File size: 11,012 Bytes
efb026f 50f0349 efb026f 50f0349 efb026f 0280861 398708a 0280861 efb026f 50f0349 efb026f 9be20b2 0280861 efb026f a2e14a4 3022f78 a2e14a4 efb026f 465860e a2e14a4 465860e a2e14a4 465860e 0280861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
""" Simple interface for CardiffNLP twitter models. """
import os
import torch
import re
import json
from typing import List, Dict
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
from datasets import load_dataset
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
class Classifier:
def __init__(self,
model_name: str,
max_length: int,
multi_label: bool,
id_to_label: Dict[str, str]):
self.model_name = model_name
self.config = AutoConfig.from_pretrained(self.model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config)
self.max_length = max_length
self.multi_label = multi_label
self.id_to_label = id_to_label
# GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
self.device = torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
self.device = torch.device("mps")
else:
self.device = torch.device("cpu")
self.parallel = torch.cuda.device_count() > 1
if self.parallel:
self.model = torch.nn.DataParallel(self.model)
self.model.to(self.device)
self.model.eval()
def predict(self, text: List[str], batch_size: int):
text = [preprocess(self.model_name, t) for t in text]
indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
probs = []
with torch.no_grad():
for i in range(len(indices) - 1):
encoded_input = self.tokenizer.batch_encode_plus(
text[indices[i]: indices[i+1]],
max_length=self.max_length,
return_tensors="pt",
padding=True,
truncation=True)
output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
if self.multi_label:
probs += torch.sigmoid(output.logits).cpu().tolist()
else:
probs += torch.softmax(output.logits, -1).cpu().tolist()
if self.multi_label:
return [{"label": [self.id_to_label[str(n)] for n, p in enumerate(_pr) if p > 0.5]} for _pr in probs]
return [{"label": self.id_to_label[str(p.index(max(p)))]} for p in probs]
class TopicClassification(Classifier):
id_to_label = {
'0': 'arts_&_culture',
'1': 'business_&_entrepreneurs',
'2': 'celebrity_&_pop_culture',
'3': 'diaries_&_daily_life',
'4': 'family',
'5': 'fashion_&_style',
'6': 'film_tv_&_video',
'7': 'fitness_&_health',
'8': 'food_&_dining',
'9': 'gaming',
'10': 'learning_&_educational',
'11': 'music',
'12': 'news_&_social_concern',
'13': 'other_hobbies',
'14': 'relationships',
'15': 'science_&_technology',
'16': 'sports',
'17': 'travel_&_adventure',
'18': 'youth_&_student_life'
}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=True, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class SentimentClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class HateClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class EmojiClassification(Classifier):
def __init__(self, model_name: str):
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
id_to_label = {str(k): v for k, v in enumerate(self.dataset["test"].features["gold_label"].names)}
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=id_to_label)
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
predictions = self.predict(data["text"], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
class NERDClassification(Classifier):
id_to_label = {'0': '0', '1': '1'}
def __init__(self, model_name: str):
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal")
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
continue
data = self.dataset[test_split]
text = [
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
for d in data
]
predictions = self.predict(text, batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
if __name__ == '__main__':
model_list = [
"roberta-base",
"bertweet-base",
"bernice",
"roberta-large",
"bertweet-large",
"twitter-roberta-base-2019-90m",
"twitter-roberta-base-dec2020",
"twitter-roberta-base-2021-124m",
"twitter-roberta-base-2022-154m",
"twitter-roberta-large-2022-154m"
]
for model_m in model_list:
alias = f"tweettemposhift/hate-hate_temporal-{model_m}"
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
torch.cuda.empty_cache()
for random_r in range(4):
for seed_s in range(3):
alias = f"tweettemposhift/hate-hate_random{random_r}_seed{seed_s}-{model_m}"
HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
torch.cuda.empty_cache()
# for model_m in model_list:
# alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
# TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
# TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
#
# for model_m in model_list:
# alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
# SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
# SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
#
# for model_m in model_list:
# alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
# NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
# for random_r in range(4):
# for seed_s in range(3):
# alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
# NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
# torch.cuda.empty_cache()
|