File size: 6,472 Bytes
50f0349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e14a4
50f0349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e14a4
50f0349
 
a2e14a4
50f0349
 
 
 
a2e14a4
 
 
50f0349
 
 
 
a2e14a4
 
 
50f0349
 
 
 
a2e14a4
50f0349
 
a2e14a4
50f0349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc6a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9be20b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import json

import pandas as pd
from datasets import load_dataset

root_dir = "experiments/prediction_files"
id_to_label = {
    '0': 'arts_&_culture',
    '1': 'business_&_entrepreneurs',
    '2': 'celebrity_&_pop_culture',
    '3': 'diaries_&_daily_life',
    '4': 'family',
    '5': 'fashion_&_style',
    '6': 'film_tv_&_video',
    '7': 'fitness_&_health',
    '8': 'food_&_dining',
    '9': 'gaming',
    '10': 'learning_&_educational',
    '11': 'music',
    '12': 'news_&_social_concern',
    '13': 'other_hobbies',
    '14': 'relationships',
    '15': 'science_&_technology',
    '16': 'sports',
    '17': 'travel_&_adventure',
    '18': 'youth_&_student_life'
}
tasks = ["nerd", "sentiment", "hate"]
splits = ["test_1", "test_2", "test_3", "test_4"]
model_list = [
    "roberta-base",
    "bertweet-base",
    "bernice",
    "roberta-large",
    "bertweet-large",
    "twitter-roberta-base-2019-90m",
    "twitter-roberta-base-dec2020",
    "twitter-roberta-base-2021-124m",
    "twitter-roberta-base-2022-154m",
    "twitter-roberta-large-2022-154m"
]
references = {}

for task in tasks:
    references[task] = {}
    for s in splits:
        data = load_dataset("tweettemposhift/tweet_temporal_shift", f"{task}_temporal", split=s)
        references[task][s] = [str(i) for i in data['gold_label_binary']]
os.makedirs("experiments/analysis", exist_ok=True)


output = {}
for model_m in model_list:
    flags = []
    for s in splits:
        with open(f"{root_dir}/hate-hate_temporal-{model_m}/{s}.jsonl") as f:
            pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
            flags += [a == b for a, b in zip(references["hate"][s], pred)]
    count = {}
    for seed_s in range(3):
        flags_rand = []
        for random_r in range(4):
            with open(f"{root_dir}/hate-hate_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
                pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
                flags_rand += [a == b for a, b in zip(references["hate"][f"test_{random_r + 1}"], pred)]
        count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
    output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
    df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/hate.csv")

output = {}
for model_m in model_list:
    flags = []
    for s in splits:
        with open(f"{root_dir}/nerd-nerd_temporal-{model_m}/{s}.jsonl") as f:
            pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
            flags += [a == b for a, b in zip(references["nerd"][s], pred)]
    count = {}
    for seed_s in range(3):
        flags_rand = []
        for random_r in range(4):
            with open(f"{root_dir}/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
                pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
                flags_rand += [a == b for a, b in zip(references["nerd"][f"test_{random_r + 1}"], pred)]
        count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
    output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
    df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/nerd.csv")


output = {}
for model_m in model_list:
    flags = []
    for s in splits:
        with open(f"{root_dir}/sentiment-sentiment_small_temporal-{model_m}/{s}.jsonl") as f:
            pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
            flags += [a == b for a, b in zip(references["sentiment"][s], pred)]
    count = {}
    for seed_s in range(3):
        flags_rand = []
        for random_r in range(4):
            with open(f"{root_dir}/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
                pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
                flags_rand += [a == b for a, b in zip(references["sentiment"][f"test_{random_r + 1}"], pred)]
        count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
    output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
    df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_small_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/sentiment.csv")


output = {}
for model_m in model_list:
    flags = []
    for s in splits:
        with open(f"{root_dir}/ner-ner_temporal-{model_m}/{s}.jsonl") as f:
            tmp = [json.loads(i) for i in f.read().split('\n') if len(i)]
        label = [[x for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
        pred = [[y for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
        flags += [a == b for a, b in zip(label, pred)]
    count = {}
    for seed_s in range(3):
        flags_rand = []
        for random_r in range(4):
            with open(f"{root_dir}/ner-ner_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
                tmp = [json.loads(i) for i in f.read().split('\n') if len(i)]
            label = [[x for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
            pred = [[y for x, y in zip(i["label"], i["prediction"]) if x != -100] for i in tmp]
            flags_rand += [a == b for a, b in zip(label, pred)]
        count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
    output[model_m] = pd.DataFrame(count).sum(1)
df_main = []
for s in splits:
    df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal", split=s).to_pandas())
df_main = pd.concat(df_main)
df_main["error_count"] = pd.DataFrame(output).sum(1).values
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/ner.csv")