File size: 11,012 Bytes
efb026f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f0349
 
efb026f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f0349
 
efb026f
 
 
 
 
 
0280861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398708a
0280861
 
 
 
 
 
 
 
 
 
 
 
 
 
efb026f
 
 
 
 
 
 
 
 
 
 
50f0349
 
efb026f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9be20b2
0280861
efb026f
a2e14a4
 
 
3022f78
a2e14a4
efb026f
465860e
a2e14a4
 
465860e
 
 
a2e14a4
465860e
 
0280861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
""" Simple interface for CardiffNLP twitter models. """
import os
import torch
import re
import json
from typing import List, Dict

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
from datasets import load_dataset

URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")


def preprocess_bernice(text):
    text = HANDLE_RE.sub("@USER", text)
    text = URL_RE.sub("HTTPURL", text)
    return text


def preprocess_timelm(text):
    text = HANDLE_RE.sub("@user", text)
    text = URL_RE.sub("http", text)
    return text


def preprocess(model_name, text):
    if model_name == "jhu-clsp/bernice":
        return preprocess_bernice(text)
    if "twitter-roberta-base" in model_name:
        return preprocess_timelm(text)
    return text


class Classifier:

    def __init__(self,
                 model_name: str,
                 max_length: int,
                 multi_label: bool,
                 id_to_label: Dict[str, str]):

        self.model_name = model_name
        self.config = AutoConfig.from_pretrained(self.model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config)
        self.max_length = max_length
        self.multi_label = multi_label
        self.id_to_label = id_to_label
        # GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
        if torch.cuda.is_available() and torch.cuda.device_count() > 0:
            self.device = torch.device("cuda")
        elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
            self.device = torch.device("mps")
        else:
            self.device = torch.device("cpu")
        self.parallel = torch.cuda.device_count() > 1
        if self.parallel:
            self.model = torch.nn.DataParallel(self.model)
        self.model.to(self.device)
        self.model.eval()

    def predict(self, text: List[str], batch_size: int):
        text = [preprocess(self.model_name, t) for t in text]
        indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
        probs = []
        with torch.no_grad():
            for i in range(len(indices) - 1):
                encoded_input = self.tokenizer.batch_encode_plus(
                    text[indices[i]: indices[i+1]],
                    max_length=self.max_length,
                    return_tensors="pt",
                    padding=True,
                    truncation=True)
                output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
                if self.multi_label:
                    probs += torch.sigmoid(output.logits).cpu().tolist()
                else:
                    probs += torch.softmax(output.logits, -1).cpu().tolist()
        if self.multi_label:
            return [{"label": [self.id_to_label[str(n)] for n, p in enumerate(_pr) if p > 0.5]} for _pr in probs]
        return [{"label": self.id_to_label[str(p.index(max(p)))]} for p in probs]


class TopicClassification(Classifier):

    id_to_label = {
        '0': 'arts_&_culture',
        '1': 'business_&_entrepreneurs',
        '2': 'celebrity_&_pop_culture',
        '3': 'diaries_&_daily_life',
        '4': 'family',
        '5': 'fashion_&_style',
        '6': 'film_tv_&_video',
        '7': 'fitness_&_health',
        '8': 'food_&_dining',
        '9': 'gaming',
        '10': 'learning_&_educational',
        '11': 'music',
        '12': 'news_&_social_concern',
        '13': 'other_hobbies',
        '14': 'relationships',
        '15': 'science_&_technology',
        '16': 'sports',
        '17': 'travel_&_adventure',
        '18': 'youth_&_student_life'
    }

    def __init__(self, model_name: str):
        super().__init__(model_name, max_length=128, multi_label=True, id_to_label=self.id_to_label)
        self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal")

    def get_prediction(self, export_dir: str, batch_size: int):
        os.makedirs(export_dir, exist_ok=True)
        for test_split in ["test_1", "test_2", "test_3", "test_4"]:
            if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
                continue
            data = self.dataset[test_split]
            predictions = self.predict(data["text"], batch_size)
            with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
                f.write("\n".join([json.dumps(i) for i in predictions]))


class SentimentClassification(Classifier):

    id_to_label = {'0': '0', '1': '1'}

    def __init__(self, model_name: str):
        super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
        self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_temporal")

    def get_prediction(self, export_dir: str, batch_size: int):
        os.makedirs(export_dir, exist_ok=True)
        for test_split in ["test_1", "test_2", "test_3", "test_4"]:
            if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
                continue
            data = self.dataset[test_split]
            predictions = self.predict(data["text"], batch_size)
            with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
                f.write("\n".join([json.dumps(i) for i in predictions]))


class HateClassification(Classifier):

    id_to_label = {'0': '0', '1': '1'}

    def __init__(self, model_name: str):
        super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
        self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")

    def get_prediction(self, export_dir: str, batch_size: int):
        os.makedirs(export_dir, exist_ok=True)
        for test_split in ["test_1", "test_2", "test_3", "test_4"]:
            if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
                continue
            data = self.dataset[test_split]
            predictions = self.predict(data["text"], batch_size)
            with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
                f.write("\n".join([json.dumps(i) for i in predictions]))


class EmojiClassification(Classifier):

    def __init__(self, model_name: str):
        self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
        id_to_label = {str(k): v for k, v in enumerate(self.dataset["test"].features["gold_label"].names)}
        super().__init__(model_name, max_length=128, multi_label=False, id_to_label=id_to_label)

    def get_prediction(self, export_dir: str, batch_size: int):
        os.makedirs(export_dir, exist_ok=True)
        for test_split in ["test_1", "test_2", "test_3", "test_4"]:
            if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
                continue
            data = self.dataset[test_split]
            predictions = self.predict(data["text"], batch_size)
            with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
                f.write("\n".join([json.dumps(i) for i in predictions]))



class NERDClassification(Classifier):

    id_to_label = {'0': '0', '1': '1'}

    def __init__(self, model_name: str):
        super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
        self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal")

    def get_prediction(self, export_dir: str, batch_size: int):
        os.makedirs(export_dir, exist_ok=True)
        for test_split in ["test_1", "test_2", "test_3", "test_4"]:
            if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
                continue
            data = self.dataset[test_split]
            text = [
                f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
                for d in data
            ]
            predictions = self.predict(text, batch_size)
            with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
                f.write("\n".join([json.dumps(i) for i in predictions]))


if __name__ == '__main__':
    model_list = [
        "roberta-base",
        "bertweet-base",
        "bernice",
        "roberta-large",
        "bertweet-large",
        "twitter-roberta-base-2019-90m",
        "twitter-roberta-base-dec2020",
        "twitter-roberta-base-2021-124m",
        "twitter-roberta-base-2022-154m",
        "twitter-roberta-large-2022-154m"
    ]
    for model_m in model_list:
        alias = f"tweettemposhift/hate-hate_temporal-{model_m}"
        HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
        torch.cuda.empty_cache()
        for random_r in range(4):
            for seed_s in range(3):
                alias = f"tweettemposhift/hate-hate_random{random_r}_seed{seed_s}-{model_m}"
                HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
                torch.cuda.empty_cache()

    # for model_m in model_list:
    #     alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
    #     TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #     torch.cuda.empty_cache()
    #     for random_r in range(4):
    #         for seed_s in range(3):
    #             alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
    #             TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #             torch.cuda.empty_cache()
    #
    # for model_m in model_list:
    #     alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
    #     SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #     torch.cuda.empty_cache()
    #     for random_r in range(4):
    #         for seed_s in range(3):
    #             alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
    #             SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #             torch.cuda.empty_cache()
    #
    # for model_m in model_list:
    #     alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
    #     NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #     torch.cuda.empty_cache()
    #     for random_r in range(4):
    #         for seed_s in range(3):
    #             alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
    #             NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
    #             torch.cuda.empty_cache()