|
""" Simple interface for CardiffNLP twitter models. """ |
|
import os |
|
import torch |
|
import re |
|
import json |
|
from typing import List, Dict |
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig |
|
from datasets import load_dataset |
|
|
|
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+") |
|
HANDLE_RE = re.compile(r"@\w+") |
|
|
|
|
|
def preprocess_bernice(text): |
|
text = HANDLE_RE.sub("@USER", text) |
|
text = URL_RE.sub("HTTPURL", text) |
|
return text |
|
|
|
|
|
def preprocess_timelm(text): |
|
text = HANDLE_RE.sub("@user", text) |
|
text = URL_RE.sub("http", text) |
|
return text |
|
|
|
|
|
def preprocess(model_name, text): |
|
if model_name == "jhu-clsp/bernice": |
|
return preprocess_bernice(text) |
|
if "twitter-roberta-base" in model_name: |
|
return preprocess_timelm(text) |
|
return text |
|
|
|
|
|
class Classifier: |
|
|
|
def __init__(self, |
|
model_name: str, |
|
max_length: int, |
|
multi_label: bool, |
|
id_to_label: Dict[str, str]): |
|
|
|
self.model_name = model_name |
|
self.config = AutoConfig.from_pretrained(self.model_name) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config) |
|
self.max_length = max_length |
|
self.multi_label = multi_label |
|
self.id_to_label = id_to_label |
|
|
|
if torch.cuda.is_available() and torch.cuda.device_count() > 0: |
|
self.device = torch.device("cuda") |
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built(): |
|
self.device = torch.device("mps") |
|
else: |
|
self.device = torch.device("cpu") |
|
self.parallel = torch.cuda.device_count() > 1 |
|
if self.parallel: |
|
self.model = torch.nn.DataParallel(self.model) |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def predict(self, text: List[str], batch_size: int): |
|
text = [preprocess(self.model_name, t) for t in text] |
|
indices = list(range(0, len(text), batch_size)) + [len(text) + 1] |
|
probs = [] |
|
with torch.no_grad(): |
|
for i in range(len(indices) - 1): |
|
encoded_input = self.tokenizer.batch_encode_plus( |
|
text[indices[i]: indices[i+1]], |
|
max_length=self.max_length, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True) |
|
output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()}) |
|
if self.multi_label: |
|
probs += torch.sigmoid(output.logits).cpu().tolist() |
|
else: |
|
probs += torch.softmax(output.logits, -1).cpu().tolist() |
|
if self.multi_label: |
|
return [{"label": [self.id_to_label[str(n)] for n, p in enumerate(_pr) if p > 0.5]} for _pr in probs] |
|
return [{"label": self.id_to_label[str(p.index(max(p)))]} for p in probs] |
|
|
|
|
|
class TopicClassification(Classifier): |
|
|
|
id_to_label = { |
|
'0': 'arts_&_culture', |
|
'1': 'business_&_entrepreneurs', |
|
'2': 'celebrity_&_pop_culture', |
|
'3': 'diaries_&_daily_life', |
|
'4': 'family', |
|
'5': 'fashion_&_style', |
|
'6': 'film_tv_&_video', |
|
'7': 'fitness_&_health', |
|
'8': 'food_&_dining', |
|
'9': 'gaming', |
|
'10': 'learning_&_educational', |
|
'11': 'music', |
|
'12': 'news_&_social_concern', |
|
'13': 'other_hobbies', |
|
'14': 'relationships', |
|
'15': 'science_&_technology', |
|
'16': 'sports', |
|
'17': 'travel_&_adventure', |
|
'18': 'youth_&_student_life' |
|
} |
|
|
|
def __init__(self, model_name: str): |
|
super().__init__(model_name, max_length=128, multi_label=True, id_to_label=self.id_to_label) |
|
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal") |
|
|
|
def get_prediction(self, export_dir: str, batch_size: int): |
|
os.makedirs(export_dir, exist_ok=True) |
|
for test_split in ["test_1", "test_2", "test_3", "test_4"]: |
|
if os.path.exists(f"{export_dir}/{test_split}.jsonl"): |
|
continue |
|
data = self.dataset[test_split] |
|
predictions = self.predict(data["text"], batch_size) |
|
with open(f"{export_dir}/{test_split}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in predictions])) |
|
|
|
|
|
class SentimentClassification(Classifier): |
|
|
|
id_to_label = {'0': '0', '1': '1'} |
|
|
|
def __init__(self, model_name: str): |
|
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label) |
|
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_temporal") |
|
|
|
def get_prediction(self, export_dir: str, batch_size: int): |
|
os.makedirs(export_dir, exist_ok=True) |
|
for test_split in ["test_1", "test_2", "test_3", "test_4"]: |
|
if os.path.exists(f"{export_dir}/{test_split}.jsonl"): |
|
continue |
|
data = self.dataset[test_split] |
|
predictions = self.predict(data["text"], batch_size) |
|
with open(f"{export_dir}/{test_split}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in predictions])) |
|
|
|
|
|
class HateClassification(Classifier): |
|
|
|
id_to_label = {'0': '0', '1': '1'} |
|
|
|
def __init__(self, model_name: str): |
|
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label) |
|
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal") |
|
|
|
def get_prediction(self, export_dir: str, batch_size: int): |
|
os.makedirs(export_dir, exist_ok=True) |
|
for test_split in ["test_1", "test_2", "test_3", "test_4"]: |
|
if os.path.exists(f"{export_dir}/{test_split}.jsonl"): |
|
continue |
|
data = self.dataset[test_split] |
|
predictions = self.predict(data["text"], batch_size) |
|
with open(f"{export_dir}/{test_split}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in predictions])) |
|
|
|
|
|
class EmojiClassification(Classifier): |
|
|
|
def __init__(self, model_name: str): |
|
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal") |
|
id_to_label = {str(k): v for k, v in enumerate(self.dataset["test"].features["gold_label"].names)} |
|
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=id_to_label) |
|
|
|
def get_prediction(self, export_dir: str, batch_size: int): |
|
os.makedirs(export_dir, exist_ok=True) |
|
for test_split in ["test_1", "test_2", "test_3", "test_4"]: |
|
if os.path.exists(f"{export_dir}/{test_split}.jsonl"): |
|
continue |
|
data = self.dataset[test_split] |
|
predictions = self.predict(data["text"], batch_size) |
|
with open(f"{export_dir}/{test_split}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in predictions])) |
|
|
|
|
|
|
|
class NERDClassification(Classifier): |
|
|
|
id_to_label = {'0': '0', '1': '1'} |
|
|
|
def __init__(self, model_name: str): |
|
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label) |
|
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal") |
|
|
|
def get_prediction(self, export_dir: str, batch_size: int): |
|
os.makedirs(export_dir, exist_ok=True) |
|
for test_split in ["test_1", "test_2", "test_3", "test_4"]: |
|
if os.path.exists(f"{export_dir}/{test_split}.jsonl"): |
|
continue |
|
data = self.dataset[test_split] |
|
text = [ |
|
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}" |
|
for d in data |
|
] |
|
predictions = self.predict(text, batch_size) |
|
with open(f"{export_dir}/{test_split}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in predictions])) |
|
|
|
|
|
if __name__ == '__main__': |
|
model_list = [ |
|
"roberta-base", |
|
"bertweet-base", |
|
"bernice", |
|
"roberta-large", |
|
"bertweet-large", |
|
"twitter-roberta-base-2019-90m", |
|
"twitter-roberta-base-dec2020", |
|
"twitter-roberta-base-2021-124m", |
|
"twitter-roberta-base-2022-154m", |
|
"twitter-roberta-large-2022-154m" |
|
] |
|
for model_m in model_list: |
|
alias = f"tweettemposhift/hate-hate_temporal-{model_m}" |
|
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512) |
|
torch.cuda.empty_cache() |
|
for random_r in range(4): |
|
for seed_s in range(3): |
|
alias = f"tweettemposhift/hate-hate_random{random_r}_seed{seed_s}-{model_m}" |
|
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512) |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|