init
Browse files
experiments/huggingface_ops.py
CHANGED
@@ -2,8 +2,10 @@ from huggingface_hub import HfApi, ModelFilter
|
|
2 |
from pprint import pprint
|
3 |
|
4 |
api = HfApi()
|
5 |
-
models = api.list_models(filter=ModelFilter(author='
|
6 |
-
models_filtered = [i.modelId for i in models if '
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
2 |
from pprint import pprint
|
3 |
|
4 |
api = HfApi()
|
5 |
+
models = api.list_models(filter=ModelFilter(author='vocabtrimmer'))
|
6 |
+
models_filtered = [i.modelId for i in models if 'qg-' in i.modelId]
|
7 |
+
pprint(sorted(models_filtered))
|
8 |
+
# models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
|
9 |
+
# models_filtered = [i.modelId for i in models if 'topic-' in i.modelId]
|
10 |
+
# pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-2019-90m')]))
|
11 |
+
# pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-dec2020')]))
|
experiments/model_finetuning_ner.py
CHANGED
@@ -84,22 +84,6 @@ def main(
|
|
84 |
|
85 |
tokenizer = AutoTokenizer.from_pretrained(model, add_prefix_space=True, use_fast=True)
|
86 |
|
87 |
-
def align_labels_with_tokens(labels, word_ids):
|
88 |
-
new_labels = []
|
89 |
-
current_word = None
|
90 |
-
for word_id in word_ids:
|
91 |
-
if word_id is None:
|
92 |
-
label = -100
|
93 |
-
elif word_id != current_word:
|
94 |
-
current_word = word_id
|
95 |
-
label = labels[word_id]
|
96 |
-
else:
|
97 |
-
label = labels[word_id]
|
98 |
-
if ID2LABEL[label].startswith("B-"): # If the label is B-XXX we change it to I-XXX
|
99 |
-
label = LABEL2ID[ID2LABEL[label].replace("B-", "I-")]
|
100 |
-
new_labels.append(label)
|
101 |
-
return new_labels
|
102 |
-
|
103 |
def tokenize_and_align_labels(examples):
|
104 |
tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
|
105 |
tokenized_inputs = tokenizer(
|
@@ -110,11 +94,6 @@ def main(
|
|
110 |
max_length=128)
|
111 |
all_labels = examples["gold_label_sequence"]
|
112 |
new_labels = []
|
113 |
-
# if tokenizer.is_fast:
|
114 |
-
# for ind, labels in enumerate(all_labels):
|
115 |
-
# word_ids = tokenized_inputs.word_ids(ind)
|
116 |
-
# new_labels.append(align_labels_with_tokens(labels, word_ids))
|
117 |
-
# else:
|
118 |
for token, label in zip(tokens, all_labels):
|
119 |
tmp_labels = [-100]
|
120 |
for to, la in zip(token, label):
|
@@ -138,8 +117,8 @@ def main(
|
|
138 |
predictions = np.argmax(logits, axis=-1)
|
139 |
labels_new, predictions_new = [], []
|
140 |
for label, prediction in zip(labels, predictions):
|
141 |
-
label = [la for la in label if la != -100]
|
142 |
prediction = [p for la, p in zip(label, prediction) if la != -100]
|
|
|
143 |
labels_new.append([ID2LABEL[la] for la in label])
|
144 |
predictions_new.append([ID2LABEL[p] for p in prediction])
|
145 |
return seqeval.compute(predictions=predictions_new, references=labels_new)
|
|
|
84 |
|
85 |
tokenizer = AutoTokenizer.from_pretrained(model, add_prefix_space=True, use_fast=True)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def tokenize_and_align_labels(examples):
|
88 |
tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
|
89 |
tokenized_inputs = tokenizer(
|
|
|
94 |
max_length=128)
|
95 |
all_labels = examples["gold_label_sequence"]
|
96 |
new_labels = []
|
|
|
|
|
|
|
|
|
|
|
97 |
for token, label in zip(tokens, all_labels):
|
98 |
tmp_labels = [-100]
|
99 |
for to, la in zip(token, label):
|
|
|
117 |
predictions = np.argmax(logits, axis=-1)
|
118 |
labels_new, predictions_new = [], []
|
119 |
for label, prediction in zip(labels, predictions):
|
|
|
120 |
prediction = [p for la, p in zip(label, prediction) if la != -100]
|
121 |
+
label = [la for la in label if la != -100]
|
122 |
labels_new.append([ID2LABEL[la] for la in label])
|
123 |
predictions_new.append([ID2LABEL[p] for p in prediction])
|
124 |
return seqeval.compute(predictions=predictions_new, references=labels_new)
|