body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
97cec53cebf8a1bdbdbd67b261838d294809cb53f352d17c037f072b924efb26
def _strip_auth(self, proc_params): 'Remove options from parameters that cause auth to be enabled.' params = proc_params.copy() params.pop('auth', None) params.pop('clusterAuthMode', None) return params
Remove options from parameters that cause auth to be enabled.
mongo_orchestration/common.py
_strip_auth
DmitryLukyanov/mongo-orchestration
49
python
def _strip_auth(self, proc_params): params = proc_params.copy() params.pop('auth', None) params.pop('clusterAuthMode', None) return params
def _strip_auth(self, proc_params): params = proc_params.copy() params.pop('auth', None) params.pop('clusterAuthMode', None) return params<|docstring|>Remove options from parameters that cause auth to be enabled.<|endoftext|>
e10e2a855df7fc730209b6110cf90b89b7b9053f8677121b41e7943860924cfa
def mongodb_auth_uri(self, hosts): 'Get a connection string with all info necessary to authenticate.' parts = ['mongodb://'] if self.login: parts.append(self.login) if self.password: parts.append((':' + self.password)) parts.append('@') parts.append((hosts + '/')) if self.login: parts.append(('?authSource=' + self.auth_source)) if self.x509_extra_user: parts.append('&authMechanism=MONGODB-X509') return ''.join(parts)
Get a connection string with all info necessary to authenticate.
mongo_orchestration/common.py
mongodb_auth_uri
DmitryLukyanov/mongo-orchestration
49
python
def mongodb_auth_uri(self, hosts): parts = ['mongodb://'] if self.login: parts.append(self.login) if self.password: parts.append((':' + self.password)) parts.append('@') parts.append((hosts + '/')) if self.login: parts.append(('?authSource=' + self.auth_source)) if self.x509_extra_user: parts.append('&authMechanism=MONGODB-X509') return .join(parts)
def mongodb_auth_uri(self, hosts): parts = ['mongodb://'] if self.login: parts.append(self.login) if self.password: parts.append((':' + self.password)) parts.append('@') parts.append((hosts + '/')) if self.login: parts.append(('?authSource=' + self.auth_source)) if self.x509_extra_user: parts.append('&authMechanism=MONGODB-X509') return .join(parts)<|docstring|>Get a connection string with all info necessary to authenticate.<|endoftext|>
dea6f2683d465b3a96493186fe14d78efa0dfd5a8ca9b307136133fa16db9448
def _add_users(self, db, mongo_version): 'Add given user, and extra x509 user if necessary.' roles = self._user_roles(db.client) if self.x509_extra_user: db.add_user(DEFAULT_SUBJECT, roles=roles) self.kwargs['ssl_certfile'] = DEFAULT_CLIENT_CERT create_user(db, mongo_version, self.login, self.password, roles)
Add given user, and extra x509 user if necessary.
mongo_orchestration/common.py
_add_users
DmitryLukyanov/mongo-orchestration
49
python
def _add_users(self, db, mongo_version): roles = self._user_roles(db.client) if self.x509_extra_user: db.add_user(DEFAULT_SUBJECT, roles=roles) self.kwargs['ssl_certfile'] = DEFAULT_CLIENT_CERT create_user(db, mongo_version, self.login, self.password, roles)
def _add_users(self, db, mongo_version): roles = self._user_roles(db.client) if self.x509_extra_user: db.add_user(DEFAULT_SUBJECT, roles=roles) self.kwargs['ssl_certfile'] = DEFAULT_CLIENT_CERT create_user(db, mongo_version, self.login, self.password, roles)<|docstring|>Add given user, and extra x509 user if necessary.<|endoftext|>
f21af03215c8a23894e8c58f9043c82fe66de81eb48df04a7cda88a0eb8d7d66
def setup_train_args(): '\n 设置训练参数\n ' parser = argparse.ArgumentParser() parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡') parser.add_argument('--no_cuda', default=False, action='store_true', help='不使用GPU进行训练') parser.add_argument('--model_config', default='config/config.json', type=str, required=False, help='选择模型参数') parser.add_argument('--vocab_path', default='vocab/', type=str, required=False, help='选择词库') parser.add_argument('--train_raw_path', default='data/convai2/train/data.txt', type=str, required=False, help='原始训练语料') parser.add_argument('--train_tokenized_path', default='data/convai2/train/tokenized.txt', type=str, required=False, help='将原始训练语料tokenize之后的数据的存放位置') parser.add_argument('--log_path', default='dialogue_model/convai2/training.log', type=str, required=False, help='训练日志存放位置') parser.add_argument('--raw', default=False, action='store_true', help='是否对原始训练语料做tokenize。若尚未对原始训练语料进行tokenize,则指定该参数') parser.add_argument('--epochs', default=12, type=int, required=False, help='训练的轮次') parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size') parser.add_argument('--lr', default=0.00015, type=float, required=False, help='学习率') parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数') parser.add_argument('--log_step', default=100, type=int, required=False, help='多少步汇报一次loss') parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累') parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False) parser.add_argument('--dialogue_model_output_path', default='dialogue_model/convai2/', type=str, required=False, help='对话模型输出路径') parser.add_argument('--pretrained_model', default='model_param/', type=str, required=False, help='预训练的GPT2模型的路径') parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='Tensorboard路径') parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') parser.add_argument('--num_workers', type=int, default=1, help='dataloader加载数据时使用的线程数量') parser.add_argument('--train_mmi', action='store_true', help='若指定该参数,则训练DialoGPT的MMI模型') parser.add_argument('--train_mmi_tokenized_path', default='data/train_mmi_tokenized.txt', type=str, required=False, help='将原始训练语料的每段对话翻转,然后进行tokenize之后的数据的存放位置,用于训练MMI模型') parser.add_argument('--mmi_model_output_path', default='mmi_model', type=str, required=False, help='MMI模型保存路径') return parser.parse_args()
设置训练参数
train_convai2.py
setup_train_args
Lambert-hpx/English-DialoGPT
1
python
def setup_train_args(): '\n \n ' parser = argparse.ArgumentParser() parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡') parser.add_argument('--no_cuda', default=False, action='store_true', help='不使用GPU进行训练') parser.add_argument('--model_config', default='config/config.json', type=str, required=False, help='选择模型参数') parser.add_argument('--vocab_path', default='vocab/', type=str, required=False, help='选择词库') parser.add_argument('--train_raw_path', default='data/convai2/train/data.txt', type=str, required=False, help='原始训练语料') parser.add_argument('--train_tokenized_path', default='data/convai2/train/tokenized.txt', type=str, required=False, help='将原始训练语料tokenize之后的数据的存放位置') parser.add_argument('--log_path', default='dialogue_model/convai2/training.log', type=str, required=False, help='训练日志存放位置') parser.add_argument('--raw', default=False, action='store_true', help='是否对原始训练语料做tokenize。若尚未对原始训练语料进行tokenize,则指定该参数') parser.add_argument('--epochs', default=12, type=int, required=False, help='训练的轮次') parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size') parser.add_argument('--lr', default=0.00015, type=float, required=False, help='学习率') parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数') parser.add_argument('--log_step', default=100, type=int, required=False, help='多少步汇报一次loss') parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累') parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False) parser.add_argument('--dialogue_model_output_path', default='dialogue_model/convai2/', type=str, required=False, help='对话模型输出路径') parser.add_argument('--pretrained_model', default='model_param/', type=str, required=False, help='预训练的GPT2模型的路径') parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='Tensorboard路径') parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') parser.add_argument('--num_workers', type=int, default=1, help='dataloader加载数据时使用的线程数量') parser.add_argument('--train_mmi', action='store_true', help='若指定该参数,则训练DialoGPT的MMI模型') parser.add_argument('--train_mmi_tokenized_path', default='data/train_mmi_tokenized.txt', type=str, required=False, help='将原始训练语料的每段对话翻转,然后进行tokenize之后的数据的存放位置,用于训练MMI模型') parser.add_argument('--mmi_model_output_path', default='mmi_model', type=str, required=False, help='MMI模型保存路径') return parser.parse_args()
def setup_train_args(): '\n \n ' parser = argparse.ArgumentParser() parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡') parser.add_argument('--no_cuda', default=False, action='store_true', help='不使用GPU进行训练') parser.add_argument('--model_config', default='config/config.json', type=str, required=False, help='选择模型参数') parser.add_argument('--vocab_path', default='vocab/', type=str, required=False, help='选择词库') parser.add_argument('--train_raw_path', default='data/convai2/train/data.txt', type=str, required=False, help='原始训练语料') parser.add_argument('--train_tokenized_path', default='data/convai2/train/tokenized.txt', type=str, required=False, help='将原始训练语料tokenize之后的数据的存放位置') parser.add_argument('--log_path', default='dialogue_model/convai2/training.log', type=str, required=False, help='训练日志存放位置') parser.add_argument('--raw', default=False, action='store_true', help='是否对原始训练语料做tokenize。若尚未对原始训练语料进行tokenize,则指定该参数') parser.add_argument('--epochs', default=12, type=int, required=False, help='训练的轮次') parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size') parser.add_argument('--lr', default=0.00015, type=float, required=False, help='学习率') parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数') parser.add_argument('--log_step', default=100, type=int, required=False, help='多少步汇报一次loss') parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累') parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False) parser.add_argument('--dialogue_model_output_path', default='dialogue_model/convai2/', type=str, required=False, help='对话模型输出路径') parser.add_argument('--pretrained_model', default='model_param/', type=str, required=False, help='预训练的GPT2模型的路径') parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='Tensorboard路径') parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') parser.add_argument('--num_workers', type=int, default=1, help='dataloader加载数据时使用的线程数量') parser.add_argument('--train_mmi', action='store_true', help='若指定该参数,则训练DialoGPT的MMI模型') parser.add_argument('--train_mmi_tokenized_path', default='data/train_mmi_tokenized.txt', type=str, required=False, help='将原始训练语料的每段对话翻转,然后进行tokenize之后的数据的存放位置,用于训练MMI模型') parser.add_argument('--mmi_model_output_path', default='mmi_model', type=str, required=False, help='MMI模型保存路径') return parser.parse_args()<|docstring|>设置训练参数<|endoftext|>
9db08a28a3af3e1531631cdf2181faa65f44ec5809bfeac2d3d174c37cd04478
def set_random_seed(args): '\n 设置训练的随机种子\n ' torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) if args.cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
设置训练的随机种子
train_convai2.py
set_random_seed
Lambert-hpx/English-DialoGPT
1
python
def set_random_seed(args): '\n \n ' torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) if args.cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
def set_random_seed(args): '\n \n ' torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) if args.cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False<|docstring|>设置训练的随机种子<|endoftext|>
f5a178c18f6e09cd867711413d3fbc6fc02c99a2a74aea0119d70e1ba9f16258
def create_logger(args): '\n 将日志输出到日志文件和控制台\n ' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(filename=args.log_path) file_handler.setFormatter(formatter) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) console = logging.StreamHandler() console.setLevel(logging.DEBUG) console.setFormatter(formatter) logger.addHandler(console) return logger
将日志输出到日志文件和控制台
train_convai2.py
create_logger
Lambert-hpx/English-DialoGPT
1
python
def create_logger(args): '\n \n ' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(filename=args.log_path) file_handler.setFormatter(formatter) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) console = logging.StreamHandler() console.setLevel(logging.DEBUG) console.setFormatter(formatter) logger.addHandler(console) return logger
def create_logger(args): '\n \n ' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(filename=args.log_path) file_handler.setFormatter(formatter) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) console = logging.StreamHandler() console.setLevel(logging.DEBUG) console.setFormatter(formatter) logger.addHandler(console) return logger<|docstring|>将日志输出到日志文件和控制台<|endoftext|>
8dde618d8223eccf0c2e9c16a553714f39578e2294b5023148c21a789fc86954
def create_model(args, vocab_size): '\n\n :param args:\n :param vocab_size:字典大小\n :return:\n ' if args.pretrained_model: model = GPT2LMHeadModel.from_pretrained(args.pretrained_model) logger.info('load pretrain model!') else: model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config) model = GPT2LMHeadModel(config=model_config) model.resize_token_embeddings(vocab_size) logger.info('model config:\n{}'.format(model.config.to_json_string())) return (model, model.config.to_dict().get('n_ctx'))
:param args: :param vocab_size:字典大小 :return:
train_convai2.py
create_model
Lambert-hpx/English-DialoGPT
1
python
def create_model(args, vocab_size): '\n\n :param args:\n :param vocab_size:字典大小\n :return:\n ' if args.pretrained_model: model = GPT2LMHeadModel.from_pretrained(args.pretrained_model) logger.info('load pretrain model!') else: model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config) model = GPT2LMHeadModel(config=model_config) model.resize_token_embeddings(vocab_size) logger.info('model config:\n{}'.format(model.config.to_json_string())) return (model, model.config.to_dict().get('n_ctx'))
def create_model(args, vocab_size): '\n\n :param args:\n :param vocab_size:字典大小\n :return:\n ' if args.pretrained_model: model = GPT2LMHeadModel.from_pretrained(args.pretrained_model) logger.info('load pretrain model!') else: model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config) model = GPT2LMHeadModel(config=model_config) model.resize_token_embeddings(vocab_size) logger.info('model config:\n{}'.format(model.config.to_json_string())) return (model, model.config.to_dict().get('n_ctx'))<|docstring|>:param args: :param vocab_size:字典大小 :return:<|endoftext|>
1c325d2f39273a66dd5521696a466e0e33d36426c2438105fa2a987be570eaaf
def preprocess_raw_data(args, tokenizer, n_ctx): '\n 对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]"\n :param args:\n :param tokenizer:\n :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断\n :return:\n ' logger.info('tokenizing raw data,raw data path:{}, token output path:{}'.format(args.train_raw_path, args.train_tokenized_path)) with open(args.train_raw_path, 'rb') as f: data = f.read().decode('utf-8') train_data = data.split('\n\n') logger.info('there are {} dialogue in raw dataset'.format(len(train_data))) with open(args.train_tokenized_path, 'w', encoding='utf-8') as f: for (dialogue_index, dialogue) in enumerate(tqdm(train_data)): utterances = dialogue.split('\n') dialogue_ids = [tokenizer.cls_token_id] for utterance in utterances: dialogue_ids.extend([tokenizer.convert_tokens_to_ids(word) for word in utterance.split(' ')]) dialogue_ids.append(tokenizer.sep_token_id) dialogue_ids = dialogue_ids[:n_ctx] for dialogue_id in dialogue_ids: f.write((str(dialogue_id) + ' ')) if (dialogue_index < (len(train_data) - 1)): f.write('\n') logger.info('finish preprocessing raw data,the result is stored in {}'.format(args.train_tokenized_path))
对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]" :param args: :param tokenizer: :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断 :return:
train_convai2.py
preprocess_raw_data
Lambert-hpx/English-DialoGPT
1
python
def preprocess_raw_data(args, tokenizer, n_ctx): '\n 对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]"\n :param args:\n :param tokenizer:\n :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断\n :return:\n ' logger.info('tokenizing raw data,raw data path:{}, token output path:{}'.format(args.train_raw_path, args.train_tokenized_path)) with open(args.train_raw_path, 'rb') as f: data = f.read().decode('utf-8') train_data = data.split('\n\n') logger.info('there are {} dialogue in raw dataset'.format(len(train_data))) with open(args.train_tokenized_path, 'w', encoding='utf-8') as f: for (dialogue_index, dialogue) in enumerate(tqdm(train_data)): utterances = dialogue.split('\n') dialogue_ids = [tokenizer.cls_token_id] for utterance in utterances: dialogue_ids.extend([tokenizer.convert_tokens_to_ids(word) for word in utterance.split(' ')]) dialogue_ids.append(tokenizer.sep_token_id) dialogue_ids = dialogue_ids[:n_ctx] for dialogue_id in dialogue_ids: f.write((str(dialogue_id) + ' ')) if (dialogue_index < (len(train_data) - 1)): f.write('\n') logger.info('finish preprocessing raw data,the result is stored in {}'.format(args.train_tokenized_path))
def preprocess_raw_data(args, tokenizer, n_ctx): '\n 对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]"\n :param args:\n :param tokenizer:\n :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断\n :return:\n ' logger.info('tokenizing raw data,raw data path:{}, token output path:{}'.format(args.train_raw_path, args.train_tokenized_path)) with open(args.train_raw_path, 'rb') as f: data = f.read().decode('utf-8') train_data = data.split('\n\n') logger.info('there are {} dialogue in raw dataset'.format(len(train_data))) with open(args.train_tokenized_path, 'w', encoding='utf-8') as f: for (dialogue_index, dialogue) in enumerate(tqdm(train_data)): utterances = dialogue.split('\n') dialogue_ids = [tokenizer.cls_token_id] for utterance in utterances: dialogue_ids.extend([tokenizer.convert_tokens_to_ids(word) for word in utterance.split(' ')]) dialogue_ids.append(tokenizer.sep_token_id) dialogue_ids = dialogue_ids[:n_ctx] for dialogue_id in dialogue_ids: f.write((str(dialogue_id) + ' ')) if (dialogue_index < (len(train_data) - 1)): f.write('\n') logger.info('finish preprocessing raw data,the result is stored in {}'.format(args.train_tokenized_path))<|docstring|>对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]" :param args: :param tokenizer: :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断 :return:<|endoftext|>
3091f894bdc2cfd93fdba3c6c8ece26c01825061c43f48756f21e2172661b20d
def calculate_loss_and_accuracy(outputs, labels, device): '\n 计算非pad_id的平均loss和准确率\n :param outputs:\n :param labels:\n :param device:\n :return:\n ' logits = outputs[0] shift_logits = logits[(..., :(- 1), :)].contiguous() shift_labels = labels[(..., 1:)].contiguous().to(device) loss_fct = CrossEntropyLoss(ignore_index=pad_id, reduction='sum') loss = loss_fct(shift_logits.view((- 1), shift_logits.size((- 1))), shift_labels.view((- 1))) (_, preds) = shift_logits.max(dim=(- 1)) not_ignore = shift_labels.ne(pad_id) num_targets = not_ignore.long().sum().item() correct = ((shift_labels == preds) & not_ignore) correct = correct.float().sum() accuracy = (correct / num_targets) loss = (loss / num_targets) return (loss, accuracy)
计算非pad_id的平均loss和准确率 :param outputs: :param labels: :param device: :return:
train_convai2.py
calculate_loss_and_accuracy
Lambert-hpx/English-DialoGPT
1
python
def calculate_loss_and_accuracy(outputs, labels, device): '\n 计算非pad_id的平均loss和准确率\n :param outputs:\n :param labels:\n :param device:\n :return:\n ' logits = outputs[0] shift_logits = logits[(..., :(- 1), :)].contiguous() shift_labels = labels[(..., 1:)].contiguous().to(device) loss_fct = CrossEntropyLoss(ignore_index=pad_id, reduction='sum') loss = loss_fct(shift_logits.view((- 1), shift_logits.size((- 1))), shift_labels.view((- 1))) (_, preds) = shift_logits.max(dim=(- 1)) not_ignore = shift_labels.ne(pad_id) num_targets = not_ignore.long().sum().item() correct = ((shift_labels == preds) & not_ignore) correct = correct.float().sum() accuracy = (correct / num_targets) loss = (loss / num_targets) return (loss, accuracy)
def calculate_loss_and_accuracy(outputs, labels, device): '\n 计算非pad_id的平均loss和准确率\n :param outputs:\n :param labels:\n :param device:\n :return:\n ' logits = outputs[0] shift_logits = logits[(..., :(- 1), :)].contiguous() shift_labels = labels[(..., 1:)].contiguous().to(device) loss_fct = CrossEntropyLoss(ignore_index=pad_id, reduction='sum') loss = loss_fct(shift_logits.view((- 1), shift_logits.size((- 1))), shift_labels.view((- 1))) (_, preds) = shift_logits.max(dim=(- 1)) not_ignore = shift_labels.ne(pad_id) num_targets = not_ignore.long().sum().item() correct = ((shift_labels == preds) & not_ignore) correct = correct.float().sum() accuracy = (correct / num_targets) loss = (loss / num_targets) return (loss, accuracy)<|docstring|>计算非pad_id的平均loss和准确率 :param outputs: :param labels: :param device: :return:<|endoftext|>
cffad8138cc390a22fd1bea3155ed782b5ec3a80f1eaa537868ca27a380dcce4
def collate_fn(batch): '\n 计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐\n :param batch:\n :return:\n ' global pad_id input_ids = [] btc_size = len(batch) max_input_len = 0 for btc_idx in range(btc_size): if (max_input_len < len(batch[btc_idx])): max_input_len = len(batch[btc_idx]) for btc_idx in range(btc_size): input_len = len(batch[btc_idx]) input_ids.append(batch[btc_idx]) input_ids[btc_idx].extend(([pad_id] * (max_input_len - input_len))) return torch.tensor(input_ids, dtype=torch.long)
计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐 :param batch: :return:
train_convai2.py
collate_fn
Lambert-hpx/English-DialoGPT
1
python
def collate_fn(batch): '\n 计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐\n :param batch:\n :return:\n ' global pad_id input_ids = [] btc_size = len(batch) max_input_len = 0 for btc_idx in range(btc_size): if (max_input_len < len(batch[btc_idx])): max_input_len = len(batch[btc_idx]) for btc_idx in range(btc_size): input_len = len(batch[btc_idx]) input_ids.append(batch[btc_idx]) input_ids[btc_idx].extend(([pad_id] * (max_input_len - input_len))) return torch.tensor(input_ids, dtype=torch.long)
def collate_fn(batch): '\n 计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐\n :param batch:\n :return:\n ' global pad_id input_ids = [] btc_size = len(batch) max_input_len = 0 for btc_idx in range(btc_size): if (max_input_len < len(batch[btc_idx])): max_input_len = len(batch[btc_idx]) for btc_idx in range(btc_size): input_len = len(batch[btc_idx]) input_ids.append(batch[btc_idx]) input_ids[btc_idx].extend(([pad_id] * (max_input_len - input_len))) return torch.tensor(input_ids, dtype=torch.long)<|docstring|>计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐 :param batch: :return:<|endoftext|>
c19f2cf20e0993c90be4106262874a4e8361d7652c86e0a8bb493a291b445f3f
def __init__(self, memory_size, alpha): 'Prioritized experience replay buffer initialization.\n\n Parameters\n ----------\n memory_size : int\n sample size to be stored\n alpha: float\n exponent determine how much prioritization.\n Prob_i sim priority_i**alpha/sum(priority**alpha)\n ' self.tree = SumTree(memory_size) self.memory_size = memory_size self.alpha = alpha self.count_sample_errors = 0
Prioritized experience replay buffer initialization. Parameters ---------- memory_size : int sample size to be stored alpha: float exponent determine how much prioritization. Prob_i sim priority_i**alpha/sum(priority**alpha)
src/distributed/prioritized_replay_memory.py
__init__
mbecker12/surface-rl-decoder
2
python
def __init__(self, memory_size, alpha): 'Prioritized experience replay buffer initialization.\n\n Parameters\n ----------\n memory_size : int\n sample size to be stored\n alpha: float\n exponent determine how much prioritization.\n Prob_i sim priority_i**alpha/sum(priority**alpha)\n ' self.tree = SumTree(memory_size) self.memory_size = memory_size self.alpha = alpha self.count_sample_errors = 0
def __init__(self, memory_size, alpha): 'Prioritized experience replay buffer initialization.\n\n Parameters\n ----------\n memory_size : int\n sample size to be stored\n alpha: float\n exponent determine how much prioritization.\n Prob_i sim priority_i**alpha/sum(priority**alpha)\n ' self.tree = SumTree(memory_size) self.memory_size = memory_size self.alpha = alpha self.count_sample_errors = 0<|docstring|>Prioritized experience replay buffer initialization. Parameters ---------- memory_size : int sample size to be stored alpha: float exponent determine how much prioritization. Prob_i sim priority_i**alpha/sum(priority**alpha)<|endoftext|>
85cdde4699e923c69c2a9d6a9270e2e0591a23fad8cd87ab38086371642ed042
def save(self, data, priority): "Add new sample.\n\n Parameters\n ----------\n data: object\n new sample\n priority: float\n sample's priority\n " self.tree.add(data, (priority ** self.alpha))
Add new sample. Parameters ---------- data: object new sample priority: float sample's priority
src/distributed/prioritized_replay_memory.py
save
mbecker12/surface-rl-decoder
2
python
def save(self, data, priority): "Add new sample.\n\n Parameters\n ----------\n data: object\n new sample\n priority: float\n sample's priority\n " self.tree.add(data, (priority ** self.alpha))
def save(self, data, priority): "Add new sample.\n\n Parameters\n ----------\n data: object\n new sample\n priority: float\n sample's priority\n " self.tree.add(data, (priority ** self.alpha))<|docstring|>Add new sample. Parameters ---------- data: object new sample priority: float sample's priority<|endoftext|>
13d26981e17c61c296dfd82451edba3ac96b79cf73af3e5a2c2a2cd622992423
def sample(self, batch_size, beta, tensorboard=None, verbosity=None): 'The method return samples randomly.\n\n Parameters\n ----------\n batch_size: batch_size to be sampled\n beta: float, PER parameter\n tensorboard: (optional)(torch.utils.SummaryWriter)\n tensorboard instance for logging/monitoring\n verbosity: (optional)(int) verbosity level\n\n Returns\n -------\n out:\n list of samples\n weights:\n list of weight\n indices:\n list of sample indices\n The indices indicate sample positions in a sum tree.\n priorities:\n list of priorities\n ' if (self.tree.filled_size() < batch_size): return (None, None, None, None) out = [] indices = np.zeros(batch_size, dtype=np.int32) weights = np.zeros(batch_size, dtype=np.float64) priorities = np.zeros(batch_size, dtype=np.float64) i = 0 max_time = 60 start_time = time() while (i < batch_size): if ((time() - start_time) > max_time): raise TimeoutError('Sampling from Prioritized Experience replay exceeded maximum time! Aborting!') rand = random.random() try: (data, priority, index) = self.tree.find(rand) assert (data is not None) priorities[i] = priority _weight = ((((1.0 / self.memory_size) / priority) ** beta) if (priority > 1e-16) else 0.0) weights[i] = _weight indices[i] = index out.append(data) self.priority_update([index], [0]) except AssertionError as _: self.count_sample_errors += 1 continue else: i += 1 if (tensorboard is not None): if (verbosity >= 4): current_time = time() tensorboard.add_histogram('per/sampled_priorities', np.array(priorities, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_weights', np.array(weights, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_indices', np.array(indices, dtype=np.float32), walltime=int((current_time * 1000))) self.priority_update(indices, priorities) weights_max = np.max(weights) if (weights_max == 0): weights = np.zeros(batch_size, dtype=np.float64) else: weights_max_inv = np.float64((1.0 / weights_max)) weights = (weights * weights_max_inv) return (out, weights, indices, priorities)
The method return samples randomly. Parameters ---------- batch_size: batch_size to be sampled beta: float, PER parameter tensorboard: (optional)(torch.utils.SummaryWriter) tensorboard instance for logging/monitoring verbosity: (optional)(int) verbosity level Returns ------- out: list of samples weights: list of weight indices: list of sample indices The indices indicate sample positions in a sum tree. priorities: list of priorities
src/distributed/prioritized_replay_memory.py
sample
mbecker12/surface-rl-decoder
2
python
def sample(self, batch_size, beta, tensorboard=None, verbosity=None): 'The method return samples randomly.\n\n Parameters\n ----------\n batch_size: batch_size to be sampled\n beta: float, PER parameter\n tensorboard: (optional)(torch.utils.SummaryWriter)\n tensorboard instance for logging/monitoring\n verbosity: (optional)(int) verbosity level\n\n Returns\n -------\n out:\n list of samples\n weights:\n list of weight\n indices:\n list of sample indices\n The indices indicate sample positions in a sum tree.\n priorities:\n list of priorities\n ' if (self.tree.filled_size() < batch_size): return (None, None, None, None) out = [] indices = np.zeros(batch_size, dtype=np.int32) weights = np.zeros(batch_size, dtype=np.float64) priorities = np.zeros(batch_size, dtype=np.float64) i = 0 max_time = 60 start_time = time() while (i < batch_size): if ((time() - start_time) > max_time): raise TimeoutError('Sampling from Prioritized Experience replay exceeded maximum time! Aborting!') rand = random.random() try: (data, priority, index) = self.tree.find(rand) assert (data is not None) priorities[i] = priority _weight = ((((1.0 / self.memory_size) / priority) ** beta) if (priority > 1e-16) else 0.0) weights[i] = _weight indices[i] = index out.append(data) self.priority_update([index], [0]) except AssertionError as _: self.count_sample_errors += 1 continue else: i += 1 if (tensorboard is not None): if (verbosity >= 4): current_time = time() tensorboard.add_histogram('per/sampled_priorities', np.array(priorities, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_weights', np.array(weights, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_indices', np.array(indices, dtype=np.float32), walltime=int((current_time * 1000))) self.priority_update(indices, priorities) weights_max = np.max(weights) if (weights_max == 0): weights = np.zeros(batch_size, dtype=np.float64) else: weights_max_inv = np.float64((1.0 / weights_max)) weights = (weights * weights_max_inv) return (out, weights, indices, priorities)
def sample(self, batch_size, beta, tensorboard=None, verbosity=None): 'The method return samples randomly.\n\n Parameters\n ----------\n batch_size: batch_size to be sampled\n beta: float, PER parameter\n tensorboard: (optional)(torch.utils.SummaryWriter)\n tensorboard instance for logging/monitoring\n verbosity: (optional)(int) verbosity level\n\n Returns\n -------\n out:\n list of samples\n weights:\n list of weight\n indices:\n list of sample indices\n The indices indicate sample positions in a sum tree.\n priorities:\n list of priorities\n ' if (self.tree.filled_size() < batch_size): return (None, None, None, None) out = [] indices = np.zeros(batch_size, dtype=np.int32) weights = np.zeros(batch_size, dtype=np.float64) priorities = np.zeros(batch_size, dtype=np.float64) i = 0 max_time = 60 start_time = time() while (i < batch_size): if ((time() - start_time) > max_time): raise TimeoutError('Sampling from Prioritized Experience replay exceeded maximum time! Aborting!') rand = random.random() try: (data, priority, index) = self.tree.find(rand) assert (data is not None) priorities[i] = priority _weight = ((((1.0 / self.memory_size) / priority) ** beta) if (priority > 1e-16) else 0.0) weights[i] = _weight indices[i] = index out.append(data) self.priority_update([index], [0]) except AssertionError as _: self.count_sample_errors += 1 continue else: i += 1 if (tensorboard is not None): if (verbosity >= 4): current_time = time() tensorboard.add_histogram('per/sampled_priorities', np.array(priorities, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_weights', np.array(weights, dtype=np.float32), walltime=int((current_time * 1000))) tensorboard.add_histogram('per/sampled_indices', np.array(indices, dtype=np.float32), walltime=int((current_time * 1000))) self.priority_update(indices, priorities) weights_max = np.max(weights) if (weights_max == 0): weights = np.zeros(batch_size, dtype=np.float64) else: weights_max_inv = np.float64((1.0 / weights_max)) weights = (weights * weights_max_inv) return (out, weights, indices, priorities)<|docstring|>The method return samples randomly. Parameters ---------- batch_size: batch_size to be sampled beta: float, PER parameter tensorboard: (optional)(torch.utils.SummaryWriter) tensorboard instance for logging/monitoring verbosity: (optional)(int) verbosity level Returns ------- out: list of samples weights: list of weight indices: list of sample indices The indices indicate sample positions in a sum tree. priorities: list of priorities<|endoftext|>
4d3744eb336f0a682f1eed5d80ffb29efffe6fe34af69ecf2f553e6d66156da6
def priority_update(self, indices, priorities): "Update the samples' priority.\n\n Parameters\n ----------\n indices:\n list of sample indices\n " for (i, prio) in zip(indices, priorities): self.tree.val_update(i, (prio ** self.alpha))
Update the samples' priority. Parameters ---------- indices: list of sample indices
src/distributed/prioritized_replay_memory.py
priority_update
mbecker12/surface-rl-decoder
2
python
def priority_update(self, indices, priorities): "Update the samples' priority.\n\n Parameters\n ----------\n indices:\n list of sample indices\n " for (i, prio) in zip(indices, priorities): self.tree.val_update(i, (prio ** self.alpha))
def priority_update(self, indices, priorities): "Update the samples' priority.\n\n Parameters\n ----------\n indices:\n list of sample indices\n " for (i, prio) in zip(indices, priorities): self.tree.val_update(i, (prio ** self.alpha))<|docstring|>Update the samples' priority. Parameters ---------- indices: list of sample indices<|endoftext|>
9a18e370efd6b2b3ac87ed52a02ff000cee0f21ebc74d180eb9aa06d493a2976
def reset_alpha(self, alpha): 'Reset an exponent alpha.\n\n Parameters\n ----------\n alpha: float\n ' (self.alpha, old_alpha) = (alpha, self.alpha) priorities = [(self.tree.get_val(i) ** (- old_alpha)) for i in range(self.tree.filled_size())] self.priority_update(range(self.tree.filled_size()), priorities)
Reset an exponent alpha. Parameters ---------- alpha: float
src/distributed/prioritized_replay_memory.py
reset_alpha
mbecker12/surface-rl-decoder
2
python
def reset_alpha(self, alpha): 'Reset an exponent alpha.\n\n Parameters\n ----------\n alpha: float\n ' (self.alpha, old_alpha) = (alpha, self.alpha) priorities = [(self.tree.get_val(i) ** (- old_alpha)) for i in range(self.tree.filled_size())] self.priority_update(range(self.tree.filled_size()), priorities)
def reset_alpha(self, alpha): 'Reset an exponent alpha.\n\n Parameters\n ----------\n alpha: float\n ' (self.alpha, old_alpha) = (alpha, self.alpha) priorities = [(self.tree.get_val(i) ** (- old_alpha)) for i in range(self.tree.filled_size())] self.priority_update(range(self.tree.filled_size()), priorities)<|docstring|>Reset an exponent alpha. Parameters ---------- alpha: float<|endoftext|>
53e9946af186a2560c091e8631b3b6a4b84c437e14780c88c7418fab271ce97f
def print_tree(self): '\n Print a simple representation of the sum tree.\n ' self.tree.print_tree()
Print a simple representation of the sum tree.
src/distributed/prioritized_replay_memory.py
print_tree
mbecker12/surface-rl-decoder
2
python
def print_tree(self): '\n \n ' self.tree.print_tree()
def print_tree(self): '\n \n ' self.tree.print_tree()<|docstring|>Print a simple representation of the sum tree.<|endoftext|>
06e3e87734fca157c3e6e0a655f7f95845d46d960372644892629bb226e965b0
def filled_size(self): '\n Return the number of elements stored in the sum tree.\n ' return self.tree.filled_size()
Return the number of elements stored in the sum tree.
src/distributed/prioritized_replay_memory.py
filled_size
mbecker12/surface-rl-decoder
2
python
def filled_size(self): '\n \n ' return self.tree.filled_size()
def filled_size(self): '\n \n ' return self.tree.filled_size()<|docstring|>Return the number of elements stored in the sum tree.<|endoftext|>
6f3d5f5cef699acc56dd67eda28e4740564427c2fb509b100ccd323d92592ef1
def build_ping(dest, count=None, source=None, timeout=None, ttl=None, size=None, vrf=None): "\n Function to build the command to send to the terminal for the switch\n to execute. All args come from the module's unique params.\n " if (vrf is not None): cmd = 'ping vrf {0} {1}'.format(vrf, dest) else: cmd = 'ping {0}'.format(dest) if (count is not None): cmd += ' count {0}'.format(str(count)) if (timeout is not None): cmd += ' timeout {0}'.format(str(timeout)) if (ttl is not None): cmd += ' ttl {0}'.format(str(ttl)) if (size is not None): cmd += ' size {0}'.format(str(size)) if (source is not None): cmd += ' source {0}'.format(source) return cmd
Function to build the command to send to the terminal for the switch to execute. All args come from the module's unique params.
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/icx/icx_ping.py
build_ping
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def build_ping(dest, count=None, source=None, timeout=None, ttl=None, size=None, vrf=None): "\n Function to build the command to send to the terminal for the switch\n to execute. All args come from the module's unique params.\n " if (vrf is not None): cmd = 'ping vrf {0} {1}'.format(vrf, dest) else: cmd = 'ping {0}'.format(dest) if (count is not None): cmd += ' count {0}'.format(str(count)) if (timeout is not None): cmd += ' timeout {0}'.format(str(timeout)) if (ttl is not None): cmd += ' ttl {0}'.format(str(ttl)) if (size is not None): cmd += ' size {0}'.format(str(size)) if (source is not None): cmd += ' source {0}'.format(source) return cmd
def build_ping(dest, count=None, source=None, timeout=None, ttl=None, size=None, vrf=None): "\n Function to build the command to send to the terminal for the switch\n to execute. All args come from the module's unique params.\n " if (vrf is not None): cmd = 'ping vrf {0} {1}'.format(vrf, dest) else: cmd = 'ping {0}'.format(dest) if (count is not None): cmd += ' count {0}'.format(str(count)) if (timeout is not None): cmd += ' timeout {0}'.format(str(timeout)) if (ttl is not None): cmd += ' ttl {0}'.format(str(ttl)) if (size is not None): cmd += ' size {0}'.format(str(size)) if (source is not None): cmd += ' source {0}'.format(source) return cmd<|docstring|>Function to build the command to send to the terminal for the switch to execute. All args come from the module's unique params.<|endoftext|>
e983b95284e52379488f9b61f8f0cc86b96abfaf8038b9919cbd7893dbbdc6b3
def parse_ping(ping_stats): '\n Function used to parse the statistical information from the ping response.\n Example: "Success rate is 100 percent (5/5), round-trip min/avg/max=40/51/55 ms."\n Returns the percent of packet loss, received packets, transmitted packets, and RTT dict.\n ' if ping_stats.startswith('Success'): rate_re = re.compile('^\\w+\\s+\\w+\\s+\\w+\\s+(?P<pct>\\d+)\\s+\\w+\\s+\\((?P<rx>\\d+)/(?P<tx>\\d+)\\)') rtt_re = re.compile('.*,\\s+\\S+\\s+\\S+=(?P<min>\\d+)/(?P<avg>\\d+)/(?P<max>\\d+)\\s+\\w+\\.+\\s*$|.*\\s*$') rate = rate_re.match(ping_stats) rtt = rtt_re.match(ping_stats) return (rate.group('pct'), rate.group('rx'), rate.group('tx'), rtt.groupdict()) else: rate_re = re.compile('^Sending+\\s+(?P<tx>\\d+),') rate = rate_re.match(ping_stats) rtt = {'avg': 0, 'max': 0, 'min': 0} return (0, 0, rate.group('tx'), rtt)
Function used to parse the statistical information from the ping response. Example: "Success rate is 100 percent (5/5), round-trip min/avg/max=40/51/55 ms." Returns the percent of packet loss, received packets, transmitted packets, and RTT dict.
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/icx/icx_ping.py
parse_ping
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def parse_ping(ping_stats): '\n Function used to parse the statistical information from the ping response.\n Example: "Success rate is 100 percent (5/5), round-trip min/avg/max=40/51/55 ms."\n Returns the percent of packet loss, received packets, transmitted packets, and RTT dict.\n ' if ping_stats.startswith('Success'): rate_re = re.compile('^\\w+\\s+\\w+\\s+\\w+\\s+(?P<pct>\\d+)\\s+\\w+\\s+\\((?P<rx>\\d+)/(?P<tx>\\d+)\\)') rtt_re = re.compile('.*,\\s+\\S+\\s+\\S+=(?P<min>\\d+)/(?P<avg>\\d+)/(?P<max>\\d+)\\s+\\w+\\.+\\s*$|.*\\s*$') rate = rate_re.match(ping_stats) rtt = rtt_re.match(ping_stats) return (rate.group('pct'), rate.group('rx'), rate.group('tx'), rtt.groupdict()) else: rate_re = re.compile('^Sending+\\s+(?P<tx>\\d+),') rate = rate_re.match(ping_stats) rtt = {'avg': 0, 'max': 0, 'min': 0} return (0, 0, rate.group('tx'), rtt)
def parse_ping(ping_stats): '\n Function used to parse the statistical information from the ping response.\n Example: "Success rate is 100 percent (5/5), round-trip min/avg/max=40/51/55 ms."\n Returns the percent of packet loss, received packets, transmitted packets, and RTT dict.\n ' if ping_stats.startswith('Success'): rate_re = re.compile('^\\w+\\s+\\w+\\s+\\w+\\s+(?P<pct>\\d+)\\s+\\w+\\s+\\((?P<rx>\\d+)/(?P<tx>\\d+)\\)') rtt_re = re.compile('.*,\\s+\\S+\\s+\\S+=(?P<min>\\d+)/(?P<avg>\\d+)/(?P<max>\\d+)\\s+\\w+\\.+\\s*$|.*\\s*$') rate = rate_re.match(ping_stats) rtt = rtt_re.match(ping_stats) return (rate.group('pct'), rate.group('rx'), rate.group('tx'), rtt.groupdict()) else: rate_re = re.compile('^Sending+\\s+(?P<tx>\\d+),') rate = rate_re.match(ping_stats) rtt = {'avg': 0, 'max': 0, 'min': 0} return (0, 0, rate.group('tx'), rtt)<|docstring|>Function used to parse the statistical information from the ping response. Example: "Success rate is 100 percent (5/5), round-trip min/avg/max=40/51/55 ms." Returns the percent of packet loss, received packets, transmitted packets, and RTT dict.<|endoftext|>
9caae97aff10231e19e5592aec8176d697257bf12a60743635de2c36d395364d
def validate_results(module, loss, results): '\n This function is used to validate whether the ping results were unexpected per "state" param.\n ' state = module.params['state'] if ((state == 'present') and (loss == 100)): module.fail_json(msg='Ping failed unexpectedly', **results) elif ((state == 'absent') and (loss < 100)): module.fail_json(msg='Ping succeeded unexpectedly', **results)
This function is used to validate whether the ping results were unexpected per "state" param.
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/icx/icx_ping.py
validate_results
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def validate_results(module, loss, results): '\n \n ' state = module.params['state'] if ((state == 'present') and (loss == 100)): module.fail_json(msg='Ping failed unexpectedly', **results) elif ((state == 'absent') and (loss < 100)): module.fail_json(msg='Ping succeeded unexpectedly', **results)
def validate_results(module, loss, results): '\n \n ' state = module.params['state'] if ((state == 'present') and (loss == 100)): module.fail_json(msg='Ping failed unexpectedly', **results) elif ((state == 'absent') and (loss < 100)): module.fail_json(msg='Ping succeeded unexpectedly', **results)<|docstring|>This function is used to validate whether the ping results were unexpected per "state" param.<|endoftext|>
45a8bc3dbb699ac9e01665d48649dd3a072a5534e7a3beb4e9703bdc4bc62cf4
def main(): ' main entry point for module execution\n ' argument_spec = dict(count=dict(type='int'), dest=dict(type='str', required=True), timeout=dict(type='int'), ttl=dict(type='int'), size=dict(type='int'), source=dict(type='str'), state=dict(type='str', choices=['absent', 'present'], default='present'), vrf=dict(type='str')) module = AnsibleModule(argument_spec=argument_spec) count = module.params['count'] dest = module.params['dest'] source = module.params['source'] timeout = module.params['timeout'] ttl = module.params['ttl'] size = module.params['size'] vrf = module.params['vrf'] results = {} warnings = list() if warnings: results['warnings'] = warnings response = '' try: validate_parameters(module, timeout, count) results['commands'] = [build_ping(dest, count, source, timeout, ttl, size, vrf)] ping_results = run_commands(module, commands=results['commands']) ping_results_list = ping_results[0].split('\n') except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) validate_fail(module, ping_results[0]) stats = '' statserror = '' for line in ping_results_list: if line.startswith('Sending'): statserror = line if line.startswith('Success'): stats = line elif line.startswith('No reply'): stats = statserror (success, rx, tx, rtt) = parse_ping(stats) loss = abs((100 - int(success))) results['packet_loss'] = (str(loss) + '%') results['packets_rx'] = int(rx) results['packets_tx'] = int(tx) for (k, v) in rtt.items(): if (rtt[k] is not None): rtt[k] = int(v) results['rtt'] = rtt validate_results(module, loss, results) module.exit_json(**results)
main entry point for module execution
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/icx/icx_ping.py
main
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def main(): ' \n ' argument_spec = dict(count=dict(type='int'), dest=dict(type='str', required=True), timeout=dict(type='int'), ttl=dict(type='int'), size=dict(type='int'), source=dict(type='str'), state=dict(type='str', choices=['absent', 'present'], default='present'), vrf=dict(type='str')) module = AnsibleModule(argument_spec=argument_spec) count = module.params['count'] dest = module.params['dest'] source = module.params['source'] timeout = module.params['timeout'] ttl = module.params['ttl'] size = module.params['size'] vrf = module.params['vrf'] results = {} warnings = list() if warnings: results['warnings'] = warnings response = try: validate_parameters(module, timeout, count) results['commands'] = [build_ping(dest, count, source, timeout, ttl, size, vrf)] ping_results = run_commands(module, commands=results['commands']) ping_results_list = ping_results[0].split('\n') except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) validate_fail(module, ping_results[0]) stats = statserror = for line in ping_results_list: if line.startswith('Sending'): statserror = line if line.startswith('Success'): stats = line elif line.startswith('No reply'): stats = statserror (success, rx, tx, rtt) = parse_ping(stats) loss = abs((100 - int(success))) results['packet_loss'] = (str(loss) + '%') results['packets_rx'] = int(rx) results['packets_tx'] = int(tx) for (k, v) in rtt.items(): if (rtt[k] is not None): rtt[k] = int(v) results['rtt'] = rtt validate_results(module, loss, results) module.exit_json(**results)
def main(): ' \n ' argument_spec = dict(count=dict(type='int'), dest=dict(type='str', required=True), timeout=dict(type='int'), ttl=dict(type='int'), size=dict(type='int'), source=dict(type='str'), state=dict(type='str', choices=['absent', 'present'], default='present'), vrf=dict(type='str')) module = AnsibleModule(argument_spec=argument_spec) count = module.params['count'] dest = module.params['dest'] source = module.params['source'] timeout = module.params['timeout'] ttl = module.params['ttl'] size = module.params['size'] vrf = module.params['vrf'] results = {} warnings = list() if warnings: results['warnings'] = warnings response = try: validate_parameters(module, timeout, count) results['commands'] = [build_ping(dest, count, source, timeout, ttl, size, vrf)] ping_results = run_commands(module, commands=results['commands']) ping_results_list = ping_results[0].split('\n') except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) validate_fail(module, ping_results[0]) stats = statserror = for line in ping_results_list: if line.startswith('Sending'): statserror = line if line.startswith('Success'): stats = line elif line.startswith('No reply'): stats = statserror (success, rx, tx, rtt) = parse_ping(stats) loss = abs((100 - int(success))) results['packet_loss'] = (str(loss) + '%') results['packets_rx'] = int(rx) results['packets_tx'] = int(tx) for (k, v) in rtt.items(): if (rtt[k] is not None): rtt[k] = int(v) results['rtt'] = rtt validate_results(module, loss, results) module.exit_json(**results)<|docstring|>main entry point for module execution<|endoftext|>
76821f96631695c7e743a49c5dd1aede5d1d0f5a151806e9e3be5887cdf3ea11
def findLUSlength(self, strs): '\n :type strs: List[str]\n :rtype: int\n ' def isSubsequence(a, b): i = 0 for j in xrange(len(b)): if (i >= len(a)): break if (a[i] == b[j]): i += 1 return (i == len(a)) strs.sort(key=len, reverse=True) for i in xrange(len(strs)): all_of = True for j in xrange(len(strs)): if (len(strs[j]) < len(strs[i])): break if ((i != j) and isSubsequence(strs[i], strs[j])): all_of = False break if all_of: return len(strs[i]) return (- 1)
:type strs: List[str] :rtype: int
Python/longest-uncommon-subsequence-ii.py
findLUSlength
donaldcao/LeetCode-Solutions
3,269
python
def findLUSlength(self, strs): '\n :type strs: List[str]\n :rtype: int\n ' def isSubsequence(a, b): i = 0 for j in xrange(len(b)): if (i >= len(a)): break if (a[i] == b[j]): i += 1 return (i == len(a)) strs.sort(key=len, reverse=True) for i in xrange(len(strs)): all_of = True for j in xrange(len(strs)): if (len(strs[j]) < len(strs[i])): break if ((i != j) and isSubsequence(strs[i], strs[j])): all_of = False break if all_of: return len(strs[i]) return (- 1)
def findLUSlength(self, strs): '\n :type strs: List[str]\n :rtype: int\n ' def isSubsequence(a, b): i = 0 for j in xrange(len(b)): if (i >= len(a)): break if (a[i] == b[j]): i += 1 return (i == len(a)) strs.sort(key=len, reverse=True) for i in xrange(len(strs)): all_of = True for j in xrange(len(strs)): if (len(strs[j]) < len(strs[i])): break if ((i != j) and isSubsequence(strs[i], strs[j])): all_of = False break if all_of: return len(strs[i]) return (- 1)<|docstring|>:type strs: List[str] :rtype: int<|endoftext|>
127fbe0ab35ab894f4da68c85974c93e2ef306d377b0696fc0ccd1ced30e41a2
def is_valid(self, identifier, lint_context): ' Implicit scope builtin variables are prohibited.\n Because it will make unexpected variable name conflict between builtin\n and implicit global/function local. For example:\n\n " This variable is not global variable but builtin variable.\n let count = 100\n ' scope_plugin = lint_context['plugins']['scope'] scope_visibility = scope_plugin.get_objective_scope_visibility(identifier) if (scope_visibility is not ScopeVisibility.BUILTIN): return True explicity = scope_plugin.get_explicity_of_scope_visibility(identifier) is_valid = (explicity is not ExplicityOfScopeVisibility.IMPLICIT) if (not is_valid): self._make_description(identifier, scope_plugin) return is_valid
Implicit scope builtin variables are prohibited. Because it will make unexpected variable name conflict between builtin and implicit global/function local. For example: " This variable is not global variable but builtin variable. let count = 100
vint/linting/policy/prohibit_implicit_scope_builtin_variable.py
is_valid
mosheavni/vint
538
python
def is_valid(self, identifier, lint_context): ' Implicit scope builtin variables are prohibited.\n Because it will make unexpected variable name conflict between builtin\n and implicit global/function local. For example:\n\n " This variable is not global variable but builtin variable.\n let count = 100\n ' scope_plugin = lint_context['plugins']['scope'] scope_visibility = scope_plugin.get_objective_scope_visibility(identifier) if (scope_visibility is not ScopeVisibility.BUILTIN): return True explicity = scope_plugin.get_explicity_of_scope_visibility(identifier) is_valid = (explicity is not ExplicityOfScopeVisibility.IMPLICIT) if (not is_valid): self._make_description(identifier, scope_plugin) return is_valid
def is_valid(self, identifier, lint_context): ' Implicit scope builtin variables are prohibited.\n Because it will make unexpected variable name conflict between builtin\n and implicit global/function local. For example:\n\n " This variable is not global variable but builtin variable.\n let count = 100\n ' scope_plugin = lint_context['plugins']['scope'] scope_visibility = scope_plugin.get_objective_scope_visibility(identifier) if (scope_visibility is not ScopeVisibility.BUILTIN): return True explicity = scope_plugin.get_explicity_of_scope_visibility(identifier) is_valid = (explicity is not ExplicityOfScopeVisibility.IMPLICIT) if (not is_valid): self._make_description(identifier, scope_plugin) return is_valid<|docstring|>Implicit scope builtin variables are prohibited. Because it will make unexpected variable name conflict between builtin and implicit global/function local. For example: " This variable is not global variable but builtin variable. let count = 100<|endoftext|>
bb45dc8be1a33dbc0db76be9b7d8a89961d92129535a0ba644e4c96a6c653eda
def cmd_output_startswith(cmd, string): 'call the run() method of cmd and check if output startswith string' with captured_output() as (out, err): cmd.run() output = out.getvalue().strip() return output.startswith(string)
call the run() method of cmd and check if output startswith string
tests/helpers.py
cmd_output_startswith
babab/DisPass
3
python
def cmd_output_startswith(cmd, string): with captured_output() as (out, err): cmd.run() output = out.getvalue().strip() return output.startswith(string)
def cmd_output_startswith(cmd, string): with captured_output() as (out, err): cmd.run() output = out.getvalue().strip() return output.startswith(string)<|docstring|>call the run() method of cmd and check if output startswith string<|endoftext|>
36a2850fe6fa500df7b093e1d65c75ecea052d5c33992f49cf8918ef59adc098
def _game_process_entry_point(propty: GameMLModeExecutorProperty): '\n The real entry point of the game process\n ' from .loops import GameMLModeExecutor executor = GameMLModeExecutor(propty) executor.start()
The real entry point of the game process
MLGame/mlgame/process.py
_game_process_entry_point
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _game_process_entry_point(propty: GameMLModeExecutorProperty): '\n \n ' from .loops import GameMLModeExecutor executor = GameMLModeExecutor(propty) executor.start()
def _game_process_entry_point(propty: GameMLModeExecutorProperty): '\n \n ' from .loops import GameMLModeExecutor executor = GameMLModeExecutor(propty) executor.start()<|docstring|>The real entry point of the game process<|endoftext|>
be231e5be71e2440746b4fe78171cdd82b13a1036f177d7fddf96d2552368b29
def _ml_process_entry_point(propty: MLExecutorProperty): '\n The real entry point of the ml process\n ' from .loops import MLExecutor executor = MLExecutor(propty) executor.start()
The real entry point of the ml process
MLGame/mlgame/process.py
_ml_process_entry_point
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _ml_process_entry_point(propty: MLExecutorProperty): '\n \n ' from .loops import MLExecutor executor = MLExecutor(propty) executor.start()
def _ml_process_entry_point(propty: MLExecutorProperty): '\n \n ' from .loops import MLExecutor executor = MLExecutor(propty) executor.start()<|docstring|>The real entry point of the ml process<|endoftext|>
567e73f0a216c6c374087f7b43ca680f5d8c2b7805f9407db2ec306e261b61db
def __init__(self, game_executor_propty: GameMLModeExecutorProperty, ml_executor_propties: list): '\n Constructor\n\n @param game_executor_propty The property for the game executor\n @param ml_executor_proties A list of `MLExecutorProperty` for the ml executors\n ' self._game_executor_propty = game_executor_propty self._ml_executor_propties = ml_executor_propties self._ml_procs = []
Constructor @param game_executor_propty The property for the game executor @param ml_executor_proties A list of `MLExecutorProperty` for the ml executors
MLGame/mlgame/process.py
__init__
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def __init__(self, game_executor_propty: GameMLModeExecutorProperty, ml_executor_propties: list): '\n Constructor\n\n @param game_executor_propty The property for the game executor\n @param ml_executor_proties A list of `MLExecutorProperty` for the ml executors\n ' self._game_executor_propty = game_executor_propty self._ml_executor_propties = ml_executor_propties self._ml_procs = []
def __init__(self, game_executor_propty: GameMLModeExecutorProperty, ml_executor_propties: list): '\n Constructor\n\n @param game_executor_propty The property for the game executor\n @param ml_executor_proties A list of `MLExecutorProperty` for the ml executors\n ' self._game_executor_propty = game_executor_propty self._ml_executor_propties = ml_executor_propties self._ml_procs = []<|docstring|>Constructor @param game_executor_propty The property for the game executor @param ml_executor_proties A list of `MLExecutorProperty` for the ml executors<|endoftext|>
3b4e87b3bb388c9e4fcbadc512b58ec5909c249fa6eda3cb377abc2990d8dd0d
def start(self): '\n Start the processes\n\n The ml processes are spawned and started first, and then the main process executes\n the game process. After returning from the game process, the ml processes will be\n terminated.\n\n Note that there must be 1 game process and at least 1 ml process set\n before calling this function. Otherwise, the RuntimeError will be raised.\n ' if (self._game_executor_propty is None): raise RuntimeError('The game process is not set. Cannot start the ProcessManager') if (len(self._ml_executor_propties) == 0): raise RuntimeError('No ml process added. Cannot start the ProcessManager') self._create_pipes() self._start_ml_processes() returncode = 0 try: self._start_game_process() except ProcessError as e: print("Error: Exception occurred in '{}' process:".format(e.process_name)) print(e.message) returncode = (- 1) self._terminate() return returncode
Start the processes The ml processes are spawned and started first, and then the main process executes the game process. After returning from the game process, the ml processes will be terminated. Note that there must be 1 game process and at least 1 ml process set before calling this function. Otherwise, the RuntimeError will be raised.
MLGame/mlgame/process.py
start
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def start(self): '\n Start the processes\n\n The ml processes are spawned and started first, and then the main process executes\n the game process. After returning from the game process, the ml processes will be\n terminated.\n\n Note that there must be 1 game process and at least 1 ml process set\n before calling this function. Otherwise, the RuntimeError will be raised.\n ' if (self._game_executor_propty is None): raise RuntimeError('The game process is not set. Cannot start the ProcessManager') if (len(self._ml_executor_propties) == 0): raise RuntimeError('No ml process added. Cannot start the ProcessManager') self._create_pipes() self._start_ml_processes() returncode = 0 try: self._start_game_process() except ProcessError as e: print("Error: Exception occurred in '{}' process:".format(e.process_name)) print(e.message) returncode = (- 1) self._terminate() return returncode
def start(self): '\n Start the processes\n\n The ml processes are spawned and started first, and then the main process executes\n the game process. After returning from the game process, the ml processes will be\n terminated.\n\n Note that there must be 1 game process and at least 1 ml process set\n before calling this function. Otherwise, the RuntimeError will be raised.\n ' if (self._game_executor_propty is None): raise RuntimeError('The game process is not set. Cannot start the ProcessManager') if (len(self._ml_executor_propties) == 0): raise RuntimeError('No ml process added. Cannot start the ProcessManager') self._create_pipes() self._start_ml_processes() returncode = 0 try: self._start_game_process() except ProcessError as e: print("Error: Exception occurred in '{}' process:".format(e.process_name)) print(e.message) returncode = (- 1) self._terminate() return returncode<|docstring|>Start the processes The ml processes are spawned and started first, and then the main process executes the game process. After returning from the game process, the ml processes will be terminated. Note that there must be 1 game process and at least 1 ml process set before calling this function. Otherwise, the RuntimeError will be raised.<|endoftext|>
920e42bf1f27959b1680063abb18f1b8be8a2b8ae14d2fd2c5167595fb23055f
def _create_pipes(self): '\n Create communication pipes for processes\n ' for ml_executor_propty in self._ml_executor_propties: (recv_pipe_for_game, send_pipe_for_ml) = Pipe(False) (recv_pipe_for_ml, send_pipe_for_game) = Pipe(False) self._game_executor_propty.comm_manager.add_comm_to_ml(ml_executor_propty.name, recv_pipe_for_game, send_pipe_for_game) ml_executor_propty.comm_manager.set_comm_to_game(recv_pipe_for_ml, send_pipe_for_ml)
Create communication pipes for processes
MLGame/mlgame/process.py
_create_pipes
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _create_pipes(self): '\n \n ' for ml_executor_propty in self._ml_executor_propties: (recv_pipe_for_game, send_pipe_for_ml) = Pipe(False) (recv_pipe_for_ml, send_pipe_for_game) = Pipe(False) self._game_executor_propty.comm_manager.add_comm_to_ml(ml_executor_propty.name, recv_pipe_for_game, send_pipe_for_game) ml_executor_propty.comm_manager.set_comm_to_game(recv_pipe_for_ml, send_pipe_for_ml)
def _create_pipes(self): '\n \n ' for ml_executor_propty in self._ml_executor_propties: (recv_pipe_for_game, send_pipe_for_ml) = Pipe(False) (recv_pipe_for_ml, send_pipe_for_game) = Pipe(False) self._game_executor_propty.comm_manager.add_comm_to_ml(ml_executor_propty.name, recv_pipe_for_game, send_pipe_for_game) ml_executor_propty.comm_manager.set_comm_to_game(recv_pipe_for_ml, send_pipe_for_ml)<|docstring|>Create communication pipes for processes<|endoftext|>
67f999d06bc599082a70b326a09546a6e340101b5d5a7395aca01e7023d7024b
def _start_ml_processes(self): '\n Spawn and start all ml processes\n ' for propty in self._ml_executor_propties: process = Process(target=_ml_process_entry_point, name=propty.name, args=(propty,)) process.start() self._ml_procs.append(process)
Spawn and start all ml processes
MLGame/mlgame/process.py
_start_ml_processes
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _start_ml_processes(self): '\n \n ' for propty in self._ml_executor_propties: process = Process(target=_ml_process_entry_point, name=propty.name, args=(propty,)) process.start() self._ml_procs.append(process)
def _start_ml_processes(self): '\n \n ' for propty in self._ml_executor_propties: process = Process(target=_ml_process_entry_point, name=propty.name, args=(propty,)) process.start() self._ml_procs.append(process)<|docstring|>Spawn and start all ml processes<|endoftext|>
d3d0e9b0f6cdb53b709a0006dd6abbc46d102a620b0994c96b4c54df918bf1af
def _start_game_process(self): '\n Start the game process\n ' _game_process_entry_point(self._game_executor_propty)
Start the game process
MLGame/mlgame/process.py
_start_game_process
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _start_game_process(self): '\n \n ' _game_process_entry_point(self._game_executor_propty)
def _start_game_process(self): '\n \n ' _game_process_entry_point(self._game_executor_propty)<|docstring|>Start the game process<|endoftext|>
dbcabe3b582d87cbfb34dea1ea0588eb618f918fbd2df6c31edd0d79fcc012db
def _terminate(self): '\n Stop all spawned ml processes if it exists\n ' for ml_process in self._ml_procs: if ml_process.is_alive(): self._game_executor_propty.comm_manager.send_to_ml(None, ml_process.name)
Stop all spawned ml processes if it exists
MLGame/mlgame/process.py
_terminate
Liuian/1092_INTRODUCTION-TO-MACHINE-LEARNING-AND-ITS-APPLICATION-TO-GAMING
0
python
def _terminate(self): '\n \n ' for ml_process in self._ml_procs: if ml_process.is_alive(): self._game_executor_propty.comm_manager.send_to_ml(None, ml_process.name)
def _terminate(self): '\n \n ' for ml_process in self._ml_procs: if ml_process.is_alive(): self._game_executor_propty.comm_manager.send_to_ml(None, ml_process.name)<|docstring|>Stop all spawned ml processes if it exists<|endoftext|>
7cd45e299002466967b96d2b7978e4d2862843a1f160f0b0967a6180ef387223
def create(self, vorbis_audio_configuration, **kwargs): 'Create Vorbis Codec Configuration\n\n :param vorbis_audio_configuration: The Vorbis Codec Configuration to be created\n :type vorbis_audio_configuration: VorbisAudioConfiguration, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.post('/encoding/configurations/audio/vorbis', vorbis_audio_configuration, type=VorbisAudioConfiguration, **kwargs)
Create Vorbis Codec Configuration :param vorbis_audio_configuration: The Vorbis Codec Configuration to be created :type vorbis_audio_configuration: VorbisAudioConfiguration, required :return: Vorbis Audio Configuration :rtype: VorbisAudioConfiguration
bitmovin_api_sdk/encoding/configurations/audio/vorbis/vorbis_api.py
create
jaythecaesarean/bitmovin-api-sdk-python
11
python
def create(self, vorbis_audio_configuration, **kwargs): 'Create Vorbis Codec Configuration\n\n :param vorbis_audio_configuration: The Vorbis Codec Configuration to be created\n :type vorbis_audio_configuration: VorbisAudioConfiguration, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.post('/encoding/configurations/audio/vorbis', vorbis_audio_configuration, type=VorbisAudioConfiguration, **kwargs)
def create(self, vorbis_audio_configuration, **kwargs): 'Create Vorbis Codec Configuration\n\n :param vorbis_audio_configuration: The Vorbis Codec Configuration to be created\n :type vorbis_audio_configuration: VorbisAudioConfiguration, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.post('/encoding/configurations/audio/vorbis', vorbis_audio_configuration, type=VorbisAudioConfiguration, **kwargs)<|docstring|>Create Vorbis Codec Configuration :param vorbis_audio_configuration: The Vorbis Codec Configuration to be created :type vorbis_audio_configuration: VorbisAudioConfiguration, required :return: Vorbis Audio Configuration :rtype: VorbisAudioConfiguration<|endoftext|>
4a9f09fafae714f98d0cdcd2451daab4fdc8928259f51328200162f974542381
def delete(self, configuration_id, **kwargs): 'Delete Vorbis Codec Configuration\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Id of the codec configuration\n :rtype: BitmovinResponse\n ' return self.api_client.delete('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=BitmovinResponse, **kwargs)
Delete Vorbis Codec Configuration :param configuration_id: Id of the codec configuration :type configuration_id: string_types, required :return: Id of the codec configuration :rtype: BitmovinResponse
bitmovin_api_sdk/encoding/configurations/audio/vorbis/vorbis_api.py
delete
jaythecaesarean/bitmovin-api-sdk-python
11
python
def delete(self, configuration_id, **kwargs): 'Delete Vorbis Codec Configuration\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Id of the codec configuration\n :rtype: BitmovinResponse\n ' return self.api_client.delete('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=BitmovinResponse, **kwargs)
def delete(self, configuration_id, **kwargs): 'Delete Vorbis Codec Configuration\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Id of the codec configuration\n :rtype: BitmovinResponse\n ' return self.api_client.delete('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=BitmovinResponse, **kwargs)<|docstring|>Delete Vorbis Codec Configuration :param configuration_id: Id of the codec configuration :type configuration_id: string_types, required :return: Id of the codec configuration :rtype: BitmovinResponse<|endoftext|>
9ae9d6f57cea52c7496a7e96fd9286508288bc8a4574c660a21baa76c876a1c4
def get(self, configuration_id, **kwargs): 'Vorbis Codec Configuration Details\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=VorbisAudioConfiguration, **kwargs)
Vorbis Codec Configuration Details :param configuration_id: Id of the codec configuration :type configuration_id: string_types, required :return: Vorbis Audio Configuration :rtype: VorbisAudioConfiguration
bitmovin_api_sdk/encoding/configurations/audio/vorbis/vorbis_api.py
get
jaythecaesarean/bitmovin-api-sdk-python
11
python
def get(self, configuration_id, **kwargs): 'Vorbis Codec Configuration Details\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=VorbisAudioConfiguration, **kwargs)
def get(self, configuration_id, **kwargs): 'Vorbis Codec Configuration Details\n\n :param configuration_id: Id of the codec configuration\n :type configuration_id: string_types, required\n :return: Vorbis Audio Configuration\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis/{configuration_id}', path_params={'configuration_id': configuration_id}, type=VorbisAudioConfiguration, **kwargs)<|docstring|>Vorbis Codec Configuration Details :param configuration_id: Id of the codec configuration :type configuration_id: string_types, required :return: Vorbis Audio Configuration :rtype: VorbisAudioConfiguration<|endoftext|>
71a583380d936c30ea261e878d50f31fb7d74c26ec2b00d4dbe54212ad0ba227
def list(self, query_params=None, **kwargs): 'List Vorbis Configurations\n\n :param query_params: Query parameters\n :type query_params: VorbisAudioConfigurationListQueryParams\n :return: List of Vorbis codec configurations\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis', query_params=query_params, pagination_response=True, type=VorbisAudioConfiguration, **kwargs)
List Vorbis Configurations :param query_params: Query parameters :type query_params: VorbisAudioConfigurationListQueryParams :return: List of Vorbis codec configurations :rtype: VorbisAudioConfiguration
bitmovin_api_sdk/encoding/configurations/audio/vorbis/vorbis_api.py
list
jaythecaesarean/bitmovin-api-sdk-python
11
python
def list(self, query_params=None, **kwargs): 'List Vorbis Configurations\n\n :param query_params: Query parameters\n :type query_params: VorbisAudioConfigurationListQueryParams\n :return: List of Vorbis codec configurations\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis', query_params=query_params, pagination_response=True, type=VorbisAudioConfiguration, **kwargs)
def list(self, query_params=None, **kwargs): 'List Vorbis Configurations\n\n :param query_params: Query parameters\n :type query_params: VorbisAudioConfigurationListQueryParams\n :return: List of Vorbis codec configurations\n :rtype: VorbisAudioConfiguration\n ' return self.api_client.get('/encoding/configurations/audio/vorbis', query_params=query_params, pagination_response=True, type=VorbisAudioConfiguration, **kwargs)<|docstring|>List Vorbis Configurations :param query_params: Query parameters :type query_params: VorbisAudioConfigurationListQueryParams :return: List of Vorbis codec configurations :rtype: VorbisAudioConfiguration<|endoftext|>
c686028b74551fa8dc7a724695557a611c55b845ac0202643044e88b709d646f
@property def has_db(self) -> bool: 'Only consider a DB connection if we have config info.' rel = self.model.get_relation(DATABASE) return ((len(rel.units) > 0) if (rel is not None) else False)
Only consider a DB connection if we have config info.
src/charm.py
has_db
paulomach/mysql-router-k8s-operator
0
python
@property def has_db(self) -> bool: rel = self.model.get_relation(DATABASE) return ((len(rel.units) > 0) if (rel is not None) else False)
@property def has_db(self) -> bool: rel = self.model.get_relation(DATABASE) return ((len(rel.units) > 0) if (rel is not None) else False)<|docstring|>Only consider a DB connection if we have config info.<|endoftext|>
38b20b95907cb83de92438034274447cbfee2824090e58f5dba5df575581e50c
@property def peers(self) -> list: 'Fetch the peer relation.' return self.model.get_relation(PEER)
Fetch the peer relation.
src/charm.py
peers
paulomach/mysql-router-k8s-operator
0
python
@property def peers(self) -> list: return self.model.get_relation(PEER)
@property def peers(self) -> list: return self.model.get_relation(PEER)<|docstring|>Fetch the peer relation.<|endoftext|>
26d106b02e03f10f52449a52797e655355938357a90160e22ac54beaa818d6a4
def set_peer_data(self, key: str, data: Any) -> None: 'Put information into the peer data bucket instead of `StoredState`.' if self.unit.is_leader(): self.peers.data[self.app][key] = json.dumps(data)
Put information into the peer data bucket instead of `StoredState`.
src/charm.py
set_peer_data
paulomach/mysql-router-k8s-operator
0
python
def set_peer_data(self, key: str, data: Any) -> None: if self.unit.is_leader(): self.peers.data[self.app][key] = json.dumps(data)
def set_peer_data(self, key: str, data: Any) -> None: if self.unit.is_leader(): self.peers.data[self.app][key] = json.dumps(data)<|docstring|>Put information into the peer data bucket instead of `StoredState`.<|endoftext|>
81996d7ca2450f587a4c6a56b9f18cf9059ae61056e5985bd7a07b4b1caff91f
def get_peer_data(self, key: str) -> Any: 'Retrieve information from the peer data bucket instead of `StoredState`.' data = self.peers.data[self.app].get(key, '') return (json.loads(data) if data else {})
Retrieve information from the peer data bucket instead of `StoredState`.
src/charm.py
get_peer_data
paulomach/mysql-router-k8s-operator
0
python
def get_peer_data(self, key: str) -> Any: data = self.peers.data[self.app].get(key, ) return (json.loads(data) if data else {})
def get_peer_data(self, key: str) -> Any: data = self.peers.data[self.app].get(key, ) return (json.loads(data) if data else {})<|docstring|>Retrieve information from the peer data bucket instead of `StoredState`.<|endoftext|>
6c453ff3372073300dc68e63dfdfed9147d23c93ba4466c0eac1c75bb1dac512
def _configure(self) -> None: 'Configure the charm.' data = self.get_peer_data(DATABASE) if (not self._validate_config(data['mysql'])): logger.error('Invalid config') self.unit.status = WaitingStatus('Invalid relation config') return pebble_layer = self._mysqlrouter_layer(port=data['mysql']['port'], host=data['mysql']['host'], user=data['mysql']['user'], password=data['mysql']['password']) container = self.unit.get_container(self.name) plan = container.get_plan() if (plan.services != pebble_layer['services']): logger.info('Config changed') container.add_layer(self.name, pebble_layer, combine=True) if container.get_service(self.name).is_running(): container.stop(self.name) container.start(self.name) logging.info('mysqlrouter restarted') self.unit.status = ActiveStatus()
Configure the charm.
src/charm.py
_configure
paulomach/mysql-router-k8s-operator
0
python
def _configure(self) -> None: data = self.get_peer_data(DATABASE) if (not self._validate_config(data['mysql'])): logger.error('Invalid config') self.unit.status = WaitingStatus('Invalid relation config') return pebble_layer = self._mysqlrouter_layer(port=data['mysql']['port'], host=data['mysql']['host'], user=data['mysql']['user'], password=data['mysql']['password']) container = self.unit.get_container(self.name) plan = container.get_plan() if (plan.services != pebble_layer['services']): logger.info('Config changed') container.add_layer(self.name, pebble_layer, combine=True) if container.get_service(self.name).is_running(): container.stop(self.name) container.start(self.name) logging.info('mysqlrouter restarted') self.unit.status = ActiveStatus()
def _configure(self) -> None: data = self.get_peer_data(DATABASE) if (not self._validate_config(data['mysql'])): logger.error('Invalid config') self.unit.status = WaitingStatus('Invalid relation config') return pebble_layer = self._mysqlrouter_layer(port=data['mysql']['port'], host=data['mysql']['host'], user=data['mysql']['user'], password=data['mysql']['password']) container = self.unit.get_container(self.name) plan = container.get_plan() if (plan.services != pebble_layer['services']): logger.info('Config changed') container.add_layer(self.name, pebble_layer, combine=True) if container.get_service(self.name).is_running(): container.stop(self.name) container.start(self.name) logging.info('mysqlrouter restarted') self.unit.status = ActiveStatus()<|docstring|>Configure the charm.<|endoftext|>
f193715ac458eeb99638c47a992b89187f6af54450617505f64b0e19d7b0c120
def _on_mysqlrouter_pebble_ready(self, event) -> None: 'Define and start a workload using the Pebble API.' if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()
Define and start a workload using the Pebble API.
src/charm.py
_on_mysqlrouter_pebble_ready
paulomach/mysql-router-k8s-operator
0
python
def _on_mysqlrouter_pebble_ready(self, event) -> None: if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()
def _on_mysqlrouter_pebble_ready(self, event) -> None: if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()<|docstring|>Define and start a workload using the Pebble API.<|endoftext|>
ce96b0ebedfb75beb6a56dcf783d849df71d3a9a513fcaa62aaa48a1384c2b73
def _mysqlrouter_layer(self, host, port, user, password) -> dict: 'Return a layer configuration for the mysqlrouter service.\n\n Args:\n host (str): The hostname of the MySQL cluster.\n port (int): The port of the MySQL cluster.\n user (str): The username for the MySQL cluster.\n password (str): The password for the MySQL cluster.\n ' return {'summary': 'mysqlrouter layer', 'description': 'pebble config layer for mysqlrouter', 'services': {'mysqlrouter': {'override': 'replace', 'summary': 'mysqlrouter', 'command': './run.sh', 'startup': 'enabled', 'environment': {'MYSQL_PORT': port, 'MYSQL_HOST': host, 'MYSQL_USER': user, 'MYSQL_PASSWORD': password}}}}
Return a layer configuration for the mysqlrouter service. Args: host (str): The hostname of the MySQL cluster. port (int): The port of the MySQL cluster. user (str): The username for the MySQL cluster. password (str): The password for the MySQL cluster.
src/charm.py
_mysqlrouter_layer
paulomach/mysql-router-k8s-operator
0
python
def _mysqlrouter_layer(self, host, port, user, password) -> dict: 'Return a layer configuration for the mysqlrouter service.\n\n Args:\n host (str): The hostname of the MySQL cluster.\n port (int): The port of the MySQL cluster.\n user (str): The username for the MySQL cluster.\n password (str): The password for the MySQL cluster.\n ' return {'summary': 'mysqlrouter layer', 'description': 'pebble config layer for mysqlrouter', 'services': {'mysqlrouter': {'override': 'replace', 'summary': 'mysqlrouter', 'command': './run.sh', 'startup': 'enabled', 'environment': {'MYSQL_PORT': port, 'MYSQL_HOST': host, 'MYSQL_USER': user, 'MYSQL_PASSWORD': password}}}}
def _mysqlrouter_layer(self, host, port, user, password) -> dict: 'Return a layer configuration for the mysqlrouter service.\n\n Args:\n host (str): The hostname of the MySQL cluster.\n port (int): The port of the MySQL cluster.\n user (str): The username for the MySQL cluster.\n password (str): The password for the MySQL cluster.\n ' return {'summary': 'mysqlrouter layer', 'description': 'pebble config layer for mysqlrouter', 'services': {'mysqlrouter': {'override': 'replace', 'summary': 'mysqlrouter', 'command': './run.sh', 'startup': 'enabled', 'environment': {'MYSQL_PORT': port, 'MYSQL_HOST': host, 'MYSQL_USER': user, 'MYSQL_PASSWORD': password}}}}<|docstring|>Return a layer configuration for the mysqlrouter service. Args: host (str): The hostname of the MySQL cluster. port (int): The port of the MySQL cluster. user (str): The username for the MySQL cluster. password (str): The password for the MySQL cluster.<|endoftext|>
0604f5d5d3460fc446a13566a6c421fe0ad484dbe17fefa216ffb506f96fefbf
def _validate_config(self, configuration: Dict) -> bool: 'Validate the configuration.' for (k, v) in configuration.items(): return (((k == 'host') and (type(v) == str)) or ((k == 'port') and (type(v) == int)) or ((k == 'user') and (type(v) == str)) or ((k == 'password') and (type(v) == str)))
Validate the configuration.
src/charm.py
_validate_config
paulomach/mysql-router-k8s-operator
0
python
def _validate_config(self, configuration: Dict) -> bool: for (k, v) in configuration.items(): return (((k == 'host') and (type(v) == str)) or ((k == 'port') and (type(v) == int)) or ((k == 'user') and (type(v) == str)) or ((k == 'password') and (type(v) == str)))
def _validate_config(self, configuration: Dict) -> bool: for (k, v) in configuration.items(): return (((k == 'host') and (type(v) == str)) or ((k == 'port') and (type(v) == int)) or ((k == 'user') and (type(v) == str)) or ((k == 'password') and (type(v) == str)))<|docstring|>Validate the configuration.<|endoftext|>
38ab892259d5c7e2f7d4aba8e5ebd7a1f99be480843e852b3db4df4393b01054
def _on_config_changed(self, event) -> None: 'Handle config-changed event.' if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()
Handle config-changed event.
src/charm.py
_on_config_changed
paulomach/mysql-router-k8s-operator
0
python
def _on_config_changed(self, event) -> None: if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()
def _on_config_changed(self, event) -> None: if (not self.has_db): logger.debug('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return self._configure()<|docstring|>Handle config-changed event.<|endoftext|>
74db25e88db14a9e47e23b23db83dd005046bd36504c936323dae55af7f67b81
def _on_database_relation_created(self, event) -> None: 'Handle database relation created event.' logger.info('Database relation created') if (not self.has_db): logger.info('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return data = dict(event.relation.data[event.app]) self.set_peer_data(DATABASE, data) self._configure()
Handle database relation created event.
src/charm.py
_on_database_relation_created
paulomach/mysql-router-k8s-operator
0
python
def _on_database_relation_created(self, event) -> None: logger.info('Database relation created') if (not self.has_db): logger.info('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return data = dict(event.relation.data[event.app]) self.set_peer_data(DATABASE, data) self._configure()
def _on_database_relation_created(self, event) -> None: logger.info('Database relation created') if (not self.has_db): logger.info('No database relation found') self.unit.status = WaitingStatus('Waiting for database relation') event.defer() return data = dict(event.relation.data[event.app]) self.set_peer_data(DATABASE, data) self._configure()<|docstring|>Handle database relation created event.<|endoftext|>
d990476e88f371141452a4a148f00e0991bd2f30dcf6b225ad643fd0b13ee430
def _on_database_relation_departed(self, event) -> None: 'Handle database relation departed event.' container = event.workload container.stop('mysqlrouter') self.unit.status = WaitingStatus('Waiting for database relation')
Handle database relation departed event.
src/charm.py
_on_database_relation_departed
paulomach/mysql-router-k8s-operator
0
python
def _on_database_relation_departed(self, event) -> None: container = event.workload container.stop('mysqlrouter') self.unit.status = WaitingStatus('Waiting for database relation')
def _on_database_relation_departed(self, event) -> None: container = event.workload container.stop('mysqlrouter') self.unit.status = WaitingStatus('Waiting for database relation')<|docstring|>Handle database relation departed event.<|endoftext|>
657d9ed5565a87aeb67ca7e4c1cdf9cce68cdeaf2cb0222b4549b8fd62cb9d03
def parseIsoDate(isoString, formatstring=''): 'Turn an ISO 8601 formatted duration string like P1DT45M3S into something readable like "1 day, 45 minutes, 3 seconds' durations = {'year': 0, 'month': 0, 'week': 0, 'day': 0, 'hour': 0, 'minute': 0, 'second': 0} regex = 'P(?:(?P<year>\\d+)Y)?(?:(?P<month>\\d+)M)?(?:(?P<week>\\d+)W)?(?:(?P<day>\\d+)D)?T?(?:(?P<hour>\\d+)H)?(?:(?P<minute>\\d+)M)?(?:(?P<second>\\d+)S)?' result = re.search(regex, isoString) if (result is None): logger.warning('No date results found') else: for (group, value) in result.groupdict().iteritems(): if (value is not None): durations[group] = int(float(value)) if (formatstring != ''): return formatstring.format(**durations) else: return durations
Turn an ISO 8601 formatted duration string like P1DT45M3S into something readable like "1 day, 45 minutes, 3 seconds
util/DateTimeUtil.py
parseIsoDate
Cybertinus/DideRobot
4
python
def parseIsoDate(isoString, formatstring=): durations = {'year': 0, 'month': 0, 'week': 0, 'day': 0, 'hour': 0, 'minute': 0, 'second': 0} regex = 'P(?:(?P<year>\\d+)Y)?(?:(?P<month>\\d+)M)?(?:(?P<week>\\d+)W)?(?:(?P<day>\\d+)D)?T?(?:(?P<hour>\\d+)H)?(?:(?P<minute>\\d+)M)?(?:(?P<second>\\d+)S)?' result = re.search(regex, isoString) if (result is None): logger.warning('No date results found') else: for (group, value) in result.groupdict().iteritems(): if (value is not None): durations[group] = int(float(value)) if (formatstring != ): return formatstring.format(**durations) else: return durations
def parseIsoDate(isoString, formatstring=): durations = {'year': 0, 'month': 0, 'week': 0, 'day': 0, 'hour': 0, 'minute': 0, 'second': 0} regex = 'P(?:(?P<year>\\d+)Y)?(?:(?P<month>\\d+)M)?(?:(?P<week>\\d+)W)?(?:(?P<day>\\d+)D)?T?(?:(?P<hour>\\d+)H)?(?:(?P<minute>\\d+)M)?(?:(?P<second>\\d+)S)?' result = re.search(regex, isoString) if (result is None): logger.warning('No date results found') else: for (group, value) in result.groupdict().iteritems(): if (value is not None): durations[group] = int(float(value)) if (formatstring != ): return formatstring.format(**durations) else: return durations<|docstring|>Turn an ISO 8601 formatted duration string like P1DT45M3S into something readable like "1 day, 45 minutes, 3 seconds<|endoftext|>
e0ac9b22b67d9c19b01efc103ef0c1ba598849e65c67b422694996e06490ada2
def version(): '\n entry point for --version\n ' print(('version pypodo : ' + pkg_resources.get_distribution('pypodo').version)) print(('location of todo file : ' + todofilefromconfig())) print(('location of config file : ' + os.path.join(get_user_config_directory_pypodo(), TODO_RC_FILE))) print(('location of backup folder : ' + todobackupfolderfromconfig()))
entry point for --version
pypodo/version.py
version
thib1984/pytodo
4
python
def version(): '\n \n ' print(('version pypodo : ' + pkg_resources.get_distribution('pypodo').version)) print(('location of todo file : ' + todofilefromconfig())) print(('location of config file : ' + os.path.join(get_user_config_directory_pypodo(), TODO_RC_FILE))) print(('location of backup folder : ' + todobackupfolderfromconfig()))
def version(): '\n \n ' print(('version pypodo : ' + pkg_resources.get_distribution('pypodo').version)) print(('location of todo file : ' + todofilefromconfig())) print(('location of config file : ' + os.path.join(get_user_config_directory_pypodo(), TODO_RC_FILE))) print(('location of backup folder : ' + todobackupfolderfromconfig()))<|docstring|>entry point for --version<|endoftext|>
2b119d882b68c02fcd753a5446cd8c3c7ad3b4ae4ab6adaa41b2f0ffdd7da2a1
def __getattribute__(self, item): "Used to dynamically call the method of a controller in a command\n function. If the specified controller does not exist, just return\n the class attribute.\n\n For example, the line ``ovh.foo.bar()`` in the following command\n calls the ``modules.foo.controllers.Foo.bar`` method :\n\n @foo.command('bar')\n @pass_ovh\n def bar(ovh):\n data = ovh.foo.bar()\n " if (item in object.__getattribute__(self, '_controllers')): cls = object.__getattribute__(self, '_controllers')[item] if (item != 'setup'): client = self.get_ovh_client() cls.client = client return cls return object.__getattribute__(self, item)
Used to dynamically call the method of a controller in a command function. If the specified controller does not exist, just return the class attribute. For example, the line ``ovh.foo.bar()`` in the following command calls the ``modules.foo.controllers.Foo.bar`` method : @foo.command('bar') @pass_ovh def bar(ovh): data = ovh.foo.bar()
ovhcli/context.py
__getattribute__
akram/ovh-cli
42
python
def __getattribute__(self, item): "Used to dynamically call the method of a controller in a command\n function. If the specified controller does not exist, just return\n the class attribute.\n\n For example, the line ``ovh.foo.bar()`` in the following command\n calls the ``modules.foo.controllers.Foo.bar`` method :\n\n @foo.command('bar')\n @pass_ovh\n def bar(ovh):\n data = ovh.foo.bar()\n " if (item in object.__getattribute__(self, '_controllers')): cls = object.__getattribute__(self, '_controllers')[item] if (item != 'setup'): client = self.get_ovh_client() cls.client = client return cls return object.__getattribute__(self, item)
def __getattribute__(self, item): "Used to dynamically call the method of a controller in a command\n function. If the specified controller does not exist, just return\n the class attribute.\n\n For example, the line ``ovh.foo.bar()`` in the following command\n calls the ``modules.foo.controllers.Foo.bar`` method :\n\n @foo.command('bar')\n @pass_ovh\n def bar(ovh):\n data = ovh.foo.bar()\n " if (item in object.__getattribute__(self, '_controllers')): cls = object.__getattribute__(self, '_controllers')[item] if (item != 'setup'): client = self.get_ovh_client() cls.client = client return cls return object.__getattribute__(self, item)<|docstring|>Used to dynamically call the method of a controller in a command function. If the specified controller does not exist, just return the class attribute. For example, the line ``ovh.foo.bar()`` in the following command calls the ``modules.foo.controllers.Foo.bar`` method : @foo.command('bar') @pass_ovh def bar(ovh): data = ovh.foo.bar()<|endoftext|>
e5c0d3448787fb4e3fc593f8f9d01ffb21aade346768d8256fc506d5e8b125b2
def get_ovh_client(self): 'Get the OVH client.' try: client = ovh.Client() except InvalidRegion: self.error('The configuration was not found.') self.error('Please use `ovh setup init` to create it.') self.exit() return client
Get the OVH client.
ovhcli/context.py
get_ovh_client
akram/ovh-cli
42
python
def get_ovh_client(self): try: client = ovh.Client() except InvalidRegion: self.error('The configuration was not found.') self.error('Please use `ovh setup init` to create it.') self.exit() return client
def get_ovh_client(self): try: client = ovh.Client() except InvalidRegion: self.error('The configuration was not found.') self.error('Please use `ovh setup init` to create it.') self.exit() return client<|docstring|>Get the OVH client.<|endoftext|>
4a870db888b4597d15c9200885bccf30228f4734078c338c64f95c3bfb16b470
def load_controllers(self): "Load the controllers for each module specified in the\n ``MODULE_FOLDER`` constant.\n\n If a module can't be imported for any reason, we do not display it." modules = [module for module in sorted(os.listdir(MODULES_FOLDER)) if is_module(module)] for module in modules: try: controller = importlib.import_module('ovhcli.modules.{}.controllers'.format(module)) self._controllers[module] = getattr(controller, module.capitalize()) except ImportError: pass
Load the controllers for each module specified in the ``MODULE_FOLDER`` constant. If a module can't be imported for any reason, we do not display it.
ovhcli/context.py
load_controllers
akram/ovh-cli
42
python
def load_controllers(self): "Load the controllers for each module specified in the\n ``MODULE_FOLDER`` constant.\n\n If a module can't be imported for any reason, we do not display it." modules = [module for module in sorted(os.listdir(MODULES_FOLDER)) if is_module(module)] for module in modules: try: controller = importlib.import_module('ovhcli.modules.{}.controllers'.format(module)) self._controllers[module] = getattr(controller, module.capitalize()) except ImportError: pass
def load_controllers(self): "Load the controllers for each module specified in the\n ``MODULE_FOLDER`` constant.\n\n If a module can't be imported for any reason, we do not display it." modules = [module for module in sorted(os.listdir(MODULES_FOLDER)) if is_module(module)] for module in modules: try: controller = importlib.import_module('ovhcli.modules.{}.controllers'.format(module)) self._controllers[module] = getattr(controller, module.capitalize()) except ImportError: pass<|docstring|>Load the controllers for each module specified in the ``MODULE_FOLDER`` constant. If a module can't be imported for any reason, we do not display it.<|endoftext|>
fccfc0fa8b135c8ca28e8bd11c0463150ecc31ad787110ea479bc2669899aa58
def echo(self, message, prefix='', color='white'): 'Print a message with a colored prefix unless the ``--json``\n parameter is specified.' try: json = self.json except AttributeError: json = False if (not json): if prefix: prefix = '[{}] '.format(click.style(prefix, fg=color)) click.echo(u'{}{}'.format(prefix, message))
Print a message with a colored prefix unless the ``--json`` parameter is specified.
ovhcli/context.py
echo
akram/ovh-cli
42
python
def echo(self, message, prefix=, color='white'): 'Print a message with a colored prefix unless the ``--json``\n parameter is specified.' try: json = self.json except AttributeError: json = False if (not json): if prefix: prefix = '[{}] '.format(click.style(prefix, fg=color)) click.echo(u'{}{}'.format(prefix, message))
def echo(self, message, prefix=, color='white'): 'Print a message with a colored prefix unless the ``--json``\n parameter is specified.' try: json = self.json except AttributeError: json = False if (not json): if prefix: prefix = '[{}] '.format(click.style(prefix, fg=color)) click.echo(u'{}{}'.format(prefix, message))<|docstring|>Print a message with a colored prefix unless the ``--json`` parameter is specified.<|endoftext|>
7e4b661233f244c19462093730c92fe42e0c40d1f7158f3424739c1083a22b2a
def debug(self, message): 'Print a debug message if the debug mode is enabled.' if self.debug_mode: self.echo(message, 'debug', 'blue')
Print a debug message if the debug mode is enabled.
ovhcli/context.py
debug
akram/ovh-cli
42
python
def debug(self, message): if self.debug_mode: self.echo(message, 'debug', 'blue')
def debug(self, message): if self.debug_mode: self.echo(message, 'debug', 'blue')<|docstring|>Print a debug message if the debug mode is enabled.<|endoftext|>
93aa2890731ebe866f3bc12f341ef91ab78df32bc46c4635b455f730af959229
def info(self, message): 'Print an information message.' self.echo(message, '-', 'cyan')
Print an information message.
ovhcli/context.py
info
akram/ovh-cli
42
python
def info(self, message): self.echo(message, '-', 'cyan')
def info(self, message): self.echo(message, '-', 'cyan')<|docstring|>Print an information message.<|endoftext|>
a7059843b3fd009f529f17f8fd7b39e30e3f270aa05eaca73644729d777c79ef
def time_echo(self, message): 'Print an information message with a formatted date.' self.echo(message, strftime('%H:%M:%S'), 'cyan')
Print an information message with a formatted date.
ovhcli/context.py
time_echo
akram/ovh-cli
42
python
def time_echo(self, message): self.echo(message, strftime('%H:%M:%S'), 'cyan')
def time_echo(self, message): self.echo(message, strftime('%H:%M:%S'), 'cyan')<|docstring|>Print an information message with a formatted date.<|endoftext|>
37a91511e866ece26bc376df94d15cbaf379f4820e84299f2b35e1027d8a0f75
def success(self, message): 'Print a success message.' self.echo(message, '*', 'green')
Print a success message.
ovhcli/context.py
success
akram/ovh-cli
42
python
def success(self, message): self.echo(message, '*', 'green')
def success(self, message): self.echo(message, '*', 'green')<|docstring|>Print a success message.<|endoftext|>
1f310c6eeb442290cf54868ed6dd33e6aedaef15d8a1cdaa764a46907551892e
def warning(self, message): 'Print a warning message.' self.echo(message, 'warning', 'yellow')
Print a warning message.
ovhcli/context.py
warning
akram/ovh-cli
42
python
def warning(self, message): self.echo(message, 'warning', 'yellow')
def warning(self, message): self.echo(message, 'warning', 'yellow')<|docstring|>Print a warning message.<|endoftext|>
a13740e14b08ee26935f20749182c25a3ab2b20286653463cff0fb1df6d6ce84
def error(self, message): 'Print an error message.' self.echo(message, 'error', 'red')
Print an error message.
ovhcli/context.py
error
akram/ovh-cli
42
python
def error(self, message): self.echo(message, 'error', 'red')
def error(self, message): self.echo(message, 'error', 'red')<|docstring|>Print an error message.<|endoftext|>
1bbfc790c47bf7b9c0dec4084beb54708c10c960645e780585293a84da9ebc55
def table(self, data, custom_func=None, exclude=[], sort=None): '\n Print a pretty table unless the ``--json`` parameter is specified.\n\n If no custom function is given, use the ``Output`` class to generate\n the table.' try: json = self.json except AttributeError: json = False if json: click.echo(_json.dumps(data)) return if custom_func: self.echo(custom_func(data)) return table = Output(data, exclude=exclude, sort=sort) self.echo(table.convert())
Print a pretty table unless the ``--json`` parameter is specified. If no custom function is given, use the ``Output`` class to generate the table.
ovhcli/context.py
table
akram/ovh-cli
42
python
def table(self, data, custom_func=None, exclude=[], sort=None): '\n Print a pretty table unless the ``--json`` parameter is specified.\n\n If no custom function is given, use the ``Output`` class to generate\n the table.' try: json = self.json except AttributeError: json = False if json: click.echo(_json.dumps(data)) return if custom_func: self.echo(custom_func(data)) return table = Output(data, exclude=exclude, sort=sort) self.echo(table.convert())
def table(self, data, custom_func=None, exclude=[], sort=None): '\n Print a pretty table unless the ``--json`` parameter is specified.\n\n If no custom function is given, use the ``Output`` class to generate\n the table.' try: json = self.json except AttributeError: json = False if json: click.echo(_json.dumps(data)) return if custom_func: self.echo(custom_func(data)) return table = Output(data, exclude=exclude, sort=sort) self.echo(table.convert())<|docstring|>Print a pretty table unless the ``--json`` parameter is specified. If no custom function is given, use the ``Output`` class to generate the table.<|endoftext|>
5c7a80c106e2c9433e9b8e94f25e5970c2111ce70002fa596fb1cb3a12b6cf4f
def display_task(self, task): 'Print a task status.' name = task['function'] if (task['status'] in ['init', 'todo', 'doing']): self.success('The task {} has been launched.'.format(name)) elif (task['status'] == 'done'): self.success('The task {} is done.'.format(name)) elif (task['status'] == 'cancelled'): self.warning('The task {} has been cancelled.'.format(name)) else: self.error('The task {} fell in an error state.'.format(name))
Print a task status.
ovhcli/context.py
display_task
akram/ovh-cli
42
python
def display_task(self, task): name = task['function'] if (task['status'] in ['init', 'todo', 'doing']): self.success('The task {} has been launched.'.format(name)) elif (task['status'] == 'done'): self.success('The task {} is done.'.format(name)) elif (task['status'] == 'cancelled'): self.warning('The task {} has been cancelled.'.format(name)) else: self.error('The task {} fell in an error state.'.format(name))
def display_task(self, task): name = task['function'] if (task['status'] in ['init', 'todo', 'doing']): self.success('The task {} has been launched.'.format(name)) elif (task['status'] == 'done'): self.success('The task {} is done.'.format(name)) elif (task['status'] == 'cancelled'): self.warning('The task {} has been cancelled.'.format(name)) else: self.error('The task {} fell in an error state.'.format(name))<|docstring|>Print a task status.<|endoftext|>
a2d724a22264d17b8b8cf97af8ff2b681159be963b2b510f9b2aed6ee6997c4e
def create_presigned_post(bucket_name, object_name, fields=None, conditions=None, expiration=3600): 'Generate a presigned URL S3 POST request to upload a file\n\n :param bucket_name: string\n :param object_name: string\n :param fields: Dictionary of prefilled form fields\n :param conditions: List of conditions to include in the policy\n :param expiration: Time in seconds for the presigned URL to remain valid\n :return: Dictionary with the following keys:\n url: URL to post to\n fields: Dictionary of form fields and values to submit with the POST\n :return: None if error.\n ' s3_client = boto3.client('s3') try: response = s3_client.generate_presigned_post(bucket_name, object_name, Fields=fields, Conditions=conditions, ExpiresIn=expiration) except ClientError as e: logging.error(e) return None return response
Generate a presigned URL S3 POST request to upload a file :param bucket_name: string :param object_name: string :param fields: Dictionary of prefilled form fields :param conditions: List of conditions to include in the policy :param expiration: Time in seconds for the presigned URL to remain valid :return: Dictionary with the following keys: url: URL to post to fields: Dictionary of form fields and values to submit with the POST :return: None if error.
testdocs/s3uploadproc.py
create_presigned_post
liwen611/amazon-textract-serverless-large-scale-document-processing
0
python
def create_presigned_post(bucket_name, object_name, fields=None, conditions=None, expiration=3600): 'Generate a presigned URL S3 POST request to upload a file\n\n :param bucket_name: string\n :param object_name: string\n :param fields: Dictionary of prefilled form fields\n :param conditions: List of conditions to include in the policy\n :param expiration: Time in seconds for the presigned URL to remain valid\n :return: Dictionary with the following keys:\n url: URL to post to\n fields: Dictionary of form fields and values to submit with the POST\n :return: None if error.\n ' s3_client = boto3.client('s3') try: response = s3_client.generate_presigned_post(bucket_name, object_name, Fields=fields, Conditions=conditions, ExpiresIn=expiration) except ClientError as e: logging.error(e) return None return response
def create_presigned_post(bucket_name, object_name, fields=None, conditions=None, expiration=3600): 'Generate a presigned URL S3 POST request to upload a file\n\n :param bucket_name: string\n :param object_name: string\n :param fields: Dictionary of prefilled form fields\n :param conditions: List of conditions to include in the policy\n :param expiration: Time in seconds for the presigned URL to remain valid\n :return: Dictionary with the following keys:\n url: URL to post to\n fields: Dictionary of form fields and values to submit with the POST\n :return: None if error.\n ' s3_client = boto3.client('s3') try: response = s3_client.generate_presigned_post(bucket_name, object_name, Fields=fields, Conditions=conditions, ExpiresIn=expiration) except ClientError as e: logging.error(e) return None return response<|docstring|>Generate a presigned URL S3 POST request to upload a file :param bucket_name: string :param object_name: string :param fields: Dictionary of prefilled form fields :param conditions: List of conditions to include in the policy :param expiration: Time in seconds for the presigned URL to remain valid :return: Dictionary with the following keys: url: URL to post to fields: Dictionary of form fields and values to submit with the POST :return: None if error.<|endoftext|>
32f4b664162593d2e7c68736bab10b3d03aab3d58f5e9ca5abf26fdff0403c69
@pytest.fixture(scope='module') def app_config(app_config): 'Fixture for customizing the service config via app config.' app_config['REQUESTS_PERMISSION_POLICY'] = CustomPermissionPolicy return app_config
Fixture for customizing the service config via app config.
tests/services/requests/test_requests_service_config.py
app_config
NRodriguezcuellar/invenio-requests
0
python
@pytest.fixture(scope='module') def app_config(app_config): app_config['REQUESTS_PERMISSION_POLICY'] = CustomPermissionPolicy return app_config
@pytest.fixture(scope='module') def app_config(app_config): app_config['REQUESTS_PERMISSION_POLICY'] = CustomPermissionPolicy return app_config<|docstring|>Fixture for customizing the service config via app config.<|endoftext|>
24e163ab31c1e16647b25c081100dc07adee5bd7a048bbd8b3a865c94f933062
def test_customizations_via_app_config(app): 'Test if the customization mechanism works correctly.' current_permission_policy_cls = current_requests.requests_service.config.permission_policy_cls assert (current_permission_policy_cls is CustomPermissionPolicy) assert hasattr(current_permission_policy_cls, 'can_test')
Test if the customization mechanism works correctly.
tests/services/requests/test_requests_service_config.py
test_customizations_via_app_config
NRodriguezcuellar/invenio-requests
0
python
def test_customizations_via_app_config(app): current_permission_policy_cls = current_requests.requests_service.config.permission_policy_cls assert (current_permission_policy_cls is CustomPermissionPolicy) assert hasattr(current_permission_policy_cls, 'can_test')
def test_customizations_via_app_config(app): current_permission_policy_cls = current_requests.requests_service.config.permission_policy_cls assert (current_permission_policy_cls is CustomPermissionPolicy) assert hasattr(current_permission_policy_cls, 'can_test')<|docstring|>Test if the customization mechanism works correctly.<|endoftext|>
15294472af1f9e96521ae8b96710a9ec22e76bbb30eb19e07b59faf994662492
def test_customization_mixin(app): 'Test if the customize mixin method does what it is supposed to do.' custom_config = RequestsServiceConfig.build(app) assert (custom_config is not RequestsServiceConfig) assert (custom_config.permission_policy_cls is CustomPermissionPolicy)
Test if the customize mixin method does what it is supposed to do.
tests/services/requests/test_requests_service_config.py
test_customization_mixin
NRodriguezcuellar/invenio-requests
0
python
def test_customization_mixin(app): custom_config = RequestsServiceConfig.build(app) assert (custom_config is not RequestsServiceConfig) assert (custom_config.permission_policy_cls is CustomPermissionPolicy)
def test_customization_mixin(app): custom_config = RequestsServiceConfig.build(app) assert (custom_config is not RequestsServiceConfig) assert (custom_config.permission_policy_cls is CustomPermissionPolicy)<|docstring|>Test if the customize mixin method does what it is supposed to do.<|endoftext|>
21a37822a6b78de4fa246ba2d188018d10894aff18c9c34d8a7524d8a5be22ca
def produto_pre_save(signal, instance, sender, **kwargs): 'Coisas a serem feitas antes de salvar no banco' instance.slug = slugify(instance.nome) instance.codigo = upper(instance.codigo)
Coisas a serem feitas antes de salvar no banco
projeto2/core/models.py
produto_pre_save
carlosbecker2077/django-projeto2
0
python
def produto_pre_save(signal, instance, sender, **kwargs): instance.slug = slugify(instance.nome) instance.codigo = upper(instance.codigo)
def produto_pre_save(signal, instance, sender, **kwargs): instance.slug = slugify(instance.nome) instance.codigo = upper(instance.codigo)<|docstring|>Coisas a serem feitas antes de salvar no banco<|endoftext|>
70d88ac90d2f3bee328d7005ade205aee8dad43799ce67602c3342e82880cf33
def __init__(self, delaunay, triangulation): " Creating a TriFinder for matplotlib.tri.triangulation using the scipy.spatial.Delaunay object\n Compatibility is not checked!\n User must make sure the triangulation is created by the same Delaunay object's *simplices* information, and of course the Delaunay must be of 2-dimensional.\n " self.delaunay = delaunay super(DelaunayTriFinder, self).__init__(triangulation) assert isinstance(delaunay, Delaunay)
Creating a TriFinder for matplotlib.tri.triangulation using the scipy.spatial.Delaunay object Compatibility is not checked! User must make sure the triangulation is created by the same Delaunay object's *simplices* information, and of course the Delaunay must be of 2-dimensional.
src/python2/sdp/geometry/support.py
__init__
LeiShi/Synthetic-Diagnostics-Platform
5
python
def __init__(self, delaunay, triangulation): " Creating a TriFinder for matplotlib.tri.triangulation using the scipy.spatial.Delaunay object\n Compatibility is not checked!\n User must make sure the triangulation is created by the same Delaunay object's *simplices* information, and of course the Delaunay must be of 2-dimensional.\n " self.delaunay = delaunay super(DelaunayTriFinder, self).__init__(triangulation) assert isinstance(delaunay, Delaunay)
def __init__(self, delaunay, triangulation): " Creating a TriFinder for matplotlib.tri.triangulation using the scipy.spatial.Delaunay object\n Compatibility is not checked!\n User must make sure the triangulation is created by the same Delaunay object's *simplices* information, and of course the Delaunay must be of 2-dimensional.\n " self.delaunay = delaunay super(DelaunayTriFinder, self).__init__(triangulation) assert isinstance(delaunay, Delaunay)<|docstring|>Creating a TriFinder for matplotlib.tri.triangulation using the scipy.spatial.Delaunay object Compatibility is not checked! User must make sure the triangulation is created by the same Delaunay object's *simplices* information, and of course the Delaunay must be of 2-dimensional.<|endoftext|>
275f1e40172728468aacb99921ab0ebf48f6c7165593d0f672c49affe879042b
def __call__(self, x, y): ' find the corresponding simplices (triangles) using Delaunay method: find_simplex(p)\n :param x: x coordinates of specified points\n :type x: numpy array of float\n :param y: y coordinates of specified points\n :type y: numpy array of float\n :return s: indices of triangles within which each point lies.\n :rtype s: numpy array of int\n ' assert (x.shape == y.shape) axes = range(1, (x.ndim + 1)) axes.append(0) p = np.array([x, y]).transpose(axes) return self.delaunay.find_simplex(p)
find the corresponding simplices (triangles) using Delaunay method: find_simplex(p) :param x: x coordinates of specified points :type x: numpy array of float :param y: y coordinates of specified points :type y: numpy array of float :return s: indices of triangles within which each point lies. :rtype s: numpy array of int
src/python2/sdp/geometry/support.py
__call__
LeiShi/Synthetic-Diagnostics-Platform
5
python
def __call__(self, x, y): ' find the corresponding simplices (triangles) using Delaunay method: find_simplex(p)\n :param x: x coordinates of specified points\n :type x: numpy array of float\n :param y: y coordinates of specified points\n :type y: numpy array of float\n :return s: indices of triangles within which each point lies.\n :rtype s: numpy array of int\n ' assert (x.shape == y.shape) axes = range(1, (x.ndim + 1)) axes.append(0) p = np.array([x, y]).transpose(axes) return self.delaunay.find_simplex(p)
def __call__(self, x, y): ' find the corresponding simplices (triangles) using Delaunay method: find_simplex(p)\n :param x: x coordinates of specified points\n :type x: numpy array of float\n :param y: y coordinates of specified points\n :type y: numpy array of float\n :return s: indices of triangles within which each point lies.\n :rtype s: numpy array of int\n ' assert (x.shape == y.shape) axes = range(1, (x.ndim + 1)) axes.append(0) p = np.array([x, y]).transpose(axes) return self.delaunay.find_simplex(p)<|docstring|>find the corresponding simplices (triangles) using Delaunay method: find_simplex(p) :param x: x coordinates of specified points :type x: numpy array of float :param y: y coordinates of specified points :type y: numpy array of float :return s: indices of triangles within which each point lies. :rtype s: numpy array of int<|endoftext|>
8a67903456f171ef69dd1c8578e36ac9304f6d5abc2a7c765992917ad8e4d7f6
def __init__(self, duration, labels=None): '\n Initializes a model with a single hidden layer. Features are\n aggregated over the time specified by the duration and the hidden\n layer size is a hyperparameter set at initialization.\n\n Args:\n duration: Time duration to aggregate features for\n ' self.duration = duration self.means = None self.stds = None self.feature_list = None self.model = None self.labels = labels self.sessions = None
Initializes a model with a single hidden layer. Features are aggregated over the time specified by the duration and the hidden layer size is a hyperparameter set at initialization. Args: duration: Time duration to aggregate features for
utils/PcaPFeatureExtractor.py
__init__
alshaboti/PoseidonMLOld
0
python
def __init__(self, duration, labels=None): '\n Initializes a model with a single hidden layer. Features are\n aggregated over the time specified by the duration and the hidden\n layer size is a hyperparameter set at initialization.\n\n Args:\n duration: Time duration to aggregate features for\n ' self.duration = duration self.means = None self.stds = None self.feature_list = None self.model = None self.labels = labels self.sessions = None
def __init__(self, duration, labels=None): '\n Initializes a model with a single hidden layer. Features are\n aggregated over the time specified by the duration and the hidden\n layer size is a hyperparameter set at initialization.\n\n Args:\n duration: Time duration to aggregate features for\n ' self.duration = duration self.means = None self.stds = None self.feature_list = None self.model = None self.labels = labels self.sessions = None<|docstring|>Initializes a model with a single hidden layer. Features are aggregated over the time specified by the duration and the hidden layer size is a hyperparameter set at initialization. Args: duration: Time duration to aggregate features for<|endoftext|>
414dc7defcc6915fedd9a5b18c2a57b6c653f89fc1c64faed0e59d158f516cc3
def get_x_y(self, data_dir): '\n Trains a single layer model on the data contained in the specified\n directory. Labels found in the directory are augmented with an\n unknown label.\n\n Args:\n data_dir: Directory containing the training data\n ' print('Reading data') (X_all, y_all, new_labels) = read_data(data_dir, duration=self.duration, labels=self.labels) self.labels = new_labels
Trains a single layer model on the data contained in the specified directory. Labels found in the directory are augmented with an unknown label. Args: data_dir: Directory containing the training data
utils/PcaPFeatureExtractor.py
get_x_y
alshaboti/PoseidonMLOld
0
python
def get_x_y(self, data_dir): '\n Trains a single layer model on the data contained in the specified\n directory. Labels found in the directory are augmented with an\n unknown label.\n\n Args:\n data_dir: Directory containing the training data\n ' print('Reading data') (X_all, y_all, new_labels) = read_data(data_dir, duration=self.duration, labels=self.labels) self.labels = new_labels
def get_x_y(self, data_dir): '\n Trains a single layer model on the data contained in the specified\n directory. Labels found in the directory are augmented with an\n unknown label.\n\n Args:\n data_dir: Directory containing the training data\n ' print('Reading data') (X_all, y_all, new_labels) = read_data(data_dir, duration=self.duration, labels=self.labels) self.labels = new_labels<|docstring|>Trains a single layer model on the data contained in the specified directory. Labels found in the directory are augmented with an unknown label. Args: data_dir: Directory containing the training data<|endoftext|>
92d07df5ab4bee76a238945fecaed83872358ce8dfadf6588917256e2a18ef7b
def __init__(self, file_path: str): 'Constructor\n\n :param file_path: path to the csv file\n ' self._file_path = file_path self._file = Path(file_path) if (not self._file.exists()): raise FileNotFoundError self._columns = self._rows = (- 1) self._load_stats()
Constructor :param file_path: path to the csv file
DatabaseNormalizer/db_normalizer/csv_handler/reader.py
__init__
pBouillon/Telecom_PPII
1
python
def __init__(self, file_path: str): 'Constructor\n\n :param file_path: path to the csv file\n ' self._file_path = file_path self._file = Path(file_path) if (not self._file.exists()): raise FileNotFoundError self._columns = self._rows = (- 1) self._load_stats()
def __init__(self, file_path: str): 'Constructor\n\n :param file_path: path to the csv file\n ' self._file_path = file_path self._file = Path(file_path) if (not self._file.exists()): raise FileNotFoundError self._columns = self._rows = (- 1) self._load_stats()<|docstring|>Constructor :param file_path: path to the csv file<|endoftext|>
3c6cfc8998aa95b6535633651c6afd171706f5a97f93130e6a16851e1f9259c4
def _load_stats(self) -> None: 'Load stats of the .csv file for future usage\n ' self._rows = 0 for line in self._file.read_text(Csv.encoding).split('\n'): if (self._columns == (- 1)): self._columns = len(line.split(Csv.separator)) self._rows += 1
Load stats of the .csv file for future usage
DatabaseNormalizer/db_normalizer/csv_handler/reader.py
_load_stats
pBouillon/Telecom_PPII
1
python
def _load_stats(self) -> None: '\n ' self._rows = 0 for line in self._file.read_text(Csv.encoding).split('\n'): if (self._columns == (- 1)): self._columns = len(line.split(Csv.separator)) self._rows += 1
def _load_stats(self) -> None: '\n ' self._rows = 0 for line in self._file.read_text(Csv.encoding).split('\n'): if (self._columns == (- 1)): self._columns = len(line.split(Csv.separator)) self._rows += 1<|docstring|>Load stats of the .csv file for future usage<|endoftext|>
3ad51da80eedc1da375f3ab275ad0f9e70506aa09857a06b310f68ad46c3cc4e
def read_content(self, skip_header: Optional[bool]=False, encoding: Optional[str]=Csv.encoding) -> Iterator[List[str]]: 'Read .csv content\n\n :param skip_header:\n :param encoding:\n :return: an iterator with each line as a list of its columns\n ' is_header_skipped = False for line in self._file.read_text(encoding).split('\n'): if (skip_header and (not is_header_skipped)): is_header_skipped = True continue if (not line): continue values = [field for (field, _) in re.findall(Parsing.parse_regex, line)][:(- 1)] (yield list(map((lambda field: (field[1:(- 1)] if (field.startswith(Csv.delimiter) and field.endswith(Csv.delimiter)) else field)), values)))
Read .csv content :param skip_header: :param encoding: :return: an iterator with each line as a list of its columns
DatabaseNormalizer/db_normalizer/csv_handler/reader.py
read_content
pBouillon/Telecom_PPII
1
python
def read_content(self, skip_header: Optional[bool]=False, encoding: Optional[str]=Csv.encoding) -> Iterator[List[str]]: 'Read .csv content\n\n :param skip_header:\n :param encoding:\n :return: an iterator with each line as a list of its columns\n ' is_header_skipped = False for line in self._file.read_text(encoding).split('\n'): if (skip_header and (not is_header_skipped)): is_header_skipped = True continue if (not line): continue values = [field for (field, _) in re.findall(Parsing.parse_regex, line)][:(- 1)] (yield list(map((lambda field: (field[1:(- 1)] if (field.startswith(Csv.delimiter) and field.endswith(Csv.delimiter)) else field)), values)))
def read_content(self, skip_header: Optional[bool]=False, encoding: Optional[str]=Csv.encoding) -> Iterator[List[str]]: 'Read .csv content\n\n :param skip_header:\n :param encoding:\n :return: an iterator with each line as a list of its columns\n ' is_header_skipped = False for line in self._file.read_text(encoding).split('\n'): if (skip_header and (not is_header_skipped)): is_header_skipped = True continue if (not line): continue values = [field for (field, _) in re.findall(Parsing.parse_regex, line)][:(- 1)] (yield list(map((lambda field: (field[1:(- 1)] if (field.startswith(Csv.delimiter) and field.endswith(Csv.delimiter)) else field)), values)))<|docstring|>Read .csv content :param skip_header: :param encoding: :return: an iterator with each line as a list of its columns<|endoftext|>
fdfbb030c1b8951183305862f67fdedde117fa02970f44d2435961154328e84e
@property def columns(self) -> int: 'Getter for `_columns`\n :return: the number of columns in the file\n ' return self._columns
Getter for `_columns` :return: the number of columns in the file
DatabaseNormalizer/db_normalizer/csv_handler/reader.py
columns
pBouillon/Telecom_PPII
1
python
@property def columns(self) -> int: 'Getter for `_columns`\n :return: the number of columns in the file\n ' return self._columns
@property def columns(self) -> int: 'Getter for `_columns`\n :return: the number of columns in the file\n ' return self._columns<|docstring|>Getter for `_columns` :return: the number of columns in the file<|endoftext|>
987e12430d43f75a6897210d1ffc48f563506c301080882665fa0bf35647b36f
@property def rows(self) -> int: 'Getter for `_rows`\n :return: the number of rows in the file\n ' return self._rows
Getter for `_rows` :return: the number of rows in the file
DatabaseNormalizer/db_normalizer/csv_handler/reader.py
rows
pBouillon/Telecom_PPII
1
python
@property def rows(self) -> int: 'Getter for `_rows`\n :return: the number of rows in the file\n ' return self._rows
@property def rows(self) -> int: 'Getter for `_rows`\n :return: the number of rows in the file\n ' return self._rows<|docstring|>Getter for `_rows` :return: the number of rows in the file<|endoftext|>
5b9822465bed72863a4e2bb9711fb1ffcb5682ce9b34327093752eb1a3d6e523
def show(self): '\n\n :return: string representing object\n ' return ('My Evernote %s' % self.title)
:return: string representing object
th_evernote/models.py
show
luisriverag/django-th
1,069
python
def show(self): '\n\n \n ' return ('My Evernote %s' % self.title)
def show(self): '\n\n \n ' return ('My Evernote %s' % self.title)<|docstring|>:return: string representing object<|endoftext|>
8813df494a9c807ad6a3e3f6b80d3ba57e333705f2c26f607827d8ce314cea7d
def __init__(self): 'Initializes the Hparams instance.\n ' self.model_hparams = ModelHparams() self.training_hparams = TrainingHparams() self.inference_hparams = InferenceHparams()
Initializes the Hparams instance.
seq2seq-chatbot/hparams.py
__init__
JEMurcia/Seq2Seq_CornellMovie
104
python
def __init__(self): '\n ' self.model_hparams = ModelHparams() self.training_hparams = TrainingHparams() self.inference_hparams = InferenceHparams()
def __init__(self): '\n ' self.model_hparams = ModelHparams() self.training_hparams = TrainingHparams() self.inference_hparams = InferenceHparams()<|docstring|>Initializes the Hparams instance.<|endoftext|>
45f70828756b70be5d4404bd3e1503bf86b827a183ee823420f72187dfc9a43e
@staticmethod def load(filepath): 'Loads the hyperparameters from a JSON file.\n\n Args:\n filepath: path of the JSON file.\n ' with open(filepath, 'r') as file: json = file.read() hparams = jsonpickle.decode(json) hparams.training_hparams.input_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.input_vocab_import_mode] hparams.training_hparams.output_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.output_vocab_import_mode] return hparams
Loads the hyperparameters from a JSON file. Args: filepath: path of the JSON file.
seq2seq-chatbot/hparams.py
load
JEMurcia/Seq2Seq_CornellMovie
104
python
@staticmethod def load(filepath): 'Loads the hyperparameters from a JSON file.\n\n Args:\n filepath: path of the JSON file.\n ' with open(filepath, 'r') as file: json = file.read() hparams = jsonpickle.decode(json) hparams.training_hparams.input_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.input_vocab_import_mode] hparams.training_hparams.output_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.output_vocab_import_mode] return hparams
@staticmethod def load(filepath): 'Loads the hyperparameters from a JSON file.\n\n Args:\n filepath: path of the JSON file.\n ' with open(filepath, 'r') as file: json = file.read() hparams = jsonpickle.decode(json) hparams.training_hparams.input_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.input_vocab_import_mode] hparams.training_hparams.output_vocab_import_mode = VocabularyImportMode[hparams.training_hparams.output_vocab_import_mode] return hparams<|docstring|>Loads the hyperparameters from a JSON file. Args: filepath: path of the JSON file.<|endoftext|>
19e8f48887c0a135a36a13941b275f0751407fa7a15a2bfabe102156fb24315c
def __init__(self): 'Initializes the ModelHparams instance.\n ' self.rnn_cell_type = 'lstm' self.rnn_size = 256 self.use_bidirectional_encoder = True self.encoder_num_layers = 2 self.decoder_num_layers = 2 self.encoder_embedding_size = 256 self.decoder_embedding_size = 256 self.encoder_embedding_trainable = True self.decoder_embedding_trainable = True self.share_embedding = True self.attention_type = 'normed_bahdanau' self.beam_width = 10 self.enable_sampling = False self.optimizer = 'adam' self.max_gradient_norm = 5.0 self.gpu_dynamic_memory_growth = True
Initializes the ModelHparams instance.
seq2seq-chatbot/hparams.py
__init__
JEMurcia/Seq2Seq_CornellMovie
104
python
def __init__(self): '\n ' self.rnn_cell_type = 'lstm' self.rnn_size = 256 self.use_bidirectional_encoder = True self.encoder_num_layers = 2 self.decoder_num_layers = 2 self.encoder_embedding_size = 256 self.decoder_embedding_size = 256 self.encoder_embedding_trainable = True self.decoder_embedding_trainable = True self.share_embedding = True self.attention_type = 'normed_bahdanau' self.beam_width = 10 self.enable_sampling = False self.optimizer = 'adam' self.max_gradient_norm = 5.0 self.gpu_dynamic_memory_growth = True
def __init__(self): '\n ' self.rnn_cell_type = 'lstm' self.rnn_size = 256 self.use_bidirectional_encoder = True self.encoder_num_layers = 2 self.decoder_num_layers = 2 self.encoder_embedding_size = 256 self.decoder_embedding_size = 256 self.encoder_embedding_trainable = True self.decoder_embedding_trainable = True self.share_embedding = True self.attention_type = 'normed_bahdanau' self.beam_width = 10 self.enable_sampling = False self.optimizer = 'adam' self.max_gradient_norm = 5.0 self.gpu_dynamic_memory_growth = True<|docstring|>Initializes the ModelHparams instance.<|endoftext|>
4689a0ae470d179f0946d1adc9bd6f79824bcc5844ba147793eaa0ea59efe230
def __init__(self): 'Initializes the TrainingHparams instance.\n ' self.min_question_words = 1 self.max_question_answer_words = 30 self.max_conversations = (- 1) self.conv_history_length = 6 self.normalize_words = True self.input_vocab_threshold = 2 self.output_vocab_threshold = 2 self.input_vocab_import_normalized = True self.output_vocab_import_normalized = True self.input_vocab_import_mode = VocabularyImportMode.External self.output_vocab_import_mode = VocabularyImportMode.Dataset self.validation_set_percent = 0 self.random_train_val_split = True self.validation_metric = 'loss' self.epochs = 500 self.early_stopping_epochs = 500 self.batch_size = 128 self.learning_rate = 2.0 self.learning_rate_decay = 0.99 self.min_learning_rate = 0.1 self.dropout = 0.2 self.checkpoint_on_training = True self.checkpoint_on_validation = True self.log_summary = True self.log_cleaned_dataset = True self.log_training_data = True self.stats_after_n_batches = 100 self.backup_on_training_loss = []
Initializes the TrainingHparams instance.
seq2seq-chatbot/hparams.py
__init__
JEMurcia/Seq2Seq_CornellMovie
104
python
def __init__(self): '\n ' self.min_question_words = 1 self.max_question_answer_words = 30 self.max_conversations = (- 1) self.conv_history_length = 6 self.normalize_words = True self.input_vocab_threshold = 2 self.output_vocab_threshold = 2 self.input_vocab_import_normalized = True self.output_vocab_import_normalized = True self.input_vocab_import_mode = VocabularyImportMode.External self.output_vocab_import_mode = VocabularyImportMode.Dataset self.validation_set_percent = 0 self.random_train_val_split = True self.validation_metric = 'loss' self.epochs = 500 self.early_stopping_epochs = 500 self.batch_size = 128 self.learning_rate = 2.0 self.learning_rate_decay = 0.99 self.min_learning_rate = 0.1 self.dropout = 0.2 self.checkpoint_on_training = True self.checkpoint_on_validation = True self.log_summary = True self.log_cleaned_dataset = True self.log_training_data = True self.stats_after_n_batches = 100 self.backup_on_training_loss = []
def __init__(self): '\n ' self.min_question_words = 1 self.max_question_answer_words = 30 self.max_conversations = (- 1) self.conv_history_length = 6 self.normalize_words = True self.input_vocab_threshold = 2 self.output_vocab_threshold = 2 self.input_vocab_import_normalized = True self.output_vocab_import_normalized = True self.input_vocab_import_mode = VocabularyImportMode.External self.output_vocab_import_mode = VocabularyImportMode.Dataset self.validation_set_percent = 0 self.random_train_val_split = True self.validation_metric = 'loss' self.epochs = 500 self.early_stopping_epochs = 500 self.batch_size = 128 self.learning_rate = 2.0 self.learning_rate_decay = 0.99 self.min_learning_rate = 0.1 self.dropout = 0.2 self.checkpoint_on_training = True self.checkpoint_on_validation = True self.log_summary = True self.log_cleaned_dataset = True self.log_training_data = True self.stats_after_n_batches = 100 self.backup_on_training_loss = []<|docstring|>Initializes the TrainingHparams instance.<|endoftext|>
9fe21fb1991bc15e5a062c74b4dee10c538e9cda5085f7031d25070906d5c925
def __init__(self): 'Initializes the InferenceHparams instance.\n ' self.beam_length_penalty_weight = 1.25 self.sampling_temperature = 0.5 self.max_answer_words = 100 self.conv_history_length = 6 self.normalize_words = True self.log_summary = True self.log_chat = True
Initializes the InferenceHparams instance.
seq2seq-chatbot/hparams.py
__init__
JEMurcia/Seq2Seq_CornellMovie
104
python
def __init__(self): '\n ' self.beam_length_penalty_weight = 1.25 self.sampling_temperature = 0.5 self.max_answer_words = 100 self.conv_history_length = 6 self.normalize_words = True self.log_summary = True self.log_chat = True
def __init__(self): '\n ' self.beam_length_penalty_weight = 1.25 self.sampling_temperature = 0.5 self.max_answer_words = 100 self.conv_history_length = 6 self.normalize_words = True self.log_summary = True self.log_chat = True<|docstring|>Initializes the InferenceHparams instance.<|endoftext|>
72b066f2dfb089d7e41c6843faa97c2e1ddb113935fb8e1b65986d9ef1e036c6
def bwareaopen(BW, P): 'Removes all connected components (objects) that have fewer than P pixels from the binary image BW.\n\n Args:\n BW (array): binary image.\n P (int): maximum number of pixels in objects, specified as a nonnegative integer.\n\n Returns:\n [array]: binary image\n ' rows = np.shape(BW)[0] cols = np.shape(BW)[1] tag = 2 for row in range(rows): for col in range(cols): if (BW[(row, col)] == 1): BW = _find_connected_components(BW, row, col, tag) tag = (tag + 1) for component in range(2, tag): pixels = np.count_nonzero((BW == component)) if (pixels < P): BW[(BW == component)] = 0 else: BW[(BW == component)] = 1 return BW
Removes all connected components (objects) that have fewer than P pixels from the binary image BW. Args: BW (array): binary image. P (int): maximum number of pixels in objects, specified as a nonnegative integer. Returns: [array]: binary image
Lab 2/bwareaopen.py
bwareaopen
sotheanith/CECS-553-Collection
0
python
def bwareaopen(BW, P): 'Removes all connected components (objects) that have fewer than P pixels from the binary image BW.\n\n Args:\n BW (array): binary image.\n P (int): maximum number of pixels in objects, specified as a nonnegative integer.\n\n Returns:\n [array]: binary image\n ' rows = np.shape(BW)[0] cols = np.shape(BW)[1] tag = 2 for row in range(rows): for col in range(cols): if (BW[(row, col)] == 1): BW = _find_connected_components(BW, row, col, tag) tag = (tag + 1) for component in range(2, tag): pixels = np.count_nonzero((BW == component)) if (pixels < P): BW[(BW == component)] = 0 else: BW[(BW == component)] = 1 return BW
def bwareaopen(BW, P): 'Removes all connected components (objects) that have fewer than P pixels from the binary image BW.\n\n Args:\n BW (array): binary image.\n P (int): maximum number of pixels in objects, specified as a nonnegative integer.\n\n Returns:\n [array]: binary image\n ' rows = np.shape(BW)[0] cols = np.shape(BW)[1] tag = 2 for row in range(rows): for col in range(cols): if (BW[(row, col)] == 1): BW = _find_connected_components(BW, row, col, tag) tag = (tag + 1) for component in range(2, tag): pixels = np.count_nonzero((BW == component)) if (pixels < P): BW[(BW == component)] = 0 else: BW[(BW == component)] = 1 return BW<|docstring|>Removes all connected components (objects) that have fewer than P pixels from the binary image BW. Args: BW (array): binary image. P (int): maximum number of pixels in objects, specified as a nonnegative integer. Returns: [array]: binary image<|endoftext|>
a2c6588c0fafe4c7250e4ea5ab8995e3e530c63ea4ebb7305208ae8ab27a13f2
def _find_connected_components(BW, initial_row, initial_col, tag): 'Perform non-recursive flooding algorithm to find all pixels connected to a component.\n\n Args:\n BW (array): binary image.\n initial_row (int): starting row index.\n initial_col (int): starting column index.\n tag (int): tag used to identify this connected component. \n\n Returns:\n [array]: binary image with tagged area of this connected component \n ' unvisted_pixels = set() unvisted_pixels.add((initial_row, initial_col)) while (len(unvisted_pixels) > 0): (row, col) = unvisted_pixels.pop() BW[(row, col)] = tag if ((row > 0) and (col > 0) and (BW[((row - 1), (col - 1))] == 1)): unvisted_pixels.add(((row - 1), (col - 1))) if ((row > 0) and (BW[((row - 1), col)] == 1)): unvisted_pixels.add(((row - 1), col)) if ((row > 0) and (col < (np.shape(BW)[1] - 1)) and (BW[((row - 1), (col + 1))] == 1)): unvisted_pixels.add(((row - 1), (col + 1))) if ((col > 0) and (BW[(row, (col - 1))] == 1)): unvisted_pixels.add((row, (col - 1))) if ((col < (np.shape(BW)[1] - 1)) and (BW[(row, (col + 1))] == 1)): unvisted_pixels.add((row, (col + 1))) if ((row < (np.shape(BW)[0] - 1)) and (col > 0) and (BW[((row + 1), (col - 1))] == 1)): unvisted_pixels.add(((row + 1), (col - 1))) if ((row < (np.shape(BW)[0] - 1)) and (BW[((row + 1), col)] == 1)): unvisted_pixels.add(((row + 1), col)) if ((row < (np.shape(BW)[0] - 1)) and (col < (np.shape(BW)[1] - 1)) and (BW[((row + 1), (col + 1))] == 1)): unvisted_pixels.add(((row + 1), (col + 1))) return BW
Perform non-recursive flooding algorithm to find all pixels connected to a component. Args: BW (array): binary image. initial_row (int): starting row index. initial_col (int): starting column index. tag (int): tag used to identify this connected component. Returns: [array]: binary image with tagged area of this connected component
Lab 2/bwareaopen.py
_find_connected_components
sotheanith/CECS-553-Collection
0
python
def _find_connected_components(BW, initial_row, initial_col, tag): 'Perform non-recursive flooding algorithm to find all pixels connected to a component.\n\n Args:\n BW (array): binary image.\n initial_row (int): starting row index.\n initial_col (int): starting column index.\n tag (int): tag used to identify this connected component. \n\n Returns:\n [array]: binary image with tagged area of this connected component \n ' unvisted_pixels = set() unvisted_pixels.add((initial_row, initial_col)) while (len(unvisted_pixels) > 0): (row, col) = unvisted_pixels.pop() BW[(row, col)] = tag if ((row > 0) and (col > 0) and (BW[((row - 1), (col - 1))] == 1)): unvisted_pixels.add(((row - 1), (col - 1))) if ((row > 0) and (BW[((row - 1), col)] == 1)): unvisted_pixels.add(((row - 1), col)) if ((row > 0) and (col < (np.shape(BW)[1] - 1)) and (BW[((row - 1), (col + 1))] == 1)): unvisted_pixels.add(((row - 1), (col + 1))) if ((col > 0) and (BW[(row, (col - 1))] == 1)): unvisted_pixels.add((row, (col - 1))) if ((col < (np.shape(BW)[1] - 1)) and (BW[(row, (col + 1))] == 1)): unvisted_pixels.add((row, (col + 1))) if ((row < (np.shape(BW)[0] - 1)) and (col > 0) and (BW[((row + 1), (col - 1))] == 1)): unvisted_pixels.add(((row + 1), (col - 1))) if ((row < (np.shape(BW)[0] - 1)) and (BW[((row + 1), col)] == 1)): unvisted_pixels.add(((row + 1), col)) if ((row < (np.shape(BW)[0] - 1)) and (col < (np.shape(BW)[1] - 1)) and (BW[((row + 1), (col + 1))] == 1)): unvisted_pixels.add(((row + 1), (col + 1))) return BW
def _find_connected_components(BW, initial_row, initial_col, tag): 'Perform non-recursive flooding algorithm to find all pixels connected to a component.\n\n Args:\n BW (array): binary image.\n initial_row (int): starting row index.\n initial_col (int): starting column index.\n tag (int): tag used to identify this connected component. \n\n Returns:\n [array]: binary image with tagged area of this connected component \n ' unvisted_pixels = set() unvisted_pixels.add((initial_row, initial_col)) while (len(unvisted_pixels) > 0): (row, col) = unvisted_pixels.pop() BW[(row, col)] = tag if ((row > 0) and (col > 0) and (BW[((row - 1), (col - 1))] == 1)): unvisted_pixels.add(((row - 1), (col - 1))) if ((row > 0) and (BW[((row - 1), col)] == 1)): unvisted_pixels.add(((row - 1), col)) if ((row > 0) and (col < (np.shape(BW)[1] - 1)) and (BW[((row - 1), (col + 1))] == 1)): unvisted_pixels.add(((row - 1), (col + 1))) if ((col > 0) and (BW[(row, (col - 1))] == 1)): unvisted_pixels.add((row, (col - 1))) if ((col < (np.shape(BW)[1] - 1)) and (BW[(row, (col + 1))] == 1)): unvisted_pixels.add((row, (col + 1))) if ((row < (np.shape(BW)[0] - 1)) and (col > 0) and (BW[((row + 1), (col - 1))] == 1)): unvisted_pixels.add(((row + 1), (col - 1))) if ((row < (np.shape(BW)[0] - 1)) and (BW[((row + 1), col)] == 1)): unvisted_pixels.add(((row + 1), col)) if ((row < (np.shape(BW)[0] - 1)) and (col < (np.shape(BW)[1] - 1)) and (BW[((row + 1), (col + 1))] == 1)): unvisted_pixels.add(((row + 1), (col + 1))) return BW<|docstring|>Perform non-recursive flooding algorithm to find all pixels connected to a component. Args: BW (array): binary image. initial_row (int): starting row index. initial_col (int): starting column index. tag (int): tag used to identify this connected component. Returns: [array]: binary image with tagged area of this connected component<|endoftext|>
7b2393cc957622a4ef506efc8007de7b7cde642603a61148e713b2bc9d97b6d3
def __init__(self): 'Noise, system setting and x0 settings' super(Test_ss_linear1, self).__init__(nx=2)
Noise, system setting and x0 settings
deepSI/systems/test_systems.py
__init__
GerbenBeintema/deepSI
12
python
def __init__(self): super(Test_ss_linear1, self).__init__(nx=2)
def __init__(self): super(Test_ss_linear1, self).__init__(nx=2)<|docstring|>Noise, system setting and x0 settings<|endoftext|>
32189627b8628fad282fdc61ccccb8f1818804c3d6a1c66a26f4f43435eb198e
def __init__(self): 'Noise, system setting and x0 settings' super(Test_ss_linear2, self).__init__(nx=2)
Noise, system setting and x0 settings
deepSI/systems/test_systems.py
__init__
GerbenBeintema/deepSI
12
python
def __init__(self): super(Test_ss_linear2, self).__init__(nx=2)
def __init__(self): super(Test_ss_linear2, self).__init__(nx=2)<|docstring|>Noise, system setting and x0 settings<|endoftext|>
4cdcef4640b345f47fc622211982136610cdbc27ece098169408fa565996d222
def __init__(self, instance_id=None, product_id=None, gateway_id=None, is_cascade_query=None, node_id=None, device_name=None, limit=None, marker=None, offset=None, start_time=None, end_time=None, app_id=None): 'ListDevicesRequest - a model defined in huaweicloud sdk' self._instance_id = None self._product_id = None self._gateway_id = None self._is_cascade_query = None self._node_id = None self._device_name = None self._limit = None self._marker = None self._offset = None self._start_time = None self._end_time = None self._app_id = None self.discriminator = None if (instance_id is not None): self.instance_id = instance_id if (product_id is not None): self.product_id = product_id if (gateway_id is not None): self.gateway_id = gateway_id if (is_cascade_query is not None): self.is_cascade_query = is_cascade_query if (node_id is not None): self.node_id = node_id if (device_name is not None): self.device_name = device_name if (limit is not None): self.limit = limit if (marker is not None): self.marker = marker if (offset is not None): self.offset = offset if (start_time is not None): self.start_time = start_time if (end_time is not None): self.end_time = end_time if (app_id is not None): self.app_id = app_id
ListDevicesRequest - a model defined in huaweicloud sdk
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
__init__
huaweicloud/huaweicloud-sdk-python-v3
64
python
def __init__(self, instance_id=None, product_id=None, gateway_id=None, is_cascade_query=None, node_id=None, device_name=None, limit=None, marker=None, offset=None, start_time=None, end_time=None, app_id=None): self._instance_id = None self._product_id = None self._gateway_id = None self._is_cascade_query = None self._node_id = None self._device_name = None self._limit = None self._marker = None self._offset = None self._start_time = None self._end_time = None self._app_id = None self.discriminator = None if (instance_id is not None): self.instance_id = instance_id if (product_id is not None): self.product_id = product_id if (gateway_id is not None): self.gateway_id = gateway_id if (is_cascade_query is not None): self.is_cascade_query = is_cascade_query if (node_id is not None): self.node_id = node_id if (device_name is not None): self.device_name = device_name if (limit is not None): self.limit = limit if (marker is not None): self.marker = marker if (offset is not None): self.offset = offset if (start_time is not None): self.start_time = start_time if (end_time is not None): self.end_time = end_time if (app_id is not None): self.app_id = app_id
def __init__(self, instance_id=None, product_id=None, gateway_id=None, is_cascade_query=None, node_id=None, device_name=None, limit=None, marker=None, offset=None, start_time=None, end_time=None, app_id=None): self._instance_id = None self._product_id = None self._gateway_id = None self._is_cascade_query = None self._node_id = None self._device_name = None self._limit = None self._marker = None self._offset = None self._start_time = None self._end_time = None self._app_id = None self.discriminator = None if (instance_id is not None): self.instance_id = instance_id if (product_id is not None): self.product_id = product_id if (gateway_id is not None): self.gateway_id = gateway_id if (is_cascade_query is not None): self.is_cascade_query = is_cascade_query if (node_id is not None): self.node_id = node_id if (device_name is not None): self.device_name = device_name if (limit is not None): self.limit = limit if (marker is not None): self.marker = marker if (offset is not None): self.offset = offset if (start_time is not None): self.start_time = start_time if (end_time is not None): self.end_time = end_time if (app_id is not None): self.app_id = app_id<|docstring|>ListDevicesRequest - a model defined in huaweicloud sdk<|endoftext|>
91dccf761f946b2511778387ff2129d59c76c64cb60db5270ed2c7c69d750a28
@property def instance_id(self): 'Gets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :return: The instance_id of this ListDevicesRequest.\n :rtype: str\n ' return self._instance_id
Gets the instance_id of this ListDevicesRequest. **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。 :return: The instance_id of this ListDevicesRequest. :rtype: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
instance_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def instance_id(self): 'Gets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :return: The instance_id of this ListDevicesRequest.\n :rtype: str\n ' return self._instance_id
@property def instance_id(self): 'Gets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :return: The instance_id of this ListDevicesRequest.\n :rtype: str\n ' return self._instance_id<|docstring|>Gets the instance_id of this ListDevicesRequest. **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。 :return: The instance_id of this ListDevicesRequest. :rtype: str<|endoftext|>
105b7a955a41d3905be2129041c895468910ebcf6987cac39f6450701a7b3feb
@instance_id.setter def instance_id(self, instance_id): 'Sets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :param instance_id: The instance_id of this ListDevicesRequest.\n :type: str\n ' self._instance_id = instance_id
Sets the instance_id of this ListDevicesRequest. **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。 :param instance_id: The instance_id of this ListDevicesRequest. :type: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
instance_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@instance_id.setter def instance_id(self, instance_id): 'Sets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :param instance_id: The instance_id of this ListDevicesRequest.\n :type: str\n ' self._instance_id = instance_id
@instance_id.setter def instance_id(self, instance_id): 'Sets the instance_id of this ListDevicesRequest.\n\n **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。\n\n :param instance_id: The instance_id of this ListDevicesRequest.\n :type: str\n ' self._instance_id = instance_id<|docstring|>Sets the instance_id of this ListDevicesRequest. **参数说明**:实例ID。物理多租下各实例的唯一标识,一般华为云租户无需携带该参数,仅在物理多租场景下从管理面访问API时需要携带该参数。 :param instance_id: The instance_id of this ListDevicesRequest. :type: str<|endoftext|>
647f1f489d645d33e27a3da0ed090183c2c668ec211168966f59791607a700bc
@property def product_id(self): 'Gets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The product_id of this ListDevicesRequest.\n :rtype: str\n ' return self._product_id
Gets the product_id of this ListDevicesRequest. **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The product_id of this ListDevicesRequest. :rtype: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
product_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def product_id(self): 'Gets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The product_id of this ListDevicesRequest.\n :rtype: str\n ' return self._product_id
@property def product_id(self): 'Gets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The product_id of this ListDevicesRequest.\n :rtype: str\n ' return self._product_id<|docstring|>Gets the product_id of this ListDevicesRequest. **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The product_id of this ListDevicesRequest. :rtype: str<|endoftext|>
44982e7f9e9ca470b7cd308a6345e275067a7f00bb7bdcb10f68d1e0c1b5c92b
@product_id.setter def product_id(self, product_id): 'Sets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param product_id: The product_id of this ListDevicesRequest.\n :type: str\n ' self._product_id = product_id
Sets the product_id of this ListDevicesRequest. **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param product_id: The product_id of this ListDevicesRequest. :type: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
product_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@product_id.setter def product_id(self, product_id): 'Sets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param product_id: The product_id of this ListDevicesRequest.\n :type: str\n ' self._product_id = product_id
@product_id.setter def product_id(self, product_id): 'Sets the product_id of this ListDevicesRequest.\n\n **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param product_id: The product_id of this ListDevicesRequest.\n :type: str\n ' self._product_id = product_id<|docstring|>Sets the product_id of this ListDevicesRequest. **参数说明**:设备关联的产品ID,用于唯一标识一个产品模型,创建产品后获得。方法请参见 [创建产品](https://support.huaweicloud.com/api-iothub/iot_06_v5_0050.html)。 **取值范围**:长度不超过36,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param product_id: The product_id of this ListDevicesRequest. :type: str<|endoftext|>
1e76668d1e0c9ddf39776874ed2cc54e8f5b09d53dfab4a82f2e7061e8274e9b
@property def gateway_id(self): 'Gets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The gateway_id of this ListDevicesRequest.\n :rtype: str\n ' return self._gateway_id
Gets the gateway_id of this ListDevicesRequest. **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The gateway_id of this ListDevicesRequest. :rtype: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
gateway_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def gateway_id(self): 'Gets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The gateway_id of this ListDevicesRequest.\n :rtype: str\n ' return self._gateway_id
@property def gateway_id(self): 'Gets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The gateway_id of this ListDevicesRequest.\n :rtype: str\n ' return self._gateway_id<|docstring|>Gets the gateway_id of this ListDevicesRequest. **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The gateway_id of this ListDevicesRequest. :rtype: str<|endoftext|>
f915e6577d960ded234e1cd9e20a9339c9d9ec05a34c73a7365af3d9939860ea
@gateway_id.setter def gateway_id(self, gateway_id): 'Sets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param gateway_id: The gateway_id of this ListDevicesRequest.\n :type: str\n ' self._gateway_id = gateway_id
Sets the gateway_id of this ListDevicesRequest. **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param gateway_id: The gateway_id of this ListDevicesRequest. :type: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
gateway_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@gateway_id.setter def gateway_id(self, gateway_id): 'Sets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param gateway_id: The gateway_id of this ListDevicesRequest.\n :type: str\n ' self._gateway_id = gateway_id
@gateway_id.setter def gateway_id(self, gateway_id): 'Sets the gateway_id of this ListDevicesRequest.\n\n **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param gateway_id: The gateway_id of this ListDevicesRequest.\n :type: str\n ' self._gateway_id = gateway_id<|docstring|>Sets the gateway_id of this ListDevicesRequest. **参数说明**:网关ID,用于标识设备所属的父设备,即父设备的设备ID。携带该参数时,表示查询该设备下的子设备,默认查询下一级子设备,如果需要查询该设备下所有各级子设备,请同时携带is_cascade_query参数为true;不携带该参数时,表示查询用户下所有设备。 **取值范围**:长度不超过128,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param gateway_id: The gateway_id of this ListDevicesRequest. :type: str<|endoftext|>
1f63aa3959a8ec1b94310e5ceed0159c51a16d4c6faa4e8ee582e43dcf140a32
@property def is_cascade_query(self): 'Gets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :return: The is_cascade_query of this ListDevicesRequest.\n :rtype: bool\n ' return self._is_cascade_query
Gets the is_cascade_query of this ListDevicesRequest. **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。 :return: The is_cascade_query of this ListDevicesRequest. :rtype: bool
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
is_cascade_query
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def is_cascade_query(self): 'Gets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :return: The is_cascade_query of this ListDevicesRequest.\n :rtype: bool\n ' return self._is_cascade_query
@property def is_cascade_query(self): 'Gets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :return: The is_cascade_query of this ListDevicesRequest.\n :rtype: bool\n ' return self._is_cascade_query<|docstring|>Gets the is_cascade_query of this ListDevicesRequest. **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。 :return: The is_cascade_query of this ListDevicesRequest. :rtype: bool<|endoftext|>
5545987e55023ce2a7349a72ac5d5f3dfd2e1543b6cf61a1df6b0679a6c289d2
@is_cascade_query.setter def is_cascade_query(self, is_cascade_query): 'Sets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :param is_cascade_query: The is_cascade_query of this ListDevicesRequest.\n :type: bool\n ' self._is_cascade_query = is_cascade_query
Sets the is_cascade_query of this ListDevicesRequest. **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。 :param is_cascade_query: The is_cascade_query of this ListDevicesRequest. :type: bool
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
is_cascade_query
huaweicloud/huaweicloud-sdk-python-v3
64
python
@is_cascade_query.setter def is_cascade_query(self, is_cascade_query): 'Sets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :param is_cascade_query: The is_cascade_query of this ListDevicesRequest.\n :type: bool\n ' self._is_cascade_query = is_cascade_query
@is_cascade_query.setter def is_cascade_query(self, is_cascade_query): 'Sets the is_cascade_query of this ListDevicesRequest.\n\n **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。\n\n :param is_cascade_query: The is_cascade_query of this ListDevicesRequest.\n :type: bool\n ' self._is_cascade_query = is_cascade_query<|docstring|>Sets the is_cascade_query of this ListDevicesRequest. **参数说明**:是否级联查询,该参数仅在同时携带gateway_id时生效。默认值为false。 **取值范围**: - true:表示查询设备ID等于gateway_id参数的设备下的所有各级子设备。 - false:表示查询设备ID等于gateway_id参数的设备下的一级子设备。 :param is_cascade_query: The is_cascade_query of this ListDevicesRequest. :type: bool<|endoftext|>
6c9829bc2bef194eb562be0fbf2b2a0bd2db76ea2fc03e5ffaa6a9dfbf228543
@property def node_id(self): 'Gets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The node_id of this ListDevicesRequest.\n :rtype: str\n ' return self._node_id
Gets the node_id of this ListDevicesRequest. **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The node_id of this ListDevicesRequest. :rtype: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
node_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def node_id(self): 'Gets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The node_id of this ListDevicesRequest.\n :rtype: str\n ' return self._node_id
@property def node_id(self): 'Gets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :return: The node_id of this ListDevicesRequest.\n :rtype: str\n ' return self._node_id<|docstring|>Gets the node_id of this ListDevicesRequest. **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The node_id of this ListDevicesRequest. :rtype: str<|endoftext|>
899660a3dff0c7e4345a8b86ab236c1caabebc032907c1040556a50248f5708b
@node_id.setter def node_id(self, node_id): 'Sets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param node_id: The node_id of this ListDevicesRequest.\n :type: str\n ' self._node_id = node_id
Sets the node_id of this ListDevicesRequest. **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param node_id: The node_id of this ListDevicesRequest. :type: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
node_id
huaweicloud/huaweicloud-sdk-python-v3
64
python
@node_id.setter def node_id(self, node_id): 'Sets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param node_id: The node_id of this ListDevicesRequest.\n :type: str\n ' self._node_id = node_id
@node_id.setter def node_id(self, node_id): 'Sets the node_id of this ListDevicesRequest.\n\n **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。\n\n :param node_id: The node_id of this ListDevicesRequest.\n :type: str\n ' self._node_id = node_id<|docstring|>Sets the node_id of this ListDevicesRequest. **参数说明**:设备标识码,通常使用IMEI、MAC地址或Serial No作为node_id。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param node_id: The node_id of this ListDevicesRequest. :type: str<|endoftext|>
99577d49e9d669f847f0f9ca781be5adff725dbd8537c216f027b2298603cc3a
@property def device_name(self): "Gets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :return: The device_name of this ListDevicesRequest.\n :rtype: str\n " return self._device_name
Gets the device_name of this ListDevicesRequest. **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。 :return: The device_name of this ListDevicesRequest. :rtype: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
device_name
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def device_name(self): "Gets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :return: The device_name of this ListDevicesRequest.\n :rtype: str\n " return self._device_name
@property def device_name(self): "Gets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :return: The device_name of this ListDevicesRequest.\n :rtype: str\n " return self._device_name<|docstring|>Gets the device_name of this ListDevicesRequest. **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。 :return: The device_name of this ListDevicesRequest. :rtype: str<|endoftext|>
e9706bd9f51fdd5e566babd6c4cd8ab28de2e58f6fd1493fb143bba60c9028d7
@device_name.setter def device_name(self, device_name): "Sets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :param device_name: The device_name of this ListDevicesRequest.\n :type: str\n " self._device_name = device_name
Sets the device_name of this ListDevicesRequest. **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。 :param device_name: The device_name of this ListDevicesRequest. :type: str
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
device_name
huaweicloud/huaweicloud-sdk-python-v3
64
python
@device_name.setter def device_name(self, device_name): "Sets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :param device_name: The device_name of this ListDevicesRequest.\n :type: str\n " self._device_name = device_name
@device_name.setter def device_name(self, device_name): "Sets the device_name of this ListDevicesRequest.\n\n **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。\n\n :param device_name: The device_name of this ListDevicesRequest.\n :type: str\n " self._device_name = device_name<|docstring|>Sets the device_name of this ListDevicesRequest. **参数说明**:设备名称。 **取值范围**:长度不超过256,只允许中文、字母、数字、以及_?'#().,&%@!-等字符的组合。 :param device_name: The device_name of this ListDevicesRequest. :type: str<|endoftext|>
e4cc8f6597511dbbd13d7b1e3e7fea76608eb8ea8035a9e26108b9ef22919552
@property def limit(self): 'Gets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :return: The limit of this ListDevicesRequest.\n :rtype: int\n ' return self._limit
Gets the limit of this ListDevicesRequest. **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。 :return: The limit of this ListDevicesRequest. :rtype: int
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
limit
huaweicloud/huaweicloud-sdk-python-v3
64
python
@property def limit(self): 'Gets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :return: The limit of this ListDevicesRequest.\n :rtype: int\n ' return self._limit
@property def limit(self): 'Gets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :return: The limit of this ListDevicesRequest.\n :rtype: int\n ' return self._limit<|docstring|>Gets the limit of this ListDevicesRequest. **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。 :return: The limit of this ListDevicesRequest. :rtype: int<|endoftext|>
10dc1e7ad1802b36f18dc35f814c80e63827262fa67d7c2c4f6be3f5fe6b9fa6
@limit.setter def limit(self, limit): 'Sets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :param limit: The limit of this ListDevicesRequest.\n :type: int\n ' self._limit = limit
Sets the limit of this ListDevicesRequest. **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。 :param limit: The limit of this ListDevicesRequest. :type: int
huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/list_devices_request.py
limit
huaweicloud/huaweicloud-sdk-python-v3
64
python
@limit.setter def limit(self, limit): 'Sets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :param limit: The limit of this ListDevicesRequest.\n :type: int\n ' self._limit = limit
@limit.setter def limit(self, limit): 'Sets the limit of this ListDevicesRequest.\n\n **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。\n\n :param limit: The limit of this ListDevicesRequest.\n :type: int\n ' self._limit = limit<|docstring|>Sets the limit of this ListDevicesRequest. **参数说明**:分页查询时每页显示的记录数。 **取值范围**:1-50的整数,默认值为10。 :param limit: The limit of this ListDevicesRequest. :type: int<|endoftext|>