licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 102 | include("fixedwings/fixedwings.jl")
include("actuators/actuators.jl")
include("missiles/missiles.jl")
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 319 | using FSimZoo
using Test
using FSimBase
function main()
t = 0.0
ΞΆ = 0.7
Ο = 150
env = SecondOrderActuator(ΞΆ, Ο)
x1, x2 = rand(2)
X = State(env)(x1, x2)
Ξ΄_cmd = 0.0
dX = deepcopy(X)
Dynamics!(env)(dX, X, [], t; Ξ΄_cmd=Ξ΄_cmd)
end
@testset "SecondOrderActuator" begin
main()
end
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 34 | include("SecondOrderActuator.jl")
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 557 | using FSimZoo
using Test
using FSimBase
function test_elzebdawingrock()
t = 0.0
env = ElzebdaWingRock()
x1, x2 = rand(2)
X = State(env)(x1, x2)
u = 0.0
dX = deepcopy(X)
Dynamics!(env)(dX, X, [], t; u=u)
end
function test_tarnwingrock()
t = 0.0
env = TarnWingRock()
x1, x2 = deg2rad.(10*rand(2))
X = State(env)(x1, x2)
u = 0.0
dX = deepcopy(X)
Dynamics!(env)(dX, X, [], t; u=u)
end
function main()
test_elzebdawingrock()
test_tarnwingrock()
end
@testset "wingrock" begin
main()
end
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 260 | using FSimZoo
using Test
using FSimBase
function main()
env = MissileLongitudinal()
t = 0.0
X = State(env)()
Ξ΄ = deg2rad(10)
dX = deepcopy(X)
Dynamics!(env)(dX, X, [], t; Ξ΄=Ξ΄)
end
@testset "MissileLongitudinal" begin
main()
end
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | code | 34 | include("MissileLongitudinal.jl")
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | docs | 1485 | ### Changes in v0.11
- The state variable of multicopter has changed from DCM to unit quaternion.
- Conversion to other rotation representations are now supported (e.g., `quat2dcm`, `dcm2euler`, `euler2quat`, etc.).
# Changes in v0.4.0
- `GeometricTrackingController` is added for multicopter position/attitude tracking control.
- Dependency `UnPack` is removed.
# Changes in v0.3.7
- `BacksteppingPositionController`'s transient response is improved (faster) by adjusting the parameters of reference model (`RefModel`)
- `LeeHexacopter`'s rotor limit is changed following the reference (written in the code).
# Changes in v0.3.5
- A new discrete-time system, `TwoDimensionalNonlinearDTSystem`, is now added.
# Changes in v0.3.4
- `TwoDimensionalNonlinearPolynomialSystem` is now `@Loggable`.
# Changes in v0.3.3
- The interface of `TwoDimensionalNonlinearOscillator` has been changed; the input `u` is now an `Array`, e.g., `[1.0]`, not a `Number`.
# Changes in v0.3.2
- Environments are added and made to be loggable (thanks to [@hnlee77](https://github.com/hnlee77)!).
- `SingleIntegrator`
- `LinearSystem_SingleIntegrator`
# Changes in v0.3.1
- Bug fix: `TwoDimensionalNonlinearOscillator <: AbstractEnv`
# Changes in v0.3.0
- `TwoDimensionalNonlinearOscillator` is added.
# Changes in v0.2.0
- Predefined stuffs' names are changed.
# Changes in v0.1.0
- Environments and controllers are detached from [FlightSims.jl](https://github.com/JinraeKim/FlightSims.jl).
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.11.1 | 8d0c82db196a2d46506d4433996b11f35edf3041 | docs | 3168 | # FSimZoo
[FSimZoo.jl](https://github.com/JinraeKim/FSimZoo.jl)
contains predefined environments and controllers for [FlightSims.jl](https://github.com/JinraeKim/FlightSims.jl).
## Breaking changes in v0.11
See `NEWS.md`.
## Examples
- Examples include
<details>
<summary>basics</summary>
- (Linear system) `LinearSystem`
- (A simple integrator) `SingleIntegrator`
- (Reference model) `ReferenceModel`
- (Nonlinear polynomial system) `TwoDimensionalNonlinearPolynomialSystem`
- [T. Bian and Z.-P. Jiang, βValue Iteration, Adaptive Dynamic Programming, and Optimal Control of Nonlinear Systems,β in 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, Dec. 2016, pp. 3375β3380. doi: 10.1109/CDC.2016.7798777.](https://ieeexplore.ieee.org/document/7798777)
- (Nonlinear oscillator) `TwoDimensionalNonlinearOscillator`
- [J. A. Primbs, βNonlinear Optimal Control: A Receding Horizon Approach,β California Institute of Technology, Pasadena, California, 1999.](https://thesis.library.caltech.edu/4124/)
- (Multiple Envs) `MultipleEnvs` for multi-agent simulation
</details>
<details>
<summary>Actuators</summary>
- `SecondOrderActuator`
</details>
<details>
<summary>fixed wings</summary>
- (Wing Rock phenomenon) `TarnWingRock`, `ElzebdaWingRock`
</details>
<details>
<summary>multicopters</summary>
- (Hexacopter) `LeeHexacopter`, `LeeQuadcopter`, `GoodarziAgileQuadcopter` (**currently maintained**)
- (Quadcopter) `IslamQuadcopter`, `GoodarziQuadcopter`
</details>
<details>
<summary>allocators</summary>
- (Moore-Penrose pseudo inverse control allocation) `PseudoInverseAllocator`
</details>
<details>
<summary>controllers</summary>
- (Linear quadratic regulator) `LQR`
- (Proportional-Integral-Derivative controller) `PID`
- Note that the derivative term is obtained via second-order filter.
- (Pure proportional navigation guidance) `PPNG`
- (For multicopter position tracking)
- `BacksteppingPositionController` (control input: `T_dot`, `M`)
- `GeometricTrackingController` (control input: `T`, `M`)
- `InnerLoopGeometricTrackingController` and `OuterLoopGeometricTrackingController` (based on `GeometricTrackingController` but seperated for a hierarchical structure)
- (Safety filters via control barrier functions (CBFs))
- (Position CBF for input-affine systems) `InputAffinePositionCBF`
</details>
<details>
<summary>integrated_environments</summary>
- (Backstepping Position Controller + Static Allocator + Multicopter) `BacksteppingPositionController_StaticAllocator_Multicopter`
- For example, `BacksteppingPositionController` (backstepping position controller) + `PseudoInverseAllocator` (pseudo-inverse allocator, a static allocator) + `LeeHexacopter` (hexacopter, a multicopter)
- (Linear system + single integrator) `LinearSystem_SingleIntegrator` (WIP)
- See `src/environments/integrated_environments`.
</details>
## Utilities
- `ned2enu` and `enu2ned`: coordinate transformation
| FSimZoo | https://github.com/JinraeKim/FSimZoo.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | code | 93 | push!(LOAD_PATH, "../src/")
using Documenter, KiteConnect
makedocs(sitename="KiteConnect")
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | code | 1470 | """
KiteConnect
Julia module to interface with Zerodha's KiteConnect API
"""
module KiteConnect
export init, gen_access_token
using HTTP
using JSON
using SHA
const API_ENDPOINT = "https://api.kite.trade"
API_KEY = ""
API_SECRET = ""
ACCESS_TOKEN = ""
"""
`init(api_key::String, api_secret::String)`
Setup your KiteConnect session by providing your API key and
API secret which you get from Zerodha
"""
function init(api_key::String, api_secret::String)
global API_KEY = api_key
global API_SECRET = api_secret
end
function get_http_headers()
[
"X-Kite-Version" => "3",
"Authorization" => "token $API_KEY:$ACCESS_TOKEN",
]
end
function http_get(url_fragment::String)
url = "$API_ENDPOINT/$url_fragment"
r = HTTP.request("GET", url, get_http_headers())
r.body |> String |> JSON.parse
end
"""
`gen_access_token(request_token::String)`
Generate the access token by passing in yout request token
"""
function gen_access_token(request_token::String)
checksum = (API_KEY * request_token * API_SECRET) |> sha256 |> bytes2hex
url = "$API_ENDPOINT/session/token"
headers = [
"X-Kite-Version" => "3",
"Content-Type" => "application/x-www-form-urlencoded",
]
body = "api_key=$API_KEY&request_token=$request_token&checksum=$checksum"
res = HTTP.request("POST", url, headers, body)
r = res.body |> String |> JSON.parse
global ACCESS_TOKEN = r["data"]["access_token"]
end
include("quote.jl")
export ltp
end # module
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | code | 437 |
"""
ltp(instrument::String)
Get LTP of trading symbol
`instrument` should be in EXCHANGE:TRADINGSYMBOL format, eg. "NSE:INFY"
"""
function ltp(instrument::String)
parts = split(instrument, ":")
if (length(parts) != 2)
throw(ArgumentError("instrument should be in EXCHANGE:TRADINGSYMBOL format"))
end
url_fragment = "quote/ltp?i=$instrument"
res = http_get(url_fragment)
res["data"][instrument]["last_price"]
end
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | code | 71 |
using KiteConnect
using Test
@test_throws ArgumentError ltp("INFY")
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | docs | 286 | # KiteConnect.jl
A Julia module to interface with Zerodha's KiteConnect API
## Installation
Using Julia's package manager
```
pkg> add KiteConnect
```
## Get LTP of an instrument
```
using KiteConnect
init(api_key, api_secret)
gen_access_token(request_token)
ltp("NSE:INFY")
```
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.1.1 | f147af01d49f3fb0fb3eca72f0719a76ea87e984 | docs | 85 |
# KiteConnect Documentation
```@docs
init(api_key::String, api_secret::String)
```
| KiteConnect | https://github.com/arcofdescent/KiteConnect.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1537 | using PlutoDevMacros
using Documenter
DocMeta.setdocmeta!(PlutoDevMacros, :DocTestSetup, :(using PlutoDevMacros); recursive=true)
makedocs(;
modules= Module[],
authors="Alberto Mengali <[email protected]>",
repo="https://github.com/disberd/PlutoDevMacros.jl/blob/{commit}{path}#{line}",
sitename="PlutoDevMacros.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
edit_link="master",
assets=String[],
),
pages=[
"Home" => "index.md",
"@frompackage/@fromparent" => Any[
"Introduction" => "frompackage/introduction.md",
"Basic Use" => "frompackage/basic_use.md",
"Supported import statements" => "frompackage/import_statements.md",
"Skipping Package Parts" => "frompackage/skipping_parts.md",
"Use with PlutoPkg" => "frompackage/use_with_plutopkg.md",
"Package Extensions" => "frompackage/package_extensions.md",
"Custom Settings" => "frompackage/custom_settings.md",
],
"Other Exports" => "other_functions.md",
# "PlutoHTLCombine" => "htl_combine.md",
],
)
# This controls whether or not deployment is attempted. It is based on the value
# of the `SHOULD_DEPLOY` ENV variable, which defaults to the `CI` ENV variables or
# false if not present.
should_deploy = get(ENV,"SHOULD_DEPLOY", get(ENV, "CI", "") === "true")
if should_deploy
@info "Deploying"
deploydocs(
repo = "github.com/disberd/PlutoDevMacros.jl.git",
)
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 2641 | ### A Pluto.jl notebook ###
# v0.17.2
# using Markdown
# using InteractiveUtils
# βββ‘ ab7fc0f6-d065-4c03-aeb5-64a49214399e
const default_exprlist = [Symbol("@md_str"), Symbol("@benchmark"), :(using Markdown), :PLUTO_MANIFEST_TOML_CONTENTS, :PLUTO_PROJECT_TOML_CONTENTS]
# βββ‘ 2ac5f3c6-96f8-4f24-8022-1f0470672383
# β ββ‘ skip_as_script = true
#=β ββ‘
"""
hasexpr(expr, exprlist)
Simple expression match; will return `true` if one of the exprs listed in `exprlist` can
be found inside `expr`. Checking for macrocalls can be done by including the `Symbol` of the macro among the expression list
```julia
hasexpr(:(@benchmark 3+2), Symbol("@benchmark")) == true
```
"""
function hasexpr(ex, exprlist::AbstractVector)
result = false
MacroTools.postwalk(ex) do y
if y in exprlist
result = true
end
return y
end
return result
end
β ββ‘ =#
# βββ‘ 1663bd40-4a0c-42cd-b716-4583d0a1bb66
# Fallback for when a single element is provided
hasexpr(ex,exprlist) = hasexpr(ex,[exprlist])
# βββ‘ b42062a6-5bca-4c47-835c-caaeee1ceac6
"""
include_mapexpr([exprlist])::Function
Returns a function that can be used as first argument (`mapexpr`) of [`include`](@ref) calls
to avoid including some of the expressions inside a Pluto notebook.
When applied to an expression `ex`, the output function traverse `ex` recursively and
returns `nothing` if `ex β exprlist` and `ex` otherwise.
The expression walk is performed with [`MacroTools.postwalk`](@ref) so for example the name
of macros can be used to filter out nested expr which contains the macro call.
When called without arguments, the value of `exprlist` defaults to a vector containing some
filtering entries for Pluto notebooks:
default_exprlist = $default_exprlist
```julia
include_mapexpr()(:(md"asd")) == nothing
include_mapexpr()(:(3 + 2)) == :(3+2)
include_mapexpr([3])(:(3 + 2)) == nothing
```
"""
include_mapexpr(exprlist=default_exprlist) = ex -> hasexpr(ex,exprlist) ? nothing : ex
# βββ‘ b0f0df45-ed36-454a-9a9d-215f8c23836a
export include_mapexpr
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0-rc2"
manifest_format = "2.0"
[deps]
"""
# βββ‘ Cell order:
# β βab7fc0f6-d065-4c03-aeb5-64a49214399e
# β βb0f0df45-ed36-454a-9a9d-215f8c23836a
# β β2ac5f3c6-96f8-4f24-8022-1f0470672383
# β β1663bd40-4a0c-42cd-b716-4583d0a1bb66
# β βb42062a6-5bca-4c47-835c-caaeee1ceac6
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 11382 | ### A Pluto.jl notebook ###
# v0.17.2
# using Markdown
# using InteractiveUtils
# βββ‘ ea96e5d7-7bc0-45cf-8bf1-4acfaf5507c9
# β ββ‘ skip_as_script = true
#=β ββ‘
include("basics.jl")
β ββ‘ =#
# βββ‘ 0ba0aae0-5c29-449a-81db-a389baddf0dc
# β ββ‘ skip_as_script = true
#=β ββ‘
#using PlutoDevMacros
β ββ‘ =#
# βββ‘ 2307b8e6-6308-4902-9921-135b85273f65
# β ββ‘ skip_as_script = true
#=β ββ‘
import WhereTraits
β ββ‘ =#
# βββ‘ 9b6c7d3b-b70a-4cd4-9a77-f9b8d8501b9e
import MacroTools
# βββ‘ 4495c328-5bff-41ec-97f3-2422ee8c7339
function _plutotraits(ex::Expr)
if ex.head === :block && length(ex.args) == 2
return _plutotraits(ex.args[2])
elseif ex.head === :macrocall && ex.args[1] isa GlobalRef && ex.args[1].name === Symbol("@doc")
ex.args[end], fname = _plutotraits(ex.args[end])
return ex, fname
else
# We try to see if this expression is a function definition
defdict = MacroTools.splitdef(ex)
# If we reach this point, the expression is a funcdef or splitdef would error
# Extract the linenumbernode from the definition
body = defdict[:body]
ln = body.args[1]
# If the second arg is also a linenumbernode, remove the first on
if body.args[2] isa LineNumberNode
popfirst!(body.args)
end
# Add the call to traits
# ex = Expr(:macrocall, Expr(:(.),:WhereTraits,QuoteNode(Symbol("@traits"))), ln, ex)
ex = :(WhereTraits.@traits $(ex))
# Change the line
ex.args[2] = ln
# push!(ex.args, ln, ex)
return ex, defdict[:name]
end
error("The provided expression was not of the valid type")
end
# βββ‘ b810a742-dda2-4bd0-b9d3-8b0b5ee7356c
"""
@plutotraits f(args...;kwargs...) where {wargs..} = body...
Macro that allows to use the `WhereTraits.@traits` macro inside Pluto notebooks.
When ran inside a notebook, this reconstructs the expression `expr` one would get by calling
`WhereTraits.@traits f(args...;kwargs...) where {wargs..} = body...` but evaluates it in the top-level of the current workspace/module (using `Core.eval(__module__,Expr(:toplevel, expr))`).\\
This is needed to avoid Pluto's internal expression explorer throwing an error if multiple functions with the same name but different conditions are defined with `@traits` in separate cells.
The usual Pluto workaround of wrapping multiple definitions in a begin ... end does not work with @traits as every call to the @traits macro has to be executed at the top level.\\
This has the side-effect that function calls within the notebook are not re-computed automatically if the definition with `@plutotraits` is changed within the notebook.
When called outside of Pluto (or included in Pluto from another notebook using `@plutoinclude`), the macro simply resorts to calling directly the `Where.@traits` expression without resorting to the `Core.eval` call within the macro body.
See [`WhereTraits.@traits`](@ref) or [`https://github.com/schlichtanders/WhereTraits.jl`](https://github.com/schlichtanders/WhereTraits.jl) for understanding how to use the underlying `@traits` macro.
"""
macro plutotraits(expr)
# Meta.dump(expr)
ex, fname = try
_plutotraits(expr)
catch e
# error("The macro only supports a single call to the `@traits` macro with optional docstrings (wrapped in a begin...end block))")
error(e)
end
if is_notebook_local(String(__source__.file))
Core.eval(__module__, Expr(:toplevel, ex))
esc(fname)
else
esc(ex)
end
end
# βββ‘ 8f354575-6ca2-4f0f-9880-f50d785de8f9
export @plutotraits
# βββ‘ d6e472a7-bbd3-4f18-aa27-7289e6c23eab
# β ββ‘ skip_as_script = true
#=β ββ‘
@plutotraits begin
"Test Documentation"
g(a) where {iseven(a)} = "EVEN"
end
β ββ‘ =#
# βββ‘ e3c59dc8-6894-487a-ae98-62594fd149ef
# β ββ‘ skip_as_script = true
#=β ββ‘
@plutotraits g(a) where {isodd(a)} = "ODD"
β ββ‘ =#
# βββ‘ 51bdae6a-7749-4bee-a6d0-b1055fab5ece
# β ββ‘ skip_as_script = true
#=β ββ‘
g(2)
β ββ‘ =#
# βββ‘ c826aa1b-fd70-452c-9716-3bfc6066e590
# β ββ‘ skip_as_script = true
#=β ββ‘
g(1)
β ββ‘ =#
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
WhereTraits = "c9d4e05b-6318-49cb-9b56-e0e2b0ceadd8"
[compat]
MacroTools = "~0.5.9"
WhereTraits = "~1.0.0"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0-rc2"
manifest_format = "2.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "dce3e3fea680869eaa0b774b2e8343e9ff442313"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.40.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.3.0"
[[deps.DataTypesBasic]]
deps = ["Compat"]
git-tree-sha1 = "4cff12742dcd7a8639da323abaf6bd4722abc312"
uuid = "83eed652-29e8-11e9-12da-a7c29d64ffc9"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.ExprParsers]]
deps = ["Compat", "ProxyInterfaces", "SimpleMatch", "StructEquality"]
git-tree-sha1 = "03d3f97dad4bd2b10ca0febca5db6bef5e0b320a"
uuid = "c5caad1f-83bd-4ce8-ac8e-4b29921e994e"
version = "1.1.0"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.9"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.ProxyInterfaces]]
deps = ["Compat"]
git-tree-sha1 = "d85fef4db37288bd756c71d223e34406055b7414"
uuid = "9b3bf0c4-f070-48bc-ae01-f2584e9c23bc"
version = "1.0.0"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.1.3"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Setfield]]
deps = ["ConstructionBase", "Future", "MacroTools", "Requires"]
git-tree-sha1 = "fca29e68c5062722b5b4435594c3d1ba557072a3"
uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46"
version = "0.7.1"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.SimpleMatch]]
deps = ["Compat"]
git-tree-sha1 = "c1cc22bbe259ea4a159e30ff2cf5f01d378262e8"
uuid = "a3ae8450-d22f-11e9-3fe0-77240e25996f"
version = "1.0.0"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StructEquality]]
deps = ["Compat"]
git-tree-sha1 = "6e951cd0585cbe8f4ceb1cb09d69332b9484fec9"
uuid = "6ec83bb0-ed9f-11e9-3b4c-2b04cb4e219c"
version = "1.1.0"
[[deps.Suppressor]]
git-tree-sha1 = "a819d77f31f83e5792a76081eee1ea6342ab8787"
uuid = "fd094767-a336-5f1f-9728-57cf17d0bbfb"
version = "0.2.0"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.WhereTraits]]
deps = ["Compat", "DataTypesBasic", "ExprParsers", "Markdown", "ProxyInterfaces", "Setfield", "SimpleMatch", "StructEquality", "Suppressor"]
git-tree-sha1 = "cb13380b76dbe6e68c433dcd097aca3325a26470"
uuid = "c9d4e05b-6318-49cb-9b56-e0e2b0ceadd8"
version = "1.0.0"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# βββ‘ Cell order:
# β β0ba0aae0-5c29-449a-81db-a389baddf0dc
# β β2307b8e6-6308-4902-9921-135b85273f65
# β β9b6c7d3b-b70a-4cd4-9a77-f9b8d8501b9e
# β βea96e5d7-7bc0-45cf-8bf1-4acfaf5507c9
# β β8f354575-6ca2-4f0f-9880-f50d785de8f9
# β βb810a742-dda2-4bd0-b9d3-8b0b5ee7356c
# β β4495c328-5bff-41ec-97f3-2422ee8c7339
# β βd6e472a7-bbd3-4f18-aa27-7289e6c23eab
# β βe3c59dc8-6894-487a-ae98-62594fd149ef
# β β51bdae6a-7749-4bee-a6d0-b1055fab5ece
# β βc826aa1b-fd70-452c-9716-3bfc6066e590
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 16270 | ### A Pluto.jl notebook ###
# v0.19.25
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# βββ‘ 661e0d86-9675-4c24-a898-5ffee2e32029
begin
using MacroTools
end
# βββ‘ e3d5c718-d98c-4d53-8fc9-911be34c9f2d
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
using BenchmarkTools
import PlutoDevMacros
end
β ββ‘ =#
# βββ‘ 47c42d27-88f1-4a27-bda9-54a2439b09a1
# β ββ‘ skip_as_script = true
#=β ββ‘
include("basics.jl")
β ββ‘ =#
# βββ‘ 5089d8dd-6587-4172-9ffd-13cf43e8c341
# β ββ‘ skip_as_script = true
#=β ββ‘
md"""
## Main Functions
"""
β ββ‘ =#
# βββ‘ b87d12be-a37b-4202-9426-3eef14d8253c
function ingredients(path::String)
# this is from the Julia source code (evalfile in base/loading.jl)
# but with the modification that it returns the module instead of the last object
name = Symbol("#plutoinclude_",basename(path))
m = Module(name)
Core.eval(m,
Expr(:toplevel,
:(eval(x) = $(Expr(:core, :eval))($name, x)),
:(include(x) = $(Expr(:top, :include))($name, x)),
:(include(mapexpr::Function, x) = $(Expr(:top, :include))(mapexpr, $name, x)),
:(using PlutoDevMacros: @plutoinclude), # This is needed for nested @plutoinclude calls
:(include($path))))
m
end
# βββ‘ 57efc195-6a2f-4ad3-94fd-53e884838789
# β ββ‘ skip_as_script = true
#=β ββ‘
md"""
# Other Ingredients Helpers
"""
β ββ‘ =#
# βββ‘ aa28b5d8-e0d7-4b97-9220-b61a0c5f4fc4
html_reload_button() = html"""
<div class="plutoinclude_banner">
Reload @pluto_include
</div>
<script>
const cell = currentScript.closest('pluto-cell')
const onClick = (e) => {
console.log(e)
if (e.ctrlKey) {
history.pushState({},'')
cell.scrollIntoView({
behavior: 'smooth',
block: 'center',
})
} else {
cell.querySelector('button.runcell').click()
}
}
const banner = cell.querySelector(".plutoinclude_banner")
banner.addEventListener('click',onClick)
invalidation.then(() => banner.removeEventListener('click',onClick))
</script>
<style>
.plutoinclude_banner {
height: 20px;
position: fixed;
top: 40px;
right: 10px;
margin-top: 5px;
padding-right: 5px;
z-index: 200;
background: #ffffff;
padding: 5px 8px;
border: 3px solid #e3e3e3;
border-radius: 12px;
height: 35px;
font-family: "Segoe UI Emoji", "Roboto Mono", monospace;
font-size: 0.75rem;
}
.plutoinclude_banner:hover {
font-weight: 800;
cursor: pointer;
}
body.disable_ui .plutoinclude_banner {
display: none;
}
main
</style>
"""
# βββ‘ 98b1fa0d-fad1-4c4f-88a0-9452d492c4cb
function include_expr(from::Module,kwargstrs::String...; to::Module)
modname = Symbol("#plutoincluded_module")
ex = Expr(:block, :(const $modname = $from))
kwargs = (Symbol(s) => true for s β kwargstrs if s β ("all","imported"))
varnames = names(from;kwargs...)
# Remove the symbols that start with a '#' (still to check what is the impact)
filter!(!Base.isgensym,varnames)
# Symbols to always exclude from imports
exclude_names = (
nameof(from),
:eval,
:include,
Symbol("@bind"),
Symbol("@plutoinclude"), # Since we included this in the module
)
for s β varnames
if s β exclude_names
if getfield(from,s) isa Function
# _copymethods!(ex, s; to, from, importedlist = varnames, fromname = modname)
ret_types = Base.return_types(getfield(from,s))
candidate_type = ret_types[1]
# Get the eventual docstring
docstring = Base.doc(Base.Docs.Binding(from, s))
if all(x -> x === candidate_type, ret_types) && Base.isconcretetype(candidate_type)
push!(ex.args, :(@doc ($docstring) $s(args...; kwargs...)::$candidate_type = $modname.$s(args...; kwargs...)))
else
push!(ex.args, :(@doc ($docstring) $s(args...; kwargs...) = $modname.$s(args...; kwargs...)))
end
else
push!(ex.args,:(const $s = $modname.$s))
end
end
end
# Add the html to re-run the cell
push!(ex.args,:($(html_reload_button())))
ex
end
# βββ‘ 872bd88e-dded-4789-85ef-145f16003351
"""
@plutoinclude path nameskwargs...
@plutoinclude modname=path namekwargs...
This macro is used to include external julia files inside a pluto notebook and is inspired by the discussion on [this Pluto issue](https://github.com/fonsp/Pluto.jl/issues/1101).
It requires Pluto >= v0.17.0 and includes and external file, taking care of putting in the caller namespace all varnames that are tagged with `export varname` inside the included file.
The macro relies on the use of [`names`](@ref) to get the variable names to be exported, and support providing the names of the keyword arguments of `names` to be set to true as additional strings
When called from outside Pluto, it simply returns nothing
"""
macro plutoinclude(ex,kwargstrs...)
path = ex isa String ? ex : Base.eval(__module__,ex)
if is_notebook_local(__source__.file::Symbol |> String)
# If this is called directly from the notebook, do the hack to export the various variables from the module
m = ingredients(path)
esc(include_expr(m,kwargstrs...; to = __module__))
elseif first(nameof(__module__) |> String, 13) == "#plutoinclude"
# We are in a chained plutoinclude, simply include the subfile
:(include($path)) |> esc
else
# We are not in the notebook and not in a chained include, so do nothing
nothing
end
end
# βββ‘ 748b8eab-2f3d-4afd-bfb4-fee3240d391b
export @plutoinclude
# βββ‘ 1f291bd2-9ab1-4fd2-bf50-49253726058f
# β ββ‘ skip_as_script = true
#=β ββ‘
md"""
## Example Use
"""
β ββ‘ =#
# βββ‘ cf0d13ea-7562-4b8c-b7e6-fb2f1de119a7
# β ββ‘ skip_as_script = true
#=β ββ‘
md"""
The cells below assume to also have the test notebook `ingredients_include_test.jl` from PlutoUtils in the same folder, download it and put it in the same folder in case you didn't already
"""
β ββ‘ =#
# βββ‘ bd3b021f-db44-4aa1-97b2-04002f76aeff
# β ββ‘ skip_as_script = true
#=β ββ‘
notebook_path = "./plutoinclude_test.jl"
β ββ‘ =#
# βββ‘ 0e3eb73f-091a-4683-8ccb-592b8ccb1bee
# β ββ‘ skip_as_script = true
#=β ββ‘
md"""
Try changing the content of the included notebook by removing some exported variables and re-execute (**using Shift-Enter**) the cell below containing the @plutoinclude call to see that variables are correctly updated.
You can also try leaving some variable unexported and still export all that is defined in the notebook by using
```julia
@plutoinclude notebook_path "all"
```
Finally, you can also assign the full imported module in a specific variable by doing
```julia
@plutoinclude varname = notebook_path
```
"""
β ββ‘ =#
# βββ‘ d2ac4955-d2a0-48b5-afcb-32baa59ade21
# β ββ‘ skip_as_script = true
#=β ββ‘
@plutoinclude notebook_path "all"
β ββ‘ =#
# βββ‘ 0d1f5079-a886-4a07-9e99-d73e0b8a2eec
# β ββ‘ skip_as_script = true
#=β ββ‘
@macroexpand @plutoinclude notebook_path "all"
β ββ‘ =#
# βββ‘ 50759ca2-45ca-4005-9182-058a5cb68359
# β ββ‘ skip_as_script = true
#=β ββ‘
const mm = ingredients(notebook_path)
β ββ‘ =#
# βββ‘ 4cec781b-c6d7-4fd7-bbe3-f7db0f973698
# β ββ‘ skip_as_script = true
#=β ββ‘
a
β ββ‘ =#
# βββ‘ a7e7123f-0e7a-4771-9b9b-d0da97fefcef
# β ββ‘ skip_as_script = true
#=β ββ‘
b
β ββ‘ =#
# βββ‘ 2c41234e-e1b8-4ad8-9134-85cd65a75a2d
# β ββ‘ skip_as_script = true
#=β ββ‘
c
β ββ‘ =#
# βββ‘ ce2a2025-a6e0-44ab-8631-8d308be734a9
# β ββ‘ skip_as_script = true
#=β ββ‘
d
β ββ‘ =#
# βββ‘ d8be6b4c-a02b-43ec-b176-de6f64fefd87
# β ββ‘ skip_as_script = true
#=β ββ‘
# Extending the method
asd(s::String) = "STRING"
β ββ‘ =#
# βββ‘ 8090dd72-a47b-4d9d-85df-ceb0c1bcedf5
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(3)
β ββ‘ =#
# βββ‘ 61924e22-f052-43a5-84b1-5512d222af26
# β ββ‘ skip_as_script = true
#=β ββ‘
@benchmark asd(TestStruct())
β ββ‘ =#
# βββ‘ d1fbe484-dcd0-456e-8ec1-c68acd708a08
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct())
β ββ‘ =#
# βββ‘ 8df0f262-faf2-4f99-98e2-6b2a47e5ca31
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct(),3,4)
β ββ‘ =#
# βββ‘ 1754fdcf-de3d-4d49-a2f0-9e3f4aa3498e
# β ββ‘ skip_as_script = true
#=β ββ‘
asd("S")
β ββ‘ =#
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
PlutoDevMacros = "a0499f29-c39b-4c5c-807c-88074221b949"
[compat]
BenchmarkTools = "~1.3.2"
MacroTools = "~0.5.10"
PlutoDevMacros = "~0.5.0"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.9.0-rc3"
manifest_format = "2.0"
project_hash = "b329ce92ad28a8475022c6a7c95009120252febc"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"]
git-tree-sha1 = "d9a9701b899b30332bbcb3e1679c41cce81fb0e8"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "1.3.2"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.0.2+0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.4"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.3"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "7.84.0+0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.10.2+0"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "42324d08725e200c23d4dfb549e0d5d89dede2d2"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.10"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+0"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2022.10.11"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.21+4"
[[deps.Parsers]]
deps = ["Dates", "SnoopPrecompile"]
git-tree-sha1 = "478ac6c952fddd4399e71d4779797c538d0ff2bf"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.5.8"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.9.0"
[[deps.PlutoDevMacros]]
deps = ["HypertextLiteral", "InteractiveUtils", "MacroTools", "Markdown", "Random", "Requires"]
git-tree-sha1 = "fa04003441d7c80b4812bd7f9678f721498259e7"
uuid = "a0499f29-c39b-4c5c-807c-88074221b949"
version = "0.5.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.3.0"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.Profile]]
deps = ["Printf"]
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.3.0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SnoopPrecompile]]
deps = ["Preferences"]
git-tree-sha1 = "e760a70afdcd461cf01a575947738d359234665c"
uuid = "66db9d55-30c0-4569-8b51-7e840670fc0c"
version = "1.0.3"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
version = "1.9.0"
[[deps.SuiteSparse_jll]]
deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"]
uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c"
version = "5.10.1+6"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.3"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.Tricks]]
git-tree-sha1 = "aadb748be58b492045b4f56166b5188aa63ce549"
uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775"
version = "0.1.7"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.13+0"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
version = "5.7.0+0"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.48.0+0"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+0"
"""
# βββ‘ Cell order:
# β β661e0d86-9675-4c24-a898-5ffee2e32029
# β βe3d5c718-d98c-4d53-8fc9-911be34c9f2d
# β β748b8eab-2f3d-4afd-bfb4-fee3240d391b
# β β47c42d27-88f1-4a27-bda9-54a2439b09a1
# ββ5089d8dd-6587-4172-9ffd-13cf43e8c341
# β βb87d12be-a37b-4202-9426-3eef14d8253c
# ββ57efc195-6a2f-4ad3-94fd-53e884838789
# β β98b1fa0d-fad1-4c4f-88a0-9452d492c4cb
# β β872bd88e-dded-4789-85ef-145f16003351
# β βaa28b5d8-e0d7-4b97-9220-b61a0c5f4fc4
# ββ1f291bd2-9ab1-4fd2-bf50-49253726058f
# ββcf0d13ea-7562-4b8c-b7e6-fb2f1de119a7
# β βbd3b021f-db44-4aa1-97b2-04002f76aeff
# ββ0e3eb73f-091a-4683-8ccb-592b8ccb1bee
# β βd2ac4955-d2a0-48b5-afcb-32baa59ade21
# β β0d1f5079-a886-4a07-9e99-d73e0b8a2eec
# β β8090dd72-a47b-4d9d-85df-ceb0c1bcedf5
# β β61924e22-f052-43a5-84b1-5512d222af26
# β β50759ca2-45ca-4005-9182-058a5cb68359
# β β4cec781b-c6d7-4fd7-bbe3-f7db0f973698
# β βa7e7123f-0e7a-4771-9b9b-d0da97fefcef
# β β2c41234e-e1b8-4ad8-9134-85cd65a75a2d
# β βce2a2025-a6e0-44ab-8631-8d308be734a9
# β βd1fbe484-dcd0-456e-8ec1-c68acd708a08
# β β8df0f262-faf2-4f99-98e2-6b2a47e5ca31
# β βd8be6b4c-a02b-43ec-b176-de6f64fefd87
# β β1754fdcf-de3d-4d49-a2f0-9e3f4aa3498e
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1975 | ### A Pluto.jl notebook ###
# v0.17.1
using Markdown
using InteractiveUtils
# βββ‘ e7d3f8f0-bb20-4b41-b482-a1d4d051b20b
a = 5152
# βββ‘ 722a2090-c956-4733-a3a0-4e776b43853d
b = 251
# βββ‘ a5425f17-8e08-443a-8451-a5231e3144a6
c = 142
# βββ‘ ba9665b9-f9f4-4a69-960d-5fe40ef708a8
d = 3
# βββ‘ 8cb5cd6b-b84d-4a12-823b-b5d247d6eb2c
Base.@kwdef struct TestStruct
a::Int = 5
end
# βββ‘ b5efd50a-1bf2-4634-93b8-ee6c5d7a4a3f
export TestStruct
# βββ‘ 3951f4a5-c112-4f35-bd4f-ecff125406e3
export a
# βββ‘ e69da1bf-c376-4760-be05-e866ccc09b2f
export b
# βββ‘ 2d487920-1fd7-4fee-bbed-435ad883bed8
# export c, d
# βββ‘ 849be81a-9e1a-48ff-9056-2b4648e22e5a
asd(x::Int) = "INT"
# βββ‘ 58ddadeb-1032-41c9-be45-0087671b1524
asd(x::Float64) = "FLOAT"
# βββ‘ 9ebec3d9-4809-46ae-8d9f-f55f3b4323a3
asd(::Real, c::Int64) = "DUAL"
# βββ‘ d5d563a1-cde7-407a-8863-689f7dfd1a1e
asd(t::TestStruct) = "THIS IS A TESTSTRUCT"
# βββ‘ 8bb2f880-d650-4c0f-afe8-536e75fcce5b
asd(t::TestStruct, args...) = "TESTSTRUCT WITH VARARGS"
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0-rc2"
manifest_format = "2.0"
[deps]
"""
# βββ‘ Cell order:
# β βe7d3f8f0-bb20-4b41-b482-a1d4d051b20b
# β β722a2090-c956-4733-a3a0-4e776b43853d
# β βa5425f17-8e08-443a-8451-a5231e3144a6
# β βba9665b9-f9f4-4a69-960d-5fe40ef708a8
# β β8cb5cd6b-b84d-4a12-823b-b5d247d6eb2c
# β βb5efd50a-1bf2-4634-93b8-ee6c5d7a4a3f
# β β3951f4a5-c112-4f35-bd4f-ecff125406e3
# β βe69da1bf-c376-4760-be05-e866ccc09b2f
# β β2d487920-1fd7-4fee-bbed-435ad883bed8
# β β849be81a-9e1a-48ff-9056-2b4648e22e5a
# β β58ddadeb-1032-41c9-be45-0087671b1524
# β β9ebec3d9-4809-46ae-8d9f-f55f3b4323a3
# β βd5d563a1-cde7-407a-8863-689f7dfd1a1e
# β β8bb2f880-d650-4c0f-afe8-536e75fcce5b
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 989 | ### A Pluto.jl notebook ###
# v0.17.2
# using Markdown
# using InteractiveUtils
# βββ‘ bb26cad0-4720-11ec-20c0-6538c8fcc18f
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate("..")
end
β ββ‘ =#
# βββ‘ c0e30b73-0973-47c8-b57c-3a0b9c534ec5
using BenchmarkTools
# βββ‘ 82ace475-cc8d-4f3d-84bd-91a49c141648
using PlutoDevMacros
# βββ‘ 8c251cd4-3050-4809-80a3-07e9aab558ab
struct TestStruct1 end
# βββ‘ 8145c16e-0a16-4e8b-a073-8e1774273bb4
asd(x::Int) = "INTSSS"
# βββ‘ 354605a3-297e-4647-b4cf-f0aea4987f9e
"""
asd(::TestStruct1)
This is a magical docstring
"""
asd(::TestStruct1) = "TESTSTRUCT1"
# βββ‘ 9e1468e5-beda-486a-9cde-9c498f77999e
@benchmark asd(TestStruct1())
# βββ‘ Cell order:
# β βbb26cad0-4720-11ec-20c0-6538c8fcc18f
# β βc0e30b73-0973-47c8-b57c-3a0b9c534ec5
# β β82ace475-cc8d-4f3d-84bd-91a49c141648
# β β8c251cd4-3050-4809-80a3-07e9aab558ab
# β β8145c16e-0a16-4e8b-a073-8e1774273bb4
# β β354605a3-297e-4647-b4cf-f0aea4987f9e
# β β9e1468e5-beda-486a-9cde-9c498f77999e
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1585 | ### A Pluto.jl notebook ###
# v0.17.2
# using Markdown
# using InteractiveUtils
# βββ‘ f9eff180-3c4d-49c2-9f4e-e3f425a96966
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate("..")
end
β ββ‘ =#
# βββ‘ 941fa912-61d4-4847-8bb2-5e83eb31ca34
begin
using Revise
using PlutoDevMacros
end
# βββ‘ f73c9b70-4c68-4d3b-be3e-067a118681e8
# β ββ‘ skip_as_script = true
#=β ββ‘
using BenchmarkTools
β ββ‘ =#
# βββ‘ d9b0ef51-60cc-4a30-9f8b-f6b6b2dbeec5
@macroexpand @plutoinclude "test1.jl" "all"
# βββ‘ e2ac5a43-d683-486b-a2a1-f26f48313c47
@plutoinclude "test1.jl" "all"
# βββ‘ f3287e4b-c92a-4eef-8b79-78346a55803b
asd(x::Float64) = "FLOAT"
# βββ‘ 4d8e68cb-910f-4f6c-89cd-2bf2da7b5a70
struct TestStruct2 end
# βββ‘ 53ec02f7-ca14-41d9-b3b7-757c36f526f7
asd(::TestStruct2) = "TESTSTRUCT2"
# βββ‘ f5b8ccdd-ad66-4ae4-b3e9-82452464168b
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(3)
β ββ‘ =#
# βββ‘ a33fdee5-037c-41de-aeec-bc4383fe4826
# β ββ‘ skip_as_script = true
#=β ββ‘
@benchmark asd(TestStruct2())
β ββ‘ =#
# βββ‘ a646c602-529e-45c1-a170-3650318c1c2d
# β ββ‘ skip_as_script = true
#=β ββ‘
@benchmark asd(TestStruct1())
β ββ‘ =#
# βββ‘ Cell order:
# β βf9eff180-3c4d-49c2-9f4e-e3f425a96966
# β β941fa912-61d4-4847-8bb2-5e83eb31ca34
# β βf73c9b70-4c68-4d3b-be3e-067a118681e8
# β βd9b0ef51-60cc-4a30-9f8b-f6b6b2dbeec5
# β βe2ac5a43-d683-486b-a2a1-f26f48313c47
# β βf5b8ccdd-ad66-4ae4-b3e9-82452464168b
# β βf3287e4b-c92a-4eef-8b79-78346a55803b
# β β4d8e68cb-910f-4f6c-89cd-2bf2da7b5a70
# β β53ec02f7-ca14-41d9-b3b7-757c36f526f7
# β βa33fdee5-037c-41de-aeec-bc4383fe4826
# β βa646c602-529e-45c1-a170-3650318c1c2d
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1998 | ### A Pluto.jl notebook ###
# v0.17.2
# using Markdown
# using InteractiveUtils
# βββ‘ a1e38635-d1cb-4184-8e77-dab98a057e4c
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate("..")
end
β ββ‘ =#
# βββ‘ 24ee155b-af1a-4915-a23b-3ff16e7ba844
begin
using Revise
using PlutoDevMacros
end
# βββ‘ fa2b4748-4ec4-475a-a255-40b16cee11be
# β ββ‘ skip_as_script = true
#=β ββ‘
using BenchmarkTools
β ββ‘ =#
# βββ‘ c5a1f2f0-c2b8-4ff7-b33c-467495b2317c
@plutoinclude "test2.jl" "all"
# βββ‘ 7f9edbbe-2f8d-4b94-8199-6debf0143cca
# β ββ‘ skip_as_script = true
#=β ββ‘
struct TestStruct3 end
β ββ‘ =#
# βββ‘ 25c3a29c-3a29-4de6-b66b-aaeb7c788d29
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(::TestStruct3) = "TESTSTRUCT3"
β ββ‘ =#
# βββ‘ 6630b18d-b98b-49b8-a416-e793a1d3b474
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(1)
β ββ‘ =#
# βββ‘ 0542d7f4-4104-4884-b79e-d94d3fd3041c
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(1.0)
β ββ‘ =#
# βββ‘ 25924828-2ec2-4df0-8afd-3bcb6e3aad28
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct1())
β ββ‘ =#
# βββ‘ c0448179-1dac-4c61-9fb3-5b2c14f44f30
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct2())
β ββ‘ =#
# βββ‘ 0d7ab7ce-1ce5-4249-b8de-8aeed5bec07e
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct3())
β ββ‘ =#
# βββ‘ 720caf23-72de-4161-a7b0-0a10d690f0c3
# β ββ‘ skip_as_script = true
#=β ββ‘
asd(TestStruct2())
β ββ‘ =#
# βββ‘ 26b39429-5766-45a5-a173-ad632c31718c
# β ββ‘ skip_as_script = true
#=β ββ‘
@benchmark asd(TestStruct1())
β ββ‘ =#
# βββ‘ Cell order:
# β βa1e38635-d1cb-4184-8e77-dab98a057e4c
# β β24ee155b-af1a-4915-a23b-3ff16e7ba844
# β βfa2b4748-4ec4-475a-a255-40b16cee11be
# β βc5a1f2f0-c2b8-4ff7-b33c-467495b2317c
# β β6630b18d-b98b-49b8-a416-e793a1d3b474
# β β0542d7f4-4104-4884-b79e-d94d3fd3041c
# β β25924828-2ec2-4df0-8afd-3bcb6e3aad28
# β βc0448179-1dac-4c61-9fb3-5b2c14f44f30
# β β7f9edbbe-2f8d-4b94-8199-6debf0143cca
# β β25c3a29c-3a29-4de6-b66b-aaeb7c788d29
# β β0d7ab7ce-1ce5-4249-b8de-8aeed5bec07e
# β β720caf23-72de-4161-a7b0-0a10d690f0c3
# β β26b39429-5766-45a5-a173-ad632c31718c
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 340 | module PlutoDevMacros
using MacroTools: shortdef
# This are from basics.jl
export @only_in_nb, @only_out_nb, plutodump, @current_pluto_cell_id,
@current_pluto_notebook_file, @addmethod
include("basics.jl")
include("html_helpers.jl")
include("frompackage/FromPackage.jl")
using .FromPackage
export @fromparent, @frompackage
end # module
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 4813 | function _cell_data(filesrc::String)
names = split(filesrc,"#==#")
if length(names) > 1
return names
else
return names[1], ""
end
end
_cell_data(file::Symbol) = _cell_data(String(file))
_cell_data(lnn::LineNumberNode) = _cell_data(lnn.file)
"""
is_notebook_local(filesrc::AbstractString)::Bool
Returns `true` if Pluto is loaded and if the `filesrc` points to the currently running Pluto cell_id
To be fed the result of `@__FILE__` (or `__source__.file` used inside macros) as `filesrc`.\\
This works because the `@__FILE__` information contains the name of the Pluto notebook followed the string `#==#` and by the cell UUID in case this is called directly in a notebook (and not included from outside)
"""
function is_notebook_local(filesrc)::Bool
# If this is ran from the notebook it is defined in Pluto, the output of __source__.file or @__FILE__ is split into filepath and cell_id with a #==# separator
file, cell_id = _cell_data(filesrc)
return isempty(cell_id) ? false : true
end
function is_notebook_local()
cell_id = try
Main.PlutoRunner.currently_running_cell_id[]
catch e
return false
end
caller = stacktrace()[2] # We get the function calling this function
calling_file = caller.file |> string
return endswith(calling_file, string(cell_id))
end
"""
plutodump(x::Union{Symbol, Expr}; maxdepth = 8)
Dumps a symbol or expression directly as text on the pluto cell output instead of in the stdout
See also: [`Meta.dump`](@ref)
"""
function plutodump(x::Union{Symbol, Expr}; maxdepth = 8)
i = IOBuffer()
Meta.dump(i, x; maxdepth)
String(take!(i)) |> Text
end
## Macros ##
"""
@current_pluto_cell_id()
Returns the cell_id (as a string) of the cell where the macro is called. If not
ran from within the pluto notebook containing the call, returns an empty string
"""
macro current_pluto_cell_id()
_, cell_id = _cell_data(__source__.file::Symbol |> String)
return isempty(cell_id) ? "" : string(cell_id)
end
"""
@current_pluto_notebook_file()
Returns the path of the notebook file of the cell where the macro is called. If
not ran from within the pluto notebook containing the call, returns an empty
string
"""
macro current_pluto_notebook_file()
nbfile, cell_id = _cell_data(__source__.file::Symbol |> String)
return isempty(cell_id) ? "" : string(nbfile)
end
"""
only_in_nb(ex)
Executes the expression `ex` only if the macro is called from a running Pluto instance and ran directly from the source notebook file.
This is more strict than `PlutoHooks.@skip_as_script` as including a notebook with `@skip_as_script ex` from another notebook would still execute `ex`.\\
`@only_in_nb ex` instead only evaluates `ex` if the calling notebook is the original source notebook file.
See also: [`@only_out_nb`](@ref). [`PlutoHooks.@skip_as_script`](@ref).
"""
macro only_in_nb(ex)
is_notebook_local(String(__source__.file::Symbol)) ? esc(ex) : nothing
end
"""
only_out_nb(ex)
Opposite of `@only_in_nb`
See also: [`@only_in_nb`](@ref). [`PlutoHooks.@only_as_script`](@ref).
"""
macro only_out_nb(ex)
is_notebook_local(String(__source__.file::Symbol)) ? nothing : esc(ex)
end
"""
@addmethod func(args...;kwargs...) = body
@addmethod function func(args...;kwargs...)
body
end
This simple macro modifies a function definition expression (only when called
from a Pluto notebook) to prepend the name of the module defining the function
(here called `DefiningModule`) to the method definition.
So the code
```julia
@addmethod func(args...;kwargs...) = something
```
is simply translated to
```julia
DefiningModule.func(args...;kwargs...) = something
```
when called from a Pluto notebook, and to:
```julia
func(args...;kwargs...) = something
```
when called outside of Pluto.
This is useful to avoid multiple definition errors inside Pluto but has the
caveat that defining a method with `@addmethod` does not trigger a reactive run
of all cells that call the modified function.
This also mean that when removing the cell with the `@addmethod` call, the
actual method added to the `DefiningModule` will not be automatically erased by
Pluto and will still accessible until it is not overwritten with another method
with the same signature.
This is easy to fix in the case of adding methods to
modules loaded with `@frompackage`/`@fromparent` as reloading the module is
sufficient to remove the hanging method.
See this video for an example:

See also: [`@frompackage`](@ref), [`@fromparent`](@ref)
"""
macro addmethod(ex)
if is_notebook_local(String(__source__.file::Symbol))
def = shortdef(ex)
fname = def.args[1].args[1]
# Switch it to (::typeof(fname))
def.args[1].args[1] = :(::typeof($fname))
esc(def)
else
esc(ex)
end
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 4165 | # This function just makes a random alphanumeric id always starting with letter R
randid() = "R" * string(rand(UInt32); base = 62)
# This function, if appearing inside a capture log message in Pluto (not with
# println, just the @info, @warn, etc ones), will hide itself. It is mostly used
# in combination with other scripts to inject some javascript in the notebook
# without having an ugly empty log below the cell
"""
hide_this_log(html_content::AbstractString = "")
hide_this_log(html::Docs.HTML)
Simple function that returns a `Docs.HTML` object which when sent to Pluto logs with e.g. `@info` (or any other loggin macro), will hide the log from view.
It is mostly intended to send some javascript to the logs for execution but avoid having an empty log box hanging around below the cell.
The output of this function contains a script which will hide the specific log that contains it, and if no other logs are present, will also hide the log container in Pluto.
The function also optionally accept some content that will be inserted just before the script for hiding the log.
The custom input can be provided as an AbstractString, or directly as an HTML object of type `Docs.HTML`, in which case it will simply extract the HTML contents as `String` from the `contents` field.
The provided content will be directly interpreted as HTML, meaning that any script will have to be surrounded by `<script>` tags.
This function is used inside PlutoDevMacros to create the `reload @fromparent` button also via logs for redundancy.
# Example
Suppose you are inside a Pluto notebook and you want to execute some custom javascript from a cell, but for some reason you don't want to have the javascript to be the final output of your cell. You can exploit logs for this (assuming you didn't disable logging for the cell in question).
The following snippet can be inserted in a cell to send a custom message on the javascript developer console while still having a non-javascript cell output.
```julia
julia_output = let
@info PlutoDevMacros.hide_this_log(html"<script>console.log('message')</script>")
3
end
```
Which will correctly send the message to the console even if the cell output is not the javascript script:

"""
function hide_this_log(content = ""; id = randid())
#! format: off
this_contents = "<script id = '$id' class='hide-this-log'>
const logs_positioner = currentScript.closest('pluto-log-dot-positioner')
if (logs_positioner == undefined) { return }
const logs = logs_positioner.parentElement
const logs_container = logs.parentElement
const style = html`<style>
pluto-logs-container[hidden] {
height: 0px;
padding: 0px;
visibility: hidden;
}
pluto-log-dot-positioner[hidden] {
height: 0px;
margin: 0px;
visibility: hidden;
}
</style>`
function callBack(mutationList, observer) {
let hide_container = true
for (const child of logs.children) {
const should_hide = child.querySelector('script.hide-this-log') != undefined
child.toggleAttribute('hidden', should_hide)
hide_container = hide_container && should_hide
}
// We eventualy hide the container
logs_container.toggleAttribute('hidden', hide_container)
}
const observer = new MutationObserver(callBack)
observer.observe(logs, { subtree: true, attributes: true, childList: true })
logs_positioner.toggleAttribute('hidden', true)
invalidation.then(() => {
console.log('invalidation of logs hider script')
callBack()
observer.disconnect()
})
return style
</script>"
#! format: on
simple_html_cat(content, this_contents)
end
extract_html_content(x::AbstractString) = x
extract_html_content(html::Docs.HTML) = html.content
function simple_html_cat(args...)
Docs.HTML() do io
for arg in args
content = extract_html_content(arg)
content isa Function ?
content(io) :
print(io, content)
end
end
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 625 | module FromPackage
import ..PlutoDevMacros: @addmethod, _cell_data, is_notebook_local
import ..PlutoDevMacros: hide_this_log, simple_html_cat
import Pkg
import Pkg.Types: Context, EnvCache
import TOML
using MacroTools: postwalk, flatten, MacroTools, isdef, longdef
using JuliaInterpreter: ExprSplitter
using Logging
export @fromparent, @addmethod, @frompackage
include("types.jl")
include("consts.jl")
include("imports_helpers.jl")
include("helpers.jl")
include("code_parsing.jl")
include("loading.jl")
include("input_parsing.jl")
include("macro.jl")
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 3786 | function extract_file_ast(filename)
code = read(filename, String)
ast = Meta.parseall(code; filename)
@assert Meta.isexpr(ast, :toplevel)
return ast
end
## custom_walk! ##
# This function is inspired by MacroTools.walk (and prewalk/postwalk). It allows to specify custom way of parsing the expressions of an included file/package. The first method is used to process the include statement as the `mapexpr` in the two-argument `include` method (i.e. `include(mapexpr, file)`)
function custom_walk!(p::AbstractEvalController)
@nospecialize
function mapexpr(ex)
out = custom_walk!(p, ex)
return out
end
return mapexpr
end
function custom_walk!(p::AbstractEvalController, ex)
@nospecialize
if target_reached(p)
return RemoveThisExpr()
else
ex isa Expr || return ex
if isdef(ex)
ex = longdef(ex)
end
# We pass through all non Expr, and process the Exprs
return custom_walk!(p, ex, Val{ex.head}())
end
end
# By defaults, all expression which are not explicitly customized simply return the input expression
function custom_walk!(p::AbstractEvalController, ex::Expr, ::Val)
@nospecialize
return ex
end
# This will add calls below the `using` to track imported names
function custom_walk!(p::AbstractEvalController, ex::Expr, ::Val{:using})
@nospecialize
new_ex = if inside_extension(p)
# We are inside an extension code, we do not need to track usings
handle_extensions_imports(p, ex)
else # Here we want to track the using expressions
# We add the expression to the set for the current module
expr_set = get!(Set{Expr}, p.using_expressions, p.current_module)
push!(expr_set, ex)
# We just leave the expression unchanged
ex
end
return new_ex
end
function custom_walk!(p::AbstractEvalController, ex::Expr, ::Val{:import})
@nospecialize
return handle_extensions_imports(p, ex)
end
# For function and macro calls, we want to be able to specialize on the name of the function being called
function custom_walk!(p::AbstractEvalController, ex::Expr, v::Union{Val{:call}, Val{:macrocall}})
@nospecialize
called_name = first(ex.args) |> Symbol
return custom_walk!(p, ex, v, Val{called_name}())
end
function custom_walk!(::AbstractEvalController, ex::Expr, ::Union{Val{:call}, Val{:macrocall}}, ::Val)
@nospecialize
return ex
end
# This handles include calls, by adding p.custom_walk as the mapexpr
function custom_walk!(p::AbstractEvalController, ex::Expr, ::Val{:call}, ::Val{:include})
@nospecialize
(; current_line) = p
new_ex = :($process_include_expr!($p))
append!(new_ex.args, ex.args[2:end])
push!(new_ex.args, String(current_line.file))
return new_ex
end
# This handles include calls, by adding p.custom_walk as the mapexpr
function custom_walk!(p::AbstractEvalController, ex::Expr, ::Val{:macrocall}, ::Union{
Val{Symbol("@frompackage")},
Val{Symbol("@fromparent")},
})
@nospecialize
# This will only process and returns the import block of the macro. We process it to exclude invalid statements outside pluto and eventualy track usings
new_ex = process_outside_pluto(p, ex.args[end])
return new_ex
end
# This function will eventually modify using/import expressions inside extensions modules. Outside of extension modules, it will simply return the provided expression
function handle_extensions_imports(p::FromPackageController, ex::Expr)
@nospecialize
@assert Meta.isexpr(ex, (:using, :import)) "You can only call this function with using or import expressions as second argument"
inside_extension(p) || return ex
return process_import_statement(p, ex; inside_extension = true)
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 411 | const IS_DEV = first(fullname(@__MODULE__)) === :Main
const TEMP_MODULE_NAME = Symbol(:_FrompPackage_TempModule_, IS_DEV ? "DEV_" : "")
const STDLIBS_DATA = Dict{String,Base.UUID}()
for (uuid, (name, _)) in Pkg.Types.stdlibs()
STDLIBS_DATA[name] = uuid
end
const PREV_CONTROLLER_NAME = Symbol(:_Previous_Controller_, IS_DEV ? "DEV_" : "")
const CURRENT_FROMPACKAGE_CONTROLLER = Ref{FromPackageController}() | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 16967 | # This function imitates Base.find_ext_path to get the path of the extension specified by name, from the project in p
function find_ext_path(p::ProjectData, extname::String)
project_path = dirname(p.file)
extfiledir = joinpath(project_path, "ext", extname, extname * ".jl")
isfile(extfiledir) && return extfiledir
return joinpath(project_path, "ext", extname * ".jl")
end
function inside_extension(p::FromPackageController{name}) where {name}
@nospecialize
m = p.current_module
nm = nameof(m)
exts = keys(p.project.extensions)
while nm β (:Main, name)
nm = nameof(m)
String(nm) in exts && return true
m = parentmodule(m)
end
return false
end
#=
We don't use manual rerun so we just comment this till after we can use it
## simulate manual rerun
"""
simulate_manual_rerun(cell_id::Base.UUID; PlutoRunner)
simulate_manual_rerun(cell_id::String; PlutoRunner)
simulate_manual_rerun(cell_id::Array; PlutoRunner)
This function takes as input a cell_id or an array of cell_ids (either as `UUID` or as `String`) and simulate a manual rerun for each of the provided cell_ids.
This is useful when one wants to programmatically rerun a cell with a macro and recompile the macro like it's done upon manual rerun, but doesn't require to click on the run button on the cell.
This is using internal Pluto API so it might break if the Pluto internals change until PlutoDevMacros itself is updated.
It works by deleting the cached expression of the cell before triggering a re-run using `PlutoRunner.run_channel`
"""
function simulate_manual_rerun(cell_id::Base.UUID; PlutoRunner)
delete!(PlutoRunner.cell_expanded_exprs, cell_id)
delete!(PlutoRunner.computers, cell_id)
push!(PlutoRunner.run_channel, cell_id)
return nothing
end
# String version
simulate_manual_rerun(cell_id::String; kwargs...) = simulate_manual_rerun(Base.UUID(cell_id);kwargs...)
# Array version
function simulate_manual_rerun(cell_ids::Array; kwargs...)
for cell_id in cell_ids
simulate_manual_rerun(cell_id;kwargs...)
end
end
=#
## HTML Popup
function _popup_style()
#! format: off
"""
fromparent-container {
height: 20px;
position: fixed;
top: 40px;
right: 10px;
margin-top: 5px;
padding-right: 5px;
z-index: 200;
background: var(--overlay-button-bg);
padding: 5px 8px;
border: 3px solid var(--overlay-button-border);
border-radius: 12px;
height: 35px;
font-family: "Segoe UI Emoji", "Roboto Mono", monospace;
font-size: 0.75rem;
visibility: visible;
}
fromparent-container.PlutoDevMacros {
right: auto;
left: 10px;
}
fromparent-container.PlutoDevMacros:before {
content: "Reload PlutoDevMacros"
}
fromparent-container.errored {
border-color: var(--error-cell-color);
}
fromparent-container:hover {
font-weight: 800;
cursor: pointer;
}
body.disable_ui fromparent-container {
display: none;
}
"""
#! format: on
end
function html_reload_button(p::FromPackageController; kwargs...)
@nospecialize
(; name) = p.project
simple_html_cat(
beautify_package_path(p),
html_reload_button(p.cell_id; name, kwargs...),
)
end
function html_reload_button(cell_id; name="@frompackage", err=false)
id = string(cell_id)
text_content = "Reload $name"
style_content = _popup_style()
#! format: off
# We add the text content based on the package name
style_content *= """
fromparent-container:before {
content: '$text_content';
}
"""
html_content = """
<script id='html_reload_button'>
const container = html`<fromparent-container class='$name'>`
// We set the errored state
container.classList.toggle('errored', $err)
const style = container.appendChild(html`<style>`)
style.innerHTML = `$(style_content)`
const cell = document.getElementById('$id')
const actions = cell._internal_pluto_actions
container.onclick = (e) => {
if (e.ctrlKey) {
history.pushState({}, '')
cell.scrollIntoView({
behavior: 'auto',
block: 'center',
})
} else {
actions.set_and_run_multiple(['$id'])
}
}
return container
</script>
"""
#! format: on
# We make an HTML object combining this content and the hide_this_log functionality
return hide_this_log(html_content)
end
# Function to clean the filepath from the Pluto cell delimiter if present
cleanpath(path::String) = first(split(path, "#==#")) |> abspath
# Check if two paths are equal, ignoring case on the drive letter on windows.
function issamepath(path1::String, path2::String)
path1 = abspath(path1)
path2 = abspath(path2)
if Sys.iswindows()
uppercase(path1[1]) == uppercase(path2[1]) || return false
path1[2:end] == path2[2:end] && return true
else
path1 == path2 && return true
end
end
is_raw_str(ex) = Meta.isexpr(ex, :macrocall) && first(ex.args) === Symbol("@raw_str")
# This function extracts the target path by evaluating the ex of the target in the caller module. It will error if `ex` is not a string or a raw string literal if called outside of Pluto
function extract_target_path(ex, caller_module::Module; calling_file, notebook_local::Bool=is_notebook_local(calling_file))
valid_outside = ex isa AbstractString || is_raw_str(ex)
# If we are not inside a notebook and the path is not provided as string or raw string, we throw an error as the behavior is not supported
@assert notebook_local || valid_outside "When calling `@frompackage` outside of a notebook, the path must be provided as `String` or `@raw_str` (i.e. an expression of type `raw\"...\"`)."
path = Core.eval(caller_module, ex)
# Make the path absolute
path = abspath(dirname(calling_file), path)
# Eventuallly remove the cell_id from the target
path = cleanpath(path)
@assert ispath(path) "The extracted path does not seem to be a valid path.\n-`extracted_path`: $path"
return path
end
function beautify_package_path(p::FromPackageController)
@nospecialize
modpath..., name = fullname(get_temp_module(p))
modpath = map(enumerate(modpath)) do (i, s)
Base.isgensym(s) || return String(s)
return "var\"$s\""
end
regex = """/$(join(modpath, "\\."))(\\.$(name))?/g"""
Docs.HTML(
#! format: off
"""
<script id='frompackage-text-replace'>
// We have a mutationobserver for each cell:
const notebook = document.querySelector('pluto-notebook')
const mut_observers = {
current: [],
}
currentScript.mut_observers = mut_observers
function replaceTextInNode(node, pattern, replacement, originals = []) {
if (node.nodeType === Node.TEXT_NODE) {
const content = node.textContent
if (!pattern.test(content)) {return}
originals.push({node, content})
node.textContent = content.replace(pattern, replacement);
} else {
node.childNodes.forEach(child => replaceTextInNode(child, pattern, replacement, originals));
}
}
function execute_cell_observer(observer) {
if (invalidated.current) {
observer.disconnect()
return
}
const { cell, regex, replacement, originals } = observer
const output = cell.querySelector('pluto-output')
const content = output.lastChild
replaceTextInNode(content, regex, replacement, originals);
}
function revert_cell_original_text(observer) {
observer.originals?.forEach(item => {
item.node.textContent = item.content
})
}
currentScript.revert_original_text = () => {
mut_observers.current.forEach(revert_cell_original_text)
}
const invalidated = { current: false }
const createCellObservers = () => {
mut_observers.current.forEach((o) => o.disconnect())
mut_observers.current = Array.from(notebook.querySelectorAll("pluto-cell")).map(el => {
const o = new MutationObserver((mutations, observer) => {execute_cell_observer(observer)})
o.cell = el
o.regex = $regex
o.replacement = '$name'
o.originals = []
o.observe(el, { attributeFilter: ["class"] })
execute_cell_observer(o)
return o
})
}
createCellObservers()
// And one for the notebook's child list, which updates our cell observers:
const notebookObserver = new MutationObserver((mutations, observer) => {
if (invalidation.current) {
observer.disconnect()
return
}
createCellObservers()
})
notebookObserver.observe(notebook, { childList: true })
const cell = currentScript.closest('pluto-cell')
invalidation.then(() => {
invalidated.current = true
const revert = cell?.querySelector("script[id='frompackage-text-replace']") == null
notebookObserver.disconnect()
mut_observers.current.forEach((o) => {
revert && revert_cell_original_text(o)
o.disconnect()
})
})
</script>
"""
#! format: on
)
end
function populate_manifest_deps!(p::FromPackageController)
@nospecialize
(;manifest_deps) = p
d = TOML.parsefile(get_manifest_file(p))
for (name, data) in d["deps"]
# We use `only` here because I believe the entry will always contain a single dict wrapped in an array. If we encounter a case where this is not true the only will throw instead of silently taking just the first
uuid = only(data)["uuid"] |> Base.UUID
manifest_deps[uuid] = name
end
return manifest_deps
end
# This will extract the path of the manifest file. By default it will error if the manifest can not be found in the env directory, but it can be forced to instantiate/resolve using options
function get_manifest_file(p::FromPackageController)
@nospecialize
(; project, options) = p
mode = options.manifest
proj_file = project.file
envdir = dirname(abspath(proj_file))
manifest_file = if mode in (:instantiate, :resolve)
context_kwargs = options.verbose ? (;) : (; io = devnull)
c = Context(;env = EnvCache(proj_file), context_kwargs...)
resolve = mode === :resolve
if resolve
Pkg.resolve(c)
else
Pkg.instantiate(c; update_registry = false, allow_build = false, allow_autoprecomp = false)
end
joinpath(envdir, "Manifest.toml")
else
manifest_file = ""
for name in ("Manifest.toml", "JuliaManifest.toml")
path = joinpath(envdir, name)
if isfile(path)
manifest_file = path
break
end
end
#! format: off
@assert !isempty(manifest_file) "A manifest could not be found at the project's location.
You have to provide an instantiated environment or set the `manifest` option to `:resolve` or `:instantiate`.
EnvDir: $envdir"
#! format: on
manifest_file
end
return manifest_file
end
function update_loadpath(p::FromPackageController)
@nospecialize
(; verbose) = p.options
proj_file = p.project.file
if isassigned(CURRENT_FROMPACKAGE_CONTROLLER)
prev_proj = CURRENT_FROMPACKAGE_CONTROLLER[].project.file
prev_idx = findfirst(==(prev_proj), LOAD_PATH)
if !isnothing(prev_idx) && prev_proj !== proj_file
verbose && @info "Deleting $prev_proj from LOAD_PATH"
deleteat!(LOAD_PATH, prev_idx)
end
end
if proj_file β LOAD_PATH
verbose && @info "Adding $proj_file to end of LOAD_PATH"
push!(LOAD_PATH, proj_file)
end
end
# This function traverse a path to access a nested module from a `starting_module`. It is used to extract the corresponding module from `import/using` statements.
function extract_nested_module(starting_module::Module, nested_path; first_dot_skipped=false)
m = starting_module
for name in nested_path
m = if name === :.
first_dot_skipped ? parentmodule(m) : m
else
@assert isdefined(m, name) "The module `$name` could not be found inside parent module `$(nameof(m))`"
getproperty(m, name)::Module
end
first_dot_skipped = true
end
return m
end
# This will create a unique name for a module by translating the PkgId into a symbol
unique_module_name(m::Module) = Symbol(Base.PkgId(m))
unique_module_name(uuid::Base.UUID, name::AbstractString) = Symbol(Base.PkgId(uuid, name))
function get_temp_module()
if isdefined(Main, TEMP_MODULE_NAME)
getproperty(Main, TEMP_MODULE_NAME)::Module
else
Core.eval(Main, :(module $TEMP_MODULE_NAME
module _LoadedModules_ end
module _DirectDeps_ end
end))::Module
end
end
get_temp_module(s::Symbol) = get_temp_module([s])
function get_temp_module(names::Vector{Symbol})
temp = get_temp_module()
out = extract_nested_module(temp, names)::Module
return out
end
function get_temp_module(::FromPackageController{name}) where {name}
@nospecialize
get_temp_module(name)::Module
end
get_loaded_modules_mod() = get_temp_module(:_LoadedModules_)::Module
get_direct_deps_mod() = get_temp_module(:_DirectDeps_)::Module
function populate_loaded_modules(; verbose=false)
loaded_modules = get_loaded_modules_mod()
@lock Base.require_lock begin
for (id, m) in Base.loaded_modules
name = Symbol(id)
isdefined(loaded_modules, name) && continue
Core.eval(loaded_modules, :(const $name = $m))
end
end
callbacks = Base.package_callbacks
if mirror_package_callback β callbacks
for i in reverse(eachindex(callbacks))
# This part is only useful when developing this package itself
f = callbacks[i]
nameof(f) === :mirror_package_callback || continue
owner = parentmodule(f)
nameof(owner) === nameof(@__MODULE__) || continue
isdefined(owner, :IS_DEV) && owner.IS_DEV || continue
# We delete this as it's a previous version of the mirror_package_callback function
verbose && @warn "Deleting previous version of package_callback function"
deleteat!(callbacks, i)
end
# Add the package callback if not already present
push!(callbacks, mirror_package_callback)
end
end
# This function will extract a module from the _LoadedModules_ module which will be populated when each package is loaded in julia
function get_dep_from_loaded_modules(key::Symbol)
loaded_modules = get_loaded_modules_mod()
isdefined(loaded_modules, key) || error("The module $key can not be found in the loaded modules.")
m = getproperty(loaded_modules, key)::Module
return m
end
# This is internally calls the previous function, allowing to control which packages can be loaded (by default only direct dependencies and stdlibs are allowed)
function get_dep_from_loaded_modules(p::FromPackageController{name}, base_name::Symbol; allow_manifest=false, allow_weakdeps=inside_extension(p), allow_stdlibs=true)::Module where {name}
@nospecialize
base_name === name && return get_temp_module(p)
package_name = string(base_name)
# Construct the custom error message
error_msg = let
msg = """The package with name $package_name could not be found as a dependency$(allow_weakdeps ? " (or weak dependency)" : "") of the target project"""
both = allow_manifest && allow_stdlibs
allow_manifest && (msg *= """$(both ? "," : " or") as indirect dependency from the manifest""")
allow_stdlibs && (msg *= """ or as standard library""")
msg *= "."
end
if allow_stdlibs
uuid = get(STDLIBS_DATA, package_name, nothing)
uuid !== nothing && return get_dep_from_loaded_modules(unique_module_name(uuid, package_name))
end
proj = p.project
uuid = get(proj.deps, package_name) do
# Throw error unless either of manifest/weakdeps is allowed
allow_weakdeps | allow_manifest || error(error_msg)
out = get(proj.weakdeps, package_name, nothing)
!isnothing(out) && return out
allow_manifest || error(error_msg)
for (uuid, dep_name) in p.manifest_deps
package_name === dep_name && return uuid
end
error(error_msg)
end
key = unique_module_name(uuid, package_name)
return get_dep_from_loaded_modules(key)
end
# Basically Base.names but ignores names that are not defined in the module and allows to restrict to only exported names (since 1.11 added also public names as out of names). It also defaults `all` and `imported` to true (to be more precise, to the opposite of `only_exported`)
function _names(m::Module; only_exported=false, all=!only_exported, imported=!only_exported, kwargs...)
mod_names = names(m; all, imported, kwargs...)
filter!(mod_names) do nm
isdefined(m, nm) || return false
only_exported && return Base.isexported(m, nm)
return true
end
end
# Check whether the FromPackageController has reached the target file while loading the module
target_reached(p::FromPackageController) = (@nospecialize; p.target_location !== nothing) | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 11455 | mutable struct ImportAs
original::Vector{Symbol}
as::Union{Symbol,Nothing}
end
ImportAs(nm::Symbol) = ImportAs([nm], nothing)
function ImportAs(original::Vector)
@assert all(nm -> isa(nm, Symbol), original) "Only vectors containing just symbols are valid inputs to the ImportAs constructor."
ImportAs(Symbol.(original), nothing)
end
function ImportAs(ex::Expr)
if ex.head === :.
ImportAs(ex.args)
elseif ex.head === :as
as = last(ex.args)
original = first(ex.args).args
ImportAs(original, as)
else
error("The provided expression is not valid for constructing ImportAs.\nOnly `:.` and `:as` are supported as expression head.")
end
end
function reconstruct_import_statement(ia::ImportAs)
ex = Expr(:., ia.original...)
if ia.as !== nothing
ex = Expr(:as, ex, ia.as)
end
return ex
end
abstract type ImportData end
mutable struct ModuleWithNames <: ImportData
head::Symbol
modname::ImportAs
imported::Vector{ImportAs}
end
function ModuleWithNames(ex::Expr)
args = ex.args
is_valid = Meta.isexpr(ex, (:using, :import)) && length(args) == 1 && Meta.isexpr(first(args), :(:))
@assert is_valid "Only import/using expression with an explicit list of imported names are valid inputs to the ModuleWithNames constructor."
# We extract the :(:) expression
args = first(args).args
# The first arg is the module
modname = ImportAs(first(args))
# The remaining args are the imported names
imported = map(ImportAs, args[2:end])
ModuleWithNames(ex.head, modname, imported)
end
function reconstruct_import_statement(mwn::ModuleWithNames; head=mwn.head)
inner_expr = Expr(:(:), reconstruct_import_statement(mwn.modname), map(reconstruct_import_statement, mwn.imported)...)
Expr(head, inner_expr)
end
mutable struct JustModules <: ImportData
head::Symbol
modnames::Vector{ImportAs}
end
function JustModules(ex::Expr)
args = ex.args
is_valid = Meta.isexpr(ex, (:using, :import)) && all(x -> Meta.isexpr(x, (:., :as)), args)
@assert is_valid "Only import/using expression with multiple imported/used modules are valid inputs to the JustModules constructor."
JustModules(ex.head, map(ImportAs, args))
end
function reconstruct_import_statement(jm::JustModules)
Expr(jm.head, map(reconstruct_import_statement, jm.modnames)...)
end
# This is used to reconstruct a mwn with empty import list
function JustModules(mwn::ModuleWithNames)
@assert isempty(mwn.imported) "You can only construct a JustModules object with a ModuleWithNames object with an empty import list."
JustModules(mwn.head, [mwn.modname])
end
function extract_import_data(ex::Expr)
@assert Meta.isexpr(ex, (:using, :import)) "You can only use import or using expression as input to the `extract_import_data` function."
id = if Meta.isexpr(first(ex.args), :(:))
ModuleWithNames(ex)
else
JustModules(ex)
end
return id
end
is_catchall(ia::ImportAs) = length(ia.original) == 1 && first(ia.original) === :*
is_catchall(v::Vector{ImportAs}) = length(v) === 1 && is_catchall(first(v))
is_catchall(mwn::ModuleWithNames) = any(is_catchall, (mwn.imported, mwn.modname))
iterate_imports(mwn::ModuleWithNames) = [mwn]
function iterate_imports(jm::JustModules)
f(modname::ImportAs) = ModuleWithNames(jm.head, modname, Symbol[])
map(f, jm.modnames)
end
iterate_imports(ex::Expr) = extract_import_data(ex) |> iterate_imports
# This function will add the explicitly imported names to the set of imported names
function add_imported_names!(p::FromPackageController, mwn::ModuleWithNames)
@nospecialize
foreach(mwn.imported) do ia
nm = something(ia.as, last(ia.original))
push!(p.imported_names, nm)
end
end
# This function will update the modname_path to make always start from Main. The inner flag specifies whether the provided import expression was found inside the package/extension code, or inside the code given as input to the macro
function process_modpath!(mwn::ModuleWithNames, p::FromPackageController{name}; inner::Bool=false) where {name}
@nospecialize
inner && process_inner_imports!(mwn, p)
modname = mwn.modname
path = modname.original
root_name = popfirst!(path)
if root_name in (:ParentModule, :<)
@assert !isnothing(p.target_module) "You can't import from the Parent Module when the calling file is not a file `included` in the target package."
m = p.target_module
prepend!(path, fullname(m))
elseif root_name in (:PackageModule, :^, name)
m = get_temp_module(p)
prepend!(path, fullname(m))
elseif root_name === :>
# Deps import
@assert !is_catchall(mwn) "You can't use the catch-all expression when importing from dependencies"
m = get_dep_from_loaded_modules(p, first(path); allow_manifest=true)
# Replace the deps name with the uuid_name symbol from loaded modules
path[1] = unique_module_name(m)
# Add the loaded module path
prepend!(path, fullname(get_loaded_modules_mod()))
elseif root_name === :*
# Here we simply substitute the path of the current module, and :* to the imported names
imported = mwn.imported
@assert isempty(imported) "You can't use the catchall import statement `import *` with explicitly imported names"
m = @something p.target_module get_temp_module(p)
prepend!(path, fullname(m))
push!(mwn.imported, ImportAs(:*))
elseif root_name === :.
@assert inner || !isnothing(p.target_module) "You can't use relative imports when the calling file is not a file `included` in the target package."
starting_module = @something p.target_module get_temp_module(p)
m = extract_nested_module(starting_module, path; first_dot_skipped=true)
modname.original = fullname(m) |> collect
else
error("The provided import statement is not a valid input for the @frompackage macro.\nIf you want to import from a dependency of the target package, prepend `>.` in front of the package name, e.g. `using >.BenchmarkTools`.")
end
return
end
# This function will modify inner imports (i.e. import statements that have been collected while evaluating the package code, rather than ones seen as input to the @frompackage macro) so that they point to the correct module (mostly prepending :> to dependencies)
function process_inner_imports!(mwn::ModuleWithNames, ::FromPackageController{name}) where {name}
@nospecialize
modname_path = mwn.modname.original
root_name = modname_path |> first
if root_name β (:., name)
# If not a relative path and not targeting directly the package module, assume it's a dependency
pushfirst!(modname_path, :>)
end
return
end
# This function will include all the names of the module as explicit imports in the import statement. It will modify the provided mwn in place and unless usings are excluded, it will also add all the using statements being parsed while evaluating the target module
function catchall_import_expression!(mwn::ModuleWithNames, p::FromPackageController, m::Module; exclude_usings::Bool)
@nospecialize
mwn.imported = filterednames(p, m) .|> ImportAs
ex = reconstruct_import_statement(mwn; head=:import)
# If we exclude using, we simply return the expression
exclude_usings && return ex
# Otherwise, we add the using statements we collected for this module
block = quote
$ex
end
# We extract the using expression that were encountered while loading the specified module
using_expressions = get(Set{Expr}, p.using_expressions, m)
old_current = p.current_module
try
p.current_module = m
for ex in using_expressions
new_ex = process_import_statement(p, ex; exclude_usings, inner=true)
push!(block.args, new_ex)
end
finally
p.current_module = old_current
end
return block
end
# This will modify the import statements provided as input to `@frompackage` by updating the modname_path and eventually extracting exported names from the module and explicitly import them. It will also transform each statement into using explicit imported names (even for simple imports) are import/using without explicit names are currently somehow broken in Pluto if not handled by the PkgManager
function complete_imported_names!(mwn::ModuleWithNames, p::FromPackageController; exclude_usings::Bool=false, inside_extension::Bool=false, inner::Bool=inside_extension)::Expr
catchall = is_catchall(mwn)
inner && catchall && error("You can't use the catchall import statement `import *` inside package code")
if !isempty(mwn.imported) && !catchall
# If we already have an explicit list of imports, we do not modify and simply return the corresponding expression
# Here we do not modify the list of explicitily imported names, as it's better to get an error if you explicitly import something that was already defined in the notebook
return reconstruct_import_statement(mwn; head=:import)
end
m = extract_nested_module(Main, mwn.modname.original)
if catchall
# We extract all the names, potentially include usings encountered
return catchall_import_expression!(mwn, p, m; exclude_usings)
else
if mwn.head === :import
# We explicitly import the module itself
modname = mwn.modname
import_as = ImportAs(nameof(m))
as = modname.as
if as !== nothing
# We remove the `as` from the module name expression
modname.as = nothing
# We add it to the imported name
import_as.as = as
end
push!(mwn.imported, import_as)
else
# We export the names exported by the module
mwn.imported = _names(m; only_exported=true) .|> ImportAs
end
end
if !inside_extension
# We have to filter the imported names to exclude ones that are already defined in the caller
filter_func = filterednames_filter_func(p)
filter!(mwn.imported) do import_as
as = import_as.as
imported_name = something(as, last(import_as.original))
return filter_func(imported_name)
end
end
# The list of imported names should be empty only when inner=false
ex = isempty(mwn.imported) ? quote
QuoteNode(:_Removed_Import_Statement)
end : reconstruct_import_statement(mwn; head=:import)
return ex
end
# This function will generate an importa statement by expanding the modname_path to the correct path based on the provided `starting_module`. It will also expand imported names if a catchall expression is found
function process_import_statement(p::FromPackageController, ex::Expr; exclude_usings::Bool=false, inside_extension::Bool=false, inner::Bool=inside_extension)
@nospecialize
# Extract the import statement data
block = quote end
for isd in iterate_imports(ex)
process_modpath!(isd, p; inner)
ex = complete_imported_names!(isd, p; exclude_usings, inside_extension, inner)
# We add the imported names to the controller if not evaluating extension code
inside_extension || add_imported_names!(p, isd)
push!(block.args, ex)
end
return block
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 5111 | function parse_options!(p::FromPackageController, ex::Expr, extra_args)
@nospecialize
(; options) = p
#! format: off
error_msg(arg) = "The provided extra arguments at the end of the macro call are not in a supported format.
$(arg)
Each argument should be in the form `option_name = value`, with the following supported option names and types:
- `rootmodule::Bool`
- `manifest::Symbol`
- `verbose::Bool`
Check the documentations for more details on the options."
#! format: on
for arg in extra_args
Meta.isexpr(arg, :(=)) || error(error_msg(arg))
name, val = arg.args
typeof(name) in (Symbol, QuoteNode) || error(error_msg(arg))
hasfield(FromPackageOptions, name) || error(error_msg(arg))
val isa QuoteNode && (val = val.value)
val isa fieldtype(FromPackageOptions, name) || error(error_msg(arg))
setproperty!(options, name, val)
end
return nothing
end
function should_exclude_using_names!(ex::Expr)
Meta.isexpr(ex, :macrocall) || return false
macro_name = ex.args[1]
exclude_name = Symbol("@exclude_using")
@assert macro_name === exclude_name "The provided input expression is not supported.\nExpressions should be only import statements, at most prepended by the `@exclude_using` decorator."
# If we reach here, we have the include usings. We just extract the underlying expression
actual_ex = ex.args[end]
ex.head = actual_ex.head
ex.args = actual_ex.args
return true
end
# This function will parse the input expression and eventually
function process_input_expr(p::FromPackageController, ex)
# Eventually remove `@exclude_using`
exclude_usings = should_exclude_using_names!(ex)
return process_import_statement(p, ex; exclude_usings, inner=false)
end
function excluded_names(p::FromPackageController)
@nospecialize
excluded = (:eval, :include, variable_name(p), Symbol("@bind"), :PLUTO_PROJECT_TOML_CONTENTS, :PLUTO_MANIFEST_TOML_CONTENTS, :__init__, PREV_CONTROLLER_NAME)
return excluded
end
function filterednames_filter_func(p::FromPackageController)
@nospecialize
previous = if isdefined(p.caller_module, PREV_CONTROLLER_NAME)
prev_p = getproperty(p.caller_module, PREV_CONTROLLER_NAME)::FromPackageController
prev_p.imported_names
else
Set{Symbol}()
end
caller_module = p.caller_module
f(s)::Bool =
let excluded = excluded_names(p), previous = previous, caller_module = caller_module
Base.isgensym(s) && return false
s in excluded && return false
isdefined(caller_module, s) && return s in previous
return true
end
return f
end
## Similar to `_names` but allows to exclude names by applying an additional filtering function to the output of `_names`. The default filtering function always returns true
function filterednames(m::Module, filter_func = _ -> true; kwargs...)
mod_names = _names(m; kwargs...)
filter!(filter_func, mod_names)
end
function filterednames(p::FromPackageController, m::Module; kwargs...)
@nospecialize
filter_func = filterednames_filter_func(p)
return filterednames(m, filter_func; kwargs...)
end
# This is just for doing some check on the inputs and returning the list of expressions
function extract_input_args(ex)
# Single import
Meta.isexpr(ex, (:import, :using)) && return [ex]
# Block of imports
Meta.isexpr(ex, :block) && return ex.args
# single statement preceded by @exclude_using
Meta.isexpr(ex, :macrocall) && ex.args[1] === Symbol("@exclude_using") && return [ex]
error("You have to call this macro with an import statement or a begin-end block of import statements")
end
function process_outside_pluto(p::FromPackageController, ex::Expr)
@nospecialize
# Remove `@exclude_using` if present
should_exclude_using_names!(ex)
args = extract_input_args(ex)
block = Expr(:block)
for arg in args
arg isa Expr || continue
for mwn in iterate_imports(arg)
# We extract the head to keep it
modname_path = mwn.modname.original
root_name = first(modname_path)
# We only support relative and deps imports
if root_name === :.
# Relative import, we just make sure it's not a catch all
is_catchall(mwn) && continue
elseif root_name === :>
@assert !is_catchall(mwn) "You can't use the catch-all expression when importing from dependencies"
# Deps import, we have to make sure we are only importing direct dependencies
# We remove the first symbol as its :>
popfirst!(modname_path)
depname = first(modname_path)
String(depname) in keys(p.project.deps) || continue
else
continue
end
import_data = isempty(mwn.imported) ? JustModules(mwn) : mwn
ex = reconstruct_import_statement(import_data)
push!(block.args, ex)
end
end
return block
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 8397 | function maybe_call_init(m::Module)
# Check if it exists
isdefined(m, :__init__) || return nothing
# Check if it's owned by this module
which(m, :__init__) === m || return nothing
f = getproperty(m, :__init__)
# Verify that is a function
f isa Function || return nothing
Core.eval(m, :(__init__()))
return nothing
end
## ExprSplitter stuff ##
# This function separate the LNN and expression that are contained in the :block expressions returned by iteration with ExprSplitter. It is based on the assumption that each `ex` obtained while iterating with `ExprSplitter` are :block expressions with exactly two arguments, the first being a LNN and the second being the relevant expression
function destructure_expr(ex::Expr)
@assert Meta.isexpr(ex, :block) && length(ex.args) === 2 "The expression does not seem to be coming out of iterating an `ExprSplitter` object"
lnn, ex = ex.args
end
# This function will use ExprSplitter from JuliaInterpreter to cycle through expression and execute them one by one
function split_and_execute!(p::FromPackageController, ast::Expr, f=p.custom_walk)
@nospecialize
top_mod = prev_mod = p.current_module
for (mod, ex) in ExprSplitter(top_mod, ast)
# Update the current module
p.current_module = mod
process_exprsplitter_item!(p, ex, f)
if prev_mod !== top_mod && mod !== prev_mod
maybe_call_init(prev_mod) # We try calling init in the last module after switching
end
prev_mod = mod
end
end
function process_exprsplitter_item!(p::AbstractEvalController, ex, process_func::Function=p.custom_walk)
# We update the current line under evaluation
lnn, ex = destructure_expr(ex)
p.current_line = lnn
# @info "Original" ex
new_ex = process_func(ex)
# @info "Change" new_ex
if !isa(new_ex, RemoveThisExpr) && !target_reached(p)
Core.eval(p.current_module, new_ex)
end
return
end
## Misc ##
# Returns the name (as Symbol) of the variable where the controller will be stored within the generated module
variable_name(p::FromPackageController) = (@nospecialize; :_frompackage_controller_)
# This is a callback to add any new loaded package to the Main._FromPackage_TempModule_._LoadedModules_ module
function mirror_package_callback(modkey::Base.PkgId)
target = get_loaded_modules_mod()
name = Symbol(modkey)
m = Base.root_module(modkey)
Core.eval(target, :(const $name = $m))
if isassigned(CURRENT_FROMPACKAGE_CONTROLLER)
try_load_extensions!(CURRENT_FROMPACKAGE_CONTROLLER[])
end
return
end
# This will try to see if the extensions of the target package can be loaded
function try_load_extensions!(p::FromPackageController)
@nospecialize
loaded_modules = get_loaded_modules_mod()
(; extensions, deps, weakdeps) = p.project
package_name = p.project.name
(; options) = p
for (name, triggers) in extensions
name in p.loaded_extensions && continue
nactive = 0
for trigger_name in triggers
trigger_uuid = weakdeps[trigger_name]
unique_name = unique_module_name(trigger_uuid, trigger_name)
is_loaded = isdefined(loaded_modules, unique_name)
nactive += is_loaded
end
if nactive === length(triggers)
options.verbose && @info "Loading code of extension $name for package $package_name"
entry_path = find_ext_path(p.project, name)
# Set the module to the package module parent, which is a temp module in the Pluto workspace
p.current_module = get_temp_module(p) |> parentmodule
try
# Load the extension module inside the package module
process_include_expr!(p, entry_path)
push!(p.loaded_extensions, name)
finally
p.current_module = get_temp_module(p)
end
end
end
end
### Load Module ###
function load_direct_deps(p::FromPackageController)
@nospecialize
deps_mod = get_direct_deps_mod()
for (name, uuid) in p.project.deps
name_uuid = unique_module_name(uuid, name)
isdefined(deps_mod, name_uuid) && continue
Core.eval(deps_mod, :(import $(Symbol(name)) as $name_uuid))
end
end
function load_module!(p::FromPackageController{name}; reset=true) where {name}
@nospecialize
# Add to LOAD_PATH if not present
update_loadpath(p)
# Reinitialize the current module to the base one
p.current_module = get_temp_module()
if reset
# This reset is currently always true, it will be relevant mostly when trying to incorporate Revise
# We create the module holding the target package inside the calling pluto workspace. This is done to have Pluto automatically remove any binding the the previous module upon re-run of the cell containing the macro. Not doing so will cause some very weird inconsistencies as some functions will still refer to the previous version of the module which should not exist anymore from within the notebook
temp_mod = Core.eval(p.caller_module, :(module $(gensym(:TempModule)) end))
# We create our actal module of interest inside this temp module
m = Core.eval(temp_mod, :(module $name end))
# We mirror the generated module inside the temp_module module, so we can alwyas access it without having to know the current workspace
Core.eval(get_temp_module(), :($name = $m))
p.options.rootmodule && register_target_as_root(p)
# We put the controller inside the module
Core.eval(m, :($(variable_name(p)) = $p))
end
# We put the controller in the Ref
CURRENT_FROMPACKAGE_CONTROLLER[] = p
load_direct_deps(p) # We load the direct dependencies
Core.eval(p.current_module, process_include_expr!(p, p.entry_point))
# Maybe call init
maybe_call_init(get_temp_module(p))
# We populate the loaded modules
(; verbose) = p.options
populate_loaded_modules(;verbose)
# Try loading extensions
try_load_extensions!(p)
return p
end
function get_filepath(path::AbstractString, caller_file::Union{Nothing, AbstractString})
@nospecialize
base_dir = if isnothing(caller_file)
pwd()
else
dirname(caller_file)
end
return abspath(base_dir, path)
end
# This will process include statements by extracting the ast and evaluating the extracted code using ExprSplitter and applying the custom_walk! function to each expression.
function process_include_expr!(p::FromPackageController, path::AbstractString, caller_path = nothing)
@nospecialize
process_include_expr!(p, identity, path, caller_path)
end
function process_include_expr!(p::FromPackageController, mapexpr::Function, path::AbstractString, caller_path = nothing)
@nospecialize
filepath = get_filepath(path, caller_path)
# @info "Custom Including $(basename(filepath))"
if issamepath(p.target_path, filepath)
p.target_location = p.current_line
p.target_module = p.current_module
return nothing
end
_f = p.custom_walk
f = if mapexpr === identity
_f
else
# We compose
_f β mapexpr
end
ast = extract_file_ast(filepath)
split_and_execute!(p, ast, f)
return nothing
end
# This function will register the module of the target package as a root module.
# This relies on Base internals (and even the C API) so it's disable by default but will allow make the loaded module behave more like if we simply did `using TargetPackage` without the macro
function register_target_as_root(p::FromPackageController)
@nospecialize
(;name, uuid) = p.project
m = get_temp_module(p)
id = Base.PkgId(uuid, name)
(; verbose) = p.options
@lock Base.require_lock begin
# Set the uuid of this module with the C API. This is required to get the correct UUID just from the module within `register_root_module`
ccall(:jl_set_module_uuid, Cvoid, (Any, NTuple{2, UInt64}), m, uuid)
# Register this module as root
logger = verbose ? Logging.current_logger() : Logging.NullLogger()
Logging.with_logger(logger) do
Base.register_root_module(m)
end
# Set the path of the module to the actual package
Base.set_pkgorigin_version_path(id, p.entry_point)
end
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 4938 | import Base: stacktrace, catch_backtrace
function wrap_parse_error(e)
# Just return the error if we are not in 1.10 or is not a ParseError
VERSION >= v"1.10" && e isa Base.Meta.ParseError && hasproperty(e, :detail) || return e
# Extract the filename and line of the parseerror
(; source, diagnostics) = e.detail
byte_index = first(diagnostics) |> Base.JuliaSyntax.first_byte
line = Base.JuliaSyntax.source_line(source, byte_index)
file = source.filename
# We wrap this in a LoadError as if we `included` the file containnig the error
return LoadError(file, line, e)
end
## @frompackage
function frompackage(ex, target_file, caller_module; macroname, cell_id, extra_args)
p = FromPackageController(target_file, caller_module; cell_id)
p.cell_id !== nothing || return process_outside_pluto(p, ex)
parse_options!(p, ex, extra_args)
populate_manifest_deps!(p)
load_module!(p)
args = extract_input_args(ex)
for (i, arg) in enumerate(args)
arg isa Expr || continue
args[i] = process_input_expr(p, arg)
end
text = "Reload $macroname"
out = quote
# We put the cell id variable
$PREV_CONTROLLER_NAME = $p
try
$(args...)
# We add the reload button as last expression so it's sent to the cell output
$html_reload_button($p)
catch e
# We also send the reload button as an @info log, so that we can use the cell output to format the error nicely
@info $html_reload_button($p; err = true)
rethrow()
end
end |> flatten
return out
end
function _combined(ex, target, calling_file, caller_module; macroname, extra_args)
# Enforce absolute path to handle different OSs
calling_file = abspath(calling_file)
_, cell_id = _cell_data(calling_file)
notebook_local = !isempty(cell_id)
# Get the target file
target_file = extract_target_path(target, caller_module; calling_file, notebook_local)
out = try
frompackage(ex, target_file, caller_module; macroname, cell_id, extra_args)
catch e
# If we are outside of pluto we simply rethrow
notebook_local || rethrow()
out = Expr(:block)
# We send a log to maintain the reload button
@info html_reload_button(cell_id; name = macroname, err=true)
# Wrap ParseError in LoadError (see https://github.com/disberd/PlutoDevMacros.jl/issues/30)
we = wrap_parse_error(e)
bt = stacktrace(catch_backtrace())
# Outputting the CaptureException as last statement allows pretty printing of errors inside Pluto
push!(out.args, :(CapturedException($we, $bt)))
out
end
return out
end
"""
@frompackage target import_block
This macro takes a local Package (derived from the `target` path, which can be
an `AbstractString` or a `@raw_str`), loads it as a submodule of the current
Pluto workspace and then process the various import/using statements inside
`import_block` to extract varables/functions from the local Package into the
notebook workspace.
Its main use is allowing to load a local package under development within a
running Pluto notebook in order to facilitate prototyping and testing.
The following julia code inside a Pluto notebook cell:
```julia
@frompackage local_package_path begin
import ^: *
using >.LocalDependency
end
```
takes the main module definition code for the package located at
`local_package_path`, creates the corresponding module in the notebook workspace
and imports all of the names defined within (That is what the `import ^:*`
statement does).
Additionally, it loads the package called `LocalDependency` (must be a
dependency of the local package) as if the `using LocalDependency` code was used
within the notebook, but without adding `LocalDependency` to the notebook environment.
See the package [documentation](https://disberd.github.io/PlutoDevMacros.jl/dev/frompackage/introduction/#Introduction) for more details.
See also: [`@fromparent`](@ref)
"""
macro frompackage(target::Union{AbstractString,Expr,Symbol}, ex, extra_args...)
calling_file = String(__source__.file)
out = _combined(ex, target, calling_file, __module__; macroname="@frompackage", extra_args)
esc(out)
end
"""
This macro is equivalent to [`@frompackage`](@ref) but assumes the calling file as the `target` argument. So the code
```
@fromparent import_block
```
is equivalent to
```
@frompackage @__FILE__ import_block
```
Refer to the [`@frompackage`](@ref) docstring and the package
[documentation](https://disberd.github.io/PlutoDevMacros.jl/dev/frompackage/introduction/#Introduction)
for understanding its use.
See also: [`@addmethod`](@ref)
"""
macro fromparent(ex, extra_args...)
calling_file = String(__source__.file)
out = _combined(ex, calling_file, calling_file, __module__; macroname="@fromparent", extra_args)
esc(out)
end
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 4448 |
# This structure is just a placeholder that is put in place of expressions that are to be removed when parsing a file
struct RemoveThisExpr end
@kwdef mutable struct FromPackageOptions
"Specifies whether the target package shall be registered as root module while loading"
rootmodule::Bool = false
"Symbol to select whether the target environment should be instantiated or resolved before loading the package"
manifest::Symbol = :none
"Flag to enable verbose logging of FromPackage functions"
verbose::Bool = false
end
struct ProjectData
file::String
deps::Dict{String, Base.UUID}
weakdeps::Dict{String, Base.UUID}
extensions::Dict{String, Vector{String}}
name::Union{Nothing, String}
uuid::Union{Nothing, Base.UUID}
version::Union{Nothing, VersionNumber}
function ProjectData(file::AbstractString)
raw = TOML.parsefile(file)
deps = Dict{String, Base.UUID}()
for (name, uuid) in get(raw, "deps", ())
deps[name] = Base.UUID(uuid)
end
weakdeps = Dict{String, Base.UUID}()
for (name, uuid) in get(raw, "weakdeps", ())
weakdeps[name] = Base.UUID(uuid)
end
extensions = Dict{String, Vector{String}}()
for (name, deps) in get(raw, "extensions", ())
deps = deps isa String ? [deps] : deps
extensions[name] = deps
end
name = get(raw, "name", nothing)
uuid = get(raw, "uuid", nothing)
isnothing(uuid) || (uuid = Base.UUID(uuid))
version = get(raw, "version", nothing)
isnothing(version) || (version = VersionNumber(version))
new(file, deps, weakdeps, extensions, name, uuid, version)
end
end
abstract type AbstractEvalController end
# We do not store the ECG directly inside as
@kwdef mutable struct FromPackageController{package_name} <: AbstractEvalController
"The entry point of the package"
entry_point::String
"The path that was provided to the macro call"
target_path::String
"The data of the project at of the target"
project::ProjectData
"The module where the macro was called"
caller_module::Module
"The current module where code evaluation is happening"
current_module::Union{Module, Nothing} = nothing
"The current line being evaluated"
current_line::Union{Nothing, LineNumberNode} = nothing
"The dict of manifest deps"
manifest_deps::Dict{Base.UUID, String} = Dict{Base.UUID, String}()
"The tracked names imported into the current module by `using` statements"
using_expressions::Dict{Module, Set{Expr}} = Dict{Module, Set{Expr}}()
"Specifies wheter the target was reached while including the module"
target_location::Union{Nothing,LineNumberNode} = nothing
"Module of where the target is included if the target is found. Nothing otherwise"
target_module::Union{Nothing, Module} = nothing
"Custom walk function"
custom_walk::Function = identity
"Loaded Extensions"
loaded_extensions::Set{String} = Set{String}()
"Names imported by the macro"
imported_names::Set{Symbol} = Set{Symbol}()
"ID of the cell where the macro was called, nothing if not called from Pluto"
cell_id::Union{Nothing, Base.UUID} = nothing
"Options to customize loading"
options::FromPackageOptions = FromPackageOptions()
end
# Default constructor
function FromPackageController(target_path::AbstractString, caller_module::Module; cell_id = nothing)
# We remove pluto cell id in the name if present
target_path = cleanpath(target_path)
@assert isabspath(target_path) "You can only construct the FromPackageController with an absolute path"
# Find the project
project_file = Base.current_project(target_path)
project_file isa Nothing && error("No project was found starting from $target_path")
project = ProjectData(project_file)
@assert project.name !== nothing "@frompackage can only be called with a Package as target.\nThe pointed project does not have `name` and `uuid` fields"
entry_point = joinpath(dirname(project_file), "src", project.name * ".jl")
name = project.name
# We parse the cell_id if string
cell_id = cell_id isa AbstractString ? (isempty(cell_id) ? nothing : Base.UUID(cell_id)) : cell_id
p = FromPackageController{Symbol(name)}(;entry_point, target_path, project, caller_module, cell_id)
p.custom_walk = custom_walk!(p)
return p
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1380 |
import Pluto: update_save_run!, update_run!, WorkspaceManager, ClientSession,
ServerSession, Notebook, Cell, project_relative_path, SessionActions,
load_notebook, Configuration
using PlutoDevMacros
using PlutoDevMacros: hide_this_log
using Test
function noerror(cell; verbose=true)
if cell.errored && verbose
@show cell.output.body
end
!cell.errored
end
@testset "Outside Pluto" begin
@current_pluto_cell_id() === ""
@current_pluto_notebook_file() === ""
@only_in_nb(3) === nothing
@only_out_nb(3) === 3
asd(x::Int) = 3
@addmethod asd(x::Float64) = 4.0
@addmethod asd(x::String) = "LOL" * string(asd(1))
@test asd(3.0) === 4.0
@test asd("ASD") === "LOL3"
@test PlutoDevMacros.is_notebook_local() === false
lnn = LineNumberNode(1, @__FILE__)
@test PlutoDevMacros.is_notebook_local(lnn) === false
end
options = Configuration.from_flat_kwargs(; disable_writing_notebook_files=true, workspace_use_distributed_stdlib = true)
srcdir = normpath(@__DIR__, "./notebooks")
eval_in_nb(sn, expr) = WorkspaceManager.eval_fetch_in_workspace(sn, expr)
@testset "basics test notebook" begin
ss = ServerSession(; options)
path = joinpath(srcdir, "basics.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 468 | using TestItemRunner
@testitem "Aqua" begin
using Aqua
using PlutoDevMacros
Aqua.test_all(PlutoDevMacros)
end
@testitem "Basics" begin include("basics.jl") end
# @safetestset "@frompackage: basics" begin include("frompackage/basics.jl") end
# @safetestset "@frompackage: settings" begin include("frompackage/settings.jl") end
include("frompackage/with_pluto_session.jl")
include("frompackage/pluto_package_extensions.jl")
@run_package_tests verbose=true | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1268 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 9ff61650-18ef-11ef-165b-13081b75c35f
begin
test_project = Base.current_project(normpath(@__DIR__, ".."))
notebook_project = Base.active_project()
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
Base.eval(Main, quote # instantiate the parent env, mostly for CI
import Pkg
Pkg.activate($test_project)
Pkg.instantiate()
Pkg.activate($notebook_project)
end)
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
end
# βββ‘ e9f7421b-9ed0-4f4d-b458-689b301dad5c
@fromparent begin
using *
using >.TestPackage
end
# βββ‘ 4b493e7f-78d5-4005-b7c8-630dca053e6b
TestPackage isa Module || error("TestPackage not loaded correctly")
# βββ‘ Cell order:
# β β9ff61650-18ef-11ef-165b-13081b75c35f
# β βe9f7421b-9ed0-4f4d-b458-689b301dad5c
# β β4b493e7f-78d5-4005-b7c8-630dca053e6b
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 90 | module TestDevDependency
greet() = print("Hello World!")
end # module TestDevDependency
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1467 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ c2b18f94-b49d-4b4e-a485-85072cb797bf
begin
import Pkg
Pkg.activate(joinpath(@__DIR__, "notebook_env"))
using Revise
end
# βββ‘ abccfc80-afaf-4c54-b300-c0c893de3848
begin
using PlutoDevMacros
using PlutoPlotly
using Example
end
# βββ‘ 90ca1f01-cbad-496a-b3e2-7dc7231ed101
@fromparent using PackageModule
# βββ‘ 675230da-e628-4059-b44d-6137a4dd4987
standard_extension_output = to_extend(plot(rand(4)).Plot)
# βββ‘ 8e7563ce-d2ba-4356-93e4-70ebe0f2be87
weird_extension_output = to_extend(Example)
# βββ‘ 8d561235-2003-4446-bd64-b7f235d653a4
standard_extension_output === "Standard Extension works!" || error("PlotlyBase extension did not load")
# βββ‘ 6f258d3c-7c09-4009-ad8d-001dbd451ad2
weird_extension_output === "Weird Extension name works!" || error("Example extension did not load")
# βββ‘ da703251-1f4a-4fa1-ba08-720bceb2ada6
p = plot_this()
# βββ‘ 1e143a84-1a79-448b-a7ff-189ef167870d
to_extend((hello, p.Plot)) === "Dual Deps Extension works!" || error("dual deps extension failed")
# βββ‘ Cell order:
# β βc2b18f94-b49d-4b4e-a485-85072cb797bf
# β βabccfc80-afaf-4c54-b300-c0c893de3848
# β β90ca1f01-cbad-496a-b3e2-7dc7231ed101
# β β675230da-e628-4059-b44d-6137a4dd4987
# β β8e7563ce-d2ba-4356-93e4-70ebe0f2be87
# β β8d561235-2003-4446-bd64-b7f235d653a4
# β β6f258d3c-7c09-4009-ad8d-001dbd451ad2
# β β1e143a84-1a79-448b-a7ff-189ef167870d
# β βda703251-1f4a-4fa1-ba08-720bceb2ada6
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 209 | module DualDepsExt
import Example
import PlotlyBase
import TestDirectExtension
TestDirectExtension.to_extend(::Tuple{typeof(Example.hello), PlotlyBase.Plot}) = "Dual Deps Extension works!"
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 264 | module PlotlyBaseExt
using PlotlyBase
using TestDirectExtension
using TestDirectExtension.PlotlyExtensionsHelper
TestDirectExtension.to_extend(p::Plot) = "Standard Extension works!"
TestDirectExtension.plot_this() = plotly_plot(rand(10,4))
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 78 | module Magic
using TestDirectExtension
include("includemagic.jl")
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 72 | TestDirectExtension.to_extend(m::Module) = "Weird Extension name works!" | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 199 | module TestDirectExtension
using PlotlyExtensionsHelper
using HypertextLiteral
export to_extend, plot_this
to_extend(x) = "Generic Method"
function plot_this end
end # module TestDirectExtension
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 12234 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ abcc4604-aa6c-4830-8909-5811aa6eab8d
# Here we import PlutoDevMacros itself with @frompackage so we can reload it
PDM.@frompackage "../.." begin
import PackageModule.FromPackage: *
end verbose = true # Verbose here makes deletion of package callback logs below (only after first run)
# βββ‘ 12d02710-36fa-11ef-1430-512f552ee8e1
begin
# We do a hack to import PlutoDevMacros
plutodevmacros_proj = Base.current_project("../..") |> abspath
push!(LOAD_PATH, plutodevmacros_proj)
try
Core.eval(Main, :(import PlutoDevMacros as PDM))
finally
pop!(LOAD_PATH)
end
PDM = Main.PDM
end
# βββ‘ f120af18-d655-4221-b53c-028f0c396e2f
# This should trigger the extension in the direct dependency PlotlyExtensionHelper
using PlotlyBase
# βββ‘ 308cbcf0-2a0b-4e97-b5f1-30f8d06020c6
# Here we instead import the TestPackage module
@fromparent import * verbose = true rootmodule = true manifest = :instantiate
# βββ‘ edac1ff6-d264-4268-8063-0b4f4e0d8dca
md"""
## Rootmodule
"""
# βββ‘ 5762c453-fc45-49e2-b71a-f15036c81d30
pkgdir(TestInception) === (@__DIR__) || error("The registration as root module did not seem to work, pkgdir returns the wrong path")
# βββ‘ bdac8541-fca9-4650-a9bb-485519fa02b8
md"""
## Indirect Extension
"""
# βββ‘ 6ae6e908-d78e-4e23-9565-a0a44c9d509e
hasmethod(PlotlyExtensionsHelper._plot_func, Tuple{Val{:PlotlyBase}}) || error("The indirect extension was not loaded correctly")
# βββ‘ 340e3c74-6504-45d9-b23f-d60b71ffe527
md"""
## Direct Extension (Single)
"""
# βββ‘ d189a27d-5612-41a7-937c-756644c669b3
import SimplePlutoInclude # This triggers a direct extension
# βββ‘ d11a039c-32fc-451f-af42-e4abcdf8e8b4
isdefined(parentmodule(TestInception), :SingleExtension) || error("The single dependency extension did not seem to load correctly")
# βββ‘ bbc3bdc3-249f-4b56-8ba2-c2694932372f
md"""
## Direct Extension (Dual)
"""
# βββ‘ 3e2621f4-bd00-4e6a-b44b-dd62091228c4
import Example # This triggers the other direct extension depending on both SimplePlutoInclude and Example
# βββ‘ 0be0fe0b-a40c-4575-934d-26b289f06e98
isdefined(parentmodule(TestInception), :DualExtension) || error("The single dependency extension did not seem to load correctly")
# βββ‘ b81acc6d-df12-48af-9f12-5f79b6ab59bc
dual_extension_loaded[] || error("The single dependency extension did not seem to load correctly")
# βββ‘ 16528b1e-e59b-426d-9ba5-37c2f83ab775
md"""
## Test Reload
"""
# βββ‘ 4244baf8-bd30-4d81-9236-f4291b364c44
random_variable
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
Example = "7876af07-990d-54b4-ab0e-23690620f79a"
PlotlyBase = "a03496cd-edff-5a9b-9e67-9cda94a718b5"
SimplePlutoInclude = "6f00a2c5-ea4a-46bf-9183-91b7b57a087f"
[compat]
Example = "~0.5.3"
PlotlyBase = "~0.8.19"
SimplePlutoInclude = "~0.1.0"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.4"
manifest_format = "2.0"
project_hash = "e006c989728577e863f2417116df37ca484b4a62"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "4b270d6465eb21ae89b732182c20dc165f8bf9f2"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.25.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[deps.ColorVectorSpace.weakdeps]
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.11"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.Example]]
git-tree-sha1 = "46e44e869b4d90b96bd8ed1fdcf32244fddfb6cc"
uuid = "7876af07-990d-54b4-ab0e-23690620f79a"
version = "0.5.3"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.5"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.LaTeXStrings]]
git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.1"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.4"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "8.4.0+0"
[[deps.LibGit2]]
deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibGit2_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"]
uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5"
version = "1.6.4+0"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.11.0+1"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2023.1.10"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.23+4"
[[deps.OrderedCollections]]
git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.6.3"
[[deps.Parameters]]
deps = ["OrderedCollections", "UnPack"]
git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe"
uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a"
version = "0.12.3"
[[deps.Parsers]]
deps = ["Dates", "PrecompileTools", "UUIDs"]
git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.8.1"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.10.0"
[[deps.PlotlyBase]]
deps = ["ColorSchemes", "Dates", "DelimitedFiles", "DocStringExtensions", "JSON", "LaTeXStrings", "Logging", "Parameters", "Pkg", "REPL", "Requires", "Statistics", "UUIDs"]
git-tree-sha1 = "56baf69781fc5e61607c3e46227ab17f7040ffa2"
uuid = "a03496cd-edff-5a9b-9e67-9cda94a718b5"
version = "0.8.19"
[[deps.PrecompileTools]]
deps = ["Preferences"]
git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f"
uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
version = "1.2.1"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.4.3"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.3.0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SimplePlutoInclude]]
git-tree-sha1 = "db4e715674a7ad0fcc00bf1dc55f40a3bfc6ab15"
uuid = "6f00a2c5-ea4a-46bf-9183-91b7b57a087f"
version = "0.1.0"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
version = "1.10.0"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
version = "1.10.0"
[[deps.SuiteSparse_jll]]
deps = ["Artifacts", "Libdl", "libblastrampoline_jll"]
uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c"
version = "7.2.1+1"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.3"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.TensorCore]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6"
uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50"
version = "0.1.1"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.UnPack]]
git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b"
uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed"
version = "1.0.2"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.13+1"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
version = "5.8.0+1"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.52.0+1"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+2"
"""
# βββ‘ Cell order:
# β β12d02710-36fa-11ef-1430-512f552ee8e1
# β βabcc4604-aa6c-4830-8909-5811aa6eab8d
# β β308cbcf0-2a0b-4e97-b5f1-30f8d06020c6
# ββedac1ff6-d264-4268-8063-0b4f4e0d8dca
# β β5762c453-fc45-49e2-b71a-f15036c81d30
# ββbdac8541-fca9-4650-a9bb-485519fa02b8
# β βf120af18-d655-4221-b53c-028f0c396e2f
# β β6ae6e908-d78e-4e23-9565-a0a44c9d509e
# β β340e3c74-6504-45d9-b23f-d60b71ffe527
# β βd189a27d-5612-41a7-937c-756644c669b3
# β βd11a039c-32fc-451f-af42-e4abcdf8e8b4
# β βbbc3bdc3-249f-4b56-8ba2-c2694932372f
# β β3e2621f4-bd00-4e6a-b44b-dd62091228c4
# β β0be0fe0b-a40c-4575-934d-26b289f06e98
# β βb81acc6d-df12-48af-9f12-5f79b6ab59bc
# ββ16528b1e-e59b-426d-9ba5-37c2f83ab775
# β β4244baf8-bd30-4d81-9236-f4291b364c44
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 189 | module DualExtension
using Example
using SimplePlutoInclude
using TestInception
@info "Loading DualExtension" Example SimplePlutoInclude
TestInception.dual_extension_loaded[] = true
end
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 125 | module SingleExtension
using SimplePlutoInclude
using TestInception
@info "Loading SingleExtension" SimplePlutoInclude
end
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 147 | module TestInception
using PlotlyExtensionsHelper
random_variable = rand()
dual_extension_loaded = Ref{Bool}(false)
end # module TestInception
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 6514 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ f6bb9eb6-1f66-424a-9043-607aeee0cd76
begin
test_project = Base.current_project(normpath(@__DIR__, ".."))
notebook_project = Base.active_project()
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
Base.eval(Main, quote # instantiate the parent env, mostly for CI
import Pkg
Pkg.activate($test_project)
Pkg.instantiate()
Pkg.activate($notebook_project)
end)
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
end
# βββ‘ abccfc80-afaf-4c54-b300-c0c893de3848
begin
using PlotlyKaleido
end
# βββ‘ f5fef1d2-eaab-4f43-91f2-a58d2d881733
@fromparent begin
using >.PlutoPlotly
end
# βββ‘ 790cb87b-472c-4aa3-a656-fc61e19b4995
method_present = !isempty(methods(savefig, (IO, PlutoPlot)))
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
PlotlyKaleido = "f2990250-8cf9-495f-b13a-cce12b45703c"
[compat]
PlotlyKaleido = "~2.1.0"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.4"
manifest_format = "2.0"
project_hash = "a306e345b2ba616e53c5188b7eca690040bebb51"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.JLLWrappers]]
deps = ["Artifacts", "Preferences"]
git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.5.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.Kaleido_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "43032da5832754f58d14a91ffbe86d5f176acda9"
uuid = "f7e6163d-2fa5-5f23-b69c-1db539e41963"
version = "0.2.1+0"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.4"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "8.4.0+0"
[[deps.LibGit2]]
deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibGit2_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"]
uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5"
version = "1.6.4+0"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.11.0+1"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2023.1.10"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.Parsers]]
deps = ["Dates", "PrecompileTools", "UUIDs"]
git-tree-sha1 = "716e24b21538abc91f6205fd1d8363f39b442851"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.7.2"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.10.0"
[[deps.PlotlyKaleido]]
deps = ["Base64", "JSON", "Kaleido_jll"]
git-tree-sha1 = "f96e4582db7a9533487b94f6258b8a01c69f18b0"
uuid = "f2990250-8cf9-495f-b13a-cce12b45703c"
version = "2.1.0"
[[deps.PrecompileTools]]
deps = ["Preferences"]
git-tree-sha1 = "9673d39decc5feece56ef3940e5dafba15ba0f81"
uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
version = "1.1.2"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "7eb1686b4f04b82f96ed7a4ea5890a4f0c7a09f1"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.4.0"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.3"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.13+1"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.52.0+1"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+2"
"""
# βββ‘ Cell order:
# β βf6bb9eb6-1f66-424a-9043-607aeee0cd76
# β βabccfc80-afaf-4c54-b300-c0c893de3848
# β βf5fef1d2-eaab-4f43-91f2-a58d2d881733
# β β790cb87b-472c-4aa3-a656-fc61e19b4995
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 98 | module TestIndirectExtension
greet() = print("Hello World!")
end # module TestIndirectExtension
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 4183 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ 931a8c2c-ed76-11ed-3721-396dae146ad4
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ bd0d177f-ab66-493d-89a6-a9faca81cd11
using PlutoDevMacros
# βββ‘ ca13553c-d246-437a-9962-2a2045c7dd12
@fromparent begin
import TestPackage
end
# βββ‘ 9cab38df-9ba5-4f6a-b568-b8699d44e0d4
md"""
## Basic Tests
"""
# βββ‘ 16a4e5e1-bde4-45a6-8777-ee4c7aa3d8f2
isdefined(TestPackage, :Issue2) || error("TestPackage should have the Issue2 module")
# βββ‘ 71c1f0f3-79d9-4358-8032-9f7dee73836b
isdefined(TestPackage.Issue2, :CoolStruct) || error("CoolStruct2 inside module Issue2 should be defined")
# βββ‘ c231c321-b89f-4f1a-8a60-5eb03c098fa1
isdefined(TestPackage, :SpecificImport) || error("The module SpecificImport was not found, it should be there but empty")
# βββ‘ 06408ada-f0b7-4057-9177-a79baf2fa9cf
isdefined(TestPackage, :TEST_INIT) && TestPackage.TEST_INIT[] == 5 || error("The execution of the __init__ function did not seem to happen")
# βββ‘ e37034a1-398c-45ad-803c-4b78e3388464
isdefined(TestPackage.SUBINIT, :TEST_SUBINIT) && TestPackage.SUBINIT.TEST_SUBINIT[] == 15 || error("The execution of the __init__ function in the submodule did not seem to happen")
# βββ‘ 4a72716e-13a5-4914-a02f-8df4d590091f
md"""
## ImportAs Tests
This tests that import statements with `x as y` work
"""
# βββ‘ 8642825b-d05c-407b-84ad-958a83a92953
!isdefined(TestPackage.ImportAsStatements, :CT) || error("The CT module should not be defined inside the ImportAsStatements submodule")
# βββ‘ 081f71cb-8512-4b66-9f64-80a7c3fa8a71
let
m = TestPackage.ImportAsStatements
isdefined(m, :tp) & isdefined(m, :TML) || error("`tp` and `TML` should be defined inside the ImportAsStatements module")
end
# βββ‘ 5c9a13c3-78b1-45a6-b9d9-67983e4fb927
md"""
## map expr tests
This tests that using custom `mapexpr` function within include statements in the package works
"""
# βββ‘ c3691cc1-9cfb-460e-b94a-15c9357b0892
TestPackage.MapExpr.should_be_100 == 100 || error("The custom application of mapexpr in `include` did not work")
# βββ‘ 83b8c9bb-c831-48cd-8d5d-0c9b8691d35c
TestPackage.MapExpr.should_not_be_15 !== 15 || error("The custom application of mapexpr in `include` did not work.\nVariable `should_not_be_15` is 15")
# βββ‘ a298f325-85ef-4b48-a15c-67080515dd8d
!isdefined(TestPackage.MapExpr, :var_to_delete) || error("The custom application of mapexpr in `include` did not work")
# βββ‘ 79a035c0-9138-4b47-87ab-1ce5e4b9a4d4
md"""
## Prettify Output
This tests that the types and function defined in the target package do not show the full module names which includes various temp modules
!!! note
These tests can not be assessed outside of the browser as the _beautifying_ function is in javascript.
"""
# βββ‘ 53dcca38-0014-4b0c-9a5c-f8cf6779a16f
TestPackage.PrettyPrint
# βββ‘ 12e174cd-b431-4df9-80bc-e7e8974eee71
methods(TestPackage.PrettyPrint.some_function)
# βββ‘ 783ae9cf-05a4-40c9-814d-c359bde6c668
TestPackage.testmethod |> methods
# βββ‘ 0fd4ad04-b7cd-4055-aec4-e5c2612ebef2
let
M = TestPackage.PrettyPrint
M.some_function(M.SomeType())
end
# βββ‘ Cell order:
# β β931a8c2c-ed76-11ed-3721-396dae146ad4
# β βbd0d177f-ab66-493d-89a6-a9faca81cd11
# β βca13553c-d246-437a-9962-2a2045c7dd12
# ββ9cab38df-9ba5-4f6a-b568-b8699d44e0d4
# β β16a4e5e1-bde4-45a6-8777-ee4c7aa3d8f2
# β β71c1f0f3-79d9-4358-8032-9f7dee73836b
# β βc231c321-b89f-4f1a-8a60-5eb03c098fa1
# β β06408ada-f0b7-4057-9177-a79baf2fa9cf
# β βe37034a1-398c-45ad-803c-4b78e3388464
# ββ4a72716e-13a5-4914-a02f-8df4d590091f
# β β8642825b-d05c-407b-84ad-958a83a92953
# β β081f71cb-8512-4b66-9f64-80a7c3fa8a71
# ββ5c9a13c3-78b1-45a6-b9d9-67983e4fb927
# β βc3691cc1-9cfb-460e-b94a-15c9357b0892
# β β83b8c9bb-c831-48cd-8d5d-0c9b8691d35c
# β βa298f325-85ef-4b48-a15c-67080515dd8d
# ββ79a035c0-9138-4b47-87ab-1ce5e4b9a4d4
# β β53dcca38-0014-4b0c-9a5c-f8cf6779a16f
# β β12e174cd-b431-4df9-80bc-e7e8974eee71
# β β783ae9cf-05a4-40c9-814d-c359bde6c668
# β β0fd4ad04-b7cd-4055-aec4-e5c2612ebef2
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1936 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 071ec1a4-eda6-11ed-3a1b-c1347c9fafa5
begin
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
# pushfirst!(LOAD_PATH, parent_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
# Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
# popfirst!(LOAD_PATH) # Remove parent_env
end
# using Main.Revise
using Main.PlutoDevMacros
end
# βββ‘ e12b4f7a-0d4a-4fa2-a850-faa6cb626795
@fromparent begin
import PackageModule: toplevel_variable
import ^.Issue2: GreatStructure
import >.TOML
using >.BenchmarkTools
end
# βββ‘ d341f653-e1d0-4fbf-b83f-fccaa383cfa8
isdefined(@__MODULE__, :toplevel_variable) || error("toplevel_variable should be defined")
# βββ‘ 0cee8704-b824-4274-880d-9d00645fbdd2
isdefined(@__MODULE__, :TOML) || error("TOML package was not imported apparently")
# βββ‘ a187f7aa-3d21-43d5-a877-83a49db3d965
isdefined(@__MODULE__, Symbol("@benchmark")) || error("@benchmark macro not defined in module, the `using BenchmarkTools` import statement was not respected")
# βββ‘ f2aebf0c-b135-4735-89d2-716d9983d42c
GreatStructure isa DataType || error("GreatStructure should be defined (and a Type)")
# βββ‘ 3decbd80-c1bc-4d00-b89e-7f3ddaa07683
isdefined(@__MODULE__, Symbol("@benchmark")) || error("@benchmark should be available as BenchmarkTools should have been loaded as dependency by @fromparent")
# βββ‘ Cell order:
# β β071ec1a4-eda6-11ed-3a1b-c1347c9fafa5
# β βe12b4f7a-0d4a-4fa2-a850-faa6cb626795
# β βd341f653-e1d0-4fbf-b83f-fccaa383cfa8
# β β0cee8704-b824-4274-880d-9d00645fbdd2
# β βa187f7aa-3d21-43d5-a877-83a49db3d965
# β βf2aebf0c-b135-4735-89d2-716d9983d42c
# β β3decbd80-c1bc-4d00-b89e-7f3ddaa07683
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 2229 | module TestPackage
import PlutoDevMacros
export toplevel_variable
const TEST_INIT = Ref{Int}(0)
toplevel_variable = 15
hidden_toplevel_variable = 10
module SUBINIT
const TEST_SUBINIT = Ref{Int}(0)
function __init__()
TEST_SUBINIT[] = 15
end
end
using .TestPackage.SUBINIT: TEST_SUBINIT
include("notebook1.jl")
module Inner
include("inner_notebook1.jl")
include("inner_notebook2.jl")
end
module Issue2
include("test_macro1.jl") # Defines NotThatCoolStruct at line 28
include("test_macro2.jl") # Defines GreatStructure
end
module SpecificImport
include("specific_imports1.jl") # Defines inner_variable1
include("specific_imports2.jl")
end
module ImportAsStatements
include("import_as.jl")
end
module PrettyPrint
function some_function end
struct SomeType end
end
module MapExpr
import PlutoDevMacros.FromPackage: RemoveThisExpr
import PlutoDevMacros.FromPackage.MacroTools: postwalk
# This apply mapexpr to all the args of an expression and remove all of the arguments that are of type RemoveThisExpr after mapping.
# If not args are left, simply returns RemoveThisExpr, otherwise reconstruct the resulting expression
function map_and_clean_expr(ex::Expr, mapexpr = identity)
@nospecialize
new_args = map(mapexpr, ex.args)
filter!(x -> !isa(x, RemoveThisExpr), new_args)
# If we still have args, or if the head is a block, we return the modified haed. We have this special case for a block for tests mostly
!isempty(new_args) | (ex.head === :block) && return Expr(ex.head, new_args...)
# If we get here we just return RemoveThisExpr
return RemoveThisExpr()
end
function mapexpr(ex)
ex isa Expr || return ex
Meta.isexpr(ex, :(=)) || return map_and_clean_expr(ex)
args = deepcopy(ex.args)
varname = first(args)
varname === :var_to_delete && return RemoveThisExpr()
if varname === :should_be_100
args[2] = 100
return Expr(:(=), args...)
end
return ex
end
include(ex -> postwalk(mapexpr, ex), "test_mapexpr.jl")
end
function __init__()
TEST_INIT[] = 5
end
end # module TestPackage
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1264 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ f08451b0-5666-4132-9c7e-a7d37c7d0c5a
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ 1a327f54-0bb4-4206-9070-e02d24c7861c
using PlutoDevMacros
# βββ‘ d483e6a9-262a-4346-91d2-68bf342c5ef9
@fromparent begin
# CodeTracking is an indirect dependency
import >.CodeTracking as CT, >.TOML as TML
using >.TOML: tryparse as tp
end
# βββ‘ e2707562-9e31-4d4d-bc61-8af24911de9a
tp === TML.tryparse || error("Import as from TOML did not work as expected")
# βββ‘ 74384ece-10c5-4b1a-bfcb-3c83eceb0447
# β ββ‘ skip_as_script = true
#=β ββ‘
# This cell is commented outside of the notebook as CT will not be imported oustide of the notebook since it's an indirect dependency
nameof(CT) === :CodeTracking || error("import of CodeTracking with different name did not work")
β ββ‘ =#
# βββ‘ Cell order:
# β βf08451b0-5666-4132-9c7e-a7d37c7d0c5a
# β β1a327f54-0bb4-4206-9070-e02d24c7861c
# β βd483e6a9-262a-4346-91d2-68bf342c5ef9
# β βe2707562-9e31-4d4d-bc61-8af24911de9a
# β β74384ece-10c5-4b1a-bfcb-3c83eceb0447
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1463 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ f90b0ae3-0e16-4b83-8546-23d4450812b2
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ 8aa0221b-8f13-4ee8-8cc6-a19fdce2468b
using PlutoDevMacros
# βββ‘ e1c8bbbd-da6f-4550-9f2c-30337d4962ad
@fromparent begin
import ..TestPackage: testmethod
using >.BenchmarkTools # This is a direct dependency of the package
end
# βββ‘ c83b0017-bb5e-48bd-96e6-5192b6151233
BenchmarkTools isa Module || error("It should be defined")
# βββ‘ d5c73062-b20a-459f-8165-550e0f07375a
isdefined(@__MODULE__, Symbol("@benchmark")) || error("It should be defined")
# βββ‘ c30c2104-9fb1-4afd-a119-6da9d50ae2b6
testmethod(3)
# βββ‘ 596410f6-81b7-48ae-a761-e5cca4a996ba
# To add methods to function import with @fromparent, you need to use the @addmethod macro.
@addmethod function testmethod(x::Int)
"INT"
end
# βββ‘ a1430424-c9b8-4517-9105-c4daa72fdeea
testmethod(3)
# βββ‘ Cell order:
# β βf90b0ae3-0e16-4b83-8546-23d4450812b2
# β β8aa0221b-8f13-4ee8-8cc6-a19fdce2468b
# β βe1c8bbbd-da6f-4550-9f2c-30337d4962ad
# β βc83b0017-bb5e-48bd-96e6-5192b6151233
# β βd5c73062-b20a-459f-8165-550e0f07375a
# β βc30c2104-9fb1-4afd-a119-6da9d50ae2b6
# β β596410f6-81b7-48ae-a761-e5cca4a996ba
# β βa1430424-c9b8-4517-9105-c4daa72fdeea
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1219 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ 5fe1bfc9-9622-4266-8efa-d4032b42d847
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ 2a3b9920-8fa7-4e20-aee9-71a93d589b70
using PlutoDevMacros
# βββ‘ d9d182c7-abc8-4097-97da-459e351e01ba
@fromparent begin
import *
using >.BenchmarkTools
end
# βββ‘ eaf576ed-ea38-4bb8-b2c8-4ba6ea6b2ac9
@addmethod testmethod(x::Float64) = "FLOAT"
# βββ‘ 3cb7f11d-8829-409c-b3c8-9359a5da0763
testmethod("a") == "ANY" || error("Something went wrong")
# βββ‘ b91a7413-534f-442b-bc55-a61244938820
testmethod(3) == "INT" || error("Something went wrong")
# βββ‘ 88b26633-0760-428e-868a-1b799076189c
testmethod(3.0) == "FLOAT" || error("Something went wrong")
# βββ‘ Cell order:
# β β5fe1bfc9-9622-4266-8efa-d4032b42d847
# β β2a3b9920-8fa7-4e20-aee9-71a93d589b70
# β βd9d182c7-abc8-4097-97da-459e351e01ba
# β βeaf576ed-ea38-4bb8-b2c8-4ba6ea6b2ac9
# β β3cb7f11d-8829-409c-b3c8-9359a5da0763
# β βb91a7413-534f-442b-bc55-a61244938820
# β β88b26633-0760-428e-868a-1b799076189c
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1124 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 8de53a58-e6ab-11ed-1db7-ef087d78eaef
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ 22f0a6a4-907b-4389-b6b7-1f175289c69b
using PlutoDevMacros
# βββ‘ cf9f785b-f8f5-4d1b-9a48-ca5983843ba4
@fromparent begin
import * # This import both exported and unexported names from the parent module up to the location where this file was included.
end
# βββ‘ 9a8ae7e2-d3c4-4cf2-876e-bcde84741540
# We have also visibility on `hidden_toplevel_variable` as was import in this notebook via the catchall *
toplevel_variable + hidden_toplevel_variable
# βββ‘ c9997396-bd93-41f1-8c3c-d13c7c6c5c3e
# # We define a method
testmethod(x) = "ANY"
# βββ‘ Cell order:
# β β8de53a58-e6ab-11ed-1db7-ef087d78eaef
# β β22f0a6a4-907b-4389-b6b7-1f175289c69b
# β βcf9f785b-f8f5-4d1b-9a48-ca5983843ba4
# β β9a8ae7e2-d3c4-4cf2-876e-bcde84741540
# β βc9997396-bd93-41f1-8c3c-d13c7c6c5c3e
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1292 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 414ea677-fc22-42d1-b28c-36d0666f466e
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ d8bb9b0c-b777-4b92-aab4-688358059f6d
using PlutoDevMacros
# βββ‘ da3cb2df-c686-45ed-abad-d4556c253ffa
# When using PackageModule as name of the package to use or import from, `PackageModule` is substituted with the acutal module of the package targeted by @frompackage/@fromparent and loaded within the notebook.
@fromparent import PackageModule: hidden_toplevel_variable
# βββ‘ b03c28ca-9ad3-4ca0-a025-d0ca7799a6b2
# β ββ‘ skip_as_script = true
#=β ββ‘
hidden_toplevel_variable
β ββ‘ =#
# βββ‘ ea26eaf9-bc34-4d53-b3af-641fec5039dd
# Outside of Pluto, these variables are defined inside the module containing this notebook, which is called SpecificImport
begin
inner_variable1 = 100
inner_variable2 = 200
end
# βββ‘ Cell order:
# β β414ea677-fc22-42d1-b28c-36d0666f466e
# β βd8bb9b0c-b777-4b92-aab4-688358059f6d
# β βda3cb2df-c686-45ed-abad-d4556c253ffa
# β βb03c28ca-9ad3-4ca0-a025-d0ca7799a6b2
# β βea26eaf9-bc34-4d53-b3af-641fec5039dd
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 2293 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 414ea677-fc22-42d1-b28c-36d0666f466e
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ d8bb9b0c-b777-4b92-aab4-688358059f6d
using PlutoDevMacros
# βββ‘ da3cb2df-c686-45ed-abad-d4556c253ffa
# When using PackageModule as name of the package to use or import from, `PackageModule` is substituted with the acutal module of the package targeted by @frompackage/@fromparent and loaded within the notebook.
# Similarly, ParentModule as name is substituted to the name of module that in the loaded package is including the target/current file. If the current file is not included within the package a statement referring to ParentModule is invalid and will throw an error.
# PackageModule and ParentModule can point to the same module in case the file is not part of a submodule of the package module.
@fromparent begin
using PackageModule # This just loads the exported names from TestPackage, which is only toplevel_variable
import ^: Issue2
import ParentModule: inner_variable1 # This only imports `inner_variable` from the module containing the current file, which is the SpecificImport module
end
# βββ‘ 2f91c9eb-48c7-45ad-a475-3ac003d83c3b
# β ββ‘ skip_as_script = true
#=β ββ‘
Issue2
β ββ‘ =#
# βββ‘ b03c28ca-9ad3-4ca0-a025-d0ca7799a6b2
# This cell will not error outside of Pluto (when executing the code of this notebook that is included in TestPackage) because inner_variable2 is visible outside of Pluto
inner_variable2
# βββ‘ ea26eaf9-bc34-4d53-b3af-641fec5039dd
# β ββ‘ skip_as_script = true
#=β ββ‘
# This is skipped_as_script because toplevel_variable is not visible outside of Pluto, as import statements that are not using relative module paths are discarded by @frompackage/@fromparent outside of Pluto
toplevel_variable + inner_variable1
β ββ‘ =#
# βββ‘ Cell order:
# β β414ea677-fc22-42d1-b28c-36d0666f466e
# β βd8bb9b0c-b777-4b92-aab4-688358059f6d
# β βda3cb2df-c686-45ed-abad-d4556c253ffa
# β β2f91c9eb-48c7-45ad-a475-3ac003d83c3b
# β βb03c28ca-9ad3-4ca0-a025-d0ca7799a6b2
# β βea26eaf9-bc34-4d53-b3af-641fec5039dd
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1735 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ e1caf748-e9c4-11ed-037b-8564786d02a4
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ e9bf965f-6d89-4df4-9515-6664eec341d7
abstract type CrazyType end
# βββ‘ baf6004f-4abc-4fd0-ae9e-a05144e955c4
struct CoolStruct <: CrazyType
v :: Vector{<:CrazyType}
end
# βββ‘ d88d8173-a3d5-4d00-9372-ffce7ceecac9
struct NotThatCoolStruct <: CrazyType
x :: Int64
end
# βββ‘ 1dc784ea-e469-4c91-a202-bcf51e9961b5
foo(c::CrazyType) = error("This wasn't implemented for $c")
# βββ‘ 335e2f3d-359f-4f61-ae92-97c75292acd3
foo(n::NotThatCoolStruct) = "Yes! this was implemented: $(n.x)"
# βββ‘ 1aca5c06-e5cc-4d89-8586-7d98b01ddbec
foo(n::CoolStruct) = foo.(n.v)
# βββ‘ 1e78971b-fc54-4b58-8a49-603b29864843
# β ββ‘ skip_as_script = true
#=β ββ‘
ns = [NotThatCoolStruct(i) for i β (1:3)]
β ββ‘ =#
# βββ‘ 51bd6a66-48fe-400d-8f03-ff051895c859
#=β ββ‘
cool = CoolStruct(ns)
β ββ‘ =#
# βββ‘ 0daf4126-8626-4403-b16a-e55890e21faa
#=β ββ‘
foo(ns[1])
β ββ‘ =#
# βββ‘ 3786adad-39a4-4766-839b-dd508afc7e47
#=β ββ‘
foo(cool)
β ββ‘ =#
# βββ‘ Cell order:
# β βe1caf748-e9c4-11ed-037b-8564786d02a4
# β βe9bf965f-6d89-4df4-9515-6664eec341d7
# β βbaf6004f-4abc-4fd0-ae9e-a05144e955c4
# β βd88d8173-a3d5-4d00-9372-ffce7ceecac9
# β β1dc784ea-e469-4c91-a202-bcf51e9961b5
# β β335e2f3d-359f-4f61-ae92-97c75292acd3
# β β1aca5c06-e5cc-4d89-8586-7d98b01ddbec
# β β1e78971b-fc54-4b58-8a49-603b29864843
# β β51bd6a66-48fe-400d-8f03-ff051895c859
# β β0daf4126-8626-4403-b16a-e55890e21faa
# β β3786adad-39a4-4766-839b-dd508afc7e47
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1345 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 85628a8b-b883-4374-918d-e080f4ab7d2e
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
import Pkg
Pkg.activate(Base.current_project(@__FILE__))
# Revise is only used for internal testing during development to update the
# changes to PlutoDevMacros
using Revise
end
β ββ‘ =#
# βββ‘ 9fd3e305-b493-46a5-8d4d-2d3712d9b23a
using PlutoDevMacros
# βββ‘ 52ad0f6c-a01a-4c9d-a176-64d9872aa3c1
@fromparent import *
# βββ‘ 7f231b93-521d-4378-8094-763245eb5e43
struct GreatStructure <: CrazyType
s :: String
end
# βββ‘ ebd09585-3edf-4167-9724-47a16ce4b596
@addmethod foo(g::GreatStructure) = "What a great structure! $(g.s)"
# βββ‘ 2b245479-cce8-4e57-9261-42e2c926312b
gs = [GreatStructure("$c") for c β ('a':'c')]
# βββ‘ 0735dc02-2b60-4fa6-bb8d-98729ad01d27
c = CoolStruct(gs)
# βββ‘ 62546e81-98fe-49c0-8022-8b28389b24ba
foo(c) # This doesn't breaks anymore! See https://github.com/disberd/PlutoDevMacros.jl/issues/2 for details
# βββ‘ Cell order:
# β β85628a8b-b883-4374-918d-e080f4ab7d2e
# β β9fd3e305-b493-46a5-8d4d-2d3712d9b23a
# β β52ad0f6c-a01a-4c9d-a176-64d9872aa3c1
# β β7f231b93-521d-4378-8094-763245eb5e43
# β βebd09585-3edf-4167-9724-47a16ce4b596
# β β2b245479-cce8-4e57-9261-42e2c926312b
# β β0735dc02-2b60-4fa6-bb8d-98729ad01d27
# β β62546e81-98fe-49c0-8022-8b28389b24ba
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 104 | should_be_100 = 0
var_to_delete = 10
should_not_be_15 = let
a = 1
global var_to_delete = 15
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1098 | ### A Pluto.jl notebook ###
# v0.19.43
using Markdown
using InteractiveUtils
# βββ‘ d4f2f0ca-c463-4318-8fe8-ad41ae9ca998
begin
test_project = Base.current_project(normpath(@__DIR__, ".."))
notebook_project = Base.active_project()
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
Base.eval(Main, quote # instantiate the parent env, mostly for CI
import Pkg
Pkg.activate($test_project)
Pkg.instantiate()
Pkg.activate($notebook_project)
end)
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
end
# βββ‘ 03c088e9-257c-4e76-a13e-d14366b6f96c
@fromparent begin
import ^: *
end
# βββ‘ Cell order:
# β βd4f2f0ca-c463-4318-8fe8-ad41ae9ca998
# β β03c088e9-257c-4e76-a13e-d14366b6f96c
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 104 | module TestParseError
include("error.jl")
greet() = print("Hello World!")
end # module TestParseError
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 34 | let
a = 1
b = 2
c = 3
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1383 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ bb3dd7a0-19fc-11ef-093c-a938acaf0cf5
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
test_project = Base.current_project(normpath(@__DIR__, ".."))
notebook_project = Base.active_project()
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
Base.eval(Main, quote # instantiate the parent env, mostly for CI
import Pkg
Pkg.activate($test_project)
Pkg.instantiate()
Pkg.activate($notebook_project)
end)
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
end
β ββ‘ =#
# βββ‘ 23a1bdef-5c31-4c90-a7f5-1f5a806d3d2e
#=β ββ‘
@fromparent @exclude_using import *
β ββ‘ =#
# βββ‘ e4f436ed-27e9-4d19-98bd-c2b3021cf8bd
# β ββ‘ skip_as_script = true
#=β ββ‘
!isdefined(@__MODULE__, :base64encode) || error("base64encode from Base64 should not be defined")
β ββ‘ =#
# βββ‘ Cell order:
# β βbb3dd7a0-19fc-11ef-093c-a938acaf0cf5
# β β23a1bdef-5c31-4c90-a7f5-1f5a806d3d2e
# β βe4f436ed-27e9-4d19-98bd-c2b3021cf8bd
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1514 | ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# βββ‘ 4f8def86-f90b-4f74-ac47-93fe6e437cee
# β ββ‘ skip_as_script = true
#=β ββ‘
begin
test_project = Base.current_project(normpath(@__DIR__, ".."))
notebook_project = Base.active_project()
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
Base.eval(Main, quote # instantiate the parent env, mostly for CI
import Pkg
Pkg.activate($test_project)
Pkg.instantiate()
Pkg.activate($notebook_project)
end)
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
end
β ββ‘ =#
# βββ‘ ac3d261a-86c9-453f-9d86-23a8f30ca583
#=β ββ‘
@fromparent import *
β ββ‘ =#
# βββ‘ dd3f662f-e2ce-422d-a91a-487a4da359cc
# β ββ‘ skip_as_script = true
#=β ββ‘
isdefined(@__MODULE__, :base64encode) || error("base64encode from Base64 should be defined")
β ββ‘ =#
# βββ‘ 4492d516-2b23-45b7-bf76-7458e7352fea
#=β ββ‘
rand_variable # This should change at every re-run
β ββ‘ =#
# βββ‘ Cell order:
# β β4f8def86-f90b-4f74-ac47-93fe6e437cee
# β βac3d261a-86c9-453f-9d86-23a8f30ca583
# β βdd3f662f-e2ce-422d-a91a-487a4da359cc
# β β4492d516-2b23-45b7-bf76-7458e7352fea
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 394 | module TestUsingNames
using Base64
export top_level_func
top_level_func() = 1
rand_variable = rand()
module Test1
using Example
include("test1.jl")
end
module Test2
using ..Test1, Base64
include("test2.jl")
end
module Test3
using ..TestUsingNames
include("test3.jl")
end
include("../test_notebook1.jl")
include("../test_notebook2.jl")
end # module TestUsingNames
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 26 | export test1
test1() = 10 | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 14714 | @testitem "Project/Manifest" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
# We test parsing the project of the TestUsingNames folder
target_dir = abspath(@__DIR__, "../TestUsingNames/")
# We delete the manifest if it exists
delete_manifest(target_dir)
# We test that by default it throws since there is no manifest
controller = FromPackageController(target_dir, @__MODULE__; cell_id = Base.UUID(0))
@test controller.options.manifest β (:instantiate, :resolve)
pd = controller.project
@test pd.uuid === Base.UUID("ad5af708-d1e5-4d28-9e91-6798178ddbab")
@test pd.name === "TestUsingNames"
@test pd.version === v"0.1.0"
@test "Example" in keys(pd.deps)
@test "Revise" in keys(pd.deps)
# We test parsing of the Manifest
@test_throws "A manifest could not be found" populate_manifest_deps!(controller)
controller.options.verbose = true
controller.options.manifest = :resolve
populate_manifest_deps!(controller)
@test isfile(joinpath(target_dir, "Manifest.toml"))
delete_manifest(target_dir)
@test !isfile(joinpath(target_dir, "Manifest.toml"))
controller.options.manifest = :instantiate
populate_manifest_deps!(controller)
@test isfile(joinpath(target_dir, "Manifest.toml"))
md = controller.manifest_deps
@test "Example" in values(md)
@test "InteractiveUtils" in values(md)
# Indirect Dependencies
@test "TOML" in values(md)
@test "CodeTracking" in values(md)
# We test that pointing to a folder without a project throws
@test_throws "No project was found" FromPackageController(homedir(), @__MODULE__)
end
@testitem "extract_target_path" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
calling_file = @__FILE__
m = @__MODULE__
# Test that an invalid file throws
@test_throws "does not seem to be a valid path" extract_target_path("asd", m; calling_file)
# We test that it create abspath based on the dir of the calling file
@test extract_target_path(basename(@__FILE__), m; calling_file) === @__FILE__
# We test that this also works with an expression, if inside pluto
basepath = basename(@__FILE__)
@test extract_target_path(:basepath, m; calling_file, notebook_local=true) === @__FILE__
# We test that also an expression works
@test extract_target_path(:(basename($(@__FILE__))), m; calling_file, notebook_local=true) === @__FILE__
# Test that this instead throws an error outside of pluto as at macro expansion we don't know symbols
@test_throws "the path must be provided as" extract_target_path(:basepath, m; calling_file, notebook_local=false) === @__FILE__
end
@testitem "Outside Pluto" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
controller = FromPackageController(outpackage_target, @__MODULE__)
valid(ex) = any(x -> Meta.isexpr(x, (:using, :import)), process_outside_pluto(controller, ex).args)
invalid(ex) = !valid(ex)
@test valid(:(import .ASD: lol))
@test invalid(:(import .ASD: *))
@test invalid(:(import TestPackage: lol)) # We only allow relative imports or imports from direct deps (always starting with >.)
@test invalid(:(import *)) # Outside of pluto the catchall is removed
@test valid(:(import >.BenchmarkTools)) # This is a direct dependency
@test valid(:(import >.InteractiveUtils)) # This is a direct dependency and a stdlib
@test invalid(:(import >.JSON)) # This is an indirect dependency, from HypertextLiteral
@test invalid(:(import >.Statistics)) # This is an stdlib, but on in the proj
@test invalid(:(import >.DataFrames)) # This is not a dependency
f_compare(ex_out, ex_in) = compare_exprs(ex_out, process_outside_pluto(controller, ex_in))
# We test some some specific imports
ex_out = quote
import BenchmarkTools as BT
end
ex_in = :(import >.BenchmarkTools as BT)
@test f_compare(ex_out, ex_in)
ex_out = quote
using BenchmarkTools
using Markdown
end
ex_in = :(using >.BenchmarkTools, >.Markdown)
@test f_compare(ex_out, ex_in)
# MacroTools is an indirect dep so it's discarded
ex_out = quote
using BenchmarkTools
end
ex_in = :(using >.BenchmarkTools, >.MacroTools)
@test f_compare(ex_out, ex_in)
ex_out = quote
import BenchmarkTools as BT
import .ASD as LOL
end
ex_in = :(import >.BenchmarkTools as BT, .ASD as LOL)
@test f_compare(ex_out, ex_in)
ex_out = quote
using BenchmarkTools
import .ASD: boh as lol
end
ex_in = quote
using >.BenchmarkTools
import .ASD: boh as lol
end
@test f_compare(ex_out, ex_in)
ex_out = quote end
ex_in = quote
import *
using >.CodeTracking # Interactive dependency
end
@test f_compare(ex_out, ex_in)
end
@testitem "Include using names" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
target_dir = abspath(@__DIR__, "../TestUsingNames/")
instantiate_from_path(target_dir)
caller_module = Core.eval(@__MODULE__, :(module $(gensym(:TestUsingNames)) end))
function f(target; caller_module=caller_module)
cell_id = Base.UUID(0)
target_file = joinpath(target_dir, target * "#==#$cell_id")
controller = FromPackageController(target_file, caller_module; cell_id)
# Load the module
load_module!(controller)
return controller
end
# Test1 - test1.jl
target = "src/test1.jl"
controller = f(target)
valid(ex) = any(x -> Meta.isexpr(x, (:using, :import)), process_outside_pluto(controller, ex).args)
invalid(ex) = !valid(ex)
# Test that this only works with catchall
@test_throws "The provided input expression is not supported." process_input_expr(controller, :(@include_using import Downloads))
# Test that even with the @exclude_using macro in front the expression is filtered out outside Pluo
@test invalid(:(@exclude_using import *))
# Test that the names are extracted correctly
ex = process_input_expr(controller, :(import *))
@test has_symbol(:domath, ex)
ex = process_input_expr(controller, :(@exclude_using import *))
@test !has_symbol(:domath, ex)
# Test2 - test2.jl
target = "src/test2.jl"
controller = f(target)
# Test that the names are extracted correctly
ex = process_input_expr(controller, :(import *)) |> MacroTools.prettify
@test has_symbol(:test1, ex) # test1 is exported by Module Test1
@test has_symbol(:base64encode, ex) # test1 is exported by Module Base64
ex = process_input_expr(controller, :(@exclude_using import *))
@test !has_symbol(:test1, ex)
@test !has_symbol(:base64encode, ex)
# Test3 - test3.jl
target = "src/test3.jl"
controller = f(target)
# Test that the names are extracted correctly, :top_level_func is exported by TestUsingNames
ex = process_input_expr(controller, :(import *)) |> MacroTools.prettify
@test has_symbol(:top_level_func, ex)
ex = process_input_expr(controller, :(@exclude_using import *))
@test !has_symbol(:top_level_func, ex)
# Test from a file outside the package
target = ""
controller = f(target)
# # Test that the names are extracted correctly, :base64encode is exported by Base64
ex = process_input_expr(controller, :(import *)) |> MacroTools.prettify
@test has_symbol(:base64encode, ex)
ex = process_input_expr(controller, :(@exclude_using import *))
@test !has_symbol(:base64encode, ex)
# We test the new skipping capabilities of `filterednames`
# We save the module associated to the controller
controller = f("")
target_mod = get_temp_module(controller)
m = Module(gensym())
# We create a function in the new module
Core.eval(m, :(top_level_func = $(target_mod.top_level_func)))
# We test that :top_level_func will not be imported because it's already in the caller module
@test :top_level_func β filterednames(f(""; caller_module=m), target_mod)
# If we put a controller with the :top_level_func name inside the `imported_names` field as previous controller in the caller module, it will instead be imported as it was in the list of previously imported names
push!(controller.imported_names, :top_level_func)
Core.eval(m, :($PREV_CONTROLLER_NAME = $controller))
@test :top_level_func β filterednames(f(""; caller_module=m), target_mod)
end
@testitem "target in package" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
cell_id = Base.UUID(0)
caller_module = Core.eval(@__MODULE__, :(module $(gensym(:InPackage)) end))
controller = FromPackageController(inpackage_target, caller_module; cell_id)
populate_manifest_deps!(controller)
load_module!(controller)
f(ex; alias=false) = MacroTools.prettify(process_input_expr(controller, ex); alias)
# FromDeps imports
ex = :(using >.BenchmarkTools)
expected_parent_path = fullname(get_loaded_modules_mod())
mwn = ModuleWithNames(f(ex))
# We remove the last name which is the unique name
modname_path = copy(mwn.modname.original)
unique_name = pop!(modname_path)
@test compare_modname(modname_path, expected_parent_path)
@test unique_name === unique_module_name(Base.UUID("6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"), "BenchmarkTools")
ex = :(using >.BenchmarkTools: *)
@test_throws "catch-all" f(ex)
ex = :(using DataFrames)
@test_throws "The provided import statement is not a valid input" f(ex)
# Test indirect import
ex = f(:(using >.JSON))
# We now test that Tricks is loaded in DepsImports
@test has_symbol(:json, ex)
# We test that trying to load a package that is not a dependency throws an error saying so
@test_throws "The package with name DataFrames could not" f(:(using >.DataFrames))
# FromPackage imports
ex = :(import TestPackage)
mwn = f(ex) |> ModuleWithNames
# This works because TestPackage is the name of the loaded package
@test compare_modname(mwn, fullname(get_temp_module(controller)))
ex = :(import PackageModule.SUBINIT)
mwn = f(ex) |> ModuleWithNames
@test compare_modname(mwn, [fullname(get_temp_module(controller))..., :SUBINIT])
out_ex = f(:(using PackageModule.SUBINIT))
@test has_symbol(:SUBINIT, out_ex)
# # Relative imports
ex = f(:(import ..SUBINIT))
mwn = ex |> ModuleWithNames
@test compare_modname(mwn, [fullname(get_temp_module(controller))..., :SUBINIT])
ex = :(import ..NonExistant)
@test_throws "The module `NonExistant` could not be found" f(ex) # It can't find the module
# FromParent import
ex = :(@exclude_using import *)
parent_path = fullname(get_temp_module(controller))
expected = :(import $(parent_path...).Inner: Inner, testmethod)
@test expected == f(ex)
ex = :(@exclude_using import ParentModule: *)
@test expected == f(ex)
ex = :(import ParentModule: testmethod)
expected = :(import $(parent_path...).Inner: testmethod)
@test expected == f(ex)
ex = :(using ParentModule)
expected = :(import $(parent_path...).Inner: Inner)
@test expected == f(ex)
end
@testitem "target not in package" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
cell_id = Base.UUID(0)
caller_module = Core.eval(@__MODULE__, :(module $(gensym(:NotInPackage)) end))
controller = FromPackageController(outpackage_target, caller_module; cell_id)
load_module!(controller)
f(ex; alias=false) = MacroTools.prettify(process_input_expr(controller, ex); alias)
parent_path = fullname(get_temp_module(controller))
ex = :(import PackageModule.Issue2)
expected = :(import $(parent_path...).Issue2: Issue2)
@test expected == f(ex)
ex = f(:(@exclude_using import *))
mwn = ModuleWithNames(ex)
# Test that the module path is correct
@test compare_modname(mwn, parent_path)
# We test that non-exported names of TestPackage are in the explicitly imported names
@test has_symbol(:hidden_toplevel_variable, ex)
# We test that the names coming from `using` statements within the target package are not re-exported
@test !has_symbol(:TEST_SUBINIT, ex)
# We now include usings
ex = f(:(import *))
# We also test that also symbols visible in the target package due to `using` statements are re-exported
@test has_symbol(:TEST_SUBINIT, ex)
@test has_symbol(Symbol("@code_lowered"), ex)
@test has_symbol(Symbol("@md_str"), ex)
# We test that you can't call the parent module or relative imports when not included
ex = :(import ParentModule: *)
@test_throws "You can't import from the Parent Module" f(ex)
ex = :(import ..LOL)
@test_throws "You can't use relative imports" f(ex)
end
@testitem "Errors" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
cell_id = Base.UUID(0)
caller_module = Core.eval(@__MODULE__, :(module $(gensym(:NotInPackage)) end))
controller = FromPackageController(outpackage_target, caller_module; cell_id)
load_module!(controller)
# Test that an error is thrown if the dependency could not be found in deps or weakdeps
@test_throws "could not be found as a dependency (or weak dependency)" get_dep_from_loaded_modules(controller, :DataFrames; allow_weakdeps = true)
@test_throws "is not valid for constructing ImportAs" ImportAs(:(1+1))
@test_throws "or a begin-end block of import statements" extract_input_args(:(1+1))
end
@testitem "Options Parsing" begin
include(joinpath(@__DIR__, "basics_helpers.jl"))
# Parse options
macro dummy(args...)
caller_module = __module__
calling_file = @__FILE__
target = outpackage_target
target_file = extract_target_path(target, caller_module; calling_file, notebook_local=false)
p = FromPackageController(target_file, caller_module; cell_id = Base.UUID(0))
ex = :(import *)
parse_options!(p, ex, args)
:($p)
end
# Test correct handling
default = FromPackageOptions()
p = @dummy verbose = true rootmodule = true manifest = :instantiate
@test p.options.verbose === true !== default.verbose
@test p.options.rootmodule === true !== default.rootmodule
@test p.options.manifest === :instantiate !== default.manifest
# Manifest with name directly
p = @dummy manifest = resolve
@test p.options.manifest === :resolve !== default.manifest
#
@test_throws "are not in a supported format" eval(:(@dummy verboses = true))
@test_throws "are not in a supported format" eval(:(@dummy verbose = 3))
@test_throws "are not in a supported format" eval(:(@dummy manifest = true))
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 2122 | import PlutoDevMacros.FromPackage: FromPackage, @fromparent, load_module!, FromPackageController, populate_manifest_deps!, ProjectData, @frompackage, extract_target_path, is_notebook_local, process_outside_pluto, process_input_expr, iterate_imports, ImportAs, get_temp_module, PREV_CONTROLLER_NAME, filterednames, ModuleWithNames, JustModules, get_loaded_modules_mod, unique_module_name, extract_nested_module, get_dep_from_loaded_modules, extract_input_args, custom_walk!, parse_options!, FromPackageOptions
import MacroTools
using Test
function compare_exprs(ex1, ex2)
ex1 = MacroTools.prettify(ex1)
ex2 = MacroTools.prettify(ex2)
equal = ex1 == ex2
equal || @error "The expression are not equivalent" ex1 ex2
end
# Function to extract the name of the imported symbol
imported_symbol(ia::ImportAs) = something(ia.as, last(ia.original))
# Function to check if an expression contain an explict imported symbol with the provided name
function has_symbol(symbol, ex::Expr)
block = MacroTools.prettify(ex) |> MacroTools.block
any(block.args) do arg
any(iterate_imports(arg)) do mwn
any(mwn.imported) do ia
imported_symbol(ia) === symbol
end
end
end
end
function compare_modname(m1, m2)
Tuple(m1) == Tuple(m2)
end
function compare_modname(mwn::ModuleWithNames, m2; skip_last = 0)
m1 = mwn.modname.original[1:end-skip_last]
compare_modname(m1, m2)
end
include(joinpath(@__DIR__, "helpers.jl"))
TestPackage_path = normpath(@__DIR__, "../TestPackage")
dev_package_in_proj(TestPackage_path)
# instantiate_from_path(TestPackage_path)
# Also instantiate the test env
instantiate_from_path(TestPackage_path |> dirname)
# We point at the helpers file inside the TestPackage module, we stuff up to the first include
outpackage_target = TestPackage_path
inpackage_target = joinpath(outpackage_target, "src/inner_notebook2.jl")
outpluto_caller = joinpath(TestPackage_path, "src")
# We simulate a caller from a notebook by appending a fake cell-id
cell_id = Base.UUID(0)
inpluto_caller = join([outpluto_caller, "#==#", string(cell_id)]) | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1391 | import Pkg
import Pkg.Types: Context, EnvCache, PackageSpec, GitRepo
function eval_with_load_path(ex, path)
push!(LOAD_PATH, path)
try
eval(ex)
finally
pop!(LOAD_PATH)
end
end
function current_package_path()
package_path = @__DIR__
package_path_names = splitpath(package_path)
test_idxs = findall(==("test"), package_path_names)
for idx in test_idxs
package_path = joinpath(package_path_names[1:idx])
"runtests.jl" in readdir(package_path) && break
end
package_path = dirname(package_path)
end
# Package path must be the directory where the Package project is located
function dev_package_in_proj(proj_path::AbstractString, package_path = current_package_path())
c = Context(;env = EnvCache(Base.current_project(proj_path)))
ps = PackageSpec(;
repo = GitRepo(;source = package_path)
)
Pkg.develop(c, [ps])
end
function instantiate_from_path(path::AbstractString; resolve = true)
c = Context(;env = EnvCache(Base.current_project(path)))
resolve && Pkg.resolve(c)
Pkg.instantiate(c; update_registry = false, allow_build = false, allow_autoprecomp = false)
end
function delete_manifest(path::AbstractString)
envdir = dirname(Base.current_project(path))
manifest_file = joinpath(envdir, "Manifest.toml")
isfile(manifest_file) && rm(manifest_file)
return nothing
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 1182 | @testitem "Indirect Extension" begin
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
ss = ServerSession(; options)
path = joinpath(indirect_path, "test_extension.jl")
nb = SessionActions.open(ss, path; run_async=false)
@test eval_in_nb((ss, nb), :method_present) === true
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "Direct Extensions" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
env_path = joinpath(direct_path, "notebook_env")
dev_package_in_proj(env_path)
instantiate_from_path(env_path)
instantiate_from_path(direct_path)
# Do the rest
ss = ServerSession(; options)
path = joinpath(direct_path, "test_extension.jl")
nb = SessionActions.open(ss, path; run_async=false)
@test eval_in_nb((ss, nb), :standard_extension_output) === "Standard Extension works!"
@test eval_in_nb((ss, nb), :weird_extension_output) === "Weird Extension name works!"
@test eval_in_nb((ss, nb), :(p isa PlutoPlot)) === true
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 3518 | import PlutoDevMacros.FromPackage: FromPackage, add_loadpath, process_settings!, get_active, get_project_file
import PlutoDevMacros.FromPackage.Settings: Settings, get_setting, SETTINGS_DEFAULTS, SETTINGS_SYNONYMS, setting_name, add_setting, remove_setting
using Test
TestPackage_path = normpath(@__DIR__, "../TestPackage")
# We point at the helpers file inside the TestPackage module, we stuff up to the first include
target = TestPackage_path
# We test that the prefix is there in the temp env
@test startswith(FromPackage.default_ecg() |> get_active |> get_project_file |> dirname |> basename, "frompackage_")
@testset "Get Setting" begin
@test_throws "is not associated to any valid setting" get_setting(:asdfasdf)
key = :SHOULD_PREPEND_LOAD_PATH
current = SETTINGS_DEFAULTS[key]
@test get_setting(key) === current
SETTINGS_DEFAULTS[key] = !current
@test get_setting(key) === !current
SETTINGS_DEFAULTS[key] = current
@test get_setting(key) === current
# Test with dict
d = Dict("Custom Settings" => Dict(key => !current))
@test get_setting(d, key) === !current
end
@testset "Parsing" begin
# Check that we don't have a as name
@test_logs (:warn, r"Nothing was removed") remove_setting(:a)
# We add a and b as valid setting names
add_setting(:a, 0)
add_setting(:b, 0)
@test get_setting(:a) === 0
@test get_setting(:b) === 0
ex = :(@settings a = 1)
# Nothing done without block, as that is anyhow not supported
@test ex === process_settings!(ex, Dict())
# Test that settings are removed if in a block
ex = quote $ex end
d = Dict()
new_ex = process_settings!(deepcopy(ex), d) |> Base.remove_linenums!
@test isempty(new_ex.args)
@test haskey(d, "Custom Settings")
@test d["Custom Settings"][:a] == 1
# We check illegal expressions
ex = quote
@settings a = 1 b = rand()
end
@test_throws "Only primitive" process_settings!(deepcopy(ex), Dict())
ex = quote
@settings a = 1 b c
end
@test_throws "Only `var = value`" process_settings!(deepcopy(ex), Dict())
# Test the begin end synthax
ex = quote
@settings begin
a = 1
b = 2
end
end
d = Dict()
new_ex = process_settings!(deepcopy(ex), d) |> Base.remove_linenums!
@test isempty(new_ex.args)
@test haskey(d, "Custom Settings")
@test d["Custom Settings"][:a] == 1
@test d["Custom Settings"][:b] == 2
remove_setting(:a)
@test_throws "is not associated to any valid setting" setting_name(:a)
remove_setting(:b)
@test_throws "is not associated to any valid setting" setting_name(:b)
end
@testset "SHOULD_PREPEND_LOAD_PATH" begin
@test setting_name(:prepend) === :SHOULD_PREPEND_LOAD_PATH
proj_file = FromPackage.default_ecg() |> get_active |> get_project_file
# Remove the custom envs from the load path
filter!(LOAD_PATH) do proj
!startswith(proj |> dirname |> basename, "frompackage_")
end
@info LOAD_PATH
l = length(LOAD_PATH)
@test proj_file β LOAD_PATH
add_loadpath(proj_file; should_prepend = false)
@test length(LOAD_PATH) == l+1
add_loadpath(proj_file; should_prepend = false)
@test length(LOAD_PATH) == l+1
@test LOAD_PATH[end] == proj_file
LOAD_PATH[end] == proj_file && pop!(LOAD_PATH)
# Prepend
add_loadpath(proj_file; should_prepend = true)
@test LOAD_PATH[1] == proj_file
LOAD_PATH[1] == proj_file && popfirst!(LOAD_PATH)
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 806 | import Pluto: update_save_run!, update_run!, WorkspaceManager, ClientSession, ServerSession, Notebook, Cell, project_relative_path, SessionActions, load_notebook, Configuration
include(joinpath(@__DIR__, "helpers.jl"))
function noerror(cell; verbose=true)
if cell.errored && verbose
@show cell.output.body
end
!cell.errored
end
indirect_path = normpath(@__DIR__, "../TestIndirectExtension/")
direct_path = normpath(@__DIR__, "../TestDirectExtension/")
testpackage_path = joinpath(@__DIR__, "../TestPackage/")
instantiate_from_path(indirect_path)
instantiate_from_path(testpackage_path)
options = Configuration.from_flat_kwargs(; disable_writing_notebook_files=true, workspace_use_distributed_stdlib = true)
eval_in_nb(sn, expr) = WorkspaceManager.eval_fetch_in_workspace(sn, expr) | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 8703 |
@testitem "notebook1.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
eval_with_load_path(:(import TestPackage), testpackage_path)
# Do the tests
ss = ServerSession(; options)
path = joinpath(srcdir, "notebook1.jl")
nb = SessionActions.open(ss, path; run_async=false)
@test eval_in_nb((ss, nb), :toplevel_variable) == TestPackage.toplevel_variable
@test eval_in_nb((ss, nb), :hidden_toplevel_variable) == TestPackage.hidden_toplevel_variable
# We test that __init__ was not ran, as this file will only contain the module before the __init__ function is defined
@test eval_in_nb((ss, nb), :(TEST_INIT[])) == 0
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "inner_notebook2.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = joinpath(srcdir, "inner_notebook2.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
eval_in_nb((ss, nb), :(BenchmarkTools isa Module))
SessionActions.shutdown(ss, nb)
end
@testitem "test_macro2.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = joinpath(srcdir, "test_macro2.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "TestPackage/import_as.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = joinpath(srcdir, "import_as.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "TestPackage/out_notebook.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = abspath(srcdir, "../out_notebook.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells[1:end-1] # The last cell contains an error on purpose
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "test_pkgmanager.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
srcdir = joinpath(@__DIR__, "../TestPackage/src/")
# We add PlutoDevMacros as dev dependency to TestPackage
dev_package_in_proj(srcdir)
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = abspath(srcdir, "../test_pkgmanager.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "test_parse_error.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
# We test the ParseError (issue 30)
srcdir = joinpath(@__DIR__, "../TestParseError/src/")
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
path = abspath(srcdir, "../parseerror_notebook.jl")
nb = SessionActions.open(ss, path; run_async=false)
cell = nb.cells[2]
@test cell.errored
msg = cell.output.body[:msg]
if VERSION < v"1.10"
@test startswith(msg, "syntax: incomplete:")
else
@test startswith(msg, "LoadError: ParseError:")
end
SessionActions.shutdown(ss, nb)
end
@testitem "test_dev_dependency.jl" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
# We test dev dependencies with relative path (issue 30)
srcdir = joinpath(@__DIR__, "../TestDevDependency/src/")
# We add TestPackage as dev dependency
dev_package_in_proj(srcdir, testpackage_path)
# Do the tests
ss = ServerSession(; options)
path = abspath(srcdir, "../test_notebook.jl")
nb = SessionActions.open(ss, path; run_async=false)
for cell in nb.cells
@test noerror(cell)
end
SessionActions.shutdown(ss, nb)
end
@testitem "Using Names" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
# We test @exclude_using (issue 11)
srcdir = joinpath(@__DIR__, "../TestUsingNames/src/")
instantiate_from_path(srcdir)
# Do the tests
ss = ServerSession(; options)
for filename in ["test_notebook1.jl", "test_notebook2.jl"]
path = abspath(srcdir, "..", filename)
nb = SessionActions.open(ss, path; run_async=false)
# We test that no errors are present
for cell in nb.cells
@test noerror(cell)
end
# We extract the rand_variable value
first_value = eval_in_nb((ss, nb), :rand_variable)
# We rerun the second cell, containing the `@fromparent` call
update_run!(ss, nb, nb.cells[2])
# We check again that no errors arose
for cell in nb.cells
@test noerror(cell)
end
# We check that the rand_variable value changed
second_value = eval_in_nb((ss, nb), :rand_variable)
@test first_value != second_value
SessionActions.shutdown(ss, nb)
end
end
@testitem "TestInception" begin
# Include the setup
include(joinpath(@__DIR__, "with_pluto_helpers.jl"))
# We test @exclude_using (issue 11)
target_dir = joinpath(@__DIR__, "../TestInception")
# We delete the manifest if it exists as we are testing the instantiation happens correctly
delete_manifest(target_dir)
# Do the tests
ss = ServerSession(; options)
path = abspath(target_dir, "inception_notebook.jl")
nb = SessionActions.open(ss, path; run_async=false)
# We test that no errors are present
for cell in nb.cells
@test noerror(cell)
end
function has_log_msg(cell, needle)
any(cell.logs) do dict
msg = dict["msg"] |> first
contains(msg, needle)
end
end
# We check that the manifest has been created from the cell, and the messages has been logged in the 3rd cell (which is the one calling @fromparent)
@test has_log_msg(nb.cells[3], r"Updating .*Manifest.toml")
# We check that the cell importing SimplePlutoInclude has logs for loading the SingleExtension
@test has_log_msg(nb.cells[10], "Loading code of extension SingleExtension")
# We check that the cell importing Example has logs for loading the DualExtension
@test has_log_msg(nb.cells[13], "Loading code of extension DualExtension")
# We extract the rand_variable value
first_value = eval_in_nb((ss, nb), :random_variable)
# We rerun the second cell, containing the `PDM.@frompackage` call, which reload PlutoDevMacros itself
update_run!(ss, nb, nb.cells[2])
# We check again that no errors arose
for cell in nb.cells
@test noerror(cell)
end
# We check that warning of replacing rootmodule and deleting mirror_package_callback from previous workspace are present in cell 3
@test has_log_msg(nb.cells[3], "Replacing module")
@test has_log_msg(nb.cells[3], "Deleting previous version of package_callback function")
# We also have the messages for reloading the extension in this cell now
@test has_log_msg(nb.cells[3], "Loading code of extension SingleExtension")
@test has_log_msg(nb.cells[3], "Loading code of extension DualExtension")
# We check that the rand_variable value changed
second_value = eval_in_nb((ss, nb), :random_variable)
@test first_value != second_value
# We now try to
SessionActions.shutdown(ss, nb)
end | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 19477 | ### A Pluto.jl notebook ###
# v0.19.29
#> custom_attrs = ["hide-enabled"]
using Markdown
using InteractiveUtils
# βββ‘ d0e6a2b2-1e5d-11ee-177a-5f0a92dd83f5
begin
test_project= Base.current_project(@__DIR__)
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
pushfirst!(LOAD_PATH, test_project) # This contains Revise
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import Revise))
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
popfirst!(LOAD_PATH) # Remove parent_env
end
using Main.Revise
using Main.PlutoDevMacros
using Main.PlutoDevMacros.PlutoCombineHTL.WithTypes
using Main.PlutoDevMacros.HypertextLiteral
end
# βββ‘ 8325847e-fd7e-42ef-84c7-a30c6467183e
using PlutoUI
# βββ‘ 65bff575-5dcb-4d81-b357-2b2f8bfd43d7
using PlutoVSCodeDebugger
# βββ‘ c924a590-a189-4ca2-abef-2b7dca80fe11
md"""
# Packages
"""
# βββ‘ ede9b8dd-104f-4d5c-a134-f1fc67a1b9c7
import .PlutoCombineHTL: print_html
# βββ‘ 13d2cf9a-2fce-47f9-a851-6dd80d130b63
TableOfContents()
# βββ‘ 7a8c6eb4-cc33-41c3-9e1a-d8e07954fef9
# This is just to test that the html_reload_button generates the button correctly
PlutoDevMacros.FromPackage.html_reload_button("asd")
# βββ‘ 01368463-0f95-4ced-abb1-6c8800ca2524
md"""
All outputs of type `ScriptContent`, `Script` or `Node` where `Script <: Node` are shown in Pluto by default as formatted code (using Markdown).
To actually generate and show in the pluto-output their corresponding HTML code you have to either interpolate them inside `@htl` or call the `make_html` function on them.
"""
# βββ‘ c862e547-3b62-4218-b06e-0e84d05d6587
@connect_vscode begin
end
# βββ‘ d115c2b6-f92d-4609-94a9-59391c160645
md"""
# Scripts
"""
# βββ‘ 201323b9-8caf-4acb-904e-b76d16e5ffb1
md"""
## ScriptContent
"""
# βββ‘ f1bde184-7487-4745-8c47-0df407da6813
md"""
The ScriptContent type wraps javascript content of a script, and can be used to compose a script with multiple `ScriptContent` elements
"""
# βββ‘ adf46403-ec6b-4278-ae65-5747f319dc96
simple_sc = """
let out = html`<div>ASD</div>`
console.log('first script')
return out
""" |> ScriptContent
# βββ‘ 0a1e9af6-6b32-49c6-9cf6-8cf7f594f109
md"""
### @htl constructor
"""
# βββ‘ f2fde939-638a-4b69-94ee-d32aff03879e
md"""
Objects of `ScriptContent` type can also be generated using outputs of the `@htl` macro as input. In this case, the constructor performs some additional check and only accepts objects of type `HypertextLiteral.Result` that are containing at least one `<script>` tag element.
The content used for generating the `ScriptContent` is the text contained within the first `<script>` tag found.
"""
# βββ‘ 05941b74-00f1-4937-9a1d-d01e6e1a776f
# They can also be created starting form a String
ScriptContent("asd") === ScriptContent(@htl("<script>asd</script>")) || error("Something went wrong")
# βββ‘ fbe39d75-01e8-4f3a-8e65-f260a039365e
md"""
When using the `@htl` macro to construct a `ScriptContent` element, some warning are printed if the content of the `@htl` macro either does not contain a <script> tag or contains more than the <script> tag
"""
# βββ‘ 4c41b737-c392-455e-b6d8-98931f88d467
# This generates an empty content with no warning
ScriptContent(@htl(""))
# βββ‘ 6879d22c-f01c-424f-bc37-eb42062e49db
# This generates a warning because some extra content was present but is discarded
ScriptContent(@htl("asd
<script id='lol'>
asd
</script>"))
# βββ‘ 55044c8e-3f70-4a55-ad9f-7514d44a7211
# This generates a warning because no script tag was found despite its input being non-empty
ScriptContent(@htl("asd"))
# βββ‘ a9bc9479-722d-4564-9cb9-560f7b0f4ffb
# This generates a warning because two script tags are found
ScriptContent(@htl("<script>asd</script>lol<script>boh</script>"))
# βββ‘ da343b23-1ee0-44f9-9341-2c337f0de333
# This cell will throw an error because you have to always provide the closing </script> tag in the constructor when using @htl
try
ScriptContent(@htl("<script>asd"))
false
catch e
contains(e.msg, "No closing </script>") || rethrow()
end
# βββ‘ 57929023-813c-42ab-acdd-8a8f9033c11a
md"""
### Display/Interpolation
"""
# βββ‘ 8d9dd998-c3d0-435c-a709-ee42c586c230
md"""
`ScriptContent` objects can only be _materialized_ as scripts by performing a direct interpolation within the <script> tag of the `@htl` macro. Using `make_html` will not work. Alternatively one can also wrap the ScriptContent inside a `Script` element before calling `make_html` as will be shown later
"""
# βββ‘ c2aa06c6-3d34-4793-afa6-2e5a7c8b920a
# Here we interpolate this inside `@htl` to create the script
@htl("<script>$simple_sc</script>")
# βββ‘ 720f431c-00d6-418a-a33c-d440070a7363
# make_html will simply re-show the formatted HTML code
make_html(simple_sc)
# βββ‘ 3362ad99-d10c-4312-84ae-e3876ad1787f
md"""
A Vector of `ScriptContent` can also be directly interpolated inside the <script> tags within the `@htl` macro.
"""
# βββ‘ 318a9af6-a7e9-449d-8299-db4b6ab11fea
@htl("""
<script>
$([
ScriptContent("let dv = html`<div>LOL</div>`") # This creates the div
ScriptContent("currentScript.insertAdjacentElement('beforebegin',dv)") # This puts the previous div before the currentScript
ScriptContent("return html`<div>ASD`") # This returns a new div, which is put after the previous one. Return statements should not be contained inside ScriptContents directly but provided with the returned_element keyword when constructing a Script.
])
</script>
""")
# βββ‘ cc621eb7-b977-4ee8-9fbf-600a6f2bcfd2
md"""
## SingleScript
"""
# βββ‘ 02f7b708-1f21-4533-bc3c-de4573d0a14b
md"""
There are two subyptes of `InOrOutScript <: Script`. They are:
- `PlutoScript`
- `NormalScript`
These are elements representing scripts that are exclusive to either be shown in Pluto or outside of Pluto.
The PlutoScript internally contains two `ScriptContent` fields, one for the normal script body, and one for the invalidation part of the script that takes place when a cell is removed/re-run.\
Check the JavaScript sample Pluto notebook for more details on the `invalidation` stage of Pluto cells.
`SinglScript` objects can be constructed either with `ScriptContent` objects directly or with inputs that are supported by the `ScriptContent` constructor (i.e. `String` and `HypertextLiteral.Result` containing a <script> tag)
"""
# βββ‘ 1e2d7cc9-45d8-4aca-806b-76f1e50986b0
md"""
### PlutoScript
"""
# βββ‘ 73932307-b68c-453a-a7e6-8ba5d8bd8334
# When showing a Script object, the <script> tag is included
PlutoScript(simple_sc) |> formatted_code
# βββ‘ d866e092-f24b-4553-971f-c1f74f3a1c1a
# Can also be constructed with Strings
ps = PlutoScript(" console.log('asd')", " console.log('lol')"; id = "my_id") |>
formatted_code
# βββ‘ 3dfb8184-2fce-4296-9c47-f0a034e99f73
PlutoScript("return html`<div>MAGIC`")
# βββ‘ 7f70ce43-567b-47aa-856e-bb41ee00fcc4
md"""
### NormalScript
"""
# βββ‘ 07db9619-2cfe-4796-a083-f571f6c30721
md"""
NormalScript will not show the formatted code as normal output in Pluto, but will transform into an empty script when actually shown with `make_html` inside Pluto.
In order to maximize code reuse between the Pluto and Normal scripts, some JS packages are loaded and made available in NormalScript objects' generated HTML by default.
These are the packages that are also automatically loaded inside Pluto and are available when executing cell code and include:
- the [Observable Standard Library](https://github.com/observablehq/stdlib)
- the [Lodash](https://lodash.com/) package.
Similarly to what happens in Pluto, the `currentScript` variable is also associated to the script being executed.
While `currentScript` is always bound, the package loading/inclusion is controlled by a `Bool` field of the `NormalScript` structure and it can be overridden by calling the script constructor with the `add_pluto_compat = false` keyword argument.
"""
# βββ‘ ebd5e071-e151-43d6-806e-ca6582c0046b
ns = NormalScript("return html`<div>MAGIC`")
# βββ‘ 22589abd-63f4-46de-9fed-b673a72a449f
# The MAGIC word is not appearing like for the PlutoScript because we are showing inside Pluto
make_html(ns)
# βββ‘ 0b129e2a-842f-44cd-9d5e-61f7090ab63d
md"""
### JS Listeners
"""
# βββ‘ bdac5c70-2114-4f2b-9a0b-14ff172a1559
md"""
`Script` objects can also be constructed with a convenience function to attach JS listeners to objects that are automatically removed upon cell invalidation.
To use this functionality, it is sufficient to add a call to the `addScriptEventListeners` inside the script content.
See below the actually generated HTML when this keyword is added to the contents of a Script:
"""
# βββ‘ d508ea5d-cc5d-44d1-a1b0-8ae6c18bf954
begin
ps_js = PlutoScript("""
let dv = html`<div>ASDLOL`
let active = false
addScriptEventListeners(dv, {
'click': (e) => {
console.log(e)
active = !active
if (active) {
dv.style = "border: solid 2px red;"
} else {
dv.style = ""
}
}
})
"""; returned_element = "dv") # To avoid having a return statement within the script that will stop the rest of the content. Returned elements name should be given as a separated keyword argument.
formatted_code(ps_js)
end
# βββ‘ a87c1d5f-1160-477b-9de9-432f1b742e3f
# One can also just show the content without the scripts parts added by PlutoDevMacros
ps_js |> formatted_code(;only_contents = true)
# βββ‘ a4004826-ee3d-451f-a944-dff8d0787481
md"""
And here is the generated script which will create a div which changes its border color upon click
"""
# βββ‘ 5ec6e1a4-ece4-4cdf-81f5-fe0d1c9c39b9
ps_js
# βββ‘ f8e10efd-f29d-431b-bbc7-ae4c0608e4d6
md"""
## DualScript
"""
# βββ‘ 0e16969e-197f-4fca-a0f1-cbe4c4c4822e
v = PrintToScript
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
PlutoVSCodeDebugger = "560812a8-17ff-4261-aab5-f8f600b273e2"
[compat]
PlutoUI = "~0.7.52"
PlutoVSCodeDebugger = "~0.2.0"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.0-beta2"
manifest_format = "2.0"
project_hash = "2a231071dd4c3eaebeebc799c8f5832c9f4ce78a"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "91bd53c39b9cbfb5ef4b015e8b582d344532bd0a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.2.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.4"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.0.5+1"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.4"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.4"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "d75853a0bdbfb1ac815478bacd89cd27b550ace6"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.3"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.4"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "8.0.1+1"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.11.0+1"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MIMEs]]
git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb"
uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65"
version = "0.1.4"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2023.1.10"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.23+2"
[[deps.Parsers]]
deps = ["Dates", "PrecompileTools", "UUIDs"]
git-tree-sha1 = "716e24b21538abc91f6205fd1d8363f39b442851"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.7.2"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.10.0"
[[deps.PlutoUI]]
deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"]
git-tree-sha1 = "e47cd150dbe0443c3a3651bc5b9cbd5576ab75b7"
uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
version = "0.7.52"
[[deps.PlutoVSCodeDebugger]]
deps = ["AbstractPlutoDingetjes", "InteractiveUtils", "Markdown", "REPL"]
git-tree-sha1 = "888128e4c890f15b1a0eb847bfd54cf987a6bc77"
uuid = "560812a8-17ff-4261-aab5-f8f600b273e2"
version = "0.2.0"
[[deps.PrecompileTools]]
deps = ["Preferences"]
git-tree-sha1 = "03b4c25b43cb84cee5c90aa9b5ea0a78fd848d2f"
uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
version = "1.2.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "7eb1686b4f04b82f96ed7a4ea5890a4f0c7a09f1"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.4.0"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
version = "1.10.0"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
version = "1.9.0"
[[deps.SuiteSparse_jll]]
deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"]
uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c"
version = "7.2.0+1"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.3"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.Tricks]]
git-tree-sha1 = "aadb748be58b492045b4f56166b5188aa63ce549"
uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775"
version = "0.1.7"
[[deps.URIs]]
git-tree-sha1 = "b7a5e99f24892b6824a954199a45e9ffcc1c70f0"
uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4"
version = "1.5.0"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.13+1"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
version = "5.8.0+1"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.52.0+1"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+2"
"""
# βββ‘ Cell order:
# ββc924a590-a189-4ca2-abef-2b7dca80fe11
# β βd0e6a2b2-1e5d-11ee-177a-5f0a92dd83f5
# β βede9b8dd-104f-4d5c-a134-f1fc67a1b9c7
# β β8325847e-fd7e-42ef-84c7-a30c6467183e
# β β13d2cf9a-2fce-47f9-a851-6dd80d130b63
# β β7a8c6eb4-cc33-41c3-9e1a-d8e07954fef9
# ββ01368463-0f95-4ced-abb1-6c8800ca2524
# β β65bff575-5dcb-4d81-b357-2b2f8bfd43d7
# β βc862e547-3b62-4218-b06e-0e84d05d6587
# ββd115c2b6-f92d-4609-94a9-59391c160645
# ββ201323b9-8caf-4acb-904e-b76d16e5ffb1
# ββf1bde184-7487-4745-8c47-0df407da6813
# β βadf46403-ec6b-4278-ae65-5747f319dc96
# ββ0a1e9af6-6b32-49c6-9cf6-8cf7f594f109
# ββf2fde939-638a-4b69-94ee-d32aff03879e
# β β05941b74-00f1-4937-9a1d-d01e6e1a776f
# ββfbe39d75-01e8-4f3a-8e65-f260a039365e
# β β4c41b737-c392-455e-b6d8-98931f88d467
# β β6879d22c-f01c-424f-bc37-eb42062e49db
# β β55044c8e-3f70-4a55-ad9f-7514d44a7211
# β βa9bc9479-722d-4564-9cb9-560f7b0f4ffb
# β βda343b23-1ee0-44f9-9341-2c337f0de333
# ββ57929023-813c-42ab-acdd-8a8f9033c11a
# ββ8d9dd998-c3d0-435c-a709-ee42c586c230
# β βc2aa06c6-3d34-4793-afa6-2e5a7c8b920a
# β β720f431c-00d6-418a-a33c-d440070a7363
# ββ3362ad99-d10c-4312-84ae-e3876ad1787f
# β β318a9af6-a7e9-449d-8299-db4b6ab11fea
# ββcc621eb7-b977-4ee8-9fbf-600a6f2bcfd2
# ββ02f7b708-1f21-4533-bc3c-de4573d0a14b
# ββ1e2d7cc9-45d8-4aca-806b-76f1e50986b0
# β β73932307-b68c-453a-a7e6-8ba5d8bd8334
# β βd866e092-f24b-4553-971f-c1f74f3a1c1a
# β β3dfb8184-2fce-4296-9c47-f0a034e99f73
# ββ7f70ce43-567b-47aa-856e-bb41ee00fcc4
# ββ07db9619-2cfe-4796-a083-f571f6c30721
# β βebd5e071-e151-43d6-806e-ca6582c0046b
# β β22589abd-63f4-46de-9fed-b673a72a449f
# ββ0b129e2a-842f-44cd-9d5e-61f7090ab63d
# ββbdac5c70-2114-4f2b-9a0b-14ff172a1559
# β βd508ea5d-cc5d-44d1-a1b0-8ae6c18bf954
# β βa87c1d5f-1160-477b-9de9-432f1b742e3f
# ββa4004826-ee3d-451f-a944-dff8d0787481
# β β5ec6e1a4-ece4-4cdf-81f5-fe0d1c9c39b9
# ββf8e10efd-f29d-431b-bbc7-ae4c0608e4d6
# β β0e16969e-197f-4fca-a0f1-cbe4c4c4822e
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | code | 2278 | ### A Pluto.jl notebook ###
# v0.19.27
using Markdown
using InteractiveUtils
# βββ‘ f32cb55a-cf6d-40cd-8d5a-81445a685b53
begin
plutodevmacros_project= Base.current_project(normpath(@__DIR__, "../.."))
pushfirst!(LOAD_PATH, plutodevmacros_project) # This loads the PlutoDevMacros environment, so we can do import with the latest version
try
Base.eval(Main, :(import PlutoDevMacros))
finally
popfirst!(LOAD_PATH) # Remove plutodevmacros env
end
using Main.PlutoDevMacros
end
# βββ‘ e3296a1c-9d38-4363-b275-42738d1ebae7
asd(x::Int) = 3
# βββ‘ 5808997c-0da3-4d1d-8b9a-b0e8965ce4a8
@addmethod asd(x::Float64) = 4.0
# βββ‘ 65603c9c-5b1b-4cd0-9db2-7216520d1c36
@addmethod asd(x::String) = "LOL" * string(asd(1))
# βββ‘ 53f8ca75-67f1-47c5-9c1e-a3747b376c3a
asd(3.0) === 4.0 || error("Something went wrong")
# βββ‘ b4351ff1-65eb-45d8-9262-6811fc0884f1
asd("ASD") === "LOL3" || error("Something went wrong")
# βββ‘ 18c8788a-0213-43f3-8359-329a0501fc6c
@current_pluto_cell_id() |> string |> typeof
# βββ‘ 63c5d858-7d51-48d6-b221-50343482044b
@current_pluto_cell_id() === "63c5d858-7d51-48d6-b221-50343482044b" || error("Something went wrong")
# βββ‘ 00ed0ca3-3b5e-45a8-bf46-55e898c4b923
@current_pluto_notebook_file() === string(first(split(@__FILE__(), "#==#"))) || error("Something went wrong")
# βββ‘ bda0d273-68f2-4954-bad1-b6c7aef9c1bd
@only_in_nb(asd) === asd
# βββ‘ 9985d53f-bc97-41b3-ab08-435b75db58d1
let
pd = plutodump(@macroexpand(@only_in_nb(a)))
pd isa Text && pd.content === "Symbol a\n" || error("Something went wrong")
end
# βββ‘ 2647436d-5170-41f8-86de-9bce9acf2f70
@only_out_nb(3) === nothing
# βββ‘ 5ec03ab5-a3e3-4855-af59-6e589f5b104f
PlutoDevMacros.is_notebook_local() || error("Something went wrong")
# βββ‘ Cell order:
# β βf32cb55a-cf6d-40cd-8d5a-81445a685b53
# β βe3296a1c-9d38-4363-b275-42738d1ebae7
# β β5808997c-0da3-4d1d-8b9a-b0e8965ce4a8
# β β65603c9c-5b1b-4cd0-9db2-7216520d1c36
# β β53f8ca75-67f1-47c5-9c1e-a3747b376c3a
# β βb4351ff1-65eb-45d8-9262-6811fc0884f1
# β β18c8788a-0213-43f3-8359-329a0501fc6c
# β β63c5d858-7d51-48d6-b221-50343482044b
# β β00ed0ca3-3b5e-45a8-bf46-55e898c4b923
# β βbda0d273-68f2-4954-bad1-b6c7aef9c1bd
# β β9985d53f-bc97-41b3-ab08-435b75db58d1
# β β2647436d-5170-41f8-86de-9bce9acf2f70
# β β5ec03ab5-a3e3-4855-af59-6e589f5b104f
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 2288 | # PlutoDevMacros
[](https://disberd.github.io/PlutoDevMacros.jl/)
[](https://disberd.github.io/PlutoDevMacros.jl/dev)
[](https://github.com/disberd/PlutoDevMacros.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[](https://codecov.io/gh/disberd/PlutoDevMacros.jl)
[](https://github.com/JuliaTesting/Aqua.jl)
> [!WARNING]
> This package is currently undergoing a significant refactoring, the documentation is still outdated and will be updated (together with the README) once the code is stabilized
This is a package containing macros/functions to help develop Packages using [Pluto](https://github.com/fonsp/Pluto.jl) notebooks testing/prototyping aids.
The major feature contribution of this package is the `@fromparent` macro, which allows to load a local package in Pluto and have its code re-parsed and updated upon manual re-run of the cell containing the macro call.
This is simlar to a `Revise`-based workflow but provides a few notable advantages:
- Package code can be re-evaluated correctly without requiring a julia restart even when re-defining structs or constants
- Local code reload, triggered manually via a floating button in the Pluto notebook, automatically triggers execution of all dependent cells, simplifying the process of testing changes of code on specific runtime paths
- Possibilty of adding packages to the notebook environment which are not dependencies of the local package, very useful for testing plotting or benchmarking of the local package code without having to put the related packages in either the global or package-local environment
- Support for the package extensions functionality added in julia 1.9, which together with the point on notebook environment above simplify the testing and development of extensions on the local package under development.
See the [documentation](https://disberd.github.io/PlutoDevMacros.jl/) for more details.
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 392 | # PlutoDevMacros
Documentation for [PlutoDevMacros](https://github.com/disberd/PlutoDevMacros.jl).
## @frompackage/@fromparent
```@contents
Pages = [
"frompackage/introduction.md",
"frompackage/basic_use.md",
"frompackage/import_statements.md",
"frompackage/skipping_parts.md",
"frompackage/use_with_plutopkg.md",
"frompackage/package_extensions.md",
]
Depth = 1
``` | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 563 | # Other Functions
This package also exports some additional convenience macros for simplifying package development aided by Pluto notebooks.
Additionally, the *non-exported* function [`PlutoDevMacros.hide_this_log`](@ref) can be used for sending javascript code through logs to Pluto and hide the corresponding log from view (without stopping the javascript code to execute)
## Utilities Macros
```@docs
@addmethod
@only_in_nb
@only_out_nb
@current_pluto_cell_id
@current_pluto_notebook_file
```
## Utilities Functions
```@docs
PlutoDevMacros.hide_this_log
``` | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 4548 | # Basic Use
```julia
@fromparent import_block
@frompackage target import_block
```
The `@frompackage` macro takes a local Package (derived from the `target` path),
loads it as a submodule of the current Pluto workspace and then process the
various import/using statements inside `import_block` to extract
varables/functions from the local Package into the notebook workspace.
!!! note
`@fromparent` is simply a convenience synthax that uses the calling notebook file as `target`. More details on how the target path is processed are given below.\
\
Due to the equivalence in functionality between `@frompackage` and `@fromparent`, the rest of the documentation will only refer to `@frompackage` for convenience.
When changes to the code of the local Package are made, the cell containing the
call to `@frompackage` can be re-executed to reload the most recent version of
the module. Thanks to Pluto's reactivity, this will automatically trigger
re-execution of all cells that use functionality defined in the local package
loaded by the macro.
When testing functionalities of the local package using statements in the notebook cells, this reactivity simplifies the workflow as one does not need to manually re-run tests. At the same time, re-loading the full package module at each statement (similar to what Revise does) would most likely generate a significant overhead.
For this reason the *reload* of local code is only triggered manually within `@frompackage` and happens only when manually re-running the cell containing the macro call. This process is simplified by the reload button explained [below](#Reload-Button).
## `target` path
The first argument to `@frompackage` (`target`) has to be an AbstractString (or
a `@raw_str`) containing the path (either absolute or relative to the file
calling the macro) that points to a local Package (the path can be to any file
or subfolder within the Package folder).
The main module of the package identified by the `target` path will be used as the module to process and load within the calling notebook
## `import_block`
The second argument to the macro is supposed to be either a single `using`/`import` statement, or multiple statements wrapped inside a `begin...end` block.
These statements are used to select which parts of the loaded Package module have to be evaluated and which of its variables have te be imported within the notebook scope.
Most of these import statements are only relevant when called within Pluto, so
`@frompackage` simply avoid loading the target Package and deletes these import
statements **in most cases** when called oustide of Pluto. There is a specific
type of import statement (relative import) that is relevant and applicable also
outside of Pluto, so this kind of statement is maintained in the macro output
even outside of Pluto.
The macro respects the differentiation between `using` and `import` as in normal
Julia, so statements containing `using Module` without any variable name
specifier will import all the exported names of `Module`.
## Reload Button
When called within Pluto, the `@frompackage` macro also creates a convenient button that can be used to re-execute the cell calling the macro to reload the Package code due to a change in the source files.
This button can also be used to quickly navigate to the position of the cell
containing the macro by using **Ctrl+Click**.\
The reload button will change
appearance (getting a red border) when the macrocall incur in a runtime error either
due to incorrect import statement (like if a relative import is used without
a proper target) or due to an error encountered when loading the package code.
Here is a short video showing the reload button. The window on the left has opened the [specific_imports1.jl](https://github.com/disberd/PlutoDevMacros.jl/blob/8e481f552fdce1562cc9e45970cb11e8b54faa71/test/TestPackage/src/specific_imports1.jl) notebook, while the one on the right has the [specific_imports2.jl](https://github.com/disberd/PlutoDevMacros.jl/blob/8e481f552fdce1562cc9e45970cb11e8b54faa71/test/TestPackage/src/specific_imports2.jl) one.
Both are included in the TestPackage using for tests and defined in [test/TestPackage/src/TestPackage.jl](https://github.com/disberd/PlutoDevMacros.jl/blob/f7b2bbf3a89ca677ab1765a2d4fcb3a1600d66f6/test/TestPackage/src/TestPackage.jl)
```@raw html
<video controls=true>
<source src="https://user-images.githubusercontent.com/12846528/236453634-c95aa7b2-61eb-492f-85f5-6539bbb714d5.mp4" type="video/mp4">
</video>
```
| PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 974 | # Customize Macro Settings
The macro also allows to override default settings similar to how one skip lines in the package, using a custom `@settings` block as:
```julia
@fromparent begin
@settings setting1 = val1 setting2 = val2
import *
end
```
or alternatively:
```julia
@fromparent begin
@settings begin
setting1 = val1
setting2 = val2
end
import *
end
```
Only assignments are supported inside the `@settings` block and only primitive values can be used as `val`, i.e. anything that is parsed as an `Expr` as macro argument is not a valid `val`.
These are the supported settings:
## `SHOULD_PREPEND_LOAD_PATH`
`Bool` value that **defaults to `false`**.
This specifies whether the active environment added to the `LOAD_PATH` by the macro should go to the end or to the front of the `LOAD_PATH`. In some cases it can be useful to have the custom environment at the beginning of the LOAD_PATH for the purpose of locating packages. | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 8449 | # Supported import statements
The macro supports 4 different types of import statements:
- Relative Imports
- Imports from the Package module
- Import from the Parent module (or submodule)
- Import from the Package dependencies (direct or indirect).
which are explained in more details in their respective section
All of them also allow the following (*catch-all*) notation `import
Module: *`, which imports within the notebook all the variables that are created
or imported within `Module`. This is useful when one wants to quickly import all the names defined in `Module` for testing without requiring to either:
- export all names in the definition of `Module`
- explicitly import each name using the `import Module: name1, name2, ...` synthax
**Each import statement can only contain one module**, so statements like
*`import Module1, Module2` are not supported. In case multiple imports are
*needed, use multiple statements within a `begin...end` block.
## Relative Imports
Relative imports are the ones where the module name starts with a dot (.).
These are mostly relevant when the loaded module contains multiple submodules.\
**Relative import statements are also produced when the macro is called from Pluto**.
!!! note
Relative imports are mostly useful when creating packages with notebooks as building blocks (i.e. notebooks that are *included* within the local package module)\
\
While _catch-all_ notation is supported also with relative imports (e.g. `import ..SiblingModule: *`), the extraction of all the names from the desired relative module requires loading and inspecting the full Package module and is thus only functional inside of Pluto.\
**A relative-import with catch-all notation is deleted when @frompackage is called outside of Pluto**.
## Imports from Package module
These are all the import statements that have the name `PackageModule` or `^` as the
first identifier, e.g.:
- `using PackageModule.SubModule`
- `import PackageModule: varname`
- `import PackageModule.SubModule.SubSubModule: *`
These statements are
processed by the macro and transformed so that `PackageModule` actually points to
the module that was loaded by the macro.
The alternative notation `^` can also be used to represent the `PackageModule`, so one can write the two expressions below interchangeably
```julia
@fromparent import PackageModule: var_name
@fromparent import ^: var_name
```
This is to avoid triggering the Pkg statusmark within Pluto which always appears when a valid name of a package is typed (`^` is not valid so it doesn't create the status mark). See image below:

## Imports from Parent module (or submodule)
These statements are similar to the previous (imports from Package module) ones, with two main difference:
- They only work if the `target` file is actually a file that is included in the loaded Package, giving an error otherwise
- `ParentModule` does not point to the loaded Package, but the module that contains the line that calls `include(target)`.
If `target` is loaded from the Package main module, and not from one of its submodules, then `ParentModule` will point to the same module as `PackageModule`.
### Catch-All
A special kind parent module import is:
```julia
import *
```
which is equivalent to:
- `import ParentModule: *` if the `target` file provided to `@frompackage`/`@fromparent` **is** a file *included* in the target Package.
- This tries to reproduce within the namespace of the calling notebook, the namespace that would be visible by the notebook file when it is loaded as part of the Package module outside of Pluto.
- `import PackageModule: *` if the `target` file provided to `@frompackage`/`@fromparent` **is not** a file *included* in the target Package.
## Imports from Package dependencies
It is possible to to import direct (or indirect) dependencies of the target
Package from within the `@frompackage` macro. Direct dependencies are the ones
directy listed within the `[deps]` section of the `Project.toml`. Indirect
dependencies are instead all the packages within the Package's `Manifest.toml`
which are not direct dependencies. To import a package dependency from the
`@frompackage` macro, one must prepend the package name with `>.`, so for
example if one wants to load the `BenchmarkTools` package from the macro,
assuming that it is indeed a dependency of the target package, one can do:
```julia
@frompackage target begin
using >.BenchmarkTools
end
```
This modification is necessary when trying to use `@frompackage` in combination with the Pluto PkgManager, as explained in [Issue 10](https://github.com/disberd/PlutoDevMacros.jl/pull/10).
These kind of statements (import/using from Dependencies) are also supported
both inside and outside Pluto. **Outside of Pluto, only direct dependencies are
supported** (as that is how julia works) which means that the example code above
will effectively translate to `using BenchmarkTools` both inside and outside of
Pluto if BenchmarkTools is a direct dependency.
!!! note
These kind of statements can not be used in combination with the `catch-all` imported name (*).\
\
Imports from package dependencies are useful when trying to combine `@frompackage` with the integrated Pluto PkgManager. In this case, is preferable to keep in the Pluto notebook environment just the packages that are not also part of the target/loaded Package environment, and load the eventual packages that are also in the environment of the loaded Package directly from within the `@frompackage` `import_block`.\
\
Doing so minimizes the risk of having issues caused by versions collision between dependencies that are shared both by the notebook environment and the loaded Package environment. Combining the use of `@frompackage` with the Pluto PkgManager is a very experimental feature that comes with significant caveats. Please read the [related section](#use-of-fromparentfrompackage-with-pluto-pkgmanager) at the end of this README
## Re-export `using` names with Catch-All
Prior to version v0.7.3 of PlutoDevMacros, the catch-all import would not allow to automatically import names in the scope of the parent/package module that were added via `using` statements.
See [Issue 11](https://github.com/disberd/PlutoDevMacros.jl/issues/11) for more details on the reasons.
This meant that to effectively have access to all of the names in the parent/package scope, the statement `@fromparent import *` would not be sufficient.
If for example you had `using Base64` at the top of your module, to effectively have access to also the names of the `Base64` stdlib, you would have to call the macro as follows:
```julia
@fromparent begin
import *
using >.Base64
end
```
Since v0.8.0 of PlutoDevMacros, the automatic inclusion of names exposed via `using` statements is the default behavior when doing `catch-all` imports.
!!! note
Since this behavior now brings by default many more names into scope, a new functionality in 0.8 is a check that names in the target packages do not clash with existing names in the Pluto module that is calling `@frompackage`. Once a clash is identified (i.e. two different objects with the same name are defined in both the Pluto module and the target package), the specific clashed name will not be brought into scope by `@frompackage` and a warning will be issued.
\
\
You can see this warning for example in the test notebook at [test/TestUsingNames/test_notebook2.jl](https://github.com/disberd/PlutoDevMacros.jl/tree/master/test/TestUsingNames/test_notebook2.jl), where the name `:clash_name` is explicitly given to different values both in the target and calling modules, and results in the following warning: 
If one wants to revert back to the previous version where only names effectively defined within the target module (or explicitly imported with `import OtherPackage: x`) would be brought into the Pluto module's scope, it is sufficient to prepend the `@exclude_using` macro to the _catch-all_ import statement like so:
```julia
@fromparent @exclude_using import *
```
This statement can be used alone or coupled with other valid import statements within a `begin ... end` block. | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 2073 | # Introduction
The main functionality provided by PlutoDevMacros is the possibility of loading local packages within a Pluto notebook without requiring to activate a local environment (and thus deactivate the Pluto package manager).
This functionality is implemented inside the `FromPackage` submodule of `PlutoDevMacros` and accessed throught the [`@fromparent`](@ref) or [`@frompackage`](@ref) macros.
!!! note
Both [`@fromparent`](@ref) and [`@frompackage`](@ref) are exported by `PlutoDevMacros` itself without requiring to explicitly use `FromPackage`.
While the [`@fromparent`](@ref) macro was initially developed in order to facilitate creating Julia packages using Pluto notebooks as building blocks, in its current implementation it helps a lot with prototyping and testing during local package development, even when creating normal packages not relying on Pluto notebooks as building blocks.
This macro allows in fact to load the module of a local package within a running Pluto notebook and permits to easily reload the local code upon request similar to a `Revise`-based workflow but with a few notable advantages:
- Package code can be re-evaluated correctly without requiring a julia restart even when re-defining structs or constants
- Local code reload, triggered manually via a floating button in the Pluto notebook, automatically triggers execution of all dependent cells, simplifying the process of testing changes of code on specific runtime paths
- Possibilty of adding packages to the notebook environment which are not dependencies of the local package, very useful for testing plotting or benchmarking of the local package code without having to put the related packages in either the global or package-local environment
- Support for the package extensions functionality added in julia 1.9, which together with the point on notebook environment above simplify the testing and development of extensions on the local package under development.
More details on the synthax and functionality of these macros is given in the following sections. | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 3178 | # Package Extensions
The `@frompackage` macro supports [package extensions](https://pkgdocs.julialang.org/v1.9/creating-packages/#Conditional-loading-of-code-in-packages-(Extensions)) defined within the packages loaded by the macro within the [`import_block`](../basic_use.html#import_block)
We specify two possible types of extensions within the context of `@frompackage`:
- **Direct Extensions**: These are extensions that are defined directly within the local `target` package loaded by the macro
- **Indirect Extensions**: These are extensions that are not defined by the `target` package directly, but by one of its dependencies.
## Direct Extensions
An example of a scenario with Direct Extensions is the one of the `TestDirectExtension` package found in the [test/TestDirectExtension](https://github.com/disberd/PlutoDevMacros.jl/tree/master/test/TestDirectExtension) folder and whose Project.toml is replicated below:
```toml
name = "TestDirectExtension"
uuid = "f446dfe5-66ce-4684-9abf-53561df9f9a0"
authors = ["Alberto Mengali <[email protected]>"]
version = "0.1.0"
[deps]
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
[weakdeps]
PlutoPlotly = "8e989ff0-3d88-8e9f-f020-2b208a939ff0"
Example = "7876af07-990d-54b4-ab0e-23690620f79a"
[extensions]
PlutoPlotlyExt = "PlutoPlotly"
Magic = "Example"
```
We can see that this package defines two extensions `PlutoPlotlyExt` and `Magic` that depend on the `PlutoPlotly` and `Example` packages respectively.
When the `TestDirectExtension` module is loaded within a Pluto notebook using the `@frompackage` or `@fromparent` macro, the module is not associated to a package UUID so julia does not know that the `Magic` extension has to be loaded whenever the `Example` package is loaded into the notebook.
To still support loading the extension code in this situation, the macro will *eval* the `Magic` module definition within the `TestDirectExtension` module if the `Example` package is defined within the notebook environment.
This allows prototyping and testing package extensions during their development exploiting the `@frompackage` macro.
Check the relevant example notebook located at [test/TestDirectExtension/test_extension.jl](https://github.com/disberd/PlutoDevMacros.jl/blob/master/test/TestDirectExtension/test_extension.jl) for more clarity.
## Indirect Extensions
Indirect extensions are mostly handled correctly by julia directly, but some issues may arise when a package added to the notebook environment triggers the load of an extension of a package loaded as a [direct dependency](../import_statements.html#Imports-from-Direct-dependencies) within the [`import_block`](../basic_use.html#import_block).
If the notebook package triggering the extension is loaded **after** the direct dependency has already been loaded by the `@frompackage` macro, an extension compilation error is generated because the direct dependency is not in the `LOAD_PATH` (See the [Use with PlutoPkg](../use_with_plutopk.md) section)
The way to solve this issue is to simply reload the local code by using the re-executing the cell containing the macro call. This will trigger a call to `Base.retry_load_extensions`. | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 2784 | # Skipping Package Parts
The macro also allows to specify parts of the source code of the target Package that have to be skipped when loading it within Pluto. This is achieved by adding a statement inside the `import_block` like the following:
```julia
@skiplines lines
```
The `@skiplines` macro is not defined within the package, it's just processed during the parsing of the `@frompackage` macro.
`lines` is expected to either be a single String, or a group of Strings within a `begin ... end` block.
Each string represent a part of a file that has to be skipped, with the following formats being supported:
1. `filpeath:::firstline-lastline`: This specifies that all the lines between `firstline` and `lastline` (extrema included) in the file present at `filepath` must be skipped when loading the Package module
2. `filepath:::line`: Like 1. but a single line is skipped
3. `filepath`: Like 1. but the full file located at `filepath` is ignored when loading the module
4. `line`: Ignores line number `line` in the Package entry point (i.e. the file at `src/PackageName.jl` in the folder of PackageName)
5. `firstline-lastline`: Like 4., but ignores a range of lines.
In all of the examples above `filepath` can be provided as either an absolute path, or as a relative path **starting from the `src` subfolder of the Package folder**
The functionality of skipping lines is only used when `@frompackage` is called inside Pluto.
When calling the macro from outside of Pluto, the eventual statement with `@skiplines` is discarded.
## Example
For an example consider the source file of the `TestPackage` module defined at [test/TestPackage/src/TestPackage.jl](https://github.com/disberd/PlutoDevMacros.jl/blob/f7b2bbf3a89ca677ab1765a2d4fcb3a1600d66f6/test/TestPackage/src/TestPackage.jl), whose contents are shown below:

The notebook called `out_notebook.jl` located in the main folder of `TestPackage` gives an example of how to use the new functionality.
The following call to `@fromparent` is used to import the `TestPackage` in the notebook's workspace while removing some of the code that is present in the original source of `TestPackage`:
```julia
@fromparent begin
import TestPackage
@skiplines begin
"11" # Skip line 11 in the main file TestPackage.jl.
"test_macro2.jl" # This skips the whole file test_macro2.jl
"22-23" # This skips from line 21 to 22 in the main file, including extrema.
"test_macro1.jl:::28-10000" # This skips parts of test_macro1.jl
end
end
```
The output of the notebook is also pasted here for reference:
 | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.9.0 | 72f65885168722413c7b9a9debc504c7e7df7709 | docs | 2725 | # Use with PlutoPkg
The macro evaluates the code of the local `target` package within the Pluto notebook workspace. For this to work, the notebook needs to have access to all the packages that are loaded within the `target` package.
Normally, this is achieved by either:
- Adding the dependencies directly to the notebook environment
- Activating the environment of the local package within the notebook
The first option risk polluting the notebook environment with a lot of packages that are not directly used within the notebook, while the second option deactivate the integrate PlutoPkg which handles package dependencies.
To address these issues, the macro currently adds the `target` package environment to the [`LOAD_PATH`](https://docs.julialang.org/en/v1/manual/code-loading/#code-loading) during package code evaluation in the notebook workspace.
This approach gives the flexibility of loading arbitrary local package code without requiring to modify the notebook environment itself.
!!! note
For this to work, the environment of the local `target` package needs to be instantiated. The macro will actually errors if this is not the case.
The macro tries to catch all possible exceptions that are thrown either during macro compilation or during the resulting expression evaluation (using a try catch) to correctly clean `LOAD_PATH` after the macro is executed.
This approach may cause issues in case the notebook and the package environment share some dependencies at different version. In this case, the one that was loaded first is the actual version used within the notebook (and within the Package module when loaded in the notebook).
The macro adds the local package environment at the second position in the
LOAD_PATH (so after the notebook environment). This should minimize the potential
issues as the notebook environment is parsed first to find the packages.
This does not prevent the case when a package (for example DataFrames) that is only used by the loaded package, is also added to the notebook after the target Package has been loaded.
In this case, the version of DataFrames used by the notebook will be the version loaded by Package, and not the one installed in the notebook environment.
Upon restarting the notebook, the situation will flip. Since now DataFrames is in the notebook environment, the notebook version will be loaded both in the notebook and in the Package module, potentially causing issues with the PackageCode if it was depending on a different version of DataFrames.
**Due to the issues just mentioned, use the macro knowing that it might break if you want to use the Pluto PkgManager without manually adding all depending packages to the notebook environment**. | PlutoDevMacros | https://github.com/disberd/PlutoDevMacros.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 4221 | ##########################################################################
# brbase.jl Meinolf Geck and Sungsoon Kim
#
# Copyright (C) 1996 Equipe des groupes finis, Universite Paris VII
#
#
# Example: If W=coxgroup(:type,rank) is a Coxeter group then the command
# `BaseBruhat(W)' adds a component `incidence' to `W' which contains for
# each element in `W.elts' the associated boolean vector defined above.
# If one is only interested in the set of bi-grassmannians and the set of
# base elements (especially for large groups), one should use the
# commands:
# gap> W := CoxeterGroup( \"F\", 4 ); # for example
# gap> bg := bi_grassmannians( W );
# gap> base := FindBaseBruhat( W, bg );
#
# written MG, SK, Oct 1996
############################################################################
"""
`bi_grassmannians(W)`
returns the set of bi-grassmannians in the Coxeter group `W`, that is those
elements whose right and left descent sets are both of length 1. The result
is a matrix `bi` such that `bi[i,j]` contains those elements with
leftdescents [i] and rightdescents [j].
"""
function bi_grassmannians(W)
toM(map(1:ngens(W)) do k
bi=[empty(gens(W)) for i in 1:ngens(W)]
ea=[one(W)]
while true
en=empty(gens(W))
for a in ea
for r in 1:ngens(W)
if !isleftdescent(W,inv(a),r)
x=a*W(r)
if !(x in en) && !any(j->j!=k && isleftdescent(W,x,j),1:ngens(W))
push!(en,x)
end
end
end
end
for i in en
l=leftdescents(W,inv(i))
if length(l)==1 push!(bi[only(l)],i) end
end
ea=en
if isempty(en) break end
end
# InfoChevie("#I ",length.(bi),"\n")
bi
end)
end
"""
`BaseBruhat(W)`
The base of a poset relation is defined to be the set of all elements w β W
which cannot be obtained as the supremum of a subset not containing w.
Denote the base by B. Then every element w in W can be coded by the boolean
vector (e_b)_{b in B} recording the relation b<=w. The Bruhat order on W is
given by the subset relation on such vectors. A `Dict` named
`W.bruhatincidence` records such vectors. The key for `wβ W` is the image
of `inclusiongens(W)` by `w` and the value is the vector `e_b`.
The bases for all finite Coxeter groups are determined in the article
'Bases for the Bruhat--Chevalley order on all finite Coxeter groups'.
"""
function BaseBruhat(W)
get!(W,:bruhatincidence)do
bg=bi_grassmannians(W)
mins=[]
InfoChevie("#I ")
for r in axes(bg,1)
for s in axes(bg,2)
InfoChevie("\t",length(bg[r,s]))
l1=bg[r,s]
if !isempty(l1)
inz=fill(0,length(l1),length(l1))
for i in eachindex(l1)
for j in 1:i if bruhatless(W,l1[j],l1[i]) inz[i,j]=1 end end
end
for z in eachindex(l1)
leqz=filter(j->inz[z,j]==1,1:z)
leqz=setdiff(1:length(l1),leqz)
for i in leqz
z1=filter(<=(i),leqz)
if sum(inz[i,z1])==1 && !(bg[r,s][i] in mins)
push!(mins,bg[r,s][i]);
end
end
end
if all(==(1),inz[:,1]) push!(mins,bg[r,s][1]) end
end
end
InfoChevie("\n#I ")
end
InfoChevie("No of base elements = ",length(mins),"\n")
p=sortPerm(map(i->length(W,i),mins))
base=invpermute(mins,inv(p))
InfoChevie("#I Calculating incidence matrix...")
incidence=Dict{Vector{Int},BitVector}()
for w in elements(W)
incidence[inclusiongens(W).^w]=BitVector(bruhatless.(Ref(W),base,w))
end
InfoChevie("\n")
incidence
end
end
function CoxGroups.bruhatless(W,x,y)
if x==one(W) return true end
d=length(W,y)-length(W,x)
if haskey(W,:bruhatincidence)
println("hello")
if d<0 return false end
iy=W.bruhatincidence[inclusiongens(W).^y]
ix=W.bruhatincidence[inclusiongens(W).^x]
return iy==iy.|ix
end
while d>0
i=firstleftdescent(W,y)
s=W(i)
if isleftdescent(W,x,i)
if x==s return true end
x=s*x
else d-=1
end
y=s*y
end
return x==y
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 6528 | # TL.jl from TL.g (C) Francois Digne and Jean Michel 2014
#
# functions for working with elements of a
# Temperley-Lieb algebra of a Coxeter group
#
# we implement unequal parameter TL algebras for non-simply laced coxeter groups
@GapObj struct TL{C,TW}
W::TW
parameter::Vector{C}
x::Union{C,Nothing}
end
function TL(W,p;x=nothing)
if p isa Tuple
para=fill(p[1],ngens(W))
s=simple_reps(W,1:ngens(W))
C=sort(unique(s))
for i in 1:ngens(W) para[i]=p[findfirst(==(s[i]),C)] end
else para=fill(p,ngens(W))
end
TL(W,para,x,Dict{Symbol,Any}())
end
Groups.Group(H::TL)=H.W
HeckeAlgebras.coefftype(H::TL{C}) where C=C
abstract type TLElt{P,C} end # P=typeof(keys) [Perms] C typeof(coeffs)
TL(h::TLElt)=h.TL # algebra of element
struct TLTElt{P,C,TH}<:TLElt{P,C}
d::ModuleElt{P,C}
TL::TH
end
basename(h::TLTElt)="tl"
function IsFullyCommutative(W,w)
N=refls(W,inversions(W,reverse(word(W,w))))
c(p)=isone(comm(p[1],p[2])) ? one(W) : p[1]^p[2]
isempty(intersect(N,c.(cartesian(N,N))))
end
tlbasis(H::TL)=(x...)->x==() ? one(H) : tlbasis(H,x...)
tlbasis(H::TL,w::Vararg{Integer})=tlbasis(H,H.W(w...))
tlbasis(H::TL,w::Vector{<:Integer})=tlbasis(H,H.W(w...))
tlbasis(H::TL,h::TLTElt)=h
tlbasis(H::TL,h::TLElt)=tlbasis(h)
tlbasis(H::TL,w)=TLTElt(ModuleElt(w=>one(coefftype(H));check=false),H)
Base.one(H::TL)=tlbasis(H,one(H.W))
Base.:^(a::TLElt, n::Integer)=n>=0 ? Base.power_by_squaring(a,n) :
Base.power_by_squaring(inv(a),-n)
function Base.:*(x::TLTElt{P,C},y::TLTElt{P,C})where {P,C}
H=TL(x)
W=Group(H)
res=zero(ModuleElt{P,C})
for (i,(px,cx)) in enumerate(pairs(x.d))
temp=y.d*cx
xi=inv(px)
while xi!=one(W)
s=firstleftdescent(W,xi)
es=W(s)
xi=es*xi
temp1=Pair{P,C}[]
for (j,(e,c)) in enumerate(pairs(temp))
if isleftdescent(W,e,s)
q=H.parameter[s]
push!(temp1,e=>(q+1)*c)
else phie=inversions(W,word(W,e))
p=findfirst(x->roots(W,x)-roots(W,s) in roots(W,phie),phie)
# on a une relation s2=k*s2*s1*s2 si dans N(s2s1s2) il y a
# 2 racines dont la somme est une racine. Cette relation intervient
# dans es*e ssi dans N(es*e) ... ou encore ssi dans N(e) il y a une
# racine dont la difference avec W.roots[s] est une racine.
if isnothing(p) push!(temp1,es*e=>c)
else r=findfirst(==(roots(W,phie[p])-roots(W,s)),roots(W))
w=refls(W,r)*e
q=H.parameter[s]
if IsFullyCommutative(W,w)
if cartan(W,s,r)==-2
Q=H.parameter[simple_reps(W,r)]
coeff=(q+Q)*c
elseif cartan(W,s,r)==-1
coeff=q*c
elseif cartan(W,s,r)==-3
Q=H.parameter[simple_reps(W,r)]
coeff=(q+Q+GetRoot(q*Q))*c
else coeff=H.x*c
end
push!(temp1,w=>coeff)
else
w1=with_inversions(W,phie[1:findfirst(==(r),phie)-1])
w2=inv(w1)*refls(W,r)*e
tlw1=TLTElt(H,ModuleElt(w1=>one(coefftype(H))))
tlw2=TLTElt(H,ModuleElt(w2=>one(coefftype(H))))
println("recursive case: ",s,"*",BraidMonoid(W)(e),
" tl(w1)=",tlw1," tl(w2)=",tlw2)
w=tlw1*tlw2
if cartan(W,s,r)==-2
Q=H.parameter[simple_reps(W,r)];
w*=(q+Q)*c
elseif cartan(W,s,r)==-1
w*=q*c
elseif cartan(W,s,r)==-3
Q=H.parameter[simple_reps(W,r)];
w*=(q+Q+root(q*Q))*c
else w*=H.x*c
end
append!(temp1,pairs(w))
end
end
end
end
temp=ModuleElt(temp1)
end
res+=temp
end
TLTElt(res,H)
end
#F AlphaInvolution(h)
## The involution on TL Elements defined by T_w->T_{w^{-1}}
## (and same in other bases)
Garside.Ξ±(h::TLTElt)=TLTElt(ModuleElt(inv(p)=>c for (p,c) in h.d),TL(h))
function Base.show(io::IO, h::TLElt)
function showbasis(io::IO,e)
w=word(TL(h).W,e)
res=basename(h)
if hasdecor(io) res*=isempty(w) ? "." : "_"*joindigits(w,"{}";always=true)
else res*="("*join(w,",")*")"
end
fromTeX(io,res)
end
show(IOContext(io,:showbasis=>showbasis),h.d)
end
## The function below is made member of CoxeterTLAlgebraOps just to hide it
## it computes T(w^-1)^-1
#CoxeterTLAlgebraOps.getTinv:=function(H,w)local p,i,q,W;
# Error("not implemented");
# W:=Group(H);
# if not IsBound(H.elts) then H.elts:=[W.identity]; fi;
# if not IsBound(H.Tinv) then H.Tinv:=[Basis(H,"t")()];fi;
# p:=Position(H.elts,w);
# if p=false then Add(H.elts,w);p:=Length(H.elts);fi;
# if not IsBound(H.Tinv[p]) then
# i:=FirstLeftDescending(W,w);
# q:=H.parameter[i];
# H.Tinv[p]:=Basis(H,"t")([W.identity,W.reflections[i]],
# [(q[1]+q[2])/(q[1]*q[2]),-1/(q[1]*q[2])])*
# H.operations.getTinv(H,W.reflections[i]*w);
# fi;
# return H.Tinv[p];
#end;
#
#Matrixtltot:=function(H)local W,l,t,tl,M;
# if not IsBound(H.tltot) then
# W:=H.group;
# l:=Filtered(Elements(W),x->IsFullyCommutative(W,x));
# SortParallel(List(l,x->CoxeterLength(W,x)),l);
# t:=Basis(H,"t"); tl:=Basis(H,"tl");
# H.elts:=l;
# M:=List(List(l,x->tl(t(x))),x->List(l,y->Coefficient(x,y)));
# H.tltot:=M^-1;
# fi;
# return H.tltot;
#end;
#
##############################################################################
###
### An exemple of CreateTLBasis: create the 'T' basis for
### CoxeterTLAlgebraOps (i.e. all TL algebras for Coxeter groups...)
###
#CreateTLBasis("t",rec(
# tl:=function(x) local W,tl;
# tl:=Basis(x.TL,"tl");
# W:=x.TL.group;
# return Sum([1..Length(x.coeff)],function(i)
# if x.elm[i]=() then return x.coeff[i]*tl();
# else return x.coeff[i]*Product(CoxeterWord(W,x.elm[i]),j->tl(j)-tl());
# fi;
# end);
# end,
# t:=function(x) local tl,H,M;H:=x.TL;tl:=Basis(H,"tl");M:=Matrixtltot(H);
# return Sum([1..Length(x.coeff)],i->x.coeff[i]*TLEltOps.Normalize(
# TLEltOps.MakeRec(H,"t",ShallowCopy(H.elts),
# ShallowCopy(M[Position(H.elts,x.elm[i])]))));
# end,
# inverse:=function(h)
# if Length(h.elm)<>1 then Error("inverse implemented only for single t_w");fi;
# return h.coeff[1]^-1*TL(h).operations.getTinv(TL(h),h.elm[1]^-1);
# end),CoxeterTLAlgebraOps);
#
#CreateTLBasis("tl",rec(tl:=x->x) # method to convert to tl
#,CoxeterTLAlgebraOps);
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 768 | using Documenter, Chevie
makedocs(sitename="Chevie.jl documentation",
modules=[Chevie],
format = Documenter.HTML(
# Use clean URLs, unless built as a "local" build
prettyurls = !("local" in ARGS),
#canonical = "https://juliadocs.github.io/Documenter.jl/stable/",
collapselevel=1
),
pages=[
"index.md",
"Infrastructure"=>[
"format.md",
"symbols.md",
"nf.md"],
"Reflection groups"=>[
"permroot.md",
"coxgroups.md",
"weyl.md",
"chars.md"],
"Hecke algebras"=>[
"hecke.md",
"kl.md",
"algebras.md"],
"garside.md",
"Reductive groups"=>[
"semisimple.md",
"cosets.md",
"sscoset.md",
"uch.md",
"ct.md"],
"Eigenspaces"=>[
"eigen.md",
"dseries.md"],
"Unipotent elements"=>[
"ucl.md",
"urad.md"],
"gendec.md",
"dict.md" ]
)
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 16543 | ChevieDict::Dict{String,String}=Dict(
"AbelianGenerators"=>"abelian_gens",
"AbelianInvariants"=>"abelian_invariants",
"Add"=>"push!",
"Affine"=>"affine",
#AffineRootAction
"AlgebraicCentre"=>"algebraic_center",
"AlmostCharacter"=>"almost_character or almostchar",
"Append"=>"append!",
"ApplyFunc(f,l)"=>"f(l...)",
"Arrangements"=>"arrangements",
"AsReflection"=>"reflection",
"AsFraction"=>"fraction",
"AsRootOfUnity"=>"Root1",
"AssociatedPartition"=>"conjugate_partition",
"AsymptoticAlgebra"=>"AsymptoticAlgebra",
"AsWord"=>"word",
"BadPrimes"=>"badprimes",
"BaseIntMat"=>"baseInt",
"Basis"=>"basis",
"BetaSet"=>"Ξ²set",
"BigCellDecomposition"=>"bigcell_decomposition",
"Binomial"=>"binomial",
"BipartiteDecomposition"=>"bipartite_decomposition",
"BlocksMat"=>"blocks",
"Braid"=>"BraidMonoid",
"BraidMonoid"=>"BraidMonoid",
"BraidRelations"=>"braid_relations",
"BrieskornNormalForm"=>"Brieskorn_normal_form",
"Bruhat"=>"bruhatless",
"BruhatPoset"=>"Poset",
"BruhatSmaller"=>"bruhatless",
"Catalan"=>"catalan",
"CartanMat(\"A\",5)"=>"cartan(:A,5)",
"CartanMatrix"=>"cartan",
"Cartesian"=>"cartesian",
"CartesianAt"=>"lin2cart",
"CartanMatFromCoxeterMatrix"=>"cartan",
"CentralIdempotents"=>"centralidempotents",
"Centralizer"=>"centralizer",
"CentralizerGenerators"=>"centralizer_gens",
"CharFFE"=>"char",
#CharName
"CharNames"=>"charnames",
"CharParams(W)"=>"charinfo(W).charparams",
"CharRepresentationWords"=>"traces_words_mats",
"CharTable"=>"CharTable",
"CheckHeckeDefiningRelations"=>"isrepresentation",
"ChevieClassInfo"=>"classinfo",
"ChevieCharInfo"=>"charinfo",
"ClassName"=>"see ClassNames",
"ClassTypes"=>"ClassTypes",
"Coefficient(p,i)"=>"p[i]",
"Collected"=>"tally",
"CollectBy(l,f)"=>"collectby(f,l)",
"Comm"=>"comm or commutator",
"Combinations"=>"combinations",
"ComplementIntMat"=>"complementInt",
"ComplexConjugate"=>"conj",
"ComplexReflectionGroup"=>"complex_reflection_group or crg",
"Compositions"=>"compositions",
"Concatenation(s::Vector)"=>"vcat(s...)",
"ConcatenationString(s...)"=>"prod([s...])",
"ConjugacyClasses"=>"conjugacy_classes",
"ConjugacySet(b[,F][,type])"=>"conjcat(b[,F],ss=type).obj",
"ConjugatePartition"=>"conjugate_partition",
"CoxeterCoset"=>"spets",
"CoxeterSubCoset"=>"subspets",
"CoxeterElements(W[,l])"=>"elements(W[,l])",
"CoxeterGroup(\"A\",5)"=>"coxeter_group(:A,5) or coxgroup",
"CoxeterGroupByCoxeterMatrix(C)"=>"coxeter_group(cartan(C)) or coxgroup",
"CoxeterGroupByCartanMatrix(C)"=>"coxeter_group(C) or coxgroup",
"CoxeterGroupHyperoctaedralGroup(n)"=>"coxeter_hyperoctaedral_group(n) or coxhyp",
"CoxeterGroupSymmetricGroup(n)"=>"coxeter_symmetric_group(n) or coxsym",
"CoxeterLength(W,w)"=>"length(W,w)",
"CoxeterMatrix"=>"coxmat or coxeter_matrix",
"CoxeterMatrixFromCartanMat"=>"coxmat or coxeter_matrix",
"CoxeterNumber"=>"coxnum or coxeter_number",
"CoxeterWord(W,w)"=>"word(W,w)",
"CoxeterWords(W[,l])"=>"word.(Ref(W),elements(W[,l]))",
"CuspidalPairs"=>"cuspidal_data",
"CuspidalUnipotentCharacters(W[,d])"=>"cuspidal(UnipotentCharacters(W)[,d])",
"CyclotomicPolynomial(R,i)"=>"cyclotomic_polynomial(i)",
"Cycle"=>"orbit",
"Cycles"=>"orbits",
"CyclotomicModP(c,p)"=>"FFE{p}(c)",
"CycPol"=>"CycPol",
"CycPolFakeDegreeSymbol"=>"fegsymbol",
"CycPolGenericDegreeSymbol"=>"gendeg_symbol",
"CycPolUnipotentDegrees(W)"=>"CycPoldegrees(UnipotentCharacters(W))",
"DecomposedMat"=>"diagblocks",
"DefectSymbol"=>"defectsymbol",
"Degree(p)"=>"degree(p)",
"DegreeFFE"=>"degree",
"M::GarsideMonoid.delta"=>"M.Ξ΄",
"DeligneLusztigCharacter"=>"deligne_lusztig_character or dlchar",
"DeligneLusztigLefschetz"=>"deligne_lusztig_leftschetz or dlleftschetz",
"DescribeInvolution"=>"describe_involution",
"DetPerm(W)"=>"perm(detPerm(W))",
"DiaconisGraham"=>"diaconis_graham",
"DiagonalMat"=>"Diagonal or cat",
"DiagonalOfMat"=>"diag",
#DifferenceMultiSet
"Digits"=>"digits",
"Dimension"=>"dim or dimension",
#Discriminant
"DistinguishedParabolicSubgroups"=>"distinguished_parabolics",
"Dominates"=>"dominates",
"DrinfeldDouble"=>"drinfeld_double",
"Drop"=>"deleteat!",
#Dual
"DualBraid"=>"DualBraidMonoid",
"DualBraidMonoid"=>"DualBraidMonoid",
"EigenspaceProjector"=>"eigenspace_projector",
"EigenvaluesMat"=>"eigmat",
"Elements"=>"elements",
"ElementWithInversions(W,l)"=>"with_inversions(W,l)",
"EltBraid"=>"image",
"EltWord(W,w)"=>"W(w...)",
"ER"=>"root",
"ExteriorPower"=>"exterior_power",
"FactorizedSchurElement"=>"FactorizedSchurElement",
"FactorizedSchurElements"=>"FactorizedSchurElements",
"FakeDegree"=>"fakedegree",
"FakeDegrees"=>"fakedegrees",
"FamiliesClassical"=>"FamiliesClassical",
"Family"=>"Family",
"FamilyImprimitive"=>"family_imprimitive",
"Filtered(l,f)"=>"filter(f,l)",
"FiniteCoxeterTypeFromCartanMat(m)"=>"type_cartan(m)",
"FirstLeftDescending(W,w)"=>"firstleftdescent(W,w)",
"ForAll(l::list,f::function)"=>"all(f,l)",
"ForAny(l::list,f::function)"=>"any(f,l)",
"ForEachCoxeterWord(W,f)"=>"for w in W f(word(W,w)) end",
"ForEachElement(W,f)"=>"for w in W f(w) end",
"FormatTable"=>"showtable",
"Frobenius"=>"Frobenius",
"FullSymbol"=>"fullsymbol",
"FundamentalGroup"=>"fundamental_group",
"FusionAlgebra"=>"fusion_algebra",
"FusionConjugacyClasses"=>"fusion_conjugacy_classes",
"GaloisCyc"=>"galois",
"GarsideAlpha"=>"Ξ±",
"GarsideWords"=>"elements",
"GcdPartitions"=>"gcd_partitions",
"GcdRepresentation(x,y)"=>"gcdx(x,y)[2:3]",
"W.generators"=>"gens(W) or generators(W)",
"Length(W.generators)"=>"ngens(W) or number_of_generators(W)",
"List(l::list,f::function)"=>"map(f,l)",
"GenericOrder"=>"generic_order",
"GenericSign"=>"generic_sign",
"GetRoot"=>"root",
#GoodCoxeterWord
"GraphAutomorphisms"=>"graph_automorphisms",
"Hasse"=>"hasse",
"Hecke"=>"hecke",
"HeckeCharValues"=>"char_values",
#HeckeCharValuesGood
"HeckeCentralMonomials"=>"central_monomials",
"HeckeClassPolynomials"=>"class_polynomials",
"HeckeReflectionRepresentation"=>"reflection_representation or reflrep",
#HeckeSubAlgebra
"HermiteNormalFormIntegerMat"=>"hermite",
"HermiteNormalFormIntegerMatTransforms(m)"=>"hermite_transforms(m)",
"HighestPowerFakeDegrees(W)"=>"charinfo(W).B",
"HighestPowerFakeDegreeSymbol"=>"degree_fegsymbol",
"HighestPowerGenericDegrees(W)"=>"charinfo(W).A",
"HighestPowerGenericDegreeSymbol"=>"degree_gendeg_symbol",
"HighestShortRoot"=>"highest_short_root",
"KazhdanLusztigPolynomial"=>"KLPol",
"HyperplaneOrbits"=>"hyperplane_orbits",
"ICCTable"=>"ICCTable",
"Idempotents"=>"idempotents",
"Incidence"=>"incidence",
"IndependentLines"=>"independent_lines",
"IndependentRoots"=>"independent_roots",
"InducedLinearForm"=>"induced_linear_form",
"InductionTable"=>"induction_table",
"Inherit"=>"look at merge for hashes",
"Intersection"=>"intersect",
"IntermediateGroup"=>"intermediate_group",
"IntFFE"=>"Int",
"IntListToString"=>"joindigits",
"InvariantForm"=>"invariant_form",
"Invariants"=>"invariants",
"Inversions"=>"inversions",
"IsAbelian"=>"isabelian",
"IsAssociative"=>"isassociative",
"IsCyclic"=>"iscyclic",
"IsCycPol(p)"=>"p isa CycPol",
"IsFamily(f)"=>"f isa Family",
"IsFFE(x)"=>"x isa FFE",
"IsIsolated"=>"isisolated",
"IsJoinLattice"=>"isjoin_lattice",
"IsMeetLattice"=>"ismeet_lattice",
"IsLeftDescending(W,w,i)"=>"isleftdescent(W,w,i)",
"IsSubset(a,b)"=>"issubset(b,a)",
"IsParabolic"=>"isparabolic",
#IsNormalizing
#IsQuasiIsolated
"IsomorphismType"=>"isomorphism_type",
"IsUnipotentElement(x)"=>"x isa UnipotentElement",
"jInductionTable"=>"j_induction_table",
"JInductionTable"=>"J_induction_table",
"Join"=>"join",
"KroneckerProduct"=>"kron",
"LargestMovedPoint"=>"last_moved",
"last"=>"ans",
"LcmPartitions"=>"lcm_partitions",
"LeadingCoefficient(p)"=>"p[end]",
"LeftCell"=>"LeftCell",
"LeftCells"=>"left_cells",
"LeftDescentSet(W,w)"=>"leftdescents(W,w)",
"LeftDivisorsSimple"=>"left_divisors",
"LeftGcd"=>"leftgcd",
"LeftLcm"=>"leftlcm",
"M.LeftLcmSimples(x...)"=>"leftlcm(M,...)",
"LinearExtension"=>"linear_extension",
"List(l,f)"=>"map(f,l)",
"ListBlist(a,b)"=>"a[b]",
"ListPerm(p)"=>"perm(p)",
"List(ConjugacyClasses(G),Representative)"=>"classreps(G) or class_representatives(G)",
"LogFFE"=>"log",
"LongestCoxeterElement(W)"=>"longest(W)",
"LongestCoxeterWord(W)"=>"word(W,longest(W))",
"LoewyLength"=>"loewylength",
"LowestPowerFakeDegrees(W)"=>"charinfo(W).b",
"LowestPowerFakeDegreeSymbol"=>"valuation_fegsymbol",
"LowestPowerGenericDegrees(W)"=>"charinfo(W).a",
"LowestPowerGenericDegreeSymbol"=>"valuation_gendeg_symbol",
"Lusztigaw"=>"Lusztigaw",
"LusztigAw"=>"LusztigAw",
"LusztigInduction"=>"lusztig_induce",
"LusztigInductionTable"=>"lusztig_induction_table",
"LusztigRestriction"=>"lusztig_restrict",
"MappingPermListList"=>"mappingPerm",
"W.matgens"=>"reflection_representation(W) or reflrep",
"W.matgens[i]"=>"reflection_representation(W,i) or reflrep",
"MatStab"=>"stab_onmats",
"MatXPerm(W,p)"=>"reflection_representation(W,p) or reflrep",
"MatYPerm"=>"YMatrix",
"Maximum"=>"max or maximum",
"Minimum"=>"min or minimum",
"Mod1"=>"modZ",
"MovedPoints"=>"support",
"Mvp(\"x\")"=>"Mvp(:x)",
"W.N"=>"nref(W) or number_of_reflections(W)",
"W.Nhyp"=>"nhyp(W) or number_of_hyperplanes(W)",
"NrArrangements"=>"narrangements",
"NrCombinations"=>"ncombinations",
"NrConjugacyClasses"=>"nconjugacy_classes",
"NrDrinfeldDouble"=>"ndrinfeld_double",
"NrPartitions"=>"npartitions",
"NrPartitionsSet"=>"npartitions",
"NrPartitionTuples"=>"npartition_tuples",
"NrRestrictedPartitions"=>"npartitions",
"NullMat(m[,n])"=>"zeros(Int,m,m) resp. zeros(Int,m,n)",
"NullspaceIntMat"=>"lnullspaceInt",
"W.Nhyp"=>"number_of_hyperplanes(W) or nyp(W)",
"Number(l,f)"=>"count(f,l)",
"OnFamily(f,p::Perm)"=>"f^p",
"OnFamily(f,p::Int)"=>"galois(f,p)",
"OnMatrices"=>"onmats",
"OnSets"=>"onsets",
"OnTuples"=>"ontuples",
"OnPolynomials(m,p)"=>"p^m",
"W.orbitRepresentative"=>"simple_reps(W)",
"W.orbitRepresentativeElements[i]"=>"simple_conjugating(W,i)",
"OrderedPartitions"=>"compositions",
"OrderFFE"=>"order",
"OrderMod(n,m)"=>"order(Mod{m}(n))",
"W.OrdersGeneratingReflections"=>"ordergens(W) or orders_of_generators(W)",
"ParabolicClosure"=>"parabolic_closure",
"ParabolicRepresentatives"=>"parabolic_reps",
#ParabolicSubgroups
"PartBeta"=>"partΞ²",
"Partition"=>"partition",
"Partitions"=>"partitions",
"PartitionsSet"=>"partitions",
"PartitionTuples"=>"partition_tuples",
"PartitionTupleToString"=>"string_partition_tuple",
"PermCosetsSubgroup(H,W)"=>"D=vcat(reduced(H,W)...);map(s->Perm(reduced.(Ref(H),D.*s),D),gens(W))",
"PermListList(l1,l2)"=>"Perm(l1,l2)",
"PermList(v)"=>"Perm(v)",
"PermMatMat(m,n)"=>"Perm(m,n;dims=(1,2))",
"PermMatX"=>"PermX",
"PermMatY"=>"PermY",
"PermutationMat(p,dim)"=>"Matrix(p,dim)",
"PermutationOnClasses"=>"on_classes",
"PermutationOnCharacters"=>"on_chars",
"PermutationOnUnipotents"=>"on_unipotents",
"Permuted(v,p)"=>"invpermute(v,p)",
"PermutedByCols(m,p)"=>"invpermute(m,p;dims=2)",
#PoincarePolynomial
"Poset"=>"Poset",
"Position(l,x)"=>"findfirst(==(x),l)",
"PositionClass"=>"position_class",
"PositionCartesian(a,b)"=>"cart2lin(a,b)=LinearIndices(reverse(Tuple(a)))[reverse(b)...]",
"PositionDet"=>"charinfo(W).positionDet",
"PositionId"=>"charinfo(W).positionId",
"PositionRegularClass"=>"position_regular_class",
"Positions(l,x)"=>"findall(==(x),l)",
"PositionProperty(l,f)"=>"findfirst(f,l)",
"PositionsProperty(l,f)"=>"findall(f,l)",
"PowerRoot(x,y)"=>"(Root1(;r=x)^y).r",
"Presentation"=>"Presentation",
"PrintDiagram(W)"=>"diagram(W)",
"Product"=>"prod",
"ProportionalityCoefficient(v,w)"=>"ratio(v,w)",
"QuasiIsolatedRepresentatives"=>"quasi_isolated_reps",
"QuoInt"=>"div",
"Radical"=>"radical",
"RadicalPower"=>"radicalpower",
"Rank"=>"rank",
"RankSymbol"=>"ranksymbol",
"RecFields"=>"propertynames",
"ReducedCoxeterWord(W,w)"=>"word(W,W(w...))",
"ReducedExpressions(W,w)"=>"words(W,w)",
"ReducedInRightCoset(W,w)"=>"reduced(W,w)",
"ReducedRightCosetRepresentatives(W,H)"=>"reduced(H,W)",
"Reflection"=>"refls(W,i) or reflectionMatrix(root,coroot)",
"ReflectionCharacter"=>"reflection_character or reflchar",
"ReflectionCharValue"=>"tr(reflrep(W,w))",
#ReflectionCoset
"ReflectionDegrees(W)"=>"degrees(W)",
"ReflectionCoDegrees(W)"=>"codegrees(W)",
"ReflectionEigenvalues"=>"refleigen",
"ReflectionGroup"=>"reflection_group",
"ReflectionLength(W,w)"=>"reflength(W,w)",
#ReflectionWord
"ReflectionName(W)"=>"repr(W;context=:limit=>true)",
"Reflections"=>"Perm.(reflections(W)[1:nhyp(W)])",
#ReflectionSubCoset
"ReflectionSubgroup"=>"reflection_subgroup",
"ReflectionType"=>"refltype",
"RegularEigenvalues"=>"regular_eigenvalues",
"RelativeDegrees"=>"relative_degrees",
"RelativeGroup"=>"relative_group",
"Replace"=>"replace",
"Representations"=>"representations",
"RepresentativeConjugation(b,b'[,F][,type])"=>"conjugating_elt(b,b'[,F],ss=type)",
"RepresentativeDiagonalConjugation"=>"diagconj_elt",
"RepresentativeOperation"=>"transporting_elt or transporting_element",
"RepresentativeRowColPermutation"=>"Perm_rowcol",
"Restricted"=>"restricted",
"RestrictedPartitions"=>"partitions",
"RestrictedPerm(p,d)"=>"restricted(p,d)",
"Reversed"=>"reverse",
"ReversedWord"=>"reverse",
"RightDescentSet(W,w)"=>"rightdescents(W,w)",
"RightGcd"=>"rightgcd",
"RightLcm"=>"rightlcm",
"M.RightLcmSimples(x...)"=>"rightlcm(M,...)",
"RootDatum"=>"rootdatum",
"W.rootLengths"=>"rootlengths(W)",
"W.roots"=>"W.rootdec",
"RootsCartan(m)"=>"roots(m)",
"W.rootInclusion"=>"inclusion(W)",
"W.rootRestriction"=>"restriction(W)",
"Rotation(v,i)"=>"circshift(v,-i)",
"Rotations(v)"=>"circshift.(Ref(v),length(v):-1:1)",
"ScalarProduct"=>"Chars.scalarproduct",
"ScalMvp"=>"scalar",
#SchurElement
"SchurElements"=>"schur_elements",
"SchurFunctor"=>"schur_functor",
"SemisimpleCentralizerRepresentatives"=>"semisimple_centralizer_representatives or sscentralizer_reps",
"SemisimpleElement"=>"ss",
"SemisimpleRank"=>"semisimplerank",
"SemisimpleSubgroup"=>"torsion_subgroup",
"ShiftBeta"=>"shiftΞ²",
"ShrinkGarsideGeneratingSet"=>"shrink",
"SignedMatStab"=>"sstab_onmats",
"SignedPerm"=>"SPerm",
"SignedPermListList"=>"SPerm",
"SignedPermMatMat(M,N)"=>"SPerm(M,N;dims=(1,2))",
"W.simpleCoroots"=>"simplecoroots(W)",
"W.simpleRoots"=>"simpleroots(W)",
"Size(W)"=>"length(W)",
"SmallestMovedPoint"=>"first_moved",
"SmithNormalFormIntegerMat"=>"smith",
"SmithNormalFormIntegerMatTransforms(m)"=>"smith_transforms(m)",
"SolutionMat"=>"solutionmat",
"SolutionIntMat"=>"solutionmatInt",
"Sort"=>"sort!",
"SortBy(l,f)"=>"sort!(l,by=f)",
"SortingPerm(a)"=>"inv(sortPerm(a))",
"SortParallel(a,b)"=>"b=b[sortperm(a)];sort!(a)",
"SpecialPieces"=>"special_pieces",
"Spets"=>"spets",
"Split"=>"split",
"SplitLevis"=>"split_levis",
"Sprint"=>"string",
"Stabilizer"=>"stabilizer",
"StandardParabolic"=>"standard_parabolic",
"StandardParabolicClass"=>"standard_parabolic_class",
"StructureRationalPointsConnectedCentre"=>"structure_rational_points_connected_centre",
"SubSpets"=>"subspets",
"SubTorus"=>"SubTorus",
"Sum"=>"sum",
"SumIntersectionMat(m,n)"=>"(rowspace(vcat(m,n)),intersect_rowspace(m,n))",
"Symbols"=>"BDSymbols",
"SymbolsDefect(e,r,def,ct)"=>"symbols(e,r,ct,def)",
"SymmetricDifference"=>"symdiff",
"SymmetricPower"=>"symmetric_power",
"Tableaux"=>"tableaux",
"Tensored(c,d)"=>"vec([i.*j for i in c,j ind])",
"M.ToOrdinary(i)"=>"B(M,i)",
"Torus"=>"torus",
"TorusOrder"=>"torus_order",
"TraceMat"=>"tr",
"TransitiveClosure"=>"transitive_closure",
"Transporter"=>"transporter",
"TransposedMat"=>"transpose or permutedims",
"Transversals"=>"related to transversal and orbits",
"TriangulizeMat"=>"echelon!",
"Twistings"=>"twistings",
"TwoTree(m)"=>"twotree(m)",
"UnipotentAbelianPart"=>"abelianpart",
"UnipotentCharacter"=>"unipotent_character or unichar",
"UnipotentCharacters"=>"UnipotentCharacters",
"UnipotentClasses"=>"UnipotentClasses",
"UnipotentDecompose"=>"decompose",
"UnipotentDegrees(W,q)"=>"degrees(UnipotentCharacters(W),q)",
"UnipotentGroup"=>"UnipotentGroup",
"UnorderedTuples"=>"multisets",
"Valuation(p)"=>"valuation(p)",
"Value(p,x)"=>"p(x)",
"ValuePol"=>"evalpoly",
"WeightInfo"=>"weightinfo",
"WGraph"=>"Wgraph",
"WGraphToRepresentation"=>"WGraphToRepresentation",
"Zip(a1,..,an,f)"=>"map(f,a1,...,an)"
)
function gap(s)
if !(s isa Regex) s=Regex(s,"i") end
kk=filter(x->occursin(s,x),keys(ChevieDict))
if isempty(kk)
println("no match")
return
end
pad=maximum(length(k) for k in kk)+2
print(join(sort([rpad(k,pad)*"=> "*ChevieDict[k]*"\n" for k in kk]),""))
end
function fixdoc()
pad=maximum(length(k) for k in keys(ChevieDict))+2
u=[rpad(k,pad)*v*"\n" for (k,v) in ChevieDict]
sort!(u,by=lowercase)
open("dict.md","w")do f
write(f,"""
# Dictionary from GAP3/Chevie
The dictionary from GAP3/Chevie is as follows:
```
""")
write(f,join(u))
write(f,"```")
end
length(u)
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 3553 | module Gap4
#println("loading Gap4 extension to Chevie")
using GAP, Chevie, Reexport
#@reexport using GAP
function GAP.Obj(g::Group)
get!(g,:GAP)do
isempty(gens(g)) ?
GAP.Globals.Group(GAP.Obj(one(g))) :
GAP.Globals.Group(GAP.Obj.(gens(g))...)
end
end
# Create a GAP permutation given a vector of 16-bit integers.
# No input verification is done! Callers must ensure that the
# entries of `vec` form a permutation of the numbers in the range
# 0:length(vec)-1
function GAP.Obj(p::Perm{Int16}) # or UInt16
vec=p.d.-1
deg = length(vec)
@assert deg <= 2^16
perm = ccall((:NEW_PERM2, GAP.libgap), GapObj, (Cuint,), deg)
addr = ccall((:ADDR_PERM2, GAP.libgap), Ptr{UInt16}, (Any,), perm)
copyto!(unsafe_wrap(Array, addr, deg), vec)
return perm
end
function GAP.Obj(p::Perm{Int32}) # or UInt32
vec=p.d.-1
deg = length(vec)
@assert deg <= 2^32
perm = ccall((:NEW_PERM4, GAP.libgap), GapObj, (Cuint,), deg)
addr = ccall((:ADDR_PERM4, GAP.libgap), Ptr{UInt32}, (Any,), perm)
copyto!(unsafe_wrap(Array, addr, deg), vec)
return perm
end
# convert a GAP permutation into a Perm{Perms.Idef}
function Perms.Perm(perm::GapObj)
if GAP.TNUM_OBJ(perm) == GAP.T_PERM2
deg = ccall((:DEG_PERM2, GAP.libgap), Cuint, (Any,), perm)
addr = ccall((:ADDR_PERM2, GAP.libgap), Ptr{UInt16}, (Any,), perm)
vec = Vector{UInt16}(undef, deg)
copyto!(vec, unsafe_wrap(Array, addr, deg))
Perms.Perm_(Perms.Idef.(vec.+1))
elseif GAP.TNUM_OBJ(perm) == GAP.T_PERM4
deg = ccall((:DEG_PERM4, GAP.libgap), Cuint, (Any,), perm)
addr = ccall((:ADDR_PERM4, GAP.libgap), Ptr{UInt16}, (Any,), perm)
vec = Vector{UInt32}(undef, deg)
copyto!(vec, unsafe_wrap(Array, addr, deg))
Perms.Perm_(Perms.Idef.(vec.+1))
else
error("<perm> is not a GAP permutation")
end
end
#@test perm=GAP.evalstr("(1,2,3)(4,5)");perm==Gap.obj(Perm(perm))
mapgap(f,gv)=map(f,GAP.gap_to_julia(gv;recursive=false))
fromgap(g)=improve_type(GAP.gap_to_julia(g))
function CyclotomicNumbers.Cyc(p::GapObj)
l=improve_type(Vector{Any}(GAP.Globals.ExtRepOfObj(p)))
sum(i->E(length(l),i-1)*l[i],eachindex(l))
end
function gapclassreps(g::PermGroup)
gg=GAP.Obj(g)
mapgap(PermβGAP.Globals.Representative,GAP.Globals.ConjugacyClasses(gg))
end
function Groups.classreps(g::PermGroup)
get!(g,:classreps)do
if length(g)>19000 gapclassreps(g)
else map(c->c.representative,conjugacy_classes(g))
end
end
end
function Chars.CharTable(ct::GapObj)
u=GAP.Globals.Irr(ct)
girr=mapgap(x->mapgap(Cyc,x),u)
irr=permutedims(hcat(girr...))
n=fromgap(GAP.Globals.ClassNames(ct))
cn=fromgap(GAP.Globals.CharacterNames(ct))
sz=fromgap(GAP.Globals.SizesCentralisers(ct))
s=fromgap(GAP.Globals.Size(ct))
id=fromgap(GAP.Globals.Identifier(ct))
Chars.CharTable(irr,cn,n,sz,s,Dict{Symbol,Any}(:name=>id))
end
function Chars.CharTable(g::PermGroup)
gg=GAP.Obj(g)
# in case :classreps not computed using gapclassreps
gc=gapclassreps(g)
l=map(x->position_class(g,x),gc)
ct=CharTable(GAP.Globals.CharacterTable(gg))
ct.irr[:,l]=ct.irr
ct.classnames[l]=ct.classnames
ct
end
function centralizer(g::PermGroup,p::Perm)
gg=GAP.Obj(g)
pp=GAP.Obj(p)
c=GAP.Globals.Centralizer(gg,pp)
Group(Perm.(GAP.Globals.GeneratorsOfGroup(c)))
end
function intersect(g1::PermGroup,g2::PermGroup)
gg1=GAP.Obj(g1)
gg2=GAP.Obj(g2)
gg=GAP.Globals.Intersection(gg1,gg2)
Group(Perm.(GAP.Globals.GeneratorsOfGroup(gg)))
end
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 35941 | """
This is a port of the GAP3 package Algebras by CΓ©dric BonnafΓ©.
"""
module Algebras
using ..Chevie
export FiniteDimAlgebra, coefftype, AlgebraElt, basis, idempotents,
involution, isassociative, SubAlgebra, TwoSidedIdeal,
loewylength, radicalpower, centralidempotents,
PolynomialQuotientAlgebra,
Quaternions,
SolomonAlgebra,
ZeroHecke
# finite dimensional algebra over ring whose elements have type C
abstract type FiniteDimAlgebra{C} end
coefftype(A::FiniteDimAlgebra{C}) where C=C
InfoAlgebra=print
"""
`ppart(g,p)`
Given an element `g` of a group and an integer `p` we can uniquely write
`g=gβgβ` where the order of `gβ` is prime to `p` and the order of `gβ` is a
product of primes which divide `p`. this function returns `gβ`.
"""
function ppart(g,k)
n=order(g)
np=prod(p^m for (p,m) in factor(n) if k%p==0;init=1)
g^(gcdx(np,div(n,np))[3]*div(n,np))
end
"""
`pprimesections(G::Group,p::Integer)`
This function returns a partition of the indices of the conjugacy classes
of `G`. Indices `i,j` are in the same part if the elements `x/ppart(x,p)`
for `x` in `classreps(G)[i],classreps(G)[j]` are in the same class.
```julia-repl
julia> G=symmetric_group(5)
Group((1,2),(2,3),(3,4),(4,5))
julia> Algebras.pprimesections(G,2)
3-element Vector{Vector{Int64}}:
[1, 2, 4, 5]
[3, 6]
[7]
julia> Algebras.pprimesections(G,3)
5-element Vector{Vector{Int64}}:
[1, 3]
[2, 6]
[4]
[5]
[7]
```
"""
function pprimesections(G::Group,k::Integer)
pp=map(x->x/ppart(x,k),classreps(G))
collectby(i->position_class(G,pp[i]),eachindex(pp))
end
# properties of Algebras: have .multable, dim
# Algebra element of algebra A over ring elements of type T
# d coefficients on basis indexed by number
# basis[1] should be identity element
struct AlgebraElt{TA<:FiniteDimAlgebra,T}
A::TA
d::ModuleElt{Int,T}
end
Base.broadcastable(h::AlgebraElt)=Ref(h)
AlgebraElt(A::FiniteDimAlgebra,v::AbstractVector)=
AlgebraElt(A,ModuleElt(Pair.(1:dim(A),v)))
Weyl.dim(A::FiniteDimAlgebra)=error("not implemented in general")
idempotents(A::FiniteDimAlgebra)=error("not implemented in general")
struct AlgebraHom
source::FiniteDimAlgebra
target::FiniteDimAlgebra
images::Vector
end
(H::AlgebraHom)(h::AlgebraElt)=sum(H.images[k]*c for (k,c) in h.d)
# fallback method
Groups.gens(A::FiniteDimAlgebra)=basis(A)
"`isabelian(A::FiniteDimAlgebra)` whether `A` is commutative"
function Groups.isabelian(A::FiniteDimAlgebra)
get!(A,:isabelian)do
all(x*y==y*x for x in gens(A), y in gens(A))
end::Bool
end
function isassociative(A::FiniteDimAlgebra)
get!(A, :isassociative)do
l=basis(A)
all((x*y)*z==x*(y*z) for x in l, y in l, z in l)
end::Bool
end
function basis(A::FiniteDimAlgebra{T};force=false)where T
get!(A,:basis)do
if !force && dim(A)>10000
error(A," is of dimension ",dim(A),"\nif you really want to do that ",
"call basis(A;force=true)")
end
map(i->basis(A,i),1:dim(A))
end
end
basis(A::FiniteDimAlgebra{T},i::Integer) where T =
AlgebraElt(A,ModuleElt(Int(i)=>T(1)))
Base.one(A::FiniteDimAlgebra)=basis(A,1)
function Base.show(io::IO, h::AlgebraElt)
if !get(io,:limit,false) && !get(io,:TeX,false)
print(io,"AlgebraElt(",h.A,",",h.d,")")
return
end
if haskey(h.A,:showbasis) showbasis=h.A.showbasis
else showbasis=function(io::IO,e)
fromTeX(io,"B"*"_{"*string(e)*"}")
end
end
show(IOContext(io,:showbasis=>showbasis),h.d)
end
Base.:+(a::AlgebraElt,b::AlgebraElt)=AlgebraElt(a.A,a.d+b.d)
Base.:+(a::AlgebraElt,b::Number)=a+one(a.A)*b
Base.:-(a::AlgebraElt)=AlgebraElt(a.A,-a.d)
Base.:-(a::AlgebraElt, b::AlgebraElt)=a+(-b)
Base.:*(a::AlgebraElt, b::Vector)=a.*b #for tbl
Base.:*(a::AlgebraElt, b)=AlgebraElt(a.A,a.d*b)
Base.:*(b,a::AlgebraElt)=AlgebraElt(a.A,a.d*b)
Base.://(a::AlgebraElt, b)=AlgebraElt(a.A,a.d//b)
Base.zero(a::AlgebraElt)=AlgebraElt(a.A,zero(a.d))
Base.:^(a::AlgebraElt, n::Integer)=n>=0 ? Base.power_by_squaring(a,n) :
Base.power_by_squaring(inv(a),-n)
Base.isless(a::AlgebraElt,b::AlgebraElt)=isless(a.d,b.d)
Base.:(==)(a::AlgebraElt,b::AlgebraElt)=a.d==b.d
Base.hash(a::AlgebraElt,k::UInt)=hash(a.d,k)
Base.one(a::AlgebraElt)=one(a.A)
function LaurentPolynomials.coefficients(a::AlgebraElt{A,T})where {A,T}
v=fill(T(0),dim(a.A))
for (i,c) in a.d v[i]=c end
v
end
Base.Matrix(a::AlgebraElt)=toM(map(coefficients,a.*basis(a.A)))
using LinearAlgebra
function Base.inv(a::AlgebraElt)
m=Matrix(a)
d=LinearAlgebra.det_bareiss(m)
if iszero(d) error(a," is not invertible") end
mi=inv(m//1)
if eltype(m)<:Integer && (isone(d) || d==-1) mi=Integer.(mi) end
AlgebraElt(a.A,mi[1,:])
end
GenLinearAlgebra.charpoly(a::AlgebraElt)=Pol(charpoly(Matrix(a)))
function minpoly(a::AlgebraElt)
p=charpoly(a)
exactdiv(p,gcd(p,derivative(p)//1))
end
basismult(A::FiniteDimAlgebra,i::Integer,j::Integer)=A.multable[i,j]
function Base.:*(a::AlgebraElt{A,T1}, b::AlgebraElt{A,T2})where {A<:FiniteDimAlgebra,T1,T2}
res=Pair{Int,promote_type(T1,T2)}[]
for (i,c) in a.d, (i1,c1) in b.d
append!(res,[k=>c*c1*c2 for (k,c2) in basismult(a.A,i,i1)])
end
AlgebraElt(a.A,ModuleElt(res))
end
function GenLinearAlgebra.rowspace(v::AbstractVector{<:ModuleElt})
v=filter(!iszero,v)
if isempty(v) return v end
kk=unique_sorted!(sort(vcat(map(x->collect(keys(x)),v)...)))
V=fill(zero(first(values(v[1]))),length(v),length(kk))
for i in eachindex(v), (k,c) in v[i]
V[i,searchsortedfirst(kk,k)]=c
end
map(r->ModuleElt(Pair.(kk,r)),eachrow(rowspace(V)))
end
function GenLinearAlgebra.rowspace(v::AbstractVector{<:AlgebraElt})
if isempty(v) return v end
A=v[1].A
map(x->AlgebraElt(A,x),rowspace(map(x->x.d,v)))
end
function saturate_left(gens,v)
l=0
newl=1
while newl>l
l=newl
v=rowspace(vcat(v,map(g->g.*v,gens)...))
newl=length(v)
end
v
end
function saturate_right(gens,v)
l=0
newl=1
while newl>l
l=newl
v=rowspace(vcat(v,map(g->v.*g,gens)...))
newl=length(v)
end
v
end
#----------------------------- LeftIdeal --------------------------------
@GapObj struct LeftIdeal{T<:FiniteDimAlgebra}
parent::T
basis
end
function left_ideal(A,v::AbstractVector)
LeftIdeal(A,saturate_left(gens(A),rowspace(v)),Dict{Symbol,Any}())
end
function Base.show(io::IO,I::LeftIdeal)
print(io,"LeftIdeal(",I.parent,",[")
join(io,I.basis,",")
print(io,"])")
end
basis(I::LeftIdeal)=I.basis
Weyl.dim(I::LeftIdeal)=length(basis(I))
#----------------------------- TwoSidedIdeal ----------------------------
@GapObj struct TwoSidedIdeal{T<:FiniteDimAlgebra}
parent::T
basis
end
function twosided_ideal(A,v::AbstractVector)
v=rowspace(v)
v=saturate_left(gens(A),v)
if !isabelian(A) v=saturate_right(gens(A),v) end
TwoSidedIdeal(A,v,Dict{Symbol,Any}())
end
function Base.show(io::IO,I::TwoSidedIdeal)
print(io,"TwoSidedIdeal(",I.parent,",[")
join(io,I.basis,",")
print(io,"])")
end
Groups.gens(I::TwoSidedIdeal)=basis(I)
basis(I::TwoSidedIdeal)=I.basis
Weyl.dim(I::TwoSidedIdeal)=length(basis(I))
#------------------------------------------------------------------------
# radicalpower(A,n) computes radical(A)^n. This is again a two-sided ideal
function radicalpower(A::FiniteDimAlgebra,n)
if n==0 return A
elseif n==1 return radical(A)
elseif haskey(A,:radicalpowers) && length(A.radicalpowers)>=n
return A.radicalpowers[n]
end
res=vcat(map(b->b.*basis(radicalpower(A,n-1)),basis(radical(A)))...)
ideal=TwoSidedIdeal(A,rowspace(res),Dict{Symbol,Any}())
# if dim(ideal)==0
# ideal.operations.LeftTrace=x->0*A.field.one;
# ideal.operations.RightTrace=x->0*A.field.one;
# else
# ideal.operations.LeftTrace=x->TraceMat(List(base.vectors,v->
# Coefficients(base,Matrix(x*AlgebraElt(A,v)))));
# ideal.operations.RightTrace=x->TraceMat(List(base.vectors,v->
# Coefficients(base,Matrix(A.AlgebraElt(A,v)*x))));
# end
push!(A.radicalpowers,ideal)
ideal
end
# loewylength(A) is the smallest d such that radicalpower(A,d)=0
function loewylength(A::FiniteDimAlgebra)
get!(A,:loewylength)do
d=1
if length(gens(radical(A)))==1
gen=gens(radical(A))[1]
res=gen
while !iszero(res) d+=1; res*=gen end
else while dim(radicalpower(A,d))>0 d+=1 end
end
d
end
end
function LeftIndecomposableProjectives(A::FiniteDimAlgebra)
get!(A,:leftprojectives)do
map(i->left_ideal(A,[i]),idempotents(A))
end
end
function centralidempotents(A::FiniteDimAlgebra)
get!(A,:centralidempotents) do
idem=idempotents(A)
mat=[length(rowspace(i*basis(j))) for i in idem,
j in LeftIndecomposableProjectives(A)]
A.blocks=diagblocks(mat)
perm=vcat(A.blocks...)
A.cartan=mat[perm,perm]
map(i->sum(idem[i]),A.blocks)
end
end
function PermRoot.cartan(A::FiniteDimAlgebra)
if !haskey(A,:cartan)
centralidempotents(A) # computes A.blocks and A.cartan
end
if applicable(CharTable,A) && hasproperty(CharTable(A),:rows)
rows=CharTable(A).rows
else rows=string.(1:length(idempotents(A)))
end
rows=joindigits.(rows[vcat(A.blocks...)])
m=map(e->iszero(e) ? "." : repr(e),A.cartan)
Format.Table(m,row_labels=rows)
end
#------------------------- SubAlgebra -------------------------
@GapObj struct SubAlgebra{T}<:FiniteDimAlgebra{T}
parent::FiniteDimAlgebra{T}
inclusion::Vector
space::Matrix{T}
end
Weyl.dim(A::SubAlgebra)=length(A.inclusion)
function SubAlgebra(A::FiniteDimAlgebra,l)
inclusion=saturate_left(vcat([one(A)],l),vcat([one(A)],l))
space=improve_type(toM(coefficients.(inclusion)))
res=SubAlgebra(A,inclusion,space,Dict{Symbol,Any}())
res.gens=restriction.(Ref(res),l)
res
end
Groups.gens(A::SubAlgebra)=A.gens
function Base.show(io::IO,A::SubAlgebra)
print(io,"SubAlgebra(",A.parent,",",inclusion.(Ref(A),gens(A)),")")
end
# SUB.injection:=AlgebraHomomorphismByLinearity(SUB,A,SUB.basisinclusion);
function PermRoot.inclusion(A::SubAlgebra,h::AlgebraElt)
sum(c*A.inclusion[i] for (i,c) in h.d)
end
# SUB.belongs:=v->A.EltToVector(v) in subspace;
# restriction of basis element b to A
function PermRoot.restriction(A::SubAlgebra,b)
res=solutionmat(A.space,coefficients(b))
if !isnothing(res) AlgebraElt(A,improve_type(res)) end
end
function basismult(A::SubAlgebra,i::Integer,j::Integer)
restriction(A,A.inclusion[i]*A.inclusion[j]).d.d
end
#----------------------- Quaternions -----------------------------------
@GapObj struct Quaternions{T}<:FiniteDimAlgebra{T}
multable::Matrix{Vector{Pair{Int,T}}}
end
function Quaternions(a::T=-1,b::T=-1)where T
multable=[[1=>1] [2=>1] [3=>1] [4=>1];
[2=>1] [1=>a] [4=>1] [3=>-1];
[3=>1] [4=>-1] [1=>b] [2=>-b];
[4=>1] [3=>-a] [2=>b] [1=>-a*b]]
multable=map(x->[x],multable)
A=Quaternions(multable,Dict{Symbol,Any}())
A.a=a;A.b=b
A.isabelian=false
A.showbasis=(io::IO,i)->["","i","j","k"][i]
A
end
Weyl.dim(A::Quaternions)=4
Base.show(io::IO,A::Quaternions{T}) where T=print(io,"Quaternions(",A.a,",",A.b,")")
Groups.gens(A::Quaternions)=basis.(Ref(A),[2,3])
involution(h::AlgebraElt{<:Quaternions})=
AlgebraElt(h.A,coefficients(h).*[1,-1,-1,-1])
LinearAlgebra.norm(h::AlgebraElt{<:Quaternions})=h*involution(h)
#----------------------- 0-Hecke -----------------------------------
#@GapObj struct ZeroHecke{TE,TW<:CoxeterGroup{TE}}<:FiniteDimAlgebra{Int}
@GapObj struct ZeroHecke{TE,TW<:CoxeterGroup{TE},T}<:FiniteDimAlgebra{T}
W::TW
e::Vector{TE}
u::T
end
Base.show(io::IO,A::ZeroHecke)=
print(io,hasdecor(io) ? "0-Hecke" : "ZeroHecke","(",A.W,")")
Weyl.dim(A::ZeroHecke)=length(A.W)
function basismult(A::ZeroHecke,i::Integer,j::Integer)
res=A.e[j]
for k in reverse(word(A.W,A.e[i]))
if !isleftdescent(A.W,res,k) res=A.W(k)*res end
end
[findfirst(==(res),A.e)=>1]
end
function Tbasis(A::ZeroHecke)
return function(v::Int...)
prod(i->gens(A)[i],v;init=one(A))
end
end
Groups.gens(A::ZeroHecke)=basis.(Ref(A),2:ngens(A.W)+1)
# 0-Hecke algebra of W with parameters 0,1
function ZeroHecke(W::CoxeterGroup,T=Int)
e=elements(W);# we use they are stored by increasing CoxeterLength
A=ZeroHecke(W,e,one(T),Dict{Symbol,Any}())
A.isabelian=false
A.showbasis=(io::IO,i)->fromTeX(io,string("T_{",joindigits(word(A.W,A.e[i])),"}"))
A
end
function PermRoot.radical(A::ZeroHecke)
get!(A,:radical)do
c=groupby(x->unique!(sort!(word(A.W,A.e[x]))),eachindex(A.e))
l=filter(x->length(x)>1,collect(values(c)))
twosided_ideal(A,vcat(map(i->map(j->basis(A,i[1])-basis(A,j),i[2:end]),l)...))
end
end
# subsets:=Combinations([1..W.semisimpleRank]));
# A.tbasis:=function(arg) local mot;
# if Length(arg)>1 then mot:=arg;
# elif IsList(arg[1]) then mot:=arg[1];
# elif IsInt(arg[1]) then mot:=Digits(arg[1]);
# else mot:=CoxeterWord(W,arg[1]);
# fi;
# if mot=[] then return A.basis[Position(A.mots,[])];
# else return Product(mot,i->A.basis[Position(A.mots,[i])]);
# fi;
# end;
# A.radical:=TwoSidedIdeal(A,Concatenation(A.radical));
# A.radicalpowers:=[A.radical];
# A.embedding:=function(g) return A.basis[Position(e,g)];end;
#------------------------ T[q]/p(q)----------------------------------------
## The function A.class sends a polynomial to its image in A
## An element of A is printed as "Class(polynomial)"
@GapObj struct PolynomialQuotientAlgebra{T}<:FiniteDimAlgebra{T}
p::Pol{T}
fp::Vector{Pair{Pol{T},Int}}
var::Symbol
multable::Matrix{Vector{Pair{Int,T}}}
end
Weyl.dim(A::PolynomialQuotientAlgebra)=degree(A.p)
Groups.gens(A::PolynomialQuotientAlgebra)=basis(A,2)
Base.show(io::IO,A::PolynomialQuotientAlgebra)=
print(io,eltype(A.p.c),"[",A.var,"]/",A.p)
function PolynomialQuotientAlgebra(p::Pol{T})where T
# A.string:=r->SPrint("Class(",Sum(r.coefficients, i-> i[1]*q^(i[2]-1)),")");
d=degree(p)
function class(r::Pol)
r*=one(p)
r=isone(p[end]) ? pseudodiv(r,p)[2] : rem(r//1,p)
filter(x->x[2]!=0,map(Pair,1:degree(r)+1,r[0:end]))
end
basismult(i,j)=class(Pol([1],i+j-2))
A=PolynomialQuotientAlgebra(p,sort(collect(factor(p)),by=x->degree(x[1])),
LaurentPolynomials.varname,
[basismult(i,j) for i in 1:d, j in 1:d],Dict{Symbol,Any}())
A.showbasis=(io::IO,i)->fromTeX(io,i==1 ? "β
1" :
string(A.var)*(i==2 ? "" : string("^{",i-1,"}")))
A.isAbelian=true
A.class=class
A
end
function idempotents(A::PolynomialQuotientAlgebra)
map(A.fp)do (pp,mul)
a=pp^mul
b=exactdiv(A.p,a)
bezout=gcdx(a*1//1,b*1//1)
res=bezout[2]*a+bezout[3]*b
res=res[0]
res=(bezout[3]*b)//res
AlgebraElt(A,ModuleElt(A.class(res)))
end
end
PermRoot.cartan(A::PolynomialQuotientAlgebra)=Diagonal(last.(A.fp))
function Chars.CharTable(A::PolynomialQuotientAlgebra)
factors=first.(A.fp)
irr=fill(0,dim(A),length(factors))
for k in eachindex(factors)
coefs=factors[k][0:end]
deg=degree(factors[k])
mat=fill(zero(coefs[1]),deg,deg)
for i in 1:deg-1 mat[i+1,i]=1 end
for i in 1:deg mat[i,deg]=-coefs[i] end
for j in 1:dim(A) irr[j,k]=tr(mat^(j-1)) end
end
Format.Table(irr,col_labels=factors,row_labels=basis(A))
end
function PermRoot.radical(A::PolynomialQuotientAlgebra)
res=prod(first.(filter(i->i[2]>1,A.fp)),init=Pol([1],0))
A.radical=TwoSidedIdeal(A,[AlgebraElt(A,ModuleElt(A.class(res)))])
A.radicalpowers=[A.radical]
A.radical
end
######################################################################
## GrothendieckRing(G,Q) renvoie l'anneau de Grothendieck A=Q Irr(G)
##(si Q est omis, on prend pour Q le corps des rationnels)
##
## A.basisname = "Ο" (par defaut)
##
## La fonction Degre envoie un element de l'anneau de
## Grothendieck sur son degre (virtuel a priori bien sur)
@GapObj struct GrothendieckRing{T}<:FiniteDimAlgebra{T}
G::Group
ct::CharTable
multable::Matrix{Vector{Pair{Int,T}}}
positionid::Int
end
Weyl.dim(A::GrothendieckRing)=size(A.ct.irr,1)
function CharTable(A::GrothendieckRing{T})where T
if char(T)==0 rows=1:dim(A)
irr=permutedims(A.ct.irr)
else cl=classreps(A.G)
rows=filter(i->gcd(order(cl[i]),char(T))==1,eachindex(cl))
irr=T.(permutedims(A.ct.irr)[rows,:])
end
CharTable(irr,A.ct.classnames[rows],A.ct.charnames,A.ct.centralizers[rows],
A.ct.order,Dict{Symbol,Any}(:name=>string(A)))
end
Base.show(io::IO,A::GrothendieckRing{T}) where T=
print(io,"GrothendieckRing(",A.G,",",T,")")
function PermRoot.radical(A::GrothendieckRing{T})where T
if char(T)==0 || length(A.G)%char(T)!=0
b=empty(basis(A))
else
p=char(T); while p<dim(A) p*=char(T) end
mat=toM(coefficients.(basis(A).^p))
mat=rowspace(lnullspace(mat))
b=map(x->AlgebraElt(A,x),eachrow(mat))
end
radical=TwoSidedIdeal(A,b)
A.radicalpowers=[radical]
radical
end
function LaurentPolynomials.degree(h::AlgebraElt)
sum(c*Int(h.A.ct.irr[k,1]) for (k,c) in h.d)
end
function PermRoot.cartan(A::GrothendieckRing{T})where T
if char(T)==0 Diagonal(fill(1,dim(A)))
else Diagonal(length.(pprimesections(A.G,char(T))))
end
end
Base.one(A::GrothendieckRing)=basis(A,A.positionid)
function GrothendieckRing(G::Group,T=Int)
ct=CharTable(G)
d=size(ct.irr,1)
basismult(i,j)=filter(x->!iszero(x[2]),map(Pair,1:size(ct.irr,1),
T.(decompose(ct,ct.irr[i,:].*ct.irr[j,:]))))
multable=[basismult(i,j) for i in 1:d, j in 1:d]
positionid=findfirst(i->all(isone,ct.irr[i,:]),1:d)
A=GrothendieckRing{T}(G,ct,multable,positionid,Dict{Symbol,Any}())
A.isabelian=true
A.showbasis=(io::IO,i)->"["*fromTeX(io,ct.charnames[i])*"]"
A
end;
function idempotents(A::GrothendieckRing{T}) where T
e=map(i->sum((conj.(A.ct.irr[:,i]).//A.ct.centralizers[i]).*basis(A)),1:dim(A))
if char(T)==0 return e end
e=map(i->sum(e[i]),pprimesections(A.G,char(T)))
map(x->AlgebraElt(A,ModuleElt(k=>T(c) for (k,c) in x.d)),e)
end
#GrothendieckRingOps.PrincipalIdempotent:=function(A)local G,e,c,res;
# G:=A.group;
# e:=Idempotents(GrothendieckRing(G));
# c:=PositionClass(G,G.identity);
# res:=Sum(e{First(pprimesections(G,A.field.char),i->c in i)});
# return AlgebraElement(A,List(res.coefficients,i->
# [A.field.one*Numerator(i[1])/Denominator(i[1]),i[2]]));
#end;
#GrothendieckRingOps.PrincipalLoewyLength:=function(A)local e;
# e:=GrothendieckRingOps.PrincipalIdempotent(A);
# LoewyLength(A);
# e:=List(A.radicalpowers,i->LeftIdeal(A,i.basis*e));
# A.principalloewyseries:=Filtered(e,i->i.dimension>0);
# return Length(A.principalloewyseries)+1;
#end;
#RestrictionHomomorphism:=function(A,B)local k;
# k:=induction_table(B.group,A.group).scalar;
# return AlgebraHomomorphismByLinearity(A,B,k*B.basis);
#end;
function AdamsOperation(A::GrothendieckRing,n)
r=map(x->position_class(A.G,x^n),classreps(A.G))
v=map(x->decompose(A.ct,x[r]),eachrow(A.ct.irr))
AlgebraHom(A,A,map(x->AlgebraElt(A,x),v))
end
#----------------- Group Algebras -----------------------------------------
@GapObj struct GroupAlgebra{T,E,TG<:Group{E}}<:FiniteDimAlgebra{T}
group::TG
elts::Vector{E}
one::Pair{Int,T}
end
#GroupAlgebraOps.CharacterDegrees:=function(A)
# if A.field.char=0 then
# A.characterDegrees:=CharacterDegrees(A.group);
# else Error("Cannot compute CharacterDegrees in positive characteristic");
# fi;
# return A.characterdegrees;
#end;
#
#GroupAlgebraOps.CharTable:=function(A)local conj;
# if A.field.char>0 then
# Error("Cannot compute CharTable in positive characteristic");
# fi;
# A.charTable:=CharTable(A.group);
# conj:=List(Elements(A.group),i->PositionClass(A.group,i));
# A.charTable.basistraces:=List(A.charTable.irreducibles,chi->chi{conj});
# A.charTable.Print:=function(table)Display(table);end;
# return A.charTable;
#end;
function PermRoot.radical(A::GroupAlgebra{T})where T
if char(T)!=0 error("not implemented in positive characteristic") end
TwoSidedIdeal(A,empty(basis(A)),Dict{Symbol,Any}())
end
Base.show(io::IO,A::GroupAlgebra{T}) where T =print(io,"Algebra(",A.group,",",T,")")
embedding(A::GroupAlgebra{T,E},g::E) where{T,E}=findfirst(==(g),A.elts)
"""
`GroupAlgebra(G,T=Int)` group algebra of `G` with coefficients `T`
"""
function GroupAlgebra(G,T=Int)
A=GroupAlgebra(G,elements(G),1=>T(1),Dict{Symbol,Any}())
A.gens=map(g->basis(A,embedding(A,g)),gens(G))
if A.elts[1]!=one(G) error(one(G)," should be first in ",elements(G)) end
A.showbasis=function(io::IO,e)
fromTeX(io,"e"*"_{"*joindigits(word(A.group,A.elts[e]))*"}")
end
# if Q.char=0 then
# A.radical:=TwoSidedIdeal(A,[]);
# A.radicalpowers:=[A.radical];
# fi;
A
end
Weyl.dim(A::GroupAlgebra)=length(A.elts)
Groups.gens(A::GroupAlgebra)=A.gens
basismult(A::GroupAlgebra{T},i::Integer,j::Integer) where T=
[embedding(A,A.elts[i]*A.elts[j])=>T(1)]
function centralidempotents(A::GroupAlgebra{T}) where T
p=map(i->position_class(A.group,i),A.elts)
res=map(eachrow(CharTable(A.group).irr))do chi
ModuleElt(map(Pair,1:dim(A),chi[1].*conj.(chi[p]).//dim(A)))
end
if char(T)==0 return map(x->AlgebraElt(A,x),res) end
pid=map(b->sum(res[b]),blocks(A.group,char(T)))
map(i->AlgebraElt(A,ModuleElt(convert(ModuleElt{Int,T},i).d)),pid)
end
# augmentation morphism
augmentation(r)=sum(values(r.d))
################################################################################
## La fonction SolomonAlgebra(W,Q) construit l'algebre de Solomon
## d'un groupe de Coxeter fini W sur le corps Q (s'il est omis,
## la fonction prend pour Q le corps des rationnels). Le resultat
## est une algebre A munie en plus des champs suivants (ici, r est
## le rang semi-simple de W) :
## A.group = W
## A.xbase = fonction qui envoie la partie I de [1..r] sur x_I
## A.ybase = fonction qui envoie la partie I de [1..r] sur y_I
## A.radical = radical de A :
## A.radical.base = base de A.radical (x_I-x_J)_{I et J conjugues}
## A.radical.dimension = dimension de A.radical
## A.radicalpowers = [A.radical]
## A.injection = injection dans l'algebre de groupe (disponible
## si |W| <= 2000 : jusqu'a D5 donc...)
##
## De plus
## A.base = base x_I
## A.parameters = parties de [1..r] (comme nombres : ex. 123 pour [1,2,3])
## A.basisname = "X" (par defaut)
##
## La fonction SolomonAlgebra munit W du record W.solomon contenant
## les champs suivants :
## W.solomon.mackey = constantes de structure (coeff de x_I * x_J sur x_K)
## W.solomon.conjugacy = classes de conjugaison de parties de [1..r]
## reperees par leur position dans A.parameters
## W.solomon.domain = A
## W.solomon.subsets = parties de [1..r]
#SolomonAlgebraOps.CharacterDegrees:=function(A)
# if A.field.char=0 then
# if A.type="Solomon algebra" then
# A.characterDegrees:=List(A.group.solomon.conjugacy, i-> 1);
# elif A.type="Generalized Solomon algebra" then
# A.characterDegrees:=List(A.group.generalizedsolomon.conjugacy, i-> 1);
# else
# Error("<A> must be a Solomon algebra");
# fi;
# else Error("Cannot compute character degrees of Solomon algebra in positive characteristic");
# fi;
# return A.characterDegrees;
#end;
@GapObj struct SolomonAlgebra{T}<:FiniteDimAlgebra{T}
W::FiniteCoxeterGroup
multable::Matrix{Vector{Pair{Int,T}}}
end
function Base.show(io::IO,A::SolomonAlgebra{T})where T
print(io,"SolomonAlgebra(",A.W,",",T,")")
end
@GapObj struct SolomonCharTable{TA}
A::TA
irr::Matrix{Int}
rows::Vector{Vector{Int}}
end
function Base.show(io::IO,ct::SolomonCharTable)
print(io,"CharTable(",ct.A,")")
if !hasdecor(io) return end
println(io)
showtable(io,ct.irr,row_labels=joindigits.(ct.rows),dotzero=true)
end
function Chars.CharTable(A::SolomonAlgebra)
W=A.W
conj=first.(W.solomon_conjugacy)
orb=map(i->reflection_subgroup(W,W.solomon_subsets[i]),conj)
cox=map(g->prod(gens(g);init=one(g)),orb)
irr=[W.solomon_mackey[j,i][i] for i in conj, j in conj]
SolomonCharTable(A,irr,map(w->word(W,w),cox),Dict{Symbol,Any}())
# res.columns[Length(res.columns)]:=["0"];
# res.basistraces:=List([1..Length(res.irreducibles)],function(ii)local r;
# r:=Concatenation(List([1..Length(W.solomon.conjugacy)],
# i->List(W.solomon.conjugacy[i], j-> [j,res.irreducibles[ii][i]])));
# Sort(r); return List(r,i->i[2]);end);
# if A.field.char=0 then return res;fi;
# irr:=CyclotomicModP(res.irreducibles,A.field.char);
# inc:=CollectBy([1..Length(irr)],irr);Sort(inc);
# res.rows:=List(inc, i-> res.rows[i[1]]);
# res.irreducibles:=List(inc, i-> irr[i[1]]);
# res.basistraces:=CyclotomicModP(res.basistraces,A.field.char);
# res.parameters:=List(inc, i-> A.parameters[W.solomon.conjugacy[i[1]][1]]);
# res.invertiblematrix:=List(inc,i-> List(inc,j->irr[i[1]][j[1]]));
# res.incidence:=inc;
# return res;
end
function injection(A::SolomonAlgebra{T})where T
W=A.W
B=GroupAlgebra(W,T)
# if A.type="Solomon algebra" then
X=map(W.solomon_subsets)do i
sum(j->basis(B,embedding(B,inv(j))),vcat(reduced(reflection_subgroup(W,i),W)...))
end
# else
# X:=List(W.generalizedsolomon.subgroups, i->
# Sum(ReducedRightCosetRepresentatives(W, i),i-> B.embedding(i^-1)));
# fi;
AlgebraHom(A,B,X)
end
Weyl.dim(A::SolomonAlgebra)=2^ngens(A.W)
const LIM=10000
"""
'SolomonAlgebra(W,K)'
Let `(W,S)` be a finite Coxeter group. If `w` is an element of `W`, let
`R(w)={s β S | l(ws) > l(w)}`. If `I` is a subset of `S`, we set
`Y_I={w β W | R(w)=I}`, `X_I={w β W | R(w) β I}`.
Note that `X_I` is the set of minimal length left coset representatives of
`W/W_I`. Now, let `y_I=β_{w β Y_I} w`, `x_I=β_{w β X_I} w`.
They are elements of the group algebra `β€ W` of `W` over `Z`. Now, let
``Ξ£(W) = β_{I β S} β€ y_I = β_{I β S} β€ x_I``. This is a sub-`β€`-module of
`β€W`. In fact, Solomon proved that it is a sub-algebra of `β€W`. Now, let
`K(W)` be the Grothendieck ring of `W` and let `ΞΈ:Ξ£(W)β K(W)` be the map
defined by `ΞΈ(x_I) = Ind_{W_I}^W 1`. Solomon proved that this is an
homomorphism of algebras. We call it the *Solomon homomorphism*.
returns the Solomon descent algebra of the finite Coxeter group `(W,S)`
over `K`. If `S=[sβ,β¦,sα΅£]`, the element `x_I` corresponding to the
subset `I=[sβ,sβ,sβ]` of `S` is printed as |X(124)|. Note that
'A:=SolomonAlgebra(W,K)' is endowed with the following fields:
'A.W': the group `W`
'A.basis': the basis `(x_I)_{I β S}`.
'A.xbasis': the function sending the subset `I` (written as a number: for
instance `124` for `[s_1,s_2,s_4]`) to `x_I`.
'A.ybasis': the function sending the subset `I` to `y_I`.
'A.injection': the injection of `A` in the group algebra of `W`, obtained
by calling 'SolomonAlgebraOps.injection(A)'.
Note that 'SolomonAlgebra(W,K)' endows `W` with the field `W.solomon` which
is a record containing the following fields:
'W.solomon_subsets': the set of subsets of `S`
'W.solomon_conjugacy': conjugacy classes of parabolic subgroups of `W` (a
conjugacy class is represented by the list of the positions, in
'W.solomon.subsets', of the subsets `I` of `S` such that `W_I` lies in this
conjugacy class).
'W.solomon_mackey': essentially the structure constants of the Solomon
algebra over the rationals.
```julia-repl
julia> W=coxgroup(:B,4)
Bβ
julia> A=SolomonAlgebra(W)
SolomonAlgebra(Bβ,Int64)
julia> X=A.xbasis; X(1,2,3)*X(2,4)
2Xβ+2Xβ
julia> W.solomon_subsets
16-element Vector{Vector{Int64}}:
[1, 2, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
[1]
[2]
[3]
[4]
[]
julia> W.solomon_conjugacy
12-element Vector{Vector{Int64}}:
[1]
[2]
[3]
[4]
[5]
[6]
[7, 8]
[9, 11]
[10]
[12]
[13, 14, 15]
[16]
julia> Algebras.injection(A)(X(1,2,3))
e_+eβ+eββ+eβββ+eββββ+eβββββ+eββββββ+eβββββββ
```
"""
function SolomonAlgebra(W::FiniteCoxeterGroup,T=Int)
r=ngens(W)
d=2^r
n=length(W)
# if r <=7 then A.generators:=List([2..r+1],i->A.basis[i]);fi;
I=sort(combinations(1:r),by=x->-length(x))
if !haskey(W,:solomon_mackey)
if n>LIM InfoAlgebra("# structure constants...") end;c=n
Idict=Dict(p=>i for (i,p) in enumerate(I))
subsets=map(x->map(j->Idict[j],combinations(x)),I)
mackey=[Pair{Int,Int}[] for i in 1:d,j in 1:d]
for w in W
leftascents=Idict[setdiff(1:r,leftdescents(W,w))]
rightascents=Idict[setdiff(1:r,leftdescents(W,inv(w)))]
l=map(i->action(W,i,w),1:r)
for i in subsets[leftascents]
II=sort!(l[I[i]])
for j in subsets[rightascents]
push!(mackey[i,j],Idict[Combinat.intersect_sorted(II,I[j])]=>1)
end
end
if c%LIM==0 InfoAlgebra(c,".") end; c-=1
end
if n>LIM InfoAlgebra("\n") end
W.solomon_mackey=ModuleElt.(mackey)
W.solomon_subsets=I
end
if !haskey(W,:solomon_conjugacy)
if n>LIM InfoAlgebra("# orbits of parabolic subgroups...") end
orb=1:d
conj=Vector{Int}[]
while !isempty(orb)
i=orb[1]
j=filter(k->!iszero(W.solomon_mackey[i,k][k]) &&
length(I[i])==length(I[k]),orb)
push!(conj,j)
orb=setdiff(orb,j)
end
W.solomon_conjugacy=conj
if n>LIM InfoAlgebra("\n") end
end
basismult(i,j)=[k=>T(c) for (k,c) in W.solomon_mackey[i,j].d]
multable=[basismult(i,j) for i in 1:d, j in 1:d]
A=SolomonAlgebra(W,multable,Dict{Symbol,Any}())
A.xbasis=function(a...)
a=sort(collect(a))
basis(A,findfirst(==(a),W.solomon_subsets))
end
if iszero(char(T))
A.xprimebasis=function(a...)
a=sort(collect(a))
sum(i->(-1//2)^(length(a)-length(i))*A.xbasis(i...),combinations(a))
end
end
A.ybasis=function(a...)
a=sort(collect(a))
res=zero(one(A))
for i in filter(i->issubset(a,I[i]),eachindex(I))
res+=(-1)^(length(I[i])-length(a))*basis(A,i)
end
res
end
A.showbasis=function(io::IO,i)
fromTeX(io,string("X_{",joindigits(A.W.solomon_subsets[i]),"}"))
end
if char(T)==0
A.characterDegrees=fill(1,length(W.solomon_conjugacy))
end
A
end
function PermRoot.radical(A::SolomonAlgebra{T})where T
get!(A,:radical) do
if iszero(char(T))
if length(A.W)>LIM InfoAlgebra("# Computing radical...") end
k=vcat(map(i->map(j->basis(A,i[1])-basis(A,j),i[2:end]),
A.W.solomon_conjugacy)...)
radical=TwoSidedIdeal(A,k,Dict{Symbol,Any}())
# if dim(radical)==0
# A.radical.operations.LeftTrace=x->0*A.field.one
# A.radical.operations.RightTrace=x->0*A.field.one
# else
# subspace=Subspace(A.vectorspace,Matrix(k))
# base=CanonicalBasis(subspace)
# A.radical.operations.LeftTrace=x->TraceMat(List(base.vectors,v->
# Coefficients(base,Matrix(x*AlgebraElt(A,v)))));
# A.radical.operations.RightTrace=x->TraceMat(List(base.vectors,v->
# Coefficients(base,Matrix(AlgebraElt(A,v)*x))));
# end
A.radicalpowers=[radical]
if length(A.W)>LIM InfoAlgebra("done!\n") end
radical
end
end
end
function permutation_character(W,S)
t=induction_table(S,W).scalar
i=findfirst(x->all(==(1),x),eachrow(CharTable(S).irr))
permutedims(CharTable(W).irr)*t[:,i]
end
#SolomonHomomorphism:=function(x) local A,i,W,T,irr,mat,WI,p;
# A:=x.domain; W:=A.group; T:=CharTable(W); irr:=T.irreducibles;
# mat:=List(irr, i-> 0);
# for i in x.coefficients do
# if A.type="Solomon algebra" then
# WI:=ReflectionSubgroup(W,W.solomon.subsets[i[2]]);
# elif A.type="Generalized Solomon algebra" then
# WI:=W.generalizedsolomon.subgroups[i[2]];
# fi;
## p:=PermutationCharacter(W,WI);
# p:=PermutationCharacterByInductiontable(W,WI); # faster for large groups
# mat:=mat+i[1]*MatScalarProducts(T,irr,[p])[1];
# od;
# return GrothendieckRing(W,A.field).VectorToElt(mat);
#end;
#SolomonAlgebraOps.xprimePrint:=function(r) local res,i,A,f,xprime;
# A:=r.domain;
# A.xprimebasisname:="X'";
# res:=Matrix(r);
# xprime:=Matrix(List(A.group.solomon.subsets,A.xprimebasis));
# res:=AlgebraElt(A,res*xprime^-1);
# res:=res.coefficients;
# if IsBound(A.xprimeprint) then A.xprimeprint(r);
# else
# f:=function(coef)
# if coef[1]=A.field.one then
# Print(A.xprimebasisname,"(",A.parameters[coef[2]],")");
# elif coef[1]=-A.field.one then
# Print(" - ",A.xprimebasisname,"(",A.parameters[coef[2]],")");
# else Print(coef[1],"*",A.xprimebasisname,"(",A.parameters[coef[2]],")");
# fi;
# end;
# if Length(res)=0 then Print("0*",A.xprimebasisname,"(",
# A.parameters[A.one.coefficients[1][2]],")");
# else
# f(res[1]);
# for i in [2..Length(res)] do
# if res[i][1] < 0 or (res[i][1]=-A.field.one and A.field.char <> 2)
# then Print(" - ");f([-res[i][1],res[i][2]]);
# else Print(" + ");f(res[i]);
# fi;
# od;
# fi;
# fi;
#end;
#
#ProjectionMatrix:=function(quotient) local res;
# quotient.zero:=quotient.operations.Zero(quotient);
# quotient.generators:=quotient.operations.Generators(quotient);
# Basis(quotient);
# res:=List(Basis(quotient.factorNum).vectors,
# i-> quotient.semiEchelonBasis.operations.Coefficients(Basis(quotient),
# VectorSpaceProjection(quotient,i)));
# return res;
#end;
#
#SolomonAlgebraOps.Radical:=function(A)local B,space,quotient,mat;
# if A.field.char=0 then return A.radical;fi;
# B:=GrothendieckRing(A.group,GF(A.field.char));
# space:=B.vectorspace;
# quotient:=space/Subspace(space,Matrix(Radical(B).basis));
# mat:=List(A.basis,i->Matrix(SolomonHomomorphism(i)));
# mat:=mat*ProjectionMatrix(quotient);
# A.radical:=TwoSidedIdeal(A,AlgebraElt(A,NullspaceMat(mat)));
# A.radicalpowers:=[A.radical];
# return A.radical;
#end;
function idempotents(A::SolomonAlgebra{T})where T
get!(A,:idempotents)do
W=A.W
if char(T)==0
M=CharTable(A).irr
# if A.type="Solomon algebra" then
I=W.solomon_subsets[first.(W.solomon_conjugacy)]
# elseif A.type="Generalized Solomon algebra" then
# I:=List(W.generalizedsolomon.conjugacy, i->
# W.generalizedsolomon.signedcompositions[i[1]]);
# end
else
# #if A.type="Solomon algebra" then
M=CharTable(A).invertiblematrix
I=CharTable(A).parameters
# #fi;
end
r=length(I)
e=permutedims(inv(M*1//1))*map(i->A.xbasis(i...),I)
f=map(i->sum(e[i:r]),1:r)
n=loewylength(A)
v=Pol(T[1],1)
pol=sum(j->binomial(2*n,j)*v^(2*n-j)*(1-v)^j,0:n)
InfoAlgebra("# Computations to do: ",r)
# f[1]=one(A)
for i in 2:r
f[i]=pol(f[i-1]*f[i]*f[i-1])
InfoAlgebra(".",r-i)
end
InfoAlgebra("\n")
e[r]=f[r]
for i in 1:r-1 e[i]=f[i]-f[i+1] end
e
end
end
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Section{Generalized Solomon algebras}
#
#In this subsection, we refer to the paper cite{BH05}.
#
#If `n` is a non-zero natural number, we denote by `W_n` the Weyl group of
#type `B_n` and by `W_{-n}` the Weyl group of type `A_{n-1}` (isomorphic to
#the symmetric group of degree `n`). If `C=[i_1,...,i_r]` is a *signed
#composition* of `n`, we denote by `W_C` the subgroup of `W_n` equal to `W_C
# = W_{i_1} x ... x W_{i_r}`. This is a subgroup generated by reflections (it
#is not in general a parabolic subgroup of `W_n`). Let `X_C = {x β W_C
#| l(xw) β₯ l(x) β w β W_C}`. Note that `X_C` is the set of
#minimal length left coset representatives of `W_n/W_C`. Now, let
#`x_C=β_{w β X_C} w`. We now define `Ξ£'(W_n) = β_C β€
#`, where `C` runs over the signed compositions of `n`. By cite{BH05},
#this is a subalgebra of `ZW_n`. Now, let `Y_C` be the set of elements of
#`X_C` which are not in any other `X_D` and let `y_C=β_{w β Y_C} w`.
#Then `Ξ£'(W_n) = β_C β€ y_C`. Moreover, the linear map
#`ΞΈ' : Ξ£^'(W_n) β K(W_n)` defined by
#`ΞΈ'(x_C) = Ind_{W_C}^{W_n} 1` is a *surjective homomorphism* of
#algebras (see cite{BH05}). We still call it the *Solomon homomorphism*.
#SolomonAlgebraOps.Print:=function(A)
# Print("GeneralizedSolomonAlgebra(",A.group,",",A.field,")");
#end;
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 64206 | """
Characters and conjugacy classes of complex reflection groups.
The `CharTable` of a finite complex reflection group `W` is computed using
the decomposition of `W` in irreducible groups (see `refltype`). For each
irreducible group the character table is either computed using recursive
formulas for the infinite series, or read into the system from a library
file for the exceptional types. Thus, character tables can be obtained
quickly even for very large groups (e.g., Eβ). Similar remarks apply for
conjugacy classes.
The conjugacy classes and irreducible characters of irreducible finite
complex reflection groups have canonical labelings by certain combinatorial
objects; these labelings are used in the tables we give. For the classes,
these are partitions or partition tuples for the infinite series, or, for
exceptional Coxeter groups, Carter's admissible diagrams
[Carter1972](biblio.htm#Car72); for
other primitive complex reflection groups we just use words in the
generators to specify the classes. For the characters, these are again
partitions or partition tuples for the infinite series, and for the others
they are pairs of two integers `(d,e)` where `d` is the degree of the
character and `e` is the smallest symmetric power of the reflection
representation containing the given character as a constituent (the
`b`-invariant of the character). This information is given by the functions
`classinfo` and `charinfo`. When you display the character table, the
canonical labelings for classes and characters are displayed.
A typical example is `coxgroup(:A,n)`, the symmetric group `πβββ` where
classes and characters are parameterized by partitions of `n+1` (this is
also the case for `coxsym(n+1)`).
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> CharTable(W)
CharTable(Aβ)
ββββββ¬ββββββββββββββββββ
β β1111 211 22 31 4β
ββββββΌββββββββββββββββββ€
β1111β 1 -1 1 1 -1β
β211 β 3 -1 -1 . 1β
β22 β 2 . 2 -1 .β
β31 β 3 1 -1 . -1β
β4 β 1 1 1 1 1β
ββββββ΄ββββββββββββββββββ
julia> W=coxgroup(:G,2)
Gβ
julia> ct=CharTable(W)
CharTable(Gβ)
βββββββ¬βββββββββββββββββββββ
β βAβ AΜβ Aβ Gβ Aβ Aβ+AΜββ
βββββββΌβββββββββββββββββββββ€
βΟβββ β 1 1 1 1 1 1β
βΟβββ β 1 -1 -1 1 1 1β
βΟβ²ββββ 1 1 -1 -1 1 -1β
βΟβ³ββββ 1 -1 1 -1 1 -1β
βΟβββ β 2 . . 1 -1 -2β
βΟβββ β 2 . . -1 -1 2β
βββββββ΄βββββββββββββββββββββ
julia> ct.charnames
6-element Vector{String}:
"\\phi_{1,0}"
"\\phi_{1,6}"
"\\phi_{1,3}'"
"\\phi_{1,3}''"
"\\phi_{2,1}"
"\\phi_{2,2}"
julia> ct.classnames
6-element Vector{String}:
"A_0"
"\\tilde A_1"
"A_1"
"G_2"
"A_2"
"A_1+\\tilde A_1"
```
Reflection groups have fake degrees (see [`fakedegrees`](@ref)), whose
valuation and degree give two integers `b,B` for each irreducible character
of `W`. For spetsial groups (which include finite Coxeter groups), the
valuation and degree of the generic degrees of the Hecke algebra give two
more integers `a,A` (for Coxeter groups see [Carter1985,
Ch.11](biblio.htm#Car85) for more details). These integers are also used in
the operations of truncated induction, see [`j_induction_table`](@ref) and
[`J_induction_table`](@ref).
Iwahori-Hecke algebras and cyclotomic Hecke algebras also have character
tables, see the corresponding chapters.
We now describe for each type our conventions for labeling the classes and
characters.
Type `Aβ` (`nβ₯0`). In this case we have `W β
πβββ`. The classes and
characters are labelled by partitions of `n+1`. The partition labelling a
class is the cycle type of the elements in that class; the representative
in '.classtext' is the concatenation of the words corresponding to each
part, where the word for a part `i` is the product of `i-1` consecutive
generators (starting one higher than the last generator used for the
previous parts). The partition labelling a character describes the type of
the Young subgroup such that the trivial character induced from this
subgroup contains that character with multiplicity `1` and such that every
other character occurring in this induced character has a higher `a`-value.
Thus, the sign character is labelled by the partition `(1βΏβΊΒΉ)` and the
trivial character by the partition `(n+1)`. The character of the reflection
representation of `W` is labelled by `(n,1)`.
Type `Bβ` (`nβ₯2`). In this case `W=W(Bβ)` is isomorphic to the wreath
product of the cyclic group of order `2` with the symmetric group `πβ`.
Hence the classes and characters are parameterized by pairs of partitions
such that the total sum of their parts equals `n`. The pair corresponding
to a class describes the signed cycle type for the elements in that class,
as in [Carter1972](biblio.htm#Car72). We use the convention that if `(Ξ»,ΞΌ)`
is such a pair then `Ξ»` corresponds to the positive and `ΞΌ` to the negative
cycles. Thus, `(1βΏ,-)` and `(-,1βΏ)` label respectively the trivial class
and the class of the longest element.
The pair corresponding to an irreducible character is determined via
Clifford theory, as follows. We have a semidirect product decomposition
`W(Bβ)=N β πβ` where `N` is the standard `n`-dimensional `π½ββΏ`-vector
space. For `a,b β₯ 0` such that `n=a+b` let ``Ξ·_{a,b}`` be the irreducible
character of `N` which takes value `1` on the first `a` standard basis
vectors and value `-1` on the last `b` standard basis vectors of `N`. Then
the inertia subgroup of ``Ξ·_{a,b}`` has the form ``T_{a,b}=N.(π_a Γ π_b)``
and we can extend ``Ξ·_{a,b}`` trivially to an irreducible character
``Ξ·Μ_{a,b}`` of ``T_{a,b}``. Let `Ξ±` and `Ξ²` be partitions of `a` and `b`,
respectively. We take the tensor product of the corresponding irreducible
characters of `π_a` and `π_b` and regard this as an irreducible character
of ``T_{a,b}``. Multiplying this character with ``Ξ·Μ_{a,b}`` and inducing
to `W(Bβ)` yields an irreducible character ``Ο= Ο_{(Ξ±,Ξ²)}`` of `W(Bβ)`.
This defines the correspondence between irreducible characters and pairs of
partitions as above.
For example, the pair `((n),-)` labels the trivial character and `(-,(1βΏ))`
labels the sign character. The character of the natural reflection
representation is labeled by `((n-1),(1))`.
Type `Dβ` (`nβ₯4`). In this case `W=W(Dβ)` can be embedded as a subgroup of
index `2` into the Coxeter group `W(Bβ)`. The intersection of a class of
`W(Bβ)` with `W(Dβ)` is either empty or a single class in `W(Dβ)` or splits
up into two classes in `W(Dβ)`. This also leads to a parameterization of
the classes of `W(Dβ)` by pairs of partitions `(Ξ»,ΞΌ)` as before but where
the number of parts of `ΞΌ` is even and where there are two classes of this
type if `ΞΌ` is empty and all parts of `Ξ»` are even. In the latter case we
denote the two classes in `W(Dβ)` by `(Ξ»,+)` and `(Ξ»,-)`, where we use the
convention that the class labeled by `(Ξ»,+)` contains a representative
which can be written as a word in `{sβ,sβ,β¦,sβ}` and `(Ξ»,-)` contains a
representative which can be written as a word in `{sβ,sβ, β¦,sβ}`.
By Clifford theory the restriction of an irreducible character of `W(Bβ)`
to `W(Dβ)` is either irreducible or splits up into two irreducible
components. Let `(Ξ±,Ξ²)` be a pair of partitions with total sum of parts
equal to `n`. If `Ξ±!=Ξ²` then the restrictions of the irreducible characters
of `W(Bβ)` labeled by `(Ξ±,Ξ²)` and `(Ξ²,Ξ±)` are irreducible and equal. If
`Ξ±=Ξ²` then the restriction of the character labeled by `(Ξ±,Ξ±)` splits into
two irreducible components which we denote by `(Ξ±,+)` and `(Ξ±,-)`. Note
that this can only happen if `n` is even. In order to fix the notation we
use a result of [Stembridge1989](biblio.htm#Ste89) which describes the
value of the difference of these two characters on a class of the form
`(Ξ»,+)` in terms of the character values of the symmetric group `π_{n/2}`.
Recall that it is implicit in the notation `(Ξ»,+)` that all parts of `Ξ»`
are even. Let `Ξ»'` be the partition of `n/2` obtained by dividing each part
by `2`. Then the value of `Ο_{(Ξ±,-)}-Ο_{(Ξ±,+)}` on an element in the class
`(Ξ»,+)` is given by `2^{k(Ξ»)}` times the value of the irreducible character
of `π_{n/2}` labeled by `Ξ±` on the class of cycle type `Ξ»'`. (Here, `k(Ξ»)`
denotes the number of non-zero parts of `Ξ»`.)
The labels for the trivial, the sign and the natural reflection character
are the same as for `W(Bβ)`, since these characters are restrictions of the
corresponding characters of `W(Bβ)`.
The groups `G(d,1,n)`.
They are isomorphic to the wreath product of the cyclic group of order `d`
with the symmetric group `πβ`. Hence the classes and characters are
parameterized by `d`-tuples of partitions such that the total sum of their
parts equals `n`. The words chosen as representatives of the classes are,
when `d>2`, computed in a slightly different way than for `Bβ`, in order to
agree with the words on which Ram and Halverson compute the characters of
the Hecke algebra. First the parts of the `d` partitions are merged in one
big partition and sorted in increasing order. Then, to a part `i` coming
from the `j`-th partition is associated the word `(l+1β¦1β¦ l+1)Κ²β»ΒΉl+2β¦l+i`
where `l` is the highest generator used to express the previous part.
The `d`-tuple corresponding to an irreducible character is determined via
Clifford theory in a similar way than for the `Bβ` case. The identity
character has the first partition with one part equal `n` and the other
ones empty. The character of the reflection representations has the first
two partitions with one part equal respectively to `n-1` and to `1`, and
the other partitions empty.
The groups `G(de,e,n)`.
They are normal subgroups of index `e` in `G(de,1,n)`. The quotient is
cyclic, generated by the image `g` of the first generator of `G(de,1,n)`.
The classes are parameterized as the classes of `G(de,e,n)` with an extra
information for a component of a class which splits.
According to [Hugues1985](biblio.htm#Hu85), a class `C` of `G(de,1,n)`
parameterized by a `de`-partition ``(Sβ,β¦,S_{de-1})`` is in `G(de,e,n)` if
`e` divides ``βα΅’ i β_{pβ Sα΅’}p``. It splits in `d` classes for the largest
`d` dividing `e` and all parts of all `Sα΅’` and such that `Sα΅’` is empty if
`d` does not divide `i`. If `w` is in `C` then 'gβ± w gβ»β±' for 'i in 0:d-1'
are representatives of the classes of `G(de,e,n)` which meet `C`. They are
described by appending the integer `i` to the label for `C`.
The characters are described by Clifford theory. We make `g` act on labels
for characters of `G(de,1,n)` . The action of `g` permutes circularly by
`d` the partitions in the `de`-tuple. A character has same restriction to
`G(de,e,n)` as its transform by `g`. The number of irreducible components
of its restriction is equal to the order `k` of its stabilizer under powers
of `g`. We encode a character of `G(de,e,n)` by first, choosing the
smallest for lexicographical order label of a character whose restriction
contains it; then this label is periodic with a motive repeated `k` times;
we represent the character by one of these motives, to which we append
`E(k)β±` for 'i in 0:k-1' to describe which component of the restriction we
choose.
Types `Gβ` and `Fβ`. The matrices of character values and the orderings and
labelings of the irreducible characters are exactly the same as in
[Carter1985, p.412/413](biblio.htm#Car85): in type `Gβ` the character
`Οβ,β'` takes the value -1 on the reflection associated to the long simple
root; in type `Fβ`, the characters `Οβ,ββ'`, `Οβ,β'`, `Οβ,β'`, `Οβ,β'` and
`Οβ,β'` occur in the induced of the identity from the `Aβ` corresponding to
the short simple roots; the pairs (`Οβ,ββ'`, `Οβ,ββ³`) and (`Οβ,β'`,
`Οβ,ββ³`) are related by tensoring by sign; and finally `Οβ,ββ³` is the
exterior square of the reflection representation. Note, however, that we
put the long root at the left of the Dynkin diagrams to be in accordance
with the conventions in [Lusztig1985, (4.8) and (4.10)](biblio.htm#Lus85).
The classes are labeled by Carter's admissible diagrams
[Carter1972](biblio.htm#Car72). A character is labeled by a pair `(d,b)`
where `d` denotes the degree and `b` the corresponding `b`-invariant. If
there are several characters with the same pair `(d,b)` we attach a prime
to them, as in [Carter1985](biblio.htm#Car85).
Types `Eβ,Eβ,Eβ`. The character tables are obtained by specialization of
those of the Hecke algebra. The classes are labeled by Carter's admissible
diagrams [Carter1972](biblio.htm#Car72). A character is labeled by the pair
`(d,b)` where `d` denotes the degree and `b` is the corresponding
`b`-invariant. For these types, this gives a unique labeling of the
characters.
Non-crystallographic types `Iβ(m)`, `Hβ`, `Hβ`. In these cases we do not
have canonical labelings for the classes. We label them by reduced
expressions.
Each character for type `Hβ` is uniquely determined by the pair `(d,b)`
where `d` is the degree and `b` the corresponding `b`-invariant. For type
`Hβ` there are just two characters (those of degree `30`) for which the
corresponding pairs are the same. These two characters are nevertheless
distinguished by their fake degrees: the character `Οββ,ββ'` has fake
degree `qΒΉβ°+qΒΉΒ²+` higher terms, while `Οββ,βββ³` has fake degree `qΒΉβ°+qΒΉβ΄+`
higher terms. The characters in the table for type `Hβ` are ordered in the
same way as in [Alvis and Lusztig1982](biblio.htm#AL82).
Finally, the characters of degree `2` for type `Iβ(m)` are ordered as
follows. The matrix representations affording the characters of degree `2`
are given by:
`` Ο_j : sβsβ β¦
\\begin{pmatrix}\\zeta_m^j&0\\\\0&\\zeta_m^{-j}\\end{pmatrix},
sββ¦\\begin{pmatrix}0&1\\\\1&0\\end{pmatrix},``
where `1 β€ j β€ β(m-1)/2β`. The reflection representation
is `Οβ`. The characters in the table are ordered by listing
first the characters of degree 1 and then `Οβ,Οβ,β¦`.
Primitive complex reflection groups `Gβ` to `Gββ`.
The groups `Gββ=Hβ`, `Gββ=Fβ`, `Gββ=Hβ` are exceptional Coxeter groups and
have been explained above. Similarly for the other groups labels for
characters consist primarily of the pair `(d,b)` where `d` denotes the
degree and `b` is the corresponding `b`-invariant. This is sufficient for
`Gβ`, `Gββ`, `Gββ` and `Gββ`. For other groups there are pairs or triples
of characters which have the same `(d,b)` value. We disambiguate these
according to the conventions of [Malle2000](biblio.htm#Mal00) for `Gββ,
Gββ, Gββ, Gββ` and `Gββ`:
- For `Gββ`:
The fake degree of `Οβ,β
'` (resp. `Οβ,ββ'`, `Οβ,ββ³`) has smaller degree
that of `Οβ,β
β³` (resp. `Οβ,βββ³`, `Οβ,β'`). The characters `Οβ
,ββ
'` and
`Οβ
,β'` occur with multiplicity 1 in the induced from the trivial character
of the parabolic subgroup of type `Aβ` generated by the first and third
generator (it is asserted mistakenly in [Malle2000](biblio.htm#Mal00) that
`Οβ
,ββ³` does not occur in this induced; it occurs with multiplicity 2).
- For `Gββ`:
The character `Οβ,βββ΄` is the exterior square of `Οβ,β`; its complex
conjugate is `Οβ,βββ`. The character `Οββ
,ββ³` occurs in `Οβ,ββΟβ,β`; the
character `Οββ
,βββ³` is tensored by the sign character from `Οββ
,ββ³`.
Finally `Οβ,ββ'` occurs in the induced from the trivial character of the
standard parabolic subgroup of type `Aβ` generated by the first, second and
fourth generators.
- For `Gββ`:
The characters `Οββ
,β'`, `Οββ
,ββ'` and `Οββ
,ββ³` occur in `Οβ,ββΟββ,β`; the
character `Οββ,ββ'` is complex conjugate of `Οββ,β`; the character
`Οββ
,ββ'` is tensored by sign of `Οββ
,β'`. The two terms of maximal degree
of the fakedegree of `Οββ,ββ'` are `qβ΅β°+qβ΄βΆ` while for `Οββ,βββ³` they are
`qβ΅β°+2qβ΄βΆ`.
- For `Gββ`:
The two terms of maximal degree of the fakedegree of `Οββ,β'` are `qΒ²βΈ+qΒ²βΆ`
while for `Οββ,ββ³` they are `qΒ²βΈ+qΒ²β΄`. The terms of maximal degree of the
fakedegree of `Οββ,β
'` are `qΒ³ΒΉ+qΒ²βΉ` while for `Οββ,β
β³` they are
`qΒ³ΒΉ+2qΒ²βΉ`. The character `Οββ,ββ'` is tensored by sign of `Οββ,β'` and
`Οββ,ββ'` is tensored by sign of `Οββ,β
'`.
- For `Gββ`:
The character `Οββ,ββ'` occurs in `Οβ,ββΟββ
,ββ`. The character `Οββ,β'` is
rational. The character `Οββ,ββ³` occurs in `Οβ,ββΟββ
,ββ`. The character
`Οββ,ββ
'` is rational.The character `Οββ,ββ
β³` is tensored by the
determinant character of `Οββ,ββ³`. The character `Οβ
ββ,ββ'` is rational.
The character `Οβ
ββ,βββ΄` occurs in `Οβ,ββΟβββ,ββ`. The character `Οβββ,ββ'`
occurs in `Οβ,ββΟβββ,ββ`. The character `Οβββ,βββ³` occurs in
`Οβ,ββΟβββ,ββ`. The character `Οβ
ββ,ββ'` occurs in `Οβ,ββΟβββ
,ββ`. The
character `Οβββ
,β'` is complex conjugate of `Οβββ
,β`, and `Οβββ,ββ'` is
complex conjugate of `Οβββ,ββ`. The character `Οβββ,ββ'` is complex
conjugate of `Οβββ,ββ`. Finally `Οβββ,ββ'` occurs in induced from the
trivial character of the standard parabolic subgroup of type `Aβ
` generated
by the generators of `Gββ` with the third one omitted.
For the groups `Gβ
` and `Gβ` we adopt the following conventions. For `Gβ
`
they are compatible with those of [MalleRouquier2003](biblio.htm#MR03) and
[BroueMalleMichel2014](biblio.htm#BMM14).
- For `Gβ
`:
We let `W=complex_reflection_group(5)`, so the generators are `W(1)` and
`W(2)`.
The character `Οβ,β'` (resp. `Οβ,ββ'`, `Οβ,β'`) takes the value `1` (resp.
`ΞΆβ`, `-ΞΆβ`) on `W(1)`. The character `Οβ,ββ³` is complex conjugate to
`Οβ,ββ`, and the character `Οβ,β'` is complex conjugate to `Οβ,β'` . The
character `Οβ,β
β³` is complex conjugate to `Οβ,β`; `Οβ,β
'` takes the value
`-1` on `W(1)`. The character `Οβ,β'` is complex conjugate to `Οβ,β
'`.
- For `Gβ`:
We let `W=complex_reflection_group(7)`, so the generators are
`W(1)`, `W(2)` and `W(3)`.
The characters `Οβ,β'` and `Οβ,ββ'` take the value `1` on `W(2)`. The
character `Οβ,ββ³` is complex conjugate to `Οβ,ββ` and `Οβ,β'` is complex
conjugate to `Οβ,β'`. The characters `Οβ,ββ'` and `Οβ,ββ'` take the value
`ΞΆβ` on `W(2)`. The character `Οβ,βββ³` is complex conjugate to `Οβ,ββ` and
`Οβ,ββ'` is complex conjugate to `Οβ,ββ'`. The character `Οβ,β'` takes the
value `-ΞΆβ` on `W(2)` and `Οβ,ββ'` takes the value `-1` on `W(2)`. The
characters `Οβ,βββ³`, `Οβ,β
β³`, `Οβ,ββ΄` and `Οβ,β` are Galois conjugate, as
well as the characters `Οβ,β'`, `Οβ,ββ'`, `Οβ,ββ'` and `Οβ,β
'`. The
character `Οβ,β'` is complex conjugate to `Οβ,ββ
` and `Οβ,ββ΄` is complex
conjugate to `Οβ,β'`.
Finally, for the remaining groups `Gβ, Gβ` to `Gββ, Gββ` to `Gββ`, `Gββ
`,
`Gββ`, `Gββ` and `Gββ` there are only pairs of characters with same value
`(d,b)`. We give labels uniformly to these characters by applying in order
the following rules :
- If the two characters have different fake degrees, label `Ο_{d,b}'` the
one whose fake degree is minimal for the lexicographic order of
polynomials (starting with the highest term).
- For the not yet labeled pairs, if only one of the two characters has the
property that in its Galois orbit at least one character is
distinguished by its `(d,b)`-invariant, label it `Ο_{d,b}'`.
- For the not yet labeled pairs, if the minimum of the `(d,b)`-value (for
the lexicographic order `(d,b)`) in the Galois orbits of the two
character is different, label `Ο_{d,b}'` the character with the minimal
minimum.
- We define now a new invariant for characters: consider all the pairs of
irreducible characters `Ο` and `Ο` uniquely determined by their
`(d,b)`-invariant such that `Ο` occurs with non-zero multiplicity `m` in
`ΟβΟ`. We define `t(Ο)` to be the minimal (for lexicographic order)
possible list `(d(Ο),b(Ο),d(Ο),b(Ο),m)`.
For the not yet labeled pairs, if the t-invariants are different, label
`Ο_{d,b}'` the character with the minimal `t`-invariant.
After applying the last rule all the pairs will be labelled for the
considered groups. The labelling obtained is compatible for `Gββ
`, `Gββ`,
`Gββ` and `Gββ` with that of [Malle2000](biblio.htm#Mal00) and for `Gβ`
with that described in [MalleRouquier2003](biblio.htm#MR03).
We should emphasize that for all groups with a few exceptions, the
parameters for characters do not depend on any non-canonical choice. The
exceptions are `G(de,e,n)` with `e>1`, and `Gβ
`, `Gβ`, `Gββ`, `Gββ`, `Gββ`
and `Gββ`, groups which admit outer automorphisms preserving the set of
reflections, so choices of a particular value on a particular generator
must be made for characters which are not invariant by these automorphisms.
Labels for the classes. For the exceptional complex reflection groups, the
labels for the classes represent the decomposition of a representative of
the class as a product of generators, with the additional conventions that
'z' represents the generator of the center and for well-generated groups
'c' represents a Coxeter element (a product of the generators which is a
regular element for the highest reflection degree).
"""
module Chars
using ..Chevie
export charinfo, classinfo, fakedegree, fakedegrees, CharTable, representation,
WGraphToRepresentation, DualWGraph, WGraph2Representation, charnames,
representations, InductionTable, induction_table, classes, j_induction_table,
J_induction_table, decompose, on_chars, detPerm, conjPerm,
classnames, decomposition_matrix, eigen, schur_functor, charnumbers
"""
`schur_functor(mat,l)`
`mat` should be a square matrix and `l` a partition. The result is the
Schur functor of the matrix `mat` corresponding to partition `l`; for
example, if `l==[n]` it returns the n-th symmetric power and if
`l==[1,1,1]` it returns the 3rd exterior power. The current algorithm (from
Littlewood) is rather inefficient so it is quite slow for partitions of n
where `n>6`.
```julia-repl
julia> m=cartan(:A,3)
3Γ3 Matrix{Int64}:
2 -1 0
-1 2 -1
0 -1 2
julia> schur_functor(m,[2,2])
6Γ6 Matrix{Rational{Int64}}:
9 -6 4 3//2 -2 1
-12 16 -16 -4 8 -4
4 -8 16 2 -8 4
12 -16 16 10 -16 12
-4 8 -16 -4 16 -12
1 -2 4 3//2 -6 9
```
"""
function schur_functor(A,la)
n=sum(la)
S=coxsym(n)
r=representation(S,findfirst(==(la),partitions(n)))
rep=function(x)x=word(S,x)
isempty(x) ? r[1]^0 : prod(r[x]) end
f=j->prod(factorial,last.(tally(j)))
basis=multisets(axes(A,1),n)
M=sum(x->kron(rep(x),toM(map(function(i)i=invpermute(i,x)
return map(j->prod(k->A[i[k],j[k]],1:n),basis)//f(i) end,basis))),elements(S))
# Print(Length(M),"=>");
M=M[filter(i->!all(iszero,M[i,:]),axes(M,1)),:]
M=M[:,filter(i->!all(iszero,M[:,i]),axes(M,2))]
m=sort.(collectby(i->M[:,i],axes(M,2)))
m=sort(m)
M=M[:,first.(m)]
improve_type(toM(map(x->sum(M[x,:],dims=1)[1,:],m)))
end
"""
`fakedegree(W, Ο, q=Pol())`
returns the fake degree (see [`fakedegrees`](@ref) for a definition) of the
character of parameter Ο (see `charinfo(W).charparams`) of the reflection
group `W`, evaluated at `q` .
```julia-repl
julia> fakedegree(coxgroup(:A,2),[[2,1]],Pol(:q))
Pol{Cyc{Int64}}: qΒ²+q
```
"""
function fakedegree(W,p,q=Pol())
typ=refltype(W)
if isempty(typ) return one(q) end
# prod(map((t,p)->fakedegree(t,p,q),typ,p))
prod(fakedegree.(typ,p,q))
end
function fakedegree(t::TypeIrred,p,q=Pol())
if haskey(t,:scalar) q=prod(s->q*conj(s),t.scalar)
elseif haskey(t,:orbit) q=q^length(t.orbit)
end
getchev(t,:FakeDegree,p,q)
end
"""
`fakedegrees(W, q=Pol())`
returns a list holding the fake degrees of the reflection group `W` on the
vector space `V`, evaluated at `q`. These are the graded multiplicities of
the irreducible characters of `W` in the quotient `SV/I` where `SV` is the
symmetric algebra of `V` and `I` is the ideal generated by the homogeneous
invariants of positive degree in `SV`. The ordering of the result
corresponds to the ordering of the characters in `charinfo(W)`.
```julia-repl
julia> fakedegrees(coxgroup(:A,2),Pol(:q))
3-element Vector{Pol{Int64}}:
qΒ³
qΒ²+q
1
```
"""
function fakedegrees(W,q=Pol();recompute=false)
if !recompute
res=get!(W,:fakedegrees)do
improve_type(map(p->fakedegree(W,p,Pol()),charinfo(W).charparams))
end
if !any(isnothing,res) && !all(iszero,res)
if q==Pol() return res
else return map(x->x(q),res)
end
end
end
# recompute from general principles
InfoChevie("# recomputing fakedegrees for ",W,"\n")
qq=Pol()
P=generic_order(W,qq)
P=shift(P,-valuation(P))
ct=CharTable(W)
P=ct.irr*map(enumerate(ct.centralizers))do (i,c)
exactdiv(P,
improve_type(prod(l->(qq*conj(l)-1),refleigen(W,i);init=one(qq))))//c
end
if q!=qq P=map(x->x(q),P) end
P=improve_type(P)
if W isa Spets P.*=(-1)^rank(W)*generic_sign(W) end
P
end
@GapObj struct CharInfo
end
charnumbers(d::Dict)=d[:charNumbers]
function charinfo(t::TypeIrred)
c=CharInfo(copy(getchev(t,:CharInfo)))
c.positionId=c.extRefl[1]
c.positionDet=c.extRefl[end]
if !haskey(c,:charnames) error("charnames(",t,") missing") end
if !haskey(c,:b) c.b=getchev(t,:LowestPowerFakeDegrees) end
if !haskey(c,:B) c.B=getchev(t,:HighestPowerFakeDegrees) end
if !haskey(c,:a) c.a=getchev(t,:LowestPowerGenericDegrees) end
if !haskey(c,:A) c.A=getchev(t,:HighestPowerGenericDegrees) end
if isnothing(c.a)
uc=getchev(t,:UnipotentCharacters)
if !isnothing(uc) && uc!=false
# printstyled(rio(),"using UniChars\n";color=:red)
if haskey(uc,:almostHarishChandra)
c.a=uc[:a][charnumbers(uc[:almostHarishChandra][1])]
c.A=uc[:A][charnumbers(uc[:almostHarishChandra][1])]
else
c.a=uc[:a][charnumbers(uc[:harishChandra][1])]
c.A=uc[:A][charnumbers(uc[:harishChandra][1])]
end
elseif !haskey(t,:orbit)
para=ordergens(t)
if !isnothing(para)
para=map(x->vcat([Mvp(:x)],map(j->E(x,j),1:x-1)),para)
s=map(p->getchev(t,:SchurElement,p,para,Any[]),c.charparams)
c.a=-valuation.(s)
c.a.+=valuation(s[c.positionId])
c.A=-degree.(s)
c.A.+=degree(s[c.positionId])
end
end
end
for f in [:a,:A,:b,:B]
if haskey(c,f)
if isnothing(c[f]) || c[f]==false delete!(c.prop,f)
else c.prop[f]=improve_type(c[f]) end
end
end
if haskey(t,:orbit)
if !haskey(c,:charRestrictions)
c.charRestrictions=eachindex(c.charparams)
c.nrGroupClasses=length(c.charparams) # assume orbit twist trivial
end
for f in [:a,:A,:b,:B]
if haskey(c,f) c.prop[f]*=length(t.orbit) end
end
end
c
end
cartfields(p,f)=if length(p)==1 map(x->[x],getindex(p[1],f)) else cartesian(getindex.(p,f)...) end
"""
`charinfo(W)`
returns information about the irreducible characters of the finite
reflection group or Spets `W`. The result is an object with various entries
describing properties of the irreducible characters of `W`. This object
prints at the Repl or in Pluto or Jupyter as a table synthesizing most
information.
A field not in the table is `.charparams`: it contains parameters for the
irreducible characters. A parameter is a list with one item for each
irreducible component of `W` (as given by `refltype`). For an irreducible
`W` see the helpstring for `Chars` for what are the parameters.
```julia-repl
julia> charinfo(coxgroup(:G,2)).charparams
6-element Vector{Vector{Vector{Int64}}}:
[[1, 0]]
[[1, 6]]
[[1, 3, 1]]
[[1, 3, 2]]
[[2, 1]]
[[2, 2]]
```
```julia-repl
julia> charinfo(coxgroup(:G,2))
ββββ¬βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βn0β name ext b B a A spaltenstein lusztig symbolβ
ββββΌβββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β1 β Οβββ Id 0 0 0 0 1 1 (0,0,0,0,0,2)β
β2 β Οβββ det 6 6 6 6 Ξ΅ Ξ΅ (01,01,01,01,01,12)β
β3 βΟβ²βββ 3 3 1 5 Ξ΅β Ξ΅β² (0,0,1+)β
β4 βΟβ³βββ 3 3 1 5 Ξ΅_c Ξ΅β³ (0,0,1-)β
β5 β Οβββ ΞΒΉ 1 5 1 5 ΞΈβ² ΞΈβ² (0,0,0,0,1,1)β
β6 β Οβββ 2 4 1 5 ΞΈβ³ ΞΈβ³ (0,0,0,1,0,1)β
ββββ΄βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
In the table printed at the Repl, the columns reflect various fields of
`charinfo`. The column `name` reflects the field `.charnames`, a name
computed from `.charparams`. This is the same as `charnames(io,W)` where
here `io` being the Repl has the property `:limit` true.
The column `ext` shows the exterior powers of the reflection
representation. It corresponds to the field `.extrefl` which is present
only if `W` is irreducible. Otherwise, only two items are shown in the
column: `Id` corresponds to the field `.positionId` and shows the trivial
character. `det` corresponds to the field `.positionDet` and shows the
determinant character (for Coxeter groups the sign character). When `W` is
irreducible, the characters marked `Ξβ±` are the `i`-th exterior power of
the reflection representation. They are irreducible by a theorem of
Steinberg.
The column `b` shows the field `.b` listing for each character the
valuation of the fake degree, and the column `B` shows the field `.B`, the
degree of the fake degree.
The columns `a` and `A` only appear for Spetsial groups. They correspond
then to the fields `.a` and `.A`, and contain respectively the valuation
and the degree of the generic degree of the character (in the one-parameter
Hecke algebra `hecke(W,Pol())` for `W`).
For irreducible groups, the table shows sometimes additional columns,
corresponding to a field of the same name.
for `Fβ`, the column `kondo` gives the labeling of the characters given by
Kondo, also used in [Lusztig1985, (4.10)](biblio.htm#Lus85).
for `Eβ, Eβ, Eβ` the column `frame` gives the labeling of the characters
given by Frame, also used in [Lusztig1985, (4.11), (4.12), and
(4.13)](biblio.htm#Lus85).
for `Gβ` the column `spaltenstein` gives the labeling of the characters
given by Spaltenstein.
for `G(de,e,2)` even `e` and `d>1`, the column `malle` gives the parameters
for the characters used in [Malle1996](biblio.htm#Mal96).
If `W` is irreducible spetsial and imprimitive, the column 'symbol`
(corresponding to the field `.charSymbols`) shows the symbol attached to
the corresponding unipotent caracter.
If `W isa Spets`, the column `restr.` (corresponding to the field
`.charRestrictions`) gives the number of the corresponding character of
`Group(W)`.
Finally, the field `.hgal` contains the permutation of the characters
resulting from a Galois action on the characters of `H=hecke(W,Pol()^e)`
where `e` is the order of the center of `W`. `H` splits by taking `v` an
`e`-th root of `Pol()`, and `.hgal` records the permutation effected by the
Galois action `v->E(e)*v` (`charinfo` does not have the key `:hgal` if this
permutation is trivial). `.hgal*conj`, where `conj` is the complex
conjugaison, is the Opdam involution.
```julia-repl
julia> charinfo(complex_reflection_group(24))
ββββ¬ββββββββββββββββββββββ
βn0β name ext b B a Aβ
ββββΌββββββββββββββββββββββ€
β1 β Οβββ Id 0 0 0 0β
β2 βΟββββ det 21 21 21 21β
β3 β Οβββ 8 18 8 20β
β4 β Οβββ ΞΒΉ 1 11 1 13β
β5 βΟββββ ΞΒ² 10 20 8 20β
β6 β Οβββ 3 13 1 13β
β7 β Οβββ 2 12 1 13β
β8 β Οβββ 9 19 8 20β
β9 β Οβββ 6 18 6 18β
β10β Οβββ 3 15 3 15β
β11β Οβββ 4 16 4 17β
β12β Οβββ
5 17 4 17β
ββββ΄ββββββββββββββββββββββ
hgal=(11,12)
```
"""
function charinfo(W)
get!(W,:charinfo)do
p=charinfo.(refltype(W))
if isempty(p)
res=CharInfo(Dict(:a=>[0],:A=>[0],:b=>[0],:B=>[0],:positionId=>1,
:positionDet=>1,:charnames=>["Id"],:extRefl=>[1],:charparams=>[[]]))
if W isa Spets
res.charRestrictions=[1]
res.nrGroupClasses=1
end
return res
end
if length(p)==1 res=p[1]
else res=CharInfo(Dict{Symbol, Any}())
end
res.charparams=cartfields(p,:charparams)
if W isa Spets
gt=map(x->sort(x.indices),refltype(Group(W)))
t=refltype(W)
n=fill(0,length(gt))
for i in eachindex(t), f in t[i].orbit
n[findfirst(==(sort(f.indices)),gt)]=p[i].nrGroupClasses
end
res.charRestrictions=
map(cartesian(getindex.(p,:charRestrictions)...))do y
m=fill(0,length(gt))
for i in eachindex(t), f in t[i].orbit
m[findfirst(==(sort(f.indices)),gt)]=y[i]
end
cart2lin(n,m)
end
res.nrGroupClasses=prod(i->p[i].nrGroupClasses^length(t[i].orbit),
eachindex(t))
end
if length(p)>1 res.charnames=join.(cartfields(p,:charnames),",") end
for f in [:positionId, :positionDet]
if all(d->haskey(d,f),p)
res.prop[f]=cart2lin(map(x->length(x.charparams),p),getindex.(p,f))
end
end
for f in [:b, :B, :a, :A]
if all(d->haskey(d,f),p) res.prop[f]=improve_type(sum.(cartfields(p,f))) end
end
if !haskey(res,:b) || !haskey(res,:B)
P=fakedegrees(W;recompute=true)
res.b=valuation.(P)
res.B=degree.(P)
end
if any(x->haskey(x,:hgal),p)
res.hgal=map(x->haskey(x,:hgal) ? x.hgal : Perm(), p)
gt=cartesian(map(x->1:length(x.charparams), p)...)
res.hgal=Perm(gt, map(t->map((x,i)->x^i,t,res.hgal),gt))
end
res
end::CharInfo
end
charinfo(W::Weyl.FC)=charinfo(W.G)
function Base.show(io::IO, ::MIME"text/html", ci::CharInfo)
show(IOContext(io,:TeX=>true), "text/plain",ci)
end
function Base.show(io::IO,t::CharInfo)
print(io,"CharInfo(",t.prop,")")
end
function Base.show(io::IO, ::MIME"text/plain", ci::CharInfo)
if !hasdecor(io)
print(io,"CharInfo(",ci.prop,")")
return
end
n=length(ci.charnames)
t=fromTeX.(Ref(io),ci.charnames);cl=String["name"]
ext=fill("",n)
if haskey(ci,:extRefl)
ext[ci.extRefl[[1,end]]]=["Id","det"]
for (i,j) in pairs(ci.extRefl[2:end-1])
ext[j]=fromTeX(io,"\\Lambda^$i")
end
else ext[ci.positionId]="Id";ext[ci.positionDet]="det"
end
t=hcat(t,ext); push!(cl,"ext")
for key in [:b,:B,:a,:A,:kondo,:spaltenstein,:frame,:malle,:lusztig, :carter]
if haskey(ci,key) && ci[key]!=false
t=hcat(t,fromTeX.(Ref(io),string.(ci[key])))
push!(cl,string(key))
end
end
if haskey(ci,:charRestrictions)
t=hcat(t,string.(ci.charRestrictions))
push!(cl,"restr.")
end
if haskey(ci,:charSymbols)
t=hcat(t,stringsymbol.(Ref(io),ci.charSymbols));push!(cl,"symbol")
end
showtable(io,string.(t);row_labels=string.(1:n),col_labels=cl,rows_label="n0")
if haskey(ci,:hgal) println(io,"hgal=",ci.hgal) end
end
"""
`detPerm(W)`
return the permutation of the characters of the reflection group `W` which
is effected when tensoring by the determinant character (for Coxeter groups
this is the sign character).
```julia-repl
julia> W=coxgroup(:D,4)
Dβ
julia> detPerm(W)
(1,8)(2,9)(3,11)(4,13)(7,12)
```
"""
function detPerm(W)
get!(W,:detPerm)do
t=CharTable(W).irr
Perm(t,t.*transpose(t[charinfo(W).positionDet,:]);dims=1)
end::Perm{Perms.Idef}
end
"""
`conjPerm(W)`
return the permutation of the characters of the group `W` which
is effected when taking the complex conjugate of the character table.
```julia-repl
julia> W=complex_reflection_group(4)
Gβ
julia> conjPerm(W)
(2,3)(5,6)
```
"""
function conjPerm(W)
get!(W,:conjPerm)do
t=CharTable(W).irr
Perm(t,conj.(t);dims=1)
end::Perm{Perms.Idef}
end
@GapObj struct ClassInfo
end
function classinfo(t::TypeIrred)
cl=deepcopy(convert(Dict{Symbol,Any},getchev(t,:ClassInfo)))
if haskey(t,:orbit)
l=length(t.orbit)
t=t.orbit[1]
if l>1 && haskey(cl,:classes)
cl[:classes].*=prod(degrees(t))^(l-1)
end
end
inds=t.indices
cl[:classtext]=map(x->inds[x],cl[:classtext])
if haskey(cl,:classes) cl[:classes]=Int.(cl[:classes]) end
if haskey(cl,:centralizers) cl[:centralizers]=Int.(cl[:centralizers]) end
cl[:classnames]=String.(cl[:classnames])
if !haskey(cl,:classparams) cl[:classparams]=cl[:classtext] end
ClassInfo(cl)
end
Groups.nconjugacy_classes(t::TypeIrred)=getchev(t,:NrConjugacyClasses)
"""
`classinfo(W)`
returns information about the conjugacy classes of the finite reflection
group or Spets `W`. The result is an object with various entries describing
properties of the conjugacy classes of `W`. This object prints at the Repl
or in Pluto or Jupyter as a table synthesizing most information.
A field not in the table is `.classparams`, containing parameters for the
conjugacy classes. Each parameter is a vector which has one item for each
irreducible component of `W`. For what are the parameters for an
irreducible `W`, see the helpstring of `Chars`.
```julia-repl
julia> classinfo(coxgroup(:A,2))
ββββ¬βββββββββββββββββββββββ
βn0βname length order wordβ
ββββΌβββββββββββββββββββββββ€
β1 β 111 1 1 .β
β2 β 21 3 2 1β
β3 β 3 2 3 12β
ββββ΄βββββββββββββββββββββββ
```
The table contains the columns:
- `name`, corresponding to the field `.classnames`: strings describing the
conjugacy classes, made out of the information in `:classparams`.
- `length`, corresponding to the field `.classes`, is the number of elements
in the conjugacy class.
- `order`, corresponding to the field `.orders`, is the order of elements
in the conjugacy class.
- `word`, corresponding to the field `.classtext`, describes a word in
the generators for the representatives of each conjugacy class. Each
word is a list of integers where the generator `W(i)` is represented by
the integer `i`. For finite Coxeter groups, it is the same as
`word.(Ref(W),classreps(W))`, and each such representative is of
minimal length in its conjugacy class and is a "very good" element in
the sense of [GeckMichel1997](biblio.htm#GM97).
"""
function classinfo(W)
get!(W,:classinfo)do
tmp=map(classinfo,refltype(W))
if isempty(tmp) return ClassInfo(Dict(:classtext=>[Int[]],:classnames=>[""],
:classparams=>[Int[]],:orders=>[1],:classes=>[1]))
end
if any(isnothing, tmp) return nothing end
if length(tmp)==1 res=copy(tmp[1].prop)
else res=Dict{Symbol, Any}() end
res[:classtext]=map(x->reduce(vcat,x),cartfields(tmp,:classtext))
res[:classnames]=map(x->join(x,","),cartfields(tmp,:classnames))
if all(haskey.(tmp,:classparams))
res[:classparams]=cartfields(tmp,:classparams)
end
if all(haskey.(tmp,:orders))
res[:orders]=map(lcm, cartfields(tmp,:orders))
end
if all(haskey.(tmp,:classes))
res[:classes]=map(prod, cartfields(tmp,:classes))
end
ClassInfo(res)
end::ClassInfo
end
@forward Weyl.FC.G classinfo, charinfo
function Base.show(io::IO, ::MIME"text/html", ci::ClassInfo)
show(IOContext(io,:TeX=>true), "text/plain",ci)
end
function Base.show(io::IO,t::ClassInfo)
print(io,"ClassInfo(",t.prop,")")
end
function limitto(s,sz)
if length(s)<sz || sz<=1 return s end
s[1:prevind(s,sz-1)]*"β¦"
end
function showperiodic(io::IO,v::Vector{Int})
if isempty(v) return "." end
i=prev=1
res=""
while i<=length(v)
for p in 2:div(length(v)-i+1,2)
# @show i,p
if (@view v[i:i+p-1])!=(@view v[i+p:i+2p-1]) continue end
c=2
while i+(c+1)*p-1<=length(v) && (@view v[i:i+p-1])==(@view v[i+c*p:i+(c+1)*p-1]) c+=1 end
if c==2 && p==2 continue end
res*=string(joindigits(@view v[prev:i-1]),"(",joindigits(@view v[i:i+p-1]),")",stringexp(io,c))
i+=c*p-1;prev=i+1
# @show i,c,p,res,prev
break
end
i+=1
end
res*=joindigits(@view v[prev:end])
end
function Base.show(io::IO, ::MIME"text/plain", ci::ClassInfo)
if !hasdecor(io)
print(io,"ClassInfo(",ci.prop,")")
return
end
n=length(ci.classnames)
sz=length(string(n))+1
t=Any[fromTeX.(Ref(io),ci.classnames)];cl=String["name"]
sz+=max(maximum(length.(t[end])),4)+1
for (key,tkey) in [(:classes,:length),(:orders,:order)]
if haskey(ci,key) && ci[key]!=false
push!(t,string.(ci[key]))
push!(cl,string(tkey))
sz+=max(maximum(length.(t[end])),length(cl[end]))+1
end
end
if haskey(ci,:refleigen)
m=toM(ci.refleigen)
for i in axes(m,2)
push!(t,xrepr.(io,m[:,i]))
push!(cl,i==size(m,2) ? "eig" : "")
sz+=max(maximum(length.(t[end])),length(cl[end]))+1
end
end
push!(t,limitto.(showperiodic.(io,ci.classtext),displaysize(io)[2]-sz-2))
push!(cl,"word")
showtable(io,permutedims(string.(toM(t)));row_labels=string.(1:n),col_labels=cl,rows_label="n0")
end
const Hastype=Union{PermRootGroup,Spets,CoxSym,CoxHyp}
function Groups.conjugacy_classes(W::TW)where TW<:Hastype
get!(W,:classes) do
c=classinfo(W)
map(1:length(c.classtext))do i
C=ConjugacyClass(W,W(c.classtext[i]...),
Dict{Symbol,Any}(:length=>c.classes[i],
:word=>c.classtext[i],
:name=>c.classnames[i],
:param=>c.classparams[i]))
if haskey(c,:orders) C.order=c.orders[i] end
if haskey(c,:malle) C.malle=c.malle[i] end
if haskey(c,:centralizers) C.centralizers=c.centralizers[i] end
if haskey(c,:indexclasses) C.index=c.indexclasses[i] end
C
end
end
end
function Base.show(io::IO,C::ConjugacyClass{T,TW})where{T,TW<:Hastype}
if get(io,:limit,false) || get(io,:TeX,false)
print(io,"conjugacy_class(",C.G,",",fromTeX(io,C.name),")")
else
print(io,"conjugacy_class(",C.G,",",C.representative,")")
end
end
function Groups.position_class(W::Hastype,w;verbose=false)
l=PermGroups.positions_class(W,w)
if length(l)==1 return only(l)
elseif verbose println("ambiguity: ",l) end
# p=eigmat(reflrep(W,w))
# l=filter(x->eigen(conjugacy_classes(W)[x])==p,l)
# if length(l)==1 return only(l) end
p=findfirst(c->w in c,conjugacy_classes(W)[l])
if isnothing(p)
@show w
error()
end
l[p]
end
function Perms.reflength(C::ConjugacyClass{T,TW})where{T,TW<:Hastype}
getp(eigen,C,:reflength)
end
Base.length(C::ConjugacyClass{T,TW}) where{T,TW<:Hastype}=C.length
Groups.word(C::ConjugacyClass{T,TW}) where{T,TW<:Hastype}=C.word
function eigen(C::ConjugacyClass{T,TW})where{T,TW<:Hastype}
get!(C,:eigen)do
t=refltype(C.G)
if !any(x->haskey(x,:orbit) && (length(x.orbit)>1 || order(x.twist)>1 ||
(haskey(x,:scalar) && !all(isone,x.scalar))),t)
l=refleigen(C.G)
for (i,C1) in enumerate(conjugacy_classes(C.G))
C1.eigen=l[i]
C1.reflength=count(!isone,C1.eigen)
end
else
C.eigen=eigmat(reflrep(C.G,C.representative)) # eigmat is sorted
C.reflength=count(!isone,C.eigen)
end
C.eigen
end::Vector{Root1}
end
#--------------- CharTables -----------------------------------------
@GapObj struct CharTable{T}
irr::Matrix{T}
charnames::Vector{String}
classnames::Vector{String}
centralizers::Vector{Int}
order::Int
end
@doc """
CharTable is a structure to hold character tables of groups and Hecke
algebras
""" CharTable
function Base.show(io::IO, ::MIME"text/html", ct::CharTable)
show(IOContext(io,:TeX=>true), "text/plain",ct)
end
function Base.show(io::IO,t::CharTable)
if hasdecor(io) || !haskey(t,:repr)
printTeX(io,"CharTable(\$",haskey(t,:name) ? t.name : "?","\$)")
else print(io,t.repr)
end
end
function Base.show(io::IO, ::MIME"text/plain", ct::CharTable)
println(io,ct)
showtable(io,ct.irr,row_labels=ct.charnames,col_labels=ct.classnames,dotzero=true)
end
function CharTable(t::TypeIrred;opt...)
ct=getchev(t,:CharTable)
irr=improve_type(toM(ct[:irreducibles]))
CharTable(irr,charnames(t;opt...,TeX=true),classnames(t;opt...,TeX=true),
improve_type(ct[:centralizers]),ct[:size],
Dict{Symbol,Any}(:name=>xrepr(t;TeX=true)))
end
function Base.prod(ctt::Vector{<:CharTable})
if isempty(ctt)
return CharTable(hcat(1),["Id"],["."],[1],1,Dict{Symbol,Any}(:name=>"."))
elseif length(ctt)==1 return ctt[1]
end
charnames=join.(cartesian(getfield.(ctt,:charnames)...),",")
classnames=join.(cartesian(getfield.(ctt,:classnames)...),",")
centralizers=prod.(cartesian(getfield.(ctt,:centralizers)...))
order=prod(getfield.(ctt,:order))
if length(ctt)==1 irr=ctt[1].irr
else irr=kron(getfield.(ctt,:irr)...)
end
CharTable(irr,charnames,classnames,centralizers,order,Dict{Symbol,Any}(:name=>"x"))
end
"""
`CharTable(WF::Spets)`
This function returns the character table of the reflection coset `WF`. We
call *characters* of the coset `WF=W.Ο` of the group `W` the restriction to
`W.Ο` of a set containing one extension of each `Ο`-invariant character of
W to the semidirect product of W with the cyclic group generated by `Ο`
(for Coxeter cosets we choose, following Lusztig, in each case one
extension, called the preferred extension.)
```julia-repl
julia> W=spets(coxgroup(:D,4),Perm(1,2,4))
Β³Dβ
julia> CharTable(W)
CharTable(Β³Dβ)
βββββββ¬ββββββββββββββββββββββββββββββββββ
β βCβ AΜβ Cβ+Aβ AΜβ+Aβ Fβ AΜβ+Aβ Fβ(aβ)β
βββββββΌββββββββββββββββββββββββββββββββββ€
β.4 β 1 1 1 1 1 1 1β
β.1111β-1 1 1 -1 1 1 1β
β.22 β . 2 2 . -1 -1 -1β
β11.2 β . . . . -1 3 3β
β1.3 β 1 1 -1 -1 . -2 2β
β1.111β-1 1 -1 1 . -2 2β
β1.21 β . 2 -2 . . 2 -2β
βββββββ΄ββββββββββββββββββββββββββββββββββ
```
"""
function CharTable(W::Union{Hastype,FiniteCoxeterGroup};opt...)
get!(W,:chartable)do
t=refltype(W)
ct=isempty(t) ? prod(CharTable[]) : prod(CharTable.(t;opt...))
ct.name=xrepr(W;TeX=true)
ct.repr=string("CharTable(",W,")")
ct
end::CharTable
end
function CharTable(W::Group)
get!(W,:chartable)do
error("to have CharTable(s) for arbitrary PermGroup(s) do 'using GAP'")
end
end
function classes(ct::CharTable)
get!(ct,:classes)do
div.(ct.order,ct.centralizers)
end::Vector{Int}
end
function scalarproduct(ct::CharTable,c1::AbstractVector,c2::AbstractVector;exact=true)
v=c2'*(c1.*classes(ct))
exact ? exactdiv.(v,ct.order) : improve_type(v//ct.order)
end
"""
`decompose(ct::CharTable,c::Vector;exact=true)`
decompose class function `c` (given by its values on conjugacy classes) on
irreducible characters as given by `CharTable` `ct`. By default `c` is
expected to be a virtual character so the result will be an integer vector.
If `c` is not a virtual character give the keyword `exact=false` to get a
correct result.
"""
function decompose(ct::CharTable,c::AbstractVector;exact=true)
v=conj(ct.irr)*Diagonal(classes(ct))*c
exact ? exactdiv.(v,ct.order) : improve_type(v//ct.order)
end
"""
`on_chars(G,aut)`
`aut` is an automorphism of the group `G` (for a permutation group, this
could be given as a permutation normalizing `G`). The result is the
permutation of the indices of the irreducible characters induced by `aut`.
```julia-repl
julia> WF=rootdatum("3D4")
Β³Dβ
julia> on_chars(Group(WF),WF.phi)
(1,2,7)(8,9,12)
```
"""
function on_chars(W,aut)
ct=CharTable(W).irr
inv(Perm(ct,invpermute(ct,on_classes(W, aut),dims=2),dims=1))
end
"""
`representation(W,i)`
returns, for the `i`-th irreducible representation of the complex
reflection group or Spets `W`, a list of matrices images of the generating
reflections of `W` in a model of the representation (for Spets, the result
is a `NamedTuple` with fields `gens`, a representation of `Group(W)`, and
`F`, the matrix for `W.phi` in the representation). This function is based
on the classification, and is not yet fully implemented for `Gββ`; 78
representations are missing out of 169, that is, representations of
dimension β₯140, except half of those of dimensions 315, 420 and 840.
```julia-repl
julia> representation(complex_reflection_group(24),3)
3-element Vector{Matrix{Cyc{Int64}}}:
[1 0 0; -1 -1 0; -1 0 -1]
[-1 0 -1; 0 -1 (1-β-7)/2; 0 0 1]
[-1 -1 0; 0 1 0; 0 (1+β-7)/2 -1]
```
"""
function representation(W::Union{Hastype,FiniteCoxeterGroup},i::Integer)
dims=getchev(W,:NrConjugacyClasses)
if isempty(dims) return Matrix{Int}[] end
tt=refltype(W)
mm=map((t,j)->getchev(t,:Representation,j),tt,lin2cart(dims,i))
if any(isnothing,mm) error("no representation for ",W) end
if W isa Spets
FF=map(x->x[:F],mm)
if !(FF[1] isa AbstractMatrix) FF=map(toM,FF) end
F=length(FF)==1 ? FF[1] : kron(FF...)
mm=map(x->x[:gens],mm)
end
if !(mm[1][1] isa AbstractMatrix) mm=map(x->toM.(x),mm) end
if !all(m->m isa Vector{<:SparseMatrixCSC},mm) mm=improve_type.(mm*1) end
n=length(tt)
if n==1 reps=mm[1]
else reps=vcat(map(1:n) do i
map(mm[i]) do m
kron(map(j->j==i ? m : mm[j][1]^0,1:n)...)
end
end...)
end
if !(W isa Spets) return reps end
(gens=reps,F=F)
end
"""
`representations(W)`
returns the list of representations of the complex reflection group or
Spets `W` (see `representation`).
```julia-repl
julia> representations(coxgroup(:B,2))
5-element Vector{Vector{Matrix{Int64}}}:
[[1;;], [-1;;]]
[[1 0; -1 -1], [1 2; 0 -1]]
[[-1;;], [-1;;]]
[[1;;], [1;;]]
[[-1;;], [1;;]]
```
"""
representations(W::Union{Hastype,FiniteCoxeterGroup})=representation.(Ref(W),1:nconjugacy_classes(W))
using SparseArrays
"""
`WGraphToRepresentation(coxrank::Integer,graph,v)`
We store some representations of one-parameter Iwahori-Hecke algebras as
`W`-graphs. For a Coxeter system `(W,S)`, a `W`-graph is defined by a set
of vertices `C` with a function `I` which attaches to `xβ C` a subset
`I(x)β S`, and *edge labels* which to `(x,y)β C^2` attach `ΞΌ(x,y)β K` where
`K` is the field of definition of `W`; this defines a representation of the
Hecke algebra with parameters `v` and `-vβ»ΒΉ` on a space with basis
``{e_y}_{yβ C}`` by:
``Tβ(e_y)=-e_y`` if `sβ I(y)` and otherwise
``Tβ(e_y)=v^2 e_y+β_{xβ£sβ I(x)} vΞΌ(x,y)eβ``.
The `W`-graphs are stored in a compact format to save space. They are
represented as a pair.
- The first element is a list describing `C`. Its elements are either a
vector `I(x)` of indices in `eachindex(S)`, or an integer `n`
specifying to repeat the previous element `n` more times.
- The second element is a list which specifies `ΞΌ`.
We first describe the `ΞΌ`-list for symmetric `W`-graphs (when
`ΞΌ(x,y)=ΞΌ(y,x)`). There is one element of the `ΞΌ`-list for each non-zero
value `m` taken by `ΞΌ`, which consists of a pair whose first element is `m`
and whose second element is a list of lists; if `l` is one of these lists
each pair `[l[1],l[i]]` represents an edge (`x=l[1]`,`y=l[i]`) such that
`ΞΌ(x,y)=ΞΌ(y,x)=m`. For non-symmetric `W`-graphs, the first element of each
pair in the `ΞΌ`-list is a pair `[m1,m2]` and each edge `[x,y]` obtained
from the lists in the second element has to be interpreted as `ΞΌ(x,y)=m1`
and `ΞΌ(y,x)=m2`.
```julia-repl
julia> W=coxgroup(:H,3)
Hβ
julia> g=Wgraph(W,3)
2-element Vector{Vector{Vector{Any}}}:
[[2], [1, 2], [1, 3], [1, 3], [2, 3]]
[[-1, [[1, 3], [2, 4], [3, 5], [4, 5]]]]
julia> WGraphToRepresentation(3,g,Pol(:x))
3-element Vector{Matrix{Pol{Int64}}}:
[xΒ² 0 β¦ 0 0; 0 -1 β¦ 0 0; β¦ ; 0 0 β¦ -1 -x; 0 0 β¦ 0 xΒ²]
[-1 0 β¦ 0 0; 0 -1 β¦ -x 0; β¦ ; 0 0 β¦ xΒ² 0; 0 0 β¦ -x -1]
[xΒ² 0 β¦ 0 0; 0 xΒ² β¦ 0 0; β¦ ; 0 -x β¦ -1 0; 0 0 β¦ 0 -1]
```
"""
function WGraphToRepresentation(rk::Integer,gr::Vector,v)
# Jean Michel june/december 2003 from code/data of Geck, Marin, Alvis,
# Naruse, Howlett,Yin)
I=Vector{Int}[]
for S in gr[1]
if S isa Integer append!(I,fill(I[end],S))
else push!(I,S)
end
end
dim=length(I)
T=Int
function prom(a)
if a isa Vector
for u in a prom(u) end
else T=promote_type(T,typeof(a))
end
end
prom(gr[2])
v=improve_type(v)
T=promote_type(T,typeof(v))
S=map(i->spzeros(T,dim,dim),1:rk)
for j in 1:dim
for i in 1:rk
if i in I[j] S[i][j,j]=-one(v)
else S[i][j,j]=v^2
end
end
end
for i in gr[2]
if i[1] isa Vector mu=i[1] else mu=[i[1],i[1]] end
for l in i[2]
x=l[1]
for y in l[2:end]
for j in I[y] if !(j in I[x]) S[j][y,x]=mu[2]*v end end
for j in I[x] if !(j in I[y]) S[j][x,y]=mu[1]*v end end
end
end
end
density=sum(nnz.(S))/(rk*dim^2)
density>0.2 ? Array.(S) : S
end
############################################################################
# How to interpret W-graphs for complex reflection groups with one orbit of
# reflections, for hecke(W,[vars]).
function WGraph2Representation(a,vars)
# println("a=$a vars=$vars")
nodes=a[1]
pos=function(n,j)
if n[1] isa Vector p=findfirst(x->j in x,n)
if isnothing(p) p=length(vars) end
elseif j in n p=1
else p=2 end
p
end
flat(l)=l[1] isa Vector ? flat(reduce(vcat,l)) : l
rk=maximum(Int.(flat(nodes))) # number of generators
dim=length(nodes)
R=map(j->map(k->vars[pos(nodes[k],j)]+0,1:dim),1:rk)
R=Array.(Diagonal.(R))
R=map(x->x.+0*E(1)//1,R)
# println("R=$(typeof(R))$R")
for r in a[2]
# println("r=$r")
for k in [3,4]
if r[k] isa Vector
for j in 2:2:length(r[k]) R[Int(r[k][j-1])][r[k-2],r[5-k]]=r[k][j] end
else
r2=Int.(r[1:2])
j=filter(i->pos(nodes[r2[k-2]],i)<pos(nodes[r2[5-k]],i),1:rk)
for i in j R[i][r2[k-2],r2[5-k]]=r[k] end
end
end
end
# println("R=$(typeof(R))$R")
toL.(R)
end
# the next function returns the dual W-graph of gr (for an Hecke algebra of
# rank rk). A dual W-graph corresponds to a Curtis Dual representation.
function DualWGraph(rk,gr)
[map(x->x isa Integer ? x : setdiff(1:rk,x),gr[1]),
map(((x,y),)->x isa Vector ? [-reverse(x),y] : [-x,y],gr[2])]
end
function charnames(io::IO,c::CharInfo)
cn=c.charnames
for k in [:spaltenstein, :frame, :malle, :kondo, :gp, :lusztig, :carter]
if get(io,k,false) && haskey(c,k) cn=string.(c[k]) end
end
fromTeX.(Ref(io),cn)
end
charnames(io::IO,W::Weyl.FC)=charnames(io,W.G)
"""
`charnames(ComplexReflectionGroup or Spets;options...)`
`charnames(io::IO,ComplexReflectionGroup or Spets)`
returns the list of character names for the reflection group or Spets `W`.
The options may imply alternative names in certain cases, or a different
formatting of names in general. They can be specified by `IO` attributes if
giving an `IO` as argument.
```julia-repl
julia> W=coxgroup(:G,2)
Gβ
julia> charnames(W;limit=true)
6-element Vector{String}:
"Οβββ"
"Οβββ"
"Οβ²βββ"
"Οβ³βββ"
"Οβββ"
"Οβββ"
julia> charnames(W;TeX=true)
6-element Vector{String}:
"\\phi_{1,0}"
"\\phi_{1,6}"
"\\phi_{1,3}'"
"\\phi_{1,3}''"
"\\phi_{2,1}"
"\\phi_{2,2}"
julia> charnames(W;spaltenstein=true,limit=true)
6-element Vector{String}:
"1"
"Ξ΅"
"Ξ΅β"
"Ξ΅_c"
"ΞΈβ²"
"ΞΈβ³"
julia> charnames(W;spaltenstein=true,TeX=true)
6-element Vector{String}:
"1"
"\\varepsilon"
"\\varepsilon_l"
"\\varepsilon_c"
"\\theta'"
"\\theta''"
```
The last two commands show the character names used by Spaltenstein and
Lusztig when describing the Springer correspondence.
"""
function charnames(io::IO,W::Union{Group,Coset})
if applicable(refltype,W) charnames(io,charinfo(W))
else fromTeX.(Ref(io),CharTable(W).charnames)
end
end
charnames(W;opt...)=charnames(IOContext(stdout,opt...),W)
charnames(t::TypeIrred;opt...)=charnames(IOContext(stdout,opt...),t)
function charnames(io::IO,t::TypeIrred)
ci=getchev(t,:CharInfo)
cn=ci[:charnames]
for k in [:spaltenstein, :frame, :malle, :kondo, :gp, :lusztig, :carter]
if get(io,k,false) && haskey(ci,k) cn=string.(ci[k]) end
end
fromTeX.(Ref(io),cn)
end
function charnames(io::IO,tt::Vector{TypeIrred})
if isempty(tt) return ["Id"] end
cn=map(t->charnames(io,t),tt)
if length(cn)==1 cn[1]
else map(x->join(x,fromTeX(io,"\\otimes ")),cartesian(cn...))
end
end
"""
`classnames(W;options...)`
`classnames(io::IO,W)`
returns the list of class names for the reflection group `W`. The
optional options are IOContext attributes which can give alternative names
in certain cases, or a different formatting of names in general. They can
be specified by giving an IO as argument.
"""
function classnames(io::IO,W)
if applicable(refltype,W)
c=classinfo(W)
cn=c.classnames
for k in [:malle]
if get(io,k,false) && haskey(c,k) cn=string.(c[k]) end
end
else
cn=CharTable(W).classnames
end
fromTeX.(Ref(io),cn)
end
classnames(W;opt...)=classnames(IOContext(stdout,opt...),W)
function classnames(t::TypeIrred;opt...)
c=classinfo(t)
cn=c.classnames
for k in [:malle]
if get(opt,k,false) && haskey(c,k) cn=string.(c[k]) end
end
cn
end
@GapObj struct InductionTable{T}
scalar::Matrix{T}
gcharnames::Vector{String}
ucharnames::Vector{String}
identifier::String
end
"""
`induction_table(u,g)`
returns an object describing the decomposition of the irreducible
characters of the subgroup `u` induced to the group `g`. At the repl or
IJulia or Pluto, a table is displayed where the rows correspond to the
characters of the parent group, and the columns to those of the subgroup.
The returned object has a field `scalar` which is a `Matrix{Int}`
containing the induction table, and the other fields contain labeling
information taken from the character tables of `u` and `g` when it exists.
```julia-rep1
julia> g=Group([Perm(1,2),Perm(2,3),Perm(3,4)])
Group([(1,2),(2,3),(3,4)])
julia> u=Group( [ Perm(1,2), Perm(3,4) ])
Group([(1,2),(3,4)])
julia> induction_table(u,g) # needs "using GAP"
Induction table from Group((1,2),(3,4)) to Group((1,2),(2,3),(3,4))
βββββ¬ββββββββββββββββ
β βX.1 X.2 X.3 X.4β
βββββΌββββββββββββββββ€
βX.1β . 1 . .β
βX.2β . 1 1 1β
βX.3β 1 1 . .β
βX.4β 1 . 1 1β
βX.5β 1 . . .β
βββββ΄ββββββββββββββββ
```
```julia-repl
julia> g=coxgroup(:G,2)
Gβ
julia> u=reflection_subgroup(g,[1,6])
Gββββ
β=Aβ
julia> t=induction_table(u,g)
Induction table from Gββββ
β=Aβ to Gβ
βββββββ¬βββββββββ
β β111 21 3β
βββββββΌβββββββββ€
βΟβββ β . . 1β
βΟβββ β 1 . .β
βΟβ²ββββ 1 . .β
βΟβ³ββββ . . 1β
βΟβββ β . 1 .β
βΟβββ β . 1 .β
βββββββ΄βββββββββ
```
`IO` attributes can be transmitted to the table format method
```julia-rep1
julia> xdisplay(t;rows=[5],cols=[3,2])
Induction table from Gββββ
β=Aβ to Gβ
βββββββ¬βββββ
β β3 21β
βββββββΌβββββ€
βΟβββ β. 1β
βββββββ΄βββββ
```
It is also possible to TeX induction tables with `xdisplay(t;TeX=true)`.
`induction_table` also works for spets (reflection cosets).
"""
function induction_table(u,g)
tu=CharTable(u)
tg=CharTable(g)
f=fusion_conjugacy_classes(u,g)
function myexactdiv(a,b)
q,r=divrem(a,b)
if !iszero(r) error("$b does not exactly divide $a") end
q
end
function myexactdiv(a::Cyc,b)
q=Cyc(conductor(a),exactdiv(a.d,b))
if q*b!=a error("$b does not exactly divide $a") end
q
end
cl=myexactdiv.(length(u),tu.centralizers)
sc=myexactdiv.(tu.irr*Diagonal(cl)*tg.irr[:,f]',length(u))
InductionTable(permutedims(sc),tg.charnames,tu.charnames,
"Induction table from \$"*TeXs(u)*"\$ to \$"*TeXs(g)*"\$",
Dict{Symbol,Any}(:repr=>string("induction_table(",u,",",g,")")))
end
function Base.show(io::IO, ::MIME"text/html", t::InductionTable)
show(IOContext(io,:TeX=>true),"text/plain",t)
end
function Base.show(io::IO,t::InductionTable)
if !hasdecor(io) && haskey(t,:repr) print(io,t.repr)
else printTeX(io,t.identifier)
end
end
function Base.show(io::IO,::MIME"text/plain",t::InductionTable)
println(io,t)
showtable(io,t.scalar;row_labels=t.gcharnames,col_labels=t.ucharnames,dotzero=true)
end
"""
`j_induction_table(H, W)`
computes the decomposition into irreducible characters of the reflection
group `W` of the `j`-induced of the irreducible characters of the
reflection subgroup `H`. The `j`-induced of `Ο` is the sum of the
irreducible components of the induced of `Ο` which have same `b`-function
(see `charinfo`) as `Ο`. What is returned is an `InductionTable` struct.
```julia-repl
julia> W=coxgroup(:D,4)
Dβ
julia> H=reflection_subgroup(W,[1,3])
Dβββββ=AβΞ¦βΒ²
julia> j_induction_table(H,W)
j-induction table from Dβββββ=AβΞ¦βΒ² to Dβ
βββββββ¬βββββββββ
β β111 21 3β
βββββββΌβββββββββ€
β11+ β . . .β
β11- β . . .β
β1.111β . . .β
β.1111β . . .β
β11.2 β . . .β
β1.21 β 1 . .β
β.211 β . . .β
β2+ β . . .β
β2- β . . .β
β.22 β . . .β
β1.3 β . 1 .β
β.31 β . . .β
β.4 β . . 1β
βββββββ΄βββββββββ
```
"""
function j_induction_table(u,g)
tbl=induction_table(u,g)
bu=charinfo(u).b
bg=charinfo(g).b
t=copy(tbl.scalar)
for (i,bi) in pairs(bu), (j,bj) in pairs(bg)
if bi!=bj t[j,i]=0 end
end
InductionTable(t,tbl.gcharnames,tbl.ucharnames,
"j-induction table from \$"*TeXs(u)*"\$ to \$"*TeXs(g)*"\$",
Dict{Symbol,Any}(:repr=>string("j_induction_table(",u,",",g,")")))
end
"""
`J_induction_table(H, W)`
computes the decomposition into irreducible characters of the reflection
group `W` of the `J`-induced of the irreducible characters of the
reflection subgroup `H`. The `J`-induced of `Ο` is the sum of the
irreducible components of the induced of `Ο` which have same `a`-function
(see `charinfo`) as `Ο`. What is returned is an `InductionTable` struct.
```julia-repl
julia> W=coxgroup(:D,4)
Dβ
julia> H=reflection_subgroup(W,[1,3])
Dβββββ=AβΞ¦βΒ²
julia> J_induction_table(H,W)
J-induction table from Dβββββ=AβΞ¦βΒ² to Dβ
βββββββ¬βββββββββ
β β111 21 3β
βββββββΌβββββββββ€
β11+ β . . .β
β11- β . . .β
β1.111β . . .β
β.1111β . . .β
β11.2 β 1 . .β
β1.21 β 1 . .β
β.211 β . . .β
β2+ β . . .β
β2- β . . .β
β.22 β . . .β
β1.3 β . 1 .β
β.31 β . . .β
β.4 β . . 1β
βββββββ΄βββββββββ
```
"""
function J_induction_table(u,g)
tbl=induction_table(u,g)
bu=charinfo(u).a
bg=charinfo(g).a
t=copy(tbl.scalar)
for (i,bi) in pairs(bu), (j,bj) in pairs(bg)
if bi!=bj t[j,i]=0 end
end
InductionTable(t,tbl.gcharnames,tbl.ucharnames,
"J-induction table from \$"*TeXs(u)*"\$ to \$"*TeXs(g)*"\$",
Dict{Symbol,Any}(:repr=>string("J_induction_table(",u,",",g,")")))
end
"""
`discriminant(W)`
returns the discriminant of the complex reflection group `W`, as a
polynomial in the fundamental invariants. The discriminant is the invariant
obtained by taking the product of the linear forms describing the
reflecting hyperplanes of `W`, each raised to the order of the
corresponding reflection. The discriminant is returned as a function `f`
such that the discriminant in the variables `aβ,β¦,aβ` is obtained by
calling `f(aβ,β¦,aβ)`. For the moment, this function is implemented only for
the exceptional complex reflection groups `Gβ` to `Gββ`.
```julia-repl
julia> W=complex_reflection_group(4);@Mvp x,y
julia> discriminant(W)(x,y)
Mvp{Int64}: xΒ³-yΒ²
```
"""
function LaurentPolynomials.discriminant(W::Group)
t=refltype(W)
if isempty(t) return ()->Mvp(1)
elseif length(t)==1 return getchev(t[1],:Discriminant)
else error("not implemented for non-irreducible ",W)
end
end
function decomposition_matrix(t::TypeIrred,p)
m=getchev(t,:DecompositionMatrix,p)
if m==false
error("decomposition_matrix(",t,",",p,") not implemented")
end
n=getchev(t,:NrConjugacyClasses)
append!(m,map(i->[[i],[[1]]],setdiff(1:n,union(first.(m)))))
res=cat(map(x->toM(x[2]),m)...;dims=(1,2))
res[sortperm(vcat(first.(m)...)),:]
end
"""
`decomposition_matrix(W,p)`
This provides an interface to some decomposition matrices for Weyl groups
available in the Chevie library: those for `Eβ, Eβ, Eβ` for `p=2,3,5,7`.
"""
function decomposition_matrix(W,p)
m=map(t->decomposition_matrix(t,p),refltype(W))
map(x->prod.(cartesian(x)),cartesian(toL.(m)...))
end
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 7745 | """
This is my attempt to port the Chevie package from GAP3 to Julia. I started
this project at the end of 2018 and it is still in flux so some function
names or interfaces may still change. Pull requests and issues are welcome.
I have implemented the GAP functionality (infrastructure) needed to make
Chevie work. I have already registered most of this infrastructure as
separate packages; the following packages are loaded and re-exported so
that their functionality is automatically available when you use `Chevie`.
In other words, `Chevie` is a meta-package for the following packages:
* (univariate) [LaurentPolynomials](https://github.com/jmichel7/LaurentPolynomials.jl) (and rational fractions)
* (multivariate) [PuiseuxPolynomials](https://github.com/jmichel7/PuiseuxPolynomials.jl) (and rational fractions when there are no fractional exponents)
* [CyclotomicNumbers](https://github.com/jmichel7/CyclotomicNumbers.jl)(elements of cyclotomic fields)
* [ModuleElts](https://github.com/jmichel7/ModuleElts.jl) (elements of a free module over some ring)
* [Combinat](https://github.com/jmichel7/Combinat.jl) (combinatorics and some basic number theory)
* [PermGroups](https://github.com/jmichel7/PermGroups.jl) (permutations, groups, permutations groups. It contains the modules `Perms` and `Groups` which could be separate packages)
* [SignedPerms](https://github.com/jmichel7/SignedPerms.jl) (signed permutations)
* [MatInt](https://github.com/jmichel7/MatInt.jl) (Integer matrices and lattices)
* [CycPols](https://github.com/jmichel7/CycPols.jl) (cyclotomic polynomials)
* [GenLinearAlgebra](https://github.com/jmichel7/GenLinearAlgebra.jl) (linear algebra on any field/ring)
* [FinitePosets](https://github.com/jmichel7/FinitePosets.jl) (finite posets)
* [FiniteFields](https://github.com/jmichel7/FiniteFields.jl) (finite fields)
* [GroupPresentations](https://github.com/jmichel7/GroupPresentations.jl) (presentations of groups, and groups defined by generators and relations)
* [UsingMerge](https://github.com/jmichel7/UsingMerge.jl) (Automatically compose several packages)
Have a look at the documentation of the above packages to see how to use
their features.
I have implemented some other infrastructure which currently resides in
`Chevie` but may eventually become separate packages:
* factorizing polynomials over finite fields (module `FFfac`)
* factorizing polynomials over the rationals (module `Fact`)
* Number fields which are subfields of the Cyclotomics (module [`Nf`](@ref))
For permutation groups I have often replaced GAP's sophisticated algorithms
with naive but easy-to-write methods suitable only for small groups
(sufficient for the rest of the package but perhaps not for your needs).
Otherwise the infrastructure code is often competitive with GAP, despite
using much less code (often 100 lines of Julia replace 1000 lines of C);
and I am sure it could be optimised better than I did. Comments on code and
design are welcome. For functions that are too inefficient or difficult to
implement (such as character tables of arbitrary groups), `Chevie` uses the
`GAP` package as an extension. This means that if you have the `GAP`
package installed, `Chevie` will automatically call `GAP` to implement
these functions.
Functions in the `Chevie.jl` package are often 10 times faster than the
equivalent functions in GAP3/Chevie (after the maddeningly long compilation
time on the first run --- Julia's TTFP).
The `Chevie` package currently contains about 95% of the GAP3 Chevie
functionality. If you are a user of GAP3/Chevie, the `gap` function can
help you to find the equivalent functionality in `Chevie.jl` to a Gap3
function: it takes a string and gives you Julia translations of functions
in Gap3 that match that string.
```julia-rep1
julia> gap("words")
CharRepresentationWords => traces_words_mats
CoxeterWords(W[,l]) => word.(Ref(W),elements(W[,l]))
GarsideWords => elements
```
You can then access online help for the functions you have found.
The port to Julia is not complete in the sense that 80% of the code is the
data library from Chevie, which was automatically ported by a transpiler so
its code is "strange". When the need to maintain the `GAP3` and `Julia`
versions simultaneously subsides, I will do a proper translation of the
data library, which should give an additional speed boost.
### Installing
This is a registered package that can be installed/upgraded in the standard
way. For Julia newbies, we will remind you what this is. To install, do
this at the REPL command line:
* enter package mode with ]
* do the command
```
(@v1.10) pkg> add Chevie
```
- exit package mode with backspace and then do
```
julia> using Chevie
```
and you are set up. For first help, type "?Chevie".
To update later to the latest version, do
```
(@v1.10) pkg> update
```
`Chevie.jl` requires julia 1.10 or later.
"""
module Chevie
#--------------------- external packages ----------------------------------
using Reexport
using UsingMerge
@reexport using PuiseuxPolynomials # reexports LaurentPolynomials
@reexport using LaurentPolynomials: stringexp
@reexport using ModuleElts
@reexport using Combinat
@reexport using MatInt
@reexport using Primes: factor, eachfactor, divisors
@reexport using OrderedCollections: OrderedDict
# careful: use very little of LinearAlgebra
@reexport using LinearAlgebra: diag, tr, I, Diagonal, exactdiv, det_bareiss, dot
@reexport using PermGroups
@reexport using SignedPerms
@usingmerge verbose=true reexport CyclotomicNumbers
@reexport using CyclotomicNumbers: bracket_if_needed,
format_coefficient, stringind
@usingmerge verbose=true reexport FiniteFields
@reexport using CycPols
@reexport using CycPols: stringprime
@reexport using GenLinearAlgebra
@reexport using FinitePosets
@reexport using GroupPresentations
#--------------------- internal modules -----------------------------------
include("../docs/src/cheviedict.jl");export gap
include("Format.jl");@reexport using .Format
include("Util.jl");@reexport using .Util
include("FFfac.jl");@reexport using .FFfac
include("Nf.jl");@reexport using .Nf
include("Tools.jl");@reexport using .Tools
include("Fact.jl");@reexport using .Fact
include("PermRoot.jl");@reexport using .PermRoot
include("Diagrams.jl");@reexport using .Diagrams
include("CoxGroups.jl");@reexport using .CoxGroups
include("Weyl.jl");@reexport using .Weyl
include("Cosets.jl");@reexport using .Cosets
include("ComplexR.jl");@reexport using .ComplexR
include("Chars.jl");@reexport using .Chars
include("Tools2.jl");@reexport using .Tools2
include("Algebras.jl");@reexport using .Algebras
include("InitChevie.jl");@reexport using .InitChevie
include("Symbols.jl");@reexport using .Symbols
include("Lusztig.jl");@reexport using .Lusztig
include("Eigenspaces.jl");@reexport using .Eigenspaces
include("Garside.jl");@reexport using .Garside
include("HeckeAlgebras.jl");@reexport using .HeckeAlgebras
include("KL.jl");@reexport using .KL
include("Semisimple.jl");@reexport using .Semisimple
include("Urad.jl");@reexport using .Urad
include("Ucl.jl");@reexport using .Ucl
include("Gt.jl");@reexport using .Gt
include("Murphy.jl");@reexport using .Murphy
include("Families.jl");@reexport using .Families
include("Uch.jl");@reexport using .Uch
include("dSeries.jl");@reexport using .dSeries
include("Sscoset.jl");@reexport using .Sscoset
include("gendec.jl"); # for now no module
include("GAPENV.jl");@reexport using .GAPENV
function contr(s)
include(replace(@__DIR__,"/src"=>"/contr/"*s*".jl"))
end
export contr
roundtrip(x)=x==eval(Meta.parse(repr(x))) # for debugging purposes
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 14373 | module ComplexR
using ..Chevie
export complex_reflection_group, crg, diagram, degrees, codegrees,
Reflection, reflections, isdistinguished,
hyperplane, hyperplane_orbits, hyperplane_orbit, simple_rep,
reflection_group, torusfactors
@forward Weyl.FC.G hyperplane_orbits, codegrees, degrees
# roots for the adjoint group
PermRoot.simpleroots(t::TypeIrred)=
t.series==:ST ? toM(getchev(t,:GeneratingRoots)) : one(cartan(t))
# coroots for the adjoint group
function PermRoot.simplecoroots(t::TypeIrred)
if t.series==:ST
cr=getchev(t,:GeneratingCoRoots)
if isnothing(cr)
r=getchev(t,:GeneratingRoots)
cr=coroot.(r,E.(ordergens(t)))
end
toM(map(x->convert.(Cyc{Rational{Int}},x),cr))
else cartan(t)
end
end
"""
`complex_reflection_group(STnumber)` or `crg(STnumber)`
`complex_reflection_group(p,q,r)` or `crg(p,q,r)`
The first form of `complex_reflection_group` returns the complex reflection
group which has Shephard-Todd number `STnumber`, see
[Shephard-Todd1954](biblio.htm#ST54). The second form returns the
imprimitive complex reflection group `G(p,q,r)`.
```julia-repl
julia> G=complex_reflection_group(4)
Gβ
julia> degrees(G)
2-element Vector{Int64}:
4
6
julia> length(G)
24
julia> W*coxgroup(:A,2) # how to make a non-irreducible group
GβΓAβ
julia> complex_reflection_group(1,1,3) # another way to enter Aβ
glβ
julia> crg(4) # there is also a short alias
Gβ
```
"""
function complex_reflection_group(i::Integer)
if i==23 coxgroup(:H,3)
elseif i==28 coxgroup(:F,4)
elseif i==30 coxgroup(:H,4)
elseif i==35 coxgroup(:E,6)
elseif i==36 coxgroup(:E,7)
elseif i==37 coxgroup(:E,8)
else t=TypeIrred(Dict(:series=>:ST,:ST=>Int(i)))
PRG(simpleroots(t),simplecoroots(t))
end
end
function complex_reflection_group(p,q,r)
if !iszero(p%q) || p<=0 || r<=0 || (r==1 && q!=1)
error("complex_reflection_group(p,q,r) must satisfy: q|p, r>0, and r=1 => q=1")
end
if p==1 return r==1 ? coxgroup() : rootdatum(:gl,r)
elseif p==2 return rootdatum(:so,q==2 ? 2r : 2r+1)
elseif p==q && r==2 return coxgroup(:I,2,p)
end
t=TypeIrred(Dict(:series=>:ST,:p=>p,:q=>q,:rank=>r))
PRG(simpleroots(t),simplecoroots(t))
end
const crg=complex_reflection_group
# converts a type back to a group
function reflection_group(t::TypeIrred)
if haskey(t,:orbit)
W=reflection_group(t.orbit)
if length(t.orbit)>1
spets(W,reflrep(W,Perm(vcat(circshift(map(x->x.indices,
refltype(W)),-1)...))*t.twist))
else spets(W,t.twist)
end
elseif t.series==:ST PRG(simpleroots(t),simplecoroots(t))
else C=cartan(t)
all(isreal,C) ? rootdatum(C) : PRG(one(C),C)
end
end
function reflection_group(l::Vector{TypeIrred})
if isempty(l) return coxgroup() end
prod(reflection_group.(l))
end
"""
`degrees(W::ComplexReflectionGroup)`
returns a list holding the degrees of `W` as a reflection group on the
vector space `V` on which it acts. These are the degrees `dβ,β¦,dβ` where
`n` is the dimension of `V` of the basic invariants of `W` in `SV`. They
reflect various properties of `W`; in particular, their product is the
cardinality of `W`.
```julia-repl
julia> W=complex_reflection_group(30)
Hβ
julia> degrees(W)
4-element Vector{Int64}:
2
12
20
30
julia> length(W)
14400
```
"""
function degrees(W::ComplexReflectionGroup)
get!(W,:degrees)do
vcat(fill(1,rank(W)-semisimplerank(W)),degrees.(refltype(W))...)
end::Vector{Int}
end
function torusfactors(WF::Spets)
get!(WF,:torusfactors)do
eigmat(central_action(Group(WF),WF.F))
end::Vector{Root1}
end
"""
`degrees(WF::Spets)`
Let `W` be the group of the reflection coset `WF`, and let `V` be the
vector space of dimension `rank(W)` on which `W` acts as a reflection
group. Let `fβ,β¦,fβ` be the basic invariants of `W` on the symmetric
algebra `SV` of `V`; they can be chosen so they are eigenvectors of the
matrix `WF.F`. The corresponding eigenvalues are called the *factors* of
`F` acting on `V`; they characterize the coset --- they are equal to 1 only
for the trivial coset. The *generalized degrees* of `WF` are the pairs
formed of the reflection degrees and the corresponding factor.
```julia-repl
julia> W=coxgroup(:E,6)
Eβ
julia> WF=spets(W)
Eβ
julia> phi=W(6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1);
julia> HF=subspets(WF,2:5,phi)
Eββββββ
β=Β³DβΞ¦β
julia> diagram(HF)
Ο acts as (1,2,4) on the component below
O 2
οΏ¨
OβOβO Dβ
1 3 4
julia> degrees(HF)
6-element Vector{Tuple{Int64, Cyc{Int64}}}:
(1, ΞΆβ)
(1, ΞΆβΒ²)
(2, 1)
(4, ΞΆβ)
(6, 1)
(4, ΞΆβΒ²)
```
"""
function degrees(W::Spets)
get!(W,:degrees)do
if isempty(refltype(W)) b=Tuple{Int,Cyc{Int}}[]
else b=vcat(degrees.(refltype(W))...)
end
vcat(map(x->(1,Cyc(x)),torusfactors(W)),b)
end::Vector{Tuple{Int,Cyc{Int}}}
end
function degrees(t::TypeIrred)
if !haskey(t,:orbit) return getchev(t,:ReflectionDegrees) end
d=getchev(t.orbit[1],:ReflectionDegrees)
# Let t.scalar=[sβ,β¦,sα΅£], where r=length(t.orbit) and ΞΆ=prod(t.scalar). let
# p be the PhiFactor of t.twist associated to the reflection degree dα΅’ of
# t.orbit[1]. If G0 is the Spets described by t.orbit[1], and
# G1:=Ennola(ΞΆ,G0) then G is isomorphic to the descent of scalars of G1.
# According to spets 1.5, a Phifactor of Ennola(ΞΆ,G0) is ΞΆ^dα΅’ times that of
# G0; and by spets 1.5 or [Digne-Michel, parabolic A.1] those of an
# a-descent of scalars are ΞΆβΚ²ΞΆα΅’^{1/a} (all the a-th roots of ΞΆα΅’).
if order(t.twist)>1
f=getchev(t,:PhiFactors)
if isnothing(f) return nothing end
else f=fill(1,length(d))
end
if haskey(t,:scalar)
p=improve_type(prod(t.scalar))
f=[f[i]*p^d[i] for i in eachindex(d)]
end
f=collect(zip(d,Cyc.(f)))
a=length(t.orbit)
if a==1 return f end
vcat(map(f)do (d,e) map(x->(d,x),root(e,a).*E.(a,0:a-1)) end...)
end
function codegrees(t::TypeIrred)
if !haskey(t,:orbit)
d=getchev(t,:ReflectionCoDegrees)
if !isnothing(d) return d
else
d=getchev(t,:ReflectionDegrees)
return reverse(maximum(d).-d)
end
end
d=getchev(t,:ReflectionCoDegrees)
if isnothing(d)
d=getchev(t.orbit[1],:ReflectionDegrees)
a=argmax(d)
d=reverse(d[a].-d)
if order(t.twist)==1
f=fill(1,length(d))
else
f=getchev(t,:PhiFactors)
if isnothing(f) return f end
f=Cyc.(improve_type(reverse(map(x->f[a]//x,f))))
end
d=collect(zip(d,Cyc.(f)))
elseif order(t.twist)==1
d=collect(zip(d,fill(Cyc(1),length(d))))
end
if haskey(t,:scalar)
f=Cyc.(improve_type(prod(t.scalar)))
d=[(deg,eps*f^deg) for (deg,eps) in d]
end
a=length(t.orbit)
if a==1 return d end
vcat(map(d)do (d,e) map(x->(d,x),root(e,a).*E.(a,0:a-1)) end...)
end
"""
`codegrees(W::ComplexReflectionGroup)`
returns the vector of codegrees of `W` as a reflection group on the space
`V` of `reflrep(W)`. These are one less than the degrees of the basic
derivations of ` W` on `SVβ V^vee`.
```julia-repl
julia> W=complex_reflection_group(4)
Gβ
julia> codegrees(W)
2-element Vector{Int64}:
0
2
```
"""
function codegrees(W::ComplexReflectionGroup)
vcat(fill(-1,rank(W)-semisimplerank(W)),collect.(codegrees.(refltype(W)))...)
end
function codegrees(W::Spets)
get!(W,:codegrees)do
a=inv.(torusfactors(W))
if isempty(refltype(W)) b=Tuple{Int,Cyc{Int}}[]
# separate/recombine for promotions to work
else b=vcat(codegrees.(refltype(W))...)
end
collect(zip(vcat(fill(-1,length(a)),first.(b)),vcat(a,last.(b))))
end::Vector{Tuple{Int,Cyc{Int}}}
end
"""
`hyperplane_orbits(W::ComplexReflectionGroup)`
returns a list of named tuples, one for each hyperplane orbit of the
reflection group `W`. If `o` is the named tuple for such an orbit, and `s`
is the first element of `gens(W)` whose hyperplane is in the orbit, it
contains the following fields
`.s`: index of `s` in `gens(W)`
`.order`: order of s
`.cl_s`: for i in `1:order-1`, `position_class(W,W(s)^i)`
`.N_s`: size of hyperplane orbit
`.det_s`: for i in `1:order-1`, position in `CharTable(W)` of `detββ±`, where
`detβ` is the linear character taking the value `det(reflrep(W,s))` on `s`
and `1` on non-conjugate reflections.
```julia-repl
julia> W=coxgroup(:B,2)
Bβ
julia> hyperplane_orbits(W)
2-element Vector{@NamedTuple{s::Int64, cl_s::Vector{Int64}, order::Int64, N_s::Int64, det_s::Vector{Int64}}}:
(s = 1, cl_s = [2], order = 2, N_s = 2, det_s = [5])
(s = 2, cl_s = [4], order = 2, N_s = 2, det_s = [1])
```
"""
function hyperplane_orbits(W::ComplexReflectionGroup)
T=@NamedTuple{s::Int,cl_s::Vector{Int},order::Int,N_s::Int,det_s::Vector{Int}}
get!(W,:hyperplane_orbits)do
sr=simple_reps(W)
if isempty(sr) return T[] end
rr=refls(W)
cr=classreps(W)
orb=unique(sort(sr))
class=map(orb)do s
map(1:ordergens(W)[s]-1)do o # return position_class(W,refls(W,s)^o)
for i in eachindex(sr)
if sr[i]==s
p=findfirst(==(rr[i]^o),cr)
if p!==nothing return p end
end
end
error("not found")
end
end
if !allunique(class) # when there are too many roots in rootsystem
l=unique(indexin(class,class));class=class[l];orb=orb[l]
end
chars=CharTable(W).irr
pairs=zip(orb,class)
res=map(pairs) do (s,c)
ord=ordergens(W)[s]
dets=map(1:ord-1) do j
findfirst(i->chars[i,1]==1 && chars[i,c[1]]==E(ord,j) &&
all(p->chars[i,p[2][1]]==1 || p[1]==s,pairs),axes(chars,1))
end
(s=s,cl_s=c,order=ord,N_s=div(length(W),CharTable(W).centralizers[c[1]]),det_s=dets)
end
end::Vector{T}
end
#------------------------- Reflection(s) --------------------------------
@GapObj struct Reflection{TW<:ComplexReflectionGroup}
W::TW
rootno::Int
eigen::Root1
word::Vector{Int}
end
@doc """
`Reflection` is a `struct` representing a reflection in a reflection group.
```julia-repl
julia> W=crg(8);
julia> r=reflections(W)[7] # shows (r.W,r.rootno,r.eigen)
Reflection(Gβ,1,-1)
julia> r.rootno # r is a reflection for the first root
1
julia> r.eigen # the non-trival eigenvalue, as a Root1
Root1: -1
julia> r.W # the group of which r is a reflection
Gβ
julia> r==Reflection(W,1,-1) # specify r with .rootno and .eigen
true
julia> Reflection(W,1) # specify with .rootno gets the distinguished reflection
Reflection(Gβ,1,ΞΆβ)
julia> root(r)
2-element Vector{Cyc{Rational{Int64}}}:
0
ΞΆβ
julia> coroot(r)
2-element Vector{Cyc{Int64}}:
0
-2ΞΆβ
julia> Matrix(r)
2Γ2 Matrix{Cyc{Rational{Int64}}}:
1 0
0 -1
julia> hyperplane(r) # the fixed hyperplane, as a rowspace
1Γ2 Matrix{Cyc{Rational{Int64}}}:
1 0
julia> hyperplane(r)*Matrix(r)==hyperplane(r)
true
julia> isdistinguished(r) # r is not distinguished
false
julia> exponent(r) # which power of a distinguished reflection it is
2
julia> Perm(r)
(1,8)(2,9)(3,16)(4,15)(5,17)(6,18)(7,19)(10,22)(11,21)(12,23)
julia> hyperplane_orbit(r) # r is in the first hyperplane orbit
1
julia> position_class(r) # the index of the conjugacy class of r in W
15
julia> simple_rep(r) # smallest root index affording a conjugate reflection
1
julia> word(r) # a word in the generators of r.W for r
2-element Vector{Int64}:
1
1
```
""" Reflection
function Base.show(io::IO,r::Reflection)
print(io,"Reflection(",r.W,",",r.rootno,",",r.eigen,")")
end
LaurentPolynomials.root(r::Reflection)=roots(r.W,r.rootno)
function PermRoot.coroot(r::Reflection)
get!(r,:coroot)do
rr=root(r)//1
cr=coroots(r.W,r.rootno)
improve_type(cr*(1-r.eigen)/(transpose(cr)*rr))
end
end
function Base.Matrix(r::Reflection)
get!(r,:matrix)do
reflectionMatrix(root(r),coroot(r))
end
end
Perms.order(r::Reflection)=order(r.eigen)
simple_rep(r::Reflection)=simple_reps(r.W)[r.rootno]
Base.exponent(r::Reflection)=Int(r.eigen.r*ordergens(r.W)[simple_rep(r)])
isdistinguished(r::Reflection)=exponent(r)==1
Perms.Perm(r::Reflection)=refls(r.W,r.rootno)^exponent(r)
function hyperplane_orbit(r::Reflection)
findfirst(x->x.s==simple_rep(r),hyperplane_orbits(r.W))
end
function hyperplane(r::Reflection)
get!(r,:hyperplane)do
Matrix(rowspace(lnullspace(hcat(coroot(r)))))
end
end
function Groups.position_class(r::Reflection)
get!(r,:position_class)do
hyperplane_orbits(r.W)[hyperplane_orbit(r)].cl_s[exponent(r)]
end::Int
end
# invert word w in gens(w) to a positive word in gens(w)
function invert_word(W,w)
if isempty(w) return w end
lastg=0
mul=0
seq=Pair{Int,Int}[]
for i in length(w):-1:1
if w[i]==lastg mul+=1
else
if lastg!=0 push!(seq,lastg=>mul) end
lastg=w[i]; mul=1
end
end
if lastg!=0 push!(seq,lastg=>mul) end
o=ordergens(W)
[i for (i,mul) in seq for y in 1+mul:o[i]]
end
function Reflection(W::ComplexReflectionGroup,i::Integer,eig)
if !(eig isa Root1) eig=Root1(eig) end
p=findfirst(r->refls(W,r.rootno)==refls(W,i) && r.eigen==eig,reflections(W))
reflections(W)[p]
end
function Reflection(W::ComplexReflectionGroup,i::Integer)
Reflection(W,i,E(order(refls(W,i))))
end
"""
`reflections(W)` a `Vector{Reflection}` of all reflections of the
reflection group `W` (including the non-distinguished ones; see
[`Reflection`](@ref)). `reflections(W)[1:nhyp(W)]` are the distinguished
reflections.
```julia-repl
julia> W=crg(4)
Gβ
julia> reflections(W)
8-element Vector{Reflection{PRG{Cyc{Rational{Int64}}, Int16}}}:
Reflection(Gβ,1,ΞΆβ)
Reflection(Gβ,2,ΞΆβ)
Reflection(Gβ,4,ΞΆβ)
Reflection(Gβ,5,ΞΆβ)
Reflection(Gβ,1,ΞΆβΒ²)
Reflection(Gβ,2,ΞΆβΒ²)
Reflection(Gβ,4,ΞΆβΒ²)
Reflection(Gβ,5,ΞΆβΒ²)
```
"""
function reflections(W::ComplexReflectionGroup)
get!(W,:reflections)do
sreps=sort(unique(simple_reps(W)))
pnts=refls(W,sreps)
if W isa PermRootGroup
dd=map(x->Groups.words_transversal(gens(W),x),pnts)
end
res=map(i->Reflection{typeof(W)}[],1:maximum(ordergens(W))-1)
for i in unique_refls(W)
e=ordergens(W)[simple_reps(W)[i]]
if W isa CoxeterGroup w=word(W,refls(W,i))
else
rep=simple_reps(W)[i]
w=dd[findfirst(==(rep),sreps)][refls(W,i)]
w=vcat(invert_word(W,w),[rep],w)
end
for j in 1:e-1
push!(res[j],Reflection(W,i,E(e,j),repeat(w,j),Dict{Symbol,Any}()))
end
end
vcat(res...)
end::Vector{Reflection{typeof(W)}}
end
Groups.word(r::Reflection)=r.word
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 48316 | """
Let `R` be a root system in the real vector space `V`. We say that `Fββ
GL(V)` is an *automorphism of `R`* if it permutes `R` and is of finite
order (finite order is automatic if `R` generates `V`). It follows by
[chap. VI, Β§1.1, lemme 1 Bourbaki1968](biblio.htm#Bou68) that the dual
`Fβ*β GL(V*)` permutes the coroots `R*β V*`; thus `Fβ` normalizes the
reflection group `W` associated to `R`, that is `wβ¦ FβwFββ»ΒΉ` is an
automorphism of `W`. Thus we get a reflection coset `WFβ`, which we call a
*Coxeter coset*.
The motivation for introducing Coxeter cosets comes from automorphisms of
algebraic reductive groups, giving rise to non-split reductive groups over
finite fields. Let `π` be a connected reductive algebraic group `π` over an
algebraic closure `π½Μ_q` of a finite field `π½_q`, defined over `π½_q`; this
corresponds to a Frobenius endomorphism `F` so that the finite group of
rational points `π(π½_q)` identifies to the subgroup `π^F` of fixed points
under `F`.
Let `π` be a maximal torus of `π`, and `Ξ¦` (resp. `Ξ¦*`) be the roots (resp.
coroots) of `π` with respect to `π` in the character group `X(π)` (resp.
the group of one-parameter subgroups `Y(π)`). Then `π` is determined up to
isomorphism by `(X(π),Ξ¦,Y(π),Ξ¦*)`; this corresponds to give a root system
in the vector space `V=β β X(π)` and a rational reflection group
`W=N_π(π)/π` acting on it.
If `π` is `F`-stable the Frobenius endomorphism `F` acts also naturally on
`X(T)` and defines thus an endomorphism of `V`, which is of the form `q
Fβ`, where `Fββ GL(V)` is of finite order and normalizes `W`. We get thus a
Coxeter coset `WFββGL(V)`. The data `(X(π), Ξ¦, Y(π), Ξ¦*, Fβ)`, and the
integer `q` completely determine up to isomorphism the associated
*reductive finite group* `π^F`. Thus these data is a way of representing in
the essential information which determines a finite reductive group.
Indeed, all properties of Chevalley groups can be computed from that datum:
symbols representing characters, conjugacy classes, and finally the whole
character table of `π^F`.
It turns out that many interesting objects attached to this datum depend
only on `(V,W, Fβ)`: the order of the maximal tori, the *fake degrees*, the
order of `π^F`, symbols representing unipotent characters, Deligne-Lusztig
induction in terms of *almost characters*, the Fourier matrix relating
characters and almost characters, etc⦠(see, e.g.,
[Broue-Malle-Michel1993](biblio.htm#BMM93)). It is thus possible to extend
their construction to non-crystallographic groups (or even to more general
complex reflection groups, see [`spets`](@ref)); this is why we did not
include a root system in the definition of a reflection coset. However,
unipotent conjugacy classes for instance depend on the root system.
We assume now that `π` is contained in an `F`-stable Borel subgroup of `π`.
This defines an order on the roots, and there is a unique element `Οβ W
Fβ`, the *reduced element* of the coset, which preserves the set of
positive roots. It thus defines a *diagram automorphism*, that is an
automorphism of the Coxeter system `(W,S)`. This element is stored in the
component `.phi` of the coset record. It may be defined without mentioning
the roots, as follows: `(W,Fβ(S))` is another Coxeter system, thus
conjugate to `S` by a unique element of `W`, thus there is a unique element
`Οβ WFβ` which stabilizes `S` (a proof follows from [Theoreme 1, chap. V,
Β§3 Bourbaki1968](biblio.htm#Bou68)). We consider thus cosets of the form
`WΟ` where `Ο` stabilizes `S`. The coset `W Ο` is completely defined by the
permutation `.phi` when `π` is semi-simple --- equivalently when `Ξ¦`
generates `V`; in this case we just need to specify `phi` to define the
coset.
There is a slight generalisation of the above setup, covering in particular
the case of the Ree and Suzuki groups. We consider `π^F` where `F` not a
Frobenius endomorphism, but an isogeny such that some power `F^n` is a
Frobenius endomorphism. Then `F` still defines an endomorphism of `V` which
normalizes `W`; we define a real number `q` such that `F^n` is attached to
an `π½_{qβΏ}`-structure. Then we still have `F=q Fβ` where `Fβ` is of finite
order but `q` is no more an integer. Thus `Fββ GL(Vβ β)` but `Fββ GL(V)`.
For instance, for the Ree and Suzuki groups, `Fβ` is an automorphism of
order `2` of `W`, which is of type `Gβ`, `Bβ` or `Fβ`, and `q=β2` for `Bβ`
and `Fβ` and `q=β3` for `Gβ` This can be constructed starting from root
systems for `Gβ`, `Bβ` or `Fβ` where all the roots have the same length.
This kind of root system is *not* crystallographic. Such
non-crystallographic root systems exist for all finite Coxeter groups such
as the dihedral groups, `Hβ` and `Hβ`. We will call here *Weyl cosets* the
cosets corresponding to rational forms of algebraic groups, which include
thus some non-rational roots systems for `Bβ`, `Gβ` and `Fβ`.
## Spets
We now extend the above notions to general complex reflection groups. Let
`Wβ GL(V)` be a complex reflection group on the vector space `V`. Let `Ο`
be an element of `GL(V)` which normalizes `W`. Then the coset `WΟ` is
called a reflection coset.
A reference for these cosets is [Broue-Malle-Michel 1999](biblio.htm#BMM99).
When `W` is a so-called *Spetsial* group, they are the basic object for the
construction of a *Spetses*, which is an object attached to a complex
reflection group from which one can derive combinatorially some attributes
shared with finite reductive groups, like unipotent degrees, etcβ¦.
We say that a reflection coset is irreducible if `W` is irreducible. A
general coset is a direct product of *descents of scalars*, which is the
case where `Ο` is transitive on the irreducible components of `W`. The
irreducible cosets have been classified in [Broue-Malle-Michel
1999](biblio.htm#BMM99): up to multiplication of `Ο` by a scalar, there is
usually only one or two possible cosets for a given irreducible group.
We deal only with *finite order* cosets, that is, we assume there is a
(minimal) integer `Ξ΄` such that `(WΟ)^Ξ΄=W`. Then the group generated by `W`
and `Ο` is finite, of order `Ξ΄|W|`.
A subset `C` of a `WΟ` is called a *conjugacy class* if one of the
following equivalent conditions is fulfilled:
* `C` is the orbit of an element in `WΟ` under the conjugation action of `W`.
* `C` is a conjugacy class of `β¨W,Οβ©` contained in `WΟ`.
* The set `{wβ W|wΟβ C}` is a `Ο`-conjugacy class of `W` (two elements
`v,wβ W` are called `Ο`-conjugate, if and only if there exists `xβ W` with
`v=xwΟ(xβ»ΒΉ)`).
An irreducible character of `β¨W,Οβ©` has some non-zero values on `WΟ` if and
only if its restriction to `W` is irreducible. Further, two characters `Οβ`
and `Οβ` which have same irreducible restriction to `W` differ by a
character of the cyclic group `β¨Οβ©` (which identifies to the quotient
`β¨W,Οβ©/W`). A set containing one extension to `β¨W,Οβ©` of each `Ο`-invariant
character of `W` is called a *set of irreducible characters of `WΟ`*. Two
such characters are orthogonal for the scalar product on the class
functions on `WΟ` given by ``β¨Ο,Οβ©:=|W|ΒΉβ_{wβ W}Ο(wΟ)\\overline{Ο(wΟ)}.``
For rational groups (Weyl groups), Lusztig has defined a choice of a set of
irreducible characters for `WΟ` (called the *preferred extensions*), but
for more general reflection cosets we have made some rather arbitrary
choices, which however have the property that their values lie in the
smallest possible field.
The *character table* of `WΟ` is the table of values of a set of
irreducible characters on the conjugacy classes.
A *subcoset* `LwΟ` of `WΟ` is given by a reflection subgroup `L` of `W` and
an element `w` of `W` such that `wΟ` normalizes `L`.
We then have a natural notion of *restriction* of class functions on `WΟ`
to class functions on `LwΟ` as well as of *induction* in the other
direction. These maps are adjoint with respect to the scalar product
defined above (see [Broue-Malle-Michel 1999](biblio.htm#BMM99)).
In this package the most general construction of a reflection coset is by
starting from a reflection datum, and giving in addition the matrix `F` of
the map `Ο:Vβ V` (see the command `spets`). However, at present, general
cosets are only implemented for groups represented as permutation groups on
a set of roots, and it is required that the automorphism given preserves
this set up to a scalar (it is allowed that these scalars depend on the
pair of an irreducible component and its image). It is also allowed to
specify `Ο` by the permutation it induces on the roots; in this case it is
assumed that `Ο` acts trivially on the orthogonal of the roots, but the
roots could be those of a parent group, generating a larger space. Thus in
any case we have a permutation representation of `β¨W,Οβ©` and we consider
the coset to be a set of permutations.
Reflection cosets are implemented in by a `struct` which points to a
reflection group record and has additional fields holding `F` and the
corresponding permutation `phi`. In the general case, on each component of
`W` which is a descent of scalars, `F` will permute the components and
differ by a scalar on each component from an automorphism which preserves
the roots. In this case, we have a permutation `phi` and a `scalar` which
is stored for that component.
The most common situation where cosets with non-trivial `phi` arise is as
sub-cosets of reflection groups. Here is an "exotic" example, see the next
chapter for more classical examples involving Coxeter groups.
```julia-repl
julia> W=complex_reflection_group(14)
Gββ
julia> R=reflection_subgroup(W,[2,4])
Gββββββ=Gβ
julia> RF=spets(R,W(1)) # should be Β²Gβ
(β6)
Gββββββ=Β²Gβ
```
```julia-rep1
julia> diagram(RF)
Ο acts as (1,2) on the component below
β’ βββ’ Gβ
1 2
```
```julia-repl
julia> degrees(RF)
2-element Vector{Tuple{Int64, Cyc{Int64}}}:
(6, 1)
(12, -1)
```
The last line shows for each reflection degree the corresponding *factor*
of the coset, which is the scalar by which `Ο` acts on the corresponding
fundamental reflection invariant. The factors characterize the coset.
A spets by default is printed in an abbreviated form which describes its
type, as above (`Gβ
` twisted by 2, with a Cartan matrix which differs from
the standard one by a factor of `β6`). The function `repr` gives a form
which could be input back in Julia. With the same data as above we have:
```julia-rep1
julia> print(RF)
spets(reflection_subgroup(complex_reflection_group(14),[2, 4]),perm"(1,3)(2,4)(5,9)(6,10)(7,11)(8,12)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(62,79)(64,80)(65,81)(66,82)(67,69)(68,70)(83,100)(84,101)(85,102)(87,103)(89,99)(90,97)(91,98)(92,96)(93,104)(94,95)(105,113)(106,114)(109,111)(110,112)(115,118)(116,117)(119,120)")
```
Conjugacy classes and irreducible characters of Coxeter cosets are defined
as for general reflection cosets. For irreducible characters of Weyl
cosets, we choose (following Lusztig) for each `Ο`-stable character of `W`
a particular extension to a character of `Wβ β¨Οβ©`, which we will call the
*preferred extension*. The *character table* of the coset `WΟ` is the table
of the restrictions to `WΟ` of the preferred extensions. The question of
finding the conjugacy classes and character table of a Coxeter coset can be
reduced to the case of irreducible root systems `R`.
* The automorphism `Ο` permutes the irreducible components of `W`, and
`WΟ` is a direct product of cosets where `Ο` permutes cyclically the
irreducible components of `W`. The preferred extension is defined to be
the direct product of the preferred extension in each of these
situations.
* Assume now that `WΟ` is a descent of scalars, that is the decomposition
in irreducible components `W=WβΓ β― Γ Wβ` is cyclically permuted by `Ο`.
Then there are natural bijections from the `Ο`-conjugacy classes of `W`
to the `Οα΅`-conjugacy classes of `Wβ` as well as from the `Ο`-stable
characters of `W` to the `Οα΅`-stable characters of `Wβ`, which reduce
the definition of preferred extensions on `WΟ` to the definition for
`WβΟα΅`.
* Assume now that `W` is the Coxeter group of an irreducible root
system. `Ο` permutes the simple roots, hence induces a graph
automorphism on the corresponding Dynkin diagram. If `Ο=1` then
conjugacy classes and characters coincide with those of the Coxeter
group `W`.
The nontrivial cases for crystallographic roots systems are (the order of
`Ο` is written as left exponent to the type): `Β²Aβ`, `Β²Dβ`, `Β³Dβ`, `Β²Eβ`.
For non-crystallographic root systems where all the roots have the same
length the additional cases `Β²Bβ`, `Β²Gβ`, `Β²Fβ` and `Β²Iβ(k)` arise.
* In case `Β³Dβ` the group `Wβ β¨Οβ©` can be embedded into the
Coxeter group of type `Fβ`, which induces a labeling for the conjugacy
classes of the coset. The preferred extension is chosen as the (single)
extension with rational values.
* In case `Β²Dβ` the group `Wβ β¨Οβ©` is isomorphic to a Coxeter
group of type `Bβ`. This induces a canonical labeling for the conjugacy
classes of the coset and allows to define the preferred extension in a
combinatorial way using the labels (pairs of partitions) for the
characters of the Coxeter group of type `Bβ`.
* In the remaining crystallographic cases `Ο` identifies to `-wβ` where
`wβ` is the longest element of `W`. So, there is a canonical labeling
of the conjugacy classes and characters of the coset by those of `W`.
The preferred extensions are defined by describing the signs of the
character values on `-wβ`.
The most general construction of a Coxeter coset is by starting from a
Coxeter datum specified by the matrices of `simpleRoots` and
`simplecoroots`, and giving in addition the matrix `F0Mat` of the map
`Fβ:Vβ V` (see the commands `CoxeterCoset` and `CoxeterSubCoset`). As for
Coxeter groups, the elements of `WΟ` are uniquely determined by the
permutation they induce on the set of roots `R`. We consider these
permutations as `elements` of the Coxeter coset.
Coxeter cosets are implemented by a struct which points to a Coxeter datum
record and has additional fields holding `F0Mat` and the corresponding
element `phi`. Functions on the coset (for example, `classinfo`) are about
properties of the group coset `W Ο` ; however, most definitions for
elements of untwisted Coxeter groups apply without change to elements in `W
Ο`: e.g., if we define the length of an element `wΟβ WΟ` as the number of
positive roots it sends to negative ones, it is the same as the length of
`w`, i.e., `Ο` is of length `0`, since `Ο` has been chosen to preserve the
set of positive roots. Similarly, the Coxeter `word` describing `wΟ` is the
same as the one for `w`, etcβ¦
We associate to a Coxeter coset `WΟ` a *twisted Dynkin diagram*, consisting
of the Dynkin diagram of `W` and the graph automorphism induced by `Ο` on
this diagram (this specifies the group `Wβ β¨Fβ©`, mentioned above, up
to isomorphism). See the functions `ReflectionType`, `ReflectionName` and
`diagram` for Coxeter cosets.
Below is an example showing first how to *not* define, then how to define,
the Weyl coset for a Suzuki group:
```julia-repl
julia> W=coxgroup(:B,2)
Bβ
julia> spets(W,Perm(1,2))
ERROR: matrix F must preserve the roots
Stacktrace:
[1] error(::String) at ./error.jl:33
[2] spets(::Chevie.Weyl.FCG{Int16,Int64,PRG{Int64,Int16}}, ::Matrix{Int64}) at /home/jmichel/julia/Chevie/src/Cosets.jl:241 (repeats 2 times)
[3] top-level scope at REPL[19]:1
julia> W=coxgroup(:Bsym,2)
Bsymβ
julia> WF=spets(W,Perm(1,2))
Β²Bsymβ
julia> CharTable(WF)
CharTable(Β²Bsymβ)
βββββ¬ββββββββββ
β β 1 121β
βββββΌββββββββββ€
β2. β1 1 1β
β.11β1 -1 -1β
β1.1β. -β2 β2β
βββββ΄ββββββββββ
```
A *subcoset* `HwΟ` of `WΟ` is given by a reflection subgroup `H` of `W` and
an element `w` of `W` such that `wΟ` induces an automorphism of the root
system of `H`. For algebraic groups, this corresponds to a rational form of
a reductive subgroup of maximal rank. For example, if `WΟ` corresponds to
the algebraic group `π` and `H` is the trivial subgroup, the coset `HwΟ`
corresponds to a maximal torus `π_w` of type `w`.
```julia-repl
julia> W=coxgroup(:Bsym,2)
Bsymβ
julia> WF=spets(W,Perm(1,2))
Β²Bsymβ
julia> subspets(WF,Int[],W(1))
Β²Bsymβββ=Ξ¦β΄β
```
A subgroup `H` which is a parabolic subgroup corresponds to a rational form
of a Levi subgroup of `π`. The command `twistings` gives all rational
forms of such a Levi.
```julia-repl
julia> W=coxgroup(:B,2)
Bβ
julia> twistings(W,[1])
2-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Bββββ=AΜβΞ¦β
Bββββ=AΜβΞ¦β
julia> twistings(W,[2])
2-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Bββββ=AβΞ¦β
Bββββ=AβΞ¦β
```
Notice how we distinguish between subgroups generated by short roots and by
long roots. A general `H` corresponds to a reductive subgroup of maximal
rank. Here we consider the subgroup generated by the long roots in `Bβ`,
which corresponds to a subgroup of type `SLβΓ SLβ` in `SPβ`, and
show its possible rational forms.
```julia-repl
julia> W=coxgroup(:B,2)
Bβ
julia> twistings(W,[2,4])
2-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Bβββββ=AβΓAβ
Bβββββ=(AβAβ)
```
"""
module Cosets
using ..Chevie
export twistings, spets, Frobenius, Spets, subspets,
relative_coset, generic_sign, PhiOnDiscriminant, graph_automorphisms,
CoxeterCoset, twisted_power
abstract type Spets{T,TW}<:NormalCoset{T,TW} end
abstract type CoxeterCoset{T,TW}<:Spets{T,TW} end
extprod(W1::Spets,W2::Spets)=spets(W1.W*W2.W,cat(W1.F,W2.F,dims=(1,2)))
extprod(W1::Spets,W2::FiniteCoxeterGroup)=extprod(W1,spets(W2))
extprod(W1::FiniteCoxeterGroup,W2::Spets)=extprod(spets(W1),W2)
extprod(W1::FiniteCoxeterGroup,W2::FiniteCoxeterGroup)=W1*W2
function graph_automorphisms(W::FiniteCoxeterGroup,J::AbstractVector{<:Integer})
if isempty(J) return W end
H=reflection_subgroup(W,J)
if !isparabolic(W,H)
return stabilizer(W,sort(inclusiongens(H)),onsets)
end
if issubset(inclusiongens(H),1:ngens(W)) p=one(W)
else p=standard_parabolic(W,H); H=H^p
end
J=inclusiongens(H)
C=collect(endomorphisms(CoxGroups.parabolic_category(W,J),1))
Group(C.^inv(p))
end
twisting_elements(W::FiniteCoxeterGroup,J::AbstractVector{<:Integer})=
classreps(graph_automorphisms(W,J))
function twisting_elements(WF::CoxeterCoset,J::AbstractVector{<:Integer})
if isempty(J) return classreps(WF)./WF.phi end
if isone(WF.phi) return twisting_elements(Group(WF),J) end
W=Group(WF)
iJ=inclusion(W,J)
h=transporting_elt(W,onsets(iJ,WF.phi),sort(iJ),onsets)
if isnothing(h)
println("\n# no subspets for ",J)
return eltype(W)[]
end
W_L=stabilizer(W,sort(iJ),onsets)
e=classreps(Group(vcat(gens(W_L),[WF.phi*h])))
res=filter(x->WF.phi*h*inv(x) in W_L,e).*inv(WF.phi)
res
end
Groups.Group(WF::Spets)=WF.W
@forward Spets.W PermRoot.inclusion, PermRoot.restriction,
PermRoot.semisimplerank, PermRoot.rank
Weyl.dimension(WF::CoxeterCoset)=dimension(WF.W)
CoxGroups.word(WF::CoxeterCoset,w)=word(WF.W,w/WF.phi)
"""
`twistings(W,I)`
`W` should be a complex reflection group.
The function returns the list, up to `W`-conjugacy, of subspets of `W`
whose group is `reflection_subgroup(W,I)` --- In the case of Weyl groups,
it corresponds to representatives of the possible twisted forms of the
reductive subgroup of maximal rank `L` defined by
`reflection_subgroup(W,I)`.
`W` could also be a coset `WΟ`; then the subgroup `L` must be conjugate to
`Ο(L)` for a rational form to exist. If `Ο` normalizes `L`, then the
rational forms are classified by the the `Ο`-classes of `N_W(L)/L`.
```julia-repl
julia> W=coxgroup(:E,6)
Eβ
julia> WF=spets(W,Perm(1,6)*Perm(3,5))
Β²Eβ
julia> twistings(W,2:5)
3-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Eββββββ
β=DβΞ¦βΒ²
Eββββββ
β=Β³DβΞ¦β
Eββββββ
β=Β²DβΞ¦βΞ¦β
julia> twistings(WF,2:5)
3-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Β²Eββββ
βββ=Β²DβββββββΞ¦βΞ¦β
Β²Eββββ
βββ=Β³DβββββββΞ¦β
Β²Eββββββ
β=DβΞ¦βΒ²
```
"""
function twistings(W,J::AbstractVector{<:Integer})
subspets.(Ref(W),Ref(J),twisting_elements(W,J))
end
twistings(W,R::FiniteCoxeterGroup)=twistings(W,inclusiongens(R,W))
"""
`graph_automorphisms(t::Vector{TypeIrred})`
Given the `refltype` of a finite Coxeter group, returns the group of all
Graph automorphisms of `t` as a group of permutations of `indices(t)`.
```julia-repl
julia> W=coxgroup(:D,4)
Dβ
julia> graph_automorphisms(refltype(W*W))
Group((1,5)(2,6)(3,7)(4,8),(1,2),(1,4))
```
"""
function graph_automorphisms(t::Vector{TypeIrred})
gen=empty([Perm()])
for (n,t) in groupby(repr,t)
for i in 1:length(t)-1
push!(gen,prod(Perm.(t[i].indices,t[i+1].indices)))
end
J=t[1].indices
rk=length(J)
if t[1].series==:A
if rk>1
push!(gen,prod(i->Perm(J[i],J[rk+1-i]),1:div(rk,2)))
end
elseif t[1].series==:B && t[1].cartanType==root(2) push!(gen,Perm(J[1],J[2]))
elseif t[1].series==:D push!(gen,Perm(J[1],J[2]))
if rk==4 push!(gen,Perm(J[1],J[4])) end
elseif t[1].series==:E && rk==6
push!(gen,Perm(J[1],J[6])*Perm(J[3],J[5]))
elseif t[1].series==:F && t[1].cartanType==root(2)
push!(gen,Perm(J[1],J[4])*Perm(J[2],J[3]))
elseif t[1].series==:G && t[1].cartanType==root(3) push!(gen,Perm(J[1],J[2]))
end
end
Group(gen)
end
graph_automorphisms(W::FiniteCoxeterGroup)=
Group(map(g->PermX(W,reflrep(W,g)),gens(graph_automorphisms(refltype(W)))))
"""
`twistings(W)`
`W` should be a Coxeter group which is not a proper reflection subgroup of
another reflection group (so that `inclusion(W)==eachindex(roots(W))`). The
function returns all `spets` representing twisted forms of algebraic groups
of type `W`.
```julia-repl
julia> twistings(coxgroup(:A,3)*coxgroup(:A,3))
8-element Vector{Spets{FiniteCoxeterGroup{Perm{Int16},Int64}}}:
AβΓAβ
AβΓΒ²Aβ
Β²AβΓAβ
Β²AβΓΒ²Aβ
(AβAβ)
Β²(AβAβ)
Β²(AβAβ)ββββββ
ββ
(AβAβ)ββββββ
ββ
julia> twistings(coxgroup(:D,4))
6-element Vector{Spets{FiniteCoxeterGroup{Perm{Int16},Int64}}}:
Dβ
Β²Dβββββββ
Β²Dβ
Β³Dβ
Β²Dβββββββ
Β³Dβββββββ
julia> W=rootdatum(:so,8)
soβ
julia> twistings(W)
2-element Vector{Spets{FiniteCoxeterGroup{Perm{Int16},Int64}}}:
Dβ
Β²Dβ
```
"""
function twistings(W::FiniteCoxeterGroup)
if W!=parent(W)
error(W," must not be a proper subgroup of another reflection group")
end
l=elements(graph_automorphisms(refltype(W)))
l=filter(y->all(isinteger,YMatrix(W.G,y)),l)
spets.(Ref(W),l)
end
#function Groups.position_class(G::Coset,g)
# if isone(G.phi) return position_class(G.W,g) end
# findfirst(c->g in c,conjugacy_classes(G))
#end
twisted_power(x,n,F::Function)=iszero(n) ? one(x) : x*F(twisted_power(x,n-1,F))
#-------------- finite coxeter cosets ---------------------------------
@GapObj struct FCC{T,TW<:FiniteCoxeterGroup{T}}<:CoxeterCoset{T,TW}
phi::T
F::Matrix
W::TW
end
function Base.show(io::IO,t::Type{FCC{T,TW}})where {T,TW}
#function Base.show(io::IO,::MIME"text/plain",t::Type{FCC{T,TW}})where {T,TW}
if get(io,:limit,true) print(io,"Spets{",TW,"}")
else print(io,t)
end
end
Groups.NormalCoset(W::FiniteCoxeterGroup,w::Perm=one(W))=spets(W,w)
spets(phi,F::Matrix,W::FiniteCoxeterGroup,P::Dict{Symbol,Any})=FCC(phi,F,W,P)
Base.parent(W::Spets)=get!(()->W,W,:parent)
"""
`spets(W::ComplexReflectionGroup, F::Matrix=I(rank(W)))`
This function returns a or a `CoxeterCoset` or a `Spets`. `F` must be an
invertible matrix, representing an automorphism of the vector space `V` of
dimension of dimension `rank(W)` which for a finite Coxeter group induces
an automorphism of the root system of `parent(W)`, or for a more general
complex reflection group just stabilizes `W`.
The returned struct has in particular the following fields:
`.W`: the group `W`
`.F`: the matrix acting on `V` which represents the unique element `phi` in
`WF` which preserves the positive roots (for finite Coxeter groups) or some
"canonical" representative of the coset for more general complex reflection
groups.
`.phi`: a `Perm`, the permutation of the roots of `W` induced by `.F` (for
general complex reflection groups this may be a permutation up to scalars)
(also for Coxeter groups the element of smallest length in the NormalCoset
`W .phi`).
In the first example we create a Coxeter coset corresponding to the general
unitary group `GU_3(q)` over the finite field `FF(q)`.
```julia-repl
julia> W=rootdatum(:gl,3)
glβ
julia> gu3=spets(W,-reflrep(W,W()))
Β²AβΞ¦β
julia> F4=coxgroup(:F,4);D4=reflection_subgroup(F4,[1,2,16,48])
Fβββββββββββ=Dβββββββ
julia> spets(D4,[1 0 0 0;0 1 2 0;0 0 0 1;0 0 -1 -1])
Fβββββββββββ=Β³Dβββββββ
```
`spets(W::ComplexReflectionGroup,p::Perm)`
In this version `F` is defined by the permutation of the simple roots it
does.
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> spets(W,Perm(1,3))
Β²Aβ
```
"""
function spets(W::FiniteCoxeterGroup{Perm{T}},F::Matrix) where{T}
perm=PermX(W.G,F)
if isnothing(perm) error("matrix F must preserve the roots") end
phi=reduced(W,perm)
FCC(phi,F*reflrep(W,perm\phi),W,Dict{Symbol,Any}())
end
function spets(W::FiniteCoxeterGroup{Perm{T}}) where{T}
get!(W,:trivialspets)do
FCC(Perm{T}(),reflrep(W,one(W)),W,Dict{Symbol,Any}())
end
end
spets(W::FiniteCoxeterGroup,w::Perm)=spets(W,reflrep(W,w))
PermRoot.radical(WF::CoxeterCoset)=torus(central_action(Group(WF),WF.F))
"""
`torus(m::AbstractMatrix)`
`m` should be a matrix of finite order. The function returns the coset `T`
of the trivial group such that `T.F==m`. When `m` is integral his
corresponds to an algebraic torus `π ` of rank `size(m,1)`, with an isogeny
which acts by `m` on `X(π)`.
```julia-repl
julia> torus([0 -1;1 -1])
Ξ¦β
```
"""
Weyl.torus(m::AbstractMatrix)=spets(torus(size(m,1)),m)
"""
`torus(W,i)`
where `W` is a `Spets` or a `ComplexReflectionGroup`. This returns the
torus twisted by a representative of the `i`-th conjugacy class of `W`.
This is the same as `twistings(W,Int[])[i]`.
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> twistings(W,Int[])
5-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Aβββ=Ξ¦βΒ³
Aβββ=Ξ¦βΒ²Ξ¦β
Aβββ=Ξ¦βΞ¦βΒ²
Aβββ=Ξ¦βΞ¦β
Aβββ=Ξ¦βΞ¦β
julia> torus(W,2)
Aβββ=Ξ¦βΒ²Ξ¦β
julia> WF=spets(W,Perm(1,3))
Β²Aβ
julia> twistings(WF,Int[])
5-element Vector{Spets{FiniteCoxeterSubGroup{Perm{Int16},Int64}}}:
Β²Aβββ=Ξ¦βΒ³
Β²Aβββ=Ξ¦βΞ¦βΒ²
Β²Aβββ=Ξ¦βΒ²Ξ¦β
Β²Aβββ=Ξ¦βΞ¦β
Β²Aβββ=Ξ¦βΞ¦β
julia> torus(WF,2)
Β²Aβββ=Ξ¦βΞ¦βΒ²
```
"""
Weyl.torus(W::Spets,i::Integer)=subspets(W,Int[],W.phi\classreps(W)[i])
Weyl.torus(W::ComplexReflectionGroup,i::Integer)=subspets(W,Int[],classreps(W)[i])
function Groups.elements(C::ConjugacyClass{T,TW})where {T,TW<:Spets}
get!(C,:elements)do
orbit(Group(C.G),C.representative)
end
end
function PermRoot.generic_order(WF::Spets,q)
if rank(Group(WF))==0 return one(q) end
generic_sign(WF)*q^sum(x->x[1]+1,codegrees(WF))*
prod(((d,e),)->1-q^d*conj(e),degrees(WF))
end
function PhiOnDiscriminant(WF)
tt=refltype(WF)
isempty(tt) ? 1 : prod(t->haskey(t,:scalar) ?
prod(t.scalar)^sum(degrees(t.orbit[1]).+codegrees(t.orbit[1])) : 1, tt)
end
generic_sign(WF)=(-1)^rank(Group(WF))*
prod(last.(degrees(WF)))*conj(PhiOnDiscriminant(WF))
function PermRoot.refltype(WF::CoxeterCoset)::Vector{TypeIrred}
get!(WF,:refltype)do
W=Group(WF)
t=refltype(W)
c=map(x->indices(x),t)
phires=Perm(action.(Ref(W),eachindex(roots(W)),WF.phi))
map(orbits(Perm(sort.(c),map(i->sort(i.^phires),c)),eachindex(c)))do c
o=deepcopy(t[c])
J=indices(o[1])
twist=Perm(J,J.^(phires^length(c)))
if o[1].series==:D && length(J)==4
if order(twist)==2
rf=reduce(vcat,cycles(twist))
o[1].indices=J[vcat(rf,[3],setdiff([1,2,4],rf))]
elseif twist==Perm(1,4,2)
o[1].indices=J[[1,4,3,2]]
twist=Perm(1,2,4)
end
end
for i in 2:length(c) o[i].indices=indices(o[i-1]).^phires end
TypeIrred(Dict(:orbit=>o,:twist=>twist))
end
end
end
function PermRoot.parabolic_reps(WF::CoxeterCoset,s)
W=Group(WF)
res=Vector{Int}[]
for I in parabolic_reps(W,s)
if sort(action.(Ref(W),I,WF.phi))==sort(I) push!(res,I)
else
c=filter(x->sort(action.(Ref(W),x,WF.phi))==sort(x),
standard_parabolic_class(W,I))
if !isempty(c) push!(res,c[1]) end
end
end
res
end
PermRoot.parabolic_reps(WF::Spets,s)=if !isone(WF.phi) error() else
parabolic_reps(Group(WF),s) end
function Base.show(io::IO, WF::Spets)
if haskey(WF,:callname)
if hasdecor(io) printTeX(io,WF.TeXcallname)
else print(io,WF.callname)
end
return
end
W=Group(WF)
if !hasdecor(io)
print(io,"spets(",W,",",WF.phi,")")
return
end
if get(io,:parent,true)
if haskey(WF,:parent)
n=inclusion(WF,indices(refltype(WF)))
if n!=eachindex(gens(Group(WF.parent)))
printTeX(io,"{",WF.parent,"}_{"*joindigits(n;always=true)*"}=")
end
elseif isdefined(W,:parent)
n=inclusion(W,indices(refltype(WF)))
if n!=eachindex(gens(W.parent))
printTeX(io,"{",W.parent,"}_{"*joindigits(n;always=true)*"}=")
end
end
end
show(io,refltype(WF))
t=CycPol(1,0,ModuleElt(map(x->x.r,torusfactors(WF)).=>1))
if !isone(t) show(io,t)
elseif isempty(refltype(WF)) print(io,".")
end
end
PermRoot.reflrep(WF::Spets,w)=WF.F*reflrep(Group(WF),WF.phi\w)
function PermGroups.classreps(W::Spets)
get!(W,:classreps)do
map(x->x.representative,conjugacy_classes(W))
end
end
"""
Frobenius(WF)(x,i=1)
If `WF` is a Coxeter coset associated to the Coxeter group `W`,
`Frobenius(WF)` returns a function `F` such that `x⦠F(x,i=1)` does the
automorphism induced by `WF.phi^i` on the object `x`.
```julia-repl
julia> W=coxgroup(:D,4)
Dβ
julia> WF=spets(W,Perm(1,2,4))
Β³Dβ
julia> u=unichar(W,2)
[Dβ]:<11->
julia> F=Frobenius(WF);F(u)
[Dβ]:<.211>
julia> F(u,-1)
[Dβ]:<11+>
julia> F(1)
4
```
"""
function Frobenius(WF::CoxeterCoset)
(w,i=1)->Frobenius(w,WF.phi^i)
end
Frobenius(w::Perm,phi)=w^(inv(phi))
Frobenius(w::Integer,phi)=w^(inv(phi))
function twisting_elements(WF::Spets,J::AbstractVector{<:Integer})
if isempty(J) return classreps(WF)./WF.phi end
if !isone(WF.phi) error( "not implemented for twisted parent Spets" ) end
twisting_elements(Group(WF),J)
# W=Group(WF)
# L=reflection_subgroup(W,J)
# N=normalizer(W,L)
# W_L=N/L
# if length(W_L)>=10
# H=Group(map(x->central_action(L,reflrep(L,x.phi)),gens(W_L)))
# if length(H)==length(W_L)
# h=Hom(H,W_L,gens(W_L))
# e=classreps(H)
# return map(x->h(x).phi,e)
# end
# end
# sort(map(x->x.phi,classreps(W_L)))
end
function twisting_elements(W::PermRootGroup,J::AbstractVector{<:Integer})
if isempty(J) return classreps(W) end
L=reflection_subgroup(W,J)
N=normalizer(W,L)
# W_L=C/N
W_L=Group(gens(N))/Group(gens(L))
map(x->x.phi,classreps(W_L))
end
function relative_coset(WF::CoxeterCoset,J)
# Print("CoxeterCosetOps.RelativeCoset ",WF,J," called \n");
res=relative_group(Group(WF),J)
spets(res,Perm(res.toparent,res.toparent.^WF.phi))
end
#-------------- subcoset ---------------------------------
"""
`subspets(WF,I,w=one(Group(WF)))`
Returns the reflection subcoset of the coset `WF` with group
`reflection_subgroup(Group(WF),I)` and torsion `w*WF.phi`. `w` must be an
element of `Group(WF)` such that `w*WF.phi` normalizes the subroot system
generated by `I`.
```julia-repl
julia> WF=spets(coxgroup(:F,4))
Fβ
julia> w=transporting_elt(Group(WF),[1,2,9,16],[1,9,16,2],ontuples);
julia> LF=subspets(WF,[1,2,9,16],w)
Fβββββββββββ=Β³Dβββββββ
julia> diagram(LF)
Ο acts as (2,3,4) on the component below
O 4
οΏ¨
OβOβO Dβ
3 1 2
```
"""
function subspets(WF::Spets,I::AbstractVector{<:Integer},w=one(Group(WF));NC=false)
# xprintln("WF=",WF," I=",I," w=",w)
W=Group(WF)
if !(w in W) error(w," should be in ",W) end
phi=w*WF.phi
R=reflection_subgroup(W,I)
if (W isa CoxeterGroup) &&
(sort(action.(Ref(R),1:2nref(R),phi))!=1:2nref(R))
error("w*WF.phi does not normalize subsystem")
end
phi=reduced(R,phi)
if !(phi isa Perm) phi=phi.phi end
if isone(phi) RF=spets(R)
else RF=spets(phi,reflrep(WF,phi),R,Dict{Symbol,Any}())
end
if R!==W RF.parent=WF end
if !NC refltype(RF) end
RF
end
PermRoot.reflection_subgroup(WF::Spets,I::AbstractVector{<:Integer})=subspets(WF,I)
subspets(W::ComplexReflectionGroup,I::AbstractVector{<:Integer},w=one(W))=subspets(spets(W),I,w)
#-------------- spets ---------------------------------
@GapObj mutable struct PRC{T,TW<:PermRootGroup}<:Spets{T,TW}
phi::T
F::Matrix
W::TW
end
function Base.show(io::IO,t::Type{PRC{T,TW}})where {T,TW}
print(io,"Spets{",TW,"}")
end
function spets(W::PermRootGroup)
get!(W,:trivialspets)do
PRC(one(W),reflrep(W,one(W)),W,Dict{Symbol,Any}())
end
end
function spets(W::PermRootGroup,w::Perm;NC=false)
if isone(w) return spets(W) end
w=reduced(W,w)
if !(w isa Perm) w=w.phi end
F=reflrep(W,w)
# println("w=$w\nF=$F")
res=PRC(w,F,W,Dict{Symbol,Any}())
if !NC refltype(res) end # changes phi and F
res
end
function spets(W::PermRootGroup,F::Matrix;NC=false)
w=PermX(W,F)
if !isnothing(w) return spets(W,w;NC) end
# if W isa PRSG error("that's all for subgroups") end
# check if there exists a permutation perm and for each W-orbit of roots O
# a scalar l_O such that W.roots{O}*WF.F0Mat=l_O*W.roots{OnTuples(O,perm)}
t=collectby(j->simple_reps(W)[j],eachindex(gens(W)))
s=map(t)do inds
scal=map(inds)do y
r=transpose(F)*roots(W,y)
scals=ratio.(Ref(r),roots(W))
l=filter(i->!isnothing(scals[i]),eachindex(roots(W)))
(ind=l,scal=scals[l])
end
if length(unique(map(x->unique(sort(x.scal)),scal)))>1 error("theory") end
l=intersect(map(x->x.scal,scal)...)
if isempty(l) return false end
l=Root1.(l)
if nothing in l
error("only reflection cosets of finite order implemented")
return false
end
# choose simplest scal
l=minimum(map(x->[order(x),exponent(x)],l))
l=E(l[1],l[2])
[l,map(x->x.ind[findfirst(==(l),x.scal)],scal)]
end
if false in s
ChevieErr("Spets(",W,",F=",FormatGAP(F),
" must normalize set of roots of parent up to scalars.\n")
return false
end
scalars=map(x->x[1],s)[simple_reps(W)[eachindex(gens(W))]]
perm=fill(0,length(roots(W)))
for i in eachindex(t) perm[t[i]]=s[i][2] end
while true
i=filter(j->!iszero(perm[j]),eachindex(perm))
if length(i)==length(perm) break end
for j in eachindex(gens(W))
perm[i.^refls(W,j)].=perm[i].^refls(W,perm[j])
end
end
if length(unique(perm))<length(perm) return false end
w=Perm(eltype(one(W)).(perm))
if isnothing(w) error("matrix F must preserve the roots") end
res=PRC(w,F,W,Dict{Symbol,Any}(:scalars=>scalars))
end
"""
spets(s::String)
builds a few of the exceptional spets
```julia-repl
julia> spets("3G422")
Β³Gβββββ
julia> spets("2G5")
Β²Gβ
julia> spets("3G333")
Gβββββββββββββββ=Β³Gβββββββββββββββ
julia> spets("3pG333")
Gβββββββββββββββ=Β³Gβββββββββββββββ
julia> spets("4G333")
Gββββββββββββββββββ
βββββββββββ=β΄Gβββββββββββββββββββββββββββ
```
"""
function spets(s::String;NC=false)
if s=="3G422"
W=PRG([2 (root(3)-1)E(3);2 (-1+root(3))E(3,2);2 root(3)-1].//1,
[(3+root(3))//2 root(3)E(3,2);(3+root(3))//2 root(3)E(3);(3+root(3))//2 root(3)].//3)
return spets(W,reflrep(W,Perm(1,2,3));NC)
elseif s=="2G5" # reflection_subgroup(G14,[10,52])
W=PRG([[(-E(3)-2E(3,2))*(-3+root(6))//3,E(3)],
[(-E(3)-2E(3,2))*(3-root(6))//3, E(3)]],
[[E(3)//2,(-E(3)-2E(3,2))*(-3-root(6))//6],
[-E(3)//2,(-E(3)-2E(3,2))*(-3-root(6))//6]])
return spets(W,[-1 0;0 1];NC)
elseif s=="3G333"
W=crg(3,3,3);return spets(reflection_subgroup(W,1:3),reflrep(W,Perm(1,2,44));NC)
elseif s=="3pG333"
W=crg(3,3,3);return spets(reflection_subgroup(W,1:3),reflrep(W,Perm(1,44,2));NC)
elseif s=="4G333"
W=crg(3,3,3)
return spets(reflection_subgroup(W,1:3),
perm"(1,44,32,37)(2,12,16,53)(3,50,30,15)
( 4,49,39,19)( 5, 9, 6,48)( 7,41,54,25)( 8,33,18,51)(10,43,36,11)
(13,47,28,42)(14,52,22,17)(21,46,38,31)(24,27,26,40)";NC)
elseif s=="3G422"
W=PRG([[2,(-1+root(3))*E(3)],[2,(-1+root(3))*E(3,2)],[2,(-1+root(3))]],
[[(3+root(3))//2,root(3)*E(3,2)],[(3+root(3))//2,root(3)*E(3)],[(3+root(3))//2,root(3)]]//3)
return spets(W,[1 0;0 E(3)];NC)
else error("argument should be 2G5, 3G422, 3G333, 3pG333 or 4G333")
end
end
function relative_coset(WF::Spets,J=Int[],a...)
# xprintln("relative_coset(",WF,",",J,")");
W=Group(WF)
R=relative_group(W,J,a...)
L=reflection_subgroup(W,J)
res=spets(R,central_action(L,reflrep(L,WF.phi)))
if isempty(J)
Group(res).fromparent=R.fromparent
# else Group(res).fromparent:=function(x)Error("fromparent failed");return false;end;
end
res
end
Groups.NormalCoset(W::PermRootGroup,w::Perm=one(W))=spets(W,w)
spets(phi,F::Matrix,W::PermRootGroup,P::Dict{Symbol,Any})=PRC(phi,F,W,P)
Groups.Group(W::PRC)=W.W
isG333(t::TypeIrred)=haskey(t,:p) && (t.p,t.q,t.rank)==(3,3,3)
function PermRoot.refltype(WF::PRC)
get!(WF,:refltype)do
W=Group(WF)
t=deepcopy(refltype(W))
if isone(WF.phi)
return map(x->TypeIrred(Dict(:orbit=>[x],:twist=>Perm())),t)
end
subgens=map(x->refls(W,x.indices),t)
c=Perm(map(x->sort(x.^WF.phi),subgens),map(sort,subgens))
if isnothing(c) && any(isG333,t)
for a in t
if isG333(a)
a.subgroup=reflection_subgroup(W,a.indices;NC=true)
c=chevieget(:timp,:ReducedInRightCoset)(a.subgroup,WF.phi)
WF.phi=c.phi
c=restriction(W,c.gen)
a.indices=c
a.subgroup=reflection_subgroup(W,c;NC=true)
WF.W=reflection_subgroup(W,indices(t);NC=true)
W=WF.W
if order(WF.phi) in [3,6] G333=[1,2,3,44]
elseif order(WF.phi)==4 G333=[1,2,3,32,16,36,30,10]
else G333=1:3
end
a.subgens=refls(a.subgroup,G333)
a.indices=inclusion(a.subgroup,W,G333)
WF.W.refltype=t
end
end
# subgens=map(x->gens(reflection_subgroup(W,x.indices)),t)
subgens=map(x->refls(W,x.indices),t)
c=Perm(map(x->sort(x.^WF.phi),subgens),map(sort,subgens))
end
c=orbits(inv(c),eachindex(t))
prr=roots(parent(W))
function scals(rr,img)
map(ratio,prr[inclusion(W,rr).^WF.phi],prr[inclusion(W,img)])
end
typ=map(c) do orb
to=TypeIrred(Dict{Symbol,Any}(:orbit=>map(copy,t[orb])))
scalar=Cyc{Rational{Int}}[]
for i in eachindex(orb)
next=i==length(orb) ? 1 : i+1
u=Perm(subgens[orb[next]],subgens[orb[i]].^WF.phi)
tn=t[orb[next]]
ti=t[orb[i]]
if i!=length(orb) tn.indices=invpermute(tn.indices,u)
scal=scals(ti.indices,tn.indices)
else to.twist=u
scal=scals(ti.indices,invpermute(tn.indices,inv(u)))
end
if any(isnothing,scal) || !allequal(scal)
if ti.series==:B && ti.rank==2
scal=[root(prod(scal))]
else println("W=$W\nphi=",WF.phi)
error("scal=$scal :no element of coset acts as scalar on orbits")
return nothing
end
end
scal=Root1(scal[1])
if !isone(scal)
sub=reflection_subgroup(W,ti.indices;NC=true)
zg=center(sub)
z=length(zg)
# println("zg=$zg")
if z>1 # simplify scalars using center
ee=sort(elements(zg))
zg=ee[findfirst(x->order(x)==z,ee)]
i=inclusion(sub)[1]
v=Root1(ratio(prr[i.^zg],prr[i]))
zg^=invmod(exponent(v),order(v)) # distinguished
v=scal.*E.(z,0:z-1)
m=argmin(order.(v))
Perms.mul!(WF.phi,(zg^(m-1))^WF.phi)
WF.F=reflrep(Group(WF),WF.phi)
scal=v[m]
end
# simplify again by -1 in types 2A(>1), 2D(odd), 2E6
if mod(order(scal),4)==2 &&
(ti.series in [:A,:D] || (ti.series==:E && ti.rank==6))
sb=coxgroup(ti.series,ti.rank)
w0=sub(word(sb,longest(sb))...)
Perms.mul!(WF.phi,w0)
u=Perm(subgens[orb[next]],subgens[orb[i]].^WF.phi)
#print("l=$l i=$i scal before:$scal")
if i!=length(orb)
tn.indices^=u
subgens[orb[next]]=refls(W,tn.indices)
scal=scals(ti.indices,tn.indices)
else to.twist=u
scal=scals(ti.indices,invpermute(tn.indices,inv(u)))
end
#println(" scal after:$scal")
if !allequal(scal) error(" scal after:$scal")
else scal=Root1(scal[1])
end
end
end
push!(scalar,Cyc(scal))
end
to.scalar=scalar
to
end
# some adjustment such that in type ^2D_4 the first two simple
# roots are permuted by res.twist, and in type ^3D_4 the permutation
# of the simple roots is 1 -> 2 -> 4 -> 1:
# in type 4G333 restore the indices to be in 1,2,3
typ=map(typ)do a
i=a.orbit[1].indices
b=a.orbit[1]
if b.series==:D && b.rank==4
if order(a.twist)==2 # ^2D_4
rf=filter(x->refls(W,i[x])!=refls(W,i[x])^WF.phi,1:4)
rf=vcat(rf,[3],setdiff([1,2,4],rf))
for j in a.orbit j.indices=j.indices[rf] end
elseif order(a.twist)==3 # ^3D_4
if refls(W,i[1])^WF.phi!=refls(W,i[2])
for j in a.orbit j.indices=j.indices[[1,4,3,2]] end
end
end
elseif isG333(b) # needless?
if order(a.twist)==4
for j in a.orbit j.indices[2]=inclusion(j.subgroup,W,2) end
end
end
a
end
end
end
#--------------------- Root data ---------------------------------
Weyl.rootdatum(t::String,r::Int...)=rootdatum(Symbol(t),r...)
"""
`rootdatum(type::String or Symbol[,dimension or bond::Integer])` root datum
from type. The known types are
`2B2, 2E6, 2E6sc, 2F4, 2G2, 2I2, 3D4, 3D4sc, 3gpin8, CE6, CE7, E6, E6sc, E7,
E7sc, E8, F4, G2, cso, csp, gl, gpin, gpin-, halfspin, pgl, pso, pso-, psp,
psu, ree, sl, slmod, so, so-, sp, spin, spin-, su, suzuki, tgl, triality,
u`
"""
function Weyl.rootdatum(t::Symbol,r::Int...)
if haskey(rootdata,t)
res=rootdata[t](r...)
res.callname="rootdatum("*repr(t)
if !isempty(r) res.callname*=","*join(r,",") end
res.callname*=")"
n=string(t)
sc=endswith(n,"sc")
if sc n=n[1:end-2] end
pre=match(r"^[0-9]+",n)
if !isnothing(pre) res.TeXcallname="{}^{"*pre.match*"}"
else res.TeXcallname=""
end
mid=match(r"[a-zA-Z-]+",n)
if !isnothing(mid) res.TeXcallname*=mid.match end
las=match(r"[0-9]+$",n)
if !isnothing(las) res.TeXcallname*="_{"*las.match*"}" end
if !isempty(r)
if mid.match=="I" res.TeXcallname*="("*join(r,",")*")"
else res.TeXcallname*="_{"*join(r,",")*"}"
end
end
if sc res.TeXcallname*="sc" end
return res
end
error("Unknown root datum $t. Known types are:\n",
sprint(cut,join(sort(collect(keys(rootdata))),", ")))
end
id(r)=Matrix{Int}(I,r,r)
const rootdata=Dict{Symbol,Function}()
rootdata[:gl]=function(r)
if r==1 return torus(1) end
R=id(r)
R=R[1:end-1,:]-R[2:end,:]
rootdatum(R,R)
end
rootdata[:sl]=r->rootdatum(cartan(:A,r-1),id(r-1))
rootdata[:slmod]=function(dim,q)
if dim%q!=0 error(q," should divide ",dim) end
intermediate_group(rootdata[:sl](dim),[q])
end
rootdata[:tgl]=function(n, k)
if gcd(n,k)!=1 error(k," should be prime to ",n) end
X=hcat(cartan(:A,n-1),fill(0,n-1))
# We intertwine the last weight with the torus
lat=vcat(X,transpose(vcat(fill(0,n-2), [k,1])))
# Get a basis for the sublattice
lat=hermite(lat)
# Find the roots in a basis of the sublattice
Y=id(n)[1:n-1,:]
rootdatum(toM(map(x->solutionmatInt(lat,x),toL(X))),Y*transpose(lat))
end
rootdata[:pgl]=r->coxgroup(:A,r-1)
rootdata[:sp]=function(r)
r=div(r,2)
R=id(r)
for i in 2:r R[i,i-1]=-1 end
R1=copy(R)
R1[1,:].*=2
rootdatum(R1,R)
end
rootdata[:csp]=function(r)
r=div(r,2)
R=id(r+1)
R=R[1:r,:]-R[2:end,:]
cR=copy(R)
R[1,1:2]=[0,-1]
cR[1,1:2]=[1,-2]
rootdatum(cR,R)
end
rootdata[:psp]=r->coxgroup(:C,div(r,2))
rootdata[:cso]=function(dim)
n=div(dim,2)
R=fill(0,n,n+1)
cR=fill(0,n,n+1)
R[1,1:3]=[1,-1,-1]
cR[1,2:3]=[-1,-1]
for i in 2:n
R[i,i:i+1]=[1,-1]
cR[i,i:i+1]=[1,-1]
end
rootdatum(R,cR)
end
rootdata[:so]=function(r)
r1=div(r,2)
R=id(r1)
for i in 2:r1 R[i,i-1]=-1 end
if isodd(r) R1=copy(R)
R1[1,1]=2
rootdatum(R,R1)
else R[1,2]=1
rootdatum(R,R)
end
end
rootdata[:pso]=function(r)
r1=div(r,2)
isodd(r) ? coxgroup(:B,r1) : coxgroup(:D,r1)
end
rootdata[:spin]=function(r)
r1=div(r,2)
isodd(r) ? rootdatum(cartan(:C,r1),id(r1)) : rootdatum(cartan(:D,r1),id(r1))
end
rootdata[:halfspin]=function(r)
if !iszero(r%4) error("halfspin groups only exist in dimension 4r") end
r=div(r,2)
R=id(r)
R[r,:]=vcat([-div(r,2),1-div(r,2)],2-r:1:-2,[2])
rootdatum(R,Int.(cartan(:D,r)*transpose(inv(Rational.(R)))))
end
rootdata[:gpin]=function(r)
d=div(r,2)
R=id(d+1)
R=R[1:d,:]-R[2:end,:]
cR=copy(R)
if isodd(r)
R[1,1]=0
cR[1,2]=-2
else
R[1,3]=-1
cR[1,1:3]=[0,-1,-1]
R=hcat(fill(0,d),R)
cR=hcat(fill(0,d),cR)
cR[1,1]=1
end
rootdatum(R,cR)
end
rootdata[:E6]=()->coxgroup(:E,6)
rootdata[:E7]=()->coxgroup(:E,7)
rootdata[:CE6]=()->rootdatum([2 0 -1 0 0 0 1;0 2 0 -1 0 0 0;-1 0 2 -1 0 0 -1;
0 -1 -1 2 -1 0 0;0 0 0 -1 2 -1 1;0 0 0 0 -1 2 -1],id(7)[1:6,:])
rootdata[Symbol("2CE6")]=()->spets(rootdatum(:CE6),[0 0 0 0 0 1 0;0 1 0 0 0 0 0;
0 0 0 0 1 0 0;0 0 0 1 0 0 0;0 0 1 0 0 0 0;1 0 0 0 0 0 0;0 0 0 0 0 0 -1])
rootdata[:CE7]=()->rootdatum([0 2 -1 0 0 0 0 0;1 0 0 -1 0 0 0 0;
0 -1 2 -1 0 0 0 0;-1 0 -1 2 -1 0 0 0;1 0 0 -1 2 -1 0 0;
-1 0 0 0 -1 2 -1 0;1 0 0 0 0 -1 2 0],
[0 1 0 0 0 0 0 0;2 0 0 0 -1 0 -1 -1;0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0])
rootdata[:E8]=()->coxgroup(:E,8)
rootdata[:E6sc]=()->rootdatum(cartan(:E,6),id(6))
rootdata[:E7sc]=()->rootdatum(cartan(:E,7),id(7))
rootdata[:F4]=()->coxgroup(:F,4)
rootdata[:G2]=()->coxgroup(:G,2)
rootdata[:u]=r->spets(rootdatum(:gl,r),reverse(-id(r),dims=1))
rootdata[:su]=r->r==2 ? spets(rootdatum(:sl,r)) :
spets(rootdatum(:sl,r),prod(i->Perm(i,r-i),1:div(r-1,2)))
rootdata[:psu]=function(r)g=rootdatum(:pgl,r)
r==2 ? g : spets(g,prod(i->Perm(i,r-i),1:div(r-1,2))) end
rootdata[Symbol("3gpin8")]=()->spets(rootdatum(:gpin,8),[1 1 1 0 0 0;
-2 0 -1 -1 -1 -1;-1 0 -1 0 0 -1;-1 0 -1 0 -1 0;
-1 0 -1 -1 0 0;-1 -1 0 0 0 0])
rootdata[Symbol("gpin-")]=function(r)
d=div(r,2)
F=id(d+2)
F[1,1:3]=[1,-1,1]
F[1:d+2,2]=fill(-1,d+2)
F[2:3,2:3]=-id(2)
spets(rootdatum(:gpin,r),F)
end
rootdata[Symbol("so-")]=r->spets(rootdatum(:so,r),Perm(1,2))
rootdata[Symbol("pso-")]=r->spets(rootdatum(:pso,r),Perm(1,2))
rootdata[Symbol("spin-")]=r->spets(rootdatum(:spin,r),Perm(1,2))
rootdata[Symbol("2I2")]=e->spets(coxgroup(:Isym,2,e),Perm(1,2))
rootdata[:suzuki]=()->spets(coxgroup(:Bsym,2),Perm(1,2))
rootdata[Symbol("2B2")]=()->rootdatum(:suzuki)
rootdata[:ree]=()->spets(coxgroup(:Gsym,2),Perm(1,2))
rootdata[Symbol("2G2")]=()->rootdatum(:ree)
rootdata[:triality]=()->spets(coxgroup(:D,4),Perm(1,2,4))
rootdata[Symbol("3D4")]=()->rootdatum(:triality)
rootdata[Symbol("3D4sc")]=()->spets(rootdatum(:spin,8),Perm(1,2,4))
rootdata[Symbol("2E6")]=()->spets(coxgroup(:E,6),Perm(1,6)*Perm(3,5))
rootdata[Symbol("2E6sc")]=()->spets(rootdatum(:E6sc),Perm(1,6)*Perm(3,5))
rootdata[Symbol("2F4")]=()->spets(coxgroup(:Fsym,4),Perm(1,4)*Perm(2,3))
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 31161 | """
A suitable reference for the general theory of Coxeter groups is, for
example, Bourbaki "Lie Groups and Lie Algebras" chapter 4.
A *Coxeter group* is a group which has the presentation
``W=β¨S|(st)^{m(s,t)}=1\\text{ for }s,tβ Sβ©`` for some symmetric integer
matrix `m(s,t)` called the *Coxeter matrix*, where `m(s,t)>1` for `sβ t` and
`m(s,s)=1`; `m(s,t)=β` is allowed meaning there is no relation between `s`
and `t`. It is true (but a non-trivial theorem) that in a Coxeter group the
order of `st` is exactly `m(s,t)`, thus a Coxeter group is the same as a
*Coxeter system*, that is a pair `(W,S)` of a group `W` and a set `SβW` of
involutions, such that the group is presented by generators `S` and
relations describing the order of the product of two elements of `S`.
A Coxeter group has a natural representation, its *reflection
representation*, on a real vector space `V` of dimension `length(S)` (which
is the *Coxeter rank* of W), where each element of `S` acts as a
reflection; the faithfulness of this representation (a theorem of Tits) is
the main argument to prove that the order of `st` is exactly `m(s,t)`. This
representation is defined as follows on a space `V` with basis `{eβ}` for
`sβ S`. The *cartan matrix* associated to the Coxeter matrix `m(s,t)` is
the matrix `C` with entries `C(s,t)=-2cos(Ο/m(s,t))`; we set `C(s,t)=-2` if
`m(s,t)=β`. Then the action of `sβ S` on `V` is given by
`s(eβ)=eβ-C(s,t)eβ`.
Thus, Coxeter groups are real reflection groups. The converse need not be
true if the set of reflecting hyperplanes has bad topological properties,
but it turns out that finite Coxeter groups are the same as finite real
reflection groups. The possible Coxeter matrices for finite Coxeter groups
have been completely classified, see [`Weyl`](@ref); the corresponding
finite groups play a deep role in several areas of mathematics.
Coxeter groups have a nice solution to the word problem. The *length*
`l(w)` of an element `wβ W` is the minimum number of elements of `S` of
which it is a product (since the elements of `S` are involutions, we do not
need inverses). An expression of `w` of minimum length is called a *reduced
word* for `w`. The main property of reduced words is the *exchange lemma*
which states that if `sββ¦sβ` is a reduced word for `w` (thus `k=l(w)`) and
`sβ S` is such that `l(sw)β€l(w)` then one of the `sα΅’` in the word for `w`
can be deleted to obtain a reduced word for `sw`. Thus given `sβ S` and `wβ
W`, either `l(sw)=l(w)+1` or `l(sw)=l(w)-1` and in the latter case we say
that `s` belongs to the *left descent set* of `w`. Computing a reduced word
for an element, and other word problems, are easy if we know how to
multiply elements and know left descent sets. In each of the Coxeter groups
that we implement, the left descent set is easy to compute (see for example
[`coxeter_symmetric_group`](@ref) below), so this suggests how to deal with
Coxeter groups generically:
The type `CoxeterGroup` is an abstract type; an actual struct which
implements it must define a function
`isleftdescent(W,w,i)` which tells whether the `i`-th element of `S` is in
the left descent set of `w`.
the other functions needed in an instance of a Coxeter group are
- `gens(W)` which returns the set `S` (the list of *Coxeter generators*)
- `nref(W)` which returns the number of reflections of `W`, if `W` is
finite or `nothing` if `W` is infinite.
It should be noted that a Coxeter group can be *any* kind of group
implementing the above functions.
Because of the easy solution of the word problem in Coxeter groups, a
convenient way to represent their elements is as words in the Coxeter
generators, that is lists of integers in `1:length(S)`. The functions
'word' and 'W(...)' do the conversion between Coxeter words and elements
of the group.
# Examples
```julia-repl
julia> W=coxsym(4)
π β
julia> p=W(1,3,2,1,3)
(1,4)
julia> word(W,p)
5-element Vector{Int64}:
1
2
3
2
1
```
We notice that the word we started with and the one that we ended up with,
are not the same, even though they represent the same element of `W`. The
reason is that there are several reduced words for an element of `W`. The
function 'word' calculates a lexicographically smallest word for `w`. Below
are some other possible computations using the same Coxeter group:
```julia-repl
julia> word(W,longest(W)) # the (unique) longest element in W
6-element Vector{Int64}:
1
2
1
3
2
1
julia> w0=longest(W)
(1,4)(2,3)
julia> length(W,w0)
6
julia> map(w->word(W,w),refls(W,1:nref(W)))
6-element Vector{Vector{Int64}}:
[1]
[2]
[3]
[1, 2, 1]
[2, 3, 2]
[1, 2, 3, 2, 1]
julia> [length(elements(W,i)) for i in 0:nref(W)]
7-element Vector{Int64}:
1
3
5
6
5
3
1
```
The last list tells us that there is 1 element of length 0, there are 6 of
length 3, β¦
For most basic functions the convention is that the input is an element of
the group, rather than a Coxeter word. The reason for this is that for a
Coxeter group which is a permutation group, using the low level functions
for permutations is usually much faster than manipulating lists
representing reduced expressions.
The only Coxeter group constructors implemented in this module are `coxsym`
and `coxgroup`; the last constructor takes a Cartan matrix and builds the
corresponding Coxeter group as a matrix group. The module [`Weyl`](@ref)
defines other methods for `coxgroup` building a finite Coxeter group as a
permutation group, given its type.
"""
module CoxGroups
export bruhatless, CoxeterGroup, firstleftdescent, leftdescents,
isleftdescent, isrightdescent,
longest, braid_relations,
coxeter_matrix, coxmat,
coxeter_symmetric_group, coxsym, CoxSym,
coxeter_hyperoctaedral_group, coxhyp, CoxHyp,
coxeter_group, coxgroup,
standard_parabolic_class, inversions, degrees, FiniteCoxeterGroup
using ..Chevie
#-------------------------- Coxeter groups
abstract type CoxeterGroup{T}<:Group{T} end
"""
`firstleftdescent(W,w)`
returns the index in `gens(W)` of the first element of the left descent set
of `w` --- that is, the first `i` such that if `s=W(i)` then `l(sw)<l(w).
It returns `nothing` for `one(W)`.
```julia-repl
julia> W=coxsym(3)
π β
julia> firstleftdescent(W,Perm(2,3))
2
```
"""
function firstleftdescent(W::CoxeterGroup{T},w::T)where T
findfirst(i->isleftdescent(W,w,i),eachindex(gens(W)::Vector{T}))
end
"""
`leftdescents(W,w)`
The left descents of the element `w` of the Coxeter group `W`, that is the
set of `i` such that `length(W,W(i)*w)<length(W,w)`.
```julia-repl
julia> W=coxsym(3)
π β
julia> leftdescents(W,Perm(1,3))
2-element Vector{Int64}:
1
2
```
"""
function leftdescents(W::CoxeterGroup,w)
filter(i->isleftdescent(W,w,i),eachindex(gens(W)))
end
isrightdescent(W::CoxeterGroup,w,i)=isleftdescent(W,inv(w),i)
"""
`word(W::CoxeterGroup,w)`
returns a reduced word in the standard generators of the Coxeter group `W`
for the element `w` (represented as the vector of the corresponding
generator indices).
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> w=perm"(1,11)(3,10)(4,9)(5,7)(6,12)"
(1,11)(3,10)(4,9)(5,7)(6,12)
julia> w in W
true
julia> word(W,w)
5-element Vector{Int64}:
1
2
3
2
1
```
The result of Β `word` is the lexicographically smallest reduced word
for `w` (for the ordering of the Coxeter generators given by `gens(W)`).
"""
function Groups.word(W::CoxeterGroup{T},w)where T
ww=Int[]
while true
i=firstleftdescent(W,w)
if i===nothing return ww end
push!(ww,i)
w=(gens(W)::Vector{T})[i]*w
end
end
"""
`length(W::CoxeterGroup ,w)`
returns the length of a reduced expression in the Coxeter generators of the
element `w` of `W`.
```julia-repl
julia> W=coxsym(4)
π β
julia> p=W(1,2,3,1,2,3)
(1,3)(2,4)
julia> length(W,p)
4
julia> word(W,p)
4-element Vector{Int64}:
2
1
3
2
```
"""
Base.length(W::CoxeterGroup,w)=length(word(W,w))
PermRoot.semisimplerank(W::CoxeterGroup)=ngens(W)
"""
`reduced(W,w)`
The unique element of minimal length in the coset W.w. This makes sense
when `isleftdescent(W,u)` makes sense for `uβ W.w` which happens when `w`
is a Coxeter automorphism of `W` or when `w` lives in a Coxeter overgroup
of `W`.
```julia-repl
julia> W=coxgroup(:G,2)
Gβ
julia> H=reflection_subgroup(W,[2,6])
Gβββββ=AΜβΓAβ
julia> word.(Ref(W),unique(reduced.(Ref(H),elements(W))))
3-element Vector{Vector{Int64}}:
[]
[1]
[1, 2]
```
"""
function PermGroups.reduced(W::CoxeterGroup,w)
while true
i=firstleftdescent(W,w)
if i===nothing return w end
w=W(i)*w
end
end
"""
`reduced(H::CoxeterGroup,W::CoxeterGroup,i=nref(W))`
The elements `wβ W` which are `H`-reduced, and of length `β€i`
(by default all of them), grouped by length.
```julia-repl
julia> W=coxgroup(:G,2)
Gβ
julia> H=reflection_subgroup(W,[2,6])
Gβββββ=AΜβΓAβ
julia> [word(W,w) for S in reduced(H,W) for w in S]
3-element Vector{Vector{Int64}}:
[]
[1]
[1, 2]
```
"""
function PermGroups.reduced(H::CoxeterGroup,W::CoxeterGroup,i::Integer=nref(W))
res=[[one(W)]]
while length(res)<=i
new=reducedfrom(H,W,res[end])
if isempty(new) break
else push!(res,new)
end
end
vcat(res)
end
#reduced(H,W,S)
# The elements in `W` which are `H`-reduced of length `i` given the set `S`
# of those of length `i-1`
function reducedfrom(H::CoxeterGroup,W::CoxeterGroup,S)
res=empty(S)
for w in S
for i in eachindex(gens(W))
if !isrightdescent(W,w,i)
w1=w*W(i)
if w1==reduced(H,w1) push!(res,w1) end
end
end
end
unique(res)
end
maxpara(W::CoxeterGroup)=2:ngens(W)
"""
`elements(W::CoxeterGroup[,l])`
When `l` is not given this works only if `W` is finite; it returns the
elements of `W` sorted by increasing Coxeter length. If the second argument
is an integer `l`, the elements of `W` of Coxeter length `l` are returned.
```julia_repl
julia> W=coxgroup(:G,2)
Gβ
julia> e=elements(W,6)
1-element Vector{Perm{Int16}}:
(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
julia> e[1]==longest(W)
true
```
"""
function Groups.elements(W::CoxeterGroup{T}, l::Int)::Vector{T} where T
elts=get!(()->OrderedDict(0=>[one(W)]),W,:elements)::OrderedDict{Int,Vector{T}}
get!(elts,l)do
if ngens(W)==1 return l>1 ? T[] : gens(W) end
if isfinite(W)
H=get!(()->reflection_subgroup(W,maxpara(W)),W,:maxpara)::CoxeterGroup{T}
rc=get!(()->[[one(W)]],W,:rc)::Vector{Vector{T}}
while length(rc)<=l
new=reducedfrom(H,W,rc[end])
if isempty(new) break
else push!(rc,new)
end
end
# @show l,W,H,rc
v=T[]
for i in max(0,l+1-length(rc)):l, x in rc[1+l-i]
append!(v,elements(H,i).*Ref(x))
end
# if applicable(nref,W) # this does not reduce much time
# N=nref(W)
# if N-l>l && !haskey(elts,N-l) elts[N-l]=elts[l].*longest(W) end
# end
v
else
if l==1 return gens(W) end
v=elements(W,l-1)
res=Set(empty(v))
for e in v, i in 1:ngens(W)
if !isleftdescent(W,e,i) push!(res,W(i)*e) end
end
collect(res)
end
end
end
function Groups.elements(W::CoxeterGroup,I::AbstractVector{<:Integer})
reduce(vcat,map(i->elements(W,i),I))
end
function Groups.elements(W::CoxeterGroup)
if isfinite(W) return elements(W,0:nref(W))
else error(W," is infinite")
end
end
PermRoot.nref(W::CoxeterGroup)=length(W,longest(W))
const wordtype=Vector{Int8}
function Groups.words(W::CoxeterGroup{T}, l::Integer)where T
if !isfinite(W) return word.(Ref(W),elements(W,l)) end
ww=get!(W,:words)do
OrderedDict(0=>[wordtype([])])
end::OrderedDict{Int,Vector{wordtype}}
if haskey(ww,l) return ww[l] end
if ngens(W)==1
if l!=1 return Vector{Int}[]
else return [[1]]
end
end
H=get!(()->reflection_subgroup(W,maxpara(W))::CoxeterGroup{T},W,:maxpara)
rc=get!(()->[[wordtype([])]]::Vector{Vector{wordtype}},W,:rcwords)
while length(rc)<=l
new=reducedfrom(H,W,(x->W(x...)).(rc[end]))
if isempty(new) break
else push!(rc,wordtype.(word.(Ref(W),new)))
end
end
ww[l]=wordtype([])
d=inclusiongens(H)
for i in max(0,l+1-length(rc)):l
e=words(H,i)
for x in rc[1+l-i], w in e push!(ww[l],vcat(d[w],x)) end
# somewhat slower variant
# for x in rc[1+l-i] append!(ww[l],vcat.(e,Ref(x))) end
end
ww[l]
end
"""
`words(W::CoxeterGroup[,l::Integer])`
With one argument this works only if `W` is finite; it returns the reduced
Coxeter words of elements of `W` by increasing length. If the second
argument is an integer `l`, only the elements of length `l` are returned;
this works for infinite Coxeter groups.
```julia_repl
julia> W=coxgroup(:G,2)
Gβ
julia> e=elements(W,6)
1-element Vector{Perm{Int16}}:
(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
julia> e[1]==longest(W)
true
```
"""
function Groups.words(W::CoxeterGroup)
reduce(vcat,map(i->words(W,i),0:nref(W)))
end
"""
`bruhatless(W, x, y)`
whether `xβ€y` in the Bruhat order, for `x,yβ W`. We have `xβ€y` if a reduced
expression for `x` can be extracted from one for `w`. See [(5.9) and (5.10)
Humphreys1990](biblio.htm#Hum90) for properties of the Bruhat order.
```julia-repl
julia> W=coxgroup(:H,3)
Hβ
julia> w=W(1,2,1,3);
julia> b=filter(x->bruhatless(W,x,w),elements(W));
julia> word.(Ref(W),b)
12-element Vector{Vector{Int64}}:
[]
[1]
[2]
[3]
[1, 2]
[2, 1]
[1, 3]
[2, 3]
[1, 2, 1]
[1, 2, 3]
[2, 1, 3]
[1, 2, 1, 3]
```
"""
function bruhatless(W::CoxeterGroup,x,y)
if x==one(W) return true end
d=length(W,y)-length(W,x)
while d>0
i=firstleftdescent(W,y)
s=W(i)
if isleftdescent(W,x,i)
if x==s return true end
x=s*x
else d-=1
end
y=s*y
end
return x==y
end
"""
`bruhatless(W, y)`
returns a vector whose `i`-th element is the vector of elements of `W`
smaller for the Bruhat order than `w` and of Coxeter length `i-1`. Thus the
first element of the returned list contains only `one(W)` and the
`length(W,w)`-th element contains only `w`.
```julia-repl
julia> W=coxsym(3)
π β
julia> bruhatless(W,Perm(1,3))
4-element Vector{Vector{Perm{Int16}}}:
[()]
[(1,2), (2,3)]
[(1,2,3), (1,3,2)]
[(1,3)]
```
see also [`Poset`](@ref) for Coxeter groups.
"""
function bruhatless(W::CoxeterGroup,w)
if w==one(W) return [[w]] end
i=firstleftdescent(W,w)
s=W(i)
res=bruhatless(W,s*w)
for j in 1:length(res)-1
res[j+1]=union(res[j+1],Ref(s).*filter(x->!isleftdescent(W,x,i),res[j]))
end
push!(res,Ref(s).*filter(x->!isleftdescent(W,x,i),res[end]))
end
"""
`Poset(W::CoxeterGroup,w=longest(W))`
returns as a poset the Bruhat interval `[1,w]`of `W`. If `w` is not given,
the whole Bruhat Poset of `W` is returned (`W` must then be finite).
```julia-repl
julia> W=coxsym(3)
π β
julia> Poset(W)
.<1,2<21,12<121
```
The above poset is constructed efficiently by constructing the Hasse
diagram, but it could be constructed naively as follows:
```julia-repl
julia> p=Poset((x,y)->bruhatless(W,x,y),elements(W))
()<(1,2),(2,3)<(1,3,2),(1,2,3)<(1,3)
```
The output is not so nice, showing permutations instead of words. This can
be fixed by defining:
```julia-repl
julia> p.show_element=(io,x,n)->join(io,word(W,x.elements[n]));
julia> p
<1,2<12,21<121
julia> W=coxsym(4)
π β
julia> Poset(W,W(1,3))
.<3,1<13
```
"""
function FinitePosets.Poset(W::CoxeterGroup,w=longest(W))
if w==one(W)
p=Poset(CPoset([Int[]]),[w],Dict(:action=>map(x->[0],gens(W)), :W=>W))
else
s=firstleftdescent(W,w)
p=Poset(W,W(s)*w)
l=length(p)
# action: the Cayley graph: for generator i, action[i][w]=sw
# where w and sw are represented by their index in :elements
new=filter(k->iszero(p.action[s][k]),1:l)
append!(p.elements,Ref(W(s)).*p.elements[new])
append!(hasse(p),map(x->Int[],new))
p.action[s][new]=l.+(1:length(new))
for i in eachindex(gens(W))
append!(p.action[i],i==s ? new : fill(0,length(new)))
end
for i in 1:length(new) push!(hasse(p)[new[i]],l+i) end
for i in 1:l
j=p.action[s][i]
if j>i
for h in p.action[s][hasse(p)[i]]
if h>l push!(hasse(p)[j],h)
k=findfirst(==(p.elements[h]/p.elements[j]),gens(W))
if k!==nothing p.action[k][j]=h;p.action[k][h]=j end
end
end
end
end
end
p.show_element=(io,x,n)->(e=x.elements[n];print(io,isone(e) ? "." :
joindigits(word(W,e))))
p
end
"""
`words(W::CoxeterGroup,w)`
returns the list of all reduced expressions of the element `w` of the
Coxeter group `W`.
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> words(W,longest(W))
16-element Vector{Vector{Int64}}:
[1, 2, 1, 3, 2, 1]
[1, 2, 3, 1, 2, 1]
[1, 2, 3, 2, 1, 2]
[1, 3, 2, 1, 3, 2]
[1, 3, 2, 3, 1, 2]
[2, 1, 2, 3, 2, 1]
[2, 1, 3, 2, 1, 3]
[2, 1, 3, 2, 3, 1]
[2, 3, 1, 2, 1, 3]
[2, 3, 1, 2, 3, 1]
[2, 3, 2, 1, 2, 3]
[3, 1, 2, 1, 3, 2]
[3, 1, 2, 3, 1, 2]
[3, 2, 1, 2, 3, 2]
[3, 2, 1, 3, 2, 3]
[3, 2, 3, 1, 2, 3]
```
"""
function Groups.words(W::CoxeterGroup{T},w::T)where T
if isone(w) return [Int[]] end
reduce(vcat,map(x->pushfirst!.(words(W,W(x)*w),x),leftdescents(W,w)))
end
"""
`inversions(W,w)`
Returns the inversions of the element `w` of the finite Coxeter group `W`,
that is, the list of the indices of reflections `r` of `W` such that
`l(rw)<l(w)` where `l` is the Coxeter length.
```julia-repl
julia> W=coxgroup(:A,3)
Aβ
julia> inversions(W,W(1,2,1))
3-element Vector{Int64}:
1
2
4
```
"""
inversions(W::CoxeterGroup,w)=filter(x->isleftdescent(W,w,x),1:nref(W))
# assumes isleftdescent works for all reflections
function parabolic_category(W,I::AbstractVector{<:Integer})
Category(sort(I);action=(J,e)->sort!(action.(Ref(W),J,e)))do J
map(setdiff(1:ngens(W),J)) do i
longest(W,J)*longest(W,push!(copy(J),i))
end
end
end
"""
`standard_parabolic_class(W,I)`
`I` should be a subset of `eachindex(gens(W))`. The function returns the
list of such subsets `W`-conjugate to `I`.
```julia-repl
julia> CoxGroups.standard_parabolic_class(coxgroup(:E,8),[7,8])
7-element Vector{Vector{Int64}}:
[7, 8]
[6, 7]
[5, 6]
[4, 5]
[2, 4]
[3, 4]
[1, 3]
```
"""
standard_parabolic_class(W,I::Vector{Int})=parabolic_category(W,I).obj
# representatives of parabolic classes
function PermRoot.parabolic_reps(W::CoxeterGroup,s)
l=combinations(1:ngens(W),s)
res=Vector{Int}[]
while !isempty(l)
o=standard_parabolic_class(W,first(l))
push!(res,first(o))
l=setdiff(l,o)
end
res
end
"""
`coxeter_matrix(m::AbstractMatrix)` or `coxmat`
returns the Coxeter matrix of the Coxeter group defined by the cartan
matrix `m`
```julia-repl
julia> C=cartan(:H,3)
3Γ3 Matrix{Cyc{Int64}}:
2 ΞΆβ
Β²+ΞΆβ
Β³ 0
ΞΆβ
Β²+ΞΆβ
Β³ 2 -1
0 -1 2
julia> coxmat(C)
3Γ3 Matrix{Int64}:
1 5 2
5 1 3
2 3 1
```
"""
function coxeter_matrix(m::AbstractMatrix)
function find(c)
if c in 0:4 return [2,3,4,6,0][Int(c)+1] end
x=conductor(c)
if c==2+E(x)+E(x,-1) return x
elseif c==2+E(2x)+E(2x,-1) return 2x
else error("not a Cartan matrix of a Coxeter group")
end
end
res=Int.([i==j for i in axes(m,1), j in axes(m,2)])
for i in 2:size(m,1), j in 1:i-1
res[i,j]=res[j,i]=find(m[i,j]*m[j,i])
end
res
end
"""
`coxeter_matrix(W)` or `coxmat`
returns the Coxeter matrix of the Coxeter group `W`, that is the matrix `m`
whose entry `m[i,j]` contains the order of `W(i)*W(j)` where `W(i)` is the
`i`-th Coxeter generator of `W`. An infinite order is represented by the
entry `0`.
```julia-repl
julia> W=coxsym(4)
π β
julia> coxmat(W)
3Γ3 Matrix{Int64}:
1 3 2
3 1 3
2 3 1
```
"""
coxeter_matrix(W::CoxeterGroup)=coxeter_matrix(cartan(W))
const coxmat=coxeter_matrix
"""
`braid_relations(W)`
this function returns the relations which present the braid group of the
reflection group `W`. These are homogeneous (both sides of the same length)
relations between generators in bijection with the generating reflections
of `W`. A presentation of `W` is obtained by adding relations specifying
the order of the generators.
```julia-repl
julia> W=complex_reflection_group(29)
Gββ
julia> braid_relations(W)
7-element Vector{Tuple{Vector{Int64}, Vector{Int64}}}:
([1, 2, 1], [2, 1, 2])
([2, 4, 2], [4, 2, 4])
([3, 4, 3], [4, 3, 4])
([2, 3, 2, 3], [3, 2, 3, 2])
([1, 3], [3, 1])
([1, 4], [4, 1])
([4, 3, 2, 4, 3, 2], [3, 2, 4, 3, 2, 4])
```
each relation is represented as a pair of lists, specifying that the
product of the generators according to the indices on the left side is
equal to the product according to the indices on the right side. See also
`diagram`.
"""
function braid_relations(t::TypeIrred)
r=if t.series==:ST Tuple.(getchev(t,:BraidRelations))
else
m=coxmat(cartan(t))
p(i,j)=map(k->iszero(k%2) ? j : i,1:m[i,j])
vcat(map(i->map(j->(p(i,j),p(j,i)),1:i-1),axes(m,1))...)
end
haskey(t,:indices) ? map(x->map(y->t.indices[y],x),r) : r
end
braid_relations(W::Group)=vcat(braid_relations.(refltype(W))...)
# construct Coxeter generators and rootinclusion of reflection subgroup
# defined by J by Dyer's method.
function dyer(W,J)
refs=refls(W,J)
refs=vcat(orbits(Group(refs),refs)...)
inc=Int.(indexin(refs,refls(W)))
gens=filter(t->count(s->isrightdescent(W,refls(W,t),s),inc)==1,inc)
gens=sort(gens)
(gens=gens,rootinclusion=vcat(gens,sort(setdiff(inc,gens))))
end
"""
`longest(W)`
If `W` is finite, returns the unique element of maximal length of the
Coxeter group `W`. May loop infinitely otherwise.
```julia-repl
julia> longest(coxsym(4))
(1,4)(2,3)
```
`longest(W,I)`
returns the longest element of the parabolic subgroup of `W` generated by
the generating reflections of indices in `I`.
```julia-repl
julia> longest(coxsym(4))
(1,4)(2,3)
```
"""
function longest(W::CoxeterGroup,I::AbstractVector{<:Integer}=eachindex(gens(W)))
if length(I)==ngens(W) && !isfinite(W) error(W," must be finite") end
w=one(W)
i=1
while i<=length(I)
if isleftdescent(W,w,I[i]) i+=1
else w=W(I[i])*w
i=1
end
end
w
end
abstract type FiniteCoxeterGroup{T} <: CoxeterGroup{T} end
# FiniteCoxeterGroup should be derived from PermGroup and CoxeterGroup.
# Since such inheritance is impossible in Julia, we have to choose. We
# derive it from CoxeterGroup and represent the other inheritance by
# composition. Thus, implementations of FiniteCoxeterGroups have a field
# .G, a PermGroup, to which we forward the following methods.
@forward FiniteCoxeterGroup.G Base.iterate, Base.one,
Groups.gens, Groups.conjugacy_classes,
PermGroups.classreps
Groups.transporting_elt(W::FiniteCoxeterGroup,x,y,F::Function)=
transporting_elt(W.G,x,y,F)
Base.hash(W::FiniteCoxeterGroup,i::UInt64)=hash(W.G,i)
PermGroups.orbit(W::FiniteCoxeterGroup,p,F::Function)=orbit(W.G,p,F)
PermGroups.orbits(W::FiniteCoxeterGroup,v,F::Function=^)=orbits(W.G,v,F)
PermGroups.orbits(W::FiniteCoxeterGroup)=orbits(W.G)
PermGroups.stabilizer(W::FiniteCoxeterGroup,p,F::Function)=stabilizer(W.G,p,F)
PermGroups.stabilizer(W::FiniteCoxeterGroup,p,::typeof(ontuples))=stabilizer(W.G,p,ontuples)
Base.isfinite(W::FiniteCoxeterGroup)=true
#--------------------- CoxSym ---------------------------------
@GapObj struct CoxSym{T} <: FiniteCoxeterGroup{Perm{T}}
G::PermGroup{T}
inversions::Vector{Tuple{Int,Int}}
refls::Vector{Perm{T}}
d::UnitRange{Int}
end
"""
`coxeter_symmetric_group(n::Integer)` or `coxeter_symmetric_group(m:n)` or
`coxsym`
The symmetric group on the letters `1:n` (or if a `mβ€n` is given, on the
letters `m:n`) as a Coxeter group. The Coxeter generators are the
`Perm(i,i+1)` for `i` in `m:n-1`.
```julia-repl
julia> W=coxsym(3)
π β
julia> gens(W)
2-element Vector{Perm{Int16}}:
(1,2)
(2,3)
julia> e=elements(W)
6-element Vector{Perm{Int16}}:
()
(1,2)
(2,3)
(1,3,2)
(1,2,3)
(1,3)
julia> length.(Ref(W),e) # length in the genrators of the elements
6-element Vector{Int64}:
0
1
1
2
2
3
```
"""
coxeter_symmetric_group(n::Int)=coxeter_symmetric_group(1:n)
const coxsym=coxeter_symmetric_group
function coxsym(d::UnitRange,n=d.stop)
gens=map(i->Perm(i,i+1;degree=n),d.start:d.stop-1)
inversions=[(i,i+k) for k in 1:length(d)-1 for i in d.start:d.stop-k]
refs=[Perm(r...;degree=n) for r in inversions]
append!(refs,refs)
CoxSym(Group(gens,one(prod(gens))),inversions,refs,d,Dict{Symbol,Any}())
end
function Base.show(io::IO, W::CoxSym)
if W.d.start==1 n=string(W.d.stop) else n=string(W.d) end
if hasdecor(io) printTeX(io,"\\mathfrak S_{$n}")
else print(io,"coxsym($n)")
end
end
PermRoot.action(W::CoxSym,i,p)=i^p
PermRoot.refltype(W::CoxSym)=get!(W,:refltype)do
[TypeIrred(Dict(:series=>:A,:indices=>collect(1:length(W.d)-1)))]
end
PermRoot.inclusiongens(W::CoxSym)=W.d
Groups.classreps(W::CoxSym)=map(x->W(x...),classinfo(W).classtext)
Perms.reflength(W::CoxSym,a)=reflength(a)
PermRoot.nref(W::CoxSym)=length(W.inversions)
function PermRoot.simple_reps(W::CoxSym)
get!(W,:simple_reps)do
W.unique_refls=collect(1:nref(W))
fill(1,length(W.refls))
end::Vector{Int}
end
PermRoot.refls(W::CoxSym)=W.refls
PermRoot.rank(W::CoxSym)=ngens(W)+1
PermRoot.reflrep(W::CoxSym,w::Perm)=Matrix(w,rank(W))
PermRoot.reflrep(W::CoxSym,i::Integer)=Matrix(W(i),rank(W))
PermRoot.reflrep(W::CoxSym)=reflrep.(Ref(W),1:ngens(W))
"""
`isleftdescent(W::CoxeterGroup,w,i::Integer)`
returns `true` iff the `i`-th generating reflection of the Coxeter group
`W` is in the left descent set of the element `w` of `W`, that is iff
`length(W,W(i)*w)<length(W,w)`.
```julia-repl
julia> W=coxsym(3)
π β
julia> isleftdescent(W,Perm(1,2),1)
true
```
"""
function isleftdescent(W::CoxSym,w,i::Integer)
j,k=W.inversions[i]
j^w>k^w
end
"""
`isrightdescent(W::CoxeterGroup,w,i::Integer)`
returns `true` iff the `i`-th generating reflection of the Coxeter group
`W` is in the right descent set of the element `w` of `W`, that is iff
`length(W,w*W(i))<length(W,w)`.
```julia-repl
julia> W=coxsym(3)
π β
julia> isrightdescent(W,Perm(1,2),1)
true
```
"""
function isrightdescent(W::CoxSym,w,i::Integer)
j,k=W.inversions[i]
preimage(j,w)>preimage(k,w)
end
"""
`cartan(W::CoxeterGroup)` The Cartan matrix of `W`.
"""
PermRoot.cartan(W::CoxSym)=cartan(:A,ngens(W))
# for reflection_subgroups note the difference with Chevie:
# leftdescents, rightdescents, word use indices in W and not in parent(W)
"""
`reflection_subgroup(W::CoxSym,I)`
The only reflection subgroups defined for `coxsym(n)` are for `I=1:m` for `mβ€n`
"""
function PermRoot.reflection_subgroup(W::CoxSym,I::AbstractVector{Int})
if sort(I)!=minimum(I):maximum(I) error(I," should be a:b for some a,b") end
if W.d.start+maximum(I)>W.d.stop error("range too large") end
coxsym(W.d.start.+(minimum(I)-1:maximum(I)),W.d.stop)
end
#------------ Example II: HyperOctaedral groups as Coxeter groups
@GapObj struct CoxHyp{T} <: FiniteCoxeterGroup{SPerm{T}}
G::SPermGroup{T}
roots::Vector{Tuple{T,T}}
n::Int
end
Groups.gens(W::CoxHyp)=gens(W.G)
"""
`coxeter_hyperoctaedral_group(n)` or `coxhyp(n)`
The Hyperoctaedral group (the group of all signed permutations of Β±1,β¦,Β±n)
as a Coxeter group of type `Bβ`, with generators `(1,-1)` and
`(i,i+1)(-i,-i-1)`.
```julia-repl
julia> elements(coxhyp(2))
8-element Vector{SPerm{Int8}}:
()
(1,2)
(1,-1)
(1,2,-1,-2)
(1,-2,-1,2)
(2,-2)
(1,-2)
(1,-1)(2,-2)
```
"""
function coxeter_hyperoctaedral_group(n::Int)
roots=Tuple{Int8,Int8}[(1,-1)]
append!(roots,map(i->(i-1,i),2:n))
append!(roots,map(i->(i,-i),2:n))
for i in 2:n-1 append!(roots,map(j->(j,j+i),1:n-i)) end
for i in 1:n-1 append!(roots,map(j->(j,-j-i),1:n-i)) end
append!(roots,roots)
CoxHyp{Int8}(hyperoctaedral_group(n),roots,n,Dict{Symbol,Any}())
end
const coxhyp=coxeter_hyperoctaedral_group
Base.show(io::IO, W::CoxHyp)=print(io,"coxhyp($(W.n))")
PermRoot.action(W::CoxHyp,i,p)=abs(i^p)
PermRoot.refltype(W::CoxHyp)=[TypeIrred(Dict(:series=>:B,
:indices=>collect(1:W.n)))]
CoxGroups.nref(W::CoxHyp)=length(W.roots)
# use that "roots" correspond to roots of so_{2n+1}.
# If eα΅’ are the basis vectors (i,-i) <-> eα΅’, (i,j) <-> eβ±Ό-eα΅’, (i,-j) <-> eα΅’+eβ±Ό
function CoxGroups.isleftdescent(W::CoxHyp,w,i)
a,b=W.roots[i]
aw=a^w
if a==-b return aw<0 end
bw=b^w
if b>0 aw=-aw else bw=-bw end
if aw>0 && bw>0 return false end
if aw<0 && bw<0 return true end
max(aw,bw)<-min(aw,bw)
end
PermRoot.rank(W::CoxHyp)=W.n
CoxGroups.maxpara(W::CoxHyp)=1:W.n-1
PermRoot.inclusiongens(W::CoxHyp)=1:W.n
function PermRoot.refls(W::CoxHyp{T})where T
get!(W,:refls)do
refs=map(t->SPerm{T}(t...),W.roots)
W.simple_reps=map(x->x[1]==-x[2] ? 1 : 2,W.roots)
W.unique_refls=collect(1:nref(W))
refs
end::Vector{SPerm{T}}
end
PermRoot.simple_reps(W::CoxHyp)=getp(refls,W,:simple_reps)
PermRoot.unique_refls(W::CoxHyp)=getp(refls,W,:unique_refls)
function Perms.reflength(W::CoxHyp,w)
sym=nsym=0
for x in cycles(w)
if sort(x)==sort(-x) sym+=length(x)
else nsym+=length(x)-1
end
end
div(sym,2)+nsym
end
PermRoot.reflrep(W::CoxHyp,w::SPerm)=Matrix(w,W.n)
PermRoot.reflrep(W::CoxHyp,i::Integer)=
reflrep(W,i<=ngens(W) ? gens(W)[i] : refls(W)[i])
PermRoot.reflrep(W::CoxHyp)=reflrep.(Ref(W),1:ngens(W))
"""
`reflection_subgroup(W::CoxHyp,I)`
is defined only for `I=1:m` for `mβ€ngens(W)`.
"""
function PermRoot.reflection_subgroup(W::CoxHyp,I::AbstractVector{Int})
if I!=1:length(I) error(I," should be 1:n for some n") end
CoxHyp(Group(gens(W)[I]),filter(t->abs(t[2]!=W.n),W.roots),
length(I),Dict{Symbol,Any}())
end
PermRoot.cartan(W::CoxHyp)=cartan(:B,W.n)
#------------------------ MatCox ------------------------------
@GapObj struct MatCox{T}<:CoxeterGroup{Matrix{T}}
gens::Vector{Matrix{T}}
end
Base.one(W::MatCox)=one(W(1))
PermRoot.cartan(W::MatCox)=W.cartan
isleftdescent(W::MatCox,w,i::Int)=real(sum(w[i,:]))<0
"""
`coxeter_group(m)` or `coxgroup(m)`
`m` should be a square matrix of real cyclotomic numbers. It returns the
Coxeter group whose Cartan matrix is `m`. This is a matrix group `W`
constructed as follows. Let `V` be a real vector space of dimension
`size(m,1)`, let `eα΅’` be the canonical basis of `V`. Then `W` is the matrix
group generated by the reflections `sα΅’(eβ±Ό)=eβ±Ό-mα΅’β±Ό eα΅’`.
```julia-repl
julia> W=coxgroup([2 -2;-2 2])
coxeter_group([2 -2; -2 2])
```
Above is a way to construct the affine Weyl group `AΜβ`.
"""
function coxeter_group(C::Matrix{T})where T
I=one(C)
MatCox(reflectionMatrix.(eachrow(I),eachrow(C)),Dict{Symbol,Any}(:cartan=>C))
end
function Base.isfinite(W::MatCox)
get!(W,:isfinite)do
!any(isnothing,Weyl.type_cartan(cartan(W)))
end::Bool
end
const coxgroup=coxeter_group
maxpara(W::MatCox)=1:ngens(W)-1
function PermRoot.reflection_subgroup(W::MatCox,I::AbstractVector{Int})
if length(I)>0 n=maximum(I)
if I!=1:n error(I," should be 1:n for some n") end
else n=0 end
MatCox(gens(W)[I],Dict{Symbol,Any}())
end
function Base.show(io::IO,W::MatCox)
print(io,"coxeter_group(",cartan(W),")")
end
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
|
[
"MIT"
] | 0.1.7 | 55a61b006686ca8e2f0031d3c2ab5de0ead553b0 | code | 24058 | module Diagrams
export Diagram, diagram
using ..Chevie
struct Diagram
t::TypeIrred
end
function Base.show(io::IO, ::MIME"text/html", v::Vector{Diagram})
show(IOContext(io,:TeX=>true), "text/plain",v)
end
Base.show(io::IO,::MIME"text/plain",v::Vector{Diagram})=show(io,v)
Base.show(io::IO,v::Vector{Diagram})=join(io,v,"\n")
function Base.show(io::IO,d::Diagram)
if !(get(io,:limit,false)|| get(io,:TeX,false))
print(io,"Diagram(",d.t,")")
return
end
t=d.t
if haskey(t,:orbit)
act=length(t.orbit)>1
if act
println(io,"Ο permutes the next ",length(t.orbit)," components")
end
if !isone(t.twist)
println(io,"Ο",act ? "^$(length(t.orbit))" : "",
" acts as ",t.twist^mappingPerm(t.orbit[1].indices,1:rank(t.orbit[1])),
" on the component below")
end
show(io,Diagram.(t.orbit))
return
end
series=t.series::Symbol
if series!=:ST show(io,d,Val(series))
elseif haskey(t,:ST) show(io,d,Val(Symbol("G",t.ST)))
else impdiagram(io,d,t.p,t.q,rank(t),t.indices)
end
end
"""
`diagram(W)` prints a diagram describing a presentation of the finite
reflection group or spets `W`
```julia-repl
julia> diagram(coxgroup(:E,8))
O 2
οΏ¨
OβOβOβOβOβOβO Eβ
1 3 4 5 6 7 8
julia> diagram(crg(33))
3 β‘ Gββ
/^\\
β‘ βββ‘ βββ‘ βββ‘
1 2 4 5 423423=342342
```
"""
diagram(W)=Diagram.(refltype(W))
hbar="\u2014"
rdarrow(n)="\u21D0"^(n-1)*" "
ldarrow(n)="\u21D2"^(n-1)*" "
tarrow(n)="\u21DB"^(n-1)*" "
dbar="\u2550"
tbar(n)="\u2261"^(n-1)*" "
vbar="\UFFE8" # "\u2503"
function cd(i)
if i<=10 ('\u2460'+i-1)*" "
else "($i)"
end
end
node="O"
script(i)=string("{\\scriptstyle ",i,"}")
rlap(s)="\\rlap{"*s*"}"
kern(n)=string("\\kern",n,"pt")
nnode(i)=string(kern(-2),"\\mathop\\bigcirc\\limits_{",i,"}",kern(-2))
# circle o with i beneath
ncnode(o,i)=string(kern(-2),rlap("\\hbox{\$"*kern(4.5)*script(o)*"\$}"),
"\\mathop\\bigcirc\\limits_{",i,"}",kern(-2),"\n")
# circle o with i on right
rcnode(o,i)=kern(-0.4)*"\\bigcirc"*kern(-7)*script(o)*kern(4.6)*script(i)*"\n"
# circle o with i on left
lcnode(o,i)=script(i)*kern(0.6)*"\\bigcirc"*kern(-9.3)*script(o)*kern(3.6)*"\n"
rule(d,w,h)=string("\\rule[",d,"pt]{",w,"pt}{",h,"pt}\n")
barr(n)=rule(2,n,1)
dbarr(n)=rlap(rule(3,n,1))*rule(1,n,1)
const tbarr=rlap(rule(4,10,1))*rlap(barr(10))*rule(0,10,1)
raise(n,s)=string("\\raise",n,"pt\\hbox{\$",s,"\$}")
vertbar(x,y)=kern(1.5)*rlap("\\hbox{\$"*nnode(x)*"\$}")*"\n"*
rlap(kern(2.6)*rule(6.6,1,10.8))*"\n"*
rlap(raise(19.4,kern(-2)*"\\bigcirc"*script(y)))*"\n"*kern(8)
larger(s)="\\mathlarger{"*s*"}"
larger(s,i)=i==0 ? larger(s) : larger(larger(s,i-1))
function getlind(d)
t=d.t
indices=t.indices
if isnothing(indices) ind=fill("?",rank(t))
else ind=repr.(indices)
end
length.(ind),ind
end
function showrel(io,d::Diagram,i...)
R=braid_relations(d.t)[collect(i)]
r(a,b)=joindigits(R[a][b])
if length(i)==2 && R[1][1]==R[2][1]
print(io," ",r(1,1),"=",r(1,2),"=",r(2,2))
else for a in eachindex(i) print(io," ",r(a,1),"=",r(a,2)) end
end
end
function Base.show(io::IO,d::Diagram,::Val{:A})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",nnode(ind[1]))
for i in 2:length(l) println(io,barr(10),nnode(ind[i])) end
println(io,"\$\$")
else join(io,node.*hbar.^l[1:end-1]);print(io,node);println(io," ",d.t)
join(io,ind," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:B})
l,ind=getlind(d)
# c=haskey(d.t,:cartanType) ? d.t.cartanType : 1
c=d.t.cartanType
if get(io,:TeX,false)
println(io,"\$\$",nnode(ind[1]))
if c==2 print(io,rlap(raise(5,"\\leftarrow")),dbarr(10))
elseif c==1 print(io,rlap(raise(5,"\\rightarrow")),dbarr(10))
elseif c==root(2) print(io,dbarr(10))
else print(io,rlap(raise(5,script(xrepr(io,c)))),dbarr(10))
end
println(io,nnode(ind[2]))
for i in 3:length(l) println(io,barr(10),nnode(ind[i])) end
println(io,"\$\$")
else print(io,node)
if c==2 l1=max(l[1],2);print(io,rdarrow(l1))
elseif c==1 l1=max(l[1],2);print(io,ldarrow(l1))
elseif c==root(2) l1=max(l[1],2);print(io,dbar^l1)
else print(io,"=",c,"="); l1=length(xrepr(rio(),c))+2
end
join(io,node.*hbar.^l[2:end-1]);println(io,node," ",d.t)
print(io,rpad(ind[1],l1+1));join(io,ind[2:end]," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:D})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",nnode(ind[1]),barr(10))
print(io,vertbar(ind[3],ind[2]))
for i in 4:length(l) print(io,barr(10),nnode(ind[i])) end
print(io,"\$\$")
else println(io," "^(l[1]+1),node," $(ind[2])")
println(io," "^(l[1]+1),vbar)
print(io,node,map(l->hbar^l*node,l[[1;3:end-1]])...)
println(io," ",d.t)
join(io,ind[[1;3:end]]," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:E})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",nnode(ind[1]),barr(10))
print(io,nnode(ind[3]),barr(10))
print(io,vertbar(ind[4],ind[2]))
for i in 5:length(l) print(io,barr(10),nnode(ind[i])) end
print(io,"\$\$")
else println(io," "^(2+l[1]+l[3]),node," $(ind[2])")
println(io," "^(2+l[1]+l[3]),vbar)
print(io,node,map(l->hbar^l*node,l[[1;3:end-1]])...)
println(io," ",d.t)
join(io,ind[[1;3:end]]," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:F})
l,ind=getlind(d)
# c=haskey(d.t,:cartanType) ? d.t.cartanType : 1
c=d.t.cartanType
if get(io,:TeX,false)
print(io,"\$\$",nnode(ind[1]))
print(io,barr(10),nnode(ind[2]))
if c==1 print(io,rlap(raise(5,"\\rightarrow")),dbarr(10))
elseif c==root(2) print(io,dbarr(10))
else print(io,rlap(raise(5,script(xrepr(io,c)))),dbarr(10))
end
print(io,nnode(ind[3]))
print(io,barr(10),nnode(ind[4]))
print(io,"\$\$")
else print(io,node,hbar^l[1],node)
if c==1 l1=max(l[2],2);print(io,ldarrow(l1))
else l1=max(l[2],1);print(io,dbar^l1)
end
println(io,node,hbar^l[3],node," ",d.t)
print(io,ind[1]," ",rpad(ind[2],l1+1),ind[3]," ",ind[4])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G})
l,ind=getlind(d)
# c=haskey(d.t,:cartanType) ? d.t.cartanType : 1
c=d.t.cartanType
if get(io,:TeX,false)
println(io,"\$\$",nnode(ind[1]))
if c==1 print(io,rlap(raise(5,"\\rightarrow")),tbarr)
elseif c==root(3) print(io,dbarr(10))
else error("not implemented")
end
print(io,nnode(ind[2]),"\$\$")
else
if c==1 print(io,node,tarrow(max(l[1],2)))
else print(io,node,tbar(max(l[1],2)))
end
println(io,node," ",d.t)
print(io,ind[1]," "^max(3-l[1],1),ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:H})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",nnode(ind[1]))
print(io,rlap(kern(3)*raise(6,script(5))),barr(10))
print(io,nnode(ind[2]))
for i in 3:length(l) print(io,barr(10),nnode(ind[i])) end
print(io,"\$\$")
else println(io," "^l[1],"β
")
println(io,map(i->node*hbar^l[i],1:length(l)-1)...,node," ",d.t)
join(io,ind," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:I})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",nnode(ind[1]))
println(io,rlap(kern(3)*raise(6,script(d.t.bond))))
println(io,barr(10),nnode(ind[2]))
println(io,"\$\$")
else println(io," "^l[1],d.t.bond)
println(io,node,hbar^l[1],node)
join(io,ind," ")
end
end
function Base.show(io::IO,d::Diagram,::Val{:G4})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
print(io,barr(10),ncnode(3,ind[2]),"\$\$")
else println(io,cd(3),hbar^2,cd(3),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G5})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
print(io,dbarr(10),ncnode(3,ind[2]),"\$\$")
else println(io,cd(3),dbar^2,cd(3),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G6})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]))
print(io,tbarr,ncnode(3,ind[2]),"\$\$")
else println(io,cd(2),tbar(2),cd(3),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G7})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]))
print(io,kern(-2.5),raise(-3,larger("\\bigcirc",5)),"\n",kern(-5),
rlap(raise(11,rcnode(3,ind[2]))),
raise(-10,rcnode(3,ind[3])),"\$\$")
else println(io," "^2,cd(3),ind[2]," ",d.t);
println(io," ","/3\\")
println(io,cd(2),hbar^2,cd(3))
print(io,ind[1]," "^3,ind[3])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G8})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(4,ind[1]))
print(io,barr(10),ncnode(4,ind[2]),"\$\$")
else println(io,cd(4),hbar^2,cd(4),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G9})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]))
print(io,tbarr,ncnode(4,ind[2]),"\$\$")
else println(io,cd(2),tbar(2),cd(4),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G10})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
print(io,dbarr(10),ncnode(4,ind[2]),"\$\$")
else println(io,cd(3),dbar^2,cd(4),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G11})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]))
print(io,kern(-2.5),raise(-3,larger("\\bigcirc",5)),kern(-5),"\n",
rlap(raise(11,rcnode(3,ind[2]))),
raise(-10,rcnode(4,ind[3])),"\$\$")
else println(io," "^2,cd(3),ind[2]," ",d.t);println(io," /3\\");
println(io,cd(2),hbar^2,cd(4))
print(io,ind[1]," "^3,ind[3])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G12})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]))
print(io,kern(-2.5),raise(-3,larger("\\bigcirc",5)*raise(3,kern(-15)*"4")),
kern(4),"\n",
rlap(raise(11,rcnode(2,ind[2]))),
raise(-10,rcnode(2,ind[3])),"\$\$")
else println(io," ",cd(2),ind[2]," ",d.t);
println(io," /4\\");println(io,cd(2),hbar^2,cd(2))
print(io,ind[1]," "^3,ind[3])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G13})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]),kern(-2.5),
rlap(raise(-3,larger("\\bigcirc",5))),
rlap(kern(18.5)*raise(0.5,script(4))),
rlap(kern(13)*raise(0.5,script(5))),
kern(5),raise(-0.5,larger("\\bigcirc",2)),
kern(0.3),
rlap(raise(11,rcnode(2,2))),
raise(-10,rcnode(2,3)),
"\$\$")
else println(io," ",cd(2),ind[1]," ",d.t)
println(io," / \\")
print(io,cd(2),hbar^2,cd(2))
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G14})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]))
print(io,rlap(kern(3)*raise(6,script(8))))
print(io,barr(10),ncnode(3,ind[2]),"\$\$")
else
println(io," β");println(io,cd(2),hbar,cd(3),d.t)
print(io,ind[1]," "^2,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G15})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",lcnode(2,ind[1]),kern(-1),
rlap(kern(-2.5)*raise(-10,script(5))))
println(io,kern(-2.4),raise(0,"\\bigg ("),kern(-1),"\n",
rlap(raise(10,rcnode(2,ind[2]))),
raise(-10,rcnode(3,ind[3])))
print(io,"\$\$")
else println(io," ",cd(2),ind[1]," ",d.t);
println(io," /5");println(io,cd(2),ind[3]);
println(io," \\");print(io," ",cd(3),ind[2])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G16})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(5,ind[1]))
print(io,barr(10),ncnode(5,ind[2]),"\$\$")
else println(io,cd(5),hbar^2,cd(5),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G17})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]))
print(io,tbarr,ncnode(5,ind[2]),"\$\$")
else println(io,cd(2),tbar(2),cd(5),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G18})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
print(io,dbarr(10),ncnode(5,ind[2]),"\$\$")
else println(io,cd(3),dbar^2,cd(5),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G19})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]))
print(io,kern(-2.5),raise(-3,larger("\\bigcirc",5)),kern(-5),"\n",
rlap(raise(11,rcnode(3,ind[2]))),
raise(-10,rcnode(5,ind[3])),"\$\$")
else println(io," "^2,cd(3),ind[2]," ",d.t);println(io," /3\\");
println(io,cd(2),hbar^2,cd(5))
print(io,ind[1]," "^3,ind[3])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G20})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
print(io,rlap(kern(3)*raise(6,script(5))))
print(io,barr(10),ncnode(3,ind[2]),"\$\$")
else println(io," β
");println(io,cd(3),hbar,cd(3),d.t)
print(io,ind[1]," "^2,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G21})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]))
print(io,rlap(kern(3)*raise(6,script(10))))
print(io,barr(10),ncnode(3,ind[2]),"\$\$")
else println(io," ββ");
println(io,cd(2),hbar^2,cd(3),d.t);print(io,ind[1]," "^3,ind[2])
end
end
function Base.show(io::IO,d::Diagram,::Val{:G22})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",lcnode(2,ind[1]))
print(io,kern(-2.5),raise(-3,larger("\\bigcirc",5)*
raise(3,kern(-15)*"5")),kern(4),"\n",
rlap(raise(11,rcnode(2,ind[2]))),
raise(-10,rcnode(2,ind[3])),"\$\$")
else println(io," ",cd(2),ind[2]," ",d.t);println(io," /5\\")
println(io,cd(2),hbar^2,cd(2))
print(io,ind[1]," "^3,ind[3])
end
showrel(io,d,1,2)
end
function Base.show(io::IO,d::Diagram,::Val{:G24})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[2]),dbarr(14),ncnode(2,ind[3]))
print(io,kern(-26.2),raise(8.5,"\\diagup"),kern(-3.1))
print(io,rlap(raise(16.7,rcnode(2,ind[1]))))
print(io,kern(6),raise(8.3,"\\diagdown"))
print(io,"\$\$")
else println(io," ",cd(2),ind[1]," ",d.t)
println(io," / \\")
println(io,cd(2),dbar^2,cd(2))
print(io,ind[2]," "^3,ind[3])
end
showrel(io,d,4)
end
function Base.show(io::IO,d::Diagram,::Val{:G25})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
for i in 2:3 print(io,barr(10),ncnode(3,ind[i])) end
print(io,"\$\$")
else println(io,cd(3),hbar^2,cd(3),hbar^2,cd(3),d.t)
print(io,prod(map((i,j)->i*" "^(4-j),ind,l)))
end
end
function Base.show(io::IO,d::Diagram,::Val{:G26})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",ncnode(2,ind[1]))
println(io,dbarr(10),ncnode(3,ind[2]))
println(io,barr(10),ncnode(3,ind[3]),"\$\$")
else println(io,cd(2),dbar^2,cd(3),hbar^2,cd(3),d.t)
print(io,prod(map((i,j)->i*" "^(4-j),ind,l)))
end
end
function Base.show(io::IO,d::Diagram,::Val{:G27})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[2]),dbarr(14),ncnode(2,ind[3]))
print(io,kern(-26.2),raise(8.5,"\\diagup"),kern(-3.1))
print(io,rlap(raise(16.7,rcnode(2,ind[1]))))
print(io,kern(6),raise(8.3,"\\diagdown"))
print(io,"\$\$")
else println(io," ",cd(2),ind[1]," ",d.t)
println(io, " / \\")
println(io,cd(2),dbar^2,cd(2))
print(io,ind[2]," "^3,ind[3])
end
showrel(io,d,4)
end
function Base.show(io::IO,d::Diagram,::Val{:G29})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[1]),barr(10),ncnode(2,ind[2]))
print(io,rlap(rlap(raise(5,"\\leftarrow"))*dbarr(14)))
print(io,rlap(kern(5)*rule(10,1,5)*kern(-2)*rule(10,1,5)))
print(io,rlap(kern(2)*raise(17,rcnode(2,ind[4]))))
print(io,rlap(kern(-4)*raise(9,"\\diagup")))
print(io,rlap(kern(9)*raise(9,"\\diagdown")))
print(io,kern(14),ncnode(2,ind[3]))
print(io,"\$\$")
else println(io," "^6,cd(2),ind[4]," "^2,d.t)
println(io," /\u2016\\")
println(io,cd(2),hbar^2,cd(2),dbar^2,cd(2))
print(io,ind[1]," "^(4-l[1]),ind[2]," "^(4-l[2]),ind[3])
end
showrel(io,d,7)
end
function Base.show(io::IO,d::Diagram,::Val{:G31})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(2,ind[4]),kern(-2),raise(8,"\\diagup"),
kern(-2),raise(16,ncnode(2,ind[1])),
kern(-12.5),barr(19.5),ncnode(2,ind[2]),
kern(-16.5),raise(12.3,larger("\\bigcirc",5)),
kern(-9),barr(19.5),ncnode(2,ind[5]),
kern(-22),raise(16,ncnode(2,ind[3])),
kern(-1),raise(8,"\\diagdown"),"\$\$")
else print(io,prod(map((i,j)->i*" "^(4-j),ind[[4,2,5]],l[[4,2,5]])))
println(io,cd(2),hbar^2, cd(2),hbar^2, cd(2)," "^2,d.t)
println(io," \\ /3\\ /")
println(io," "^2,cd(2),hbar^2,cd(2))
print(io," "^2,ind[1]," "^(4-l[1]),ind[3])
end
print(io," i.e. ",fromTeX(io,"\$A_5\$ on "))
print(io,joindigits(d.t.indices[[1,4,2,5,3]])," plus")
showrel(io,d,5,6)
end
function Base.show(io::IO,d::Diagram,::Val{:G32})
l,ind=getlind(d)
if get(io,:TeX,false)
print(io,"\$\$",ncnode(3,ind[1]))
for i in 2:4 print(io,barr(10),ncnode(3,ind[i])) end
print(io,"\$\$")
else println(io,(cd(3)*hbar^2)^3,cd(3),d.t)
print(io,prod(map((i,j)->i*" "^(4-j),ind,l)))
end
end
trianglerel(a,b,c)=string(ncnode(2,a),barr(14),kern(-12),
rlap(raise(7.5,"\\underleftarrow"*script(6))),
rlap(kern(-6)*raise(9,"\\diagup")),
rlap(kern(1)*raise(16.5,rcnode(2,c))),
rlap(kern(8.6)*raise(9,"\\diagdown")),
kern(11.5),"\n",rlap("\\hbox{\$"*ncnode(2,b)*"\$}"),
kern(9))
function Base.show(io::IO,d::Diagram,::Val{:G33})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",ncnode(2,ind[1]),barr(10),
trianglerel(ind[2],ind[3],ind[4]))
println(io,barr(10),ncnode(2,ind[5]),"\$\$")
else println(io," "^4, ind[3]," ",cd(2)," "^6,d.t)
println(io," "^5,"/^\\")
println(io,(cd(2)*hbar^2)^3,cd(2))
print(io,prod(map((i,j)->i*" "^(4-j),ind[[1,2,4,5]],l[[1,2,4,5]])))
end
showrel(io,d,11)
end
function Base.show(io::IO,d::Diagram,::Val{:G34})
l,ind=getlind(d)
if get(io,:TeX,false)
println(io,"\$\$",ncnode(2,1),barr(10),trianglerel(ind[2],ind[3],ind[4]))
println(io,barr(10),ncnode(2,5),barr(10),ncnode(2,6),"\$\$")
else println(io," "^4, ind[3]," ",cd(2)," "^10,d.t)
println(io," "^5,"/^\\")
println(io,(cd(2)*hbar^2)^4,cd(2))
print(io,prod(map((i,j)->i*" "^(4-j),ind[[1,2,4,5,6]],l[[1,2,4,5,6]])))
end
showrel(io,d,16)
end
function impdiagram(io::IO,D::Diagram,p,q,r,ind)
d=div(p,q)
j=chevieget(:imp, :BraidRelations)(p, q, r)
if q==1
if get(io,:TeX,false)
print(io,"\$\$",ncnode(p,ind[1]),dbarr(10),ncnode(2,ind[2]))
for i in 3:r print(io,barr(10),ncnode(2,i)) end
print(io,"\$\$")
else join(io,ind," "^3);println(io," ",D.t)
print(io,cd(p))
if length(ind)>1 print(io,dbar^2) end
join(io,fill(cd(2),r-1),hbar^2)
end
elseif p==q
if get(io,:TeX,false)
print(io,"\$\$",p,kern(2),rule(-5,0.7,14.5),kern(-12),
rlap(raise(12,lcnode(2,ind[1]))),
raise(-12,lcnode(2,ind[2])),kern(-1.3),
rlap(raise(7,"\\diagdown")),
raise(-7,"\\diagup"),
kern(-9.6),dbarr(8),ncnode(2,ind[3]))
for i in 4:r print(io,barr(10),ncnode(2,i)) end
print(io,"\$\$")
else indent=p==3 ? "" : " "^length(string(p))
println(io,indent,ind[1]," ",D.t)
println(io,indent,vbar,"\\")
if p!=3 print(io,p) end
println(io,vbar,dbar,join(ind[3:r],hbar^2))
println(io,indent,vbar,"/")
print(io,indent, ind[2])
end
showrel(io,D,2)
elseif q==2
if get(io,:TeX,false)
print(io,"\$\$",lcnode(d,ind[1]),kern(-2.7),
raise(-4,larger("\\bigcirc",5)),
kern(-7),
rlap(raise(12,rcnode(2,ind[2]))),
raise(-12,rcnode(2,ind[3])))
if r>3
print(io,kern(-6.2),rlap(raise(7,"\\diagdown")),
raise(-7,"\\diagup"),kern(-1.6),ncnode(2,ind[4]))
end
for i in 5:r print(io,barr(10),ncnode(2,ind[i])) end
print(io,"\$\$")
else
indent=" "^(textwidth(cd(d))-textwidth(cd(2)))
println(io,indent," "^3,ind[2]," ",cd(2)," ",D.t)
print(io,indent," /",vbar)
if r>=3 print(io,"\\") end
println(io,join(ind[4:r+1]," "^3))
println(io,ind[1]," ",cd(d),"3",vbar," ",join(fill(cd(2),r-2),hbar^2))
print(io,indent," \\",vbar)
if r>=3 print(io,"/") end
println(io)
print(io,indent," "^3,ind[3]," ",cd(2))
end
showrel(io,D,1,2)
else
if get(io,:TeX,false)
print(io,"\$\$",lcnode(d,ind[1]),kern(-1),
rlap(kern(-2.5)*raise(-10,script(q+1))),
kern(-2.4),
# raise(-4,larger("(",7)),
raise(0,"\\bigg ("),
kern(-1),
rlap(raise(10,rcnode(2,ind[2]))),
raise(-10,rcnode(2,ind[3])))
if r>2
print(io,kern(-6.2),rlap(raise(7,"\\diagdown")),raise(-7,"\\diagup"),
kern(-11.6),dbarr(10),ncnode(2,ind[4]))
end
for i in 5:length(ind) print(io,barr(10),ncnode(2,ind[i])) end
print(io,"\$\$")
else indent=" "^(textwidth(cd(d))-textwidth(cd(2)))
println(io,indent," "^2,ind[2]," ",cd(2)," ",D.t)
print(io,indent," /",q+1)
if r>=3 print(io,"\\ ") end
println(io,join(ind[4:r+1]," "^3))
print(io,ind[1]," ",cd(d)," ")
if r>=3 print(io,dbar^2) end
println(io,join(fill(cd(2),r-2),hbar^2))
print(io,indent," \\ ")
if r>=3 print(io,"/") end
println(io)
print(io,indent," "^2,ind[3]," ",cd(2))
end
showrel(io,D,(1:min(3,r))...)
end
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("AΜ")})
v=d.t.indices
r=length(v)-1
if r==1 println(io,d.t.series,"β ",v[1]," β ",v[2])
else
n=string(d.t.series,stringind(io,r)," ")
s=string(join(v[1:r],hbar^3))
o=length(s)-4
println(io," "^length(n)," ",hbar^div(o,2),v[r+1],hbar^div(o,2))
println(io," "^length(n),"/"," "^o,"\\")
println(io,n,s)
end
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("BΜ")})
v=d.t.indices
r=length(v)-1
c=d.t.cartanType
if c==1 || r==2
println(io,"CΜ",stringind(io,r)," ",v[1]," > ",join(v[2:end]," - ")," < ",v[r+1])
else
s=string("BΜ",stringind(io,r)," ",v[1]," < ",join(v[2:end-2]," - "))
println(io," "^(length(s)-2),v[r+1])
println(io," "^(length(s)-2),"|")
println(io,s," - ",v[r])
end
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("DΜ")})
v=d.t.indices
r=length(v)-1
lr=length(string(r))
println(io,d.t.series,stringind(io,r)," ",v[1]," "^(4*(r-3)-1),v[r+1])
println(io," "^(lr+3),"\\"," "^(1+4*(r-4)),"/")
print(io," "^(lr+4),v[3])
for i in 4:r-1 print(io,hbar^3,v[i]) end
println(io)
println(io," "^(lr+3),"/"," "^(1+4*(r-4)),"\\")
println(io," "^(lr+2),v[2]," "^(4*(r-3)-1),v[r])
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("EΜ")})
v=d.t.indices
if length(v)==7
print(io," ",v[7],"\n |\n"," ",v[2],"\n |\n",
join(v[[1,3,4,5,6]],hbar^3)," ",d.t)
elseif length(v)==8
println(io," ",v[2],"\n |")
print(io,join(v[[8,1,3,4,5,6,7]],hbar^3)," ",d.t)
elseif length(v)==9
println(" ",v[2],"\n |")
print(io,join(v[[1,3,4,5,6,7,8,9]],hbar^3)," ",d.t)
end
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("FΜ")})
v=d.t.indices
print(io,v[5],hbar^3,v[1],hbar^3,v[2],ldarrow(2),v[3],hbar^3,v[4]," "^3,d.t)
end
function Base.show(io::IO,d::Diagram,::Val{Symbol("GΜ")})
v=d.t.indices
print(io,v[3],hbar^2,v[1],tarrow(2),v[2]," ",d.t)
end
end
| Chevie | https://github.com/jmichel7/Chevie.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.