tweet_temporal_shift / experiments /model_finetuning_emoji.py
asahi417's picture
init
63d56b8
"""Experiment.
```
python model_finetuning_emoji.py -m "roberta-base" -d "emoji_temporal"
```
"""
import argparse
import json
import logging
import os
import re
from os.path import join as pj
from shutil import copyfile, rmtree
from glob import glob
from random import shuffle, seed
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from huggingface_hub import Repository
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
os.environ["WANDB_DISABLED"] = "true"
EVAL_STEP = 500
RANDOM_SEED = 42
N_TRIALS = 10
N_TRAIN_SIZE = 10000
N_VALIDATE_SIZE = 10000
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
def main(
dataset: str = "tweettemposhift/tweet_temporal_shift",
dataset_type: str = "emoji_temporal",
model: str = "roberta-base",
skip_train: bool = False,
skip_test: bool = False,
skip_upload: bool = False):
model_alias = f"emoji-{dataset_type}-{os.path.basename(model)}"
output_dir = f"ckpt/{model_alias}"
best_model_path = pj(output_dir, "best_model")
tokenizer = AutoTokenizer.from_pretrained(model)
dataset = load_dataset(dataset, dataset_type)
tokenized_datasets = dataset.map(
lambda x: tokenizer(
[preprocess(model, t) for t in x["text"]],
padding="max_length",
truncation=True,
max_length=64),
batched=True
)
tokenized_datasets = tokenized_datasets.rename_column("gold_label", "label")
def compute_metric(eval_pred):
logits, labels = eval_pred
predictions = np.argsort(logits, axis=-1)
accuracy = []
for r in range(len(labels)):
accuracy.append(labels[r] in predictions[r, -5:])
return {"accuracy_top5": sum(accuracy) / len(accuracy)}
if not skip_train:
logging.info("training model")
seed(42)
train_index = list(range(len(tokenized_datasets["train"])))
shuffle(train_index)
train_index = train_index[:N_TRAIN_SIZE]
validate_index = list(range(len(tokenized_datasets["validation"])))
shuffle(validate_index)
validate_index = validate_index[:N_VALIDATE_SIZE]
trainer = Trainer(
model=AutoModelForSequenceClassification.from_pretrained(model, num_labels=99),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps",
eval_steps=EVAL_STEP,
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"].select(train_index),
eval_dataset=tokenized_datasets["validation"].select(validate_index),
compute_metrics=compute_metric,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
model, return_dict=True, num_labels=99,
)
)
best_run = trainer.hyperparameter_search(
hp_space=lambda trial: {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"per_device_train_batch_size": trial.suggest_categorical(
"per_device_train_batch_size", [8, 16, 32]
),
},
direction="maximize",
backend="optuna",
n_trials=N_TRIALS
)
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
setattr(trainer, "train_dataset", tokenized_datasets["train"])
setattr(trainer, "eval_dataset", tokenized_datasets["validation"])
trainer.train()
trainer.save_model(best_model_path)
if not skip_test:
logging.info("testing model")
test_split = ["test"]
if dataset_type.endswith("temporal"):
test_split += ["test_1", "test_2", "test_3", "test_4"]
summary_file = pj(best_model_path, "summary.json")
if os.path.exists(summary_file):
with open(summary_file) as f:
metric = json.load(f)
else:
metric = {}
for single_test in test_split:
trainer = Trainer(
model=AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="no",
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets[single_test],
compute_metrics=compute_metric
)
metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
logging.info(json.dumps(metric, indent=4))
with open(summary_file, "w") as f:
json.dump(metric, f)
if not skip_upload:
logging.info("uploading to huggingface")
model_organization = "tweettemposhift"
model_instance = AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99)
model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
repo = Repository(model_alias, f"{model_organization}/{model_alias}")
for i in glob(f"{best_model_path}/*"):
if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
copyfile(i, f"{model_alias}/{os.path.basename(i)}")
repo.push_to_hub()
rmtree(model_alias)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tuning language model.")
parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
parser.add_argument("-d", "--dataset-type", help='dataset type', default="emoji_temporal", type=str)
parser.add_argument("--skip-train", action="store_true")
parser.add_argument("--skip-test", action="store_true")
parser.add_argument("--skip-upload", action="store_true")
opt = parser.parse_args()
main(
dataset_type=opt.dataset_type,
model=opt.model,
skip_train=opt.skip_train,
skip_test=opt.skip_test,
skip_upload=opt.skip_upload,
)