of `u` and `v`. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. [1]_ Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. delta : float, optional (default = 0.001) Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See [1]_ for details. Default value: 0.001. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their WIC measure. Examples -------- >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)]) >>> G.nodes[0]['community'] = 0 >>> G.nodes[1]['community'] = 1 >>> G.nodes[2]['community'] = 0 >>> G.nodes[3]['community'] = 0 >>> G.nodes[4]['community'] = 0 >>> preds = nx.within_inter_cluster(G, [(0, 4)]) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 4) -> 1.99800200 >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5) >>> for u, v, p in preds: ... print(f'({u}, {v}) -> {p:.8f}') (0, 4) -> 1.33333333 References ---------- .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA'12) https://doi.org/10.1007/978-3-642-34459-6_10<|endoftext|>
9d46ef0d90016bcc1dea25b31782d23848010a69eb1f66505bdbbd6b739d653e
def _community(G, u, community): 'Get the community of the given node.' node_u = G.nodes[u] try: return node_u[community] except KeyError: raise nx.NetworkXAlgorithmError('No community information')
Get the community of the given node.
networkx/algorithms/link_prediction.py
_community
MingshanJia/networkx
10
python
def _community(G, u, community): node_u = G.nodes[u] try: return node_u[community] except KeyError: raise nx.NetworkXAlgorithmError('No community information')
def _community(G, u, community): node_u = G.nodes[u] try: return node_u[community] except KeyError: raise nx.NetworkXAlgorithmError('No community information')<|docstring|>Get the community of the given node.<|endoftext|>
8d2a8537bd1c96c993e71463028c93fb8f9e8b3a380841ced95b87584405013e
def chorale_to_inputs(chorale, voice_ids, index2notes, note2indexes): '\n :param chorale: music21 chorale\n :param voice_ids:\n :param index2notes:\n :param note2indexes:\n :return: (num_voices, time) matrix of indexes\n ' length = int((chorale.duration.quarterLength * SUBDIVISION)) inputs = [] instrument.partitionByInstrument(chorale) inputs.append(part_to_inputs(chorale.parts[1], length, index2notes[0], note2indexes[0])) inputs.append(roots_to_input(chorale, length, index2notes, note2indexes)) inputs.append(colors_to_input(chorale, length, index2notes, note2indexes)) output = np.array(inputs) assert (len(output.shape) == 2) return output
:param chorale: music21 chorale :param voice_ids: :param index2notes: :param note2indexes: :return: (num_voices, time) matrix of indexes
MusicChordExtraction/functions.py
chorale_to_inputs
GuiMarion/DeepJazz
1
python
def chorale_to_inputs(chorale, voice_ids, index2notes, note2indexes): '\n :param chorale: music21 chorale\n :param voice_ids:\n :param index2notes:\n :param note2indexes:\n :return: (num_voices, time) matrix of indexes\n ' length = int((chorale.duration.quarterLength * SUBDIVISION)) inputs = [] instrument.partitionByInstrument(chorale) inputs.append(part_to_inputs(chorale.parts[1], length, index2notes[0], note2indexes[0])) inputs.append(roots_to_input(chorale, length, index2notes, note2indexes)) inputs.append(colors_to_input(chorale, length, index2notes, note2indexes)) output = np.array(inputs) assert (len(output.shape) == 2) return output
def chorale_to_inputs(chorale, voice_ids, index2notes, note2indexes): '\n :param chorale: music21 chorale\n :param voice_ids:\n :param index2notes:\n :param note2indexes:\n :return: (num_voices, time) matrix of indexes\n ' length = int((chorale.duration.quarterLength * SUBDIVISION)) inputs = [] instrument.partitionByInstrument(chorale) inputs.append(part_to_inputs(chorale.parts[1], length, index2notes[0], note2indexes[0])) inputs.append(roots_to_input(chorale, length, index2notes, note2indexes)) inputs.append(colors_to_input(chorale, length, index2notes, note2indexes)) output = np.array(inputs) assert (len(output.shape) == 2) return output<|docstring|>:param chorale: music21 chorale :param voice_ids: :param index2notes: :param note2indexes: :return: (num_voices, time) matrix of indexes<|endoftext|>
e224a4031c612ae265af93558d07fa50b63e3ed993a7ed72a94f48fe218b5856
def _min_max_midi_pitch(note_strings): '\n\n :param note_strings:\n :return:\n ' all_notes = list(map((lambda note_string: standard_note(note_string)), note_strings)) min_pitch = min(list(map((lambda n: (n.pitch.midi if n.isNote else 128)), all_notes))) max_pitch = max(list(map((lambda n: (n.pitch.midi if n.isNote else 0)), all_notes))) return (min_pitch, max_pitch)
:param note_strings: :return:
MusicChordExtraction/functions.py
_min_max_midi_pitch
GuiMarion/DeepJazz
1
python
def _min_max_midi_pitch(note_strings): '\n\n :param note_strings:\n :return:\n ' all_notes = list(map((lambda note_string: standard_note(note_string)), note_strings)) min_pitch = min(list(map((lambda n: (n.pitch.midi if n.isNote else 128)), all_notes))) max_pitch = max(list(map((lambda n: (n.pitch.midi if n.isNote else 0)), all_notes))) return (min_pitch, max_pitch)
def _min_max_midi_pitch(note_strings): '\n\n :param note_strings:\n :return:\n ' all_notes = list(map((lambda note_string: standard_note(note_string)), note_strings)) min_pitch = min(list(map((lambda n: (n.pitch.midi if n.isNote else 128)), all_notes))) max_pitch = max(list(map((lambda n: (n.pitch.midi if n.isNote else 0)), all_notes))) return (min_pitch, max_pitch)<|docstring|>:param note_strings: :return:<|endoftext|>
305a75e30a1729c92a910e955bcdb2e3896a72f7669c71a0bbf08302e7aabb9b
def create_index_dicts(chorale_list, voice_ids=voice_ids_default): '\n Returns two lists (index2notes, note2indexes) of size num_voices containing dictionaries\n :param chorale_list:\n :param voice_ids:\n :param min_pitches:\n :param max_pitches:\n :return:\n ' notes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G-', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] voice_ranges = [] MelodyRange = [] MelodyRange.append('rest') MelodyRange.append(SLUR_SYMBOL) MelodyRange.append(START_SYMBOL) MelodyRange.append(END_SYMBOL) r = getRange(chorale_list) for i in range(int(r[0][(- 1)]), (int(r[1][(- 1)]) + 1)): for elem in notes: MelodyRange.append((elem + str(i))) voice_ranges.append(MelodyRange) chordsRootRange = [] chordsRootRange0 = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G_', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] chordsRootRange.append('rest') chordsRootRange.append(SLUR_SYMBOL) chordsRootRange.append(START_SYMBOL) chordsRootRange.append(END_SYMBOL) for elem in chordsRootRange0: chordsRootRange.append(elem) voice_ranges.append(chordsRootRange) chordsColorRange = [] chordsColorRange0 = ['maj', 'min', 'min#5', 'dim', '+', 'maj7', 'min(maj7)', 'min7', '7', '7sus4', '7b5', '7+', 'dim7', 'm7b5', '9', 'm9', 'min6', '6', 'maj9', '7b9', '7b5b9', '9', 'sus49', '#59', '7#5b9', '#5#9', '7#9', '713', '7b5#9', 'min11', '11', '7alt', '69', 'min69', '9#11', '7#11', '7sus', '7sus43', '13'] chordsColorRange.append('rest') chordsColorRange.append(SLUR_SYMBOL) chordsColorRange.append(START_SYMBOL) chordsColorRange.append(END_SYMBOL) for elem in chordsColorRange0: chordsColorRange.append(elem) voice_ranges.append(chordsColorRange) index2notes = [] note2indexes = [] for (voice_index, _) in enumerate(voice_ids): l = list(voice_ranges[voice_index]) index2note = {} note2index = {} for (k, n) in enumerate(l): index2note.update({k: n}) note2index.update({n: k}) index2notes.append(index2note) note2indexes.append(note2index) return (index2notes, note2indexes)
Returns two lists (index2notes, note2indexes) of size num_voices containing dictionaries :param chorale_list: :param voice_ids: :param min_pitches: :param max_pitches: :return:
MusicChordExtraction/functions.py
create_index_dicts
GuiMarion/DeepJazz
1
python
def create_index_dicts(chorale_list, voice_ids=voice_ids_default): '\n Returns two lists (index2notes, note2indexes) of size num_voices containing dictionaries\n :param chorale_list:\n :param voice_ids:\n :param min_pitches:\n :param max_pitches:\n :return:\n ' notes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G-', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] voice_ranges = [] MelodyRange = [] MelodyRange.append('rest') MelodyRange.append(SLUR_SYMBOL) MelodyRange.append(START_SYMBOL) MelodyRange.append(END_SYMBOL) r = getRange(chorale_list) for i in range(int(r[0][(- 1)]), (int(r[1][(- 1)]) + 1)): for elem in notes: MelodyRange.append((elem + str(i))) voice_ranges.append(MelodyRange) chordsRootRange = [] chordsRootRange0 = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G_', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] chordsRootRange.append('rest') chordsRootRange.append(SLUR_SYMBOL) chordsRootRange.append(START_SYMBOL) chordsRootRange.append(END_SYMBOL) for elem in chordsRootRange0: chordsRootRange.append(elem) voice_ranges.append(chordsRootRange) chordsColorRange = [] chordsColorRange0 = ['maj', 'min', 'min#5', 'dim', '+', 'maj7', 'min(maj7)', 'min7', '7', '7sus4', '7b5', '7+', 'dim7', 'm7b5', '9', 'm9', 'min6', '6', 'maj9', '7b9', '7b5b9', '9', 'sus49', '#59', '7#5b9', '#5#9', '7#9', '713', '7b5#9', 'min11', '11', '7alt', '69', 'min69', '9#11', '7#11', '7sus', '7sus43', '13'] chordsColorRange.append('rest') chordsColorRange.append(SLUR_SYMBOL) chordsColorRange.append(START_SYMBOL) chordsColorRange.append(END_SYMBOL) for elem in chordsColorRange0: chordsColorRange.append(elem) voice_ranges.append(chordsColorRange) index2notes = [] note2indexes = [] for (voice_index, _) in enumerate(voice_ids): l = list(voice_ranges[voice_index]) index2note = {} note2index = {} for (k, n) in enumerate(l): index2note.update({k: n}) note2index.update({n: k}) index2notes.append(index2note) note2indexes.append(note2index) return (index2notes, note2indexes)
def create_index_dicts(chorale_list, voice_ids=voice_ids_default): '\n Returns two lists (index2notes, note2indexes) of size num_voices containing dictionaries\n :param chorale_list:\n :param voice_ids:\n :param min_pitches:\n :param max_pitches:\n :return:\n ' notes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G-', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] voice_ranges = [] MelodyRange = [] MelodyRange.append('rest') MelodyRange.append(SLUR_SYMBOL) MelodyRange.append(START_SYMBOL) MelodyRange.append(END_SYMBOL) r = getRange(chorale_list) for i in range(int(r[0][(- 1)]), (int(r[1][(- 1)]) + 1)): for elem in notes: MelodyRange.append((elem + str(i))) voice_ranges.append(MelodyRange) chordsRootRange = [] chordsRootRange0 = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'A-', 'B-', 'C-', 'D-', 'E-', 'F-', 'G_', 'A#', 'B#', 'C#', 'D#', 'E#', 'F#', 'G#'] chordsRootRange.append('rest') chordsRootRange.append(SLUR_SYMBOL) chordsRootRange.append(START_SYMBOL) chordsRootRange.append(END_SYMBOL) for elem in chordsRootRange0: chordsRootRange.append(elem) voice_ranges.append(chordsRootRange) chordsColorRange = [] chordsColorRange0 = ['maj', 'min', 'min#5', 'dim', '+', 'maj7', 'min(maj7)', 'min7', '7', '7sus4', '7b5', '7+', 'dim7', 'm7b5', '9', 'm9', 'min6', '6', 'maj9', '7b9', '7b5b9', '9', 'sus49', '#59', '7#5b9', '#5#9', '7#9', '713', '7b5#9', 'min11', '11', '7alt', '69', 'min69', '9#11', '7#11', '7sus', '7sus43', '13'] chordsColorRange.append('rest') chordsColorRange.append(SLUR_SYMBOL) chordsColorRange.append(START_SYMBOL) chordsColorRange.append(END_SYMBOL) for elem in chordsColorRange0: chordsColorRange.append(elem) voice_ranges.append(chordsColorRange) index2notes = [] note2indexes = [] for (voice_index, _) in enumerate(voice_ids): l = list(voice_ranges[voice_index]) index2note = {} note2index = {} for (k, n) in enumerate(l): index2note.update({k: n}) note2index.update({n: k}) index2notes.append(index2note) note2indexes.append(note2index) return (index2notes, note2indexes)<|docstring|>Returns two lists (index2notes, note2indexes) of size num_voices containing dictionaries :param chorale_list: :param voice_ids: :param min_pitches: :param max_pitches: :return:<|endoftext|>
4b208bb168c50537cabc11d0a4ea19d2b226ec9e400266a8ceb24ad45d729bf0
def compute_min_max_pitches(file_list, voices=[0]): '\n Removes wrong chorales\n :param file_list:\n :type voices: list containing voices ids\n :returns: two lists min_p, max_p containing min and max pitches for each voice\n ' (min_p, max_p) = (([128] * len(voices)), ([0] * len(voices))) to_remove = [] for file_name in file_list: choral = converter.parse(file_name) for (k, voice_id) in enumerate(voices): try: c = choral.parts[voice_id] l = list(map((lambda n: n.pitch.midi), c.flat.notes)) min_p[k] = min(min_p[k], min(l)) max_p[k] = max(max_p[k], max(l)) except AttributeError: to_remove.append(file_name) for file_name in set(to_remove): file_list.remove(file_name) return (np.array(min_p), np.array(max_p))
Removes wrong chorales :param file_list: :type voices: list containing voices ids :returns: two lists min_p, max_p containing min and max pitches for each voice
MusicChordExtraction/functions.py
compute_min_max_pitches
GuiMarion/DeepJazz
1
python
def compute_min_max_pitches(file_list, voices=[0]): '\n Removes wrong chorales\n :param file_list:\n :type voices: list containing voices ids\n :returns: two lists min_p, max_p containing min and max pitches for each voice\n ' (min_p, max_p) = (([128] * len(voices)), ([0] * len(voices))) to_remove = [] for file_name in file_list: choral = converter.parse(file_name) for (k, voice_id) in enumerate(voices): try: c = choral.parts[voice_id] l = list(map((lambda n: n.pitch.midi), c.flat.notes)) min_p[k] = min(min_p[k], min(l)) max_p[k] = max(max_p[k], max(l)) except AttributeError: to_remove.append(file_name) for file_name in set(to_remove): file_list.remove(file_name) return (np.array(min_p), np.array(max_p))
def compute_min_max_pitches(file_list, voices=[0]): '\n Removes wrong chorales\n :param file_list:\n :type voices: list containing voices ids\n :returns: two lists min_p, max_p containing min and max pitches for each voice\n ' (min_p, max_p) = (([128] * len(voices)), ([0] * len(voices))) to_remove = [] for file_name in file_list: choral = converter.parse(file_name) for (k, voice_id) in enumerate(voices): try: c = choral.parts[voice_id] l = list(map((lambda n: n.pitch.midi), c.flat.notes)) min_p[k] = min(min_p[k], min(l)) max_p[k] = max(max_p[k], max(l)) except AttributeError: to_remove.append(file_name) for file_name in set(to_remove): file_list.remove(file_name) return (np.array(min_p), np.array(max_p))<|docstring|>Removes wrong chorales :param file_list: :type voices: list containing voices ids :returns: two lists min_p, max_p containing min and max pitches for each voice<|endoftext|>
621665a04ee8e3a0164c77b49553562bd32d89234089d269fcc0e9d3aeaad4a6
def filter_file_list(file_list, num_voices=3): '\n Only retain num_voices voices chorales\n ' l = [] for (k, file_name) in enumerate(file_list): c = converter.parse(file_name) print(k, file_name, ' ', len(c.parts)) if (len(c.parts) == num_voices): l.append(file_name) return l
Only retain num_voices voices chorales
MusicChordExtraction/functions.py
filter_file_list
GuiMarion/DeepJazz
1
python
def filter_file_list(file_list, num_voices=3): '\n \n ' l = [] for (k, file_name) in enumerate(file_list): c = converter.parse(file_name) print(k, file_name, ' ', len(c.parts)) if (len(c.parts) == num_voices): l.append(file_name) return l
def filter_file_list(file_list, num_voices=3): '\n \n ' l = [] for (k, file_name) in enumerate(file_list): c = converter.parse(file_name) print(k, file_name, ' ', len(c.parts)) if (len(c.parts) == num_voices): l.append(file_name) return l<|docstring|>Only retain num_voices voices chorales<|endoftext|>
594ee048ae4ef9f1dd2181efb162d0539d5b80444b35a68084572ce559140582
def part_to_inputs(part, length, index2note, note2index): '\n Can modify note2index and index2note!\n :param part:\n :param note2index:\n :param index2note:\n :return:\n ' list_notes = part.flat.notes list_note_strings = [n.nameWithOctave for n in list_notes] for note_name in list_note_strings: if (note_name not in index2note.values()): print('___________') print('Illegaly adding entries to indexes, should never append,\ncheck create_index_dicts function. It should be missing tis note : ') print(note_name) print('___________') print() new_index = len(index2note) index2note.update({new_index: note_name}) note2index.update({note_name: new_index}) j = 0 i = 0 t = np.zeros((length, 2)) is_articulated = True list_notes_and_rests = part.flat.notesAndRests num_notes = len(list_notes_and_rests) while (i < length): if (j < (num_notes - 1)): if (list_notes_and_rests[(j + 1)].offset > (i / SUBDIVISION)): t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False else: j += 1 is_articulated = True else: t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False return list(map((lambda pa: (pa[0] if pa[1] else note2index[SLUR_SYMBOL])), t))
Can modify note2index and index2note! :param part: :param note2index: :param index2note: :return:
MusicChordExtraction/functions.py
part_to_inputs
GuiMarion/DeepJazz
1
python
def part_to_inputs(part, length, index2note, note2index): '\n Can modify note2index and index2note!\n :param part:\n :param note2index:\n :param index2note:\n :return:\n ' list_notes = part.flat.notes list_note_strings = [n.nameWithOctave for n in list_notes] for note_name in list_note_strings: if (note_name not in index2note.values()): print('___________') print('Illegaly adding entries to indexes, should never append,\ncheck create_index_dicts function. It should be missing tis note : ') print(note_name) print('___________') print() new_index = len(index2note) index2note.update({new_index: note_name}) note2index.update({note_name: new_index}) j = 0 i = 0 t = np.zeros((length, 2)) is_articulated = True list_notes_and_rests = part.flat.notesAndRests num_notes = len(list_notes_and_rests) while (i < length): if (j < (num_notes - 1)): if (list_notes_and_rests[(j + 1)].offset > (i / SUBDIVISION)): t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False else: j += 1 is_articulated = True else: t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False return list(map((lambda pa: (pa[0] if pa[1] else note2index[SLUR_SYMBOL])), t))
def part_to_inputs(part, length, index2note, note2index): '\n Can modify note2index and index2note!\n :param part:\n :param note2index:\n :param index2note:\n :return:\n ' list_notes = part.flat.notes list_note_strings = [n.nameWithOctave for n in list_notes] for note_name in list_note_strings: if (note_name not in index2note.values()): print('___________') print('Illegaly adding entries to indexes, should never append,\ncheck create_index_dicts function. It should be missing tis note : ') print(note_name) print('___________') print() new_index = len(index2note) index2note.update({new_index: note_name}) note2index.update({note_name: new_index}) j = 0 i = 0 t = np.zeros((length, 2)) is_articulated = True list_notes_and_rests = part.flat.notesAndRests num_notes = len(list_notes_and_rests) while (i < length): if (j < (num_notes - 1)): if (list_notes_and_rests[(j + 1)].offset > (i / SUBDIVISION)): t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False else: j += 1 is_articulated = True else: t[(i, :)] = [note2index[standard_name(list_notes_and_rests[j])], is_articulated] i += 1 is_articulated = False return list(map((lambda pa: (pa[0] if pa[1] else note2index[SLUR_SYMBOL])), t))<|docstring|>Can modify note2index and index2note! :param part: :param note2index: :param index2note: :return:<|endoftext|>
5b231e95fd274d3f5022481fc32cabe06a86d1313d5317a5e68a021ae8c7ee70
def log(msg, *args, dialog=False, error=False, **kwargs): '\n Generate a message to the console and optionally as either a message or\n error dialog. The message will be formatted and dedented before being\n displayed, and will be prefixed with its origin.\n ' msg = textwrap.dedent(msg.format(*args, **kwargs)).strip() if error: print('my_package error:') return sublime.error_message(msg) for line in msg.splitlines(): print('my_package: {msg}'.format(msg=line)) if dialog: sublime.message_dialog(msg)
Generate a message to the console and optionally as either a message or error dialog. The message will be formatted and dedented before being displayed, and will be prefixed with its origin.
package_bootstrap/core/bootstrapper.py
log
ginanjarn/SublimeScraps
61
python
def log(msg, *args, dialog=False, error=False, **kwargs): '\n Generate a message to the console and optionally as either a message or\n error dialog. The message will be formatted and dedented before being\n displayed, and will be prefixed with its origin.\n ' msg = textwrap.dedent(msg.format(*args, **kwargs)).strip() if error: print('my_package error:') return sublime.error_message(msg) for line in msg.splitlines(): print('my_package: {msg}'.format(msg=line)) if dialog: sublime.message_dialog(msg)
def log(msg, *args, dialog=False, error=False, **kwargs): '\n Generate a message to the console and optionally as either a message or\n error dialog. The message will be formatted and dedented before being\n displayed, and will be prefixed with its origin.\n ' msg = textwrap.dedent(msg.format(*args, **kwargs)).strip() if error: print('my_package error:') return sublime.error_message(msg) for line in msg.splitlines(): print('my_package: {msg}'.format(msg=line)) if dialog: sublime.message_dialog(msg)<|docstring|>Generate a message to the console and optionally as either a message or error dialog. The message will be formatted and dedented before being displayed, and will be prefixed with its origin.<|endoftext|>
de7699ba37717f5014af3ebefe3197f2a996ec5d09c171b21412d346eeee02bc
def enable_package(self, reenable_resources): '\n Enables the system bootstrap package (if it exists) by ensuring that\n it is not in the list of ignored packages and then restoring any\n resources that were unloaded back to the views that were using them.\n ' ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg in ignored_packages): ignored_packages.remove(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages) if reenable_resources: sublime.set_timeout_async((lambda : self.enable_resources()))
Enables the system bootstrap package (if it exists) by ensuring that it is not in the list of ignored packages and then restoring any resources that were unloaded back to the views that were using them.
package_bootstrap/core/bootstrapper.py
enable_package
ginanjarn/SublimeScraps
61
python
def enable_package(self, reenable_resources): '\n Enables the system bootstrap package (if it exists) by ensuring that\n it is not in the list of ignored packages and then restoring any\n resources that were unloaded back to the views that were using them.\n ' ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg in ignored_packages): ignored_packages.remove(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages) if reenable_resources: sublime.set_timeout_async((lambda : self.enable_resources()))
def enable_package(self, reenable_resources): '\n Enables the system bootstrap package (if it exists) by ensuring that\n it is not in the list of ignored packages and then restoring any\n resources that were unloaded back to the views that were using them.\n ' ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg in ignored_packages): ignored_packages.remove(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages) if reenable_resources: sublime.set_timeout_async((lambda : self.enable_resources()))<|docstring|>Enables the system bootstrap package (if it exists) by ensuring that it is not in the list of ignored packages and then restoring any resources that were unloaded back to the views that were using them.<|endoftext|>
dbc944e039b05f147d38b785c3af9292b9c77a17605bd55664eeeebde0737a52
def disable_package(self): '\n Disables the system bootstrap package (if it exists) by ensuring that\n none of the resources that it provides are currently in use and then\n adding it to the list of ignored packages so that Sublime will unload\n it.\n ' self.disable_resources() ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg not in ignored_packages): ignored_packages.append(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages)
Disables the system bootstrap package (if it exists) by ensuring that none of the resources that it provides are currently in use and then adding it to the list of ignored packages so that Sublime will unload it.
package_bootstrap/core/bootstrapper.py
disable_package
ginanjarn/SublimeScraps
61
python
def disable_package(self): '\n Disables the system bootstrap package (if it exists) by ensuring that\n none of the resources that it provides are currently in use and then\n adding it to the list of ignored packages so that Sublime will unload\n it.\n ' self.disable_resources() ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg not in ignored_packages): ignored_packages.append(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages)
def disable_package(self): '\n Disables the system bootstrap package (if it exists) by ensuring that\n none of the resources that it provides are currently in use and then\n adding it to the list of ignored packages so that Sublime will unload\n it.\n ' self.disable_resources() ignored_packages = self.settings.get('ignored_packages', []) if (bootstrap_pkg not in ignored_packages): ignored_packages.append(bootstrap_pkg) self.settings.set('ignored_packages', ignored_packages)<|docstring|>Disables the system bootstrap package (if it exists) by ensuring that none of the resources that it provides are currently in use and then adding it to the list of ignored packages so that Sublime will unload it.<|endoftext|>
fe89e9a757e3b0613c390e91093410ae00433f29fe30ba3e2e77df7bd1065bf6
def enable_resources(self): '\n Enables all resources being provided by the system boostrap package by\n restoring the state that was saved when the resources were disabled.\n ' for window in sublime.windows(): for view in window.views(): s = view.settings() old_syntax = s.get('_mp_boot_syntax', None) if (old_syntax is not None): s.set('syntax', old_syntax) s.erase('_mp_boot_syntax')
Enables all resources being provided by the system boostrap package by restoring the state that was saved when the resources were disabled.
package_bootstrap/core/bootstrapper.py
enable_resources
ginanjarn/SublimeScraps
61
python
def enable_resources(self): '\n Enables all resources being provided by the system boostrap package by\n restoring the state that was saved when the resources were disabled.\n ' for window in sublime.windows(): for view in window.views(): s = view.settings() old_syntax = s.get('_mp_boot_syntax', None) if (old_syntax is not None): s.set('syntax', old_syntax) s.erase('_mp_boot_syntax')
def enable_resources(self): '\n Enables all resources being provided by the system boostrap package by\n restoring the state that was saved when the resources were disabled.\n ' for window in sublime.windows(): for view in window.views(): s = view.settings() old_syntax = s.get('_mp_boot_syntax', None) if (old_syntax is not None): s.set('syntax', old_syntax) s.erase('_mp_boot_syntax')<|docstring|>Enables all resources being provided by the system boostrap package by restoring the state that was saved when the resources were disabled.<|endoftext|>
13cf899443517f8bc98e3628153df8bc78442f20a2c10f745ca757fb73a6b77d
def disable_resources(self): '\n Disables all resources being provided by the system bootstrap package\n by saving the state of items that are using them and then reverting\n them to temporary defaults.\n ' prefix = 'Packages/{pkg}/'.format(pkg=bootstrap_pkg) for window in sublime.windows(): for view in window.views(): s = view.settings() syntax = s.get('syntax') if syntax.startswith(prefix): s.set('_mp_boot_syntax', syntax) s.set('syntax', 'Packages/Text/Plain text.tmLanguage')
Disables all resources being provided by the system bootstrap package by saving the state of items that are using them and then reverting them to temporary defaults.
package_bootstrap/core/bootstrapper.py
disable_resources
ginanjarn/SublimeScraps
61
python
def disable_resources(self): '\n Disables all resources being provided by the system bootstrap package\n by saving the state of items that are using them and then reverting\n them to temporary defaults.\n ' prefix = 'Packages/{pkg}/'.format(pkg=bootstrap_pkg) for window in sublime.windows(): for view in window.views(): s = view.settings() syntax = s.get('syntax') if syntax.startswith(prefix): s.set('_mp_boot_syntax', syntax) s.set('syntax', 'Packages/Text/Plain text.tmLanguage')
def disable_resources(self): '\n Disables all resources being provided by the system bootstrap package\n by saving the state of items that are using them and then reverting\n them to temporary defaults.\n ' prefix = 'Packages/{pkg}/'.format(pkg=bootstrap_pkg) for window in sublime.windows(): for view in window.views(): s = view.settings() syntax = s.get('syntax') if syntax.startswith(prefix): s.set('_mp_boot_syntax', syntax) s.set('syntax', 'Packages/Text/Plain text.tmLanguage')<|docstring|>Disables all resources being provided by the system bootstrap package by saving the state of items that are using them and then reverting them to temporary defaults.<|endoftext|>
44bca1c4440f7aa4157e3f675860262a7b5e327861fd1a20d82008c9b0da5f00
def create_boot_loader(self, stub_loader_name): '\n Given the name of a file containing a stub system bootstrap loader,\n return the body of a loader that contains the version number of the\n core dependency.\n ' try: from package_bootstrap import version as ver_info with codecs.open(stub_loader_name, 'r', 'utf-8') as file: content = file.read() return re.sub('^__core_version_tuple\\s+=\\s+\\(.*\\)$', '__core_version_tuple = {version}'.format(version=str(ver_info())), content, count=1, flags=re.MULTILINE) except: log('Bootstrap error: Unable to create bootloader') raise
Given the name of a file containing a stub system bootstrap loader, return the body of a loader that contains the version number of the core dependency.
package_bootstrap/core/bootstrapper.py
create_boot_loader
ginanjarn/SublimeScraps
61
python
def create_boot_loader(self, stub_loader_name): '\n Given the name of a file containing a stub system bootstrap loader,\n return the body of a loader that contains the version number of the\n core dependency.\n ' try: from package_bootstrap import version as ver_info with codecs.open(stub_loader_name, 'r', 'utf-8') as file: content = file.read() return re.sub('^__core_version_tuple\\s+=\\s+\\(.*\\)$', '__core_version_tuple = {version}'.format(version=str(ver_info())), content, count=1, flags=re.MULTILINE) except: log('Bootstrap error: Unable to create bootloader') raise
def create_boot_loader(self, stub_loader_name): '\n Given the name of a file containing a stub system bootstrap loader,\n return the body of a loader that contains the version number of the\n core dependency.\n ' try: from package_bootstrap import version as ver_info with codecs.open(stub_loader_name, 'r', 'utf-8') as file: content = file.read() return re.sub('^__core_version_tuple\\s+=\\s+\\(.*\\)$', '__core_version_tuple = {version}'.format(version=str(ver_info())), content, count=1, flags=re.MULTILINE) except: log('Bootstrap error: Unable to create bootloader') raise<|docstring|>Given the name of a file containing a stub system bootstrap loader, return the body of a loader that contains the version number of the core dependency.<|endoftext|>
46426d421200a42a9668cd80db1f74968044796cb5c21c6778892b6f009d05b4
def create_bootstrap_package(self, package, res_path): '\n Perform the task of actually creating the system bootstrap package from\n files in the given resource folder into the provided package.\n ' try: success = True boot_file = '{file}.py'.format(file=bootloader) with ZipFile(package, 'w') as zFile: for (path, dirs, files) in os.walk(res_path): rPath = (relpath(path, res_path) if (path != res_path) else '') for file in files: real_file = join(res_path, path, file) archive_file = join(rPath, file) if archive_file.endswith('.sublime-ignored'): archive_file = archive_file[:(- len('.sublime-ignored'))] if (archive_file == boot_file): content = self.create_boot_loader(real_file) zFile.writestr(archive_file, content) else: zFile.write(real_file, archive_file) except Exception as err: success = False log('Bootstrap error: {reason}', reason=str(err)) if os.path.exists(package): os.remove(package) return success
Perform the task of actually creating the system bootstrap package from files in the given resource folder into the provided package.
package_bootstrap/core/bootstrapper.py
create_bootstrap_package
ginanjarn/SublimeScraps
61
python
def create_bootstrap_package(self, package, res_path): '\n Perform the task of actually creating the system bootstrap package from\n files in the given resource folder into the provided package.\n ' try: success = True boot_file = '{file}.py'.format(file=bootloader) with ZipFile(package, 'w') as zFile: for (path, dirs, files) in os.walk(res_path): rPath = (relpath(path, res_path) if (path != res_path) else ) for file in files: real_file = join(res_path, path, file) archive_file = join(rPath, file) if archive_file.endswith('.sublime-ignored'): archive_file = archive_file[:(- len('.sublime-ignored'))] if (archive_file == boot_file): content = self.create_boot_loader(real_file) zFile.writestr(archive_file, content) else: zFile.write(real_file, archive_file) except Exception as err: success = False log('Bootstrap error: {reason}', reason=str(err)) if os.path.exists(package): os.remove(package) return success
def create_bootstrap_package(self, package, res_path): '\n Perform the task of actually creating the system bootstrap package from\n files in the given resource folder into the provided package.\n ' try: success = True boot_file = '{file}.py'.format(file=bootloader) with ZipFile(package, 'w') as zFile: for (path, dirs, files) in os.walk(res_path): rPath = (relpath(path, res_path) if (path != res_path) else ) for file in files: real_file = join(res_path, path, file) archive_file = join(rPath, file) if archive_file.endswith('.sublime-ignored'): archive_file = archive_file[:(- len('.sublime-ignored'))] if (archive_file == boot_file): content = self.create_boot_loader(real_file) zFile.writestr(archive_file, content) else: zFile.write(real_file, archive_file) except Exception as err: success = False log('Bootstrap error: {reason}', reason=str(err)) if os.path.exists(package): os.remove(package) return success<|docstring|>Perform the task of actually creating the system bootstrap package from files in the given resource folder into the provided package.<|endoftext|>
09f0593fceef9dc75b57119b3dd3eeb36836ef0f4f3c03f9f0d29a5542bbd437
def run(self): '\n Creates or updates the system bootstrap package by packaging up the\n contents of the resource directory.\n ' self.disable_package() res_path = normpath(join(dirname(__file__), '..', bootstrap_pkg)) package = join(sublime.installed_packages_path(), (bootstrap_pkg + '.sublime-package')) prefix = os.path.commonprefix([res_path, package]) log('Bootstraping {path} to {pkg}', path=res_path[len(prefix):], pkg=package[len(prefix):]) pkg_existed = os.path.isfile(package) success = self.create_bootstrap_package(package, res_path) self.enable_package(success) if (not success): return log('\n An error was encountered while updating my_package.\n\n Please check the console to see what went wrong.\n my_package will not be available until the problem\n is resolved.\n ', error=True) if pkg_existed: log('\n my_package has been updated!\n\n In order to complete the update, restart Sublime\n Text.\n ', dialog=True) else: log('\n my_package has been installed!\n ', dialog=True)
Creates or updates the system bootstrap package by packaging up the contents of the resource directory.
package_bootstrap/core/bootstrapper.py
run
ginanjarn/SublimeScraps
61
python
def run(self): '\n Creates or updates the system bootstrap package by packaging up the\n contents of the resource directory.\n ' self.disable_package() res_path = normpath(join(dirname(__file__), '..', bootstrap_pkg)) package = join(sublime.installed_packages_path(), (bootstrap_pkg + '.sublime-package')) prefix = os.path.commonprefix([res_path, package]) log('Bootstraping {path} to {pkg}', path=res_path[len(prefix):], pkg=package[len(prefix):]) pkg_existed = os.path.isfile(package) success = self.create_bootstrap_package(package, res_path) self.enable_package(success) if (not success): return log('\n An error was encountered while updating my_package.\n\n Please check the console to see what went wrong.\n my_package will not be available until the problem\n is resolved.\n ', error=True) if pkg_existed: log('\n my_package has been updated!\n\n In order to complete the update, restart Sublime\n Text.\n ', dialog=True) else: log('\n my_package has been installed!\n ', dialog=True)
def run(self): '\n Creates or updates the system bootstrap package by packaging up the\n contents of the resource directory.\n ' self.disable_package() res_path = normpath(join(dirname(__file__), '..', bootstrap_pkg)) package = join(sublime.installed_packages_path(), (bootstrap_pkg + '.sublime-package')) prefix = os.path.commonprefix([res_path, package]) log('Bootstraping {path} to {pkg}', path=res_path[len(prefix):], pkg=package[len(prefix):]) pkg_existed = os.path.isfile(package) success = self.create_bootstrap_package(package, res_path) self.enable_package(success) if (not success): return log('\n An error was encountered while updating my_package.\n\n Please check the console to see what went wrong.\n my_package will not be available until the problem\n is resolved.\n ', error=True) if pkg_existed: log('\n my_package has been updated!\n\n In order to complete the update, restart Sublime\n Text.\n ', dialog=True) else: log('\n my_package has been installed!\n ', dialog=True)<|docstring|>Creates or updates the system bootstrap package by packaging up the contents of the resource directory.<|endoftext|>
079abe75279801dd0f14f29fa39206e1e31ffd135890d2e8fbfa3958412bbbc6
def nice_print(message, colour=None, indent=0, debug=False): '\n Just prints things in colour with consistent indentation\n ' if (debug and (not args.debug)): return if (colour == None): if ('OK' in message): colour = 'green' elif ('ERROR' in message): colour = 'red' print(colored('{0}{1}'.format(((' ' * indent) * 2), message), colour))
Just prints things in colour with consistent indentation
scripts/streamcleaner.py
nice_print
bitsbb01/m3u8_creator
31
python
def nice_print(message, colour=None, indent=0, debug=False): '\n \n ' if (debug and (not args.debug)): return if (colour == None): if ('OK' in message): colour = 'green' elif ('ERROR' in message): colour = 'red' print(colored('{0}{1}'.format(((' ' * indent) * 2), message), colour))
def nice_print(message, colour=None, indent=0, debug=False): '\n \n ' if (debug and (not args.debug)): return if (colour == None): if ('OK' in message): colour = 'green' elif ('ERROR' in message): colour = 'red' print(colored('{0}{1}'.format(((' ' * indent) * 2), message), colour))<|docstring|>Just prints things in colour with consistent indentation<|endoftext|>
b6de3cc46c8d4b1148f3c0afb1ed0326964d913f68d1eebe7a4057da055d0df3
def verify_video_link(url, timeout, indent=1): '\n Verifies a video stream link works\n ' nice_print('Loading video: {0}'.format(url), indent=indent, debug=True) indent = (indent + 1) parsed_url = urlparse(url) if (not parsed_url.path.endswith('.ts')): nice_print('ERROR unsupported video file: {0}'.format(url)) return False try: r = requests.head(url, timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading video URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) if (r.status_code != 200): nice_print('ERROR {0} video URL'.format(r.status_code, indent=indent, debug=True)) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True else: nice_print('ERROR unknown URL: {0}'.format(url, indent=indent, debug=True)) return False
Verifies a video stream link works
scripts/streamcleaner.py
verify_video_link
bitsbb01/m3u8_creator
31
python
def verify_video_link(url, timeout, indent=1): '\n \n ' nice_print('Loading video: {0}'.format(url), indent=indent, debug=True) indent = (indent + 1) parsed_url = urlparse(url) if (not parsed_url.path.endswith('.ts')): nice_print('ERROR unsupported video file: {0}'.format(url)) return False try: r = requests.head(url, timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading video URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) if (r.status_code != 200): nice_print('ERROR {0} video URL'.format(r.status_code, indent=indent, debug=True)) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True else: nice_print('ERROR unknown URL: {0}'.format(url, indent=indent, debug=True)) return False
def verify_video_link(url, timeout, indent=1): '\n \n ' nice_print('Loading video: {0}'.format(url), indent=indent, debug=True) indent = (indent + 1) parsed_url = urlparse(url) if (not parsed_url.path.endswith('.ts')): nice_print('ERROR unsupported video file: {0}'.format(url)) return False try: r = requests.head(url, timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading video URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) if (r.status_code != 200): nice_print('ERROR {0} video URL'.format(r.status_code, indent=indent, debug=True)) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True else: nice_print('ERROR unknown URL: {0}'.format(url, indent=indent, debug=True)) return False<|docstring|>Verifies a video stream link works<|endoftext|>
16d4576746583f4e5ff09c3d762525dd9442da8284a0e6b03a232905364977b8
def verify_playlist_item(item, timeout): '\n Tests playlist url for valid m3u8 data\n ' nice_title = item['metadata'].split(',')[(- 1)] nice_print('{0} | {1}'.format(nice_title, item['url']), colour='yellow') indent = 1 if item['url'].endswith('.ts'): if verify_video_link(item['url'], timeout, indent): nice_print('OK video data', indent=indent) return True else: nice_print('ERROR video data', indent=indent) return False elif item['url'].endswith('.m3u8'): if verify_playlist_link(item['url'], timeout, indent): nice_print('OK playlist data', indent=indent) return True else: nice_print('ERROR playlist data', indent=indent) return False else: try: r = requests.head(item['url'], timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) playlist_link = (('Content-Type' in r.headers) and ('x-mpegurl' in r.headers['Content-Type'])) if (r.status_code != 200): nice_print('ERROR {0} loading URL: {1}'.format(r.status_code, item['url']), indent=indent, debug=True) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True elif playlist_link: return verify_playlist_link(item['url'], timeout, (indent + 1)) else: nice_print('ERROR unknown URL: {0}'.format(item['url']), indent=indent, debug=True) return False
Tests playlist url for valid m3u8 data
scripts/streamcleaner.py
verify_playlist_item
bitsbb01/m3u8_creator
31
python
def verify_playlist_item(item, timeout): '\n \n ' nice_title = item['metadata'].split(',')[(- 1)] nice_print('{0} | {1}'.format(nice_title, item['url']), colour='yellow') indent = 1 if item['url'].endswith('.ts'): if verify_video_link(item['url'], timeout, indent): nice_print('OK video data', indent=indent) return True else: nice_print('ERROR video data', indent=indent) return False elif item['url'].endswith('.m3u8'): if verify_playlist_link(item['url'], timeout, indent): nice_print('OK playlist data', indent=indent) return True else: nice_print('ERROR playlist data', indent=indent) return False else: try: r = requests.head(item['url'], timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) playlist_link = (('Content-Type' in r.headers) and ('x-mpegurl' in r.headers['Content-Type'])) if (r.status_code != 200): nice_print('ERROR {0} loading URL: {1}'.format(r.status_code, item['url']), indent=indent, debug=True) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True elif playlist_link: return verify_playlist_link(item['url'], timeout, (indent + 1)) else: nice_print('ERROR unknown URL: {0}'.format(item['url']), indent=indent, debug=True) return False
def verify_playlist_item(item, timeout): '\n \n ' nice_title = item['metadata'].split(',')[(- 1)] nice_print('{0} | {1}'.format(nice_title, item['url']), colour='yellow') indent = 1 if item['url'].endswith('.ts'): if verify_video_link(item['url'], timeout, indent): nice_print('OK video data', indent=indent) return True else: nice_print('ERROR video data', indent=indent) return False elif item['url'].endswith('.m3u8'): if verify_playlist_link(item['url'], timeout, indent): nice_print('OK playlist data', indent=indent) return True else: nice_print('ERROR playlist data', indent=indent) return False else: try: r = requests.head(item['url'], timeout=(timeout, timeout)) except Exception as e: nice_print('ERROR loading URL: {0}'.format(str(e)[:100]), indent=indent, debug=True) return False else: video_stream = (('Content-Type' in r.headers) and (('video' in r.headers['Content-Type']) or ('octet-stream' in r.headers['Content-Type']))) playlist_link = (('Content-Type' in r.headers) and ('x-mpegurl' in r.headers['Content-Type'])) if (r.status_code != 200): nice_print('ERROR {0} loading URL: {1}'.format(r.status_code, item['url']), indent=indent, debug=True) return False elif video_stream: nice_print('OK loading video data', indent=indent, debug=True) return True elif playlist_link: return verify_playlist_link(item['url'], timeout, (indent + 1)) else: nice_print('ERROR unknown URL: {0}'.format(item['url']), indent=indent, debug=True) return False<|docstring|>Tests playlist url for valid m3u8 data<|endoftext|>
77150a027915290731b0ba2c86bf15f54e8fdf32b3f5eb69f1f3bb70e977a6d9
def filter_streams(m3u_files, timeout, blacklist_file): '\n Returns filtered streams from a m3u file as a list\n ' blacklist = [] if blacklist_file: try: with open(blacklist_file) as f: content = f.readlines() blacklist = [x.strip() for x in content] except Exception as e: print('blacklist file issue: {0} {1}'.format(type(e), e)) sys.exit(1) else: print('Successfully loaded {0} blacklisted urls.'.format(len(blacklist))) playlist_items = [] num_blacklisted = 0 for m3u_file in m3u_files: try: with open(m3u_file) as f: content = f.readlines() content = [x.strip() for x in content] except IsADirectoryError: continue if ((content[0] != '#EXTM3U') and (content[0].encode('ascii', 'ignore').decode('utf-8').strip() != '#EXTM3U')): raise Exception('Invalid file, no EXTM3U header in "{0}"'.format(m3u_file)) url_indexes = [i for (i, s) in enumerate(content) if s.startswith('http')] if (len(url_indexes) < 1): raise Exception('Invalid file, no URLs') for u in url_indexes: if (content[u] in blacklist): num_blacklisted += 1 else: detail = {'metadata': content[(u - 1)], 'url': content[u]} playlist_items.append(detail) if num_blacklisted: print('Input list already reduced by {0} items, because those urls are on the blacklist.'.format(num_blacklisted)) print('Input list now has {0} entries, patience please. Timeout for each test is {1} seconds.'.format(len(playlist_items), timeout)) filtered_playlist_items = [item for item in playlist_items if verify_playlist_item(item, timeout)] print('{0} items filtered out of {1} in total'.format((len(playlist_items) - len(filtered_playlist_items)), len(playlist_items))) return filtered_playlist_items
Returns filtered streams from a m3u file as a list
scripts/streamcleaner.py
filter_streams
bitsbb01/m3u8_creator
31
python
def filter_streams(m3u_files, timeout, blacklist_file): '\n \n ' blacklist = [] if blacklist_file: try: with open(blacklist_file) as f: content = f.readlines() blacklist = [x.strip() for x in content] except Exception as e: print('blacklist file issue: {0} {1}'.format(type(e), e)) sys.exit(1) else: print('Successfully loaded {0} blacklisted urls.'.format(len(blacklist))) playlist_items = [] num_blacklisted = 0 for m3u_file in m3u_files: try: with open(m3u_file) as f: content = f.readlines() content = [x.strip() for x in content] except IsADirectoryError: continue if ((content[0] != '#EXTM3U') and (content[0].encode('ascii', 'ignore').decode('utf-8').strip() != '#EXTM3U')): raise Exception('Invalid file, no EXTM3U header in "{0}"'.format(m3u_file)) url_indexes = [i for (i, s) in enumerate(content) if s.startswith('http')] if (len(url_indexes) < 1): raise Exception('Invalid file, no URLs') for u in url_indexes: if (content[u] in blacklist): num_blacklisted += 1 else: detail = {'metadata': content[(u - 1)], 'url': content[u]} playlist_items.append(detail) if num_blacklisted: print('Input list already reduced by {0} items, because those urls are on the blacklist.'.format(num_blacklisted)) print('Input list now has {0} entries, patience please. Timeout for each test is {1} seconds.'.format(len(playlist_items), timeout)) filtered_playlist_items = [item for item in playlist_items if verify_playlist_item(item, timeout)] print('{0} items filtered out of {1} in total'.format((len(playlist_items) - len(filtered_playlist_items)), len(playlist_items))) return filtered_playlist_items
def filter_streams(m3u_files, timeout, blacklist_file): '\n \n ' blacklist = [] if blacklist_file: try: with open(blacklist_file) as f: content = f.readlines() blacklist = [x.strip() for x in content] except Exception as e: print('blacklist file issue: {0} {1}'.format(type(e), e)) sys.exit(1) else: print('Successfully loaded {0} blacklisted urls.'.format(len(blacklist))) playlist_items = [] num_blacklisted = 0 for m3u_file in m3u_files: try: with open(m3u_file) as f: content = f.readlines() content = [x.strip() for x in content] except IsADirectoryError: continue if ((content[0] != '#EXTM3U') and (content[0].encode('ascii', 'ignore').decode('utf-8').strip() != '#EXTM3U')): raise Exception('Invalid file, no EXTM3U header in "{0}"'.format(m3u_file)) url_indexes = [i for (i, s) in enumerate(content) if s.startswith('http')] if (len(url_indexes) < 1): raise Exception('Invalid file, no URLs') for u in url_indexes: if (content[u] in blacklist): num_blacklisted += 1 else: detail = {'metadata': content[(u - 1)], 'url': content[u]} playlist_items.append(detail) if num_blacklisted: print('Input list already reduced by {0} items, because those urls are on the blacklist.'.format(num_blacklisted)) print('Input list now has {0} entries, patience please. Timeout for each test is {1} seconds.'.format(len(playlist_items), timeout)) filtered_playlist_items = [item for item in playlist_items if verify_playlist_item(item, timeout)] print('{0} items filtered out of {1} in total'.format((len(playlist_items) - len(filtered_playlist_items)), len(playlist_items))) return filtered_playlist_items<|docstring|>Returns filtered streams from a m3u file as a list<|endoftext|>
01efaef72e2cbca41947636a0293c31139abc6f02194c88d595f192412a54699
def init_gst(options=None): 'Initializes the GStreamer library' Gst.init(options)
Initializes the GStreamer library
src/animasnd/video.py
init_gst
N-z0/commonz
0
python
def init_gst(options=None): Gst.init(options)
def init_gst(options=None): Gst.init(options)<|docstring|>Initializes the GStreamer library<|endoftext|>
77f94d716b2650833c133d007a64b4716d59abf0e3f36de27928c4c0ace84d05
def get_frame(video_file, moment, output_image_file): ' save as image a frame from video' caps = Gst.Caps('image/png') pipeline = Gst.ElementFactory.make('playbin', 'new_playbin') pipeline.set_property('uri', ('file://' + video_file)) pipeline.set_state(Gst.State.PLAYING) time.sleep(0.5) seek_time = (moment * Gst.SECOND) pipeline.seek(1.0, Gst.Format.TIME, (Gst.SeekFlags.FLUSH | Gst.SeekFlags.ACCURATE), Gst.SeekType.SET, seek_time, Gst.SeekType.NONE, (- 1)) time.sleep(1) buffer = pipeline.emit('convert-sample', caps) buff = buffer.get_buffer() (result, map) = buff.map(Gst.MapFlags.READ) if result: data = map.data pipeline.set_state(Gst.State.NULL) with open(output_image_file, 'wb') as snapshot: snapshot.write(data) return True else: return False
save as image a frame from video
src/animasnd/video.py
get_frame
N-z0/commonz
0
python
def get_frame(video_file, moment, output_image_file): ' ' caps = Gst.Caps('image/png') pipeline = Gst.ElementFactory.make('playbin', 'new_playbin') pipeline.set_property('uri', ('file://' + video_file)) pipeline.set_state(Gst.State.PLAYING) time.sleep(0.5) seek_time = (moment * Gst.SECOND) pipeline.seek(1.0, Gst.Format.TIME, (Gst.SeekFlags.FLUSH | Gst.SeekFlags.ACCURATE), Gst.SeekType.SET, seek_time, Gst.SeekType.NONE, (- 1)) time.sleep(1) buffer = pipeline.emit('convert-sample', caps) buff = buffer.get_buffer() (result, map) = buff.map(Gst.MapFlags.READ) if result: data = map.data pipeline.set_state(Gst.State.NULL) with open(output_image_file, 'wb') as snapshot: snapshot.write(data) return True else: return False
def get_frame(video_file, moment, output_image_file): ' ' caps = Gst.Caps('image/png') pipeline = Gst.ElementFactory.make('playbin', 'new_playbin') pipeline.set_property('uri', ('file://' + video_file)) pipeline.set_state(Gst.State.PLAYING) time.sleep(0.5) seek_time = (moment * Gst.SECOND) pipeline.seek(1.0, Gst.Format.TIME, (Gst.SeekFlags.FLUSH | Gst.SeekFlags.ACCURATE), Gst.SeekType.SET, seek_time, Gst.SeekType.NONE, (- 1)) time.sleep(1) buffer = pipeline.emit('convert-sample', caps) buff = buffer.get_buffer() (result, map) = buff.map(Gst.MapFlags.READ) if result: data = map.data pipeline.set_state(Gst.State.NULL) with open(output_image_file, 'wb') as snapshot: snapshot.write(data) return True else: return False<|docstring|>save as image a frame from video<|endoftext|>
be8f3f845f8a51c80c721052b9aa42b59ab47c39c2bc8d592422ed168569652b
def __setitem__(self, key: str, value: str) -> None: '\n Set the header `key` to `value`, removing any duplicate entries.\n Retains insertion order.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') found_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): found_indexes.append(idx) for idx in reversed(found_indexes[1:]): del self._list[idx] if found_indexes: idx = found_indexes[0] self._list[idx] = (set_key, set_value) else: self._list.append((set_key, set_value))
Set the header `key` to `value`, removing any duplicate entries. Retains insertion order.
starlette/datastructures.py
__setitem__
Dith3r/starlette
0
python
def __setitem__(self, key: str, value: str) -> None: '\n Set the header `key` to `value`, removing any duplicate entries.\n Retains insertion order.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') found_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): found_indexes.append(idx) for idx in reversed(found_indexes[1:]): del self._list[idx] if found_indexes: idx = found_indexes[0] self._list[idx] = (set_key, set_value) else: self._list.append((set_key, set_value))
def __setitem__(self, key: str, value: str) -> None: '\n Set the header `key` to `value`, removing any duplicate entries.\n Retains insertion order.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') found_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): found_indexes.append(idx) for idx in reversed(found_indexes[1:]): del self._list[idx] if found_indexes: idx = found_indexes[0] self._list[idx] = (set_key, set_value) else: self._list.append((set_key, set_value))<|docstring|>Set the header `key` to `value`, removing any duplicate entries. Retains insertion order.<|endoftext|>
83020ed252b310f2a670b953c3e97443e5a440d8bb0ce92273351cfb4ff845cf
def __delitem__(self, key: str) -> None: '\n Remove the header `key`.\n ' del_key = key.lower().encode('latin-1') pop_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == del_key): pop_indexes.append(idx) for idx in reversed(pop_indexes): del self._list[idx]
Remove the header `key`.
starlette/datastructures.py
__delitem__
Dith3r/starlette
0
python
def __delitem__(self, key: str) -> None: '\n \n ' del_key = key.lower().encode('latin-1') pop_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == del_key): pop_indexes.append(idx) for idx in reversed(pop_indexes): del self._list[idx]
def __delitem__(self, key: str) -> None: '\n \n ' del_key = key.lower().encode('latin-1') pop_indexes = [] for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == del_key): pop_indexes.append(idx) for idx in reversed(pop_indexes): del self._list[idx]<|docstring|>Remove the header `key`.<|endoftext|>
b406cfd97ffcdddcebe8eeb359119117d4033c0bf1f92151e2124970d9a2b175
def setdefault(self, key: str, value: str) -> str: '\n If the header `key` does not exist, then set it to `value`.\n Returns the header value.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): return item_value.decode('latin-1') self._list.append((set_key, set_value)) return value
If the header `key` does not exist, then set it to `value`. Returns the header value.
starlette/datastructures.py
setdefault
Dith3r/starlette
0
python
def setdefault(self, key: str, value: str) -> str: '\n If the header `key` does not exist, then set it to `value`.\n Returns the header value.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): return item_value.decode('latin-1') self._list.append((set_key, set_value)) return value
def setdefault(self, key: str, value: str) -> str: '\n If the header `key` does not exist, then set it to `value`.\n Returns the header value.\n ' set_key = key.lower().encode('latin-1') set_value = value.encode('latin-1') for (idx, (item_key, item_value)) in enumerate(self._list): if (item_key == set_key): return item_value.decode('latin-1') self._list.append((set_key, set_value)) return value<|docstring|>If the header `key` does not exist, then set it to `value`. Returns the header value.<|endoftext|>
9b48feee3eb64c5a954dc0d659bc4a22b216b1e3c461c79c5a7660593093d364
def append(self, key: str, value: str) -> None: '\n Append a header, preserving any duplicate entries.\n ' append_key = key.lower().encode('latin-1') append_value = value.encode('latin-1') self._list.append((append_key, append_value))
Append a header, preserving any duplicate entries.
starlette/datastructures.py
append
Dith3r/starlette
0
python
def append(self, key: str, value: str) -> None: '\n \n ' append_key = key.lower().encode('latin-1') append_value = value.encode('latin-1') self._list.append((append_key, append_value))
def append(self, key: str, value: str) -> None: '\n \n ' append_key = key.lower().encode('latin-1') append_value = value.encode('latin-1') self._list.append((append_key, append_value))<|docstring|>Append a header, preserving any duplicate entries.<|endoftext|>
b0a4fd2f4e6783676ab26bf10fb40373d0232317cfe41c32cb8b3c647102e702
def _fix2comp(num): "\n Convert from two's complement to negative.\n " assert (0 <= num < (2 ** 32)) if (num & (2 ** 31)): return (num - (2 ** 32)) else: return num
Convert from two's complement to negative.
lib/matplotlib/dviread.py
_fix2comp
mkcor/matplotlib
35
python
def _fix2comp(num): "\n \n " assert (0 <= num < (2 ** 32)) if (num & (2 ** 31)): return (num - (2 ** 32)) else: return num
def _fix2comp(num): "\n \n " assert (0 <= num < (2 ** 32)) if (num & (2 ** 31)): return (num - (2 ** 32)) else: return num<|docstring|>Convert from two's complement to negative.<|endoftext|>
e497cf3035d33c63533114663d1a5bd06294fdd183576659b7df55b168010695
def _mul2012(num1, num2): '\n Multiply two numbers in 20.12 fixed point format.\n ' return ((num1 * num2) >> 20)
Multiply two numbers in 20.12 fixed point format.
lib/matplotlib/dviread.py
_mul2012
mkcor/matplotlib
35
python
def _mul2012(num1, num2): '\n \n ' return ((num1 * num2) >> 20)
def _mul2012(num1, num2): '\n \n ' return ((num1 * num2) >> 20)<|docstring|>Multiply two numbers in 20.12 fixed point format.<|endoftext|>
b0bf4590b5c38057fd630af62f42b78f75e75b4d73cfe2d37341cfccf7b24eac
def find_tex_file(filename, format=None): "\n Call :program:`kpsewhich` to find a file in the texmf tree. If\n *format* is not None, it is used as the value for the\n :option:`--format` option.\n\n Apparently most existing TeX distributions on Unix-like systems\n use kpathsea. I hear MikTeX (a popular distribution on Windows)\n doesn't use kpathsea, so what do we do? (TODO)\n\n .. seealso::\n\n `Kpathsea documentation <http://www.tug.org/kpathsea/>`_\n The library that :program:`kpsewhich` is part of.\n " cmd = ['kpsewhich'] if (format is not None): cmd += [('--format=' + format)] cmd += [filename] matplotlib.verbose.report(('find_tex_file(%s): %s' % (filename, cmd)), 'debug') pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report(('find_tex_file result: %s' % result), 'debug') return result.decode('ascii')
Call :program:`kpsewhich` to find a file in the texmf tree. If *format* is not None, it is used as the value for the :option:`--format` option. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) .. seealso:: `Kpathsea documentation <http://www.tug.org/kpathsea/>`_ The library that :program:`kpsewhich` is part of.
lib/matplotlib/dviread.py
find_tex_file
mkcor/matplotlib
35
python
def find_tex_file(filename, format=None): "\n Call :program:`kpsewhich` to find a file in the texmf tree. If\n *format* is not None, it is used as the value for the\n :option:`--format` option.\n\n Apparently most existing TeX distributions on Unix-like systems\n use kpathsea. I hear MikTeX (a popular distribution on Windows)\n doesn't use kpathsea, so what do we do? (TODO)\n\n .. seealso::\n\n `Kpathsea documentation <http://www.tug.org/kpathsea/>`_\n The library that :program:`kpsewhich` is part of.\n " cmd = ['kpsewhich'] if (format is not None): cmd += [('--format=' + format)] cmd += [filename] matplotlib.verbose.report(('find_tex_file(%s): %s' % (filename, cmd)), 'debug') pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report(('find_tex_file result: %s' % result), 'debug') return result.decode('ascii')
def find_tex_file(filename, format=None): "\n Call :program:`kpsewhich` to find a file in the texmf tree. If\n *format* is not None, it is used as the value for the\n :option:`--format` option.\n\n Apparently most existing TeX distributions on Unix-like systems\n use kpathsea. I hear MikTeX (a popular distribution on Windows)\n doesn't use kpathsea, so what do we do? (TODO)\n\n .. seealso::\n\n `Kpathsea documentation <http://www.tug.org/kpathsea/>`_\n The library that :program:`kpsewhich` is part of.\n " cmd = ['kpsewhich'] if (format is not None): cmd += [('--format=' + format)] cmd += [filename] matplotlib.verbose.report(('find_tex_file(%s): %s' % (filename, cmd)), 'debug') pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report(('find_tex_file result: %s' % result), 'debug') return result.decode('ascii')<|docstring|>Call :program:`kpsewhich` to find a file in the texmf tree. If *format* is not None, it is used as the value for the :option:`--format` option. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) .. seealso:: `Kpathsea documentation <http://www.tug.org/kpathsea/>`_ The library that :program:`kpsewhich` is part of.<|endoftext|>
2520f67979a788ea6b5512cfdb8d8900bc1139d7ea2b341338238472b5deac8c
def __init__(self, filename, dpi): '\n Initialize the object. This takes the filename as input and\n opens the file; actually reading the file happens when\n iterating through the pages of the file.\n ' matplotlib.verbose.report(('Dvi: ' + filename), 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename)
Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file.
lib/matplotlib/dviread.py
__init__
mkcor/matplotlib
35
python
def __init__(self, filename, dpi): '\n Initialize the object. This takes the filename as input and\n opens the file; actually reading the file happens when\n iterating through the pages of the file.\n ' matplotlib.verbose.report(('Dvi: ' + filename), 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename)
def __init__(self, filename, dpi): '\n Initialize the object. This takes the filename as input and\n opens the file; actually reading the file happens when\n iterating through the pages of the file.\n ' matplotlib.verbose.report(('Dvi: ' + filename), 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename)<|docstring|>Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file.<|endoftext|>
d1a017fddeb319f0030a78fc1515a0f9287857a1a447f85f18f6e4116c822822
def __iter__(self): '\n Iterate through the pages of the file.\n\n Returns (text, boxes) pairs, where:\n text is a list of (x, y, fontnum, glyphnum, width) tuples\n boxes is a list of (x, y, height, width) tuples\n\n The coordinates are transformed into a standard Cartesian\n coordinate system at the dpi value given when initializing.\n The coordinates are floating point numbers, but otherwise\n precision is not lost and coordinate values are not clipped to\n integers.\n ' while True: have_page = self._read() if have_page: (yield self._output()) else: break
Iterate through the pages of the file. Returns (text, boxes) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers.
lib/matplotlib/dviread.py
__iter__
mkcor/matplotlib
35
python
def __iter__(self): '\n Iterate through the pages of the file.\n\n Returns (text, boxes) pairs, where:\n text is a list of (x, y, fontnum, glyphnum, width) tuples\n boxes is a list of (x, y, height, width) tuples\n\n The coordinates are transformed into a standard Cartesian\n coordinate system at the dpi value given when initializing.\n The coordinates are floating point numbers, but otherwise\n precision is not lost and coordinate values are not clipped to\n integers.\n ' while True: have_page = self._read() if have_page: (yield self._output()) else: break
def __iter__(self): '\n Iterate through the pages of the file.\n\n Returns (text, boxes) pairs, where:\n text is a list of (x, y, fontnum, glyphnum, width) tuples\n boxes is a list of (x, y, height, width) tuples\n\n The coordinates are transformed into a standard Cartesian\n coordinate system at the dpi value given when initializing.\n The coordinates are floating point numbers, but otherwise\n precision is not lost and coordinate values are not clipped to\n integers.\n ' while True: have_page = self._read() if have_page: (yield self._output()) else: break<|docstring|>Iterate through the pages of the file. Returns (text, boxes) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers.<|endoftext|>
b5194b1fb90c2109adf4f7be3d494445c6206efae27c10679d9801e7c27abe5c
def close(self): '\n Close the underlying file if it is open.\n ' if (not self.file.closed): self.file.close()
Close the underlying file if it is open.
lib/matplotlib/dviread.py
close
mkcor/matplotlib
35
python
def close(self): '\n \n ' if (not self.file.closed): self.file.close()
def close(self): '\n \n ' if (not self.file.closed): self.file.close()<|docstring|>Close the underlying file if it is open.<|endoftext|>
91841f29f0f80eca8097a549a87dd5cefe887ce64281b48278c6724b3f5cab83
def _output(self): '\n Output the text and boxes belonging to the most recent page.\n page = dvi._output()\n ' (minx, miny, maxx, maxy) = (np.inf, np.inf, (- np.inf), (- np.inf)) maxy_pure = (- np.inf) for elt in (self.text + self.boxes): if (len(elt) == 4): (x, y, h, w) = elt e = 0 else: (x, y, font, g, w) = elt (h, e) = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, (y - h)) maxx = max(maxx, (x + w)) maxy = max(maxy, (y + e)) maxy_pure = max(maxy_pure, y) if (self.dpi is None): return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=(maxx - minx), height=(maxy_pure - miny), descent=descent) d = (self.dpi / (72.27 * (2 ** 16))) if (self.baseline is None): descent = ((maxy - maxy_pure) * d) else: descent = self.baseline text = [(((x - minx) * d), (((maxy - y) * d) - descent), f, g, (w * d)) for (x, y, f, g, w) in self.text] boxes = [(((x - minx) * d), (((maxy - y) * d) - descent), (h * d), (w * d)) for (x, y, h, w) in self.boxes] return mpl_cbook.Bunch(text=text, boxes=boxes, width=((maxx - minx) * d), height=((maxy_pure - miny) * d), descent=descent)
Output the text and boxes belonging to the most recent page. page = dvi._output()
lib/matplotlib/dviread.py
_output
mkcor/matplotlib
35
python
def _output(self): '\n Output the text and boxes belonging to the most recent page.\n page = dvi._output()\n ' (minx, miny, maxx, maxy) = (np.inf, np.inf, (- np.inf), (- np.inf)) maxy_pure = (- np.inf) for elt in (self.text + self.boxes): if (len(elt) == 4): (x, y, h, w) = elt e = 0 else: (x, y, font, g, w) = elt (h, e) = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, (y - h)) maxx = max(maxx, (x + w)) maxy = max(maxy, (y + e)) maxy_pure = max(maxy_pure, y) if (self.dpi is None): return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=(maxx - minx), height=(maxy_pure - miny), descent=descent) d = (self.dpi / (72.27 * (2 ** 16))) if (self.baseline is None): descent = ((maxy - maxy_pure) * d) else: descent = self.baseline text = [(((x - minx) * d), (((maxy - y) * d) - descent), f, g, (w * d)) for (x, y, f, g, w) in self.text] boxes = [(((x - minx) * d), (((maxy - y) * d) - descent), (h * d), (w * d)) for (x, y, h, w) in self.boxes] return mpl_cbook.Bunch(text=text, boxes=boxes, width=((maxx - minx) * d), height=((maxy_pure - miny) * d), descent=descent)
def _output(self): '\n Output the text and boxes belonging to the most recent page.\n page = dvi._output()\n ' (minx, miny, maxx, maxy) = (np.inf, np.inf, (- np.inf), (- np.inf)) maxy_pure = (- np.inf) for elt in (self.text + self.boxes): if (len(elt) == 4): (x, y, h, w) = elt e = 0 else: (x, y, font, g, w) = elt (h, e) = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, (y - h)) maxx = max(maxx, (x + w)) maxy = max(maxy, (y + e)) maxy_pure = max(maxy_pure, y) if (self.dpi is None): return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=(maxx - minx), height=(maxy_pure - miny), descent=descent) d = (self.dpi / (72.27 * (2 ** 16))) if (self.baseline is None): descent = ((maxy - maxy_pure) * d) else: descent = self.baseline text = [(((x - minx) * d), (((maxy - y) * d) - descent), f, g, (w * d)) for (x, y, f, g, w) in self.text] boxes = [(((x - minx) * d), (((maxy - y) * d) - descent), (h * d), (w * d)) for (x, y, h, w) in self.boxes] return mpl_cbook.Bunch(text=text, boxes=boxes, width=((maxx - minx) * d), height=((maxy_pure - miny) * d), descent=descent)<|docstring|>Output the text and boxes belonging to the most recent page. page = dvi._output()<|endoftext|>
2bf3d1b79e289d31da9200dca75fddeb7f43ee5aaf3b4a433a78c013430480d2
def _read(self): '\n Read one page from the file. Return True if successful,\n False if there were no more pages.\n ' while True: byte = ord(self.file.read(1)[0]) self._dispatch(byte) if (byte == 140): return True if (self.state == _dvistate.post_post): self.close() return False
Read one page from the file. Return True if successful, False if there were no more pages.
lib/matplotlib/dviread.py
_read
mkcor/matplotlib
35
python
def _read(self): '\n Read one page from the file. Return True if successful,\n False if there were no more pages.\n ' while True: byte = ord(self.file.read(1)[0]) self._dispatch(byte) if (byte == 140): return True if (self.state == _dvistate.post_post): self.close() return False
def _read(self): '\n Read one page from the file. Return True if successful,\n False if there were no more pages.\n ' while True: byte = ord(self.file.read(1)[0]) self._dispatch(byte) if (byte == 140): return True if (self.state == _dvistate.post_post): self.close() return False<|docstring|>Read one page from the file. Return True if successful, False if there were no more pages.<|endoftext|>
83116a33374e1de0a5c29c311910920f77c37a707381fbcf81051a333d2df1f8
def _arg(self, nbytes, signed=False): '\n Read and return an integer argument *nbytes* long.\n Signedness is determined by the *signed* keyword.\n ' str = self.file.read(nbytes) value = ord(str[0]) if (signed and (value >= 128)): value = (value - 256) for i in range(1, nbytes): value = ((256 * value) + ord(str[i])) return value
Read and return an integer argument *nbytes* long. Signedness is determined by the *signed* keyword.
lib/matplotlib/dviread.py
_arg
mkcor/matplotlib
35
python
def _arg(self, nbytes, signed=False): '\n Read and return an integer argument *nbytes* long.\n Signedness is determined by the *signed* keyword.\n ' str = self.file.read(nbytes) value = ord(str[0]) if (signed and (value >= 128)): value = (value - 256) for i in range(1, nbytes): value = ((256 * value) + ord(str[i])) return value
def _arg(self, nbytes, signed=False): '\n Read and return an integer argument *nbytes* long.\n Signedness is determined by the *signed* keyword.\n ' str = self.file.read(nbytes) value = ord(str[0]) if (signed and (value >= 128)): value = (value - 256) for i in range(1, nbytes): value = ((256 * value) + ord(str[i])) return value<|docstring|>Read and return an integer argument *nbytes* long. Signedness is determined by the *signed* keyword.<|endoftext|>
8425919e9c606eb048fa657a8e33b0ae95a50726209a897d58d10d871f5deba8
def _dispatch(self, byte): '\n Based on the opcode *byte*, read the correct kinds of\n arguments from the dvi file and call the method implementing\n that opcode with those arguments.\n ' if (0 <= byte <= 127): self._set_char(byte) elif (byte == 128): self._set_char(self._arg(1)) elif (byte == 129): self._set_char(self._arg(2)) elif (byte == 130): self._set_char(self._arg(3)) elif (byte == 131): self._set_char(self._arg(4, True)) elif (byte == 132): self._set_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 133): self._put_char(self._arg(1)) elif (byte == 134): self._put_char(self._arg(2)) elif (byte == 135): self._put_char(self._arg(3)) elif (byte == 136): self._put_char(self._arg(4, True)) elif (byte == 137): self._put_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 138): self._nop() elif (byte == 139): self._bop(*[self._arg(4, True) for i in range(11)]) elif (byte == 140): self._eop() elif (byte == 141): self._push() elif (byte == 142): self._pop() elif (byte == 143): self._right(self._arg(1, True)) elif (byte == 144): self._right(self._arg(2, True)) elif (byte == 145): self._right(self._arg(3, True)) elif (byte == 146): self._right(self._arg(4, True)) elif (byte == 147): self._right_w(None) elif (byte == 148): self._right_w(self._arg(1, True)) elif (byte == 149): self._right_w(self._arg(2, True)) elif (byte == 150): self._right_w(self._arg(3, True)) elif (byte == 151): self._right_w(self._arg(4, True)) elif (byte == 152): self._right_x(None) elif (byte == 153): self._right_x(self._arg(1, True)) elif (byte == 154): self._right_x(self._arg(2, True)) elif (byte == 155): self._right_x(self._arg(3, True)) elif (byte == 156): self._right_x(self._arg(4, True)) elif (byte == 157): self._down(self._arg(1, True)) elif (byte == 158): self._down(self._arg(2, True)) elif (byte == 159): self._down(self._arg(3, True)) elif (byte == 160): self._down(self._arg(4, True)) elif (byte == 161): self._down_y(None) elif (byte == 162): self._down_y(self._arg(1, True)) elif (byte == 163): self._down_y(self._arg(2, True)) elif (byte == 164): self._down_y(self._arg(3, True)) elif (byte == 165): self._down_y(self._arg(4, True)) elif (byte == 166): self._down_z(None) elif (byte == 167): self._down_z(self._arg(1, True)) elif (byte == 168): self._down_z(self._arg(2, True)) elif (byte == 169): self._down_z(self._arg(3, True)) elif (byte == 170): self._down_z(self._arg(4, True)) elif (171 <= byte <= 234): self._fnt_num((byte - 171)) elif (byte == 235): self._fnt_num(self._arg(1)) elif (byte == 236): self._fnt_num(self._arg(2)) elif (byte == 237): self._fnt_num(self._arg(3)) elif (byte == 238): self._fnt_num(self._arg(4, True)) elif (239 <= byte <= 242): len = self._arg((byte - 238)) special = self.file.read(len) self._xxx(special) elif (243 <= byte <= 246): k = self._arg((byte - 242), (byte == 246)) (c, s, d, a, l) = [self._arg(x) for x in (4, 4, 4, 1, 1)] n = self.file.read((a + l)) self._fnt_def(k, c, s, d, a, l, n) elif (byte == 247): (i, num, den, mag, k) = [self._arg(x) for x in (1, 4, 4, 4, 1)] x = self.file.read(k) self._pre(i, num, den, mag, x) elif (byte == 248): self._post() elif (byte == 249): self._post_post() else: raise ValueError(('unknown command: byte %d' % byte))
Based on the opcode *byte*, read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments.
lib/matplotlib/dviread.py
_dispatch
mkcor/matplotlib
35
python
def _dispatch(self, byte): '\n Based on the opcode *byte*, read the correct kinds of\n arguments from the dvi file and call the method implementing\n that opcode with those arguments.\n ' if (0 <= byte <= 127): self._set_char(byte) elif (byte == 128): self._set_char(self._arg(1)) elif (byte == 129): self._set_char(self._arg(2)) elif (byte == 130): self._set_char(self._arg(3)) elif (byte == 131): self._set_char(self._arg(4, True)) elif (byte == 132): self._set_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 133): self._put_char(self._arg(1)) elif (byte == 134): self._put_char(self._arg(2)) elif (byte == 135): self._put_char(self._arg(3)) elif (byte == 136): self._put_char(self._arg(4, True)) elif (byte == 137): self._put_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 138): self._nop() elif (byte == 139): self._bop(*[self._arg(4, True) for i in range(11)]) elif (byte == 140): self._eop() elif (byte == 141): self._push() elif (byte == 142): self._pop() elif (byte == 143): self._right(self._arg(1, True)) elif (byte == 144): self._right(self._arg(2, True)) elif (byte == 145): self._right(self._arg(3, True)) elif (byte == 146): self._right(self._arg(4, True)) elif (byte == 147): self._right_w(None) elif (byte == 148): self._right_w(self._arg(1, True)) elif (byte == 149): self._right_w(self._arg(2, True)) elif (byte == 150): self._right_w(self._arg(3, True)) elif (byte == 151): self._right_w(self._arg(4, True)) elif (byte == 152): self._right_x(None) elif (byte == 153): self._right_x(self._arg(1, True)) elif (byte == 154): self._right_x(self._arg(2, True)) elif (byte == 155): self._right_x(self._arg(3, True)) elif (byte == 156): self._right_x(self._arg(4, True)) elif (byte == 157): self._down(self._arg(1, True)) elif (byte == 158): self._down(self._arg(2, True)) elif (byte == 159): self._down(self._arg(3, True)) elif (byte == 160): self._down(self._arg(4, True)) elif (byte == 161): self._down_y(None) elif (byte == 162): self._down_y(self._arg(1, True)) elif (byte == 163): self._down_y(self._arg(2, True)) elif (byte == 164): self._down_y(self._arg(3, True)) elif (byte == 165): self._down_y(self._arg(4, True)) elif (byte == 166): self._down_z(None) elif (byte == 167): self._down_z(self._arg(1, True)) elif (byte == 168): self._down_z(self._arg(2, True)) elif (byte == 169): self._down_z(self._arg(3, True)) elif (byte == 170): self._down_z(self._arg(4, True)) elif (171 <= byte <= 234): self._fnt_num((byte - 171)) elif (byte == 235): self._fnt_num(self._arg(1)) elif (byte == 236): self._fnt_num(self._arg(2)) elif (byte == 237): self._fnt_num(self._arg(3)) elif (byte == 238): self._fnt_num(self._arg(4, True)) elif (239 <= byte <= 242): len = self._arg((byte - 238)) special = self.file.read(len) self._xxx(special) elif (243 <= byte <= 246): k = self._arg((byte - 242), (byte == 246)) (c, s, d, a, l) = [self._arg(x) for x in (4, 4, 4, 1, 1)] n = self.file.read((a + l)) self._fnt_def(k, c, s, d, a, l, n) elif (byte == 247): (i, num, den, mag, k) = [self._arg(x) for x in (1, 4, 4, 4, 1)] x = self.file.read(k) self._pre(i, num, den, mag, x) elif (byte == 248): self._post() elif (byte == 249): self._post_post() else: raise ValueError(('unknown command: byte %d' % byte))
def _dispatch(self, byte): '\n Based on the opcode *byte*, read the correct kinds of\n arguments from the dvi file and call the method implementing\n that opcode with those arguments.\n ' if (0 <= byte <= 127): self._set_char(byte) elif (byte == 128): self._set_char(self._arg(1)) elif (byte == 129): self._set_char(self._arg(2)) elif (byte == 130): self._set_char(self._arg(3)) elif (byte == 131): self._set_char(self._arg(4, True)) elif (byte == 132): self._set_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 133): self._put_char(self._arg(1)) elif (byte == 134): self._put_char(self._arg(2)) elif (byte == 135): self._put_char(self._arg(3)) elif (byte == 136): self._put_char(self._arg(4, True)) elif (byte == 137): self._put_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 138): self._nop() elif (byte == 139): self._bop(*[self._arg(4, True) for i in range(11)]) elif (byte == 140): self._eop() elif (byte == 141): self._push() elif (byte == 142): self._pop() elif (byte == 143): self._right(self._arg(1, True)) elif (byte == 144): self._right(self._arg(2, True)) elif (byte == 145): self._right(self._arg(3, True)) elif (byte == 146): self._right(self._arg(4, True)) elif (byte == 147): self._right_w(None) elif (byte == 148): self._right_w(self._arg(1, True)) elif (byte == 149): self._right_w(self._arg(2, True)) elif (byte == 150): self._right_w(self._arg(3, True)) elif (byte == 151): self._right_w(self._arg(4, True)) elif (byte == 152): self._right_x(None) elif (byte == 153): self._right_x(self._arg(1, True)) elif (byte == 154): self._right_x(self._arg(2, True)) elif (byte == 155): self._right_x(self._arg(3, True)) elif (byte == 156): self._right_x(self._arg(4, True)) elif (byte == 157): self._down(self._arg(1, True)) elif (byte == 158): self._down(self._arg(2, True)) elif (byte == 159): self._down(self._arg(3, True)) elif (byte == 160): self._down(self._arg(4, True)) elif (byte == 161): self._down_y(None) elif (byte == 162): self._down_y(self._arg(1, True)) elif (byte == 163): self._down_y(self._arg(2, True)) elif (byte == 164): self._down_y(self._arg(3, True)) elif (byte == 165): self._down_y(self._arg(4, True)) elif (byte == 166): self._down_z(None) elif (byte == 167): self._down_z(self._arg(1, True)) elif (byte == 168): self._down_z(self._arg(2, True)) elif (byte == 169): self._down_z(self._arg(3, True)) elif (byte == 170): self._down_z(self._arg(4, True)) elif (171 <= byte <= 234): self._fnt_num((byte - 171)) elif (byte == 235): self._fnt_num(self._arg(1)) elif (byte == 236): self._fnt_num(self._arg(2)) elif (byte == 237): self._fnt_num(self._arg(3)) elif (byte == 238): self._fnt_num(self._arg(4, True)) elif (239 <= byte <= 242): len = self._arg((byte - 238)) special = self.file.read(len) self._xxx(special) elif (243 <= byte <= 246): k = self._arg((byte - 242), (byte == 246)) (c, s, d, a, l) = [self._arg(x) for x in (4, 4, 4, 1, 1)] n = self.file.read((a + l)) self._fnt_def(k, c, s, d, a, l, n) elif (byte == 247): (i, num, den, mag, k) = [self._arg(x) for x in (1, 4, 4, 4, 1)] x = self.file.read(k) self._pre(i, num, den, mag, x) elif (byte == 248): self._post() elif (byte == 249): self._post_post() else: raise ValueError(('unknown command: byte %d' % byte))<|docstring|>Based on the opcode *byte*, read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments.<|endoftext|>
2326776fce973626e2f25f460fa2e154558a074455481f32d0bec3a186a14309
def _width_of(self, char): '\n Width of char in dvi units. For internal use by dviread.py.\n ' width = self._tfm.width.get(char, None) if (width is not None): return _mul2012(width, self._scale) matplotlib.verbose.report(('No width for char %d in font %s' % (char, self.texname)), 'debug') return 0
Width of char in dvi units. For internal use by dviread.py.
lib/matplotlib/dviread.py
_width_of
mkcor/matplotlib
35
python
def _width_of(self, char): '\n \n ' width = self._tfm.width.get(char, None) if (width is not None): return _mul2012(width, self._scale) matplotlib.verbose.report(('No width for char %d in font %s' % (char, self.texname)), 'debug') return 0
def _width_of(self, char): '\n \n ' width = self._tfm.width.get(char, None) if (width is not None): return _mul2012(width, self._scale) matplotlib.verbose.report(('No width for char %d in font %s' % (char, self.texname)), 'debug') return 0<|docstring|>Width of char in dvi units. For internal use by dviread.py.<|endoftext|>
9b27edcdbe063c1ef16e59ebd5377788e7c8c680551b317613d9fee39a871b14
def _height_depth_of(self, char): '\n Height and depth of char in dvi units. For internal use by dviread.py.\n ' result = [] for (metric, name) in ((self._tfm.height, 'height'), (self._tfm.depth, 'depth')): value = metric.get(char, None) if (value is None): matplotlib.verbose.report(('No %s for char %d in font %s' % (name, char, self.texname)), 'debug') result.append(0) else: result.append(_mul2012(value, self._scale)) return result
Height and depth of char in dvi units. For internal use by dviread.py.
lib/matplotlib/dviread.py
_height_depth_of
mkcor/matplotlib
35
python
def _height_depth_of(self, char): '\n \n ' result = [] for (metric, name) in ((self._tfm.height, 'height'), (self._tfm.depth, 'depth')): value = metric.get(char, None) if (value is None): matplotlib.verbose.report(('No %s for char %d in font %s' % (name, char, self.texname)), 'debug') result.append(0) else: result.append(_mul2012(value, self._scale)) return result
def _height_depth_of(self, char): '\n \n ' result = [] for (metric, name) in ((self._tfm.height, 'height'), (self._tfm.depth, 'depth')): value = metric.get(char, None) if (value is None): matplotlib.verbose.report(('No %s for char %d in font %s' % (name, char, self.texname)), 'debug') result.append(0) else: result.append(_mul2012(value, self._scale)) return result<|docstring|>Height and depth of char in dvi units. For internal use by dviread.py.<|endoftext|>
9ebae7ebb1f1098ca81aad20cc324127091f16745f18f300c9703c1674b5ae3e
def _parse(self, file): 'Parse each line into words.' for line in file: line = line.strip() if ((line == '') or line.startswith('%')): continue (words, pos) = ([], 0) while (pos < len(line)): if (line[pos] == '"'): pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = (end + 1) else: end = line.find(' ', (pos + 1)) if (end == (- 1)): end = len(line) words.append(line[pos:end]) pos = end while ((pos < len(line)) and (line[pos] == ' ')): pos += 1 self._register(words)
Parse each line into words.
lib/matplotlib/dviread.py
_parse
mkcor/matplotlib
35
python
def _parse(self, file): for line in file: line = line.strip() if ((line == ) or line.startswith('%')): continue (words, pos) = ([], 0) while (pos < len(line)): if (line[pos] == '"'): pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = (end + 1) else: end = line.find(' ', (pos + 1)) if (end == (- 1)): end = len(line) words.append(line[pos:end]) pos = end while ((pos < len(line)) and (line[pos] == ' ')): pos += 1 self._register(words)
def _parse(self, file): for line in file: line = line.strip() if ((line == ) or line.startswith('%')): continue (words, pos) = ([], 0) while (pos < len(line)): if (line[pos] == '"'): pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = (end + 1) else: end = line.find(' ', (pos + 1)) if (end == (- 1)): end = len(line) words.append(line[pos:end]) pos = end while ((pos < len(line)) and (line[pos] == ' ')): pos += 1 self._register(words)<|docstring|>Parse each line into words.<|endoftext|>
93f03c169271ddf87e4e2944b1893139a1e74fa0543ce49cc61a6d0817e7b407
def _register(self, words): 'Register a font described by "words".\n\n The format is, AFAIK: texname fontname [effects and filenames]\n Effects are PostScript snippets like ".177 SlantFont",\n filenames begin with one or two less-than signs. A filename\n ending in enc is an encoding file, other filenames are font\n files. This can be overridden with a left bracket: <[foobar\n indicates an encoding file named foobar.\n\n There is some difference between <foo.pfb and <<bar.pfb in\n subsetting, but I have no example of << in my TeX installation.\n ' (texname, psname) = words[:2] (effects, encoding, filename) = ('', None, None) for word in words[2:]: if (not word.startswith('<')): effects = word else: word = word.lstrip('<') if (word.startswith('[') or word.endswith('.enc')): if (encoding is not None): matplotlib.verbose.report(('Multiple encodings for %s = %s' % (texname, psname)), 'debug') if word.startswith('['): encoding = word[1:] else: encoding = word else: assert (filename is None) filename = word eff = effects.split() effects = {} try: effects['slant'] = float(eff[(eff.index('SlantFont') - 1)]) except ValueError: pass try: effects['extend'] = float(eff[(eff.index('ExtendFont') - 1)]) except ValueError: pass self._font[texname] = mpl_cbook.Bunch(texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename)
Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation.
lib/matplotlib/dviread.py
_register
mkcor/matplotlib
35
python
def _register(self, words): 'Register a font described by "words".\n\n The format is, AFAIK: texname fontname [effects and filenames]\n Effects are PostScript snippets like ".177 SlantFont",\n filenames begin with one or two less-than signs. A filename\n ending in enc is an encoding file, other filenames are font\n files. This can be overridden with a left bracket: <[foobar\n indicates an encoding file named foobar.\n\n There is some difference between <foo.pfb and <<bar.pfb in\n subsetting, but I have no example of << in my TeX installation.\n ' (texname, psname) = words[:2] (effects, encoding, filename) = (, None, None) for word in words[2:]: if (not word.startswith('<')): effects = word else: word = word.lstrip('<') if (word.startswith('[') or word.endswith('.enc')): if (encoding is not None): matplotlib.verbose.report(('Multiple encodings for %s = %s' % (texname, psname)), 'debug') if word.startswith('['): encoding = word[1:] else: encoding = word else: assert (filename is None) filename = word eff = effects.split() effects = {} try: effects['slant'] = float(eff[(eff.index('SlantFont') - 1)]) except ValueError: pass try: effects['extend'] = float(eff[(eff.index('ExtendFont') - 1)]) except ValueError: pass self._font[texname] = mpl_cbook.Bunch(texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename)
def _register(self, words): 'Register a font described by "words".\n\n The format is, AFAIK: texname fontname [effects and filenames]\n Effects are PostScript snippets like ".177 SlantFont",\n filenames begin with one or two less-than signs. A filename\n ending in enc is an encoding file, other filenames are font\n files. This can be overridden with a left bracket: <[foobar\n indicates an encoding file named foobar.\n\n There is some difference between <foo.pfb and <<bar.pfb in\n subsetting, but I have no example of << in my TeX installation.\n ' (texname, psname) = words[:2] (effects, encoding, filename) = (, None, None) for word in words[2:]: if (not word.startswith('<')): effects = word else: word = word.lstrip('<') if (word.startswith('[') or word.endswith('.enc')): if (encoding is not None): matplotlib.verbose.report(('Multiple encodings for %s = %s' % (texname, psname)), 'debug') if word.startswith('['): encoding = word[1:] else: encoding = word else: assert (filename is None) filename = word eff = effects.split() effects = {} try: effects['slant'] = float(eff[(eff.index('SlantFont') - 1)]) except ValueError: pass try: effects['extend'] = float(eff[(eff.index('ExtendFont') - 1)]) except ValueError: pass self._font[texname] = mpl_cbook.Bunch(texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename)<|docstring|>Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation.<|endoftext|>
d16059775e5d31079217e4e875453213968d24f2047bbf0e9ccd0a63ffed25c0
@pytest.fixture def test_app(): 'Sets up a test app.' app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False (yield app)
Sets up a test app.
tests/unit/conftest.py
test_app
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def test_app(): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False (yield app)
@pytest.fixture def test_app(): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False (yield app)<|docstring|>Sets up a test app.<|endoftext|>
1fe578228e29634a22a7b1ab42d219f59086c412523df072c44119614b1691a5
@pytest.fixture def client(test_app): 'Sets up a test client.' with test_app.test_client() as client: (yield client)
Sets up a test client.
tests/unit/conftest.py
client
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def client(test_app): with test_app.test_client() as client: (yield client)
@pytest.fixture def client(test_app): with test_app.test_client() as client: (yield client)<|docstring|>Sets up a test client.<|endoftext|>
e08caaef9720f16e68018c5e3297677a8f9352192f87bacce11027aec916ff1c
@pytest.fixture def mocked_userform(mocker): 'Mocks the UserForm. For use in testing application routes.' mocked_userform = mocker.patch('app.routes.UserForm') mocked_userform.return_value.news_org.data = 'foo and a bar' mocked_userform.return_value.name.data = 'foo bar' mocked_userform.return_value.email.data = '[email protected]' mocked_userform.return_value.validate_on_submit.return_value = True (yield mocked_userform)
Mocks the UserForm. For use in testing application routes.
tests/unit/conftest.py
mocked_userform
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def mocked_userform(mocker): mocked_userform = mocker.patch('app.routes.UserForm') mocked_userform.return_value.news_org.data = 'foo and a bar' mocked_userform.return_value.name.data = 'foo bar' mocked_userform.return_value.email.data = '[email protected]' mocked_userform.return_value.validate_on_submit.return_value = True (yield mocked_userform)
@pytest.fixture def mocked_userform(mocker): mocked_userform = mocker.patch('app.routes.UserForm') mocked_userform.return_value.news_org.data = 'foo and a bar' mocked_userform.return_value.name.data = 'foo bar' mocked_userform.return_value.email.data = '[email protected]' mocked_userform.return_value.validate_on_submit.return_value = True (yield mocked_userform)<|docstring|>Mocks the UserForm. For use in testing application routes.<|endoftext|>
46adddc01f3dbddd767e40e8be3945e5e7ae604ec7228d0f6b11a8805d922184
@pytest.fixture def mocked_orgform(mocker): 'Mocks the OrgForm. For use in testing application routes.' mocked_orgform = mocker.patch('app.routes.OrgForm') mocked_orgform.return_value.financial_classification.data = 'foo' mocked_orgform.return_value.coverage_scope.data = 'bar' mocked_orgform.return_value.coverage_focus.data = 'baz' mocked_orgform.return_value.platform.data = 'qux' mocked_orgform.return_value.employee_range.data = 'quux' mocked_orgform.return_value.budget.data = 'quuz' mocked_corge_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='corge')) mocked_other_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='Other')) mocked_orgform.return_value.__iter__.return_value = [mocked_corge_booleanfield, mocked_other_booleanfield] mocked_orgform.return_value.other_affiliation_name.data = 'garply' mocked_orgform.return_value.validate_on_submit.return_value = True (yield mocked_orgform)
Mocks the OrgForm. For use in testing application routes.
tests/unit/conftest.py
mocked_orgform
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def mocked_orgform(mocker): mocked_orgform = mocker.patch('app.routes.OrgForm') mocked_orgform.return_value.financial_classification.data = 'foo' mocked_orgform.return_value.coverage_scope.data = 'bar' mocked_orgform.return_value.coverage_focus.data = 'baz' mocked_orgform.return_value.platform.data = 'qux' mocked_orgform.return_value.employee_range.data = 'quux' mocked_orgform.return_value.budget.data = 'quuz' mocked_corge_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='corge')) mocked_other_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='Other')) mocked_orgform.return_value.__iter__.return_value = [mocked_corge_booleanfield, mocked_other_booleanfield] mocked_orgform.return_value.other_affiliation_name.data = 'garply' mocked_orgform.return_value.validate_on_submit.return_value = True (yield mocked_orgform)
@pytest.fixture def mocked_orgform(mocker): mocked_orgform = mocker.patch('app.routes.OrgForm') mocked_orgform.return_value.financial_classification.data = 'foo' mocked_orgform.return_value.coverage_scope.data = 'bar' mocked_orgform.return_value.coverage_focus.data = 'baz' mocked_orgform.return_value.platform.data = 'qux' mocked_orgform.return_value.employee_range.data = 'quux' mocked_orgform.return_value.budget.data = 'quuz' mocked_corge_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='corge')) mocked_other_booleanfield = MagicMock(spec=BooleanField, data=True, label=MagicMock(text='Other')) mocked_orgform.return_value.__iter__.return_value = [mocked_corge_booleanfield, mocked_other_booleanfield] mocked_orgform.return_value.other_affiliation_name.data = 'garply' mocked_orgform.return_value.validate_on_submit.return_value = True (yield mocked_orgform)<|docstring|>Mocks the OrgForm. For use in testing application routes.<|endoftext|>
69e316c83eac9d8e56e47e997f396ab39f39bc9956d44ea9132e5bbc7d611e5c
@pytest.fixture def fake_list_data(): 'Provides a dictionary containing fake data for a MailChimp list.' data = {'list_id': 'foo', 'list_name': 'bar', 'org_id': 1, 'key': 'foo-bar1', 'data_center': 'bar1', 'monthly_updates': False, 'store_aggregates': False, 'total_count': 'baz', 'open_rate': 'qux', 'creation_timestamp': 'quux', 'campaign_count': 'quuz'} (yield data)
Provides a dictionary containing fake data for a MailChimp list.
tests/unit/conftest.py
fake_list_data
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def fake_list_data(): data = {'list_id': 'foo', 'list_name': 'bar', 'org_id': 1, 'key': 'foo-bar1', 'data_center': 'bar1', 'monthly_updates': False, 'store_aggregates': False, 'total_count': 'baz', 'open_rate': 'qux', 'creation_timestamp': 'quux', 'campaign_count': 'quuz'} (yield data)
@pytest.fixture def fake_list_data(): data = {'list_id': 'foo', 'list_name': 'bar', 'org_id': 1, 'key': 'foo-bar1', 'data_center': 'bar1', 'monthly_updates': False, 'store_aggregates': False, 'total_count': 'baz', 'open_rate': 'qux', 'creation_timestamp': 'quux', 'campaign_count': 'quuz'} (yield data)<|docstring|>Provides a dictionary containing fake data for a MailChimp list.<|endoftext|>
79d4fd19a64a45970317e935d1e1360ec1c05001c39e9247e2ab0c9ce62355ec
@pytest.fixture def fake_calculation_results(): 'Provides a dictionary containing fake calculation results for a\n MailChimp list.' calculation_results = {'frequency': 0.1, 'subscribers': 2, 'open_rate': 0.5, 'hist_bin_counts': [0.1, 0.2, 0.3], 'subscribed_pct': 0.2, 'unsubscribed_pct': 0.2, 'cleaned_pct': 0.2, 'pending_pct': 0.1, 'high_open_rt_pct': 0.1, 'cur_yr_inactive_pct': 0.1} (yield calculation_results)
Provides a dictionary containing fake calculation results for a MailChimp list.
tests/unit/conftest.py
fake_calculation_results
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def fake_calculation_results(): 'Provides a dictionary containing fake calculation results for a\n MailChimp list.' calculation_results = {'frequency': 0.1, 'subscribers': 2, 'open_rate': 0.5, 'hist_bin_counts': [0.1, 0.2, 0.3], 'subscribed_pct': 0.2, 'unsubscribed_pct': 0.2, 'cleaned_pct': 0.2, 'pending_pct': 0.1, 'high_open_rt_pct': 0.1, 'cur_yr_inactive_pct': 0.1} (yield calculation_results)
@pytest.fixture def fake_calculation_results(): 'Provides a dictionary containing fake calculation results for a\n MailChimp list.' calculation_results = {'frequency': 0.1, 'subscribers': 2, 'open_rate': 0.5, 'hist_bin_counts': [0.1, 0.2, 0.3], 'subscribed_pct': 0.2, 'unsubscribed_pct': 0.2, 'cleaned_pct': 0.2, 'pending_pct': 0.1, 'high_open_rt_pct': 0.1, 'cur_yr_inactive_pct': 0.1} (yield calculation_results)<|docstring|>Provides a dictionary containing fake calculation results for a MailChimp list.<|endoftext|>
2c262d3096de33e9db18af8411c3c93eb600028e1fbe819ccacea7f3fed946ec
@pytest.fixture def fake_list_stats_query_result_as_df(): 'Provides a Pandas DataFrame containing fake stats as could be extracted\n from the database.' (yield pd.DataFrame({'subscribers': [3, 4, 6], 'subscribed_pct': [1, 1, 4], 'unsubscribed_pct': [1, 1, 1], 'cleaned_pct': [1, 1, 1], 'pending_pct': [1, 1, 1], 'open_rate': [0.5, 1, 1.5], 'high_open_rt_pct': [1, 1, 1], 'cur_yr_inactive_pct': [1, 1, 1]}))
Provides a Pandas DataFrame containing fake stats as could be extracted from the database.
tests/unit/conftest.py
fake_list_stats_query_result_as_df
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def fake_list_stats_query_result_as_df(): 'Provides a Pandas DataFrame containing fake stats as could be extracted\n from the database.' (yield pd.DataFrame({'subscribers': [3, 4, 6], 'subscribed_pct': [1, 1, 4], 'unsubscribed_pct': [1, 1, 1], 'cleaned_pct': [1, 1, 1], 'pending_pct': [1, 1, 1], 'open_rate': [0.5, 1, 1.5], 'high_open_rt_pct': [1, 1, 1], 'cur_yr_inactive_pct': [1, 1, 1]}))
@pytest.fixture def fake_list_stats_query_result_as_df(): 'Provides a Pandas DataFrame containing fake stats as could be extracted\n from the database.' (yield pd.DataFrame({'subscribers': [3, 4, 6], 'subscribed_pct': [1, 1, 4], 'unsubscribed_pct': [1, 1, 1], 'cleaned_pct': [1, 1, 1], 'pending_pct': [1, 1, 1], 'open_rate': [0.5, 1, 1.5], 'high_open_rt_pct': [1, 1, 1], 'cur_yr_inactive_pct': [1, 1, 1]}))<|docstring|>Provides a Pandas DataFrame containing fake stats as could be extracted from the database.<|endoftext|>
ea4319656347314d8f3582cc640d861aacca54a78fd248e11cb1a892bd415729
@pytest.fixture def fake_list_stats_query_result_means(): 'Provides a dictionary containing the mean values for the\n fake_list_stats_query_result_as_df() fixture.' (yield {'subscribers': [4], 'subscribed_pct': [2], 'unsubscribed_pct': [1], 'cleaned_pct': [1], 'pending_pct': [1], 'open_rate': [1], 'high_open_rt_pct': [1], 'cur_yr_inactive_pct': [1]})
Provides a dictionary containing the mean values for the fake_list_stats_query_result_as_df() fixture.
tests/unit/conftest.py
fake_list_stats_query_result_means
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def fake_list_stats_query_result_means(): 'Provides a dictionary containing the mean values for the\n fake_list_stats_query_result_as_df() fixture.' (yield {'subscribers': [4], 'subscribed_pct': [2], 'unsubscribed_pct': [1], 'cleaned_pct': [1], 'pending_pct': [1], 'open_rate': [1], 'high_open_rt_pct': [1], 'cur_yr_inactive_pct': [1]})
@pytest.fixture def fake_list_stats_query_result_means(): 'Provides a dictionary containing the mean values for the\n fake_list_stats_query_result_as_df() fixture.' (yield {'subscribers': [4], 'subscribed_pct': [2], 'unsubscribed_pct': [1], 'cleaned_pct': [1], 'pending_pct': [1], 'open_rate': [1], 'high_open_rt_pct': [1], 'cur_yr_inactive_pct': [1]})<|docstring|>Provides a dictionary containing the mean values for the fake_list_stats_query_result_as_df() fixture.<|endoftext|>
756e4394a1d9da9b022cd1fda46e037acbbcad6ee564f64c518439c35aa8e860
@pytest.fixture def mocked_mailchimp_list(mocker, fake_calculation_results): 'Mocks the MailChimp list class from app/lists.py and attaches fake calculation\n results to the mock attributes.' mocked_mailchimp_list = mocker.patch('app.tasks.MailChimpList') mocked_mailchimp_list.return_value = MagicMock(**fake_calculation_results) (yield mocked_mailchimp_list)
Mocks the MailChimp list class from app/lists.py and attaches fake calculation results to the mock attributes.
tests/unit/conftest.py
mocked_mailchimp_list
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def mocked_mailchimp_list(mocker, fake_calculation_results): 'Mocks the MailChimp list class from app/lists.py and attaches fake calculation\n results to the mock attributes.' mocked_mailchimp_list = mocker.patch('app.tasks.MailChimpList') mocked_mailchimp_list.return_value = MagicMock(**fake_calculation_results) (yield mocked_mailchimp_list)
@pytest.fixture def mocked_mailchimp_list(mocker, fake_calculation_results): 'Mocks the MailChimp list class from app/lists.py and attaches fake calculation\n results to the mock attributes.' mocked_mailchimp_list = mocker.patch('app.tasks.MailChimpList') mocked_mailchimp_list.return_value = MagicMock(**fake_calculation_results) (yield mocked_mailchimp_list)<|docstring|>Mocks the MailChimp list class from app/lists.py and attaches fake calculation results to the mock attributes.<|endoftext|>
7d24c34c8f89a1735b2760cec9c1a0d0be5069f5930604e95989eb2e8859a3c6
@pytest.fixture def mailchimp_list(): 'Creates a MailChimpList. Used for testing class/instance methiods.' (yield MailChimpList(1, 2, 'foo-bar1', 'bar1'))
Creates a MailChimpList. Used for testing class/instance methiods.
tests/unit/conftest.py
mailchimp_list
williamhakim10/Benchmarks-Program
18
python
@pytest.fixture def mailchimp_list(): (yield MailChimpList(1, 2, 'foo-bar1', 'bar1'))
@pytest.fixture def mailchimp_list(): (yield MailChimpList(1, 2, 'foo-bar1', 'bar1'))<|docstring|>Creates a MailChimpList. Used for testing class/instance methiods.<|endoftext|>
42270ece57896aef9affa107f91e4cdeb3445e77015fd5e55d284355b67c6876
@abstractmethod def move(self, player: int, row: int, col: int) -> (Set[Solution], Set[Solution]): 'Plays a move at the given row and column for the given player.\n\n Assumptions:\n 1. The internal state of the SolutionManager is not at a terminal state.\n\n Args:\n player (int): the player making the move.\n row (int): the row to play\n col (int): the column to play\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed after the given move.\n added_solutions (Set[Solution]): the Solutions that were added after the given move.\n ' pass
Plays a move at the given row and column for the given player. Assumptions: 1. The internal state of the SolutionManager is not at a terminal state. Args: player (int): the player making the move. row (int): the row to play col (int): the column to play Returns: removed_solutions (Set[Solution]): the Solutions that were removed after the given move. added_solutions (Set[Solution]): the Solutions that were added after the given move.
connect_four/evaluation/incremental_victor/solution/solution_manager.py
move
rpachauri/connect4
0
python
@abstractmethod def move(self, player: int, row: int, col: int) -> (Set[Solution], Set[Solution]): 'Plays a move at the given row and column for the given player.\n\n Assumptions:\n 1. The internal state of the SolutionManager is not at a terminal state.\n\n Args:\n player (int): the player making the move.\n row (int): the row to play\n col (int): the column to play\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed after the given move.\n added_solutions (Set[Solution]): the Solutions that were added after the given move.\n ' pass
@abstractmethod def move(self, player: int, row: int, col: int) -> (Set[Solution], Set[Solution]): 'Plays a move at the given row and column for the given player.\n\n Assumptions:\n 1. The internal state of the SolutionManager is not at a terminal state.\n\n Args:\n player (int): the player making the move.\n row (int): the row to play\n col (int): the column to play\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed after the given move.\n added_solutions (Set[Solution]): the Solutions that were added after the given move.\n ' pass<|docstring|>Plays a move at the given row and column for the given player. Assumptions: 1. The internal state of the SolutionManager is not at a terminal state. Args: player (int): the player making the move. row (int): the row to play col (int): the column to play Returns: removed_solutions (Set[Solution]): the Solutions that were removed after the given move. added_solutions (Set[Solution]): the Solutions that were added after the given move.<|endoftext|>
3b4b67981c866b211d3fd99a6a046a8ac54da0e684b65be9472ae394c1c75d6d
@abstractmethod def undo_move(self) -> (Set[Solution], Set[Solution]): 'Undoes the most recent move.\n\n Raises:\n (AssertionError): if the internal state of the ProblemManager is\n at the state given upon initialization.\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed by undoing the most recent move.\n added_solutions (Set[Solution]): the Solutions that were added by undoing the most recent move.\n ' pass
Undoes the most recent move. Raises: (AssertionError): if the internal state of the ProblemManager is at the state given upon initialization. Returns: removed_solutions (Set[Solution]): the Solutions that were removed by undoing the most recent move. added_solutions (Set[Solution]): the Solutions that were added by undoing the most recent move.
connect_four/evaluation/incremental_victor/solution/solution_manager.py
undo_move
rpachauri/connect4
0
python
@abstractmethod def undo_move(self) -> (Set[Solution], Set[Solution]): 'Undoes the most recent move.\n\n Raises:\n (AssertionError): if the internal state of the ProblemManager is\n at the state given upon initialization.\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed by undoing the most recent move.\n added_solutions (Set[Solution]): the Solutions that were added by undoing the most recent move.\n ' pass
@abstractmethod def undo_move(self) -> (Set[Solution], Set[Solution]): 'Undoes the most recent move.\n\n Raises:\n (AssertionError): if the internal state of the ProblemManager is\n at the state given upon initialization.\n\n Returns:\n removed_solutions (Set[Solution]): the Solutions that were removed by undoing the most recent move.\n added_solutions (Set[Solution]): the Solutions that were added by undoing the most recent move.\n ' pass<|docstring|>Undoes the most recent move. Raises: (AssertionError): if the internal state of the ProblemManager is at the state given upon initialization. Returns: removed_solutions (Set[Solution]): the Solutions that were removed by undoing the most recent move. added_solutions (Set[Solution]): the Solutions that were added by undoing the most recent move.<|endoftext|>
6d14ddc1977bbf539add7fb0db34fa60a428094975a11ebc1d9de22c5dbeb988
@abstractmethod def get_solutions(self) -> Set[Solution]: 'Returns all Solutions for the current game position.\n\n Returns:\n solutions (Set[Solution]): the set of all Solutions that can be used in the current state.\n ' pass
Returns all Solutions for the current game position. Returns: solutions (Set[Solution]): the set of all Solutions that can be used in the current state.
connect_four/evaluation/incremental_victor/solution/solution_manager.py
get_solutions
rpachauri/connect4
0
python
@abstractmethod def get_solutions(self) -> Set[Solution]: 'Returns all Solutions for the current game position.\n\n Returns:\n solutions (Set[Solution]): the set of all Solutions that can be used in the current state.\n ' pass
@abstractmethod def get_solutions(self) -> Set[Solution]: 'Returns all Solutions for the current game position.\n\n Returns:\n solutions (Set[Solution]): the set of all Solutions that can be used in the current state.\n ' pass<|docstring|>Returns all Solutions for the current game position. Returns: solutions (Set[Solution]): the set of all Solutions that can be used in the current state.<|endoftext|>
89e9359523a9b7d91c035fa666ef401ded7a7c5eb845ba7d3202c965182bd881
@abstractmethod def get_win_conditions(self) -> Set[Solution]: 'Returns all win conditions for the current game position.\n\n Returns:\n win_conditions (Set[Solution]): a subset of all Solutions in this state.\n\n Constraints on win_conditions:\n 1. No Solution in win_conditions may be combined with another Solution in win_conditions.\n ' pass
Returns all win conditions for the current game position. Returns: win_conditions (Set[Solution]): a subset of all Solutions in this state. Constraints on win_conditions: 1. No Solution in win_conditions may be combined with another Solution in win_conditions.
connect_four/evaluation/incremental_victor/solution/solution_manager.py
get_win_conditions
rpachauri/connect4
0
python
@abstractmethod def get_win_conditions(self) -> Set[Solution]: 'Returns all win conditions for the current game position.\n\n Returns:\n win_conditions (Set[Solution]): a subset of all Solutions in this state.\n\n Constraints on win_conditions:\n 1. No Solution in win_conditions may be combined with another Solution in win_conditions.\n ' pass
@abstractmethod def get_win_conditions(self) -> Set[Solution]: 'Returns all win conditions for the current game position.\n\n Returns:\n win_conditions (Set[Solution]): a subset of all Solutions in this state.\n\n Constraints on win_conditions:\n 1. No Solution in win_conditions may be combined with another Solution in win_conditions.\n ' pass<|docstring|>Returns all win conditions for the current game position. Returns: win_conditions (Set[Solution]): a subset of all Solutions in this state. Constraints on win_conditions: 1. No Solution in win_conditions may be combined with another Solution in win_conditions.<|endoftext|>
c18356a98ae2b064fd0ca986502d8448ae0ec66f782f75e0a4b8a3ece9a5c01b
def apply_datastore_env_vars(project): 'Fetch `env_var` entities from the datastore and apply to the current env.\n\n Each `env_var` entity should have two string properties, `key` and `value`.\n ' from google.cloud.datastore import Client for entity in Client(project).query(kind='env_var').fetch(): key = str(entity['key']) value = str(entity['value']) os.environ.setdefault(key, value)
Fetch `env_var` entities from the datastore and apply to the current env. Each `env_var` entity should have two string properties, `key` and `value`.
django/liamnewmarch/google_cloud.py
apply_datastore_env_vars
liamnewmarch/liam.nwmr.ch
0
python
def apply_datastore_env_vars(project): 'Fetch `env_var` entities from the datastore and apply to the current env.\n\n Each `env_var` entity should have two string properties, `key` and `value`.\n ' from google.cloud.datastore import Client for entity in Client(project).query(kind='env_var').fetch(): key = str(entity['key']) value = str(entity['value']) os.environ.setdefault(key, value)
def apply_datastore_env_vars(project): 'Fetch `env_var` entities from the datastore and apply to the current env.\n\n Each `env_var` entity should have two string properties, `key` and `value`.\n ' from google.cloud.datastore import Client for entity in Client(project).query(kind='env_var').fetch(): key = str(entity['key']) value = str(entity['value']) os.environ.setdefault(key, value)<|docstring|>Fetch `env_var` entities from the datastore and apply to the current env. Each `env_var` entity should have two string properties, `key` and `value`.<|endoftext|>
e60f1ebff7da92e9a620f5f3d7348df33ea6831a1d558b4d750a3009a86ecda7
def setup_cloud_logging(): 'Attaches Google Cloud Logging to the root logger.\n\n https://cloud.google.com/logging/docs/setup/python' from google.cloud.logging import Client logging = Client() logging.get_default_handler() logging.setup_logging()
Attaches Google Cloud Logging to the root logger. https://cloud.google.com/logging/docs/setup/python
django/liamnewmarch/google_cloud.py
setup_cloud_logging
liamnewmarch/liam.nwmr.ch
0
python
def setup_cloud_logging(): 'Attaches Google Cloud Logging to the root logger.\n\n https://cloud.google.com/logging/docs/setup/python' from google.cloud.logging import Client logging = Client() logging.get_default_handler() logging.setup_logging()
def setup_cloud_logging(): 'Attaches Google Cloud Logging to the root logger.\n\n https://cloud.google.com/logging/docs/setup/python' from google.cloud.logging import Client logging = Client() logging.get_default_handler() logging.setup_logging()<|docstring|>Attaches Google Cloud Logging to the root logger. https://cloud.google.com/logging/docs/setup/python<|endoftext|>
d769800106315826bc64479f2de0e0bc165ff5719568d777625a166d373e78a1
def encode_auth_token(self): '\n Generates the Auth Token\n :return: string\n ' try: payload = {'exp': (datetime.datetime.utcnow() + datetime.timedelta(days=0, seconds=5)), 'iat': datetime.datetime.utcnow(), 'id': self.id, 'first_name': self.first_name, 'last_name': self.last_name, 'email': self.email} return jwt.encode(payload, current_app.config.get('SECRET_KEY'), algorithm='HS256') except Exception as e: return e
Generates the Auth Token :return: string
web/app/models/auth_models.py
encode_auth_token
EMSL-Computing/CoreMS-Portal
2
python
def encode_auth_token(self): '\n Generates the Auth Token\n :return: string\n ' try: payload = {'exp': (datetime.datetime.utcnow() + datetime.timedelta(days=0, seconds=5)), 'iat': datetime.datetime.utcnow(), 'id': self.id, 'first_name': self.first_name, 'last_name': self.last_name, 'email': self.email} return jwt.encode(payload, current_app.config.get('SECRET_KEY'), algorithm='HS256') except Exception as e: return e
def encode_auth_token(self): '\n Generates the Auth Token\n :return: string\n ' try: payload = {'exp': (datetime.datetime.utcnow() + datetime.timedelta(days=0, seconds=5)), 'iat': datetime.datetime.utcnow(), 'id': self.id, 'first_name': self.first_name, 'last_name': self.last_name, 'email': self.email} return jwt.encode(payload, current_app.config.get('SECRET_KEY'), algorithm='HS256') except Exception as e: return e<|docstring|>Generates the Auth Token :return: string<|endoftext|>
bef673e4c1ebca059d0ea84a2057621c7562c2da5284e621033e57c97be8075b
def step_to(obs, new_position, lay_bomb=False): 'return: a copy of new observation after stepping into new_position. \n If lay_bomb==True, it is actually two-step change (i.e., lay bomb then go to new_position)\n ' new_obs = copy.deepcopy(obs) sz = len(obs['board']) old_board = obs['board'] old_position = obs['position'] old_position_value = constants.Item.Bomb.value if (not lay_bomb): old_position_value = (constants.Item.Bomb.value if (obs['bomb_life'][old_position] > 0) else constants.Item.Passage.value) new_obs['position'] = new_position new_obs['board'][old_position] = old_position_value agent_id = old_board[old_position] new_obs['board'][new_position] = agent_id if lay_bomb: new_obs['bomb_blast_strength'][old_position] = obs['blast_strength'] new_obs['bomb_life'][old_position] = constants.DEFAULT_BOMB_LIFE for i in range(sz): for j in range(sz): time_step = (2 if lay_bomb else 1) if (new_obs['bomb_life'][(i, j)] < 2): continue new_obs['bomb_life'][(i, j)] = max(1, (new_obs['bomb_life'][(i, j)] - time_step)) return new_obs
return: a copy of new observation after stepping into new_position. If lay_bomb==True, it is actually two-step change (i.e., lay bomb then go to new_position)
pommerman/agents/direction_filter.py
step_to
eomiso/Deep-Pommerman
0
python
def step_to(obs, new_position, lay_bomb=False): 'return: a copy of new observation after stepping into new_position. \n If lay_bomb==True, it is actually two-step change (i.e., lay bomb then go to new_position)\n ' new_obs = copy.deepcopy(obs) sz = len(obs['board']) old_board = obs['board'] old_position = obs['position'] old_position_value = constants.Item.Bomb.value if (not lay_bomb): old_position_value = (constants.Item.Bomb.value if (obs['bomb_life'][old_position] > 0) else constants.Item.Passage.value) new_obs['position'] = new_position new_obs['board'][old_position] = old_position_value agent_id = old_board[old_position] new_obs['board'][new_position] = agent_id if lay_bomb: new_obs['bomb_blast_strength'][old_position] = obs['blast_strength'] new_obs['bomb_life'][old_position] = constants.DEFAULT_BOMB_LIFE for i in range(sz): for j in range(sz): time_step = (2 if lay_bomb else 1) if (new_obs['bomb_life'][(i, j)] < 2): continue new_obs['bomb_life'][(i, j)] = max(1, (new_obs['bomb_life'][(i, j)] - time_step)) return new_obs
def step_to(obs, new_position, lay_bomb=False): 'return: a copy of new observation after stepping into new_position. \n If lay_bomb==True, it is actually two-step change (i.e., lay bomb then go to new_position)\n ' new_obs = copy.deepcopy(obs) sz = len(obs['board']) old_board = obs['board'] old_position = obs['position'] old_position_value = constants.Item.Bomb.value if (not lay_bomb): old_position_value = (constants.Item.Bomb.value if (obs['bomb_life'][old_position] > 0) else constants.Item.Passage.value) new_obs['position'] = new_position new_obs['board'][old_position] = old_position_value agent_id = old_board[old_position] new_obs['board'][new_position] = agent_id if lay_bomb: new_obs['bomb_blast_strength'][old_position] = obs['blast_strength'] new_obs['bomb_life'][old_position] = constants.DEFAULT_BOMB_LIFE for i in range(sz): for j in range(sz): time_step = (2 if lay_bomb else 1) if (new_obs['bomb_life'][(i, j)] < 2): continue new_obs['bomb_life'][(i, j)] = max(1, (new_obs['bomb_life'][(i, j)] - time_step)) return new_obs<|docstring|>return: a copy of new observation after stepping into new_position. If lay_bomb==True, it is actually two-step change (i.e., lay bomb then go to new_position)<|endoftext|>
e668762ff6ea19f6c422db680533f088a76a12d5f0a02aa9ad5feea8f1daa6fe
def bomb_real_life(bomb_position, board, bomb_blast_st, bomb_life): "One bomb's real life is the minimum life of its adjacent bomb. \n Not that this could be chained, so please call it on each bomb mulitple times until\n converge\n " (x, y) = bomb_position i = x min_life = 900 sz = len(board) while (i >= 0): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i -= 1 i = x while (i < sz): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i += 1 j = y while (j >= 0): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j -= 1 j = y while (j < sz): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j += 1 return min_life
One bomb's real life is the minimum life of its adjacent bomb. Not that this could be chained, so please call it on each bomb mulitple times until converge
pommerman/agents/direction_filter.py
bomb_real_life
eomiso/Deep-Pommerman
0
python
def bomb_real_life(bomb_position, board, bomb_blast_st, bomb_life): "One bomb's real life is the minimum life of its adjacent bomb. \n Not that this could be chained, so please call it on each bomb mulitple times until\n converge\n " (x, y) = bomb_position i = x min_life = 900 sz = len(board) while (i >= 0): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i -= 1 i = x while (i < sz): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i += 1 j = y while (j >= 0): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j -= 1 j = y while (j < sz): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j += 1 return min_life
def bomb_real_life(bomb_position, board, bomb_blast_st, bomb_life): "One bomb's real life is the minimum life of its adjacent bomb. \n Not that this could be chained, so please call it on each bomb mulitple times until\n converge\n " (x, y) = bomb_position i = x min_life = 900 sz = len(board) while (i >= 0): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i -= 1 i = x while (i < sz): pos = (i, y) dist = abs((i - x)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) i += 1 j = y while (j >= 0): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j -= 1 j = y while (j < sz): pos = (x, j) dist = abs((j - y)) if utility.position_is_wall(board, pos): break if ((bomb_life[pos] > 0) and (dist <= (bomb_blast_st[pos] - 1))): min_life = int(bomb_life[pos]) j += 1 return min_life<|docstring|>One bomb's real life is the minimum life of its adjacent bomb. Not that this could be chained, so please call it on each bomb mulitple times until converge<|endoftext|>
0cdfb7b2217149196a27ec0f1d8b83c22bda1648aa21215b77adb104b4729703
def add_to_danger_positions(pos, danger_positions, board, blast_st, bomb_life, covered_bomb_positions): 'due to bombing chain, bombs with life>=2 would still blow up if they are in the danger positions ' sz = int(blast_st[pos]) (x, y) = pos danger_positions.add(pos) for i in range(1, sz): pos2_list = [((x + i), y), ((x - i), y), (x, (y + i)), (x, (y - i))] for pos2 in pos2_list: if utility.position_on_board(board, pos2): danger_positions.add(pos2) if (bomb_life[pos2] > 1): covered_bomb_positions.add(pos2)
due to bombing chain, bombs with life>=2 would still blow up if they are in the danger positions
pommerman/agents/direction_filter.py
add_to_danger_positions
eomiso/Deep-Pommerman
0
python
def add_to_danger_positions(pos, danger_positions, board, blast_st, bomb_life, covered_bomb_positions): ' ' sz = int(blast_st[pos]) (x, y) = pos danger_positions.add(pos) for i in range(1, sz): pos2_list = [((x + i), y), ((x - i), y), (x, (y + i)), (x, (y - i))] for pos2 in pos2_list: if utility.position_on_board(board, pos2): danger_positions.add(pos2) if (bomb_life[pos2] > 1): covered_bomb_positions.add(pos2)
def add_to_danger_positions(pos, danger_positions, board, blast_st, bomb_life, covered_bomb_positions): ' ' sz = int(blast_st[pos]) (x, y) = pos danger_positions.add(pos) for i in range(1, sz): pos2_list = [((x + i), y), ((x - i), y), (x, (y + i)), (x, (y - i))] for pos2 in pos2_list: if utility.position_on_board(board, pos2): danger_positions.add(pos2) if (bomb_life[pos2] > 1): covered_bomb_positions.add(pos2)<|docstring|>due to bombing chain, bombs with life>=2 would still blow up if they are in the danger positions<|endoftext|>
d2c198f0eeb808fdd132ec1b0ff0358d3ff5a39c9393fa1de576a1bcdffc90a7
def isPalindrome(self, x): '\n :type x: int\n :rtype: bool\n ' if (x < 0): return False temp = x cnt = 0 while temp: cnt += 1 temp //= 10 low = 0 high = (cnt - 1) while (low < high): if (((x % (10 ** (low + 1))) // (10 ** low)) != ((x % (10 ** (high + 1))) // (10 ** high))): return False low += 1 high -= 1 return True
:type x: int :rtype: bool
Python/leetcode.009.palindrome-number.py
isPalindrome
tedye/leetcode
4
python
def isPalindrome(self, x): '\n :type x: int\n :rtype: bool\n ' if (x < 0): return False temp = x cnt = 0 while temp: cnt += 1 temp //= 10 low = 0 high = (cnt - 1) while (low < high): if (((x % (10 ** (low + 1))) // (10 ** low)) != ((x % (10 ** (high + 1))) // (10 ** high))): return False low += 1 high -= 1 return True
def isPalindrome(self, x): '\n :type x: int\n :rtype: bool\n ' if (x < 0): return False temp = x cnt = 0 while temp: cnt += 1 temp //= 10 low = 0 high = (cnt - 1) while (low < high): if (((x % (10 ** (low + 1))) // (10 ** low)) != ((x % (10 ** (high + 1))) // (10 ** high))): return False low += 1 high -= 1 return True<|docstring|>:type x: int :rtype: bool<|endoftext|>
7f732cb97f5fe15f6f0f1fc4cbefda8293b63723c10dd19365b3d038bd9f0354
def __init__(self, save_dir: str, env: Env, policy: Policy, max_iter: int, num_rollouts: int, pop_size: [int, None]=None, num_sampler_envs: int=4, base_seed: [int, None]=None, logger: StepLogger=None): '\n Constructor\n\n :param save_dir: directory to save the snapshots i.e. the results in\n :param env: the environment which the policy operates\n :param policy: policy to be updated\n :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs\n :param num_rollouts: number of rollouts per solution\n :param pop_size: number of solutions in the population, pass `None` to use a default that scales logarithmically\n with the number of policy parameters\n :param num_sampler_envs: number of parallel environments in the sampler\n :param base_seed: seed added to all other seeds in order to make the experiments distinct but repeatable\n :param logger: logger for every step of the algorithm, if `None` the default logger will be created\n ' if (not isinstance(env, Env)): raise pyrado.TypeErr(given=env, expected_type=Env) if (not (isinstance(pop_size, int) or (pop_size is None))): raise pyrado.TypeErr(given=pop_size, expected_type=int) if (isinstance(pop_size, int) and (pop_size <= 0)): raise pyrado.ValueErr(given=pop_size, g_constraint='0') super().__init__(save_dir, max_iter, policy, logger) self._env = env self.num_rollouts = num_rollouts if (pop_size is None): pop_size = (4 + int((3 * np.log(policy.num_param)))) print_cbt(f'Initialized population size to {pop_size}.', 'y') self.pop_size = pop_size self.sampler = ParameterExplorationSampler(env, policy, num_envs=num_sampler_envs, num_rollouts_per_param=num_rollouts, seed=base_seed) self.ret_avg_stack = (1000.0 * np.random.randn(20)) self.thold_ret_std = 0.1 self.best_policy_param = policy.param_values.clone() self._expl_strat = None
Constructor :param save_dir: directory to save the snapshots i.e. the results in :param env: the environment which the policy operates :param policy: policy to be updated :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs :param num_rollouts: number of rollouts per solution :param pop_size: number of solutions in the population, pass `None` to use a default that scales logarithmically with the number of policy parameters :param num_sampler_envs: number of parallel environments in the sampler :param base_seed: seed added to all other seeds in order to make the experiments distinct but repeatable :param logger: logger for every step of the algorithm, if `None` the default logger will be created
Pyrado/pyrado/algorithms/parameter_exploring.py
__init__
jacarvalho/SimuRLacra
0
python
def __init__(self, save_dir: str, env: Env, policy: Policy, max_iter: int, num_rollouts: int, pop_size: [int, None]=None, num_sampler_envs: int=4, base_seed: [int, None]=None, logger: StepLogger=None): '\n Constructor\n\n :param save_dir: directory to save the snapshots i.e. the results in\n :param env: the environment which the policy operates\n :param policy: policy to be updated\n :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs\n :param num_rollouts: number of rollouts per solution\n :param pop_size: number of solutions in the population, pass `None` to use a default that scales logarithmically\n with the number of policy parameters\n :param num_sampler_envs: number of parallel environments in the sampler\n :param base_seed: seed added to all other seeds in order to make the experiments distinct but repeatable\n :param logger: logger for every step of the algorithm, if `None` the default logger will be created\n ' if (not isinstance(env, Env)): raise pyrado.TypeErr(given=env, expected_type=Env) if (not (isinstance(pop_size, int) or (pop_size is None))): raise pyrado.TypeErr(given=pop_size, expected_type=int) if (isinstance(pop_size, int) and (pop_size <= 0)): raise pyrado.ValueErr(given=pop_size, g_constraint='0') super().__init__(save_dir, max_iter, policy, logger) self._env = env self.num_rollouts = num_rollouts if (pop_size is None): pop_size = (4 + int((3 * np.log(policy.num_param)))) print_cbt(f'Initialized population size to {pop_size}.', 'y') self.pop_size = pop_size self.sampler = ParameterExplorationSampler(env, policy, num_envs=num_sampler_envs, num_rollouts_per_param=num_rollouts, seed=base_seed) self.ret_avg_stack = (1000.0 * np.random.randn(20)) self.thold_ret_std = 0.1 self.best_policy_param = policy.param_values.clone() self._expl_strat = None
def __init__(self, save_dir: str, env: Env, policy: Policy, max_iter: int, num_rollouts: int, pop_size: [int, None]=None, num_sampler_envs: int=4, base_seed: [int, None]=None, logger: StepLogger=None): '\n Constructor\n\n :param save_dir: directory to save the snapshots i.e. the results in\n :param env: the environment which the policy operates\n :param policy: policy to be updated\n :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs\n :param num_rollouts: number of rollouts per solution\n :param pop_size: number of solutions in the population, pass `None` to use a default that scales logarithmically\n with the number of policy parameters\n :param num_sampler_envs: number of parallel environments in the sampler\n :param base_seed: seed added to all other seeds in order to make the experiments distinct but repeatable\n :param logger: logger for every step of the algorithm, if `None` the default logger will be created\n ' if (not isinstance(env, Env)): raise pyrado.TypeErr(given=env, expected_type=Env) if (not (isinstance(pop_size, int) or (pop_size is None))): raise pyrado.TypeErr(given=pop_size, expected_type=int) if (isinstance(pop_size, int) and (pop_size <= 0)): raise pyrado.ValueErr(given=pop_size, g_constraint='0') super().__init__(save_dir, max_iter, policy, logger) self._env = env self.num_rollouts = num_rollouts if (pop_size is None): pop_size = (4 + int((3 * np.log(policy.num_param)))) print_cbt(f'Initialized population size to {pop_size}.', 'y') self.pop_size = pop_size self.sampler = ParameterExplorationSampler(env, policy, num_envs=num_sampler_envs, num_rollouts_per_param=num_rollouts, seed=base_seed) self.ret_avg_stack = (1000.0 * np.random.randn(20)) self.thold_ret_std = 0.1 self.best_policy_param = policy.param_values.clone() self._expl_strat = None<|docstring|>Constructor :param save_dir: directory to save the snapshots i.e. the results in :param env: the environment which the policy operates :param policy: policy to be updated :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs :param num_rollouts: number of rollouts per solution :param pop_size: number of solutions in the population, pass `None` to use a default that scales logarithmically with the number of policy parameters :param num_sampler_envs: number of parallel environments in the sampler :param base_seed: seed added to all other seeds in order to make the experiments distinct but repeatable :param logger: logger for every step of the algorithm, if `None` the default logger will be created<|endoftext|>
7ec580cc2c3e509c1c41204bc628735882226dc4197b69bd7b8b23028f2cfa12
def stopping_criterion_met(self) -> bool: '\n Check if the average reward of the mean policy did not change more than the specified threshold over the\n last iterations.\n ' if (np.std(self.ret_avg_stack) < self.thold_ret_std): return True else: return False
Check if the average reward of the mean policy did not change more than the specified threshold over the last iterations.
Pyrado/pyrado/algorithms/parameter_exploring.py
stopping_criterion_met
jacarvalho/SimuRLacra
0
python
def stopping_criterion_met(self) -> bool: '\n Check if the average reward of the mean policy did not change more than the specified threshold over the\n last iterations.\n ' if (np.std(self.ret_avg_stack) < self.thold_ret_std): return True else: return False
def stopping_criterion_met(self) -> bool: '\n Check if the average reward of the mean policy did not change more than the specified threshold over the\n last iterations.\n ' if (np.std(self.ret_avg_stack) < self.thold_ret_std): return True else: return False<|docstring|>Check if the average reward of the mean policy did not change more than the specified threshold over the last iterations.<|endoftext|>
78741961634485bdf14ade7c4c6ad91c3714b96f8d2d3ac81be2f1fee308ba82
@abstractmethod def update(self, param_results: ParameterSamplingResult, ret_avg_curr: float): '\n Update the policy from the given samples.\n\n :param param_results: Sampled parameters with evaluation\n :param ret_avg_curr: Average return for the current parameters\n ' raise NotImplementedError
Update the policy from the given samples. :param param_results: Sampled parameters with evaluation :param ret_avg_curr: Average return for the current parameters
Pyrado/pyrado/algorithms/parameter_exploring.py
update
jacarvalho/SimuRLacra
0
python
@abstractmethod def update(self, param_results: ParameterSamplingResult, ret_avg_curr: float): '\n Update the policy from the given samples.\n\n :param param_results: Sampled parameters with evaluation\n :param ret_avg_curr: Average return for the current parameters\n ' raise NotImplementedError
@abstractmethod def update(self, param_results: ParameterSamplingResult, ret_avg_curr: float): '\n Update the policy from the given samples.\n\n :param param_results: Sampled parameters with evaluation\n :param ret_avg_curr: Average return for the current parameters\n ' raise NotImplementedError<|docstring|>Update the policy from the given samples. :param param_results: Sampled parameters with evaluation :param ret_avg_curr: Average return for the current parameters<|endoftext|>
355a8b2bedc474e0cacd57072f19baccb992a9b688c9c053f4e0f4d42cdb692a
def deploy_cmd(): 'Creates deploy command' @ersilia_cli.command(short_help='Deploy model to the cloud', help='Deploy model in a cloud service. This option is only for developers and requires credentials.') @click.argument('model', type=click.STRING) @click.option('--cloud', default='heroku', type=click.STRING) def deploy(model, cloud): model_id = ModelBase(model).model_id dp = Deployer(cloud=cloud) if (dp.dep is None): click.echo(click.style('Please enter a valid cloud option', fg='red')) click.echo(click.style("Only 'heroku' and 'local' are available for the moment...", fg='yellow')) return dp.deploy(model_id)
Creates deploy command
ersilia/cli/commands/deploy.py
deploy_cmd
ersilia-os/ersilia
32
python
def deploy_cmd(): @ersilia_cli.command(short_help='Deploy model to the cloud', help='Deploy model in a cloud service. This option is only for developers and requires credentials.') @click.argument('model', type=click.STRING) @click.option('--cloud', default='heroku', type=click.STRING) def deploy(model, cloud): model_id = ModelBase(model).model_id dp = Deployer(cloud=cloud) if (dp.dep is None): click.echo(click.style('Please enter a valid cloud option', fg='red')) click.echo(click.style("Only 'heroku' and 'local' are available for the moment...", fg='yellow')) return dp.deploy(model_id)
def deploy_cmd(): @ersilia_cli.command(short_help='Deploy model to the cloud', help='Deploy model in a cloud service. This option is only for developers and requires credentials.') @click.argument('model', type=click.STRING) @click.option('--cloud', default='heroku', type=click.STRING) def deploy(model, cloud): model_id = ModelBase(model).model_id dp = Deployer(cloud=cloud) if (dp.dep is None): click.echo(click.style('Please enter a valid cloud option', fg='red')) click.echo(click.style("Only 'heroku' and 'local' are available for the moment...", fg='yellow')) return dp.deploy(model_id)<|docstring|>Creates deploy command<|endoftext|>
3738a2e4e6742a792ccc3c969795dc08db0c2a737172037d4aca122c3735460c
def Gauss_resample(x, y, N): '\n Resample features based on Gaussian approximation\n\n Note we divide the covariance by 2!\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] mean = np.mean(cx, axis=0) cov = np.cov(cx, rowvar=False) newX[((i * N) + len(gind[0])):((i + 1) * N)] = np.random.multivariate_normal(mean, (cov / 2.0), size=(N - len(gind[0]))) return (newX, newy)
Resample features based on Gaussian approximation Note we divide the covariance by 2! Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array
vraenn/classify.py
Gauss_resample
villrv/agnvae
2
python
def Gauss_resample(x, y, N): '\n Resample features based on Gaussian approximation\n\n Note we divide the covariance by 2!\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] mean = np.mean(cx, axis=0) cov = np.cov(cx, rowvar=False) newX[((i * N) + len(gind[0])):((i + 1) * N)] = np.random.multivariate_normal(mean, (cov / 2.0), size=(N - len(gind[0]))) return (newX, newy)
def Gauss_resample(x, y, N): '\n Resample features based on Gaussian approximation\n\n Note we divide the covariance by 2!\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] mean = np.mean(cx, axis=0) cov = np.cov(cx, rowvar=False) newX[((i * N) + len(gind[0])):((i + 1) * N)] = np.random.multivariate_normal(mean, (cov / 2.0), size=(N - len(gind[0]))) return (newX, newy)<|docstring|>Resample features based on Gaussian approximation Note we divide the covariance by 2! Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array<|endoftext|>
c4a4703277bd230b638eff4e3016e94de98757e149cfb693b172bc5374864a6a
def KDE_resample(x, y, N, bandwidth=0.5): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(cx) newX[((i * N) + len(gind[0])):((i + 1) * N)] = kde.sample(n_samples=(N - len(gind[0]))) return (newX, newy)
Resample features based on Kernel Density approximation Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array
vraenn/classify.py
KDE_resample
villrv/agnvae
2
python
def KDE_resample(x, y, N, bandwidth=0.5): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(cx) newX[((i * N) + len(gind[0])):((i + 1) * N)] = kde.sample(n_samples=(N - len(gind[0]))) return (newX, newy)
def KDE_resample(x, y, N, bandwidth=0.5): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n N : int\n Total samples to simulate (to be added to original sample)\n\n Returns\n -------\n newX : numpy.ndarray\n New Feature array\n newY : numpy.ndarray\n New label array\n ' uys = np.unique(y) newX = np.zeros((int((N * len(uys))), np.size(x, axis=1))) newy = np.zeros((int((N * len(uys))),)) for (i, uy) in enumerate(uys): gind = np.where((y == uy)) newX[((i * N):((i * N) + len(gind[0])), :)] = x[(gind[0], :)] newy[(i * N):((i + 1) * N)] = uy cx = x[(gind[0], :)] kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(cx) newX[((i * N) + len(gind[0])):((i + 1) * N)] = kde.sample(n_samples=(N - len(gind[0]))) return (newX, newy)<|docstring|>Resample features based on Kernel Density approximation Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array<|endoftext|>
8f46e605bc071a9415dc2f51bfe1f4eb9852f3db023de9852a3488d9923e6260
def prep_data_for_classifying(featurefile, means, stds, whiten=True, verbose=False): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n whiten : bool\n Whiten features before classification\n verbose : bool\n Print if SNe fail\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] X = [] final_sn_names = [] for sn_name in ids: gind = np.where((sn_name == ids)) if verbose: if (len(gind[0]) == 0): print('SN not found') sys.exit(0) if (not np.isfinite(features[gind][0]).all()): print('Warning: ', sn_name, ' has a non-finite feature') if (X == []): X = features[gind][0] else: X = np.vstack((X, features[gind][0])) final_sn_names.append(sn_name) gind = np.where(np.isnan(X)) if (len(gind) > 0): X[(gind[0], gind[1])] = means[gind[1]] if whiten: X = ((X - means) / stds) return (X, final_sn_names, means, stds, feat_names)
Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten whiten : bool Whiten features before classification verbose : bool Print if SNe fail Returns ------- X : numpy.ndarray Feature array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names
vraenn/classify.py
prep_data_for_classifying
villrv/agnvae
2
python
def prep_data_for_classifying(featurefile, means, stds, whiten=True, verbose=False): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n whiten : bool\n Whiten features before classification\n verbose : bool\n Print if SNe fail\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] X = [] final_sn_names = [] for sn_name in ids: gind = np.where((sn_name == ids)) if verbose: if (len(gind[0]) == 0): print('SN not found') sys.exit(0) if (not np.isfinite(features[gind][0]).all()): print('Warning: ', sn_name, ' has a non-finite feature') if (X == []): X = features[gind][0] else: X = np.vstack((X, features[gind][0])) final_sn_names.append(sn_name) gind = np.where(np.isnan(X)) if (len(gind) > 0): X[(gind[0], gind[1])] = means[gind[1]] if whiten: X = ((X - means) / stds) return (X, final_sn_names, means, stds, feat_names)
def prep_data_for_classifying(featurefile, means, stds, whiten=True, verbose=False): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n whiten : bool\n Whiten features before classification\n verbose : bool\n Print if SNe fail\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] X = [] final_sn_names = [] for sn_name in ids: gind = np.where((sn_name == ids)) if verbose: if (len(gind[0]) == 0): print('SN not found') sys.exit(0) if (not np.isfinite(features[gind][0]).all()): print('Warning: ', sn_name, ' has a non-finite feature') if (X == []): X = features[gind][0] else: X = np.vstack((X, features[gind][0])) final_sn_names.append(sn_name) gind = np.where(np.isnan(X)) if (len(gind) > 0): X[(gind[0], gind[1])] = means[gind[1]] if whiten: X = ((X - means) / stds) return (X, final_sn_names, means, stds, feat_names)<|docstring|>Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten whiten : bool Whiten features before classification verbose : bool Print if SNe fail Returns ------- X : numpy.ndarray Feature array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names<|endoftext|>
7e46e1cdc40d3e0631b02c719d3a955e68533ea81e5dc84455e19c17694f4af5
def prep_data_for_training(featurefile, metatable, whiten=True): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n metatable : numpy.ndarray\n Table which must include: Object Name, Redshift, Type, Estimate\n Peak Time, and EBV_MW\n whiten : bool\n Whiten features before classification\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] metadata = np.loadtxt(metatable, dtype=str, usecols=(0, 2)) sn_dict = {'SLSN': 0, 'SLSN-I': 0, 'SNIIL': 0, 'SNII': 1, 'SNIIP': 1, 'SNIIb': 1, 'SNII-pec': 1, 'SNIIn': 2, 'SLSN-II': 2, 'SNIa': 3, 'SNIa-91bg-like': 3, 'SNIa-91T-like': 3, 'SNIax[02cx-like]': 3, 'SNIa-pec': 3, 'SNIa-CSM': 3, 'SNIbc': 4, 'SNIc': 4, 'SNIb': 4, 'SNIbn': 4, 'SNIc-BL': 4, 'SNIb/c': 4, 'SNIb-Ca-rich': 4} X = [] y = [] final_sn_names = [] for (sn_name, sn_type) in metadata: gind = np.where((sn_name == ids)) if ('SN' not in sn_type): continue else: sn_num = sn_dict[sn_type] if (len(gind[0]) == 0): continue if (not np.isfinite(features[gind][0]).all()): continue if (X == []): X = features[gind][0] y = sn_num else: X = np.vstack((X, features[gind][0])) y = np.append(y, sn_num) final_sn_names.append(sn_name) means = np.mean(X, axis=0) stds = np.std(X, axis=0) if whiten: X = preprocessing.scale(X) return (X, y, final_sn_names, means, stds, feat_names)
Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features metatable : numpy.ndarray Table which must include: Object Name, Redshift, Type, Estimate Peak Time, and EBV_MW whiten : bool Whiten features before classification Returns ------- X : numpy.ndarray Feature array y : numpy.ndarray Label array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names
vraenn/classify.py
prep_data_for_training
villrv/agnvae
2
python
def prep_data_for_training(featurefile, metatable, whiten=True): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n metatable : numpy.ndarray\n Table which must include: Object Name, Redshift, Type, Estimate\n Peak Time, and EBV_MW\n whiten : bool\n Whiten features before classification\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] metadata = np.loadtxt(metatable, dtype=str, usecols=(0, 2)) sn_dict = {'SLSN': 0, 'SLSN-I': 0, 'SNIIL': 0, 'SNII': 1, 'SNIIP': 1, 'SNIIb': 1, 'SNII-pec': 1, 'SNIIn': 2, 'SLSN-II': 2, 'SNIa': 3, 'SNIa-91bg-like': 3, 'SNIa-91T-like': 3, 'SNIax[02cx-like]': 3, 'SNIa-pec': 3, 'SNIa-CSM': 3, 'SNIbc': 4, 'SNIc': 4, 'SNIb': 4, 'SNIbn': 4, 'SNIc-BL': 4, 'SNIb/c': 4, 'SNIb-Ca-rich': 4} X = [] y = [] final_sn_names = [] for (sn_name, sn_type) in metadata: gind = np.where((sn_name == ids)) if ('SN' not in sn_type): continue else: sn_num = sn_dict[sn_type] if (len(gind[0]) == 0): continue if (not np.isfinite(features[gind][0]).all()): continue if (X == []): X = features[gind][0] y = sn_num else: X = np.vstack((X, features[gind][0])) y = np.append(y, sn_num) final_sn_names.append(sn_name) means = np.mean(X, axis=0) stds = np.std(X, axis=0) if whiten: X = preprocessing.scale(X) return (X, y, final_sn_names, means, stds, feat_names)
def prep_data_for_training(featurefile, metatable, whiten=True): '\n Resample features based on Kernel Density approximation\n\n Parameters\n ----------\n featurefile : str\n File with pre-processed features\n metatable : numpy.ndarray\n Table which must include: Object Name, Redshift, Type, Estimate\n Peak Time, and EBV_MW\n whiten : bool\n Whiten features before classification\n\n Returns\n -------\n X : numpy.ndarray\n Feature array\n y : numpy.ndarray\n Label array\n final_sn_names : numpy.ndarray\n Label array\n means : numpy.ndarray\n Means of features, used to whiten\n stds : numpy.ndarray\n St. dev of features, used to whiten\n feat_names : numpy.ndarray\n Array of feature names\n ' feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] metadata = np.loadtxt(metatable, dtype=str, usecols=(0, 2)) sn_dict = {'SLSN': 0, 'SLSN-I': 0, 'SNIIL': 0, 'SNII': 1, 'SNIIP': 1, 'SNIIb': 1, 'SNII-pec': 1, 'SNIIn': 2, 'SLSN-II': 2, 'SNIa': 3, 'SNIa-91bg-like': 3, 'SNIa-91T-like': 3, 'SNIax[02cx-like]': 3, 'SNIa-pec': 3, 'SNIa-CSM': 3, 'SNIbc': 4, 'SNIc': 4, 'SNIb': 4, 'SNIbn': 4, 'SNIc-BL': 4, 'SNIb/c': 4, 'SNIb-Ca-rich': 4} X = [] y = [] final_sn_names = [] for (sn_name, sn_type) in metadata: gind = np.where((sn_name == ids)) if ('SN' not in sn_type): continue else: sn_num = sn_dict[sn_type] if (len(gind[0]) == 0): continue if (not np.isfinite(features[gind][0]).all()): continue if (X == []): X = features[gind][0] y = sn_num else: X = np.vstack((X, features[gind][0])) y = np.append(y, sn_num) final_sn_names.append(sn_name) means = np.mean(X, axis=0) stds = np.std(X, axis=0) if whiten: X = preprocessing.scale(X) return (X, y, final_sn_names, means, stds, feat_names)<|docstring|>Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features metatable : numpy.ndarray Table which must include: Object Name, Redshift, Type, Estimate Peak Time, and EBV_MW whiten : bool Whiten features before classification Returns ------- X : numpy.ndarray Feature array y : numpy.ndarray Label array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names<|endoftext|>
ade4f231910c01fd1c384fd42db684eb640456b73acd594b61a541e5a0f1d0ac
def main(): ' Calls the other functions to demonstrate and/or test them. ' circle_and_rectangle()
Calls the other functions to demonstrate and/or test them.
src/m9_using_objects.py
main
whitemg1/03-AccumulatorsAndFunctionsWithParameters
0
python
def main(): ' ' circle_and_rectangle()
def main(): ' ' circle_and_rectangle()<|docstring|>Calls the other functions to demonstrate and/or test them.<|endoftext|>
cc3d780d65b0ec08b2b9767611c0b7d2797c122aac4ab36edb93e216c1a75f9f
def two_circles(): '\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws two rg.Circle objects on the window\n such that:\n -- They fit in the window and are easily visible.\n -- They have different radii.\n -- One is filled with some color and one is not filled.\n -- Waits for the user to press the mouse, then closes the window.\n ' window = rg.RoseWindow() center_point1 = rg.Point(300, 100) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.fill_color = 'green' circle1.attach_to(window) center_point2 = rg.Point(200, 100) radius2 = 15 circle2 = rg.Circle(center_point2, radius2) circle2.attach_to(window) window.render() window.close_on_mouse_click()
-- Constructs an rg.RoseWindow. -- Constructs and draws two rg.Circle objects on the window such that: -- They fit in the window and are easily visible. -- They have different radii. -- One is filled with some color and one is not filled. -- Waits for the user to press the mouse, then closes the window.
src/m9_using_objects.py
two_circles
whitemg1/03-AccumulatorsAndFunctionsWithParameters
0
python
def two_circles(): '\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws two rg.Circle objects on the window\n such that:\n -- They fit in the window and are easily visible.\n -- They have different radii.\n -- One is filled with some color and one is not filled.\n -- Waits for the user to press the mouse, then closes the window.\n ' window = rg.RoseWindow() center_point1 = rg.Point(300, 100) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.fill_color = 'green' circle1.attach_to(window) center_point2 = rg.Point(200, 100) radius2 = 15 circle2 = rg.Circle(center_point2, radius2) circle2.attach_to(window) window.render() window.close_on_mouse_click()
def two_circles(): '\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws two rg.Circle objects on the window\n such that:\n -- They fit in the window and are easily visible.\n -- They have different radii.\n -- One is filled with some color and one is not filled.\n -- Waits for the user to press the mouse, then closes the window.\n ' window = rg.RoseWindow() center_point1 = rg.Point(300, 100) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.fill_color = 'green' circle1.attach_to(window) center_point2 = rg.Point(200, 100) radius2 = 15 circle2 = rg.Circle(center_point2, radius2) circle2.attach_to(window) window.render() window.close_on_mouse_click()<|docstring|>-- Constructs an rg.RoseWindow. -- Constructs and draws two rg.Circle objects on the window such that: -- They fit in the window and are easily visible. -- They have different radii. -- One is filled with some color and one is not filled. -- Waits for the user to press the mouse, then closes the window.<|endoftext|>
6b176be1a8cc6fab57617cd01ef5c548fa1a1006b142318e4a95a3f1f1b79303
def circle_and_rectangle(): "\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws a rg.Circle and rg.Rectangle\n on the window such that:\n -- They fit in the window and are easily visible.\n -- The rg.Circle is filled with 'blue'\n -- Prints (on the console, on SEPARATE lines) the following data\n associated with your rg.Circle:\n -- Its outline thickness.\n -- Its fill color.\n -- Its center.\n -- Its center's x coordinate.\n -- Its center's y coordinate.\n -- Prints (on the console, on SEPARATE lines) the same data\n but for your rg.Rectangle.\n -- Waits for the user to press the mouse, then closes the window.\n\n Here is an example of the output on the console,\n for one particular circle and rectangle:\n\n 1\n blue\n Point(180.0, 115.0)\n 180\n 115\n 1\n None\n Point(75.0, 150.0)\n 75.0\n 150.0\n " window = rg.RoseWindow() x = 300 y = 100 center_point1 = rg.Point(x, y) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.outline_thickness = 5 circle1.fill_color = 'blue' circle1.attach_to(window) thickness2 = 5 corner1 = rg.Point(100, 100) corner2 = rg.Point(200, 200) rectangle = rg.Rectangle(corner1, corner2) rectangle.outline_thickness = 3 rectangle.attach_to(window) print(circle1.outline_thickness) print(circle1.fill_color) print(center_point1) print(x) print(y) print(rectangle.outline_thickness) print(rectangle.fill_color) print(corner1) print('100') print('100') window.render() window.close_on_mouse_click()
-- Constructs an rg.RoseWindow. -- Constructs and draws a rg.Circle and rg.Rectangle on the window such that: -- They fit in the window and are easily visible. -- The rg.Circle is filled with 'blue' -- Prints (on the console, on SEPARATE lines) the following data associated with your rg.Circle: -- Its outline thickness. -- Its fill color. -- Its center. -- Its center's x coordinate. -- Its center's y coordinate. -- Prints (on the console, on SEPARATE lines) the same data but for your rg.Rectangle. -- Waits for the user to press the mouse, then closes the window. Here is an example of the output on the console, for one particular circle and rectangle: 1 blue Point(180.0, 115.0) 180 115 1 None Point(75.0, 150.0) 75.0 150.0
src/m9_using_objects.py
circle_and_rectangle
whitemg1/03-AccumulatorsAndFunctionsWithParameters
0
python
def circle_and_rectangle(): "\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws a rg.Circle and rg.Rectangle\n on the window such that:\n -- They fit in the window and are easily visible.\n -- The rg.Circle is filled with 'blue'\n -- Prints (on the console, on SEPARATE lines) the following data\n associated with your rg.Circle:\n -- Its outline thickness.\n -- Its fill color.\n -- Its center.\n -- Its center's x coordinate.\n -- Its center's y coordinate.\n -- Prints (on the console, on SEPARATE lines) the same data\n but for your rg.Rectangle.\n -- Waits for the user to press the mouse, then closes the window.\n\n Here is an example of the output on the console,\n for one particular circle and rectangle:\n\n 1\n blue\n Point(180.0, 115.0)\n 180\n 115\n 1\n None\n Point(75.0, 150.0)\n 75.0\n 150.0\n " window = rg.RoseWindow() x = 300 y = 100 center_point1 = rg.Point(x, y) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.outline_thickness = 5 circle1.fill_color = 'blue' circle1.attach_to(window) thickness2 = 5 corner1 = rg.Point(100, 100) corner2 = rg.Point(200, 200) rectangle = rg.Rectangle(corner1, corner2) rectangle.outline_thickness = 3 rectangle.attach_to(window) print(circle1.outline_thickness) print(circle1.fill_color) print(center_point1) print(x) print(y) print(rectangle.outline_thickness) print(rectangle.fill_color) print(corner1) print('100') print('100') window.render() window.close_on_mouse_click()
def circle_and_rectangle(): "\n -- Constructs an rg.RoseWindow.\n -- Constructs and draws a rg.Circle and rg.Rectangle\n on the window such that:\n -- They fit in the window and are easily visible.\n -- The rg.Circle is filled with 'blue'\n -- Prints (on the console, on SEPARATE lines) the following data\n associated with your rg.Circle:\n -- Its outline thickness.\n -- Its fill color.\n -- Its center.\n -- Its center's x coordinate.\n -- Its center's y coordinate.\n -- Prints (on the console, on SEPARATE lines) the same data\n but for your rg.Rectangle.\n -- Waits for the user to press the mouse, then closes the window.\n\n Here is an example of the output on the console,\n for one particular circle and rectangle:\n\n 1\n blue\n Point(180.0, 115.0)\n 180\n 115\n 1\n None\n Point(75.0, 150.0)\n 75.0\n 150.0\n " window = rg.RoseWindow() x = 300 y = 100 center_point1 = rg.Point(x, y) radius1 = 50 circle1 = rg.Circle(center_point1, radius1) circle1.outline_thickness = 5 circle1.fill_color = 'blue' circle1.attach_to(window) thickness2 = 5 corner1 = rg.Point(100, 100) corner2 = rg.Point(200, 200) rectangle = rg.Rectangle(corner1, corner2) rectangle.outline_thickness = 3 rectangle.attach_to(window) print(circle1.outline_thickness) print(circle1.fill_color) print(center_point1) print(x) print(y) print(rectangle.outline_thickness) print(rectangle.fill_color) print(corner1) print('100') print('100') window.render() window.close_on_mouse_click()<|docstring|>-- Constructs an rg.RoseWindow. -- Constructs and draws a rg.Circle and rg.Rectangle on the window such that: -- They fit in the window and are easily visible. -- The rg.Circle is filled with 'blue' -- Prints (on the console, on SEPARATE lines) the following data associated with your rg.Circle: -- Its outline thickness. -- Its fill color. -- Its center. -- Its center's x coordinate. -- Its center's y coordinate. -- Prints (on the console, on SEPARATE lines) the same data but for your rg.Rectangle. -- Waits for the user to press the mouse, then closes the window. Here is an example of the output on the console, for one particular circle and rectangle: 1 blue Point(180.0, 115.0) 180 115 1 None Point(75.0, 150.0) 75.0 150.0<|endoftext|>
8225bc2072cbbfd9a6874e268aaf8cdfa2fca632e1a5cd5141823134736ab896
def lines(): '\n -- Constructs a rg.RoseWindow.\n -- Constructs and draws on the window two rg.Lines such that:\n -- They both fit in the window and are easily visible.\n -- One rg.Line has the default thickness.\n -- The other rg.Line is thicker (i.e., has a bigger width).\n -- Uses a rg.Line method to get the midpoint (center) of the\n thicker rg.Line.\n -- Then prints (on the console, on SEPARATE lines):\n -- the midpoint itself\n -- the x-coordinate of the midpoint\n -- the y-coordinate of the midpoint\n\n Here is an example of the output on the console, if the two\n endpoints of the thicker line are at (100, 100) and (121, 200):\n Point(110.5, 150.0)\n 110.5\n 150.0\n\n -- Waits for the user to press the mouse, then closes the window.\n '
-- Constructs a rg.RoseWindow. -- Constructs and draws on the window two rg.Lines such that: -- They both fit in the window and are easily visible. -- One rg.Line has the default thickness. -- The other rg.Line is thicker (i.e., has a bigger width). -- Uses a rg.Line method to get the midpoint (center) of the thicker rg.Line. -- Then prints (on the console, on SEPARATE lines): -- the midpoint itself -- the x-coordinate of the midpoint -- the y-coordinate of the midpoint Here is an example of the output on the console, if the two endpoints of the thicker line are at (100, 100) and (121, 200): Point(110.5, 150.0) 110.5 150.0 -- Waits for the user to press the mouse, then closes the window.
src/m9_using_objects.py
lines
whitemg1/03-AccumulatorsAndFunctionsWithParameters
0
python
def lines(): '\n -- Constructs a rg.RoseWindow.\n -- Constructs and draws on the window two rg.Lines such that:\n -- They both fit in the window and are easily visible.\n -- One rg.Line has the default thickness.\n -- The other rg.Line is thicker (i.e., has a bigger width).\n -- Uses a rg.Line method to get the midpoint (center) of the\n thicker rg.Line.\n -- Then prints (on the console, on SEPARATE lines):\n -- the midpoint itself\n -- the x-coordinate of the midpoint\n -- the y-coordinate of the midpoint\n\n Here is an example of the output on the console, if the two\n endpoints of the thicker line are at (100, 100) and (121, 200):\n Point(110.5, 150.0)\n 110.5\n 150.0\n\n -- Waits for the user to press the mouse, then closes the window.\n '
def lines(): '\n -- Constructs a rg.RoseWindow.\n -- Constructs and draws on the window two rg.Lines such that:\n -- They both fit in the window and are easily visible.\n -- One rg.Line has the default thickness.\n -- The other rg.Line is thicker (i.e., has a bigger width).\n -- Uses a rg.Line method to get the midpoint (center) of the\n thicker rg.Line.\n -- Then prints (on the console, on SEPARATE lines):\n -- the midpoint itself\n -- the x-coordinate of the midpoint\n -- the y-coordinate of the midpoint\n\n Here is an example of the output on the console, if the two\n endpoints of the thicker line are at (100, 100) and (121, 200):\n Point(110.5, 150.0)\n 110.5\n 150.0\n\n -- Waits for the user to press the mouse, then closes the window.\n '<|docstring|>-- Constructs a rg.RoseWindow. -- Constructs and draws on the window two rg.Lines such that: -- They both fit in the window and are easily visible. -- One rg.Line has the default thickness. -- The other rg.Line is thicker (i.e., has a bigger width). -- Uses a rg.Line method to get the midpoint (center) of the thicker rg.Line. -- Then prints (on the console, on SEPARATE lines): -- the midpoint itself -- the x-coordinate of the midpoint -- the y-coordinate of the midpoint Here is an example of the output on the console, if the two endpoints of the thicker line are at (100, 100) and (121, 200): Point(110.5, 150.0) 110.5 150.0 -- Waits for the user to press the mouse, then closes the window.<|endoftext|>
c41523d06022d9f2ffbae7dd786e387ede47ad04e52fb7d7568dffe74d885af5
def sample(self, assign_result, boxes, gt_boxes, gt_labels=None, **kwargs): 'Sample positive and negative boxes.\n\n This is a simple implementation of bbox sampling given candidates,\n assigning results and ground truth boxes.\n\n Args:\n assign_result (:obj:`AssignResult`): Bbox assigning results.\n boxes (Tensor): Boxes to be sampled from.\n gt_boxes (Tensor): Ground truth boxes.\n gt_labels (Tensor, optional): Class labels of ground truth boxes.\n\n Returns:\n :obj:`SamplingResult`: Sampling result.\n ' boxes = boxes[(:, :6)] gt_flags = boxes.new_zeros((boxes.shape[0],), dtype=torch.uint8) if self.add_gt_as_proposals: boxes = torch.cat([gt_boxes, boxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = boxes.new_ones(gt_boxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int((self.num * self.pos_fraction)) pos_inds = self.pos_sampler._sample_pos(assign_result, num_expected_pos, boxes=boxes, **kwargs) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = (self.num - num_sampled_pos) if (self.neg_pos_ub >= 0): _pos = max(1, num_sampled_pos) neg_upper_bound = int((self.neg_pos_ub * _pos)) if (num_expected_neg > neg_upper_bound): num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg(assign_result, num_expected_neg, boxes=boxes, **kwargs) neg_inds = neg_inds.unique() return SamplingResult(pos_inds, neg_inds, boxes, gt_boxes, assign_result, gt_flags)
Sample positive and negative boxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth boxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. boxes (Tensor): Boxes to be sampled from. gt_boxes (Tensor): Ground truth boxes. gt_labels (Tensor, optional): Class labels of ground truth boxes. Returns: :obj:`SamplingResult`: Sampling result.
model/pointgroup/box/samplers/base_sampler.py
sample
thangvubk/SphereRPN
8
python
def sample(self, assign_result, boxes, gt_boxes, gt_labels=None, **kwargs): 'Sample positive and negative boxes.\n\n This is a simple implementation of bbox sampling given candidates,\n assigning results and ground truth boxes.\n\n Args:\n assign_result (:obj:`AssignResult`): Bbox assigning results.\n boxes (Tensor): Boxes to be sampled from.\n gt_boxes (Tensor): Ground truth boxes.\n gt_labels (Tensor, optional): Class labels of ground truth boxes.\n\n Returns:\n :obj:`SamplingResult`: Sampling result.\n ' boxes = boxes[(:, :6)] gt_flags = boxes.new_zeros((boxes.shape[0],), dtype=torch.uint8) if self.add_gt_as_proposals: boxes = torch.cat([gt_boxes, boxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = boxes.new_ones(gt_boxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int((self.num * self.pos_fraction)) pos_inds = self.pos_sampler._sample_pos(assign_result, num_expected_pos, boxes=boxes, **kwargs) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = (self.num - num_sampled_pos) if (self.neg_pos_ub >= 0): _pos = max(1, num_sampled_pos) neg_upper_bound = int((self.neg_pos_ub * _pos)) if (num_expected_neg > neg_upper_bound): num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg(assign_result, num_expected_neg, boxes=boxes, **kwargs) neg_inds = neg_inds.unique() return SamplingResult(pos_inds, neg_inds, boxes, gt_boxes, assign_result, gt_flags)
def sample(self, assign_result, boxes, gt_boxes, gt_labels=None, **kwargs): 'Sample positive and negative boxes.\n\n This is a simple implementation of bbox sampling given candidates,\n assigning results and ground truth boxes.\n\n Args:\n assign_result (:obj:`AssignResult`): Bbox assigning results.\n boxes (Tensor): Boxes to be sampled from.\n gt_boxes (Tensor): Ground truth boxes.\n gt_labels (Tensor, optional): Class labels of ground truth boxes.\n\n Returns:\n :obj:`SamplingResult`: Sampling result.\n ' boxes = boxes[(:, :6)] gt_flags = boxes.new_zeros((boxes.shape[0],), dtype=torch.uint8) if self.add_gt_as_proposals: boxes = torch.cat([gt_boxes, boxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = boxes.new_ones(gt_boxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int((self.num * self.pos_fraction)) pos_inds = self.pos_sampler._sample_pos(assign_result, num_expected_pos, boxes=boxes, **kwargs) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = (self.num - num_sampled_pos) if (self.neg_pos_ub >= 0): _pos = max(1, num_sampled_pos) neg_upper_bound = int((self.neg_pos_ub * _pos)) if (num_expected_neg > neg_upper_bound): num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg(assign_result, num_expected_neg, boxes=boxes, **kwargs) neg_inds = neg_inds.unique() return SamplingResult(pos_inds, neg_inds, boxes, gt_boxes, assign_result, gt_flags)<|docstring|>Sample positive and negative boxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth boxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. boxes (Tensor): Boxes to be sampled from. gt_boxes (Tensor): Ground truth boxes. gt_labels (Tensor, optional): Class labels of ground truth boxes. Returns: :obj:`SamplingResult`: Sampling result.<|endoftext|>
c5687d31584dd2310a0d079bc03da67a67f892675d3ec2770da5add79d891dbf
def store_repo_info(self, response: Dict) -> None: 'Find and store information for each repo in repsonse' for repo in response: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}
Find and store information for each repo in repsonse
snippeteer/crawl/GithubCrawler.py
store_repo_info
malyvsen/snippeteer
0
python
def store_repo_info(self, response: Dict) -> None: for repo in response: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}
def store_repo_info(self, response: Dict) -> None: for repo in response: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}<|docstring|>Find and store information for each repo in repsonse<|endoftext|>
8fd00b93a4cc2964438b6764871935dcb792f88e3c96fdf3524f6bfcd2e46645
def perform_searches(self, queries, page_limit=5): 'Retrieve the ' for query in queries: i = 0 r = requests.get(f'https://api.github.com/search/repositories?q={query}', headers=self.header) while ((r.status_code == 200) and (i < page_limit)): print(f'Query: {query}, page: {i}') r_json = json.loads(r.text) self.store_query_info(r_json) if ('next' in r.links): r = requests.get(r.links['next']['url'], headers=self.header) i += 1 else: break if (r.status_code != 200): self.check_sleep() save_obj(self.repo_info, file_name=f'crawled_info/query_{query}') self.repo_info.clear()
Retrieve the
snippeteer/crawl/GithubCrawler.py
perform_searches
malyvsen/snippeteer
0
python
def perform_searches(self, queries, page_limit=5): ' ' for query in queries: i = 0 r = requests.get(f'https://api.github.com/search/repositories?q={query}', headers=self.header) while ((r.status_code == 200) and (i < page_limit)): print(f'Query: {query}, page: {i}') r_json = json.loads(r.text) self.store_query_info(r_json) if ('next' in r.links): r = requests.get(r.links['next']['url'], headers=self.header) i += 1 else: break if (r.status_code != 200): self.check_sleep() save_obj(self.repo_info, file_name=f'crawled_info/query_{query}') self.repo_info.clear()
def perform_searches(self, queries, page_limit=5): ' ' for query in queries: i = 0 r = requests.get(f'https://api.github.com/search/repositories?q={query}', headers=self.header) while ((r.status_code == 200) and (i < page_limit)): print(f'Query: {query}, page: {i}') r_json = json.loads(r.text) self.store_query_info(r_json) if ('next' in r.links): r = requests.get(r.links['next']['url'], headers=self.header) i += 1 else: break if (r.status_code != 200): self.check_sleep() save_obj(self.repo_info, file_name=f'crawled_info/query_{query}') self.repo_info.clear()<|docstring|>Retrieve the<|endoftext|>
b08f4ccbfe1bd0e5dd033f30a3ee4e19803ab61266ca010b491be3ea065291d9
def store_query_info(self, response: Dict) -> None: 'Find and store information for each repo in repsonse' for repo in response['items']: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}
Find and store information for each repo in repsonse
snippeteer/crawl/GithubCrawler.py
store_query_info
malyvsen/snippeteer
0
python
def store_query_info(self, response: Dict) -> None: for repo in response['items']: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}
def store_query_info(self, response: Dict) -> None: for repo in response['items']: if ((repo['fork'] is False) and self.language_match(repo)): (fork_count, star_count, default_branch) = self.get_repo_specific_info(repo) self.repo_info[repo['id']] = {'repo_name': get_repo_name(repo), 'owner': get_owner_login(repo), 'html_url': get_html_url(repo), 'repo_url': get_repo_url(repo), 'fork_count': fork_count, 'star_count': star_count, 'default_branch': default_branch, 'contributor_count': self.get_contributor_count(repo), 'collaborator_count': self.get_collaborator_count(repo)}<|docstring|>Find and store information for each repo in repsonse<|endoftext|>
534e3ec08d1bf98d631c51628c7e2dd384fb17a4292b85bfc19a9a3875d6d09d
def index_points(points, idx): '\n\n Input:\n points: input points data, [B, N, C]\n idx: sample index data, [B, S]\n Return:\n new_points:, indexed points data, [B, S, C] S是N的一个子集\n ' device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = ([1] * (len(view_shape) - 1)) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[(batch_indices, idx, :)] return new_points
Input: points: input points data, [B, N, C] idx: sample index data, [B, S] Return: new_points:, indexed points data, [B, S, C] S是N的一个子集
3d_point_cls/models/pointnet_util.py
index_points
ZJZAC/Passport-aware-Normalization
16
python
def index_points(points, idx): '\n\n Input:\n points: input points data, [B, N, C]\n idx: sample index data, [B, S]\n Return:\n new_points:, indexed points data, [B, S, C] S是N的一个子集\n ' device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = ([1] * (len(view_shape) - 1)) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[(batch_indices, idx, :)] return new_points
def index_points(points, idx): '\n\n Input:\n points: input points data, [B, N, C]\n idx: sample index data, [B, S]\n Return:\n new_points:, indexed points data, [B, S, C] S是N的一个子集\n ' device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = ([1] * (len(view_shape) - 1)) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[(batch_indices, idx, :)] return new_points<|docstring|>Input: points: input points data, [B, N, C] idx: sample index data, [B, S] Return: new_points:, indexed points data, [B, S, C] S是N的一个子集<|endoftext|>
e6bd2c88c6321cecafb65b60673b0b3bf35e4a2ce2710fad97742b12df00b74e
def farthest_point_sample(xyz, npoint): '\n Input:\n xyz: pointcloud data, [B, N, 3]\n npoint: number of samples\n Return:\n centroids: sampled pointcloud index, [B, npoint]\n ' device = xyz.device (B, N, C) = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = (torch.ones(B, N).to(device) * 10000000000.0) farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[(:, i)] = farthest centroid = xyz[(batch_indices, farthest, :)].view(B, 1, 3) dist = torch.sum(((xyz - centroid) ** 2), (- 1)) mask = (dist < distance) distance[mask] = dist[mask] farthest = torch.max(distance, (- 1))[1] return centroids
Input: xyz: pointcloud data, [B, N, 3] npoint: number of samples Return: centroids: sampled pointcloud index, [B, npoint]
3d_point_cls/models/pointnet_util.py
farthest_point_sample
ZJZAC/Passport-aware-Normalization
16
python
def farthest_point_sample(xyz, npoint): '\n Input:\n xyz: pointcloud data, [B, N, 3]\n npoint: number of samples\n Return:\n centroids: sampled pointcloud index, [B, npoint]\n ' device = xyz.device (B, N, C) = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = (torch.ones(B, N).to(device) * 10000000000.0) farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[(:, i)] = farthest centroid = xyz[(batch_indices, farthest, :)].view(B, 1, 3) dist = torch.sum(((xyz - centroid) ** 2), (- 1)) mask = (dist < distance) distance[mask] = dist[mask] farthest = torch.max(distance, (- 1))[1] return centroids
def farthest_point_sample(xyz, npoint): '\n Input:\n xyz: pointcloud data, [B, N, 3]\n npoint: number of samples\n Return:\n centroids: sampled pointcloud index, [B, npoint]\n ' device = xyz.device (B, N, C) = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = (torch.ones(B, N).to(device) * 10000000000.0) farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[(:, i)] = farthest centroid = xyz[(batch_indices, farthest, :)].view(B, 1, 3) dist = torch.sum(((xyz - centroid) ** 2), (- 1)) mask = (dist < distance) distance[mask] = dist[mask] farthest = torch.max(distance, (- 1))[1] return centroids<|docstring|>Input: xyz: pointcloud data, [B, N, 3] npoint: number of samples Return: centroids: sampled pointcloud index, [B, npoint]<|endoftext|>
aa1a490d038f695798d7cf1d4115642a2610064666c99b67309dafe31204a747
def query_ball_point(radius, nsample, xyz, new_xyz): '\n Input:\n radius: local region radius\n nsample: max sample number in local region\n xyz: all points, [B, N, 3]\n new_xyz: query points, [B, S, 3]\n Return:\n group_idx: grouped points index, [B, S, nsample]\n ' device = xyz.device (B, N, C) = xyz.shape (_, S, _) = new_xyz.shape group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) sqrdists = square_distance(new_xyz, xyz) group_idx[(sqrdists > (radius ** 2))] = N group_idx = group_idx.sort(dim=(- 1))[0][(:, :, :nsample)] group_first = group_idx[(:, :, 0)].view(B, S, 1).repeat([1, 1, nsample]) mask = (group_idx == N) group_idx[mask] = group_first[mask] return group_idx
Input: radius: local region radius nsample: max sample number in local region xyz: all points, [B, N, 3] new_xyz: query points, [B, S, 3] Return: group_idx: grouped points index, [B, S, nsample]
3d_point_cls/models/pointnet_util.py
query_ball_point
ZJZAC/Passport-aware-Normalization
16
python
def query_ball_point(radius, nsample, xyz, new_xyz): '\n Input:\n radius: local region radius\n nsample: max sample number in local region\n xyz: all points, [B, N, 3]\n new_xyz: query points, [B, S, 3]\n Return:\n group_idx: grouped points index, [B, S, nsample]\n ' device = xyz.device (B, N, C) = xyz.shape (_, S, _) = new_xyz.shape group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) sqrdists = square_distance(new_xyz, xyz) group_idx[(sqrdists > (radius ** 2))] = N group_idx = group_idx.sort(dim=(- 1))[0][(:, :, :nsample)] group_first = group_idx[(:, :, 0)].view(B, S, 1).repeat([1, 1, nsample]) mask = (group_idx == N) group_idx[mask] = group_first[mask] return group_idx
def query_ball_point(radius, nsample, xyz, new_xyz): '\n Input:\n radius: local region radius\n nsample: max sample number in local region\n xyz: all points, [B, N, 3]\n new_xyz: query points, [B, S, 3]\n Return:\n group_idx: grouped points index, [B, S, nsample]\n ' device = xyz.device (B, N, C) = xyz.shape (_, S, _) = new_xyz.shape group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) sqrdists = square_distance(new_xyz, xyz) group_idx[(sqrdists > (radius ** 2))] = N group_idx = group_idx.sort(dim=(- 1))[0][(:, :, :nsample)] group_first = group_idx[(:, :, 0)].view(B, S, 1).repeat([1, 1, nsample]) mask = (group_idx == N) group_idx[mask] = group_first[mask] return group_idx<|docstring|>Input: radius: local region radius nsample: max sample number in local region xyz: all points, [B, N, 3] new_xyz: query points, [B, S, 3] Return: group_idx: grouped points index, [B, S, nsample]<|endoftext|>
6309de3a383de6dd06af7ea4a59de87bbe90f39d64dc2c17ffb3503fe109026e
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): '\n Input:\n npoint:\n radius:\n nsample:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, npoint, nsample, 3]\n new_points: sampled points data, [B, npoint, nsample, 3+D]\n ' (B, N, C) = xyz.shape S = npoint fps_idx = farthest_point_sample(xyz, npoint) torch.cuda.empty_cache() new_xyz = index_points(xyz, fps_idx) torch.cuda.empty_cache() idx = query_ball_point(radius, nsample, xyz, new_xyz) torch.cuda.empty_cache() grouped_xyz = index_points(xyz, idx) torch.cuda.empty_cache() grouped_xyz_norm = (grouped_xyz - new_xyz.view(B, S, 1, C)) torch.cuda.empty_cache() if (points is not None): grouped_points = index_points(points, idx) new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=(- 1)) else: new_points = grouped_xyz_norm if returnfps: return (new_xyz, new_points, grouped_xyz, fps_idx) else: return (new_xyz, new_points)
Input: npoint: radius: nsample: xyz: input points position data, [B, N, 3] points: input points data, [B, N, D] Return: new_xyz: sampled points position data, [B, npoint, nsample, 3] new_points: sampled points data, [B, npoint, nsample, 3+D]
3d_point_cls/models/pointnet_util.py
sample_and_group
ZJZAC/Passport-aware-Normalization
16
python
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): '\n Input:\n npoint:\n radius:\n nsample:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, npoint, nsample, 3]\n new_points: sampled points data, [B, npoint, nsample, 3+D]\n ' (B, N, C) = xyz.shape S = npoint fps_idx = farthest_point_sample(xyz, npoint) torch.cuda.empty_cache() new_xyz = index_points(xyz, fps_idx) torch.cuda.empty_cache() idx = query_ball_point(radius, nsample, xyz, new_xyz) torch.cuda.empty_cache() grouped_xyz = index_points(xyz, idx) torch.cuda.empty_cache() grouped_xyz_norm = (grouped_xyz - new_xyz.view(B, S, 1, C)) torch.cuda.empty_cache() if (points is not None): grouped_points = index_points(points, idx) new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=(- 1)) else: new_points = grouped_xyz_norm if returnfps: return (new_xyz, new_points, grouped_xyz, fps_idx) else: return (new_xyz, new_points)
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): '\n Input:\n npoint:\n radius:\n nsample:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, npoint, nsample, 3]\n new_points: sampled points data, [B, npoint, nsample, 3+D]\n ' (B, N, C) = xyz.shape S = npoint fps_idx = farthest_point_sample(xyz, npoint) torch.cuda.empty_cache() new_xyz = index_points(xyz, fps_idx) torch.cuda.empty_cache() idx = query_ball_point(radius, nsample, xyz, new_xyz) torch.cuda.empty_cache() grouped_xyz = index_points(xyz, idx) torch.cuda.empty_cache() grouped_xyz_norm = (grouped_xyz - new_xyz.view(B, S, 1, C)) torch.cuda.empty_cache() if (points is not None): grouped_points = index_points(points, idx) new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=(- 1)) else: new_points = grouped_xyz_norm if returnfps: return (new_xyz, new_points, grouped_xyz, fps_idx) else: return (new_xyz, new_points)<|docstring|>Input: npoint: radius: nsample: xyz: input points position data, [B, N, 3] points: input points data, [B, N, D] Return: new_xyz: sampled points position data, [B, npoint, nsample, 3] new_points: sampled points data, [B, npoint, nsample, 3+D]<|endoftext|>
4cee877ea58d32bbfc6fba91c81a18cc50dc7c045e657c5aafc81663e2bfedeb
def sample_and_group_all(xyz, points): '\n Input:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, 1, 3]\n new_points: sampled points data, [B, 1, N, 3+D]\n ' device = xyz.device (B, N, C) = xyz.shape new_xyz = torch.zeros(B, 1, C).to(device) grouped_xyz = xyz.view(B, 1, N, C) if (points is not None): new_points = torch.cat([grouped_xyz, points.view(B, 1, N, (- 1))], dim=(- 1)) else: new_points = grouped_xyz return (new_xyz, new_points)
Input: xyz: input points position data, [B, N, 3] points: input points data, [B, N, D] Return: new_xyz: sampled points position data, [B, 1, 3] new_points: sampled points data, [B, 1, N, 3+D]
3d_point_cls/models/pointnet_util.py
sample_and_group_all
ZJZAC/Passport-aware-Normalization
16
python
def sample_and_group_all(xyz, points): '\n Input:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, 1, 3]\n new_points: sampled points data, [B, 1, N, 3+D]\n ' device = xyz.device (B, N, C) = xyz.shape new_xyz = torch.zeros(B, 1, C).to(device) grouped_xyz = xyz.view(B, 1, N, C) if (points is not None): new_points = torch.cat([grouped_xyz, points.view(B, 1, N, (- 1))], dim=(- 1)) else: new_points = grouped_xyz return (new_xyz, new_points)
def sample_and_group_all(xyz, points): '\n Input:\n xyz: input points position data, [B, N, 3]\n points: input points data, [B, N, D]\n Return:\n new_xyz: sampled points position data, [B, 1, 3]\n new_points: sampled points data, [B, 1, N, 3+D]\n ' device = xyz.device (B, N, C) = xyz.shape new_xyz = torch.zeros(B, 1, C).to(device) grouped_xyz = xyz.view(B, 1, N, C) if (points is not None): new_points = torch.cat([grouped_xyz, points.view(B, 1, N, (- 1))], dim=(- 1)) else: new_points = grouped_xyz return (new_xyz, new_points)<|docstring|>Input: xyz: input points position data, [B, N, 3] points: input points data, [B, N, D] Return: new_xyz: sampled points position data, [B, 1, 3] new_points: sampled points data, [B, 1, N, 3+D]<|endoftext|>
86ee2d10cbbe1bf6fe34b7fbb07b060f0752fa426906d0647ae86d250cbf0fe0
def init_params(net): 'Init layer parameters.' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias: init.constant(m.bias, 0)
Init layer parameters.
3d_point_cls/models/pointnet_util.py
init_params
ZJZAC/Passport-aware-Normalization
16
python
def init_params(net): for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias: init.constant(m.bias, 0)
def init_params(net): for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias: init.constant(m.bias, 0)<|docstring|>Init layer parameters.<|endoftext|>
f0d29687e270885ce78c7cebf4ff8d5cbd24bc0d394f69ccc5dd2cc16b4e135a
def re_initializer_layer(model, num_classes, layer=None): 'remove the last layer and add a new one' indim = model.fc3.in_features private_key = model.fc3 if layer: model.fc3 = layer else: model.fc3 = nn.Linear(indim, num_classes).cuda() return (model, private_key)
remove the last layer and add a new one
3d_point_cls/models/pointnet_util.py
re_initializer_layer
ZJZAC/Passport-aware-Normalization
16
python
def re_initializer_layer(model, num_classes, layer=None): indim = model.fc3.in_features private_key = model.fc3 if layer: model.fc3 = layer else: model.fc3 = nn.Linear(indim, num_classes).cuda() return (model, private_key)
def re_initializer_layer(model, num_classes, layer=None): indim = model.fc3.in_features private_key = model.fc3 if layer: model.fc3 = layer else: model.fc3 = nn.Linear(indim, num_classes).cuda() return (model, private_key)<|docstring|>remove the last layer and add a new one<|endoftext|>
f957e7ee4eca9df9080b757cffaf138a9ac00209931b0b8d6a7501500fd0fdf5
def re_initializer_passport_layer(model, num_classes, layer=None): 'remove the last layer and add a new one' indim = model.p3.in_features private_key = model.p3.key_private private_skey = model.p3.skey_private private_layer = model.p3 if layer: model.p3 = layer else: model.p3 = fc3_ft(indim, num_classes).cuda() model.p3.key_private = private_key model.p3.skey_private = private_skey return (model, private_layer)
remove the last layer and add a new one
3d_point_cls/models/pointnet_util.py
re_initializer_passport_layer
ZJZAC/Passport-aware-Normalization
16
python
def re_initializer_passport_layer(model, num_classes, layer=None): indim = model.p3.in_features private_key = model.p3.key_private private_skey = model.p3.skey_private private_layer = model.p3 if layer: model.p3 = layer else: model.p3 = fc3_ft(indim, num_classes).cuda() model.p3.key_private = private_key model.p3.skey_private = private_skey return (model, private_layer)
def re_initializer_passport_layer(model, num_classes, layer=None): indim = model.p3.in_features private_key = model.p3.key_private private_skey = model.p3.skey_private private_layer = model.p3 if layer: model.p3 = layer else: model.p3 = fc3_ft(indim, num_classes).cuda() model.p3.key_private = private_key model.p3.skey_private = private_skey return (model, private_layer)<|docstring|>remove the last layer and add a new one<|endoftext|>
9cb4e6bd6f3e4fbf19c3a895ca9264811cb0830a1d93ee2375ce8cc69fe2e0b9
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) if self.group_all: (new_xyz, new_points) = sample_and_group_all(xyz, points) else: (new_xyz, new_points) = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) new_points = new_points.permute(0, 3, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) new_points = torch.max(new_points, 2)[0] new_xyz = new_xyz.permute(0, 2, 1) return (new_xyz, new_points)
Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S]
3d_point_cls/models/pointnet_util.py
forward
ZJZAC/Passport-aware-Normalization
16
python
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) if self.group_all: (new_xyz, new_points) = sample_and_group_all(xyz, points) else: (new_xyz, new_points) = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) new_points = new_points.permute(0, 3, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) new_points = torch.max(new_points, 2)[0] new_xyz = new_xyz.permute(0, 2, 1) return (new_xyz, new_points)
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) if self.group_all: (new_xyz, new_points) = sample_and_group_all(xyz, points) else: (new_xyz, new_points) = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) new_points = new_points.permute(0, 3, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) new_points = torch.max(new_points, 2)[0] new_xyz = new_xyz.permute(0, 2, 1) return (new_xyz, new_points)<|docstring|>Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S]<|endoftext|>
6924e9addf417c3a2acebf9eb4fcd8c5f6c8f70a9709c23e0ddeb439d0c9bebe
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) (B, N, C) = xyz.shape S = self.npoint new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) new_points_list = [] for (i, radius) in enumerate(self.radius_list): K = self.nsample_list[i] group_idx = query_ball_point(radius, K, xyz, new_xyz) grouped_xyz = index_points(xyz, group_idx) grouped_xyz -= new_xyz.view(B, S, 1, C) if (points is not None): grouped_points = index_points(points, group_idx) grouped_points = torch.cat([grouped_points, grouped_xyz], dim=(- 1)) else: grouped_points = grouped_xyz grouped_points = grouped_points.permute(0, 3, 2, 1) for j in range(len(self.conv_blocks[i])): conv = self.conv_blocks[i][j] bn = self.bn_blocks[i][j] grouped_points = F.relu(bn(conv(grouped_points))) new_points = torch.max(grouped_points, 2)[0] new_points_list.append(new_points) new_xyz = new_xyz.permute(0, 2, 1) new_points_concat = torch.cat(new_points_list, dim=1) return (new_xyz, new_points_concat)
Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S]
3d_point_cls/models/pointnet_util.py
forward
ZJZAC/Passport-aware-Normalization
16
python
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) (B, N, C) = xyz.shape S = self.npoint new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) new_points_list = [] for (i, radius) in enumerate(self.radius_list): K = self.nsample_list[i] group_idx = query_ball_point(radius, K, xyz, new_xyz) grouped_xyz = index_points(xyz, group_idx) grouped_xyz -= new_xyz.view(B, S, 1, C) if (points is not None): grouped_points = index_points(points, group_idx) grouped_points = torch.cat([grouped_points, grouped_xyz], dim=(- 1)) else: grouped_points = grouped_xyz grouped_points = grouped_points.permute(0, 3, 2, 1) for j in range(len(self.conv_blocks[i])): conv = self.conv_blocks[i][j] bn = self.bn_blocks[i][j] grouped_points = F.relu(bn(conv(grouped_points))) new_points = torch.max(grouped_points, 2)[0] new_points_list.append(new_points) new_xyz = new_xyz.permute(0, 2, 1) new_points_concat = torch.cat(new_points_list, dim=1) return (new_xyz, new_points_concat)
def forward(self, xyz, points): "\n Input:\n xyz: input points position data, [B, C, N]\n points: input points data, [B, D, N]\n Return:\n new_xyz: sampled points position data, [B, C, S]\n new_points_concat: sample points feature data, [B, D', S]\n " xyz = xyz.permute(0, 2, 1) if (points is not None): points = points.permute(0, 2, 1) (B, N, C) = xyz.shape S = self.npoint new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) new_points_list = [] for (i, radius) in enumerate(self.radius_list): K = self.nsample_list[i] group_idx = query_ball_point(radius, K, xyz, new_xyz) grouped_xyz = index_points(xyz, group_idx) grouped_xyz -= new_xyz.view(B, S, 1, C) if (points is not None): grouped_points = index_points(points, group_idx) grouped_points = torch.cat([grouped_points, grouped_xyz], dim=(- 1)) else: grouped_points = grouped_xyz grouped_points = grouped_points.permute(0, 3, 2, 1) for j in range(len(self.conv_blocks[i])): conv = self.conv_blocks[i][j] bn = self.bn_blocks[i][j] grouped_points = F.relu(bn(conv(grouped_points))) new_points = torch.max(grouped_points, 2)[0] new_points_list.append(new_points) new_xyz = new_xyz.permute(0, 2, 1) new_points_concat = torch.cat(new_points_list, dim=1) return (new_xyz, new_points_concat)<|docstring|>Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S]<|endoftext|>
a0c8779b195819037c801640f2b434502018a6fcd5abea5b653ec986cd3b68bd
def forward(self, xyz1, xyz2, points1, points2): "\n Input:\n xyz1: input points position data, [B, C, N]\n xyz2: sampled input points position data, [B, C, S]\n points1: input points data, [B, D, N]\n points2: input points data, [B, D, S]\n Return:\n new_points: upsampled points data, [B, D', N]\n " xyz1 = xyz1.permute(0, 2, 1) xyz2 = xyz2.permute(0, 2, 1) points2 = points2.permute(0, 2, 1) (B, N, C) = xyz1.shape (_, S, _) = xyz2.shape if (S == 1): interpolated_points = points2.repeat(1, N, 1) else: dists = square_distance(xyz1, xyz2) (dists, idx) = dists.sort(dim=(- 1)) (dists, idx) = (dists[(:, :, :3)], idx[(:, :, :3)]) dist_recip = (1.0 / (dists + 1e-08)) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = (dist_recip / norm) interpolated_points = torch.sum((index_points(points2, idx) * weight.view(B, N, 3, 1)), dim=2) if (points1 is not None): points1 = points1.permute(0, 2, 1) new_points = torch.cat([points1, interpolated_points], dim=(- 1)) else: new_points = interpolated_points new_points = new_points.permute(0, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) return new_points
Input: xyz1: input points position data, [B, C, N] xyz2: sampled input points position data, [B, C, S] points1: input points data, [B, D, N] points2: input points data, [B, D, S] Return: new_points: upsampled points data, [B, D', N]
3d_point_cls/models/pointnet_util.py
forward
ZJZAC/Passport-aware-Normalization
16
python
def forward(self, xyz1, xyz2, points1, points2): "\n Input:\n xyz1: input points position data, [B, C, N]\n xyz2: sampled input points position data, [B, C, S]\n points1: input points data, [B, D, N]\n points2: input points data, [B, D, S]\n Return:\n new_points: upsampled points data, [B, D', N]\n " xyz1 = xyz1.permute(0, 2, 1) xyz2 = xyz2.permute(0, 2, 1) points2 = points2.permute(0, 2, 1) (B, N, C) = xyz1.shape (_, S, _) = xyz2.shape if (S == 1): interpolated_points = points2.repeat(1, N, 1) else: dists = square_distance(xyz1, xyz2) (dists, idx) = dists.sort(dim=(- 1)) (dists, idx) = (dists[(:, :, :3)], idx[(:, :, :3)]) dist_recip = (1.0 / (dists + 1e-08)) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = (dist_recip / norm) interpolated_points = torch.sum((index_points(points2, idx) * weight.view(B, N, 3, 1)), dim=2) if (points1 is not None): points1 = points1.permute(0, 2, 1) new_points = torch.cat([points1, interpolated_points], dim=(- 1)) else: new_points = interpolated_points new_points = new_points.permute(0, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) return new_points
def forward(self, xyz1, xyz2, points1, points2): "\n Input:\n xyz1: input points position data, [B, C, N]\n xyz2: sampled input points position data, [B, C, S]\n points1: input points data, [B, D, N]\n points2: input points data, [B, D, S]\n Return:\n new_points: upsampled points data, [B, D', N]\n " xyz1 = xyz1.permute(0, 2, 1) xyz2 = xyz2.permute(0, 2, 1) points2 = points2.permute(0, 2, 1) (B, N, C) = xyz1.shape (_, S, _) = xyz2.shape if (S == 1): interpolated_points = points2.repeat(1, N, 1) else: dists = square_distance(xyz1, xyz2) (dists, idx) = dists.sort(dim=(- 1)) (dists, idx) = (dists[(:, :, :3)], idx[(:, :, :3)]) dist_recip = (1.0 / (dists + 1e-08)) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = (dist_recip / norm) interpolated_points = torch.sum((index_points(points2, idx) * weight.view(B, N, 3, 1)), dim=2) if (points1 is not None): points1 = points1.permute(0, 2, 1) new_points = torch.cat([points1, interpolated_points], dim=(- 1)) else: new_points = interpolated_points new_points = new_points.permute(0, 2, 1) for (i, conv) in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) return new_points<|docstring|>Input: xyz1: input points position data, [B, C, N] xyz2: sampled input points position data, [B, C, S] points1: input points data, [B, D, N] points2: input points data, [B, D, S] Return: new_points: upsampled points data, [B, D', N]<|endoftext|>
ef62d22cd8758eb49092dc3e5ba73b3c7fb1b3f6c876051c27c4b7a20799ebc5
@distributed_trace def list(self, resource_group_name: str, environment_name: str, **kwargs: Any) -> Iterable['_models.DaprComponentsCollection']: 'Get the Dapr Components for a managed environment.\n\n Get the Dapr Components for a managed environment.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either DaprComponentsCollection or the result of\n cls(response)\n :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.appcontainers.models.DaprComponentsCollection]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' api_version = kwargs.pop('api_version', '2022-03-01') cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request def extract_data(pipeline_response): deserialized = self._deserialize('DaprComponentsCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), iter(list_of_elem)) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data)
Get the Dapr Components for a managed environment. Get the Dapr Components for a managed environment. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param environment_name: Name of the Managed Environment. :type environment_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DaprComponentsCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.appcontainers.models.DaprComponentsCollection] :raises: ~azure.core.exceptions.HttpResponseError
sdk/appcontainers/azure-mgmt-appcontainers/azure/mgmt/appcontainers/operations/_dapr_components_operations.py
list
AikoBB/azure-sdk-for-python
1
python
@distributed_trace def list(self, resource_group_name: str, environment_name: str, **kwargs: Any) -> Iterable['_models.DaprComponentsCollection']: 'Get the Dapr Components for a managed environment.\n\n Get the Dapr Components for a managed environment.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either DaprComponentsCollection or the result of\n cls(response)\n :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.appcontainers.models.DaprComponentsCollection]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' api_version = kwargs.pop('api_version', '2022-03-01') cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request def extract_data(pipeline_response): deserialized = self._deserialize('DaprComponentsCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), iter(list_of_elem)) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data)
@distributed_trace def list(self, resource_group_name: str, environment_name: str, **kwargs: Any) -> Iterable['_models.DaprComponentsCollection']: 'Get the Dapr Components for a managed environment.\n\n Get the Dapr Components for a managed environment.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either DaprComponentsCollection or the result of\n cls(response)\n :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.appcontainers.models.DaprComponentsCollection]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' api_version = kwargs.pop('api_version', '2022-03-01') cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, api_version=api_version, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request def extract_data(pipeline_response): deserialized = self._deserialize('DaprComponentsCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), iter(list_of_elem)) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data)<|docstring|>Get the Dapr Components for a managed environment. Get the Dapr Components for a managed environment. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param environment_name: Name of the Managed Environment. :type environment_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DaprComponentsCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.appcontainers.models.DaprComponentsCollection] :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>
8731c9c9a2b14ef7ead0c39e9e539d1b8213f274d04b0ccdfee15c507c4f94e7
@distributed_trace def get(self, resource_group_name: str, environment_name: str, component_name: str, **kwargs: Any) -> '_models.DaprComponent': 'Get a dapr component.\n\n Get a dapr component.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :param component_name: Name of the Dapr Component.\n :type component_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: DaprComponent, or the result of cls(response)\n :rtype: ~azure.mgmt.appcontainers.models.DaprComponent\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', '2022-03-01') request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, component_name=component_name, api_version=api_version, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('DaprComponent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
Get a dapr component. Get a dapr component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param environment_name: Name of the Managed Environment. :type environment_name: str :param component_name: Name of the Dapr Component. :type component_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DaprComponent, or the result of cls(response) :rtype: ~azure.mgmt.appcontainers.models.DaprComponent :raises: ~azure.core.exceptions.HttpResponseError
sdk/appcontainers/azure-mgmt-appcontainers/azure/mgmt/appcontainers/operations/_dapr_components_operations.py
get
AikoBB/azure-sdk-for-python
1
python
@distributed_trace def get(self, resource_group_name: str, environment_name: str, component_name: str, **kwargs: Any) -> '_models.DaprComponent': 'Get a dapr component.\n\n Get a dapr component.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :param component_name: Name of the Dapr Component.\n :type component_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: DaprComponent, or the result of cls(response)\n :rtype: ~azure.mgmt.appcontainers.models.DaprComponent\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', '2022-03-01') request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, component_name=component_name, api_version=api_version, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('DaprComponent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
@distributed_trace def get(self, resource_group_name: str, environment_name: str, component_name: str, **kwargs: Any) -> '_models.DaprComponent': 'Get a dapr component.\n\n Get a dapr component.\n\n :param resource_group_name: The name of the resource group. The name is case insensitive.\n :type resource_group_name: str\n :param environment_name: Name of the Managed Environment.\n :type environment_name: str\n :param component_name: Name of the Dapr Component.\n :type component_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: DaprComponent, or the result of cls(response)\n :rtype: ~azure.mgmt.appcontainers.models.DaprComponent\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', '2022-03-01') request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, environment_name=environment_name, component_name=component_name, api_version=api_version, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.DefaultErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('DaprComponent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized<|docstring|>Get a dapr component. Get a dapr component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param environment_name: Name of the Managed Environment. :type environment_name: str :param component_name: Name of the Dapr Component. :type component_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DaprComponent, or the result of cls(response) :rtype: ~azure.mgmt.appcontainers.models.DaprComponent :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>