File size: 6,472 Bytes
50f0349 a2e14a4 50f0349 a2e14a4 50f0349 a2e14a4 50f0349 a2e14a4 50f0349 a2e14a4 50f0349 a2e14a4 50f0349 a2e14a4 50f0349 cbc6a9c 9be20b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import json
import pandas as pd
from datasets import load_dataset
root_dir = "experiments/prediction_files"
id_to_label = {
'0': 'arts_&_culture',
'1': 'business_&_entrepreneurs',
'2': 'celebrity_&_pop_culture',
'3': 'diaries_&_daily_life',
'4': 'family',
'5': 'fashion_&_style',
'6': 'film_tv_&_video',
'7': 'fitness_&_health',
'8': 'food_&_dining',
'9': 'gaming',
'10': 'learning_&_educational',
'11': 'music',
'12': 'news_&_social_concern',
'13': 'other_hobbies',
'14': 'relationships',
'15': 'science_&_technology',
'16': 'sports',
'17': 'travel_&_adventure',
'18': 'youth_&_student_life'
}
tasks = ["nerd", "sentiment", "hate"]
splits = ["test_1", "test_2", "test_3", "test_4"]
model_list = [
"roberta-base",
"bertweet-base",
"bernice",
"roberta-large",
"bertweet-large",
"twitter-roberta-base-2019-90m",
"twitter-roberta-base-dec2020",
"twitter-roberta-base-2021-124m",
"twitter-roberta-base-2022-154m",
"twitter-roberta-large-2022-154m"
]
references = {}
for task in tasks:
references[task] = {}
for s in splits:
data = load_dataset("tweettemposhift/tweet_temporal_shift", f"{task}_temporal", split=s)
references[task][s] = [str(i) for i in data['gold_label_binary']]
os.makedirs("experiments/analysis", exist_ok=True)
output = {}
for model_m in model_list:
flags = []
for s in splits:
with open(f"{root_dir}/hate-hate_temporal-{model_m}/{s}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags += [a == b for a, b in zip(references["hate"][s], pred)]
count = {}
for seed_s in range(3):
flags_rand = []
for random_r in range(4):
with open(f"{root_dir}/hate-hate_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags_rand += [a == b for a, b in zip(references["hate"][f"test_{random_r + 1}"], pred)]
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/hate.csv")
output = {}
for model_m in model_list:
flags = []
for s in splits:
with open(f"{root_dir}/nerd-nerd_temporal-{model_m}/{s}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags += [a == b for a, b in zip(references["nerd"][s], pred)]
count = {}
for seed_s in range(3):
flags_rand = []
for random_r in range(4):
with open(f"{root_dir}/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags_rand += [a == b for a, b in zip(references["nerd"][f"test_{random_r + 1}"], pred)]
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/nerd.csv")
output = {}
for model_m in model_list:
flags = []
for s in splits:
with open(f"{root_dir}/sentiment-sentiment_small_temporal-{model_m}/{s}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags += [a == b for a, b in zip(references["sentiment"][s], pred)]
count = {}
for seed_s in range(3):
flags_rand = []
for random_r in range(4):
with open(f"{root_dir}/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
flags_rand += [a == b for a, b in zip(references["sentiment"][f"test_{random_r + 1}"], pred)]
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_small_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/sentiment.csv")
output = {}
for model_m in model_list:
flags = []
for s in splits:
with open(f"{root_dir}/ner-ner_temporal-{model_m}/{s}.jsonl") as f:
tmp = [json.loads(i) for i in f.read().split('\n') if len(i)]
label = [[x for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
pred = [[y for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
flags += [a == b for a, b in zip(label, pred)]
count = {}
for seed_s in range(3):
flags_rand = []
for random_r in range(4):
with open(f"{root_dir}/ner-ner_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
tmp = [json.loads(i) for i in f.read().split('\n') if len(i)]
label = [[x for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
pred = [[y for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
flags_rand += [a == b for a, b in zip(label, pred)]
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/ner.csv")
|