body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
511b263c38267cb5b5a8f1381182d27f072cc725b8b7dcb05fc3cb82e59fadef
@torch.no_grad() def generate(self, models, sample: Dict[(str, Dict[(str, Tensor)])], **kwargs): 'Generate translations. Match the api of other fairseq generators.\n\n Args:\n models (List[~fairseq.models.FairseqModel]): ensemble of models\n sample (dict): batch\n prefix_tokens (torch.LongTensor, optional): force decoder to begin\n with these tokens\n bos_token (int, optional): beginning of sentence token\n (default: self.eos)\n ' self.model.reset_incremental_state() if (self.desired_length > (- 1)): sample['net_input']['tgt_lengths'].fill_((self.desired_length + 1)) return self._generate(sample, **kwargs)
Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos)
fairseq/sequence_generator.py
generate
takase/alone_seq2seq
25
python
@torch.no_grad() def generate(self, models, sample: Dict[(str, Dict[(str, Tensor)])], **kwargs): 'Generate translations. Match the api of other fairseq generators.\n\n Args:\n models (List[~fairseq.models.FairseqModel]): ensemble of models\n sample (dict): batch\n prefix_tokens (torch.LongTensor, optional): force decoder to begin\n with these tokens\n bos_token (int, optional): beginning of sentence token\n (default: self.eos)\n ' self.model.reset_incremental_state() if (self.desired_length > (- 1)): sample['net_input']['tgt_lengths'].fill_((self.desired_length + 1)) return self._generate(sample, **kwargs)
@torch.no_grad() def generate(self, models, sample: Dict[(str, Dict[(str, Tensor)])], **kwargs): 'Generate translations. Match the api of other fairseq generators.\n\n Args:\n models (List[~fairseq.models.FairseqModel]): ensemble of models\n sample (dict): batch\n prefix_tokens (torch.LongTensor, optional): force decoder to begin\n with these tokens\n bos_token (int, optional): beginning of sentence token\n (default: self.eos)\n ' self.model.reset_incremental_state() if (self.desired_length > (- 1)): sample['net_input']['tgt_lengths'].fill_((self.desired_length + 1)) return self._generate(sample, **kwargs)<|docstring|>Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos)<|endoftext|>
59fab48172619be361ddf7056d091bf4808cc344ba3d0da345555824f19b022a
def _prefix_tokens(self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int): 'Handle prefix tokens' prefix_toks = prefix_tokens[(:, step)].unsqueeze((- 1)).repeat(1, beam_size).view((- 1)) prefix_lprobs = lprobs.gather((- 1), prefix_toks.unsqueeze((- 1))) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor((- math.inf)).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter_((- 1), prefix_toks[prefix_mask].unsqueeze((- 1)), prefix_lprobs[prefix_mask]) eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): first_beam = tokens[eos_mask].view((- 1), beam_size, tokens.size((- 1)))[(:, 0, 1:(step + 1))] eos_mask_batch_dim = eos_mask.view((- 1), beam_size)[(:, 0)] target_prefix = prefix_tokens[eos_mask_batch_dim][(:, :step)] assert (first_beam == target_prefix).all() tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return (lprobs, tokens, scores)
Handle prefix tokens
fairseq/sequence_generator.py
_prefix_tokens
takase/alone_seq2seq
25
python
def _prefix_tokens(self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int): prefix_toks = prefix_tokens[(:, step)].unsqueeze((- 1)).repeat(1, beam_size).view((- 1)) prefix_lprobs = lprobs.gather((- 1), prefix_toks.unsqueeze((- 1))) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor((- math.inf)).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter_((- 1), prefix_toks[prefix_mask].unsqueeze((- 1)), prefix_lprobs[prefix_mask]) eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): first_beam = tokens[eos_mask].view((- 1), beam_size, tokens.size((- 1)))[(:, 0, 1:(step + 1))] eos_mask_batch_dim = eos_mask.view((- 1), beam_size)[(:, 0)] target_prefix = prefix_tokens[eos_mask_batch_dim][(:, :step)] assert (first_beam == target_prefix).all() tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return (lprobs, tokens, scores)
def _prefix_tokens(self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int): prefix_toks = prefix_tokens[(:, step)].unsqueeze((- 1)).repeat(1, beam_size).view((- 1)) prefix_lprobs = lprobs.gather((- 1), prefix_toks.unsqueeze((- 1))) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor((- math.inf)).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter_((- 1), prefix_toks[prefix_mask].unsqueeze((- 1)), prefix_lprobs[prefix_mask]) eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): first_beam = tokens[eos_mask].view((- 1), beam_size, tokens.size((- 1)))[(:, 0, 1:(step + 1))] eos_mask_batch_dim = eos_mask.view((- 1), beam_size)[(:, 0)] target_prefix = prefix_tokens[eos_mask_batch_dim][(:, :step)] assert (first_beam == target_prefix).all() tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return (lprobs, tokens, scores)<|docstring|>Handle prefix tokens<|endoftext|>
8362761413b42c787780776a6ada581e34cb50047b70753933a5fec138caab45
def finalize_hypos(self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[(str, Tensor)]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int): 'Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.\n Returns number of sentences being finalized.\n Args:\n bbsz_idx (Tensor):\n ' assert (bbsz_idx.numel() == eos_scores.numel()) tokens_clone = tokens.index_select(0, bbsz_idx)[(:, 1:(step + 2))] tokens_clone[(:, step)] = self.eos attn_clone = (attn.index_select(0, bbsz_idx)[(:, :, 1:(step + 2))] if (attn is not None) else None) pos_scores = scores.index_select(0, bbsz_idx)[(:, :(step + 1))] pos_scores[(:, step)] = eos_scores pos_scores[(:, 1:)] = (pos_scores[(:, 1:)] - pos_scores[(:, :(- 1))]) if self.normalize_scores: eos_scores /= ((step + 1) ** self.len_penalty) cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen: Dict[(str, Optional[Tensor])] = {} for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] unfin_idx = (idx // beam_size) sent = (unfin_idx + cum_unfin[unfin_idx]) seen = ((str(sent.item()) + '_') + str(unfin_idx.item())) if (seen not in sents_seen): sents_seen[seen] = None if (self.match_source_len and (step > src_lengths[unfin_idx])): score = torch.tensor((- math.inf)).to(score) if (len(finalized[sent]) < beam_size): if (attn_clone is not None): hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append({'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, 'alignment': torch.empty(0), 'positional_scores': pos_scores[i]}) newly_finished: List[int] = [] for seen in sents_seen.keys(): sent: int = int(float(seen.split('_')[0])) unfin_idx: int = int(float(seen.split('_')[1])) if ((not finished[sent]) and self.is_finished(step, unfin_idx, max_len, len(finalized[sent]), beam_size)): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished
Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. Returns number of sentences being finalized. Args: bbsz_idx (Tensor):
fairseq/sequence_generator.py
finalize_hypos
takase/alone_seq2seq
25
python
def finalize_hypos(self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[(str, Tensor)]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int): 'Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.\n Returns number of sentences being finalized.\n Args:\n bbsz_idx (Tensor):\n ' assert (bbsz_idx.numel() == eos_scores.numel()) tokens_clone = tokens.index_select(0, bbsz_idx)[(:, 1:(step + 2))] tokens_clone[(:, step)] = self.eos attn_clone = (attn.index_select(0, bbsz_idx)[(:, :, 1:(step + 2))] if (attn is not None) else None) pos_scores = scores.index_select(0, bbsz_idx)[(:, :(step + 1))] pos_scores[(:, step)] = eos_scores pos_scores[(:, 1:)] = (pos_scores[(:, 1:)] - pos_scores[(:, :(- 1))]) if self.normalize_scores: eos_scores /= ((step + 1) ** self.len_penalty) cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen: Dict[(str, Optional[Tensor])] = {} for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] unfin_idx = (idx // beam_size) sent = (unfin_idx + cum_unfin[unfin_idx]) seen = ((str(sent.item()) + '_') + str(unfin_idx.item())) if (seen not in sents_seen): sents_seen[seen] = None if (self.match_source_len and (step > src_lengths[unfin_idx])): score = torch.tensor((- math.inf)).to(score) if (len(finalized[sent]) < beam_size): if (attn_clone is not None): hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append({'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, 'alignment': torch.empty(0), 'positional_scores': pos_scores[i]}) newly_finished: List[int] = [] for seen in sents_seen.keys(): sent: int = int(float(seen.split('_')[0])) unfin_idx: int = int(float(seen.split('_')[1])) if ((not finished[sent]) and self.is_finished(step, unfin_idx, max_len, len(finalized[sent]), beam_size)): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished
def finalize_hypos(self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[(str, Tensor)]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int): 'Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.\n Returns number of sentences being finalized.\n Args:\n bbsz_idx (Tensor):\n ' assert (bbsz_idx.numel() == eos_scores.numel()) tokens_clone = tokens.index_select(0, bbsz_idx)[(:, 1:(step + 2))] tokens_clone[(:, step)] = self.eos attn_clone = (attn.index_select(0, bbsz_idx)[(:, :, 1:(step + 2))] if (attn is not None) else None) pos_scores = scores.index_select(0, bbsz_idx)[(:, :(step + 1))] pos_scores[(:, step)] = eos_scores pos_scores[(:, 1:)] = (pos_scores[(:, 1:)] - pos_scores[(:, :(- 1))]) if self.normalize_scores: eos_scores /= ((step + 1) ** self.len_penalty) cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen: Dict[(str, Optional[Tensor])] = {} for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] unfin_idx = (idx // beam_size) sent = (unfin_idx + cum_unfin[unfin_idx]) seen = ((str(sent.item()) + '_') + str(unfin_idx.item())) if (seen not in sents_seen): sents_seen[seen] = None if (self.match_source_len and (step > src_lengths[unfin_idx])): score = torch.tensor((- math.inf)).to(score) if (len(finalized[sent]) < beam_size): if (attn_clone is not None): hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append({'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, 'alignment': torch.empty(0), 'positional_scores': pos_scores[i]}) newly_finished: List[int] = [] for seen in sents_seen.keys(): sent: int = int(float(seen.split('_')[0])) unfin_idx: int = int(float(seen.split('_')[1])) if ((not finished[sent]) and self.is_finished(step, unfin_idx, max_len, len(finalized[sent]), beam_size)): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished<|docstring|>Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. Returns number of sentences being finalized. Args: bbsz_idx (Tensor):<|endoftext|>
f079ada210ccd10275390f9f8c0d7e0eef234b6700552d6bf9a6310c4f170cce
def is_finished(self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int): "\n Check whether we've finished generation for a given sentence, by\n comparing the worst score among finalized hypotheses to the best\n possible score among unfinalized hypotheses.\n " assert (finalized_sent_len <= beam_size) if ((finalized_sent_len == beam_size) or (step == max_len)): return True return False
Check whether we've finished generation for a given sentence, by comparing the worst score among finalized hypotheses to the best possible score among unfinalized hypotheses.
fairseq/sequence_generator.py
is_finished
takase/alone_seq2seq
25
python
def is_finished(self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int): "\n Check whether we've finished generation for a given sentence, by\n comparing the worst score among finalized hypotheses to the best\n possible score among unfinalized hypotheses.\n " assert (finalized_sent_len <= beam_size) if ((finalized_sent_len == beam_size) or (step == max_len)): return True return False
def is_finished(self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int): "\n Check whether we've finished generation for a given sentence, by\n comparing the worst score among finalized hypotheses to the best\n possible score among unfinalized hypotheses.\n " assert (finalized_sent_len <= beam_size) if ((finalized_sent_len == beam_size) or (step == max_len)): return True return False<|docstring|>Check whether we've finished generation for a given sentence, by comparing the worst score among finalized hypotheses to the best possible score among unfinalized hypotheses.<|endoftext|>
19593fac5eb852c1c381778a4bb31ae8963a8a31bca00a0e126a3c87bc60981a
@torch.jit.export def reorder_encoder_out(self, encoder_outs: Optional[List[EncoderOut]], new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' new_outs: List[EncoderOut] = [] if (not self.has_encoder()): return new_outs for (i, model) in enumerate(self.models): assert (encoder_outs is not None) new_outs.append(model.encoder.reorder_encoder_out(encoder_outs[i], new_order)) return new_outs
Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order*
fairseq/sequence_generator.py
reorder_encoder_out
takase/alone_seq2seq
25
python
@torch.jit.export def reorder_encoder_out(self, encoder_outs: Optional[List[EncoderOut]], new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' new_outs: List[EncoderOut] = [] if (not self.has_encoder()): return new_outs for (i, model) in enumerate(self.models): assert (encoder_outs is not None) new_outs.append(model.encoder.reorder_encoder_out(encoder_outs[i], new_order)) return new_outs
@torch.jit.export def reorder_encoder_out(self, encoder_outs: Optional[List[EncoderOut]], new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' new_outs: List[EncoderOut] = [] if (not self.has_encoder()): return new_outs for (i, model) in enumerate(self.models): assert (encoder_outs is not None) new_outs.append(model.encoder.reorder_encoder_out(encoder_outs[i], new_order)) return new_outs<|docstring|>Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order*<|endoftext|>
0382e91fdf459e3d850a5ef1d7dbd6829769114e1c82a8ccfbdfa30af1bccd39
def __init__(self, models, tgt_dict, left_pad_target=False, **kwargs): 'Generates translations of a given source sentence.\n\n Produces alignments following "Jointly Learning to Align and\n Translate with Transformer Models" (Garg et al., EMNLP 2019).\n\n Args:\n left_pad_target (bool, optional): Whether or not the\n hypothesis should be left padded or not when they are\n teacher forced for generating alignments.\n ' super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target
Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments.
fairseq/sequence_generator.py
__init__
takase/alone_seq2seq
25
python
def __init__(self, models, tgt_dict, left_pad_target=False, **kwargs): 'Generates translations of a given source sentence.\n\n Produces alignments following "Jointly Learning to Align and\n Translate with Transformer Models" (Garg et al., EMNLP 2019).\n\n Args:\n left_pad_target (bool, optional): Whether or not the\n hypothesis should be left padded or not when they are\n teacher forced for generating alignments.\n ' super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target
def __init__(self, models, tgt_dict, left_pad_target=False, **kwargs): 'Generates translations of a given source sentence.\n\n Produces alignments following "Jointly Learning to Align and\n Translate with Transformer Models" (Garg et al., EMNLP 2019).\n\n Args:\n left_pad_target (bool, optional): Whether or not the\n hypothesis should be left padded or not when they are\n teacher forced for generating alignments.\n ' super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target<|docstring|>Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments.<|endoftext|>
ba8627d0d3d1cb6aeb5a434d32ff2b256c6eaa99e11ae7efda764d2f20ace147
def conv3x3(in_planes, out_planes, stride=1): '3x3 convolution with padding' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
3x3 convolution with padding
lib/models/pose_resnet.py
conv3x3
humen-team/HRNet-for-Fashion-Landmark-Estimation.PyTorch
76
python
def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)<|docstring|>3x3 convolution with padding<|endoftext|>
71d272a121ecf1c4894d6f87f923d5546659a63e57289f7aef7e6fe29e6ca6ac
def handle_nan(self, axis: int=1, how: str='any', mode: str='delete'): "Handle the missing values.\n\n Arguments:\n axis: Determines if patients (0) or variables (1) with the missing values have to be fixed.\n how: Determines if handling is needed when there is at least one missing value ('any') or all of them are missing ('all').\n mode: Determines the strategy: 'delete' will delete the variable/patient, 'fill' will fill a missing value with the imputation method.\n " if (mode == 'delete'): self._feature_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_outcome_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_column = list(self._feature_dataframe.columns) self._patient_name = list(self._feature_outcome_dataframe.index) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) if (mode == 'fill'): print('Not implemented yet') return None
Handle the missing values. Arguments: axis: Determines if patients (0) or variables (1) with the missing values have to be fixed. how: Determines if handling is needed when there is at least one missing value ('any') or all of them are missing ('all'). mode: Determines the strategy: 'delete' will delete the variable/patient, 'fill' will fill a missing value with the imputation method.
pmtool/AnalysisBox.py
handle_nan
primakov/Precision-medicine-toolbox
23
python
def handle_nan(self, axis: int=1, how: str='any', mode: str='delete'): "Handle the missing values.\n\n Arguments:\n axis: Determines if patients (0) or variables (1) with the missing values have to be fixed.\n how: Determines if handling is needed when there is at least one missing value ('any') or all of them are missing ('all').\n mode: Determines the strategy: 'delete' will delete the variable/patient, 'fill' will fill a missing value with the imputation method.\n " if (mode == 'delete'): self._feature_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_outcome_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_column = list(self._feature_dataframe.columns) self._patient_name = list(self._feature_outcome_dataframe.index) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) if (mode == 'fill'): print('Not implemented yet') return None
def handle_nan(self, axis: int=1, how: str='any', mode: str='delete'): "Handle the missing values.\n\n Arguments:\n axis: Determines if patients (0) or variables (1) with the missing values have to be fixed.\n how: Determines if handling is needed when there is at least one missing value ('any') or all of them are missing ('all').\n mode: Determines the strategy: 'delete' will delete the variable/patient, 'fill' will fill a missing value with the imputation method.\n " if (mode == 'delete'): self._feature_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_outcome_dataframe.dropna(axis=axis, how=how, inplace=True) self._feature_column = list(self._feature_dataframe.columns) self._patient_name = list(self._feature_outcome_dataframe.index) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) if (mode == 'fill'): print('Not implemented yet') return None<|docstring|>Handle the missing values. Arguments: axis: Determines if patients (0) or variables (1) with the missing values have to be fixed. how: Determines if handling is needed when there is at least one missing value ('any') or all of them are missing ('all'). mode: Determines the strategy: 'delete' will delete the variable/patient, 'fill' will fill a missing value with the imputation method.<|endoftext|>
af6e8e2b57f636fdc32285b18c0fd365bd2239ded6ec3a476fad8fe7c6790496
def handle_constant(self): 'Drop the features with the constant values.' constant_features = self._feature_dataframe.columns[(self._feature_dataframe.nunique() <= 1)] self._feature_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_outcome_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_column = list(self._feature_dataframe.columns) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) return None
Drop the features with the constant values.
pmtool/AnalysisBox.py
handle_constant
primakov/Precision-medicine-toolbox
23
python
def handle_constant(self): constant_features = self._feature_dataframe.columns[(self._feature_dataframe.nunique() <= 1)] self._feature_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_outcome_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_column = list(self._feature_dataframe.columns) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) return None
def handle_constant(self): constant_features = self._feature_dataframe.columns[(self._feature_dataframe.nunique() <= 1)] self._feature_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_outcome_dataframe.drop(constant_features, axis=1, inplace=True) self._feature_column = list(self._feature_dataframe.columns) if (self._outcome_column in self._feature_column): self._feature_column.remove(self._outcome_column) self._outcome = self._feature_outcome_dataframe[self._outcome_column] self._class_label = pd.unique(np.array(list(self._outcome))) self._class_label.sort() data_balance = [] for l in self._class_label: data_balance.append((np.sum((np.array(list(self._outcome)) == l)) / len(self._outcome))) print('Number of observations: {}\nClass labels: {}\nClasses balance: {}'.format(len(self._outcome), self._class_label, data_balance)) return None<|docstring|>Drop the features with the constant values.<|endoftext|>
7cc32176163a236392b25f31c21b671961a3e1dbd4ff005eb1344882bd3d5dd6
def plot_distribution(self, features_to_plot: list=[], binary_classes_to_plot: list=[]): 'Plot distribution of the feature values in classes into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n ' if (len(self._outcome) > 0): if (len(binary_classes_to_plot) == 2): if ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label)): if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[0])][feature], opacity=0.75, name=str(binary_classes_to_plot[0]), marker={'color': 'magenta'}, showlegend=(counter == 0)), r, c) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[1])][feature], opacity=0.75, name=str(binary_classes_to_plot[1]), marker={'color': 'orange'}, showlegend=(counter == 0)), r, c) fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Wrong class label(s).') else: color_scheme = ['magenta', 'orange', 'cyan', 'yellow', 'lime', 'blue', 'red', 'green', 'darkviolet', 'saddlebrown'] if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) counter_colors = 0 for cl in self._class_label: fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == cl)][feature], opacity=0.5, name=str(cl), marker={'color': color_scheme[counter_colors]}, showlegend=(counter == 0)), r, c) counter_colors += 1 fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
Plot distribution of the feature values in classes into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.
pmtool/AnalysisBox.py
plot_distribution
primakov/Precision-medicine-toolbox
23
python
def plot_distribution(self, features_to_plot: list=[], binary_classes_to_plot: list=[]): 'Plot distribution of the feature values in classes into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n ' if (len(self._outcome) > 0): if (len(binary_classes_to_plot) == 2): if ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label)): if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[0])][feature], opacity=0.75, name=str(binary_classes_to_plot[0]), marker={'color': 'magenta'}, showlegend=(counter == 0)), r, c) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[1])][feature], opacity=0.75, name=str(binary_classes_to_plot[1]), marker={'color': 'orange'}, showlegend=(counter == 0)), r, c) fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Wrong class label(s).') else: color_scheme = ['magenta', 'orange', 'cyan', 'yellow', 'lime', 'blue', 'red', 'green', 'darkviolet', 'saddlebrown'] if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) counter_colors = 0 for cl in self._class_label: fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == cl)][feature], opacity=0.5, name=str(cl), marker={'color': color_scheme[counter_colors]}, showlegend=(counter == 0)), r, c) counter_colors += 1 fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
def plot_distribution(self, features_to_plot: list=[], binary_classes_to_plot: list=[]): 'Plot distribution of the feature values in classes into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n ' if (len(self._outcome) > 0): if (len(binary_classes_to_plot) == 2): if ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label)): if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[0])][feature], opacity=0.75, name=str(binary_classes_to_plot[0]), marker={'color': 'magenta'}, showlegend=(counter == 0)), r, c) fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == binary_classes_to_plot[1])][feature], opacity=0.75, name=str(binary_classes_to_plot[1]), marker={'color': 'orange'}, showlegend=(counter == 0)), r, c) fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Wrong class label(s).') else: color_scheme = ['magenta', 'orange', 'cyan', 'yellow', 'lime', 'blue', 'red', 'green', 'darkviolet', 'saddlebrown'] if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) counter_colors = 0 for cl in self._class_label: fig.append_trace(go.Histogram(x=self._feature_outcome_dataframe.loc[(self._feature_outcome_dataframe[self._outcome_column] == cl)][feature], opacity=0.5, name=str(cl), marker={'color': color_scheme[counter_colors]}, showlegend=(counter == 0)), r, c) counter_colors += 1 fig.update_xaxes(title_text='values', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='count', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) fig.layout.update(go.Layout(barmode='overlay')) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text='Features binary distribution in classes', height=(rows * 250), width=1250) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_distr.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None<|docstring|>Plot distribution of the feature values in classes into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.<|endoftext|>
dd12cb6269b83eb8d051f3655f102da3eec8ff6c23b4a65b7a8d00c8418240a4
def plot_correlation_matrix(self, features_to_plot: list=[]): "Plot correlation (Spearman's) matrix for the features into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n " pio.renderers.default = 'iframe' if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) data = go.Heatmap(z=np.abs(np.array(self._feature_dataframe[num_features].corr(method='spearman'))), x=num_features, y=num_features, colorbar=dict(title='Spearman corr'), hovertemplate='feature_1: %{x}<br>feature_2: %{y}<br>r_Spearman: %{z}<extra></extra>') layout = {'title': 'Features correlation matrix'} fig = go.Figure(data=data, layout=layout) fig.update_xaxes(tickfont=dict(size=7)) fig.update_yaxes(tickfont=dict(size=7)) fig.update_layout(height=((len(num_features) * 20) + 250), width=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_corr.html'), config={'scrollZoom': True}) return None
Plot correlation (Spearman's) matrix for the features into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).
pmtool/AnalysisBox.py
plot_correlation_matrix
primakov/Precision-medicine-toolbox
23
python
def plot_correlation_matrix(self, features_to_plot: list=[]): "Plot correlation (Spearman's) matrix for the features into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n " pio.renderers.default = 'iframe' if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) data = go.Heatmap(z=np.abs(np.array(self._feature_dataframe[num_features].corr(method='spearman'))), x=num_features, y=num_features, colorbar=dict(title='Spearman corr'), hovertemplate='feature_1: %{x}<br>feature_2: %{y}<br>r_Spearman: %{z}<extra></extra>') layout = {'title': 'Features correlation matrix'} fig = go.Figure(data=data, layout=layout) fig.update_xaxes(tickfont=dict(size=7)) fig.update_yaxes(tickfont=dict(size=7)) fig.update_layout(height=((len(num_features) * 20) + 250), width=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_corr.html'), config={'scrollZoom': True}) return None
def plot_correlation_matrix(self, features_to_plot: list=[]): "Plot correlation (Spearman's) matrix for the features into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n " pio.renderers.default = 'iframe' if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) data = go.Heatmap(z=np.abs(np.array(self._feature_dataframe[num_features].corr(method='spearman'))), x=num_features, y=num_features, colorbar=dict(title='Spearman corr'), hovertemplate='feature_1: %{x}<br>feature_2: %{y}<br>r_Spearman: %{z}<extra></extra>') layout = {'title': 'Features correlation matrix'} fig = go.Figure(data=data, layout=layout) fig.update_xaxes(tickfont=dict(size=7)) fig.update_yaxes(tickfont=dict(size=7)) fig.update_layout(height=((len(num_features) * 20) + 250), width=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_corr.html'), config={'scrollZoom': True}) return None<|docstring|>Plot correlation (Spearman's) matrix for the features into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).<|endoftext|>
c4817615ba5b122e27c39dfd2e32ce78be5a7f7022932741b831107fc7ee3828
def plot_MW_p(self, features_to_plot: list=[], binary_classes_to_plot: list=[], p_threshold: float=0.05): 'Plot two-sided Mann-Whitney U test p-values for comparison of features values means in 2 classes (with correction for multiple testing) into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n p_threshold: Significance level.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=binary_classes_to_plot, p_threshold=p_threshold) colors = [self.__get_color(v, p_threshold) for v in p_MW_corr] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': p_threshold, 'y0': 0, 'x1': p_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=math.log10(p_threshold), y=len(num_features), text=('alpha=' + str(p_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure([go.Bar(x=list(p_MW_corr), y=num_features, marker={'color': colors}, orientation='h')], layout=layout) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(title_text='The p-values for Mann-Whitney test (Bonferroni corrected)', height=((len(num_features) * 20) + 250), width=750, xaxis_type='log', annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_MW.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
Plot two-sided Mann-Whitney U test p-values for comparison of features values means in 2 classes (with correction for multiple testing) into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class. p_threshold: Significance level.
pmtool/AnalysisBox.py
plot_MW_p
primakov/Precision-medicine-toolbox
23
python
def plot_MW_p(self, features_to_plot: list=[], binary_classes_to_plot: list=[], p_threshold: float=0.05): 'Plot two-sided Mann-Whitney U test p-values for comparison of features values means in 2 classes (with correction for multiple testing) into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n p_threshold: Significance level.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=binary_classes_to_plot, p_threshold=p_threshold) colors = [self.__get_color(v, p_threshold) for v in p_MW_corr] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': p_threshold, 'y0': 0, 'x1': p_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=math.log10(p_threshold), y=len(num_features), text=('alpha=' + str(p_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure([go.Bar(x=list(p_MW_corr), y=num_features, marker={'color': colors}, orientation='h')], layout=layout) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(title_text='The p-values for Mann-Whitney test (Bonferroni corrected)', height=((len(num_features) * 20) + 250), width=750, xaxis_type='log', annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_MW.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
def plot_MW_p(self, features_to_plot: list=[], binary_classes_to_plot: list=[], p_threshold: float=0.05): 'Plot two-sided Mann-Whitney U test p-values for comparison of features values means in 2 classes (with correction for multiple testing) into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class.\n p_threshold: Significance level.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=binary_classes_to_plot, p_threshold=p_threshold) colors = [self.__get_color(v, p_threshold) for v in p_MW_corr] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': p_threshold, 'y0': 0, 'x1': p_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=math.log10(p_threshold), y=len(num_features), text=('alpha=' + str(p_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure([go.Bar(x=list(p_MW_corr), y=num_features, marker={'color': colors}, orientation='h')], layout=layout) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(title_text='The p-values for Mann-Whitney test (Bonferroni corrected)', height=((len(num_features) * 20) + 250), width=750, xaxis_type='log', annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_MW.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None<|docstring|>Plot two-sided Mann-Whitney U test p-values for comparison of features values means in 2 classes (with correction for multiple testing) into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest, if the dataset is multi-class. p_threshold: Significance level.<|endoftext|>
0cb72ce6f0aa7fc26b9e54306d4160bc510ba1015646311d9384c87ce243d014
def plot_univariate_roc(self, features_to_plot: list=[], binary_classes_to_plot: list=[], auc_threshold: float=0.75): 'Plot univariate ROC curves (with AUC calculation) for threshold binary classifier, based of each feature separately into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest in case of multi-class data.\n auc_threshold: Threshold value for ROC AUC to be highlighted.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=binary_classes_to_plot) univar_auc = auc(fprs, tprs) fig.append_trace(go.Scatter(x=fprs, y=tprs, name='ROC', marker={'color': self.__get_color(univar_auc, auc_threshold)}), r, c) fig.append_trace(go.Scatter(x=[0, 1], y=[0, 1], name='Chance', marker={'color': 'grey'}, mode='lines+markers+text', text=[(' ROC AUC=%0.2f' % univar_auc), ''], textposition='middle right'), r, c) fig.update_xaxes(title_text='FPR', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='TPR', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text=('Features univariate ROC-curves:' + str(binary_classes_to_plot)), height=(rows * 250), width=1250, showlegend=False) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_roc-univar.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
Plot univariate ROC curves (with AUC calculation) for threshold binary classifier, based of each feature separately into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest in case of multi-class data. auc_threshold: Threshold value for ROC AUC to be highlighted.
pmtool/AnalysisBox.py
plot_univariate_roc
primakov/Precision-medicine-toolbox
23
python
def plot_univariate_roc(self, features_to_plot: list=[], binary_classes_to_plot: list=[], auc_threshold: float=0.75): 'Plot univariate ROC curves (with AUC calculation) for threshold binary classifier, based of each feature separately into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest in case of multi-class data.\n auc_threshold: Threshold value for ROC AUC to be highlighted.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=binary_classes_to_plot) univar_auc = auc(fprs, tprs) fig.append_trace(go.Scatter(x=fprs, y=tprs, name='ROC', marker={'color': self.__get_color(univar_auc, auc_threshold)}), r, c) fig.append_trace(go.Scatter(x=[0, 1], y=[0, 1], name='Chance', marker={'color': 'grey'}, mode='lines+markers+text', text=[(' ROC AUC=%0.2f' % univar_auc), ], textposition='middle right'), r, c) fig.update_xaxes(title_text='FPR', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='TPR', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text=('Features univariate ROC-curves:' + str(binary_classes_to_plot)), height=(rows * 250), width=1250, showlegend=False) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_roc-univar.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None
def plot_univariate_roc(self, features_to_plot: list=[], binary_classes_to_plot: list=[], auc_threshold: float=0.75): 'Plot univariate ROC curves (with AUC calculation) for threshold binary classifier, based of each feature separately into interactive .html report.\n\n Arguments:\n features_to_plot: List of specific features to be selected (otherwise selects all the numerical features).\n binary_classes_to_plot: List, containing 2 classes of interest in case of multi-class data.\n auc_threshold: Threshold value for ROC AUC to be highlighted.\n ' if (len(self._outcome) > 0): if (len(self._class_label) == 2): binary_classes_to_plot = self._class_label elif (len(binary_classes_to_plot) != 2): print('Only binary class labels are supported.') return elif (not ((binary_classes_to_plot[0] in self._class_label) & (binary_classes_to_plot[1] in self._class_label))): print('Wrong class label(s).') return if (not features_to_plot): features_to_plot = self._feature_column num_features = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) cols = 4 rows = ((len(num_features) // 4) + 1) num_features_tuple = tuple(num_features) fig = plotly.subplots.make_subplots(rows=rows, cols=cols, subplot_titles=num_features_tuple) counter = 0 for feature in num_features: c = ((counter % 4) + 1) r = ((counter // 4) + 1) (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=binary_classes_to_plot) univar_auc = auc(fprs, tprs) fig.append_trace(go.Scatter(x=fprs, y=tprs, name='ROC', marker={'color': self.__get_color(univar_auc, auc_threshold)}), r, c) fig.append_trace(go.Scatter(x=[0, 1], y=[0, 1], name='Chance', marker={'color': 'grey'}, mode='lines+markers+text', text=[(' ROC AUC=%0.2f' % univar_auc), ], textposition='middle right'), r, c) fig.update_xaxes(title_text='FPR', title_font={'size': 10}, title_standoff=5, row=r, col=c, showgrid=False, zeroline=False) fig.update_yaxes(title_text='TPR', title_font={'size': 10}, title_standoff=0, row=r, col=c, showgrid=False, zeroline=False) counter += 1 for i in fig['layout']['annotations']: i['font'] = dict(size=10) fig.update_layout(title_text=('Features univariate ROC-curves:' + str(binary_classes_to_plot)), height=(rows * 250), width=1250, showlegend=False) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_roc-univar.html'), config={'scrollZoom': True}) else: print('Outcome column should be presented') return None<|docstring|>Plot univariate ROC curves (with AUC calculation) for threshold binary classifier, based of each feature separately into interactive .html report. Arguments: features_to_plot: List of specific features to be selected (otherwise selects all the numerical features). binary_classes_to_plot: List, containing 2 classes of interest in case of multi-class data. auc_threshold: Threshold value for ROC AUC to be highlighted.<|endoftext|>
66433115cddbdc9dc179b7a3f1550e7aad0f13e8ec5c4dc7f89b2e2aea901d07
def calculate_basic_stats(self, volume_feature: str=''): "Calculate basic statistical scores (such as: number of missing values, mean, std, min, max, Mann-Whitney test p-values for binary classes, univariate ROC AUC for binary classes, Spearman's correlation with volume if volumetric feature name is sent to function) for each feature and save it to .csv file.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n " num_features = [] for feature in self._feature_column: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) frame = {'NaN': self._feature_dataframe[num_features].isnull().sum(axis=0), 'Mean': self._feature_dataframe[num_features].mean(axis=0), 'Std': self._feature_dataframe[num_features].std(axis=0), 'Min': self._feature_dataframe[num_features].min(axis=0), 'Max': self._feature_dataframe[num_features].max(axis=0)} stats_dataframe = pd.DataFrame(frame) if (len(self._outcome) > 0): if (len(self._class_label) == 2): p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=self._class_label) univar_auc = [] for feature in num_features: (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=self._class_label) univar_auc.append(auc(fprs, tprs)) stats_dataframe_ext = pd.DataFrame({'p_MW_corrected': p_MW_corr, 'univar_auc': univar_auc}, index=num_features) stats_dataframe = pd.concat([stats_dataframe, stats_dataframe_ext], axis=1) if volume_feature: vol_corr = [] for feature in num_features: vol_corr.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) stats_dataframe = pd.concat([stats_dataframe, pd.DataFrame({'volume_corr': vol_corr}, index=num_features)], axis=1) stats_dataframe.to_excel((os.path.splitext(self._feature_path)[0] + '_basic_stats.xlsx')) return None
Calculate basic statistical scores (such as: number of missing values, mean, std, min, max, Mann-Whitney test p-values for binary classes, univariate ROC AUC for binary classes, Spearman's correlation with volume if volumetric feature name is sent to function) for each feature and save it to .csv file. Arguments: volume_feature: Name of the feature, which is considered as volume.
pmtool/AnalysisBox.py
calculate_basic_stats
primakov/Precision-medicine-toolbox
23
python
def calculate_basic_stats(self, volume_feature: str=): "Calculate basic statistical scores (such as: number of missing values, mean, std, min, max, Mann-Whitney test p-values for binary classes, univariate ROC AUC for binary classes, Spearman's correlation with volume if volumetric feature name is sent to function) for each feature and save it to .csv file.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n " num_features = [] for feature in self._feature_column: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) frame = {'NaN': self._feature_dataframe[num_features].isnull().sum(axis=0), 'Mean': self._feature_dataframe[num_features].mean(axis=0), 'Std': self._feature_dataframe[num_features].std(axis=0), 'Min': self._feature_dataframe[num_features].min(axis=0), 'Max': self._feature_dataframe[num_features].max(axis=0)} stats_dataframe = pd.DataFrame(frame) if (len(self._outcome) > 0): if (len(self._class_label) == 2): p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=self._class_label) univar_auc = [] for feature in num_features: (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=self._class_label) univar_auc.append(auc(fprs, tprs)) stats_dataframe_ext = pd.DataFrame({'p_MW_corrected': p_MW_corr, 'univar_auc': univar_auc}, index=num_features) stats_dataframe = pd.concat([stats_dataframe, stats_dataframe_ext], axis=1) if volume_feature: vol_corr = [] for feature in num_features: vol_corr.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) stats_dataframe = pd.concat([stats_dataframe, pd.DataFrame({'volume_corr': vol_corr}, index=num_features)], axis=1) stats_dataframe.to_excel((os.path.splitext(self._feature_path)[0] + '_basic_stats.xlsx')) return None
def calculate_basic_stats(self, volume_feature: str=): "Calculate basic statistical scores (such as: number of missing values, mean, std, min, max, Mann-Whitney test p-values for binary classes, univariate ROC AUC for binary classes, Spearman's correlation with volume if volumetric feature name is sent to function) for each feature and save it to .csv file.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n " num_features = [] for feature in self._feature_column: if (self._feature_dataframe[feature].dtype != 'object'): num_features.append(feature) frame = {'NaN': self._feature_dataframe[num_features].isnull().sum(axis=0), 'Mean': self._feature_dataframe[num_features].mean(axis=0), 'Std': self._feature_dataframe[num_features].std(axis=0), 'Min': self._feature_dataframe[num_features].min(axis=0), 'Max': self._feature_dataframe[num_features].max(axis=0)} stats_dataframe = pd.DataFrame(frame) if (len(self._outcome) > 0): if (len(self._class_label) == 2): p_MW_corr = self.__get_MW_p(ftrs=num_features, binary_classes_to_plot=self._class_label) univar_auc = [] for feature in num_features: (fprs, tprs) = self.__get_univar_fprs_tprs(ftr=feature, binary_classes_to_plot=self._class_label) univar_auc.append(auc(fprs, tprs)) stats_dataframe_ext = pd.DataFrame({'p_MW_corrected': p_MW_corr, 'univar_auc': univar_auc}, index=num_features) stats_dataframe = pd.concat([stats_dataframe, stats_dataframe_ext], axis=1) if volume_feature: vol_corr = [] for feature in num_features: vol_corr.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) stats_dataframe = pd.concat([stats_dataframe, pd.DataFrame({'volume_corr': vol_corr}, index=num_features)], axis=1) stats_dataframe.to_excel((os.path.splitext(self._feature_path)[0] + '_basic_stats.xlsx')) return None<|docstring|>Calculate basic statistical scores (such as: number of missing values, mean, std, min, max, Mann-Whitney test p-values for binary classes, univariate ROC AUC for binary classes, Spearman's correlation with volume if volumetric feature name is sent to function) for each feature and save it to .csv file. Arguments: volume_feature: Name of the feature, which is considered as volume.<|endoftext|>
8841035a322029721371d55cd2a86cee91338ebbb806770d7ac0ee10e269d211
def volume_analysis(self, volume_feature: str='', auc_threshold: float=0.75, features_to_plot: list=[], corr_threshold: float=0.75): 'Calculate features correlation (Spearman’s) with volume and plot volume-based precision-recall curve.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n auc_threshold: Threshold value for area under precision-recall curve to be highlighted.\n features_to_plot: Specific features to be selected (otherwise selects all the numerical features)\n corr_threshold: Threshold value for absolute value for Spearman’s correlation coefficient to be considered as ‘strong correlation’.\n ' if volume_feature: if (volume_feature in self._feature_column): if (len(self._outcome) > 0): if (len(self._class_label) == 2): (precs, recs) = self.__get_univar_prec_rec(ftr=volume_feature) univar_auc = auc(recs, precs) fig = go.Figure() fig.add_trace(go.Scatter(x=recs, y=precs, name='PRC', marker={'color': self.__get_color(univar_auc, auc_threshold)})) fig.add_trace(go.Scatter(x=[0], y=[0], name='AUC', marker={'color': 'grey'}, mode='text', text=[('AUC=%0.2f' % univar_auc), ''], textposition='top right')) fig.update_xaxes(title_text='recall', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_yaxes(title_text='precision', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_layout(title_text='Volume precision-recall curve', showlegend=False, width=500, height=500) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_PRC.html'), config={'scrollZoom': True}) if (not features_to_plot): features_to_plot = self._feature_column num_features = [] corr_vol = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) corr_vol.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) colors = [self.__get_color(v, corr_threshold) for v in corr_vol] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': corr_threshold, 'y0': 0, 'x1': corr_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=corr_threshold, y=len(num_features), text=('r_S=' + str(corr_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure(layout=layout) fig.add_trace(go.Bar(x=list(np.abs(corr_vol)), y=num_features, marker={'color': colors}, orientation='h', name='Spearman correlation')) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}, title_text='Volume Spearman correlation', showlegend=False, width=750, height=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_corr.html'), config={'scrollZoom': True}) return None
Calculate features correlation (Spearman’s) with volume and plot volume-based precision-recall curve. Arguments: volume_feature: Name of the feature, which is considered as volume. auc_threshold: Threshold value for area under precision-recall curve to be highlighted. features_to_plot: Specific features to be selected (otherwise selects all the numerical features) corr_threshold: Threshold value for absolute value for Spearman’s correlation coefficient to be considered as ‘strong correlation’.
pmtool/AnalysisBox.py
volume_analysis
primakov/Precision-medicine-toolbox
23
python
def volume_analysis(self, volume_feature: str=, auc_threshold: float=0.75, features_to_plot: list=[], corr_threshold: float=0.75): 'Calculate features correlation (Spearman’s) with volume and plot volume-based precision-recall curve.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n auc_threshold: Threshold value for area under precision-recall curve to be highlighted.\n features_to_plot: Specific features to be selected (otherwise selects all the numerical features)\n corr_threshold: Threshold value for absolute value for Spearman’s correlation coefficient to be considered as ‘strong correlation’.\n ' if volume_feature: if (volume_feature in self._feature_column): if (len(self._outcome) > 0): if (len(self._class_label) == 2): (precs, recs) = self.__get_univar_prec_rec(ftr=volume_feature) univar_auc = auc(recs, precs) fig = go.Figure() fig.add_trace(go.Scatter(x=recs, y=precs, name='PRC', marker={'color': self.__get_color(univar_auc, auc_threshold)})) fig.add_trace(go.Scatter(x=[0], y=[0], name='AUC', marker={'color': 'grey'}, mode='text', text=[('AUC=%0.2f' % univar_auc), ], textposition='top right')) fig.update_xaxes(title_text='recall', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_yaxes(title_text='precision', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_layout(title_text='Volume precision-recall curve', showlegend=False, width=500, height=500) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_PRC.html'), config={'scrollZoom': True}) if (not features_to_plot): features_to_plot = self._feature_column num_features = [] corr_vol = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) corr_vol.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) colors = [self.__get_color(v, corr_threshold) for v in corr_vol] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': corr_threshold, 'y0': 0, 'x1': corr_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=corr_threshold, y=len(num_features), text=('r_S=' + str(corr_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure(layout=layout) fig.add_trace(go.Bar(x=list(np.abs(corr_vol)), y=num_features, marker={'color': colors}, orientation='h', name='Spearman correlation')) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}, title_text='Volume Spearman correlation', showlegend=False, width=750, height=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_corr.html'), config={'scrollZoom': True}) return None
def volume_analysis(self, volume_feature: str=, auc_threshold: float=0.75, features_to_plot: list=[], corr_threshold: float=0.75): 'Calculate features correlation (Spearman’s) with volume and plot volume-based precision-recall curve.\n\n Arguments:\n volume_feature: Name of the feature, which is considered as volume.\n auc_threshold: Threshold value for area under precision-recall curve to be highlighted.\n features_to_plot: Specific features to be selected (otherwise selects all the numerical features)\n corr_threshold: Threshold value for absolute value for Spearman’s correlation coefficient to be considered as ‘strong correlation’.\n ' if volume_feature: if (volume_feature in self._feature_column): if (len(self._outcome) > 0): if (len(self._class_label) == 2): (precs, recs) = self.__get_univar_prec_rec(ftr=volume_feature) univar_auc = auc(recs, precs) fig = go.Figure() fig.add_trace(go.Scatter(x=recs, y=precs, name='PRC', marker={'color': self.__get_color(univar_auc, auc_threshold)})) fig.add_trace(go.Scatter(x=[0], y=[0], name='AUC', marker={'color': 'grey'}, mode='text', text=[('AUC=%0.2f' % univar_auc), ], textposition='top right')) fig.update_xaxes(title_text='recall', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_yaxes(title_text='precision', title_font={'size': 10}, title_standoff=5, showgrid=True, zeroline=False, range=[0, 1]) fig.update_layout(title_text='Volume precision-recall curve', showlegend=False, width=500, height=500) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_PRC.html'), config={'scrollZoom': True}) if (not features_to_plot): features_to_plot = self._feature_column num_features = [] corr_vol = [] for feature in features_to_plot: if (self._feature_outcome_dataframe[feature].dtype != 'object'): num_features.append(feature) corr_vol.append(sp.stats.spearmanr(self._feature_dataframe[feature], self._feature_dataframe[volume_feature])[0]) colors = [self.__get_color(v, corr_threshold) for v in corr_vol] shapes = [{'type': 'line', 'xref': 'x', 'yref': 'y', 'x0': corr_threshold, 'y0': 0, 'x1': corr_threshold, 'y1': len(num_features)}] annotations = [go.layout.Annotation(x=corr_threshold, y=len(num_features), text=('r_S=' + str(corr_threshold)), showarrow=True, arrowhead=7, ax=100, ay=0)] layout = plotly.graph_objs.Layout(shapes=shapes) fig = go.Figure(layout=layout) fig.add_trace(go.Bar(x=list(np.abs(corr_vol)), y=num_features, marker={'color': colors}, orientation='h', name='Spearman correlation')) fig.update_yaxes(tickfont=dict(size=7)) fig.update_xaxes(tickfont=dict(size=7)) fig.update_layout(annotations=annotations, xaxis={'mirror': 'allticks', 'side': 'top', 'dtick': 1, 'showgrid': True}, title_text='Volume Spearman correlation', showlegend=False, width=750, height=((len(num_features) * 20) + 250)) plotly.offline.plot(fig, filename=(os.path.splitext(self._feature_path)[0] + '_volume_corr.html'), config={'scrollZoom': True}) return None<|docstring|>Calculate features correlation (Spearman’s) with volume and plot volume-based precision-recall curve. Arguments: volume_feature: Name of the feature, which is considered as volume. auc_threshold: Threshold value for area under precision-recall curve to be highlighted. features_to_plot: Specific features to be selected (otherwise selects all the numerical features) corr_threshold: Threshold value for absolute value for Spearman’s correlation coefficient to be considered as ‘strong correlation’.<|endoftext|>
1b793271f5f01111812f7fd44d44b71d6c2241f08909e7a5d491ad371a9dd4ab
def __getitem__(self, efuse_name): ' Return the efuse field with the given name ' for e in self.efuses: if (efuse_name == e.name): return e new_fields = False for efuse in self._CUSTOM_MAC: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._CUSTOM_MAC] new_fields = True for efuse in self._ADC_CALIBRATION: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._ADC_CALIBRATION] new_fields = True if new_fields: for e in self.efuses: if (efuse_name == e.name): return e raise KeyError
Return the efuse field with the given name
MicroPython/esptool-master/espressif/efuse/esp32/fields.py
__getitem__
hu-tianyi/AuTrix
1
python
def __getitem__(self, efuse_name): ' ' for e in self.efuses: if (efuse_name == e.name): return e new_fields = False for efuse in self._CUSTOM_MAC: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._CUSTOM_MAC] new_fields = True for efuse in self._ADC_CALIBRATION: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._ADC_CALIBRATION] new_fields = True if new_fields: for e in self.efuses: if (efuse_name == e.name): return e raise KeyError
def __getitem__(self, efuse_name): ' ' for e in self.efuses: if (efuse_name == e.name): return e new_fields = False for efuse in self._CUSTOM_MAC: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._CUSTOM_MAC] new_fields = True for efuse in self._ADC_CALIBRATION: if (efuse[0] == efuse_name): self.efuses += [EfuseField.from_tuple(self, efuse, efuse[8]) for efuse in self._ADC_CALIBRATION] new_fields = True if new_fields: for e in self.efuses: if (efuse_name == e.name): return e raise KeyError<|docstring|>Return the efuse field with the given name<|endoftext|>
f24c0686e0c2b1ef85a45c65c7e4e176af87c24595277ca41351be7c74b37576
def write_efuses(self, block): ' Write the values in the efuse write registers to\n the efuse hardware, then refresh the efuse read registers.\n ' apb_freq = self._esp.get_crystal_freq() (clk_sel0, clk_sel1, dac_clk_div) = self.EFUSE_CLK_SETTINGS[apb_freq] self.update_reg(self.EFUSE_DAC_CONF_REG, self.EFUSE_DAC_CLK_DIV_MASK, dac_clk_div) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL0_MASK, clk_sel0) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL1_MASK, clk_sel1) self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_WRITE) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_WRITE) def wait_idle(): deadline = (time.time() + self.EFUSE_BURN_TIMEOUT) while (time.time() < deadline): if (self.read_reg(self.EFUSE_REG_CMD) == 0): return raise esptool.FatalError('Timed out waiting for Efuse controller command to complete') wait_idle() self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_READ) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_READ) wait_idle() return self.get_coding_scheme_warnings()
Write the values in the efuse write registers to the efuse hardware, then refresh the efuse read registers.
MicroPython/esptool-master/espressif/efuse/esp32/fields.py
write_efuses
hu-tianyi/AuTrix
1
python
def write_efuses(self, block): ' Write the values in the efuse write registers to\n the efuse hardware, then refresh the efuse read registers.\n ' apb_freq = self._esp.get_crystal_freq() (clk_sel0, clk_sel1, dac_clk_div) = self.EFUSE_CLK_SETTINGS[apb_freq] self.update_reg(self.EFUSE_DAC_CONF_REG, self.EFUSE_DAC_CLK_DIV_MASK, dac_clk_div) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL0_MASK, clk_sel0) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL1_MASK, clk_sel1) self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_WRITE) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_WRITE) def wait_idle(): deadline = (time.time() + self.EFUSE_BURN_TIMEOUT) while (time.time() < deadline): if (self.read_reg(self.EFUSE_REG_CMD) == 0): return raise esptool.FatalError('Timed out waiting for Efuse controller command to complete') wait_idle() self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_READ) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_READ) wait_idle() return self.get_coding_scheme_warnings()
def write_efuses(self, block): ' Write the values in the efuse write registers to\n the efuse hardware, then refresh the efuse read registers.\n ' apb_freq = self._esp.get_crystal_freq() (clk_sel0, clk_sel1, dac_clk_div) = self.EFUSE_CLK_SETTINGS[apb_freq] self.update_reg(self.EFUSE_DAC_CONF_REG, self.EFUSE_DAC_CLK_DIV_MASK, dac_clk_div) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL0_MASK, clk_sel0) self.update_reg(self.EFUSE_CLK_REG, self.EFUSE_CLK_SEL1_MASK, clk_sel1) self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_WRITE) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_WRITE) def wait_idle(): deadline = (time.time() + self.EFUSE_BURN_TIMEOUT) while (time.time() < deadline): if (self.read_reg(self.EFUSE_REG_CMD) == 0): return raise esptool.FatalError('Timed out waiting for Efuse controller command to complete') wait_idle() self.write_reg(self.EFUSE_REG_CONF, self.EFUSE_CONF_READ) self.write_reg(self.EFUSE_REG_CMD, self.EFUSE_CMD_READ) wait_idle() return self.get_coding_scheme_warnings()<|docstring|>Write the values in the efuse write registers to the efuse hardware, then refresh the efuse read registers.<|endoftext|>
9c7b579c4a6c6009aa2b65f15b64763e44f8202678007e61811fd62d134df014
def get_coding_scheme_warnings(self): ' Check if the coding scheme has detected any errors.\n Meaningless for default coding scheme (0)\n ' return (self.read_reg(self.EFUSE_REG_DEC_STATUS) & self.EFUSE_REG_DEC_STATUS_MASK)
Check if the coding scheme has detected any errors. Meaningless for default coding scheme (0)
MicroPython/esptool-master/espressif/efuse/esp32/fields.py
get_coding_scheme_warnings
hu-tianyi/AuTrix
1
python
def get_coding_scheme_warnings(self): ' Check if the coding scheme has detected any errors.\n Meaningless for default coding scheme (0)\n ' return (self.read_reg(self.EFUSE_REG_DEC_STATUS) & self.EFUSE_REG_DEC_STATUS_MASK)
def get_coding_scheme_warnings(self): ' Check if the coding scheme has detected any errors.\n Meaningless for default coding scheme (0)\n ' return (self.read_reg(self.EFUSE_REG_DEC_STATUS) & self.EFUSE_REG_DEC_STATUS_MASK)<|docstring|>Check if the coding scheme has detected any errors. Meaningless for default coding scheme (0)<|endoftext|>
eb0c638bdd60bccb764e9b8857e03c898ced14a9d28e1c7892d962b70f49ada2
@staticmethod def calc_crc(raw_mac): '\n This algorithm is the equivalent of esp_crc8() in ESP32 ROM code\n\n This is CRC-8 w/ inverted polynomial value 0x8C & initial value 0x00.\n ' result = 0 for b in struct.unpack(('B' * 6), raw_mac): result ^= b for _ in range(8): lsb = (result & 1) result >>= 1 if (lsb != 0): result ^= 140 return result
This algorithm is the equivalent of esp_crc8() in ESP32 ROM code This is CRC-8 w/ inverted polynomial value 0x8C & initial value 0x00.
MicroPython/esptool-master/espressif/efuse/esp32/fields.py
calc_crc
hu-tianyi/AuTrix
1
python
@staticmethod def calc_crc(raw_mac): '\n This algorithm is the equivalent of esp_crc8() in ESP32 ROM code\n\n This is CRC-8 w/ inverted polynomial value 0x8C & initial value 0x00.\n ' result = 0 for b in struct.unpack(('B' * 6), raw_mac): result ^= b for _ in range(8): lsb = (result & 1) result >>= 1 if (lsb != 0): result ^= 140 return result
@staticmethod def calc_crc(raw_mac): '\n This algorithm is the equivalent of esp_crc8() in ESP32 ROM code\n\n This is CRC-8 w/ inverted polynomial value 0x8C & initial value 0x00.\n ' result = 0 for b in struct.unpack(('B' * 6), raw_mac): result ^= b for _ in range(8): lsb = (result & 1) result >>= 1 if (lsb != 0): result ^= 140 return result<|docstring|>This algorithm is the equivalent of esp_crc8() in ESP32 ROM code This is CRC-8 w/ inverted polynomial value 0x8C & initial value 0x00.<|endoftext|>
996b36bd31bdee0fd5b645ffb739e6f344e8b2acecfa6bc88928d3343e4d50ea
def get_secret(the_secret, debugging): '\n As a security measure, all secrets will be kept in a json file named\n secrets.json. This file will not be managed by the version control\n system, but will be available in our documentation repository or\n as an attached file. The main goal of this is that this file should\n not be viewable by no one except us or our team.\n ' try: secrets_file = os.path.join(BASE_DIR, 'settings', 'secrets.json') secretjson = json.load(open(secrets_file)) if debugging: return secretjson['local'][the_secret] else: return secretjson['production'][the_secret] except Exception as e: print('Something weird happened while retrieving a secret: {}'.format(e)) sys.exit((- 1))
As a security measure, all secrets will be kept in a json file named secrets.json. This file will not be managed by the version control system, but will be available in our documentation repository or as an attached file. The main goal of this is that this file should not be viewable by no one except us or our team.
gizmo/gizmo/settings/test.py
get_secret
azaleas/gizmo
1
python
def get_secret(the_secret, debugging): '\n As a security measure, all secrets will be kept in a json file named\n secrets.json. This file will not be managed by the version control\n system, but will be available in our documentation repository or\n as an attached file. The main goal of this is that this file should\n not be viewable by no one except us or our team.\n ' try: secrets_file = os.path.join(BASE_DIR, 'settings', 'secrets.json') secretjson = json.load(open(secrets_file)) if debugging: return secretjson['local'][the_secret] else: return secretjson['production'][the_secret] except Exception as e: print('Something weird happened while retrieving a secret: {}'.format(e)) sys.exit((- 1))
def get_secret(the_secret, debugging): '\n As a security measure, all secrets will be kept in a json file named\n secrets.json. This file will not be managed by the version control\n system, but will be available in our documentation repository or\n as an attached file. The main goal of this is that this file should\n not be viewable by no one except us or our team.\n ' try: secrets_file = os.path.join(BASE_DIR, 'settings', 'secrets.json') secretjson = json.load(open(secrets_file)) if debugging: return secretjson['local'][the_secret] else: return secretjson['production'][the_secret] except Exception as e: print('Something weird happened while retrieving a secret: {}'.format(e)) sys.exit((- 1))<|docstring|>As a security measure, all secrets will be kept in a json file named secrets.json. This file will not be managed by the version control system, but will be available in our documentation repository or as an attached file. The main goal of this is that this file should not be viewable by no one except us or our team.<|endoftext|>
f0a2b0e588df2a9f838479b6af1276fc234615efdf927947b0a620380ad87a39
def weighted_choice(choices): '\n Given a list of weighted choices, choose one. Choices are a list of\n (weight, element) pairs.\n ' total = sum((w for (w, c) in choices)) r = uniform(0, total) upto = 0 for (w, c) in choices: if ((upto + w) >= r): return c upto += w
Given a list of weighted choices, choose one. Choices are a list of (weight, element) pairs.
py_search/utils.py
weighted_choice
ctonic/py_search
4
python
def weighted_choice(choices): '\n Given a list of weighted choices, choose one. Choices are a list of\n (weight, element) pairs.\n ' total = sum((w for (w, c) in choices)) r = uniform(0, total) upto = 0 for (w, c) in choices: if ((upto + w) >= r): return c upto += w
def weighted_choice(choices): '\n Given a list of weighted choices, choose one. Choices are a list of\n (weight, element) pairs.\n ' total = sum((w for (w, c) in choices)) r = uniform(0, total) upto = 0 for (w, c) in choices: if ((upto + w) >= r): return c upto += w<|docstring|>Given a list of weighted choices, choose one. Choices are a list of (weight, element) pairs.<|endoftext|>
474ac5c1d06227aa2b06e20a41a6d34a89f937b53bdd6f11ae8bd52fa64432d7
def compare_searches(problems, searches): '\n A function for comparing different search algorithms on different problems.\n\n :param problems: problems to solve.\n :type problems: an iterator of problems (usually a list)\n :param searches: search algorithms to use.\n :type searches: an iterator of search functions (usually a list)\n ' table = [] for problem in problems: for search in searches: annotated_problem = AnnotatedProblem(problem) start_time = timeit.default_timer() try: sol = next(search(annotated_problem)) elapsed = (timeit.default_timer() - start_time) cost = sol.cost() except StopIteration: elapsed = (timeit.default_timer() - start_time) cost = 'Failed' table.append([problem.__class__.__name__, search.__name__, annotated_problem.goal_tests, annotated_problem.nodes_expanded, annotated_problem.nodes_evaluated, (('%0.3f' % cost) if isinstance(cost, float) else cost), (('%0.4f' % elapsed) if isinstance(elapsed, float) else elapsed)]) print(tabulate(table, headers=['Problem', 'Search Alg', 'Goal Tests', 'Nodes Expanded', 'Nodes Evaluated', 'Solution Cost', 'Runtime'], tablefmt='simple'))
A function for comparing different search algorithms on different problems. :param problems: problems to solve. :type problems: an iterator of problems (usually a list) :param searches: search algorithms to use. :type searches: an iterator of search functions (usually a list)
py_search/utils.py
compare_searches
ctonic/py_search
4
python
def compare_searches(problems, searches): '\n A function for comparing different search algorithms on different problems.\n\n :param problems: problems to solve.\n :type problems: an iterator of problems (usually a list)\n :param searches: search algorithms to use.\n :type searches: an iterator of search functions (usually a list)\n ' table = [] for problem in problems: for search in searches: annotated_problem = AnnotatedProblem(problem) start_time = timeit.default_timer() try: sol = next(search(annotated_problem)) elapsed = (timeit.default_timer() - start_time) cost = sol.cost() except StopIteration: elapsed = (timeit.default_timer() - start_time) cost = 'Failed' table.append([problem.__class__.__name__, search.__name__, annotated_problem.goal_tests, annotated_problem.nodes_expanded, annotated_problem.nodes_evaluated, (('%0.3f' % cost) if isinstance(cost, float) else cost), (('%0.4f' % elapsed) if isinstance(elapsed, float) else elapsed)]) print(tabulate(table, headers=['Problem', 'Search Alg', 'Goal Tests', 'Nodes Expanded', 'Nodes Evaluated', 'Solution Cost', 'Runtime'], tablefmt='simple'))
def compare_searches(problems, searches): '\n A function for comparing different search algorithms on different problems.\n\n :param problems: problems to solve.\n :type problems: an iterator of problems (usually a list)\n :param searches: search algorithms to use.\n :type searches: an iterator of search functions (usually a list)\n ' table = [] for problem in problems: for search in searches: annotated_problem = AnnotatedProblem(problem) start_time = timeit.default_timer() try: sol = next(search(annotated_problem)) elapsed = (timeit.default_timer() - start_time) cost = sol.cost() except StopIteration: elapsed = (timeit.default_timer() - start_time) cost = 'Failed' table.append([problem.__class__.__name__, search.__name__, annotated_problem.goal_tests, annotated_problem.nodes_expanded, annotated_problem.nodes_evaluated, (('%0.3f' % cost) if isinstance(cost, float) else cost), (('%0.4f' % elapsed) if isinstance(elapsed, float) else elapsed)]) print(tabulate(table, headers=['Problem', 'Search Alg', 'Goal Tests', 'Nodes Expanded', 'Nodes Evaluated', 'Solution Cost', 'Runtime'], tablefmt='simple'))<|docstring|>A function for comparing different search algorithms on different problems. :param problems: problems to solve. :type problems: an iterator of problems (usually a list) :param searches: search algorithms to use. :type searches: an iterator of search functions (usually a list)<|endoftext|>
d4eacdcbb914f1767dac8803a99fa17c1ce101ca7f5fd3b4c1c7afd21cfa4042
def timefun(f): '\n A decorator function for calling Timer with autorange on the provided\n function.\n ' @wraps(f) def wrapper(*args, **kwds): try: result = timeit.Timer(partial(f, *args, **kwds)).autorange() except Exception: result = [10, timeit.Timer(partial(f, *args, **kwds)).timeit(10)] a = [a for a in args] a += [('%s=%s' % (k, kwds[k])) for k in kwds] print(('Timing %s%s: %0.7f (num runs=%i)' % (f.__name__, tuple(a), result[1], result[0]))) return f(*args, **kwds) return wrapper
A decorator function for calling Timer with autorange on the provided function.
py_search/utils.py
timefun
ctonic/py_search
4
python
def timefun(f): '\n A decorator function for calling Timer with autorange on the provided\n function.\n ' @wraps(f) def wrapper(*args, **kwds): try: result = timeit.Timer(partial(f, *args, **kwds)).autorange() except Exception: result = [10, timeit.Timer(partial(f, *args, **kwds)).timeit(10)] a = [a for a in args] a += [('%s=%s' % (k, kwds[k])) for k in kwds] print(('Timing %s%s: %0.7f (num runs=%i)' % (f.__name__, tuple(a), result[1], result[0]))) return f(*args, **kwds) return wrapper
def timefun(f): '\n A decorator function for calling Timer with autorange on the provided\n function.\n ' @wraps(f) def wrapper(*args, **kwds): try: result = timeit.Timer(partial(f, *args, **kwds)).autorange() except Exception: result = [10, timeit.Timer(partial(f, *args, **kwds)).timeit(10)] a = [a for a in args] a += [('%s=%s' % (k, kwds[k])) for k in kwds] print(('Timing %s%s: %0.7f (num runs=%i)' % (f.__name__, tuple(a), result[1], result[0]))) return f(*args, **kwds) return wrapper<|docstring|>A decorator function for calling Timer with autorange on the provided function.<|endoftext|>
a82e5071d35a99eb48053f0f231b82673e39fd4ff3a66e86b143168dd9930d3d
def compile(self, target): 'Build PDFium with Skia.' pdfium_dir = self.m.vars.checkout_root.join('pdfium') with self.m.context(cwd=pdfium_dir): depot_tools = self.m.vars.checkout_root.join('depot_tools') self.m.git.checkout('https://chromium.googlesource.com/chromium/tools/depot_tools.git', dir_path=depot_tools, ref='EXAMPLE_KEY') self.m.run(self.m.step, 'runhook', cmd=[depot_tools.join('gclient'), 'runhook', 'gn_linux64']) self.m.run(self.m.step, 'sysroot', cmd=['python', 'build/linux/sysroot_scripts/install-sysroot.py', '--arch=amd64']) gn_args = ['pdf_is_standalone=true', 'clang_use_chrome_plugins=false', 'is_component_build=false', 'is_debug=false'] if ('SkiaPaths' in self.m.vars.builder_name): gn_args.append('pdf_use_skia_paths=true') else: gn_args.append('pdf_use_skia=true') env = self.m.context.env env['CHROMIUM_BUILDTOOLS_PATH'] = str(pdfium_dir.join('buildtools')) with self.m.context(env=env): self.m.run(self.m.step, 'gn_gen', cmd=['gn', 'gen', 'out/skia', ('--args=%s' % ' '.join(gn_args))]) self.m.run(self.m.step, 'build_pdfium', cmd=['ninja', '-C', 'out/skia', '-j100'])
Build PDFium with Skia.
infra/bots/recipe_modules/flavor/pdfium_flavor.py
compile
rust-canvas/skia
46
python
def compile(self, target): pdfium_dir = self.m.vars.checkout_root.join('pdfium') with self.m.context(cwd=pdfium_dir): depot_tools = self.m.vars.checkout_root.join('depot_tools') self.m.git.checkout('https://chromium.googlesource.com/chromium/tools/depot_tools.git', dir_path=depot_tools, ref='EXAMPLE_KEY') self.m.run(self.m.step, 'runhook', cmd=[depot_tools.join('gclient'), 'runhook', 'gn_linux64']) self.m.run(self.m.step, 'sysroot', cmd=['python', 'build/linux/sysroot_scripts/install-sysroot.py', '--arch=amd64']) gn_args = ['pdf_is_standalone=true', 'clang_use_chrome_plugins=false', 'is_component_build=false', 'is_debug=false'] if ('SkiaPaths' in self.m.vars.builder_name): gn_args.append('pdf_use_skia_paths=true') else: gn_args.append('pdf_use_skia=true') env = self.m.context.env env['CHROMIUM_BUILDTOOLS_PATH'] = str(pdfium_dir.join('buildtools')) with self.m.context(env=env): self.m.run(self.m.step, 'gn_gen', cmd=['gn', 'gen', 'out/skia', ('--args=%s' % ' '.join(gn_args))]) self.m.run(self.m.step, 'build_pdfium', cmd=['ninja', '-C', 'out/skia', '-j100'])
def compile(self, target): pdfium_dir = self.m.vars.checkout_root.join('pdfium') with self.m.context(cwd=pdfium_dir): depot_tools = self.m.vars.checkout_root.join('depot_tools') self.m.git.checkout('https://chromium.googlesource.com/chromium/tools/depot_tools.git', dir_path=depot_tools, ref='EXAMPLE_KEY') self.m.run(self.m.step, 'runhook', cmd=[depot_tools.join('gclient'), 'runhook', 'gn_linux64']) self.m.run(self.m.step, 'sysroot', cmd=['python', 'build/linux/sysroot_scripts/install-sysroot.py', '--arch=amd64']) gn_args = ['pdf_is_standalone=true', 'clang_use_chrome_plugins=false', 'is_component_build=false', 'is_debug=false'] if ('SkiaPaths' in self.m.vars.builder_name): gn_args.append('pdf_use_skia_paths=true') else: gn_args.append('pdf_use_skia=true') env = self.m.context.env env['CHROMIUM_BUILDTOOLS_PATH'] = str(pdfium_dir.join('buildtools')) with self.m.context(env=env): self.m.run(self.m.step, 'gn_gen', cmd=['gn', 'gen', 'out/skia', ('--args=%s' % ' '.join(gn_args))]) self.m.run(self.m.step, 'build_pdfium', cmd=['ninja', '-C', 'out/skia', '-j100'])<|docstring|>Build PDFium with Skia.<|endoftext|>
aa26aba3da01048e2589e1b65946f0844c5cbd675dfe09ec88d8a763d99032b7
def timer(func): 'Print the runtime of the decorated function' @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter_ns() value = func(*args, **kwargs) end_time = time.perf_counter_ns() run_time = (end_time - start_time) run_time = ((end_time - start_time) / 10000000.0) print(f'[PERF] Finished {func.__name__!r} in {run_time:.4f} ms') return value return wrapper_timer
Print the runtime of the decorated function
samples/decorators.py
timer
shazz/DistributedOpenCL
1
python
def timer(func): @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter_ns() value = func(*args, **kwargs) end_time = time.perf_counter_ns() run_time = (end_time - start_time) run_time = ((end_time - start_time) / 10000000.0) print(f'[PERF] Finished {func.__name__!r} in {run_time:.4f} ms') return value return wrapper_timer
def timer(func): @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter_ns() value = func(*args, **kwargs) end_time = time.perf_counter_ns() run_time = (end_time - start_time) run_time = ((end_time - start_time) / 10000000.0) print(f'[PERF] Finished {func.__name__!r} in {run_time:.4f} ms') return value return wrapper_timer<|docstring|>Print the runtime of the decorated function<|endoftext|>
e1c2c761d3b6411ba1ada974398b772ec1bd6d56c11ea542ccbd1681be8624b7
def fetch_images_tag(pixabay_search_keyword, num_images): '\n Fetches images from Pixabay w.r.t a keyword.\n :param pixabay_search_keyword: Keyword to perform the search on Pixabay.\n :param num_images: Number of images to retrieve.\n :return: List of PIL images.\n :return: List of image URLs.\n ' query = ((((PIXABAY_API + '&q=') + pixabay_search_keyword.lower()) + '&image_type=photo&safesearch=true&per_page=') + str(num_images)) logging.info(f'Making request to Pixabay for {num_images} images to fetch with {pixabay_search_keyword} keyword.') start_time = time.time() response = requests.get(query) end_time = (time.time() - start_time) logging.info(f'Fetched search results in {end_time:.3f} seconds.') output = response.json() all_images = [] all_image_urls = [] start_time = time.time() for each in output['hits']: imageurl = each['webformatURL'] response = requests.get(imageurl) image = Image.open(BytesIO(response.content)).convert('RGB') all_images.append(image) all_image_urls.append(imageurl) end_time = (time.time() - start_time) logging.info(f'Fetched individual results in {end_time:.3f} seconds.') return (all_images, all_image_urls)
Fetches images from Pixabay w.r.t a keyword. :param pixabay_search_keyword: Keyword to perform the search on Pixabay. :param num_images: Number of images to retrieve. :return: List of PIL images. :return: List of image URLs.
server/pixabay_utils.py
fetch_images_tag
deep-diver/image_search_with_natural_language
28
python
def fetch_images_tag(pixabay_search_keyword, num_images): '\n Fetches images from Pixabay w.r.t a keyword.\n :param pixabay_search_keyword: Keyword to perform the search on Pixabay.\n :param num_images: Number of images to retrieve.\n :return: List of PIL images.\n :return: List of image URLs.\n ' query = ((((PIXABAY_API + '&q=') + pixabay_search_keyword.lower()) + '&image_type=photo&safesearch=true&per_page=') + str(num_images)) logging.info(f'Making request to Pixabay for {num_images} images to fetch with {pixabay_search_keyword} keyword.') start_time = time.time() response = requests.get(query) end_time = (time.time() - start_time) logging.info(f'Fetched search results in {end_time:.3f} seconds.') output = response.json() all_images = [] all_image_urls = [] start_time = time.time() for each in output['hits']: imageurl = each['webformatURL'] response = requests.get(imageurl) image = Image.open(BytesIO(response.content)).convert('RGB') all_images.append(image) all_image_urls.append(imageurl) end_time = (time.time() - start_time) logging.info(f'Fetched individual results in {end_time:.3f} seconds.') return (all_images, all_image_urls)
def fetch_images_tag(pixabay_search_keyword, num_images): '\n Fetches images from Pixabay w.r.t a keyword.\n :param pixabay_search_keyword: Keyword to perform the search on Pixabay.\n :param num_images: Number of images to retrieve.\n :return: List of PIL images.\n :return: List of image URLs.\n ' query = ((((PIXABAY_API + '&q=') + pixabay_search_keyword.lower()) + '&image_type=photo&safesearch=true&per_page=') + str(num_images)) logging.info(f'Making request to Pixabay for {num_images} images to fetch with {pixabay_search_keyword} keyword.') start_time = time.time() response = requests.get(query) end_time = (time.time() - start_time) logging.info(f'Fetched search results in {end_time:.3f} seconds.') output = response.json() all_images = [] all_image_urls = [] start_time = time.time() for each in output['hits']: imageurl = each['webformatURL'] response = requests.get(imageurl) image = Image.open(BytesIO(response.content)).convert('RGB') all_images.append(image) all_image_urls.append(imageurl) end_time = (time.time() - start_time) logging.info(f'Fetched individual results in {end_time:.3f} seconds.') return (all_images, all_image_urls)<|docstring|>Fetches images from Pixabay w.r.t a keyword. :param pixabay_search_keyword: Keyword to perform the search on Pixabay. :param num_images: Number of images to retrieve. :return: List of PIL images. :return: List of image URLs.<|endoftext|>
dd1d5787932292fc418f30fb0a8b76750357c956fb02d65c0c9a6a23caa55e50
def get_logger(name: str): '\n Returns a `logging.Logger` for `name` that can handle multiprocessing.\n\n If a log should be called on all processes, pass `main_process_only=False`\n\n E.g.\n ```python\n logger.info("My log", main_process_only=False)\n logger.debug("My log", main_process_only=False)\n ```\n\n Args:\n name (`str`):\n The name for the logger, such as `__file__`\n ' logger = logging.getLogger(name) return MultiProcessAdapter(logger, {})
Returns a `logging.Logger` for `name` that can handle multiprocessing. If a log should be called on all processes, pass `main_process_only=False` E.g. ```python logger.info("My log", main_process_only=False) logger.debug("My log", main_process_only=False) ``` Args: name (`str`): The name for the logger, such as `__file__`
src/accelerate/logging.py
get_logger
yuxinyuan/accelerate
0
python
def get_logger(name: str): '\n Returns a `logging.Logger` for `name` that can handle multiprocessing.\n\n If a log should be called on all processes, pass `main_process_only=False`\n\n E.g.\n ```python\n logger.info("My log", main_process_only=False)\n logger.debug("My log", main_process_only=False)\n ```\n\n Args:\n name (`str`):\n The name for the logger, such as `__file__`\n ' logger = logging.getLogger(name) return MultiProcessAdapter(logger, {})
def get_logger(name: str): '\n Returns a `logging.Logger` for `name` that can handle multiprocessing.\n\n If a log should be called on all processes, pass `main_process_only=False`\n\n E.g.\n ```python\n logger.info("My log", main_process_only=False)\n logger.debug("My log", main_process_only=False)\n ```\n\n Args:\n name (`str`):\n The name for the logger, such as `__file__`\n ' logger = logging.getLogger(name) return MultiProcessAdapter(logger, {})<|docstring|>Returns a `logging.Logger` for `name` that can handle multiprocessing. If a log should be called on all processes, pass `main_process_only=False` E.g. ```python logger.info("My log", main_process_only=False) logger.debug("My log", main_process_only=False) ``` Args: name (`str`): The name for the logger, such as `__file__`<|endoftext|>
843d30e9202ceff18d5a1553bf22400a26e19a2d0fb3be292dc176662886241f
@staticmethod def _should_log(main_process_only): 'Check if log should be performed' return ((not main_process_only) or (main_process_only and (AcceleratorState().local_process_index == 0)))
Check if log should be performed
src/accelerate/logging.py
_should_log
yuxinyuan/accelerate
0
python
@staticmethod def _should_log(main_process_only): return ((not main_process_only) or (main_process_only and (AcceleratorState().local_process_index == 0)))
@staticmethod def _should_log(main_process_only): return ((not main_process_only) or (main_process_only and (AcceleratorState().local_process_index == 0)))<|docstring|>Check if log should be performed<|endoftext|>
1ab716131fcbea813e9405c6bc2380c331bc0f99bdb6a1ae28d8a0c1315ef229
def log(self, level, msg, *args, **kwargs): '\n Delegates logger call after checking if we should log.\n\n Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes\n or only the main executed one. Default is `True` if not passed\n ' main_process_only = kwargs.pop('main_process_only', True) if (self.isEnabledFor(level) and self._should_log(main_process_only)): (msg, kwargs) = self.process(msg, kwargs) self.logger.log(level, msg, *args, **kwargs)
Delegates logger call after checking if we should log. Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes or only the main executed one. Default is `True` if not passed
src/accelerate/logging.py
log
yuxinyuan/accelerate
0
python
def log(self, level, msg, *args, **kwargs): '\n Delegates logger call after checking if we should log.\n\n Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes\n or only the main executed one. Default is `True` if not passed\n ' main_process_only = kwargs.pop('main_process_only', True) if (self.isEnabledFor(level) and self._should_log(main_process_only)): (msg, kwargs) = self.process(msg, kwargs) self.logger.log(level, msg, *args, **kwargs)
def log(self, level, msg, *args, **kwargs): '\n Delegates logger call after checking if we should log.\n\n Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes\n or only the main executed one. Default is `True` if not passed\n ' main_process_only = kwargs.pop('main_process_only', True) if (self.isEnabledFor(level) and self._should_log(main_process_only)): (msg, kwargs) = self.process(msg, kwargs) self.logger.log(level, msg, *args, **kwargs)<|docstring|>Delegates logger call after checking if we should log. Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes or only the main executed one. Default is `True` if not passed<|endoftext|>
45f2b69e56974a39b6dff45de3e658b9a0d6f29f67119ef752a277929f3ce73a
def find(path, follow_symlinks=True): 'List files.\n\n Args:\n path (str): Path.\n follow_symlinks (bool): Follow symlink.\n\n Returns:\n list[str]: List of files.\n ' args = [config['binaries']['find']] if follow_symlinks: args += ['-L'] args += [path] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() return filter(None, out.decode().split('\n'))
List files. Args: path (str): Path. follow_symlinks (bool): Follow symlink. Returns: list[str]: List of files.
catalogue/bin.py
find
wesselb/catalogue
0
python
def find(path, follow_symlinks=True): 'List files.\n\n Args:\n path (str): Path.\n follow_symlinks (bool): Follow symlink.\n\n Returns:\n list[str]: List of files.\n ' args = [config['binaries']['find']] if follow_symlinks: args += ['-L'] args += [path] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() return filter(None, out.decode().split('\n'))
def find(path, follow_symlinks=True): 'List files.\n\n Args:\n path (str): Path.\n follow_symlinks (bool): Follow symlink.\n\n Returns:\n list[str]: List of files.\n ' args = [config['binaries']['find']] if follow_symlinks: args += ['-L'] args += [path] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() return filter(None, out.decode().split('\n'))<|docstring|>List files. Args: path (str): Path. follow_symlinks (bool): Follow symlink. Returns: list[str]: List of files.<|endoftext|>
049130f5aa7a63e5047f336696f9bc118a56c772ca71ee8c2c6867986e2fe41c
def mdfind(path, query): 'Search for content.\n\n Args:\n path (str): Path to search on.\n query (str): Query to search for.\n\n Returns:\n list[str]: List of files that match the search query.\n ' args = [config['binaries']['mdfind'], '-onlyin', path, query] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() results = filter(None, out.decode().split('\n')) files = file_filter(find(path, follow_symlinks=True), None) sym_paths = map(os.path.realpath, filter(os.path.islink, files)) return (results + [r for p in sym_paths for r in mdfind(p, query)])
Search for content. Args: path (str): Path to search on. query (str): Query to search for. Returns: list[str]: List of files that match the search query.
catalogue/bin.py
mdfind
wesselb/catalogue
0
python
def mdfind(path, query): 'Search for content.\n\n Args:\n path (str): Path to search on.\n query (str): Query to search for.\n\n Returns:\n list[str]: List of files that match the search query.\n ' args = [config['binaries']['mdfind'], '-onlyin', path, query] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() results = filter(None, out.decode().split('\n')) files = file_filter(find(path, follow_symlinks=True), None) sym_paths = map(os.path.realpath, filter(os.path.islink, files)) return (results + [r for p in sym_paths for r in mdfind(p, query)])
def mdfind(path, query): 'Search for content.\n\n Args:\n path (str): Path to search on.\n query (str): Query to search for.\n\n Returns:\n list[str]: List of files that match the search query.\n ' args = [config['binaries']['mdfind'], '-onlyin', path, query] (out, _) = sp.Popen(args, stdout=sp.PIPE).communicate() results = filter(None, out.decode().split('\n')) files = file_filter(find(path, follow_symlinks=True), None) sym_paths = map(os.path.realpath, filter(os.path.islink, files)) return (results + [r for p in sym_paths for r in mdfind(p, query)])<|docstring|>Search for content. Args: path (str): Path to search on. query (str): Query to search for. Returns: list[str]: List of files that match the search query.<|endoftext|>
766f9b413b8412004d3f2b49414d59615d5c32e6e63df9f0e45990646378972c
def fzf(input, query=None): 'Fuzzy search.\n\n Args:\n input (str): Input to search through.\n query (str): Query.\n\n Returns:\n list[str]: Fuzzy matches.\n ' args = [config['binaries']['fzf']] if (query is not None): args += ['-f', query] p = sp.Popen(args, stdin=sp.PIPE, stdout=sp.PIPE) p.stdin.write(input.encode()) (out, _) = p.communicate() return filter(None, out.decode().split('\n'))
Fuzzy search. Args: input (str): Input to search through. query (str): Query. Returns: list[str]: Fuzzy matches.
catalogue/bin.py
fzf
wesselb/catalogue
0
python
def fzf(input, query=None): 'Fuzzy search.\n\n Args:\n input (str): Input to search through.\n query (str): Query.\n\n Returns:\n list[str]: Fuzzy matches.\n ' args = [config['binaries']['fzf']] if (query is not None): args += ['-f', query] p = sp.Popen(args, stdin=sp.PIPE, stdout=sp.PIPE) p.stdin.write(input.encode()) (out, _) = p.communicate() return filter(None, out.decode().split('\n'))
def fzf(input, query=None): 'Fuzzy search.\n\n Args:\n input (str): Input to search through.\n query (str): Query.\n\n Returns:\n list[str]: Fuzzy matches.\n ' args = [config['binaries']['fzf']] if (query is not None): args += ['-f', query] p = sp.Popen(args, stdin=sp.PIPE, stdout=sp.PIPE) p.stdin.write(input.encode()) (out, _) = p.communicate() return filter(None, out.decode().split('\n'))<|docstring|>Fuzzy search. Args: input (str): Input to search through. query (str): Query. Returns: list[str]: Fuzzy matches.<|endoftext|>
3988ae9cd64a446efae1ec39cbab1605b749b8e9fadaa6800b56187ad245d1eb
def pbcopy(x): 'Copy text to clipboard.\n\n Args:\n x (str): Text to copy.\n ' sp.Popen([config['binaries']['pbcopy']], stdout=sp.PIPE, stdin=sp.PIPE).communicate(input=x.encode())
Copy text to clipboard. Args: x (str): Text to copy.
catalogue/bin.py
pbcopy
wesselb/catalogue
0
python
def pbcopy(x): 'Copy text to clipboard.\n\n Args:\n x (str): Text to copy.\n ' sp.Popen([config['binaries']['pbcopy']], stdout=sp.PIPE, stdin=sp.PIPE).communicate(input=x.encode())
def pbcopy(x): 'Copy text to clipboard.\n\n Args:\n x (str): Text to copy.\n ' sp.Popen([config['binaries']['pbcopy']], stdout=sp.PIPE, stdin=sp.PIPE).communicate(input=x.encode())<|docstring|>Copy text to clipboard. Args: x (str): Text to copy.<|endoftext|>
977418ce7bca2bafd017c0bf9eec4d6a4b7da10d71b335f248c19d8871d1680b
def pbpaste(): 'Paste text from clipboard.\n\n Returns:\n str:Text from clipboard.\n ' (out, _) = sp.Popen([config['binaries']['pbpaste']], stdout=sp.PIPE).communicate() return out.decode()
Paste text from clipboard. Returns: str:Text from clipboard.
catalogue/bin.py
pbpaste
wesselb/catalogue
0
python
def pbpaste(): 'Paste text from clipboard.\n\n Returns:\n str:Text from clipboard.\n ' (out, _) = sp.Popen([config['binaries']['pbpaste']], stdout=sp.PIPE).communicate() return out.decode()
def pbpaste(): 'Paste text from clipboard.\n\n Returns:\n str:Text from clipboard.\n ' (out, _) = sp.Popen([config['binaries']['pbpaste']], stdout=sp.PIPE).communicate() return out.decode()<|docstring|>Paste text from clipboard. Returns: str:Text from clipboard.<|endoftext|>
24595c921334cb760d471bdd25daa6f1983e0977c5122f8deb37698c836340eb
def subl(path): 'Open Sublime Text.\n\n Args:\n path (str): File to open.\n ' sp.Popen([config['binaries']['subl'], path]).wait()
Open Sublime Text. Args: path (str): File to open.
catalogue/bin.py
subl
wesselb/catalogue
0
python
def subl(path): 'Open Sublime Text.\n\n Args:\n path (str): File to open.\n ' sp.Popen([config['binaries']['subl'], path]).wait()
def subl(path): 'Open Sublime Text.\n\n Args:\n path (str): File to open.\n ' sp.Popen([config['binaries']['subl'], path]).wait()<|docstring|>Open Sublime Text. Args: path (str): File to open.<|endoftext|>
7bf2f8895d20954fcef2255882260983ef1b292c2cc8d560567405144aa94ab2
def trash(path): 'Move a file to trash.\n\n Args:\n path (str): Path.\n ' sp.Popen([config['binaries']['trash'], path]).wait()
Move a file to trash. Args: path (str): Path.
catalogue/bin.py
trash
wesselb/catalogue
0
python
def trash(path): 'Move a file to trash.\n\n Args:\n path (str): Path.\n ' sp.Popen([config['binaries']['trash'], path]).wait()
def trash(path): 'Move a file to trash.\n\n Args:\n path (str): Path.\n ' sp.Popen([config['binaries']['trash'], path]).wait()<|docstring|>Move a file to trash. Args: path (str): Path.<|endoftext|>
6c46265ca8a3ec0430b4de4ff738004120d4bdb1a4a6d917458abe221beca03d
def remove_emoji(s): '去除表情' emoji_pattern = re.compile('[𐀀-\U0010ffff]', flags=re.UNICODE) return emoji_pattern.sub('', str(s))
去除表情
daemon/ck101_daemon.py
remove_emoji
Odland/crawler_selenium
0
python
def remove_emoji(s): emoji_pattern = re.compile('[𐀀-\U0010ffff]', flags=re.UNICODE) return emoji_pattern.sub(, str(s))
def remove_emoji(s): emoji_pattern = re.compile('[𐀀-\U0010ffff]', flags=re.UNICODE) return emoji_pattern.sub(, str(s))<|docstring|>去除表情<|endoftext|>
1cde3ea242ced4c77d6bb0c782ec192435d948974d8a625f0b15c60f36553d41
def remove_blank(self): '去除空白字符' blank_pattern = re.compile('\\s') return blank_pattern.sub(' ', self.s)
去除空白字符
daemon/ck101_daemon.py
remove_blank
Odland/crawler_selenium
0
python
def remove_blank(self): blank_pattern = re.compile('\\s') return blank_pattern.sub(' ', self.s)
def remove_blank(self): blank_pattern = re.compile('\\s') return blank_pattern.sub(' ', self.s)<|docstring|>去除空白字符<|endoftext|>
7a729a671e5f3525dfbad49931168fd73c44c9a1ea7cb080cf5846b455b2c469
def rehttps(sb): '匹配链接' hs = re.compile('https://ck101.com/forum.php\\?mod=forumdisplay&fid=[0-9]+$') return hs.search(sb)
匹配链接
daemon/ck101_daemon.py
rehttps
Odland/crawler_selenium
0
python
def rehttps(sb): hs = re.compile('https://ck101.com/forum.php\\?mod=forumdisplay&fid=[0-9]+$') return hs.search(sb)
def rehttps(sb): hs = re.compile('https://ck101.com/forum.php\\?mod=forumdisplay&fid=[0-9]+$') return hs.search(sb)<|docstring|>匹配链接<|endoftext|>
a025a33117f9a8ebb2416932a9491bbc530ecc98ce86cec634d7165698d2068b
def clean_comma(s): '剔除数字中的逗号' p = re.compile(',') return p.sub('', s)
剔除数字中的逗号
daemon/ck101_daemon.py
clean_comma
Odland/crawler_selenium
0
python
def clean_comma(s): p = re.compile(',') return p.sub(, s)
def clean_comma(s): p = re.compile(',') return p.sub(, s)<|docstring|>剔除数字中的逗号<|endoftext|>
ebbc82e1ac3820ff1775ac3f4c99cf0014f66fcebc31140471971338cee86788
def reply_data(divs_, browser): '生成器函数,返回回复者的数据' for i in divs_: try: reply_poster = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue try: reply_datetime = i.find('span', attrs={'class': 'postDateLine'}).text reply_datetime = datetime.datetime.strptime(reply_datetime[4:], '%Y-%m-%d %H:%M') reply_content = i.find('td', attrs={'class': 't_f'}).get_text() reply_content = remove_emoji(reply_content) except AttributeError: reply_content = None (yield (reply_poster, reply_datetime, reply_content, browser.current_url))
生成器函数,返回回复者的数据
daemon/ck101_daemon.py
reply_data
Odland/crawler_selenium
0
python
def reply_data(divs_, browser): for i in divs_: try: reply_poster = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue try: reply_datetime = i.find('span', attrs={'class': 'postDateLine'}).text reply_datetime = datetime.datetime.strptime(reply_datetime[4:], '%Y-%m-%d %H:%M') reply_content = i.find('td', attrs={'class': 't_f'}).get_text() reply_content = remove_emoji(reply_content) except AttributeError: reply_content = None (yield (reply_poster, reply_datetime, reply_content, browser.current_url))
def reply_data(divs_, browser): for i in divs_: try: reply_poster = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue try: reply_datetime = i.find('span', attrs={'class': 'postDateLine'}).text reply_datetime = datetime.datetime.strptime(reply_datetime[4:], '%Y-%m-%d %H:%M') reply_content = i.find('td', attrs={'class': 't_f'}).get_text() reply_content = remove_emoji(reply_content) except AttributeError: reply_content = None (yield (reply_poster, reply_datetime, reply_content, browser.current_url))<|docstring|>生成器函数,返回回复者的数据<|endoftext|>
c1d2e58d1191264371587da070ce5511ea5e3d204b5f255102963719b1987bb5
def ins_soc_reply(divs_, id_, browser): '更新回复者的数据和评分' post = Post.objects.get(id=id_) num = 0 for s in reply_data(divs_, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if (Soc == True): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) trs = fetch_socre_ck(divs_[num], browser) for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1
更新回复者的数据和评分
daemon/ck101_daemon.py
ins_soc_reply
Odland/crawler_selenium
0
python
def ins_soc_reply(divs_, id_, browser): post = Post.objects.get(id=id_) num = 0 for s in reply_data(divs_, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if (Soc == True): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) trs = fetch_socre_ck(divs_[num], browser) for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1
def ins_soc_reply(divs_, id_, browser): post = Post.objects.get(id=id_) num = 0 for s in reply_data(divs_, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if (Soc == True): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) trs = fetch_socre_ck(divs_[num], browser) for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1<|docstring|>更新回复者的数据和评分<|endoftext|>
72721666024058c6983fd3be10dd4432acf95312b95369721d921faf5e89fef1
def np_ins_reply(lastcurrurl, id_, browser): '根据获得版块的链接和最后更新时间来插入回复者数据和评分者数据' (soup, divs_, browser) = brow_page_source(lastcurrurl, browser) replys = Reply.objects.filter(post_id=id_).values() reply_name = replys[(len(replys) - 1)]['reply_poster'] for (i, j) in enumerate(divs_): if (j.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') == reply_name): divs_ = divs_[(i + 1):] if (Soc == True): socs = divs_[0:(i + 1)] upsocre(socs, id_, browser) break ins_soc_reply(divs_, id_, browser) num = 1 while True: try: if (num == NUM): l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) ins_soc_reply(divs_, id_) except: l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break num += 1
根据获得版块的链接和最后更新时间来插入回复者数据和评分者数据
daemon/ck101_daemon.py
np_ins_reply
Odland/crawler_selenium
0
python
def np_ins_reply(lastcurrurl, id_, browser): (soup, divs_, browser) = brow_page_source(lastcurrurl, browser) replys = Reply.objects.filter(post_id=id_).values() reply_name = replys[(len(replys) - 1)]['reply_poster'] for (i, j) in enumerate(divs_): if (j.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') == reply_name): divs_ = divs_[(i + 1):] if (Soc == True): socs = divs_[0:(i + 1)] upsocre(socs, id_, browser) break ins_soc_reply(divs_, id_, browser) num = 1 while True: try: if (num == NUM): l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) ins_soc_reply(divs_, id_) except: l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break num += 1
def np_ins_reply(lastcurrurl, id_, browser): (soup, divs_, browser) = brow_page_source(lastcurrurl, browser) replys = Reply.objects.filter(post_id=id_).values() reply_name = replys[(len(replys) - 1)]['reply_poster'] for (i, j) in enumerate(divs_): if (j.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') == reply_name): divs_ = divs_[(i + 1):] if (Soc == True): socs = divs_[0:(i + 1)] upsocre(socs, id_, browser) break ins_soc_reply(divs_, id_, browser) num = 1 while True: try: if (num == NUM): l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) ins_soc_reply(divs_, id_) except: l = Last_Url.objects.get(post_id=id_) l.lasturl = browser.current_url l.save() break num += 1<|docstring|>根据获得版块的链接和最后更新时间来插入回复者数据和评分者数据<|endoftext|>
05d2a8b9ec5fb63cb8eb8f3d7155f5053310de00acc481426c09ab563c8092d5
def brow_page_source(url, browser): '打开页面' browser.maximize_window() browser.get(url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(3) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) return (soup, divs_, browser)
打开页面
daemon/ck101_daemon.py
brow_page_source
Odland/crawler_selenium
0
python
def brow_page_source(url, browser): browser.maximize_window() browser.get(url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(3) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) return (soup, divs_, browser)
def brow_page_source(url, browser): browser.maximize_window() browser.get(url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(3) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) return (soup, divs_, browser)<|docstring|>打开页面<|endoftext|>
6068bf66061922b60935f3dc82b9edf02a060be83c50fb7409234492d3b68cf0
def fetch_socre_ck(i, browser): '点击评分者页面' xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') return trs
点击评分者页面
daemon/ck101_daemon.py
fetch_socre_ck
Odland/crawler_selenium
0
python
def fetch_socre_ck(i, browser): xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') return trs
def fetch_socre_ck(i, browser): xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') return trs<|docstring|>点击评分者页面<|endoftext|>
efa2f6c76cf81e52cdb1ee6412352cd9b0efd4a4b1ea58bfba53ce3b94aa6c64
def upsocre(divs_, id_, browser): '更新评分者的数据' for i in divs_: try: name = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue for n in Reply.objects.all().filter(post_id=id_): if (n.reply_poster == name): rid = n.id break if (int(i.find('a', attrs={'class': 'btncopy'}).em.text) != 1): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) rep = Score_Reply.objects.filter(reply_id=rid).values()[0]['srnp'] if (srnp > rep): Score_Reply.objects.filter(reply_id=rid).update(srnp=srnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (srnp - rep)): tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) reply = Reply.objects.get(id=rid) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except: pass else: try: spnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) pos = Score_Post.objects.filter(post_id=id_).values()[0]['spnp'] if (pos > spnp): Score_Post.objects.filter(post_id=id_).update(spnp=spnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (spnp - pos)): tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) post = Post.objects.get(id=id_) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except Exception as e: pass return browser
更新评分者的数据
daemon/ck101_daemon.py
upsocre
Odland/crawler_selenium
0
python
def upsocre(divs_, id_, browser): for i in divs_: try: name = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue for n in Reply.objects.all().filter(post_id=id_): if (n.reply_poster == name): rid = n.id break if (int(i.find('a', attrs={'class': 'btncopy'}).em.text) != 1): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) rep = Score_Reply.objects.filter(reply_id=rid).values()[0]['srnp'] if (srnp > rep): Score_Reply.objects.filter(reply_id=rid).update(srnp=srnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (srnp - rep)): tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) reply = Reply.objects.get(id=rid) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except: pass else: try: spnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) pos = Score_Post.objects.filter(post_id=id_).values()[0]['spnp'] if (pos > spnp): Score_Post.objects.filter(post_id=id_).update(spnp=spnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (spnp - pos)): tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) post = Post.objects.get(id=id_) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except Exception as e: pass return browser
def upsocre(divs_, id_, browser): for i in divs_: try: name = i.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except AttributeError: continue for n in Reply.objects.all().filter(post_id=id_): if (n.reply_poster == name): rid = n.id break if (int(i.find('a', attrs={'class': 'btncopy'}).em.text) != 1): try: srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) rep = Score_Reply.objects.filter(reply_id=rid).values()[0]['srnp'] if (srnp > rep): Score_Reply.objects.filter(reply_id=rid).update(srnp=srnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (srnp - rep)): tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) reply = Reply.objects.get(id=rid) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except: pass else: try: spnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) pos = Score_Post.objects.filter(post_id=id_).values()[0]['spnp'] if (pos > spnp): Score_Post.objects.filter(post_id=id_).update(spnp=spnp) trs = fetch_socre_ck(i, browser) num = 0 for tr in trs: if (num <= (spnp - pos)): tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) post = Post.objects.get(id=id_) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() num += 1 clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except Exception as e: pass return browser<|docstring|>更新评分者的数据<|endoftext|>
35fe22b42a23134ff7c7ed7dff0c70cb096f4eed09eea8a31e6be5ed4a1f151e
def update_data(url, lasttime, browser): '整个的更新程序入口' print('正在更新数据...') p = Post.objects.get(post_url=url) p.lastupdate_datetime = lasttime p.save() id_ = Post.objects.filter(post_url=url).values()[0]['id'] if (Soc == False): try: lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] np_ins_reply(lastcurrurl, id_, browser) except Exception as e: print(e) else: (soup, divs_, browser) = brow_page_source(url, browser) pdiv = divs_[0] try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) Post.objects.filter(id=id_).update(view_number=view_number, replay_number=replay_number, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number) except BaseException as e: pass try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() Post.objects.filter(id=id_).update(fb_number=fb_number) except BaseException as e: print('请检查fb点赞数是否加载出来,并适当增加等待时间') print(e) if (lasttime != Post.objects.filter(post_url=url).values()[0]['lastupdate_datetime']): lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] (soup, divs_, browser) = brow_page_source(url, browser) while (lastcurrurl != browser.current_url): browser = upsocre(divs_, id_, browser) try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) except Exception as e: pass np_ins_reply(lastcurrurl, id_, browser) else: (soup, divs_, browser) = brow_page_source(url, browser) upsocre(divs_, id_, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) upsocre(divs_, id_, browser) except: break return browser
整个的更新程序入口
daemon/ck101_daemon.py
update_data
Odland/crawler_selenium
0
python
def update_data(url, lasttime, browser): print('正在更新数据...') p = Post.objects.get(post_url=url) p.lastupdate_datetime = lasttime p.save() id_ = Post.objects.filter(post_url=url).values()[0]['id'] if (Soc == False): try: lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] np_ins_reply(lastcurrurl, id_, browser) except Exception as e: print(e) else: (soup, divs_, browser) = brow_page_source(url, browser) pdiv = divs_[0] try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) Post.objects.filter(id=id_).update(view_number=view_number, replay_number=replay_number, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number) except BaseException as e: pass try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() Post.objects.filter(id=id_).update(fb_number=fb_number) except BaseException as e: print('请检查fb点赞数是否加载出来,并适当增加等待时间') print(e) if (lasttime != Post.objects.filter(post_url=url).values()[0]['lastupdate_datetime']): lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] (soup, divs_, browser) = brow_page_source(url, browser) while (lastcurrurl != browser.current_url): browser = upsocre(divs_, id_, browser) try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) except Exception as e: pass np_ins_reply(lastcurrurl, id_, browser) else: (soup, divs_, browser) = brow_page_source(url, browser) upsocre(divs_, id_, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) upsocre(divs_, id_, browser) except: break return browser
def update_data(url, lasttime, browser): print('正在更新数据...') p = Post.objects.get(post_url=url) p.lastupdate_datetime = lasttime p.save() id_ = Post.objects.filter(post_url=url).values()[0]['id'] if (Soc == False): try: lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] np_ins_reply(lastcurrurl, id_, browser) except Exception as e: print(e) else: (soup, divs_, browser) = brow_page_source(url, browser) pdiv = divs_[0] try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) Post.objects.filter(id=id_).update(view_number=view_number, replay_number=replay_number, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number) except BaseException as e: pass try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() Post.objects.filter(id=id_).update(fb_number=fb_number) except BaseException as e: print('请检查fb点赞数是否加载出来,并适当增加等待时间') print(e) if (lasttime != Post.objects.filter(post_url=url).values()[0]['lastupdate_datetime']): lastcurrurl = Last_Url.objects.filter(post_id=id_).values()[0]['lasturl'] (soup, divs_, browser) = brow_page_source(url, browser) while (lastcurrurl != browser.current_url): browser = upsocre(divs_, id_, browser) try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) except Exception as e: pass np_ins_reply(lastcurrurl, id_, browser) else: (soup, divs_, browser) = brow_page_source(url, browser) upsocre(divs_, id_, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) upsocre(divs_, id_, browser) except: break return browser<|docstring|>整个的更新程序入口<|endoftext|>
979bea93561e97dbd4839cdb82b9a18298885fb0f0823ef6bf4c79e05fc05b79
def post_div(pdiv, post_url, url, last_time, browser): '获取楼主发帖的数据' browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') try: category = pdiv.select_one('article hgroup > h2 > a').get('title') title = pdiv.find('h1', attrs={'id': 'thread_subject', 'itemprop': 'headline'}).text try: view_number = int(pdiv.find('span', attrs={'class': 'viewNum'}).text) except Exception as e: view_number = 0 try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) except Exception as e: replay_number = 0 try: poster_name = pdiv.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except Exception as e: poster_name = '秘密客' post_datetime = pdiv.find('span', attrs={'class': 'postDateLine'}).text post_datetime = datetime.datetime.strptime(post_datetime[4:], '%Y-%m-%d %H:%M') post_content = pdiv.find('td', attrs={'class': 't_f'}) [s.extract() for s in post_content('script')] post_content = post_content.get_text() post_content = remove_emoji(post_content) except BaseException as e: print(e) try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() except BaseException as e: print(e) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) post = Post(entrance_id=0, category=category, title=title, post_url=post_url, view_number=view_number, replay_number=replay_number, poster_name=poster_name, post_datetime=post_datetime, post_content=post_content, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number, fb_number=fb_number, lastupdate_datetime=last_time) post.save() if (Soc == True): try: spnp = int(pdiv.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + pdiv.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: spnp = 0 spnumber = 0 spcontent = None spposter = None socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() return post
获取楼主发帖的数据
daemon/ck101_daemon.py
post_div
Odland/crawler_selenium
0
python
def post_div(pdiv, post_url, url, last_time, browser): browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') try: category = pdiv.select_one('article hgroup > h2 > a').get('title') title = pdiv.find('h1', attrs={'id': 'thread_subject', 'itemprop': 'headline'}).text try: view_number = int(pdiv.find('span', attrs={'class': 'viewNum'}).text) except Exception as e: view_number = 0 try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) except Exception as e: replay_number = 0 try: poster_name = pdiv.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except Exception as e: poster_name = '秘密客' post_datetime = pdiv.find('span', attrs={'class': 'postDateLine'}).text post_datetime = datetime.datetime.strptime(post_datetime[4:], '%Y-%m-%d %H:%M') post_content = pdiv.find('td', attrs={'class': 't_f'}) [s.extract() for s in post_content('script')] post_content = post_content.get_text() post_content = remove_emoji(post_content) except BaseException as e: print(e) try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() except BaseException as e: print(e) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) post = Post(entrance_id=0, category=category, title=title, post_url=post_url, view_number=view_number, replay_number=replay_number, poster_name=poster_name, post_datetime=post_datetime, post_content=post_content, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number, fb_number=fb_number, lastupdate_datetime=last_time) post.save() if (Soc == True): try: spnp = int(pdiv.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + pdiv.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: spnp = 0 spnumber = 0 spcontent = None spposter = None socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() return post
def post_div(pdiv, post_url, url, last_time, browser): browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') try: category = pdiv.select_one('article hgroup > h2 > a').get('title') title = pdiv.find('h1', attrs={'id': 'thread_subject', 'itemprop': 'headline'}).text try: view_number = int(pdiv.find('span', attrs={'class': 'viewNum'}).text) except Exception as e: view_number = 0 try: replay_number = int(pdiv.find('span', attrs={'class': 'replayNum'}).text) except Exception as e: replay_number = 0 try: poster_name = pdiv.find('a', attrs={'class': 'authorName', 'target': '_blank'}).get('title') except Exception as e: poster_name = '秘密客' post_datetime = pdiv.find('span', attrs={'class': 'postDateLine'}).text post_datetime = datetime.datetime.strptime(post_datetime[4:], '%Y-%m-%d %H:%M') post_content = pdiv.find('td', attrs={'class': 't_f'}) [s.extract() for s in post_content('script')] post_content = post_content.get_text() post_content = remove_emoji(post_content) except BaseException as e: print(e) try: browser.switch_to.frame(WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="p_btn"]/span/div/span/iframe')))) fb_number = WebDriverWait(browser, 18).until(EC.presence_of_element_located((By.XPATH, '//*[@id="u_0_3"]'))).text fb_number = int(clean_comma(fb_number)) browser.switch_to.default_content() except BaseException as e: print(e) favorite_number = int(pdiv.find('a', attrs={'id': 'k_favorite', 'class': 'k_favorite'}).span.text) thank_number = int(pdiv.find('a', attrs={'id': 'post_thanktmp', 'class': 'ths'}).span.text) recommend_number = int(pdiv.find('a', attrs={'id': 'recommend_add', 'class': 'recommend_add'}).span.text) nrecommend_number = int(pdiv.find('a', attrs={'id': 'recommend_subtract', 'class': 'recommend_subtract'}).span.text) post = Post(entrance_id=0, category=category, title=title, post_url=post_url, view_number=view_number, replay_number=replay_number, poster_name=poster_name, post_datetime=post_datetime, post_content=post_content, favorite_number=favorite_number, thank_number=thank_number, recommend_number=recommend_number, nrecommend_number=nrecommend_number, fb_number=fb_number, lastupdate_datetime=last_time) post.save() if (Soc == True): try: spnp = int(pdiv.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + pdiv.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') spnumber = tds[0].text spposter = tds[1].text spcontent = tds[3].text spnumber = int(spnumber.split(' ')[1]) spcontent = remove_emoji(spcontent) socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() clk = WebDriverWait(browser, 2).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: spnp = 0 spnumber = 0 spcontent = None spposter = None socre_post = Score_Post(spposter=spposter, spnumber=spnumber, spcontent=spcontent, spnp=spnp, post=post) socre_post.save() return post<|docstring|>获取楼主发帖的数据<|endoftext|>
a647d23060a0d9f20ffebf483773fb847565e049d887cf9e3a89303706ea31a8
def reply_divs(rdivs, post, browser): '获取回复者的数据' num = 0 for s in reply_data(rdivs, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if Soc: try: i = rdivs[num] srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1
获取回复者的数据
daemon/ck101_daemon.py
reply_divs
Odland/crawler_selenium
0
python
def reply_divs(rdivs, post, browser): num = 0 for s in reply_data(rdivs, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if Soc: try: i = rdivs[num] srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1
def reply_divs(rdivs, post, browser): num = 0 for s in reply_data(rdivs, browser): (reply_poster, reply_datetime, reply_content, reply_url) = s reply = Reply(reply_poster=reply_poster, reply_content=reply_content, reply_datetime=reply_datetime, reply_url=reply_url, post=post) reply.save() if Soc: try: i = rdivs[num] srnp = int(i.find('ul', attrs={'class': 'rateInfo'}).li.p.text.split('評')[0]) xp = ('ratelog_' + i.attrs['id'].split('_')[1]) xp = (("//*[@id='" + xp) + "']/dd/p/a[1]") ck = browser.find_element_by_xpath(xp) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) tbody = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fwin_content_viewratings"]/div[1]/div/table/tbody')), message='超时') soup_trs = BeautifulSoup(tbody.get_attribute('innerHTML'), 'lxml') trs = soup_trs.find_all('tr') for tr in trs: tds = tr.find_all('td') srnumber = tds[0].text srposter = tds[1].text srcontent = tds[3].text srnumber = int(srnumber.split(' ')[1]) srcontent = remove_emoji(srcontent) socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() clk = WebDriverWait(browser, 5).until(EC.presence_of_element_located((By.XPATH, '//*[@id="fctrl_viewratings"]/span/a')), message='超时') browser.execute_script('arguments[0].scrollIntoView(false);', clk) browser.execute_script('arguments[0].click()', clk) except AttributeError: srnp = 0 srnumber = 0 srcontent = None srposter = None socre_reply = Score_Reply(srposter=srposter, srnumber=srnumber, srcontent=srcontent, srnp=srnp, reply=reply) socre_reply.save() num += 1<|docstring|>获取回复者的数据<|endoftext|>
206ad6c8832bc1e758675b9e346bbd74c2f165ae925254df8151cd47db483597
def divs(post_url, last_time, url, browser): '爬取数据的程序入口' browser.get(post_url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) pdiv = divs_[0] post = post_div(pdiv, post_url, url, last_time, browser) rdivs = divs_[1:] if (len(rdivs) > 0): reply_divs(rdivs, post, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') npages = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) reply_divs(npages, post, browser) currpagenum = soup.select_one('#pgt > div.pgt > div > strong') if currpagenum: hnum = int(soup.select_one('#pgt > div.pgt > div > strong').text) if (hnum == NUM): last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break except: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break else: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() return browser
爬取数据的程序入口
daemon/ck101_daemon.py
divs
Odland/crawler_selenium
0
python
def divs(post_url, last_time, url, browser): browser.get(post_url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) pdiv = divs_[0] post = post_div(pdiv, post_url, url, last_time, browser) rdivs = divs_[1:] if (len(rdivs) > 0): reply_divs(rdivs, post, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') npages = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) reply_divs(npages, post, browser) currpagenum = soup.select_one('#pgt > div.pgt > div > strong') if currpagenum: hnum = int(soup.select_one('#pgt > div.pgt > div > strong').text) if (hnum == NUM): last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break except: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break else: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() return browser
def divs(post_url, last_time, url, browser): browser.get(post_url) WebDriverWait(browser, 20).until(EC.presence_of_element_located((By.XPATH, '//*[@id="postlist"]'))) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') divs_ = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) pdiv = divs_[0] post = post_div(pdiv, post_url, url, last_time, browser) rdivs = divs_[1:] if (len(rdivs) > 0): reply_divs(rdivs, post, browser) while True: try: next_page = browser.find_element_by_css_selector('#postlist > div.threadBottom > div.pgs.mtm.mbm.cl > div > a.nxt') browser.execute_script('arguments[0].scrollIntoView(false);', next_page) browser.execute_script('arguments[0].click()', next_page) time.sleep(1) soup = BeautifulSoup(browser.page_source, 'lxml') npages = soup.find_all('div', attrs={'id': True, 'class': 'plhin'}) reply_divs(npages, post, browser) currpagenum = soup.select_one('#pgt > div.pgt > div > strong') if currpagenum: hnum = int(soup.select_one('#pgt > div.pgt > div > strong').text) if (hnum == NUM): last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break except: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() break else: last_url = Last_Url(lasturl=browser.current_url, post=post) last_url.save() return browser<|docstring|>爬取数据的程序入口<|endoftext|>
adffc59de25ebf91477b54b44502ca54729ef8160ee5962a53284f972b928139
def job(deep, genre='https://ck101.com/forum.php?mod=forumdisplay&fid=3551&page=3', browser=webdriver.Chrome(options=chrome_options)): '整个的项目的外界入口' browser.maximize_window() try: browser.get(genre) p = WebDriverWait(browser, 3).until(EC.presence_of_element_located((By.XPATH, '//*[@id="ct"]/div/div[4]/div[2]/div/div[6]/span[3]/a'))) if (p.get_attribute('class') == 'chked'): genre = p.get_attribute('href') except: pass url = genre browser.get(url) elem = WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) if elem: browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') print('程序开始运行...') time.sleep(1) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') pages = [] dbpages = set() for i in Post.objects.all(): dbpages.add(i.post_url) print('数据库中有{}个版块链接'.format(len(dbpages))) tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) updatepag = [] for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep > (len(pages) + len(updatepag))): while True: mess = '#fd_page_top > div > a.nxt' ck = browser.find_element_by_css_selector(mess) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep == (len(pages) + len(updatepag))): break print('获取了{}个新的链接'.format(len(pages))) print('新链接数:', len(pages), '\t 更新的链接数', len(updatepag)) for post_url_time in pages: browser = divs(post_url_time[0], post_url_time[1], url, browser) print('抓取了{}个版块的数据,开始更新数据,将有{}个版块被更新'.format(len(pages), len(updatepag))) for upurltime in updatepag: browser = update_data(upurltime[0], upurltime[1], browser) browser.quit() else: print('请检查你的定位元素是否准确')
整个的项目的外界入口
daemon/ck101_daemon.py
job
Odland/crawler_selenium
0
python
def job(deep, genre='https://ck101.com/forum.php?mod=forumdisplay&fid=3551&page=3', browser=webdriver.Chrome(options=chrome_options)): browser.maximize_window() try: browser.get(genre) p = WebDriverWait(browser, 3).until(EC.presence_of_element_located((By.XPATH, '//*[@id="ct"]/div/div[4]/div[2]/div/div[6]/span[3]/a'))) if (p.get_attribute('class') == 'chked'): genre = p.get_attribute('href') except: pass url = genre browser.get(url) elem = WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) if elem: browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') print('程序开始运行...') time.sleep(1) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') pages = [] dbpages = set() for i in Post.objects.all(): dbpages.add(i.post_url) print('数据库中有{}个版块链接'.format(len(dbpages))) tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) updatepag = [] for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep > (len(pages) + len(updatepag))): while True: mess = '#fd_page_top > div > a.nxt' ck = browser.find_element_by_css_selector(mess) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep == (len(pages) + len(updatepag))): break print('获取了{}个新的链接'.format(len(pages))) print('新链接数:', len(pages), '\t 更新的链接数', len(updatepag)) for post_url_time in pages: browser = divs(post_url_time[0], post_url_time[1], url, browser) print('抓取了{}个版块的数据,开始更新数据,将有{}个版块被更新'.format(len(pages), len(updatepag))) for upurltime in updatepag: browser = update_data(upurltime[0], upurltime[1], browser) browser.quit() else: print('请检查你的定位元素是否准确')
def job(deep, genre='https://ck101.com/forum.php?mod=forumdisplay&fid=3551&page=3', browser=webdriver.Chrome(options=chrome_options)): browser.maximize_window() try: browser.get(genre) p = WebDriverWait(browser, 3).until(EC.presence_of_element_located((By.XPATH, '//*[@id="ct"]/div/div[4]/div[2]/div/div[6]/span[3]/a'))) if (p.get_attribute('class') == 'chked'): genre = p.get_attribute('href') except: pass url = genre browser.get(url) elem = WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) if elem: browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') print('程序开始运行...') time.sleep(1) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') pages = [] dbpages = set() for i in Post.objects.all(): dbpages.add(i.post_url) print('数据库中有{}个版块链接'.format(len(dbpages))) tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) updatepag = [] for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep > (len(pages) + len(updatepag))): while True: mess = '#fd_page_top > div > a.nxt' ck = browser.find_element_by_css_selector(mess) browser.execute_script('arguments[0].scrollIntoView(false);', ck) browser.execute_script('arguments[0].click()', ck) WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//*[@id="threadlisttableid"]'))) browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) soup_level1 = BeautifulSoup(browser.page_source, 'lxml') tbs = soup_level1.find_all('tbody', attrs={'id': re.compile('^normalthread*'), 'class': 'threadrow'}) for tb in tbs: herf = tb.find('a', class_='s xst').get('href') lastpost_time = tb.find('a', class_='lastpost_time').text lastpost_time = datetime.datetime.strptime(lastpost_time, '%Y-%m-%d %H:%M') if (not (herf in dbpages)): pages.append([herf, lastpost_time]) elif Soc: updatepag.append([herf, lastpost_time]) elif (lastpost_time != Post.objects.filter(post_url=herf).values()[0]['lastupdate_datetime']): updatepag.append([herf, lastpost_time]) else: pass if (deep == (len(pages) + len(updatepag))): break if (deep == (len(pages) + len(updatepag))): break print('获取了{}个新的链接'.format(len(pages))) print('新链接数:', len(pages), '\t 更新的链接数', len(updatepag)) for post_url_time in pages: browser = divs(post_url_time[0], post_url_time[1], url, browser) print('抓取了{}个版块的数据,开始更新数据,将有{}个版块被更新'.format(len(pages), len(updatepag))) for upurltime in updatepag: browser = update_data(upurltime[0], upurltime[1], browser) browser.quit() else: print('请检查你的定位元素是否准确')<|docstring|>整个的项目的外界入口<|endoftext|>
a70684faee265e66df3636a8b4788d4f1c991b40bd0a3c0ba1cefcf0ac46fbf2
@when('bigtop.available', 'hadoop.hdfs.ready', 'zookeeper.ready') def install_hbase(hdfs, zk): '\n Anytime our dependencies are available, check to see if we have a valid\n reason to (re)install. These include:\n - initial install\n - config change\n - Zookeeper unit has joined/departed\n ' zks = zk.zookeepers() deployment_matrix = {'zookeepers': zks} if (not is_state('hbase.installed')): prefix = 'installing' data_changed('deployment_matrix', deployment_matrix) else: prefix = 'configuring' if (is_state('hbpeer.departed') or is_state('hbpeer.joined')): return if (not (is_state('config.changed') or data_changed('deployment_matrix', deployment_matrix))): return hookenv.status_set('maintenance', '{} hbase'.format(prefix)) hookenv.log('{} hbase with: {}'.format(prefix, deployment_matrix)) hbase = HBase() hosts = {} hosts['namenode'] = hdfs.namenodes()[0] hbase.configure(hosts, zks) hbase.update_regionservers([hookenv.unit_private_ip()]) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() hbase_version = (get_package_version('hbase-master') or 'unknown') hookenv.application_version_set(hbase_version) hbase.open_ports() report_status() set_state('hbase.installed')
Anytime our dependencies are available, check to see if we have a valid reason to (re)install. These include: - initial install - config change - Zookeeper unit has joined/departed
bigtop-packages/src/charm/hbase/layer-hbase/reactive/hbase.py
install_hbase
yamasakisua/bigtop-private
371
python
@when('bigtop.available', 'hadoop.hdfs.ready', 'zookeeper.ready') def install_hbase(hdfs, zk): '\n Anytime our dependencies are available, check to see if we have a valid\n reason to (re)install. These include:\n - initial install\n - config change\n - Zookeeper unit has joined/departed\n ' zks = zk.zookeepers() deployment_matrix = {'zookeepers': zks} if (not is_state('hbase.installed')): prefix = 'installing' data_changed('deployment_matrix', deployment_matrix) else: prefix = 'configuring' if (is_state('hbpeer.departed') or is_state('hbpeer.joined')): return if (not (is_state('config.changed') or data_changed('deployment_matrix', deployment_matrix))): return hookenv.status_set('maintenance', '{} hbase'.format(prefix)) hookenv.log('{} hbase with: {}'.format(prefix, deployment_matrix)) hbase = HBase() hosts = {} hosts['namenode'] = hdfs.namenodes()[0] hbase.configure(hosts, zks) hbase.update_regionservers([hookenv.unit_private_ip()]) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() hbase_version = (get_package_version('hbase-master') or 'unknown') hookenv.application_version_set(hbase_version) hbase.open_ports() report_status() set_state('hbase.installed')
@when('bigtop.available', 'hadoop.hdfs.ready', 'zookeeper.ready') def install_hbase(hdfs, zk): '\n Anytime our dependencies are available, check to see if we have a valid\n reason to (re)install. These include:\n - initial install\n - config change\n - Zookeeper unit has joined/departed\n ' zks = zk.zookeepers() deployment_matrix = {'zookeepers': zks} if (not is_state('hbase.installed')): prefix = 'installing' data_changed('deployment_matrix', deployment_matrix) else: prefix = 'configuring' if (is_state('hbpeer.departed') or is_state('hbpeer.joined')): return if (not (is_state('config.changed') or data_changed('deployment_matrix', deployment_matrix))): return hookenv.status_set('maintenance', '{} hbase'.format(prefix)) hookenv.log('{} hbase with: {}'.format(prefix, deployment_matrix)) hbase = HBase() hosts = {} hosts['namenode'] = hdfs.namenodes()[0] hbase.configure(hosts, zks) hbase.update_regionservers([hookenv.unit_private_ip()]) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() hbase_version = (get_package_version('hbase-master') or 'unknown') hookenv.application_version_set(hbase_version) hbase.open_ports() report_status() set_state('hbase.installed')<|docstring|>Anytime our dependencies are available, check to see if we have a valid reason to (re)install. These include: - initial install - config change - Zookeeper unit has joined/departed<|endoftext|>
d8b746f7fcb8483ac968e454813ad2cd71800600203d26464c15026cc4ca52d3
@when('hbase.installed') @when_not_all('hadoop.hdfs.ready', 'zookeeper.ready') def stop_hbase(): '\n HBase depends on HDFS and Zookeeper. If we are installed and either of\n these dependencies go away, shut down HBase services and remove our\n installed state.\n ' hbase = HBase() hbase.close_ports() hbase.stop() remove_state('hbase.installed') report_status()
HBase depends on HDFS and Zookeeper. If we are installed and either of these dependencies go away, shut down HBase services and remove our installed state.
bigtop-packages/src/charm/hbase/layer-hbase/reactive/hbase.py
stop_hbase
yamasakisua/bigtop-private
371
python
@when('hbase.installed') @when_not_all('hadoop.hdfs.ready', 'zookeeper.ready') def stop_hbase(): '\n HBase depends on HDFS and Zookeeper. If we are installed and either of\n these dependencies go away, shut down HBase services and remove our\n installed state.\n ' hbase = HBase() hbase.close_ports() hbase.stop() remove_state('hbase.installed') report_status()
@when('hbase.installed') @when_not_all('hadoop.hdfs.ready', 'zookeeper.ready') def stop_hbase(): '\n HBase depends on HDFS and Zookeeper. If we are installed and either of\n these dependencies go away, shut down HBase services and remove our\n installed state.\n ' hbase = HBase() hbase.close_ports() hbase.stop() remove_state('hbase.installed') report_status()<|docstring|>HBase depends on HDFS and Zookeeper. If we are installed and either of these dependencies go away, shut down HBase services and remove our installed state.<|endoftext|>
d456169cc862ff08e5f17eae5ae1bd1bf86c600dfae0778348388d827d9a0e2e
@when('hbase.installed') @when_any('hbpeer.departed', 'hbpeer.joined') def handle_peers(): "\n We use HBase peers to keep track of the RegionServer IP addresses in a\n cluster. Use get_nodes() from the appropriate peer relation to retrieve\n a list of peer tuples, e.g.:\n [('hbase/0', '172.31.5.161'), ('hbase/2', '172.31.5.11')]\n\n Depending on the state, this handler will add or remove peer IP addresses\n from the regionservers config file.\n " if is_state('hbpeer.departed'): hbpeer = RelationBase.from_state('hbpeer.departed') is_departing = True message = 'removing hbase peer(s)' else: hbpeer = RelationBase.from_state('hbpeer.joined') is_departing = False message = 'adding hbase peer(s)' if hbpeer: nodes = hbpeer.get_nodes() else: hookenv.log('Ignoring unknown HBase peer state') return hookenv.status_set('maintenance', message) hbase = HBase() ip_addrs = [node[1] for node in nodes] hookenv.log('{}: {}'.format(message, ip_addrs)) hbase.update_regionservers(ip_addrs, remove=is_departing) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() if is_departing: hbpeer.dismiss_departed() else: hbpeer.dismiss_joined() report_status()
We use HBase peers to keep track of the RegionServer IP addresses in a cluster. Use get_nodes() from the appropriate peer relation to retrieve a list of peer tuples, e.g.: [('hbase/0', '172.31.5.161'), ('hbase/2', '172.31.5.11')] Depending on the state, this handler will add or remove peer IP addresses from the regionservers config file.
bigtop-packages/src/charm/hbase/layer-hbase/reactive/hbase.py
handle_peers
yamasakisua/bigtop-private
371
python
@when('hbase.installed') @when_any('hbpeer.departed', 'hbpeer.joined') def handle_peers(): "\n We use HBase peers to keep track of the RegionServer IP addresses in a\n cluster. Use get_nodes() from the appropriate peer relation to retrieve\n a list of peer tuples, e.g.:\n [('hbase/0', '172.31.5.161'), ('hbase/2', '172.31.5.11')]\n\n Depending on the state, this handler will add or remove peer IP addresses\n from the regionservers config file.\n " if is_state('hbpeer.departed'): hbpeer = RelationBase.from_state('hbpeer.departed') is_departing = True message = 'removing hbase peer(s)' else: hbpeer = RelationBase.from_state('hbpeer.joined') is_departing = False message = 'adding hbase peer(s)' if hbpeer: nodes = hbpeer.get_nodes() else: hookenv.log('Ignoring unknown HBase peer state') return hookenv.status_set('maintenance', message) hbase = HBase() ip_addrs = [node[1] for node in nodes] hookenv.log('{}: {}'.format(message, ip_addrs)) hbase.update_regionservers(ip_addrs, remove=is_departing) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() if is_departing: hbpeer.dismiss_departed() else: hbpeer.dismiss_joined() report_status()
@when('hbase.installed') @when_any('hbpeer.departed', 'hbpeer.joined') def handle_peers(): "\n We use HBase peers to keep track of the RegionServer IP addresses in a\n cluster. Use get_nodes() from the appropriate peer relation to retrieve\n a list of peer tuples, e.g.:\n [('hbase/0', '172.31.5.161'), ('hbase/2', '172.31.5.11')]\n\n Depending on the state, this handler will add or remove peer IP addresses\n from the regionservers config file.\n " if is_state('hbpeer.departed'): hbpeer = RelationBase.from_state('hbpeer.departed') is_departing = True message = 'removing hbase peer(s)' else: hbpeer = RelationBase.from_state('hbpeer.joined') is_departing = False message = 'adding hbase peer(s)' if hbpeer: nodes = hbpeer.get_nodes() else: hookenv.log('Ignoring unknown HBase peer state') return hookenv.status_set('maintenance', message) hbase = HBase() ip_addrs = [node[1] for node in nodes] hookenv.log('{}: {}'.format(message, ip_addrs)) hbase.update_regionservers(ip_addrs, remove=is_departing) if any_file_changed(['/etc/hbase/conf/regionservers']): hbase.restart() if is_departing: hbpeer.dismiss_departed() else: hbpeer.dismiss_joined() report_status()<|docstring|>We use HBase peers to keep track of the RegionServer IP addresses in a cluster. Use get_nodes() from the appropriate peer relation to retrieve a list of peer tuples, e.g.: [('hbase/0', '172.31.5.161'), ('hbase/2', '172.31.5.11')] Depending on the state, this handler will add or remove peer IP addresses from the regionservers config file.<|endoftext|>
559f3a34bea9ecbc1692f5b02e606eed860776a8226709a18952c0693301ab8a
@when('hbase.installed', 'leadership.is_leader') @when('zookeeper.ready', 'hbclient.joined') def serve_client(zk, client): "\n We may have multiple HBase peers, but we only need to send 1 set of\n connection data. Leverage Juju leadership to only send the leader\n info (even if it's not the actual HBase master).\n\n Zookeeper will ensure that any HBase peer routes requests to the\n appropriate master.\n " hbase = HBase() config = get_layer_opts() host = hookenv.unit_private_ip() master_port = config.port('hbase-master') regionserver_port = config.port('hbase-region') thrift_port = config.port('hbase-thrift') zk_connect = hbase.get_zk_connect(zk.zookeepers()) client.send_connection(master_port=master_port, regionserver_port=regionserver_port, thrift_port=thrift_port, host=host, zk_connect=zk_connect) hookenv.log('Serving HBase client with master {}:{}, regionserver port {}, thrift port {}, and zk connect {}'.format(host, master_port, regionserver_port, thrift_port, zk_connect))
We may have multiple HBase peers, but we only need to send 1 set of connection data. Leverage Juju leadership to only send the leader info (even if it's not the actual HBase master). Zookeeper will ensure that any HBase peer routes requests to the appropriate master.
bigtop-packages/src/charm/hbase/layer-hbase/reactive/hbase.py
serve_client
yamasakisua/bigtop-private
371
python
@when('hbase.installed', 'leadership.is_leader') @when('zookeeper.ready', 'hbclient.joined') def serve_client(zk, client): "\n We may have multiple HBase peers, but we only need to send 1 set of\n connection data. Leverage Juju leadership to only send the leader\n info (even if it's not the actual HBase master).\n\n Zookeeper will ensure that any HBase peer routes requests to the\n appropriate master.\n " hbase = HBase() config = get_layer_opts() host = hookenv.unit_private_ip() master_port = config.port('hbase-master') regionserver_port = config.port('hbase-region') thrift_port = config.port('hbase-thrift') zk_connect = hbase.get_zk_connect(zk.zookeepers()) client.send_connection(master_port=master_port, regionserver_port=regionserver_port, thrift_port=thrift_port, host=host, zk_connect=zk_connect) hookenv.log('Serving HBase client with master {}:{}, regionserver port {}, thrift port {}, and zk connect {}'.format(host, master_port, regionserver_port, thrift_port, zk_connect))
@when('hbase.installed', 'leadership.is_leader') @when('zookeeper.ready', 'hbclient.joined') def serve_client(zk, client): "\n We may have multiple HBase peers, but we only need to send 1 set of\n connection data. Leverage Juju leadership to only send the leader\n info (even if it's not the actual HBase master).\n\n Zookeeper will ensure that any HBase peer routes requests to the\n appropriate master.\n " hbase = HBase() config = get_layer_opts() host = hookenv.unit_private_ip() master_port = config.port('hbase-master') regionserver_port = config.port('hbase-region') thrift_port = config.port('hbase-thrift') zk_connect = hbase.get_zk_connect(zk.zookeepers()) client.send_connection(master_port=master_port, regionserver_port=regionserver_port, thrift_port=thrift_port, host=host, zk_connect=zk_connect) hookenv.log('Serving HBase client with master {}:{}, regionserver port {}, thrift port {}, and zk connect {}'.format(host, master_port, regionserver_port, thrift_port, zk_connect))<|docstring|>We may have multiple HBase peers, but we only need to send 1 set of connection data. Leverage Juju leadership to only send the leader info (even if it's not the actual HBase master). Zookeeper will ensure that any HBase peer routes requests to the appropriate master.<|endoftext|>
396edf28f7e8f41de362f9eef3c9b569c9431ef61b7ca6ba0517d5793404f4f9
@when('leadership.is_leader', 'hbclient.joined') @when_not('hbase.installed') def stop_serving_client(client): "\n If HDFS or ZK goes away, the 'installed' state will be removed. If we have\n connected clients, inform them that hbase is no longer ready.\n " client.clear_hbase_started()
If HDFS or ZK goes away, the 'installed' state will be removed. If we have connected clients, inform them that hbase is no longer ready.
bigtop-packages/src/charm/hbase/layer-hbase/reactive/hbase.py
stop_serving_client
yamasakisua/bigtop-private
371
python
@when('leadership.is_leader', 'hbclient.joined') @when_not('hbase.installed') def stop_serving_client(client): "\n If HDFS or ZK goes away, the 'installed' state will be removed. If we have\n connected clients, inform them that hbase is no longer ready.\n " client.clear_hbase_started()
@when('leadership.is_leader', 'hbclient.joined') @when_not('hbase.installed') def stop_serving_client(client): "\n If HDFS or ZK goes away, the 'installed' state will be removed. If we have\n connected clients, inform them that hbase is no longer ready.\n " client.clear_hbase_started()<|docstring|>If HDFS or ZK goes away, the 'installed' state will be removed. If we have connected clients, inform them that hbase is no longer ready.<|endoftext|>
6472f0c89f8e55b3fc3aa0a3e5294b2296868fa40c820cae337292a70ee2e468
def __init__(self, intervals: Optional[List[BinningInterval]]=None): '\n Args:\n intervals: intervals for binning. Defaults to default_intervals.\n ' if (intervals is None): intervals = default_intervals self.limits = QuantityBinningLimits(intervals) self.temperature_extractor = TemperatureExtractor() self.quantity_binner = QuantityBinner(self.limits.get_boundaries()) self.placeholder_handler = PlaceholderHandler.for_temperatures()
Args: intervals: intervals for binning. Defaults to default_intervals.
smiles2actions/quantities/temperature_placeholder.py
__init__
rxn4chemistry/smiles2actions
8
python
def __init__(self, intervals: Optional[List[BinningInterval]]=None): '\n Args:\n intervals: intervals for binning. Defaults to default_intervals.\n ' if (intervals is None): intervals = default_intervals self.limits = QuantityBinningLimits(intervals) self.temperature_extractor = TemperatureExtractor() self.quantity_binner = QuantityBinner(self.limits.get_boundaries()) self.placeholder_handler = PlaceholderHandler.for_temperatures()
def __init__(self, intervals: Optional[List[BinningInterval]]=None): '\n Args:\n intervals: intervals for binning. Defaults to default_intervals.\n ' if (intervals is None): intervals = default_intervals self.limits = QuantityBinningLimits(intervals) self.temperature_extractor = TemperatureExtractor() self.quantity_binner = QuantityBinner(self.limits.get_boundaries()) self.placeholder_handler = PlaceholderHandler.for_temperatures()<|docstring|>Args: intervals: intervals for binning. Defaults to default_intervals.<|endoftext|>
74d229e6f0cde4ef5e55b14a854e573ecbc81c1d072bf3b880d442ed27e46d25
def register_plugin(plugin): 'Registers a plugin into cortex\n\n Args:\n plugin: TODO\n\n Returns:\n\n ' if issubclass(plugin, ModelPlugin): register_model(plugin) elif issubclass(plugin, DatasetPlugin): register_data(plugin) else: raise ValueError(plugin)
Registers a plugin into cortex Args: plugin: TODO Returns:
cortex/plugins.py
register_plugin
bbradt/cortex
109
python
def register_plugin(plugin): 'Registers a plugin into cortex\n\n Args:\n plugin: TODO\n\n Returns:\n\n ' if issubclass(plugin, ModelPlugin): register_model(plugin) elif issubclass(plugin, DatasetPlugin): register_data(plugin) else: raise ValueError(plugin)
def register_plugin(plugin): 'Registers a plugin into cortex\n\n Args:\n plugin: TODO\n\n Returns:\n\n ' if issubclass(plugin, ModelPlugin): register_model(plugin) elif issubclass(plugin, DatasetPlugin): register_data(plugin) else: raise ValueError(plugin)<|docstring|>Registers a plugin into cortex Args: plugin: TODO Returns:<|endoftext|>
276c542cd9406b34b90f39920fa7a5bea3ded7af7ff6693426fdcc289e8add73
def copy_to_local_path(self, from_path: str) -> str: ' Copies data to a local path.\n\n Path is set in the .cortex.yml file. This can be set up through\n `cortex setup`.\n\n Args:\n from_path: The path to the data to be copied.\n\n ' if from_path.endswith('/'): from_path = from_path[:(- 1)] basename = path.basename(from_path) local_path = CONFIG.data_paths.get('local') if (local_path is None): raise KeyError('`{}` not found in {} data_paths'.format(local_path, _config_name)) to_path = path.join(local_path, basename) if ((not path.exists(to_path)) and path.exists(from_path)): logger.info('Copying dataset {} from {} to {} directory.... (This may take time)'.format(self.__class__.__name__, from_path, to_path)) if path.isdir(from_path): shutil.copytree(from_path, to_path) else: shutil.copy(from_path, local_path) logger.info('Finished copying.') return to_path
Copies data to a local path. Path is set in the .cortex.yml file. This can be set up through `cortex setup`. Args: from_path: The path to the data to be copied.
cortex/plugins.py
copy_to_local_path
bbradt/cortex
109
python
def copy_to_local_path(self, from_path: str) -> str: ' Copies data to a local path.\n\n Path is set in the .cortex.yml file. This can be set up through\n `cortex setup`.\n\n Args:\n from_path: The path to the data to be copied.\n\n ' if from_path.endswith('/'): from_path = from_path[:(- 1)] basename = path.basename(from_path) local_path = CONFIG.data_paths.get('local') if (local_path is None): raise KeyError('`{}` not found in {} data_paths'.format(local_path, _config_name)) to_path = path.join(local_path, basename) if ((not path.exists(to_path)) and path.exists(from_path)): logger.info('Copying dataset {} from {} to {} directory.... (This may take time)'.format(self.__class__.__name__, from_path, to_path)) if path.isdir(from_path): shutil.copytree(from_path, to_path) else: shutil.copy(from_path, local_path) logger.info('Finished copying.') return to_path
def copy_to_local_path(self, from_path: str) -> str: ' Copies data to a local path.\n\n Path is set in the .cortex.yml file. This can be set up through\n `cortex setup`.\n\n Args:\n from_path: The path to the data to be copied.\n\n ' if from_path.endswith('/'): from_path = from_path[:(- 1)] basename = path.basename(from_path) local_path = CONFIG.data_paths.get('local') if (local_path is None): raise KeyError('`{}` not found in {} data_paths'.format(local_path, _config_name)) to_path = path.join(local_path, basename) if ((not path.exists(to_path)) and path.exists(from_path)): logger.info('Copying dataset {} from {} to {} directory.... (This may take time)'.format(self.__class__.__name__, from_path, to_path)) if path.isdir(from_path): shutil.copytree(from_path, to_path) else: shutil.copy(from_path, local_path) logger.info('Finished copying.') return to_path<|docstring|>Copies data to a local path. Path is set in the .cortex.yml file. This can be set up through `cortex setup`. Args: from_path: The path to the data to be copied.<|endoftext|>
21c4151174a65e8dc62a24e3355db558507b2547386e826c9b045138f2224a3c
def add_dataset(self, mode: str, dataset: Dataset): 'Adds a dataset to the plugin.\n\n Any dataset added in this way will be used in the training or testing\n loops, depending on the mode specified.\n\n Args:\n mode: The data mode that this dataset will be run on.\n `train` and `test` are highly recommended.\n dataset: The dataset object.\n\n ' if (mode in self._datasets): raise KeyError('`{}` already added to datasets in entrypoint'.format(mode)) self._datasets[mode] = dataset
Adds a dataset to the plugin. Any dataset added in this way will be used in the training or testing loops, depending on the mode specified. Args: mode: The data mode that this dataset will be run on. `train` and `test` are highly recommended. dataset: The dataset object.
cortex/plugins.py
add_dataset
bbradt/cortex
109
python
def add_dataset(self, mode: str, dataset: Dataset): 'Adds a dataset to the plugin.\n\n Any dataset added in this way will be used in the training or testing\n loops, depending on the mode specified.\n\n Args:\n mode: The data mode that this dataset will be run on.\n `train` and `test` are highly recommended.\n dataset: The dataset object.\n\n ' if (mode in self._datasets): raise KeyError('`{}` already added to datasets in entrypoint'.format(mode)) self._datasets[mode] = dataset
def add_dataset(self, mode: str, dataset: Dataset): 'Adds a dataset to the plugin.\n\n Any dataset added in this way will be used in the training or testing\n loops, depending on the mode specified.\n\n Args:\n mode: The data mode that this dataset will be run on.\n `train` and `test` are highly recommended.\n dataset: The dataset object.\n\n ' if (mode in self._datasets): raise KeyError('`{}` already added to datasets in entrypoint'.format(mode)) self._datasets[mode] = dataset<|docstring|>Adds a dataset to the plugin. Any dataset added in this way will be used in the training or testing loops, depending on the mode specified. Args: mode: The data mode that this dataset will be run on. `train` and `test` are highly recommended. dataset: The dataset object.<|endoftext|>
53c0d5cb88d564ba05961af1e30a2dc7849bd37e88a261b5c4860666d548b89d
def set_dataloader_class(self, dataloader_class: type): "Set dataloader class.\n\n It will be used instead of :class:`torch.utils.data.DataLoader`.\n\n Args:\n dataloader_class: custom data loader class\n\n Notes:\n This method can be used to pass custom collate function, pass\n arguments to the dataloader or use a completely custom loader.\n\n Example:\n ```\n class MyData(DatasetPlugin):\n sources = ['MyData']\n\n def handle(self, source, copy_to_local=False, normalize=True,\n tanh_normalization=False, **transform_args):\n train_set = ...\n\n def collate(batch):\n collated_batch = ...\n return collated_batch\n\n NewDataLoader = partial(DataLoader, collate_fn=collate)\n self.add_dataset('train', train_set)\n self.set_dataloader_class(dataloader_class=NewDataLoader)\n ```\n\n " self._dataloader_class = dataloader_class
Set dataloader class. It will be used instead of :class:`torch.utils.data.DataLoader`. Args: dataloader_class: custom data loader class Notes: This method can be used to pass custom collate function, pass arguments to the dataloader or use a completely custom loader. Example: ``` class MyData(DatasetPlugin): sources = ['MyData'] def handle(self, source, copy_to_local=False, normalize=True, tanh_normalization=False, **transform_args): train_set = ... def collate(batch): collated_batch = ... return collated_batch NewDataLoader = partial(DataLoader, collate_fn=collate) self.add_dataset('train', train_set) self.set_dataloader_class(dataloader_class=NewDataLoader) ```
cortex/plugins.py
set_dataloader_class
bbradt/cortex
109
python
def set_dataloader_class(self, dataloader_class: type): "Set dataloader class.\n\n It will be used instead of :class:`torch.utils.data.DataLoader`.\n\n Args:\n dataloader_class: custom data loader class\n\n Notes:\n This method can be used to pass custom collate function, pass\n arguments to the dataloader or use a completely custom loader.\n\n Example:\n ```\n class MyData(DatasetPlugin):\n sources = ['MyData']\n\n def handle(self, source, copy_to_local=False, normalize=True,\n tanh_normalization=False, **transform_args):\n train_set = ...\n\n def collate(batch):\n collated_batch = ...\n return collated_batch\n\n NewDataLoader = partial(DataLoader, collate_fn=collate)\n self.add_dataset('train', train_set)\n self.set_dataloader_class(dataloader_class=NewDataLoader)\n ```\n\n " self._dataloader_class = dataloader_class
def set_dataloader_class(self, dataloader_class: type): "Set dataloader class.\n\n It will be used instead of :class:`torch.utils.data.DataLoader`.\n\n Args:\n dataloader_class: custom data loader class\n\n Notes:\n This method can be used to pass custom collate function, pass\n arguments to the dataloader or use a completely custom loader.\n\n Example:\n ```\n class MyData(DatasetPlugin):\n sources = ['MyData']\n\n def handle(self, source, copy_to_local=False, normalize=True,\n tanh_normalization=False, **transform_args):\n train_set = ...\n\n def collate(batch):\n collated_batch = ...\n return collated_batch\n\n NewDataLoader = partial(DataLoader, collate_fn=collate)\n self.add_dataset('train', train_set)\n self.set_dataloader_class(dataloader_class=NewDataLoader)\n ```\n\n " self._dataloader_class = dataloader_class<|docstring|>Set dataloader class. It will be used instead of :class:`torch.utils.data.DataLoader`. Args: dataloader_class: custom data loader class Notes: This method can be used to pass custom collate function, pass arguments to the dataloader or use a completely custom loader. Example: ``` class MyData(DatasetPlugin): sources = ['MyData'] def handle(self, source, copy_to_local=False, normalize=True, tanh_normalization=False, **transform_args): train_set = ... def collate(batch): collated_batch = ... return collated_batch NewDataLoader = partial(DataLoader, collate_fn=collate) self.add_dataset('train', train_set) self.set_dataloader_class(dataloader_class=NewDataLoader) ```<|endoftext|>
c3f51bcc3c41f93f720b9df9786a06f678360deab4521afda97cb37e113f91e7
def get_path(self, source: str): "Get's the path to a source.\n\n This is derived from config.yaml file.\n\n Args:\n source: str for the dataset source.\n\n Returns:\n The path to the dataset.\n\n " p = CONFIG.data_paths.get(source) if (p is None): raise KeyError('`{}` not found in {} data_paths'.format(source, _config_name)) return p
Get's the path to a source. This is derived from config.yaml file. Args: source: str for the dataset source. Returns: The path to the dataset.
cortex/plugins.py
get_path
bbradt/cortex
109
python
def get_path(self, source: str): "Get's the path to a source.\n\n This is derived from config.yaml file.\n\n Args:\n source: str for the dataset source.\n\n Returns:\n The path to the dataset.\n\n " p = CONFIG.data_paths.get(source) if (p is None): raise KeyError('`{}` not found in {} data_paths'.format(source, _config_name)) return p
def get_path(self, source: str): "Get's the path to a source.\n\n This is derived from config.yaml file.\n\n Args:\n source: str for the dataset source.\n\n Returns:\n The path to the dataset.\n\n " p = CONFIG.data_paths.get(source) if (p is None): raise KeyError('`{}` not found in {} data_paths'.format(source, _config_name)) return p<|docstring|>Get's the path to a source. This is derived from config.yaml file. Args: source: str for the dataset source. Returns: The path to the dataset.<|endoftext|>
2d3a9889ddd9642fb955c4faa2df59a92efedf521adfc180aef678606b914004
def set_input_names(self, input_names): 'Sets the names of the elements of the dataset.\n\n For use downstream in models.\n\n Args:\n input_names (:obj:`list` of :obj:`str`): The input names.\n Should be the same size as the output of the dataset iterator.\n\n ' self._input_names = input_names
Sets the names of the elements of the dataset. For use downstream in models. Args: input_names (:obj:`list` of :obj:`str`): The input names. Should be the same size as the output of the dataset iterator.
cortex/plugins.py
set_input_names
bbradt/cortex
109
python
def set_input_names(self, input_names): 'Sets the names of the elements of the dataset.\n\n For use downstream in models.\n\n Args:\n input_names (:obj:`list` of :obj:`str`): The input names.\n Should be the same size as the output of the dataset iterator.\n\n ' self._input_names = input_names
def set_input_names(self, input_names): 'Sets the names of the elements of the dataset.\n\n For use downstream in models.\n\n Args:\n input_names (:obj:`list` of :obj:`str`): The input names.\n Should be the same size as the output of the dataset iterator.\n\n ' self._input_names = input_names<|docstring|>Sets the names of the elements of the dataset. For use downstream in models. Args: input_names (:obj:`list` of :obj:`str`): The input names. Should be the same size as the output of the dataset iterator.<|endoftext|>
78a16ba89ec6b781483e562f15c4f168e7b4b95f35a9289f2e8bd4296afbc095
def set_dims(self, **kwargs): 'Sets the dimensions of the data.\n\n Args:\n **kwargs: a dictionary of dimension keys and ints.\n\n ' for (k, v) in kwargs.items(): self._dims[k] = v
Sets the dimensions of the data. Args: **kwargs: a dictionary of dimension keys and ints.
cortex/plugins.py
set_dims
bbradt/cortex
109
python
def set_dims(self, **kwargs): 'Sets the dimensions of the data.\n\n Args:\n **kwargs: a dictionary of dimension keys and ints.\n\n ' for (k, v) in kwargs.items(): self._dims[k] = v
def set_dims(self, **kwargs): 'Sets the dimensions of the data.\n\n Args:\n **kwargs: a dictionary of dimension keys and ints.\n\n ' for (k, v) in kwargs.items(): self._dims[k] = v<|docstring|>Sets the dimensions of the data. Args: **kwargs: a dictionary of dimension keys and ints.<|endoftext|>
e747d4a4875ebecfa1fefdbc9fe0bb6e75ebd9d3a86ab848734a95a22a69f6b2
def set_scale(self, scale): "Sets the min / max values for the data.\n\n Note:\n This will probably be removed. It doesn't even function right now.\n\n Args:\n scale (:obj:`tuple` of :obj:`float`): min/max pair.\n\n " self._scale = scale
Sets the min / max values for the data. Note: This will probably be removed. It doesn't even function right now. Args: scale (:obj:`tuple` of :obj:`float`): min/max pair.
cortex/plugins.py
set_scale
bbradt/cortex
109
python
def set_scale(self, scale): "Sets the min / max values for the data.\n\n Note:\n This will probably be removed. It doesn't even function right now.\n\n Args:\n scale (:obj:`tuple` of :obj:`float`): min/max pair.\n\n " self._scale = scale
def set_scale(self, scale): "Sets the min / max values for the data.\n\n Note:\n This will probably be removed. It doesn't even function right now.\n\n Args:\n scale (:obj:`tuple` of :obj:`float`): min/max pair.\n\n " self._scale = scale<|docstring|>Sets the min / max values for the data. Note: This will probably be removed. It doesn't even function right now. Args: scale (:obj:`tuple` of :obj:`float`): min/max pair.<|endoftext|>
f3ccf087053ad59e462157d3a22e5e16f5d68102a2f82c34b8649f1ea6af24c8
def make_indexing(self, C): 'Makes an indexing dataset.\n\n Index comes in as the last element of the batch.\n\n Args:\n C: data.Dataset class.\n\n Returns:\n Wrapped data.Dataset class.\n\n ' class IndexingDataset(C): def __getitem__(self, index): output = super().__getitem__(index) return (output + (index,)) return IndexingDataset
Makes an indexing dataset. Index comes in as the last element of the batch. Args: C: data.Dataset class. Returns: Wrapped data.Dataset class.
cortex/plugins.py
make_indexing
bbradt/cortex
109
python
def make_indexing(self, C): 'Makes an indexing dataset.\n\n Index comes in as the last element of the batch.\n\n Args:\n C: data.Dataset class.\n\n Returns:\n Wrapped data.Dataset class.\n\n ' class IndexingDataset(C): def __getitem__(self, index): output = super().__getitem__(index) return (output + (index,)) return IndexingDataset
def make_indexing(self, C): 'Makes an indexing dataset.\n\n Index comes in as the last element of the batch.\n\n Args:\n C: data.Dataset class.\n\n Returns:\n Wrapped data.Dataset class.\n\n ' class IndexingDataset(C): def __getitem__(self, index): output = super().__getitem__(index) return (output + (index,)) return IndexingDataset<|docstring|>Makes an indexing dataset. Index comes in as the last element of the batch. Args: C: data.Dataset class. Returns: Wrapped data.Dataset class.<|endoftext|>
7778bc3b2037e362ec94633b03f265dd555bcdf1ecbed18c67eebc301a0ef2fe
def build(self, *args, **kwargs): 'Builds the neural networks.\n\n The the model is to build something, this needs to be overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`build` is not implemented for model class {}'.format(self.__class__.__name__))
Builds the neural networks. The the model is to build something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function
cortex/plugins.py
build
bbradt/cortex
109
python
def build(self, *args, **kwargs): 'Builds the neural networks.\n\n The the model is to build something, this needs to be overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`build` is not implemented for model class {}'.format(self.__class__.__name__))
def build(self, *args, **kwargs): 'Builds the neural networks.\n\n The the model is to build something, this needs to be overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`build` is not implemented for model class {}'.format(self.__class__.__name__))<|docstring|>Builds the neural networks. The the model is to build something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function<|endoftext|>
47cbe3d0bf303d2e55d89ca93b4dc197cab19871c4bb9e029d5815b25a1173f3
def routine(self, *args, **kwargs): 'Derives losses and results.\n\n The the model is to train something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`routine` is not implemented for model class {}'.format(self.__class__.__name__))
Derives losses and results. The the model is to train something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function
cortex/plugins.py
routine
bbradt/cortex
109
python
def routine(self, *args, **kwargs): 'Derives losses and results.\n\n The the model is to train something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`routine` is not implemented for model class {}'.format(self.__class__.__name__))
def routine(self, *args, **kwargs): 'Derives losses and results.\n\n The the model is to train something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' raise NotImplementedError('`routine` is not implemented for model class {}'.format(self.__class__.__name__))<|docstring|>Derives losses and results. The the model is to train something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function<|endoftext|>
dec3958a8e803f0e565a5d6875633b97c4cf0e823064dffe5bff05bd56fda59a
def visualize(self, *args, **kwargs): 'Visualizes.\n\n The the model is to visualize something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' pass
Visualizes. The the model is to visualize something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function
cortex/plugins.py
visualize
bbradt/cortex
109
python
def visualize(self, *args, **kwargs): 'Visualizes.\n\n The the model is to visualize something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' pass
def visualize(self, *args, **kwargs): 'Visualizes.\n\n The the model is to visualize something, this needs to be\n overridden.\n\n Args:\n *args: Inputs to be passed to the function.\n **kwargs: Hyperparameters to be passed to the function\n\n ' pass<|docstring|>Visualizes. The the model is to visualize something, this needs to be overridden. Args: *args: Inputs to be passed to the function. **kwargs: Hyperparameters to be passed to the function<|endoftext|>
769fdd2a273a26e03299820af2ce2323b1aeb7e2f45749b8fc0309b052f7e515
def train_step(self): 'Makes a training step.\n\n This can be overridden to change the behavior at each training step.\n\n ' self.data.next() self.routine(auto_input=True) self.optimizer_step()
Makes a training step. This can be overridden to change the behavior at each training step.
cortex/plugins.py
train_step
bbradt/cortex
109
python
def train_step(self): 'Makes a training step.\n\n This can be overridden to change the behavior at each training step.\n\n ' self.data.next() self.routine(auto_input=True) self.optimizer_step()
def train_step(self): 'Makes a training step.\n\n This can be overridden to change the behavior at each training step.\n\n ' self.data.next() self.routine(auto_input=True) self.optimizer_step()<|docstring|>Makes a training step. This can be overridden to change the behavior at each training step.<|endoftext|>
c78417090ba15c2ba16c2700298898e4db8668f7191a0aa776b3cf581176ba25
def eval_step(self): 'Makes an evaluation step.\n\n This can be overridden to change the behavior of each evaluation step.\n\n ' self.data.next() self.routine(auto_input=True)
Makes an evaluation step. This can be overridden to change the behavior of each evaluation step.
cortex/plugins.py
eval_step
bbradt/cortex
109
python
def eval_step(self): 'Makes an evaluation step.\n\n This can be overridden to change the behavior of each evaluation step.\n\n ' self.data.next() self.routine(auto_input=True)
def eval_step(self): 'Makes an evaluation step.\n\n This can be overridden to change the behavior of each evaluation step.\n\n ' self.data.next() self.routine(auto_input=True)<|docstring|>Makes an evaluation step. This can be overridden to change the behavior of each evaluation step.<|endoftext|>
d091d40921ef9510ce3b2d523524980cd4d40a11aee5fe08316ffab22e7f3f51
def optimizer_step(self): 'Makes a step of the optimizers for which losses are defined.\n\n This can be overridden to change the behavior of the optimizer.\n\n ' keys = self.losses.keys() for (i, k) in enumerate(keys): loss = self.losses.pop(k) loss.backward(retain_graph=(i < len(keys))) key = self.nets._aliases.get(k, k) optimizer = self._optimizers.get(key) if (optimizer is not None): optimizer.step()
Makes a step of the optimizers for which losses are defined. This can be overridden to change the behavior of the optimizer.
cortex/plugins.py
optimizer_step
bbradt/cortex
109
python
def optimizer_step(self): 'Makes a step of the optimizers for which losses are defined.\n\n This can be overridden to change the behavior of the optimizer.\n\n ' keys = self.losses.keys() for (i, k) in enumerate(keys): loss = self.losses.pop(k) loss.backward(retain_graph=(i < len(keys))) key = self.nets._aliases.get(k, k) optimizer = self._optimizers.get(key) if (optimizer is not None): optimizer.step()
def optimizer_step(self): 'Makes a step of the optimizers for which losses are defined.\n\n This can be overridden to change the behavior of the optimizer.\n\n ' keys = self.losses.keys() for (i, k) in enumerate(keys): loss = self.losses.pop(k) loss.backward(retain_graph=(i < len(keys))) key = self.nets._aliases.get(k, k) optimizer = self._optimizers.get(key) if (optimizer is not None): optimizer.step()<|docstring|>Makes a step of the optimizers for which losses are defined. This can be overridden to change the behavior of the optimizer.<|endoftext|>
5c9f6737b214db005a1eb673dad754c6523435d0fecdf07efee64e42f96afbdc
def train_loop(self): 'The training loop.\n\n This can be overridden to change the behavior of the training loop.\n\n ' try: while True: self.train_step() except StopIteration: pass
The training loop. This can be overridden to change the behavior of the training loop.
cortex/plugins.py
train_loop
bbradt/cortex
109
python
def train_loop(self): 'The training loop.\n\n This can be overridden to change the behavior of the training loop.\n\n ' try: while True: self.train_step() except StopIteration: pass
def train_loop(self): 'The training loop.\n\n This can be overridden to change the behavior of the training loop.\n\n ' try: while True: self.train_step() except StopIteration: pass<|docstring|>The training loop. This can be overridden to change the behavior of the training loop.<|endoftext|>
d1f2f55c278c7e0b701e7cb0d1c6f3a6e8ff74985cbcf6fb201f621c7396382b
def eval_loop(self): 'The evaluation loop.\n\n This can be overridden to change the behavior of the evaluation loop.\n\n ' try: while True: self.eval_step() except StopIteration: pass
The evaluation loop. This can be overridden to change the behavior of the evaluation loop.
cortex/plugins.py
eval_loop
bbradt/cortex
109
python
def eval_loop(self): 'The evaluation loop.\n\n This can be overridden to change the behavior of the evaluation loop.\n\n ' try: while True: self.eval_step() except StopIteration: pass
def eval_loop(self): 'The evaluation loop.\n\n This can be overridden to change the behavior of the evaluation loop.\n\n ' try: while True: self.eval_step() except StopIteration: pass<|docstring|>The evaluation loop. This can be overridden to change the behavior of the evaluation loop.<|endoftext|>
e353fdb2b744c9d91d0e1ad8295d3efccd8fe76b789e66ddaca4e25f95fbdd6c
def get_dims(self, *queries): 'Gets dimensions of inputs.\n\n Args:\n *queries: Variables to get dimensions of .\n\n Returns:\n Dimensions of the variables.\n\n ' return self._data.get_dims(*queries)
Gets dimensions of inputs. Args: *queries: Variables to get dimensions of . Returns: Dimensions of the variables.
cortex/plugins.py
get_dims
bbradt/cortex
109
python
def get_dims(self, *queries): 'Gets dimensions of inputs.\n\n Args:\n *queries: Variables to get dimensions of .\n\n Returns:\n Dimensions of the variables.\n\n ' return self._data.get_dims(*queries)
def get_dims(self, *queries): 'Gets dimensions of inputs.\n\n Args:\n *queries: Variables to get dimensions of .\n\n Returns:\n Dimensions of the variables.\n\n ' return self._data.get_dims(*queries)<|docstring|>Gets dimensions of inputs. Args: *queries: Variables to get dimensions of . Returns: Dimensions of the variables.<|endoftext|>
0649223fce2f82057d3a02010a388f7d74fec0fe65a75d3daf60a979e2e87f72
def add_noise(self, key, dist=None, size=None, **kwargs): 'Adds a noise variable to the model.\n\n Args:\n key (str): Name of the noise variable.\n dist (str): Noise distribution.\n size (int): Size of the noise.\n **kwargs: keyword arguments for noise distribution.\n ' self._data.add_noise(key, dist=dist, size=size, **kwargs)
Adds a noise variable to the model. Args: key (str): Name of the noise variable. dist (str): Noise distribution. size (int): Size of the noise. **kwargs: keyword arguments for noise distribution.
cortex/plugins.py
add_noise
bbradt/cortex
109
python
def add_noise(self, key, dist=None, size=None, **kwargs): 'Adds a noise variable to the model.\n\n Args:\n key (str): Name of the noise variable.\n dist (str): Noise distribution.\n size (int): Size of the noise.\n **kwargs: keyword arguments for noise distribution.\n ' self._data.add_noise(key, dist=dist, size=size, **kwargs)
def add_noise(self, key, dist=None, size=None, **kwargs): 'Adds a noise variable to the model.\n\n Args:\n key (str): Name of the noise variable.\n dist (str): Noise distribution.\n size (int): Size of the noise.\n **kwargs: keyword arguments for noise distribution.\n ' self._data.add_noise(key, dist=dist, size=size, **kwargs)<|docstring|>Adds a noise variable to the model. Args: key (str): Name of the noise variable. dist (str): Noise distribution. size (int): Size of the noise. **kwargs: keyword arguments for noise distribution.<|endoftext|>
f33faf623f5f5d0d6b2a22d8ad8eafc1f41adfdf3c94e1aa0bb2052d70f468db
def add_image(self, *args, **kwargs): 'Adds image for visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_image(*args, **kwargs)
Adds image for visualization. Args: *args: TODO **kwargs: TODO
cortex/plugins.py
add_image
bbradt/cortex
109
python
def add_image(self, *args, **kwargs): 'Adds image for visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_image(*args, **kwargs)
def add_image(self, *args, **kwargs): 'Adds image for visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_image(*args, **kwargs)<|docstring|>Adds image for visualization. Args: *args: TODO **kwargs: TODO<|endoftext|>
7b0b2073a60dcbf6d93663c064128384c0d7c9b328de065fa850a17a72b74f09
def add_histogram(self, *args, **kwargs): 'Adds histogram for visualizaiton.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_histogram(*args, **kwargs)
Adds histogram for visualizaiton. Args: *args: TODO **kwargs: TODO
cortex/plugins.py
add_histogram
bbradt/cortex
109
python
def add_histogram(self, *args, **kwargs): 'Adds histogram for visualizaiton.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_histogram(*args, **kwargs)
def add_histogram(self, *args, **kwargs): 'Adds histogram for visualizaiton.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_histogram(*args, **kwargs)<|docstring|>Adds histogram for visualizaiton. Args: *args: TODO **kwargs: TODO<|endoftext|>
e957987302fe8e89ce62cc665c304baaf4316a1feb06e77c0aeae62f924330b2
def add_scatter(self, *args, **kwargs): 'Adds a scatter plot to visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_scatter(*args, **kwargs)
Adds a scatter plot to visualization. Args: *args: TODO **kwargs: TODO
cortex/plugins.py
add_scatter
bbradt/cortex
109
python
def add_scatter(self, *args, **kwargs): 'Adds a scatter plot to visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_scatter(*args, **kwargs)
def add_scatter(self, *args, **kwargs): 'Adds a scatter plot to visualization.\n\n Args:\n *args: TODO\n **kwargs: TODO\n\n ' self._viz.add_scatter(*args, **kwargs)<|docstring|>Adds a scatter plot to visualization. Args: *args: TODO **kwargs: TODO<|endoftext|>
52ad28545b2dae4ab53f97cbf5502123cba524be7dce06b0a7be60b017ea42ef
def get_readers(): '\n Get all available writers.\n\n Returns:\n list: available writers\n ' return all_readers
Get all available writers. Returns: list: available writers
muddery/worldeditor/utils/readers.py
get_readers
dongwudanci/muddery
127
python
def get_readers(): '\n Get all available writers.\n\n Returns:\n list: available writers\n ' return all_readers
def get_readers(): '\n Get all available writers.\n\n Returns:\n list: available writers\n ' return all_readers<|docstring|>Get all available writers. Returns: list: available writers<|endoftext|>
f76930759aaac83646a1432e165688d2ea026ecb478d13edbed097eb84a0f4ca
def get_reader(reader_type): "\n Get a reader by reader's type.\n\n Args:\n type: (String) reader's type.\n\n Returns:\n reader\n " return reader_dict.get(reader_type, None)
Get a reader by reader's type. Args: type: (String) reader's type. Returns: reader
muddery/worldeditor/utils/readers.py
get_reader
dongwudanci/muddery
127
python
def get_reader(reader_type): "\n Get a reader by reader's type.\n\n Args:\n type: (String) reader's type.\n\n Returns:\n reader\n " return reader_dict.get(reader_type, None)
def get_reader(reader_type): "\n Get a reader by reader's type.\n\n Args:\n type: (String) reader's type.\n\n Returns:\n reader\n " return reader_dict.get(reader_type, None)<|docstring|>Get a reader by reader's type. Args: type: (String) reader's type. Returns: reader<|endoftext|>
eadee11ca966fc605bbdcaac17b1ae048d471c3aa4a290bc3c48a1bb346d55e3
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " self.filename = filename
Args: filename: (String) data file's name. Returns: None
muddery/worldeditor/utils/readers.py
__init__
dongwudanci/muddery
127
python
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " self.filename = filename
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " self.filename = filename<|docstring|>Args: filename: (String) data file's name. Returns: None<|endoftext|>
b48b0f27be90f26629afdc4a862f1e8146d71245271aad523da5dad38e1a6ac9
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' raise StopIteration
Read data line. Returns: list: data line
muddery/worldeditor/utils/readers.py
readln
dongwudanci/muddery
127
python
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' raise StopIteration
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' raise StopIteration<|docstring|>Read data line. Returns: list: data line<|endoftext|>
6563f54c84af827fcb8f9ff6867e403299340948348ddcbd0a508b15fd599150
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(CSVReader, self).__init__(filename) self.reader = None self.csvfile = None if filename: try: self.csvfile = open(filename, 'r', encoding='utf-8') head = self.csvfile.read(len(codecs.BOM_UTF8)) if (head != codecs.BOM_UTF8): self.csvfile.seek(0) except UnicodeDecodeError: self.csvfile = open(filename, 'r') self.reader = csv.reader(self.csvfile)
Args: filename: (String) data file's name. Returns: None
muddery/worldeditor/utils/readers.py
__init__
dongwudanci/muddery
127
python
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(CSVReader, self).__init__(filename) self.reader = None self.csvfile = None if filename: try: self.csvfile = open(filename, 'r', encoding='utf-8') head = self.csvfile.read(len(codecs.BOM_UTF8)) if (head != codecs.BOM_UTF8): self.csvfile.seek(0) except UnicodeDecodeError: self.csvfile = open(filename, 'r') self.reader = csv.reader(self.csvfile)
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(CSVReader, self).__init__(filename) self.reader = None self.csvfile = None if filename: try: self.csvfile = open(filename, 'r', encoding='utf-8') head = self.csvfile.read(len(codecs.BOM_UTF8)) if (head != codecs.BOM_UTF8): self.csvfile.seek(0) except UnicodeDecodeError: self.csvfile = open(filename, 'r') self.reader = csv.reader(self.csvfile)<|docstring|>Args: filename: (String) data file's name. Returns: None<|endoftext|>
392d08924a42b0252f9f4abf28ef8448ae4f71a087eb517e136e6c8c18d1704c
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.reader): raise StopIteration return next(self.reader)
Read data line. Returns: list: data line
muddery/worldeditor/utils/readers.py
readln
dongwudanci/muddery
127
python
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.reader): raise StopIteration return next(self.reader)
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.reader): raise StopIteration return next(self.reader)<|docstring|>Read data line. Returns: list: data line<|endoftext|>
3beaa08f3a752aa83d5486563db536d5975a8fa0c83d26286173c5ebaf574f87
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(XLSReader, self).__init__(filename) if (not xlrd): print('**********************************************************') print('You need to install "xlrd" first to import xls/xlsx files!') print('You can use "pip install xlrd" to install it! ') print('**********************************************************') return self.sheet = None self.row_pos = 0 if filename: book = xlrd.open_workbook(filename) self.sheet = book.sheet_by_index(0)
Args: filename: (String) data file's name. Returns: None
muddery/worldeditor/utils/readers.py
__init__
dongwudanci/muddery
127
python
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(XLSReader, self).__init__(filename) if (not xlrd): print('**********************************************************') print('You need to install "xlrd" first to import xls/xlsx files!') print('You can use "pip install xlrd" to install it! ') print('**********************************************************') return self.sheet = None self.row_pos = 0 if filename: book = xlrd.open_workbook(filename) self.sheet = book.sheet_by_index(0)
def __init__(self, filename=None): "\n Args:\n filename: (String) data file's name.\n\n Returns:\n None\n " super(XLSReader, self).__init__(filename) if (not xlrd): print('**********************************************************') print('You need to install "xlrd" first to import xls/xlsx files!') print('You can use "pip install xlrd" to install it! ') print('**********************************************************') return self.sheet = None self.row_pos = 0 if filename: book = xlrd.open_workbook(filename) self.sheet = book.sheet_by_index(0)<|docstring|>Args: filename: (String) data file's name. Returns: None<|endoftext|>
0baa1c9b7b54b11d500e3cd6dd7612dd17b73daf05a11f6c6c209e42bef256e9
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.sheet): raise StopIteration if (self.row_pos >= self.sheet.nrows): raise StopIteration pos = self.row_pos self.row_pos += 1 return self.sheet.row_values(pos)
Read data line. Returns: list: data line
muddery/worldeditor/utils/readers.py
readln
dongwudanci/muddery
127
python
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.sheet): raise StopIteration if (self.row_pos >= self.sheet.nrows): raise StopIteration pos = self.row_pos self.row_pos += 1 return self.sheet.row_values(pos)
def readln(self): '\n Read data line.\n\n Returns:\n list: data line\n ' if (not self.sheet): raise StopIteration if (self.row_pos >= self.sheet.nrows): raise StopIteration pos = self.row_pos self.row_pos += 1 return self.sheet.row_values(pos)<|docstring|>Read data line. Returns: list: data line<|endoftext|>
2473d81ac0f72d2b6fc9d814cf96301b0542966e6689edc059f7e9b6b48aec30
def proto_factor_cosine(local_proto, global_proto): '\n [C, D]: D is 64 or 4\n ' norm_local = torch.norm(local_proto, dim=(- 1), keepdim=False) norm_global = torch.norm(global_proto, dim=(- 1), keepdim=False) factor_refined = (torch.sum((local_proto * global_proto), dim=(- 1), keepdim=False) / ((norm_local * norm_global) + 1e-06)) return factor_refined
[C, D]: D is 64 or 4
loss_func.py
proto_factor_cosine
CityU-AIM-Group/PRR-Imbalance
0
python
def proto_factor_cosine(local_proto, global_proto): '\n \n ' norm_local = torch.norm(local_proto, dim=(- 1), keepdim=False) norm_global = torch.norm(global_proto, dim=(- 1), keepdim=False) factor_refined = (torch.sum((local_proto * global_proto), dim=(- 1), keepdim=False) / ((norm_local * norm_global) + 1e-06)) return factor_refined
def proto_factor_cosine(local_proto, global_proto): '\n \n ' norm_local = torch.norm(local_proto, dim=(- 1), keepdim=False) norm_global = torch.norm(global_proto, dim=(- 1), keepdim=False) factor_refined = (torch.sum((local_proto * global_proto), dim=(- 1), keepdim=False) / ((norm_local * norm_global) + 1e-06)) return factor_refined<|docstring|>[C, D]: D is 64 or 4<|endoftext|>
05f952f5d0c224b7d19662fd7b7e1726a76a6eff6ca5ab2a1ee568f9a49f577d
def proto_factor_cosine(self, source_proto, target_proto): '\n [C, D]: D is 64 or 4\n ' norm_source = torch.norm(source_proto, dim=(- 1), keepdim=False) norm_target = torch.norm(target_proto.detach(), dim=(- 1), keepdim=False) factor_refined = (torch.sum((source_proto * target_proto.detach()), dim=(- 1), keepdim=False) / ((norm_source * norm_target) + self.eps)) return factor_refined
[C, D]: D is 64 or 4
loss_func.py
proto_factor_cosine
CityU-AIM-Group/PRR-Imbalance
0
python
def proto_factor_cosine(self, source_proto, target_proto): '\n \n ' norm_source = torch.norm(source_proto, dim=(- 1), keepdim=False) norm_target = torch.norm(target_proto.detach(), dim=(- 1), keepdim=False) factor_refined = (torch.sum((source_proto * target_proto.detach()), dim=(- 1), keepdim=False) / ((norm_source * norm_target) + self.eps)) return factor_refined
def proto_factor_cosine(self, source_proto, target_proto): '\n \n ' norm_source = torch.norm(source_proto, dim=(- 1), keepdim=False) norm_target = torch.norm(target_proto.detach(), dim=(- 1), keepdim=False) factor_refined = (torch.sum((source_proto * target_proto.detach()), dim=(- 1), keepdim=False) / ((norm_source * norm_target) + self.eps)) return factor_refined<|docstring|>[C, D]: D is 64 or 4<|endoftext|>
0399ac41b9823709572250495c12158fdcd5411b13b72fa7fd950961dc4e0c19
def GradientDescent(f, x0, delta=1e-05): '\n GradientDescent( f , x0 , delta=1e-5 ).\n This method finds global minimum using gradient descent.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for gradient descent\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' x = x0 d = Gradient(f)(x) while (npla.norm(d) > delta): phi = (lambda alpha: f((x - (alpha * d)))) alpha = op.newton(phi, 0) x = (x - (d * alpha)) d = Gradient(f)(x) return x
GradientDescent( f , x0 , delta=1e-5 ). This method finds global minimum using gradient descent. Parameters: f (function): the function to minimize x0 (vector): initial value for gradient descent delta (float): tolerance Returns: x: the argument that minimizes the function
NumAn_Op/multi_dim_min.py
GradientDescent
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def GradientDescent(f, x0, delta=1e-05): '\n GradientDescent( f , x0 , delta=1e-5 ).\n This method finds global minimum using gradient descent.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for gradient descent\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' x = x0 d = Gradient(f)(x) while (npla.norm(d) > delta): phi = (lambda alpha: f((x - (alpha * d)))) alpha = op.newton(phi, 0) x = (x - (d * alpha)) d = Gradient(f)(x) return x
def GradientDescent(f, x0, delta=1e-05): '\n GradientDescent( f , x0 , delta=1e-5 ).\n This method finds global minimum using gradient descent.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for gradient descent\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' x = x0 d = Gradient(f)(x) while (npla.norm(d) > delta): phi = (lambda alpha: f((x - (alpha * d)))) alpha = op.newton(phi, 0) x = (x - (d * alpha)) d = Gradient(f)(x) return x<|docstring|>GradientDescent( f , x0 , delta=1e-5 ). This method finds global minimum using gradient descent. Parameters: f (function): the function to minimize x0 (vector): initial value for gradient descent delta (float): tolerance Returns: x: the argument that minimizes the function<|endoftext|>
3ad66e8cfaf2b6236ebc6a57843173fa06aa923c47d0d43759f82ea981983b1d
def ConjugateGradient(f, x, Q, b): '\n ConjugateGradient( f , x , Q , b ).\n This method finds global minimum using conjugate gradient.\n\n Parameters:\n f (function): the function to minimize\n x (vector): initial value for conjugategradient\n Q (array): positive definite nxn symmetric matrix\n b (vector)\n\n Returns:\n x: the argument that minimizes the function\n \n ' n = x.shape[0] p = (- (np.dot(Q, x) - b)) for i in range(n): alpha = ((- np.dot((np.dot(Q, x) - b), p)) / np.dot(np.dot(p, Q), p)) x = (x + (alpha * p)) grad = Gradient(f)(x) beta = (np.dot(np.dot(grad, Q), p) / np.dot(np.dot(p, Q), p)) p = ((- grad) + (beta * p)) return x
ConjugateGradient( f , x , Q , b ). This method finds global minimum using conjugate gradient. Parameters: f (function): the function to minimize x (vector): initial value for conjugategradient Q (array): positive definite nxn symmetric matrix b (vector) Returns: x: the argument that minimizes the function
NumAn_Op/multi_dim_min.py
ConjugateGradient
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def ConjugateGradient(f, x, Q, b): '\n ConjugateGradient( f , x , Q , b ).\n This method finds global minimum using conjugate gradient.\n\n Parameters:\n f (function): the function to minimize\n x (vector): initial value for conjugategradient\n Q (array): positive definite nxn symmetric matrix\n b (vector)\n\n Returns:\n x: the argument that minimizes the function\n \n ' n = x.shape[0] p = (- (np.dot(Q, x) - b)) for i in range(n): alpha = ((- np.dot((np.dot(Q, x) - b), p)) / np.dot(np.dot(p, Q), p)) x = (x + (alpha * p)) grad = Gradient(f)(x) beta = (np.dot(np.dot(grad, Q), p) / np.dot(np.dot(p, Q), p)) p = ((- grad) + (beta * p)) return x
def ConjugateGradient(f, x, Q, b): '\n ConjugateGradient( f , x , Q , b ).\n This method finds global minimum using conjugate gradient.\n\n Parameters:\n f (function): the function to minimize\n x (vector): initial value for conjugategradient\n Q (array): positive definite nxn symmetric matrix\n b (vector)\n\n Returns:\n x: the argument that minimizes the function\n \n ' n = x.shape[0] p = (- (np.dot(Q, x) - b)) for i in range(n): alpha = ((- np.dot((np.dot(Q, x) - b), p)) / np.dot(np.dot(p, Q), p)) x = (x + (alpha * p)) grad = Gradient(f)(x) beta = (np.dot(np.dot(grad, Q), p) / np.dot(np.dot(p, Q), p)) p = ((- grad) + (beta * p)) return x<|docstring|>ConjugateGradient( f , x , Q , b ). This method finds global minimum using conjugate gradient. Parameters: f (function): the function to minimize x (vector): initial value for conjugategradient Q (array): positive definite nxn symmetric matrix b (vector) Returns: x: the argument that minimizes the function<|endoftext|>
d324416d9eedbb66bdbeffd45222d261ffb759867b255417db18181619089c30
def adagrad(f, df, bounds, n_iter=100, step_size=0.1): '\n adagrad( f , df , bounds , n_iter = 100 , step_size = .1 ).\n This method finds global minimum using the stochastic gradient descent variant: AdaGrad.\n\n Parameters:\n f (function): the function to minimize\n df (function): the first derivative of the function to minimize\n bounds (vector): uncertainty interval\n n_iter (int): number of iteration\n step_size (vector): step size\n\n Returns:\n solution: small interval that encloses the minimum value\n \n ' solution = (bounds[(:, 0)] + (rand(len(bounds)) * (bounds[(:, 1)] - bounds[(:, 0)]))) sq_grad_sums = [0.0 for _ in range(bounds.shape[0])] for it in range(n_iter): gradient = df(solution[0], solution[1]) for i in range(gradient.shape[0]): sq_grad_sums[i] += (gradient[i] ** 2.0) new_solution = list() for i in range(solution.shape[0]): alpha = (step_size / (1e-08 + sqrt(sq_grad_sums[i]))) value = (solution[i] - (alpha * gradient[i])) new_solution.append(value) solution = asarray(new_solution) return solution
adagrad( f , df , bounds , n_iter = 100 , step_size = .1 ). This method finds global minimum using the stochastic gradient descent variant: AdaGrad. Parameters: f (function): the function to minimize df (function): the first derivative of the function to minimize bounds (vector): uncertainty interval n_iter (int): number of iteration step_size (vector): step size Returns: solution: small interval that encloses the minimum value
NumAn_Op/multi_dim_min.py
adagrad
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def adagrad(f, df, bounds, n_iter=100, step_size=0.1): '\n adagrad( f , df , bounds , n_iter = 100 , step_size = .1 ).\n This method finds global minimum using the stochastic gradient descent variant: AdaGrad.\n\n Parameters:\n f (function): the function to minimize\n df (function): the first derivative of the function to minimize\n bounds (vector): uncertainty interval\n n_iter (int): number of iteration\n step_size (vector): step size\n\n Returns:\n solution: small interval that encloses the minimum value\n \n ' solution = (bounds[(:, 0)] + (rand(len(bounds)) * (bounds[(:, 1)] - bounds[(:, 0)]))) sq_grad_sums = [0.0 for _ in range(bounds.shape[0])] for it in range(n_iter): gradient = df(solution[0], solution[1]) for i in range(gradient.shape[0]): sq_grad_sums[i] += (gradient[i] ** 2.0) new_solution = list() for i in range(solution.shape[0]): alpha = (step_size / (1e-08 + sqrt(sq_grad_sums[i]))) value = (solution[i] - (alpha * gradient[i])) new_solution.append(value) solution = asarray(new_solution) return solution
def adagrad(f, df, bounds, n_iter=100, step_size=0.1): '\n adagrad( f , df , bounds , n_iter = 100 , step_size = .1 ).\n This method finds global minimum using the stochastic gradient descent variant: AdaGrad.\n\n Parameters:\n f (function): the function to minimize\n df (function): the first derivative of the function to minimize\n bounds (vector): uncertainty interval\n n_iter (int): number of iteration\n step_size (vector): step size\n\n Returns:\n solution: small interval that encloses the minimum value\n \n ' solution = (bounds[(:, 0)] + (rand(len(bounds)) * (bounds[(:, 1)] - bounds[(:, 0)]))) sq_grad_sums = [0.0 for _ in range(bounds.shape[0])] for it in range(n_iter): gradient = df(solution[0], solution[1]) for i in range(gradient.shape[0]): sq_grad_sums[i] += (gradient[i] ** 2.0) new_solution = list() for i in range(solution.shape[0]): alpha = (step_size / (1e-08 + sqrt(sq_grad_sums[i]))) value = (solution[i] - (alpha * gradient[i])) new_solution.append(value) solution = asarray(new_solution) return solution<|docstring|>adagrad( f , df , bounds , n_iter = 100 , step_size = .1 ). This method finds global minimum using the stochastic gradient descent variant: AdaGrad. Parameters: f (function): the function to minimize df (function): the first derivative of the function to minimize bounds (vector): uncertainty interval n_iter (int): number of iteration step_size (vector): step size Returns: solution: small interval that encloses the minimum value<|endoftext|>
6d6482d74a070c6a0d7064ed1b94d2bb3f3def0287aca3283b7ea27c2e6ed66a
def Newton(f, x0, delta=1e-05): '\n Newton( f, x0 , delta = 1e-5 ).\n This method finds global minimum using Newton method.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for Newton method\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' (x, n) = (x0, len(x0)) I = np.identity(n) d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) while (npla.norm(d) > delta): x = (x + d) if np.all((np.linalg.eigvals(Hessian(f)(x)) > 0)): d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) else: d = (- np.dot(npla.inv(((delta * I) + Hessian(f)(x))), Gradient(f)(x))) return x
Newton( f, x0 , delta = 1e-5 ). This method finds global minimum using Newton method. Parameters: f (function): the function to minimize x0 (vector): initial value for Newton method delta (float): tolerance Returns: x: the argument that minimizes the function
NumAn_Op/multi_dim_min.py
Newton
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def Newton(f, x0, delta=1e-05): '\n Newton( f, x0 , delta = 1e-5 ).\n This method finds global minimum using Newton method.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for Newton method\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' (x, n) = (x0, len(x0)) I = np.identity(n) d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) while (npla.norm(d) > delta): x = (x + d) if np.all((np.linalg.eigvals(Hessian(f)(x)) > 0)): d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) else: d = (- np.dot(npla.inv(((delta * I) + Hessian(f)(x))), Gradient(f)(x))) return x
def Newton(f, x0, delta=1e-05): '\n Newton( f, x0 , delta = 1e-5 ).\n This method finds global minimum using Newton method.\n\n Parameters:\n f (function): the function to minimize\n x0 (vector): initial value for Newton method\n delta (float): tolerance\n\n Returns:\n x: the argument that minimizes the function\n\n ' (x, n) = (x0, len(x0)) I = np.identity(n) d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) while (npla.norm(d) > delta): x = (x + d) if np.all((np.linalg.eigvals(Hessian(f)(x)) > 0)): d = (- np.dot(npla.inv(Hessian(f)(x)), Gradient(f)(x))) else: d = (- np.dot(npla.inv(((delta * I) + Hessian(f)(x))), Gradient(f)(x))) return x<|docstring|>Newton( f, x0 , delta = 1e-5 ). This method finds global minimum using Newton method. Parameters: f (function): the function to minimize x0 (vector): initial value for Newton method delta (float): tolerance Returns: x: the argument that minimizes the function<|endoftext|>
297fc88a15ad1983feb213508a2db35656b0d5adbfb91b867f913f43d00fb8c2
def armijo(phi, alpha0, e=0.01, beta=2): '\n armijo( phi , alpha0 , eps = .01 , beta = 2 ).\n This method calculate the optimal step size for descent methods.\n\n Parameters:\n phi (function): the function to minimize\n alpha0 (vector): initial step size of our optimization algorithm\n e (float): tolerance (a small value)\n beta (float): scaling factor\n\n Returns:\n alpha: improved step size\n\n ' if (alpha0 == 0): alpha = 0.1 else: alpha = alpha0 if test(1, phi, e, alpha): while (not test(2, phi, e, (beta * alpha))): alpha = (beta * alpha) else: while (not test(1, phi, e, alpha)): alpha = (alpha / beta) return alpha
armijo( phi , alpha0 , eps = .01 , beta = 2 ). This method calculate the optimal step size for descent methods. Parameters: phi (function): the function to minimize alpha0 (vector): initial step size of our optimization algorithm e (float): tolerance (a small value) beta (float): scaling factor Returns: alpha: improved step size
NumAn_Op/multi_dim_min.py
armijo
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def armijo(phi, alpha0, e=0.01, beta=2): '\n armijo( phi , alpha0 , eps = .01 , beta = 2 ).\n This method calculate the optimal step size for descent methods.\n\n Parameters:\n phi (function): the function to minimize\n alpha0 (vector): initial step size of our optimization algorithm\n e (float): tolerance (a small value)\n beta (float): scaling factor\n\n Returns:\n alpha: improved step size\n\n ' if (alpha0 == 0): alpha = 0.1 else: alpha = alpha0 if test(1, phi, e, alpha): while (not test(2, phi, e, (beta * alpha))): alpha = (beta * alpha) else: while (not test(1, phi, e, alpha)): alpha = (alpha / beta) return alpha
def armijo(phi, alpha0, e=0.01, beta=2): '\n armijo( phi , alpha0 , eps = .01 , beta = 2 ).\n This method calculate the optimal step size for descent methods.\n\n Parameters:\n phi (function): the function to minimize\n alpha0 (vector): initial step size of our optimization algorithm\n e (float): tolerance (a small value)\n beta (float): scaling factor\n\n Returns:\n alpha: improved step size\n\n ' if (alpha0 == 0): alpha = 0.1 else: alpha = alpha0 if test(1, phi, e, alpha): while (not test(2, phi, e, (beta * alpha))): alpha = (beta * alpha) else: while (not test(1, phi, e, alpha)): alpha = (alpha / beta) return alpha<|docstring|>armijo( phi , alpha0 , eps = .01 , beta = 2 ). This method calculate the optimal step size for descent methods. Parameters: phi (function): the function to minimize alpha0 (vector): initial step size of our optimization algorithm e (float): tolerance (a small value) beta (float): scaling factor Returns: alpha: improved step size<|endoftext|>
b8b05d4ab2df6d927401e661dc2a1969e7d949bfcece687dd202c15abed20412
def quasiNewton(f, X0, delta=0.01): "\n def quasiNewton(f, X0, delta = .01)\n This method minimize a multi-dimensional function\n \n Parameters:\n f (function): multi-dimensional function to minimize\n x0 (vector): intial point's coordinates\n delta (float): small quantity to check convergence\n\n Returns:\n X0: small interval that encloses the minimum value.\n\n " X0 = np.array([X0]).T global X X = X0 grd1 = np.array([Gradient(f)(X0)]).T H = np.eye(len(X)) while (np.linalg.norm(grd1) > delta): d = ((- H) @ grd1) phi = (lambda alpha: f((X - (alpha * grd1)))) alphak = armijo(phi, 1) X = (X0 + (alphak * d)) grd0 = grd1 grd1 = np.array([Gradient(f)(X)]).T H = DFP(H, alphak, d, grd0, grd1) X0 = X return X0
def quasiNewton(f, X0, delta = .01) This method minimize a multi-dimensional function Parameters: f (function): multi-dimensional function to minimize x0 (vector): intial point's coordinates delta (float): small quantity to check convergence Returns: X0: small interval that encloses the minimum value.
NumAn_Op/multi_dim_min.py
quasiNewton
FILALIHicham/Numerical_Analysis_Optimization_Package
1
python
def quasiNewton(f, X0, delta=0.01): "\n def quasiNewton(f, X0, delta = .01)\n This method minimize a multi-dimensional function\n \n Parameters:\n f (function): multi-dimensional function to minimize\n x0 (vector): intial point's coordinates\n delta (float): small quantity to check convergence\n\n Returns:\n X0: small interval that encloses the minimum value.\n\n " X0 = np.array([X0]).T global X X = X0 grd1 = np.array([Gradient(f)(X0)]).T H = np.eye(len(X)) while (np.linalg.norm(grd1) > delta): d = ((- H) @ grd1) phi = (lambda alpha: f((X - (alpha * grd1)))) alphak = armijo(phi, 1) X = (X0 + (alphak * d)) grd0 = grd1 grd1 = np.array([Gradient(f)(X)]).T H = DFP(H, alphak, d, grd0, grd1) X0 = X return X0
def quasiNewton(f, X0, delta=0.01): "\n def quasiNewton(f, X0, delta = .01)\n This method minimize a multi-dimensional function\n \n Parameters:\n f (function): multi-dimensional function to minimize\n x0 (vector): intial point's coordinates\n delta (float): small quantity to check convergence\n\n Returns:\n X0: small interval that encloses the minimum value.\n\n " X0 = np.array([X0]).T global X X = X0 grd1 = np.array([Gradient(f)(X0)]).T H = np.eye(len(X)) while (np.linalg.norm(grd1) > delta): d = ((- H) @ grd1) phi = (lambda alpha: f((X - (alpha * grd1)))) alphak = armijo(phi, 1) X = (X0 + (alphak * d)) grd0 = grd1 grd1 = np.array([Gradient(f)(X)]).T H = DFP(H, alphak, d, grd0, grd1) X0 = X return X0<|docstring|>def quasiNewton(f, X0, delta = .01) This method minimize a multi-dimensional function Parameters: f (function): multi-dimensional function to minimize x0 (vector): intial point's coordinates delta (float): small quantity to check convergence Returns: X0: small interval that encloses the minimum value.<|endoftext|>
7680f487b6988083a2037f6d40030464f8ba99cbe29ff9f7bf197d2f16e02f49
def VirtualMachineQuickStats(vim, *args, **kwargs): 'A set of statistics that are typically updated with near real-time regularity.\n This data object type does not support notification, for scalability reasons.\n Therefore, changes in QuickStats do not generate property collector updates. To\n monitor statistics values, use the statistics and alarms modules instead.' obj = vim.client.factory.create('{urn:vim25}VirtualMachineQuickStats') if ((len(args) + len(kwargs)) < 1): raise IndexError(('Expected at least 2 arguments got: %d' % len(args))) required = ['guestHeartbeatStatus'] optional = ['balloonedMemory', 'compressedMemory', 'consumedOverheadMemory', 'distributedCpuEntitlement', 'distributedMemoryEntitlement', 'ftLatencyStatus', 'ftLogBandwidth', 'ftSecondaryLatency', 'guestMemoryUsage', 'hostMemoryUsage', 'overallCpuDemand', 'overallCpuUsage', 'privateMemory', 'sharedMemory', 'ssdSwappedMemory', 'staticCpuEntitlement', 'staticMemoryEntitlement', 'swappedMemory', 'uptimeSeconds', 'dynamicProperty', 'dynamicType'] for (name, arg) in zip((required + optional), args): setattr(obj, name, arg) for (name, value) in kwargs.items(): if (name in (required + optional)): setattr(obj, name, value) else: raise InvalidArgumentError(('Invalid argument: %s. Expected one of %s' % (name, ', '.join((required + optional))))) return obj
A set of statistics that are typically updated with near real-time regularity. This data object type does not support notification, for scalability reasons. Therefore, changes in QuickStats do not generate property collector updates. To monitor statistics values, use the statistics and alarms modules instead.
pyvisdk/do/virtual_machine_quick_stats.py
VirtualMachineQuickStats
Infinidat/pyvisdk
0
python
def VirtualMachineQuickStats(vim, *args, **kwargs): 'A set of statistics that are typically updated with near real-time regularity.\n This data object type does not support notification, for scalability reasons.\n Therefore, changes in QuickStats do not generate property collector updates. To\n monitor statistics values, use the statistics and alarms modules instead.' obj = vim.client.factory.create('{urn:vim25}VirtualMachineQuickStats') if ((len(args) + len(kwargs)) < 1): raise IndexError(('Expected at least 2 arguments got: %d' % len(args))) required = ['guestHeartbeatStatus'] optional = ['balloonedMemory', 'compressedMemory', 'consumedOverheadMemory', 'distributedCpuEntitlement', 'distributedMemoryEntitlement', 'ftLatencyStatus', 'ftLogBandwidth', 'ftSecondaryLatency', 'guestMemoryUsage', 'hostMemoryUsage', 'overallCpuDemand', 'overallCpuUsage', 'privateMemory', 'sharedMemory', 'ssdSwappedMemory', 'staticCpuEntitlement', 'staticMemoryEntitlement', 'swappedMemory', 'uptimeSeconds', 'dynamicProperty', 'dynamicType'] for (name, arg) in zip((required + optional), args): setattr(obj, name, arg) for (name, value) in kwargs.items(): if (name in (required + optional)): setattr(obj, name, value) else: raise InvalidArgumentError(('Invalid argument: %s. Expected one of %s' % (name, ', '.join((required + optional))))) return obj
def VirtualMachineQuickStats(vim, *args, **kwargs): 'A set of statistics that are typically updated with near real-time regularity.\n This data object type does not support notification, for scalability reasons.\n Therefore, changes in QuickStats do not generate property collector updates. To\n monitor statistics values, use the statistics and alarms modules instead.' obj = vim.client.factory.create('{urn:vim25}VirtualMachineQuickStats') if ((len(args) + len(kwargs)) < 1): raise IndexError(('Expected at least 2 arguments got: %d' % len(args))) required = ['guestHeartbeatStatus'] optional = ['balloonedMemory', 'compressedMemory', 'consumedOverheadMemory', 'distributedCpuEntitlement', 'distributedMemoryEntitlement', 'ftLatencyStatus', 'ftLogBandwidth', 'ftSecondaryLatency', 'guestMemoryUsage', 'hostMemoryUsage', 'overallCpuDemand', 'overallCpuUsage', 'privateMemory', 'sharedMemory', 'ssdSwappedMemory', 'staticCpuEntitlement', 'staticMemoryEntitlement', 'swappedMemory', 'uptimeSeconds', 'dynamicProperty', 'dynamicType'] for (name, arg) in zip((required + optional), args): setattr(obj, name, arg) for (name, value) in kwargs.items(): if (name in (required + optional)): setattr(obj, name, value) else: raise InvalidArgumentError(('Invalid argument: %s. Expected one of %s' % (name, ', '.join((required + optional))))) return obj<|docstring|>A set of statistics that are typically updated with near real-time regularity. This data object type does not support notification, for scalability reasons. Therefore, changes in QuickStats do not generate property collector updates. To monitor statistics values, use the statistics and alarms modules instead.<|endoftext|>
9410824fd07a28f205b042633c20c2624c51eac042fb50fa1145251e8812592e
def get_pipeline(config, min_steps, max_steps, eval_ratio): 'Returns the Pipeline instance which creates the RNN dataset.\n\n Args:\n config: An EventSequenceRnnConfig.\n min_steps: Minimum number of steps for an extracted sequence.\n max_steps: Maximum number of steps for an extracted sequence.\n eval_ratio: Fraction of input to set aside for evaluation set.\n\n Returns:\n A pipeline.Pipeline instance.\n ' transposition_range = list(range((- 4), 5)) partitioner = pipelines_common.RandomPartition(music_pb2.NoteSequence, ['eval_pianoroll_tracks', 'training_pianoroll_tracks'], [eval_ratio]) dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)} for mode in ['eval', 'training']: time_change_splitter = note_sequence_pipelines.TimeChangeSplitter(name=('TimeChangeSplitter_' + mode)) quantizer = note_sequence_pipelines.Quantizer(steps_per_quarter=config.steps_per_quarter, name=('Quantizer_' + mode)) transposition_pipeline = note_sequence_pipelines.TranspositionPipeline(transposition_range, name=('TranspositionPipeline_' + mode)) pianoroll_extractor = PianorollSequenceExtractor(min_steps=min_steps, max_steps=max_steps, name=('PianorollExtractor_' + mode)) encoder_pipeline = event_sequence_pipeline.EncoderPipeline(PianorollSequence, config.encoder_decoder, name=('EncoderPipeline_' + mode)) dag[time_change_splitter] = partitioner[(mode + '_pianoroll_tracks')] dag[quantizer] = time_change_splitter dag[transposition_pipeline] = quantizer dag[pianoroll_extractor] = transposition_pipeline dag[encoder_pipeline] = pianoroll_extractor dag[dag_pipeline.DagOutput((mode + '_pianoroll_tracks'))] = encoder_pipeline return dag_pipeline.DAGPipeline(dag)
Returns the Pipeline instance which creates the RNN dataset. Args: config: An EventSequenceRnnConfig. min_steps: Minimum number of steps for an extracted sequence. max_steps: Maximum number of steps for an extracted sequence. eval_ratio: Fraction of input to set aside for evaluation set. Returns: A pipeline.Pipeline instance.
magenta/pipelines/pianoroll_pipeline.py
get_pipeline
sandutsar/magenta
16,143
python
def get_pipeline(config, min_steps, max_steps, eval_ratio): 'Returns the Pipeline instance which creates the RNN dataset.\n\n Args:\n config: An EventSequenceRnnConfig.\n min_steps: Minimum number of steps for an extracted sequence.\n max_steps: Maximum number of steps for an extracted sequence.\n eval_ratio: Fraction of input to set aside for evaluation set.\n\n Returns:\n A pipeline.Pipeline instance.\n ' transposition_range = list(range((- 4), 5)) partitioner = pipelines_common.RandomPartition(music_pb2.NoteSequence, ['eval_pianoroll_tracks', 'training_pianoroll_tracks'], [eval_ratio]) dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)} for mode in ['eval', 'training']: time_change_splitter = note_sequence_pipelines.TimeChangeSplitter(name=('TimeChangeSplitter_' + mode)) quantizer = note_sequence_pipelines.Quantizer(steps_per_quarter=config.steps_per_quarter, name=('Quantizer_' + mode)) transposition_pipeline = note_sequence_pipelines.TranspositionPipeline(transposition_range, name=('TranspositionPipeline_' + mode)) pianoroll_extractor = PianorollSequenceExtractor(min_steps=min_steps, max_steps=max_steps, name=('PianorollExtractor_' + mode)) encoder_pipeline = event_sequence_pipeline.EncoderPipeline(PianorollSequence, config.encoder_decoder, name=('EncoderPipeline_' + mode)) dag[time_change_splitter] = partitioner[(mode + '_pianoroll_tracks')] dag[quantizer] = time_change_splitter dag[transposition_pipeline] = quantizer dag[pianoroll_extractor] = transposition_pipeline dag[encoder_pipeline] = pianoroll_extractor dag[dag_pipeline.DagOutput((mode + '_pianoroll_tracks'))] = encoder_pipeline return dag_pipeline.DAGPipeline(dag)
def get_pipeline(config, min_steps, max_steps, eval_ratio): 'Returns the Pipeline instance which creates the RNN dataset.\n\n Args:\n config: An EventSequenceRnnConfig.\n min_steps: Minimum number of steps for an extracted sequence.\n max_steps: Maximum number of steps for an extracted sequence.\n eval_ratio: Fraction of input to set aside for evaluation set.\n\n Returns:\n A pipeline.Pipeline instance.\n ' transposition_range = list(range((- 4), 5)) partitioner = pipelines_common.RandomPartition(music_pb2.NoteSequence, ['eval_pianoroll_tracks', 'training_pianoroll_tracks'], [eval_ratio]) dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)} for mode in ['eval', 'training']: time_change_splitter = note_sequence_pipelines.TimeChangeSplitter(name=('TimeChangeSplitter_' + mode)) quantizer = note_sequence_pipelines.Quantizer(steps_per_quarter=config.steps_per_quarter, name=('Quantizer_' + mode)) transposition_pipeline = note_sequence_pipelines.TranspositionPipeline(transposition_range, name=('TranspositionPipeline_' + mode)) pianoroll_extractor = PianorollSequenceExtractor(min_steps=min_steps, max_steps=max_steps, name=('PianorollExtractor_' + mode)) encoder_pipeline = event_sequence_pipeline.EncoderPipeline(PianorollSequence, config.encoder_decoder, name=('EncoderPipeline_' + mode)) dag[time_change_splitter] = partitioner[(mode + '_pianoroll_tracks')] dag[quantizer] = time_change_splitter dag[transposition_pipeline] = quantizer dag[pianoroll_extractor] = transposition_pipeline dag[encoder_pipeline] = pianoroll_extractor dag[dag_pipeline.DagOutput((mode + '_pianoroll_tracks'))] = encoder_pipeline return dag_pipeline.DAGPipeline(dag)<|docstring|>Returns the Pipeline instance which creates the RNN dataset. Args: config: An EventSequenceRnnConfig. min_steps: Minimum number of steps for an extracted sequence. max_steps: Maximum number of steps for an extracted sequence. eval_ratio: Fraction of input to set aside for evaluation set. Returns: A pipeline.Pipeline instance.<|endoftext|>
6a1ee292af6a86f2fdab70c41389c61af52381742ed273bafdd9a04372d43158
def extract_pianoroll_sequences(quantized_sequence, start_step=0, min_steps_discard=None, max_steps_discard=None, max_steps_truncate=None): 'Extracts a polyphonic track from the given quantized NoteSequence.\n\n Currently, this extracts only one pianoroll from a given track.\n\n Args:\n quantized_sequence: A quantized NoteSequence.\n start_step: Start extracting a sequence at this time step. Assumed\n to be the beginning of a bar.\n min_steps_discard: Minimum length of tracks in steps. Shorter tracks are\n discarded.\n max_steps_discard: Maximum length of tracks in steps. Longer tracks are\n discarded. Mutually exclusive with `max_steps_truncate`.\n max_steps_truncate: Maximum length of tracks in steps. Longer tracks are\n truncated. Mutually exclusive with `max_steps_discard`.\n\n Returns:\n pianoroll_seqs: A python list of PianorollSequence instances.\n stats: A dictionary mapping string names to `statistics.Statistic` objects.\n\n Raises:\n ValueError: If both `max_steps_discard` and `max_steps_truncate` are\n specified.\n ' if ((max_steps_discard, max_steps_truncate).count(None) == 0): raise ValueError('Only one of `max_steps_discard` and `max_steps_truncate` can be specified.') sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence) stats = dict(((stat_name, statistics.Counter(stat_name)) for stat_name in ['pianoroll_tracks_truncated_too_long', 'pianoroll_tracks_discarded_too_short', 'pianoroll_tracks_discarded_too_long', 'pianoroll_tracks_discarded_more_than_1_program'])) steps_per_bar = sequences_lib.steps_per_bar_in_quantized_sequence(quantized_sequence) stats['pianoroll_track_lengths_in_bars'] = statistics.Histogram('pianoroll_track_lengths_in_bars', [0, 1, 10, 20, 30, 40, 50, 100, 200, 500, 1000]) programs = set() for note in quantized_sequence.notes: programs.add(note.program) if (len(programs) > 1): stats['pianoroll_tracks_discarded_more_than_1_program'].increment() return ([], list(stats.values())) pianoroll_seq = PianorollSequence(quantized_sequence=quantized_sequence, start_step=start_step) pianoroll_seqs = [] num_steps = pianoroll_seq.num_steps if ((min_steps_discard is not None) and (num_steps < min_steps_discard)): stats['pianoroll_tracks_discarded_too_short'].increment() elif ((max_steps_discard is not None) and (num_steps > max_steps_discard)): stats['pianoroll_tracks_discarded_too_long'].increment() else: if ((max_steps_truncate is not None) and (num_steps > max_steps_truncate)): stats['pianoroll_tracks_truncated_too_long'].increment() pianoroll_seq.set_length(max_steps_truncate) pianoroll_seqs.append(pianoroll_seq) stats['pianoroll_track_lengths_in_bars'].increment((num_steps // steps_per_bar)) return (pianoroll_seqs, list(stats.values()))
Extracts a polyphonic track from the given quantized NoteSequence. Currently, this extracts only one pianoroll from a given track. Args: quantized_sequence: A quantized NoteSequence. start_step: Start extracting a sequence at this time step. Assumed to be the beginning of a bar. min_steps_discard: Minimum length of tracks in steps. Shorter tracks are discarded. max_steps_discard: Maximum length of tracks in steps. Longer tracks are discarded. Mutually exclusive with `max_steps_truncate`. max_steps_truncate: Maximum length of tracks in steps. Longer tracks are truncated. Mutually exclusive with `max_steps_discard`. Returns: pianoroll_seqs: A python list of PianorollSequence instances. stats: A dictionary mapping string names to `statistics.Statistic` objects. Raises: ValueError: If both `max_steps_discard` and `max_steps_truncate` are specified.
magenta/pipelines/pianoroll_pipeline.py
extract_pianoroll_sequences
sandutsar/magenta
16,143
python
def extract_pianoroll_sequences(quantized_sequence, start_step=0, min_steps_discard=None, max_steps_discard=None, max_steps_truncate=None): 'Extracts a polyphonic track from the given quantized NoteSequence.\n\n Currently, this extracts only one pianoroll from a given track.\n\n Args:\n quantized_sequence: A quantized NoteSequence.\n start_step: Start extracting a sequence at this time step. Assumed\n to be the beginning of a bar.\n min_steps_discard: Minimum length of tracks in steps. Shorter tracks are\n discarded.\n max_steps_discard: Maximum length of tracks in steps. Longer tracks are\n discarded. Mutually exclusive with `max_steps_truncate`.\n max_steps_truncate: Maximum length of tracks in steps. Longer tracks are\n truncated. Mutually exclusive with `max_steps_discard`.\n\n Returns:\n pianoroll_seqs: A python list of PianorollSequence instances.\n stats: A dictionary mapping string names to `statistics.Statistic` objects.\n\n Raises:\n ValueError: If both `max_steps_discard` and `max_steps_truncate` are\n specified.\n ' if ((max_steps_discard, max_steps_truncate).count(None) == 0): raise ValueError('Only one of `max_steps_discard` and `max_steps_truncate` can be specified.') sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence) stats = dict(((stat_name, statistics.Counter(stat_name)) for stat_name in ['pianoroll_tracks_truncated_too_long', 'pianoroll_tracks_discarded_too_short', 'pianoroll_tracks_discarded_too_long', 'pianoroll_tracks_discarded_more_than_1_program'])) steps_per_bar = sequences_lib.steps_per_bar_in_quantized_sequence(quantized_sequence) stats['pianoroll_track_lengths_in_bars'] = statistics.Histogram('pianoroll_track_lengths_in_bars', [0, 1, 10, 20, 30, 40, 50, 100, 200, 500, 1000]) programs = set() for note in quantized_sequence.notes: programs.add(note.program) if (len(programs) > 1): stats['pianoroll_tracks_discarded_more_than_1_program'].increment() return ([], list(stats.values())) pianoroll_seq = PianorollSequence(quantized_sequence=quantized_sequence, start_step=start_step) pianoroll_seqs = [] num_steps = pianoroll_seq.num_steps if ((min_steps_discard is not None) and (num_steps < min_steps_discard)): stats['pianoroll_tracks_discarded_too_short'].increment() elif ((max_steps_discard is not None) and (num_steps > max_steps_discard)): stats['pianoroll_tracks_discarded_too_long'].increment() else: if ((max_steps_truncate is not None) and (num_steps > max_steps_truncate)): stats['pianoroll_tracks_truncated_too_long'].increment() pianoroll_seq.set_length(max_steps_truncate) pianoroll_seqs.append(pianoroll_seq) stats['pianoroll_track_lengths_in_bars'].increment((num_steps // steps_per_bar)) return (pianoroll_seqs, list(stats.values()))
def extract_pianoroll_sequences(quantized_sequence, start_step=0, min_steps_discard=None, max_steps_discard=None, max_steps_truncate=None): 'Extracts a polyphonic track from the given quantized NoteSequence.\n\n Currently, this extracts only one pianoroll from a given track.\n\n Args:\n quantized_sequence: A quantized NoteSequence.\n start_step: Start extracting a sequence at this time step. Assumed\n to be the beginning of a bar.\n min_steps_discard: Minimum length of tracks in steps. Shorter tracks are\n discarded.\n max_steps_discard: Maximum length of tracks in steps. Longer tracks are\n discarded. Mutually exclusive with `max_steps_truncate`.\n max_steps_truncate: Maximum length of tracks in steps. Longer tracks are\n truncated. Mutually exclusive with `max_steps_discard`.\n\n Returns:\n pianoroll_seqs: A python list of PianorollSequence instances.\n stats: A dictionary mapping string names to `statistics.Statistic` objects.\n\n Raises:\n ValueError: If both `max_steps_discard` and `max_steps_truncate` are\n specified.\n ' if ((max_steps_discard, max_steps_truncate).count(None) == 0): raise ValueError('Only one of `max_steps_discard` and `max_steps_truncate` can be specified.') sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence) stats = dict(((stat_name, statistics.Counter(stat_name)) for stat_name in ['pianoroll_tracks_truncated_too_long', 'pianoroll_tracks_discarded_too_short', 'pianoroll_tracks_discarded_too_long', 'pianoroll_tracks_discarded_more_than_1_program'])) steps_per_bar = sequences_lib.steps_per_bar_in_quantized_sequence(quantized_sequence) stats['pianoroll_track_lengths_in_bars'] = statistics.Histogram('pianoroll_track_lengths_in_bars', [0, 1, 10, 20, 30, 40, 50, 100, 200, 500, 1000]) programs = set() for note in quantized_sequence.notes: programs.add(note.program) if (len(programs) > 1): stats['pianoroll_tracks_discarded_more_than_1_program'].increment() return ([], list(stats.values())) pianoroll_seq = PianorollSequence(quantized_sequence=quantized_sequence, start_step=start_step) pianoroll_seqs = [] num_steps = pianoroll_seq.num_steps if ((min_steps_discard is not None) and (num_steps < min_steps_discard)): stats['pianoroll_tracks_discarded_too_short'].increment() elif ((max_steps_discard is not None) and (num_steps > max_steps_discard)): stats['pianoroll_tracks_discarded_too_long'].increment() else: if ((max_steps_truncate is not None) and (num_steps > max_steps_truncate)): stats['pianoroll_tracks_truncated_too_long'].increment() pianoroll_seq.set_length(max_steps_truncate) pianoroll_seqs.append(pianoroll_seq) stats['pianoroll_track_lengths_in_bars'].increment((num_steps // steps_per_bar)) return (pianoroll_seqs, list(stats.values()))<|docstring|>Extracts a polyphonic track from the given quantized NoteSequence. Currently, this extracts only one pianoroll from a given track. Args: quantized_sequence: A quantized NoteSequence. start_step: Start extracting a sequence at this time step. Assumed to be the beginning of a bar. min_steps_discard: Minimum length of tracks in steps. Shorter tracks are discarded. max_steps_discard: Maximum length of tracks in steps. Longer tracks are discarded. Mutually exclusive with `max_steps_truncate`. max_steps_truncate: Maximum length of tracks in steps. Longer tracks are truncated. Mutually exclusive with `max_steps_discard`. Returns: pianoroll_seqs: A python list of PianorollSequence instances. stats: A dictionary mapping string names to `statistics.Statistic` objects. Raises: ValueError: If both `max_steps_discard` and `max_steps_truncate` are specified.<|endoftext|>
bca7698c9d8b821ac5dfdba08ed55f722dd2a9493b1d264a41645a1e56cf0457
def lambda_handler(event, context): 'Handle a Pybossa webhook\n\n Parameters\n ----------\n event: dict, required\n\n context: object, required\n Lambda Context runtime methods and attributes\n Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html\n\n Returns\n ------\n ' path = event.get('path', '') project_slug = os.path.basename(path) headers = event.get('multiValueHeaders', {}) body = event.get('body', '') if (('httpMethod' in event) and (event['httpMethod'] == 'GET')): return simple_response(200, '200 OK', payload='Ready for webhook.') if (('httpMethod' in event) and (event['httpMethod'] == 'POST')): try: webhook_data = json.loads(body) project_short_name = webhook_data['project_short_name'] project_id = webhook_data['project_id'] task_id = webhook_data['task_id'] taskrun_id = int(webhook_data.get('taskrun_id', (- 1))) user_id = int(webhook_data.get('user_id', (- 1))) result_id = webhook_data['result_id'] event = webhook_data['event'] except (json.decoder.JSONDecodeError, KeyError, ValueError, TypeError): return simple_response(400, 'Bad Request') if (taskrun_id != (- 1)): print(f'Notified of taskrun {taskrun_id} by user {user_id} in project {project_short_name}. Crediting to SciStarter project {project_slug}.') try: record_participation(taskrun_id, project_slug) return simple_response(200, '200 OK', payload='Notification sent.') except Exception as e: return simple_response(400, 'Bad Request', payload=f'Exception: {str(e)}') else: return simple_response(400, 'Bad Request', payload='Webhook did not provide taskrun_id.') print(path) print(json.dumps(headers)) print(body) return simple_response(400, 'Bad Request')
Handle a Pybossa webhook Parameters ---------- event: dict, required context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------
vdashboard/app.py
lambda_handler
Goodly/volunteerdashboard
0
python
def lambda_handler(event, context): 'Handle a Pybossa webhook\n\n Parameters\n ----------\n event: dict, required\n\n context: object, required\n Lambda Context runtime methods and attributes\n Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html\n\n Returns\n ------\n ' path = event.get('path', ) project_slug = os.path.basename(path) headers = event.get('multiValueHeaders', {}) body = event.get('body', ) if (('httpMethod' in event) and (event['httpMethod'] == 'GET')): return simple_response(200, '200 OK', payload='Ready for webhook.') if (('httpMethod' in event) and (event['httpMethod'] == 'POST')): try: webhook_data = json.loads(body) project_short_name = webhook_data['project_short_name'] project_id = webhook_data['project_id'] task_id = webhook_data['task_id'] taskrun_id = int(webhook_data.get('taskrun_id', (- 1))) user_id = int(webhook_data.get('user_id', (- 1))) result_id = webhook_data['result_id'] event = webhook_data['event'] except (json.decoder.JSONDecodeError, KeyError, ValueError, TypeError): return simple_response(400, 'Bad Request') if (taskrun_id != (- 1)): print(f'Notified of taskrun {taskrun_id} by user {user_id} in project {project_short_name}. Crediting to SciStarter project {project_slug}.') try: record_participation(taskrun_id, project_slug) return simple_response(200, '200 OK', payload='Notification sent.') except Exception as e: return simple_response(400, 'Bad Request', payload=f'Exception: {str(e)}') else: return simple_response(400, 'Bad Request', payload='Webhook did not provide taskrun_id.') print(path) print(json.dumps(headers)) print(body) return simple_response(400, 'Bad Request')
def lambda_handler(event, context): 'Handle a Pybossa webhook\n\n Parameters\n ----------\n event: dict, required\n\n context: object, required\n Lambda Context runtime methods and attributes\n Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html\n\n Returns\n ------\n ' path = event.get('path', ) project_slug = os.path.basename(path) headers = event.get('multiValueHeaders', {}) body = event.get('body', ) if (('httpMethod' in event) and (event['httpMethod'] == 'GET')): return simple_response(200, '200 OK', payload='Ready for webhook.') if (('httpMethod' in event) and (event['httpMethod'] == 'POST')): try: webhook_data = json.loads(body) project_short_name = webhook_data['project_short_name'] project_id = webhook_data['project_id'] task_id = webhook_data['task_id'] taskrun_id = int(webhook_data.get('taskrun_id', (- 1))) user_id = int(webhook_data.get('user_id', (- 1))) result_id = webhook_data['result_id'] event = webhook_data['event'] except (json.decoder.JSONDecodeError, KeyError, ValueError, TypeError): return simple_response(400, 'Bad Request') if (taskrun_id != (- 1)): print(f'Notified of taskrun {taskrun_id} by user {user_id} in project {project_short_name}. Crediting to SciStarter project {project_slug}.') try: record_participation(taskrun_id, project_slug) return simple_response(200, '200 OK', payload='Notification sent.') except Exception as e: return simple_response(400, 'Bad Request', payload=f'Exception: {str(e)}') else: return simple_response(400, 'Bad Request', payload='Webhook did not provide taskrun_id.') print(path) print(json.dumps(headers)) print(body) return simple_response(400, 'Bad Request')<|docstring|>Handle a Pybossa webhook Parameters ---------- event: dict, required context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------<|endoftext|>
e5a7f3bf9aecfbae28731af6a7155dbbe6f1959b839f3169707aec8c7d5ddbce
def test_collation(ldml): ' Test that index exemplar is sorted according to the default collation ' if iscldr(ldml): return filename = os.path.basename(ldml.ldml.fname) defcol = ldml.ldml.root.find('.//collations/defaultCollation') defcollation = (defcol.text if (defcol is not None) else 'standard') col_el = ldml.ldml.root.find(((".//collations/collation[@type='" + defcollation) + "']/cr")) col = (col_el.text if (col_el is not None) else '') try: rbc = icu.RuleBasedCollator(col) except icu.ICUError: assert False, (filename + ' has invalid ICU collation') return index_el = ldml.ldml.root.find('.//characters/exemplarCharacters[@type="index"]') if (index_el == None): return index_list_raw = index_el.text[1:(- 1)].strip().split(' ') index_list = [re.sub(curlybraces, '\\1', c) for c in index_list_raw] sort_list = sorted(index_list, key=rbc.getSortKey) assert (index_list == sort_list), (filename + ' index exemplar inconsistent with collation')
Test that index exemplar is sorted according to the default collation
tests/test_collation.py
test_collation
silnrsi/sldr
11
python
def test_collation(ldml): ' ' if iscldr(ldml): return filename = os.path.basename(ldml.ldml.fname) defcol = ldml.ldml.root.find('.//collations/defaultCollation') defcollation = (defcol.text if (defcol is not None) else 'standard') col_el = ldml.ldml.root.find(((".//collations/collation[@type='" + defcollation) + "']/cr")) col = (col_el.text if (col_el is not None) else ) try: rbc = icu.RuleBasedCollator(col) except icu.ICUError: assert False, (filename + ' has invalid ICU collation') return index_el = ldml.ldml.root.find('.//characters/exemplarCharacters[@type="index"]') if (index_el == None): return index_list_raw = index_el.text[1:(- 1)].strip().split(' ') index_list = [re.sub(curlybraces, '\\1', c) for c in index_list_raw] sort_list = sorted(index_list, key=rbc.getSortKey) assert (index_list == sort_list), (filename + ' index exemplar inconsistent with collation')
def test_collation(ldml): ' ' if iscldr(ldml): return filename = os.path.basename(ldml.ldml.fname) defcol = ldml.ldml.root.find('.//collations/defaultCollation') defcollation = (defcol.text if (defcol is not None) else 'standard') col_el = ldml.ldml.root.find(((".//collations/collation[@type='" + defcollation) + "']/cr")) col = (col_el.text if (col_el is not None) else ) try: rbc = icu.RuleBasedCollator(col) except icu.ICUError: assert False, (filename + ' has invalid ICU collation') return index_el = ldml.ldml.root.find('.//characters/exemplarCharacters[@type="index"]') if (index_el == None): return index_list_raw = index_el.text[1:(- 1)].strip().split(' ') index_list = [re.sub(curlybraces, '\\1', c) for c in index_list_raw] sort_list = sorted(index_list, key=rbc.getSortKey) assert (index_list == sort_list), (filename + ' index exemplar inconsistent with collation')<|docstring|>Test that index exemplar is sorted according to the default collation<|endoftext|>