tweet_temporal_shift / experiments /model_predict_ner.py
asahi417's picture
init
4c352ab
import re
import os
import torch
import json
from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig
from datasets import load_dataset
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
class NER:
id_to_label = {
0: 'B-corporation',
1: 'B-creative_work',
2: 'B-event',
3: 'B-group',
4: 'B-location',
5: 'B-person',
6: 'B-product',
7: 'I-corporation',
8: 'I-creative_work',
9: 'I-event',
10: 'I-group',
11: 'I-location',
12: 'I-person',
13: 'I-product',
14: 'O'
}
def __init__(self, model_name: str):
self.model_name = model_name
self.config = AutoConfig.from_pretrained(self.model_name)
self.model = AutoModelForTokenClassification.from_pretrained(self.model_name, config=self.config)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.max_length = 128
# GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
self.device = torch.device('cuda')
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
self.device = torch.device("mps")
else:
self.device = torch.device('cpu')
self.parallel = torch.cuda.device_count() > 1
if self.parallel:
self.model = torch.nn.DataParallel(self.model)
self.model.to(self.device)
self.model.eval()
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal")
self.tokenized_datasets = self.dataset.map(lambda x: self.tokenize_and_align_labels(x), batched=True)
def get_prediction(self, export_dir: str, batch_size: int):
os.makedirs(export_dir, exist_ok=True)
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
predictions = self.predict(self.tokenized_datasets[test_split], batch_size)
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in predictions]))
def predict(self, example, batch_size: int):
input_keys = ['input_ids', 'attention_mask']
indices = list(range(0, len(example), batch_size)) + [len(example) + 1]
preds = []
labels = []
with torch.no_grad():
for i in range(len(indices) - 1):
encoded_input = example[indices[i]: indices[i + 1]]
labels += [
[self.id_to_label[y] if y in self.id_to_label else y for y in x]
for x in encoded_input['labels']
]
output = self.model(**{
k: torch.tensor(encoded_input[k]).to(self.device) for k in input_keys if k in encoded_input
})
prob = torch.softmax(output['logits'], dim=-1)
pred = torch.max(prob, dim=-1)[1].cpu().detach().int().tolist()
preds += [[self.id_to_label[_p] for _p in p] for p in pred]
return [{"prediction": p, "label": i} for p, i in zip(preds, labels)]
def tokenize_and_align_labels(self, examples):
tokens = [[preprocess(self.model_name, w) for w in t] for t in examples["text_tokenized"]]
tokenized_inputs = self.tokenizer(
tokens,
truncation=True,
is_split_into_words=True,
padding="max_length",
max_length=128
)
all_labels = examples["gold_label_sequence"]
new_labels = []
for token, label in zip(tokens, all_labels):
tmp_labels = [-100]
for to, la in zip(token, label):
to_tokenized = self.tokenizer.tokenize(to)
tmp_labels += [la] * len(to_tokenized)
if len(tmp_labels) > 128:
tmp_labels = tmp_labels[:128]
else:
tmp_labels = tmp_labels + [-100] * (128 - len(tmp_labels))
new_labels.append(tmp_labels)
tokenized_inputs["labels"] = new_labels
return tokenized_inputs
if __name__ == '__main__':
model_list = [
"roberta-base",
"bertweet-base",
"bernice",
"roberta-large",
"bertweet-large",
"twitter-roberta-base-2019-90m",
"twitter-roberta-base-dec2020",
"twitter-roberta-base-2021-124m",
"twitter-roberta-base-2022-154m",
"twitter-roberta-large-2022-154m"
]
for model_m in model_list:
alias = f"tweettemposhift/ner-ner_temporal-{model_m}"
NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)
for random_r in range(4):
for seed_s in range(3):
alias = f"tweettemposhift/ner-ner_random{random_r}_seed{seed_s}-{model_m}"
NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)