File size: 6,920 Bytes
618ea38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d56b8
440447c
618ea38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da4e9b
618ea38
 
 
 
440447c
 
 
 
 
 
 
 
618ea38
5aaad9b
618ea38
 
 
 
 
 
440447c
 
618ea38
 
5aaad9b
618ea38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aaad9b
618ea38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aaad9b
618ea38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""Experiment.

```
python model_finetuning_emoji.py -m "roberta-base" -d "emoji_temporal"
```
"""
import argparse
import json
import logging
import os
import re
from os.path import join as pj
from shutil import copyfile, rmtree
from glob import glob
from random import shuffle, seed

import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from huggingface_hub import Repository


logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
os.environ["WANDB_DISABLED"] = "true"

EVAL_STEP = 500
RANDOM_SEED = 42
N_TRIALS = 10
N_TRAIN_SIZE = 10000
N_VALIDATE_SIZE = 10000
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")


def preprocess_bernice(text):
    text = HANDLE_RE.sub("@USER", text)
    text = URL_RE.sub("HTTPURL", text)
    return text


def preprocess_timelm(text):
    text = HANDLE_RE.sub("@user", text)
    text = URL_RE.sub("http", text)
    return text


def preprocess(model_name, text):
    if model_name == "jhu-clsp/bernice":
        return preprocess_bernice(text)
    if "twitter-roberta-base" in model_name:
        return preprocess_timelm(text)
    return text


def main(
        dataset: str = "tweettemposhift/tweet_temporal_shift",
        dataset_type: str = "emoji_temporal",
        model: str = "roberta-base",
        skip_train: bool = False,
        skip_test: bool = False,
        skip_upload: bool = False):

    model_alias = f"emoji-{dataset_type}-{os.path.basename(model)}"
    output_dir = f"ckpt/{model_alias}"
    best_model_path = pj(output_dir, "best_model")

    tokenizer = AutoTokenizer.from_pretrained(model)
    dataset = load_dataset(dataset, dataset_type)
    tokenized_datasets = dataset.map(
        lambda x: tokenizer(
            [preprocess(model, t) for t in x["text"]],
            padding="max_length",
            truncation=True,
            max_length=64),
        batched=True
    )
    tokenized_datasets = tokenized_datasets.rename_column("gold_label", "label")

    def compute_metric(eval_pred):
        logits, labels = eval_pred
        predictions = np.argsort(logits, axis=-1)
        accuracy = []
        for r in range(len(labels)):
            accuracy.append(labels[r] in predictions[r, -5:])
        return {"accuracy_top5": sum(accuracy) / len(accuracy)}

    if not skip_train:
        logging.info("training model")
        seed(42)
        train_index = list(range(len(tokenized_datasets["train"])))
        shuffle(train_index)
        train_index = train_index[:N_TRAIN_SIZE]
        validate_index = list(range(len(tokenized_datasets["validation"])))
        shuffle(validate_index)
        validate_index = validate_index[:N_VALIDATE_SIZE]

        trainer = Trainer(
            model=AutoModelForSequenceClassification.from_pretrained(model, num_labels=99),
            args=TrainingArguments(
                output_dir=output_dir,
                evaluation_strategy="steps",
                eval_steps=EVAL_STEP,
                seed=RANDOM_SEED
            ),
            train_dataset=tokenized_datasets["train"].select(train_index),
            eval_dataset=tokenized_datasets["validation"].select(validate_index),
            compute_metrics=compute_metric,
            model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
                model, return_dict=True, num_labels=99,
            )
        )

        best_run = trainer.hyperparameter_search(
            hp_space=lambda trial: {
                "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
                "per_device_train_batch_size": trial.suggest_categorical(
                    "per_device_train_batch_size", [8, 16, 32]
                ),
            },
            direction="maximize",
            backend="optuna",
            n_trials=N_TRIALS
        )
        for n, v in best_run.hyperparameters.items():
            setattr(trainer.args, n, v)
        setattr(trainer, "train_dataset", tokenized_datasets["train"])
        setattr(trainer, "eval_dataset", tokenized_datasets["validation"])
        trainer.train()
        trainer.save_model(best_model_path)

    if not skip_test:
        logging.info("testing model")
        test_split = ["test"]
        if dataset_type.endswith("temporal"):
            test_split += ["test_1", "test_2", "test_3", "test_4"]
        summary_file = pj(best_model_path, "summary.json")
        if os.path.exists(summary_file):
            with open(summary_file) as f:
                metric = json.load(f)
        else:
            metric = {}
        for single_test in test_split:
            trainer = Trainer(
                model=AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99),
                args=TrainingArguments(
                    output_dir=output_dir,
                    evaluation_strategy="no",
                    seed=RANDOM_SEED
                ),
                train_dataset=tokenized_datasets["train"],
                eval_dataset=tokenized_datasets[single_test],
                compute_metrics=compute_metric
            )
            metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
        logging.info(json.dumps(metric, indent=4))
        with open(summary_file, "w") as f:
            json.dump(metric, f)

    if not skip_upload:
        logging.info("uploading to huggingface")
        model_organization = "tweettemposhift"
        model_instance = AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99)
        model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
        tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
        repo = Repository(model_alias, f"{model_organization}/{model_alias}")
        for i in glob(f"{best_model_path}/*"):
            if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
                copyfile(i, f"{model_alias}/{os.path.basename(i)}")
        repo.push_to_hub()
        rmtree(model_alias)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tuning language model.")
    parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
    parser.add_argument("-d", "--dataset-type", help='dataset type', default="emoji_temporal", type=str)
    parser.add_argument("--skip-train", action="store_true")
    parser.add_argument("--skip-test", action="store_true")
    parser.add_argument("--skip-upload", action="store_true")
    opt = parser.parse_args()
    main(
        dataset_type=opt.dataset_type,
        model=opt.model,
        skip_train=opt.skip_train,
        skip_test=opt.skip_test,
        skip_upload=opt.skip_upload,
    )