File size: 8,194 Bytes
006076c e54e3de 006076c 616755f ff2b314 ce7523f ff2b314 5db21d7 ff2b314 b9ac9ba ff2b314 ce7523f ff2b314 e54e3de ff2b314 ce7523f 5a7343a ce7523f ff2b314 1b182d0 b9ac9ba 449f02d ff2b314 006076c ff2b314 ce7523f ff2b314 006076c ff2b314 93717bc ff2b314 b9ac9ba ff2b314 91e1d0a ff2b314 8c46a14 ff2b314 da77579 ff2b314 7b37d9b ff2b314 7b37d9b ff2b314 7b37d9b ff2b314 5db21d7 ff2b314 616755f ff2b314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
"""Experiment.
```
python model_finetuning_topic.py -m "roberta-base" -d "topic_temporal"
```
"""
import argparse
import json
import logging
import math
import os
import re
from os.path import join as pj
from shutil import copyfile, rmtree
from glob import glob
import numpy as np
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from huggingface_hub import Repository
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
LABEL2ID = {
"arts_&_culture": 0,
"business_&_entrepreneurs": 1,
"celebrity_&_pop_culture": 2,
"diaries_&_daily_life": 3,
"family": 4,
"fashion_&_style": 5,
"film_tv_&_video": 6,
"fitness_&_health": 7,
"food_&_dining": 8,
"gaming": 9,
"learning_&_educational": 10,
"music": 11,
"news_&_social_concern": 12,
"other_hobbies": 13,
"relationships": 14,
"science_&_technology": 15,
"sports": 16,
"travel_&_adventure": 17,
"youth_&_student_life": 18
}
ID2LABEL = {v: k for k, v in LABEL2ID.items()}
EVAL_STEP = 500
RANDOM_SEED = 42
N_TRIALS = 10
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def main(
dataset: str = "tweettemposhift/tweet_temporal_shift",
dataset_type: str = "topic_temporal",
model: str = "roberta-base",
skip_train: bool = False,
skip_test: bool = False,
skip_upload: bool = False):
model_alias = f"topic-{dataset_type}-{os.path.basename(model)}"
output_dir = f"ckpt/{model_alias}"
best_model_path = pj(output_dir, "best_model")
tokenizer = AutoTokenizer.from_pretrained(model)
dataset = load_dataset(dataset, dataset_type)
tokenized_datasets = dataset.map(
lambda x: tokenizer(
[preprocess(model, t) for t in x["text"]],
padding="max_length",
truncation=True,
max_length=128),
batched=True
)
tokenized_datasets = tokenized_datasets.rename_column("gold_label_list", "label")
metric_accuracy = evaluate.load("accuracy", "multilabel")
metric_f1 = evaluate.load("f1", "multilabel")
def compute_metric_search(eval_pred):
logits, labels = eval_pred
predictions = np.array([[int(sigmoid(j) > 0.5) for j in lo] for lo in logits])
return metric_f1.compute(predictions=predictions, references=labels, average="micro")
def compute_metric_all(eval_pred):
logits, labels = eval_pred
predictions = np.array([[int(sigmoid(j) > 0.5) for j in lo] for lo in logits])
return {
"f1": metric_f1.compute(predictions=predictions, references=labels, average="micro")["f1"],
"f1_macro": metric_f1.compute(predictions=predictions, references=labels, average="macro")["f1"],
"accuracy": metric_accuracy.compute(predictions=predictions, references=labels)["accuracy"]
}
if not skip_train:
logging.info("training model")
trainer = Trainer(
model=AutoModelForSequenceClassification.from_pretrained(
model,
num_labels=len(LABEL2ID),
problem_type="multi_label_classification",
id2label=ID2LABEL,
label2id=LABEL2ID
),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps",
eval_steps=EVAL_STEP,
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
compute_metrics=compute_metric_search,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
model,
return_dict=True,
num_labels=len(LABEL2ID),
id2label=ID2LABEL,
label2id=LABEL2ID
)
)
best_run = trainer.hyperparameter_search(
hp_space=lambda trial: {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"per_device_train_batch_size": trial.suggest_categorical(
"per_device_train_batch_size", [8, 16, 32]
),
},
direction="maximize",
backend="optuna",
n_trials=N_TRIALS
)
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
trainer.train()
trainer.save_model(best_model_path)
if not skip_test:
logging.info("testing model")
test_split = ["test"]
if dataset_type.endswith("temporal"):
test_split += ["test_1", "test_2", "test_3", "test_4"]
summary_file = pj(best_model_path, "summary.json")
if os.path.exists(summary_file):
with open(summary_file) as f:
metric = json.load(f)
else:
metric = {}
for single_test in test_split:
trainer = Trainer(
model=AutoModelForSequenceClassification.from_pretrained(
best_model_path,
num_labels=len(LABEL2ID),
problem_type="multi_label_classification",
id2label=ID2LABEL,
label2id=LABEL2ID
),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="no",
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets[single_test],
compute_metrics=compute_metric_all
)
metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
logging.info(json.dumps(metric, indent=4))
with open(summary_file, "w") as f:
json.dump(metric, f)
if not skip_upload:
logging.info("uploading to huggingface")
model_organization = "tweettemposhift"
model_instance = AutoModelForSequenceClassification.from_pretrained(
best_model_path,
num_labels=len(LABEL2ID),
problem_type="multi_label_classification",
id2label=ID2LABEL,
label2id=LABEL2ID
)
model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
repo = Repository(model_alias, f"{model_organization}/{model_alias}")
for i in glob(f"{best_model_path}/*"):
if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
copyfile(i, f"{model_alias}/{os.path.basename(i)}")
repo.push_to_hub()
rmtree(model_alias)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tuning language model.")
parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
parser.add_argument("-d", "--dataset-type", help='dataset type', default="topic_temporal", type=str)
parser.add_argument("--skip-train", action="store_true")
parser.add_argument("--skip-test", action="store_true")
parser.add_argument("--skip-upload", action="store_true")
opt = parser.parse_args()
main(
dataset_type=opt.dataset_type,
model=opt.model,
skip_train=opt.skip_train,
skip_test=opt.skip_test,
skip_upload=opt.skip_upload,
)
|