tweet_temporal_shift / experiments /model_predict_classifier.py
asahi417's picture
init
3022f78
""" Simple interface for CardiffNLP twitter models. """
import os
import torch
import re
import json
from typing import List, Dict
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
from datasets import load_dataset
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
class Classifier:
def __init__(self,
model_name: str,
max_length: int,
multi_label: bool,
id_to_label: Dict[str, str]):
self.model_name = model_name
self.config = AutoConfig.from_pretrained(self.model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config)
self.max_length = max_length
self.multi_label = multi_label
self.id_to_label = id_to_label
# GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
self.device = torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
self.device = torch.device("mps")
else:
self.device = torch.device("cpu")
self.parallel = torch.cuda.device_count() > 1
if self.parallel:
self.model = torch.nn.DataParallel(self.model)
self.model.to(self.device)
self.model.eval()
def predict(self, text: List[str], batch_size: int):
text = [preprocess(self.model_name, t) for t in text]
indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
probs = []
with torch.no_grad():
for i in range(len(indices) - 1):
encoded_input = self.tokenizer.batch_encode_plus(
text[indices[i]: indices[i+1]],
max_length=self.max_length,
return_tensors="pt",
padding=True,
truncation=True)
output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
if self.multi_label:
probs += torch.sigmoid(output.logits).cpu().tolist()
else:
probs += torch.softmax(output.logits, -1).cpu().tolist()
if self.multi_label:
return [{"label": [self.id_to_label[str(n)] for n, p in enumerate(_pr) if p > 0.5]} for _pr in probs]
return [{"label": self.id_to_label[str(p.index(max(p)))]} for p in probs]
class TopicClassification(Classifier):
id_to_label = {
'0': 'arts_&_culture',
'1': 'business_&_entrepreneurs',
'2': 'celebrity_&_pop_culture',
'3': 'diaries_&_daily_life',
'4': 'family',
'5': 'fashion_&_style',
'6': 'film_tv_&_video',
'7': 'fitness_&_health',
'8': 'food_&_dining',
'9': 'gaming',
'10': 'learning_&_educational',
'11': 'music',
'12': 'news_&_social_concern',
'13': 'other_hobbies',
'14': 'relationships',
'15': 'science_&_technology',
'16': 'sports',
'17': 'travel_&_adventure',
'18': 'youth_&_student_life'
}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=True, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class SentimentClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class HateClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class EmojiClassification(Classifier):
def __init__(self, model_name: str):
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
id_to_label = {str(k): v for k, v in enumerate(self.dataset["test"].features["gold_label"].names)}
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=id_to_label)
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class NERDClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
text = [
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
for d in data
]
predictions = self.predict(text, batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
if __name__ == '__main__':
model_list = [
"roberta-base",
"bertweet-base",
"bernice",
"roberta-large",
"bertweet-large",
"twitter-roberta-base-2019-90m",
"twitter-roberta-base-dec2020",
"twitter-roberta-base-2021-124m",
"twitter-roberta-base-2022-154m",
"twitter-roberta-large-2022-154m"
]
for model_m in model_list:
alias = f"tweettemposhift/hate-hate_temporal-{model_m}"
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
torch.cuda.empty_cache()
for random_r in range(4):
for seed_s in range(3):
alias = f"tweettemposhift/hate-hate_random{random_r}_seed{seed_s}-{model_m}"
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
torch.cuda.empty_cache()
# for model_m in model_list:
# alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
# TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
# TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
#
# for model_m in model_list:
# alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
# SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
# SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
#
# for model_m in model_list:
# alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
# NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
# NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()