licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | code | 558 | using Test
using Oceananigans
using ClimaSeaIce
using ClimaSeaIce.EnthalpyMethodSeaIceModels: EnthalpyMethodSeaIceModel, MolecularDiffusivity
κ = 1e-5
grid = RectilinearGrid(size=3, z=(-3, 0), topology=(Flat, Flat, Bounded))
closure = MolecularDiffusivity(grid, κ_ice=κ, κ_water=κ)
model = EnthalpyMethodSeaIceModel(; grid, closure)
@test model isa EnthalpyMethodSeaIceModel
# Test that it runs
simulation = Simulation(model; Δt = 0.1 / κ, stop_iteration=3)
@test begin
try
run!(simulation)
true
catch
false
end
end
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | code | 5986 | using Oceananigans
using Oceananigans.Utils: prettysummary
using Oceananigans.Units
using Oceananigans.TurbulenceClosures: CATKEVerticalDiffusivity
using ClimaSeaIce
using ClimaSeaIce.SeaIceThermodynamics: melting_temperature
using SeawaterPolynomials: TEOS10EquationOfState
using ClimaSeaIce.HeatBoundaryConditions: RadiativeEmission, IceWaterThermalEquilibrium
using GLMakie
import Oceananigans.Simulations: time_step!, time
include("ice_ocean_model.jl")
Nx = 2
x = (0, 100kilometers)
Δt = 4hours
mixed_layer_depth = hₒ = 100
single_column_ocean = true
ice_grid = RectilinearGrid(size=Nx; x, topology=(Periodic, Flat, Flat))
if single_column_ocean
ocean_grid = RectilinearGrid(size=(Nx, 20); x, z=(-hₒ, 0), topology=(Periodic, Flat, Bounded))
closure = CATKEVerticalDiffusivity()
else
ocean_grid = RectilinearGrid(size=(Nx, 1), z=(-hₒ, 0), topology=(Periodic, Flat, Bounded))
closure = nothing
end
# Top boundary conditions:
# - outgoing radiative fluxes emitted from surface
# - incoming shortwave radiation starting after 40 days
radiative_emission = RadiativeEmission()
top_ocean_heat_flux = Qᵀ = Field{Center, Center, Nothing}(ocean_grid)
ice_ocean_flux = Field{Center, Center, Nothing}(ice_grid)
solar_insolation = I₀ = Field{Center, Center, Nothing}(ocean_grid)
function compute_solar_insolation!(sim)
if time(sim) > 40days
interior(I₀, :, 1, 1) .= -600 # W m⁻²
end
return nothing
end
# Generate a zero-dimensional grid for a single column slab model
top_salt_flux = Qˢ = Field{Center, Center, Nothing}(ocean_grid)
boundary_conditions = (T = FieldBoundaryConditions(top=FluxBoundaryCondition(Qᵀ)),
u = FieldBoundaryConditions(top=FluxBoundaryCondition(-1e-6)),
S = FieldBoundaryConditions(top=FluxBoundaryCondition(Qˢ)))
equation_of_state = TEOS10EquationOfState()
buoyancy = SeawaterBuoyancy(; equation_of_state)
ocean_model = HydrostaticFreeSurfaceModel(grid = ocean_grid;
buoyancy, boundary_conditions, closure,
tracers = (:T, :S, :e))
ocean_simulation = Simulation(ocean_model; Δt=1hour)
Nz = size(ocean_grid, 3)
So = ocean_model.tracers.S
ocean_surface_salinity = Field(So, indices=(:, :, Nz))
bottom_bc = IceWaterThermalEquilibrium(ocean_surface_salinity)
ice_model = SlabSeaIceModel(ice_grid;
ice_consolidation_thickness = 0.2,
ice_salinity = 0,
internal_heat_flux = ConductiveFlux(conductivity=100),
top_heat_flux = (solar_insolation, radiative_emission),
bottom_heat_boundary_condition = bottom_bc,
bottom_heat_flux = ice_ocean_flux)
ice_simulation = Simulation(ice_model, Δt=1hour)
using SeawaterPolynomials: heat_expansion, haline_contraction
# Double stratification
N²θ = 0
T₀ = 0
S₀ = 30
g = ocean_model.buoyancy.model.gravitational_acceleration
α = heat_expansion(T₀, S₀, 0, equation_of_state)
dTdz = N²θ / (α * g)
N²S = 1e-4
β = haline_contraction(T₀, S₀, 0, equation_of_state)
dSdz = N²S / (β * g)
Tᵢ(x, y, z) = T₀ + z * dTdz
Sᵢ(x, y, z) = S₀ - z * dSdz
set!(ocean_model, S=Sᵢ, T=T₀)
coupled_model = IceOceanModel(ice_simulation, ocean_simulation)
t = Float64[]
hi = Float64[]
ℵi = Float64[]
Tst = Float64[]
To = []
So = []
eo = []
Nz = size(ocean_grid, 3)
while (time(ocean_simulation) < 100days)
#while (iteration(ocean_simulation) < 200)
time_step!(coupled_model, 20minutes)
if mod(iteration(ocean_simulation), 10) == 0
push!(t, time(ocean_simulation))
h = ice_model.ice_thickness
ℵ = ice_model.ice_concentration
Ts = ice_model.top_surface_temperature
push!(hi, first(h))
push!(ℵi, first(ℵ))
push!(Tst, first(Ts))
T = ocean_model.tracers.T
S = ocean_model.tracers.S
e = ocean_model.tracers.e
push!(To, deepcopy(interior(T, 1, 1, :)))
push!(So, deepcopy(interior(S, 1, 1, :)))
push!(eo, deepcopy(interior(e, 1, 1, :)))
@info string("Iter: ", iteration(ocean_simulation),
", t: ", prettytime(ocean_simulation),
", Tₒ: ", prettysummary(To[end][Nz]),
", Sₒ: ", prettysummary(So[end][Nz]),
", h: ", prettysummary(hi[end]),
", ℵ: ", prettysummary(ℵi[end]),
", Tᵢ: ", prettysummary(Tst[end]),
", ℵ h: ", prettysummary(ℵi[end] * hi[end]))
end
end
Ts = map(T -> T[Nz], To)
Ss = map(T -> T[Nz], So)
set_theme!(Theme(fontsize=24, linewidth=4))
fig = Figure(size=(2400, 1200))
axhi = Axis(fig[1, 1], xlabel="Time (days)", ylabel="Ice thickness (m)")
axℵi = Axis(fig[2, 1], xlabel="Time (days)", ylabel="Ice concentration")
axTo = Axis(fig[3, 1], xlabel="Time (days)", ylabel="Surface temperatures (ᵒC)")
axSo = Axis(fig[4, 1], xlabel="Time (days)", ylabel="Ocean surface salinity (psu)")
lines!(axhi, t ./ day, hi)
lines!(axℵi, t ./ day, ℵi)
lines!(axTo, t ./ day, Ts, label="Ocean")
lines!(axTo, t ./ day, Tst, label="Ice")
axislegend(axTo)
lines!(axSo, t ./ day, Ss)
axTz = Axis(fig[1:4, 2], xlabel="T", ylabel="z (m)")
axSz = Axis(fig[1:4, 3], xlabel="S", ylabel="z (m)")
z = znodes(ocean_model.tracers.T)
Nt = length(t)
slider = Slider(fig[5, 1:3], range=1:Nt, startvalue=1)
n = slider.value
Tn = @lift To[$n]
Sn = @lift So[$n]
en = @lift max.(1e-6, eo[$n])
tn = @lift t[$n] / day
vlines!(axhi, tn, color=(:yellow, 0.6))
vlines!(axℵi, tn, color=(:yellow, 0.6))
vlines!(axTo, tn, color=(:yellow, 0.6))
vlines!(axSo, tn, color=(:yellow, 0.6))
lines!(axTz, Tn, z)
lines!(axSz, Sn, z)
xlims!(axTz, -2, 6)
# xlims!(axSz, 26, 31)
colsize!(fig.layout, 2, Relative(0.2))
colsize!(fig.layout, 3, Relative(0.2))
display(fig)
record(fig, "freezing_and_melting.mp4", 1:Nt, framerate=12) do nn
n[] = nn
end
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | code | 11452 | using Oceananigans.Operators
using Oceananigans.Architectures: architecture
using Oceananigans.BoundaryConditions: fill_halo_regions!
using Oceananigans.Models: AbstractModel
using Oceananigans.TimeSteppers: tick!
using Oceananigans.Utils: launch!
using KernelAbstractions: @kernel, @index
using KernelAbstractions.Extras.LoopInfo: @unroll
# Simulations interface
import Oceananigans: fields, prognostic_fields
import Oceananigans.Fields: set!
import Oceananigans.Models: timestepper, NaNChecker, default_nan_checker
import Oceananigans.OutputWriters: default_included_properties
import Oceananigans.Simulations: reset!, initialize!, iteration
import Oceananigans.TimeSteppers: time_step!, update_state!, time
import Oceananigans.Utils: prettytime
struct IceOceanModel{FT, C, G, I, O, S, PI, PC} <: AbstractModel{Nothing}
clock :: C
grid :: G # TODO: make it so simulation does not require this
ice :: I
previous_ice_thickness :: PI
previous_ice_concentration :: PC
ocean :: O
solar_insolation :: S
ocean_density :: FT
ocean_heat_capacity :: FT
ocean_emissivity :: FT
stefan_boltzmann_constant :: FT
reference_temperature :: FT
end
const IOM = IceOceanModel
Base.summary(::IOM) = "IceOceanModel"
prettytime(model::IOM) = prettytime(model.clock.time)
iteration(model::IOM) = model.clock.iteration
timestepper(::IOM) = nothing
reset!(::IOM) = nothing
initialize!(::IOM) = nothing
default_included_properties(::IOM) = tuple()
update_state!(::IOM) = nothing
prognostic_fields(cm::IOM) = nothing
fields(::IOM) = NamedTuple()
function IceOceanModel(ice, ocean; clock = Clock{Float64}(0, 0, 1))
previous_ice_thickness = deepcopy(ice.model.ice_thickness)
previous_ice_concentration = deepcopy(ice.model.ice_concentration)
grid = ocean.model.grid
ice_ocean_heat_flux = Field{Center, Center, Nothing}(grid)
ice_ocean_salt_flux = Field{Center, Center, Nothing}(grid)
solar_insolation = Field{Center, Center, Nothing}(grid)
ocean_density = 1024
ocean_heat_capacity = 3991
ocean_emissivity = 1
reference_temperature = 273.15
stefan_boltzmann_constant = 5.67e-8
# How would we ensure consistency?
try
if ice.model.external_heat_fluxes.top isa RadiativeEmission
radiation = ice.model.external_heat_fluxes.top
else
radiation = filter(flux isa RadiativeEmission, ice.model.external_heat_fluxes.top) |> first
end
stefan_boltzmann_constant = radiation.stefan_boltzmann_constant
reference_temperature = radiation.reference_temperature
catch
end
FT = eltype(ocean.model.grid)
return IceOceanModel(clock,
ocean.model.grid,
ice,
previous_ice_thickness,
previous_ice_concentration,
ocean,
solar_insolation,
convert(FT, ocean_density),
convert(FT, ocean_heat_capacity),
convert(FT, ocean_emissivity),
convert(FT, stefan_boltzmann_constant),
convert(FT, reference_temperature))
end
time(coupled_model::IceOceanModel) = coupled_model.clock.time
function compute_air_sea_flux!(coupled_model)
ocean = coupled_model.ocean
ice = coupled_model.ice
T = ocean.model.tracers.T
Nx, Ny, Nz = size(ocean.model.grid)
grid = ocean.model.grid
arch = architecture(grid)
σ = coupled_model.stefan_boltzmann_constant
ρₒ = coupled_model.ocean_density
cₒ = coupled_model.ocean_heat_capacity
Tᵣ = coupled_model.reference_temperature
Qᵀ = T.boundary_conditions.top.condition
Tₒ = ocean.model.tracers.T
hᵢ = ice.model.ice_thickness
ℵᵢ = ice.model.ice_concentration
I₀ = coupled_model.solar_insolation
launch!(arch, grid, :xy, _compute_air_sea_flux!,
Qᵀ, grid, Tₒ, hᵢ, ℵᵢ, I₀,
σ, ρₒ, cₒ, Tᵣ)
end
@kernel function _compute_air_sea_flux!(temperature_flux,
grid,
ocean_temperature,
ice_thickness,
ice_concentration,
solar_insolation,
σ, ρₒ, cₒ, Tᵣ)
i, j = @index(Global, NTuple)
Nz = size(grid, 3)
@inbounds begin
T₀ = ocean_temperature[i, j, Nz] # at the surface
h = ice_thickness[i, j, 1]
ℵ = ice_concentration[i, j, 1]
I₀ = solar_insolation[i, j, 1]
end
# Radiation model
ϵ = 1 # ocean emissivity
ΣQᵀ = ϵ * σ * (T₀ + Tᵣ)^4 / (ρₒ * cₒ)
# Also add solar insolation
ΣQᵀ += I₀ / (ρₒ * cₒ)
# Set the surface flux only if ice-free
Qᵀ = temperature_flux
# @inbounds Qᵀ[i, j, 1] = 0 #(1 - ℵ) * ΣQᵀ
end
function time_step!(coupled_model::IceOceanModel, Δt; callbacks=nothing)
ocean = coupled_model.ocean
ice = coupled_model.ice
liquidus = ice.model.phase_transitions.liquidus
grid = ocean.model.grid
ice.Δt = Δt
ocean.Δt = Δt
h = ice.model.ice_thickness
fill_halo_regions!(h)
# Initialization
if coupled_model.clock.iteration == 0
h⁻ = coupled_model.previous_ice_thickness
hⁿ = coupled_model.ice.model.ice_thickness
parent(h⁻) .= parent(hⁿ)
end
time_step!(ice)
# TODO: put this in update_state!
compute_ice_ocean_salinity_flux!(coupled_model)
ice_ocean_latent_heat!(coupled_model)
#compute_solar_insolation!(coupled_model)
#compute_air_sea_flux!(coupled_model)
time_step!(ocean)
# TODO:
# - Store fractional ice-free / ice-covered _time_ for more
# accurate flux computation?
# - Or, input "excess heat flux" into ocean after the ice melts
# - Currently, non-conservative for heat due bc we don't account for excess
# TODO after ice time-step:
# - Adjust ocean temperature if the ice completely melts?
tick!(coupled_model.clock, Δt)
return nothing
end
function compute_ice_ocean_salinity_flux!(coupled_model)
# Compute salinity increment due to changes in ice thickness
ice = coupled_model.ice
ocean = coupled_model.ocean
grid = ocean.model.grid
arch = architecture(grid)
Qˢ = ocean.model.tracers.S.boundary_conditions.top.condition
Sₒ = ocean.model.tracers.S
Sᵢ = ice.model.ice_salinity
Δt = ocean.Δt
hⁿ = ice.model.ice_thickness
h⁻ = coupled_model.previous_ice_thickness
launch!(arch, grid, :xy, _compute_ice_ocean_salinity_flux!,
Qˢ, grid, hⁿ, h⁻, Sᵢ, Sₒ, Δt)
return nothing
end
@kernel function _compute_ice_ocean_salinity_flux!(ice_ocean_salinity_flux,
grid,
ice_thickness,
previous_ice_thickness,
ice_salinity,
ocean_salinity,
Δt)
i, j = @index(Global, NTuple)
Nz = size(grid, 3)
hⁿ = ice_thickness
h⁻ = previous_ice_thickness
Qˢ = ice_ocean_salinity_flux
Sᵢ = ice_salinity
Sₒ = ocean_salinity
@inbounds begin
# Thickness of surface grid cell
Δh = hⁿ[i, j, 1] - h⁻[i, j, 1]
# Update surface salinity flux.
# Note: the Δt below is the ocean time-step, eg.
# ΔS = ⋯ - ∮ Qˢ dt ≈ ⋯ - Δtₒ * Qˢ
Qˢ[i, j, 1] = Δh / Δt * (Sᵢ[i, j, 1] - Sₒ[i, j, Nz])
# Update previous ice thickness
h⁻[i, j, 1] = hⁿ[i, j, 1]
end
end
function ice_ocean_latent_heat!(coupled_model)
ocean = coupled_model.ocean
ice = coupled_model.ice
ρₒ = coupled_model.ocean_density
cₒ = coupled_model.ocean_heat_capacity
Qₒ = ice.model.external_heat_fluxes.bottom
Tₒ = ocean.model.tracers.T
Sₒ = ocean.model.tracers.S
Δt = ocean.Δt
hᵢ = ice.model.ice_thickness
liquidus = ice.model.phase_transitions.liquidus
grid = ocean.model.grid
arch = architecture(grid)
launch!(arch, grid, :xy, _compute_ice_ocean_latent_heat!,
Qₒ, grid, hᵢ, Tₒ, Sₒ, liquidus, ρₒ, cₒ, Δt)
return nothing
end
@kernel function _compute_ice_ocean_latent_heat!(latent_heat,
grid,
ice_thickness,
ocean_temperature,
ocean_salinity,
liquidus,
ρₒ, cₒ, Δt)
i, j = @index(Global, NTuple)
Nz = size(grid, 3)
Qₒ = latent_heat
hᵢ = ice_thickness
Tₒ = ocean_temperature
Sₒ = ocean_salinity
δQ = zero(grid)
icy_cell = @inbounds hᵢ[i, j, 1] > 0 # make ice bath approximation then
@unroll for k = Nz:-1:1
@inbounds begin
# Various quantities
Δz = Δzᶜᶜᶜ(i, j, k, grid)
Tᴺ = Tₒ[i, j, k]
Sᴺ = Sₒ[i, j, k]
end
# Melting / freezing temperature at the surface of the ocean
Tₘ = melting_temperature(liquidus, Sᴺ)
# Conditions for non-zero ice-ocean flux:
# - the ocean is below the freezing temperature, causing formation of ice.
freezing = Tᴺ < Tₘ
# - We are at the surface and the cell is covered by ice.
icy_surface_cell = (k == Nz) & icy_cell
# When there is a non-zero ice-ocean flux, we will instantaneously adjust the
# temperature of the grid cells accordingly.
adjust_temperature = freezing | icy_surface_cell
# Compute change in ocean heat energy.
#
# - When Tᴺ < Tₘ, we heat the ocean back to melting temperature by extracting heat from the ice,
# assuming that the heat flux (which is carried by nascent ice crystals called frazil ice) floats
# instantaneously to the surface.
#
# - When Tᴺ > Tₘ and we are in a surface cell covered by ice, we assume equilibrium
# and cool the ocean by injecting excess heat into the ice.
#
δEₒ = adjust_temperature * ρₒ * cₒ * (Tₘ - Tᴺ)
# Perform temperature adjustment
@inline Tₒ[i, j, k] = ifelse(adjust_temperature, Tₘ, Tᴺ)
# Compute the heat flux from ocean into ice.
#
# A positive value δQ > 0 implies that the ocean is cooled; ie heat
# is fluxing upwards, into the ice. This occurs when applying the
# ice bath equilibrium condition to cool down a warm ocean (δEₒ < 0).
#
# A negative value δQ < 0 implies that heat is fluxed from the ice into
# the ocean, cooling the ice and heating the ocean (δEₒ > 0). This occurs when
# frazil ice is formed within the ocean.
δQ -= δEₒ * Δz / Δt
end
# Store ice-ocean flux
@inbounds Qₒ[i, j, 1] = δQ
end
# Check for NaNs in the first prognostic field (generalizes to prescribed velocitries).
function default_nan_checker(model::IceOceanModel)
u_ocean = model.ocean.model.velocities.u
nan_checker = NaNChecker((; u_ocean))
return nan_checker
end
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | code | 7632 | using Oceananigans
using Oceananigans.Architectures: arch_array
using Oceananigans.Fields: ZeroField, ConstantField
using Oceananigans.TurbulenceClosures: CATKEVerticalDiffusivity
using Oceananigans.Units
using Oceananigans.Utils: prettysummary
using SeawaterPolynomials: TEOS10EquationOfState, heat_expansion, haline_contraction
using ClimaSeaIce
using ClimaSeaIce: melting_temperature
using ClimaSeaIce.HeatBoundaryConditions: RadiativeEmission, IceWaterThermalEquilibrium
using Printf
using GLMakie
using Statistics
include("ice_ocean_model.jl")
arch = GPU()
Nx = Ny = 256
Nz = 10
Lz = 400
x = y = (-50kilometers, 50kilometers)
halo = (4, 4, 4)
topology = (Periodic, Bounded, Bounded)
ice_grid = RectilinearGrid(arch; x, y,
size = (Nx, Ny),
topology = (topology[1], topology[2], Flat),
halo = halo[1:2])
ocean_grid = RectilinearGrid(arch; topology, halo, x, y,
size = (Nx, Ny, Nz),
z = (-Lz, 0))
# Top boundary conditions:
# - outgoing radiative fluxes emitted from surface
# - incoming shortwave radiation starting after 40 days
ice_ocean_heat_flux = Field{Center, Center, Nothing}(ice_grid)
top_ocean_heat_flux = Qᵀ = Field{Center, Center, Nothing}(ice_grid)
top_salt_flux = Qˢ = Field{Center, Center, Nothing}(ice_grid)
# top_salt_flux = Qˢ = arch_array(arch, zeros(Nx, Ny))
# Generate a zero-dimensional grid for a single column slab model
boundary_conditions = (T = FieldBoundaryConditions(top=FluxBoundaryCondition(Qᵀ)),
S = FieldBoundaryConditions(top=FluxBoundaryCondition(Qˢ)))
equation_of_state = TEOS10EquationOfState()
buoyancy = SeawaterBuoyancy(; equation_of_state)
horizontal_biharmonic_diffusivity = HorizontalScalarBiharmonicDiffusivity(κ=5e6)
ocean_model = HydrostaticFreeSurfaceModel(; buoyancy, boundary_conditions,
grid = ocean_grid,
momentum_advection = WENO(),
tracer_advection = WENO(),
#closure = (horizontal_biharmonic_diffusivity, CATKEVerticalDiffusivity()),
closure = CATKEVerticalDiffusivity(),
coriolis = FPlane(f=1.4e-4),
tracers = (:T, :S, :e))
Nz = size(ocean_grid, 3)
So = ocean_model.tracers.S
ocean_surface_salinity = view(So, :, :, Nz)
bottom_bc = IceWaterThermalEquilibrium(ConstantField(30)) #ocean_surface_salinity)
u, v, w = ocean_model.velocities
ocean_surface_velocities = (u = view(u, :, :, Nz), #interior(u, :, :, Nz),
v = view(v, :, :, Nz), #interior(v, :, :, Nz),
w = ZeroField())
ice_model = SlabSeaIceModel(ice_grid;
velocities = ocean_surface_velocities,
advection = nothing, #WENO(),
ice_consolidation_thickness = 0.05,
ice_salinity = 4,
internal_heat_flux = ConductiveFlux(conductivity=2),
#top_heat_flux = ConstantField(-100), # W m⁻²
top_heat_flux = ConstantField(0), # W m⁻²
top_heat_boundary_condition = PrescribedTemperature(0),
bottom_heat_boundary_condition = bottom_bc,
bottom_heat_flux = ice_ocean_heat_flux)
ocean_simulation = Simulation(ocean_model; Δt=20minutes, verbose=false)
ice_simulation = Simulation(ice_model, Δt=20minutes, verbose=false)
# Initial condition
S₀ = 30
T₀ = melting_temperature(ice_model.phase_transitions.liquidus, S₀) + 2.0
N²S = 1e-6
β = haline_contraction(T₀, S₀, 0, equation_of_state)
g = ocean_model.buoyancy.model.gravitational_acceleration
dSdz = - g * β * N²S
uᵢ(x, y, z) = 0.0
Tᵢ(x, y, z) = T₀ # + 0.1 * randn()
Sᵢ(x, y, z) = S₀ + dSdz * z #+ 0.1 * randn()
function hᵢ(x, y)
if sqrt(x^2 + y^2) < 20kilometers
#return 1 + 0.1 * rand()
return 2
else
return 0
end
end
set!(ocean_model, u=uᵢ, S=Sᵢ, T=T₀)
set!(ice_model, h=hᵢ)
coupled_model = IceOceanModel(ice_simulation, ocean_simulation)
coupled_simulation = Simulation(coupled_model, Δt=1minutes, stop_time=20days)
S = ocean_model.tracers.S
by = - g * β * ∂y(S)
function progress(sim)
h = sim.model.ice.model.ice_thickness
S = sim.model.ocean.model.tracers.S
T = sim.model.ocean.model.tracers.T
u = sim.model.ocean.model.velocities.u
msg1 = @sprintf("Iter: % 6d, time: % 12s", iteration(sim), prettytime(sim))
msg2 = @sprintf(", max(h): %.2f", maximum(h))
msg3 = @sprintf(", min(S): %.2f", minimum(S))
msg4 = @sprintf(", extrema(T): (%.2f, %.2f)", minimum(T), maximum(T))
msg5 = @sprintf(", max|∂y b|: %.2e", maximum(abs, by))
msg6 = @sprintf(", max|u|: %.2e", maximum(abs, u))
@info msg1 * msg2 * msg3 * msg4 * msg5 * msg6
return nothing
end
coupled_simulation.callbacks[:progress] = Callback(progress, IterationInterval(10))
h = ice_model.ice_thickness
T = ocean_model.tracers.T
S = ocean_model.tracers.S
u, v, w = ocean_model.velocities
η = ocean_model.free_surface.η
ht = []
Tt = []
Ft = []
Qt = []
St = []
ut = []
vt = []
ηt = []
ζt = []
tt = []
ζ = Field(∂x(v) - ∂y(u))
function saveoutput(sim)
compute!(ζ)
hn = Array(interior(h, :, :, 1))
Fn = Array(interior(Qˢ, :, :, 1))
Qn = Array(interior(Qᵀ, :, :, 1))
Tn = Array(interior(T, :, :, Nz))
Sn = Array(interior(S, :, :, Nz))
un = Array(interior(u, :, :, Nz))
vn = Array(interior(v, :, :, Nz))
ηn = Array(interior(η, :, :, 1))
ζn = Array(interior(ζ, :, :, Nz))
push!(ht, hn)
push!(Ft, Fn)
push!(Qt, Qn)
push!(Tt, Tn)
push!(St, Sn)
push!(ut, un)
push!(vt, vn)
push!(ηt, ηn)
push!(ζt, ζn)
push!(tt, time(sim))
end
coupled_simulation.callbacks[:output] = Callback(saveoutput, IterationInterval(10))
run!(coupled_simulation)
#####
##### Viz
#####
set_theme!(Theme(fontsize=24))
x = xnodes(ocean_grid, Center())
y = ynodes(ocean_grid, Center())
fig = Figure(size=(2400, 700))
axh = Axis(fig[1, 1], xlabel="x (km)", ylabel="y (km)", title="Ice thickness")
axT = Axis(fig[1, 2], xlabel="x (km)", ylabel="y (km)", title="Ocean surface temperature")
axS = Axis(fig[1, 3], xlabel="x (km)", ylabel="y (km)", title="Ocean surface salinity")
axZ = Axis(fig[1, 4], xlabel="x (km)", ylabel="y (km)", title="Ocean vorticity")
Nt = length(tt)
slider = Slider(fig[2, 1:4], range=1:Nt, startvalue=Nt)
n = slider.value
title = @lift string("Melt-driven baroclinic instability after ", prettytime(tt[$n]))
Label(fig[0, 1:3], title)
hn = @lift ht[$n]
Fn = @lift Ft[$n]
Tn = @lift Tt[$n]
Sn = @lift St[$n]
un = @lift ut[$n]
vn = @lift vt[$n]
ηn = @lift ηt[$n]
ζn = @lift ζt[$n]
Un = @lift mean(ut[$n], dims=1)[:]
x = x ./ 1e3
y = y ./ 1e3
Stop = view(S, :, :, Nz)
Smax = maximum(Stop)
Smin = minimum(Stop)
compute!(ζ)
ζtop = view(ζ, :, :, Nz)
ζmax = maximum(abs, ζtop)
ζlim = 2e-4 #ζmax / 2
heatmap!(axh, x, y, hn, colorrange=(0, 1), colormap=:grays)
heatmap!(axT, x, y, Tn, colormap=:heat)
heatmap!(axS, x, y, Sn, colorrange = (29, 30), colormap=:haline)
heatmap!(axZ, x, y, ζn, colorrange=(-ζlim, ζlim), colormap=:redblue)
#heatmap!(axZ, x, y, Tn, colormap=:heat)
#heatmap!(axF, x, y, Fn)
display(fig)
#=
record(fig, "salty_baroclinic_ice_cube.mp4", 1:Nt, framerate=48) do nn
@info string(nn)
n[] = nn
end
=#
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | code | 3638 | #####
##### The purpose of this script is to reproduce some results from Semtner (1976)
##### Note that this script probably doesn't work and is a work in progress.
##### Don't hestitate to update this script in a PR!
#####
using Oceananigans
using Oceananigans.Units
using ClimaSeaIce
# Forcings (Semtner 1976, table 1), originally tabulated by Fletcher (1965)
# Note: these are in kcal, which was deprecated in the ninth General Conference on Weights and
# Measures in 1948. We convert these to Joules (and then to Watts) below.
# Month: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
tabulated_shortwave = [ 0 0 1.9 9.9 17.7 19.2 13.6 9.0 3.7 0.4 0 0]
tabulated_longwave = [10.4 10.3 10.3 11.6 15.1 18.0 19.1 18.7 16.5 13.9 11.2 10.9]
tabulated_sensible = [1.18 0.76 0.72 0.29 -0.45 -0.39 -0.30 -0.40 -0.17 0.1 0.56 0.79]
tabulated_latent = [ 0 -0.02 -0.03 -0.46 -0.70 -0.64 -0.66 -0.39 -0.19 -0.01 -0.01 -3.20]
# Pretend every month is just 30 days
Nmonths = 12
month_days = 30
year_days = month_days * Nmonths
times_days = 15:30:(year_days - 15)
times = times_days .* day # times in seconds
# Convert fluxes to the right units
kcal_to_joules = 4184
tabulated_shortwave .*= kcal_to_joules / (month_days * days)
tabulated_longwave .*= kcal_to_joules / (month_days * days)
tabulated_sensible .*= kcal_to_joules / (month_days * days)
tabulated_latent .*= kcal_to_joules / (month_days * days)
using GLMakie
fig = Figure()
ax = Axis(fig[1, 1])
lines!(ax, times, tabulated_shortwave)
lines!(ax, times, tabulated_longwave)
lines!(ax, times, tabulated_sensible)
lines!(ax, times, tabulated_latent)
display(fig)
@inline function linearly_interpolate_flux(i, j, grid, Tₛ, clock, model_fields, parameters)
times = parameters.times
Q = parameters.flux
Nt = length(times)
t = mod(clock.time, 360days)
n₁, n₂ = index_binary_search(times, t, Nt)
Q₁ = @inbounds Q[n₁]
Q₂ = @inbounds Q[n₂]
ñ = @inbounds (t - times[n₁]) * (n₂ - n₁) / (times[n₂] - times[n₁])
return Q₁ * (ñ - n₁) + Q₂ * (n₂ - ñ)
end
Q_shortwave = FluxFunction(linearly_interpolate_flux, parameters=(; times, flux=tabulated_shortwave))
Q_longwave = FluxFunction(linearly_interpolate_flux, parameters=(; times, flux=tabulated_longwave))
Q_sensible = FluxFunction(linearly_interpolate_flux, parameters=(; times, flux=tabulated_sensible))
Q_latent = FluxFunction(linearly_interpolate_flux, parameters=(; times, flux=tabulated_latent))
Q_emission = RadiativeEmission()
# Generate a 0D grid for a single column slab model
grid = RectilinearGrid(size=(), topology=(Flat, Flat, Flat))
top_heat_flux = (Q_shortwave, Q_longwave, Q_sensible, Q_latent, Q_emission)
model = SlabSeaIceModel(grid; top_heat_flux)
set!(model, h=1)
simulation = Simulation(model, Δt=8hours, stop_time=4 * 360days)
# Accumulate data
timeseries = []
function accumulate_timeseries(sim)
T = model.top_temperature
h = model.ice_thickness
push!(timeseries, (time(sim), first(h), first(T)))
end
simulation.callbacks[:save] = Callback(accumulate_timeseries)
run!(simulation)
# Extract and visualize data
t = [datum[1] for datum in timeseries]
h = [datum[2] for datum in timeseries]
T = [datum[3] for datum in timeseries]
set_theme!(Theme(fontsize=24, linewidth=4))
fig = Figure(size=(1000, 800))
axT = Axis(fig[1, 1], xlabel="Time (days)", ylabel="Top temperature (ᵒC)")
axh = Axis(fig[2, 1], xlabel="Time (days)", ylabel="Ice thickness (m)")
lines!(axT, t / day, T)
lines!(axh, t / day, h)
display(fig)
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 1143 |
<p align="center">
<a href="https://codecov.io/gh/CliMA/ClimaSeaIce.jl" >
<img src="https://codecov.io/gh/CliMA/ClimaSeaIce.jl/graph/badge.svg?token=3Smw4jVzZG"/>
</a>
<a href="https://clima.github.io/ClimaSeaIceDocumentation/dev">
<img alt="Development documentation" src="https://img.shields.io/badge/documentation-in%20development-orange">
</a>
</p>
<!-- Title -->
<h1 align="center">
ClimaSeaIce.jl
</h1>
<!-- description -->
<p align="center">
<strong>🧊 Fast and friendly Julia software for simulating the freezing, melting, and horizontal motion of salty ice on CPUs and GPUs.</strong>
</p>
ClimaSeaIce is a library that empowers users to configure and run simulations of sea ice freezing, melting, and horizontal motion on the
large time and spatial scales appropriate for climate modeling.
We support stand-alone simulations of sea ice dynamics as well as simulations coupled to ocean models based on [Oceananigans]().
## [Documentation!](https://clima.github.io/ClimaSeaIceDocumentation/dev/)
Our documentation and source code are works in progress.
When things have progressed, we'll put an outline here.
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 77 | # ClimaSeaIce.jl
🌊 Ocean 🌊 Sea ice component of CliMa's Earth system model.
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 102 | ### [Index](@id main-index)
```@index
Pages = ["public.md", "internals.md", "function_index.md"]
```
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 289 | # Private types and functions
Documentation for `ClimaSeaIce.jl`'s internal interfaces.
## ClimaSeaIce
```@autodocs
Modules = [ClimaSeaIce]
Public = false
```
## ClimaSeaIce.EnthalpyMethodSeaIceModels
```@autodocs
Modules = [ClimaSeaIce.EnthalpyMethodSeaIceModels]
Public = false
```
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 96 | ## Library Outline
```@contents
Pages = ["public.md", "internals.md", "function_index.md"]
```
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"Apache-2.0"
] | 0.1.2 | 233ca191cf019db38f0e44dbbb19296016131491 | docs | 652 | # Public Documentation
Documentation for `ClimaSeaIce.jl`'s public interfaces.
See the Internals section of the manual for internal package docs covering all submodules.
## ClimaSeaIce
```@autodocs
Modules = [ClimaSeaIce]
Private = false
```
## ClimaSeaIce.SeaIceThermodynamics
```@autodocs
Modules = [ClimaSeaIce.SeaIceThermodynamics]
Private = false
```
## ClimaSeaIce.SeaIceThermodynamics.HeatBoundaryConditions
```@autodocs
Modules = [ClimaSeaIce.SeaIceThermodynamics.HeatBoundaryConditions]
Private = false
```
## ClimaSeaIce.EnthalpyMethodSeaIceModels
```@autodocs
Modules = [ClimaSeaIce.EnthalpyMethodSeaIceModels]
Private = false
```
| ClimaSeaIce | https://github.com/CliMA/ClimaSeaIce.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 427 | module MicroCoverage
include("types.jl")
include("public_interface.jl")
include("assert.jl")
include("clean.jl")
include("coverage_compute.jl")
include("coverage_write.jl")
include("instrument.jl")
include("preview_coverage.jl")
include("read_write_julia_files.jl")
include("restore.jl")
include("start_tracking_file.jl")
include("tracked_files.jl")
include("tracker.jl")
include("utils.jl")
end # end module MicroCoverage
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 237 | function always_assert(condition::Bool,
msg::AbstractString = "")::Nothing
_msg::String = convert(String, msg)::String
if !condition
throw(AlwaysAssertionError(_msg))
end
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 508 | function _clean_file(filename::String)
coverage_filename = string(filename, ".microcov")
rm(coverage_filename; force = true, recursive = true)
return nothing
end
function _clean_directory(path::String)
microcov_file_suffix = ".microcov"
for (root, dirs, files) in walkdir(".")
for file in files
if endswith(file, microcov_file_suffix)
rm(joinpath(root, file); force = true, recursive = true)
end
end
end
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 2563 | function _compute_lnn_to_coverage()
lock(Main.MicroCoverage_lock) do
lnn_to_tracker_indices = Dict{LineNumberNode, Vector{Int}}()
for tracker_idx = 1:length(Main.MicroCoverage_tracker_linenumbernodes)
lnn = Main.MicroCoverage_tracker_linenumbernodes[tracker_idx]
if !haskey(lnn_to_tracker_indices, lnn)
lnn_to_tracker_indices[lnn] = Vector{Int}()
end
push!(lnn_to_tracker_indices[lnn], tracker_idx)
end
lnn_to_coverage = Dict{LineNumberNode, Vector{Bool}}()
for k in keys(lnn_to_tracker_indices)
tracker_indices = lnn_to_tracker_indices[k]
lnn_to_coverage[k] = Main.MicroCoverage_tracker[tracker_indices]
end
return lnn_to_coverage
end
end
function _compute_coverage_file_contents(filename::Symbol;
min_padding::Integer,
max_padding::Integer,
source_code_filename::Symbol = filename)::Vector{String}
_source_code_filename = string(source_code_filename)
original_source_string::String = read(_source_code_filename, String)::String
original_source_lines = split(original_source_string, '\n')
num_lines = length(original_source_lines)
lnn_to_coverage = _compute_lnn_to_coverage()
coverage_lines_prefixes = Vector{String}(undef, num_lines)
for i = 1:num_lines
coverage_lines_prefixes[i] = _coverage_boolvector_to_string(get(lnn_to_coverage,
LineNumberNode(i,
filename), Bool[]))
end
coverage_lines = Vector{String}(undef, num_lines)
for i = 1:num_lines
this_line_coverage_prefix = coverage_lines_prefixes[i]
this_line_padding_length = max(min_padding,
max_padding - length(this_line_coverage_prefix))
this_line_padding = repeat(" ",
max(1, this_line_padding_length))
coverage_lines[i] = string(this_line_coverage_prefix,
this_line_padding,
original_source_lines[i])
end
return coverage_lines
end
function _coverage_boolvector_to_string(line_coverage::Vector{Bool})
if length(line_coverage) < 1
return "-"
end
return string("[", join(string.(convert(Vector{Int}, line_coverage)), ","), "]")
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 1173 | function _write_coverage(filename::Symbol;
dump_coverage::Bool = false,
dump_coverage_io::IO = stdout,
min_padding::Integer,
max_padding::Integer)::Nothing
coverage_filename = string(filename, ".microcov")
coverage_lines = _compute_coverage_file_contents(filename;
min_padding = min_padding,
max_padding = max_padding)
@debug("Writing coverage to file",
source_file = filename,
coverage_file = coverage_filename)
rm(coverage_filename; force = true, recursive = true)
open(coverage_filename, "w") do io
if dump_coverage
# println(dump_coverage_io, "\n")
println(dump_coverage_io, "# $(coverage_filename):")
end
for x in coverage_lines
if dump_coverage
println(dump_coverage_io, x)
end
println(io, x)
end
if dump_coverage
# println(dump_coverage_io, "\n")
end
end
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 7490 | # This is the generic fallback
# function instrument(filename::String,
# expr::Expr,
# ::Val,
# lnn::LineNumberNode;
# prepend_tracker::Bool = true)
# return insert_prepended_tracker(filename,
# expr,
# lnn;
# prepend_tracker = prepend_tracker)
# end
function instrument(filename::String,
lnn_1::LineNumberNode,
lnn_2::LineNumberNode;
prepend_tracker::Bool = true)
always_assert(lnn_1 == lnn_2, "lnn_1 == lnn_2")
return lnn_1
end
function instrument(filename::String,
expr::Expr;
prepend_tracker::Bool = true)
return instrument(filename,
expr,
Val(expr.head);
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
lnn::LineNumberNode;
prepend_tracker::Bool = true)
return instrument(filename,
expr,
Val(expr.head),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:block};
prepend_tracker::Bool = true)
original_args = expr.args
always_assert(original_args isa Vector, "original_args isa Vector")
if length(original_args) == 0
return expr
end
always_assert(length(original_args) >= 1, "length(original_args) >= 1")
always_assert( original_args[1] isa LineNumberNode,
"original_args[1] isa LineNumberNode")
return instrument(filename,
expr,
Val(:block),
original_args[1];
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:block},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
arg_to_lnn = Vector{LineNumberNode}(undef, num_args)
current_lnn = lnn
arg_to_lnn[1] = current_lnn
for i = 1:num_args
if original_args[i] isa LineNumberNode
current_lnn = original_args[i]
end
arg_to_lnn[i] = current_lnn
end
new_args = Vector{Any}(undef, num_args)
for i = 1:num_args
new_args[i] = instrument(filename, original_args[i], arg_to_lnn[i])
end
return insert_prepended_tracker(filename,
Expr(:block, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:function},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
new_args[1] = original_args[1]
for i = 2:num_args
new_args[i] = instrument(filename, original_args[i], lnn)
end
return insert_prepended_tracker(filename,
Expr(:function, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:if},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
new_args[1] = instrument(filename,
original_args[1],
lnn;
prepend_tracker = false)
for i = 2:num_args
new_args[i] = instrument(filename,
original_args[i],
lnn;
prepend_tracker = prepend_tracker)
end
return insert_prepended_tracker(filename,
Expr(:if, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:||},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
for i = 1:num_args
new_args[i] = instrument(filename, original_args[i], lnn)
end
return insert_prepended_tracker(filename,
Expr(:||, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:&&},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
for i = 1:num_args
new_args[i] = instrument(filename, original_args[i], lnn)
end
return insert_prepended_tracker(filename,
Expr(:&&, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
expr::Expr,
::Val{:call},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
new_args[1] = original_args[1]
for i = 2:num_args
new_args[i] = instrument(filename, original_args[i], lnn)
end
return insert_prepended_tracker(filename,
Expr(:call, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
function instrument(filename::String,
sym::Symbol,
lnn::LineNumberNode)
return sym
end
function instrument(filename::String,
str::AbstractString,
lnn::LineNumberNode)
return str
end
function instrument(filename::String,
n::Number,
lnn::LineNumberNode)
return n
end
function instrument(filename::String,
expr::Expr,
::Val{:return},
lnn::LineNumberNode;
prepend_tracker::Bool = true)
original_args = expr.args
num_args = length(original_args)
new_args = Vector{Any}(undef, num_args)
for i = 1:num_args
new_args[i] = instrument(filename, original_args[i], lnn)
end
return insert_prepended_tracker(filename,
Expr(:return, new_args...),
lnn;
prepend_tracker = prepend_tracker)
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 954 | function preview_coverage(; dump_coverage_io::IO = stdout,
min_padding::Integer = 1,
max_padding::Integer = 24)
setup()
all_tracked_files = tracked_files()
for x in all_tracked_files
backup_filename = string(x, ".backup")
coverage_filename = string(x, ".microcov")
coverage_lines = _compute_coverage_file_contents(x;
min_padding = min_padding,
max_padding = max_padding,
source_code_filename = Symbol(backup_filename))
# println(dump_coverage_io, "\n")
println(dump_coverage_io, "# Preview of $(coverage_filename):")
for x in coverage_lines
println(dump_coverage_io, x)
end
# println(dump_coverage_io, "\n")
end
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 1501 | function setup()::Nothing
if !isdefined(Main, :MicroCoverage_lock)
@eval Main const MicroCoverage_lock = ReentrantLock()
lock(Main.MicroCoverage_lock) do
@eval Main const MicroCoverage_tracker = Vector{Bool}(undef, 0)
@eval Main const MicroCoverage_tracker_linenumbernodes = Vector{LineNumberNode}(undef, 0)
end
end
return nothing
end
function start(path::AbstractString)
setup()
if isfile(path)
return _start_tracking_file(path)
else
throw(ArgumentError("Path must be an existing file"))
end
end
function stop(; dump_coverage::Bool = false,
dump_coverage_io::IO = stdout,
min_padding::Integer = 1,
max_padding::Integer = 24)
setup()
all_tracked_files = tracked_files()
for x in all_tracked_files
_restore_original_julia_file(x)
end
for x in all_tracked_files
_write_coverage(x; dump_coverage = dump_coverage,
dump_coverage_io = dump_coverage_io,
min_padding = min_padding,
max_padding = max_padding)
end
return nothing
end
function clean(path::AbstractString = pwd())
if isfile(path)
return _clean_file(convert(String, realpath(path)))
elseif isdir(path)
return _clean_directory(convert(String, realpath(path)))
else
throw(ArgumentError("Path must be an existing file or directory"))
end
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 669 | function _read_julia_file(filename::String)
file_contents::String = read(filename, String)::String
block = Meta.parse("begin $(file_contents) end")
return block
end
function _write_julia_file(filename::String, block::Expr)::Nothing
always_assert( block.head == :block,
"block.head == :block")
always_assert( block.args isa Vector,
"block.args isa Vector")
rm(filename; force = true, recursive = true)
open(filename, "w") do io
for arg in block.args
if arg isa LineNumberNode
else
println(io, arg)
end
end
end
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 470 | function _restore_original_julia_file(filename::Symbol)::Nothing
_filename = string(filename)
backup_filename = string(_filename, ".backup")
always_assert(isfile(backup_filename),
"isfile(\"$(backup_filename)\")")
rm(_filename; force = true, recursive = true)
@debug("Moving file from src to dst",
src = backup_filename,
dst = _filename)
mv(backup_filename, _filename; force = true)
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 977 | function _start_tracking_file(filename::AbstractString)
_realpath::String = convert(String, realpath(filename))::String
return _start_tracking_file(_realpath)
end
function _start_tracking_file(filename::String)::Nothing
_realpath::String = convert(String, realpath(filename))::String
original_block = _read_julia_file(_realpath)
always_assert( length(original_block.args) >= 1,
"length(original_block.args) >= 1")
always_assert( original_block.args[1] isa LineNumberNode,
"original_block.args[1] isa LineNumberNode")
instrumented_block = instrument(_realpath, original_block)
backup_filename = string(_realpath, ".backup")
rm(backup_filename; force = true, recursive = true)
@debug("Moving file from src to dst",
src = _realpath,
dst = backup_filename)
mv(_realpath, backup_filename; force = true)
_write_julia_file(_realpath, instrumented_block)
return nothing
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 335 | function tracked_files()
setup()
return lock(Main.MicroCoverage_lock) do
all_tracked_files = Vector{Symbol}(undef, 0)
for lnn in Main.MicroCoverage_tracker_linenumbernodes
push!(all_tracked_files, lnn.file)
end
unique!(all_tracked_files)
return all_tracked_files
end
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 830 | function tracker(filename::String, lnn::LineNumberNode)
return lock(Main.MicroCoverage_lock) do
new_tracker_length = length(Main.MicroCoverage_tracker) + 1
@debug("Tracker length: $(new_tracker_length)")
push!(Main.MicroCoverage_tracker,
false)
push!(Main.MicroCoverage_tracker_linenumbernodes,
LineNumberNode(lnn.line, Symbol(filename)))
return :(Main.MicroCoverage_tracker[$(new_tracker_length)] = true)
end
end
function insert_prepended_tracker(filename::String,
expr::Expr,
lnn::LineNumberNode;
prepend_tracker::Bool = true)
if prepend_tracker
return Expr(:block, tracker(filename, lnn), expr)
else
return expr
end
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 129 | abstract type MicroCoverageException <: Exception
end
struct AlwaysAssertionError <: MicroCoverageException
msg::String
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 302 | function with_temp_dir(f::Function)
original_directory = pwd()
_temp_dir = mktempdir()
atexit(() -> rm(_temp_dir; force = true, recursive = true))
cd(_temp_dir)
result = f(_temp_dir)
cd(original_directory)
rm(_temp_dir; force = true, recursive = true)
return result
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 4366 | using MicroCoverage
using Test
module MicroCoverageTestSuite
using MicroCoverage
using Test
function get_test_directory()::String
return dirname(@__FILE__)
end
function get_filename(parts...)::String
return joinpath(get_test_directory(), parts...)
end
function readstring_filename(parts...)::String
_filename = get_filename(parts...)
return read(_filename, String)
end
@testset "MicroCoverage.jl" begin
@testset "assert.jl" begin
@test MicroCoverage.always_assert(true, "") == nothing
@test_throws MicroCoverage.AlwaysAssertionError MicroCoverage.always_assert(false, "")
end
@testset "instrument.jl" begin
MicroCoverage.instrument("", Expr(:block), Val(:block)) == Expr(:block)
end
@testset "public_interface.jl" begin
MicroCoverage.with_temp_dir() do tmp_depot
MicroCoverage.with_temp_dir() do tmp_src_directory
nonexistent_filename = joinpath(tmp_src_directory, "nonexistent.jl")
foo_jl_filename = joinpath(tmp_src_directory, "foo.jl")
test_foo_jl_filename = joinpath(tmp_src_directory, "test_foo.jl")
foo_jl_microcov_filename = joinpath(tmp_src_directory, "foo.jl.microcov")
bar_jl_filename = joinpath(tmp_src_directory, "bar.jl")
test_bar_jl_filename = joinpath(tmp_src_directory, "test_bar.jl")
bar_jl_microcov_filename = joinpath(tmp_src_directory, "bar.jl.microcov")
open(foo_jl_filename, "w") do io
print(io, readstring_filename("inputs", "foo.jl"))
end
open(test_foo_jl_filename, "w") do io
print(io, readstring_filename("inputs", "test_foo.jl"))
end
open(bar_jl_filename, "w") do io
print(io, readstring_filename("inputs", "bar.jl"))
end
open(test_bar_jl_filename, "w") do io
print(io, readstring_filename("inputs", "test_bar.jl"))
end
@test_throws ArgumentError MicroCoverage.start(nonexistent_filename)
@test_throws ArgumentError MicroCoverage.clean(nonexistent_filename)
MicroCoverage.start(strip(foo_jl_filename))
MicroCoverage.start(bar_jl_filename)
MicroCoverage.preview_coverage(; dump_coverage_io = devnull)
include(foo_jl_filename)
MicroCoverage.preview_coverage(; dump_coverage_io = devnull)
include(bar_jl_filename)
MicroCoverage.preview_coverage(; dump_coverage_io = devnull)
include(test_foo_jl_filename)
MicroCoverage.preview_coverage(; dump_coverage_io = devnull)
include(test_bar_jl_filename)
MicroCoverage.preview_coverage(; dump_coverage_io = devnull)
@test !isfile(foo_jl_microcov_filename)
@test !ispath(foo_jl_microcov_filename)
@test !isfile(bar_jl_microcov_filename)
@test !ispath(bar_jl_microcov_filename)
MicroCoverage.stop(; dump_coverage = true, dump_coverage_io = devnull)
@test isfile(foo_jl_microcov_filename)
@test ispath(foo_jl_microcov_filename)
@test isfile(bar_jl_microcov_filename)
@test ispath(bar_jl_microcov_filename)
if Sys.iswindows()
@test chomp(read(foo_jl_microcov_filename, String)) == chomp(readstring_filename("expected_outputs", "foo.jl.microcov.expected"))
@test chomp(read(bar_jl_microcov_filename, String)) == chomp(readstring_filename("expected_outputs", "bar.jl.microcov.expected"))
else
@test read(foo_jl_microcov_filename, String) == readstring_filename("expected_outputs", "foo.jl.microcov.expected")
@test read(bar_jl_microcov_filename, String) == readstring_filename("expected_outputs", "bar.jl.microcov.expected")
end
touch(foo_jl_microcov_filename)
MicroCoverage.clean(foo_jl_filename)
touch(foo_jl_microcov_filename)
MicroCoverage.clean(tmp_src_directory)
end
end
end
end
end # end module MicroCoverageTestSuite
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 123 | function bar(arr)
if "aaa" in arr && "zzz" in arr
return "hello"
else
return "goodbye"
end
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 111 | function foo(x)
if x == 1 || x == 100
return "hello"
else
return "goodbye"
end
end
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 58 | using Test
@test bar(["aaa", "bbb", "ccc"]) == "goodbye"
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | code | 36 | using Test
@test foo(1) == "hello"
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.2.0 | 5ef6574048da1c7baace206ddd3c1419c079fa0d | docs | 1979 | # MicroCoverage
[](https://travis-ci.com/bcbi/MicroCoverage.jl/branches)
[](https://codecov.io/gh/bcbi/MicroCoverage.jl)
[](https://coveralls.io/github/bcbi/MicroCoverage.jl?branch=master)
MicroCoverage.jl is a code coverage tool for Julia, implemented in pure Julia.
## Installation
```julia
julia> using Pkg; Pkg.add("MicroCoverage")
```
## Example
**Step 1:** Create a file named `foo.jl` with the following contents:
```julia
function foo(x)
if x == 1 || x == 100
return "hello"
else
return "goodbye"
end
end
```
**Step 2:** Create a file named `test_foo.jl` with the following contents:
```julia
using Test
@test foo(1) == "hello"
```
**Step 3:** Open `julia` and run the following commands:
```julia
julia> using MicroCoverage
julia> MicroCoverage.start("foo.jl")
julia> include("foo.jl")
julia> include("test_foo.jl")
julia> MicroCoverage.stop()
```
When you run `MicroCoverage.stop()`, MicroCoverage will create
a file named `foo.jl.microcov` with the following contents:
```julia
[1,1,1] function foo(x)
[1,0,1,0,1] if x == 1 || x == 100
[1] return "hello"
- else
[0] return "goodbye"
- end
- end
-
```
## Acknowledgements
- This work was supported in part by National Institutes of Health grants U54GM115677, R01LM011963, and R25MH116440. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
## Related Work
1. [https://github.com/StephenVavasis/microcoverage](https://github.com/StephenVavasis/microcoverage)
| MicroCoverage | https://github.com/bcbi/MicroCoverage.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1670 | if get(ENV, "FT_BUILD_FROM_SOURCE", "false") == "true"
extension = Sys.isapple() ? "dylib" : Sys.islinux() ? "so" : Sys.iswindows() ? "dll" : ""
make = Sys.iswindows() ? "mingw32-make" : "make"
flags = Sys.isapple() ? "FT_USE_APPLEBLAS=1" : Sys.iswindows() ? "FT_FFTW_WITH_COMBINED_THREADS=1" : ""
script = """
set -e
set -x
if [ -d "FastTransforms" ]; then
cd FastTransforms
git fetch
git checkout master
git pull
cd ..
else
git clone https://github.com/MikaelSlevinsky/FastTransforms.git FastTransforms
fi
cd FastTransforms
$make assembly
$make lib $flags
cd ..
mv -f FastTransforms/libfasttransforms.$extension libfasttransforms.$extension
"""
try
run(`bash -c $(script)`)
catch
error(
"FastTransforms could not be properly installed.\n Please check that you have all dependencies installed. " *
"Sample installation of dependencies:\n" *
(Sys.isapple() ? "On MacOS\n\tbrew install libomp fftw mpfr\n" :
Sys.islinux() ? "On Linux\n\tsudo apt-get install libomp-dev libblas-dev libopenblas-base libfftw3-dev libmpfr-dev\n" :
Sys.iswindows() ? "On Windows\n\tvcpkg install openblas:x64-windows fftw3[core,threads]:x64-windows mpir:x64-windows mpfr:x64-windows\n" :
"On your platform, please consider opening a pull request to add support to build from source.\n")
)
end
println("FastTransforms built from source.")
else
println("FastTransforms using precompiled binaries.")
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1849 | using Documenter, FastTransforms, Literate, Plots
plotlyjs()
const EXAMPLES_DIR = joinpath(@__DIR__, "..", "examples")
const OUTPUT_DIR = joinpath(@__DIR__, "src/generated")
examples = [
"annulus.jl",
"automaticdifferentiation.jl",
"chebyshev.jl",
"disk.jl",
"halfrange.jl",
"nonlocaldiffusion.jl",
"padua.jl",
"sphere.jl",
"spinweighted.jl",
"subspaceangles.jl",
"triangle.jl",
]
function uncomment_objects(str)
str = replace(str, "###```@raw" => "```\n\n```@raw")
str = replace(str, "###<object" => "<object")
str = replace(str, "###```\n```" => "```")
str
end
for example in examples
example_filepath = joinpath(EXAMPLES_DIR, example)
Literate.markdown(example_filepath, OUTPUT_DIR; execute=true, postprocess = uncomment_objects)
end
makedocs(
doctest = false,
format = Documenter.HTML(),
sitename = "FastTransforms.jl",
authors = "Richard Mikael Slevinsky",
pages = Any[
"Home" => "index.md",
"Development" => "dev.md",
"Examples" => [
"generated/annulus.md",
"generated/automaticdifferentiation.md",
"generated/chebyshev.md",
"generated/disk.md",
"generated/halfrange.md",
"generated/nonlocaldiffusion.md",
"generated/padua.md",
"generated/sphere.md",
"generated/spinweighted.md",
"generated/subspaceangles.md",
"generated/triangle.md",
],
]
)
deploydocs(
repo = "github.com/JuliaApproximation/FastTransforms.jl.git",
)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 2656 | # # Integration on an annulus
# In this example, we explore integration of the function:
# ```math
# f(x,y) = \frac{x^3}{x^2+y^2-\frac{1}{4}},
# ```
# over the annulus defined by $\{(r,\theta) : \rho < r < 1, 0 < \theta < 2\pi\}$
# with parameter $\rho = \frac{2}{3}$. We will calculate the integral:
# ```math
# \int_0^{2\pi}\int_{\frac{2}{3}}^1 f(r\cos\theta,r\sin\theta)^2r{\rm\,d}r{\rm\,d}\theta,
# ```
# by analyzing the function in an annulus polynomial series.
# We analyze the function on an $N\times M$ tensor product grid defined by:
# ```math
# \begin{aligned}
# r_n & = \sqrt{\cos^2\left[(n+\tfrac{1}{2})\pi/2N\right] + \rho^2 \sin^2\left[(n+\tfrac{1}{2})\pi/2N\right]},\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
# \theta_m & = 2\pi m/M,\quad{\rm for}\quad 0\le m < M;
# \end{aligned}
# ```
# we convert the function samples to Chebyshev×Fourier coefficients using
# `plan_annulus_analysis`; and finally, we transform the Chebyshev×Fourier
# coefficients to annulus polynomial coefficients using `plan_ann2cxf`.
#
# For the storage pattern of the arrays, please consult the
# [documentation](https://MikaelSlevinsky.github.io/FastTransforms).
using FastTransforms, LinearAlgebra, Plots
const GENFIGS = joinpath(pkgdir(FastTransforms), "docs/src/generated")
!isdir(GENFIGS) && mkdir(GENFIGS)
plotlyjs()
# Our function $f$ on the annulus:
f = (x,y) -> x^3/(x^2+y^2-1/4)
# The annulus polynomial degree:
N = 8
M = 4N-3
# The annulus inner radius:
ρ = 2/3
# The radial grid:
r = [begin t = (N-n-0.5)/(2N); ct = sinpi(t); st = cospi(t); sqrt(ct^2+ρ^2*st^2) end for n in 0:N-1]
# The angular grid (mod $\pi$):
θ = (0:M-1)*2/M
# On the mapped tensor product grid, our function samples are:
F = [f(r*cospi(θ), r*sinpi(θ)) for r in r, θ in θ]
# We superpose a surface plot of $f$ on top of the grid:
X = [r*cospi(θ) for r in r, θ in θ]
Y = [r*sinpi(θ) for r in r, θ in θ]
scatter3d(vec(X), vec(Y), vec(0F); markersize=0.75, markercolor=:red)
surface!(X, Y, F; legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "annulus.html"))
###```@raw html
###<object type="text/html" data="../annulus.html" style="width:100%;height:400px;"></object>
###```
# We precompute an Annulus--Chebyshev×Fourier plan:
α, β, γ = 0, 0, 0
P = plan_ann2cxf(F, α, β, γ, ρ)
# And an FFTW Chebyshev×Fourier analysis plan on the annulus:
PA = plan_annulus_analysis(F, ρ)
# Its annulus coefficients are:
U = P\(PA*F)
# The annulus coefficients are useful for integration.
# The integral of $[f(x,y)]^2$ over the annulus is
# approximately the square of the 2-norm of the coefficients:
norm(U)^2, 5π/8*(1675/4536+9*log(3)/32-3*log(7)/32)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1269 | # # Automatic differentiation through spherical harmonic transforms
# This example finds a positive value of $\lambda$ in:
# ```math
# f(r) = \sin[\lambda (k\cdot r)],
# ```
# for some $k,r\in\mathbb{S}^2$ such that $\int_{\mathbb{S}^2} f^2 {\rm\,d}\Omega = 1$.
# We do this by using derivative information through:
# ```math
# \dfrac{\partial f}{\partial \lambda} = (k\cdot r) \cos[\lambda (k\cdot r)].
# ```
using FastTransforms, LinearAlgebra
# The colatitudinal grid (mod $\pi$):
N = 15
θ = (0.5:N-0.5)/N
# The longitudinal grid (mod $\pi$):
M = 2*N-1
φ = (0:M-1)*2/M
# We precompute a spherical harmonic--Fourier plan:
P = plan_sph2fourier(Float64, N)
# And an FFTW Fourier analysis plan on $\mathbb{S}^2$:
PA = plan_sph_analysis(Float64, N, M)
# Our choice of $k$ and angular parametrization of $r$:
k = [2/7, 3/7, 6/7]
r = (θ,φ) -> [sinpi(θ)*cospi(φ), sinpi(θ)*sinpi(φ), cospi(θ)]
# Our initial guess for $\lambda$:
λ = 1.0
# Then we run Newton iteration and grab an espresso:
for _ in 1:7
F = [sin(λ*(k⋅r(θ,φ))) for θ in θ, φ in φ]
Fλ = [(k⋅r(θ,φ))*cos(λ*(k⋅r(θ,φ))) for θ in θ, φ in φ]
U = P\(PA*F)
Uλ = P\(PA*Fλ)
global λ = λ - (norm(U)^2-1)/(2*sum(U.*Uλ))
println("λ: $(rpad(λ, 18)) and the 2-norm: $(rpad(norm(U), 18))")
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1421 | # # Chebyshev transform
# This demonstrates the Chebyshev transform and inverse transform,
# explaining precisely the normalization and points
using FastTransforms
n = 20
# First kind points $\to$ first kind polynomials
p_1 = chebyshevpoints(Float64, n, Val(1))
f = exp.(p_1)
f̌ = chebyshevtransform(f, Val(1))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
# First kind polynomials $\to$ first kind points
ichebyshevtransform(f̌, Val(1)) ≈ exp.(p_1)
# Second kind points $\to$ first kind polynomials
p_2 = chebyshevpoints(Float64, n, Val(2))
f = exp.(p_2)
f̌ = chebyshevtransform(f, Val(2))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
# First kind polynomials $\to$ second kind points
ichebyshevtransform(f̌, Val(2)) ≈ exp.(p_2)
# First kind points $\to$ second kind polynomials
p_1 = chebyshevpoints(Float64, n, Val(1))
f = exp.(p_1)
f̌ = chebyshevutransform(f, Val(1))
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
# Second kind polynomials $\to$ first kind points
ichebyshevutransform(f̌, Val(1)) ≈ exp.(p_1)
# Second kind points $\to$ second kind polynomials
p_2 = chebyshevpoints(Float64, n, Val(2))[2:n-1]
f = exp.(p_2)
f̌ = chebyshevutransform(f, Val(2))
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-3]' * f̌
f̃(0.1) ≈ exp(0.1)
# Second kind polynomials $\to$ second kind points
ichebyshevutransform(f̌, Val(2)) ≈ exp.(p_2)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4578 | # # Holomorphic integration on the unit disk
# In this example, we explore integration of a harmonic function:
# ```math
# f(x,y) = \frac{x^2-y^2+1}{(x^2-y^2+1)^2+(2xy+1)^2},
# ```
# over the unit disk. In this case, we know from complex analysis that the
# integral of a holomorphic function is equal to $\pi \times f(0,0)$.
# We analyze the function on an $N\times M$ tensor product grid defined by:
# ```math
# \begin{aligned}
# r_n & = \cos\left[(n+\tfrac{1}{2})\pi/2N\right],\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
# \theta_m & = 2\pi m/M,\quad{\rm for}\quad 0\le m < M;
# \end{aligned}
# ```
# we convert the function samples to Chebyshev×Fourier coefficients using
# `plan_disk_analysis`; and finally, we transform the Chebyshev×Fourier
# coefficients to Zernike polynomial coefficients using `plan_disk2cxf`.
#
# For the storage pattern of the arrays, please consult the
# [documentation](https://MikaelSlevinsky.github.io/FastTransforms).
using FastTransforms, LinearAlgebra, Plots
const GENFIGS = joinpath(pkgdir(FastTransforms), "docs/src/generated")
!isdir(GENFIGS) && mkdir(GENFIGS)
plotlyjs()
# Our function $f$ on the disk:
f = (x,y) -> (x^2-y^2+1)/((x^2-y^2+1)^2+(2x*y+1)^2)
# The Zernike polynomial degree:
N = 15
M = 4N-3
# The radial grid:
r = [sinpi((N-n-0.5)/(2N)) for n in 0:N-1]
# The angular grid (mod $\pi$):
θ = (0:M-1)*2/M
# On the mapped tensor product grid, our function samples are:
F = [f(r*cospi(θ), r*sinpi(θ)) for r in r, θ in θ]
# We superpose a surface plot of $f$ on top of the grid:
X = [r*cospi(θ) for r in r, θ in θ]
Y = [r*sinpi(θ) for r in r, θ in θ]
scatter3d(vec(X), vec(Y), vec(0F); markersize=0.75, markercolor=:red)
surface!(X, Y, F; legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "zernike.html"))
###```@raw html
###<object type="text/html" data="../zernike.html" style="width:100%;height:400px;"></object>
###```
# We precompute a (generalized) Zernike--Chebyshev×Fourier plan:
α, β = 0, 0
P = plan_disk2cxf(F, α, β)
# And an FFTW Chebyshev×Fourier analysis plan on the disk:
PA = plan_disk_analysis(F)
# Its Zernike coefficients are:
U = P\(PA*F)
# The Zernike coefficients are useful for integration. The integral of $f(x,y)$
# over the disk should be $\pi/2$ by harmonicity. The coefficient of $Z_{0,0}$
# multiplied by `√π` is:
U[1, 1]*sqrt(π)
# Using an orthonormal basis, the integral of $[f(x,y)]^2$ over the disk is
# approximately the square of the 2-norm of the coefficients:
norm(U)^2, π/(2*sqrt(2))*log1p(sqrt(2))
# But there's more! Next, we repeat the experiment using the Dunkl-Xu
# orthonormal polynomials supported on the rectangularized disk.
N = 2N
M = N
# We analyze the function on an $N\times M$ mapped tensor product $xy$-grid defined by:
# ```math
# \begin{aligned}
# x_n & = \cos\left(\frac{2n+1}{2N}\pi\right) = \sin\left(\frac{N-2n-1}{2N}\pi\right),\quad {\rm for} \quad 0 \le n < N,\quad{\rm and}\\
# z_m & = \cos\left(\frac{2m+1}{2M}\pi\right) = \sin\left(\frac{M-2m-1}{2M}\pi\right),\quad {\rm for} \quad 0 \le m < M,\\
# y_{n,m} & = \sqrt{1-x_n^2}z_m.
# \end{aligned}
# ```
# Slightly more accuracy can be expected by using an auxiliary array:
# ```math
# w_n = \sin\left(\frac{2n+1}{2N}\pi\right),\quad {\rm for} \quad 0 \le n < N,
# ```
# so that $y_{n,m} = w_nz_m$.
#
# The x grid
w = [sinpi((n+0.5)/N) for n in 0:N-1]
x = [sinpi((N-2n-1)/(2N)) for n in 0:N-1]
# The z grid
z = [sinpi((M-2m-1)/(2M)) for m in 0:M-1]
# On the mapped tensor product grid, our function samples are:
F = [f(x[n], w[n]*z) for n in 1:N, z in z]
# We superpose a surface plot of $f$ on top of the grid:
X = [x for x in x, z in z]
Y = [w*z for w in w, z in z]
scatter3d(vec(X), vec(Y), vec(0F); markersize=0.75, markercolor=:green)
surface!(X, Y, F; legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "dunklxu.html"))
###```@raw html
###<object type="text/html" data="../dunklxu.html" style="width:100%;height:400px;"></object>
###```
# We precompute a Dunkl-Xu--Chebyshev plan:
P = plan_rectdisk2cheb(F, β)
# And an FFTW Chebyshev² analysis plan on the rectangularized disk:
PA = plan_rectdisk_analysis(F)
# Its Dunkl-Xu coefficients are:
U = P\(PA*F)
# The Dunkl-Xu coefficients are useful for integration. The integral of $f(x,y)$
# over the disk should be $\pi/2$ by harmonicity. The coefficient of $P_{0,0}$
# multiplied by `√π` is:
U[1, 1]*sqrt(π)
# Using an orthonormal basis, the integral of $[f(x,y)]^2$ over the disk is
# approximately the square of the 2-norm of the coefficients:
norm(U)^2, π/(2*sqrt(2))*log1p(sqrt(2))
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4043 | # # Half-range Chebyshev polynomials
# In [this paper](https://doi.org/10.1137/090752456), [Daan Huybrechs](https://github.com/daanhb) introduced the so-called half-range Chebyshev polynomials
# as the semi-classical orthogonal polynomials with respect to the inner product:
# ```math
# \langle f, g \rangle = \int_0^1 f(x) g(x)\frac{{\rm d} x}{\sqrt{1-x^2}}.
# ```
# By the variable transformation $y = 2x-1$, the resulting polynomials can be related to
# orthogonal polynomials on $(-1,1)$ with the Jacobi weight $(1-y)^{-\frac{1}{2}}$ modified by the weight $(3+y)^{-\frac{1}{2}}$.
#
# We shall use the fact that:
# ```math
# \frac{1}{\sqrt{3+y}} = \sqrt{\frac{2}{3+\sqrt{8}}}\sum_{n=0}^\infty P_n(y) \left(\frac{-1}{3+\sqrt{8}}\right)^n,
# ```
# and results from [this paper](https://arxiv.org/abs/2302.08448) to consider the half-range Chebyshev polynomials as
# modifications of the Jacobi polynomials $P_n^{(-\frac{1}{2},0)}(y)$.
using FastTransforms, LinearAlgebra, Plots, LaTeXStrings
const GENFIGS = joinpath(pkgdir(FastTransforms), "docs/src/generated")
!isdir(GENFIGS) && mkdir(GENFIGS)
plotlyjs()
# We truncate the generating function to ensure a relative error less than `eps()` in the uniform norm on $(-1,1)$:
z = -1/(3+sqrt(8))
K = sqrt(-2z)
N = ceil(Int, log(abs(z), eps()/2*(1-abs(z))/K) - 1)
d = K .* z .^(0:N)
# Then, we convert this representation to the expansion in Jacobi polynomials $P_n^{(-\frac{1}{2}, 0)}(y)$:
u = jac2jac(d, 0.0, 0.0, -0.5, 0.0; norm1 = false, norm2 = true)
# Our working polynomial degree will be:
n = 100
# We compute the connection coefficients between the modified orthogonal polynomials and the Jacobi polynomials:
P = plan_modifiedjac2jac(Float64, n+1, -0.5, 0.0, u)
# We store the connection to first kind Chebyshev polynomials:
P1 = plan_jac2cheb(Float64, n+1, -0.5, 0.0; normjac = true)
# We compute the Chebyshev series for the degree-$k\le n$ modified polynomial and its values at the Chebyshev points:
q = k -> lmul!(P1, lmul!(P, [zeros(k); 1.0; zeros(n-k)]))
qvals = k-> ichebyshevtransform(q(k))
# With the symmetric Jacobi matrix for $P_n^{(-\frac{1}{2}, 0)}(y)$ and the modified plan, we may compute the modified Jacobi matrix and the corresponding roots (as eigenvalues):
XP = SymTridiagonal([-inv((4n-1)*(4n-5)) for n in 1:n+1], [4n*(2n-1)/(4n-1)/sqrt((4n-3)*(4n+1)) for n in 1:n])
XQ = FastTransforms.modified_jacobi_matrix(P, XP)
SymTridiagonal(XQ.dv[1:10], XQ.ev[1:9])
# And we plot:
x = (chebyshevpoints(Float64, n+1, Val(1)) .+ 1 ) ./ 2
p = plot(x, qvals(0); linewidth=2.0, legend = false, xlim=(0,1), xlabel=L"x",
ylabel=L"T^h_n(x)", title="Half-Range Chebyshev Polynomials and Their Roots",
extra_plot_kwargs = KW(:include_mathjax => "cdn"))
for k in 1:10
λ = (eigvals(SymTridiagonal(XQ.dv[1:k], XQ.ev[1:k-1])) .+ 1) ./ 2
plot!(x, qvals(k); linewidth=2.0, color=palette(:default)[k+1])
scatter!(λ, zero(λ); markersize=2.5, color=palette(:default)[k+1])
end
p
savefig(joinpath(GENFIGS, "halfrange.html"))
###```@raw html
###<object type="text/html" data="../halfrange.html" style="width:100%;height:400px;"></object>
###```
# By [Theorem 2.20](https://arxiv.org/abs/2302.08448) it turns out that the *derivatives* of the half-range Chebyshev polynomials are a linear combination of at most two polynomials orthogonal with respect to $\sqrt{(3+y)(1-y)}(1+y)$ on $(-1,1)$. This fact enables us to compute the banded differentiation matrix:
v̂ = 3*[u; 0]+XP[1:N+2, 1:N+1]*u
v = jac2jac(v̂, -0.5, 0.0, 0.5, 1.0; norm1 = true, norm2 = true)
function threshold!(A::AbstractArray, ϵ)
for i in eachindex(A)
if abs(A[i]) < ϵ A[i] = 0 end
end
A
end
P′ = plan_modifiedjac2jac(Float64, n+1, 0.5, 1.0, v)
DP = UpperTriangular(diagm(1=>[sqrt(n*(n+1/2)) for n in 1:n])) # The classical differentiation matrix representing 𝒟 P^{(-1/2,0)}(y) = P^{(1/2,1)}(y) D_P.
DQ = UpperTriangular(threshold!(P′\(DP*(P*I)), 100eps())) # The semi-classical differentiation matrix representing 𝒟 Q(y) = Q̂(y) D_Q.
UpperTriangular(DQ[1:10,1:10])
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 3842 | # # Nonlocal diffusion on $\mathbb{S}^2$
# This example calculates the spectrum of the nonlocal diffusion operator:
# ```math
# \mathcal{L}_\delta u = \int_{\mathbb{S}^2} \rho_\delta(|\mathbf{x}-\mathbf{y}|)\left[u(\mathbf{x}) - u(\mathbf{y})\right] \,\mathrm{d}\Omega(\mathbf{y}),
# ```
# defined in Eq. (2) of
#
# R. M. Slevinsky, H. Montanelli, and Q. Du, [A spectral method for nonlocal diffusion operators on the sphere](https://doi.org/10.1016/j.jcp.2018.06.024), *J. Comp. Phys.*, **372**:893--911, 2018.
#
# In the above, $0<\delta<2$, $-1<\alpha<1$, and the kernel:
# ```math
# \rho_\delta(|\mathbf{x}-\mathbf{y}|) = \frac{4(1+\alpha)}{\pi \delta^{2+2\alpha}} \frac{\chi_{[0,\delta]}(|\mathbf{x}-\mathbf{y}|)}{|\mathbf{x}-\mathbf{y}|^{2-2\alpha}},
# ```
# where $\chi_I(\cdot)$ is the indicator function on the set $I$.
#
# This nonlocal operator is diagonalized by spherical harmonics:
# ```math
# \mathcal{L}_\delta Y_\ell^m(\mathbf{x}) = \lambda_\ell(\alpha, \delta) Y_\ell^m(\mathbf{x}),
# ```
# and its eigenfunctions are given by the generalized Funk--Hecke formula:
# ```math
# \lambda_\ell(\alpha, \delta) = \frac{(1+\alpha) 2^{2+\alpha}}{\delta^{2+2\alpha}}\int_{1-\delta^2/2}^1 \left[P_\ell(t)-1\right] (1-t)^{\alpha-1} \,\mathrm{d} t.
# ```
# In the paper, the authors use Clenshaw--Curtis quadrature and asymptotic evaluation of Legendre polynomials to achieve $\mathcal{O}(n^2\log n)$ complexity for the evaluation of the first $n$ eigenvalues. With a change of basis, this complexity can be reduced to $\mathcal{O}(n\log n)$.
#
# First, we represent:
# ```math
# P_n(t) - 1 = \sum_{j=0}^{n-1} \left[P_{j+1}(t) - P_j(t)\right] = -\sum_{j=0}^{n-1} (1-t) P_j^{(1,0)}(t).
# ```
# Then, we represent $P_j^{(1,0)}(t)$ with Jacobi polynomials $P_i^{(\alpha,0)}(t)$ and we integrate using [DLMF 18.9.16](https://dlmf.nist.gov/18.9.16):
# ```math
# \int_x^1 P_i^{(\alpha,0)}(t)(1-t)^\alpha\,\mathrm{d}t = \left\{ \begin{array}{cc} \frac{(1-x)^{\alpha+1}}{\alpha+1} & \mathrm{for~}i=0,\\ \frac{1}{2i}(1-x)^{\alpha+1}(1+x)P_{i-1}^{(\alpha+1,1)}(x), & \mathrm{for~}i>0.\end{array}\right.
# ```
# The code below implements this algorithm, making use of the Jacobi--Jacobi transform `plan_jac2jac`.
# For numerical stability, the conversion from Jacobi polynomials $P_j^{(1,0)}(t)$ to $P_i^{(\alpha,0)}(t)$ is divided into conversion from $P_j^{(1,0)}(t)$ to $P_k^{(0,0)}(t)$, before conversion from $P_k^{(0,0)}(t)$ to $P_i^{(\alpha,0)}(t)$.
using FastTransforms, LinearAlgebra
function oprec!(n::Integer, v::AbstractVector, alpha::Real, delta2::Real)
if n > 0
v[1] = 1
end
if n > 1
v[2] = (4*alpha+8-(alpha+4)*delta2)/4
end
for i = 1:n-2
v[i+2] = (((2*i+alpha+2)*(2*i+alpha+4)+alpha*(alpha+2))/(2*(i+1)*(2*i+alpha+2))*(2*i+alpha+3)/(i+alpha+3) - delta2/4*(2*i+alpha+3)/(i+1)*(2*i+alpha+4)/(i+alpha+3))*v[i+1] - (i+alpha+1)/(i+alpha+3)*(2*i+alpha+4)/(2*i+alpha+2)*v[i]
end
return v
end
function evaluate_lambda(n::Integer, alpha::T, delta::T) where T
delta2 = delta*delta
scl = (1+alpha)*(2-delta2/2)
lambda = Vector{T}(undef, n)
if n > 0
lambda[1] = 0
end
if n > 1
lambda[2] = -2
end
oprec!(n-2, view(lambda, 3:n), alpha, delta2)
for i = 2:n-1
lambda[i+1] *= -scl/(i-1)
end
p = plan_jac2jac(T, n-1, zero(T), zero(T), alpha, zero(T))
lmul!(p', view(lambda, 2:n))
for i = 2:n-1
lambda[i+1] = ((2i-1)*lambda[i+1] + (i-1)*lambda[i])/i
end
for i = 2:n-1
lambda[i+1] += lambda[i]
end
return lambda
end
# The spectrum in `Float64`:
lambda = evaluate_lambda(10, -0.5, 1.0)
# The spectrum in `BigFloat`:
lambdabf = evaluate_lambda(10, parse(BigFloat, "-0.5"), parse(BigFloat, "1.0"))
# The $\infty$-norm relative error:
norm(lambda-lambdabf, Inf)/norm(lambda, Inf)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 798 | # # Padua transform
# This demonstrates the Padua transform and inverse transform,
# explaining precisely the normalization and points
using FastTransforms
# We define the Padua points and extract Cartesian components:
N = 15
pts = paduapoints(N)
x = pts[:,1]
y = pts[:,2];
# We take the Padua transform of the function:
f = (x,y) -> exp(x + cos(y))
f̌ = paduatransform(f.(x , y));
# and use the coefficients to create an approximation to the function $f$:
f̃ = (x,y) -> begin
j = 1
ret = 0.0
for n in 0:N, k in 0:n
ret += f̌[j]*cos((n-k)*acos(x)) * cos(k*acos(y))
j += 1
end
ret
end
# At a particular point, is the function well-approximated?
f̃(0.1,0.2) ≈ f(0.1,0.2)
# Does the inverse transform bring us back to the grid?
ipaduatransform(f̌) ≈ f̃.(x,y)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4988 | # # Spherical harmonic addition theorem
# This example confirms numerically that
# ```math
# f(z) = \frac{P_n(z\cdot y) - P_n(x\cdot y)}{z\cdot y - x\cdot y},
# ```
# is actually a degree-$(n-1)$ polynomial on $\mathbb{S}^2$, where $P_n$ is the degree-$n$
# Legendre polynomial, and $x,y,z \in \mathbb{S}^2$.
# To verify, we sample the function on a $N\times M$ equiangular grid
# defined by:
# ```math
# \begin{aligned}
# \theta_n & = (n+\tfrac{1}{2})\pi/N,\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
# \varphi_m & = 2\pi m/M,\quad{\rm for}\quad 0\le m < M;
# \end{aligned}
# ```
# we convert the function samples to Fourier coefficients using
# `plan_sph_analysis`; and finally, we transform
# the Fourier coefficients to spherical harmonic coefficients using
# `plan_sph2fourier`.
#
# In the basis of spherical harmonics, it is plain to see the
# addition theorem in action, since $P_n(x\cdot y)$ should only consist of
# exact-degree-$n$ harmonics.
#
# For the storage pattern of the arrays, please consult the
# [documentation](https://MikaelSlevinsky.github.io/FastTransforms).
function threshold!(A::AbstractArray, ϵ)
for i in eachindex(A)
if abs(A[i]) < ϵ A[i] = 0 end
end
A
end
using FastTransforms, LinearAlgebra, Plots
const GENFIGS = joinpath(pkgdir(FastTransforms), "docs/src/generated")
!isdir(GENFIGS) && mkdir(GENFIGS)
plotlyjs()
# The colatitudinal grid (mod $\pi$):
N = 15
θ = (0.5:N-0.5)/N
# The longitudinal grid (mod $\pi$):
M = 2*N-1
φ = (0:M-1)*2/M
# Arbitrarily, we place $x$ at the North pole:
x = [0,0,1]
# Another vector is completely free:
y = normalize([.123,.456,.789])
# Thus $z \in \mathbb{S}^2$ is our variable vector, parameterized in spherical coordinates:
z = (θ,φ) -> [sinpi(θ)*cospi(φ), sinpi(θ)*sinpi(φ), cospi(θ)]
# On the tensor product grid, the Legendre polynomial $P_n(z\cdot y)$ is:
A = [(2k+1)/(k+1) for k in 0:N-1]
B = zeros(N)
C = [k/(k+1) for k in 0:N]
c = zeros(N); c[N] = 1
pts = vec([z(θ, φ)⋅y for θ in θ, φ in φ])
phi0 = ones(N*M)
F = reshape(FastTransforms.clenshaw!(c, A, B, C, pts, phi0, zeros(N*M)), N, M)
# We superpose a surface plot of $f$ on top of the grid:
X = [sinpi(θ)*cospi(φ) for θ in θ, φ in φ]
Y = [sinpi(θ)*sinpi(φ) for θ in θ, φ in φ]
Z = [cospi(θ) for θ in θ, φ in φ]
scatter3d(vec(X), vec(Y), vec(Z); markersize=1.25, markercolor=:violetred)
surface!(X, Y, Z; surfacecolor=F, legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "sphere1.html"))
###```@raw html
###<object type="text/html" data="../sphere1.html" style="width:100%;height:400px;"></object>
###```
# We show the cut in the surface to help illustrate the definition of the grid.
# In particular, we do not sample the poles.
#
# We precompute a spherical harmonic--Fourier plan:
P = plan_sph2fourier(F)
# And an FFTW Fourier analysis plan on $\mathbb{S}^2$:
PA = plan_sph_analysis(F)
# Its spherical harmonic coefficients demonstrate that it is exact-degree-$n$:
V = PA*F
U = threshold!(P\V, 400*eps())
# The $L^2(\mathbb{S}^2)$ norm of the function is:
nrm1 = norm(U)
# Similarly, on the tensor product grid, our function samples are:
Pnxy = FastTransforms.clenshaw!(c, A, B, C, [x⋅y], [1.0], [0.0])[1]
F = [(F[n, m] - Pnxy)/(z(θ[n], φ[m])⋅y - x⋅y) for n in 1:N, m in 1:M]
# We superpose a surface plot of $f$ on top of the grid:
scatter3d(vec(X), vec(Y), vec(Z); markersize=1.25, markercolor=:violetred)
surface!(X, Y, Z; surfacecolor=F, legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "sphere2.html"))
###```@raw html
###<object type="text/html" data="../sphere2.html" style="width:100%;height:400px;"></object>
###```
# Its spherical harmonic coefficients demonstrate that it is degree-$(n-1)$:
V = PA*F
U = threshold!(P\V, 400*eps())
# Finally, the Legendre polynomial $P_n(z\cdot x)$ is aligned with the grid:
pts = vec([z(θ, φ)⋅x for θ in θ, φ in φ])
F = reshape(FastTransforms.clenshaw!(c, A, B, C, pts, phi0, zeros(N*M)), N, M)
# We superpose a surface plot of $f$ on top of the grid:
scatter3d(vec(X), vec(Y), vec(Z); markersize=1.25, markercolor=:violetred)
surface!(X, Y, Z; surfacecolor=F, legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "sphere3.html"))
###```@raw html
###<object type="text/html" data="../sphere3.html" style="width:100%;height:400px;"></object>
###```
# It only has one nonnegligible spherical harmonic coefficient.
# Can you spot it?
V = PA*F
U = threshold!(P\V, 400*eps())
# That nonnegligible coefficient should be
ret = eval("√(2π/($(N-1)+1/2))")
# which is approximately
eval(Meta.parse(ret))
# since the convention in this library is to orthonormalize.
nrm2 = norm(U)
# Note that the integrals of both functions $P_n(z\cdot y)$ and $P_n(z\cdot x)$ and their
# $L^2(\mathbb{S}^2)$ norms are the same because of rotational invariance. The integral of
# either is perhaps not interesting as it is mathematically zero, but the norms
# of either should be approximately the same.
nrm1 ≈ nrm2
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 2684 | function threshold!(A::AbstractArray, ϵ)
for i in eachindex(A)
if abs(A[i]) < ϵ A[i] = 0 end
end
A
end
using FastTransforms, LinearAlgebra, Random, Test
# The colatitudinal grid (mod π):
N = 10
θ = (0.5:N-0.5)/N
# The longitudinal grid (mod π):
M = 2*N-1
φ = (0:M-1)*2/M
x = [cospi(φ)*sinpi(θ) for θ in θ, φ in φ]
y = [sinpi(φ)*sinpi(θ) for θ in θ, φ in φ]
z = [cospi(θ) for θ in θ, φ in φ]
P = plan_sph2fourier(Float64, N)
PA = plan_sph_analysis(Float64, N, M)
J = FastTransforms.plan_sph_isometry(Float64, N)
f = (x, y, z) -> x^2+y^4+x^2*y*z^3-x*y*z^2
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_yz_axis_exchange!(J, U)
FR = f.(x, -z, -y)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
α, β, γ = 0.123, 0.456, 0.789
# Isometry built up from ZYZR
A = [cos(α) -sin(α) 0; sin(α) cos(α) 0; 0 0 1]
B = [cos(β) 0 -sin(β); 0 1 0; sin(β) 0 cos(β)]
C = [cos(γ) -sin(γ) 0; sin(γ) cos(γ) 0; 0 0 1]
R = diagm([1, 1, 1.0])
Q = A*B*C*R
# Transform the sampling grid. Note that `Q` is transposed here.
u = Q[1,1]*x + Q[2,1]*y + Q[3,1]*z
v = Q[1,2]*x + Q[2,2]*y + Q[3,2]*z
w = Q[1,3]*x + Q[2,3]*y + Q[3,3]*z
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_rotation!(J, α, β, γ, U)
FR = f.(u, v, w)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_polar_reflection!(U)
FR = f.(x, y, -z)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
# Isometry built up from planar reflection
W = [0.123, 0.456, 0.789]
H = w -> I - 2/(w'w)*w*w'
Q = H(W)
# Transform the sampling grid. Note that `Q` is transposed here.
u = Q[1,1]*x + Q[2,1]*y + Q[3,1]*z
v = Q[1,2]*x + Q[2,2]*y + Q[3,2]*z
w = Q[1,3]*x + Q[2,3]*y + Q[3,3]*z
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_reflection!(J, W, U)
FR = f.(u, v, w)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_reflection!(J, (W[1], W[2], W[3]), U)
FR = f.(u, v, w)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
# Random orthogonal transformation
Random.seed!(0)
Q = qr(rand(3, 3)).Q
# Transform the sampling grid, note that `Q` is transposed here.
u = Q[1,1]*x + Q[2,1]*y + Q[3,1]*z
v = Q[1,2]*x + Q[2,2]*y + Q[3,2]*z
w = Q[1,3]*x + Q[2,3]*y + Q[3,3]*z
F = f.(x, y, z)
V = PA*F
U = threshold!(P\V, 100eps())
FastTransforms.execute_sph_orthogonal_transformation!(J, Q, U)
FR = f.(u, v, w)
VR = PA*FR
UR = threshold!(P\VR, 100eps())
@test U ≈ UR
norm(U-UR)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 2060 | # # Spin-weighted spherical harmonics
# This example plays with analysis of:
# ```math
# f(r) = e^{{\rm i} k\cdot r},
# ```
# for some $k\in\mathbb{R}^3$ and where $r\in\mathbb{S}^2$, using spin-$0$ spherical harmonics.
#
# It applies ð, the spin-raising operator,
# both on the spin-$0$ coefficients as well as the original function,
# followed by a spin-$1$ analysis to compare coefficients.
#
# For the storage pattern of the arrays, please consult the
# [documentation](https://MikaelSlevinsky.github.io/FastTransforms).
using FastTransforms, LinearAlgebra
# The colatitudinal grid (mod $\pi$):
N = 10
θ = (0.5:N-0.5)/N
# The longitudinal grid (mod $\pi$):
M = 2*N-1
φ = (0:M-1)*2/M
# Our choice of $k$ and angular parametrization of $r$:
k = [2/7, 3/7, 6/7]
r = (θ,φ) -> [sinpi(θ)*cospi(φ), sinpi(θ)*sinpi(φ), cospi(θ)]
# On the tensor product grid, our function samples are:
F = [exp(im*(k⋅r(θ,φ))) for θ in θ, φ in φ]
# We precompute a spin-$0$ spherical harmonic--Fourier plan:
P = plan_spinsph2fourier(F, 0)
# And an FFTW Fourier analysis plan on $\mathbb{S}^2$:
PA = plan_spinsph_analysis(F, 0)
# Its spin-$0$ spherical harmonic coefficients are:
U⁰ = P\(PA*F)
# We can check its $L^2(\mathbb{S}^2)$ norm against an exact result:
norm(U⁰) ≈ sqrt(4π)
# Spin can be incremented by applying ð, either on the spin-$0$ coefficients:
U¹c = zero(U⁰)
for n in 1:N-1
U¹c[n, 1] = sqrt(n*(n+1))*U⁰[n+1, 1]
end
for m in 1:M÷2
for n in 0:N-1
U¹c[n+1, 2m] = -sqrt((n+m)*(n+m+1))*U⁰[n+1, 2m]
U¹c[n+1, 2m+1] = sqrt((n+m)*(n+m+1))*U⁰[n+1, 2m+1]
end
end
# or on the original function through analysis with spin-$1$ spherical harmonics:
F = [-(k[1]*(im*cospi(θ)*cospi(φ) + sinpi(φ)) + k[2]*(im*cospi(θ)*sinpi(φ)-cospi(φ)) - im*k[3]*sinpi(θ))*exp(im*(k⋅r(θ,φ))) for θ in θ, φ in φ]
# We change plans with spin-$1$ now and reanalyze:
P = plan_spinsph2fourier(F, 1)
PA = plan_spinsph_analysis(F, 1)
U¹s = P\(PA*F)
# Finally, we check $L^2(\mathbb{S}^2)$ norms against another exact result:
norm(U¹c) ≈ norm(U¹s) ≈ sqrt(8π/3*(k⋅k))
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1160 | # # Subspace angles
# This example considers the angles between neighbouring Laguerre polynomials with a perturbed measure:
# ```math
# \cos\theta_n = \frac{\langle L_n, L_{n+k}\rangle}{\|L_n\|_2 \|L_{n+k}\|_2},\quad{\rm for}\quad 0\le n < N-k,
# ```
# where the inner product is defined by $\langle f, g\rangle = \int_0^\infty f(x) g(x) x^\beta e^{-x}{\rm\,d}x$.
#
# We do so by connecting Laguerre polynomials to the normalized generalized Laguerre polynomials associated with the perturbed measure. It follows by the inner product of the connection coefficients that:
# ```math
# \cos\theta_n = \frac{(V^\top V)_{n, n+k}}{\sqrt{(V^\top V)_{n, n}(V^\top V)_{n+k, n+k}}}.
# ```
#
using FastTransforms, LinearAlgebra
# The neighbouring index `k` and the maximum degree `N-1`:
k, N = 1, 11
# The Laguerre connection parameters:
α, β = 0.0, 0.125
# We precompute a Laguerre--Laguerre plan:
P = plan_lag2lag(Float64, N, α, β; norm2=true)
# We apply the plan to the identity, followed by the adjoint plan:
VtV = parent(P*I)
lmul!(P', VtV)
# From this matrix, the angles are recovered from:
θ = [acos(VtV[n, n+k]/sqrt(VtV[n, n]*VtV[n+k, n+k])) for n in 1:N-k]
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4129 | # # Calculus on the reference triangle
# In this example, we sample a bivariate function:
# ```math
# f(x,y) = \frac{1}{1+x^2+y^2},
# ```
# on the reference triangle with vertices $(0,0)$, $(0,1)$, and $(1,0)$ and analyze it
# in a Proriol series. Then, we find Proriol series for each component of its
# gradient by term-by-term differentiation of our expansion, and we compare them
# with the true Proriol series by sampling an exact expression for the gradient.
#
# We analyze $f(x,y)$ on an $N\times M$ mapped tensor product grid defined by:
# ```math
# \begin{aligned}
# x & = (1+u)/2,\quad{\rm and}\quad y = (1-u)(1+v)/4,\quad {\rm where:}\\
# u_n & = \cos\left[(n+\tfrac{1}{2})\pi/N\right],\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
# v_m & = \cos\left[(m+\tfrac{1}{2})\pi/M\right],\quad{\rm for}\quad 0\le m < M;
# \end{aligned}
# ```
# we convert the function samples to mapped Chebyshev² coefficients using
# `plan_tri_analysis`; and finally, we transform the mapped Chebyshev²
# coefficients to Proriol coefficients using `plan_tri2cheb`.
#
# For the storage pattern of the arrays, please consult the
# [documentation](https://MikaelSlevinsky.github.io/FastTransforms).
using FastTransforms, LinearAlgebra, Plots
const GENFIGS = joinpath(pkgdir(FastTransforms), "docs/src/generated")
!isdir(GENFIGS) && mkdir(GENFIGS)
plotlyjs()
# Our function $f$ and the Cartesian components of its gradient:
f = (x,y) -> 1/(1+x^2+y^2)
fx = (x,y) -> -2x/(1+x^2+y^2)^2
fy = (x,y) -> -2y/(1+x^2+y^2)^2
# The polynomial degree:
N = 15
M = N
# The parameters of the Proriol series:
α, β, γ = 0, 0, 0
# The $u$ grid:
u = [sinpi((N-2n-1)/(2N)) for n in 0:N-1]
# And the $v$ grid:
v = [sinpi((M-2m-1)/(2M)) for m in 0:M-1]
# Instead of using the $u\times v$ grid, we use one with more accuracy near the origin.
# Defining $x$ by:
x = [sinpi((2N-2n-1)/(4N))^2 for n in 0:N-1]
# And $w$ by:
w = [sinpi((2M-2m-1)/(4M))^2 for m in 0:M-1]
# We see how the two grids are related:
((1 .+ u)./2 ≈ x) * ((1 .- u).*(1 .+ v')/4 ≈ reverse(x).*w')
# On the mapped tensor product grid, our function samples are:
F = [f(x[n+1], x[N-n]*w[m+1]) for n in 0:N-1, m in 0:M-1]
# We superpose a surface plot of $f$ on top of the grid:
X = [x for x in x, w in w]
Y = [x[N-n]*w[m+1] for n in 0:N-1, m in 0:M-1]
scatter3d(vec(X), vec(Y), vec(0F); markersize=0.75, markercolor=:blue)
surface!(X, Y, F; legend=false, xlabel="x", ylabel="y", zlabel="f")
savefig(joinpath(GENFIGS, "proriol.html"))
###```@raw html
###<object type="text/html" data="../proriol.html" style="width:100%;height:400px;"></object>
###```
# We precompute a Proriol--Chebyshev² plan:
P = plan_tri2cheb(F, α, β, γ)
# And an FFTW Chebyshev² plan on the triangle:
PA = plan_tri_analysis(F)
# Its Proriol-$(α,β,γ)$ coefficients are:
U = P\(PA*F)
# Similarly, our function's gradient samples are:
Fx = [fx(x[n+1], x[N-n]*w[m+1]) for n in 0:N-1, m in 0:M-1]
# and:
Fy = [fy(x[n+1], x[N-n]*w[m+1]) for n in 0:N-1, m in 0:M-1]
# For the partial derivative with respect to $x$, [Olver et al.](https://doi.org/10.1137/19M1245888)
# derive simple expressions for the representation of this component
# using a Proriol-$(α+1,β,γ+1)$ series.
Gx = zeros(Float64, N, M)
for m = 0:M-2
for n = 0:N-2
cf1 = m == 0 ? sqrt((n+1)*(n+2m+α+β+γ+3)/(2m+β+γ+2)*(m+γ+1)*8) : sqrt((n+1)*(n+2m+α+β+γ+3)/(2m+β+γ+1)*(m+β+γ+1)/(2m+β+γ+2)*(m+γ+1)*8)
cf2 = sqrt((n+α+1)*(m+1)/(2m+β+γ+2)*(m+β+1)/(2m+β+γ+3)*(n+2m+β+γ+3)*8)
Gx[n+1, m+1] = cf1*U[n+2, m+1] + cf2*U[n+1, m+2]
end
end
Px = plan_tri2cheb(Fx, α+1, β, γ+1)
Ux = Px\(PA*Fx)
# For the partial derivative with respect to y, the analogous formulae result
# in a Proriol-$(α,β+1,γ+1)$ series.
Gy = zeros(Float64, N, M)
for m = 0:M-2
for n = 0:N-2
Gy[n+1, m+1] = 4*sqrt((m+1)*(m+β+γ+2))*U[n+1, m+2]
end
end
Py = plan_tri2cheb(Fy, α, β+1, γ+1)
Uy = Py\(PA*Fy)
# The $2$-norm relative error in differentiating the Proriol series
# for $f(x,y)$ term-by-term and its sampled gradient is:
hypot(norm(Ux-Gx), norm(Uy-Gy))/hypot(norm(Ux), norm(Uy))
# This error can be improved upon by increasing $N$ and $M$.
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 5016 | module FastTransforms
using BandedMatrices, FastGaussQuadrature, FillArrays, LinearAlgebra,
Reexport, SpecialFunctions, ToeplitzMatrices
@reexport using AbstractFFTs
@reexport using FFTW
@reexport using GenericFFT
import Base: convert, unsafe_convert, eltype, ndims, adjoint, transpose, show,
*, \, inv, length, size, view, getindex, tail, OneTo
import Base.GMP: Limb
import AbstractFFTs: Plan, ScaledPlan,
fft, ifft, bfft, fft!, ifft!, bfft!, rfft, irfft, brfft,
plan_fft, plan_ifft, plan_bfft, plan_fft!, plan_ifft!,
plan_bfft!, plan_rfft, plan_irfft, plan_brfft,
fftshift, ifftshift, rfft_output_size, brfft_output_size,
normalization
import BandedMatrices: bandwidths
import FFTW: dct, dct!, idct, idct!, plan_dct!, plan_idct!,
plan_dct, plan_idct, fftwNumber
import FastGaussQuadrature: unweightedgausshermite
import FillArrays: AbstractFill, getindex_value
import LinearAlgebra: mul!, lmul!, ldiv!, cholesky
import GenericFFT: interlace # imported in downstream packages
export leg2cheb, cheb2leg, ultra2ultra, jac2jac,
lag2lag, jac2ultra, ultra2jac, jac2cheb,
cheb2jac, ultra2cheb, cheb2ultra, associatedjac2jac,
modifiedjac2jac, modifiedlag2lag, modifiedherm2herm,
sph2fourier, sphv2fourier, disk2cxf, ann2cxf, rectdisk2cheb,
tri2cheb, tet2cheb,fourier2sph, fourier2sphv, cxf2disk, cxf2ann,
cheb2rectdisk, cheb2tri, cheb2tet
export plan_leg2cheb, plan_cheb2leg, plan_ultra2ultra, plan_jac2jac,
plan_lag2lag, plan_jac2ultra, plan_ultra2jac, plan_jac2cheb,
plan_cheb2jac, plan_ultra2cheb, plan_cheb2ultra, plan_associatedjac2jac,
plan_modifiedjac2jac, plan_modifiedlag2lag, plan_modifiedherm2herm,
plan_sph2fourier, plan_sph_synthesis, plan_sph_analysis,
plan_sphv2fourier, plan_sphv_synthesis, plan_sphv_analysis,
plan_disk2cxf, plan_disk_synthesis, plan_disk_analysis,
plan_ann2cxf, plan_annulus_synthesis, plan_annulus_analysis,
plan_rectdisk2cheb, plan_rectdisk_synthesis, plan_rectdisk_analysis,
plan_tri2cheb, plan_tri_synthesis, plan_tri_analysis,
plan_tet2cheb, plan_tet_synthesis, plan_tet_analysis,
plan_spinsph2fourier, plan_spinsph_synthesis, plan_spinsph_analysis
include("clenshaw.jl")
include("libfasttransforms.jl")
include("elliptic.jl")
export nufft, nufft1, nufft2, nufft3, inufft1, inufft2
export plan_nufft, plan_nufft1, plan_nufft2, plan_nufft3,
plan_inufft1, plan_inufft2
include("nufft.jl")
include("inufft.jl")
export paduatransform, ipaduatransform, paduatransform!, ipaduatransform!,
paduapoints
export plan_paduatransform!, plan_ipaduatransform!
include("PaduaTransform.jl")
export chebyshevtransform, ichebyshevtransform,
chebyshevtransform!, ichebyshevtransform!,
chebyshevutransform, ichebyshevutransform,
chebyshevutransform!, ichebyshevutransform!, chebyshevpoints
export plan_chebyshevtransform, plan_ichebyshevtransform,
plan_chebyshevtransform!, plan_ichebyshevtransform!,
plan_chebyshevutransform, plan_ichebyshevutransform,
plan_chebyshevutransform!, plan_ichebyshevutransform!
include("chebyshevtransform.jl")
export clenshawcurtisnodes, clenshawcurtisweights, fejernodes1, fejerweights1,
fejernodes2, fejerweights2
export plan_clenshawcurtis, plan_fejer1, plan_fejer2
include("clenshawcurtis.jl")
include("fejer.jl")
export weightedhermitetransform, iweightedhermitetransform
include("hermite.jl")
export gaunt
include("gaunt.jl")
export sphones, sphzeros, sphrand, sphrandn, sphevaluate,
sphvones, sphvzeros, sphvrand, sphvrandn,
diskones, diskzeros, diskrand, diskrandn,
rectdiskones, rectdiskzeros, rectdiskrand, rectdiskrandn,
triones, trizeros, trirand, trirandn, trievaluate,
tetones, tetzeros, tetrand, tetrandn,
spinsphones, spinsphzeros, spinsphrand, spinsphrandn
include("specialfunctions.jl")
include("toeplitzplans.jl")
include("toeplitzhankel.jl")
include("SymmetricToeplitzPlusHankel.jl")
# following use libfasttransforms by default
for f in (:jac2jac,
:lag2lag, :jac2ultra, :ultra2jac, :jac2cheb,
:cheb2jac, :ultra2cheb, :cheb2ultra, :associatedjac2jac,
:modifiedjac2jac, :modifiedlag2lag, :modifiedherm2herm,
:sph2fourier, :sphv2fourier, :disk2cxf, :ann2cxf,
:rectdisk2cheb, :tri2cheb, :tet2cheb,
:leg2cheb, :cheb2leg, :ultra2ultra)
lib_f = Symbol("lib_", f)
@eval $f(x::AbstractArray, y...; z...) = $lib_f(x, y...; z...)
end
include("arrays.jl")
# following use Toeplitz-Hankel to avoid expensive plans
# for f in (:leg2cheb, :cheb2leg, :ultra2ultra)
# th_f = Symbol("th_", f)
# lib_f = Symbol("lib_", f)
# @eval begin
# $f(x::AbstractArray, y...; z...) = $th_f(x, y...; z...)
# # $f(x::AbstractArray, y...; z...) = $lib_f(x, y...; z...)
# end
# end
include("docstrings.jl")
end # module
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 6957 |
# lex indicates if its lexigraphical (i.e., x, y) or reverse (y, x)
# If in lexigraphical order the coefficient vector's entries
# corrrespond to the following basis polynomials:
# [T0(x) * T0(y), T1(x) * T0(y), T0(x) * T1(y), T2(x) * T0(y), T1(x) * T1(y), T0(x) * T2(y), ...]
# else, if not in lexigraphical order:
# [T0(x) * T0(y), T0(x) * T1(y), T1(x) * T0(y), T0(x) * T2(y), T1(x) * T1(y), T2(x) * T0(y), ...]
"""
Pre-plan an Inverse Padua Transform.
"""
struct IPaduaTransformPlan{lex,IDCTPLAN,T}
cfsmat::Matrix{T}
idctplan::IDCTPLAN
end
IPaduaTransformPlan(cfsmat::Matrix{T},idctplan,::Type{Val{lex}}) where {T,lex} =
IPaduaTransformPlan{lex,typeof(idctplan),T}(cfsmat,idctplan)
"""
Pre-plan an Inverse Padua Transform.
"""
function plan_ipaduatransform!(::Type{T},N::Integer,lex) where T
n=Int(cld(-3+sqrt(1+8N),2))
if N ≠ div((n+1)*(n+2),2)
error("Padua transforms can only be applied to vectors of length (n+1)*(n+2)/2.")
end
IPaduaTransformPlan(Array{T}(undef,n+2,n+1),FFTW.plan_r2r!(Array{T}(undef,n+2,n+1),FFTW.REDFT00),lex)
end
plan_ipaduatransform!(::Type{T},N::Integer) where {T} = plan_ipaduatransform!(T,N,Val{true})
plan_ipaduatransform!(v::AbstractVector{T},lex...) where {T} = plan_ipaduatransform!(eltype(v),length(v),lex...)
function *(P::IPaduaTransformPlan,v::AbstractVector{T}) where T
cfsmat=trianglecfsmat(P,v)
n,m=size(cfsmat)
rmul!(view(cfsmat,:,2:m-1),0.5)
rmul!(view(cfsmat,2:n-1,:),0.5)
tensorvals=P.idctplan*cfsmat
paduavec!(v,P,tensorvals)
end
ipaduatransform!(v::AbstractVector,lex...) = plan_ipaduatransform!(v,lex...)*v
"""
Inverse Padua Transform maps the 2D Chebyshev coefficients to the values of the interpolation polynomial at the Padua points.
"""
ipaduatransform(v::AbstractVector,lex...) = plan_ipaduatransform!(v,lex...)*copy(v)
"""
Creates ``(n+2)x(n+1)`` Chebyshev coefficient matrix from triangle coefficients.
"""
function trianglecfsmat(P::IPaduaTransformPlan{true},cfs::AbstractVector)
N=length(cfs)
n=Int(cld(-3+sqrt(1+8N),2))
cfsmat=fill!(P.cfsmat,0)
m=1
for d=1:n+1
@inbounds for k=1:d
j=d-k+1
cfsmat[k,j]=cfs[m]
if m==N
return cfsmat
else
m+=1
end
end
end
return cfsmat
end
function trianglecfsmat(P::IPaduaTransformPlan{false},cfs::AbstractVector)
N=length(cfs)
n=Int(cld(-3+sqrt(1+8N),2))
cfsmat=fill!(P.cfsmat,0)
m=1
for d=1:n+1
@inbounds for k=d:-1:1
j=d-k+1
cfsmat[k,j]=cfs[m]
if m==N
return cfsmat
else
m+=1
end
end
end
return cfsmat
end
"""
Vectorizes the function values at the Padua points.
"""
function paduavec!(v,P::IPaduaTransformPlan,padmat::Matrix)
n=size(padmat,2)-1
N=(n+1)*(n+2)
if iseven(n)>0
d=div(n+2,2)
m=0
@inbounds for i=1:n+1
v[m+1:m+d]=view(padmat,1+mod(i,2):2:n+1+mod(i,2),i)
m+=d
end
else
@inbounds v[:]=view(padmat,1:2:N-1)
end
return v
end
"""
Pre-plan a Padua Transform.
"""
struct PaduaTransformPlan{lex,DCTPLAN,T}
vals::Matrix{T}
dctplan::DCTPLAN
end
PaduaTransformPlan(vals::Matrix{T},dctplan,::Type{Val{lex}}) where {T,lex} =
PaduaTransformPlan{lex,typeof(dctplan),T}(vals,dctplan)
"""
Pre-plan a Padua Transform.
"""
function plan_paduatransform!(::Type{T},N::Integer,lex) where T
n=Int(cld(-3+sqrt(1+8N),2))
if N ≠ ((n+1)*(n+2))÷2
error("Padua transforms can only be applied to vectors of length (n+1)*(n+2)/2.")
end
PaduaTransformPlan(Array{T}(undef,n+2,n+1),FFTW.plan_r2r!(Array{T}(undef,n+2,n+1),FFTW.REDFT00),lex)
end
plan_paduatransform!(::Type{T},N::Integer) where {T} = plan_paduatransform!(T,N,Val{true})
plan_paduatransform!(v::AbstractVector{T},lex...) where {T} = plan_paduatransform!(eltype(v),length(v),lex...)
function *(P::PaduaTransformPlan,v::AbstractVector{T}) where T
N=length(v)
n=Int(cld(-3+sqrt(1+8N),2))
vals=paduavalsmat(P,v)
tensorcfs=P.dctplan*vals
m,l=size(tensorcfs)
rmul!(tensorcfs,T(2)/(n*(n+1)))
rmul!(view(tensorcfs,1,:),0.5)
rmul!(view(tensorcfs,:,1),0.5)
rmul!(view(tensorcfs,m,:),0.5)
rmul!(view(tensorcfs,:,l),0.5)
trianglecfsvec!(v,P,tensorcfs)
end
paduatransform!(v::AbstractVector,lex...) = plan_paduatransform!(v,lex...)*v
"""
Padua Transform maps from interpolant values at the Padua points to the 2D Chebyshev coefficients.
"""
paduatransform(v::AbstractVector,lex...) = plan_paduatransform!(v,lex...)*copy(v)
"""
Creates ``(n+2)x(n+1)`` matrix of interpolant values on the tensor grid at the ``(n+1)(n+2)/2`` Padua points.
"""
function paduavalsmat(P::PaduaTransformPlan,v::AbstractVector)
N=length(v)
n=Int(cld(-3+sqrt(1+8N),2))
vals=fill!(P.vals,0.)
if iseven(n)>0
d=div(n+2,2)
m=0
@inbounds for i=1:n+1
vals[1+mod(i,2):2:n+1+mod(i,2),i]=view(v,m+1:m+d)
m+=d
end
else
@inbounds vals[1:2:end]=view(v,:)
end
return vals
end
"""
Creates length ``(n+1)(n+2)/2`` vector from matrix of triangle Chebyshev coefficients.
"""
function trianglecfsvec!(v,P::PaduaTransformPlan{true},cfs::Matrix)
m=size(cfs,2)
l=1
for d=1:m
@inbounds for k=1:d
j=d-k+1
v[l]=cfs[k,j]
l+=1
end
end
return v
end
function trianglecfsvec!(v,P::PaduaTransformPlan{false},cfs::Matrix)
m=size(cfs,2)
l=1
for d=1:m
@inbounds for k=d:-1:1
j=d-k+1
v[l]=cfs[k,j]
l+=1
end
end
return v
end
"""
Returns coordinates of the ``(n+1)(n+2)/2`` Padua points.
"""
function paduapoints(::Type{T}, n::Integer) where T
N=div((n+1)*(n+2),2)
MM=Matrix{T}(undef,N,2)
m=0
delta=0
NN=div(n,2)+1
# x coordinates
for k=n:-1:0
if isodd(n)
delta = Int(isodd(k))
end
x = -cospi(T(k)/n)
@inbounds for j=NN+delta:-1:1
m+=1
MM[m,1]=x
end
end
# y coordinates
# populate the first two sets, and copy the rest
m=0
for k=n:-1:n-1
if isodd(n)
delta = Int(isodd(k))
end
for j=NN+delta:-1:1
m+=1
@inbounds if isodd(n-k)
MM[m,2]=-cospi((2j-one(T))/(n+1))
else
MM[m,2]=-cospi(T(2j-2)/(n+1))
end
end
end
m += 1
# number of y coordinates between k=n and k=n-2
Ny_shift = 2NN+isodd(n)
for k in n-2:-1:0
if isodd(n)
delta = Int(isodd(k))
end
for j in range(m, length=NN+delta)
@inbounds MM[j,2] = MM[j-Ny_shift,2]
end
m += NN+delta
end
return MM
end
paduapoints(n::Integer) = paduapoints(Float64,n)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 6075 | struct SymmetricToeplitzPlusHankel{T} <: AbstractMatrix{T}
v::Vector{T}
n::Int
end
function SymmetricToeplitzPlusHankel(v::Vector{T}) where T
n = (length(v)+1)÷2
SymmetricToeplitzPlusHankel{T}(v, n)
end
size(A::SymmetricToeplitzPlusHankel{T}) where T = (A.n, A.n)
getindex(A::SymmetricToeplitzPlusHankel{T}, i::Integer, j::Integer) where T = A.v[abs(i-j)+1] + A.v[i+j-1]
struct SymmetricBandedToeplitzPlusHankel{T} <: BandedMatrices.AbstractBandedMatrix{T}
v::Vector{T}
n::Int
b::Int
end
function SymmetricBandedToeplitzPlusHankel(v::Vector{T}, n::Integer) where T
SymmetricBandedToeplitzPlusHankel{T}(v, n, length(v)-1)
end
size(A::SymmetricBandedToeplitzPlusHankel{T}) where T = (A.n, A.n)
function getindex(A::SymmetricBandedToeplitzPlusHankel{T}, i::Integer, j::Integer) where T
v = A.v
if abs(i-j) < length(v)
if i+j-1 ≤ length(v)
v[abs(i-j)+1] + v[i+j-1]
else
v[abs(i-j)+1]
end
else
zero(T)
end
end
bandwidths(A::SymmetricBandedToeplitzPlusHankel{T}) where T = (A.b, A.b)
#
# X'W-W*X = G*J*G'
# This returns G, where J = [0 1; -1 0], respecting the skew-symmetry of the right-hand side.
#
function compute_skew_generators(A::SymmetricToeplitzPlusHankel{T}) where T
v = A.v
n = size(A, 1)
G = zeros(T, n, 2)
G[n, 1] = one(T)
@inbounds @simd for j in 1:n-1
G[j, 2] = -(v[n+2-j] + v[n+j])
end
G[n, 2] = -v[2]
G
end
function cholesky(A::SymmetricToeplitzPlusHankel{T}) where T
n = size(A, 1)
G = compute_skew_generators(A)
L = zeros(T, n, n)
c = A[:, 1]
ĉ = zeros(T, n)
l = zeros(T, n)
v = zeros(T, n)
row1 = zeros(T, n)
STPHcholesky!(L, G, c, ĉ, l, v, row1, n)
return Cholesky(L, 'L', 0)
end
function STPHcholesky!(L::Matrix{T}, G, c, ĉ, l, v, row1, n) where T
@inbounds @simd for k in 1:n-1
d = sqrt(c[1])
for j in 1:n-k+1
L[j+k-1, k] = l[j] = c[j]/d
end
for j in 1:n-k+1
v[j] = G[j, 1]*G[1, 2] - G[j, 2]*G[1, 1]
end
if k == 1
for j in 2:n-k
ĉ[j] = (c[j+1] + c[j-1] + c[1]*row1[j] - row1[1]*c[j] - v[j])/2
end
ĉ[n-k+1] = (c[n-k] + c[1]*row1[n-k+1] - row1[1]*c[n-k+1] - v[n-k+1])/2
cst = 2/d
for j in 1:n-k
row1[j] = -cst*l[j+1]
end
else
for j in 2:n-k
ĉ[j] = c[j+1] + c[j-1] + c[1]*row1[j] - row1[1]*c[j] - v[j]
end
ĉ[n-k+1] = c[n-k] + c[1]*row1[n-k+1] - row1[1]*c[n-k+1] - v[n-k+1]
cst = 1/d
for j in 1:n-k
row1[j] = -cst*l[j+1]
end
end
cst = c[2]/d
for j in 1:n-k
c[j] = ĉ[j+1] - cst*l[j+1]
end
gd1 = G[1, 1]/d
gd2 = G[1, 2]/d
for j in 1:n-k
G[j, 1] = G[j+1, 1] - l[j+1]*gd1
G[j, 2] = G[j+1, 2] - l[j+1]*gd2
end
end
L[n, n] = sqrt(c[1])
end
function cholesky(A::SymmetricBandedToeplitzPlusHankel{T}) where T
n = size(A, 1)
b = A.b
L = BandedMatrix{T}(undef, (n, n), (bandwidth(A, 1), 0))
c = A[1:b+2, 1]
ĉ = zeros(T, b+3)
l = zeros(T, b+3)
row1 = zeros(T, b+2)
SBTPHcholesky!(L, c, ĉ, l, row1, n, b)
return Cholesky(L, 'L', 0)
end
function SBTPHcholesky!(L::BandedMatrix{T}, c, ĉ, l, row1, n, b) where T
@inbounds @simd for k in 1:n
d = sqrt(c[1])
for j in 1:b+1
l[j] = c[j]/d
end
for j in 1:min(n-k+1, b+1)
L[j+k-1, k] = l[j]
end
if k == 1
for j in 2:b+1
ĉ[j] = (c[j+1] + c[j-1] + c[1]*row1[j] - row1[1]*c[j])/2
end
ĉ[b+2] = (c[b+1] + c[1]*row1[b+2] - row1[1]*c[b+2])/2
cst = 2/d
for j in 1:b+2
row1[j] = -cst*l[j+1]
end
else
for j in 2:b+1
ĉ[j] = (c[j+1] + c[j-1] + c[1]*row1[j] - row1[1]*c[j])
end
ĉ[b+2] = (c[b+1] + c[1]*row1[b+2] - row1[1]*c[b+2])
cst = 1/d
for j in 1:b+2
row1[j] = -cst*l[j+1]
end
end
cst = c[2]/d
for j in 1:b+2
c[j] = ĉ[j+1] - cst*l[j+1]
end
end
end
#
# X'W-W*X = G*J*G'
# This returns G, where J = [0 1; -1 0], respecting the skew-symmetry of the right-hand side.
#
function compute_skew_generators(W::Symmetric{T, <: AbstractMatrix{T}}, X::Tridiagonal{T, Vector{T}}) where T
@assert size(W) == size(X)
m, n = size(W)
G = zeros(T, n, 2)
G[n, 1] = one(T)
G[:, 2] .= W[n-1, :]*X[n-1, n] - X'W[:, n]
return G
end
function fastcholesky(W::Symmetric{T, <: AbstractMatrix{T}}, X::Tridiagonal{T, Vector{T}}) where T
n = size(W, 1)
G = compute_skew_generators(W, X)
L = zeros(T, n, n)
c = W[:, 1]
ĉ = zeros(T, n)
l = zeros(T, n)
v = zeros(T, n)
row1 = zeros(T, n)
fastcholesky!(L, X, G, c, ĉ, l, v, row1, n)
return Cholesky(L, 'L', 0)
end
function fastcholesky!(L::Matrix{T}, X::Tridiagonal{T, Vector{T}}, G, c, ĉ, l, v, row1, n) where T
@inbounds @simd for k in 1:n-1
d = sqrt(c[k])
for j in k:n
L[j, k] = l[j] = c[j]/d
end
for j in k:n
v[j] = G[j, 1]*G[k, 2] - G[j, 2]*G[k, 1]
end
for j in k+1:n-1
ĉ[j] = (X[j-1, j]*c[j-1] + (X[j, j]-X[k, k])*c[j] + X[j+1, j]*c[j+1] + c[k]*row1[j] - row1[k]*c[j] - v[j])/X[k+1, k]
end
ĉ[n] = (X[n-1, n]*c[n-1] + (X[n, n]-X[k, k])*c[n] + c[k]*row1[n] - row1[k]*c[n] - v[n])/X[k+1, k]
cst = X[k+1, k]/d
for j in k+1:n
row1[j] = -cst*l[j]
end
cst = c[k+1]/d
for j in k:n
c[j] = ĉ[j] - cst*l[j]
end
gd1 = G[k, 1]/d
gd2 = G[k, 2]/d
for j in k:n
G[j, 1] -= l[j]*gd1
G[j, 2] -= l[j]*gd2
end
end
L[n, n] = sqrt(c[n])
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 2348 | struct ArrayPlan{T, FF<:FTPlan{<:T}, Szs<:Tuple, Dims<:Tuple{<:Int}} <: Plan{T}
F::FF
szs::Szs
dims::Dims
end
size(P::ArrayPlan) = P.szs
function ArrayPlan(F::FTPlan{<:T}, c::AbstractArray{T}, dims::Tuple{<:Int}=(1,)) where T
szs = size(c)
@assert F.n == szs[dims[1]]
ArrayPlan(F, size(c), dims)
end
function *(P::ArrayPlan, f::AbstractArray)
F, dims, szs = P.F, P.dims, P.szs
@assert length(dims) == 1
@assert szs == size(f)
d = first(dims)
perm = (d, ntuple(i-> i + (i >= d), ndims(f) -1)...)
fp = permutedims(f, perm)
fr = reshape(fp, size(fp,1), :)
permutedims(reshape(F*fr, size(fp)...), invperm(perm))
end
function \(P::ArrayPlan, f::AbstractArray)
F, dims, szs = P.F, P.dims, P.szs
@assert length(dims) == 1
@assert szs == size(f)
d = first(dims)
perm = (d, ntuple(i-> i + (i >= d), ndims(f) -1)...)
fp = permutedims(f, perm)
fr = reshape(fp, size(fp,1), :)
permutedims(reshape(F\fr, size(fp)...), invperm(perm))
end
struct NDimsPlan{T, FF<:ArrayPlan{<:T}, Szs<:Tuple, Dims<:Tuple} <: Plan{T}
F::FF
szs::Szs
dims::Dims
function NDimsPlan(F, szs, dims)
if length(Set(szs[[dims...]])) > 1
error("Different size in dims axes not yet implemented in N-dimensional transform.")
end
new{eltype(F), typeof(F), typeof(szs), typeof(dims)}(F, szs, dims)
end
end
size(P::NDimsPlan) = P.szs
function NDimsPlan(F::FTPlan, szs::Tuple, dims::Tuple)
NDimsPlan(ArrayPlan(F, szs, (first(dims),)), szs, dims)
end
function *(P::NDimsPlan, f::AbstractArray)
F, dims = P.F, P.dims
@assert size(P) == size(f)
g = copy(f)
t = 1:ndims(g)
d1 = dims[1]
for d in dims
perm = ntuple(k -> k == d1 ? t[d] : k == d ? t[d1] : t[k], ndims(g))
gp = permutedims(g, perm)
g = permutedims(F*gp, invperm(perm))
end
return g
end
function \(P::NDimsPlan, f::AbstractArray)
F, dims = P.F, P.dims
@assert size(P) == size(f)
g = copy(f)
t = 1:ndims(g)
d1 = dims[1]
for d in dims
perm = ntuple(k -> k == d1 ? t[d] : k == d ? t[d1] : t[k], ndims(g))
gp = permutedims(g, perm)
g = permutedims(F\gp, invperm(perm))
end
return g
end | FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 25436 | ## Transforms take values at Chebyshev points of the first and second kinds and produce Chebyshev coefficients
abstract type ChebyshevPlan{T} <: Plan{T} end
*(P::ChebyshevPlan{T}, x::AbstractArray{T}) where T = error("Plan applied to wrong size array")
size(P::ChebyshevPlan) = isdefined(P, :plan) ? size(P.plan) : (0,)
length(P::ChebyshevPlan) = isdefined(P, :plan) ? length(P.plan) : 0
const FIRSTKIND = FFTW.REDFT10
const SECONDKIND = FFTW.REDFT00
struct ChebyshevTransformPlan{T,kind,K,inplace,N,R} <: ChebyshevPlan{T}
plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}
ChebyshevTransformPlan{T,kind,K,inplace,N,R}(plan) where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}(plan)
ChebyshevTransformPlan{T,kind,K,inplace,N,R}() where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}()
end
ChebyshevTransformPlan{T,kind}(plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}) where {T,kind,K,inplace,N,R} =
ChebyshevTransformPlan{T,kind,K,inplace,N,R}(plan)
# jump through some hoops to make inferrable
function plan_chebyshevtransform!(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
ChebyshevTransformPlan{T,1,Vector{Int32},true,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
ChebyshevTransformPlan{T,1}(FFTW.plan_r2r!(x, FIRSTKIND, dims...; kws...))
end
end
function plan_chebyshevtransform!(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
any(≤(1),size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
ChebyshevTransformPlan{T,2}(FFTW.plan_r2r!(x, SECONDKIND, dims...; kws...))
end
function plan_chebyshevtransform(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
ChebyshevTransformPlan{T,1,Vector{Int32},false,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
ChebyshevTransformPlan{T,1}(FFTW.plan_r2r(x, FIRSTKIND, dims...; kws...))
end
end
function plan_chebyshevtransform(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
any(≤(1),size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
ChebyshevTransformPlan{T,2}(FFTW.plan_r2r(x, SECONDKIND, dims...; kws...))
end
# convert x if necessary
_maybemutablecopy(x::StridedArray{T}, ::Type{T}) where {T} = x
_maybemutablecopy(x, T) = Array{T}(x)
@inline _plan_mul!(y::AbstractArray{T}, P::Plan{T}, x::AbstractArray) where T = mul!(y, P, _maybemutablecopy(x, T))
function applydim!(op!, X::AbstractArray, Rpre, Rpost, ind)
for Ipost in Rpost, Ipre in Rpre
v = view(X, Ipre, ind, Ipost)
op!(v)
end
X
end
function applydim!(op!, X::AbstractArray, d::Integer, ind)
Rpre = CartesianIndices(axes(X)[1:d-1])
Rpost = CartesianIndices(axes(X)[d+1:end])
applydim!(op!, X, Rpre, Rpost, ind)
end
for op in (:ldiv, :lmul)
op_dim_begin! = Symbol(op, :_dim_begin!)
op_dim_end! = Symbol(op, :_dim_end!)
op! = Symbol(op, :!)
@eval begin
function $op_dim_begin!(α, d::Number, y::AbstractArray)
# scale just the d-th dimension by permuting it to the first
d ∈ 1:ndims(y) || throw(ArgumentError("dimension $d must lie between 1 and $(ndims(y))"))
applydim!(v -> $op!(α, v), y, d, 1)
end
function $op_dim_end!(α, d::Number, y::AbstractArray)
# scale just the d-th dimension by permuting it to the first
d ∈ 1:ndims(y) || throw(ArgumentError("dimension $d must lie between 1 and $(ndims(y))"))
applydim!(v -> $op!(α, v), y, d, size(y, d))
end
end
end
@inline function _cheb1_rescale!(d::Number, y::AbstractArray)
ldiv_dim_begin!(2, d, y)
ldiv!(size(y,d), y)
end
function _prod_size(sz, d)
ret = 1
for k in d
ret *= sz[k]
end
ret
end
@inline function _cheb1_rescale!(d, y::AbstractArray)
for k in d
ldiv_dim_begin!(2, k, y)
end
ldiv!(_prod_size(size(y), d), y)
end
function *(P::ChebyshevTransformPlan{T,1,K,true,N}, x::AbstractArray{T,N}) where {T,K,N}
isempty(x) && return x
y = P.plan*x # will be === x if in-place
_cheb1_rescale!(P.plan.region, y)
end
function mul!(y::AbstractArray{T,N}, P::ChebyshevTransformPlan{T,1,K,false,N}, x::AbstractArray{<:Any,N}) where {T,K,N}
size(y) == size(x) || throw(DimensionMismatch("output must match dimension"))
isempty(x) && return y
_plan_mul!(y, P.plan, x)
_cheb1_rescale!(P.plan.region, y)
end
function _cheb2_rescale!(d::Number, y::AbstractArray)
ldiv_dim_begin!(2, d, y)
ldiv_dim_end!(2, d, y)
ldiv!(size(y,d)-1, y)
end
# TODO: higher dimensional arrays
function _cheb2_rescale!(d, y::AbstractArray)
for k in d
ldiv_dim_begin!(2, k, y)
ldiv_dim_end!(2, k, y)
end
ldiv!(_prod_size(size(y) .- 1, d), y)
end
function *(P::ChebyshevTransformPlan{T,2,K,true,N}, x::AbstractArray{T,N}) where {T,K,N}
n = length(x)
y = P.plan*x # will be === x if in-place
_cheb2_rescale!(P.plan.region, y)
end
function mul!(y::AbstractArray{T,N}, P::ChebyshevTransformPlan{T,2,K,false,N}, x::AbstractArray{<:Any,N}) where {T,K,N}
n = length(x)
length(y) == n || throw(DimensionMismatch("output must match dimension"))
_plan_mul!(y, P.plan, x)
_cheb2_rescale!(P.plan.region, y)
end
*(P::ChebyshevTransformPlan{T,kind,K,false,N}, x::AbstractArray{T,N}) where {T,kind,K,N} =
mul!(similar(x), P, x)
"""
chebyshevtransform!(x, kind=Val(1))
transforms from values on a Chebyshev grid of the first or second kind to Chebyshev
coefficients, in-place
"""
chebyshevtransform!(x, dims...; kws...) = plan_chebyshevtransform!(x, dims...; kws...)*x
"""
chebyshevtransform(x, kind=Val(1))
transforms from values on a Chebyshev grid of the first or second kind to Chebyshev
coefficients.
"""
chebyshevtransform(x, dims...; kws...) = plan_chebyshevtransform(x, dims...; kws...) * x
## Inverse transforms take Chebyshev coefficients and produce values at Chebyshev points of the first and second kinds
const IFIRSTKIND = FFTW.REDFT01
struct IChebyshevTransformPlan{T,kind,K,inplace,N,R} <: ChebyshevPlan{T}
plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}
IChebyshevTransformPlan{T,kind,K,inplace,N,R}(plan) where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}(plan)
IChebyshevTransformPlan{T,kind,K,inplace,N,R}() where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}()
end
IChebyshevTransformPlan{T,kind}(F::FFTW.r2rFFTWPlan{T,K,inplace,N,R}) where {T,kind,K,inplace,N,R} =
IChebyshevTransformPlan{T,kind,K,inplace,N,R}(F)
# second kind Chebyshev transforms share a plan with their inverse
# so we support this via inv
inv(P::ChebyshevTransformPlan{T,2}) where {T} = IChebyshevTransformPlan{T,2}(P.plan)
inv(P::IChebyshevTransformPlan{T,2}) where {T} = ChebyshevTransformPlan{T,2}(P.plan)
inv(P::ChebyshevTransformPlan{T,1}) where {T} = IChebyshevTransformPlan{T,1}(inv(P.plan).p)
inv(P::IChebyshevTransformPlan{T,1}) where {T} = ChebyshevTransformPlan{T,1}(inv(P.plan).p)
\(P::ChebyshevTransformPlan, x::AbstractArray) = inv(P) * x
\(P::IChebyshevTransformPlan, x::AbstractArray) = inv(P) * x
function plan_ichebyshevtransform!(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
IChebyshevTransformPlan{T,1,Vector{Int32},true,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
IChebyshevTransformPlan{T,1}(FFTW.plan_r2r!(x, IFIRSTKIND, dims...; kws...))
end
end
function plan_ichebyshevtransform!(x::AbstractArray{T}, ::Val{2}, dims...; kws...) where T<:fftwNumber
inv(plan_chebyshevtransform!(x, Val(2), dims...; kws...))
end
function plan_ichebyshevtransform(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
IChebyshevTransformPlan{T,1,Vector{Int32},false,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
IChebyshevTransformPlan{T,1}(FFTW.plan_r2r(x, IFIRSTKIND, dims...; kws...))
end
end
function plan_ichebyshevtransform(x::AbstractArray{T}, ::Val{2}, dims...; kws...) where T<:fftwNumber
inv(plan_chebyshevtransform(x, Val(2), dims...; kws...))
end
@inline function _icheb1_prescale!(d::Number, x::AbstractArray)
lmul_dim_begin!(2, d, x)
x
end
@inline function _icheb1_prescale!(d, x::AbstractArray)
for k in d
_icheb1_prescale!(k, x)
end
x
end
@inline function _icheb1_postscale!(d::Number, x::AbstractArray)
ldiv_dim_begin!(2, d, x)
x
end
@inline function _icheb1_postscale!(d, x::AbstractArray)
for k in d
_icheb1_postscale!(k, x)
end
x
end
function *(P::IChebyshevTransformPlan{T,1,K,true,N}, x::AbstractArray{T,N}) where {T<:fftwNumber,K,N}
n = length(x)
n == 0 && return x
_icheb1_prescale!(P.plan.region, x)
x = ldiv!(2^length(P.plan.region), P.plan*x)
x
end
function mul!(y::AbstractArray{T,N}, P::IChebyshevTransformPlan{T,1,K,false,N}, x::AbstractArray{T,N}) where {T<:fftwNumber,K,N}
size(y) == size(x) || throw(DimensionMismatch("output must match dimension"))
isempty(x) && return y
_icheb1_prescale!(P.plan.region, x) # TODO: don't mutate x
_plan_mul!(y, P.plan, x)
_icheb1_postscale!(P.plan.region, x)
ldiv!(2^length(P.plan.region), y)
end
@inline function _icheb2_prescale!(d::Number, x::AbstractArray)
lmul_dim_begin!(2, d, x)
lmul_dim_end!(2, d, x)
x
end
@inline function _icheb2_prescale!(d, x::AbstractArray)
for k in d
_icheb2_prescale!(k, x)
end
x
end
@inline function _icheb2_postrescale!(d::Number, x::AbstractArray)
ldiv_dim_begin!(2, d, x)
ldiv_dim_end!(2, d, x)
x
end
@inline function _icheb2_postrescale!(d, x::AbstractArray)
for k in d
_icheb2_postrescale!(k, x)
end
x
end
@inline function _icheb2_rescale!(d::Number, y::AbstractArray{T}) where T
_icheb2_prescale!(d, y)
lmul!(convert(T, size(y,d) - 1)/2, y)
y
end
@inline function _icheb2_rescale!(d, y::AbstractArray{T}) where T
_icheb2_prescale!(d, y)
lmul!(_prod_size(convert.(T, size(y) .- 1)./2, d), y)
y
end
function *(P::IChebyshevTransformPlan{T,2,K,true,N}, x::AbstractArray{T,N}) where {T<:fftwNumber,K,N}
n = length(x)
_icheb2_prescale!(P.plan.region, x)
x = inv(P)*x
_icheb2_rescale!(P.plan.region, x)
end
function mul!(y::AbstractArray{T,N}, P::IChebyshevTransformPlan{T,2,K,false,N}, x::AbstractArray{<:Any,N}) where {T<:fftwNumber,K,N}
n = length(x)
length(y) == n || throw(DimensionMismatch("output must match dimension"))
_icheb2_prescale!(P.plan.region, x)
_plan_mul!(y, inv(P), x)
_icheb2_postrescale!(P.plan.region, x)
_icheb2_rescale!(P.plan.region, y)
end
*(P::IChebyshevTransformPlan{T,kind,K,false,N}, x::AbstractArray{T,N}) where {T,kind,K,N} =
mul!(similar(x), P, _maybemutablecopy(x, T))
ichebyshevtransform!(x::AbstractArray, dims...; kwds...) = plan_ichebyshevtransform!(x, dims...; kwds...)*x
ichebyshevtransform(x, dims...; kwds...) = plan_ichebyshevtransform(x, dims...; kwds...)*x
#######
# Chebyshev U
#######
const UFIRSTKIND = FFTW.RODFT10
const USECONDKIND = FFTW.RODFT00
struct ChebyshevUTransformPlan{T,kind,K,inplace,N,R} <: ChebyshevPlan{T}
plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}
ChebyshevUTransformPlan{T,kind,K,inplace,N,R}(plan) where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}(plan)
ChebyshevUTransformPlan{T,kind,K,inplace,N,R}() where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}()
end
ChebyshevUTransformPlan{T,kind}(plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}) where {T,kind,K,inplace,N,R} =
ChebyshevUTransformPlan{T,kind,K,inplace,N,R}(plan)
function plan_chebyshevutransform!(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
ChebyshevUTransformPlan{T,1,Vector{Int32},true,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
ChebyshevUTransformPlan{T,1}(FFTW.plan_r2r!(x, UFIRSTKIND, dims...; kws...))
end
end
function plan_chebyshevutransform!(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
any(≤(1),size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
ChebyshevUTransformPlan{T,2}(FFTW.plan_r2r!(x, USECONDKIND, dims...; kws...))
end
function plan_chebyshevutransform(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
ChebyshevUTransformPlan{T,1,Vector{Int32},false,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
ChebyshevUTransformPlan{T,1}(FFTW.plan_r2r(x, UFIRSTKIND, dims...; kws...))
end
end
function plan_chebyshevutransform(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(dims)
any(≤(1), size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
else
for d in dims[1]
size(x,d) ≤ 1 && throw(ArgumentError("Array must contain at least 2 entries"))
end
end
ChebyshevUTransformPlan{T,2}(FFTW.plan_r2r(x, USECONDKIND, dims...; kws...))
end
for f in [:_chebu1_prescale!, :_chebu1_postscale!, :_chebu2_prescale!, :_chebu2_postscale!,
:_ichebu1_postscale!]
_f = Symbol(:_, f)
@eval begin
@inline function $f(d::Number, X::AbstractArray)
d ∈ 1:ndims(X) || throw("dimension $d must lie between 1 and $(ndims(X))")
$_f(d, X)
X
end
@inline function $f(d, y::AbstractArray)
for k in d
$f(k, y)
end
y
end
end
end
function __chebu1_prescale!(d::Number, X::AbstractArray{T}) where {T}
m = size(X,d)
r = one(T)/(2m) .+ ((1:m) .- one(T))./m
applydim!(v -> v .*= sinpi.(r) ./ m, X, d, :)
end
@inline function __chebu1_postscale!(d::Number, X::AbstractArray{T}) where {T}
m = size(X,d)
r = one(T)/(2m) .+ ((1:m) .- one(T))./m
applydim!(v -> v ./= sinpi.(r) ./ m, X, d, :)
end
function *(P::ChebyshevUTransformPlan{T,1,K,true,N}, x::AbstractArray{T,N}) where {T,K,N}
length(x) ≤ 1 && return x
_chebu1_prescale!(P.plan.region, x)
P.plan * x
end
function mul!(y::AbstractArray{T}, P::ChebyshevUTransformPlan{T,1,K,false}, x::AbstractArray{T}) where {T,K}
size(y) == size(x) || throw(DimensionMismatch("output must match dimension"))
isempty(x) && return y
_chebu1_prescale!(P.plan.region, x) # Todo don't mutate x
_plan_mul!(y, P.plan, x)
_chebu1_postscale!(P.plan.region, x)
for d in P.plan.region
size(y,d) == 1 && ldiv!(2, y) # fix doubling
end
y
end
@inline function __chebu2_prescale!(d, X::AbstractArray{T}) where {T}
m = size(X,d)
c = one(T)/ (m+1)
r = (1:m) .* c
applydim!(v -> v .*= sinpi.(r), X, d, :)
end
@inline function __chebu2_postscale!(d::Number, X::AbstractArray{T}) where {T}
m = size(X,d)
c = one(T)/ (m+1)
r = (1:m) .* c
applydim!(v -> v ./= sinpi.(r), X, d, :)
end
function *(P::ChebyshevUTransformPlan{T,2,K,true,N}, x::AbstractArray{T,N}) where {T,K,N}
sc = one(T)
for d in P.plan.region
sc *= one(T)/(size(x,d)+1)
end
_chebu2_prescale!(P.plan.region, x)
lmul!(sc, P.plan * x)
end
function mul!(y::AbstractArray{T}, P::ChebyshevUTransformPlan{T,2,K,false}, x::AbstractArray{T}) where {T,K}
sc = one(T)
for d in P.plan.region
sc *= one(T)/(size(x,d)+1)
end
_chebu2_prescale!(P.plan.region, x) # TODO don't mutate x
_plan_mul!(y, P.plan, x)
_chebu2_postscale!(P.plan.region, x)
lmul!(sc, y)
end
*(P::ChebyshevUTransformPlan{T,kind,K,false,N}, x::AbstractArray{T,N}) where {T,kind,K,N} =
mul!(similar(x), P, x)
chebyshevutransform!(x::AbstractArray{T}, dims...; kws...) where {T<:fftwNumber} =
plan_chebyshevutransform!(x, dims...; kws...)*x
"""
chebyshevutransform(x, ::Val{kind}=Val(1))
transforms from values on a Chebyshev grid of the first or second kind to Chebyshev
coefficients of the 2nd kind (Chebyshev U expansion).
"""
chebyshevutransform(x, dims...; kws...) = plan_chebyshevutransform(x, dims...; kws...)*x
## Inverse transforms take ChebyshevU coefficients and produce values at ChebyshevU points of the first and second kinds
const IUFIRSTKIND = FFTW.RODFT01
struct IChebyshevUTransformPlan{T,kind,K,inplace,N,R} <: ChebyshevPlan{T}
plan::FFTW.r2rFFTWPlan{T,K,inplace,N,R}
IChebyshevUTransformPlan{T,kind,K,inplace,N,R}(plan) where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}(plan)
IChebyshevUTransformPlan{T,kind,K,inplace,N,R}() where {T,kind,K,inplace,N,R} = new{T,kind,K,inplace,N,R}()
end
IChebyshevUTransformPlan{T,kind}(F::FFTW.r2rFFTWPlan{T,K,inplace,N,R}) where {T,kind,K,inplace,N,R} =
IChebyshevUTransformPlan{T,kind,K,inplace,N,R}(F)
function plan_ichebyshevutransform!(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
IChebyshevUTransformPlan{T,1,Vector{Int32},true,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
IChebyshevUTransformPlan{T,1}(FFTW.plan_r2r!(x, IUFIRSTKIND, dims...; kws...))
end
end
function plan_ichebyshevutransform!(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
any(≤(1),size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
IChebyshevUTransformPlan{T,2}(FFTW.plan_r2r!(x, USECONDKIND, dims...))
end
function plan_ichebyshevutransform(x::AbstractArray{T,N}, ::Val{1}, dims...; kws...) where {T<:fftwNumber,N}
if isempty(x)
IChebyshevUTransformPlan{T,1,Vector{Int32},false,N,isempty(dims) ? NTuple{N,Int} : typeof(dims[1])}()
else
IChebyshevUTransformPlan{T,1}(FFTW.plan_r2r(x, IUFIRSTKIND, dims...; kws...))
end
end
function plan_ichebyshevutransform(x::AbstractArray{T,N}, ::Val{2}, dims...; kws...) where {T<:fftwNumber,N}
any(≤(1),size(x)) && throw(ArgumentError("Array must contain at least 2 entries"))
IChebyshevUTransformPlan{T,2}(FFTW.plan_r2r(x, USECONDKIND, dims...; kws...))
end
# second kind Chebyshev transforms share a plan with their inverse
# so we support this via inv
inv(P::ChebyshevUTransformPlan{T,2}) where {T} = IChebyshevUTransformPlan{T,2}(P.plan)
inv(P::IChebyshevUTransformPlan{T,2}) where {T} = ChebyshevUTransformPlan{T,2}(P.plan)
inv(P::ChebyshevUTransformPlan{T,1}) where {T} = IChebyshevUTransformPlan{T,1}(inv(P.plan).p)
inv(P::IChebyshevUTransformPlan{T,1}) where {T} = ChebyshevUTransformPlan{T,1}(inv(P.plan).p)
@inline function __ichebu1_postscale!(d::Number, X::AbstractArray{T}) where {T}
m = size(X,d)
r = one(T)/(2m) .+ ((1:m) .- one(T))/m
applydim!(v -> v ./= 2 .* sinpi.(r), X, d, :)
end
function *(P::IChebyshevUTransformPlan{T,1,K,true}, x::AbstractArray{T}) where {T<:fftwNumber,K}
length(x) ≤ 1 && return x
x = P.plan * x
_ichebu1_postscale!(P.plan.region, x)
end
function mul!(y::AbstractArray{T}, P::IChebyshevUTransformPlan{T,1,K,false}, x::AbstractArray{T}) where {T<:fftwNumber,K}
size(y) == size(x) || throw(DimensionMismatch("output must match dimension"))
isempty(x) && return y
_plan_mul!(y, P.plan, x)
_ichebu1_postscale!(P.plan.region, y)
for d in P.plan.region
size(y,d) == 1 && lmul!(2, y) # fix doubling
end
y
end
function _ichebu2_rescale!(d::Number, x::AbstractArray{T}) where T
_chebu2_postscale!(d, x)
ldiv!(2, x)
x
end
@inline function _ichebu2_rescale!(d, y::AbstractArray)
for k in d
_ichebu2_rescale!(k, y)
end
y
end
function *(P::IChebyshevUTransformPlan{T,2,K,true}, x::AbstractArray{T}) where {T<:fftwNumber,K}
n = length(x)
n ≤ 1 && return x
x = P.plan * x
_ichebu2_rescale!(P.plan.region, x)
end
function mul!(y::AbstractArray{T}, P::IChebyshevUTransformPlan{T,2,K,false}, x::AbstractArray{T}) where {T<:fftwNumber,K}
size(y) == size(x) || throw(DimensionMismatch("output must match dimension"))
length(x) ≤ 1 && return x
_plan_mul!(y, P.plan, x)
_ichebu2_rescale!(P.plan.region, y)
end
ichebyshevutransform!(x::AbstractArray{T}, dims...; kwds...) where {T<:fftwNumber} =
plan_ichebyshevutransform!(x, dims...; kwds...)*x
ichebyshevutransform(x, dims...; kwds...) = plan_ichebyshevutransform(x, dims...; kwds...)*x
*(P::IChebyshevUTransformPlan{T,k,K,false,N}, x::AbstractArray{T,N}) where {T,k,K,N} =
mul!(similar(x), P, x)
## Code generation for integer inputs
for func in (:chebyshevtransform,:ichebyshevtransform,:chebyshevutransform,:ichebyshevutransform)
@eval $func(x::AbstractVector{T}, dims...; kwds...) where {T<:Integer} = $func(convert(AbstractVector{float(T)},x), dims...; kwds...)
end
## points
struct ChebyshevGrid{kind,T} <: AbstractVector{T}
n::Int
function ChebyshevGrid{1,T}(n::Int) where T
n ≥ 0 || throw(ArgumentError("Number of points must be nonnehative"))
new{1,T}(n)
end
function ChebyshevGrid{2,T}(n::Int) where T
n ≥ 2 || throw(ArgumentError("Number of points must be greater than 2"))
new{2,T}(n)
end
end
ChebyshevGrid{kind}(n::Integer) where kind = ChebyshevGrid{kind,Float64}(n)
size(g::ChebyshevGrid) = (g.n,)
getindex(g::ChebyshevGrid{1,T}, k::Integer) where T =
sinpi(convert(T,g.n-2k+1)/(2g.n))
getindex(g::ChebyshevGrid{2,T}, k::Integer) where T =
sinpi(convert(T,g.n-2k+1)/(2g.n-2))
chebyshevpoints(::Type{T}, n::Integer, ::Val{kind}) where {T<:Number,kind} = ChebyshevGrid{kind,T}(n)
chebyshevpoints(::Type{T}, n::Integer) where T = chebyshevpoints(T, n, Val(1))
chebyshevpoints(n::Integer, kind=Val(1)) = chebyshevpoints(Float64, n, kind)
# sin(nθ) coefficients to values at Clenshaw-Curtis nodes except ±1
#
# struct DSTPlan{T,kind,inplace,P} <: Plan{T}
# plan::P
# end
#
# DSTPlan{k,inp}(plan) where {k,inp} =
# DSTPlan{eltype(plan),k,inp,typeof(plan)}(plan)
#
#
# plan_DSTI!(x) = length(x) > 0 ? DSTPlan{1,true}(FFTW.FFTW.plan_r2r!(x, FFTW.FFTW.RODFT00)) :
# fill(one(T),1,length(x))
#
# function *(P::DSTPlan{T,1}, x::AbstractArray) where {T}
# x = P.plan*x
# rmul!(x,half(T))
# end
###
# BigFloat
# Use `Nothing` and fall back to FFT
###
plan_chebyshevtransform(x::AbstractArray{T,N}, ::Val{kind}, dims...; kws...) where {T,N,kind} =
ChebyshevTransformPlan{T,kind,Nothing,false,N,UnitRange{Int}}()
plan_ichebyshevtransform(x::AbstractArray{T,N}, ::Val{kind}, dims...; kws...) where {T,N,kind} =
IChebyshevTransformPlan{T,kind,Nothing,false,N,UnitRange{Int}}()
plan_chebyshevtransform!(x::AbstractArray{T,N}, ::Val{kind}, dims...; kws...) where {T,N,kind} =
ChebyshevTransformPlan{T,kind,Nothing,true,N,UnitRange{Int}}()
plan_ichebyshevtransform!(x::AbstractArray{T,N}, ::Val{kind}, dims...; kws...) where {T,N,kind} =
IChebyshevTransformPlan{T,kind,Nothing,true,N,UnitRange{Int}}()
#following Chebfun's @Chebtech1/vals2coeffs.m and @Chebtech2/vals2coeffs.m
function *(P::ChebyshevTransformPlan{T,1,Nothing,false}, x::AbstractVector{T}) where T
n = length(x)
if n == 1
x
else
w = [2exp(im*convert(T,π)*k/2n) for k=0:n-1]
ret = w.*ifft([x;reverse(x)])[1:n]
ret = T<:Real ? real(ret) : ret
ret[1] /= 2
ret
end
end
# function *(P::ChebyshevTransformPlan{T,1,K,Nothing,false}, x::AbstractVector{T}) where {T,K}
# n = length(x)
# if n == 1
# x
# else
# ret = ifft([x;x[end:-1:2]])[1:n]
# ret = T<:Real ? real(ret) : ret
# ret[2:n-1] *= 2
# ret
# end
# end
*(P::ChebyshevTransformPlan{T,1,Nothing,true,N,R}, x::AbstractVector{T}) where {T,N,R} =
copyto!(x, ChebyshevTransformPlan{T,1,Nothing,false,N,R}() * x)
# *(P::ChebyshevTransformPlan{T,2,true,Nothing}, x::AbstractVector{T}) where T =
# copyto!(x, ChebyshevTransformPlan{T,2,false,Nothing}() * x)
#following Chebfun's @Chebtech1/vals2coeffs.m and @Chebtech2/vals2coeffs.m
function *(P::IChebyshevTransformPlan{T,1,Nothing,false}, x::AbstractVector{T}) where T
n = length(x)
if n == 1
x
else
w = [exp(-im*convert(T,π)*k/2n)/2 for k=0:2n-1]
w[1] *= 2;w[n+1] *= 0;w[n+2:end] *= -1
ret = fft(w.*[x;one(T);x[end:-1:2]])
ret = T<:Real ? real(ret) : ret
ret[1:n]
end
end
# function *(P::IChebyshevTransformPlan{T,2,K,Nothing,true}, x::AbstractVector{T}) where {T,K}
# n = length(x)
# if n == 1
# x
# else
# x[1] *= 2; x[end] *= 2
# chebyshevtransform!(x, Val(2))
# x[1] *= 2; x[end] *= 2
# lmul!(convert(T,n-1)/2, x)
# x
# end
# end
*(P::IChebyshevTransformPlan{T,1,Nothing,true,N,R}, x::AbstractVector{T}) where {T,N,R} =
copyto!(x, IChebyshevTransformPlan{T,1,Nothing,false,N,R}() * x)
# *(P::IChebyshevTransformPlan{T,SECONDKIND,false,Nothing}, x::AbstractVector{T}) where T =
# IChebyshevTransformPlan{T,SECONDKIND,true,Nothing}() * copy(x)
for pln in (:plan_chebyshevtransform!, :plan_chebyshevtransform,
:plan_chebyshevutransform!, :plan_chebyshevutransform,
:plan_ichebyshevutransform, :plan_ichebyshevutransform!,
:plan_ichebyshevtransform, :plan_ichebyshevtransform!)
@eval begin
$pln(x::AbstractArray, dims...; kws...) = $pln(x, Val(1), dims...; kws...)
$pln(::Type{T}, szs, dims...; kwds...) where T = $pln(Array{T}(undef, szs...), dims...; kwds...)
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 8392 | """
forwardrecurrence!(v, A, B, C, x)
evaluates the orthogonal polynomials at points `x`,
where `A`, `B`, and `C` are `AbstractVector`s containing the recurrence coefficients
as defined in DLMF,
overwriting `v` with the results.
"""
function forwardrecurrence!(v::AbstractVector{T}, A::AbstractVector, B::AbstractVector, C::AbstractVector, x, p0=one(T)) where T
N = length(v)
N == 0 && return v
length(A)+1 ≥ N && length(B)+1 ≥ N && length(C)+1 ≥ N || throw(ArgumentError("A, B, C must contain at least $(N-1) entries"))
p1 = convert(T, N == 1 ? p0 : muladd(A[1],x,B[1])*p0) # avoid accessing A[1]/B[1] if empty
_forwardrecurrence!(v, A, B, C, x, convert(T, p0), p1)
end
Base.@propagate_inbounds _forwardrecurrence_next(n, A, B, C, x, p0, p1) = muladd(muladd(A[n],x,B[n]), p1, -C[n]*p0)
# special case for B[n] == 0
Base.@propagate_inbounds _forwardrecurrence_next(n, A, ::Zeros, C, x, p0, p1) = muladd(A[n]*x, p1, -C[n]*p0)
# special case for Chebyshev U
Base.@propagate_inbounds _forwardrecurrence_next(n, A::AbstractFill, ::Zeros, C::Ones, x, p0, p1) = muladd(getindex_value(A)*x, p1, -p0)
# this supports adaptivity: we can populate `v` for large `n`
function _forwardrecurrence!(v::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x, p0, p1)
N = length(v)
N == 0 && return v
v[1] = p0
N == 1 && return v
v[2] = p1
_forwardrecurrence!(v, A, B, C, x, 2:N)
end
function _forwardrecurrence!(v::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x, kr::AbstractUnitRange)
n₀, N = first(kr), last(kr)
@boundscheck N > length(v) && throw(BoundsError(v, N))
p0, p1 = v[n₀-1], v[n₀]
@inbounds for n = n₀:N-1
p1,p0 = _forwardrecurrence_next(n, A, B, C, x, p0, p1),p1
v[n+1] = p1
end
v
end
forwardrecurrence(N::Integer, A::AbstractVector, B::AbstractVector, C::AbstractVector, x) =
forwardrecurrence!(Vector{promote_type(eltype(A),eltype(B),eltype(C),typeof(x))}(undef, N), A, B, C, x)
"""
clenshaw!(c, A, B, C, x)
evaluates the orthogonal polynomial expansion with coefficients `c` at points `x`,
where `A`, `B`, and `C` are `AbstractVector`s containing the recurrence coefficients
as defined in DLMF,
overwriting `x` with the results.
If `c` is a matrix this treats each column as a separate vector of coefficients, returning a vector
if `x` is a number and a matrix if `x` is a vector.
"""
clenshaw!(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector) =
clenshaw!(c, A, B, C, x, Ones{eltype(x)}(length(x)), x)
clenshaw!(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::Number, f::AbstractVector) =
clenshaw!(c, A, B, C, x, one(eltype(x)), f)
clenshaw!(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector, f::AbstractMatrix) =
clenshaw!(c, A, B, C, x, Ones{eltype(x)}(length(x)), f)
"""
clenshaw!(c, A, B, C, x, ϕ₀, f)
evaluates the orthogonal polynomial expansion with coefficients `c` at points `x`,
where `A`, `B`, and `C` are `AbstractVector`s containing the recurrence coefficients
as defined in DLMF and ϕ₀ is the zeroth polynomial,
overwriting `f` with the results.
"""
function clenshaw!(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector, ϕ₀::AbstractVector, f::AbstractVector)
f .= ϕ₀ .* clenshaw.(Ref(c), Ref(A), Ref(B), Ref(C), x)
end
function clenshaw!(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::Number, ϕ₀::Number, f::AbstractVector)
size(c,2) == length(f) || throw(DimensionMismatch("coeffients size and output length must match"))
@inbounds for j in axes(c,2)
f[j] = ϕ₀ * clenshaw(view(c,:,j), A, B, C, x)
end
f
end
function clenshaw!(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector, ϕ₀::AbstractVector, f::AbstractMatrix)
(size(x,1),size(c,2)) == size(f) || throw(DimensionMismatch("coeffients size and output length must match"))
@inbounds for j in axes(c,2)
clenshaw!(view(c,:,j), A, B, C, x, ϕ₀, view(f,:,j))
end
f
end
Base.@propagate_inbounds _clenshaw_next(n, A, B, C, x, c, bn1, bn2) = muladd(muladd(A[n],x,B[n]), bn1, muladd(-C[n+1],bn2,c[n]))
Base.@propagate_inbounds _clenshaw_next(n, A, ::Zeros, C, x, c, bn1, bn2) = muladd(A[n]*x, bn1, muladd(-C[n+1],bn2,c[n]))
# Chebyshev U
Base.@propagate_inbounds _clenshaw_next(n, A::AbstractFill, ::Zeros, C::Ones, x, c, bn1, bn2) = muladd(getindex_value(A)*x, bn1, -bn2+c[n])
# allow special casing first arg, for ChebyshevT in OrthogonalPolynomialsQuasi
Base.@propagate_inbounds _clenshaw_first(A, B, C, x, c, bn1, bn2) = muladd(muladd(A[1],x,B[1]), bn1, muladd(-C[2],bn2,c[1]))
"""
clenshaw(c, A, B, C, x)
evaluates the orthogonal polynomial expansion with coefficients `c` at points `x`,
where `A`, `B`, and `C` are `AbstractVector`s containing the recurrence coefficients
as defined in DLMF.
`x` may also be a single `Number`.
If `c` is a matrix this treats each column as a separate vector of coefficients, returning a vector
if `x` is a number and a matrix if `x` is a vector.
"""
function clenshaw(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::Number)
N = length(c)
T = promote_type(eltype(c),eltype(A),eltype(B),eltype(C),typeof(x))
@boundscheck check_clenshaw_recurrences(N, A, B, C)
N == 0 && return zero(T)
@inbounds begin
bn2 = zero(T)
bn1 = convert(T,c[N])
N == 1 && return bn1
for n = N-1:-1:2
bn1,bn2 = _clenshaw_next(n, A, B, C, x, c, bn1, bn2),bn1
end
bn1 = _clenshaw_first(A, B, C, x, c, bn1, bn2)
end
bn1
end
clenshaw(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector) =
clenshaw!(c, A, B, C, copy(x))
function clenshaw(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::Number)
T = promote_type(eltype(c),eltype(A),eltype(B),eltype(C),typeof(x))
clenshaw!(c, A, B, C, x, Vector{T}(undef, size(c,2)))
end
function clenshaw(c::AbstractMatrix, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractVector)
T = promote_type(eltype(c),eltype(A),eltype(B),eltype(C),typeof(x))
clenshaw!(c, A, B, C, x, Matrix{T}(undef, size(x,1), size(c,2)))
end
###
# Chebyshev T special cases
###
"""
clenshaw!(c, x)
evaluates the first-kind Chebyshev (T) expansion with coefficients `c` at points `x`,
overwriting `x` with the results.
"""
clenshaw!(c::AbstractVector, x::AbstractVector) = clenshaw!(c, x, x)
"""
clenshaw!(c, x, f)
evaluates the first-kind Chebyshev (T) expansion with coefficients `c` at points `x`,
overwriting `f` with the results.
"""
function clenshaw!(c::AbstractVector, x::AbstractVector, f::AbstractVector)
f .= clenshaw.(Ref(c), x)
end
"""
clenshaw(c, x)
evaluates the first-kind Chebyshev (T) expansion with coefficients `c` at the points `x`.
`x` may also be a single `Number`.
"""
function clenshaw(c::AbstractVector, x::Number)
N,T = length(c),promote_type(eltype(c),typeof(x))
if N == 0
return zero(T)
elseif N == 1 # avoid issues with NaN x
return first(c)*one(x)
end
y = 2x
bk1,bk2 = zero(T),zero(T)
@inbounds begin
for k = N:-1:2
bk1,bk2 = muladd(y,bk1,c[k]-bk2),bk1
end
muladd(x,bk1,c[1]-bk2)
end
end
function clenshaw!(c::AbstractMatrix, x::Number, f::AbstractVector)
size(c,2) == length(f) || throw(DimensionMismatch("coeffients size and output length must match"))
@inbounds for j in axes(c,2)
f[j] = clenshaw(view(c,:,j), x)
end
f
end
function clenshaw!(c::AbstractMatrix, x::AbstractVector, f::AbstractMatrix)
(size(x,1),size(c,2)) == size(f) || throw(DimensionMismatch("coeffients size and output length must match"))
@inbounds for j in axes(c,2)
clenshaw!(view(c,:,j), x, view(f,:,j))
end
f
end
clenshaw(c::AbstractVector, x::AbstractVector) = clenshaw!(c, copy(x))
clenshaw(c::AbstractMatrix, x::Number) = clenshaw!(c, x, Vector{promote_type(eltype(c),typeof(x))}(undef, size(c,2)))
clenshaw(c::AbstractMatrix, x::AbstractVector) = clenshaw!(c, x, Matrix{promote_type(eltype(c),eltype(x))}(undef, size(x,1), size(c,2)))
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 686 | plan_clenshawcurtis(μ) = length(μ) > 1 ? FFTW.plan_r2r!(μ, FFTW.REDFT00) : fill!(similar(μ),1)'
"""
Compute nodes of the Clenshaw—Curtis quadrature rule.
"""
clenshawcurtisnodes(::Type{T}, N::Int) where T = chebyshevpoints(T, N, Val(2))
"""
Compute weights of the Clenshaw—Curtis quadrature rule with modified Chebyshev moments of the first kind ``\\mu``.
"""
clenshawcurtisweights(μ::Vector) = clenshawcurtisweights!(copy(μ))
clenshawcurtisweights!(μ::Vector) = clenshawcurtisweights!(μ, plan_clenshawcurtis(μ))
function clenshawcurtisweights!(μ::Vector{T}, plan) where T
N = length(μ)
rmul!(μ, inv(N-one(T)))
plan*μ
μ[1] *= half(T); μ[N] *= half(T)
return μ
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 3955 | """
leg2cheb(v::AbstractVector; normleg::Bool=false, normcheb::Bool=false)
Convert the vector of expansions coefficients `v` from a Legendre to a Chebyshev basis.
The keyword arguments denote whether the bases are normalized.
"""
leg2cheb
"""
cheb2leg(v::AbstractVector; normcheb::Bool=false, normleg::Bool=false)
Convert the vector of expansions coefficients `v` from a Chebyshev to a Legendre basis.
The keyword arguments denote whether the bases are normalized.
"""
cheb2leg
"""
ultra2ultra(v::AbstractVector, λ, μ; norm1::Bool=false, norm2::Bool=false)
Convert the vector of expansions coefficients `v` from an Ultraspherical basis of
order `λ` to an Ultraspherical basis of order `μ`.
The keyword arguments denote whether the bases are normalized.
"""
ultra2ultra
"""
jac2jac(v::AbstractVector, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
Convert the vector of expansions coefficients `v` from a Jacobi basis of
order `(α,β)` to a Jacobi basis of order `(γ,δ)`.
The keyword arguments denote whether the bases are normalized.
"""
jac2jac
"""
lag2lag(v::AbstractVector, α, β; norm1::Bool=false, norm2::Bool=false)
Convert the vector of expansions coefficients `v` from a Laguerre basis of
order `α` to a La basis of order `β`.
The keyword arguments denote whether the bases are normalized."""
lag2lag
"""
jac2ultra(v::AbstractVector, α, β, λ; normjac::Bool=false, normultra::Bool=false)
Convert the vector of expansions coefficients `v` from a Jacobi basis of
order `(α,β)` to an Ultraspherical basis of order `λ`.
The keyword arguments denote whether the bases are normalized."""
jac2ultra
"""
ultra2jac(v::AbstractVector, λ, α, β; normultra::Bool=false, normjac::Bool=false)
Convert the vector of expansions coefficients `v` from an Ultraspherical basis of
order `λ` to a Jacobi basis of order `(α,β)`.
The keyword arguments denote whether the bases are normalized.
"""
ultra2jac
"""
jac2cheb(v::AbstractVector, α, β; normjac::Bool=false, normcheb::Bool=false)
Convert the vector of expansions coefficients `v` from a Jacobi basis of
order `(α,β)` to a Chebyshev basis.
The keyword arguments denote whether the bases are normalized.
"""
jac2cheb
"""
cheb2jac(v::AbstractVector, α, β; normcheb::Bool=false, normjac::Bool=false)
Convert the vector of expansions coefficients `v` from a Chebyshev basis to a
Jacobi basis of order `(α,β)`.
The keyword arguments denote whether the bases are normalized.
"""
cheb2jac
"""
ultra2cheb(v::AbstractVector, λ; normultra::Bool=false, normcheb::Bool=false)
Convert the vector of expansions coefficients `v` from an Ultraspherical basis of
order `λ` to a Chebyshev basis.
The keyword arguments denote whether the bases are normalized.
"""
ultra2cheb
"""
cheb2ultra(v::AbstractVector, λ; normcheb::Bool=false, normultra::Bool=false)
Convert the vector of expansions coefficients `v` from a Chebyshev basis
to an Ultraspherical basis of order `λ`.
The keyword arguments denote whether the bases are normalized.
"""
cheb2ultra
"""
associatedjac2jac(v::AbstractVector, c::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
Convert the vector of expansions coefficients `v` from an associated Jacobi basis
of orders `(α,β)` to a Jacobi basis of order `(γ,δ)`.
The keyword arguments denote whether the bases are normalized.
"""
associatedjac2jac
"""
modifiedjac2jac(v::AbstractVector{T}, α, β, u::Vector{T}; verbose::Bool=false) where {T}
modifiedjac2jac(v::AbstractVector{T}, α, β, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T}
"""
modifiedjac2jac
"""
modifiedlag2lag(v::AbstractVector{T}, α, u::Vector{T}; verbose::Bool=false)
modifiedlag2lag(v::AbstractVector{T}, α, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T}
"""
modifiedlag2lag
"""
modifiedherm2herm(v::AbstractVector{T}, u::Vector{T}; verbose::Bool=false)
modifiedherm2herm(v::AbstractVector{T}, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T}
"""
modifiedherm2herm
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4974 | """
`FastTransforms` submodule for the computation of some elliptic integrals and functions.
Complete elliptic integrals of the first and second kinds:
```math
K(k) = \\int_0^{\\frac{\\pi}{2}} \\frac{{\\rm d}\\theta}{\\sqrt{1-k^2\\sin^2\\theta}},\\quad{\\rm and},
```
```math
E(k) = \\int_0^{\\frac{\\pi}{2}} \\sqrt{1-k^2\\sin^2\\theta} {\\rm\\,d}\\theta.
```
Jacobian elliptic functions:
```math
x = \\int_0^{\\operatorname{sn}(x,k)} \\frac{{\\rm d}t}{\\sqrt{(1-t^2)(1-k^2t^2)}},
```
```math
x = \\int_{\\operatorname{cn}(x,k)}^1 \\frac{{\\rm d}t}{\\sqrt{(1-t^2)[1-k^2(1-t^2)]}},
```
```math
x = \\int_{\\operatorname{dn}(x,k)}^1 \\frac{{\\rm d}t}{\\sqrt{(1-t^2)(t^2-1+k^2)}},
```
and the remaining nine are defined by:
```math
\\operatorname{pq}(x,k) = \\frac{\\operatorname{pr}(x,k)}{\\operatorname{qr}(x,k)} = \\frac{1}{\\operatorname{qp}(x,k)}.
```
"""
module Elliptic
import FastTransforms: libfasttransforms
export K, E,
sn, cn, dn, ns, nc, nd,
sc, cs, sd, ds, cd, dc
for (fC, elty) in ((:ft_complete_elliptic_integralf, :Float32), (:ft_complete_elliptic_integral, :Float64))
@eval begin
function K(k::$elty)
return ccall(($(string(fC)), libfasttransforms), $elty, (Cint, $elty), '1', k)
end
function E(k::$elty)
return ccall(($(string(fC)), libfasttransforms), $elty, (Cint, $elty), '2', k)
end
end
end
const SN = UInt(1)
const CN = UInt(2)
const DN = UInt(4)
for (fC, elty) in ((:ft_jacobian_elliptic_functionsf, :Float32), (:ft_jacobian_elliptic_functions, :Float64))
@eval begin
function sn(x::$elty, k::$elty)
retsn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, C_NULL, C_NULL, SN)
retsn[]
end
function cn(x::$elty, k::$elty)
retcn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, retcn, C_NULL, CN)
retcn[]
end
function dn(x::$elty, k::$elty)
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, C_NULL, retdn, DN)
retdn[]
end
function ns(x::$elty, k::$elty)
retsn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, C_NULL, C_NULL, SN)
inv(retsn[])
end
function nc(x::$elty, k::$elty)
retcn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, retcn, C_NULL, CN)
inv(retcn[])
end
function nd(x::$elty, k::$elty)
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, C_NULL, retdn, DN)
inv(retdn[])
end
function sc(x::$elty, k::$elty)
retsn = Ref{$elty}()
retcn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, retcn, C_NULL, SN & CN)
retsn[]/retcn[]
end
function cs(x::$elty, k::$elty)
retsn = Ref{$elty}()
retcn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, retcn, C_NULL, SN & CN)
retcn[]/retsn[]
end
function sd(x::$elty, k::$elty)
retsn = Ref{$elty}()
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, C_NULL, retdn, SN & DN)
retsn[]/retdn[]
end
function ds(x::$elty, k::$elty)
retsn = Ref{$elty}()
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, retsn, C_NULL, retdn, SN & DN)
retdn[]/retsn[]
end
function cd(x::$elty, k::$elty)
retcn = Ref{$elty}()
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, retcn, retdn, CN & DN)
retcn[]/retdn[]
end
function dc(x::$elty, k::$elty)
retcn = Ref{$elty}()
retdn = Ref{$elty}()
ccall(($(string(fC)), libfasttransforms), Cvoid, ($elty, $elty, Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, UInt), x, k, C_NULL, retcn, retdn, CN & DN)
retdn[]/retcn[]
end
end
end
end # module
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1148 | plan_fejer1(μ) = FFTW.plan_r2r!(μ, FFTW.REDFT01)
"""
Compute nodes of Fejer's first quadrature rule.
"""
fejernodes1(::Type{T}, N::Int) where T = chebyshevpoints(T, N, Val(1))
"""
Compute weights of Fejer's first quadrature rule with modified Chebyshev moments of the first kind ``\\mu``.
"""
fejerweights1(μ::Vector) = fejerweights1!(copy(μ))
fejerweights1!(μ::Vector) = fejerweights1!(μ, plan_fejer1(μ))
function fejerweights1!(μ::Vector{T}, plan) where T
N = length(μ)
rmul!(μ, inv(T(N)))
return plan*μ
end
plan_fejer2(μ) = FFTW.plan_r2r!(μ, FFTW.RODFT00)
"""
Compute nodes of Fejer's second quadrature rule.
"""
fejernodes2(::Type{T}, N::Int) where T = T[sinpi((N-2k-one(T))/(2N+two(T))) for k=0:N-1]
"""
Compute weights of Fejer's second quadrature rule with modified Chebyshev moments of the second kind ``\\mu``.
"""
fejerweights2(μ::Vector) = fejerweights2!(copy(μ))
fejerweights2!(μ::Vector) = fejerweights2!(μ, plan_fejer2(μ))
function fejerweights2!(μ::Vector{T}, plan) where T
N = length(μ)
Np1 = N+one(T)
rmul!(μ, inv(Np1))
plan*μ
@inbounds for i=1:N μ[i] = sinpi(i/Np1)*μ[i] end
return μ
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 6994 | """
Calculates the Gaunt coefficients, defined by:
```math
a(m,n,\\mu,\\nu,q) = \\frac{2(n+\\nu-2q)+1}{2} \\frac{(n+\\nu-2q-m-\\mu)!}{(n+\\nu-2q+m+\\mu)!} \\int_{-1}^{+1} P_n^m(x) P_\\nu^\\mu(x) P_{n+\\nu-2q}^{m+\\mu}(x) {\\rm\\,d}x.
```
or defined by:
```math
P_n^m(x) P_\\nu^\\mu(x) = \\sum_{q=0}^{q_{\\rm max}} a(m,n,\\mu,\\nu,q) P_{n+\\nu-2q}^{m+\\mu}(x)
```
This is a Julia implementation of the stable recurrence described in:
Y.-l. Xu, Fast evaluation of Gaunt coefficients: recursive approach, *J. Comp. Appl. Math.*, **85**:53–65, 1997.
"""
function gaunt(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer;normalized::Bool=false) where T
if normalized
normalizedgaunt(T,m,n,μ,ν)
else
lmul!(normalization(T,m,n,μ,ν),gaunt(T,m,n,μ,ν;normalized=true))
end
end
"""
Calculates the Gaunt coefficients in 64-bit floating-point arithmetic.
"""
gaunt(m::Integer,n::Integer,μ::Integer,ν::Integer;kwds...) = gaunt(Float64,m,n,μ,ν;kwds...)
gaunt(::Type{T},m::Int32,n::Int32,μ::Int32,ν::Int32;normalized::Bool=false) where T =
gaunt(T,Int64(m),Int64(n),Int64(μ),Int64(ν);normalized=normalized)
function normalization(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer) where T
pochhammer(n+one(T),n)*pochhammer(ν+one(T),ν)/pochhammer(n+ν+one(T),n+ν)*gamma(n+ν-m-μ+one(T))/gamma(n-m+one(T))/gamma(ν-μ+one(T))
end
normalization(::Type{Float64},m::Integer,n::Integer,μ::Integer,ν::Integer) = normalization1(Float64,n,ν)*normalization2(Float64,n-m,ν-μ)
function normalization1(::Type{Float64},n::Integer,ν::Integer)
if n ≥ 8
if ν ≥ 8
return exp((n+0.5)*log1p(n/(n+1))+(ν+0.5)*log1p(ν/(ν+1))+(n+ν+0.5)*log1p(-(n+ν)/(2n+2ν+1))+n*log1p(-2ν/(2n+2ν+1))+ν*log1p(-2n/(2n+2ν+1)))*stirlingseries(2n+1.0)*stirlingseries(2ν+1.0)*stirlingseries(n+ν+1.0)/stirlingseries(n+1.0)/stirlingseries(ν+1.0)/stirlingseries(2n+2ν+1.0)
else
return pochhammer(ν+1.0,ν)/(2n+2ν+1.0)^ν*exp(ν+(n+0.5)*log1p(n/(n+1))+(n+ν+0.5)*log1p(-(n+ν)/(2n+2ν+1))+n*log1p(-2ν/(2n+2ν+1)))*stirlingseries(2n+1.0)*stirlingseries(n+ν+1.0)/stirlingseries(n+1.0)/stirlingseries(2n+2ν+1.0)
end
elseif ν ≥ 8
return pochhammer(n+1.0,n)/(2n+2ν+1.0)^n*exp(n+(ν+0.5)*log1p(ν/(ν+1))+(n+ν+0.5)*log1p(-(n+ν)/(2n+2ν+1))+ν*log1p(-2n/(2n+2ν+1)))*stirlingseries(2ν+1.0)*stirlingseries(n+ν+1.0)/stirlingseries(ν+1.0)/stirlingseries(2n+2ν+1.0)
else
return pochhammer(n+1.0,n)*pochhammer(ν+1.0,ν)/pochhammer(n+ν+1.0,n+ν)
end
end
function normalization2(::Type{Float64},nm::Integer,νμ::Integer)
if nm ≥ 8
if νμ ≥ 8
return edivsqrt2pi*exp((nm+0.5)*log1p(νμ/(nm+1))+(νμ+0.5)*log1p(nm/(νμ+1)))/sqrt(nm+νμ+1.0)*stirlingseries(nm+νμ+1.0)/stirlingseries(nm+1.0)/stirlingseries(νμ+1.0)
else
return (nm+νμ+1.0)^νμ*exp(-νμ+(nm+0.5)*log1p(νμ/(nm+1)))*stirlingseries(nm+νμ+1.0)/stirlingseries(nm+1.0)/gamma(νμ+1.0)
end
elseif νμ ≥ 8
return (nm+νμ+1.0)^nm*exp(-nm+(νμ+0.5)*log1p(nm/(νμ+1)))*stirlingseries(nm+νμ+1.0)/stirlingseries(νμ+1.0)/gamma(nm+1.0)
else
return gamma(nm+νμ+1.0)/gamma(nm+1.0)/gamma(νμ+1.0)
end
end
function normalizedgaunt(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer) where T
qmax = min(n,ν,(n+ν-abs(m+μ))÷2)
a = Vector{T}(undef, qmax+1)
a[1] = one(T)
if μ == m && ν == n # zero class (i) of Aₚ
if μ == m == 0
for q = 1:qmax
p = n+ν-2q
a[q+1] = α(T,n,ν,p+2)/α(T,n,ν,p+1)*a[q]
end
else
for q = 1:qmax
p = n+ν-2q
p₁,p₂ = p-m-μ,p+m+μ
a[q+1] = (p+1)*(p₂+2)*α(T,n,ν,p+2)/(p+2)/(p₁+1)/α(T,n,ν,p+1)*a[q]
end
end
else
qmax > 0 && (a[2] = secondinitialcondition(T,m,n,μ,ν))
q = 2
if qmax > 1
p = n+ν-2q
p₁,p₂ = p-m-μ,p+m+μ
if A(T,m,n,μ,ν,p+4) != 0
a[q+1] = (c₁(T,m,n,μ,ν,p,p₁,p₂)*a[q] + c₂(T,m,n,μ,ν,p,p₂)*a[q-1])/c₀(T,m,n,μ,ν,p,p₁)
else
a[q+1] = thirdinitialcondition(T,m,n,μ,ν)
end
q+=1
end
while q ≤ qmax
p = n+ν-2q
p₁,p₂ = p-m-μ,p+m+μ
if A(T,m,n,μ,ν,p+4) != 0
a[q+1] = (c₁(T,m,n,μ,ν,p,p₁,p₂)*a[q] + c₂(T,m,n,μ,ν,p,p₂)*a[q-1])/c₀(T,m,n,μ,ν,p,p₁)
elseif A(T,m,n,μ,ν,p+6) != 0
a[q+1] = (d₁(T,m,n,μ,ν,p,p₁,p₂)*a[q] + d₂(T,m,n,μ,ν,p,p₁,p₂)*a[q-1] + d₃(T,m,n,μ,ν,p,p₂)*a[q-2])/d₀(T,m,n,μ,ν,p,p₁)
else
a[q+1] = (p+1)*(p₂+2)*α(T,n,ν,p+2)/(p+2)/(p₁+1)/α(T,n,ν,p+1)*a[q]
end
q+=1
end
end
a
end
function secondinitialcondition(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer) where T
n₄ = n+ν-m-μ
mn = m-n
μν = μ-ν
temp = 2n+2ν-one(T)
return (temp-2)/2*(1-temp/n₄/(n₄-1)*(mn*(mn+one(T))/(2n-1)+μν*(μν+one(T))/(2ν-1)))
end
function thirdinitialcondition(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer) where T
n₄ = n+ν-m-μ
mn = m-n
μν = μ-ν
temp = 2n+2ν-one(T)
temp1 = mn*(mn+one(T))*(mn+2)*(mn+3)/(2n-1)/(2n-3) + 2mn*(mn+one(T))*μν*(μν+one(T))/(2n-1)/(2ν-1) + μν*(μν+one(T))*(μν+2)*(μν+3)/(2ν-1)/(2ν-3)
temp2 = (temp-4)/(2(n₄-2)*(n₄-3))*temp1 - mn*(mn+one(T))/(2n-1)-μν*(μν+one(T))/(2ν-1)
return temp*(temp-6)/4*( (temp-2)/n₄/(n₄-1)*temp2 + one(T)/2 )
end
α(::Type{T},n::Integer,ν::Integer,p::Integer) where T =
(p^2-(n+ν+1)^2)*(p^2-(n-ν)^2)/(4p^2-one(T))
A(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer) where T =
p*(p-one(T))*(m-μ)-(m+μ)*(n-ν)*(n+ν+one(T))
c₀(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₁::Integer) where T =
(p+2)*(p+3)*(p₁+1)*(p₁+2)*A(T,m,n,μ,ν,p+4)*α(T,n,ν,p+1)
c₁(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₁::Integer,p₂::Integer) where T =
A(T,m,n,μ,ν,p+2)*A(T,m,n,μ,ν,p+3)*A(T,m,n,μ,ν,p+4) + (p+1)*(p+3)*(p₁+2)*(p₂+2)*A(T,m,n,μ,ν,p+4)*α(T,n,ν,p+2) + (p+2)*(p+4)*(p₁+3)*(p₂+3)*A(T,m,n,μ,ν,p+2)*α(T,n,ν,p+3)
c₂(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₂::Integer) where T =
-(p+2)*(p+3)*(p₂+3)*(p₂+4)*A(T,m,n,μ,ν,p+2)*α(T,n,ν,p+4)
d₀(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₁::Integer) where T =
(p+2)*(p+3)*(p+5)*(p₁+2)*(p₁+4)*A(T,m,n,μ,ν,p+6)*α(T,n,ν,p+1)
d₁(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₁::Integer,p₂::Integer) where T =
(p+5)*(p₁+4)*A(T,m,n,μ,ν,p+6)*( A(T,m,n,μ,ν,p+2)*A(T,m,n,μ,ν,p+3) + (p+1)*(p+3)*(p₁+2)*(p₂+2)*α(T,n,ν,p+2) )
d₂(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₁::Integer,p₂::Integer) where T =
(p+2)*(p₂+3)*A(T,m,n,μ,ν,p+2)*( A(T,m,n,μ,ν,p+5)*A(T,m,n,μ,ν,p+6) + (p+4)*(p+6)*(p₁+5)*(p₂+5)*α(T,n,ν,p+5) )
d₃(::Type{T},m::Integer,n::Integer,μ::Integer,ν::Integer,p::Integer,p₂::Integer) where T =
-(p+2)*(p+4)*(p+5)*(p₂+3)*(p₂+5)*(p₂+6)*A(T,m,n,μ,ν,p+2)*α(T,n,ν,p+6)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 937 | # exp(-x^2/2) H_n(x) / sqrt(π*prod(1:n))
struct ForwardWeightedHermitePlan{T}
Vtw::Matrix{T} # vandermonde
end
struct BackwardWeightedHermitePlan{T}
V::Matrix{T} # vandermonde
end
function _weightedhermite_vandermonde(n)
V = Array{Float64}(undef, n, n)
x,w = unweightedgausshermite(n)
for k=1:n
V[k,:] = FastGaussQuadrature.hermpoly_rec(0:n-1, sqrt(2)*x[k])
end
V,w
end
function ForwardWeightedHermitePlan(n::Integer)
V,w = _weightedhermite_vandermonde(n)
ForwardWeightedHermitePlan(V' * Diagonal(w / sqrt(π)))
end
BackwardWeightedHermitePlan(n::Integer) = BackwardWeightedHermitePlan(_weightedhermite_vandermonde(n)[1])
*(P::ForwardWeightedHermitePlan, v::AbstractVector) = P.Vtw*v
*(P::BackwardWeightedHermitePlan, v::AbstractVector) = P.V*v
weightedhermitetransform(v) = ForwardWeightedHermitePlan(length(v))*v
iweightedhermitetransform(v) = BackwardWeightedHermitePlan(length(v))*v
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 3111 | """
Pre-computes an inverse nonuniform fast Fourier transform of type `N`.
For best performance, choose the right number of threads by `FFTW.set_num_threads(4)`, for example.
"""
struct iNUFFTPlan{N,T,S,PT,TF} <: Plan{T}
pt::PT
TP::TF
r::Vector{T}
p::Vector{T}
Ap::Vector{T}
ϵ::S
end
"""
Pre-computes an inverse nonuniform fast Fourier transform of type I.
"""
function plan_inufft1(ω::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
N = length(ω)
p = plan_nufft1(ω, ϵ)
pt = plan_nufft2(ω/N, ϵ)
c = p*ones(Complex{T}, N)
r = conj(c)
avg = (r[1]+c[1])/2
r[1] = avg
c[1] = avg
TP = factorize(Toeplitz(c, r))
r = zero(c)
p = zero(c)
Ap = zero(c)
iNUFFTPlan{1, eltype(TP), typeof(ϵ), typeof(pt), typeof(TP)}(pt, TP, r, p, Ap, ϵ)
end
"""
Pre-computes an inverse nonuniform fast Fourier transform of type II.
"""
function plan_inufft2(x::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
N = length(x)
pt = plan_nufft1(N*x, ϵ)
r = pt*ones(Complex{T}, N)
c = conj(r)
avg = (r[1]+c[1])/2
r[1] = avg
c[1] = avg
TP = factorize(Toeplitz(c, r))
r = zero(c)
p = zero(c)
Ap = zero(c)
iNUFFTPlan{2, eltype(TP), typeof(ϵ), typeof(pt), typeof(TP)}(pt, TP, r, p, Ap, ϵ)
end
function (*)(p::iNUFFTPlan{N,T}, x::AbstractVector{V}) where {N,T,V}
mul!(zeros(promote_type(T,V), length(x)), p, x)
end
function mul!(c::AbstractVector{T}, P::iNUFFTPlan{1,T}, f::AbstractVector{T}) where T
pt, TP, r, p, Ap, ϵ = P.pt, P.TP, P.r, P.p, P.Ap, P.ϵ
cg_for_inufft(TP, c, f, r, p, Ap, 50, 100ϵ)
conj!(mul!(c, pt, conj!(c)))
end
function mul!(c::AbstractVector{T}, P::iNUFFTPlan{2,T}, f::AbstractVector{T}) where T
pt, TP, r, p, Ap, ϵ = P.pt, P.TP, P.r, P.p, P.Ap, P.ϵ
cg_for_inufft(TP, c, conj!(pt*conj!(f)), r, p, Ap, 50, 100ϵ)
conj!(f)
c
end
"""
Computes an inverse nonuniform fast Fourier transform of type I.
"""
inufft1(c::AbstractVector, ω::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_inufft1(ω, ϵ)*c
"""
Computes an inverse nonuniform fast Fourier transform of type II.
"""
inufft2(c::AbstractVector, x::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_inufft2(x, ϵ)*c
function cg_for_inufft(A::ToeplitzMatrices.ToeplitzFactorization{T}, x::AbstractVector{T}, b::AbstractVector{T}, r::AbstractVector{T}, p::AbstractVector{T}, Ap::AbstractVector{T}, max_it::Integer, tol::Real) where T
n = length(b)
nrmb = norm(b)
if nrmb == 0 nrmb = one(typeof(nrmb)) end
copyto!(x, b)
fill!(r, zero(T))
fill!(p, zero(T))
fill!(Ap, zero(T))
# r = b - A*x
copyto!(r, b)
mul!(r, A, x, -one(T), one(T))
copyto!(p, r)
nrm2 = r⋅r
for k = 1:max_it
# Ap = A*p
mul!(Ap, A, p)
α = nrm2/(p⋅Ap)
@inbounds @simd for l = 1:n
x[l] += α*p[l]
r[l] -= α*Ap[l]
end
nrm2new = r⋅r
cst = nrm2new/nrm2
@inbounds @simd for l = 1:n
p[l] = muladd(cst, p[l], r[l])
end
nrm2 = nrm2new
if sqrt(abs(nrm2)) ≤ tol*nrmb break end
end
return x
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 69781 | if get(ENV, "FT_BUILD_FROM_SOURCE", "false") == "true"
using Libdl
const libfasttransforms = find_library("libfasttransforms", [joinpath(dirname(@__DIR__), "deps")])
if libfasttransforms ≡ nothing || length(libfasttransforms) == 0
error("FastTransforms is not properly installed. Please run Pkg.build(\"FastTransforms\") ",
"and restart Julia.")
end
else
using FastTransforms_jll
end
ft_set_num_threads(n::Integer) = ccall((:ft_set_num_threads, libfasttransforms), Cvoid, (Cint, ), n)
ft_fftw_plan_with_nthreads(n::Integer) = ccall((:ft_fftw_plan_with_nthreads, libfasttransforms), Cvoid, (Cint, ), n)
function __init__()
n = ceil(Int, Sys.CPU_THREADS/2)
ft_set_num_threads(n)
ccall((:ft_fftw_init_threads, libfasttransforms), Cint, ())
ft_fftw_plan_with_nthreads(n)
end
"""
mpfr_t <: AbstractFloat
A Julia struct that exactly matches `mpfr_t`.
"""
struct mpfr_t <: AbstractFloat
prec::Clong
sign::Cint
exp::Clong
d::Ptr{Limb}
end
"""
`BigFloat` is a mutable struct and there is no guarantee that each entry in an
`AbstractArray{BigFloat}` is unique. For example, looking at the `Limb`s,
Id = Matrix{BigFloat}(I, 3, 3)
map(x->x.d, Id)
shows that the ones and the zeros all share the same pointers. If a C function
assumes unicity of each datum, then the array must be renewed with a `deepcopy`.
"""
function renew!(x::AbstractArray{BigFloat})
for i in eachindex(x)
@inbounds x[i] = deepcopy(x[i])
end
return x
end
function horner!(c::StridedVector{Float64}, x::Vector{Float64}, f::Vector{Float64})
@assert length(x) == length(f)
ccall((:ft_horner, libfasttransforms), Cvoid, (Cint, Ptr{Float64}, Cint, Cint, Ptr{Float64}, Ptr{Float64}), length(c), c, stride(c, 1), length(x), x, f)
f
end
function horner!(c::StridedVector{Float32}, x::Vector{Float32}, f::Vector{Float32})
@assert length(x) == length(f)
ccall((:ft_hornerf, libfasttransforms), Cvoid, (Cint, Ptr{Float32}, Cint, Cint, Ptr{Float32}, Ptr{Float32}), length(c), c, stride(c, 1), length(x), x, f)
f
end
function check_clenshaw_recurrences(N, A, B, C)
if length(A) < N || length(B) < N || length(C) < N+1
throw(ArgumentError("A, B must contain at least $N entries and C must contain at least $(N+1) entrie"))
end
end
function check_clenshaw_points(x, ϕ₀, f)
length(x) == length(ϕ₀) == length(f) || throw(ArgumentError("Dimensions must match"))
end
function check_clenshaw_points(x, f)
length(x) == length(f) || throw(ArgumentError("Dimensions must match"))
end
function clenshaw!(c::StridedVector{Float64}, x::Vector{Float64}, f::Vector{Float64})
@boundscheck check_clenshaw_points(x, f)
ccall((:ft_clenshaw, libfasttransforms), Cvoid, (Cint, Ptr{Float64}, Cint, Cint, Ptr{Float64}, Ptr{Float64}), length(c), c, stride(c, 1), length(x), x, f)
f
end
function clenshaw!(c::StridedVector{Float32}, x::Vector{Float32}, f::Vector{Float32})
@boundscheck check_clenshaw_points(x, f)
ccall((:ft_clenshawf, libfasttransforms), Cvoid, (Cint, Ptr{Float32}, Cint, Cint, Ptr{Float32}, Ptr{Float32}), length(c), c, stride(c, 1), length(x), x, f)
f
end
function clenshaw!(c::StridedVector{Float64}, A::Vector{Float64}, B::Vector{Float64}, C::Vector{Float64}, x::Vector{Float64}, ϕ₀::Vector{Float64}, f::Vector{Float64})
N = length(c)
@boundscheck check_clenshaw_recurrences(N, A, B, C)
@boundscheck check_clenshaw_points(x, ϕ₀, f)
ccall((:ft_orthogonal_polynomial_clenshaw, libfasttransforms), Cvoid, (Cint, Ptr{Float64}, Cint, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Cint, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), N, c, stride(c, 1), A, B, C, length(x), x, ϕ₀, f)
f
end
function clenshaw!(c::StridedVector{Float32}, A::Vector{Float32}, B::Vector{Float32}, C::Vector{Float32}, x::Vector{Float32}, ϕ₀::Vector{Float32}, f::Vector{Float32})
N = length(c)
@boundscheck check_clenshaw_recurrences(N, A, B, C)
@boundscheck check_clenshaw_points(x, ϕ₀, f)
ccall((:ft_orthogonal_polynomial_clenshawf, libfasttransforms), Cvoid, (Cint, Ptr{Float32}, Cint, Ptr{Float32}, Ptr{Float32}, Ptr{Float32}, Cint, Ptr{Float32}, Ptr{Float32}, Ptr{Float32}), N, c, stride(c, 1), A, B, C, length(x), x, ϕ₀, f)
f
end
@enum Transforms::Cint begin
LEG2CHEB=0
CHEB2LEG
ULTRA2ULTRA
JAC2JAC
LAG2LAG
JAC2ULTRA
ULTRA2JAC
JAC2CHEB
CHEB2JAC
ULTRA2CHEB
CHEB2ULTRA
ASSOCIATEDJAC2JAC
MODIFIEDJAC2JAC
MODIFIEDLAG2LAG
MODIFIEDHERM2HERM
SPHERE
SPHEREV
DISK
ANNULUS
RECTDISK
TRIANGLE
TETRAHEDRON
SPINSPHERE
SPHERESYNTHESIS
SPHEREANALYSIS
SPHEREVSYNTHESIS
SPHEREVANALYSIS
DISKSYNTHESIS
DISKANALYSIS
ANNULUSSYNTHESIS
ANNULUSANALYSIS
RECTDISKSYNTHESIS
RECTDISKANALYSIS
TRIANGLESYNTHESIS
TRIANGLEANALYSIS
TETRAHEDRONSYNTHESIS
TETRAHEDRONANALYSIS
SPINSPHERESYNTHESIS
SPINSPHEREANALYSIS
SPHERICALISOMETRY
end
Transforms(t::Transforms) = t
let k2s = Dict(LEG2CHEB => "Legendre--Chebyshev",
CHEB2LEG => "Chebyshev--Legendre",
ULTRA2ULTRA => "ultraspherical--ultraspherical",
JAC2JAC => "Jacobi--Jacobi",
LAG2LAG => "Laguerre--Laguerre",
JAC2ULTRA => "Jacobi--ultraspherical",
ULTRA2JAC => "ultraspherical--Jacobi",
JAC2CHEB => "Jacobi--Chebyshev",
CHEB2JAC => "Chebyshev--Jacobi",
ULTRA2CHEB => "ultraspherical--Chebyshev",
CHEB2ULTRA => "Chebyshev--ultraspherical",
ASSOCIATEDJAC2JAC => "Associated Jacobi--Jacobi",
MODIFIEDJAC2JAC => "Modified Jacobi--Jacobi",
MODIFIEDLAG2LAG => "Modified Laguerre--Laguerre",
MODIFIEDHERM2HERM => "Modified Hermite--Hermite",
SPHERE => "Spherical harmonic--Fourier",
SPHEREV => "Spherical vector field--Fourier",
DISK => "Zernike--Chebyshev×Fourier",
ANNULUS => "Annulus--Chebyshev×Fourier",
RECTDISK => "Dunkl-Xu--Chebyshev²",
TRIANGLE => "Proriol--Chebyshev²",
TETRAHEDRON => "Proriol--Chebyshev³",
SPINSPHERE => "Spin-weighted spherical harmonic--Fourier",
SPHERESYNTHESIS => "FFTW Fourier synthesis on the sphere",
SPHEREANALYSIS => "FFTW Fourier analysis on the sphere",
SPHEREVSYNTHESIS => "FFTW Fourier synthesis on the sphere (vector field)",
SPHEREVANALYSIS => "FFTW Fourier analysis on the sphere (vector field)",
DISKSYNTHESIS => "FFTW Chebyshev×Fourier synthesis on the disk",
DISKANALYSIS => "FFTW Chebyshev×Fourier analysis on the disk",
ANNULUSSYNTHESIS => "FFTW Chebyshev×Fourier synthesis on the annulus",
ANNULUSANALYSIS => "FFTW Chebyshev×Fourier analysis on the annulus",
RECTDISKSYNTHESIS => "FFTW Chebyshev synthesis on the rectangularized disk",
RECTDISKANALYSIS => "FFTW Chebyshev analysis on the rectangularized disk",
TRIANGLESYNTHESIS => "FFTW Chebyshev synthesis on the triangle",
TRIANGLEANALYSIS => "FFTW Chebyshev analysis on the triangle",
TETRAHEDRONSYNTHESIS => "FFTW Chebyshev synthesis on the tetrahedron",
TETRAHEDRONANALYSIS => "FFTW Chebyshev analysis on the tetrahedron",
SPINSPHERESYNTHESIS => "FFTW Fourier synthesis on the sphere (spin-weighted)",
SPINSPHEREANALYSIS => "FFTW Fourier analysis on the sphere (spin-weighted)",
SPHERICALISOMETRY => "Spherical isometry")
global kind2string
kind2string(k::Union{Integer, Transforms}) = k2s[Transforms(k)]
end
struct ft_plan_struct end
mutable struct FTPlan{T, N, K}
plan::Ptr{ft_plan_struct}
n::Int
l::Int
m::Int
function FTPlan{T, N, K}(plan::Ptr{ft_plan_struct}, n::Int) where {T, N, K}
p = new(plan, n)
finalizer(destroy_plan, p)
p
end
function FTPlan{T, N, K}(plan::Ptr{ft_plan_struct}, n::Int, m::Int) where {T, N, K}
p = new(plan, n, -1, m)
finalizer(destroy_plan, p)
p
end
function FTPlan{T, N, K}(plan::Ptr{ft_plan_struct}, n::Int, l::Int, m::Int) where {T, N, K}
p = new(plan, n, l, m)
finalizer(destroy_plan, p)
p
end
end
eltype(p::FTPlan{T}) where {T} = T
ndims(p::FTPlan{T, N}) where {T, N} = N
show(io::IO, p::FTPlan{T, 1, K}) where {T, K} = print(io, "FastTransforms ", kind2string(K), " plan for $(p.n)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, SPHERE}) where T = print(io, "FastTransforms ", kind2string(SPHERE), " plan for $(p.n)×$(2p.n-1)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, SPHEREV}) where T = print(io, "FastTransforms ", kind2string(SPHEREV), " plan for $(p.n)×$(2p.n-1)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, DISK}) where T = print(io, "FastTransforms ", kind2string(DISK), " plan for $(p.n)×$(4p.n-3)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, ANNULUS}) where T = print(io, "FastTransforms ", kind2string(ANNULUS), " plan for $(p.n)×$(4p.n-3)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, RECTDISK}) where T = print(io, "FastTransforms ", kind2string(RECTDISK), " plan for $(p.n)×$(p.n)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, TRIANGLE}) where T = print(io, "FastTransforms ", kind2string(TRIANGLE), " plan for $(p.n)×$(p.n)-element array of ", T)
show(io::IO, p::FTPlan{T, 3, TETRAHEDRON}) where T = print(io, "FastTransforms ", kind2string(TETRAHEDRON), " plan for $(p.n)×$(p.n)×$(p.n)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, SPINSPHERE}) where T = print(io, "FastTransforms ", kind2string(SPINSPHERE), " plan for $(p.n)×$(2p.n-1)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, K}) where {T, K} = print(io, "FastTransforms plan for ", kind2string(K), " for $(p.n)×$(p.m)-element array of ", T)
show(io::IO, p::FTPlan{T, 3, K}) where {T, K} = print(io, "FastTransforms plan for ", kind2string(K), " for $(p.n)×$(p.l)×$(p.m)-element array of ", T)
show(io::IO, p::FTPlan{T, 2, SPHERICALISOMETRY}) where T = print(io, "FastTransforms ", kind2string(SPHERICALISOMETRY), " plan for $(p.n)×$(2p.n-1)-element array of ", T)
function checksize(p::FTPlan{T, 1}, x::StridedArray{T}) where T
if p.n != size(x, 1)
throw(DimensionMismatch("FTPlan has dimensions $(p.n) × $(p.n), x has leading dimension $(size(x, 1))"))
end
end
function checkstride(p::FTPlan{T, 1}, x::StridedArray{T}) where T
if stride(x, 1) != 1
error("FTPlan requires unit stride in the leading dimension, x has stride $(stride(x, 1)) in the leading dimension.")
end
end
for (N, K) in ((2, RECTDISK), (2, TRIANGLE), (3, TETRAHEDRON))
@eval function checksize(p::FTPlan{T, $N, $K}, x::Array{T, $N}) where T
if p.n != size(x, 1)
throw(DimensionMismatch("FTPlan has dimensions $(p.n) × $(p.n), x has leading dimension $(size(x, 1))"))
end
end
end
for K in (SPHERE, SPHEREV, DISK, ANNULUS, SPINSPHERE)
@eval function checksize(p::FTPlan{T, 2, $K}, x::Matrix{T}) where T
if p.n != size(x, 1)
throw(DimensionMismatch("FTPlan has dimensions $(p.n) × $(p.n), x has leading dimension $(size(x, 1))"))
end
if iseven(size(x, 2))
throw(DimensionMismatch("This FTPlan only operates on arrays with an odd number of columns."))
end
end
end
function checksize(p::FTPlan{T, 2}, x::Array{T, 2}) where T
if p.n != size(x, 1) || p.m != size(x, 2)
throw(DimensionMismatch("FTPlan has dimensions $(p.n) × $(p.m), x has dimensions $(size(x, 1)) × $(size(x, 2))"))
end
end
function checksize(p::FTPlan{T, 3}, x::Array{T, 3}) where T
if p.n != size(x, 1) || p.l != size(x, 2) || p.m != size(x, 3)
throw(DimensionMismatch("FTPlan has dimensions $(p.n) × $(p.l) × $(p.m), x has dimensions $(size(x, 1)) × $(size(x, 2)) × $(size(x, 3))"))
end
end
function checksize(p::FTPlan{T, 2, SPHERICALISOMETRY}, x::Matrix{T}) where T
if p.n != size(x, 1) || 2p.n-1 != size(x, 2)
throw(DimensionMismatch("This FTPlan must operate on arrays of size $(p.n) × $(2p.n-1)."))
end
end
unsafe_convert(::Type{Ptr{ft_plan_struct}}, p::FTPlan) = p.plan
unsafe_convert(::Type{Ptr{mpfr_t}}, p::FTPlan) = unsafe_convert(Ptr{mpfr_t}, p.plan)
destroy_plan(p::FTPlan{Float32, 1}) = ccall((:ft_destroy_tb_eigen_FMMf, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 1}) = ccall((:ft_destroy_tb_eigen_FMM, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{BigFloat, 1}) = ccall((:ft_mpfr_destroy_plan, libfasttransforms), Cvoid, (Ptr{mpfr_t}, Cint), p, p.n)
destroy_plan(p::FTPlan{Float32, 1, ASSOCIATEDJAC2JAC}) = ccall((:ft_destroy_btb_eigen_FMMf, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 1, ASSOCIATEDJAC2JAC}) = ccall((:ft_destroy_btb_eigen_FMM, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float32, 1, MODIFIEDJAC2JAC}) = ccall((:ft_destroy_modified_planf, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 1, MODIFIEDJAC2JAC}) = ccall((:ft_destroy_modified_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float32, 1, MODIFIEDLAG2LAG}) = ccall((:ft_destroy_modified_planf, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 1, MODIFIEDLAG2LAG}) = ccall((:ft_destroy_modified_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float32, 1, MODIFIEDHERM2HERM}) = ccall((:ft_destroy_modified_planf, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 1, MODIFIEDHERM2HERM}) = ccall((:ft_destroy_modified_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64}) = ccall((:ft_destroy_harmonic_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Complex{Float64}, 2, SPINSPHERE}) = ccall((:ft_destroy_spin_harmonic_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, SPHERESYNTHESIS}) = ccall((:ft_destroy_sphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, SPHEREANALYSIS}) = ccall((:ft_destroy_sphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, SPHEREVSYNTHESIS}) = ccall((:ft_destroy_sphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, SPHEREVANALYSIS}) = ccall((:ft_destroy_sphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, DISKSYNTHESIS}) = ccall((:ft_destroy_disk_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, DISKANALYSIS}) = ccall((:ft_destroy_disk_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, ANNULUSSYNTHESIS}) = ccall((:ft_destroy_annulus_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, ANNULUSANALYSIS}) = ccall((:ft_destroy_annulus_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, RECTDISKSYNTHESIS}) = ccall((:ft_destroy_rectdisk_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, RECTDISKANALYSIS}) = ccall((:ft_destroy_rectdisk_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, TRIANGLESYNTHESIS}) = ccall((:ft_destroy_triangle_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, TRIANGLEANALYSIS}) = ccall((:ft_destroy_triangle_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 3, TETRAHEDRONSYNTHESIS}) = ccall((:ft_destroy_tetrahedron_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 3, TETRAHEDRONANALYSIS}) = ccall((:ft_destroy_tetrahedron_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Complex{Float64}, 2, SPINSPHERESYNTHESIS}) = ccall((:ft_destroy_spinsphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Complex{Float64}, 2, SPINSPHEREANALYSIS}) = ccall((:ft_destroy_spinsphere_fftw_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
destroy_plan(p::FTPlan{Float64, 2, SPHERICALISOMETRY}) = ccall((:ft_destroy_sph_isometry_plan, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ), p)
struct AdjointFTPlan{T, S, R}
parent::S
adjoint::R
function AdjointFTPlan{T, S, R}(parent::S) where {T, S, R}
new(parent)
end
function AdjointFTPlan{T, S, R}(parent::S, adjoint::R) where {T, S, R}
new(parent, adjoint)
end
end
AdjointFTPlan(p::FTPlan) = AdjointFTPlan{eltype(p), typeof(p), typeof(p)}(p)
AdjointFTPlan(p::FTPlan, q::FTPlan) = AdjointFTPlan{eltype(q), typeof(p), typeof(q)}(p, q)
adjoint(p::FTPlan) = AdjointFTPlan(p)
adjoint(p::AdjointFTPlan) = p.parent
eltype(p::AdjointFTPlan{T}) where T = T
ndims(p::AdjointFTPlan) = ndims(p.parent)
function show(io::IO, p::AdjointFTPlan)
print(io, "Adjoint ")
show(io, p.parent)
end
function checksize(p::AdjointFTPlan, x)
try
checksize(p.adjoint, x)
catch
checksize(p.parent, x)
end
end
function checkstride(p::AdjointFTPlan, x)
try
checkstride(p.adjoint, x)
catch
checkstride(p.parent, x)
end
end
function unsafe_convert(::Type{Ptr{ft_plan_struct}}, p::AdjointFTPlan)
try
unsafe_convert(Ptr{ft_plan_struct}, p.adjoint)
catch
unsafe_convert(Ptr{ft_plan_struct}, p.parent)
end
end
function unsafe_convert(::Type{Ptr{mpfr_t}}, p::AdjointFTPlan)
try
unsafe_convert(Ptr{mpfr_t}, p.adjoint)
catch
unsafe_convert(Ptr{mpfr_t}, p.parent)
end
end
struct TransposeFTPlan{T, S, R}
parent::S
transpose::R
function TransposeFTPlan{T, S, R}(parent::S) where {T, S, R}
new(parent)
end
function TransposeFTPlan{T, S, R}(parent::S, transpose::R) where {T, S, R}
new(parent, transpose)
end
end
TransposeFTPlan(p::FTPlan) = TransposeFTPlan{eltype(p), typeof(p), typeof(p)}(p)
TransposeFTPlan(p::FTPlan, q::FTPlan) = TransposeFTPlan{eltype(q), typeof(p), typeof(q)}(p, q)
transpose(p::FTPlan) = TransposeFTPlan(p)
transpose(p::TransposeFTPlan) = p.parent
eltype(p::TransposeFTPlan{T}) where T = T
ndims(p::TransposeFTPlan) = ndims(p.parent)
function show(io::IO, p::TransposeFTPlan)
print(io, "Transpose ")
show(io, p.parent)
end
function checksize(p::TransposeFTPlan, x)
try
checksize(p.transpose, x)
catch
checksize(p.parent, x)
end
end
function checkstride(p::TransposeFTPlan, x)
try
checkstride(p.transpose, x)
catch
checkstride(p.parent, x)
end
end
function unsafe_convert(::Type{Ptr{ft_plan_struct}}, p::TransposeFTPlan)
try
unsafe_convert(Ptr{ft_plan_struct}, p.transpose)
catch
unsafe_convert(Ptr{ft_plan_struct}, p.parent)
end
end
function unsafe_convert(::Type{Ptr{mpfr_t}}, p::TransposeFTPlan)
try
unsafe_convert(Ptr{mpfr_t}, p.transpose)
catch
unsafe_convert(Ptr{mpfr_t}, p.parent)
end
end
const ModifiedFTPlan{T} = Union{FTPlan{T, 1, MODIFIEDJAC2JAC}, FTPlan{T, 1, MODIFIEDLAG2LAG}, FTPlan{T, 1, MODIFIEDHERM2HERM}}
for f in (:leg2cheb, :cheb2leg, :ultra2ultra, :jac2jac,
:lag2lag, :jac2ultra, :ultra2jac, :jac2cheb,
:cheb2jac, :ultra2cheb, :cheb2ultra, :associatedjac2jac,
:modifiedjac2jac, :modifiedlag2lag, :modifiedherm2herm,
:sph2fourier, :sphv2fourier, :disk2cxf, :ann2cxf,
:rectdisk2cheb, :tri2cheb, :tet2cheb)
plan_f = Symbol("plan_", f)
lib_f = Symbol("lib_", f)
@eval begin
$plan_f(x::AbstractArray{T}, y...; z...) where T = $plan_f(T, size(x, 1), y...; z...)
$plan_f(::Type{Complex{T}}, y...; z...) where T <: Real = $plan_f(T, y...; z...)
$lib_f(x::AbstractArray, y...; z...) = $plan_f(x, y...; z...)*x
end
end
for (f, plan_f) in ((:fourier2sph, :plan_sph2fourier), (:fourier2sphv, :plan_sphv2fourier),
(:cxf2disk, :plan_disk2cxf), (:cxf2ann, :plan_ann2cxf),
(:cheb2rectdisk, :plan_rectdisk2cheb), (:cheb2tri, :plan_tri2cheb),
(:cheb2tet, :plan_tet2cheb))
@eval begin
$f(x::AbstractArray, y...; z...) = $plan_f(x, y...; z...)\x
end
end
plan_spinsph2fourier(x::AbstractArray{T}, y...; z...) where T = plan_spinsph2fourier(T, size(x, 1), y...; z...)
spinsph2fourier(x::AbstractArray, y...; z...) = plan_spinsph2fourier(x, y...; z...)*x
fourier2spinsph(x::AbstractArray, y...; z...) = plan_spinsph2fourier(x, y...; z...)\x
function plan_leg2cheb(::Type{Float32}, n::Integer; normleg::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_legendre_to_chebyshevf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint), normleg, normcheb, n)
return FTPlan{Float32, 1, LEG2CHEB}(plan, n)
end
function plan_cheb2leg(::Type{Float32}, n::Integer; normcheb::Bool=false, normleg::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_legendref, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint), normcheb, normleg, n)
return FTPlan{Float32, 1, CHEB2LEG}(plan, n)
end
function plan_ultra2ultra(::Type{Float32}, n::Integer, λ, μ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_ultrasphericalf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32), norm1, norm2, n, λ, μ)
return FTPlan{Float32, 1, ULTRA2ULTRA}(plan, n)
end
function plan_jac2jac(::Type{Float32}, n::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_jacobi_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32, Float32, Float32), norm1, norm2, n, α, β, γ, δ)
return FTPlan{Float32, 1, JAC2JAC}(plan, n)
end
function plan_lag2lag(::Type{Float32}, n::Integer, α, β; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_laguerre_to_laguerref, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32), norm1, norm2, n, α, β)
return FTPlan{Float32, 1, LAG2LAG}(plan, n)
end
function plan_jac2ultra(::Type{Float32}, n::Integer, α, β, λ; normjac::Bool=false, normultra::Bool=false)
plan = ccall((:ft_plan_jacobi_to_ultrasphericalf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32, Float32), normjac, normultra, n, α, β, λ)
return FTPlan{Float32, 1, JAC2ULTRA}(plan, n)
end
function plan_ultra2jac(::Type{Float32}, n::Integer, λ, α, β; normultra::Bool=false, normjac::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32, Float32), normultra, normjac, n, λ, α, β)
return FTPlan{Float32, 1, ULTRA2JAC}(plan, n)
end
function plan_jac2cheb(::Type{Float32}, n::Integer, α, β; normjac::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_jacobi_to_chebyshevf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32), normjac, normcheb, n, α, β)
return FTPlan{Float32, 1, JAC2CHEB}(plan, n)
end
function plan_cheb2jac(::Type{Float32}, n::Integer, α, β; normcheb::Bool=false, normjac::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32, Float32), normcheb, normjac, n, α, β)
return FTPlan{Float32, 1, CHEB2JAC}(plan, n)
end
function plan_ultra2cheb(::Type{Float32}, n::Integer, λ; normultra::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_chebyshevf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32), normultra, normcheb, n, λ)
return FTPlan{Float32, 1, ULTRA2CHEB}(plan, n)
end
function plan_cheb2ultra(::Type{Float32}, n::Integer, λ; normcheb::Bool=false, normultra::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_ultrasphericalf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float32), normcheb, normultra, n, λ)
return FTPlan{Float32, 1, CHEB2ULTRA}(plan, n)
end
function plan_associatedjac2jac(::Type{Float32}, n::Integer, c::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_associated_jacobi_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Cint, Float32, Float32, Float32, Float32), norm1, norm2, n, c, α, β, γ, δ)
return FTPlan{Float32, 1, ASSOCIATEDJAC2JAC}(plan, n)
end
function plan_modifiedjac2jac(::Type{Float32}, n::Integer, α, β, u::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_jacobi_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float32, Float32, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, α, β, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float32, 1, MODIFIEDJAC2JAC}(plan, n)
end
function plan_modifiedjac2jac(::Type{Float32}, n::Integer, α, β, u::Vector{Float32}, v::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_jacobi_to_jacobif, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float32, Float32, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, α, β, length(u), u, length(v), v, verbose)
return FTPlan{Float32, 1, MODIFIEDJAC2JAC}(plan, n)
end
function plan_modifiedlag2lag(::Type{Float32}, n::Integer, α, u::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_laguerre_to_laguerref, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float32, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, α, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float32, 1, MODIFIEDLAG2LAG}(plan, n)
end
function plan_modifiedlag2lag(::Type{Float32}, n::Integer, α, u::Vector{Float32}, v::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_laguerre_to_laguerref, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float32, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, α, length(u), u, length(v), v, verbose)
return FTPlan{Float32, 1, MODIFIEDLAG2LAG}(plan, n)
end
function plan_modifiedherm2herm(::Type{Float32}, n::Integer, u::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_hermite_to_hermitef, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float32, 1, MODIFIEDHERM2HERM}(plan, n)
end
function plan_modifiedherm2herm(::Type{Float32}, n::Integer, u::Vector{Float32}, v::Vector{Float32}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_hermite_to_hermitef, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Ptr{Float32}, Cint, Ptr{Float32}, Cint), n, length(u), u, length(v), v, verbose)
return FTPlan{Float32, 1, MODIFIEDHERM2HERM}(plan, n)
end
function plan_leg2cheb(::Type{Float64}, n::Integer; normleg::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_legendre_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint), normleg, normcheb, n)
return FTPlan{Float64, 1, LEG2CHEB}(plan, n)
end
function plan_cheb2leg(::Type{Float64}, n::Integer; normcheb::Bool=false, normleg::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_legendre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint), normcheb, normleg, n)
return FTPlan{Float64, 1, CHEB2LEG}(plan, n)
end
function plan_ultra2ultra(::Type{Float64}, n::Integer, λ, μ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64), norm1, norm2, n, λ, μ)
return FTPlan{Float64, 1, ULTRA2ULTRA}(plan, n)
end
function plan_jac2jac(::Type{Float64}, n::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_jacobi_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64, Float64, Float64), norm1, norm2, n, α, β, γ, δ)
return FTPlan{Float64, 1, JAC2JAC}(plan, n)
end
function plan_lag2lag(::Type{Float64}, n::Integer, α, β; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_laguerre_to_laguerre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64), norm1, norm2, n, α, β)
return FTPlan{Float64, 1, LAG2LAG}(plan, n)
end
function plan_jac2ultra(::Type{Float64}, n::Integer, α, β, λ; normjac::Bool=false, normultra::Bool=false)
plan = ccall((:ft_plan_jacobi_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64, Float64), normjac, normultra, n, α, β, λ)
return FTPlan{Float64, 1, JAC2ULTRA}(plan, n)
end
function plan_ultra2jac(::Type{Float64}, n::Integer, λ, α, β; normultra::Bool=false, normjac::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64, Float64), normultra, normjac, n, λ, α, β)
return FTPlan{Float64, 1, ULTRA2JAC}(plan, n)
end
function plan_jac2cheb(::Type{Float64}, n::Integer, α, β; normjac::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_jacobi_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64), normjac, normcheb, n, α, β)
return FTPlan{Float64, 1, JAC2CHEB}(plan, n)
end
function plan_cheb2jac(::Type{Float64}, n::Integer, α, β; normcheb::Bool=false, normjac::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64, Float64), normcheb, normjac, n, α, β)
return FTPlan{Float64, 1, CHEB2JAC}(plan, n)
end
function plan_ultra2cheb(::Type{Float64}, n::Integer, λ; normultra::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_plan_ultraspherical_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64), normultra, normcheb, n, λ)
return FTPlan{Float64, 1, ULTRA2CHEB}(plan, n)
end
function plan_cheb2ultra(::Type{Float64}, n::Integer, λ; normcheb::Bool=false, normultra::Bool=false)
plan = ccall((:ft_plan_chebyshev_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Float64), normcheb, normultra, n, λ)
return FTPlan{Float64, 1, CHEB2ULTRA}(plan, n)
end
function plan_associatedjac2jac(::Type{Float64}, n::Integer, c::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_plan_associated_jacobi_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Cint, Float64, Float64, Float64, Float64), norm1, norm2, n, c, α, β, γ, δ)
return FTPlan{Float64, 1, ASSOCIATEDJAC2JAC}(plan, n)
end
function plan_modifiedjac2jac(::Type{Float64}, n::Integer, α, β, u::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_jacobi_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, α, β, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float64, 1, MODIFIEDJAC2JAC}(plan, n)
end
function plan_modifiedjac2jac(::Type{Float64}, n::Integer, α, β, u::Vector{Float64}, v::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_jacobi_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, α, β, length(u), u, length(v), v, verbose)
return FTPlan{Float64, 1, MODIFIEDJAC2JAC}(plan, n)
end
function plan_modifiedlag2lag(::Type{Float64}, n::Integer, α, u::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_laguerre_to_laguerre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, α, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float64, 1, MODIFIEDLAG2LAG}(plan, n)
end
function plan_modifiedlag2lag(::Type{Float64}, n::Integer, α, u::Vector{Float64}, v::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_laguerre_to_laguerre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, α, length(u), u, length(v), v, verbose)
return FTPlan{Float64, 1, MODIFIEDLAG2LAG}(plan, n)
end
function plan_modifiedherm2herm(::Type{Float64}, n::Integer, u::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_hermite_to_hermite, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, length(u), u, 0, C_NULL, verbose)
return FTPlan{Float64, 1, MODIFIEDHERM2HERM}(plan, n)
end
function plan_modifiedherm2herm(::Type{Float64}, n::Integer, u::Vector{Float64}, v::Vector{Float64}; verbose::Bool=false)
plan = ccall((:ft_plan_modified_hermite_to_hermite, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Ptr{Float64}, Cint, Ptr{Float64}, Cint), n, length(u), u, length(v), v, verbose)
return FTPlan{Float64, 1, MODIFIEDHERM2HERM}(plan, n)
end
function plan_leg2cheb(::Type{BigFloat}, n::Integer; normleg::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_mpfr_plan_legendre_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Clong, Int32), normleg, normcheb, n, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, LEG2CHEB}(plan, n)
end
function plan_cheb2leg(::Type{BigFloat}, n::Integer; normcheb::Bool=false, normleg::Bool=false)
plan = ccall((:ft_mpfr_plan_chebyshev_to_legendre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Clong, Int32), normcheb, normleg, n, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, CHEB2LEG}(plan, n)
end
function plan_ultra2ultra(::Type{BigFloat}, n::Integer, λ, μ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_mpfr_plan_ultraspherical_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), norm1, norm2, n, λ, μ, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, ULTRA2ULTRA}(plan, n)
end
function plan_jac2jac(::Type{BigFloat}, n::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_mpfr_plan_jacobi_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), norm1, norm2, n, α, β, γ, δ, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, JAC2JAC}(plan, n)
end
function plan_lag2lag(::Type{BigFloat}, n::Integer, α, β; norm1::Bool=false, norm2::Bool=false)
plan = ccall((:ft_mpfr_plan_laguerre_to_laguerre, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), norm1, norm2, n, α, β, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, LAG2LAG}(plan, n)
end
function plan_jac2ultra(::Type{BigFloat}, n::Integer, α, β, λ; normjac::Bool=false, normultra::Bool=false)
plan = ccall((:ft_mpfr_plan_jacobi_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), normjac, normultra, n, α, β, λ, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, JAC2ULTRA}(plan, n)
end
function plan_ultra2jac(::Type{BigFloat}, n::Integer, λ, α, β; normultra::Bool=false, normjac::Bool=false)
plan = ccall((:ft_mpfr_plan_ultraspherical_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), normultra, normjac, n, λ, α, β, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, ULTRA2JAC}(plan, n)
end
function plan_jac2cheb(::Type{BigFloat}, n::Integer, α, β; normjac::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_mpfr_plan_jacobi_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), normjac, normcheb, n, α, β, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, JAC2CHEB}(plan, n)
end
function plan_cheb2jac(::Type{BigFloat}, n::Integer, α, β; normcheb::Bool=false, normjac::Bool=false)
plan = ccall((:ft_mpfr_plan_chebyshev_to_jacobi, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), normcheb, normjac, n, α, β, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, CHEB2JAC}(plan, n)
end
function plan_ultra2cheb(::Type{BigFloat}, n::Integer, λ; normultra::Bool=false, normcheb::Bool=false)
plan = ccall((:ft_mpfr_plan_ultraspherical_to_chebyshev, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Clong, Int32), normultra, normcheb, n, λ, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, ULTRA2CHEB}(plan, n)
end
function plan_cheb2ultra(::Type{BigFloat}, n::Integer, λ; normcheb::Bool=false, normultra::Bool=false)
plan = ccall((:ft_mpfr_plan_chebyshev_to_ultraspherical, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Ref{BigFloat}, Clong, Int32), normcheb, normultra, n, λ, precision(BigFloat), Base.MPFR.ROUNDING_MODE[])
return FTPlan{BigFloat, 1, CHEB2ULTRA}(plan, n)
end
function plan_sph2fourier(::Type{Float64}, n::Integer)
plan = ccall((:ft_plan_sph2fourier, libfasttransforms), Ptr{ft_plan_struct}, (Cint, ), n)
return FTPlan{Float64, 2, SPHERE}(plan, n)
end
function plan_sphv2fourier(::Type{Float64}, n::Integer)
plan = ccall((:ft_plan_sph2fourier, libfasttransforms), Ptr{ft_plan_struct}, (Cint, ), n)
return FTPlan{Float64, 2, SPHEREV}(plan, n)
end
function plan_disk2cxf(::Type{Float64}, n::Integer, α, β)
plan = ccall((:ft_plan_disk2cxf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64), n, α, β)
return FTPlan{Float64, 2, DISK}(plan, n)
end
function plan_ann2cxf(::Type{Float64}, n::Integer, α, β, γ, ρ)
plan = ccall((:ft_plan_ann2cxf, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64, Float64, Float64), n, α, β, γ, ρ)
return FTPlan{Float64, 2, ANNULUS}(plan, n)
end
function plan_rectdisk2cheb(::Type{Float64}, n::Integer, β)
plan = ccall((:ft_plan_rectdisk2cheb, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64), n, β)
return FTPlan{Float64, 2, RECTDISK}(plan, n)
end
function plan_tri2cheb(::Type{Float64}, n::Integer, α, β, γ)
plan = ccall((:ft_plan_tri2cheb, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64, Float64), n, α, β, γ)
return FTPlan{Float64, 2, TRIANGLE}(plan, n)
end
function plan_tet2cheb(::Type{Float64}, n::Integer, α, β, γ, δ)
plan = ccall((:ft_plan_tet2cheb, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Float64, Float64, Float64, Float64), n, α, β, γ, δ)
return FTPlan{Float64, 3, TETRAHEDRON}(plan, n)
end
function plan_spinsph2fourier(::Type{Complex{Float64}}, n::Integer, s::Integer)
plan = ccall((:ft_plan_spinsph2fourier, libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint), n, s)
return FTPlan{Complex{Float64}, 2, SPINSPHERE}(plan, n)
end
plan_disk2cxf(::Type{Float64}, n::Integer, α) = plan_disk2cxf(Float64, n, α, 0)
plan_disk2cxf(::Type{Float64}, n::Integer) = plan_disk2cxf(Float64, n, 0)
plan_ann2cxf(::Type{Float64}, n::Integer, α, β, γ) = plan_ann2cxf(Float64, n, α, β, γ, 0)
plan_ann2cxf(::Type{Float64}, n::Integer, α, β) = plan_disk2cxf(Float64, n, α, β)
plan_ann2cxf(::Type{Float64}, n::Integer, α) = plan_disk2cxf(Float64, n, α)
plan_ann2cxf(::Type{Float64}, n::Integer) = plan_disk2cxf(Float64, n)
plan_rectdisk2cheb(::Type{Float64}, n::Integer) = plan_rectdisk2cheb(Float64, n, 0)
plan_tri2cheb(::Type{Float64}, n::Integer, α, β) = plan_tri2cheb(Float64, n, α, β, 0)
plan_tri2cheb(::Type{Float64}, n::Integer, α) = plan_tri2cheb(Float64, n, α, 0)
plan_tri2cheb(::Type{Float64}, n::Integer) = plan_tri2cheb(Float64, n, 0)
plan_tet2cheb(::Type{Float64}, n::Integer, α, β, γ) = plan_tet2cheb(Float64, n, α, β, γ, 0)
plan_tet2cheb(::Type{Float64}, n::Integer, α, β) = plan_tet2cheb(Float64, n, α, β, 0)
plan_tet2cheb(::Type{Float64}, n::Integer, α) = plan_tet2cheb(Float64, n, α, 0)
plan_tet2cheb(::Type{Float64}, n::Integer) = plan_tet2cheb(Float64, n, 0)
for (fJ, fadJ, fC, fE, K) in ((:plan_sph_synthesis, :plan_sph_analysis, :ft_plan_sph_synthesis, :ft_execute_sph_synthesis, SPHERESYNTHESIS),
(:plan_sph_analysis, :plan_sph_synthesis, :ft_plan_sph_analysis, :ft_execute_sph_analysis, SPHEREANALYSIS),
(:plan_sphv_synthesis, :plan_sphv_analysis, :ft_plan_sphv_synthesis, :ft_execute_sphv_synthesis, SPHEREVSYNTHESIS),
(:plan_sphv_analysis, :plan_sphv_synthesis, :ft_plan_sphv_analysis, :ft_execute_sphv_analysis, SPHEREVANALYSIS),
(:plan_disk_synthesis, :plan_disk_analysis, :ft_plan_disk_synthesis, :ft_execute_disk_synthesis, DISKSYNTHESIS),
(:plan_disk_analysis, :plan_disk_synthesis, :ft_plan_disk_analysis, :ft_execute_disk_analysis, DISKANALYSIS),
(:plan_rectdisk_synthesis, :plan_rectdisk_analysis, :ft_plan_rectdisk_synthesis, :ft_execute_rectdisk_synthesis, RECTDISKSYNTHESIS),
(:plan_rectdisk_analysis, :plan_rectdisk_synthesis, :ft_plan_rectdisk_analysis, :ft_execute_rectdisk_analysis, RECTDISKANALYSIS),
(:plan_tri_synthesis, :plan_tri_analysis, :ft_plan_tri_synthesis, :ft_execute_tri_synthesis, TRIANGLESYNTHESIS),
(:plan_tri_analysis, :plan_tri_synthesis, :ft_plan_tri_analysis, :ft_execute_tri_analysis, TRIANGLEANALYSIS))
@eval begin
$fJ(x::Matrix{T}; y...) where T = $fJ(T, size(x, 1), size(x, 2); y...)
$fJ(::Type{Complex{T}}, x...; y...) where T <: Real = $fJ(T, x...; y...)
function $fJ(::Type{Float64}, n::Integer, m::Integer; flags::Integer=FFTW.ESTIMATE)
plan = ccall(($(string(fC)), libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cuint), n, m, flags)
return FTPlan{Float64, 2, $K}(plan, n, m)
end
adjoint(p::FTPlan{T, 2, $K}) where T = AdjointFTPlan(p, $fadJ(T, p.n, p.m))
transpose(p::FTPlan{T, 2, $K}) where T = TransposeFTPlan(p, $fadJ(T, p.n, p.m))
function lmul!(p::FTPlan{Float64, 2, $K}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::AdjointFTPlan{Float64, FTPlan{Float64, 2, $K}}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::TransposeFTPlan{Float64, FTPlan{Float64, 2, $K}}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
end
end
ft_get_rho_annulus_fftw_plan(p::FTPlan{Float64, 2, ANNULUSSYNTHESIS}) = ccall((:ft_get_rho_annulus_fftw_plan, libfasttransforms), Float64, (Ptr{ft_plan_struct}, ), p)
ft_get_rho_annulus_fftw_plan(p::FTPlan{Float64, 2, ANNULUSANALYSIS}) = ccall((:ft_get_rho_annulus_fftw_plan, libfasttransforms), Float64, (Ptr{ft_plan_struct}, ), p)
for (fJ, fadJ, fC, fE, K) in ((:plan_annulus_synthesis, :plan_annulus_analysis, :ft_plan_annulus_synthesis, :ft_execute_annulus_synthesis, ANNULUSSYNTHESIS),
(:plan_annulus_analysis, :plan_annulus_synthesis, :ft_plan_annulus_analysis, :ft_execute_annulus_analysis, ANNULUSANALYSIS))
@eval begin
$fJ(x::Matrix{T}, ρ; y...) where T = $fJ(T, size(x, 1), size(x, 2), ρ; y...)
$fJ(::Type{Complex{T}}, x...; y...) where T <: Real = $fJ(T, x...; y...)
function $fJ(::Type{Float64}, n::Integer, m::Integer, ρ; flags::Integer=FFTW.ESTIMATE)
plan = ccall(($(string(fC)), libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Float64, Cuint), n, m, ρ, flags)
return FTPlan{Float64, 2, $K}(plan, n, m)
end
adjoint(p::FTPlan{T, 2, $K}) where T = AdjointFTPlan(p, $fadJ(T, p.n, p.m, ft_get_rho_annulus_fftw_plan(p)))
transpose(p::FTPlan{T, 2, $K}) where T = TransposeFTPlan(p, $fadJ(T, p.n, p.m, ft_get_rho_annulus_fftw_plan(p)))
function lmul!(p::FTPlan{Float64, 2, $K}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::AdjointFTPlan{Float64, FTPlan{Float64, 2, $K}}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::TransposeFTPlan{Float64, FTPlan{Float64, 2, $K}}, x::Matrix{Float64})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
end
end
for (fJ, fadJ, fC, fE, K) in ((:plan_tet_synthesis, :plan_tet_analysis, :ft_plan_tet_synthesis, :ft_execute_tet_synthesis, TETRAHEDRONSYNTHESIS),
(:plan_tet_analysis, :plan_tet_synthesis, :ft_plan_tet_analysis, :ft_execute_tet_analysis, TETRAHEDRONANALYSIS))
@eval begin
$fJ(x::Array{T, 3}; y...) where T = $fJ(T, size(x, 1), size(x, 2), size(x, 3); y...)
$fJ(::Type{Complex{T}}, x...; y...) where T <: Real = $fJ(T, x...; y...)
function $fJ(::Type{Float64}, n::Integer, l::Integer, m::Integer; flags::Integer=FFTW.ESTIMATE)
plan = ccall(($(string(fC)), libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Cuint), n, l, m, flags)
return FTPlan{Float64, 3, $K}(plan, n, l, m)
end
adjoint(p::FTPlan{T, 3, $K}) where T = AdjointFTPlan(p, $fadJ(T, p.n, p.l, p.m))
transpose(p::FTPlan{T, 3, $K}) where T = TransposeFTPlan(p, $fadJ(T, p.n, p.l, p.m))
function lmul!(p::FTPlan{Float64, 3, $K}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
function lmul!(p::AdjointFTPlan{Float64, FTPlan{Float64, 3, $K}}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
function lmul!(p::TransposeFTPlan{Float64, FTPlan{Float64, 3, $K}}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
end
end
for (fJ, fadJ, fC, fE, K) in ((:plan_spinsph_synthesis, :plan_spinsph_analysis, :ft_plan_spinsph_synthesis, :ft_execute_spinsph_synthesis, SPINSPHERESYNTHESIS),
(:plan_spinsph_analysis, :plan_spinsph_synthesis, :ft_plan_spinsph_analysis, :ft_execute_spinsph_analysis, SPINSPHEREANALYSIS))
@eval begin
$fJ(x::Matrix{T}, s::Integer; y...) where T = $fJ(T, size(x, 1), size(x, 2), s; y...)
function $fJ(::Type{Complex{Float64}}, n::Integer, m::Integer, s::Integer; flags::Integer=FFTW.ESTIMATE)
plan = ccall(($(string(fC)), libfasttransforms), Ptr{ft_plan_struct}, (Cint, Cint, Cint, Cuint), n, m, s, flags)
return FTPlan{Complex{Float64}, 2, $K}(plan, n, m)
end
get_spin(p::FTPlan{T, 2, $K}) where T = ccall((:ft_get_spin_spinsphere_fftw_plan, libfasttransforms), Cint, (Ptr{ft_plan_struct},), p)
adjoint(p::FTPlan{T, 2, $K}) where T = AdjointFTPlan(p, $fadJ(T, p.n, p.m, get_spin(p)))
transpose(p::FTPlan{T, 2, $K}) where T = TransposeFTPlan(p, $fadJ(T, p.n, p.m, get_spin(p)))
function lmul!(p::FTPlan{Complex{Float64}, 2, $K}, x::Matrix{Complex{Float64}})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::AdjointFTPlan{Complex{Float64}, FTPlan{Complex{Float64}, 2, $K}}, x::Matrix{Complex{Float64}})
checksize(p, x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'C', p, x, size(x, 1), size(x, 2))
return x
end
function lmul!(p::TransposeFTPlan{Complex{Float64}, FTPlan{Complex{Float64}, 2, $K}}, x::Matrix{Complex{Float64}})
checksize(p, x)
conj!(x)
ccall(($(string(fE)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), 'C', p, x, size(x, 1), size(x, 2))
conj!(x)
return x
end
end
end
function plan_sph_isometry(::Type{Float64}, n::Integer)
plan = ccall((:ft_plan_sph_isometry, libfasttransforms), Ptr{ft_plan_struct}, (Cint, ), n)
return FTPlan{Float64, 2, SPHERICALISOMETRY}(plan, n)
end
*(p::FTPlan{T}, x::AbstractArray{T}) where T = lmul!(p, Array(x))
*(p::AdjointFTPlan{T}, x::AbstractArray{T}) where T = lmul!(p, Array(x))
*(p::TransposeFTPlan{T}, x::AbstractArray{T}) where T = lmul!(p, Array(x))
\(p::FTPlan{T}, x::AbstractArray{T}) where T = ldiv!(p, Array(x))
\(p::AdjointFTPlan{T}, x::AbstractArray{T}) where T = ldiv!(p, Array(x))
\(p::TransposeFTPlan{T}, x::AbstractArray{T}) where T = ldiv!(p, Array(x))
*(p::FTPlan{T, 1}, x::UniformScaling{S}) where {T, S} = UpperTriangular(lmul!(p, Matrix{promote_type(T, S)}(x, p.n, p.n)))
*(p::AdjointFTPlan{T, FTPlan{T, 1, K}}, x::UniformScaling{S}) where {T, S, K} = LowerTriangular(lmul!(p, Matrix{promote_type(T, S)}(x, p.parent.n, p.parent.n)))
*(p::TransposeFTPlan{T, FTPlan{T, 1, K}}, x::UniformScaling{S}) where {T, S, K} = LowerTriangular(lmul!(p, Matrix{promote_type(T, S)}(x, p.parent.n, p.parent.n)))
\(p::FTPlan{T, 1}, x::UniformScaling{S}) where {T, S} = UpperTriangular(ldiv!(p, Matrix{promote_type(T, S)}(x, p.n, p.n)))
\(p::AdjointFTPlan{T, FTPlan{T, 1, K}}, x::UniformScaling{S}) where {T, S, K} = LowerTriangular(ldiv!(p, Matrix{promote_type(T, S)}(x, p.parent.n, p.parent.n)))
\(p::TransposeFTPlan{T, FTPlan{T, 1, K}}, x::UniformScaling{S}) where {T, S, K} = LowerTriangular(ldiv!(p, Matrix{promote_type(T, S)}(x, p.parent.n, p.parent.n)))
const AbstractUpperTriangular{T, S <: AbstractMatrix} = Union{UpperTriangular{T, S}, UnitUpperTriangular{T, S}}
const AbstractLowerTriangular{T, S <: AbstractMatrix} = Union{LowerTriangular{T, S}, UnitLowerTriangular{T, S}}
*(p::FTPlan{T, 1}, x::AbstractUpperTriangular) where T = UpperTriangular(lmul!(p, Array(x)))
*(p::AdjointFTPlan{T, 1}, x::AbstractLowerTriangular) where T = LowerTriangular(lmul!(p, Array(x)))
*(p::TransposeFTPlan{T, 1}, x::AbstractLowerTriangular) where T = LowerTriangular(lmul!(p, Array(x)))
\(p::FTPlan{T, 1}, x::AbstractUpperTriangular) where T = UpperTriangular(ldiv!(p, Array(x)))
\(p::AdjointFTPlan{T, 1}, x::AbstractLowerTriangular) where T = LowerTriangular(ldiv!(p, Array(x)))
\(p::TransposeFTPlan{T, 1}, x::AbstractLowerTriangular) where T = LowerTriangular(ldiv!(p, Array(x)))
for (fJ, fC, elty) in ((:lmul!, :ft_bfmvf, :Float32),
(:ldiv!, :ft_bfsvf, :Float32),
(:lmul!, :ft_bfmv , :Float64),
(:ldiv!, :ft_bfsv , :Float64))
@eval begin
function $fJ(p::FTPlan{$elty, 1}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'N', p, x)
return x
end
function $fJ(p::AdjointFTPlan{$elty, FTPlan{$elty, 1, K}}, x::StridedVector{$elty}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', p, x)
return x
end
function $fJ(p::TransposeFTPlan{$elty, FTPlan{$elty, 1, K}}, x::StridedVector{$elty}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', p, x)
return x
end
end
end
for (fJ, fC, elty) in ((:lmul!, :ft_bbbfmvf, :Float32),
(:lmul!, :ft_bbbfmv , :Float64))
@eval begin
function $fJ(p::FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'N', '2', '1', p, x)
return x
end
function $fJ(p::AdjointFTPlan{$elty, FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', '1', '2', p, x)
return x
end
function $fJ(p::TransposeFTPlan{$elty, FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', '1', '2', p, x)
return x
end
end
end
for (fJ, fC, elty) in ((:lmul!, :ft_mpmvf, :Float32),
(:ldiv!, :ft_mpsvf, :Float32),
(:lmul!, :ft_mpmv , :Float64),
(:ldiv!, :ft_mpsv , :Float64))
@eval begin
function $fJ(p::ModifiedFTPlan{$elty}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'N', p, x)
return x
end
function $fJ(p::AdjointFTPlan{$elty, ModifiedFTPlan{$elty}}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', p, x)
return x
end
function $fJ(p::TransposeFTPlan{$elty, ModifiedFTPlan{$elty}}, x::StridedVector{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}), 'T', p, x)
return x
end
end
end
for (fJ, fC) in ((:lmul!, :ft_mpfr_trmv_ptr),
(:ldiv!, :ft_mpfr_trsv_ptr))
@eval begin
function $fJ(p::FTPlan{BigFloat, 1}, x::StridedVector{BigFloat})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Int32), 'N', p.n, p, p.n, renew!(x), Base.MPFR.ROUNDING_MODE[])
return x
end
function $fJ(p::AdjointFTPlan{BigFloat, FTPlan{BigFloat, 1, K}}, x::StridedVector{BigFloat}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Int32), 'T', p.parent.n, p, p.parent.n, renew!(x), Base.MPFR.ROUNDING_MODE[])
return x
end
function $fJ(p::TransposeFTPlan{BigFloat, FTPlan{BigFloat, 1, K}}, x::StridedVector{BigFloat}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Int32), 'T', p.parent.n, p, p.parent.n, renew!(x), Base.MPFR.ROUNDING_MODE[])
return x
end
end
end
for (fJ, fC, elty) in ((:lmul!, :ft_bfmmf, :Float32),
(:ldiv!, :ft_bfsmf, :Float32),
(:lmul!, :ft_bfmm , :Float64),
(:ldiv!, :ft_bfsm , :Float64))
@eval begin
function $fJ(p::FTPlan{$elty, 1}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'N', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::AdjointFTPlan{$elty, FTPlan{$elty, 1, K}}, x::StridedMatrix{$elty}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::TransposeFTPlan{$elty, FTPlan{$elty, 1, K}}, x::StridedMatrix{$elty}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', p, x, stride(x, 2), size(x, 2))
return x
end
end
end
for (fJ, fC, elty) in ((:lmul!, :ft_bbbfmmf, :Float32),
(:lmul!, :ft_bbbfmm , :Float64))
@eval begin
function $fJ(p::FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'N', '2', '1', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::AdjointFTPlan{$elty, FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', '1', '2', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::TransposeFTPlan{$elty, FTPlan{$elty, 1, ASSOCIATEDJAC2JAC}}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', '1', '2', p, x, stride(x, 2), size(x, 2))
return x
end
end
end
for (fJ, fC, elty) in ((:lmul!, :ft_mpmmf, :Float32),
(:ldiv!, :ft_mpsmf, :Float32),
(:lmul!, :ft_mpmm , :Float64),
(:ldiv!, :ft_mpsm , :Float64))
@eval begin
function $fJ(p::ModifiedFTPlan{$elty}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'N', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::AdjointFTPlan{$elty, ModifiedFTPlan{$elty}}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', p, x, stride(x, 2), size(x, 2))
return x
end
function $fJ(p::TransposeFTPlan{$elty, ModifiedFTPlan{$elty}}, x::StridedMatrix{$elty})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$elty}, Cint, Cint), 'T', p, x, stride(x, 2), size(x, 2))
return x
end
end
end
for (fJ, fC) in ((:lmul!, :ft_mpfr_trmm_ptr),
(:ldiv!, :ft_mpfr_trsm_ptr))
@eval begin
function $fJ(p::FTPlan{BigFloat, 1}, x::StridedMatrix{BigFloat})
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Cint, Cint, Int32), 'N', p.n, p, p.n, renew!(x), stride(x, 2), size(x, 2), Base.MPFR.ROUNDING_MODE[])
return x
end
function $fJ(p::AdjointFTPlan{BigFloat, FTPlan{BigFloat, 1, K}}, x::StridedMatrix{BigFloat}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Cint, Cint, Int32), 'T', p.parent.n, p, p.parent.n, renew!(x), stride(x, 2), size(x, 2), Base.MPFR.ROUNDING_MODE[])
return x
end
function $fJ(p::TransposeFTPlan{BigFloat, FTPlan{BigFloat, 1, K}}, x::StridedMatrix{BigFloat}) where K
checksize(p, x)
checkstride(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Cint, Ptr{mpfr_t}, Cint, Ptr{BigFloat}, Cint, Cint, Int32), 'T', p.parent.n, p, p.parent.n, renew!(x), stride(x, 2), size(x, 2), Base.MPFR.ROUNDING_MODE[])
return x
end
end
end
for (fJ, fC, T, N, K) in ((:lmul!, :ft_execute_sph2fourier, Float64, 2, SPHERE),
(:ldiv!, :ft_execute_fourier2sph, Float64, 2, SPHERE),
(:lmul!, :ft_execute_sphv2fourier, Float64, 2, SPHEREV),
(:ldiv!, :ft_execute_fourier2sphv, Float64, 2, SPHEREV),
(:lmul!, :ft_execute_spinsph2fourier, Complex{Float64}, 2, SPINSPHERE),
(:ldiv!, :ft_execute_fourier2spinsph, Complex{Float64}, 2, SPINSPHERE),
(:lmul!, :ft_execute_disk2cxf, Float64, 2, DISK),
(:ldiv!, :ft_execute_cxf2disk, Float64, 2, DISK),
(:lmul!, :ft_execute_ann2cxf, Float64, 2, ANNULUS),
(:ldiv!, :ft_execute_cxf2ann, Float64, 2, ANNULUS),
(:lmul!, :ft_execute_rectdisk2cheb, Float64, 2, RECTDISK),
(:ldiv!, :ft_execute_cheb2rectdisk, Float64, 2, RECTDISK),
(:lmul!, :ft_execute_tri2cheb, Float64, 2, TRIANGLE),
(:ldiv!, :ft_execute_cheb2tri, Float64, 2, TRIANGLE))
@eval begin
function $fJ(p::FTPlan{$T, $N, $K}, x::Array{$T, $N})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$T}, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2))
return x
end
function $fJ(p::AdjointFTPlan{$T, FTPlan{$T, $N, $K}}, x::Array{$T, $N})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$T}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
function $fJ(p::TransposeFTPlan{$T, FTPlan{$T, $N, $K}}, x::Array{$T, $N})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{$T}, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2))
return x
end
end
end
for (fJ, fC) in ((:lmul!, :ft_execute_tet2cheb),
(:ldiv!, :ft_execute_cheb2tet))
@eval begin
function $fJ(p::FTPlan{Float64, 3, TETRAHEDRON}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'N', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
function $fJ(p::AdjointFTPlan{Float64, FTPlan{Float64, 3, TETRAHEDRON}}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
function $fJ(p::TransposeFTPlan{Float64, FTPlan{Float64, 3, TETRAHEDRON}}, x::Array{Float64, 3})
checksize(p, x)
ccall(($(string(fC)), libfasttransforms), Cvoid, (Cint, Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint, Cint), 'T', p, x, size(x, 1), size(x, 2), size(x, 3))
return x
end
end
end
function execute_sph_polar_rotation!(x::Matrix{Float64}, α)
ccall((:ft_execute_sph_polar_rotation, libfasttransforms), Cvoid, (Ptr{Float64}, Cint, Cint, Float64, Float64), x, size(x, 1), size(x, 2), sin(α), cos(α))
return x
end
function execute_sph_polar_reflection!(x::Matrix{Float64})
ccall((:ft_execute_sph_polar_reflection, libfasttransforms), Cvoid, (Ptr{Float64}, Cint, Cint), x, size(x, 1), size(x, 2))
return x
end
struct ft_orthogonal_transformation
Q::NTuple{9, Float64}
end
function convert(::Type{ft_orthogonal_transformation}, Q::AbstractMatrix)
@assert size(Q, 1) ≥ 3 && size(Q, 2) ≥ 3
return ft_orthogonal_transformation((Q[1, 1], Q[2, 1], Q[3, 1], Q[1, 2], Q[2, 2], Q[3, 2], Q[1, 3], Q[2, 3], Q[3, 3]))
end
convert(::Type{ft_orthogonal_transformation}, Q::NTuple{9, Float64}) = ft_orthogonal_transformation(Q)
function execute_sph_orthogonal_transformation!(p::FTPlan{Float64, 2, SPHERICALISOMETRY}, Q, x::Matrix{Float64})
checksize(p, x)
ccall((:ft_execute_sph_orthogonal_transformation, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ft_orthogonal_transformation, Ptr{Float64}, Cint, Cint), p, Q, x, size(x, 1), size(x, 2))
return x
end
function execute_sph_yz_axis_exchange!(p::FTPlan{Float64, 2, SPHERICALISOMETRY}, x::Matrix{Float64})
checksize(p, x)
ccall((:ft_execute_sph_yz_axis_exchange, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, Ptr{Float64}, Cint, Cint), p, x, size(x, 1), size(x, 2))
return x
end
function execute_sph_rotation!(p::FTPlan{Float64, 2, SPHERICALISOMETRY}, α, β, γ, x::Matrix{Float64})
checksize(p, x)
ccall((:ft_execute_sph_rotation, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, Float64, Float64, Float64, Ptr{Float64}, Cint, Cint), p, α, β, γ, x, size(x, 1), size(x, 2))
return x
end
struct ft_reflection
w::NTuple{3, Float64}
end
function convert(::Type{ft_reflection}, w::AbstractVector)
@assert length(w) ≥ 3
return ft_reflection((w[1], w[2], w[3]))
end
convert(::Type{ft_reflection}, w::NTuple{3, Float64}) = ft_reflection(w)
function execute_sph_reflection!(p::FTPlan{Float64, 2, SPHERICALISOMETRY}, w, x::Matrix{Float64})
checksize(p, x)
ccall((:ft_execute_sph_reflection, libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, ft_reflection, Ptr{Float64}, Cint, Cint), p, w, x, size(x, 1), size(x, 2))
return x
end
execute_sph_reflection!(p::FTPlan{Float64, 2, SPHERICALISOMETRY}, w1, w2, w3, x::Matrix{Float64}) = execute_sph_reflection!(p, ft_reflection(w1, w2, w3), x)
*(p::FTPlan{T}, x::AbstractArray{Complex{T}}) where T = lmul!(p, Array(x))
*(p::AdjointFTPlan{T}, x::AbstractArray{Complex{T}}) where T = lmul!(p, Array(x))
*(p::TransposeFTPlan{T}, x::AbstractArray{Complex{T}}) where T = lmul!(p, Array(x))
\(p::FTPlan{T}, x::AbstractArray{Complex{T}}) where T = ldiv!(p, Array(x))
\(p::AdjointFTPlan{T}, x::AbstractArray{Complex{T}}) where T = ldiv!(p, Array(x))
\(p::TransposeFTPlan{T}, x::AbstractArray{Complex{T}}) where T = ldiv!(p, Array(x))
for fJ in (:lmul!, :ldiv!)
@eval begin
function $fJ(p::FTPlan{T}, x::AbstractArray{Complex{T}}) where T
x .= complex.($fJ(p, real(x)), $fJ(p, imag(x)))
return x
end
function $fJ(p::AdjointFTPlan{T}, x::AbstractArray{Complex{T}}) where T
x .= complex.($fJ(p, real(x)), $fJ(p, imag(x)))
return x
end
function $fJ(p::TransposeFTPlan{T}, x::AbstractArray{Complex{T}}) where T
x .= complex.($fJ(p, real(x)), $fJ(p, imag(x)))
return x
end
end
end
for (fC, T) in ((:execute_jacobi_similarityf, Float32), (:execute_jacobi_similarity, Float64))
@eval begin
function modified_jacobi_matrix(P::ModifiedFTPlan{$T}, XP::SymTridiagonal{$T, Vector{$T}})
n = min(P.n, size(XP, 1))
XQ = SymTridiagonal(Vector{$T}(undef, n-1), Vector{$T}(undef, n-2))
ccall(($(string(fC)), libfasttransforms), Cvoid, (Ptr{ft_plan_struct}, Cint, Ptr{$T}, Ptr{$T}, Ptr{$T}, Ptr{$T}), P, n, XP.dv, XP.ev, XQ.dv, XQ.ev)
return XQ
end
end
end
function modified_jacobi_matrix(R, XP)
n = size(R, 1) - 1
XQ = SymTridiagonal(zeros(n), zeros(n-1))
XQ.dv[1] = (R[1, 1]*XP[1, 1] + R[1, 2]*XP[2, 1])/R[1, 1]
for i in 1:n-1
XQ.ev[i] = R[i+1, i+1]*XP[i+1, i]/R[i, i]
end
for i in 2:n
XQ.dv[i] = (R[i, i]*XP[i,i] + R[i, i+1]*XP[i+1, i] - XQ[i, i-1]*R[i-1, i])/R[i, i]
end
return XQ
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 11222 | """
Pre-computes a nonuniform fast Fourier transform of type `N`.
For best performance, choose the right number of threads by `FFTW.set_num_threads(4)`, for example.
"""
struct NUFFTPlan{N,T,FFT} <: Plan{T}
U::Matrix{T}
V::Matrix{T}
p::FFT
t::Vector{Int}
temp::Matrix{T}
temp2::Matrix{T}
Ones::Vector{T}
end
"""
Pre-computes a nonuniform fast Fourier transform of type I.
"""
function plan_nufft1(ω::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat}
N = length(ω)
ωdN = ω/N
t = AssignClosestEquispacedFFTpoint(ωdN)
γ = PerturbationParameter(ωdN, AssignClosestEquispacedGridpoint(ωdN))
K = FindK(γ, ϵ)
U = constructU(ωdN, K)
V = constructV(range(zero(T), stop=N-1, length=N), K)
p = plan_bfft!(V, 1)
temp = zeros(Complex{T}, N, K)
temp2 = zeros(Complex{T}, N, K)
Ones = ones(Complex{T}, K)
NUFFTPlan{1, eltype(U), typeof(p)}(U, V, p, t, temp, temp2, Ones)
end
"""
Pre-computes a nonuniform fast Fourier transform of type II.
"""
function plan_nufft2(x::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
N = length(x)
t = AssignClosestEquispacedFFTpoint(x)
γ = PerturbationParameter(x, AssignClosestEquispacedGridpoint(x))
K = FindK(γ, ϵ)
U = constructU(x, K)
V = constructV(range(zero(T), stop=N-1, length=N), K)
p = plan_fft!(U, 1)
temp = zeros(Complex{T}, N, K)
temp2 = zeros(Complex{T}, N, K)
Ones = ones(Complex{T}, K)
NUFFTPlan{2, eltype(U), typeof(p)}(U, V, p, t, temp, temp2, Ones)
end
"""
Pre-computes a nonuniform fast Fourier transform of type III.
"""
function plan_nufft3(x::AbstractVector{T}, ω::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
N = length(x)
s = AssignClosestEquispacedGridpoint(x)
t = AssignClosestEquispacedFFTpoint(x)
γ = PerturbationParameter(x, s)
K = FindK(γ, ϵ)
u = constructU(x, K)
v = constructV(ω, K)
p = plan_nufft1(ω, ϵ)
D1 = Diagonal(1 .- (s .- t .+ 1)./N)
D2 = Diagonal((s .- t .+ 1)./N)
D3 = Diagonal(exp.(-2 .* im .* T(π) .* ω ))
U = hcat(D1*u, D2*u)
V = hcat(v, D3*v)
temp = zeros(Complex{T}, N, 2K)
temp2 = zeros(Complex{T}, N, 2K)
Ones = ones(Complex{T}, 2K)
NUFFTPlan{3, eltype(U), typeof(p)}(U, V, p, t, temp, temp2, Ones)
end
function (*)(p::NUFFTPlan{N,T}, c::AbstractArray{V}) where {N,T,V}
mul!(zeros(promote_type(T,V), size(c)), p, c)
end
function mul!(f::AbstractVector{T}, P::NUFFTPlan{1,T}, c::AbstractVector{T}) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast!(*, temp, c, U)
conj!(temp)
fill!(temp2, zero(T))
recombine_rows!(temp, t, temp2)
p*temp2
conj!(temp2)
broadcast!(*, temp, V, temp2)
mul!(f, temp, Ones)
f
end
function mul!(F::Matrix{T}, P::NUFFTPlan{N,T}, C::Matrix{T}) where {N,T}
for J = 1:size(F, 2)
mul_col_J!(F, P, C, J)
end
F
end
function broadcast_col_J!(f, temp::Matrix, C::Matrix, U::Matrix, J::Int)
N = size(C, 1)
COLSHIFT = N*(J-1)
@inbounds for j = 1:size(temp, 2)
for i = 1:N
temp[i,j] = f(C[i+COLSHIFT],U[i,j])
end
end
temp
end
function mul_col_J!(F::Matrix{T}, P::NUFFTPlan{1,T}, C::Matrix{T}, J::Int) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast_col_J!(*, temp, C, U, J)
conj!(temp)
fill!(temp2, zero(T))
recombine_rows!(temp, t, temp2)
p*temp2
conj!(temp2)
broadcast!(*, temp, V, temp2)
COLSHIFT = size(C, 1)*(J-1)
mul_for_col_J!(F, temp, Ones, 1+COLSHIFT, 1)
F
end
function mul!(f::AbstractVector{T}, P::NUFFTPlan{2,T}, c::AbstractVector{T}) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast!(*, temp, c, V)
p*temp
reindex_temp!(temp, t, temp2)
broadcast!(*, temp, U, temp2)
mul!(f, temp, Ones)
f
end
function mul_col_J!(F::Matrix{T}, P::NUFFTPlan{2,T}, C::Matrix{T}, J::Int) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast_col_J!(*, temp, C, V, J)
p*temp
reindex_temp!(temp, t, temp2)
broadcast!(*, temp, U, temp2)
COLSHIFT = size(C, 1)*(J-1)
mul_for_col_J!(F, temp, Ones, 1+COLSHIFT, 1)
F
end
function mul!(f::AbstractVector{T}, P::NUFFTPlan{3,T}, c::AbstractVector{T}) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast!(*, temp2, c, V)
mul!(temp, p, temp2)
reindex_temp!(temp, t, temp2)
broadcast!(*, temp, U, temp2)
mul!(f, temp, Ones)
f
end
function mul_col_J!(F::Matrix{T}, P::NUFFTPlan{3,T}, C::Matrix{T}, J::Int) where {T}
U, V, p, t, temp, temp2, Ones = P.U, P.V, P.p, P.t, P.temp, P.temp2, P.Ones
broadcast_col_J!(*, temp2, C, V, J)
mul!(temp, p, temp2)
reindex_temp!(temp, t, temp2)
broadcast!(*, temp, U, temp2)
COLSHIFT = size(C, 1)*(J-1)
mul_for_col_J!(F, temp, Ones, 1+COLSHIFT, 1)
F
end
mul_for_col_J!(y::AbstractVecOrMat{T}, A::AbstractMatrix{T}, x::AbstractVecOrMat{T}, istart::Int, jstart::Int) where T =
mul_for_col_J!(y, A, x, istart, jstart, 1, 1)
function mul_for_col_J!(y::AbstractVecOrMat{T}, A::AbstractMatrix{T}, x::AbstractVecOrMat{T}, istart::Int, jstart::Int, INCX::Int, INCY::Int) where T
m, n = size(A)
ishift, jshift = istart-INCY, jstart-INCX
@inbounds for i = 1:m
y[ishift+i*INCY] = zero(T)
end
@inbounds for j = 1:n
xj = x[jshift+j*INCX]
for i = 1:m
y[ishift+i*INCY] += A[i,j]*xj
end
end
y
end
function reindex_temp!(temp::Matrix{T}, t::Vector{Int}, temp2::Matrix{T}) where {T}
@inbounds for j = 1:size(temp, 2)
for i = 1:size(temp, 1)
temp2[i, j] = temp[t[i], j]
end
end
temp2
end
function recombine_rows!(temp::Matrix{T}, t::Vector{Int}, temp2::Matrix{T}) where {T}
@inbounds for j = 1:size(temp, 2)
for i = 1:size(temp, 1)
temp2[t[i], j] += temp[i, j]
end
end
temp2
end
"""
Computes a nonuniform fast Fourier transform of type I:
```math
f_j = \\sum_{k=0}^{N-1} c_k e^{-2\\pi{\\rm i} \\frac{j}{N} \\omega_k},\\quad{\\rm for}\\quad 0 \\le j \\le N-1.
```
"""
nufft1(c::AbstractVector, ω::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_nufft1(ω, ϵ)*c
"""
Computes a nonuniform fast Fourier transform of type II:
```math
f_j = \\sum_{k=0}^{N-1} c_k e^{-2\\pi{\\rm i} x_j k},\\quad{\\rm for}\\quad 0 \\le j \\le N-1.
```
"""
nufft2(c::AbstractVector, x::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_nufft2(x, ϵ)*c
"""
Computes a nonuniform fast Fourier transform of type III:
```math
f_j = \\sum_{k=0}^{N-1} c_k e^{-2\\pi{\\rm i} x_j \\omega_k},\\quad{\\rm for}\\quad 0 \\le j \\le N-1.
```
"""
nufft3(c::AbstractVector, x::AbstractVector{T}, ω::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_nufft3(x, ω, ϵ)*c
const nufft = nufft3
const plan_nufft = plan_nufft3
"""
Pre-computes a 2D nonuniform fast Fourier transform.
For best performance, choose the right number of threads by `FFTW.set_num_threads(4)`, for example.
"""
struct NUFFT2DPlan{T,P1,P2} <: Plan{T}
p1::P1
p2::P2
temp::Vector{T}
end
"""
Pre-computes a 2D nonuniform fast Fourier transform of type I-I.
"""
function plan_nufft1(ω::AbstractVector{T}, π::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
p1 = plan_nufft1(ω, ϵ)
p2 = plan_nufft1(π, ϵ)
temp = zeros(Complex{T}, length(π))
NUFFT2DPlan(p1, p2, temp)
end
"""
Pre-computes a 2D nonuniform fast Fourier transform of type II-II.
"""
function plan_nufft2(x::AbstractVector{T}, y::AbstractVector{T}, ϵ::T) where T<:AbstractFloat
p1 = plan_nufft2(x, ϵ)
p2 = plan_nufft2(y, ϵ)
temp = zeros(Complex{T}, length(y))
NUFFT2DPlan(p1, p2, temp)
end
function (*)(p::NUFFT2DPlan{T}, C::Matrix{V}) where {T,V}
mul!(zeros(promote_type(T,V), size(C)), p, C)
end
function mul!(F::Matrix{T}, P::NUFFT2DPlan{T}, C::Matrix{T}) where {T}
p1, p2, temp = P.p1, P.p2, P.temp
# Apply 1D x-plan to all columns
mul!(F, p1, C)
# Apply 1D y-plan to all rows
for i = 1:size(C, 1)
@inbounds for j = 1:size(F, 2) temp[j] = F[i,j] end
mul!(temp, p2, temp)
@inbounds for j = 1:size(F, 2) F[i,j] = temp[j] end
end
F
end
"""
Computes a 2D nonuniform fast Fourier transform of type I-I:
```math
F_{i,j} = \\sum_{k=0}^{M-1}\\sum_{\\ell=0}^{N-1} C_{k,\\ell} e^{-2\\pi{\\rm i} (\\frac{i}{M} \\omega_k + \\frac{j}{N} \\pi_{\\ell})},\\quad{\\rm for}\\quad 0 \\le i \\le M-1,\\quad 0 \\le j \\le N-1.
```
"""
nufft1(C::Matrix, ω::AbstractVector{T}, π::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_nufft1(ω, π, ϵ)*C
"""
Computes a 2D nonuniform fast Fourier transform of type II-II:
```math
F_{i,j} = \\sum_{k=0}^{M-1}\\sum_{\\ell=0}^{N-1} C_{k,\\ell} e^{-2\\pi{\\rm i} (x_i k + y_j \\ell)},\\quad{\\rm for}\\quad 0 \\le i \\le M-1,\\quad 0 \\le j \\le N-1.
```
"""
nufft2(C::Matrix, x::AbstractVector{T}, y::AbstractVector{T}, ϵ::T) where {T<:AbstractFloat} = plan_nufft2(x, y, ϵ)*C
FindK(γ::T, ϵ::T) where {T<:AbstractFloat} = γ ≤ ϵ ? 1 : Int(ceil(5*γ*exp(lambertw(log(10/ϵ)/γ/7))))
(AssignClosestEquispacedGridpoint(x::AbstractVector{T})::AbstractVector{T}) where {T<:AbstractFloat} = round.([Int], size(x, 1)*x)
(AssignClosestEquispacedFFTpoint(x::AbstractVector{T})::Array{Int,1}) where {T<:AbstractFloat} = mod.(round.([Int], size(x, 1)*x), size(x, 1)) .+ 1
(PerturbationParameter(x::AbstractVector{T}, s_vec::AbstractVector{T})::AbstractFloat) where {T<:AbstractFloat} = norm(size(x, 1)*x - s_vec, Inf)
function constructU(x::AbstractVector{T}, K::Int) where {T<:AbstractFloat}
# Construct a low rank approximation, using Chebyshev expansions
# for AK = exp(-2*pi*1im*(x[j]-j/N)*k):
N = length(x)
s = AssignClosestEquispacedGridpoint(x)
er = N*x - s
γ = norm(er, Inf)
Diagonal(exp.(-im*(π*er)))*ChebyshevP(K-1, er/γ)*Bessel_coeffs(K, γ)
end
function constructV(ω::AbstractVector{T}, K::Int) where {T<:AbstractFloat}
complex(ChebyshevP(K-1, ω.*(two(T)/length(ω)) .- 1))
end
function Bessel_coeffs(K::Int, γ::T) where {T<:AbstractFloat}
# Calculate the Chebyshev coefficients of exp(-2*pi*1im*x*y) on [-gam,gam]x[0,1]
cfs = zeros(Complex{T}, K, K)
arg = -γ*π/two(T)
for p = 0:K-1
for q = mod(p,2):2:K-1
cfs[p+1,q+1] = 4*(1im)^q*besselj((p+q)/2,arg).*besselj((q-p)/2,arg)
end
end
cfs[1,:] = cfs[1,:]/two(T)
cfs[:,1] = cfs[:,1]/two(T)
return cfs
end
function ChebyshevP(n::Int, x::AbstractVector{T}) where T<:AbstractFloat
# Evaluate Chebyshev polynomials of degree 0,...,n at x:
N = size(x, 1)
Tcheb = Matrix{T}(undef, N, n+1)
# T_0(x) = 1.0
One = convert(eltype(x),1.0)
@inbounds for j = 1:N
Tcheb[j, 1] = One
end
# T_1(x) = x
if ( n > 0 )
@inbounds for j = 1:N
Tcheb[j, 2] = x[j]
end
end
# 3-term recurrence relation:
twoX = 2x
@inbounds for k = 2:n
@simd for j = 1:N
Tcheb[j, k+1] = twoX[j]*Tcheb[j, k] - Tcheb[j, k-1]
end
end
return Tcheb
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 20255 | import Base.Math: @horner
const FORWARD = true
const BACKWARD = false
const sqrtpi = 1.772453850905516027298
const edivsqrt2pi = 1.084437551419227546612
"""
Compute a typed 0.5.
"""
half(x::Number) = oftype(x,0.5)
half(x::Integer) = half(float(x))
half(::Type{T}) where {T<:Number} = convert(T,0.5)
half(::Type{T}) where {T<:Integer} = half(AbstractFloat)
"""
Compute a typed 2.
"""
two(x::Number) = oftype(x,2)
two(::Type{T}) where {T<:Number} = convert(T,2)
"""
The Kronecker ``\\delta`` function:
```math
\\delta_{k,j} = \\left\\{\\begin{array}{ccc} 1 & {\\rm for} & k = j,\\\\ 0 & {\\rm for} & k \\ne j.\\end{array}\\right.
```
"""
δ(k::Integer,j::Integer) = k == j ? 1 : 0
"""
Pochhammer symbol ``(x)_n = \\frac{\\Gamma(x+n)}{\\Gamma(x)}`` for the rising factorial.
"""
function pochhammer(x::Number,n::Integer)
ret = one(x)
if n≥0
for i=0:n-1
ret *= x+i
end
else
ret /= pochhammer(x+n,-n)
end
ret
end
pochhammer(x::Number,n::Number) = isinteger(n) ? pochhammer(x,Int(n)) : ogamma(x)/ogamma(x+n)
function pochhammer(x::Number,n::UnitRange{T}) where T<:Real
ret = Vector{promote_type(typeof(x),T)}(length(n))
ret[1] = pochhammer(x,first(n))
for i=2:length(n)
ret[i] = (x+n[i]-1)*ret[i-1]
end
ret
end
lgamma(x) = logabsgamma(x)[1]
ogamma(x::Number) = (isinteger(x) && x<0) ? zero(float(x)) : inv(gamma(x))
"""
Stirling's asymptotic series for ``\\Gamma(z)``.
"""
stirlingseries(z) = gamma(z)*sqrt((z/π)/2)*exp(z)/z^z
function stirlingseries(z::Float64)
if z ≥ 3274.12075200175 # N = 4
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273)
elseif z ≥ 590.1021805526798 # N = 5
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917)
elseif z ≥ 195.81733962412835 # N = 6
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666)
elseif z ≥ 91.4692823071966 # N = 7
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5)
elseif z ≥ 52.70218954633605 # N = 8
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939)
elseif z ≥ 34.84031591198865 # N = 9
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5)
elseif z ≥ 25.3173982783047 # N = 10
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873)
elseif z ≥ 19.685015283078513 # N = 11
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5)
elseif z ≥ 16.088669099569266 # N = 12
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776)
elseif z ≥ 13.655055978888104 # N = 13
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776,-0.00016251626278391583)
elseif z ≥ 11.93238782087875 # N = 14
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776,-0.00016251626278391583,0.00640336283380807)
elseif z ≥ 10.668852439197263 # N = 15
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776,-0.00016251626278391583,0.00640336283380807,0.0005401647678926045)
elseif z ≥ 9.715358216638403 # N = 16
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776,-0.00016251626278391583,0.00640336283380807,0.0005401647678926045,-0.02952788094569912)
elseif z ≥ 8.979120323411497 # N = 17
@horner(inv(z),1.0,0.08333333333333333,0.003472222222222222,-0.0026813271604938273,-0.00022947209362139917,0.0007840392217200666,6.972813758365857e-5,-0.0005921664373536939,-5.171790908260592e-5,0.0008394987206720873,7.204895416020011e-5,-0.0019144384985654776,-0.00016251626278391583,0.00640336283380807,0.0005401647678926045,-0.02952788094569912,-0.002481743600264998)
else
gamma(z)*sqrt(z/2π)*exp(z)/z^z
end
end
stirlingremainder(z::Number,N::Int) = (1+zeta(N))*gamma(N)/((2π)^(N+1)*z^N)/stirlingseries(z)
Aratio(n::Int,α::Float64,β::Float64) = exp((n/2+α+1/4)*log1p(-β/(n+α+β+1))+(n/2+β+1/4)*log1p(-α/(n+α+β+1))+(n/2+1/4)*log1p(α/(n+1))+(n/2+1/4)*log1p(β/(n+1)))
Aratio(n::Number,α::Number,β::Number) = (1+(α+1)/n)^(n+α+1/2)*(1+(β+1)/n)^(n+β+1/2)/(1+(α+β+1)/n)^(n+α+β+1/2)/(1+(zero(α)+zero(β))/n)^(n+1/2)
Cratio(n::Int,α::Float64,β::Float64) = exp((n+α+1/2)*log1p((α-β)/(2n+α+β+2))+(n+β+1/2)*log1p((β-α)/(2n+α+β+2))-log1p((α+β+2)/2n)/2)/sqrt(n)
Cratio(n::Number,α::Number,β::Number) = n^(-1/2)*(1+(α+1)/n)^(n+α+1/2)*(1+(β+1)/n)^(n+β+1/2)/(1+(α+β+2)/2n)^(2n+α+β+3/2)
Anαβ(n::Number,α::Number,β::Number) = 2^(α+β+1)/(2n+α+β+1)*exp(lgamma(n+α+1)-lgamma(n+α+β+1)+lgamma(n+β+1)-lgamma(n+1))
function Anαβ(n::Integer,α::Number,β::Number)
if n==0
2^(α+β+1)*beta(α+1,β+1)
else
val = Anαβ(0,α,β)
for i=1:n
val *= (i+α)*(i+β)/(i+α+β)/i*(2i+α+β-1)/(2i+α+β+1)
end
val
end
end
function Anαβ(n::Integer,α::Float64,β::Float64)
if n+min(α,β,α+β,0) ≥ 7.979120323411497
2 ^ (α+β+1)/(2n+α+β+1)*stirlingseries(n+α+1)*Aratio(n,α,β)/stirlingseries(n+α+β+1)*stirlingseries(n+β+1)/stirlingseries(n+one(Float64))
else
(n+1)*(n+α+β+1)/(n+α+1)/(n+β+1)*Anαβ(n+1,α,β)*((2n+α+β+3)/(2n+α+β+1))
end
end
"""
The Lambda function ``\\Lambda(z) = \\frac{\\Gamma(z+\\frac{1}{2})}{\\Gamma(z+1)}`` for the ratio of gamma functions.
"""
Λ(z::Number) = Λ(z, half(z), one(z))
"""
For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic series for ``\\tau`` in Appendix B of
I. Bogaert and B. Michiels and J. Fostier, 𝒪(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing, *SIAM J. Sci. Comput.*, **34**:C83–C101, 2012.
"""
function Λ(x::Float64)
if x > 9.84475
xp = x+0.25
@horner(inv(xp^2),1.0,-1.5625e-02,2.5634765625e-03,-1.2798309326171875e-03,1.343511044979095458984375e-03,-2.432896639220416545867919921875e-03,6.7542375336415716446936130523681640625e-03)/sqrt(xp)
else
(x+1.0)*Λ(x+1.0)/(x+0.5)
end
end
"""
The Lambda function ``\\Lambda(z,λ₁,λ₂) = \\frac{\\Gamma(z+\\lambda_1)}{Γ(z+\\lambda_2)}`` for the ratio of gamma functions.
"""
function Λ(z::Real, λ₁::Real, λ₂::Real)
if z+λ₁ > 0 && z+λ₂ > 0
exp(lgamma(z+λ₁)-lgamma(z+λ₂))
else
gamma(z+λ₁)/gamma(z+λ₂)
end
end
function Λ(x::Float64, λ₁::Float64, λ₂::Float64)
if min(x+λ₁,x+λ₂) ≥ 8.979120323411497
exp(λ₂-λ₁+(x-.5)*log1p((λ₁-λ₂)/(x+λ₂)))*(x+λ₁)^λ₁/(x+λ₂)^λ₂*stirlingseries(x+λ₁)/stirlingseries(x+λ₂)
else
(x+λ₂)/(x+λ₁)*Λ(x + 1.0, λ₁, λ₂)
end
end
## TODO: deprecate when Lambert-W is supported in a mainstream repository such as SpecialFunctions.jl
"""
The principal branch of the Lambert-W function, defined by ``x = W_0(x) e^{W_0(x)}``, computed using Halley's method for ``x \\in [-e^{-1},\\infty)``.
"""
function lambertw(x::AbstractFloat)
if x < -exp(-one(x))
return throw(DomainError())
elseif x == -exp(-one(x))
return -one(x)
elseif x < 0
w0 = ℯ*x/(1+inv(inv(sqrt(2*ℯ*x+2))+inv(ℯ-1)-inv(sqrt(2))))
else
log1px = log1p(x)
w0 = log1px*(1-log1p(log1px)/(2+log1px))
end
expw0 = exp(w0)
w1 = w0 - (w0*expw0 - x)/((w0 + 1)*expw0 -
(w0 + 2) * (w0*expw0 - x)/(2w0 + 2))
while abs(w1/w0 - 1) > 2eps(typeof(x))
w0 = w1
expw0 = exp(w0)
w1 = w0 - (w0*expw0 - x)/((w0 + 1)*expw0 -
(w0 + 2) * (w0*expw0 - x)/(2w0 + 2))
end
return w1
end
lambertw(x::Real) = lambertw(float(x))
Cnλ(n::Integer,λ::Float64) = 2^λ/sqrtpi*Λ(n+λ)
Cnλ(n::Integer,λ::Number) = 2^λ/sqrt(oftype(λ,π))*Λ(n+λ)
function Cnλ(n::UnitRange{T},λ::Number) where T<:Integer
ret = Vector{typeof(λ)}(undef, length(n))
ret[1] = Cnλ(first(n),λ)
for i=2:length(n)
ret[i] = (n[i]+λ-half(λ))/(n[i]+λ)*ret[i-1]
end
ret
end
function Cnmλ(n::Integer,m::Integer,λ::Number)
if m == 0
Cnλ(n,λ)
else
(λ+m-1)/2/m*(m-λ)/(n+λ+m)*Cnmλ(n,m-1,λ)
end
end
function Cnαβ(n::Integer,α::Number,β::Number)
if n==0
2^(α+β+1)*beta(α+1,β+1)/π
else
val = Cnαβ(0,α,β)
for i=1:n
val *= (i+α)*(i+β)/(i+(α+β+1)/2)/(i+(α+β)/2)
end
val
end
end
function Cnαβ(n::Integer,α::Float64,β::Float64)
if n+min(α,β) ≥ 7.979120323411497
stirlingseries(n+α+1)/sqrtpi/stirlingseries(2n+α+β+2)*Cratio(n,α,β)*stirlingseries(n+β+1)
else
(n+(α+β+3)/2)/(n+β+1)*(n+(α+β+2)/2)/(n+α+1)*Cnαβ(n+1,α,β)
end
end
function Cnmαβ(n::Integer,m::Integer,α::Number,β::Number)
if m == 0
Cnαβ(n,α,β)
else
Cnmαβ(n,m-1,α,β)/2(2n+α+β+m+1)
end
end
function Cnmαβ(n::Integer,m::Integer,α::AbstractArray{T},β::AbstractArray{T}) where T<:Number
shp = promote_shape(size(α),size(β))
reshape([ Cnmαβ(n,m,α[i],β[i]) for i in eachindex(α,β) ], shp)
end
"""
Modified Chebyshev moments of the first kind:
```math
\\int_{-1}^{+1} T_n(x) {\\rm\\,d}x.
```
"""
function chebyshevmoments1(::Type{T}, N::Int) where T
μ = zeros(T, N)
for i = 0:2:N-1
@inbounds μ[i+1] = two(T)/T(1-i^2)
end
μ
end
"""
Modified Chebyshev moments of the first kind with respect to the Jacobi weight:
```math
\\int_{-1}^{+1} T_n(x) (1-x)^\\alpha(1+x)^\\beta{\\rm\\,d}x.
```
"""
function chebyshevjacobimoments1(::Type{T}, N::Int, α, β) where T
μ = zeros(T, N)
N > 0 && (μ[1] = 2 .^ (α+β+1)*beta(α+1,β+1))
if N > 1
μ[2] = μ[1]*(β-α)/(α+β+2)
for i=1:N-2
@inbounds μ[i+2] = (2(β-α)*μ[i+1]-(α+β-i+2)*μ[i])/(α+β+i+2)
end
end
μ
end
"""
Modified Chebyshev moments of the first kind with respect to the logarithmic weight:
```math
\\int_{-1}^{+1} T_n(x) \\log\\left(\\frac{1-x}{2}\\right){\\rm\\,d}x.
```
"""
function chebyshevlogmoments1(::Type{T}, N::Int) where T
μ = zeros(T, N)
N > 0 && (μ[1] = -two(T))
if N > 1
μ[2] = -one(T)
for i=1:N-2
cst = isodd(i) ? T(4)/T(i^2-4) : T(4)/T(i^2-1)
@inbounds μ[i+2] = ((i-2)*μ[i]+cst)/(i+2)
end
end
μ
end
"""
Modified Chebyshev moments of the first kind with respect to the absolute value weight:
```math
\\int_{-1}^{+1} T_n(x) |x|{\\rm\\,d}x.
```
"""
function chebyshevabsmoments1(::Type{T}, N::Int) where T
μ = zeros(T, N)
if N > 0
for i=0:4:N-1
@inbounds μ[i+1] = -T(1)/T((i÷2)^2-1)
end
end
μ
end
"""
Modified Chebyshev moments of the second kind:
```math
\\int_{-1}^{+1} U_n(x) {\\rm\\,d}x.
```
"""
function chebyshevmoments2(::Type{T}, N::Int) where T
μ = zeros(T, N)
for i = 0:2:N-1
@inbounds μ[i+1] = two(T)/T(i+1)
end
μ
end
"""
Modified Chebyshev moments of the second kind with respect to the Jacobi weight:
```math
\\int_{-1}^{+1} U_n(x) (1-x)^\\alpha(1+x)^\\beta{\\rm\\,d}x.
```
"""
function chebyshevjacobimoments2(::Type{T}, N::Int, α, β) where T
μ = zeros(T, N)
N > 0 && (μ[1] = 2 .^ (α+β+1)*beta(α+1,β+1))
if N > 1
μ[2] = 2μ[1]*(β-α)/(α+β+2)
for i=1:N-2
@inbounds μ[i+2] = (2(β-α)*μ[i+1]-(α+β-i)*μ[i])/(α+β+i+2)
end
end
μ
end
"""
Modified Chebyshev moments of the second kind with respect to the logarithmic weight:
```math
\\int_{-1}^{+1} U_n(x) \\log\\left(\\frac{1-x}{2}\\right){\\rm\\,d}x.
```
"""
function chebyshevlogmoments2(::Type{T}, N::Int) where T
μ = chebyshevlogmoments1(T, N)
if N > 1
μ[2] *= two(T)
for i=1:N-2
@inbounds μ[i+2] = 2μ[i+2] + μ[i]
end
end
μ
end
"""
Modified Chebyshev moments of the second kind with respect to the absolute value weight:
```math
\\int_{-1}^{+1} U_n(x) |x|{\\rm\\,d}x.
```
"""
function chebyshevabsmoments2(::Type{T}, N::Int) where T
μ = chebyshevabsmoments1(T, N)
if N > 1
μ[2] *= two(T)
for i=1:N-2
@inbounds μ[i+2] = 2μ[i+2] + μ[i]
end
end
μ
end
function sphrand(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = rand(T)
end
for j = 1:n÷2
for i = 1:m-j
A[i,2j] = rand(T)
A[i,2j+1] = rand(T)
end
end
A
end
function sphrandn(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = randn(T)
end
for j = 1:n÷2
for i = 1:m-j
A[i,2j] = randn(T)
A[i,2j+1] = randn(T)
end
end
A
end
function sphones(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = one(T)
end
for j = 1:n÷2
for i = 1:m-j
A[i,2j] = one(T)
A[i,2j+1] = one(T)
end
end
A
end
sphzeros(::Type{T}, m::Int, n::Int) where T = zeros(T, m, n)
"""
Pointwise evaluation of real orthonormal spherical harmonic:
```math
Y_\\ell^m(\\theta,\\varphi) = (-1)^{|m|}\\sqrt{(\\ell+\\frac{1}{2})\\frac{(\\ell-|m|)!}{(\\ell+|m|)!}} P_\\ell^{|m|}(\\cos\\theta) \\sqrt{\\frac{2-\\delta_{m,0}}{2\\pi}} \\left\\{\\begin{array}{ccc} \\cos m\\varphi & {\\rm for} & m \\ge 0,\\\\ \\sin(-m\\varphi) & {\\rm for} & m < 0.\\end{array}\\right.
```
"""
sphevaluate(θ, φ, L, M) = sphevaluatepi(θ/π, φ/π, L, M)
sphevaluatepi(θ::Number, φ::Number, L::Integer, M::Integer) = sphevaluatepi(θ, L, M)*sphevaluatepi(φ, M)
function sphevaluatepi(θ::Number, L::Integer, M::Integer)
ret = one(θ)/sqrt(two(θ))
if M < 0 M = -M end
c, s = cospi(θ), sinpi(θ)
for m = 1:M
ret *= sqrt((m+half(θ))/m)*s
end
tc = two(c)*c
if L == M
return ret
elseif L == M+1
return sqrt(two(θ)*M+3)*c*ret
else
temp = ret
ret *= sqrt(two(θ)*M+3)*c
for l = M+1:L-1
ret, temp = (sqrt(l+half(θ))*tc*ret - sqrt((l-M)*(l+M)/(l-half(θ)))*temp)/sqrt((l-M+1)*(l+M+1)/(l+3half(θ))), ret
end
return ret
end
end
sphevaluatepi(φ::Number, M::Integer) = sqrt((two(φ)-δ(M, 0))/(two(φ)*π))*(M ≥ 0 ? cospi(M*φ) : sinpi(-M*φ))
function sphvrand(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m-1
A[i,1] = rand(T)
end
for j = 1:n÷2
for i = 1:m-j+1
A[i,2j] = rand(T)
A[i,2j+1] = rand(T)
end
end
A
end
function sphvrandn(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m-1
A[i,1] = randn(T)
end
for j = 1:n÷2
for i = 1:m-j+1
A[i,2j] = randn(T)
A[i,2j+1] = randn(T)
end
end
A
end
function sphvones(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m-1
A[i,1] = one(T)
end
for j = 1:n÷2
for i = 1:m-j+1
A[i,2j] = one(T)
A[i,2j+1] = one(T)
end
end
A
end
sphvzeros(::Type{T}, m::Int, n::Int) where T = sphzeros(T, m, n)
function diskrand(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = rand(T)
end
for j = 1:n÷2
for i = 1:m-(j+1)÷2
A[i,2j] = rand(T)
A[i,2j+1] = rand(T)
end
end
A
end
function diskrandn(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = randn(T)
end
for j = 1:n÷2
for i = 1:m-(j+1)÷2
A[i,2j] = randn(T)
A[i,2j+1] = randn(T)
end
end
A
end
function diskones(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for i = 1:m
A[i,1] = one(T)
end
for j = 1:n÷2
for i = 1:m-(j+1)÷2
A[i,2j] = one(T)
A[i,2j+1] = one(T)
end
end
A
end
diskzeros(::Type{T}, m::Int, n::Int) where T = zeros(T, m, n)
function trirand(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for j = 1:n
for i = 1:m+1-j
A[i,j] = rand(T)
end
end
A
end
function trirandn(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for j = 1:n
for i = 1:m+1-j
A[i,j] = randn(T)
end
end
A
end
function triones(::Type{T}, m::Int, n::Int) where T
A = zeros(T, m, n)
for j = 1:n
for i = 1:m+1-j
A[i,j] = one(T)
end
end
A
end
trizeros(::Type{T}, m::Int, n::Int) where T = zeros(T, m, n)
const rectdiskrand = trirand
const rectdiskrandn = trirandn
const rectdiskones = triones
const rectdiskzeros = trizeros
"""
Pointwise evaluation of triangular harmonic:
```math
\\tilde{P}_{\\ell,m}^{(\\alpha,\\beta,\\gamma)}(x,y).
```
"""
trievaluate(x, y, L, M, α, β, γ) = trievaluate(x, L, M, α, β, γ)*trievaluate(x, y, M, β, γ)
function trievaluate(x::Number, L::Integer, M::Integer, α::Number, β::Number, γ::Number)
end
function trievaluate(x::Number, y::Number, M::Integer, β::Number, γ::Number)
end
function tetrand(::Type{T}, l::Int, m::Int, n::Int) where T
A = zeros(T, l, m, n)
for k = 1:n
for j = 1:m+1-k
for i = 1:l+2-k-j
A[i,j,k] = rand(T)
end
end
end
A
end
function tetrandn(::Type{T}, l::Int, m::Int, n::Int) where T
A = zeros(T, l, m, n)
for k = 1:n
for j = 1:m+1-k
for i = 1:l+2-k-j
A[i,j,k] = randn(T)
end
end
end
A
end
function tetones(::Type{T}, l::Int, m::Int, n::Int) where T
A = zeros(T, l, m, n)
for k = 1:n
for j = 1:m+1-k
for i = 1:l+2-k-j
A[i,j,k] = one(T)
end
end
end
A
end
tetzeros(::Type{T}, l::Int, m::Int, n::Int) where T = zeros(T, l, m, n)
function spinsphrand(::Type{T}, m::Int, n::Int, s::Int) where T
A = zeros(T, m, n)
as = abs(s)
for i = 1:m-as
A[i,1] = rand(T)
end
for j = 1:n÷2
for i = 1:m-max(j, as)
A[i,2j] = rand(T)
A[i,2j+1] = rand(T)
end
end
A
end
function spinsphrandn(::Type{T}, m::Int, n::Int, s::Int) where T
A = zeros(T, m, n)
as = abs(s)
for i = 1:m-as
A[i,1] = randn(T)
end
for j = 1:n÷2
for i = 1:m-max(j, as)
A[i,2j] = randn(T)
A[i,2j+1] = randn(T)
end
end
A
end
function spinsphones(::Type{T}, m::Int, n::Int, s::Int) where T
A = zeros(T, m, n)
as = abs(s)
for i = 1:m-as
A[i,1] = one(T)
end
for j = 1:n÷2
for i = 1:m-max(j, as)
A[i,2j] = one(T)
A[i,2j+1] = one(T)
end
end
A
end
spinsphzeros(::Type{T}, m::Int, n::Int) where T = zeros(T, m, n)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 21495 | """
Represent a scaled Toeplitz∘Hankel matrix:
DL(T∘H)DR
where the Hankel matrix `H` is non-negative definite, via
∑_{k=1}^r Diagonal(L[:,k])*T*Diagonal(R[:,k])
where `L` and `R` are determined by doing a rank-r pivoted Cholesky decomposition of `H`, which in low rank form is
H ≈ ∑_{k=1}^r C[:,k]C[:,k]'
so that `L[:,k] = DL*C[:,k]` and `R[:,k] = DR*C[:,k]`.
This allows a Cholesky decomposition in 𝒪(K²N) operations and 𝒪(KN) storage, K = log N log ɛ⁻¹.
The tuple storage allows plans applied to each dimension.
"""
struct ToeplitzHankelPlan{S, N, N1, LowR, TP, Dims} <: Plan{S}
T::TP # A length M Vector or Tuple of ToeplitzPlan
L::LowR # A length M Vector or Tuple of Matrices storing low rank factors of L
R::LowR # A length M Vector or Tuple of Matrices storing low rank factors of R
tmp::Array{S,N1} # A larger dimensional array to transform each scaled array all-at-once
dims::Dims # A length M Vector or Tuple of Int storing the dimensions acted on
function ToeplitzHankelPlan{S,N,N1,LowR,TP,Dims}(T::TP, L::LowR, R::LowR, dims) where {S,N,N1,LowR,TP,Dims}
tmp = Array{S}(undef, max.(size.(T)...)...)
new{S,N,N1,LowR,TP,Dims}(T, L, R, tmp, dims)
end
end
ToeplitzHankelPlan{S,N,M}(T::TP, L::LowR, R::LowR, dims::Dims) where {S,N,M,LowR,TP,Dims} = ToeplitzHankelPlan{S,N,M,LowR,TP,Dims}(T, L, R, dims)
ToeplitzHankelPlan{S,N}(T, L, R, dims) where {S,N} = ToeplitzHankelPlan{S,N,N+1}(T, L, R, dims)
ToeplitzHankelPlan(T::ToeplitzPlan{S,M}, L::Matrix, R::Matrix, dims=1) where {S,M} = ToeplitzHankelPlan{S,M-1,M}((T,), (L,), (R,), dims)
size(TH::ToeplitzHankelPlan) = size(first(TH.T))
_reshape_broadcast(d, R, ::Val{N}, M) where N = reshape(R,ntuple(k -> k == d ? size(R,1) : 1, Val(N))...,M)
function _th_applymul!(d, v::AbstractArray{<:Any,N}, T, L, R, tmp) where N
M = size(R,2)
ax = (axes(v)..., OneTo(M))
tmp[ax...] .= _reshape_broadcast(d, R, Val(N), M) .* v
T * view(tmp, ax...)
view(tmp,ax...) .*= _reshape_broadcast(d, L, Val(N), M)
sum!(v, view(tmp,ax...))
end
function *(P::ToeplitzHankelPlan{<:Any,N}, v::AbstractArray{<:Any,N}) where N
for (R,L,T,d) in zip(P.R,P.L,P.T,P.dims)
_th_applymul!(d, v, T, L, R, P.tmp)
end
v
end
*(P::ToeplitzHankelPlan, v::AbstractArray) = error("plan applied to wrong-sized array")
# partial cholesky for a Hankel matrix
function hankel_partialchol(v::Vector{T}) where T
# Assumes positive definite
σ = T[]
n = isempty(v) ? 0 : (length(v)+2) ÷ 2
C = Matrix{T}(undef, n, n)
d = v[1:2:end] # diag of H
@assert length(v) ≥ 2n-1
reltol = maximum(abs,d)*eps(T)*log(n)
r = 0
for k = 1:n
mx,idx = findmax(d)
if mx ≤ reltol break end
push!(σ, inv(mx))
C[:,k] .= view(v,idx:n+idx-1)
for j = 1:k-1
nCjidxσj = -C[idx,j]*σ[j]
LinearAlgebra.axpy!(nCjidxσj, view(C,:,j), view(C,:,k))
end
@inbounds for p=1:n
d[p] -= C[p,k]^2/mx
end
r += 1
end
for k=1:length(σ) rmul!(view(C,:,k), sqrt(σ[k])) end
C[:,1:r]
end
# cholesky for D .* H .* D'
function hankel_partialchol(v::Vector, D::AbstractVector)
T = promote_type(eltype(v), eltype(D))
# Assumes positive definite
σ = T[]
n = isempty(v) ? 0 : (length(v)+2) ÷ 2
C = Matrix{T}(undef, n, 100)
d = v[1:2:end] .* D.^2 # diag of D .* H .* D'
@assert length(v) ≥ 2n-1
reltol = maximum(abs,d)*eps(T)*log(n)
r = 0
for k = 1:n
mx,idx = findmax(d)
if mx ≤ reltol break end
push!(σ, inv(mx))
C[:,k] .= view(v,idx:n+idx-1) .*D.*D[idx]
for j = 1:k-1
nCjidxσj = -C[idx,j]*σ[j]
LinearAlgebra.axpy!(nCjidxσj, view(C,:,j), view(C,:,k))
end
@inbounds for p=1:n
d[p] -= C[p,k]^2/mx
end
r += 1
end
r == 100 && error("ranks more than 100 not yet supported")
for k=1:length(σ) rmul!(view(C,:,k), sqrt(σ[k])) end
C[:,1:r]
end
# Diagonally-scaled Toeplitz∘Hankel polynomial transforms
struct ChebyshevToLegendrePlanTH{S,TH<:ToeplitzHankelPlan{S}} <: Plan{S}
toeplitzhankel::TH
end
function *(P::ChebyshevToLegendrePlanTH, v::AbstractVector{S}) where S
n = length(v)
ret = zero(S)
@inbounds for k = 1:2:n
ret += -v[k]/(k*(k-2))
end
v[1] = ret
P.toeplitzhankel*view(v,2:n)
v
end
function _cheb2leg_rescale1!(V::AbstractArray{S}, Rpre, Rpost, d) where S
m = size(V,d)
for Ipost in Rpost, Ipre in Rpre
ret = zero(S)
@inbounds for k = 1:2:m
ret += -V[Ipre,k,Ipost]/(k*(k-2))
end
V[Ipre,1,Ipost] = ret
end
V
end
_dropfirstdim(d::Int) = ()
_dropfirstdim(d::Int, m, szs...) = ((d == 1 ? 2 : 1):m, _dropfirstdim(d-1, szs...)...)
function *(P::ChebyshevToLegendrePlanTH, V::AbstractArray)
m,n = size(V)
tmp = P.toeplitzhankel.tmp
for (d,R,L,T) in zip(P.toeplitzhankel.dims,P.toeplitzhankel.R,P.toeplitzhankel.L,P.toeplitzhankel.T)
Rpre = CartesianIndices(axes(V)[1:d-1])
Rpost = CartesianIndices(axes(V)[d+1:end])
_cheb2leg_rescale1!(V, Rpre, Rpost, d)
_th_applymul!(d, view(V, _dropfirstdim(d, size(V)...)...), T, L, R, tmp)
end
V
end
_add1tod(d::Integer, a, b...) = d == 1 ? (a+1, b...) : (a, _add1tod(d-1, b...)...)
_add1tod(d, a, b...) = _add1tod(first(d), a, b...)
size(P::ChebyshevToLegendrePlanTH) = Base.front(_add1tod(P.toeplitzhankel.dims, size(first(P.toeplitzhankel.T))...))
inv(P::ChebyshevToLegendrePlanTH{T}) where T = plan_th_leg2cheb!(T, size(P), P.toeplitzhankel.dims)
function _leg2chebTH_TLC(::Type{S}, mn, d) where S
n = mn[d]
λ = Λ.(0:half(real(S)):n-1)
t = zeros(S,n)
t[1:2:end] .= 2 .* view(λ, 1:2:n) ./ π
C = hankel_partialchol(λ)
T = plan_uppertoeplitz!(t, (mn..., size(C,2)), d)
L = copy(C)
L[1,:] ./= 2
T,L,C
end
function _leg2chebuTH_TLC(::Type{S}, mn, d) where {S}
n = mn[d]
S̃ = real(S)
λ = Λ.(0:half(S̃):n-1)
t = zeros(S,n)
t[1:2:end] = λ[1:2:n]./(((1:2:n).-2))
h = λ./((1:2n-1).+1)
C = hankel_partialchol(h)
T = plan_uppertoeplitz!(-2t/π, (mn..., size(C,2)), d)
(T, (1:n) .* C, C)
end
for f in (:leg2cheb, :leg2chebu)
plan = Symbol("plan_th_", f, "!")
TLC = Symbol("_", f, "TH_TLC")
@eval begin
$plan(::Type{S}, mn::NTuple{N,Int}, dims::Int) where {S,N} = ToeplitzHankelPlan($TLC(S, mn, dims)..., dims)
function $plan(::Type{S}, mn::NTuple{N,Int}, dims) where {S,N}
TLCs = $TLC.(S, Ref(mn), dims)
ToeplitzHankelPlan{S,N}(map(first, TLCs), map(TLC -> TLC[2], TLCs), map(last, TLCs), dims)
end
end
end
###
# th_cheb2leg
###
_sub_dim_by_one(d) = ()
_sub_dim_by_one(d, m, n...) = (isone(d) ? m-1 : m, _sub_dim_by_one(d-1, n...)...)
function _cheb2legTH_TLC(::Type{S}, mn, d) where S
n = mn[d]
t = zeros(S,n-1)
S̃ = real(S)
if n > 1
t[1:2:end] = Λ.(0:one(S̃):div(n-2,2), -half(S̃), one(S̃))
end
h = Λ.(1:half(S̃):n-1, zero(S̃), 3half(S̃))
D = 1:n-1
DL = (3half(S̃):n-half(S̃)) ./ D
DR = -(one(S̃):n-one(S̃)) ./ (4 .* D)
C = hankel_partialchol(h, D)
T = plan_uppertoeplitz!(t, (_sub_dim_by_one(d, mn...)..., size(C,2)), d)
T, DL .* C, DR .* C
end
plan_th_cheb2leg!(::Type{S}, mn::NTuple{N,Int}, dims::Int) where {S,N} = ChebyshevToLegendrePlanTH(ToeplitzHankelPlan(_cheb2legTH_TLC(S, mn, dims)..., dims))
function plan_th_cheb2leg!(::Type{S}, mn::NTuple{N,Int}, dims) where {S,N}
TLCs = _cheb2legTH_TLC.(S, Ref(mn), dims)
ChebyshevToLegendrePlanTH(ToeplitzHankelPlan{S,N}(map(first, TLCs), map(TLC -> TLC[2], TLCs), map(last, TLCs), dims))
end
###
# th_ultra2ultra
###
# The second case handles zero
isapproxinteger(::Integer) = true
isapproxinteger(x) = isinteger(x) || x ≈ round(Int,x) || x+1 ≈ round(Int,x+1)
"""
_nearest_jacobi_par(α, γ)
returns a number that is an integer different than γ but less than 1 away from α.
"""
function _nearest_jacobi_par(α::T, γ::T) where T
ret = isapproxinteger(α-γ) ? α : round(Int,α,RoundDown) + mod(γ,1)
ret ≤ -1 ? ret + 1 : ret
end
_nearest_jacobi_par(α::T, ::T) where T<:Integer = α
_nearest_jacobi_par(α, γ) = _nearest_jacobi_par(promote(α,γ)...)
struct Ultra2UltraPlanTH{T, Plans, Dims} <: Plan{T}
plans::Plans
λ₁::T
λ₂::T
dims::Dims
end
function *(P::Ultra2UltraPlanTH, A::AbstractArray)
ret = A
if isapproxinteger(P.λ₂ - P.λ₁)
_ultra2ultra_integerinc!(ret, P.λ₁, P.λ₂, P.dims)
else
for p in P.plans
ret = p*ret
end
c = _nearest_jacobi_par(P.λ₁, P.λ₂)
_ultra2ultra_integerinc!(ret, c, P.λ₂, P.dims)
end
end
function _ultra2ultraTH_TLC(::Type{S}, mn, λ₁, λ₂, d) where {S}
n = mn[d]
@assert abs(λ₁-λ₂) < 1
S̃ = real(S)
DL = (zero(S̃):n-one(S̃)) .+ λ₂
jk = 0:half(S̃):n-1
t = zeros(S,n)
t[1:2:n] = Λ.(jk,λ₁-λ₂,one(S̃))[1:2:n]
h = Λ.(jk,λ₁,λ₂+one(S̃))
lmul!(gamma(λ₂)/gamma(λ₁),h)
C = hankel_partialchol(h)
T = plan_uppertoeplitz!(lmul!(inv(gamma(λ₁-λ₂)),t), (mn..., size(C,2)), d)
T, DL .* C, C
end
_good_plan_th_ultra2ultra!(::Type{S}, mn, λ₁, λ₂, dims::Int) where S = ToeplitzHankelPlan(_ultra2ultraTH_TLC(S, mn, λ₁, λ₂, dims)..., dims)
function _good_plan_th_ultra2ultra!(::Type{S}, mn::NTuple{2,Int}, λ₁, λ₂, dims::NTuple{2,Int}) where S
T1,L1,C1 = _ultra2ultraTH_TLC(S, mn, λ₁, λ₂, 1)
T2,L2,C2 = _ultra2ultraTH_TLC(S, mn, λ₁, λ₂, 2)
ToeplitzHankelPlan{S,2}((T1,T2), (L1,L2), (C1,C2), dims)
end
function plan_th_ultra2ultra!(::Type{S}, mn, λ₁, λ₂, dims) where {S}
c = _nearest_jacobi_par(λ₁, λ₂)
if isapproxinteger(λ₂ - λ₁)
# TODO: don't make extra plan
plans = typeof(_good_plan_th_ultra2ultra!(S, mn, λ₂+0.1, λ₂, dims))[]
else
plans = [_good_plan_th_ultra2ultra!(S, mn, λ₁, c, dims)]
end
Ultra2UltraPlanTH(plans, λ₁, λ₂, dims)
end
function _ultra_raise!(B, λ)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
for i = 1:m-2
Bij = λ / (i+λ-1) * B[i,j]
Bij += -λ / (i+λ+1) * B[i+2,j]
B[i,j] = Bij
end
B[m-1,j] = λ / (m+λ-2)*B[m-1,j]
B[m,j] = λ / (m+λ-1)*B[m,j]
end
end
B
end
function _ultra_lower!(B, λ)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
B[m,j] = (m+λ-1)/λ * B[m,j]
B[m-1,j] = (m+λ-2)/λ *B[m-1,j]
for i = m-2:-1:1
Bij = B[i,j] + λ / (i+λ+1) * B[i+2,j]
B[i,j] = (i+λ-1)/λ * Bij
end
end
end
B
end
function _ultra_raise!(x, λ, dims)
for d in dims
if d == 1
_ultra_raise!(x, λ)
else
_ultra_raise!(x', λ)
end
end
x
end
function _ultra_lower!(x, λ, dims)
for d in dims
if d == 1
_ultra_lower!(x, λ-1)
else
_ultra_lower!(x', λ-1)
end
end
x
end
function _ultra2ultra_integerinc!(x, λ₁, λ₂, dims)
while !(λ₁ ≈ λ₂)
if λ₂ > λ₁
_ultra_raise!(x, λ₁, dims)
λ₁ += 1
else
_ultra_lower!(x, λ₁, dims)
λ₁ -= 1
end
end
x
end
###
# th_jac2jac
###
function _lmul!(A::Bidiagonal, B::AbstractVecOrMat)
@assert A.uplo == 'U'
m, n = size(B, 1), size(B, 2)
if m != size(A, 1)
throw(DimensionMismatch("right hand side B needs first dimension of size $(size(A,1)), has size $m"))
end
@inbounds for j = 1:n
for i = 1:m-1
Bij = A.dv[i]*B[i,j]
Bij += A.ev[i]*B[i+1,j]
B[i,j] = Bij
end
B[m,j] = A.dv[m]*B[m,j]
end
B
end
struct Jac2JacPlanTH{T, Plans, Dims} <: Plan{T}
plans::Plans
α::T
β::T
γ::T
δ::T
dims::Dims
end
Jac2JacPlanTH(plans, α, β, γ, δ, dims) = Jac2JacPlanTH(plans, promote(α, β, γ, δ)..., dims)
function *(P::Jac2JacPlanTH, A::AbstractArray)
if P.α + P.β ≤ -1
_jacobi_raise_a!(A, P.α, P.β, P.dims)
c,d = _nearest_jacobi_par(P.α+1, P.γ), _nearest_jacobi_par(P.β, P.δ)
else
c,d = _nearest_jacobi_par(P.α, P.γ), _nearest_jacobi_par(P.β, P.δ)
end
ret = A
for p in P.plans
ret = p*ret
end
_jac2jac_integerinc!(ret, c, d, P.γ, P.δ, P.dims)
end
function alternatesign!(v)
@inbounds for k = 2:2:length(v)
v[k] = -v[k]
end
v
end
function _jac2jacTH_TLC(::Type{S}, mn, α, β, γ, δ, d) where {S}
n = mn[d]
@assert α+β > -1
if β == δ
@assert abs(α-γ) < 1
jk = 0:n-1
DL = (2jk .+ γ .+ β .+ 1).*Λ.(jk,γ+β+1,β+1)
t = convert(AbstractVector{S}, Λ.(jk, α-γ,1))
h = Λ.(0:2n-2,α+β+1,γ+β+2)
DR = Λ.(jk,β+1,α+β+1)./gamma(α-γ)
C = hankel_partialchol(h)
T = plan_uppertoeplitz!(t, (mn..., size(C,2)), d)
elseif α == γ
@assert abs(β-δ) < 1
jk = 0:n-1
DL = (2jk .+ δ .+ α .+ 1).*Λ.(jk,δ+α+1,α+1)
h = Λ.(0:2n-2,α+β+1,δ+α+2)
DR = Λ.(jk,α+1,α+β+1)./gamma(β-δ)
t = alternatesign!(convert(AbstractVector{S}, Λ.(jk,β-δ,1)))
C = hankel_partialchol(h)
T = plan_uppertoeplitz!(t, (mn..., size(C,2)), d)
else
throw(ArgumentError("Cannot create Toeplitz dot Hankel, use a sequence of plans."))
end
(T, DL .* C, DR .* C)
end
_good_plan_th_jac2jac!(::Type{S}, mn, α, β, γ, δ, dims::Int) where S = ToeplitzHankelPlan(_jac2jacTH_TLC(S, mn, α, β, γ, δ, dims)..., dims)
function _good_plan_th_jac2jac!(::Type{S}, mn::NTuple{2,Int}, α, β, γ, δ, dims::NTuple{2,Int}) where S
T1,L1,C1 = _jac2jacTH_TLC(S, mn, α, β, γ, δ, 1)
T2,L2,C2 = _jac2jacTH_TLC(S, mn, α, β, γ, δ, 2)
ToeplitzHankelPlan{S,2}((T1,T2), (L1,L2), (C1,C2), dims)
end
function plan_th_jac2jac!(::Type{S}, mn, α, β, γ, δ, dims) where {S}
if α + β ≤ -1
c,d = _nearest_jacobi_par(α+1, γ), _nearest_jacobi_par(β, δ)
else
c,d = _nearest_jacobi_par(α, γ), _nearest_jacobi_par(β, δ)
end
if isapproxinteger(β - δ) && isapproxinteger(α-γ)
# TODO: don't make extra plan
plans = typeof(_good_plan_th_jac2jac!(S, mn, α+0.1, β, α, β, dims))[]
elseif isapproxinteger(α - γ) || isapproxinteger(β - δ)
if α + β ≤ -1
# avoid degenerecies
plans = [_good_plan_th_jac2jac!(S, mn, α+1, β, c, d, dims)]
else
plans = [_good_plan_th_jac2jac!(S, mn, α, β, c, d, dims)]
end
else
if α + β ≤ -1
plans = [_good_plan_th_jac2jac!(S, mn, α+1, β, α+1, d, dims), _good_plan_th_jac2jac!(S, mn, α+1, d, c, d, dims)]
else
plans = [_good_plan_th_jac2jac!(S, mn, α, β, α, d, dims), _good_plan_th_jac2jac!(S, mn, α, d, c, d, dims)]
end
end
Jac2JacPlanTH(plans, α, β, γ, δ, dims)
end
function _jacobi_raise_a!(B, a, b)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
B[1,j] = B[1,j] - (1+b) / (a+b+3) * B[2,j]
for i = 2:m-1
B[i,j] = (i+a+b)/(a+b-1+2i) * B[i,j] - (i+b) / (a+b+2i+1) * B[i+1,j]
end
B[m,j] = (m+a+b)/(a+b-1+2m)*B[m,j]
end
end
B
end
function _jacobi_lower_a!(B, a, b)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
B[m,j] = (a+b-1+2m)/(m+a+b) * B[m,j]
for i = m-1:-1:2
Bij = B[i,j] + (i+b) / (a+b+2i+1) * B[i+1,j]
B[i,j] = (a+b-1+2i)/(i+a+b) * Bij
end
B[1,j] = B[1,j] + (1+b) / (a+b+3) * B[2,j]
end
end
B
end
function _jacobi_raise_b!(B, a, b)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
B[1,j] = B[1,j] + (1+a) / (a+b+3) * B[2,j]
for i = 2:m-1
B[i,j] = (i+a+b)/(a+b-1+2i) * B[i,j] + (i+a) / (a+b+2i+1) * B[i+1,j]
end
B[m,j] = (m+a+b)/(a+b-1+2m)*B[m,j]
end
end
B
end
function _jacobi_lower_b!(B, a, b)
m, n = size(B, 1), size(B, 2)
if m > 1
@inbounds for j = 1:n
B[m,j] = (a+b-1+2m)/(m+a+b) * B[m,j]
for i = m-1:-1:2
Bij = B[i,j] - (i+a) / (a+b+2i+1) * B[i+1,j]
B[i,j] = (a+b-1+2i)/(i+a+b) * Bij
end
B[1,j] = B[1,j] - (1+a) / (a+b+3) * B[2,j]
end
end
B
end
function _jacobi_raise_b!(x, α, β, dims)
for d in dims
if d == 1
_jacobi_raise_b!(x, α, β)
else
_jacobi_raise_b!(x', α, β)
end
end
x
end
function _jacobi_raise_a!(x, α, β, dims)
for d in dims
if d == 1
_jacobi_raise_a!(x, α, β)
else
_jacobi_raise_a!(x', α, β)
end
end
x
end
function _jacobi_lower_b!(x, α, β, dims)
for d in dims
if d == 1
_jacobi_lower_b!(x, α, β-1)
else
_jacobi_lower_b!(x', α, β-1)
end
end
x
end
function _jacobi_lower_a!(x, α, β, dims)
for d in dims
if d == 1
_jacobi_lower_a!(x, α-1, β)
else
_jacobi_lower_a!(x', α-1, β)
end
end
x
end
function _jac2jac_integerinc!(x, α, β, γ, δ, dims)
while !(α ≈ γ && β ≈ δ)
if !(δ ≈ β) && δ > β
_jacobi_raise_b!(x, α, β, dims)
β += 1
elseif !(δ ≈ β) && δ < β
_jacobi_lower_b!(x, α, β, dims)
β -= 1
elseif !(γ ≈ α) && γ > α
_jacobi_raise_a!(x, α, β, dims)
α += 1
else
@assert γ < α
_jacobi_lower_a!(x, α, β, dims)
α -= 1
end
end
x
end
###
# other routines
###
for f in (:th_leg2cheb, :th_cheb2leg, :th_leg2chebu)
plan = Symbol("plan_", f, "!")
@eval begin
$plan(arr::AbstractArray{T}, dims...) where T = $plan(T, size(arr), dims...)
$plan(::Type{S}, mn::NTuple{N,Int}) where {S,N} = $plan(S, mn, ntuple(identity,Val(N)))
$f(v, dims...) = $plan(eltype(v), size(v), dims...)*copy(v)
end
end
plan_th_ultra2ultra!(::Type{S}, mn::NTuple{N,Int}, λ₁, λ₂, dims::UnitRange) where {N,S} = plan_th_ultra2ultra!(S, mn, λ₁, λ₂, tuple(dims...))
plan_th_ultra2ultra!(::Type{S}, mn::Tuple{Int}, λ₁, λ₂, dims::Tuple{Int}=(1,)) where {S} = plan_th_ultra2ultra!(S, mn, λ₁, λ₂, dims...)
plan_th_ultra2ultra!(::Type{S}, (m,n)::NTuple{2,Int}, λ₁, λ₂) where {S} = plan_th_ultra2ultra!(S, (m,n), λ₁, λ₂, (1,2))
plan_th_ultra2ultra!(arr::AbstractArray{T}, λ₁, λ₂, dims...) where T = plan_th_ultra2ultra!(T, size(arr), λ₁, λ₂, dims...)
th_ultra2ultra(v, λ₁, λ₂, dims...) = plan_th_ultra2ultra!(eltype(v), size(v), λ₁, λ₂, dims...)*copy(v)
plan_th_jac2jac!(::Type{S}, mn::NTuple{N,Int}, α, β, γ, δ, dims::UnitRange) where {N,S} = plan_th_jac2jac!(S, mn, α, β, γ, δ, tuple(dims...))
plan_th_jac2jac!(::Type{S}, mn::Tuple{Int}, α, β, γ, δ, dims::Tuple{Int}=(1,)) where {S} = plan_th_jac2jac!(S, mn, α, β, γ, δ, dims...)
plan_th_jac2jac!(::Type{S}, (m,n)::NTuple{2,Int}, α, β, γ, δ) where {S} = plan_th_jac2jac!(S, (m,n), α, β, γ, δ, (1,2))
plan_th_jac2jac!(arr::AbstractArray{T}, α, β, γ, δ, dims...) where T = plan_th_jac2jac!(T, size(arr), α, β, γ, δ, dims...)
th_jac2jac(v, α, β, γ, δ, dims...) = plan_th_jac2jac!(eltype(v), size(v), α, β, γ, δ, dims...)*copy(v)
####
# cheb2jac
####
struct Cheb2JacPlanTH{T, Pl<:Jac2JacPlanTH{T}} <: Plan{T}
jac2jac::Pl
end
struct Jac2ChebPlanTH{T, Pl<:Jac2JacPlanTH{T}} <: Plan{T}
jac2jac::Pl
end
function jac_cheb_recurrencecoefficients(T, N)
n = 0:N
h = one(T)/2
A = (2n .+ one(T)) ./ (n .+ one(T))
A[1] /= 2
A, Zeros(n),
((n .- h) .* (n .- h) .* (2n .+ one(T))) ./ ((n .+ one(T)) .* n .* (2n .- one(T)))
end
function *(P::Cheb2JacPlanTH{T}, X::AbstractArray) where T
A,B,C = jac_cheb_recurrencecoefficients(T, max(size(X)...))
for d in P.jac2jac.dims
if d == 1
p = forwardrecurrence(size(X,1), A,B,C, one(T))
X .= p .\ X
else
@assert d == 2
n = size(X,2)
p = forwardrecurrence(size(X,2), A,B,C, one(T))
X .= X ./ transpose(p)
end
end
P.jac2jac*X
end
function *(P::Jac2ChebPlanTH{T}, X::AbstractArray) where T
X = P.jac2jac*X
A,B,C = jac_cheb_recurrencecoefficients(T, max(size(X)...))
for d in P.jac2jac.dims
if d == 1
p = forwardrecurrence(size(X,1), A,B,C, one(T))
X .= p .* X
else
@assert d == 2
n = size(X,2)
p = forwardrecurrence(size(X,2), A,B,C, one(T))
X .= X .* transpose(p)
end
end
X
end
plan_th_cheb2jac!(::Type{T}, mn, α, β, dims...) where T = Cheb2JacPlanTH(plan_th_jac2jac!(T, mn, -one(α)/2, -one(α)/2, α, β, dims...))
plan_th_cheb2jac!(arr::AbstractArray{T}, α, β, dims...) where T = plan_th_cheb2jac!(T, size(arr), α, β, dims...)
th_cheb2jac(v, α, β, dims...) = plan_th_cheb2jac!(eltype(v), size(v), α, β, dims...)*copy(v)
plan_th_jac2cheb!(::Type{T}, mn, α, β, dims...) where T = Jac2ChebPlanTH(plan_th_jac2jac!(T, mn, α, β, -one(α)/2, -one(α)/2, dims...))
plan_th_jac2cheb!(arr::AbstractArray{T}, α, β, dims...) where T = plan_th_jac2cheb!(T, size(arr), α, β, dims...)
th_jac2cheb(v, α, β, dims...) = plan_th_jac2cheb!(eltype(v), size(v), α, β, dims...)*copy(v)
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 3096 | using FFTW
import FFTW: plan_r2r!
"""
ToeplitzPlan
applies Toeplitz matrices fast along each dimension.
"""
struct ToeplitzPlan{T, N, Dims, S, VECS, P<:Plan{S}, Pi<:Plan{S}} <: Plan{T}
vectors::VECS # Vector or Tuple of storage
tmp::Array{S,N}
dft::P
idft::Pi
dims::Dims
end
ToeplitzPlan{T}(v, tmp::Array{S,N}, dft::Plan{S}, idft::Plan{S}, dims) where {T,S,N} = ToeplitzPlan{T,N,typeof(dims),S,typeof(v),typeof(dft), typeof(idft)}(v, tmp, dft, idft, dims)
divdimby2(d::Int, sz1, szs...) = isone(d) ? ((sz1 + 1) ÷ 2, szs...) : (sz1, divdimby2(d-1, szs...)...)
muldimby2(d::Int, sz1, szs...) = isone(d) ? (max(0,2sz1 - 1), szs...) : (sz1, muldimby2(d-1, szs...)...)
function toeplitzplan_size(dims, szs)
ret = szs
for d in dims
ret = divdimby2(d, ret...)
end
ret
end
function to_toeplitzplan_size(dims, szs)
ret = szs
for d in dims
ret = muldimby2(d, ret...)
end
ret
end
size(A::ToeplitzPlan) = toeplitzplan_size(A.dims, size(A.tmp))
# based on ToeplitzMatrices.jl
"""
maybereal(::Type{T}, x)
Return real-valued part of `x` if `T` is a type of a real number, and `x` otherwise.
"""
maybereal(::Type, x) = x
maybereal(::Type{<:Real}, x) = real(x)
function *(A::ToeplitzPlan{T,N}, X::AbstractArray{T,N}) where {T,N}
vcs,Y,dft,idft,dims = A.vectors,A.tmp, A.dft,A.idft,A.dims
isempty(X) && return X
fill!(Y, zero(eltype(Y)))
copyto!(view(Y, axes(X)...), X)
# Fourier transform each dimension
dft * Y
# Multiply by a diagonal matrix along each dimension by permuting
# to first dimension
for (vc,d) in zip(vcs,dims)
applydim!(v -> v .= vc .* v, Y, d, :)
end
# Transform back
idft * Y
X .= maybereal.(T, view(Y, axes(X)...))
X
end
function uppertoeplitz_padvec(v::AbstractVector{T}) where T
n = length(v)
S = complex(float(T))
tmp = zeros(S, max(0,2n-1))
if n ≠ 0
tmp[1] = v[1]
copyto!(tmp, n+1, Iterators.reverse(v), 1, n-1)
end
tmp
end
safe_fft!(A) = isempty(A) ? A : fft!(A)
uppertoeplitz_vecs(v, dims::AbstractVector, szs) = [safe_fft!(uppertoeplitz_padvec(v[1:szs[d]])) for d in dims]
uppertoeplitz_vecs(v, dims::Tuple{}, szs) = ()
uppertoeplitz_vecs(v, dims::Tuple, szs) = (safe_fft!(uppertoeplitz_padvec(v[1:szs[first(dims)]])), uppertoeplitz_vecs(v, tail(dims), szs)...)
uppertoeplitz_vecs(v, d::Int, szs) = (safe_fft!(uppertoeplitz_padvec(v[1:szs[d]])),)
# allow FFT to work by making sure tmp is non-empty
safe_tmp(tmp::AbstractArray{<:Any,N}) where N = isempty(tmp) ? similar(tmp, ntuple(_ -> 1, Val(N))...) : tmp
function plan_uppertoeplitz!(v::AbstractVector{T}, szs::NTuple{N,Int}, dim=ntuple(identity,Val(N))) where {T,N}
S = complex(float(T))
tmp = zeros(S, to_toeplitzplan_size(dim, szs)...)
dft = plan_fft!(safe_tmp(tmp), dim)
idft = plan_ifft!(safe_tmp(similar(tmp)), dim)
return ToeplitzPlan{float(T)}(uppertoeplitz_vecs(v, dim, szs), tmp, dft, idft, dim)
end
plan_uppertoeplitz!(v::AbstractVector{T}) where T = plan_uppertoeplitz!(v, size(v))
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1687 | using FastTransforms, Test
import FastTransforms: ArrayPlan, NDimsPlan
@testset "Array transform" begin
@testset "ArrayPlan" begin
c = randn(5,20,10)
F = plan_cheb2leg(c)
FT = ArrayPlan(F, c)
@test size(FT) == size(c)
f = similar(c);
for k in axes(c,3)
f[:,:,k] = (F*c[:,:,k])
end
@test f ≈ FT*c
@test c ≈ FT\f
F = plan_cheb2leg(Vector{Float64}(axes(c,2)))
FT = ArrayPlan(F, c, (2,))
for k in axes(c,3)
f[:,:,k] = (F*c[:,:,k]')'
end
@test f ≈ FT*c
@test c ≈ FT\f
end
@testset "NDimsPlan" begin
c = randn(20,10,20)
@test_throws ErrorException("Different size in dims axes not yet implemented in N-dimensional transform.") NDimsPlan(ArrayPlan(plan_cheb2leg(c), c), size(c), (1,2))
c = randn(5,20)
F = plan_cheb2leg(c)
FT = ArrayPlan(F, c)
P = NDimsPlan(F, size(c), (1,))
@test F*c ≈ FT*c ≈ P*c
c = randn(20,20,5);
F = plan_cheb2leg(c)
FT = ArrayPlan(F, c)
P = NDimsPlan(FT, size(c), (1,2))
@test size(P) == size(c)
f = similar(c);
for k in axes(f,3)
f[:,:,k] = (F*(F*c[:,:,k])')'
end
@test f ≈ P*c
@test c ≈ P\f
c = randn(5,10,10,60)
F = plan_cheb2leg(randn(10))
P = NDimsPlan(F, size(c), (2,3))
f = similar(c)
for i in axes(f,1), j in axes(f,4)
f[i,:,:,j] = (F*(F*c[i,:,:,j])')'
end
@test f ≈ P*c
@test c ≈ P\f
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 26142 | using FastTransforms, Test
@testset "Chebyshev transform" begin
@testset "Chebyshev points" begin
@test @inferred(chebyshevpoints(10)) == @inferred(chebyshevpoints(Float64, 10))
@test @inferred(chebyshevpoints(10, Val(2))) == @inferred(chebyshevpoints(Float64, 10, Val(2)))
for T in (Float32, Float64, ComplexF32, ComplexF64)
@test chebyshevpoints(T, 0) == T[]
@test chebyshevpoints(T, 1) == T[0]
n = 20
@test @inferred(chebyshevpoints(T, n)) == [sinpi(convert(T,n-2k+1)/(2n)) for k=1:n]
@test @inferred(chebyshevpoints(T, n, Val(2))) == [sinpi(convert(T,n-2k+1)/(2n-2)) for k=1:n]
@test_throws MethodError chebyshevpoints(n, Val(-1))
@test_throws ArgumentError chebyshevpoints(T, 0, Val(2))
@test_throws ArgumentError chebyshevpoints(T, 1, Val(2))
end
end
@testset "Chebyshev first kind points <-> first kind coefficients" begin
for T in (Float32, Float64, ComplexF32, ComplexF64)
n = 20
p_1 = chebyshevpoints(T, n)
f = exp.(p_1)
g = @inferred(chebyshevtransform(f))
@test g == chebyshevtransform!(copy(f))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * g
@test f̃(0.1) ≈ exp(T(0.1))
@test @inferred(ichebyshevtransform(g)) ≈ ichebyshevtransform!(copy(g)) ≈ exp.(p_1)
fcopy = copy(f)
gcopy = copy(g)
P = @inferred(plan_chebyshevtransform(f))
@test @inferred(P*f) == g
@test f == fcopy
@test_throws ArgumentError P * T[1,2]
P2 = @inferred(plan_chebyshevtransform(f, Val(1), 1:1))
@test @inferred(P2*f) == g
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevtransform!(f))
@test @inferred(P*f) == g
@test f == g
@test_throws ArgumentError P * T[1,2]
f .= fcopy
P2 = @inferred(plan_chebyshevtransform!(f, 1:1))
@test @inferred(P2*f) == g
@test f == g
@test_throws ArgumentError P * T[1,2]
Pi = @inferred(plan_ichebyshevtransform(g))
@test @inferred(Pi*g) ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi2 = @inferred(plan_ichebyshevtransform(g, 1:1))
@test @inferred(Pi2*g) ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevtransform!(g))
@test @inferred(Pi*g) ≈ fcopy
@test g ≈ fcopy
g .= gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi2 = @inferred(plan_ichebyshevtransform!(g, 1:1))
@test @inferred(Pi2*g) ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
v = T[1]
@test chebyshevtransform(v) == v
@test ichebyshevtransform(v) == v
@test chebyshevtransform!(v) === v
@test ichebyshevtransform!(v) === v
v = T[]
@test chebyshevtransform(v) == v
@test ichebyshevtransform(v) == v
@test chebyshevtransform!(v) === v
@test ichebyshevtransform!(v) === v
end
end
@testset "Chebyshev second kind points <-> first kind coefficients" begin
for T in (Float32, Float64, ComplexF32, ComplexF64)
n = 20
p_2 = chebyshevpoints(T, n, Val(2))
f = exp.(p_2)
g = @inferred(chebyshevtransform(f, Val(2)))
@test g == chebyshevtransform!(copy(f), Val(2))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * g
@test f̃(0.1) ≈ exp(T(0.1))
@test @inferred(ichebyshevtransform(g, Val(2))) ≈ ichebyshevtransform!(copy(g), Val(2)) ≈ exp.(p_2)
P = @inferred(plan_chebyshevtransform!(f, Val(2)))
Pi = @inferred(plan_ichebyshevtransform!(f, Val(2)))
@test all(@inferred(P \ copy(f)) .=== Pi * copy(f))
@test all(@inferred(Pi \ copy(g)) .=== P * copy(g))
@test f ≈ P \ (P*copy(f)) ≈ P * (P\copy(f)) ≈ Pi \ (Pi*copy(f)) ≈ Pi * (Pi \ copy(f))
fcopy = copy(f)
gcopy = copy(g)
P = @inferred(plan_chebyshevtransform(f, Val(2)))
@test P*f == g
@test f == fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevtransform(f, Val(2), 1:1))
@test P*f == g
@test f == fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevtransform!(f, Val(2)))
@test P*f == g
@test f == g
@test_throws ArgumentError P * T[1,2]
f .= fcopy
P = @inferred(plan_chebyshevtransform!(f, Val(2), 1:1))
@test P*f == g
@test f == g
@test_throws ArgumentError P * T[1,2]
Pi = @inferred(plan_ichebyshevtransform(g, Val(2)))
@test Pi*g ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevtransform(g, Val(2), 1:1))
@test Pi*g ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevtransform!(g, Val(2)))
@test Pi*g ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
g .= gcopy
Pi = @inferred(plan_ichebyshevtransform!(g, Val(2), 1:1))
@test Pi*g ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
@test_throws ArgumentError chebyshevtransform(T[1], Val(2))
@test_throws ArgumentError ichebyshevtransform(T[1], Val(2))
@test_throws ArgumentError chebyshevtransform(T[], Val(2))
@test_throws ArgumentError ichebyshevtransform(T[], Val(2))
end
end
@testset "Chebyshev first kind points <-> second kind coefficients" begin
for T in (Float32, Float64, ComplexF32, ComplexF64)
n = 20
p_1 = chebyshevpoints(T, n)
f = exp.(p_1)
g = @inferred(chebyshevutransform(f))
@test f ≈ exp.(p_1)
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-1]' * g
@test f̃(0.1) ≈ exp(T(0.1))
@test ichebyshevutransform(g) ≈ exp.(p_1)
fcopy = copy(f)
gcopy = copy(g)
P = @inferred(plan_chebyshevutransform(f))
@test P*f ≈ g
@test f ≈ fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevutransform(f, 1:1))
@test P*f ≈ g
@test f ≈ fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevutransform!(f))
@test P*f ≈ g
@test f ≈ g
@test_throws ArgumentError P * T[1,2]
f .= fcopy
P = @inferred(plan_chebyshevutransform!(f))
@test P*f ≈ g
@test f ≈ g
@test_throws ArgumentError P * T[1,2]
Pi = @inferred(plan_ichebyshevutransform(g))
@test Pi*g ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevutransform(g, 1:1))
@test Pi*g ≈ fcopy
@test g == gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevutransform!(g))
@test Pi*g ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
g .= gcopy
Pi = @inferred(plan_ichebyshevutransform!(g))
@test Pi*g ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
v = T[1]
@test chebyshevutransform(v) == v
@test ichebyshevutransform(v) == v
@test chebyshevutransform!(v) === v
@test ichebyshevutransform!(v) === v
v = T[]
@test chebyshevutransform(v) == v
@test ichebyshevutransform(v) == v
@test chebyshevutransform!(v) === v
@test ichebyshevutransform!(v) === v
end
end
@testset "Chebyshev second kind points <-> second kind coefficients" begin
for T in (Float32, Float64, ComplexF32, ComplexF64)
n = 20
p_2 = chebyshevpoints(T, n, Val(2))[2:end-1]
f = exp.(p_2)
g = @inferred(chebyshevutransform(f, Val(2)))
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-3]' * g
@test f̃(0.1) ≈ exp(T(0.1))
@test @inferred(ichebyshevutransform(g, Val(2))) ≈ f ≈ exp.(p_2)
fcopy = copy(f)
gcopy = copy(g)
P = @inferred(plan_chebyshevutransform(f, Val(2)))
@test @inferred(P*f) ≈ g
@test f ≈ fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevutransform(f, Val(2), 1:1))
@test @inferred(P*f) ≈ g
@test f ≈ fcopy
@test_throws ArgumentError P * T[1,2]
P = @inferred(plan_chebyshevutransform!(f, Val(2)))
@test @inferred(P*f) ≈ g
@test f ≈ g
@test_throws ArgumentError P * T[1,2]
f .= fcopy
P = @inferred(plan_chebyshevutransform!(f, Val(2), 1:1))
@test @inferred(P*f) ≈ g
@test f ≈ g
@test_throws ArgumentError P * T[1,2]
Pi = @inferred(plan_ichebyshevutransform(g, Val(2)))
@test @inferred(Pi*g) ≈ fcopy
@test g ≈ gcopy
@test_throws ArgumentError Pi * T[1,2]
Pi = @inferred(plan_ichebyshevutransform!(g, Val(2)))
@test @inferred(Pi*g) ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
g .= gcopy
Pi = @inferred(plan_ichebyshevutransform!(g, Val(2)))
@test @inferred(Pi*g) ≈ fcopy
@test g ≈ fcopy
@test_throws ArgumentError Pi * T[1,2]
@test_throws ArgumentError chebyshevutransform(T[1], Val(2))
@test_throws ArgumentError ichebyshevutransform(T[1], Val(2))
@test_throws ArgumentError chebyshevutransform(T[], Val(2))
@test_throws ArgumentError ichebyshevutransform(T[], Val(2))
end
end
@testset "matrix" begin
X = randn(4,5)
@testset "chebyshevtransform" begin
@test @inferred(chebyshevtransform(X,1)) ≈ @inferred(chebyshevtransform!(copy(X),1)) ≈ hcat(chebyshevtransform.([X[:,k] for k=axes(X,2)])...)
@test chebyshevtransform(X,2) ≈ chebyshevtransform!(copy(X),2) ≈ hcat(chebyshevtransform.([X[k,:] for k=axes(X,1)])...)'
@test @inferred(chebyshevtransform(X,Val(2),1)) ≈ @inferred(chebyshevtransform!(copy(X),Val(2),1)) ≈ hcat(chebyshevtransform.([X[:,k] for k=axes(X,2)],Val(2))...)
@test chebyshevtransform(X,Val(2),2) ≈ chebyshevtransform!(copy(X),Val(2),2) ≈ hcat(chebyshevtransform.([X[k,:] for k=axes(X,1)],Val(2))...)'
@test @inferred(chebyshevtransform(X)) ≈ @inferred(chebyshevtransform!(copy(X))) ≈ chebyshevtransform(chebyshevtransform(X,1),2)
@test @inferred(chebyshevtransform(X,Val(2))) ≈ @inferred(chebyshevtransform!(copy(X),Val(2))) ≈ chebyshevtransform(chebyshevtransform(X,Val(2),1),Val(2),2)
end
@testset "ichebyshevtransform" begin
@test @inferred(ichebyshevtransform(X,1)) ≈ @inferred(ichebyshevtransform!(copy(X),1)) ≈ hcat(ichebyshevtransform.([X[:,k] for k=axes(X,2)])...)
@test ichebyshevtransform(X,2) ≈ ichebyshevtransform!(copy(X),2) ≈ hcat(ichebyshevtransform.([X[k,:] for k=axes(X,1)])...)'
@test @inferred(ichebyshevtransform(X,Val(2),1)) ≈ @inferred(ichebyshevtransform!(copy(X),Val(2),1)) ≈ hcat(ichebyshevtransform.([X[:,k] for k=axes(X,2)],Val(2))...)
@test ichebyshevtransform(X,Val(2),2) ≈ ichebyshevtransform!(copy(X),Val(2),2) ≈ hcat(ichebyshevtransform.([X[k,:] for k=axes(X,1)],Val(2))...)'
@test @inferred(ichebyshevtransform(X)) ≈ @inferred(ichebyshevtransform!(copy(X))) ≈ ichebyshevtransform(ichebyshevtransform(X,1),2)
@test @inferred(ichebyshevtransform(X,Val(2))) ≈ @inferred(ichebyshevtransform!(copy(X),Val(2))) ≈ ichebyshevtransform(ichebyshevtransform(X,Val(2),1),Val(2),2)
@test ichebyshevtransform(chebyshevtransform(X)) ≈ X
@test chebyshevtransform(ichebyshevtransform(X)) ≈ X
end
@testset "chebyshevutransform" begin
@test @inferred(chebyshevutransform(X,1)) ≈ @inferred(chebyshevutransform!(copy(X),1)) ≈ hcat(chebyshevutransform.([X[:,k] for k=axes(X,2)])...)
@test chebyshevutransform(X,2) ≈ chebyshevutransform!(copy(X),2) ≈ hcat(chebyshevutransform.([X[k,:] for k=axes(X,1)])...)'
@test @inferred(chebyshevutransform(X,Val(2),1)) ≈ @inferred(chebyshevutransform!(copy(X),Val(2),1)) ≈ hcat(chebyshevutransform.([X[:,k] for k=axes(X,2)],Val(2))...)
@test chebyshevutransform(X,Val(2),2) ≈ chebyshevutransform!(copy(X),Val(2),2) ≈ hcat(chebyshevutransform.([X[k,:] for k=axes(X,1)],Val(2))...)'
@test @inferred(chebyshevutransform(X)) ≈ @inferred(chebyshevutransform!(copy(X))) ≈ chebyshevutransform(chebyshevutransform(X,1),2)
@test @inferred(chebyshevutransform(X,Val(2))) ≈ @inferred(chebyshevutransform!(copy(X),Val(2))) ≈ chebyshevutransform(chebyshevutransform(X,Val(2),1),Val(2),2)
end
@testset "ichebyshevutransform" begin
@test @inferred(ichebyshevutransform(X,1)) ≈ @inferred(ichebyshevutransform!(copy(X),1)) ≈ hcat(ichebyshevutransform.([X[:,k] for k=axes(X,2)])...)
@test ichebyshevutransform(X,2) ≈ ichebyshevutransform!(copy(X),2) ≈ hcat(ichebyshevutransform.([X[k,:] for k=axes(X,1)])...)'
@test @inferred(ichebyshevutransform(X,Val(2),1)) ≈ @inferred(ichebyshevutransform!(copy(X),Val(2),1)) ≈ hcat(ichebyshevutransform.([X[:,k] for k=axes(X,2)],Val(2))...)
@test ichebyshevutransform(X,Val(2),2) ≈ ichebyshevutransform!(copy(X),Val(2),2) ≈ hcat(ichebyshevutransform.([X[k,:] for k=axes(X,1)],Val(2))...)'
@test @inferred(ichebyshevutransform(X)) ≈ @inferred(ichebyshevutransform!(copy(X))) ≈ ichebyshevutransform(ichebyshevutransform(X,1),2)
@test @inferred(ichebyshevutransform(X,Val(2))) ≈ @inferred(ichebyshevutransform!(copy(X),Val(2))) ≈ ichebyshevutransform(ichebyshevutransform(X,Val(2),1),Val(2),2)
@test ichebyshevutransform(chebyshevutransform(X)) ≈ X
@test chebyshevutransform(ichebyshevutransform(X)) ≈ X
end
X = randn(1,1)
@test chebyshevtransform!(copy(X), Val(1)) == ichebyshevtransform!(copy(X), Val(1)) == X
@test_throws ArgumentError chebyshevtransform!(copy(X), Val(2))
@test_throws ArgumentError ichebyshevtransform!(copy(X), Val(2))
end
@testset "tensor" begin
@testset "3D" begin
X = randn(4,5,6)
X̃ = similar(X)
@testset "chebyshevtransform" begin
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = chebyshevtransform(X[:,k,j]) end
@test @inferred(chebyshevtransform(X,1)) ≈ @inferred(chebyshevtransform!(copy(X),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = chebyshevtransform(X[k,:,j]) end
@test chebyshevtransform(X,2) ≈ chebyshevtransform!(copy(X),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = chebyshevtransform(X[k,j,:]) end
@test chebyshevtransform(X,3) ≈ chebyshevtransform!(copy(X),3) ≈ X̃
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = chebyshevtransform(X[:,k,j],Val(2)) end
@test @inferred(chebyshevtransform(X,Val(2),1)) ≈ @inferred(chebyshevtransform!(copy(X),Val(2),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = chebyshevtransform(X[k,:,j],Val(2)) end
@test chebyshevtransform(X,Val(2),2) ≈ chebyshevtransform!(copy(X),Val(2),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = chebyshevtransform(X[k,j,:],Val(2)) end
@test chebyshevtransform(X,Val(2),3) ≈ chebyshevtransform!(copy(X),Val(2),3) ≈ X̃
@test @inferred(chebyshevtransform(X)) ≈ @inferred(chebyshevtransform!(copy(X))) ≈ chebyshevtransform(chebyshevtransform(chebyshevtransform(X,1),2),3)
@test @inferred(chebyshevtransform(X,Val(2))) ≈ @inferred(chebyshevtransform!(copy(X),Val(2))) ≈ chebyshevtransform(chebyshevtransform(chebyshevtransform(X,Val(2),1),Val(2),2),Val(2),3)
end
@testset "ichebyshevtransform" begin
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = ichebyshevtransform(X[:,k,j]) end
@test @inferred(ichebyshevtransform(X,1)) ≈ @inferred(ichebyshevtransform!(copy(X),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = ichebyshevtransform(X[k,:,j]) end
@test ichebyshevtransform(X,2) ≈ ichebyshevtransform!(copy(X),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = ichebyshevtransform(X[k,j,:]) end
@test ichebyshevtransform(X,3) ≈ ichebyshevtransform!(copy(X),3) ≈ X̃
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = ichebyshevtransform(X[:,k,j],Val(2)) end
@test @inferred(ichebyshevtransform(X,Val(2),1)) ≈ @inferred(ichebyshevtransform!(copy(X),Val(2),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = ichebyshevtransform(X[k,:,j],Val(2)) end
@test ichebyshevtransform(X,Val(2),2) ≈ ichebyshevtransform!(copy(X),Val(2),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = ichebyshevtransform(X[k,j,:],Val(2)) end
@test ichebyshevtransform(X,Val(2),3) ≈ ichebyshevtransform!(copy(X),Val(2),3) ≈ X̃
@test @inferred(ichebyshevtransform(X)) ≈ @inferred(ichebyshevtransform!(copy(X))) ≈ ichebyshevtransform(ichebyshevtransform(ichebyshevtransform(X,1),2),3)
@test @inferred(ichebyshevtransform(X,Val(2))) ≈ @inferred(ichebyshevtransform!(copy(X),Val(2))) ≈ ichebyshevtransform(ichebyshevtransform(ichebyshevtransform(X,Val(2),1),Val(2),2),Val(2),3)
@test ichebyshevtransform(chebyshevtransform(X)) ≈ X
@test chebyshevtransform(ichebyshevtransform(X)) ≈ X
end
@testset "chebyshevutransform" begin
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = chebyshevutransform(X[:,k,j]) end
@test @inferred(chebyshevutransform(X,1)) ≈ @inferred(chebyshevutransform!(copy(X),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = chebyshevutransform(X[k,:,j]) end
@test chebyshevutransform(X,2) ≈ chebyshevutransform!(copy(X),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = chebyshevutransform(X[k,j,:]) end
@test chebyshevutransform(X,3) ≈ chebyshevutransform!(copy(X),3) ≈ X̃
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = chebyshevutransform(X[:,k,j],Val(2)) end
@test @inferred(chebyshevutransform(X,Val(2),1)) ≈ @inferred(chebyshevutransform!(copy(X),Val(2),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = chebyshevutransform(X[k,:,j],Val(2)) end
@test chebyshevutransform(X,Val(2),2) ≈ chebyshevutransform!(copy(X),Val(2),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = chebyshevutransform(X[k,j,:],Val(2)) end
@test chebyshevutransform(X,Val(2),3) ≈ chebyshevutransform!(copy(X),Val(2),3) ≈ X̃
@test @inferred(chebyshevutransform(X)) ≈ @inferred(chebyshevutransform!(copy(X))) ≈ chebyshevutransform(chebyshevutransform(chebyshevutransform(X,1),2),3)
@test @inferred(chebyshevutransform(X,Val(2))) ≈ @inferred(chebyshevutransform!(copy(X),Val(2))) ≈ chebyshevutransform(chebyshevutransform(chebyshevutransform(X,Val(2),1),Val(2),2),Val(2),3)
end
@testset "ichebyshevutransform" begin
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = ichebyshevutransform(X[:,k,j]) end
@test @inferred(ichebyshevutransform(X,1)) ≈ @inferred(ichebyshevutransform!(copy(X),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = ichebyshevutransform(X[k,:,j]) end
@test ichebyshevutransform(X,2) ≈ ichebyshevutransform!(copy(X),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = ichebyshevutransform(X[k,j,:]) end
@test ichebyshevutransform(X,3) ≈ ichebyshevutransform!(copy(X),3) ≈ X̃
for k = axes(X,2), j = axes(X,3) X̃[:,k,j] = ichebyshevutransform(X[:,k,j],Val(2)) end
@test @inferred(ichebyshevutransform(X,Val(2),1)) ≈ @inferred(ichebyshevutransform!(copy(X),Val(2),1)) ≈ X̃
for k = axes(X,1), j = axes(X,3) X̃[k,:,j] = ichebyshevutransform(X[k,:,j],Val(2)) end
@test ichebyshevutransform(X,Val(2),2) ≈ ichebyshevutransform!(copy(X),Val(2),2) ≈ X̃
for k = axes(X,1), j = axes(X,2) X̃[k,j,:] = ichebyshevutransform(X[k,j,:],Val(2)) end
@test ichebyshevutransform(X,Val(2),3) ≈ ichebyshevutransform!(copy(X),Val(2),3) ≈ X̃
@test @inferred(ichebyshevutransform(X)) ≈ @inferred(ichebyshevutransform!(copy(X))) ≈ ichebyshevutransform(ichebyshevutransform(ichebyshevutransform(X,1),2),3)
@test @inferred(ichebyshevutransform(X,Val(2))) ≈ @inferred(ichebyshevutransform!(copy(X),Val(2))) ≈ ichebyshevutransform(ichebyshevutransform(ichebyshevutransform(X,Val(2),1),Val(2),2),Val(2),3)
@test ichebyshevutransform(chebyshevutransform(X)) ≈ X
@test chebyshevutransform(ichebyshevutransform(X)) ≈ X
end
X = randn(1,1,1)
@test chebyshevtransform!(copy(X), Val(1)) == ichebyshevtransform!(copy(X), Val(1)) == X
@test_throws ArgumentError chebyshevtransform!(copy(X), Val(2))
@test_throws ArgumentError ichebyshevtransform!(copy(X), Val(2))
end
@testset "4D" begin
X = randn(2,3,4,5)
X̃ = similar(X)
for trans in (chebyshevtransform, ichebyshevtransform, chebyshevutransform, ichebyshevutransform)
for k = axes(X,2), j = axes(X,3), l = axes(X,4) X̃[:,k,j,l] = trans(X[:,k,j,l]) end
@test @inferred(trans(X,1)) ≈ X̃
@test @inferred(trans(X)) ≈ trans(trans(trans(trans(X,1),2),3),4)
end
end
end
@testset "Integer" begin
@test chebyshevtransform([1,2,3]) == chebyshevtransform([1.,2,3])
@test chebyshevtransform([1,2,3], Val(2)) == chebyshevtransform([1.,2,3], Val(2))
@test ichebyshevtransform([1,2,3]) == ichebyshevtransform([1.,2,3])
@test ichebyshevtransform([1,2,3], Val(2)) == ichebyshevtransform([1.,2,3], Val(2))
@test chebyshevutransform([1,2,3]) == chebyshevutransform([1.,2,3])
@test chebyshevutransform([1,2,3], Val(2)) == chebyshevutransform([1.,2,3], Val(2))
@test ichebyshevutransform([1,2,3]) == ichebyshevutransform([1.,2,3])
@test ichebyshevutransform([1,2,3], Val(2)) == ichebyshevutransform([1.,2,3], Val(2))
end
@testset "BigFloat" begin
x = BigFloat[1,2,3]
@test ichebyshevtransform(chebyshevtransform(x)) ≈ x
@test plan_chebyshevtransform(x)x ≈ chebyshevtransform(x)
@test plan_ichebyshevtransform(x)x ≈ ichebyshevtransform(x)
@test plan_chebyshevtransform!(x)copy(x) ≈ chebyshevtransform(x)
@test plan_ichebyshevtransform!(x)copy(x) ≈ ichebyshevtransform(x)
end
@testset "BigInt" begin
x = big(10)^400 .+ BigInt[1,2,3]
@test ichebyshevtransform(chebyshevtransform(x)) ≈ x
end
@testset "immutable vectors" begin
F = plan_chebyshevtransform([1.,2,3])
@test chebyshevtransform(1.0:3) == F * (1:3)
@test ichebyshevtransform(1.0:3) == ichebyshevtransform([1.0:3;])
end
@testset "inv" begin
x = randn(5)
for F in (plan_chebyshevtransform(x), plan_chebyshevtransform(x, Val(2)),
plan_chebyshevutransform(x), plan_chebyshevutransform(x, Val(2)),
plan_ichebyshevtransform(x), plan_ichebyshevtransform(x, Val(2)),
plan_ichebyshevutransform(x), plan_ichebyshevutransform(x, Val(2)))
@test F \ (F*x) ≈ F * (F\x) ≈ x
end
X = randn(5,4)
for F in (plan_chebyshevtransform(X,Val(1),1), plan_chebyshevtransform(X, Val(2),1),
plan_chebyshevtransform(X,Val(1),2), plan_chebyshevtransform(X, Val(2),2),
plan_ichebyshevtransform(X,Val(1),1), plan_ichebyshevtransform(X, Val(2),1),
plan_ichebyshevtransform(X,Val(1),2), plan_ichebyshevtransform(X, Val(2),2))
@test F \ (F*X) ≈ F * (F\X) ≈ X
end
# Matrix isn't implemented for chebyshevu
for F in (plan_chebyshevutransform(X,Val(1),1), plan_chebyshevutransform(X, Val(2),1),
plan_chebyshevutransform(X,Val(1),2), plan_chebyshevutransform(X, Val(2),2),
plan_ichebyshevutransform(X,Val(1),1), plan_ichebyshevutransform(X, Val(2),1),
plan_ichebyshevutransform(X,Val(1),2), plan_ichebyshevutransform(X, Val(2),2))
@test F \ (F*X) ≈ F * (F\X) ≈ X
end
end
@testset "incompatible shapes" begin
@test_throws ErrorException plan_chebyshevtransform(randn(5)) * randn(5,5)
@test_throws ErrorException plan_ichebyshevtransform(randn(5)) * randn(5,5)
end
@testset "plan via size" begin
X = randn(3,4)
p = plan_chebyshevtransform(Float64, (3,4))
@test p * X == chebyshevtransform(X)
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 6231 | using FastTransforms, FillArrays, Test
import FastTransforms: clenshaw, clenshaw!, forwardrecurrence!, forwardrecurrence
@testset "clenshaw" begin
@testset "Chebyshev T" begin
for elty in (Float64, Float32)
c = [1,2,3]
cf = elty.(c)
@test @inferred(clenshaw(c,1)) ≡ 1 + 2 + 3
@test @inferred(clenshaw(c,0)) ≡ 1 + 0 - 3
@test @inferred(clenshaw(c,0.1)) == 1 + 2*0.1 + 3*cos(2acos(0.1))
@test @inferred(clenshaw(c,[-1,0,1])) == clenshaw!(c,[-1,0,1]) == [2,-2,6]
@test clenshaw(c,[-1,0,1]) isa Vector{Int}
@test @inferred(clenshaw(elty[],1)) ≡ zero(elty)
x = elty[1,0,0.1]
@test @inferred(clenshaw(c,x)) ≈ @inferred(clenshaw!(c,copy(x))) ≈
@inferred(clenshaw!(c,x,similar(x))) ≈
@inferred(clenshaw(cf,x)) ≈ @inferred(clenshaw!(cf,copy(x))) ≈
@inferred(clenshaw!(cf,x,similar(x))) ≈ elty[6,-2,-1.74]
@testset "Strided" begin
cv = view(cf,:)
xv = view(x,:)
@test clenshaw!(cv, xv, similar(xv)) == clenshaw!(cf,x,similar(x))
cv2 = view(cf,1:2:3)
@test clenshaw!(cv2, xv, similar(xv)) == clenshaw([1,3], x)
# modifies x and xv
@test clenshaw!(cv2, xv) == xv == x == clenshaw([1,3], elty[1,0,0.1])
end
@testset "matrix coefficients" begin
c = [1 2; 3 4; 5 6]
@test clenshaw(c,0.1) ≈ [clenshaw(c[:,1],0.1), clenshaw(c[:,2],0.1)]
@test clenshaw(c,[0.1,0.2]) ≈ [clenshaw(c[:,1], 0.1) clenshaw(c[:,2], 0.1); clenshaw(c[:,1], 0.2) clenshaw(c[:,2], 0.2)]
end
end
end
@testset "Chebyshev U" begin
N = 5
A, B, C = Fill(2,N-1), Zeros{Int}(N-1), Ones{Int}(N)
@testset "forwardrecurrence!" begin
@test @inferred(forwardrecurrence(N, A, B, C, 1)) == @inferred(forwardrecurrence!(Vector{Int}(undef,N), A, B, C, 1)) == 1:N
@test forwardrecurrence!(Vector{Int}(undef,N), A, B, C, -1) == (-1) .^ (0:N-1) .* (1:N)
@test forwardrecurrence(N, A, B, C, 0.1) ≈ forwardrecurrence!(Vector{Float64}(undef,N), A, B, C, 0.1) ≈
sin.((1:N) .* acos(0.1)) ./ sqrt(1-0.1^2)
end
c = [1,2,3]
@test c'forwardrecurrence(3, A, B, C, 0.1) ≈ clenshaw([1,2,3], A, B, C, 0.1) ≈
1 + (2sin(2acos(0.1)) + 3sin(3acos(0.1)))/sqrt(1-0.1^2)
@testset "matrix coefficients" begin
c = [1 2; 3 4; 5 6]
@test clenshaw(c,A,B,C,0.1) ≈ [clenshaw(c[:,1],A,B,C,0.1), clenshaw(c[:,2],A,B,C,0.1)]
@test clenshaw(c,A,B,C,[0.1,0.2]) ≈ [clenshaw(c[:,1], A,B,C,0.1) clenshaw(c[:,2], A,B,C,0.1); clenshaw(c[:,1], A,B,C,0.2) clenshaw(c[:,2], A,B,C,0.2)]
end
end
@testset "Chebyshev-as-general" begin
@testset "forwardrecurrence!" begin
N = 5
A, B, C = [1; fill(2,N-2)], fill(0,N-1), fill(1,N)
Af, Bf, Cf = float(A), float(B), float(C)
@test forwardrecurrence(N, A, B, C, 1) == forwardrecurrence!(Vector{Int}(undef,N), A, B, C, 1) == ones(Int,N)
@test forwardrecurrence!(Vector{Int}(undef,N), A, B, C, -1) == (-1) .^ (0:N-1)
@test forwardrecurrence(N, A, B, C, 0.1) ≈ forwardrecurrence!(Vector{Float64}(undef,N), A, B, C, 0.1) ≈ cos.((0:N-1) .* acos(0.1))
end
c, A, B, C = [1,2,3], [1,2,2], fill(0,3), fill(1,4)
cf, Af, Bf, Cf = float(c), float(A), float(B), float(C)
@test @inferred(clenshaw(c, A, B, C, 1)) ≡ 6
@test @inferred(clenshaw(c, A, B, C, 0.1)) ≡ -1.74
@test @inferred(clenshaw([1,2,3], A, B, C, [-1,0,1])) == clenshaw!([1,2,3],A, B, C, [-1,0,1]) == [2,-2,6]
@test clenshaw(c, A, B, C, [-1,0,1]) isa Vector{Int}
@test @inferred(clenshaw(Float64[], A, B, C, 1)) ≡ 0.0
x = [1,0,0.1]
@test @inferred(clenshaw(c, A, B, C, x)) ≈ @inferred(clenshaw!(c, A, B, C, copy(x))) ≈
@inferred(clenshaw!(c, A, B, C, x, one.(x), similar(x))) ≈
@inferred(clenshaw!(cf, Af, Bf, Cf, x, one.(x),similar(x))) ≈
@inferred(clenshaw([1.,2,3], A, B, C, x)) ≈
@inferred(clenshaw!([1.,2,3], A, B, C, copy(x))) ≈ [6,-2,-1.74]
end
@testset "Legendre" begin
@testset "Float64" begin
N = 5
n = 0:N-1
A = (2n .+ 1) ./ (n .+ 1)
B = zeros(N)
C = n ./ (n .+ 1)
v_1 = forwardrecurrence(N, A, B, C, 1)
v_f = forwardrecurrence(N, A, B, C, 0.1)
@test v_1 ≈ ones(N)
@test forwardrecurrence(N, A, B, C, -1) ≈ (-1) .^ (0:N-1)
@test v_f ≈ [1,0.1,-0.485,-0.1475,0.3379375]
n = 0:N # need extra entry for C in Clenshaw
C = n ./ (n .+ 1)
for j = 1:N
c = [zeros(j-1); 1]
@test clenshaw(c, A, B, C, 1) ≈ v_1[j] # Julia code
@test clenshaw(c, A, B, C, 0.1) ≈ v_f[j] # Julia code
@test clenshaw!(c, A, B, C, [1.0,0.1], [1.0,1.0], [0.0,0.0]) ≈ [v_1[j],v_f[j]] # libfasttransforms
end
end
@testset "BigFloat" begin
N = 5
n = BigFloat(0):N-1
A = (2n .+ 1) ./ (n .+ 1)
B = zeros(N)
C = n ./ (n .+ 1)
@test forwardrecurrence(N, A, B, C, parse(BigFloat,"0.1")) ≈ [1,big"0.1",big"-0.485",big"-0.1475",big"0.3379375"]
end
end
@testset "Int" begin
N = 10; A = 1:10; B = 2:11; C = range(3; step=2, length=N+1)
v_i = forwardrecurrence(N, A, B, C, 1)
v_f = forwardrecurrence(N, A, B, C, 0.1)
@test v_i isa Vector{Int}
@test v_f isa Vector{Float64}
j = 3
@test clenshaw([zeros(Int,j-1); 1; zeros(Int,N-j)], A, B, C, 1) == v_i[j]
end
@testset "Zeros diagonal" begin
N = 10; A = randn(N); B = Zeros{Int}(N); C = randn(N+1)
@test forwardrecurrence(N, A, B, C, 0.1) == forwardrecurrence(N, A, Vector(B), C, 0.1)
c = randn(N)
@test clenshaw(c, A, B, C, 0.1) == clenshaw(c, A, Vector(B), C, 0.1)
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 927 | using FastTransforms, LinearAlgebra, Test
import FastTransforms: δ
@testset "Gaunt coefficients" begin
# Table 2 of Y.-l. Xu, JCAM 85:53–65, 1997.
for (m,n) in ((0,2),(1,2),(1,8),(6,8),(3,18),
(10,18),(5,25),(-23,25),(2,40),(-35,40),
(28,62),(-42,62),(1,99),(90,99),(10,120),
(80,120),(23,150),(88,150))
@test norm(gaunt(m,n,-m,n)[end]./(big(-1.0)^m/(2n+1))-1, Inf) < 400eps()
end
# Table 3 of Y.-l. Xu, JCAM 85:53–65, 1997.
for (m,n,μ,ν) in ((0,1,0,5),(0,5,0,10),(0,9,0,10),(0,10,0,12),
(0,11,0,15),(0,12,0,20),(0,20,0,45),(0,40,0,80),
(0,45,0,100),(3,5,-3,6),(4,9,-4,15),(-8,18,8,23),
(-10,20,10,30),(5,25,-5,45),(15,50,-15,60),(-28,68,28,75),
(32,78,-32,88),(45,82,-45,100))
@test norm(sum(gaunt(m,n,μ,ν))-δ(m,0), Inf) < 15000eps()
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1336 | using FastTransforms, FastGaussQuadrature, Test
hermitepoints(n) = FastGaussQuadrature.unweightedgausshermite( n )[1]
@testset "Hermite" begin
@test hermitepoints(1) == [0.0]
@test hermitepoints(100_000)[end] ≈ 446.9720305443094
@test weightedhermitetransform([1.0]) == [1.0]
@test weightedhermitetransform(exp.(-hermitepoints(2).^2/2)) ≈ [1.0,0.0]
@test weightedhermitetransform(exp.(-hermitepoints(3).^2/2)) ≈ [1.0,0.0,0.0]
@test weightedhermitetransform(exp.(-hermitepoints(1000).^2/2)) ≈ [1.0; zeros(999)]
@test weightedhermitetransform(exp.(-hermitepoints(3000).^2/2)) ≈ [1.0; zeros(2999)]
for n in (1, 5,100)
x = randn(n)
@test iweightedhermitetransform(weightedhermitetransform(x)) ≈ x
@test weightedhermitetransform(iweightedhermitetransform(x)) ≈ x
end
x = hermitepoints(100)
@test iweightedhermitetransform([0.0; 1.0; zeros(98)]) ≈ (exp.(-x.^2 ./ 2) .* 2x/sqrt(2))
@test iweightedhermitetransform([0.0; 0; 1.0; zeros(97)]) ≈ (exp.(-x.^2 ./ 2) .* (4x.^2 .- 2)/(sqrt(2)*2^(2/2)))
@test iweightedhermitetransform([0.0; 0; 0; 1.0; zeros(96)]) ≈ (exp.(-x.^2 ./ 2) .* (-12x + 8x.^3) / (sqrt(2*3)*2^(3/2)))
@test iweightedhermitetransform([0.0; 0; 0; 0; 1.0; zeros(95)]) ≈ (exp.(-x.^2 ./ 2) .* (12 .- 48x.^2 .+ 16x.^4) / (sqrt(2*3*4)*2^(4/2)))
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 8434 | using FastTransforms, Test
FastTransforms.ft_set_num_threads(ceil(Int, Base.Sys.CPU_THREADS/2))
@testset "libfasttransforms" begin
n = 64
for T in (Float32, Float64)
c = one(T) ./ (1:n)
x = collect(-1 .+ 2*(0:n-1)/T(n))
f = similar(x)
@test FastTransforms.horner!(c, x, f) == f
fd = T[sum(c[k]*x^(k-1) for k in 1:length(c)) for x in x]
@test f ≈ fd
@test FastTransforms.clenshaw!(c, x, f) == f
fd = T[sum(c[k]*cos((k-1)*acos(x)) for k in 1:length(c)) for x in x]
@test f ≈ fd
A = T[(2k+one(T))/(k+one(T)) for k in 0:length(c)-1]
B = T[zero(T) for k in 0:length(c)-1]
C = T[k/(k+one(T)) for k in 0:length(c)]
phi0 = ones(T, length(x))
c = FastTransforms.lib_cheb2leg(c)
@test FastTransforms.clenshaw!(c, A, B, C, x, phi0, f) == f
@test f ≈ fd
end
α, β, γ, δ, λ, μ, ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
function test_1d_plans(p1, p2, x)
y = p1*x
z = p2*y
@test z ≈ x
y = p1*view(x, :)
z = p2*view(y, :)
@test z ≈ x
y = p1*x
z = p1'y
y = transpose(p1)*z
z = transpose(p1)\y
y = p1'\z
z = p1\y
@test z ≈ x
y = p1*view(x, :)
z = p1'view(y, :)
y = transpose(p1)*view(z, :)
z = transpose(p1)\view(y, :)
y = p1'\view(z, :)
z = p1\view(y, :)
@test z ≈ x
y = p2*x
z = p2'y
y = transpose(p2)*z
z = transpose(p2)\y
y = p2'\z
z = p2\y
@test z ≈ x
y = p2*view(x, :)
z = p2'view(y, :)
y = transpose(p2)*view(z, :)
z = transpose(p2)\view(y, :)
y = p2'\view(z, :)
z = p2\view(y, :)
@test z ≈ x
P = p1*I
Q = p2*P
@test Q ≈ I
P = p1*I
Q = p1'P
P = transpose(p1)*Q
Q = transpose(p1)\P
P = p1'\Q
Q = p1\P
@test Q ≈ I
P = p2*I
Q = p2'P
P = transpose(p2)*Q
Q = transpose(p2)\P
P = p2'\Q
Q = p2\P
@test Q ≈ I
end
for T in (Float32, Float64, Complex{Float32}, Complex{Float64}, BigFloat, Complex{BigFloat})
x = T(1)./(1:n)
Id = Matrix{T}(I, n, n)
for (p1, p2) in ((plan_leg2cheb(Id), plan_cheb2leg(Id)),
(plan_ultra2ultra(Id, λ, μ), plan_ultra2ultra(Id, μ, λ)),
(plan_jac2jac(Id, α, β, γ, δ), plan_jac2jac(Id, γ, δ, α, β)),
(plan_lag2lag(Id, α, β), plan_lag2lag(Id, β, α)),
(plan_jac2ultra(Id, α, β, λ), plan_ultra2jac(Id, λ, α, β)),
(plan_jac2cheb(Id, α, β), plan_cheb2jac(Id, α, β)),
(plan_ultra2cheb(Id, λ), plan_cheb2ultra(Id, λ)))
test_1d_plans(p1, p2, x)
end
end
for T in (Float32, Float64, Complex{Float32}, Complex{Float64})
x = T(1)./(1:n)
Id = Matrix{T}(I, n, n)
p = plan_associatedjac2jac(Id, 1, α, β, γ, δ)
V = p*I
@test V ≈ p*Id
y = p*x
@test V\y ≈ x
end
@testset "Modified classical orthonormal polynomial transforms" begin
(n, α, β) = (16, 0, 0)
for T in (Float32, Float64)
P1 = plan_modifiedjac2jac(T, n, α, β, T[0.9428090415820636, -0.32659863237109055, -0.42163702135578396, 0.2138089935299396]) # u1(x) = (1-x)^2*(1+x)
P2 = plan_modifiedjac2jac(T, n, α, β, T[0.9428090415820636, -0.32659863237109055, -0.42163702135578396, 0.2138089935299396], T[1.4142135623730951]) # u2(x) = (1-x)^2*(1+x)
P3 = plan_modifiedjac2jac(T, n, α, β, T[-0.9428090415820636, 0.32659863237109055, 0.42163702135578396, -0.2138089935299396], T[-5.185449728701348, 0.0, 0.42163702135578374]) # u3(x) = -(1-x)^2*(1+x), v3(x) = -(2-x)*(2+x)
P4 = plan_modifiedjac2jac(T, n, α+2, β+1, T[1.1547005383792517], T[4.387862045841156, 0.1319657758147716, -0.20865621238292037]) # v4(x) = (2-x)*(2+x)
@test P1*I ≈ P2*I
@test P1\I ≈ P2\I
@test P3*I ≈ P2*(P4*I)
@test P3\I ≈ P4\(P2\I)
P5 = plan_modifiedlag2lag(T, n, α, T[2.0, -4.0, 2.0]) # u5(x) = x^2
P6 = plan_modifiedlag2lag(T, n, α, T[2.0, -4.0, 2.0], T[1.0]) # u6(x) = x^2
P7 = plan_modifiedlag2lag(T, n, α, T[2.0, -4.0, 2.0], T[7.0, -7.0, 2.0]) # u7(x) = x^2, v7(x) = (1+x)*(2+x)
P8 = plan_modifiedlag2lag(T, n, α+2, T[sqrt(2.0)], T[sqrt(1058.0), -sqrt(726.0), sqrt(48.0)]) # v8(x) = (1+x)*(2+x)
@test P5*I ≈ P6*I
@test P5\I ≈ P6\I
@test isapprox(P7*I, P6*(P8*I); rtol = eps(T)^(1/4))
@test isapprox(P7\I, P8\(P6\I); rtol = eps(T)^(1/4))
P9 = plan_modifiedherm2herm(T, n, T[2.995504568550877, 0.0, 3.7655850551068593, 0.0, 1.6305461589167827], T[2.995504568550877, 0.0, 3.7655850551068593, 0.0, 1.6305461589167827]) # u9(x) = 1+x^2+x^4, v9(x) = 1+x^2+x^4
@test P9*I ≈ P9\I
end
end
function test_nd_plans(p, ps, pa, A)
B = copy(A)
C = ps*(p*A)
A = p\(pa*C)
@test A ≈ B
C = ps'*(p'A)
A = p'\(pa'C)
@test A ≈ B
C = transpose(ps)*(transpose(p)*A)
A = transpose(p)\(transpose(pa)*C)
@test A ≈ B
end
A = sphones(Float64, n, 2n-1)
p = plan_sph2fourier(A)
ps = plan_sph_synthesis(A)
pa = plan_sph_analysis(A)
test_nd_plans(p, ps, pa, A)
A = sphones(Float64, n, 2n-1) + im*sphones(Float64, n, 2n-1)
p = plan_sph2fourier(A)
ps = plan_sph_synthesis(A)
pa = plan_sph_analysis(A)
test_nd_plans(p, ps, pa, A)
A = sphvones(Float64, n, 2n-1)
p = plan_sphv2fourier(A)
ps = plan_sphv_synthesis(A)
pa = plan_sphv_analysis(A)
test_nd_plans(p, ps, pa, A)
A = sphvones(Float64, n, 2n-1) + im*sphvones(Float64, n, 2n-1)
p = plan_sphv2fourier(A)
ps = plan_sphv_synthesis(A)
pa = plan_sphv_analysis(A)
test_nd_plans(p, ps, pa, A)
A = diskones(Float64, n, 4n-3)
p = plan_disk2cxf(A, α, β)
ps = plan_disk_synthesis(A)
pa = plan_disk_analysis(A)
test_nd_plans(p, ps, pa, A)
A = diskones(Float64, n, 4n-3) + im*diskones(Float64, n, 4n-3)
p = plan_disk2cxf(A, α, β)
ps = plan_disk_synthesis(A)
pa = plan_disk_analysis(A)
test_nd_plans(p, ps, pa, A)
A = diskones(Float64, n, 4n-3)
p = plan_ann2cxf(A, α, β, 0, ρ)
ps = plan_annulus_synthesis(A, ρ)
pa = plan_annulus_analysis(A, ρ)
test_nd_plans(p, ps, pa, A)
A = diskones(Float64, n, 4n-3) + im*diskones(Float64, n, 4n-3)
p = plan_ann2cxf(A, α, β, 0, ρ)
ps = plan_annulus_synthesis(A, ρ)
pa = plan_annulus_analysis(A, ρ)
test_nd_plans(p, ps, pa, A)
A = rectdiskones(Float64, n, n)
p = plan_rectdisk2cheb(A, β)
ps = plan_rectdisk_synthesis(A)
pa = plan_rectdisk_analysis(A)
test_nd_plans(p, ps, pa, A)
A = rectdiskones(Float64, n, n) + im*rectdiskones(Float64, n, n)
p = plan_rectdisk2cheb(A, β)
ps = plan_rectdisk_synthesis(A)
pa = plan_rectdisk_analysis(A)
test_nd_plans(p, ps, pa, A)
A = triones(Float64, n, n)
p = plan_tri2cheb(A, α, β, γ)
ps = plan_tri_synthesis(A)
pa = plan_tri_analysis(A)
test_nd_plans(p, ps, pa, A)
A = triones(Float64, n, n) + im*triones(Float64, n, n)
p = plan_tri2cheb(A, α, β, γ)
ps = plan_tri_synthesis(A)
pa = plan_tri_analysis(A)
test_nd_plans(p, ps, pa, A)
α, β, γ, δ = -0.1, -0.2, -0.3, -0.4
A = tetones(Float64, n, n, n)
p = plan_tet2cheb(A, α, β, γ, δ)
ps = plan_tet_synthesis(A)
pa = plan_tet_analysis(A)
test_nd_plans(p, ps, pa, A)
A = tetones(Float64, n, n, n) + im*tetones(Float64, n, n, n)
p = plan_tet2cheb(A, α, β, γ, δ)
ps = plan_tet_synthesis(A)
pa = plan_tet_analysis(A)
test_nd_plans(p, ps, pa, A)
A = spinsphones(Complex{Float64}, n, 2n-1, 2) + im*spinsphones(Complex{Float64}, n, 2n-1, 2)
p = plan_spinsph2fourier(A, 2)
ps = plan_spinsph_synthesis(A, 2)
pa = plan_spinsph_analysis(A, 2)
test_nd_plans(p, ps, pa, A)
end
@testset "ultra2ulta bug and cheb2leg normalisation (#202, #203)" begin
@test ultra2ultra([0.0, 1.0], 1, 1) == [0,1]
@test cheb2leg([0.0, 1.0], normcheb=true) ≈ [0.,sqrt(2/π)]
@test cheb2leg([0.0, 1.0], normleg=true) ≈ [0.,sqrt(2/3)]
end | FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 4121 | using FFTW, FastTransforms, LinearAlgebra, Test
FFTW.set_num_threads(ceil(Int, Sys.CPU_THREADS/2))
@testset "Nonuniform fast Fourier transforms" begin
function nudft1(c::AbstractVector, ω::AbstractVector{T}) where {T<:AbstractFloat}
# Nonuniform discrete Fourier transform of type I
N = size(ω, 1)
output = zero(c)
for j = 1:N
output[j] = dot(exp.(2*T(π)*im*(j-1)/N*ω), c)
end
return output
end
function nudft2(c::AbstractVector, x::AbstractVector{T}) where {T<:AbstractFloat}
# Nonuniform discrete Fourier transform of type II
N = size(x, 1)
output = zero(c)
ω = collect(0:N-1)
for j = 1:N
output[j] = dot(exp.(2*T(π)*im*x[j]*ω), c)
end
return output
end
function nudft3(c::AbstractVector, x::AbstractVector{T}, ω::AbstractVector{T}) where {T<:AbstractFloat}
# Nonuniform discrete Fourier transform of type III
N = size(x, 1)
output = zero(c)
for j = 1:N
output[j] = dot(exp.(2*T(π)*im*x[j]*ω), c)
end
return output
end
N = round.([Int],10 .^ range(1,stop=3,length=10))
for n in N, ϵ in (1e-4, 1e-8, 1e-12, eps(Float64))
c = complex(rand(n))
err_bnd = 500*ϵ*n*norm(c)
ω = collect(0:n-1) + 0.25*rand(n)
exact = nudft1(c, ω)
fast = nufft1(c, ω, ϵ)
@test norm(exact - fast, Inf) < err_bnd
d = inufft1(fast, ω, ϵ)
@test norm(c - d, Inf) < err_bnd
x = (collect(0:n-1) + 0.25*rand(n))/n
exact = nudft2(c, x)
fast = nufft2(c, x, ϵ)
@test norm(exact - fast, Inf) < err_bnd
d = inufft2(fast, x, ϵ)
@test norm(c - d, Inf) < err_bnd
exact = nudft3(c, x, ω)
fast = nufft3(c, x, ω, ϵ)
@test norm(exact - fast, Inf) < err_bnd
end
# Check that if points/frequencies are indeed uniform, then it's equal to the fft.
for n in (1000,), ϵ in (eps(Float64), 0.0)
c = complex(rand(n))
ω = collect(0.0:n-1)
x = ω/n
fftc = fft(c)
if Sys.WORD_SIZE == 64
@test_skip norm(nufft1(c, ω, ϵ) - fftc) == 0 # skip because fftw3 seems to change this
@test norm(nufft2(c, x, ϵ) - fftc) == 0
@test_skip norm(nufft3(c, x, ω, ϵ) - fftc) == 0 # skip because fftw3 seems to change this
end
err_bnd = 500*eps(Float64)*norm(c)
@test norm(nufft1(c, ω, ϵ) - fftc) < err_bnd
@test norm(nufft2(c, x, ϵ) - fftc) < err_bnd
@test norm(nufft3(c, x, ω, ϵ) - fftc) < err_bnd
end
function nudft1(C::Matrix{Complex{T}}, ω1::AbstractVector{T}, ω2::AbstractVector{T}) where {T<:AbstractFloat}
# Nonuniform discrete Fourier transform of type I-I
M, N = size(C)
output = zero(C)
@inbounds for j1 = 1:M, j2 = 1:N
for k1 = 1:M, k2 = 1:N
output[j1,j2] += exp(-2*T(π)*im*((j1-1)/M*ω1[k1]+(j2-1)/N*ω2[k2]))*C[k1,k2]
end
end
return output
end
function nudft2(C::Matrix{Complex{T}}, x::AbstractVector{T}, y::AbstractVector{T}) where {T<:AbstractFloat}
# Nonuniform discrete Fourier transform of type II-II
M, N = size(C)
output = zero(C)
@inbounds for j1 = 1:M, j2 = 1:N
for k1 = 1:M, k2 = 1:N
output[j1,j2] += exp(-2*T(π)*im*(x[j1]*(k1-1)+y[j2]*(k2-1)))*C[k1,k2]
end
end
return output
end
N = round.([Int],10 .^ range(1,stop=1.7,length=5))
for n in N, ϵ in (1e-4,1e-8,1e-12,eps(Float64))
C = complex(rand(n,n))
err_bnd = 500*ϵ*n*norm(C)
x = (collect(0:n-1) + 0.25*rand(n))/n
y = (collect(0:n-1) + 0.25*rand(n))/n
ω1 = collect(0:n-1) + 0.25*rand(n)
ω2 = collect(0:n-1) + 0.25*rand(n)
exact = nudft1(C, ω1, ω2)
fast = nufft1(C, ω1, ω2, ϵ)
@test norm(exact - fast, Inf) < err_bnd
exact = nudft2(C, x, y)
fast = nufft2(C, x, y, ϵ)
@test norm(exact - fast, Inf) < err_bnd
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1924 | using FastTransforms, Test
@testset "Padua transform and its inverse" begin
n=200
N=div((n+1)*(n+2),2)
v=rand(N) #Length of v is the no. of Padua points
Pl=plan_paduatransform!(v)
IPl=plan_ipaduatransform!(v)
@test Pl*(IPl*copy(v)) ≈ v
@test IPl*(Pl*copy(v)) ≈ v
@test Pl*copy(v) ≈ paduatransform(v)
@test IPl*copy(v) ≈ ipaduatransform(v)
# check that the return vector is NOT reused
Pl=plan_paduatransform!(v)
x=Pl*v
y=Pl*rand(N)
@test x ≠ y
IPl=plan_ipaduatransform!(v)
x=IPl*v
y=IPl*rand(N)
@test x ≠ y
# Accuracy of 2d function interpolation at a point
"""
Interpolates a 2d function at a given point using 2d Chebyshev series.
"""
function paduaeval(f::Function,x::AbstractFloat,y::AbstractFloat,m::Integer,lex)
T=promote_type(typeof(x),typeof(y))
M=div((m+1)*(m+2),2)
pvals=Vector{T}(undef,M)
p=paduapoints(T,m)
map!(f,pvals,p[:,1],p[:,2])
coeffs=paduatransform(pvals,lex)
plan=plan_ipaduatransform!(pvals,lex)
cfs_mat=FastTransforms.trianglecfsmat(plan,coeffs)
f_x=sum([cfs_mat[k,j]*cos((j-1)*acos(x))*cos((k-1)*acos(y)) for k=1:m+1, j=1:m+1])
return f_x
end
f_xy = (x,y) ->x^2*y+x^3
g_xy = (x,y) ->cos(exp(2*x+y))*sin(y)
x=0.1;y=0.2
m=130
l=80
f_m=paduaeval(f_xy,x,y,m,Val{true})
g_l=paduaeval(g_xy,x,y,l,Val{true})
@test f_xy(x,y) ≈ f_m
@test g_xy(x,y) ≈ g_l
f_m=paduaeval(f_xy,x,y,m,Val{false})
g_l=paduaeval(g_xy,x,y,l,Val{false})
@test f_xy(x,y) ≈ f_m
@test g_xy(x,y) ≈ g_l
# odd n
m=135
l=85
f_m=paduaeval(f_xy,x,y,m,Val{true})
g_l=paduaeval(g_xy,x,y,l,Val{true})
@test f_xy(x,y) ≈ f_m
@test g_xy(x,y) ≈ g_l
f_m=paduaeval(f_xy,x,y,m,Val{false})
g_l=paduaeval(g_xy,x,y,l,Val{false})
@test f_xy(x,y) ≈ f_m
@test g_xy(x,y) ≈ g_l
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1571 | using FastTransforms, LinearAlgebra, Test
import FastTransforms: chebyshevmoments1, chebyshevmoments2,
chebyshevjacobimoments1, chebyshevjacobimoments2,
chebyshevlogmoments1, chebyshevlogmoments2
@testset "Fejér and Clenshaw–Curtis quadrature" begin
N = 20
f = x -> exp(x)
x = clenshawcurtisnodes(Float64, N)
μ = chebyshevmoments1(Float64, N)
w = clenshawcurtisweights(μ)
@test norm(dot(f.(x), w)-2sinh(1)) ≤ 4eps()
μ = chebyshevjacobimoments1(Float64, N, 0.25, 0.35)
w = clenshawcurtisweights(μ)
@test norm(dot(f.(x), w)-2.0351088204147243) ≤ 4eps()
μ = chebyshevlogmoments1(Float64, N)
w = clenshawcurtisweights(μ)
@test norm(sum(w./(x .- 3)) - π^2/12) ≤ 4eps()
x = fejernodes1(Float64, N)
μ = chebyshevmoments1(Float64, N)
w = fejerweights1(μ)
@test norm(dot(f.(x), w)-2sinh(1)) ≤ 4eps()
μ = chebyshevjacobimoments1(Float64, N, 0.25, 0.35)
w = fejerweights1(μ)
@test norm(dot(f.(x), w)-2.0351088204147243) ≤ 4eps()
μ = chebyshevlogmoments1(Float64, N)
w = fejerweights1(μ)
@test norm(sum(w./(x .- 3)) - π^2/12) ≤ 4eps()
x = fejernodes2(Float64, N)
μ = chebyshevmoments2(Float64, N)
w = fejerweights2(μ)
@test norm(dot(f.(x), w)-2sinh(1)) ≤ 4eps()
μ = chebyshevjacobimoments2(Float64, N, 0.25, 0.35)
w = fejerweights2(μ)
@test norm(dot(f.(x), w)-2.0351088204147243) ≤ 4eps()
μ = chebyshevlogmoments2(Float64, N)
w = fejerweights2(μ)
@test norm(sum(w./(x .- 3)) - π^2/12) ≤ 4eps()
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 444 | using FastTransforms, LinearAlgebra, Test
include("specialfunctionstests.jl")
include("chebyshevtests.jl")
include("quadraturetests.jl")
include("libfasttransformstests.jl")
include("nuffttests.jl")
include("paduatests.jl")
include("gaunttests.jl")
include("hermitetests.jl")
include("clenshawtests.jl")
include("toeplitzplanstests.jl")
include("toeplitzhankeltests.jl")
include("symmetrictoeplitzplushankeltests.jl")
include("arraystests.jl") | FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1874 | using FastTransforms, LinearAlgebra, Test
import FastTransforms: pochhammer, sqrtpi, gamma, lgamma
import FastTransforms: Cnλ, Λ, lambertw, Cnαβ, Anαβ
import FastTransforms: chebyshevmoments1, chebyshevmoments2, chebyshevjacobimoments1, chebyshevjacobimoments2, chebyshevlogmoments1, chebyshevlogmoments2
@testset "Special functions" begin
@test pochhammer(2,3) == 24
@test pochhammer(0.5,3) == 0.5*1.5*2.5
@test pochhammer(0.5,0.5) == 1/sqrtpi
@test pochhammer(0,1) == 0
@test pochhammer(-1,2) == 0
@test pochhammer(-5,3) == -60
@test pochhammer(-1,-0.5) == 0
@test 1.0/pochhammer(-0.5,-0.5) == 0
@test pochhammer(-1+0im,-1) == -0.5
@test pochhammer(2,1) == pochhammer(2,1.0) == pochhammer(2.0,1) == 2
@test pochhammer(1.1,2.2) ≈ gamma(3.3)/gamma(1.1)
@test pochhammer(-2,1) == pochhammer(-2,1.0) == pochhammer(-2.0,1) == -2
n = 0:1000
λ = 0.125
@test norm(Cnλ.(n, λ) ./ Cnλ.(n, big(λ)) .- 1, Inf) < 3eps()
x = range(0, stop=20, length=81)
@test norm((Λ.(x) .- Λ.(big.(x)))./Λ.(x), Inf) < 2eps()
@test norm((lambertw.(x) .- lambertw.(big.(x)))./max.(lambertw.(x), 1), Inf) < 2eps()
x = 0:0.5:1000
λ₁, λ₂ = 0.125, 0.875
@test norm((Λ.(x,λ₁,λ₂) .- Λ.(big.(x),big(λ₁),big(λ₂)))./Λ.(big.(x),big(λ₁),big(λ₂)), Inf) < 4eps()
λ₁, λ₂ = 1//3, 2//3
@test norm((Λ.(x,Float64(λ₁),Float64(λ₂)) .- Λ.(big.(x),big(λ₁),big(λ₂))) ./ Λ.(big.(x),big(λ₁),big(λ₂)), Inf) < 4eps()
α, β = 0.125, 0.375
@test norm(Cnαβ.(n,α,β) ./ Cnαβ.(n,big(α),big(β)) .- 1, Inf) < 3eps()
@test norm(Anαβ.(n,α,β) ./ Anαβ.(n,big(α),big(β)) .- 1, Inf) < 4eps()
@testset "BigFloat bug" begin
@test Λ(0.0, -1/2, 1.0) ≈ -exp(lgamma(-1/2)-lgamma(1.0))
@test Λ(1.0, -1/2, 1.0) ≈ exp(lgamma(1-1/2)-lgamma(2.0))
@test Float64(Λ(big(0.0), -1/2, 1.0)) ≈ Λ(0.0, -1/2, 1.0)
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 1593 | using BandedMatrices, FastTransforms, LinearAlgebra, ToeplitzMatrices, Test
import FastTransforms: SymmetricToeplitzPlusHankel, SymmetricBandedToeplitzPlusHankel
@testset "SymmetricToeplitzPlusHankel" begin
n = 128
for T in (Float32, Float64, BigFloat)
μ = -FastTransforms.chebyshevlogmoments1(T, 2n-1)
μ[1] += 1
W = SymmetricToeplitzPlusHankel(μ/2)
SMW = Symmetric(Matrix(W))
@test W ≈ SymmetricToeplitz(μ[1:(length(μ)+1)÷2]/2) + Hankel(μ/2)
L = cholesky(W).L
R = cholesky(SMW).U
@test L*L' ≈ W
@test L' ≈ R
end
end
@testset "SymmetricBandedToeplitzPlusHankel" begin
n = 1024
for T in (Float32, Float64)
μ = T[1.875; 0.00390625; 0.5; 0.0009765625; 0.0625]
W = SymmetricBandedToeplitzPlusHankel(μ/2, n)
SBW = Symmetric(BandedMatrix(W))
W1 = SymmetricToeplitzPlusHankel([μ/2; zeros(2n-1-length(μ))])
SMW = Symmetric(Matrix(W))
U = cholesky(SMW).U
L = cholesky(W1).L
UB = cholesky(SBW).U
R = cholesky(W).U
@test L*L' ≈ W
@test UB'UB ≈ W
@test R'R ≈ W
@test UB ≈ U
@test L' ≈ U
@test R ≈ U
end
end
@testset "Fast Cholesky" begin
n = 128
for T in (Float32, Float64, BigFloat)
R = plan_leg2cheb(T, n; normcheb=true)*I
X = Tridiagonal([T(n)/(2n-1) for n in 1:n-1], zeros(T, n), [T(n)/(2n+1) for n in 1:n-1]) # Legendre X
W = Symmetric(R'R)
F = FastTransforms.fastcholesky(W, X)
@test F.L*F.L' ≈ W
@test F.U ≈ R
end
end
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 9775 | using FastTransforms, Test, Random
import FastTransforms: th_leg2cheb, th_cheb2leg, th_leg2chebu, th_ultra2ultra,th_jac2jac, th_leg2chebu,
lib_leg2cheb, lib_cheb2leg, lib_ultra2ultra, lib_jac2jac,
plan_th_cheb2leg!, plan_th_leg2chebu!, plan_th_leg2cheb!, plan_th_ultra2ultra!, plan_th_jac2jac!,
th_cheb2jac, th_jac2cheb
Random.seed!(0)
@testset "ToeplitzHankel" begin
for x in ([1.0], [1.0,2,3,4,5], [1.0+im,2-3im,3+4im,4-5im,5+10im], collect(1.0:1000))
@test th_leg2cheb(x) ≈ lib_leg2cheb(x)
@test th_cheb2leg(x) ≈ lib_cheb2leg(x)
@test th_leg2chebu(x) ≈ lib_ultra2ultra(x, 0.5, 1.0)
@test th_ultra2ultra(x,0.1, 0.2) ≈ lib_ultra2ultra(x, 0.1, 0.2)
@test th_ultra2ultra(x,1, 2) ≈ lib_ultra2ultra(x, 1, 2)
@test th_ultra2ultra(x,0.1, 2.2) ≈ lib_ultra2ultra(x, 0.1, 2.2)
@test th_ultra2ultra(x, 2.2, 0.1) ≈ lib_ultra2ultra(x, 2.2, 0.1)
@test th_ultra2ultra(x, 1, 3) ≈ lib_ultra2ultra(x, 1, 3)
@test @inferred(th_jac2jac(x,0.1, 0.2,0.1,0.4)) ≈ lib_jac2jac(x, 0.1, 0.2,0.1,0.4)
@test th_jac2jac(x,0.1, 0.2,0.3,0.2) ≈ lib_jac2jac(x, 0.1, 0.2,0.3,0.2)
@test th_jac2jac(x,0.1, 0.2,0.3,0.4) ≈ lib_jac2jac(x, 0.1, 0.2,0.3,0.4)
@test @inferred(th_jac2jac(x,0.1, 0.2,1.3,0.4)) ≈ lib_jac2jac(x, 0.1, 0.2,1.3,0.4)
@test th_jac2jac(x,0.1, 0.2,1.3,2.4) ≈ lib_jac2jac(x, 0.1, 0.2,1.3,2.4)
@test th_jac2jac(x,1.3,2.4, 0.1, 0.2) ≈ lib_jac2jac(x,1.3,2.4, 0.1, 0.2)
@test th_jac2jac(x,1.3, 1.2,-0.1,-0.2) ≈ lib_jac2jac(x, 1.3, 1.2,-0.1,-0.2)
@test @inferred(th_jac2jac(x,-0.5, -0.5, -0.5,-0.5)) ≈ lib_jac2jac(x, -0.5, -0.5, -0.5,-0.5)
@test th_jac2jac(x,-0.5, -0.5, 0.5,0.5) ≈ lib_jac2jac(x, -0.5, -0.5, 0.5,0.5)
@test th_jac2jac(x,0.5,0.5,-0.5, -0.5) ≈ lib_jac2jac(x, 0.5,0.5,-0.5, -0.5)
@test th_jac2jac(x,-0.5, -0.5, 0.5,-0.5) ≈ lib_jac2jac(x, -0.5, -0.5, 0.5,-0.5)
@test th_jac2jac(x, -1/2,-1/2,1/2,0) ≈ lib_jac2jac(x, -1/2,-1/2,1/2,0)
@test th_jac2jac(x, -1/2,-1/2,0,1/2) ≈ lib_jac2jac(x, -1/2,-1/2,0,1/2)
@test th_jac2jac(x, -3/4,-3/4,0,3/4) ≈ lib_jac2jac(x, -3/4,-3/4,0,3/4)
if length(x) < 10
@test th_jac2jac(x,0, 0, 5, 5) ≈ lib_jac2jac(x, 0, 0, 5, 5)
@test th_jac2jac(x, 5, 5, 0, 0) ≈ lib_jac2jac(x, 5, 5, 0, 0)
end
@test th_cheb2jac(x, 0.2, 0.3) ≈ cheb2jac(x, 0.2, 0.3)
@test th_jac2cheb(x, 0.2, 0.3) ≈ jac2cheb(x, 0.2, 0.3)
@test th_cheb2jac(x, 1, 1) ≈ cheb2jac(x, 1, 1)
@test th_jac2cheb(x, 1, 1) ≈ jac2cheb(x, 1, 1)
@test th_cheb2leg(th_leg2cheb(x)) ≈ x
@test th_leg2cheb(th_cheb2leg(x)) ≈ x
@test th_ultra2ultra(th_ultra2ultra(x, 0.1, 0.6), 0.6, 0.1) ≈ x
@test th_jac2jac(th_jac2jac(x, 0.1, 0.6, 0.1, 0.8), 0.1, 0.8, 0.1, 0.6) ≈ x
@test th_jac2jac(th_jac2jac(x, 0.1, 0.6, 0.2, 0.8), 0.2, 0.8, 0.1, 0.6) ≈ x
end
for X in (randn(5,4), randn(5,4) + im*randn(5,4))
@test th_leg2cheb(X, 1) ≈ hcat([leg2cheb(X[:,j]) for j=1:size(X,2)]...)
@test_broken th_leg2cheb(X, 1) ≈ leg2cheb(X, 1) # matrices not supported in FastTransforms
@test th_leg2cheb(X, 2) ≈ vcat([permutedims(leg2cheb(X[k,:])) for k=1:size(X,1)]...)
@test_broken th_leg2cheb(X, 2) ≈ leg2cheb(X, 2)
@test th_leg2cheb(X) ≈ th_leg2cheb(th_leg2cheb(X, 1), 2)
@test_broken th_leg2cheb(X) ≈ leg2cheb(X)
@test th_cheb2leg(X, 1) ≈ hcat([cheb2leg(X[:,j]) for j=1:size(X,2)]...)
@test th_cheb2leg(X, 2) ≈ vcat([permutedims(cheb2leg(X[k,:])) for k=1:size(X,1)]...)
@test th_cheb2leg(X) ≈ th_cheb2leg(th_cheb2leg(X, 1), 2)
@test th_cheb2leg(X) == plan_th_cheb2leg!(X, 1:2)*copy(X)
@test th_leg2cheb(X) == plan_th_leg2cheb!(X, 1:2)*copy(X)
@test th_leg2cheb(th_cheb2leg(X)) ≈ X
@test th_leg2chebu(X, 1) ≈ hcat([ultra2ultra(X[:,j], 0.5, 1.0) for j=1:size(X,2)]...)
@test th_leg2chebu(X, 2) ≈ vcat([permutedims(ultra2ultra(X[k,:], 0.5, 1.0)) for k=1:size(X,1)]...)
@test th_leg2chebu(X) ≈ th_leg2chebu(th_leg2chebu(X, 1), 2)
@test th_leg2chebu(X) == plan_th_leg2chebu!(X, 1:2)*copy(X)
@test th_ultra2ultra(X, 0.1, 0.6, 1) ≈ hcat([ultra2ultra(X[:,j], 0.1, 0.6) for j=1:size(X,2)]...)
@test th_ultra2ultra(X, 0.1, 0.6, 2) ≈ vcat([permutedims(ultra2ultra(X[k,:], 0.1, 0.6)) for k=1:size(X,1)]...)
@test th_ultra2ultra(X, 0.1, 0.6) ≈ th_ultra2ultra(th_ultra2ultra(X, 0.1, 0.6, 1), 0.1, 0.6, 2)
@test th_ultra2ultra(X, 0.1, 2.6, 1) ≈ hcat([ultra2ultra(X[:,j], 0.1, 2.6) for j=1:size(X,2)]...)
@test th_ultra2ultra(X, 0.1, 2.6, 2) ≈ vcat([permutedims(ultra2ultra(X[k,:], 0.1, 2.6)) for k=1:size(X,1)]...)
@test th_ultra2ultra(X, 0.1, 2.6) ≈ th_ultra2ultra(th_ultra2ultra(X, 0.1, 2.6, 1), 0.1, 2.6, 2)
@test th_ultra2ultra(X, 2.6, 0.1, 1) ≈ hcat([ultra2ultra(X[:,j], 2.6, 0.1) for j=1:size(X,2)]...)
@test th_ultra2ultra(X, 2.6, 0.1, 2) ≈ vcat([permutedims(ultra2ultra(X[k,:], 2.6, 0.1)) for k=1:size(X,1)]...)
@test th_ultra2ultra(X, 2.6, 0.1) ≈ th_ultra2ultra(th_ultra2ultra(X, 2.6, 0.1, 1), 2.6, 0.1, 2)
@test th_ultra2ultra(X, 0.1, 0.6) == plan_th_ultra2ultra!(X, 0.1, 0.6, 1:2)*copy(X)
@test th_ultra2ultra(X, 0.1, 0.6) == plan_th_ultra2ultra!(X, 0.1, 0.6, 1:2)*copy(X)
@test th_ultra2ultra(th_ultra2ultra(X, 0.1, 0.6), 0.6, 0.1) ≈ X
@test th_jac2jac(X, 0.1, 0.6, 0.1, 0.8, 1) ≈ hcat([jac2jac(X[:,j], 0.1, 0.6, 0.1, 0.8) for j=1:size(X,2)]...)
@test th_jac2jac(X, 0.1, 0.6, 0.1, 0.8, 2) ≈ vcat([permutedims(jac2jac(X[k,:], 0.1, 0.6, 0.1, 0.8)) for k=1:size(X,1)]...)
@test th_jac2jac(X, 0.1, 0.6, 0.1, 0.8) ≈ th_jac2jac(th_jac2jac(X, 0.1, 0.6, 0.1, 0.8, 1), 0.1, 0.6, 0.1, 0.8, 2)
@test th_jac2jac(X, 0.1, 0.6, 0.2, 0.8, 1) ≈ hcat([jac2jac(X[:,j], 0.1, 0.6, 0.2, 0.8) for j=1:size(X,2)]...)
@test th_jac2jac(X, 0.1, 0.6, 0.2, 0.8, 2) ≈ vcat([permutedims(jac2jac(X[k,:], 0.1, 0.6, 0.2, 0.8)) for k=1:size(X,1)]...)
@test th_jac2jac(X, 0.1, 0.6, 0.1, 0.8) == plan_th_jac2jac!(X, 0.1, 0.6, 0.1, 0.8, 1:2)*copy(X)
@test th_jac2jac(X, 0.1, 0.6, 0.1, 0.8) == plan_th_jac2jac!(X, 0.1, 0.6, 0.1, 0.8, 1:2)*copy(X)
@test th_jac2jac(th_jac2jac(X, 0.1, 0.6, 0.1, 0.8), 0.1, 0.8, 0.1, 0.6) ≈ X
@test th_jac2jac(X, 0.1, 0.6, 3.1, 2.8, 1) ≈ hcat([jac2jac(X[:,j], 0.1, 0.6, 3.1, 2.8) for j=1:size(X,2)]...)
@test th_jac2jac(X, 0.1, 0.6, 3.1, 2.8, 2) ≈ vcat([permutedims(jac2jac(X[k,:], 0.1, 0.6, 3.1, 2.8)) for k=1:size(X,1)]...)
@test th_jac2jac(X, 0.1, 0.6, 3.1, 2.8) ≈ th_jac2jac(th_jac2jac(X, 0.1, 0.6, 3.1, 2.8, 1), 0.1, 0.6, 3.1, 2.8, 2)
@test th_jac2jac(X, -0.5, -0.5, 3.1, 2.8, 1) ≈ hcat([jac2jac(X[:,j], -0.5, -0.5, 3.1, 2.8) for j=1:size(X,2)]...)
@test th_jac2jac(X, -0.5, -0.5, 3.1, 2.8, 2) ≈ vcat([permutedims(jac2jac(X[k,:], -0.5, -0.5, 3.1, 2.8)) for k=1:size(X,1)]...)
@test th_jac2jac(X, -0.5, -0.5, 3.1, 2.8) ≈ th_jac2jac(th_jac2jac(X, -0.5, -0.5, 3.1, 2.8, 1), -0.5, -0.5, 3.1, 2.8, 2)
@test th_cheb2jac(X, 3.1, 2.8, 1) ≈ hcat([cheb2jac(X[:,j], 3.1, 2.8) for j=1:size(X,2)]...)
@test th_cheb2jac(X, 3.1, 2.8, 2) ≈ vcat([permutedims(cheb2jac(X[k,:], 3.1, 2.8)) for k=1:size(X,1)]...)
@test th_cheb2jac(X, 3.1, 2.8) ≈ th_cheb2jac(th_cheb2jac(X, 3.1, 2.8, 1), 3.1, 2.8, 2)
@test th_jac2cheb(X, 3.1, 2.8, 1) ≈ hcat([jac2cheb(X[:,j], 3.1, 2.8) for j=1:size(X,2)]...)
@test th_jac2cheb(X, 3.1, 2.8, 2) ≈ vcat([permutedims(jac2cheb(X[k,:], 3.1, 2.8)) for k=1:size(X,1)]...)
@test th_jac2cheb(X, 3.1, 2.8) ≈ th_jac2cheb(th_jac2cheb(X, 3.1, 2.8, 1), 3.1, 2.8, 2)
end
@testset "BigFloat" begin
n = 10
x = big.(collect(1.0:n))
@test th_leg2cheb(x) ≈ lib_leg2cheb(x)
@test th_cheb2leg(x) ≈ lib_cheb2leg(x)
end
@testset "jishnub example" begin
x = chebyshevpoints(4096);
f = x -> cospi(1000x);
y = f.(x);
v = th_cheb2leg(chebyshevtransform(y))
@test norm(v - th_cheb2leg(th_leg2cheb(v)), Inf) ≤ 1E-13
@test norm(v - th_cheb2leg(th_leg2cheb(v)))/norm(v) ≤ 1E-14
end
@testset "tensor" begin
X = randn(5,4,3)
for trans in (th_leg2cheb, th_cheb2leg)
Y = trans(X, 1)
for ℓ = 1:size(X,3)
@test Y[:,:,ℓ] ≈ trans(X[:,:,ℓ],1)
end
Y = trans(X, 2)
for ℓ = 1:size(X,3)
@test Y[:,:,ℓ] ≈ trans(X[:,:,ℓ],2)
end
Y = trans(X, 3)
for j = 1:size(X,2)
@test Y[:,j,:] ≈ trans(X[:,j,:],2)
end
Y = trans(X, (1,3))
for j = 1:size(X,2)
@test Y[:,j,:] ≈ trans(X[:,j,:])
end
Y = trans(X, 1:3)
M = copy(X)
for j = 1:size(X,3)
M[:,:,j] = trans(M[:,:,j])
end
for k = 1:size(X,1), j=1:size(X,2)
M[k,j,:] = trans(M[k,j,:])
end
@test M ≈ Y
end
end
@testset "inv" begin
x = randn(10)
pl = plan_th_cheb2leg!(x)
@test size(pl) == (10,)
@test pl\(pl*x) ≈ x
X = randn(10,3)
for pl in (plan_th_cheb2leg!(X), plan_th_cheb2leg!(X, 1), plan_th_cheb2leg!(X, 2))
@test size(pl) == (10,3)
@test pl\(pl*copy(X)) ≈ X
end
X = randn(10,3,5)
for pl in (plan_th_cheb2leg!(X), plan_th_cheb2leg!(X, 1), plan_th_cheb2leg!(X, 2), plan_th_cheb2leg!(X, 3))
@test size(pl) == (10,3,5)
@test pl\(pl*copy(X)) ≈ X
end
end
end | FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | code | 3800 | using FastTransforms, Test
import FastTransforms: plan_uppertoeplitz!
@testset "ToeplitzPlan" begin
@testset "Vector" begin
P = plan_uppertoeplitz!([1,2,3])
T = [1 2 3; 0 1 2; 0 0 1]
x = randn(3)
@test P * copy(x) ≈ T * x
end
@testset "Matrix" begin
T = [1 2 3; 0 1 2; 0 0 1]
X = randn(3,3)
P = plan_uppertoeplitz!([1,2,3], size(X), 1)
@test P * copy(X) ≈ T * X
P = plan_uppertoeplitz!([1,2,3], size(X), 2)
@test P * copy(X) ≈ X * T'
P = plan_uppertoeplitz!([1,2,3], size(X))
@test P * copy(X) ≈ T * X * T'
X = randn(3,4)
P1 = plan_uppertoeplitz!([1,2,3], size(X), 1)
@test P1 * copy(X) ≈ T * X
P2 = plan_uppertoeplitz!([1,2,3,4], size(X), 2)
T̃ = [1 2 3 4; 0 1 2 3; 0 0 1 2; 0 0 0 1]
@test P2 * copy(X) ≈ X * T̃'
P = plan_uppertoeplitz!([1,2,3,4], size(X))
@test P * copy(X) ≈ T * X * T̃'
end
@testset "Tensor" begin
T = [1 2 3; 0 1 2; 0 0 1]
@testset "3D" begin
X = randn(3,3,3)
P = plan_uppertoeplitz!([1,2,3], size(X), 1)
PX = P * copy(X)
for ℓ = 1:size(X,3)
@test PX[:,:,ℓ] ≈ T*X[:,:,ℓ]
end
P = plan_uppertoeplitz!([1,2,3], size(X), 2)
PX = P * copy(X)
for ℓ = 1:size(X,3)
@test PX[:,:,ℓ] ≈ X[:,:,ℓ]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), 3)
PX = P * copy(X)
for j = 1:size(X,2)
@test PX[:,j,:] ≈ X[:,j,:]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), (1,3))
PX = P * copy(X)
for j = 1:size(X,2)
@test PX[:,j,:] ≈ T*X[:,j,:]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), 1:3)
PX = P * copy(X)
M = copy(X)
for j = 1:size(X,3)
M[:,:,j] = T*M[:,:,j]*T'
end
for k = 1:size(X,1)
M[k,:,:] = M[k,:,:]*T'
end
@test M ≈ PX
end
@testset "4D" begin
X = randn(3,3,3,3)
P = plan_uppertoeplitz!([1,2,3], size(X), 1)
PX = P * copy(X)
for ℓ = 1:size(X,3), m = 1:size(X,4)
@test PX[:,:,ℓ,m] ≈ T*X[:,:,ℓ,m]
end
P = plan_uppertoeplitz!([1,2,3], size(X), 2)
PX = P * copy(X)
for ℓ = 1:size(X,3), m = 1:size(X,4)
@test PX[:,:,ℓ,m] ≈ X[:,:,ℓ,m]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), 3)
PX = P * copy(X)
for j = 1:size(X,2), m = 1:size(X,4)
@test PX[:,j,:,m] ≈ X[:,j,:,m]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), 4)
PX = P * copy(X)
for k = 1:size(X,1), j = 1:size(X,2)
@test PX[k,j,:,:] ≈ X[k,j,:,:]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), (1,3))
PX = P * copy(X)
for j = 1:size(X,2), m=1:size(X,4)
@test PX[:,j,:,m] ≈ T*X[:,j,:,m]*T'
end
P = plan_uppertoeplitz!([1,2,3], size(X), 1:4)
PX = P * copy(X)
M = copy(X)
for ℓ = 1:size(X,3), m = 1:size(X,4)
M[:,:,ℓ,m] = T*M[:,:,ℓ,m]*T'
end
for k = 1:size(X,1), j = 1:size(X,2)
M[k,j,:,:] = T*M[k,j,:,:]*T'
end
@test M ≈ PX
end
end
@testset "BigFloat" begin
P = plan_uppertoeplitz!([big(π),2,3])
T = [big(π) 2 3; 0 big(π) 2; 0 0 big(π)]
x = randn(3)
@test P * copy(x) ≈ T * x
end
end | FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | docs | 6750 | # FastTransforms.jl
[](https://github.com/JuliaApproximation/FastTransforms.jl/actions?query=workflow%3ACI) [](https://codecov.io/gh/JuliaApproximation/FastTransforms.jl) [](https://JuliaApproximation.github.io/FastTransforms.jl/stable) [](https://JuliaApproximation.github.io/FastTransforms.jl/dev)
[](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html)
`FastTransforms.jl` allows the user to conveniently work with orthogonal polynomials with degrees well into the millions.
This package provides a Julia wrapper for the [C library](https://github.com/MikaelSlevinsky/FastTransforms) of the same name. Additionally, all three types of nonuniform fast Fourier transforms are available, as well as the Padua transform.
## Installation
Installation, which uses [BinaryBuilder](https://github.com/JuliaPackaging/BinaryBuilder.jl) for all of Julia's supported platforms (in particular Sandybridge Intel processors and beyond), may be as straightforward as:
```julia
pkg> add FastTransforms
julia> using FastTransforms, LinearAlgebra
```
## Fast orthogonal polynomial transforms
The orthogonal polynomial transforms are listed in `FastTransforms.Transforms` or `FastTransforms.kind2string.(instances(FastTransforms.Transforms))`. Univariate transforms may be planned with the standard normalization or with orthonormalization. For multivariate transforms, the standard normalization may be too severe for floating-point computations, so it is omitted. Here are two examples:
### The Chebyshev--Legendre transform
```julia
julia> c = rand(8192);
julia> leg2cheb(c);
julia> cheb2leg(c);
julia> norm(cheb2leg(leg2cheb(c; normcheb=true); normcheb=true)-c)/norm(c)
1.1866591414786334e-14
```
The implementation separates pre-computation into an `FTPlan`. This type is constructed with either `plan_leg2cheb` or `plan_cheb2leg`. Let's see how much faster it is if we pre-compute.
```julia
julia> p1 = plan_leg2cheb(c);
julia> p2 = plan_cheb2leg(c);
julia> @time leg2cheb(c);
0.433938 seconds (9 allocations: 64.641 KiB)
julia> @time p1*c;
0.005713 seconds (8 allocations: 64.594 KiB)
julia> @time cheb2leg(c);
0.423865 seconds (9 allocations: 64.641 KiB)
julia> @time p2*c;
0.005829 seconds (8 allocations: 64.594 KiB)
```
Furthermore, for orthogonal polynomial connection problems that are degree-preserving, we should expect to be able to apply the transforms in-place:
```julia
julia> lmul!(p1, c);
julia> lmul!(p2, c);
julia> ldiv!(p1, c);
julia> ldiv!(p2, c);
```
### The spherical harmonic transform
Let `F` be an array of spherical harmonic expansion coefficients with columns arranged by increasing order in absolute value, alternating between negative and positive orders. Then `sph2fourier` converts the representation into a bivariate Fourier series, and `fourier2sph` converts it back. Once in a bivariate Fourier series on the sphere, `plan_sph_synthesis` converts the coefficients to function samples on an equiangular grid that does not sample the poles, and `plan_sph_analysis` converts them back.
```julia
julia> F = sphrandn(Float64, 1024, 2047); # convenience method
julia> P = plan_sph2fourier(F);
julia> PS = plan_sph_synthesis(F);
julia> PA = plan_sph_analysis(F);
julia> @time G = PS*(P*F);
0.090767 seconds (12 allocations: 31.985 MiB, 1.46% gc time)
julia> @time H = P\(PA*G);
0.092726 seconds (12 allocations: 31.985 MiB, 1.63% gc time)
julia> norm(F-H)/norm(F)
2.1541073345177038e-15
```
Due to the structure of the spherical harmonic connection problem, these transforms may also be performed in-place with `lmul!` and `ldiv!`.
See also [FastSphericalHarmonics.jl](https://github.com/eschnett/FastSphericalHarmonics.jl) for a simpler interface to the spherical harmonic transforms defined in this package.
## Nonuniform fast Fourier transforms
The NUFFTs are implemented thanks to [Alex Townsend](https://github.com/ajt60gaibb):
- `nufft1` assumes uniform samples and noninteger frequencies;
- `nufft2` assumes nonuniform samples and integer frequencies;
- `nufft3 ( = nufft)` assumes nonuniform samples and noninteger frequencies;
- `inufft1` inverts an `nufft1`; and,
- `inufft2` inverts an `nufft2`.
Here is an example:
```julia
julia> n = 10^4;
julia> c = complex(rand(n));
julia> ω = collect(0:n-1) + rand(n);
julia> nufft1(c, ω, eps());
julia> p1 = plan_nufft1(ω, eps());
julia> @time p1*c;
0.002383 seconds (6 allocations: 156.484 KiB)
julia> x = (collect(0:n-1) + 3rand(n))/n;
julia> nufft2(c, x, eps());
julia> p2 = plan_nufft2(x, eps());
julia> @time p2*c;
0.001478 seconds (6 allocations: 156.484 KiB)
julia> nufft3(c, x, ω, eps());
julia> p3 = plan_nufft3(x, ω, eps());
julia> @time p3*c;
0.058999 seconds (6 allocations: 156.484 KiB)
```
## The Padua Transform
The Padua transform and its inverse are implemented thanks to [Michael Clarke](https://github.com/MikeAClarke). These are optimized methods designed for computing the bivariate Chebyshev coefficients by interpolating a bivariate function at the Padua points on `[-1,1]^2`.
```julia
julia> n = 200;
julia> N = div((n+1)*(n+2), 2);
julia> v = rand(N); # The length of v is the number of Padua points
julia> @time norm(ipaduatransform(paduatransform(v)) - v)/norm(v)
0.007373 seconds (543 allocations: 1.733 MiB)
3.925164683252905e-16
```
# References
[1] D. Ruiz—Antolín and A. Townsend, [A nonuniform fast Fourier transform based on low rank approximation](https://doi.org/10.1137/17M1134822), *SIAM J. Sci. Comput.*, **40**:A529–A547, 2018.
[2] T. S. Gutleb, S. Olver and R. M. Slevinsky, [Polynomial and rational measure modifications of orthogonal polynomials via infinite-dimensional banded matrix factorizations](https://arxiv.org/abs/2302.08448), arXiv:2302.08448, 2023.
[3] S. Olver, R. M. Slevinsky, and A. Townsend, [Fast algorithms using orthogonal polynomials](https://doi.org/10.1017/S0962492920000045), *Acta Numerica*, **29**:573—699, 2020.
[4] R. M. Slevinsky, [Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series](https://doi.org/10.1016/j.acha.2017.11.001), *Appl. Comput. Harmon. Anal.*, **47**:585—606, 2019.
[5] R. M. Slevinsky, [Conquering the pre-computation in two-dimensional harmonic polynomial transforms](https://arxiv.org/abs/1711.07866), arXiv:1711.07866, 2017.
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | docs | 5915 | # Development Documentation
The core of [`FastTransforms.jl`](https://github.com/JuliaApproximation/FastTransforms.jl) is developed in parallel with the [C library](https://github.com/MikaelSlevinsky/FastTransforms) of the same name. Julia and C interoperability is enhanced by the [BinaryBuilder](https://github.com/JuliaPackaging/BinaryBuilder.jl) infrastructure, which provides the user a safe and seamless experience using a package in a different language.
## Why two packages?
Orthogonal polynomial transforms are performance-sensitive imperative tasks. Yet, many of Julia's rich and evolving language features are simply unnecessary for defining these computational routines. Moreover, rapid language changes in Julia (as compared to C) have been more than a perturbation to this repository in the past.
The C library generates assembly for vectorized operations such as single instruction multiple data (SIMD) that is more efficient than that generated by a compiler without human intervention. It also uses OpenMP to introduce shared memory parallelism for large tasks. Finally, calling into precompiled binaries reduces the Julia package's pre-compilation and dependencies, improving the user experience. Some of these capabilities also exist in Julia, but with C there is frankly more control over performance.
C libraries are easier to call from any other language, partly explaining why the Python package manager Spack [already supports the C library](https://spack.readthedocs.io/en/latest/package_list.html#fasttransforms) through third-party efforts.
In Julia, a parametric composite type with unrestricted type parameters is just about as big as `Any`. Such a type allows the Julia API to far exceed the C API in its ability to unify all of the orthogonal polynomial transforms and present them as linear operators. The `mutable struct FTPlan{T, N, K}`, together with `AdjointFTPlan` and `TransposeFTPlan`, are the core Julia types in this repository. Whereas `T` is understood to represent element type of the plan and `N` represents the number of leading dimensions of the array on which it operates, `K` is a mere enumeration which serves to distinguish the orthogonal polynomials at play. For example, `FTPlan{Float64, 1, LEG2CHEB}` represents the necessary pre-computations to convert 64-bit Legendre series to Chebyshev series (of the first kind). `N == 1` because Chebyshev and Legendre series are naturally represented with vectors of coefficients. However, this particular plan may operate not only on vectors but also on matrices, column-by-column.
## The developer's right to build from source
Precompiled binaries are important for users, but development in C may be greatly accelerated by coupling it with a dynamic language such as Julia. For this reason, the repository preserves the developer's right to build the C library from source by setting an environment variable to trigger the build script:
```julia
julia> ENV["FT_BUILD_FROM_SOURCE"] = "true"
"true"
(@v1.5) pkg> build FastTransforms
Building FFTW ──────────→ `~/.julia/packages/FFTW/ayqyZ/deps/build.log`
Building TimeZones ─────→ `~/.julia/packages/TimeZones/K98G0/deps/build.log`
Building FastTransforms → `~/.julia/dev/FastTransforms/deps/build.log`
julia> using FastTransforms
[ Info: Precompiling FastTransforms [057dd010-8810-581a-b7be-e3fc3b93f78c]
```
This lets the developer experiment with new features through `ccall`ing into bleeding edge source code. Customizing the build script further allows the developer to track a different branch or even a fork.
## From release to release to release
To get from a C library release to a Julia package release, the developer needs to update Yggdrasil's [build_tarballs.jl](https://github.com/JuliaPackaging/Yggdrasil/blob/master/F/FastTransforms/build_tarballs.jl) script for the new version and its 256-bit SHA. On macOS, the SHA can be found by:
```julia
shell> curl https://codeload.github.com/MikaelSlevinsky/FastTransforms/tar.gz/v0.6.2 --output FastTransforms.tar.gz
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 168k 0 168k 0 0 429k 0 --:--:-- --:--:-- --:--:-- 429k
shell> shasum -a 256 FastTransforms.tar.gz
fd00befcb0c20ba962a8744a7b9139355071ee95be70420de005b7c0f6e023aa FastTransforms.tar.gz
shell> rm -f FastTransforms.tar.gz
```
Using [SHA.jl](https://github.com/JuliaCrypto/SHA.jl), the SHA can also be found by:
```julia
shell> curl https://codeload.github.com/MikaelSlevinsky/FastTransforms/tar.gz/v0.6.2 --output FastTransforms.tar.gz
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 168k 0 168k 0 0 442k 0 --:--:-- --:--:-- --:--:-- 443k
julia> using SHA
julia> open("FastTransforms.tar.gz") do f
bytes2hex(sha256(f))
end
"fd00befcb0c20ba962a8744a7b9139355071ee95be70420de005b7c0f6e023aa"
shell> rm -f FastTransforms.tar.gz
```
Then we wait for the friendly folks at [JuliaPackaging](https://github.com/JuliaPackaging) to merge the pull request to Yggdrasil, triggering a new release of the [FastTransforms_jll.jl](https://github.com/JuliaBinaryWrappers/FastTransforms_jll.jl) meta package that stores all precompiled binaries. With this release, we update the FastTransforms.jl [Project.toml](https://github.com/JuliaApproximation/FastTransforms.jl/blob/master/Project.toml) to point to the latest release and register the new version.
Since development of Yggdrasil is quite rapid, a fork may easily become stale. Git permits the developer to forcibly make a master branch on a fork even with upstream master:
```
git fetch upstream
git checkout master
git reset --hard upstream/master
git push origin master --force
```
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"MIT"
] | 0.16.5 | 19212b55f5492ca8612034e3495dfb99d3f7229c | docs | 2106 | # FastTransforms.jl Documentation
## Introduction
[`FastTransforms.jl`](https://github.com/JuliaApproximation/FastTransforms.jl) allows the user to conveniently work with orthogonal polynomials with degrees well into the millions.
This package provides a Julia wrapper for the [C library](https://github.com/MikaelSlevinsky/FastTransforms) of the same name. Additionally, all three types of nonuniform fast Fourier transforms available, as well as the Padua transform.
## Fast orthogonal polynomial transforms
For this documentation, please see the documentation for [FastTransforms](https://github.com/MikaelSlevinsky/FastTransforms). Most transforms have separate forward and inverse plans. In some instances, however, the inverse is in the sense of least-squares, and therefore only the forward transform is planned.
## Nonuniform fast Fourier transforms
```@docs
nufft1
```
```@docs
nufft2
```
```@docs
nufft3
```
```@docs
inufft1
```
```@docs
inufft2
```
```@docs
paduatransform
```
```@docs
ipaduatransform
```
## Other Exported Methods
```@docs
gaunt
```
```@docs
paduapoints
```
```@docs
sphevaluate
```
## Internal Methods
### Miscellaneous Special Functions
```@docs
FastTransforms.half
```
```@docs
FastTransforms.two
```
```@docs
FastTransforms.δ
```
```@docs
FastTransforms.Λ
```
```@docs
FastTransforms.lambertw
```
```@docs
FastTransforms.pochhammer
```
```@docs
FastTransforms.stirlingseries
```
### Modified Chebyshev Moment-Based Quadrature
```@docs
FastTransforms.clenshawcurtisnodes
```
```@docs
FastTransforms.clenshawcurtisweights
```
```@docs
FastTransforms.fejernodes1
```
```@docs
FastTransforms.fejerweights1
```
```@docs
FastTransforms.fejernodes2
```
```@docs
FastTransforms.fejerweights2
```
```@docs
FastTransforms.chebyshevmoments1
```
```@docs
FastTransforms.chebyshevjacobimoments1
```
```@docs
FastTransforms.chebyshevlogmoments1
```
```@docs
FastTransforms.chebyshevmoments2
```
```@docs
FastTransforms.chebyshevjacobimoments2
```
```@docs
FastTransforms.chebyshevlogmoments2
```
### Elliptic
```@docs
FastTransforms.Elliptic
```
| FastTransforms | https://github.com/JuliaApproximation/FastTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.0 | 7666f49d5285ac75cf4d91cc8cc3f8c3822b9272 | code | 94 | module PowerApps
include("system_explorer_app.jl")
export run_system_explorer
end # module
| PowerApps | https://github.com/NREL-Sienna/PowerApps.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.0 | 7666f49d5285ac75cf4d91cc8cc3f8c3822b9272 | code | 13147 | # TODO: This code will likely be moved to PowerSystems once the team has customized it for
# all types.
using DataStructures
function make_component_table(
::Type{T},
sys::System;
sort_column = "Name",
) where {T<:PowerSystems.Component}
return _make_component_table(get_components(T, sys); sort_column = sort_column)
end
function make_component_table(
filter_func::Function,
::Type{T},
sys::System;
sort_column = "Name",
) where {T<:PowerSystems.Component}
return _make_component_table(
get_components(filter_func, T, sys);
sort_column = sort_column,
)
end
function _make_component_table(components; sort_column = "Name")
table = Vector{DataStructures.OrderedDict{String,Any}}()
for component in components
push!(table, get_component_table_values(component))
end
isempty(table) && return table
if !isnothing(sort_column)
if !in(sort_column, keys(table[1]))
throw(ArgumentError("$sort_column is not a column in the table"))
end
sort!(table, by = x -> x[sort_column])
end
return table
end
function get_component_table_values(component::PowerSystems.Component)
vals = DataStructures.OrderedDict{String,Any}("Name" => get_name(component))
t = typeof(component)
if hasfield(t, :bus)
vals["Bus"] = get_name(get_bus(component))
vals["Area"] = get_name(get_area(get_bus(component)))
end
vals["has_time_series"] = has_time_series(component)
return vals
end
function get_reactive_power_min_limit(component)
if isnothing(get_reactive_power_limits(component))
return 0.0
else
return get_reactive_power_limits(component).min
end
end
function get_reactive_power_max_limit(component)
if isnothing(get_reactive_power_limits(component))
return 0.0
else
return get_reactive_power_limits(component).max
end
end
function get_ramp_up_limit(component)
if isnothing(get_ramp_limits(component))
return 0.0
else
return get_ramp_limits(component).up
end
end
function get_ramp_down_limit(component)
if isnothing(get_ramp_limits(component))
return 0.0
else
return get_ramp_limits(component).down
end
end
function get_up_time_limit(component)
if isnothing(get_time_limits(component))
return 0.0
else
return get_time_limits(component).up
end
end
function get_down_time_limit(component)
if isnothing(get_time_limits(component))
return 0.0
else
return get_time_limits(component).down
end
end
function get_component_table_values(component::Bus)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"number" => get_number(component),
"bustype" => string(get_bustype(component)),
"angle" => get_angle(component),
"magnitude" => get_magnitude(component),
"base_voltage" => get_base_voltage(component),
"area" => get_name(get_area(component)),
"load_zone" => get_name(get_load_zone(component)),
)
end
function get_component_table_values(component::ThermalStandard)
data = DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"Prime Mover" => string(get_prime_mover(component)),
"Fuel" => string(get_fuel(component)),
"bus" => get_name(get_bus(component)),
"area" => get_name(get_area(get_bus(component))),
"base_power" => get_base_power(component),
"rating" => get_rating(component),
"active_power" => get_active_power(component),
"reactive_power" => get_reactive_power(component),
"Max Active Power_limits" => get_active_power_limits(component).min,
"Min Active Power_limits" => get_active_power_limits(component).max,
"Max Reactive Power_limits" => get_reactive_power_min_limit(component),
"Min Reactive Power_limits" => get_reactive_power_max_limit(component),
"Ramp Rate Up" => get_ramp_up_limit(component),
"Ramp Rate Down" => get_ramp_down_limit(component),
"Minimum Up Time" => get_up_time_limit(component),
"Minimun Down Time" => get_down_time_limit(component),
"Status" => get_status(component),
"Time at Status" => get_time_at_status(component),
"has_time_series" => has_time_series(component),
# TODO: cost data
)
return data
end
function get_component_table_values(component::RenewableDispatch)
data = DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"Prime Mover" => string(get_prime_mover(component)),
"bus" => get_name(get_bus(component)),
"area" => get_name(get_area(get_bus(component))),
"base_power" => get_base_power(component),
"rating" => get_rating(component),
"active_power" => get_active_power(component),
"reactive_power" => get_reactive_power(component),
"Max Reactive Power_limits" => get_reactive_power_min_limit(component),
"Min Reactive Power_limits" => get_reactive_power_max_limit(component),
"has_time_series" => has_time_series(component),
)
# TODO: cost data
return data
end
function get_component_table_values(component::HydroDispatch)
data = DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"Prime Mover" => string(get_prime_mover(component)),
"bus" => get_name(get_bus(component)),
"area" => get_name(get_area(get_bus(component))),
"base_power" => get_base_power(component),
"rating" => get_rating(component),
"active_power" => get_active_power(component),
"reactive_power" => get_reactive_power(component),
"Max Active Power_limits" => get_active_power_limits(component).min,
"Min Active Power_limits" => get_active_power_limits(component).max,
"Max Reactive Power_limits" => get_reactive_power_min_limit(component),
"Min Reactive Power_limits" => get_reactive_power_max_limit(component),
"Ramp Rate Up" => get_ramp_up_limit(component),
"Ramp Rate Down" => get_ramp_down_limit(component),
"Minimum Up Time" => get_up_time_limit(component),
"Minimun Down Time" => get_down_time_limit(component),
"has_time_series" => has_time_series(component),
)
# TODO: cost data
return data
end
function get_component_table_values(component::HydroEnergyReservoir)
data = DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"Prime Mover" => string(get_prime_mover(component)),
"Bus" => get_name(get_bus(component)),
"area" => get_name(get_area(get_bus(component))),
"base_power" => get_base_power(component),
"rating" => get_rating(component),
"active_power" => get_active_power(component),
"reactive_power" => get_reactive_power(component),
"Max Active Power_limits" => get_active_power_limits(component).min,
"Min Active Power_limits" => get_active_power_limits(component).max,
"Max Reactive Power_limits" => get_reactive_power_min_limit(component),
"Min Reactive Power_limits" => get_reactive_power_max_limit(component),
"Ramp Rate Up" => get_ramp_up_limit(component),
"Ramp Rate Down" => get_ramp_down_limit(component),
"Minimum Up Time" => get_up_time_limit(component),
"Minimun Down Time" => get_down_time_limit(component),
"Inflow" => get_inflow(component),
"Initial Energy" => get_initial_storage(component),
"Storage Capacity" => get_storage_capacity(component),
"Conversion Factor" => get_conversion_factor(component),
"Time at Status" => get_time_at_status(component),
"has_time_series" => has_time_series(component),
)
# TODO: cost data
return data
end
function get_component_table_values(component::GenericBattery)
data = DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"Prime Mover" => string(get_prime_mover(component)),
"Bus" => get_name(get_bus(component)),
"area" => get_name(get_area(get_bus(component))),
"base_power" => get_base_power(component),
"rating" => get_rating(component),
"active_power" => get_active_power(component),
"reactive_power" => get_reactive_power(component),
"Max Input Active Power_limits" => get_input_active_power_limits(component).min,
"Min Input Active Power_limits" => get_input_active_power_limits(component).max,
"Max Output Active Power_limits" =>
get_output_active_power_limits(component).min,
"Min Output Active Power_limits" =>
get_output_active_power_limits(component).max,
"Max Reactive Power_limits" => get_reactive_power_min_limit(component),
"Min Reactive Power_limits" => get_reactive_power_max_limit(component),
"Efficiency In" => get_efficiency(component).in,
"Efficiency Out" => get_efficiency(component).out,
"has_time_series" => has_time_series(component),
)
# TODO: cost data
return data
end
function get_component_table_values(component::ACBranch)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"active_power_flow" => get_active_power_flow(component),
"reactive_power_flow" => get_reactive_power_flow(component),
"From Bus" => get_name(get_from(get_arc(component))),
"To Bus" => get_name(get_to(get_arc(component))),
"r" => get_r(component),
"x" => get_x(component),
"b" => get_b(component),
"rate" => get_rate(component),
"angle_limits" => get_angle_limits(component),
)
end
function get_component_table_values(component::MonitoredLine)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"active_power_flow" => get_active_power_flow(component),
"reactive_power_flow" => get_reactive_power_flow(component),
"From Bus" => get_name(get_from(get_arc(component))),
"To Bus" => get_name(get_to(get_arc(component))),
"r" => get_r(component),
"x" => get_x(component),
"b" => get_b(component),
"flow_limits" => get_flow_limits(component),
"rate" => get_rate(component),
"angle_limits" => get_angle_limits(component),
)
end
function get_component_table_values(component::PhaseShiftingTransformer)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"active_power_flow" => get_active_power_flow(component),
"reactive_power_flow" => get_reactive_power_flow(component),
"From Bus" => get_name(get_from(get_arc(component))),
"To Bus" => get_name(get_to(get_arc(component))),
"r" => get_r(component),
"x" => get_x(component),
"primary_shunt" => get_primary_shunt(component),
"tap" => get_tap(component),
"α" => get_α(component),
"b" => get_b(component),
"rate" => get_rate(component),
)
end
function get_component_table_values(component::Union{TapTransformer,Transformer2W})
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"available" => get_available(component),
"active_power_flow" => get_active_power_flow(component),
"reactive_power_flow" => get_reactive_power_flow(component),
"From Bus" => get_name(get_from(get_arc(component))),
"To Bus" => get_name(get_to(get_arc(component))),
"r" => get_r(component),
"x" => get_x(component),
"primary_shunt" => get_primary_shunt(component),
"tap" => get_tap(component),
"b" => get_b(component),
"rate" => get_rate(component),
)
end
function get_component_table_values(component::Reserve)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"Available" => get_available(component),
"Time frame" => get_time_frame(component),
"Requirement" => get_requirement(component),
)
end
function get_component_table_values(component::StaticLoad)
return DataStructures.OrderedDict{String,Any}(
"Name" => get_name(component),
"Available" => get_available(component),
"Bus" => get_name(get_bus(component)),
"Area" => get_name(get_area(get_bus(component))),
"Active_power" => get_active_power(component),
"Reactive_power" => get_reactive_power(component),
"Max_active_power" => get_max_active_power(component),
"Max_reactive_power" => get_max_reactive_power(component),
)
end
| PowerApps | https://github.com/NREL-Sienna/PowerApps.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.0 | 7666f49d5285ac75cf4d91cc8cc3f8c3822b9272 | code | 45052 | # TODO:
# 3. add node size options on maps of none(default), load, generation capacity,
import Dates
import TimeSeries
import UUIDs
using Dash
using DataFrames
import InfrastructureSystems
using PowerSystems
import PowerSystemsMaps
import Plots
import PlotlyJS
using PowerApps
const IS = InfrastructureSystems
const PSY = PowerSystems
const DEFAULT_UNITS = "unknown"
include("utils.jl")
include("component_tables.jl")
mutable struct SystemData
system::Union{Nothing,System}
end
SystemData() = SystemData(nothing)
get_system(data::SystemData) = data.system
function get_component_table(sys, component_type)
return make_component_table(getproperty(PowerSystems, Symbol(component_type)), sys)
end
function get_default_component_type(sys)
return string(nameof(typeof(first(get_components(Generator, sys)))))
end
function get_component_type_options(sys)
component_types = [string(nameof(x)) for x in get_existing_component_types(sys)]
sort!(component_types)
return [Dict("label" => x, "value" => x) for x in component_types]
end
function get_system_units(sys)
return lowercase(get_units_base(sys))
end
function make_datatable(sys, component_type)
components = get_component_table(sys, component_type)
columns = make_table_columns(components)
return (
dash_datatable(
id = "components_datatable",
columns = columns,
data = components,
editable = false,
filter_action = "native",
sort_action = "native",
row_selectable = "multi",
selected_rows = [],
style_table = Dict("height" => 400),
style_data = Dict(
"width" => "100px",
"minWidth" => "100px",
"maxWidth" => "100px",
"overflow" => "hidden",
"textOverflow" => "ellipsis",
),
),
components,
)
end
system_tab = dcc_tab(
label = "System",
children = [
html_div(
[
html_div(
[
html_br(),
html_h1("System View"),
html_div([
dcc_input(
id = "system_text",
value = "Enter the path of a system file",
type = "text",
style = Dict("width" => "50%", "margin-left" => "10px"),
),
html_button(
"Load System",
id = "load_button",
n_clicks = 0,
style = Dict("margin-left" => "10px"),
),
]),
html_br(),
html_div([
html_div(
[
html_div(
[
html_h5("Loaded system"),
dcc_textarea(
readOnly = true,
value = "None",
style = Dict(
"width" => "100%",
"height" => 100,
"margin-left" => "10px",
),
id = "load_description",
),
],
className = "column",
),
html_div(
[
html_h5("Select units base"),
dcc_radioitems(
id = "units_radio",
options = [
(
label = DEFAULT_UNITS,
value = DEFAULT_UNITS,
disabled = true,
),
(
label = "device_base",
value = "device_base",
),
(
label = "natural_units",
value = "natural_units",
),
(
label = "system_base",
value = "system_base",
),
],
value = DEFAULT_UNITS,
style = Dict("margin-left" => "3%"),
),
],
className = "column",
),
],
className = "row",
),
]),
html_div([
dcc_loading(
id = "loading_system",
type = "default",
children = [html_div(id = "loading_system_output")],
),
]),
html_br(),
html_div(
[
html_div(
[
html_h5("Selet a component type"),
dcc_radioitems(
id = "component_type_radio",
options = [],
value = "",
style = Dict("margin-left" => "3%"),
),
],
className = "column",
),
html_div(
[
html_h5("Number of components: "),
dcc_input(
id = "num_components_text",
value = "0",
type = "text",
readOnly = true,
style = Dict("margin-left" => "3%"),
),
],
className = "column",
),
],
className = "row",
),
],
className = "column",
),
html_div(
[
html_div([
html_br(),
html_img(src = joinpath("assets", "logo.png"), height = "250"),
],),
html_div([
html_button(
dcc_link(
children = ["PowerSystems.jl Docs"],
href = "https://nrel-siip.github.io/PowerSystems.jl/stable/",
target = "PowerSystems.jl Docs",
),
id = "docs_button",
n_clicks = 0,
style = Dict("margin-top" => "10px"),
),
]),
],
className = "column",
style = Dict("textAlign" => "center"),
),
],
className = "row",
),
html_br(),
# TODO: delay displaying this table until the system is loaded
html_h3("Components Table"),
html_div(
[
dash_datatable(id = "components_datatable"),
html_div(id = "components_datatable_container"),
],
style = Dict("color" => "black"),
),
],
)
component_tab = dcc_tab(
label = "Time Series",
children = [
html_div(
[
html_div(
[
html_br(),
html_h1("Time Series View"),
html_h4("Selected component type:"),
html_div([
dcc_input(
readOnly = true,
value = "None",
id = "selected_component_type",
style = Dict("width" => "30%", "margin-left" => "10px"),
),
],),
],
className = "column",
),
html_div(
[
html_div([
html_br(),
html_img(src = joinpath("assets", "logo.png"), height = "75"),
],),
html_div([
html_button(
dcc_link(
children = ["PowerSystems.jl Docs"],
href = "https://nrel-siip.github.io/PowerSystems.jl/stable/",
target = "PowerSystems.jl Docs",
),
id = "another_docs_button",
n_clicks = 0,
style = Dict("margin-top" => "10px"),
),
]),
],
className = "column",
style = Dict("textAlign" => "center"),
),
],
className = "row",
),
html_br(),
html_div([
html_h4("Select time series:"),
html_div(
[
dash_datatable(id = "sts_datatable"),
html_div(id = "sts_datatable_container"),
],
style = Dict("color" => "black"),
),
html_br(),
html_button("Plot SingleTimeSeries", id = "plot_sts_button", n_clicks = 0),
dcc_graph(id = "sts_plot"),
html_hr(),
html_div(
[
dash_datatable(id = "deterministic_datatable"),
html_div(id = "deterministic_datatable_container"),
],
style = Dict("color" => "black"),
),
html_div([
dcc_input(
id = "dts_step",
value = 1,
type = "number",
style = Dict("width" => "5%"),
),
html_button(
"Plot Deterministic TimeSeries",
id = "plot_dts_button",
n_clicks = 0,
style = Dict("margin-left" => "10px"),
),
]),
dcc_graph(id = "dts_plot"),
]),
],
)
map_tab = dcc_tab(
label = "Maps",
children = [
html_div(
[
html_div(
[
html_br(),
html_h1("Map View"),
html_div([
dcc_input(
id = "shp_text",
value = "Enter the path of a shp file (optional)",
type = "text",
style = Dict("width" => "50%", "margin-left" => "10px"),
),
html_button(
"Load Shapefile",
id = "load_shp_button",
n_clicks = 0,
style = Dict("margin-left" => "10px"),
),
]),
html_br(),
html_div(
[
html_div(
[
html_h3("Bus Style"),
html_div(
[
html_h4(
"Hover:",
style = Dict("margin-left" => "5px"),
),
dcc_radioitems(
id = "bus_hover_radio",
options = [
(label = "name", value = "name"),
(label = "full", value = "full"),
(label = "none", value = "none"),
],
value = "name",
style = Dict(
"margin-left" => "3%",
"margin-top" => "15px",
),
labelStyle = Dict(
"display" => "inline-block",
),
),
],
className = "row",
),
html_div(
[
html_h4(
"Color:",
style = Dict("margin-left" => "5px"),
),
dcc_radioitems(
id = "bus_color_radio",
options = [
(label = "area", value = "Area"),
(
label = "load_zone",
value = "LoadZone",
),
(
label = "bustype",
value = "bustype",
),
(
label = "base_voltage",
value = "base_voltage",
),
],
value = "Area",
style = Dict(
"margin-left" => "3%",
"margin-top" => "15px",
),
labelStyle = Dict(
"display" => "inline-block",
),
),
],
className = "row",
),
html_div(
[
html_div(
[
html_h4(
"α:",
style = Dict(
"textAlign" => "right",
),
),
],
className = "column",
),
html_div(
[
html_br(),
dcc_slider(
id = "bus_alpha",
min = 0.0,
max = 1.0,
step = 0.01,
value = 0.9,
dots = false,
),
],
className = "column",
),
],
className = "row",
),
html_div(
[
html_h4(
"Size:",
style = Dict("margin-left" => "5px"),
),
dcc_radioitems(
id = "bus_size_scale",
options = [
(
label = "Generator",
value = "Generator",
),
(
label = "ThermalGen",
value = "ThermalGen",
),
(
label = "RenewableGen",
value = "RenewableGen",
),
(
label = "StaticLoad",
value = "StaticLoad",
),
(
label = "ControllableLoad",
value = "ControllableLoad",
),
(
label = "base_voltage",
value = "base_voltage",
),
(label = "none", value = "none"),
],
value = "none",
style = Dict(
"margin-left" => "3%",
"margin-top" => "15px",
),
labelStyle = Dict(
"display" => "inline-block",
),
),
],
className = "row",
),
dcc_slider(
id = "bus_size",
min = 0.0,
max = 15.0,
step = 0.1,
value = 2.0,
dots = false,
tooltip = Dict(
"always_visible" => true,
"placement" => "bottom",
),
),
],
className = "two-thirds.column",
),
html_div(
[
html_h3("Line Style"),
html_div(
[
html_h4(
"Color:",
style = Dict("margin-left" => "5px"),
),
dcc_radioitems(
id = "line_color_radio",
options = [
(label = "blue", value = "blue"),
(label = "red", value = "red"),
(label = "green", value = "green"),
(label = "white", value = "white"),
],
value = "blue",
style = Dict(
"margin-left" => "3%",
"margin-top" => "15px",
),
labelStyle = Dict(
"display" => "inline-block",
),
),
],
className = "row",
),
html_div(
[
html_div(
[
html_h4(
"α:",
style = Dict(
"textAlign" => "right",
),
),
],
className = "column",
),
html_div(
[
html_br(),
dcc_slider(
id = "line_alpha",
min = 0.0,
max = 1.0,
step = 0.01,
value = 0.9,
dots = false,
),
],
className = "column",
),
],
className = "row",
),
html_h4(
"Width:",
style = Dict("margin-left" => "5px"),
),
dcc_slider(
id = "line_size",
min = 0.0,
max = 5.0,
step = 0.1,
value = 1.0,
dots = false,
tooltip = Dict(
"always_visible" => true,
"placement" => "bottom",
),
),
],
className = "column",
),
],
className = "row",
),
],
className = "one-quarter.column",
),
html_div(
[
html_div([
html_br(),
html_img(src = joinpath("assets", "logo.png"), height = "75"),
],),
html_div([
html_button(
dcc_link(
children = ["PowerSystemsMaps.jl"],
href = "https://github.com/nrel-siip/powersystemsmaps.jl",
target = "PowerSystemsMaps.jl",
),
id = "maps_docs_button",
n_clicks = 0,
style = Dict("margin-top" => "10px"),
),
]),
html_br(),
html_button(
"Plot Map",
id = "plot_map_button",
n_clicks = 0,
style = Dict("margin-top" => "30px"),
),
],
className = "column",
style = Dict("textAlign" => "center", "width" => "25vw"),
),
],
className = "row",
),
html_div([
html_hr(),
dcc_graph(
id = "map_plot",
style = Dict("textAlign" => "center", "height" => "75vh"),
),
]),
],
)
# Note: This is only setup to support one worker. We would need to implement a backend
# process that manages a store and provides responses to each Dash worker. The code in this
# file would not be able to use any PSY functionality. There would have to be API calls
# to retrieve the data from the backend process.
g_data = SystemData()
get_system() = get_system(g_data)
app = dash(assets_folder = joinpath(pkgdir(PowerApps), "src", "assets"))
app.layout = html_div() do
html_div([
html_div(
id = "app-page-header",
children = [
html_a(
id = "dashbio-logo",
href = "https://www.nrel.gov/",
target = "_blank",
children = [
html_img(src = joinpath("assets", "NREL-logo-green-tag.png")),
],
),
html_h2("PowerApps.jl"),
html_a(
id = "gh-link",
children = ["View on GitHub"],
href = "https://github.com/NREL-SIIP/PowerApps.jl",
target = "_blank",
style = Dict("color" => "#d6d6d6", "border" => "solid 1px #d6d6d6"),
),
html_img(src = joinpath("assets", "GitHub-Mark-Light-64px.png")),
],
className = "app-page-header",
),
html_div([
dcc_tabs(
[
dcc_tab(
label = "System",
children = [system_tab],
className = "custom-tab",
selected_className = "custom-tab--selected",
),
dcc_tab(
label = "Time Series",
children = [component_tab],
className = "custom-tab",
selected_className = "custom-tab--selected",
),
dcc_tab(
label = "Map",
children = [map_tab],
className = "custom-tab",
selected_className = "custom-tab--selected",
),
],
parent_className = "custom-tabs",
),
]),
])
end
callback!(
app,
Output("loading_system_output", "children"),
Output("load_description", "value"),
Output("units_radio", "value"),
Output("component_type_radio", "options"),
Input("loading_system", "children"),
Input("load_button", "n_clicks"),
State("system_text", "value"),
State("load_description", "value"),
) do loading_system, n_clicks, system_path, load_description
n_clicks <= 0 && throw(PreventUpdate())
system = System(system_path, time_series_read_only = true)
g_data.system = system
return (
loading_system,
"$system_path\n$(summary(system))",
get_system_units(system),
get_component_type_options(system),
)
end
callback!(
app,
Output("component_type_radio", "value"),
Input("component_type_radio", "options"),
) do available_options
isnothing(get_system()) && throw(PreventUpdate())
return get_default_component_type(get_system())
end
callback!(
app,
Output("components_datatable_container", "children"),
Output("num_components_text", "value"),
Input("units_radio", "value"),
Input("component_type_radio", "value"),
) do units, component_type
(units == "" || component_type == "") && throw(PreventUpdate())
system = get_system()
@assert !isnothing(system)
@assert units != DEFAULT_UNITS
if get_system_units(system) != units
set_units_base_system!(system, units)
end
table, components = make_datatable(system, component_type)
return table, string(length(components))
end
callback!(
app,
Output("selected_component_type", "value"),
Output("sts_datatable_container", "children"),
Output("deterministic_datatable_container", "children"),
Input("components_datatable", "derived_viewport_selected_rows"),
Input("components_datatable", "derived_viewport_data"),
State("component_type_radio", "value"),
) do row_indexes, row_data, component_type
if (isnothing(row_indexes) || isempty(row_indexes) || isnothing(row_indexes[1]))
throw(PreventUpdate())
end
static_time_series = []
deterministic_time_series = []
for i in row_indexes
row_index = i + 1 # julia is 1-based
row = row_data[row_index]
component_name = row["name"]
type = getproperty(PowerSystems, Symbol(component_type))
component = get_component(type, get_system(), component_name)
component_text = "$component_type $component_name"
if has_time_series(component)
for metadata in IS.list_time_series_metadata(component)
ts_type = IS.time_series_metadata_to_data(metadata)
if ts_type <: StaticTimeSeries
push!(
static_time_series,
OrderedDict(
"component_name" => component_name,
"type" => string(nameof(ts_type)),
"name" => get_name(metadata),
"resolution" => string(Dates.Minute(get_resolution(metadata))),
"initial_timestamp" =>
string(IS.get_initial_timestamp(metadata)),
"length" => IS.get_length(metadata),
"scaling_factor_multiplier" =>
string(IS.get_scaling_factor_multiplier(metadata)),
),
)
elseif ts_type <: AbstractDeterministic
push!(
deterministic_time_series,
OrderedDict(
"component_name" => component_name,
"type" => string(nameof(ts_type)),
"name" => get_name(metadata),
"resolution" => string(Dates.Minute(get_resolution(metadata))),
"initial_timestamp" =>
string(IS.get_initial_timestamp(metadata)),
"interval" => string(IS.get_horizon(metadata)),
"count" => IS.get_count(metadata),
"horizon" => IS.get_horizon(metadata),
"scaling_factor_multiplier" =>
string(IS.get_scaling_factor_multiplier(metadata)),
),
)
end
end
sort!(static_time_series, by = x -> x["name"])
end
end
sts_columns = make_table_columns(static_time_series)
style_data = Dict(
"width" => "100px",
"minWidth" => "100px",
"maxWidth" => "100px",
"overflow" => "hidden",
"textOverflow" => "ellipsis",
)
sts_table = dash_datatable(
id = "sts_datatable",
columns = sts_columns,
data = static_time_series,
editable = false,
filter_action = "native",
sort_action = "native",
row_selectable = isempty(static_time_series) ? nothing : "multi",
selected_rows = [],
style_data = style_data,
)
deterministic_columns = make_table_columns(deterministic_time_series)
deterministic_table = dash_datatable(
id = "deterministic_datatable",
columns = deterministic_columns,
data = deterministic_time_series,
editable = false,
filter_action = "native",
sort_action = "native",
row_selectable = isempty(deterministic_time_series) ? nothing : "multi",
selected_rows = [],
style_data = style_data,
)
return component_type, sts_table, deterministic_table
end
function plot_ts(row_data, row_indexes, component_type, step = 1)
traces = []
for i in row_indexes
row_index = i + 1 # julia is 1-based
row = row_data[row_index]
ts_name = row["name"]
c_name = row["component_name"]
ts_type = getproperty(PowerSystems, Symbol(row["type"]))
c_type = getproperty(PowerSystems, Symbol(component_type))
component = get_component(c_type, get_system(), c_name)
ts = get_time_series(ts_type, component, ts_name)
start_time =
ts isa AbstractDeterministic ? get_forecast_initial_times(get_system())[step] :
nothing
ta = get_time_series_array(component, ts, start_time)
trace = PlotlyJS.scatter(;
x = TimeSeries.timestamp(ta),
y = TimeSeries.values(ta),
mode = "lines+markers",
name = c_name,
)
push!(traces, trace)
end
layout = PlotlyJS.Layout(;
title = "$component_type TimeSeries",
xaxis_title = "Time",
yaxis_title = "val",
)
return PlotlyJS.plot([x for x in traces], layout)
end
callback!(
app,
Output("sts_plot", "figure"),
Input("plot_sts_button", "n_clicks"),
Input("sts_datatable", "derived_viewport_selected_rows"),
Input("sts_datatable", "derived_viewport_data"),
State("selected_component_type", "value"),
) do n_clicks, row_indexes, row_data, component_type
ctx = callback_context()
if n_clicks < 1 ||
length(ctx.triggered) == 0 ||
ctx.triggered[1].prop_id != "plot_sts_button.n_clicks" ||
isnothing(row_indexes) ||
isempty(row_indexes)
throw(PreventUpdate())
end
return plot_ts(row_data, row_indexes, component_type)
end
callback!(
app,
Output("dts_plot", "figure"),
Input("plot_dts_button", "n_clicks"),
Input("deterministic_datatable", "derived_viewport_selected_rows"),
Input("deterministic_datatable", "derived_viewport_data"),
Input("dts_step", "value"),
State("selected_component_type", "value"),
) do n_clicks, row_indexes, row_data, step, component_type
ctx = callback_context()
if n_clicks < 1 ||
length(ctx.triggered) == 0 ||
ctx.triggered[1].prop_id != "plot_dts_button.n_clicks" ||
isnothing(row_indexes) ||
isempty(row_indexes)
throw(PreventUpdate())
end
return plot_ts(row_data, row_indexes, component_type, step)
end
function plotlyjs_syncplot(plt::Plots.Plot{Plots.PlotlyJSBackend})
plt[:overwrite_figure] && Plots.closeall()
plt.o = PlotlyJS.plot()
traces = PlotlyJS.GenericTrace[]
for series_dict in Plots.plotly_series(plt)
filter!(p -> !(isa(last(p), Number) && isnan(last(p))), series_dict)
plotly_type = pop!(series_dict, :type)
series_dict[:transpose] = false
push!(traces, PlotlyJS.GenericTrace(plotly_type; series_dict...))
end
PlotlyJS.addtraces!(plt.o, traces...)
layout = Dict([
p for p in Plots.plotly_layout(plt) if first(p) ∉ [:xaxis, :yaxis, :height, :width]
])
layout[:xaxis_visible] = false
layout[:yaxis_visible] = false
PlotlyJS.relayout!(plt.o, layout)
return plt.o
end
function name_components(comp, hover)
if hover == "name"
names = get_name.(comp)
elseif hover == "full"
names = string.(comp)
else
names = ["" for c in comp]
end
return names
end
callback!(
app,
Output("map_plot", "figure"),
Input("plot_map_button", "n_clicks"),
Input("load_shp_button", "n_clicks"),
Input("bus_hover_radio", "value"),
Input("bus_color_radio", "value"),
Input("bus_alpha", "value"),
Input("bus_size_scale", "value"),
Input("bus_size", "value"),
Input("line_color_radio", "value"),
Input("line_alpha", "value"),
Input("line_size", "value"),
State("shp_text", "value"),
) do n_clicks,
n_shp_clicks,
bus_hover,
color_field,
bus_alpha,
bus_scale,
bus_size,
line_color,
line_alpha,
line_size,
shp_txt
n_clicks < 1 && throw(PreventUpdate())
if n_shp_clicks > 0
shp_path = shp_txt
else
shp_path = joinpath(
pkgdir(PowerApps),
"src",
"assets",
"world-administrative-boundaries",
"world-administrative-boundaries.shp",
)
end
if endswith(shp_path, ".shp")
# load a shapefile
shp = PowerSystemsMaps.Shapefile.shapes(PowerSystemsMaps.Shapefile.Table(shp_path))
shp = PowerSystemsMaps.lonlat_to_webmercator(shp) #adjust coordinates
# plot a map from shapefile
p = Plots.plot(
shp,
fillcolor = "grey",
background_color = "#1E1E1E",
linecolor = "darkgrey",
axis = nothing,
grid = false,
border = :none,
label = "",
legend_font_color = :red,
)
else
p = Plots.plot(background_color = "black", axis = nothing, border = :none)
end
if !isnothing(get_system())
system = get_system()
c =
color_field ∈ ["Area", "LoadZone"] ?
IS.get_type_from_strings(PSY, color_field) : Symbol(color_field)
buses = get_components(Bus, system)
node_hover_str = name_components(buses, bus_hover)
if bus_scale == "base_voltage"
node_size = getfield.(buses, :base_voltage)
elseif bus_scale == "none"
node_size = ones(length(buses))
else
category = IS.get_type_from_strings(PSY, bus_scale)
node_size = zeros(length(buses))
for (ix, bus) in enumerate(buses)
injectors = get_components(
x -> get_available(x) && get_bus(x) == bus,
category,
system,
)
isempty(injectors) && continue
node_size[ix] = sum(get_max_active_power.(injectors))
end
end
g = PowerSystemsMaps.make_graph(system, K = 0.01, color_by = c)
p = PowerSystemsMaps.plot_net!(
p,
g,
nodesize = node_size .* bus_size,
nodehover = node_hover_str,
linecolor = line_color,
linewidth = line_size,
linealpha = line_alpha,
nodealpha = bus_alpha,
lines = true,
shownodelegend = true,
)
end
plotlyjs_syncplot(p)
Plots.backend_object(p)
end
function run_system_explorer(; port = 8050)
@info("Navigate browser to: http://0.0.0.0:$port")
if !isnothing(get(ENV, "SIIP_DEBUG", nothing))
run_server(app, "0.0.0.0", port, debug = true, dev_tools_hot_reload = true)
else
run_server(app, "0.0.0.0", port)
end
end
if abspath(PROGRAM_FILE) == @__FILE__
run_system_explorer()
end
| PowerApps | https://github.com/NREL-Sienna/PowerApps.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.0 | 7666f49d5285ac75cf4d91cc8cc3f8c3822b9272 | code | 713 | make_widget_options(items) = [Dict("label" => x, "value" => x) for x in items]
function make_table_columns(rows)
isempty(rows) && return []
columns = []
for (name, val) in first(rows)
if val isa AbstractString
type = "text"
elseif val isa Number
type = "numeric"
else
error("Unsupported type: $(val): $(typeof(val))")
end
push!(columns, Dict("name" => name, "id" => name, "type" => type))
end
return columns
end
function insert_json_text_in_markdown(json_text)
return """
```json
$json_text
```
"""
end
get_json_text_from_markdown(x) = strip(replace(replace(x, "```json" => ""), "```" => ""))
| PowerApps | https://github.com/NREL-Sienna/PowerApps.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.0 | 7666f49d5285ac75cf4d91cc8cc3f8c3822b9272 | docs | 2011 | # PowerApps.jl
The `PowerApps.jl` package provides tools to view and manage systems created with
[PowerSystems.jl](https://github.com/NREL-SIIP/PowerSystems.jl) in a web app interface like the one shown here:

## Usage
```julia
julia> ]add PowerApps
```
### PowerSystems Explorer
This application allows users to browse PowerSystems components and time series data in a web UI
via Plotly Dash. Here's how to start it:
```julia
julia> using PowerApps
julia> run_system_explorer()
[ Info: Navigate browser to: http://0.0.0.0:8050
[ Info: Listening on: 0.0.0.0:8050
```
Open your browser to the IP address and port listed. In this case: `http://0.0.0.0:8050`.
The System Explorer app will appear with three tabs:
- System: enter a path to a raw data file or serialized JSON and load the system.
Component data can be explored by type, and can be sorted and filtered.
- Time Series: time series data for components selected on the "System" tab can be viewed
and visualized
- Maps: a shapefile can be loaded (optional), and nodes (`Bus`) and `Branch`s can be plotted.
Several configuration options provide opportunities to visualize the geo-spatial data.
*note: geospatial layouts are significantly more useful when "latitude" and "longitude" is defined
in the `Bus.ext` fields. Without bus coordinates, an automatic layout will be applied*
## Developers
Consult https://dash.plotly.com/julia for help extending the UI.
Set the environment variable `SIIP_DEBUG` to enable hot-reloading of the UI.
Mac or Linux
```
$ export SIIP_DEBUG=1
# or
$ SIIP_DEBUG=1 julia --project src/system_explorer_app.jl
```
Windows PowerShell
```
$Env:SIIP_DEBUG = "1"
```
## License
PowerApps.jl is released under a BSD [license](https://github.com/NREL/PowerApps.jl/blob/master/LICENSE).
PowerApps.jl has been developed as part of the Scalable Integrated Infrastructure Planning (SIIP)
initiative at the U.S. Department of Energy's National Renewable Energy Laboratory ([NREL](https://www.nrel.gov/)).
| PowerApps | https://github.com/NREL-Sienna/PowerApps.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 3107 | using LaTeXStrings
using JLD
d = load("benchmarks/data/permanents_bench.jld")
# Julia vs Matlab vs Python
ryser_jl = [mean(d["permanents_benchmarkGroup"]["ryser-jl"]["n=$n"]).time * 10^(-9) for n in 1:30]
glynn_jl = [mean(d["permanents_benchmarkGroup"]["glynn-jl"]["n=$n"]).time * 10^(-9) for n in 1:30]
f = open("benchmarks/thewalrus_data.txt")
f = readlines(f)
the_walrus_data = map(e->parse(Float64,e), f)
f = open("benchmarks/glynn-pcvl.txt")
f = readlines(f)
glynn_pcvl = map(e->parse(Float64,e), f)
f = open("benchmarks/ryser4-pcvl.txt")
f = readlines(f)
ryser4_pcvl = map(e->parse(Float64,e), f)
fig = plot(xlabel="Matrix size n", ylabel="log(Time) (s)", yaxis=:log, legend=:bottomright, dpi=300)
scatter!(the_walrus_data, marker=3, label="thewalrus", dpi=300)
scatter!(ryser_jl, marker=3, label="ryser-jl", dpi=300)
scatter!(glynn_jl, marker=3, label="glynn-jl", dpi=300)
scatter!(glynn_pcvl, marker=3, label="glynn-pcvl", dpi=300)
scatter!(ryser4_pcvl, marker=3, label="ryser-4-pcvl", dpi=300)
savefig(fig, "docs/src/benchmarks/bench_perm.png")
# f = open("data_python.txt")
# f = readlines(f)
# python_data = split(f[1], " ")
# python_data = map(e->parse(Float64,e), python_data)
#
# f = open("data_matlab.txt")
# f = readlines(f)
# matlab_data = split(f[1], " ")
# matlab_data = map(e->parse(Float64,e), matlab_data)
#
# perm_fig = plot(xlabel="n", ylabel="time (s)", legend=:topleft, dpi=300)
# scatter!(15:25, data_ryser, label="Julia", dpi=300)
# scatter!(15:25, python_data, label="python", dpi=300)
# scatter!(15:25, matlab_data, label="Matlab", dpi=300)
# savefig(perm_fig, "docs/src/benchmarks/compute_perm.png")
suite_sampler = BenchmarkGroup()
suite_sampler["cliffords_sampler"] = BenchmarkGroup(["string"])
suite_sampler["noisy_sampler"] = BenchmarkGroup(["string"])
for n in 1:30
interf = Fourier(n)
input = Input{Bosonic}(first_modes(n,n))
suite_sampler["cliffords_sampler"]["n=$n"] = @benchmarkable cliffords_sampler(input=$input, interf=$interf)
input = Input{OneParameterInterpolation}(first_modes(n,n), 0.976)
suite_sampler["noisy_sampler"]["n=$n,reflec=0.755"] = @benchmarkable noisy_sampler(input=$input, reflectivity=0.755, interf=$interf)
end
res = run(suite_sampler, verbose=true, seconds = 1)
data_bosonic = []
data_noisy = []
for j in 1:30
mean_bosonic = mean(res["cliffords_sampler"]["n=$j"])
push!(data_bosonic, (mean_bosonic.time)/10^9)
mean_noisy = mean(res["noisy_sampler"]["n=$j,reflec=0.755"])
push!(data_noisy, (mean_noisy.time)/10^9)
end
save("benchmarks/samplers.jld", "samplers", res)
d = load("benchmarks/samplers.jld")
data_bosonic = [mean(d["samplers"]["cliffords_sampler"]["n=$n"]).time * 10^(-9) for n in 1:30]
data_noisy = [mean(d["samplers"]["noisy_sampler"]["n=$n,reflec=0.755"]).time * 10^(-9) for n in 1:30]
fig_samp = plot(xlabel="n", ylabel="time (s)", yaxis=:log, legend=:topleft, dpi=300)
scatter!(2:30, data_bosonic, label="cliffords sampler", dpi=300, marker=2)
scatter!(2:30, data_noisy, label=L"noisy sampler, $η=0.755", dpi=300, marker=2)
savefig(fig_samp, "docs/src/benchmarks/sampler.png")
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 3225 | using LaTeXStrings
using JLD
using BenchmarkTools
using Plots
push!(LOAD_PATH, "./benchmarks")
d = load("benchmarks/data/permanents_bench.jld")
ryser_jl = [mean(d["permanents_benchmarkGroup"]["ryser-jl"]["n=$n"]).time * 10^(-9) for n in 1:30]
glynn_jl = [mean(d["permanents_benchmarkGroup"]["glynn-jl"]["n=$n"]).time * 10^(-9) for n in 1:30]
f = open("benchmarks/data/data_python.txt")
f = readlines(f)
python_data = map(e -> parse(Float64,e), f)
python_data = vcat(zeros(14), python_data)
f = open("benchmarks/data/data_matlab.txt")
f = readlines(f)
matlab_data = map(e -> parse(Float64,e), f)
matlab_data = vcat(zeros(14), matlab_data)
fig = plot(xlabel=L"Matrix size $n$",
ylabel=L"$log_{10}($Time$)$ (s)",
legend=:topleft,
yaxis =:log10,
xlims = (14.5,25.5),
xticks = 14:1:26,
ylim=[10^(-4),600],
# yticks = 10^(-4):600,
yminorticks = 5,
yminorgrid=true,
dpi=800)
plot!(ryser_jl, markershape=:+, label="ryser-jl", dpi=800)
scatter!(python_data, label="ryser-py", dpi=800)
scatter!(matlab_data, label="ryser-m", dpi=800)
savefig("docs/publication/package/images/permanents_bench1.png")
f = open("benchmarks/data/thewalrus_data.txt")
f = readlines(f)
the_walrus_data = map(e->parse(Float64,e), f)
f = open("benchmarks/data/glynn-pcvl.txt")
f = readlines(f)
glynn_pcvl = map(e->parse(Float64,e), f)
f = open("benchmarks/data/ryser4-pcvl.txt")
f = readlines(f)
ryser4_pcvl = map(e->parse(Float64,e), f)
fig = plot(ylabel=L"$log_{10}($Time$)$ (s)",
legend=:topleft,
yaxis =:log10,
xlims = (0.5,30.5),
xticks = 0:5:30,
ylim=[10^(-7),600],
# yticks = 10^(-4):600,
yminorticks = 5,
yminorgrid=true,
dpi=800)
plot!(ryser_jl, markershape=:+, label="ryser-jl", dpi=800)
scatter!(the_walrus_data, markershape=:utriangle, marker=3, label="thewalrus", markerstrokewidth=0, dpi=800)
scatter!(glynn_pcvl,markershape=:star4, marker=3, label="glynn-pcvl", markerstrokewidth=0, dpi=800)
scatter!(ryser4_pcvl, marker=3, label="ryser-4-pcvl", markerstrokewidth=0, dpi=800)
d = load("benchmarks/data/samplers_1.jld")
data_1 = [mean(d["sampler1"]["n=$n"]).time * 10^(-9) for n in 1:30]
d = load("benchmarks/data/samplers_4.jld")
data_4 = [mean(d["sampler4"]["n=$n"]).time * 10^(-9) for n in 1:30]
d = load("benchmarks/data/samplers_8.jld")
data_8 = [mean(d["sampler8"]["n=$n"]).time * 10^(-9) for n in 1:30]
f = open("benchmarks/data/cliffords-pcvl.txt")
f = readlines(f)
cliffords_pcvl = map(e->parse(Float64,e), f)
fig_samp = plot(xlabel=L"Matrix size $n$",
ylabel=L"$log_{10}($Time$)$ (s)",
legend=:topleft,
yaxis =:log10,
xlims = (0.5,30.5),
xticks = 0:5:30,
ylim=[10^(-7),600],
# yticks = 10^(-4):600,
yminorticks = 5,
yminorgrid=true,
dpi=800)
plot!(data_1, markershape=:+, label="clifford's-jl-1", dpi=800)
plot!(data_4, markershape=:+, label="clifford's-jl-4", dpi=800)
plot!(data_8, markershape=:+, label="clifford's-jl-8", dpi=800)
scatter!(cliffords_pcvl, label="clifford's-pcvl", markerstrokewidth=0, markersize=3, dpi=800)
plot(fig, fig_samp, layout= grid(2,1, heights=[0.5,0.5], widths=[0.5,0.5]), title=["(a)" "(b)"])
plot!(size=(850,900))
savefig("docs/publication/package/images/exist_soft.png")
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 928 | using BosonSampling
using BenchmarkTools
using BenchmarkPlots, StatsPlots
using JLD
push!(LOAD_PATH, "./benchmarks")
run(`python ./benchmarks/permanents_benchmarks/thewalrus_perm.py`)
run(`python ./benchmarks/permanents_benchmarks/pcvl_perm.py`)
run(`python ./benchmarks/permanents_benchmarks/compute_perm.py`)
BenchmarkTools.DEFAULT_PARAMETERS.samples = 1000
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 1
BenchmarkTools.DEFAULT_PARAMETERS.evals = 5
suite_permanent = BenchmarkGroup(["string"])
suite_permanent["ryser-jl"] = BenchmarkGroup(["string"])
suite_permanent["glynn-jl"] = BenchmarkGroup(["string"])
for n in 1:30
A = RandHaar(n)
suite_permanent["ryser-jl"]["n=$n"] = @benchmarkable ryser($A.U)
suite_permanent["glynn-jl"]["n=$n"] = @benchmarkable fast_glynn_perm($A.U)
end
res = run(suite_permanent, verbose=true, seconds=1)
save("benchmarks/data/permanents_bench.jld", "permanents_benchmarkGroup",res)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 1360 | using BosonSampling
using BenchmarkTools
using BenchmarkPlots, StatsPlots
using JLD
push!(LOAD_PATH, "./benchmarks/")
run(`python ./benchmarks/sampler_benchmarks/sampler_pcvl.py`)
BenchmarkTools.DEFAULT_PARAMETERS.samples = 1000
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 1
BenchmarkTools.DEFAULT_PARAMETERS.evals = 5
suite_sampler1 = BenchmarkGroup()
Threads.nthreads() = 1
for n in 1:30
interf = RandHaar(n)
input = Input{Bosonic}(first_modes(n,n))
suite_sampler1["n=$n"] = @benchmarkable cliffords_sampler(input=$input, interf=$interf)
end
res = run(suite_sampler1, verbose=true, seconds = 1)
save("benchmarks/data/samplers_1.jld", "sampler1",res)
suite_sampler4 = BenchmarkGroup()
Threads.nthreads() = 4
for n in 1:30
interf = RandHaar(n)
input = Input{Bosonic}(first_modes(n,n))
suite_sampler4["n=$n"] = @benchmarkable cliffords_sampler(input=$input, interf=$interf)
end
res = run(suite_sampler4, verbose=true, seconds = 1)
save("benchmarks/data/samplers_4.jld", "sampler4",res)
suite_sampler8 = BenchmarkGroup()
Threads.nthreads() = 8
for n in 1:30
interf = RandHaar(n)
input = Input{Bosonic}(first_modes(n,n))
suite_sampler8["n=$n"] = @benchmarkable cliffords_sampler(input=$input, interf=$interf)
end
res = run(suite_sampler8, verbose=true, seconds = 1)
save("benchmarks/data/samplers_8.jld", "sampler8", res)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 1124 | begin
using Revise
using BosonSampling
using Plots
using ProgressMeter
using Distributions
using Random
using Test
using ArgCheck
using StatsBase
using ColorSchemes
using Interpolations
using Dierckx
using LinearAlgebra
using PrettyTables
using LaTeXStrings
using JLD
using AutoHashEquals
using LinearRegression
using DataStructures
using Parameters
using UnPack
end
n_array = collect(3:16)
for input_type in [Distinguishable, Bosonic]
function get_sample_time(n, niter = 100)
m = n
(@elapsed for i in 1:niter get_sample_loop(LoopSamplingParameters(n=n, input_type = input_type, η_loss_bs = 0.9 .* ones(m-1), η_loss_lines = 0.9 .* ones(m))) end)/niter
end
get_sample_time(3) # compilation
time_array = [get_sample_time(n) for n in n_array]
plot(n_array, time_array, yaxis = :log10, label = false)
xaxis!("n_photons (with loss)")
yaxis!("time one sample (s)")
title!("$(input_type)")
savefig("benchmarks/sampler_benchmarks/loop/images/sample_time_lossy_$(input_type).png")
end
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 2529 | import Pkg
Pkg.add("Documenter")
using Documenter, BosonSampling
push!(LOAD_PATH, "./src")
DocMeta.setdocmeta!(BosonSampling, :DocTestSetup, :(using MyPackage); recursive=true)
makedocs(
source = "./src/",
sitename = "BosonSampling.jl",
modules = [BosonSampling],
authors = "Benoit Seron, Antoine Restivo",
format = Documenter.HTML(prettyurls=false, sidebar_sitename=false),
doctest = false,
pages = [
"About" => "about.md",
"Tutorials" => Any[
"Installation" => "tutorial/installation.md",
"Basic usage" => "tutorial/basic_usage.md",
"Implementing new models" => "tutorial/user_defined_models.md",
"Samplers" => "tutorial/boson_samplers.md",
"Partitions" => "tutorial/partitions.md",
"Bunching" => "tutorial/bunching.md",
"Certification" => "tutorial/certification.md",
"Optimization" => "tutorial/optimization.md",
"Counting statistics" => "tutorial/compute_distr.md",
"Circuits" => "tutorial/circuits.md",
"Permanent conjectures" => "tutorial/permanent_conjectures.md",
"Python API" => "tutorial/python_API.md"],
"Benchmarks" => "benchmarks/bench.md",
"API" => Any[
"Types" => Any[
"Inputs" => "types/input.md",
"Events" => "types/events.md",
"Interferometers" => "types/interferometers.md",
"Measurements" => "types/measurements.md",
"Partitions" => "types/partitions.md",
"Type utilities" => "types/type_functions.md"],
"Functions" => Any[
"Certification" => "functions/bayesian.md",
"Bunching" => "functions/bunching.md",
"Distributions" => "functions/distributions.md",
"Partitions" => "functions/partitions.md",
"Permanent conjectures" => "functions/permanent_conjectures.md",
"Tools" => "functions/proba_tools.md",
"Samplers" => "functions/samplers.md",
"Scattering" => "functions/scattering.md",
"Special_matrices" => "functions/special_matrices.md",
"Visualization" => "functions/visualize.md"]
]
]
)
deploydocs(
repo = "github.com/benoitseron/BosonSampling.jl.git",
target = "build",
branch = "gh-pages",
versions = ["stable" => "v^", "v#.#"],
)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 729 | using BosonSampling
using Plots
# Set experimental parameters
Δω = 1
# Set the model of partial distinguishability
T = OneParameterInterpolation
# Define the unbalanced beams-plitter
B = BeamSplitter(1/sqrt(2))
# Set each particle in a different mode
r_i = ModeOccupation([1,1])
# Define the output as detecting a coincidence
r_f = ModeOccupation([1,1])
o = FockDetection(r_f)
# Will store the events probability
events = []
for Δt in -4:0.01:4
# distinguishability
dist = exp(-(Δω * Δt)^2)
i = Input{T}(r_i,dist)
# Create the event
ev = Event(i,o,B)
# Compute its probability to occur
compute_probability!(ev)
# Store the event and its probability
push!(events, ev)
end
plot!(P_coinc)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 568 | # generate what would be experimental data
m = 14
n = 5
events = generate_experimental_data(n_events = 1000, n = n,m = m, interf = RandHaar(m), TIn = Bosonic)
# define a certification protocol
# using binning into a 3-partition
# with null hypothesis a bosonic input
# and alternative a distinguishable input
n_subsets = 3
part = equilibrated_partition(m,n_subsets)
certif = BayesianPartition(events, Bosonic(), Distinguishable(), part)
# compute the level of confidence
certify!(certif)
# plot the bayesian confidence over sample number
plot(certif.probabilities)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 1588 | # define a new measurement type of a simple dark counting detector
mutable struct DarkCountFockSample <: OutputMeasurementType
s::Union{ModeOccupation, Nothing} # observed output, possibly undefined
p::Real # probability of a dark count in each mode
DarkCountFockSample(p::Real) = isa_probability(p) ? new(nothing, p) : error("invalid probability")
# instantiate if no known output
end
# works DarkCountFockSample(0.01)
# fails DarkCountFockSample(-1)
# define the sampling algorithm:
# the function sample! is modified to take into account
# the new measurement type
# this allows to keep the same syntax and in fact reuse
# any function that would have previously used sample!
# at no cost
function BosonSampling.sample!(ev::Event{TIn, TOut}) where {TIn<:InputType, TOut <: DarkCountFockSample}
# sample without dark counts
ev_no_dark = Event(ev.input_state, FockSample(), ev.interferometer)
sample!(ev_no_dark)
sample_no_dark = ev_no_dark.output_measurement.s
# now, apply the dark counts to "perfect" samples
observe_dark_count(p) = Int(do_with_probability(p)) # 1 with probability p, 0 with probability 1-p
dark_counts = [observe_dark_count(ev.output_measurement.p) for i in 1: ev.input_state.m]
ev.output_measurement.s = sample_no_dark + dark_counts
end
### example ###
# experiment parameters
n = 10
m = 10
p_dark = 0.1
input_state = first_modes(n,m)
interf = RandHaar(m)
i = Input{Bosonic}(input_state)
o = DarkCountFockSample(p_dark)
ev = Event(i,o,interf)
sample!(ev)
# output:
# state = [3, 1, 0, 3, 0, 1, 2, 0, 0, 0]
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 348 | # Define the input with one particle in
# each input mode
r_i = ModeOccupation([1,1])
i = Input{Bosonic}(r_i)
# Define the unbalanced interferometer
B = BeamSplitter(1/sqrt(2))
# Define the output
r_f = ModeOccupation([1,1])
o = FockDetection(r_f)
# Create the event
ev = Event(i,o,B)
# Compute its probability to occur
compute_probability!(ev)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 335 | # Set the model of partial distinguishability
T = OneParameterInterpolation
# Define an input of 3 photons placed
# among 5 modes
x = 0.74
i = Input{T}(first_modes(3,5), x)
# Interferometer
l = 0.63
U = RandHaar(i.m)
# Compute the full output statistics
p_exact, p_truncated, p_sampled =
noisy_distribution(input=i,loss=l,interf=U)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 2217 | # Convert julia script files to markdown and then using pandoc to LaTeX
names = filter(name->endswith(name, ".jl") && !occursin("make", name), readdir("."))
# Option specifying whether to execute scripts
run_scripts = length(ARGS) == 0 ? nothing : ARGS[1]
for n=names
# Get file name
fn = splitext(n)[1]
# Run if option is given
if run_scripts == "run"
println("Running $fn.jl")
run(`julia $fn.jl`)
elseif run_scripts == nothing
nothing
else
error("Unknown option!")
end
# Open file
touch("$fn.md")
f_in = open(n)
f_out = open("$fn.md", "w")
# Add markdown indicator to top
println(f_out, "```julia")
# println f_in to f_out
lines = readlines(f_in)
for l in lines
println(f_out, l)
end
close(f_in)
# Add markdown indicator at bottom
write(f_out, "```")
close(f_out)
# Run pandoc for conversion to temporary .tex file
run(`pandoc $fn.md -o tmp.tex`)
# Read tmp.tex again and replace the using by keyword highlighting
touch("$fn.tex")
tex_in = open("tmp.tex")
lines2 = readlines(tex_in)
lines_out = String[]
hide_block = false
for l in lines2
hide_block = hide_block || occursin("hide-block", l)
if occursin("hide-block-end", l)
hide_block = false
continue
end
(occursin("hide", l) || hide_block) && continue
l = replace(l, "\\NormalTok{using" => "\\KeywordTok{using}\\NormalTok{")
l = replace(l, "\\NormalTok{@cnumbers" => "\\KeywordTok{@cnumbers}\\NormalTok{")
l = replace(l, "\\NormalTok{@qnumbers" => "\\KeywordTok{@qnumbers}\\NormalTok{")
l = replace(l, "\\NormalTok{@named" => "\\KeywordTok{@named}\\NormalTok{")
l = replace(l, "true" => "\\FloatTok{true}")
l = replace(l, "false" => "\\FloatTok{false}")
push!(lines_out, l)
end
close(tex_in)
# Delete empty newlines at the end
while isempty(lines_out[end])
deleteat!(lines_out, lastindex(lines_out))
end
# Delete empty lines before \end{Highlighting}
while isempty(lines_out[end-2])
deleteat!(lines_out, lastindex(lines_out)-2)
end
tex_out = open("$fn.tex", "w")
for l in lines_out
println(tex_out, l)
end
close(tex_out)
end
rm("tmp.tex")
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 190 | i = Input{Bosonic}(first_modes(2,2))
set1 = Subset([1,0])
set2 = Subset([0,1])
interf = Fourier(2)
part = Partition([set1,set2])
(idx,pdf) =
compute_probabilities_partition(interf,part,i)
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
|
[
"MIT"
] | 1.0.2 | 993320357ce108b09d7707bb172ad04a27713bbf | code | 496 | n = 25
m = 400
# Experiment parameters
input_state = first_modes(n,m)
interf = RandHaar(m)
i = Input{Bosonic}(input_state)
# Subset selection
s = Subset(first_modes(Int(m/2),m))
part = Partition(s)
# Want to find all photon counting probabilities
o = PartitionCountsAll(part)
# Define the event and compute probabilities
ev = Event(i,o,interf)
compute_probability!(ev)
# About 30s execution time on a single core
#
# output:
#
# 0 in subset = [1, 2,..., 200]
# p = 4.650035467008141e-8
# ...
| BosonSampling | https://github.com/benoitseron/BosonSampling.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.