licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 3883 | 
*An [algebraic modeling](https://en.wikipedia.org/wiki/Algebraic_modeling_language) and [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation) tool in [Julia Language](https://julialang.org/), specialized for [SIMD](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data) abstraction of [nonlinear programs](https://en.wikipedia.org/wiki/Nonlinear_programming).*
---
| **License** | **Documentation** | **Build Status** | **Coverage** | **Citation** |
|:-----------------:|:----------------:|:----------------:|:----------------:|:----------------:|
| [](https://github.com/exanauts/ExaModels.jl/blob/main/LICENSE) | [](https://exanauts.github.io/ExaModels.jl/stable) [](https://exanauts.github.io/ExaModels.jl/dev) | [](https://github.com/exanauts/ExaModels.jl/actions/workflows/test.yml) | [](https://codecov.io/gh/exanauts/ExaModels.jl) | [](https://arxiv.org/abs/2307.16830) |
## Overview
ExaModels.jl employs what we call **[SIMD](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data) abstraction for [nonlinear programs](https://en.wikipedia.org/wiki/Nonlinear_programming)** (NLPs), which allows for the **preservation of the parallelizable structure** within the model equations, facilitating **efficient, parallel [reverse-mode automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)** on the **[GPU](https://en.wikipedia.org/wiki/Graphics_processing_unit) accelerators**.
ExaModels.jl is different from other algebraic modeling tools, such as [JuMP](https://github.com/jump-dev/JuMP.jl) or [AMPL](https://ampl.com/), in the following ways:
- **Modeling Interface**: ExaModels.jl requires users to specify the model equations always in the form of `Generator`s. This restrictive structure allows ExaModels.jl to preserve the SIMD-compatible structure in the model equations. This unique feature distinguishes ExaModels.jl from other algebraic modeling tools.
- **Performance**: ExaModels.jl compiles (via Julia's compiler) derivative evaluation codes tailored to each computation pattern. Through reverse-mode automatic differentiation using these tailored codes, ExaModels.jl achieves significantly faster derivative evaluation speeds, even when using CPU.
- **Portability**: ExaModels.jl goes beyond traditional boundaries of
algebraic modeling systems by **enabling derivative evaluation on GPU
accelerators**. Implementation of GPU kernels is accomplished using
the portable programming paradigm offered by
[KernelAbstractions.jl](https://github.com/JuliaGPU/KernelAbstractions.jl).
With ExaModels.jl, you can run your code on various devices, including
multi-threaded CPUs, NVIDIA GPUs, AMD GPUs, and Intel GPUs. Note that
Apple's Metal is currently not supported due to its lack of support
for double-precision arithmetic.
## Highlight
The performance comparison of ExaModels with other algebraic modeling systems for evaluating different NLP functions (obj, con, grad, jac, and hess) are shown below. Note that Hessian computations are the typical bottlenecks.

## Supporting ExaModels.jl
- Please report issues and feature requests via the [GitHub issue tracker](https://github.com/exanatus/ExaModels.jl/issues).
- Questions are welcome at [GitHub discussion forum](https://github.com/exanauts/ExaModels.jl/discussions).
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 51 | # ExaModels
```@autodocs
Modules = [ExaModels]
```
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 2493 | # Developing Extensions
ExaModels.jl's API only uses simple julia funcitons, and thus, implementing the extensions is straightforward. Below, we suggest a good practice for implementing an extension package.
Let's say that we want to implement an extension package for the example problem in [Getting Started](@ref guide). An extension package may look like:
```
Root
├───Project.toml
├── src
│ └── LuksanVlcekModels.jl
└── test
└── runtest.jl
```
Each of the files containing
```toml
# Project.toml
name = "LuksanVlcekModels"
uuid = "0c5951a0-f777-487f-ad29-fac2b9a21bf1"
authors = ["Sungho Shin <[email protected]>"]
version = "0.1.0"
[deps]
ExaModels = "1037b233-b668-4ce9-9b63-f9f681f55dd2"
[extras]
NLPModelsIpopt = "f4238b75-b362-5c4c-b852-0801c9a21d71"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[targets]
test = ["Test", "NLPModelsIpopt"]
```
```julia
# src/LuksanVlcekModels.jl
module LuksanVlcekModels
import ExaModels
function luksan_vlcek_obj(x,i)
return 100*(x[i-1]^2-x[i])^2+(x[i-1]-1)^2
end
function luksan_vlcek_con(x,i)
return 3x[i+1]^3+2*x[i+2]-5+sin(x[i+1]-x[i+2])sin(x[i+1]+x[i+2])+4x[i+1]-x[i]exp(x[i]-x[i+1])-3
end
function luksan_vlcek_x0(i)
return mod(i,2)==1 ? -1.2 : 1.0
end
function luksan_vlcek_model(N; backend = nothing)
c = ExaModels.ExaCore(backend)
x = ExaModels.variable(
c, N;
start = (luksan_vlcek_x0(i) for i=1:N)
)
ExaModels.constraint(
c,
luksan_vlcek_con(x,i)
for i in 1:N-2)
ExaModels.objective(c, luksan_vlcek_obj(x,i) for i in 2:N)
return ExaModels.ExaModel(c) # returns the model
end
export luksan_vlcek_model
end # module LuksanVlcekModels
```
```julia
# test/runtest.jl
using Test, LuksanVlcekModels, NLPModelsIpopt
@testset "LuksanVlcekModelsTest" begin
m = luksan_vlcek_model(10)
result = ipopt(m)
@test result.status == :first_order
@test result.solution ≈ [
-0.9505563573613093
0.9139008176388945
0.9890905176644905
0.9985592422681151
0.9998087408802769
0.9999745932450963
0.9999966246997642
0.9999995512524277
0.999999944919307
0.999999930070643
]
@test result.multipliers ≈ [
4.1358568305002255
-1.876494903703342
-0.06556333356358675
-0.021931863018312875
-0.0019537261317119302
-0.00032910445671233547
-3.8788212776372465e-5
-7.376592164341867e-6
]
end
```
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 6346 | # Introduction
Welcome to the documentation of [ExaModels.jl](https://github.com/sshin23/ExaModels.jl)
!!! note
ExaModels runs on julia `VERSION ≥ v"1.9"`
!!! warning
**Please help us improve ExaModels and this documentation!** ExaModels is in the early stage of development, and you may encounter unintended behaviors or missing documentations. If you find anything is not working as intended or documentation is missing, please [open issues](https://github.com/sshin/ExaModels.jl/issues) or [pull requests](https://github.com/sshin/ExaModels.jl/pulls) or start [discussions](https://github.com/sshin/ExaModels.jl/discussions).
## What is ExaModels.jl?
ExaModels.jl is an [algebraic modeling](https://en.wikipedia.org/wiki/Algebraic_modeling_language) and [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation) tool in [Julia Language](https://julialang.org/), specialized for [SIMD](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data) abstraction of [nonlinear programs](https://en.wikipedia.org/wiki/Nonlinear_programming). ExaModels.jl employs what we call [SIMD](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data) abstraction for [nonlinear programs](https://en.wikipedia.org/wiki/Nonlinear_programming) (NLPs), which allows for the preservation of the parallelizable structure within the model equations, facilitating efficient [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation) either on the single-thread CPUs, multi-threaded CPUs, as well as [GPU accelerators](https://en.wikipedia.org/wiki/Graphics_processing_unit). More details about SIMD abstraction can be found [here](@ref simd).
## Key differences from other algebraic modeling tools
ExaModels.jl is different from other algebraic modeling tools, such as [JuMP](https://github.com/jump-dev/JuMP.jl) or [AMPL](https://ampl.com/), in the following ways:
- **Modeling Interface**: ExaModels.jl requires users to specify the model equations always in the form of `Generator`s. This restrictive structure allows ExaModels.jl to preserve the SIMD-compatible structure in the model equations. This unique feature distinguishes ExaModels.jl from other algebraic modeling tools.
- **Performance**: ExaModels.jl compiles (via Julia's compiler) derivative evaluation codes tailored to each computation pattern. Through reverse-mode automatic differentiation using these tailored codes, ExaModels.jl achieves significantly faster derivative evaluation speeds, even when using CPU.
- **Portability**: ExaModels.jl goes beyond traditional boundaries of
algebraic modeling systems by **enabling derivative evaluation on GPU
accelerators**. Implementation of GPU kernels is accomplished using
the portable programming paradigm offered by
[KernelAbstractions.jl](https://github.com/JuliaGPU/KernelAbstractions.jl).
With ExaModels.jl, you can run your code on various devices, including
multi-threaded CPUs, NVIDIA GPUs, AMD GPUs, and Intel GPUs. Note that
Apple's Metal is currently not supported due to its lack of support
for double-precision arithmetic.
Thus, ExaModels.jl shines when your model has
- nonlinear objective and constraints;
- a large number of variables and constraints;
- highly repetitive structure;
- sparse Hessian and Jacobian.
These features are often exhibited in optimization problems associated with first-principle physics-based models. Primary examples include optimal control problems formulated with direct subscription method [biegler2010nonlinear](@cite) and network system optimization problems, such as optimal power flow [coffrin2018powermodels](@cite) and gas network control/estimation problems.
## Performance Highlights
ExaModels.jl significantly enhances the performance of
derivative evaluations for nonlinear optimization problems that can
benefit from SIMD abstraction. Recent benchmark results demonstrate
this notable improvement. Notably, when solving the AC OPF problem for
a 9241 bus system, derivative evaluation using ExaModels.jl on GPUs
can be up to two orders of magnitude faster compared to JuMP or
AMPL. Some benchmark results are available below. The following
problems are used for benchmarking:
- [LuksanVlcek problem](@ref guide)
- [Quadrotor control problem](@ref quad)
- [Distillation column control problem](@ref distillation)
- [AC optimal power flow problem](@ref opf)

## Supported Solvers
ExaModels can be used with any solver that can handle `NLPModel` data type, but several callbacks are not currently implemented, and cause some errors. Currently, it is tested with the following solvers:
- [Ipopt](https://github.com/JuliaSmoothOptimizers/NLPModelsIpopt.jl) (via [NLPModelsIpopt.jl](https://github.com/JuliaSmoothOptimizers/NLPModelsIpopt.jl))
- [MadNLP.jl](https://github.com/MadNLP/MadNLP.jl)
## Documentation Structure
This documentation is structured in the following way.
- The remainder of this page highlights several key aspects of ExaModels.jl.
- The mathematical abstraction---SIMD abstraction of nonlinear programming---of ExaModels.jl is discussed in [Mathematical Abstraction page](@ref simd).
- The step-by-step tutorial of using ExaModels.jl can be found in [Tutorial page](@ref guide).
- This documentation does not intend to discuss the engineering behind the implementation of ExaModels.jl. Some high-level idea is discussed in [a recent publication](https://arxiv.org/abs/2307.16830), but the full details of the engineering behind it will be discussed in the future publications.
## Citing ExaModels.jl
If you use ExaModels.jl in your research, we would greatly appreciate your citing this [preprint](https://arxiv.org/abs/2307.16830).
```bibtex
@misc{shin2023accelerating,
title={Accelerating Optimal Power Flow with {GPU}s: {SIMD} Abstraction of Nonlinear Programs and Condensed-Space Interior-Point Methods},
author={Sungho Shin and Fran{\c{c}}ois Pacaud and Mihai Anitescu},
year={2023},
eprint={2307.16830},
archivePrefix={arXiv},
primaryClass={math.OC}
}
```
## Supporting ExaModels.jl
- Please report issues and feature requests via the [GitHub issue tracker](https://github.com/sshin/ExaModels.jl/issues).
- Questions are welcome at [GitHub discussion forum](https://github.com/sshin23/ExaModels.jl/discussions).
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 35 | # References
```@bibliography
```
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.7.1 | 68888f0d012aae809dbbe90f5ea6e1c8c5c5f737 | docs | 2974 | # [SIMD Abstraction](@id simd)
In this page, we explain what SIMD abstraction of nonlinear program is, and why it can be beneficial for scalable optimization of large-scale optimization problems. More discussion can be found in our [paper](https://arxiv.org/abs/2307.16830).
## What is SIMD abstraction?
The mathematical statement of the problem formulation is as follows.
```math
\begin{aligned}
\min_{x^\flat\leq x \leq x^\sharp}
& \sum_{l\in[L]}\sum_{i\in [I_l]} f^{(l)}(x; p^{(l)}_i)\\
\text{s.t.}\; &\left[g^{(m)}(x; q_j)\right]_{j\in [J_m]} +\sum_{n\in [N_m]}\sum_{k\in [K_n]}h^{(n)}(x; s^{(n)}_{k}) =0,\quad \forall m\in[M]
\end{aligned}
```
where $f^{(\ell)}(\cdot,\cdot)$, $g^{(m)}(\cdot,\cdot)$, and
$h^{(n)}(\cdot,\cdot)$ are twice differentiable functions with respect
to the first argument, whereas $\{\{p^{(k)}_i\}_{i\in [N_k]}\}_{k\in[K]}$,
$\{\{q^{(k)}_{i}\}_{i\in [M_l]}\}_{m\in[M]}$, and
$\{\{\{s^{(n)}_{k}\}_{k\in[K_n]}\}_{n\in[N_m]}\}_{m\in[M]}$ are
problem data, which can either be discrete or continuous.
It is also assumed
that our functions $f^{(l)}(\cdot,\cdot)$, $g^{(m)}(\cdot,\cdot)$, and
$h^{(n)}(\cdot,\cdot)$ can be expressed with computational
graphs of moderate length.
## Why SIMD abstraction?
Many physics-based models, such as AC OPF, have a highly repetitive
structure. One of the manifestations of it is that the mathematical
statement of the model is concise, even if the practical model may contain
millions of variables and constraints. This is possible due to the use of
repetition over a certain index and data sets. For example,
it suffices to use 15 computational patterns to fully specify the
AC OPF model. These patterns arise from (1) generation cost, (2) reference
bus voltage angle constraint, (3-6) active and reactive power flow (from and to),
(7) voltage angle difference constraint, (8-9) apparent
power flow limits (from and to), (10-11) power balance equations,
(12-13) generators' contributions to the power balance equations, and
(14-15) in/out flows contributions to the power balance
equations. However, such repetitive structure is not well exploited in
the standard NLP modeling paradigms. In fact, without the SIMD
abstraction, it is difficult for the AD package to detect the
parallelizable structure within the model, as it will require the full
inspection of the computational graph over all expressions. By
preserving the repetitive structures in the model, the repetitive
structure can be directly available in AD implementation.
Using the multiple dispatch feature of Julia, ExaModels.jl generates
highly efficient derivative computation code, specifically compiled
for each computational pattern in the model. These derivative evaluation codes can be run over the data in various GPU array formats,
and implemented via array and kernel programming in Julia Language. In
turn, ExaModels.jl has the capability to efficiently evaluate first and
second-order derivatives using GPU accelerators.
| ExaModels | https://github.com/exanauts/ExaModels.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1611 | using Documenter
using DiffinDiffs
using DocumenterCitations
using StatsProcedures
using Vcov
bib = CitationBibliography(joinpath(@__DIR__, "../paper/paper.bib"), style=:authoryear)
makedocs(
modules = [DiffinDiffsBase, InteractionWeightedDIDs],
format = Documenter.HTML(
assets = ["assets/favicon.ico"],
canonical = "https://JuliaDiffinDiffs.github.io/DiffinDiffs.jl/stable/",
prettyurls = get(ENV, "CI", nothing) == "true",
collapselevel = 2,
ansicolor = true
),
sitename = "DiffinDiffs.jl",
authors = "Junyuan Chen",
pages = [
"Home" => "index.md",
"Manual" => [
"Getting Started" => "man/getting-started.md"
],
"Library" => [
"Treatment Types" => "lib/treatments.md",
"Parallel Types" => "lib/parallels.md",
"Formula Terms" => "lib/terms.md",
"Estimators" => "lib/estimators.md",
"Inference" => "lib/inference.md",
"Procedures" => "lib/procedures.md",
"Results" => "lib/results.md",
"Tables" => "lib/tables.md",
"Panel Operations" => "lib/panel.md",
"ScaledArrays" => "lib/ScaledArrays.md",
"StatsProcedures" => "lib/StatsProcedures.md"
],
"About" => [
"References" => "about/references.md",
"License" => "about/license.md"
]
],
workdir = joinpath(@__DIR__, ".."),
doctest = false,
plugins = [bib]
)
deploydocs(
repo = "github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git",
devbranch = "master"
)
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1287 | using Luxor
function logo(s)
full_radius = 99*s/100
Δ = full_radius/180
sethue(Luxor.julia_purple)
sector(O+(-20Δ,0), 60Δ, 90Δ, -π/2, π/2, :fill)
sethue(Luxor.julia_red)
sector(O+(-20Δ,0), 0, 40Δ, -π/2, π/2, :fill)
sethue(Luxor.julia_green)
box(Point(-55Δ,0), 30Δ, 180Δ, :fill)
sethue(Luxor.julia_blue)
poly(Point.([(-40Δ,90Δ),(-40Δ,60Δ),(-20Δ,60Δ)]), :fill, close=true)
poly(Point.([(-40Δ,-90Δ),(-40Δ,-60Δ),(-20Δ,-60Δ)]), :fill, close=true)
end
function drawlogo(s, fname)
Drawing(s, s, fname)
origin()
logo(s)
finish()
end
function drawbanner(w, h, fname)
Drawing(w, h, fname)
origin()
table = Table([h], [h, w - h])
@layer begin
translate(table[1])
logo(h)
end
@layer begin
translate(table[2])
sethue("black")
fontface("Julius Sans One")
fontsize(h/2.35)
text("iffinDiffs.jl", O+(-h/9,0), halign=:center, valign=:middle)
fontface("Montserrat")
fontsize(h/10.5)
text("A suite of Julia packages for difference-in-differences", O+(-h/10,h/2.5), halign=:center, valign=:middle)
end
finish()
end
drawlogo(120, "../assets/logo.svg")
drawlogo(420, "../assets/logo.png")
drawbanner(350, 100, "../assets/banner.svg")
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 3662 | # Generate example datasets as compressed CSV files
# See data/README.md for the sources of the input data files
# To regenerate the .csv.gz files:
# 1) Have all input files ready in the data folder
# 2) Instantiate the package environment for data/src
# 3) Run this script and call `make()` with the root folder as working directory
using CSV, CodecBzip2, CodecZlib, DataFrames, DataValues, RData, ReadStat
function _to_array(d::DataValueArray{T}) where T
a = Array{T}(undef, size(d))
hasmissing = false
@inbounds for i in eachindex(d)
v = d[i]
if hasvalue(v)
a[i] = v.value
elseif !hasmissing
a = convert(Array{Union{T,Missing}}, a)
hasmissing = true
a[i] = missing
else
a[i] = missing
end
end
return a
end
function _get_columns(data::ReadStatDataFrame, names::Vector{Symbol})
lookup = Dict(data.headers.=>keys(data.headers))
cols = Vector{AbstractVector}(undef, length(names))
for (i, n) in enumerate(names)
col = data.data[lookup[n]]
cols[i] = _to_array(col)
end
return cols
end
# The steps for preparing data follow Sun and Abraham (2020)
function hrs()
raw = read_dta("data/HRS_long.dta")
names = [:hhidpn, :wave, :wave_hosp, :evt_time, :oop_spend, :riearnsemp, :rwthh,
:male, :spouse, :white, :black, :hispanic, :age_hosp]
cols = _get_columns(raw, names)
df = dropmissing!(DataFrame(cols, names), [:wave, :age_hosp, :evt_time])
df = df[(df.wave.>=7).&(df.age_hosp.<=59), :]
# Must count wave after the above selection
transform!(groupby(df, :hhidpn), nrow=>:nwave, :evt_time => minimum => :evt_time)
df = df[(df.nwave.==5).&(df.evt_time.<0), :]
transform!(groupby(df, :hhidpn), :wave_hosp => minimum∘skipmissing => :wave_hosp)
select!(df, Not([:nwave, :evt_time, :age_hosp]))
for n in (:male, :spouse, :white, :black, :hispanic)
df[!, n] .= ifelse.(df[!, n].==100, 1, 0)
end
for n in propertynames(df)
if !(n in (:oop_spend, :riearnsemp, :wrthh))
df[!, n] .= convert(Array{Int}, df[!, n])
end
end
# Replace the original hh index with enumeration
ids = IdDict{Int,Int}()
hhidpn = df.hhidpn
newid = 0
for i in 1:length(hhidpn)
oldid = hhidpn[i]
id = get(ids, oldid, 0)
if id === 0
newid += 1
ids[oldid] = newid
hhidpn[i] = newid
else
hhidpn[i] = id
end
end
open(GzipCompressorStream, "data/hrs.csv.gz", "w") do stream
CSV.write(stream, df)
end
end
# Produce a subset of nsw_long from the DRDID R package
function nsw()
df = DataFrame(CSV.File("data/ec675_nsw.tab", delim='\t'))
df = df[(isequal.(df.treated, 0)).|(df.sample.==2), Not([:dwincl, :early_ra])]
df.experimental = ifelse.(ismissing.(df.treated), 0, 1)
select!(df, Not([:treated, :sample]))
df.id = 1:nrow(df)
# Convert the data to long format
df = stack(df, [:re75, :re78])
df.year = ifelse.(df.variable.=="re75", 1975, 1978)
select!(df, Not(:variable))
rename!(df, :value=>:re)
sort!(df, :id)
open(GzipCompressorStream, "data/nsw.csv.gz", "w") do stream
CSV.write(stream, df)
end
end
# Convert mpdta from the did R package to csv format
function mpdta()
df = load("data/mpdta.rda")["mpdta"]
df.first_treat = convert(Vector{Int}, df.first_treat)
select!(df, Not(:treat))
open(GzipCompressorStream, "data/mpdta.csv.gz", "w") do stream
CSV.write(stream, df)
end
end
function make()
hrs()
nsw()
mpdta()
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 3394 | module DiffinDiffsBase
using Base: @propagate_inbounds
using CSV
using CodecZlib: GzipDecompressorStream
using DataAPI
using DataAPI: refarray, refpool, invrefpool
using Dates: Period, TimeType
using LinearAlgebra: Diagonal
using Missings: allowmissing, disallowmissing
using PooledArrays: _label
using PrettyTables: pretty_table
using Reexport
using StatsAPI: stderror
using StatsBase: CoefTable, Weights, uweights
using StatsFuns: normccdf, norminvcdf, tdistccdf, tdistinvcdf
@reexport using StatsModels
using StatsModels: Schema
@reexport using StatsProcedures
using StatsProcedures: ≊, _args_kwargs, _parse!
using StructArrays: StructArray
using Tables
using Tables: AbstractColumns, istable, columnnames, getcolumn
import Base: ==, +, -, *, isless, show, parent, view, diff
import Base: eltype, firstindex, lastindex, getindex, iterate, length
import Missings: allowmissing, disallowmissing
import StatsAPI: coef, vcov, confint, nobs, dof_residual, responsename, coefnames, weights,
coeftable
import StatsModels: concrete_term, schema, termvars, lag, lead
import StatsProcedures: required, default, transformed, combinedargs, copyargs, _show_args
# Reexport objects from StatsAPI and StatsBase
export coef, vcov, stderror, confint, nobs, dof_residual, responsename, coefnames, weights,
coeftable
export RotatingTimeValue,
rotatingtime,
RotatingTimeArray,
VecColumnTable,
VecColsRow,
subcolumns,
apply,
apply_and!,
apply_and,
TableIndexedMatrix,
ScaledArray,
ScaledVector,
ScaledMatrix,
scale,
align,
TreatmentSharpness,
SharpDesign,
sharp,
AbstractTreatment,
DynamicTreatment,
dynamic,
ParallelCondition,
Unconditional,
unconditional,
CovariateConditional,
ParallelStrength,
Exact,
exact,
Approximate,
AbstractParallel,
UnspecifiedParallel,
unspecifiedpr,
TrendParallel,
TrendOrUnspecifiedPR,
NeverTreatedParallel,
nevertreated,
NotYetTreatedParallel,
notyettreated,
istreated,
istreated!,
TermSet,
termset,
TreatmentTerm,
treat,
findcell,
cellrows,
settime,
aligntime,
PanelStructure,
setpanel,
findlag!,
findlead!,
ilag!,
ilead!,
diff!,
diff,
CheckData,
GroupTreatintterms,
GroupXterms,
GroupContrasts,
CheckVars,
GroupSample,
MakeWeights,
DiffinDiffsEstimator,
DefaultDID,
did,
didspec,
@did,
AbstractDIDResult,
DIDResult,
AggregatedDIDResult,
vce,
treatment,
outcomename,
treatnames,
treatcells,
ntreatcoef,
treatcoef,
treatvcov,
coefinds,
ncovariate,
agg,
SubDIDResult,
TransformedDIDResult,
TransSubDIDResult,
lincom,
rescale,
ExportFormat,
StataPostHDF,
getexportformat,
setexportformat!,
post!
include("tables.jl")
include("utils.jl")
include("time.jl")
include("ScaledArrays.jl")
include("treatments.jl")
include("parallels.jl")
include("terms.jl")
include("operations.jl")
include("procedures.jl")
include("did.jl")
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 10755 | const DEFAULT_REF_TYPE = Int32
# A wrapper only used for resolving method ambiguity when constructing ScaledArray
mutable struct RefArray{R}
a::R
end
"""
ScaledArray{T,R,N,RA,P} <: AbstractArray{T,N}
Array type that stores data as indices of a range.
# Fields
- `refs::RA<:AbstractArray{R,N}`: an array of indices.
- `pool::P<:AbstractRange`: a range that covers all possible values stored by the array.
- `invpool::Dict{T,R}`: a map from array elements to indices of `pool`.
"""
mutable struct ScaledArray{T,R,N,RA,P} <: AbstractArray{T,N}
refs::RA
pool::P
invpool::Dict{T,R}
function ScaledArray{T,R,N,RA,P}(rs::RefArray{RA}, pool::P, invpool::Dict{T,R}) where
{T, R, N, RA<:AbstractArray{R, N}, P<:AbstractRange}
eltype(P) == nonmissingtype(T) || throw(ArgumentError(
"expect element type of pool being $(nonmissingtype(T)); got $(eltype(P))"))
return new{T,R,N,RA,P}(rs.a, pool, invpool)
end
end
ScaledArray(rs::RefArray{RA}, pool::P, invpool::Dict{T,R}) where {T,R,RA<:AbstractArray{R},P} =
ScaledArray{T,R,ndims(RA),RA,P}(rs, pool, invpool)
const ScaledVector{T,R} = ScaledArray{T,R,1}
const ScaledMatrix{T,R} = ScaledArray{T,R,2}
const ScaledArrOrSub{T,R,N,RA,P} = Union{ScaledArray{T,R,N,RA,P},
SubArray{<:Any, <:Any, <:ScaledArray{T,R,N,RA,P}}}
"""
scale(sa::ScaledArrOrSub)
Return the step size of the `pool` of `sa`.
"""
scale(sa::ScaledArrOrSub) = step(DataAPI.refpool(sa))
Base.size(sa::ScaledArray) = size(sa.refs)
Base.IndexStyle(::Type{<:ScaledArray{T,R,N,RA}}) where {T,R,N,RA} = IndexStyle(RA)
function _validmin(min, xmin, isstart::Bool)
if min === nothing
min = xmin
elseif min > xmin
str = isstart ? "start =" : "stop ="
throw(ArgumentError("$str $min is greater than the allowed minimum element $xmin"))
end
return min
end
function _validmax(max, xmax, isstart::Bool)
if max === nothing
max = xmax
elseif max < xmax
str = isstart ? "start =" : "stop ="
throw(ArgumentError("$str $max is smaller than the allowed maximum element $xmax"))
end
return max
end
function validpool(x::AbstractArray, T::Type, start, step, stop, usepool::Bool)
step === nothing && throw(ArgumentError("step cannot be nothing"))
pool = DataAPI.refpool(x)
xs = skipmissing(usepool && pool !== nothing ? pool : x)
xmin, xmax = extrema(xs)
applicable(+, xmin, step) || throw(ArgumentError(
"step of type $(typeof(step)) does not match array with element type $(eltype(x))"))
if xmin + step > xmin
start = _validmin(start, xmin, true)
stop = _validmax(stop, xmax, false)
elseif xmin + step < xmin
start = _validmax(start, xmax, true)
stop = _validmin(stop, xmin, false)
else
throw(ArgumentError("step cannot be zero"))
end
start = convert(T, start)
stop = convert(T, stop)
return start:step:stop
end
function _scaledlabel!(labels::AbstractArray, invpool::Dict, xs::AbstractArray, start, step)
z = zero(valtype(invpool))
@inbounds for (i, x) in zip(eachindex(labels), xs)
lbl = get(invpool, x, z)
if lbl !== z
labels[i] = lbl
elseif ismissing(x)
labels[i] = z
invpool[x] = z
else
r = start:step:x
lbl = length(r)
labels[i] = lbl
invpool[x] = lbl
end
end
end
function scaledlabel(xs::AbstractArray, stepsize,
R::Type=DEFAULT_REF_TYPE, T::Type=eltype(xs);
start=nothing, stop=nothing, usepool::Bool=true)
pool = validpool(xs, T, start, stepsize, stop, usepool)
T = Missing <: T ? Union{eltype(pool), Missing} : eltype(pool)
start = first(pool)
stepsize = step(pool)
if R <: Integer
while typemax(R) < length(pool)
R = widen(R)
end
end
# Array types with customized indexing could cause problems
labels = similar(Array{R}, axes(xs))
invpool = Dict{T,R}()
_scaledlabel!(labels, invpool, xs, start, stepsize)
return labels, pool, invpool
end
function ScaledArray(x::AbstractArray, reftype::Type, xtype::Type, start, step, stop, usepool::Bool=true)
refs, pool, invpool = scaledlabel(x, step, reftype, xtype; start=start, stop=stop, usepool=usepool)
return ScaledArray(RefArray(refs), pool, invpool)
end
function ScaledArray(sa::ScaledArray, reftype::Type, xtype::Type, start, step, stop, usepool::Bool=true)
if step !== nothing && step != scale(sa)
refs, pool, invpool = scaledlabel(sa, step, reftype, xtype; start=start, stop=stop, usepool=usepool)
return ScaledArray(RefArray(refs), pool, invpool)
else
step = scale(sa)
pool = validpool(sa, xtype, start, step, stop, usepool)
T = Missing <: xtype ? Union{eltype(pool), Missing} : eltype(pool)
refs = similar(sa.refs, reftype)
invpool = Dict{T, reftype}()
start0 = first(sa.pool)
start = first(pool)
stop = last(pool)
if start == start0
copy!(refs, sa.refs)
copy!(invpool, sa.invpool)
elseif start < start0 && start < stop || start > start0 && start > stop
offset = length(start:step:start0) - 1
refs .= sa.refs .+ offset
for (k, v) in sa.invpool
invpool[k] = v + offset
end
else
offset = length(start0:step:start) - 1
refs .= sa.refs .- offset
for (k, v) in sa.invpool
invpool[k] = v - offset
end
end
return ScaledArray(RefArray(refs), pool, invpool)
end
end
"""
ScaledArray(x::AbstractArray, start, step[, stop]; reftype=Int32, usepool=true)
ScaledArray(x::AbstractArray, step; reftype=Int32, start, stop, usepool=true)
Construct a `ScaledArray` from `x` given the `step` size.
If `start` or `stop` is not specified, it will be chosen based on the extrema of `x`.
# Keywords
- `reftype::Type=Int32`: the element type of field `refs`.
- `usepool::Bool=true`: find extrema of `x` based on `DataAPI.refpool`.
"""
ScaledArray(x::AbstractArray, start, step, stop=nothing;
reftype::Type=DEFAULT_REF_TYPE, xtype::Type=eltype(x), usepool::Bool=true) =
ScaledArray(x, reftype, xtype, start, step, stop, usepool)
ScaledArray(sa::ScaledArray, start, step, stop=nothing;
reftype::Type=eltype(refarray(sa)), xtype::Type=eltype(sa), usepool::Bool=true) =
ScaledArray(sa, reftype, xtype, start, step, stop, usepool)
ScaledArray(x::AbstractArray, step; reftype::Type=DEFAULT_REF_TYPE,
start=nothing, stop=nothing, xtype::Type=eltype(x), usepool::Bool=true) =
ScaledArray(x, reftype, xtype, start, step, stop, usepool)
ScaledArray(sa::ScaledArray, step=nothing; reftype::Type=eltype(refarray(sa)),
start=nothing, stop=nothing, xtype::Type=eltype(sa), usepool::Bool=true) =
ScaledArray(sa, reftype, xtype, start, step, stop, usepool)
Base.similar(sa::ScaledArrOrSub{T,R}, dims::Dims=size(sa)) where {T,R} =
ScaledArray(RefArray(ones(R, dims)), DataAPI.refpool(sa), Dict{T,R}())
Base.similar(sa::ScaledArrOrSub, dims::Int...) = similar(sa, dims)
"""
align(xs::AbstractArray, sa::ScaledArrOrSub)
Convert `xs` into a [`ScaledArray`](@ref) with a `pool`
that has the same first element and step size as the `pool` from `sa`.
"""
function align(xs::AbstractArray, sa::ScaledArrOrSub)
pool = DataAPI.refpool(sa)
invpool = DataAPI.invrefpool(sa)
step = scale(sa)
xmin, xmax = extrema(xs)
start = first(pool)
stop = last(pool)
start < stop && xmin < start && throw(ArgumentError(
"the minimum of xs $xmin is smaller than the minimum of pool $start"))
start > stop && xmax > start && throw(ArgumentError(
"the maximum of xs $xmax is greater than the maximum of pool $start"))
refs = similar(DataAPI.refarray(sa), size(xs))
_scaledlabel!(refs, invpool, xs, start, step)
return ScaledArray(RefArray(refs), pool, invpool)
end
DataAPI.refarray(sa::ScaledArray) = sa.refs
DataAPI.refvalue(sa::ScaledArray, n::Integer) = getindex(DataAPI.refpool(sa), n)
DataAPI.refpool(sa::ScaledArray) = sa.pool
DataAPI.invrefpool(sa::ScaledArray) = sa.invpool
DataAPI.refarray(ssa::SubArray{<:Any, <:Any, <:ScaledArray}) =
view(parent(ssa).refs, ssa.indices...)
DataAPI.refvalue(ssa::SubArray{<:Any, <:Any, <:ScaledArray}, n::Integer) =
DataAPI.refvalue(parent(ssa), n)
DataAPI.refpool(ssa::SubArray{<:Any, <:Any, <:ScaledArray}) =
DataAPI.refpool(parent(ssa))
DataAPI.invrefpool(ssa::SubArray{<:Any, <:Any, <:ScaledArray}) =
DataAPI.invrefpool(parent(ssa))
@inline function Base.getindex(sa::ScaledArray, i::Int)
refs = DataAPI.refarray(sa)
@boundscheck checkbounds(refs, i)
@inbounds n = refs[i]
iszero(n) && return missing
pool = DataAPI.refpool(sa)
@boundscheck checkbounds(pool, n)
return @inbounds pool[n]
end
Base.@propagate_inbounds function Base.getindex(sa::ScaledArrOrSub, I::AbstractVector)
newrefs = DataAPI.refarray(sa)[I]
pool = DataAPI.refpool(sa)
invpool = DataAPI.invrefpool(sa)
return ScaledArray(RefArray(newrefs), pool, invpool)
end
Base.@propagate_inbounds function Base.setindex!(sa::ScaledArray, val, ind::Int)
invpool = DataAPI.invrefpool(sa)
n = get(invpool, val, nothing)
if n === nothing
pool = DataAPI.refpool(sa)
r = first(pool):step(pool):val
last(r) > last(pool) && (sa.pool = r)
n = length(r)
invpool[val] = n
end
refs = DataAPI.refarray(sa)
refs[ind] = n
return sa
end
Base.@propagate_inbounds function Base.setindex!(sa::ScaledArray, ::Missing, ind::Int)
refs = DataAPI.refarray(sa)
z = zero(eltype(refs))
invpool = DataAPI.invrefpool(sa)
invpool[missing] = z
refs[ind] = z
return sa
end
allowmissing(sa::ScaledArray{T,R}) where {T,R} =
ScaledArray(RefArray(sa.refs), sa.pool, convert(Dict{Union{T,Missing},R}, sa.invpool))
function disallowmissing(sa::ScaledArray{T,R}) where {T,R}
T1 = nonmissingtype(T)
any(x->iszero(x), sa.refs) && throw(ArgumentError("cannot convert missing to $T1"))
delete!(sa.invpool, missing)
return ScaledArray(RefArray(sa.refs), sa.pool, convert(Dict{T1,R}, sa.invpool))
end
function Base.:(==)(x::ScaledArrOrSub, y::ScaledArrOrSub)
size(x) == size(y) || return false
first(DataAPI.refpool(x)) == first(DataAPI.refpool(y)) &&
scale(x) == scale(y) && return DataAPI.refarray(x) == DataAPI.refarray(y)
eq = true
for (p, q) in zip(x, y)
# missing could arise
veq = p == q
isequal(veq, false) && return false
eq &= veq
end
return eq
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 32927 | """
DiffinDiffsEstimator{A,T} <: AbstractStatsProcedure{A,T}
Specify the estimation procedure for difference-in-differences.
"""
struct DiffinDiffsEstimator{A,T} <: AbstractStatsProcedure{A,T} end
"""
DefaultDID <: DiffinDiffsEstimator
Default difference-in-differences estimator selected based on the context.
"""
const DefaultDID = DiffinDiffsEstimator{:DefaultDID, Tuple{}}
_key(::Type{<:DiffinDiffsEstimator}) = :d
_key(::AbstractString) = :name
_key(::AbstractTreatment) = :tr
_key(::AbstractParallel) = :pr
_key(::Any) = throw(ArgumentError("unacceptable positional arguments"))
function _totermset!(args::Dict{Symbol,Any}, s::Symbol)
if haskey(args, s) && !(args[s] isa TermSet)
arg = args[s]
args[s] = arg isa Symbol ? termset(arg) : termset(arg...)
end
end
"""
parse_didargs!(args::Vector{Any}, kwargs::Dict{Symbol,Any})
Return a `Dict` that is suitable for being passed to
[`valid_didargs`](@ref) for further processing.
Any [`TreatmentTerm`](@ref) in `args` is decomposed.
Any collection of terms is converted to `TermSet`.
Keys are assigned to all positional arguments based on their types.
An optional `name` for [`StatsSpec`](@ref) can be included in `args` as a string.
The order of positional arguments is irrelevant.
This function is required for `@specset` to work properly.
"""
function parse_didargs!(args::Vector{Any}, kwargs::Dict{Symbol,Any})
for arg in args
if arg isa TreatmentTerm
kwargs[_key(arg.tr)] = arg.tr
kwargs[_key(arg.pr)] = arg.pr
kwargs[:treatname] = arg.sym
else
kwargs[_key(arg)] = arg
end
end
foreach(n->_totermset!(kwargs, n), (:treatintterms, :xterms))
return kwargs
end
"""
valid_didargs(args::Dict{Symbol,Any})
Return a tuple of objects that can be accepted by
the constructor of [`StatsSpec`](@ref).
If no [`DiffinDiffsEstimator`](@ref) is found in `args`,
try to select one based on other information.
This function is required for `@specset` to work properly.
"""
function valid_didargs(args::Dict{Symbol,Any})
if haskey(args, :tr) && haskey(args, :pr)
d = pop!(args, :d, DefaultDID)
return valid_didargs(d, args[:tr], args[:pr], args)
else
throw(ArgumentError("not all required arguments are specified"))
end
end
valid_didargs(d::Type{<:DiffinDiffsEstimator},
tr::AbstractTreatment, pr::AbstractParallel, ::Dict{Symbol,Any}) =
error(d.instance, " is not implemented for $(typeof(tr)) and $(typeof(pr))")
"""
didspec(args...; kwargs...)
Construct a [`StatsSpec`](@ref) for difference-in-differences
with the specified arguments.
"""
function didspec(args...; kwargs...)
args = Any[args...]
kwargs = Dict{Symbol,Any}(kwargs...)
return didspec(args, kwargs)
end
didspec(args::Vector{Any}, kwargs::Dict{Symbol,Any}) =
StatsSpec(valid_didargs(parse_didargs!(args, kwargs))...)
function _show_args(io::IO, sp::StatsSpec{<:DiffinDiffsEstimator})
if haskey(sp.args, :tr) || haskey(sp.args, :pr)
print(io, ":")
haskey(sp.args, :tr) && print(io, "\n ", sp.args[:tr])
haskey(sp.args, :pr) && print(io, "\n ", sp.args[:pr])
end
end
function did(args...; verbose::Bool=false, keep=nothing, keepall::Bool=false, kwargs...)
args = Any[args...]
kwargs = Dict{Symbol,Any}(kwargs...)
sp = didspec(args, kwargs)
return sp(verbose=verbose, keep=keep, keepall=keepall)
end
"""
@did [option option=val ...] "name" args... kwargs...
Conduct difference-in-differences estimation with the specified arguments.
The order of the arguments is irrelevant.
# Arguments
- `[option option=val ...]`: optional settings for @did including keyword arguments passed to an instance of [`StatsSpec`](@ref).
- `name::AbstractString`: an optional name for the [`StatsSpec`](@ref).
- `args... kwargs...`: a list of arguments to be processed by [`parse_didargs!`](@ref) and [`valid_didargs`](@ref).
# Notes
When expanded outside [`@specset`](@ref),
a [`StatsSpec`](@ref) is constructed and then estimated by calling this instance.
Options for [`StatsSpec`] can be provided in a bracket `[...]`
as the first argument after `@did` with each option separated by white space.
For options that take a Boolean value,
specifying the name of the option is enough for setting the value to be true.
By default, only a result object that is a subtype of [`DIDResult`](@ref) is returned.
When expanded inside [`@specset`](@ref),
`@did` informs [`@specset`](@ref) the methods for processing the arguments.
Any option specified in the bracket is ignored.
Options for the behavior of `@did` can be provided in a bracket `[...]`
as the first argument with each option separated by white space.
For options that take a Boolean value,
specifying the name of the option is enough for setting the value to be true.
The following options are available for altering the behavior of `@did`:
- `noproceed::Bool=false`: return the constructed [`StatsSpec`](@ref) without conducting the procedure.
- `verbose::Bool=false`: print the name of each step when it is called.
- `keep=nothing`: names (of type `Symbol`) of additional objects to be returned.
- `keepall::Bool=false`: return all objects generated by procedures along with arguments from the [`StatsSpec`](@ref)s.
- `pause::Int=0`: break the iteration over [`StatsStep`](@ref)s after finishing the specified number of steps (for debugging).
"""
macro did(args...)
nargs = length(args)
options = :(Dict{Symbol, Any}())
noproceed = false
didargs = ()
if nargs > 0
op = args[1]
if op isa Expr && op.head in (:vect, :hcat, :vcat)
noproceed = _parse!(options, op.args)
nargs > 1 && (didargs = args[2:end])
else
didargs = args
end
end
dargs, dkwargs = _args_kwargs(didargs)
if noproceed
return :(StatsSpec(valid_didargs(parse_didargs!($(esc(dargs)), $(esc(dkwargs))))...))
else
return :(StatsSpec(valid_didargs(parse_didargs!($(esc(dargs)), $(esc(dkwargs))))...)(; $(esc(options))...))
end
end
"""
AbstractDIDResult{TR<:AbstractTreatment} <: StatisticalModel
Interface supertype for all types that
collect estimation results for difference-in-differences
with treatment of type `TR`.
# Interface definition
| Required method | Default definition | Brief description |
|:---|:---|:---|
| `coef(r)` | `r.coef` | Vector of point estimates for all coefficients including covariates |
| `vcov(r)` | `r.vcov` | Variance-covariance matrix for estimates in `coef` |
| `vce(r)` | `r.vce` | Covariance estimator |
| `confint(r)` | Based on t or normal distribution | Confidence interval for estimates in `coef` |
| `treatment(r)` | `r.tr` | Treatment specification |
| `nobs(r)` | `r.nobs` | Number of observations (table rows) involved in estimation |
| `outcomename(r)` | `r.yname` | Name of the outcome variable |
| `coefnames(r)` | `r.coefnames` | Names (`Vector{String}`) of all coefficients including covariates |
| `treatcells(r)` | `r.treatcells` | `Tables.jl`-compatible tabular description of treatment coefficients in the order of `coefnames` (without covariates) |
| `weights(r)` | `r.weights` | Name of the column containing sample weights (if specified) |
| `ntreatcoef(r)` | `size(treatcells(r), 1)` | Number of treatment coefficients |
| `treatcoef(r)` | `view(coef(r), 1:ntreatcoef(r))` | A view of treatment coefficients |
| `treatvcov(r)` | `(N = ntreatcoef(r); view(vcov(r), 1:N, 1:N))` | A view of variance-covariance matrix for treatment coefficients |
| `treatnames(r)` | `coefnames(r)[1:ntreatcoef(r)]` | Names (`Vector{String}`) of treatment coefficients |
| **Optional methods** | | |
| `parent(r)` | `r.parent` or `r` | Result object from which `r` is generated |
| `dof_residual(r)` | `r.dof_residual` or `nothing` | Residual degrees of freedom |
| `responsename(r)` | `outcomename(r)` | Name of the outcome variable |
| `coefinds(r)` | `r.coefinds` or `nothing` | Lookup table (`Dict{String,Int}`) from `coefnames` to integer indices (for retrieving estimates by name) |
| `ncovariate(r)` | `length(coef(r)) - ntreatcoef(r)` | Number of covariate coefficients |
"""
abstract type AbstractDIDResult{TR<:AbstractTreatment} <: StatisticalModel end
"""
DIDResult{TR} <: AbstractDIDResult{TR}
Supertype for all types that collect estimation results
directly obtained from [`DiffinDiffsEstimator`](@ref)
with treatment of type `TR`.
"""
abstract type DIDResult{TR} <: AbstractDIDResult{TR} end
"""
AggregatedDIDResult{TR,P<:DIDResult} <: AbstractDIDResult{TR}
Supertype for all types that collect estimation results
aggregated from a [`DIDResult`](@ref) of type `P`
with treatment of type `TR`.
"""
abstract type AggregatedDIDResult{TR,P<:DIDResult} <: AbstractDIDResult{TR} end
"""
coef(r::AbstractDIDResult)
Return the vector of point estimates for all coefficients.
"""
coef(r::AbstractDIDResult) = r.coef
"""
coef(r::AbstractDIDResult, name::String)
coef(r::AbstractDIDResult, name::Symbol)
coef(r::AbstractDIDResult, i::Int)
coef(r::AbstractDIDResult, inds)
Retrieve a point estimate by name (as in `coefnames`) or integer index.
Return a vector of estimates if an iterable collection of names or integers are specified.
Indexing by name requires the method [`coefinds(r)`](@ref).
See also [`AbstractDIDResult`](@ref).
"""
coef(r::AbstractDIDResult, name::String) = coef(r)[coefinds(r)[name]]
coef(r::AbstractDIDResult, name::Symbol) = coef(r, string(name))
coef(r::AbstractDIDResult, i::Int) = coef(r)[i]
coef(r::AbstractDIDResult, inds) = [coef(r, ind) for ind in inds]
"""
coef(r::AbstractDIDResult, bys::Pair...)
Return a vector of point estimates for treatment coefficients
selected based on the specified functions that return either `true` or `false`.
Depending on the argument(s) accepted by a function `f`,
it is specified with argument `bys` as either `column_index => f` or `column_indices => f`
where `column_index` is either a `Symbol` or `Int`
for a column in [`treatcells`](@ref)
and `column_indices` is an iterable collection of such indices for multiple columns.
`f` is applied elementwise to each specified column
to obtain a `BitVector` for selecting coefficients.
If multiple `Pair`s are provided, the results are combined into one `BitVector`
through bit-wise `and`.
!!! note
This method only selects estimates for treatment coefficients.
Covariates are not taken into account.
"""
@inline function coef(r::AbstractDIDResult, bys::Pair...)
inds = apply_and(treatcells(r), bys...)
return treatcoef(r)[inds]
end
"""
vcov(r::AbstractDIDResult)
Return the variance-covariance matrix for all coefficient estimates.
"""
vcov(r::AbstractDIDResult) = r.vcov
"""
vcov(r::AbstractDIDResult, name1::Union{String, Symbol}, name2::Union{String, Symbol}=name1)
vcov(r::AbstractDIDResult, i::Int, j::Int=i)
vcov(r::AbstractDIDResult, inds)
Retrieve the covariance between two coefficients by name (as in `coefnames`) or integer index.
Return the variance if only one name or index is specified.
Return a variance-covariance matrix for selected coefficients
if an iterable collection of names or integers are specified.
Indexing by name requires the method [`coefinds(r)`](@ref).
See also [`AbstractDIDResult`](@ref).
"""
vcov(r::AbstractDIDResult, i::Int, j::Int=i) = vcov(r)[i,j]
function vcov(r::AbstractDIDResult, name1::Union{String, Symbol},
name2::Union{String, Symbol}=name1)
cfinds = coefinds(r)
return vcov(r)[cfinds[string(name1)], cfinds[string(name2)]]
end
function vcov(r::AbstractDIDResult, inds)
cfinds = coefinds(r)
# inds needs to be one-dimensional for the output to be a matrix
inds = [i isa Int ? i : cfinds[string(i)] for i in inds][:]
return vcov(r)[inds, inds]
end
"""
vcov(r::AbstractDIDResult, bys::Pair...)
Return a variance-covariance matrix for treatment coefficients
selected based on the specified functions that return either `true` or `false`.
Depending on the argument(s) accepted by a function `f`,
it is specified with argument `bys` as either `column_index => f` or `column_indices => f`
where `column_index` is either a `Symbol` or `Int`
for a column in [`treatcells`](@ref)
and `column_indices` is an iterable collection of such indices for multiple columns.
`f` is applied elementwise to each specified column
to obtain a `BitVector` for selecting coefficients.
If multiple `Pair`s are provided, the results are combined into one `BitVector`
through bit-wise `and`.
!!! note
This method only selects estimates for treatment coefficients.
Covariates are not taken into account.
"""
@inline function vcov(r::AbstractDIDResult, bys::Pair...)
inds = apply_and(treatcells(r), bys...)
return treatvcov(r)[inds, inds]
end
"""
vce(r::AbstractDIDResult)
Return the covariance estimator used to estimate variance-covariance matrix.
"""
vce(r::AbstractDIDResult) = r.vce
"""
confint(r::AbstractDIDResult; level::Real=0.95)
Return a confidence interval for each coefficient estimate.
The returned object is of type `Tuple{Vector{Float64}, Vector{Float64}}`
where the first vector collects the lower bounds for all intervals
and the second one collects the upper bounds.
"""
function confint(r::AbstractDIDResult; level::Real=0.95)
dofr = dof_residual(r)
if dofr === nothing
scale = norminvcdf(1 - (1 - level) / 2)
else
scale = tdistinvcdf(dofr, 1 - (1 - level) / 2)
end
se = stderror(r)
return coef(r) .- scale .* se, coef(r) .+ scale .* se
end
"""
treatment(r::AbstractDIDResult)
Return the treatment specification.
"""
treatment(r::AbstractDIDResult) = r.tr
"""
nobs(r::AbstractDIDResult)
Return the number of observations (table rows) involved in estimation.
"""
nobs(r::AbstractDIDResult) = r.nobs
"""
outcomename(r::AbstractDIDResult)
Return the name of outcome variable generated by `StatsModels.coefnames`.
See also [`responsename`](@ref).
"""
outcomename(r::AbstractDIDResult) = r.yname
"""
coefnames(r::AbstractDIDResult)
Return a vector of coefficient names.
"""
coefnames(r::AbstractDIDResult) = r.coefnames
"""
treatcells(r::AbstractDIDResult)
Return a `Tables.jl`-compatible tabular description of treatment coefficients
in the order of coefnames (without covariates).
"""
treatcells(r::AbstractDIDResult) = r.treatcells
"""
weights(r::AbstractDIDResult)
Return the column name of the weight variable.
Return `nothing` if `weights` is not specified for estimation.
"""
weights(r::AbstractDIDResult) = r.weightname
"""
ntreatcoef(r::AbstractDIDResult)
Return the number of treatment coefficients.
"""
ntreatcoef(r::AbstractDIDResult) = size(treatcells(r), 1)
"""
treatcoef(r::AbstractDIDResult)
Return a view of treatment coefficients.
"""
treatcoef(r::AbstractDIDResult) = view(coef(r), 1:ntreatcoef(r))
"""
treatvcov(r::AbstractDIDResult)
Return a view of variance-covariance matrix for treatment coefficients.
"""
treatvcov(r::AbstractDIDResult) = (N = ntreatcoef(r); view(vcov(r), 1:N, 1:N))
"""
treatnames(r::AbstractDIDResult)
Return a vector of names for treatment coefficients.
"""
treatnames(r::AbstractDIDResult) = coefnames(r)[1:ntreatcoef(r)]
"""
parent(r::AbstractDIDResult)
Return the `AbstractDIDResult` from which `r` is generated.
"""
parent(r::AbstractDIDResult) = hasfield(typeof(r), :parent) ? r.parent : r
"""
dof_residual(r::AbstractDIDResult)
Return the residual degrees of freedom.
"""
dof_residual(r::AbstractDIDResult) =
hasfield(typeof(r), :dof_residual) ? r.dof_residual : nothing
"""
responsename(r::AbstractDIDResult)
Return the name of outcome variable generated by `StatsModels.coefnames`.
This method is an alias of [`outcomename`](@ref).
"""
responsename(r::AbstractDIDResult) = outcomename(r)
"""
coefinds(r::AbstractDIDResult)
Return the map from coefficient names to integer indices
for retrieving estimates by name.
"""
coefinds(r::AbstractDIDResult) = hasfield(typeof(r), :coefinds) ? r.coefinds : nothing
"""
ncovariate(r::AbstractDIDResult)
Return the number of covariate coefficients.
"""
ncovariate(r::AbstractDIDResult) = length(coef(r)) - ntreatcoef(r)
"""
agg(r::DIDResult)
Aggregate difference-in-differences estimates
and return a subtype of [`AggregatedDIDResult`](@ref).
The implementation depends on the type of `r`.
"""
agg(r::DIDResult) = error("agg is not implemented for $(typeof(r))")
function coeftable(r::AbstractDIDResult; level::Real=0.95)
cf = coef(r)
se = stderror(r)
ts = cf ./ se
dofr = dof_residual(r)
if dofr === nothing
pv = 2 .* normccdf.(abs.(ts))
tname = "z"
else
pv = 2 .* tdistccdf.(dofr, abs.(ts))
tname = "t"
end
cil, ciu = confint(r, level=level)
cnames = coefnames(r)
levstr = isinteger(level*100) ? string(Integer(level*100)) : string(level*100)
return CoefTable(Vector[cf, se, ts, pv, cil, ciu],
["Estimate", "Std. Error", tname, "Pr(>|$tname|)", "Lower $levstr%", "Upper $levstr%"],
["$(cnames[i])" for i = 1:length(cf)], 4, 3)
end
show(io::IO, r::AbstractDIDResult) = show(io, coeftable(r))
"""
_treatnames(treatcells)
Generate names for treatment coefficients.
Assume `treatcells` is compatible with the `Tables.jl` interface.
"""
function _treatnames(treatcells)
cols = columnnames(treatcells)
ncol = length(cols)
# Assume treatcells has at least one column
c1 = cols[1]
names = Ref(string(c1, ": ")).*string.(getcolumn(treatcells, c1))
if ncol > 1
for i in 2:ncol
ci = cols[i]
names .*= Ref(string(" & ", ci, ": ")).*string.(getcolumn(treatcells, ci))
end
end
return names
end
# Helper functions that parse the bys option for agg
function _parse_bycells!(bycols::Vector, cells::VecColumnTable, by::Pair{Symbol})
lookup = getfield(cells, :lookup)
_parse_bycells!(bycols, cells, lookup[by[1]]=>by[2])
end
function _parse_bycells!(bycols::Vector, cells::VecColumnTable, by::Pair{Int})
if by[2] isa Function
bycols[by[1]] = apply(cells, by[1]=>by[2])
else
bycols[by[1]] = apply(cells, by[2][1]=>by[2][2])
end
end
function _parse_bycells!(bycols::Vector, cells::VecColumnTable, bys)
eltype(bys) <: Pair || throw(ArgumentError("unaccepted type of bys"))
for by in bys
_parse_bycells!(bycols, cells, by)
end
end
_parse_bycells!(bycols::Vector, cells::VecColumnTable, bys::Nothing) = nothing
# Helper function for _parse_subset
function _fill_x!(r::AbstractDIDResult, inds::BitVector)
nx = ncovariate(r)
nx > 0 && push!(inds, (false for i in 1:nx)...)
end
# Helper functions for handling subset option that may involves Pairs
_parse_subset(r::AbstractDIDResult, by::Pair, fill_x::Bool) =
(inds = apply_and(treatcells(r), by); fill_x && _fill_x!(r, inds); return inds)
function _parse_subset(r::AbstractDIDResult, inds, fill_x::Bool)
eltype(inds) <: Pair || return inds
inds = apply_and(treatcells(r), inds...)
fill_x && _fill_x!(r, inds)
return inds
end
_parse_subset(r::AbstractDIDResult, ::Colon, fill_x::Bool) =
fill_x ? (1:length(coef(r))) : 1:ntreatcoef(r)
# Count number of elements selected by indices `inds`
_nselected(inds) = eltype(inds) == Bool ? sum(inds) : length(inds)
_nselected(::Colon) = throw(ArgumentError("cannot accept Colon (:)"))
"""
treatindex(ntcoef::Int, I)
Extract indices referencing the treatment coefficients from `I`
based on the total number of treatment coefficients `ntcoef`.
"""
treatindex(ntcoef::Int, ::Colon) = 1:ntcoef
treatindex(ntcoef::Int, i::Real) = i<=ntcoef ? i : 1:0
treatindex(ntcoef::Int, I::AbstractVector{<:Real}) = view(I, I.<=ntcoef)
treatindex(ntcoef::Int, I::AbstractVector{Bool}) = view(I, 1:ntcoef)
treatindex(ntcoef::Int, i) =
throw(ArgumentError("invalid index of type $(typeof(i))"))
"""
checktreatindex(inds, tinds)
Check whether all indices for treatment coefficients `tinds`
are positioned before any other index in `inds`.
This is required to be true for methods such as `treatcoef` and `treatvcov`
to work properly.
If the test fails, an `ArgumentError` exception is thrown.
"""
function checktreatindex(inds::AbstractVector{<:Real}, tinds)
length(tinds) == length(union(tinds, inds[1:length(tinds)])) ||
throw(ArgumentError("indices for treatment coefficients must come first"))
end
checktreatindex(inds::AbstractVector{Bool}, tinds) = true
checktreatindex(inds, tinds) = true
"""
SubDIDResult{TR,P<:AbstractDIDResult,I,TI} <: AbstractDIDResult{TR}
A view into a DID result of type `P` with indices for all coefficients of type `I`
and indices for treatment coefficients of type `TI`.
See also [`view(r::AbstractDIDResult, inds)`](@ref).
"""
struct SubDIDResult{TR,P<:AbstractDIDResult,I,TI} <: AbstractDIDResult{TR}
parent::P
inds::I
treatinds::TI
coefinds::Dict{String,Int}
end
@propagate_inbounds function SubDIDResult(p::AbstractDIDResult{TR}, inds) where {TR}
@boundscheck if !checkindex(Bool, axes(coef(p), 1), inds)
throw(BoundsError(p, inds))
end
tinds = treatindex(ntreatcoef(p), inds)
checktreatindex(inds, tinds)
cnames = view(coefnames(p), inds)
cfinds = Dict{String,Int}(n=>i for (i,n) in enumerate(cnames))
return SubDIDResult{TR, typeof(p), typeof(inds), typeof(tinds)}(p, inds, tinds, cfinds)
end
"""
view(r::AbstractDIDResult, inds)
Return a [`SubDIDResult`](@ref) that lazily references elements
from `r` at the given index or indices `inds` without constructing a copied subset.
"""
@propagate_inbounds view(r::AbstractDIDResult, inds) = SubDIDResult(r, inds)
coef(r::SubDIDResult) = view(coef(parent(r)), r.inds)
vcov(r::SubDIDResult) = view(vcov(parent(r)), r.inds, r.inds)
vce(r::SubDIDResult) = vce(parent(r))
treatment(r::SubDIDResult) = treatment(parent(r))
nobs(r::SubDIDResult) = nobs(parent(r))
outcomename(r::SubDIDResult) = outcomename(parent(r))
coefnames(r::SubDIDResult) = view(coefnames(parent(r)), r.inds)
treatcells(r::SubDIDResult) = view(treatcells(parent(r)), r.treatinds)
weights(r::SubDIDResult) = weights(parent(r))
ntreatcoef(r::SubDIDResult) = _nselected(r.treatinds)
treatcoef(r::SubDIDResult) = view(treatcoef(parent(r)), r.treatinds)
treatvcov(r::SubDIDResult) = view(treatvcov(parent(r)), r.treatinds, r.treatinds)
treatnames(r::SubDIDResult) = view(treatnames(parent(r)), r.treatinds)
dof_residual(r::SubDIDResult) = dof_residual(parent(r))
responsename(r::SubDIDResult) = responsename(parent(r))
"""
TransformedDIDResult{TR,P,M} <: AbstractDIDResult{TR}
Estimation results obtained from a linear transformation
of all coefficient estimates from [`DIDResult`](@ref).
See also [`TransSubDIDResult`](@ref), [`lincom`](@ref) and [`rescale`](@ref).
# Parameters
- `P`: type of the result that is transformed.
- `M`: type of the matrix representing the linear transformation.
"""
struct TransformedDIDResult{TR,P,M} <: AbstractDIDResult{TR}
parent::P
linmap::M
coef::Vector{Float64}
vcov::Matrix{Float64}
function TransformedDIDResult(r::AbstractDIDResult{TR}, linmap::AbstractMatrix{<:Real},
cf::Vector{Float64}, v::Matrix{Float64}) where {TR}
return new{TR, typeof(r), typeof(linmap)}(r, linmap, cf, v)
end
end
"""
TransSubDIDResult{TR,P,M,I,TI} <: AbstractDIDResult{TR}
Estimation results obtained from a linear transformation
of a subset of coefficient estimates from [`DIDResult`](@ref).
See also [`TransformedDIDResult`](@ref), [`lincom`](@ref) and [`rescale`](@ref).
# Parameters
- `P`: type of the result that is transformed.
- `M`: type of the matrix representing the linear transformation.
- `I`: type of indices for all coefficients.
- `TI`: type of indices for treatment coefficients.
"""
struct TransSubDIDResult{TR,P,M,I,TI} <: AbstractDIDResult{TR}
parent::P
linmap::M
coef::Vector{Float64}
vcov::Matrix{Float64}
inds::I
treatinds::TI
coefinds::Dict{String,Int}
function TransSubDIDResult(r::AbstractDIDResult{TR}, linmap::AbstractMatrix{<:Real},
cf::Vector{Float64}, v::Matrix{Float64}, inds) where {TR}
if !checkindex(Bool, axes(coef(r), 1), inds)
throw(BoundsError(r, inds))
end
tinds = treatindex(ntreatcoef(r), inds)
checktreatindex(inds, tinds)
cnames = view(coefnames(r), inds)
cfinds = Dict{String,Int}(n=>i for (i,n) in enumerate(cnames))
return new{TR, typeof(r), typeof(linmap), typeof(inds), typeof(tinds)}(
r, linmap, cf, v, inds, tinds, cfinds)
end
end
const TransOrTransSub{TR} = Union{TransformedDIDResult{TR}, TransSubDIDResult{TR}}
vce(r::TransOrTransSub) = vce(parent(r))
treatment(r::TransOrTransSub) = treatment(parent(r))
nobs(r::TransOrTransSub) = nobs(parent(r))
outcomename(r::TransOrTransSub) = outcomename(parent(r))
coefnames(r::TransformedDIDResult) = coefnames(parent(r))
coefnames(r::TransSubDIDResult) = view(coefnames(parent(r)), r.inds)
treatcells(r::TransformedDIDResult) = treatcells(parent(r))
treatcells(r::TransSubDIDResult) = view(treatcells(parent(r)), r.treatinds)
weights(r::TransOrTransSub) = weights(parent(r))
ntreatcoef(r::TransformedDIDResult) = ntreatcoef(parent(r))
ntreatcoef(r::TransSubDIDResult) = _nselected(r.treatinds)
treatnames(r::TransformedDIDResult) = treatnames(parent(r))
treatnames(r::TransSubDIDResult) = view(treatnames(parent(r)), r.treatinds)
dof_residual(r::TransOrTransSub) = dof_residual(parent(r))
responsename(r::TransOrTransSub) = responsename(parent(r))
coefinds(r::TransformedDIDResult) = coefinds(parent(r))
"""
lincom(r::AbstractDIDResult, linmap::AbstractMatrix{<:Real}, subset=nothing)
Linearly transform the coefficient estimates from DID result `r`
through a matrix `linmap`.
The number of columns of `linmap` must match the total number of coefficients from `r`.
If `linmap` is not square (with fewer rows than columns),
`subset` must be specified with indices representing coefficients
that remain after the transformation.
See also [`rescale`](@ref).
"""
function lincom(r::AbstractDIDResult, linmap::AbstractMatrix{<:Real}, subset::Nothing=nothing)
nr, nc = size(linmap)
length(coef(r)) == nc ||
throw(DimensionMismatch("linmap must have $(length(coef(r))) columns"))
nr == nc || throw(ArgumentError("subset must be specified if linmap is not square"))
cf = linmap * coef(r)
v = linmap * vcov(r) * linmap'
return TransformedDIDResult(r, linmap, cf, v)
end
function lincom(r::AbstractDIDResult, linmap::AbstractMatrix{<:Real}, subset)
inds = _parse_subset(r, subset, true)
nr, nc = size(linmap)
length(coef(r)) == nc ||
throw(DimensionMismatch("linmap must have $(length(coef(r))) columns"))
_nselected(inds) == nr || throw(ArgumentError("subset must select $nr elements"))
cf = linmap * coef(r)
v = linmap * vcov(r) * linmap'
return TransSubDIDResult(r, linmap, cf, v, inds)
end
"""
rescale(r::AbstractDIDResult, scale::AbstractVector{<:Real}, subset=nothing)
rescale(r::AbstractDIDResult, by::Pair, subset=nothing)
Rescale the coefficient estimates from DID result `r`.
The order of elements in `scale` must match the order of coefficients.
If the length of `scale` is smaller than the total number of coefficient,
`subset` must be specified with indices representing coefficients
that remain after the transformation.
Alternatively, if `by` is specified in the same way for [`apply`](@ref),
the scales can be computed based on values in [`treatcells(r)`](@ref).
In this case, only treatment coefficients are transformed
even if `subset` is not specified.
See [`lincom`](@ref) for more general transformation.
"""
function rescale(r::AbstractDIDResult, scale::AbstractVector{<:Real}, subset::Nothing=nothing)
N0 = length(coef(r))
N1 = length(scale)
N0 == N1 || throw(ArgumentError(
"subset must be specified if scale does not have $N0 elements"))
cf = scale .* coef(r)
v = Matrix{Float64}(undef, N0, N0)
pv = vcov(r)
@inbounds for j in 1:N0
for i in 1:N0
v[i, j] = scale[i]*scale[j]*pv[i, j]
end
end
return TransformedDIDResult(r, Diagonal(scale), cf, v)
end
function rescale(r::AbstractDIDResult, scale::AbstractVector{<:Real}, subset)
inds = _parse_subset(r, subset, true)
N = length(scale)
_nselected(inds) == N || throw(ArgumentError("subset must select $N elements"))
cf = scale .* view(coef(r), inds)
v = Matrix{Float64}(undef, N, N)
pv = view(vcov(r), inds, inds)
@inbounds for j in 1:N
for i in 1:N
v[i, j] = scale[i]*scale[j]*pv[i, j]
end
end
return TransSubDIDResult(r, Diagonal(scale), cf, v, inds)
end
rescale(r::AbstractDIDResult, by::Pair, subset::Nothing=nothing) =
rescale(r, apply(treatcells(r), by), 1:ntreatcoef(r))
function rescale(r::AbstractDIDResult, by::Pair, subset)
inds = _parse_subset(r, subset, true)
tinds = treatindex(ntreatcoef(r), inds)
return rescale(r, apply(view(treatcells(r), tinds), by), inds)
end
"""
ExportFormat
Supertype for all types representing the format for exporting an [`AbstractDIDResult`](@ref).
"""
abstract type ExportFormat end
"""
StataPostHDF <: ExportFormat
Export an [`AbstractDIDResult`](@ref) for Stata module
[`posthdf`](https://github.com/junyuan-chen/posthdf).
"""
struct StataPostHDF <: ExportFormat end
const DefaultExportFormat = ExportFormat[StataPostHDF()]
"""
getexportformat()
Return the default [`ExportFormat`](@ref) for [`post!`](@ref).
"""
getexportformat() = DefaultExportFormat[1]
"""
setexportformat!(format::ExportFormat)
Set the default [`ExportFormat`](@ref) for [`post!`](@ref).
"""
setexportformat!(format::ExportFormat) = (DefaultExportFormat[1] = format)
"""
post!(f, r; kwargs...)
Export result `r` in a default [`ExportFormat`](@ref).
The default format can be retrieved via [`getexportformat`](@ref)
and modified via [`setexportformat!`](@ref).
The keyword arguments that can be accepted depend on the format
and the type of `r`.
"""
post!(f, r; kwargs...) =
post!(f, getexportformat(), r; kwargs...)
_statafield(v::Symbol) = string(v)
_statafield(v::Union{Real, String, Vector{<:Real}, Vector{String}, Matrix{<:Real}}) = v
_statafield(v::Vector{Symbol}) = string.(v)
_statafield(::Nothing) = ""
_statafield(v) = nothing
function _postfields!(f, r::AbstractDIDResult,
fields::AbstractVector{<:Union{Symbol, Pair{String,Symbol}}})
for k in fields
if k isa Symbol
s = string(k)
n = k
else
s, n = k
end
v = _statafield(getfield(r, n))
v === nothing && throw(ArgumentError(
"Field $n has a type that cannot be posted via posthdf"))
f[s] = v
end
end
_postat!(f, r::AbstractDIDResult, at) = nothing
_postat!(f, r::AbstractDIDResult, at::AbstractVector) = (f["at"] = at)
_postat!(f, r::AbstractDIDResult{<:DynamicTreatment}, at::Bool) =
at && (f["at"] = treatcells(r).rel)
"""
post!(f, ::StataPostHDF, r::AbstractDIDResult; kwargs...)
Export result `r` for Stata module
[`posthdf`](https://github.com/junyuan-chen/posthdf).
A subset of field values from `r` are placed in `f` by setting key-value pairs,
where `f` can be either an `HDF5.Group` or any object that can be indexed by strings.
# Keywords
- `model::String=repr(typeof(r))`: name of the model.
- `fields::Union{AbstractVector{<:Union{Symbol, Pair{String,Symbol}}}, Nothing}=nothing`: additional fields to be exported; alternative names can be specified with `Pair`s.
- `at::Union{AbstractVector{<:Real}, Bool, Nothing}=nothing`: post the `at` vector in Stata.
"""
function post!(f, ::StataPostHDF, r::AbstractDIDResult;
model::String=repr(typeof(r)),
fields::Union{AbstractVector{<:Union{Symbol, Pair{String,Symbol}}}, Nothing}=nothing,
at::Union{AbstractVector{<:Real}, Bool, Nothing}=nothing)
f["model"] = model
f["b"] = coef(r)
f["V"] = vcov(r)
f["vce"] = repr(vce(r))
f["N"] = nobs(r)
f["depvar"] = string(outcomename(r))
f["coefnames"] = convert(AbstractVector{String}, coefnames(r))
f["weights"] = (w = weights(r); w === nothing ? "" : string(w))
f["ntreatcoef"] = ntreatcoef(r)
dofr = dof_residual(r)
dofr === nothing || (f["df_r"] = dofr)
fields === nothing || _postfields!(f, r, fields)
if at !== nothing
pat = _postat!(f, r, at)
pat === nothing && throw(ArgumentError(
"Keyword argument `at` of type $(typeof(at)) is not accepted."))
pat == false || length(pat) != length(coef(r)) && throw(ArgumentError(
"The length of at ($(length(pat))) does not match the length of b ($(length(coef(r))))"))
end
return f
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 16548 | # A variant of SplitApplyCombine.groupfind using IdDict instead of Dictionaries.Dictionary
function _groupfind(container)
T = keytype(container)
inds = IdDict{eltype(container), Vector{T}}()
@inbounds for i in keys(container)
push!(get!(Vector{T}, inds, container[i]), i)
end
return inds
end
function _refs_pool(col::AbstractArray, reftype::Type{<:Integer}=UInt32)
refs = refarray(col)
pool = refpool(col)
labeled = pool !== nothing
if !labeled
refs, invpool, pool = _label(col, eltype(col), reftype)
end
return refs, pool, labeled
end
# Obtain unique labels for row-wise pairs of values from a1 and a2 when mult is large enough
function _mult!(a1::AbstractArray, a2::AbstractArray, mult)
z = zero(eltype(a1))
@inbounds for i in eachindex(a1)
x1 = a1[i]
x2 = a2[i]
# Handle missing values represented by zeros
if iszero(x1) || iszero(x2)
a1[i] = z
else
a1[i] += mult * (x2 - 1)
end
end
end
"""
findcell(cols::VecColumnTable)
findcell(names, data, esample=Colon())
Group the row indices of a collection of data columns
so that the combination of row values from these columns
are the same within each group.
Instead of directly providing the relevant portions of columns as
[`VecColumnTable`](@ref)``,
one may specify the `names` of columns from
`data` of any `Tables.jl`-compatible table type
over selected rows indicated by `esample`.
Note that unless `esample` covers all rows of `data`,
the row indices are those for the subsample selected based on `esample`
rather than those for the full `data`.
# Returns
- `IdDict{Tuple, Vector{Int}}`: a map from unique row values to row indices.
"""
function findcell(cols::VecColumnTable)
ncol = size(cols, 2)
isempty(cols) && throw(ArgumentError("no data column is found"))
refs, pool, labeled = _refs_pool(cols[1])
mult = length(pool)
if ncol > 1
# Make a copy to be used as cache
labeled && (refs = copy(refs))
@inbounds for n in 2:ncol
refsn, pool, labeled = _refs_pool(cols[n])
multn = length(pool)
_mult!(refs, refsn, mult)
mult = mult * multn
end
end
return _groupfind(refs)
end
findcell(names, data, esample=Colon()) =
findcell(subcolumns(data, names, esample))
"""
cellrows(cols::VecColumnTable, refrows::IdDict)
A utility function for processing the object `refrows` returned by [`findcell`](@ref).
Unique row values from `cols` corresponding to
the keys in `refrows` are sorted lexicographically
and stored as rows in a new `VecColumnTable`.
Groups of row indices from the values of `refrows` are permuted to
match the order of row values and collected in a `Vector`.
# Returns
- `cells::VecColumnTable`: unique row values from columns in `cols`.
- `rows::Vector{Vector{Int}}`: row indices for each combination.
"""
function cellrows(cols::VecColumnTable, refrows::IdDict)
isempty(refrows) && throw(ArgumentError("refrows is empty"))
isempty(cols) && throw(ArgumentError("no data column is found"))
ncol = length(cols)
ncell = length(refrows)
rows = Vector{Vector{Int}}(undef, ncell)
columns = Vector{AbstractVector}(undef, ncol)
for i in 1:ncol
c = cols[i]
if typeof(c) <: Union{ScaledArrOrSub, RotatingTimeArray}
columns[i] = similar(c, ncell)
else
columns[i] = Vector{eltype(c)}(undef, ncell)
end
end
refs = Vector{keytype(refrows)}(undef, ncell)
r = 0
@inbounds for (k, v) in refrows
r += 1
row1 = v[1]
refs[r] = k
for c in 1:ncol
columns[c][r] = cols[c][row1]
end
end
cells = VecColumnTable(columns, _names(cols), _lookup(cols))
p = sortperm(cells)
# Replace each column of cells with a new one in the sorted order
@inbounds for i in 1:ncol
columns[i] = cells[i][p]
end
# Collect rows in the same order as cells
@inbounds for i in 1:ncell
rows[i] = refrows[refs[p[i]]]
end
return cells, rows
end
"""
settime(time::AbstractArray, step; start, stop, reftype, rotation)
Convert a column of time values to a [`ScaledArray`](@ref)
for representing discretized time periods of uniform length.
If `rotation` is specified (time values belong to multiple rotation groups),
a [`RotatingTimeArray`](@ref) is returned with the `time` field
being a [`ScaledArray`](@ref).
The returned array ensures well-defined time intervals for operations involving relative time
(such as [`lag`](@ref) and [`diff`](@ref)).
See also [`aligntime`](@ref).
# Arguments
- `time::AbstractArray`: the array containing time values.
- `step=nothing`: the length of each time interval; try `step=one(eltype(time))` if not specified.
# Keywords
- `start=nothing`: the first element of the `pool` of the returned [`ScaledArray`](@ref).
- `stop=nothing`: the last element of the `pool` of the returned [`ScaledArray`](@ref).
- `reftype::Type{<:Signed}=Int32`: the element type of the reference values for the [`ScaledArray`](@ref).
- `rotation=nothing`: rotation groups in a rotating sampling design.
"""
function settime(time::AbstractArray, step=nothing; start=nothing, stop=nothing,
reftype::Type{<:Signed}=Int32, rotation=nothing)
T = eltype(time)
T <: ValidTimeType && !(T <: RotatingTimeValue) ||
throw(ArgumentError("unaccepted element type $T from time column"))
step === nothing && (step = one(T))
time = ScaledArray(time, start, step, stop; reftype=reftype)
rotation === nothing || (time = RotatingTimeArray(rotation, time))
return time
end
"""
aligntime(col::AbstractArray, time::ScaledArrOrSub)
aligntime(col::AbstractArray, time::RotatingTimeArray)
aligntime(data, colname::Union{Symbol,Integer}, timename::Union{Symbol,Integer})
Convert a column of time values `col` to a [`ScaledArray`](@ref) with a `pool`
that has the same first element and step size as the `pool` from
the [`ScaledArray`](@ref) `time`.
If `time` is a [`RotatingTimeArray`](@ref) with the `time` field being a [`ScaledArray`](@ref),
the returned array is also a [`RotatingTimeArray`](@ref)
with the `time` field being the converted [`ScaledArray`](@ref).
Alternative, the arrays may be specified with a `Tables.jl`-compatible `data` table
and column indices `colname` and `timename`.
See also [`settime`](@ref).
This is useful for representing all discretized time periods with the same scale
so that the underlying reference values returned by `DataAPI.refarray`
can be directly comparable across the columns.
"""
aligntime(col::AbstractArray, time::ScaledArrOrSub) = align(col, time)
aligntime(col::AbstractArray, time::RotatingTimeArray) =
RotatingTimeArray(time.rotation, align(col, time.time))
aligntime(col::RotatingTimeArray, time::RotatingTimeArray) =
RotatingTimeArray(time.rotation, align(col.time, time.time))
function aligntime(data, colname::Union{Symbol,Integer}, timename::Union{Symbol,Integer})
checktable(data)
return aligntime(getcolumn(data, colname), getcolumn(data, timename))
end
"""
PanelStructure{R<:Signed, IP<:AbstractVector, TP<:AbstractVector}
Panel data structure defined by unique combinations of unit ids and time periods.
It contains the information required for certain operations such as
[`lag`](@ref) and [`diff`](@ref).
See also [`setpanel`](@ref).
# Fields
- `refs::Vector{R}`: reference values that allow obtaining time gaps by taking differences.
- `invrefs::Dict{R, Int}`: inverse map from `refs` to indices.
- `idpool::IP`: unique unit ids.
- `timepool::TP`: sorted unique time periods.
- `laginds::Dict{Int, Vector{Int}}`: a map from lag distances to vectors of indices of lagged values.
"""
struct PanelStructure{R<:Signed, IP<:AbstractVector, TP<:AbstractVector}
refs::Vector{R}
invrefs::Dict{R, Int}
idpool::IP
timepool::TP
laginds::Dict{Int, Vector{Int}}
function PanelStructure(refs::Vector{R}, idpool::IP, timepool::TP,
laginds::Dict=Dict{Int, Vector{Int}}()) where {R,IP,TP}
invrefs = Dict{R, Int}(ref=>i for (i, ref) in enumerate(refs))
return new{R,IP,TP}(refs, invrefs, idpool, timepool, laginds)
end
end
"""
setpanel(data, idname, timename; step, reftype, rotation)
setpanel(id::AbstractArray, time::AbstractArray; step, reftype, rotation)
Declare a [`PanelStructure`](@ref) which is required for certain operations
such as [`lag`](@ref) and [`diff`](@ref).
Unit IDs and time values can be provided either
as a table containing the relevant columns or as arrays.
`timestep` must be specified unless the `time` array is a [`ScaledArray`](@ref)
that is returned by [`settime`](@ref).
# Arguments
- `data`: a `Tables.jl`-compatible data table.
- `idname::Union{Symbol,Integer}`: the name of the column in `data` that contains unit IDs.
- `timename::Union{Symbol,Integer}`: the name of the column in `data` that contains time values.
- `id::AbstractArray`: the array containing unit IDs (only needed for the alternative method).
- `time::AbstractArray`: the array containing time values (only needed for the alternative method).
# Keywords
- `step=nothing`: the length of each time interval; try `step=one(eltype(time))` if not specified.
- `reftype::Type{<:Signed}=Int32`: the element type of the reference values for [`PanelStructure`](@ref).
- `rotation=nothing`: rotation groups in a rotating sampling design; use [`RotatingTimeValue`](@ref)s as reference values.
!!! note
If the underlying data used to create the [`PanelStructure`](@ref) are modified.
The changes will not be reflected in the existing instances of [`PanelStructure`](@ref).
A new instance needs to be created with `setpanel`.
"""
function setpanel(id::AbstractArray, time::AbstractArray; step=nothing,
reftype::Type{<:Signed}=Int32, rotation=nothing)
eltype(time) <: ValidTimeType ||
throw(ArgumentError("unaccepted element type $(eltype(time)) from time column"))
length(id) == length(time) || throw(DimensionMismatch(
"id has length $(length(id)) while time has length $(length(time))"))
refs, idpool, labeled = _refs_pool(id)
labeled && (refs = copy(refs); idpool = copy(idpool))
time = settime(time, step; reftype=reftype, rotation=rotation)
trefs = refarray(time)
tpool = refpool(time)
# Multiply 2 to create enough gaps between id groups for the largest possible lead/lag
mult = 2 * length(tpool)
_mult!(trefs, refs, mult)
return PanelStructure(trefs, idpool, tpool)
end
function setpanel(data, idname::Union{Symbol,Integer}, timename::Union{Symbol,Integer};
step=nothing, reftype::Type{<:Signed}=Int32)
checktable(data)
return setpanel(getcolumn(data, idname), getcolumn(data, timename);
step=step, reftype=reftype)
end
show(io::IO, ::PanelStructure) = print(io, "Panel Structure")
function show(io::IO, ::MIME"text/plain", panel::PanelStructure)
println(io, "Panel Structure:")
println(IOContext(io, :limit=>true, :displaysize=>(1, 80)), " idpool: ", panel.idpool)
println(IOContext(io, :limit=>true, :displaysize=>(1, 80)), " timepool: ", panel.timepool)
print(IOContext(io, :limit=>true, :displaysize=>(1, 80)), " laginds: ", panel.laginds)
end
"""
findlag!(panel::PanelStructure, l::Integer=1)
Construct a vector of indices of the `l`th lagged values
for all id-time combinations of `panel`
and save the result in `panel.laginds`.
If a lagged value does not exist, its index is filled with 0.
See also [`ilag!`](@ref).
"""
function findlag!(panel::PanelStructure, l::Integer=1)
abs(l) < length(panel.timepool) ||
throw(ArgumentError("|l| must be smaller than $(length(panel.timepool)); got $l"))
refs = panel.refs
invrefs = panel.invrefs
T = eltype(refs)
inds = Vector{Int}(undef, size(refs))
l = convert(T, l)
z = zero(T)
@inbounds for i in keys(refs)
ref = refs[i]
inds[i] = get(invrefs, ref-l, z)
end
panel.laginds[l] = inds
return inds
end
"""
findlead!(panel::PanelStructure, l::Integer=1)
Construct a vector of indices of the `l`th lead values
for all id-time combinations of `panel`
and save the result in `panel.laginds`.
If a lead value does not exist, its index is filled with 0.
See also [`ilead!`](@ref).
"""
findlead!(panel::PanelStructure, l::Integer=1) = findlag!(panel, -l)
"""
ilag!(panel::PanelStructure, l::Integer=1)
Return a vector of indices of the `l`th lagged values
for all id-time combinations of `panel`.
The indices are retrieved from `panel` if they have been collected before.
Otherwise, they are created by calling [`findlag!`](@ref).
See also [`ilead!`](@ref).
"""
function ilag!(panel::PanelStructure, l::Integer=1)
il = get(panel.laginds, l, nothing)
return il === nothing ? findlag!(panel, l) : il
end
"""
ilead!(panel::PanelStructure, l::Integer=1)
Return a vector of indices of the `l`th lead values
for all id-time combinations of `panel`.
The indices are retrieved from `panel` if they have been collected before.
Otherwise, they are created by calling [`findlead!`](@ref).
See also [`ilag!`](@ref).
"""
ilead!(panel::PanelStructure, l::Integer=1) = ilag!(panel, -l)
"""
lag(panel::PanelStructure, v::AbstractArray, l::Integer=1; default=missing)
Return a vector of `l`th lagged values of `v` with missing values filled with `default`.
The `panel` structure is respected.
See also [`ilag!`](@ref) and [`lead`](@ref).
"""
function lag(panel::PanelStructure, v::AbstractArray, l::Integer=1; default=missing)
length(v) == length(panel.refs) || throw(DimensionMismatch(
"v has length $(length(v)) while expecting $(length(panel.refs))"))
inds = ilag!(panel, l)
out = default === missing ? similar(v, Union{eltype(v), Missing}) : similar(v)
@inbounds for i in 1:length(v)
out[i] = inds[i] == 0 ? default : v[inds[i]]
end
return out
end
"""
lead(panel::PanelStructure, v::AbstractArray, l::Integer=1; default=missing)
Return a vector of `l`th lead values of `v` with missing values filled with `default`.
The `panel` structure is respected.
See also [`ilead!`](@ref) and [`lag`](@ref).
"""
lead(panel::PanelStructure, v::AbstractArray, l::Integer=1; default=missing) =
lag(panel, v, -l, default=default)
function _diff!(dest::AbstractArray, v::AbstractArray, inds::AbstractArray, default)
@inbounds for i in 1:length(v)
dest[i] = inds[i] == 0 ? default : v[i] - v[inds[i]]
end
end
"""
diff!(dest::AbstractArray, panel::PanelStructure, v::AbstractArray; kwargs...)
Take the differences of `v` within observations for each unit in `panel`
and store the result in `dest`.
By default, it calculates the first differences.
See also [`diff`](@ref).
# Keywords
- `order::Integer=1`: the order of differences to be taken.
- `l::Integer=1`: the time interval between each pair of observations.
- `default=missing`: default values for indices where the differences do not exist.
"""
function diff!(dest::AbstractArray, panel::PanelStructure, v::AbstractArray;
order::Integer=1, l::Integer=1, default=missing)
length(dest) == length(v) || throw(DimensionMismatch(
"dest has length $(length(dest)) while v has length $(length(v))"))
0 < order < length(panel.timepool) || throw(ArgumentError(
"order must be between 0 and $(length(panel.timepool)); got $order"))
inds = get(panel.laginds, l, nothing)
inds === nothing && (inds = findlag!(panel, l))
_diff!(dest, v, inds, default)
if order > 1
cache = similar(dest)
for i in 2:order
copy!(cache, dest)
_diff!(dest, cache, inds, default)
end
end
return dest
end
"""
diff(panel::PanelStructure, v::AbstractArray; kwargs...)
Return the differences of `v` within observations for each unit in `panel`.
By default, it calculates the first differences.
See also [`diff!`](@ref).
# Keywords
- `order::Integer=1`: the order of differences to be taken.
- `l::Integer=1`: the time interval between each pair of observations.
- `default=missing`: default values for indices where the differences do not exist.
"""
function diff(panel::PanelStructure, v::AbstractArray;
order::Integer=1, l::Integer=1, default=missing)
out = default === missing ? similar(v, Union{eltype(v), Missing}) : similar(v)
diff!(out, panel, v, order=order, l=l, default=default)
return out
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 11159 | """
ParallelCondition
Supertype for all types imposing conditions of parallel.
"""
abstract type ParallelCondition end
@fieldequal ParallelCondition
"""
Unconditional <: ParallelCondition
Assume some notion of parallel holds without conditions.
"""
struct Unconditional <: ParallelCondition end
show(io::IO, ::Unconditional) =
get(io, :compact, false) ? print(io, "U") : print(io, "Unconditional")
"""
unconditional()
Alias for [`Unconditional()`](@ref).
"""
unconditional() = Unconditional()
"""
CovariateConditional <: ParallelCondition
Supertype for all types assuming some notion of parallel holds
after conditioning on covariates.
"""
abstract type CovariateConditional <: ParallelCondition end
"""
ParallelStrength
Supertype for all types specifying the strength of parallel.
"""
abstract type ParallelStrength end
"""
Exact <: ParallelStrength
Assume some notion of parallel holds exactly.
"""
struct Exact <: ParallelStrength end
show(io::IO, ::Exact) =
get(io, :compact, false) ? print(io, "P") : print(io, "Parallel")
"""
exact()
Alias for [`Exact()`](@ref).
"""
exact() = Exact()
"""
Approximate <: ParallelStrength
Supertype for all types assuming some notion of parallel holds approximately.
"""
abstract type Approximate <: ParallelStrength end
"""
AbstractParallel{C<:ParallelCondition, S<:ParallelStrength}
Supertype for all parallel types.
"""
abstract type AbstractParallel{C<:ParallelCondition, S<:ParallelStrength} end
@fieldequal AbstractParallel
"""
UnspecifiedParallel{C,S} <: AbstractParallel{C,S}
A parallel trends assumption (PTA) without explicitly specified
relations across treatment groups.
See also [`unspecifiedpr`](@ref).
With this parallel type,
operations for complying with a PTA are suppressed.
This is useful, for example,
when the user-provided regressors and sample restrictions
need to be accepted without any PTA-specific alteration.
# Fields
- `c::C`: an instance of [`ParallelCondition`](@ref).
- `s::S`: an instance of [`ParallelStrength`](@ref).
"""
struct UnspecifiedParallel{C,S} <: AbstractParallel{C,S}
c::C
s::S
function UnspecifiedParallel(c::ParallelCondition=Unconditional(),
s::ParallelStrength=Exact())
return new{typeof(c),typeof(s)}(c, s)
end
end
"""
unspecifiedpr(c::ParallelCondition=Unconditional(), s::ParallelStrength=Exact())
Construct an [`UnspecifiedParallel`](@ref) with fields set by the arguments.
This is an alias of the inner constructor of [`UnspecifiedParallel`](@ref).
"""
unspecifiedpr(c::ParallelCondition=Unconditional(), s::ParallelStrength=Exact()) =
UnspecifiedParallel(c, s)
show(io::IO, pr::UnspecifiedParallel) =
print(IOContext(io, :compact=>true), "Unspecified{", pr.c, ",", pr.s, "}")
function show(io::IO, ::MIME"text/plain", pr::UnspecifiedParallel)
print(io, pr.s, " among unspecified treatment groups")
pr.c isa Unconditional || print(io, ":\n ", pr.c)
end
"""
TrendParallel{C,S} <: AbstractParallel{C,S}
Supertype for all parallel types that
assume a parallel trends assumption holds over all the relevant time periods.
"""
abstract type TrendParallel{C,S} <: AbstractParallel{C,S} end
"""
TrendOrUnspecifiedPR{C,S}
Union type of [`TrendParallel{C,S}`](@ref) and [`UnspecifiedParallel{C,S}`](@ref).
"""
const TrendOrUnspecifiedPR{C,S} = Union{TrendParallel{C,S}, UnspecifiedParallel{C,S}}
"""
istreated(pr::TrendParallel, x)
Test whether `x` represents the treatment time
for a group of units that are not treated.
See also [`istreated!`](@ref).
"""
function istreated end
"""
istreated!(out::AbstractVector{Bool}, pr::TrendParallel, x::AbstractArray)
For each element in `x`,
test whether it represents the treatment time
for a group of units that are not treated and save the result in `out`.
See also [`istreated`](@ref).
"""
function istreated! end
"""
NeverTreatedParallel{C,S} <: TrendParallel{C,S}
Assume a parallel trends assumption holds between any group
that received the treatment during the sample periods
and a group that did not receive any treatment in any sample period.
See also [`nevertreated`](@ref).
# Fields
- `e::Tuple{Vararg{ValidTimeType}}`: group indices for units that did not receive any treatment.
- `c::C`: an instance of [`ParallelCondition`](@ref).
- `s::S`: an instance of [`ParallelStrength`](@ref).
"""
struct NeverTreatedParallel{C,S} <: TrendParallel{C,S}
e::Tuple{Vararg{ValidTimeType}}
c::C
s::S
function NeverTreatedParallel(e, c::ParallelCondition, s::ParallelStrength)
e = applicable(iterate, e) ? (unique!(sort!([e...]))...,) : (e,)
isempty(e) && error("field `e` cannot be empty")
return new{typeof(c),typeof(s)}(e, c, s)
end
end
istreated(pr::NeverTreatedParallel, x) = !(x in pr.e)
function istreated!(out::AbstractVector{Bool}, pr::NeverTreatedParallel,
x::AbstractArray{<:Union{ValidTimeType, Missing}})
e = Set(pr.e)
out .= .!(x .∈ Ref(e))
end
function istreated!(out::AbstractVector{Bool}, pr::NeverTreatedParallel,
x::ScaledArray{<:Union{ValidTimeType, Missing}})
refs = refarray(x)
invpool = invrefpool(x)
e = Set(invpool[c] for c in pr.e if haskey(invpool, c))
out .= .!(refs .∈ Ref(e))
end
show(io::IO, pr::NeverTreatedParallel) =
print(IOContext(io, :compact=>true), "NeverTreated{", pr.c, ",", pr.s, "}",
length(pr.e)==1 ? string("(", pr.e[1], ")") : pr.e)
function show(io::IO, ::MIME"text/plain", pr::NeverTreatedParallel)
println(io, pr.s, " trends with any never-treated group:")
print(io, " Never-treated groups: ", join(string.(pr.e), ", "))
pr.c isa Unconditional || print(io, "\n ", pr.c)
end
"""
nevertreated(e, c::ParallelCondition, s::ParallelStrength)
nevertreated(e; c=Unconditional(), s=Exact())
Construct a [`NeverTreatedParallel`](@ref) with fields set by the arguments.
By default, `c` is set as [`Unconditional()`](@ref)
and `s` is set as [`Exact()`](@ref).
When working with `@formula`,
a wrapper method of `nevertreated` calls this method.
# Examples
```jldoctest; setup = :(using DiffinDiffsBase)
julia> nevertreated(-1)
Parallel trends with any never-treated group:
Never-treated groups: -1
julia> typeof(nevertreated(-1))
NeverTreatedParallel{Unconditional,Exact}
julia> nevertreated([-1, 0])
Parallel trends with any never-treated group:
Never-treated groups: -1, 0
julia> nevertreated([-1, 0]) == nevertreated(-1:0) == nevertreated(Set([-1, 0]))
true
```
"""
nevertreated(e, c::ParallelCondition, s::ParallelStrength) =
NeverTreatedParallel(e, c, s)
nevertreated(e; c::ParallelCondition=Unconditional(), s::ParallelStrength=Exact()) =
NeverTreatedParallel(e, c, s)
"""
NotYetTreatedParallel{C,S} <: TrendParallel{C,S}
Assume a parallel trends assumption holds between any group
that received the treatment relatively early
and any group that received the treatment relatively late (or never receved).
See also [`notyettreated`](@ref).
# Fields
- `e::Tuple{Vararg{ValidTimeType}}`: group indices for units that received the treatment relatively late.
- `ecut::Tuple{Vararg{ValidTimeType}}`: user-specified period(s) when units in a group in `e` started to receive treatment or show anticipation effects.
- `c::C`: an instance of [`ParallelCondition`](@ref).
- `s::S`: an instance of [`ParallelStrength`](@ref).
!!! note
`ecut` could be different from `minimum(e)` if
- never-treated groups are included and use indices with smaller values;
- the sample has a rotating panel structure with periods overlapping with some others.
"""
struct NotYetTreatedParallel{C,S} <: TrendParallel{C,S}
e::Tuple{Vararg{ValidTimeType}}
ecut::Tuple{Vararg{ValidTimeType}}
c::C
s::S
function NotYetTreatedParallel(e, ecut, c::ParallelCondition, s::ParallelStrength)
e = applicable(iterate, e) ? (unique!(sort!([e...]))...,) : (e,)
isempty(e) && throw(ArgumentError("field e cannot be empty"))
ecut = applicable(iterate, ecut) ? (unique!(sort!([ecut...]))...,) : (ecut,)
isempty(ecut) && throw(ArgumentError("field ecut cannot be empty"))
eltype(e) == eltype(ecut) ||
throw(ArgumentError("e and ecut must have the same element type"))
return new{typeof(c), typeof(s)}(e, ecut, c, s)
end
end
istreated(pr::NotYetTreatedParallel, x) = !(x in pr.e)
function istreated!(out::AbstractVector{Bool}, pr::NotYetTreatedParallel,
x::AbstractArray{<:Union{ValidTimeType, Missing}})
e = Set(pr.e)
out .= .!(x .∈ Ref(e))
end
function istreated!(out::AbstractVector{Bool}, pr::NotYetTreatedParallel,
x::ScaledArray{<:Union{ValidTimeType, Missing}})
refs = refarray(x)
invpool = invrefpool(x)
e = Set(invpool[c] for c in pr.e if haskey(invpool, c))
out .= .!(refs .∈ Ref(e))
end
show(io::IO, pr::NotYetTreatedParallel) =
print(IOContext(io, :compact=>true), "NotYetTreated{", pr.c, ",", pr.s, "}",
length(pr.e)==1 ? string("(", pr.e[1], ")") : pr.e)
function show(io::IO, ::MIME"text/plain", pr::NotYetTreatedParallel)
println(io, pr.s, " trends with any not-yet-treated group:")
println(io, " Not-yet-treated groups: ", join(string.(pr.e), ", "))
print(io, " Treated since: ", join(string.(pr.ecut), ", "))
pr.c isa Unconditional || print(io, "\n ", pr.c)
end
"""
notyettreated(e, ecut, c::ParallelCondition, s::ParallelStrength)
notyettreated(e, ecut=e; c=Unconditional(), s=Exact())
Construct a [`NotYetTreatedParallel`](@ref) with
fields set by the arguments.
By default, `c` is set as [`Unconditional()`](@ref)
and `s` is set as [`Exact()`](@ref).
When working with `@formula`,
a wrapper method of `notyettreated` calls this method.
# Examples
```jldoctest; setup = :(using DiffinDiffsBase)
julia> notyettreated(5)
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 5
Treated since: 5
julia> typeof(notyettreated(5))
NotYetTreatedParallel{Unconditional,Exact}
julia> notyettreated([-1, 5, 6], 5)
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: -1, 5, 6
Treated since: 5
julia> notyettreated([4, 5, 6], [4, 5, 6])
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 4, 5, 6
Treated since: 4, 5, 6
```
"""
notyettreated(e, ecut, c::ParallelCondition, s::ParallelStrength) =
NotYetTreatedParallel(e, ecut, c, s)
notyettreated(e, ecut=e; c::ParallelCondition=Unconditional(), s::ParallelStrength=Exact()) =
NotYetTreatedParallel(e, ecut, c, s)
termvars(c::ParallelCondition) =
error("StatsModels.termvars is not defined for $(typeof(c))")
termvars(::Unconditional) = Symbol[]
termvars(s::ParallelStrength) =
error("StatsModels.termvars is not defined for $(typeof(s))")
termvars(::Exact) = Symbol[]
termvars(pr::AbstractParallel) =
error("StatsModels.termvars is not defined for $(typeof(pr))")
termvars(pr::UnspecifiedParallel) = union(termvars(pr.c), termvars(pr.s))
termvars(pr::NeverTreatedParallel) = union(termvars(pr.c), termvars(pr.s))
termvars(pr::NotYetTreatedParallel) = union(termvars(pr.c), termvars(pr.s))
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 11691 | """
checkdata!(args...)
Check `data` is `Tables.AbstractColumns`-compatible
and find valid rows for options `subset` and `weightname`.
See also [`CheckData`](@ref).
"""
function checkdata!(data, subset::Union{BitVector, Nothing}, weightname::Union{Symbol, Nothing})
checktable(data)
nrow = Tables.rowcount(data)
if subset !== nothing
length(subset) == nrow || throw(DimensionMismatch(
"data contain $(nrow) rows while subset has $(length(subset)) elements"))
# Do not modify subset in-place
esample = copy(subset)
else
esample = trues(nrow)
end
# A cache that makes updating BitVector (esample or tr_rows) faster
# See https://github.com/JuliaData/DataFrames.jl/pull/2726
aux = BitVector(undef, nrow)
if weightname !== nothing
colweights = getcolumn(data, weightname)
if Missing <: eltype(colweights)
aux .= .!ismissing.(colweights)
esample .&= aux
end
aux[esample] .= view(colweights, esample) .> 0
esample[esample] .&= view(aux, esample)
end
sum(esample) == 0 && error("no nonmissing data")
return (esample=esample, aux=aux)
end
"""
CheckData <: StatsStep
Call [`DiffinDiffsBase.checkdata!`](@ref)
for some preliminary checks of the input data.
"""
const CheckData = StatsStep{:CheckData, typeof(checkdata!), true}
required(::CheckData) = (:data,)
default(::CheckData) = (subset=nothing, weightname=nothing)
"""
grouptreatintterms(treatintterms)
Return the argument without change for allowing later comparisons based on object-id.
See also [`GroupTreatintterms`](@ref).
"""
grouptreatintterms(treatintterms::TermSet) = (treatintterms=treatintterms,)
"""
GroupTreatintterms <: StatsStep
Call [`DiffinDiffsBase.grouptreatintterms`](@ref)
to obtain one of the instances of `treatintterms`
that have been grouped by equality (`hash`)
for allowing later comparisons based on object-id.
This step is only useful when working with [`@specset`](@ref) and [`proceed`](@ref).
"""
const GroupTreatintterms = StatsStep{:GroupTreatintterms, typeof(grouptreatintterms), false}
default(::GroupTreatintterms) = (treatintterms=TermSet(),)
"""
groupxterms(xterms)
Return the argument without change for allowing later comparisons based on object-id.
See also [`GroupXterms`](@ref).
"""
groupxterms(xterms::TermSet) = (xterms=xterms,)
"""
GroupXterms <: StatsStep
Call [`DiffinDiffsBase.groupxterms`](@ref)
to obtain one of the instances of `xterms`
that have been grouped by equality (`hash`)
for allowing later comparisons based on object-id.
This step is only useful when working with [`@specset`](@ref) and [`proceed`](@ref).
"""
const GroupXterms = StatsStep{:GroupXterms, typeof(groupxterms), false}
default(::GroupXterms) = (xterms=TermSet(),)
"""
groupcontrasts(contrasts)
Return the argument without change for allowing later comparisons based on object-id.
See also [`GroupContrasts`](@ref).
"""
groupcontrasts(contrasts::Union{Dict{Symbol,Any},Nothing}) = (contrasts=contrasts,)
"""
GroupContrasts <: StatsStep
Call [`DiffinDiffsBase.groupcontrasts`](@ref)
to obtain one of the instances of `contrasts`
that have been grouped by equality (`hash`)
for allowing later comparisons based on object-id.
This step is only useful when working with [`@specset`](@ref) and [`proceed`](@ref).
"""
const GroupContrasts = StatsStep{:GroupContrasts, typeof(groupcontrasts), false}
default(::GroupContrasts) = (contrasts=nothing,)
function _checkscales(col1::AbstractArray, col2::AbstractArray, treatvars::Vector{Symbol})
if col1 isa ScaledArrOrSub || col2 isa ScaledArrOrSub
col1 isa ScaledArrOrSub && col2 isa ScaledArrOrSub ||
throw(ArgumentError("time fields in both columns $(treatvars[1]) and $(treatvars[2]) must be ScaledArrays; see settime and aligntime"))
first(DataAPI.refpool(col1)) == first(DataAPI.refpool(col2)) &&
scale(col1) == scale(col2) || throw(ArgumentError(
"time fields in columns $(treatvars[1]) and $(treatvars[2]) are not aligned; see aligntime"))
else
eltype(col1) <: Integer || throw(ArgumentError(
"columns $(treatvars[1]) and $(treatvars[2]) must be stored in ScaledArrays; see settime and aligntime"))
end
end
function checktreatvars(::DynamicTreatment{SharpDesign},
pr::TrendOrUnspecifiedPR{Unconditional}, treatvars::Vector{Symbol}, data)
# treatvars should be cohort and time variables
col1 = getcolumn(data, treatvars[1])
col2 = getcolumn(data, treatvars[2])
T1 = nonmissingtype(eltype(col1))
T2 = nonmissingtype(eltype(col2))
T1 == T2 || throw(ArgumentError(
"nonmissing elements from columns $(treatvars[1]) and $(treatvars[2]) have different types $T1 and $T2"))
T1 <: ValidTimeType ||
throw(ArgumentError("column $(treatvars[1]) has unaccepted element type $(T1)"))
if pr isa TrendParallel
eltype(pr.e) == T1 || throw(ArgumentError("element type $(eltype(pr.e)) of control cohorts from $pr does not match element type $T1 from data; expect $T1"))
end
if T1 <: RotatingTimeValue
col1 isa RotatingTimeArray && col2 isa RotatingTimeArray ||
throw(ArgumentError("columns $(treatvars[1]) and $(treatvars[2]) must be RotatingTimeArrays; see settime"))
_checkscales(col1.time, col2.time, treatvars)
else
_checkscales(col1, col2, treatvars)
end
end
function _overlaptime(tr::DynamicTreatment, esample::BitVector, tr_rows::BitVector, data)
timeref = refarray(getcolumn(data, tr.time))
control_time = Set(view(timeref, .!tr_rows.&esample))
treated_time = Set(view(timeref, tr_rows.&esample))
return intersect(control_time, treated_time), control_time, treated_time
end
function overlap!(esample::BitVector, tr_rows::BitVector, aux::BitVector, tr::DynamicTreatment,
::NeverTreatedParallel{Unconditional}, treatname::Symbol, data)
overlap_time, control_time, treated_time = _overlaptime(tr, esample, tr_rows, data)
if !(length(control_time)==length(treated_time)==length(overlap_time))
aux[esample] .= view(refarray(getcolumn(data, tr.time)), esample) .∈ (overlap_time,)
esample[esample] .&= view(aux, esample)
end
tr_rows .&= esample
end
function overlap!(esample::BitVector, tr_rows::BitVector, aux::BitVector, tr::DynamicTreatment,
pr::NotYetTreatedParallel{Unconditional}, treatname::Symbol, data)
timecol = getcolumn(data, tr.time)
# First exclude cohorts not suitable for comparisons
if !(eltype(timecol) <: RotatingTimeValue)
invpool = invrefpool(timecol)
e = invpool === nothing ? Set(pr.e) : Set(invpool[c] for c in pr.e)
ecut = invpool === nothing ? pr.ecut[1] : invpool[pr.ecut[1]]
isvalidcohort = x -> x < ecut || x in e
else
invpool = invrefpool(timecol.time)
if invpool === nothing
e = Set(pr.e)
ecut = IdDict(e.rotation=>e.time for e in pr.ecut)
else
e = Set(RotatingTimeValue(c.rotation, invpool[c.time]) for c in pr.e)
ecut = IdDict(e.rotation=>invpool[e.time] for e in pr.ecut)
end
isvalidcohort = x -> x.time < ecut[x.rotation] || x in e
end
aux[esample] .= isvalidcohort.(view(refarray(getcolumn(data, treatname)), esample))
esample[esample] .&= view(aux, esample)
# Check overlaps among the remaining cohorts only
overlap_time, _c, _t = _overlaptime(tr, esample, tr_rows, data)
if !(eltype(timecol) <: RotatingTimeValue)
filter!(x -> x < ecut, overlap_time)
else
filter!(x -> x.time < ecut[x.rotation], overlap_time)
end
aux[esample] .= view(refarray(timecol), esample) .∈ (overlap_time,)
esample[esample] .&= view(aux, esample)
tr_rows .&= esample
end
overlap!(esample::BitVector, tr_rows::BitVector, aux::BitVector, tr::DynamicTreatment,
pr::UnspecifiedParallel{Unconditional}, treatname::Symbol, data) = nothing
"""
checkvars!(args...)
Exclude rows with missing data or violate the overlap condition
and find rows with data from treated units.
See also [`CheckVars`](@ref).
"""
function checkvars!(data, pr::AbstractParallel,
yterm::AbstractTerm, treatname::Symbol, esample::BitVector, aux::BitVector,
treatintterms::TermSet, xterms::TermSet, ::Type, @nospecialize(trvars::Tuple),
tr::AbstractTreatment)
# Do not check eltype of treatintterms
treatvars = union([treatname], trvars, termvars(pr))
checktreatvars(tr, pr, treatvars, data)
allvars = union(treatvars, termvars(yterm), termvars(xterms))
for v in allvars
col = getcolumn(data, v)
if Missing <: eltype(col)
aux .= .!ismissing.(col)
esample .&= aux
end
end
# Values of treatintterms from untreated units are ignored
tr_rows = copy(esample)
if !(pr isa UnspecifiedParallel)
istreated!(view(aux, esample), pr, view(getcolumn(data, treatname), esample))
tr_rows[esample] .&= view(aux, esample)
end
treatintvars = termvars(treatintterms)
for v in treatintvars
col = getcolumn(data, v)
if Missing <: eltype(col)
aux[tr_rows] .= .!ismissing.(view(col, tr_rows))
esample[tr_rows] .&= view(aux, tr_rows)
end
end
isempty(treatintvars) || (tr_rows[tr_rows] .&= view(esample, tr_rows))
overlap!(esample, tr_rows, aux, tr, pr, treatname, data)
sum(esample) == 0 && error("no nonmissing data")
return (esample=esample, tr_rows=tr_rows::BitVector)
end
"""
CheckVars <: StatsStep
Call [`DiffinDiffsBase.checkvars!`](@ref) to exclude invalid rows for relevant variables.
"""
const CheckVars = StatsStep{:CheckVars, typeof(checkvars!), true}
required(::CheckVars) = (:data, :pr, :yterm, :treatname, :esample, :aux,
:treatintterms, :xterms)
transformed(::CheckVars, @nospecialize(nt::NamedTuple)) =
(typeof(nt.tr), (termvars(nt.tr)...,))
combinedargs(step::CheckVars, allntargs) =
combinedargs(step, allntargs, typeof(allntargs[1].tr))
combinedargs(::CheckVars, allntargs, ::Type{DynamicTreatment{SharpDesign}}) =
(allntargs[1].tr,)
copyargs(::CheckVars) = (5,)
"""
groupsample(esample)
Return the argument without change for allowing later comparisons based on object-id.
See also [`GroupSample`](@ref).
"""
groupsample(esample::BitVector) = (esample=esample,)
"""
GroupSample <: StatsStep
Call [`DiffinDiffsBase.groupsample`](@ref)
to obtain one of the instances of `esample`
that have been grouped by equality (`hash`)
for allowing later comparisons based on object-id.
This step is only useful when working with [`@specset`](@ref) and [`proceed`](@ref).
"""
const GroupSample = StatsStep{:GroupSample, typeof(groupsample), false}
required(::GroupSample) = (:esample,)
"""
makeweights(args...)
Construct a generic `Weights` vector.
See also [`MakeWeights`](@ref).
"""
function makeweights(data, esample::BitVector, weightname::Symbol)
weights = Weights(convert(Vector{Float64}, view(getcolumn(data, weightname), esample)))
all(isfinite, weights) || error("data column $weightname contain not-a-number values")
return (weights=weights,)
end
function makeweights(data, esample::BitVector, weightname::Nothing)
weights = uweights(sum(esample))
return (weights=weights,)
end
"""
MakeWeights <: StatsStep
Call [`DiffinDiffsBase.makeweights`](@ref) to create a generic `Weights` vector.
"""
const MakeWeights = StatsStep{:MakeWeights, typeof(makeweights), true}
required(::MakeWeights) = (:data, :esample)
default(::MakeWeights) = (weightname=nothing,)
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 13209 | """
VecColumnTable <: AbstractColumns
A `Tables.jl`-compatible column table that stores data as `Vector{AbstractVector}`
and column names as `Vector{Symbol}`.
Retrieving columns by column names is achieved with a `Dict{Symbol,Int}`
that maps names to indices.
This table type is designed for retrieving and iterating
dynamically generated columns for which
specialization on names and order of columns are not desired.
It is not intended to be directly constructed for interactive usage.
"""
struct VecColumnTable <: AbstractColumns
columns::Vector{AbstractVector}
names::Vector{Symbol}
lookup::Dict{Symbol,Int}
function VecColumnTable(columns::Vector{AbstractVector}, names::Vector{Symbol},
lookup::Dict{Symbol,Int})
# Assume Symbols in names and lookup match
length(columns) == length(names) == length(lookup) ||
throw(ArgumentError("arguments do not share the same length"))
return new(columns, names, lookup)
end
end
function VecColumnTable(columns::Vector{AbstractVector}, names::Vector{Symbol})
lookup = Dict{Symbol,Int}(names.=>keys(names))
return VecColumnTable(columns, names, lookup)
end
function VecColumnTable(data, subset=nothing)
Tables.istable(data) || throw(ArgumentError("input data is not `Tables.jl`-compatible"))
names = collect(Tables.columnnames(data))
ncol = length(names)
columns = Vector{AbstractVector}(undef, ncol)
cols = Tables.columns(data)
if subset === nothing
@inbounds for i in keys(names)
columns[i] = Tables.getcolumn(cols, i)
end
else
@inbounds for i in keys(names)
columns[i] = view(Tables.getcolumn(cols, i), subset)
end
end
return VecColumnTable(columns, names)
end
function VecColumnTable(cols::VecColumnTable, subset=nothing)
subset === nothing && return cols
columns = similar(_columns(cols))
@inbounds for i in keys(columns)
columns[i] = view(cols[i], subset)
end
return VecColumnTable(columns, _names(cols), _lookup(cols))
end
_columns(cols::VecColumnTable) = getfield(cols, :columns)
_names(cols::VecColumnTable) = getfield(cols, :names)
_lookup(cols::VecColumnTable) = getfield(cols, :lookup)
ncol(cols::VecColumnTable) = length(_names(cols))
nrow(cols::VecColumnTable) = ncol(cols) > 0 ? length(_columns(cols)[1])::Int : 0
Base.size(cols::VecColumnTable) = (nrow(cols), ncol(cols))
function Base.size(cols::VecColumnTable, i::Integer)
if i == 1
nrow(cols)
elseif i == 2
ncol(cols)
else
throw(ArgumentError("VecColumnTable only have two dimensions"))
end
end
Base.length(cols::VecColumnTable) = ncol(cols)
Base.isempty(cols::VecColumnTable) = size(cols, 1) == 0 || size(cols, 2) == 0
@inline function Base.getindex(cols::VecColumnTable, i::Int)
@boundscheck if !checkindex(Bool, axes(_columns(cols), 1), i)
throw(BoundsError(cols, i))
end
@inbounds return _columns(cols)[i]
end
@inline Base.getindex(cols::VecColumnTable, n::Symbol) = cols[_lookup(cols)[n]]
@inline Base.getindex(cols::VecColumnTable, ns::AbstractArray{Symbol}) = map(n->cols[n], ns)
@inline Base.getindex(cols::VecColumnTable, ::Colon) = _columns(cols)[:]
@inline function Base.getindex(cols::VecColumnTable, I)
@boundscheck if !checkindex(Bool, axes(_columns(cols), 1), I)
throw(BoundsError(cols, I))
end
@inbounds return _columns(cols)[I]
end
Base.values(cols::VecColumnTable) = _columns(cols)
Base.haskey(cols::VecColumnTable, key::Symbol) = haskey(_lookup(cols), key)
Base.haskey(cols::VecColumnTable, i::Int) = 0 < i <= length(_names(cols))
function Base.:(==)(x::VecColumnTable, y::VecColumnTable)
size(x) == size(y) || return false
_names(x) == _names(y) || return false
eq = true
for i in 1:size(x, 2)
# missing could arise
coleq = x[i] == y[i]
isequal(coleq, false) && return false
eq &= coleq
end
return eq
end
Base.view(cols::VecColumnTable, I) = VecColumnTable(cols, I)
Base.show(io::IO, cols::VecColumnTable) = print(io, nrow(cols), '×', ncol(cols), " VecColumnTable")
function Base.show(io::IO, ::MIME"text/plain", cols::VecColumnTable)
show(io, cols)
if ncol(cols) > 0 && nrow(cols) > 0
println(io, ':')
nr, nc = displaysize(io)
pretty_table(IOContext(io, :limit=>true, :displaysize=>(nr-3, nc)),
cols, vlines=1:1, hlines=1:1,
show_row_number=true, show_omitted_cell_summary=false,
newline_at_end=false, vcrop_mode=:middle)
end
end
Base.summary(cols::VecColumnTable) =
string(nrow(cols), '×', ncol(cols), ' ', nameof(typeof(cols)))
Base.summary(io::IO, cols::VecColumnTable) = print(io, summary(cols))
Tables.getcolumn(cols::VecColumnTable, i::Int) = cols[i]
Tables.getcolumn(cols::VecColumnTable, n::Symbol) = cols[n]
Tables.columnnames(cols::VecColumnTable) = _names(cols)
Tables.schema(cols::VecColumnTable) =
Tables.Schema{(_names(cols)...,), Tuple{(eltype(col) for col in _columns(cols))...}}()
Tables.materializer(::VecColumnTable) = VecColumnTable
Tables.columnindex(cols::VecColumnTable, n::Symbol) = _lookup(cols)[n]
Tables.columntype(cols::VecColumnTable, n::Symbol) = eltype(cols[n])
Tables.rowcount(cols::VecColumnTable) = nrow(cols)
"""
subcolumns(data, names, rows=Colon(); nomissing=true)
Construct a [`VecColumnTable`](@ref) from `data`
using columns specified with `names` over selected `rows`.
By default, columns are converted to drop support for missing values.
When possible, resulting columns share memory with original columns.
"""
function subcolumns(data, names, rows=Colon(); nomissing=true)
Tables.istable(data) || throw(ArgumentError("input data is not `Tables.jl`-compatible"))
names = names isa Vector{Symbol} ? names : Symbol[names...]
ncol = length(names)
columns = Vector{AbstractVector}(undef, ncol)
lookup = Dict{Symbol,Int}()
@inbounds for i in keys(names)
col = view(Tables.getcolumn(data, names[i]), rows)
nomissing && (col = disallowmissing(col))
columns[i] = col
lookup[names[i]] = i
end
return VecColumnTable(columns, names, lookup)
end
subcolumns(data, names::Symbol, rows=Colon(); nomissing=true) =
subcolumns(data, [names], rows, nomissing=nomissing)
const VecColsRow = Tables.ColumnsRow{VecColumnTable}
ncol(r::VecColsRow) = length(r)
_rowhash(cols::Tuple{AbstractVector}, r::Int, h::UInt=zero(UInt))::UInt =
hash(cols[1][r], h)
function _rowhash(cols::Tuple{Vararg{AbstractVector}}, r::Int, h::UInt=zero(UInt))::UInt
h = hash(cols[1][r], h)
_rowhash(Base.tail(cols), r, h)
end
# hash is implemented following DataFrames.DataFrameRow for getting unique row values
# Column names are not taken into account
Base.hash(r::VecColsRow, h::UInt=zero(UInt)) =
_rowhash(ntuple(c->Tables.getcolumns(r)[c], ncol(r)), Tables.getrow(r), h)
# Column names are not taken into account
function Base.isequal(r1::VecColsRow, r2::VecColsRow)
length(r1) == length(r2) || return false
return all(((a, b),) -> isequal(a, b), zip(r1, r2))
end
# Column names are not taken into account
function Base.isless(r1::VecColsRow, r2::VecColsRow)
length(r1) == length(r2) ||
throw(ArgumentError("compared VecColsRow do not have the same length"))
for (a, b) in zip(r1, r2)
isequal(a, b) || return isless(a, b)
end
return false
end
Base.sortperm(cols::VecColumnTable; @nospecialize(kwargs...)) =
sortperm(collect(Tables.rows(cols)); kwargs...)
# names and lookup are not copied
function Base.sort(cols::VecColumnTable; @nospecialize(kwargs...))
p = sortperm(cols; kwargs...)
columns = similar(_columns(cols))
i = 0
@inbounds for col in cols
i += 1
columns[i] = col[p]
end
return VecColumnTable(columns, _names(cols), _lookup(cols))
end
function Base.sort!(cols::VecColumnTable; @nospecialize(kwargs...))
p = sortperm(cols; kwargs...)
@inbounds for col in cols
col .= col[p]
end
end
"""
apply(d, by::Pair)
Apply a function elementwise to the specified column(s)
in a `Tables.jl`-compatible table `d` and return the result.
Depending on the argument(s) accepted by a function `f`,
it is specified with argument `by` as either `column_index => f` or `column_indices => f`
where `column_index` is either a `Symbol` or `Int` for a column in `d`
and `column_indices` is an iterable collection of such indices for multiple columns.
`f` is applied elementwise to each specified column
to obtain an array of returned values.
"""
apply(d, by::Pair{Symbol,<:Function}) =
map(by[2], Tables.getcolumn(d, by[1]))
apply(d, @nospecialize(by::Pair)) =
map(by[2], (Tables.getcolumn(d, c) for c in by[1])...)
"""
apply_and!(inds::BitVector, d, by::Pair)
apply_and!(inds::BitVector, d, bys::Pair...)
Apply a function that returns `true` or `false` elementwise
to the specified column(s) in a `Tables.jl`-compatible table `d`
and then update the elements in `inds` through bitwise `and` with the returned array.
If an array instead of a function is provided,
elementwise equality (`==`) comparison is applied between the column and the array.
See also [`apply_and`](@ref).
The way a function is specified is the same as how it is done with [`apply`](@ref).
If multiple `Pair`s are provided,
`inds` are updated for each returned array through bitwise `and`.
"""
function apply_and!(inds::BitVector, d, by::Pair{Symbol,<:Function})
aux = map(by[2], Tables.getcolumn(d, by[1]))
inds .&= aux
return inds
end
function apply_and!(inds::BitVector, d, @nospecialize(by::Pair))
if by[2] isa Function
aux = map(by[2], (Tables.getcolumn(d, c) for c in by[1])...)
else
aux = Tables.getcolumn(d, by[1]).==by[2]
end
inds .&= aux
return inds
end
function apply_and!(inds::BitVector, d, @nospecialize(bys::Pair...))
for by in bys
apply_and!(inds, d, by)
end
return inds
end
"""
apply_and(d, by::Pair)
apply_and(d, bys::Pair...)
Apply a function that returns `true` or `false` elementwise
to the specified column(s) in a `Tables.jl`-compatible table `d` and return the result.
If an array instead of a function is provided,
elementwise equality (`==`) comparison is applied between the column and the array.
See also [`apply_and!`](@ref).
The way a function is specified is the same as how it is done with [`apply`](@ref).
If multiple `Pair`s are provided,
the returned array is obtained by combining
arrays returned by each function through bitwise `and`.
"""
apply_and(d, by::Pair{Symbol,<:Any}) = Tables.getcolumn(d, by[1]).==by[2]
function apply_and(d, by::Pair{Symbol,<:Function})
src = Tables.getcolumn(d, by[1])
out = similar(BitArray, size(src))
map!(by[2], out, src)
return out
end
function apply_and(d, @nospecialize(by::Pair))
if by[2] isa Function
src = ((Tables.getcolumn(d, c) for c in by[1])...,)
out = similar(BitArray, size(src[1]))
map!(by[2], out, src...)
return out
else
return Tables.getcolumn(d, by[1]).==by[2]
end
end
function apply_and(d, @nospecialize(bys::Pair...))
inds = apply_and(d, bys[1])
apply_and!(inds, d, bys[2:end]...)
return inds
end
_parse_subset(cols::VecColumnTable, by::Pair) = (inds = apply_and(cols, by); return inds)
function _parse_subset(cols::VecColumnTable, inds)
eltype(inds) <: Pair || return inds
inds = apply_and(cols, inds...)
return inds
end
_parse_subset(::VecColumnTable, ::Colon) = Colon()
"""
TableIndexedMatrix{T,M,R,C} <: AbstractMatrix{T}
Matrix with row and column indices that can be selected
based on row values in a `Tables.jl`-compatible table respectively.
This is useful when how elements are stored into the matrix
are determined by the rows of the tables.
# Parameters
- `T`: element type of the matrix.
- `M`: type of the matrix.
- `R`: type of the table paired with the row indices.
- `C`: type of the table paired with the column indices.
# Fields
- `m::M`: the matrix that stores the elements.
- `r::R`: a table with the same number of rows with `m`.
- `c::C`: a table of which the number of rows is equal to the number of columns of `m`.
"""
struct TableIndexedMatrix{T,M,R,C} <: AbstractMatrix{T}
m::M
r::R
c::C
function TableIndexedMatrix(m::AbstractMatrix, r, c)
Tables.istable(r) ||
throw(ArgumentError("r is not `Tables.jl`-compatible"))
Tables.istable(c) ||
throw(ArgumentError("c is not `Tables.jl`-compatible"))
size(m, 1) == Tables.rowcount(r) ||
throw(DimensionMismatch("m and r do not have the same number of rows"))
size(m, 2) == Tables.rowcount(c) || throw(DimensionMismatch(
"the number of columns of m does not match the number of rows of c"))
return new{eltype(m), typeof(m), typeof(r), typeof(c)}(m, r, c)
end
end
Base.size(tm::TableIndexedMatrix) = size(tm.m)
Base.getindex(tm::TableIndexedMatrix, i) = tm.m[i]
Base.getindex(tm::TableIndexedMatrix, i, j) = tm.m[i,j]
Base.IndexStyle(::Type{<:TableIndexedMatrix{T,M}}) where {T,M} = IndexStyle(M)
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 4514 | """
TermSet <: AbstractSet{AbstractTerm}
Wrapped `Set{AbstractTerm}` that specifies a collection of terms.
Commonly used methods for `Set` work in the same way for `TermSet`.
Compared with `StatsModels.TermOrTerms`,
it does not maintain order of terms
but is more suitable for dynamically constructed terms.
"""
struct TermSet <: AbstractSet{AbstractTerm}
terms::Set{AbstractTerm}
TermSet(set::Set{AbstractTerm}) = new(set)
end
"""
TermSet([itr])
TermSet(ts::Union{Int, Symbol, AbstractTerm}...)
Construct a [`TermSet`](@ref) from a collection of terms.
Instead of passing an iterable collection,
one may pass the terms as arguments directly.
In the latter case, any `Int` or `Symbol` will be converted to a `Term`.
See also [`termset`](@ref), which is an alias for the constructor.
"""
TermSet() = TermSet(Set{AbstractTerm}())
TermSet(ts) = TermSet(Set{AbstractTerm}(ts))
TermSet(ts::Union{Int, Symbol, AbstractTerm}...) =
TermSet(Set{AbstractTerm}(t isa AbstractTerm ? t : term(t) for t in ts))
"""
termset([itr])
termset(ts::Union{Int, Symbol, AbstractTerm}...)
Construct a [`TermSet`](@ref) from a collection of terms.
Instead of passing an iterable collection,
one may pass the terms as arguments directly.
In the latter case, any `Int` or `Symbol` will be converted to a `Term`.
"""
termset() = TermSet(Set{AbstractTerm}())
termset(ts) = TermSet(Set{AbstractTerm}(ts))
termset(ts::Union{Int, Symbol, AbstractTerm}...) =
TermSet(Set{AbstractTerm}(t isa AbstractTerm ? t : term(t) for t in ts))
Base.isempty(ts::TermSet) = isempty(ts.terms)
Base.length(ts::TermSet) = length(ts.terms)
Base.in(x, ts::TermSet) = in(x, ts.terms)
Base.push!(ts::TermSet, x) = push!(ts.terms, x)
Base.pop!(ts::TermSet, x) = pop!(ts.terms, x)
Base.pop!(ts::TermSet, x, default) = pop!(ts.terms, x, default)
Base.delete!(ts::TermSet, x) = delete!(ts.terms, x)
Base.empty!(ts::TermSet) = empty!(ts.terms)
Base.eltype(::Type{TermSet}) = AbstractTerm
Base.iterate(ts::TermSet, i...) = iterate(ts.terms, i...)
Base.emptymutable(::TermSet, ::Type{<:AbstractTerm}) = termset()
const Terms{N} = NTuple{N, AbstractTerm} where N
==(@nospecialize(a::Terms), @nospecialize(b::Terms)) =
length(a)==length(b) && all(t->t in b, a)
==(@nospecialize(a::InteractionTerm), @nospecialize(b::InteractionTerm)) =
a.terms==b.terms
"""
TreatmentTerm{T<:AbstractTreatment} <: AbstractTerm
A term that contains specifications on treatment and parallel trends assumption.
See also [`treat`](@ref).
# Fields
- `sym::Symbol`: the column name of data representing treatment status.
- `tr::T`: a treatment type that specifies the causal parameters of interest.
- `pr::P`: a parallel type that specifies the parallel trends assumption.
"""
struct TreatmentTerm{T<:AbstractTreatment,P<:AbstractParallel} <: AbstractTerm
sym::Symbol
tr::T
pr::P
end
"""
treat(s::Symbol, t::AbstractTreatment, p::AbstractParallel)
Construct a [`TreatmentTerm`](@ref) with fields set by the arguments.
"""
treat(s::Symbol, t::AbstractTreatment, p::AbstractParallel) = TreatmentTerm(s, t, p)
isintercept(t::AbstractTerm) = t in (InterceptTerm{true}(), ConstantTerm(1))
isomitsintercept(t::AbstractTerm) =
t in (InterceptTerm{false}(), ConstantTerm(0), ConstantTerm(-1))
"""
parse_intercept(ts::TermSet)
Remove any `ConstantTerm` or `InterceptTerm`
and return Boolean values indicating whether terms explictly requiring
including/excluding the intercept exist.
This function is useful for obtaining a unique way of specifying the intercept
before going through the `schema`--`apply_schema` pipeline defined in `StatsModels`.
"""
function parse_intercept!(ts::TermSet)
hasintercept = false
hasomitsintercept = false
for t in ts
if isintercept(t)
delete!(ts, t)
hasintercept = true
end
if isomitsintercept(t)
delete!(ts, t)
hasomitsintercept = true
end
end
return hasintercept, hasomitsintercept
end
schema(ts::TermSet, data, hints=nothing) =
Schema(t=>concrete_term(t, VecColumnTable(data), hints) for t in ts)
concrete_term(t::Term, dt::VecColumnTable, hint) =
concrete_term(t, getproperty(dt, t.sym), hint)
concrete_term(t::Term, dt::VecColumnTable, hints::Dict{Symbol}) =
concrete_term(t, getproperty(dt, t.sym), get(hints, t.sym, nothing))
concrete_term(::Term, ::VecColumnTable, hint::AbstractTerm) = hint
termvars(ts::TermSet) = mapreduce(termvars, union, ts, init=Symbol[])
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 4715 | """
RotatingTimeValue{R, T}
A wrapper around a time value for distinguishing potentially different
rotation group it could belong to in a rotating sampling design.
See also [`rotatingtime`](@ref) and [`settime`](@ref).
# Fields
- `rotation::R`: a rotation group in a rotating sampling design.
- `time::T`: a time value belonged to the rotation group.
"""
struct RotatingTimeValue{R, T}
rotation::R
time::T
end
RotatingTimeValue(::Type{RotatingTimeValue{R,T}}, rotation, time) where {R,T} =
RotatingTimeValue(convert(R, rotation), convert(T, time))
"""
rotatingtime(rotation, time)
Construct [`RotatingTimeValue`](@ref)s from `rotation` and `time`.
This method simply broadcasts the default constructor over the arguments.
"""
rotatingtime(rotation, time) = RotatingTimeValue.(rotation, time)
# Compare time first
isless(x::RotatingTimeValue, y::RotatingTimeValue) =
isequal(x.time, y.time) ? isless(x.rotation, y.rotation) : isless(x.time, y.time)
isless(x::RotatingTimeValue, y) = isless(x.time, y)
isless(x, y::RotatingTimeValue) = isless(x, y.time)
isless(::RotatingTimeValue, ::Missing) = true
isless(::Missing, ::RotatingTimeValue) = false
Base.isequal(x::RotatingTimeValue, y::RotatingTimeValue) =
isequal(x.rotation, y.rotation) && isequal(x.time, y.time)
function ==(x::RotatingTimeValue, y::RotatingTimeValue)
req = x.rotation == y.rotation
isequal(req, missing) && return missing
teq = x.time == y.time
isequal(teq, missing) && return missing
return req && teq
end
==(x::RotatingTimeValue, y) = x.time == y
==(x, y::RotatingTimeValue) = x == y.time
==(::RotatingTimeValue, ::Missing) = missing
==(::Missing, ::RotatingTimeValue) = missing
Base.zero(::Type{RotatingTimeValue{R,T}}) where {R,T} = RotatingTimeValue(zero(R), zero(T))
Base.iszero(x::RotatingTimeValue) = iszero(x.time)
Base.one(::Type{RotatingTimeValue{R,T}}) where {R,T} = RotatingTimeValue(one(R), one(T))
Base.isone(x::RotatingTimeValue) = isone(x.time)
Base.convert(::Type{RotatingTimeValue{R,T}}, x::RotatingTimeValue) where {R,T} =
RotatingTimeValue(convert(R, x.rotation), convert(T, x.time))
Base.nonmissingtype(::Type{RotatingTimeValue{R,T}}) where {R,T} =
RotatingTimeValue{nonmissingtype(R), nonmissingtype(T)}
Base.iterate(x::RotatingTimeValue) = (x, nothing)
Base.iterate(x::RotatingTimeValue, ::Any) = nothing
Base.length(x::RotatingTimeValue) = 1
show(io::IO, x::RotatingTimeValue) = print(io, x.rotation, '_', x.time)
function show(io::IO, ::MIME"text/plain", x::RotatingTimeValue)
println(io, typeof(x), ':')
println(io, " rotation: ", x.rotation)
print(io, " time: ", x.time)
end
"""
RotatingTimeArray{T<:RotatingTimeValue,N,C,I} <: AbstractArray{T,N}
Array type for [`RotatingTimeValue`](@ref)s that stores
the field values `rotation` and `time` in two arrays for efficiency.
The two arrays that hold the field values for all elements can be accessed as properties.
"""
struct RotatingTimeArray{T<:RotatingTimeValue,N,C,I} <: AbstractArray{T,N}
a::StructArray{T,N,C,I}
RotatingTimeArray(a::StructArray{T,N,C,I}) where {T,N,C,I} = new{T,N,C,I}(a)
end
"""
RotatingTimeArray(rotation::AbstractArray, time::AbstractArray)
Construct a [`RotatingTimeValue`](@ref) from arrays of `rotation` and `time`.
"""
function RotatingTimeArray(rotation::AbstractArray, time::AbstractArray)
a = StructArray{RotatingTimeValue{eltype(rotation), eltype(time)}}((rotation, time))
return RotatingTimeArray(a)
end
_getarray(a::RotatingTimeArray) = getfield(a, :a)
Base.size(a::RotatingTimeArray) = size(_getarray(a))
Base.IndexStyle(::Type{<:RotatingTimeArray{<:Any,<:Any,<:Any,I}}) where I =
I === Int ? IndexLinear() : IndexCartesian()
Base.@propagate_inbounds Base.getindex(a::RotatingTimeArray, i::Int) = _getarray(a)[i]
Base.@propagate_inbounds Base.getindex(a::RotatingTimeArray, I) =
RotatingTimeArray(_getarray(a).rotation[I], _getarray(a).time[I])
Base.@propagate_inbounds Base.setindex!(a::RotatingTimeArray, v, i::Int) =
setindex!(_getarray(a), v, i)
Base.@propagate_inbounds Base.setindex!(a::RotatingTimeArray, v, I) =
setindex!(_getarray(a), v, I)
@inline Base.view(a::RotatingTimeArray, I...) = RotatingTimeArray(view(_getarray(a), I...))
Base.similar(a::RotatingTimeArray, dims::Dims=size(a)) =
RotatingTimeArray(similar(_getarray(a), dims))
Base.similar(a::RotatingTimeArray, dims::Int...) = similar(a, dims)
Base.getproperty(a::RotatingTimeArray, n::Symbol) = getproperty(_getarray(a), n)
DataAPI.refarray(a::RotatingTimeArray) =
RotatingTimeArray(DataAPI.refarray(a.rotation), DataAPI.refarray(a.time))
const ValidTimeType = Union{Signed, TimeType, Period, RotatingTimeValue}
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 2946 | """
TreatmentSharpness
Supertype for all types specifying the sharpness of treatment.
"""
abstract type TreatmentSharpness end
@fieldequal TreatmentSharpness
"""
SharpDesign <: TreatmentSharpness
Assume identical treatment within each treatment group.
"""
struct SharpDesign <: TreatmentSharpness end
show(io::IO, ::SharpDesign) =
get(io, :compact, false) ? print(io, "S") : print(io, "Sharp")
"""
sharp()
Alias for [`SharpDesign()`](@ref).
"""
sharp() = SharpDesign()
"""
AbstractTreatment
Supertype for all treatment types.
"""
abstract type AbstractTreatment end
@fieldequal AbstractTreatment
"""
DynamicTreatment{S<:TreatmentSharpness} <: AbstractTreatment
Specify an absorbing binary treatment with effects allowed to evolve over time.
See also [`dynamic`](@ref).
# Fields
- `time::Symbol`: column name of data representing calendar time.
- `exc::Tuple{Vararg{Int}}`: excluded relative time.
- `s::S`: an instance of [`TreatmentSharpness`](@ref).
"""
struct DynamicTreatment{S<:TreatmentSharpness} <: AbstractTreatment
time::Symbol
exc::Tuple{Vararg{Int}}
s::S
function DynamicTreatment(time::Symbol, exc, s::TreatmentSharpness)
exc = exc !== nothing ? (unique!(sort!([exc...]))...,) : ()
return new{typeof(s)}(time, exc, s)
end
end
show(io::IO, tr::DynamicTreatment) =
print(IOContext(io, :compact=>true), "Dynamic{", tr.s, "}",
length(tr.exc)==1 ? string("(", tr.exc[1], ")") : tr.exc)
function show(io::IO, ::MIME"text/plain", tr::DynamicTreatment)
println(io, tr.s, " dynamic treatment:")
println(io, " column name of time variable: ", tr.time)
print(io, " excluded relative time: ",
isempty(tr.exc) ? "none" : join(string.(tr.exc), ", "))
end
"""
dynamic(time::Symbol, exc, s::TreatmentSharpness=sharp())
Construct a [`DynamicTreatment`](@ref) with fields set by the arguments.
By default, `s` is set as [`SharpDesign`](@ref).
When working with `@formula`,
a wrapper method of `dynamic` calls this method.
# Examples
```jldoctest; setup = :(using DiffinDiffsBase)
julia> dynamic(:month, -1)
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: -1
julia> typeof(dynamic(:month, -1))
DynamicTreatment{SharpDesign}
julia> dynamic(:month, -3:-1)
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: -3, -2, -1
julia> dynamic(:month, [-2,-1], sharp())
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: -2, -1
```
"""
dynamic(time::Symbol, exc, s::TreatmentSharpness=sharp()) =
DynamicTreatment(time, exc, s)
termvars(s::TreatmentSharpness) =
error("StatsModels.termvars is not defined for $(typeof(s))")
termvars(::SharpDesign) = Symbol[]
termvars(tr::AbstractTreatment) =
error("StatsModels.termvars is not defined for $(typeof(tr))")
termvars(tr::DynamicTreatment) = [tr.time, termvars(tr.s)...]
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1416 | """
@fieldequal Supertype
Define a method of `==` for all subtypes of `Supertype`
such that `==` returns true if two instances have the same field values.
"""
macro fieldequal(Supertype)
return esc(quote
function ==(x::T, y::T) where T <: $Supertype
f = fieldnames(T)
getfield.(Ref(x),f) == getfield.(Ref(y),f)
end
end)
end
"""
exampledata()
Return the names of available example datasets.
"""
exampledata() = (:hrs, :nsw, :mpdta)
"""
exampledata(name::Union{Symbol,String})
Return a `CSV.File` containing the example dataset with the specified `name`.
"""
function exampledata(name::Union{Symbol,String})
Symbol(name) in exampledata() ||
throw(ArgumentError("example dataset $(name) does not exist"))
path = (@__DIR__)*"/../data/$(name).csv.gz"
cols = open(path) |> GzipDecompressorStream |> read |> CSV.File |> VecColumnTable
# Avoid customized index type for columns from CSV.File
for i in 1:ncol(cols)
col = _columns(cols)[i]
_columns(cols)[i] = convert(Vector, col)
end
return cols
end
# Check whether the input data is a column table
function checktable(data)
istable(data) ||
throw(ArgumentError("data of type $(typeof(data)) is not `Tables.jl`-compatible"))
Tables.columnaccess(data) ||
throw(ArgumentError("data of type $(typeof(data)) is not a column table"))
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 5399 | using DiffinDiffsBase: RefArray, validpool, scaledlabel
@testset "ScaledArray" begin
refs = repeat(1:5, outer=2)
pool = Date(1):Year(1):Date(5)
invpool = Dict(p=>i for (i, p) in enumerate(pool))
sa = ScaledArray(RefArray(refs), pool, invpool)
ssa = view(sa, 3:5)
@test sa.refs === refs
@test scale(sa) == Year(1)
@test scale(ssa) == Year(1)
@test size(sa) == (10,)
@test IndexStyle(typeof(sa)) == IndexLinear()
x = 1:10
@test validpool(x, Int, 10, -1, nothing, true) == 10:-1:1
@test_throws ArgumentError validpool(x, Int, 1, -1, 10, true)
p = PooledArray(x)
p[1] = 2
p[10] = 9
@test validpool(p, Int, nothing, 1, nothing, true) == 1:10
@test_throws ArgumentError validpool(p, Int, 2, 1, 9, true)
@test validpool(p, Int, 2, 1, nothing, false) == 2:9
@test_throws ArgumentError validpool(p, Int, 2, 1, 8, false)
s = ScaledArray(1.0:2.0:9.0, 1.0, 2, 10)
ss = validpool(s, Float64, 1, 2, 9, true)
@test ss == 1.0:2.0:9.0
@test eltype(ss) == Float64
@test_throws ArgumentError validpool(1:5, Int, 1, nothing, 1, true)
@test_throws ArgumentError validpool(1:5, Int, 1, Year(1), 1, true)
@test_throws ArgumentError validpool(1:5, Int, 1, 0, 1, true)
sa1 = ScaledArray(p, 2, usepool=false)
@test sa1.refs == [1, repeat(1:4, inner=2)..., 4]
@test sa1.pool == 2:2:9
@test sa1 != sa
sa2 = ScaledArray(sa1, 2, 1, 10)
@test sa2.refs == [1, repeat(1:2:7, inner=2)..., 7]
@test sa2.pool == 2:10
@test sa2 == sa1
sa3 = ScaledArray(sa2, reftype=Int16, start=0, stop=8, usepool=false)
@test sa3.refs == [3, repeat(3:2:9, inner=2)..., 9]
@test eltype(sa3.refs) == Int16
@test sa3.pool == 0:8
@test sa3 == sa2
sa4 = ScaledArray(sa3, start=2, stop=8, usepool=false)
@test sa4.refs == [1, repeat(1:2:7, inner=2)..., 7]
@test sa4.pool == 2:8
@test sa4 == sa3
sa5 = ScaledArray(sa4, usepool=false)
@test sa5.refs == sa4.refs
@test sa5.refs !== sa4.refs
sa6 = ScaledArray([missing, 1, 2], 1)
@test eltype(sa6) == Union{Int,Missing}
@test sa6.refs == 0:2
@test eltype(sa6.refs) == Int32
@test ismissing(sa6[1])
@test_throws ArgumentError ScaledArray(sa5, stop=7, usepool=false)
@test_throws ArgumentError ScaledArray(RefArray(1:3), 1.0:0.5:3.0, Dict{Int,Int}())
@test similar(sa, 4) == ScaledArray(RefArray(ones(Int, 4)), sa.pool, Dict{Date,Int}())
@test similar(sa, (4,)) == similar(view(sa, 1:5), 4) == similar(sa, 4)
xs = Date(5):Year(-1):Date(1)
sa1 = align(xs, sa)
@test sa1.pool == pool
xs = Date(0):Year(1):Date(4)
@test_throws ArgumentError align(xs, sa)
sa1 = ScaledArray(sa, Year(-1))
xs = Date(2):Year(1):Date(6)
@test_throws ArgumentError align(xs, sa1)
@test refarray(sa) === sa.refs
@test refvalue(sa, 1) == Date(1)
@test refpool(sa) === sa.pool
@test invrefpool(sa) === sa.invpool
@test refarray(ssa) == view(sa.refs, 3:5)
@test refvalue(ssa, 1) == Date(1)
@test refpool(ssa) === sa.pool
@test invrefpool(ssa) === sa.invpool
@test ssa == sa[3:5]
@test sa[1] == Date(1)
@test sa[1:2] == sa[[1,2]] == sa[(1:10).<3] == Date.(1:2)
@test sa[1:2] isa ScaledArray
@test ssa[1:2] isa ScaledArray
sa[1] = Date(10)
@test sa[1] == Date(10)
sa[1:2] .= Date(100)
@test sa[1:2] == [Date(100), Date(100)]
@test last(sa.pool) == Date(100)
@test_throws MethodError sa[1] = missing
sa = allowmissing(sa)
sa[1] = missing
@test ismissing(sa[1])
@test_throws ArgumentError disallowmissing(sa)
sa[1] = Date(1)
sa = disallowmissing(sa)
@test eltype(sa) == Date
end
@testset "scaledlabel" begin
x = Date.(10:-2:0)
pl = Date(-1):Year(1):Date(11)
refs, pool, invpool = scaledlabel(x, Year(1), start=Date(-1), stop=Date(11))
@test refs == 12:-2:2
@test eltype(refs) == Int32
@test pool == pl
pl = Date(0):Year(2):Date(10)
ip = Dict(p=>i for (i, p) in enumerate(pl))
refs, pool, invpool = scaledlabel(x, Year(2), Int16)
@test refs == 6:-1:1
@test eltype(refs) == Int16
@test pool == pl
@test invpool == ip
@test valtype(invpool) == Int16
x = ScaledArray(RefArray(refs), Date(0):Year(2):Date(10), invpool)
refs1, pool1, invpool1 = scaledlabel(x, Year(2))
@test refs1 == x.refs && refs1 !== x.refs
@test eltype(refs1) == Int32
@test pool1 == x.pool
@test invpool1 == x.invpool && invpool1 !== x.invpool
refs1, pool1, invpool1 = scaledlabel(x, Year(2), Int16)
@test refs1 == 6:-1:1
@test eltype(refs1) == Int16
@test pool1 == pl
@test invpool1 == ip
@test valtype(invpool1) == Int16
refs1, pool1, invpool1 = scaledlabel(x, Year(1), start=Date(-1), stop=Date(11))
@test refs1 == 12:-2:2
@test pool1 == Date(-1):Year(1):Date(11)
refs, pool, invpool = scaledlabel(1.0:200.0, 1, Int8, Int)
@test refs == 1:200
@test eltype(refs) == Int16
@test pool == 1:200
@test eltype(pool) == Int
@test invpool == Dict(i=>Int(i) for i in 1.0:200.0)
refs, pool, invpool = scaledlabel(1:typemax(Int16), 1, Int8)
@test refs == 1:typemax(Int16)
@test eltype(refs) == Int16
@test valtype(invpool) == Int16
refs, pool, invpool = scaledlabel([missing, 1, 2], 1)
@test refs == 0:2
@test eltype(refs) == Int32
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 21371 | const testterm = treat(:g, TR, PR)
function valid_didargs(d::Type{TestDID}, ::AbstractTreatment, ::AbstractParallel,
args::Dict{Symbol,Any})
name = get(args, :name, "")
ns = (setdiff([keys(args)...], [:name, :d])...,)
args = NamedTuple{ns}(map(n->args[n], ns))
return name, d, args
end
@testset "DiffinDiffsEstimator" begin
d = DefaultDID()
@test length(d) == 0
@test eltype(d) == StatsStep
@test_throws BoundsError d[1]
@test collect(d) == StatsStep[]
@test iterate(d) === nothing
d = TestDID()
@test length(d) == 2
@test eltype(d) == StatsStep
@test d[1] == TestStep()
@test d[1:2] == [TestStep(), TestNextStep()]
@test d[[2,1]] == [TestNextStep(), TestStep()]
@test_throws BoundsError d[3]
@test_throws MethodError d[:a]
@test collect(d) == StatsStep[TestStep(), TestNextStep()]
@test iterate(d) == (TestStep(), 2)
@test iterate(d, 2) === (TestNextStep(), 3)
@test iterate(d, 3) === nothing
end
@testset "parse_didargs!" begin
args = Dict{Symbol,Any}(:xterms=>(term(:x),), :treatintterms=>:z)
_totermset!(args, :xterms)
@test args[:xterms] == TermSet(term(:x))
_totermset!(args, :treatintterms)
@test args[:treatintterms] == TermSet(term(:z))
@test parse_didargs!(Any["test"], Dict{Symbol,Any}()) == Dict{Symbol,Any}(:name=>"test")
args = parse_didargs!([TestDID, TR, PR], Dict{Symbol,Any}(:a=>1, :b=>2))
@test args == Dict{Symbol,Any}(pairs((d=TestDID, tr=TR, pr=PR, a=1, b=2)))
args = parse_didargs!(["test", testterm, TestDID], Dict{Symbol,Any}())
@test args == Dict{Symbol,Any}(pairs((d=TestDID, tr=TR, pr=PR, name="test", treatname=:g)))
@test_throws ArgumentError parse_didargs!(['a', :a, 1], Dict{Symbol,Any}())
@test parse_didargs!(Any[TestDID, DefaultDID], Dict{Symbol,Any}()) == Dict{Symbol,Any}(:d=>DefaultDID)
end
@testset "valid_didargs" begin
arg = Dict{Symbol,Any}(pairs((d=TestDID, tr=TR, pr=PR)))
@test valid_didargs(arg) == ("", TestDID, (tr=TR, pr=PR))
arg = Dict{Symbol,Any}(pairs((name="name", d=TestDID, tr=TR, pr=PR)))
@test valid_didargs(arg) == ("name", TestDID, (tr=TR, pr=PR))
arg = Dict{Symbol,Any}(pairs((d=TestDID, tr=TR, a=1)))
@test_throws ArgumentError valid_didargs(arg)
arg = Dict{Symbol,Any}(pairs((tr=TR, pr=PR)))
@test_throws ErrorException valid_didargs(arg)
arg = Dict{Symbol,Any}(pairs((d=NotImplemented, tr=TR, pr=PR)))
@test_throws ErrorException valid_didargs(arg)
end
@testset "StatsSpec" begin
@testset "== ≊" begin
sp1 = StatsSpec("", DefaultDID, NamedTuple())
sp2 = StatsSpec("", DefaultDID, NamedTuple())
@test sp1 == sp2
@test sp1 ≊ sp2
sp1 = StatsSpec("", DefaultDID, (tr=TR, pr=PR, a=1, b=2))
sp2 = StatsSpec("", DefaultDID, (pr=PR, tr=TR, b=2, a=1))
@test sp1 != sp2
@test sp1 ≊ sp2
sp2 = StatsSpec("", DefaultDID, (tr=TR, pr=PR, a=1.0, b=2.0))
@test sp1 == sp2
@test sp1 ≊ sp2
sp2 = StatsSpec("", DefaultDID, (tr=TR, pr=PR, a=1, b=2, c=3))
@test !(sp1 ≊ sp2)
sp2 = StatsSpec("", DefaultDID, (tr=TR, pr=PR, a=1, b=1))
@test !(sp1 ≊ sp2)
end
@testset "show" begin
sp = StatsSpec("", DefaultDID, NamedTuple())
@test sprint(show, sp) == "unnamed"
@test sprint(show, MIME("text/plain"), sp) == "unnamed (StatsSpec for DefaultDID)"
sp = StatsSpec("name", DefaultDID, NamedTuple())
@test sprint(show, sp) == "name"
@test sprint(show, MIME("text/plain"), sp) == "name (StatsSpec for DefaultDID)"
sp = StatsSpec("", TestDID, (tr=dynamic(:time,-1), pr=nevertreated(-1)))
@test sprint(show, sp) == "unnamed"
@test sprint(show, MIME("text/plain"), sp) == """
unnamed (StatsSpec for TestDID):
Dynamic{S}(-1)
NeverTreated{U,P}(-1)"""
sp = StatsSpec("", TestDID, (tr=dynamic(:time,-1),))
@test sprint(show, sp) == "unnamed"
@test sprint(show, MIME("text/plain"), sp) == """
unnamed (StatsSpec for TestDID):
Dynamic{S}(-1)"""
sp = StatsSpec("name", TestDID, (pr=notyettreated(-1),))
@test sprint(show, sp) == "name"
@test sprint(show, MIME("text/plain"), sp) == """
name (StatsSpec for TestDID):
NotYetTreated{U,P}(-1)"""
end
end
@testset "didspec @did" begin
@test_throws ArgumentError @did [noproceed]
@test_throws ArgumentError didspec()
sp0 = StatsSpec("", TestDID, (tr=TR, pr=PR, a=1, b=2))
sp1 = didspec(TestDID, TR, PR, a=1, b=2)
@test sp1 ≊ sp0
@test sp0 ≊ @did [noproceed] TR a=1 b=2 PR TestDID
sp2 = StatsSpec("name", TestDID, (tr=TR, pr=PR, a=1, b=2))
sp3 = didspec("name", TR, PR, TestDID, b=2, a=1)
@test sp2 ≊ sp1
@test sp3 ≊ sp2
@test sp3 ≊ @did [noproceed] TR PR TestDID "name" b=2 a=1
sp4 = StatsSpec("name", TestDID, (tr=TR, pr=PR, treatname=:g))
sp5 = didspec(TestDID, testterm)
@test sp5 ≊ sp4
@test sp4 ≊ @did [noproceed] TestDID testterm "name"
sp6 = StatsSpec("", TestDID, (tr=TR, pr=PR, yterm=term(:y), treatname=:g,
treatintterms=TermSet(term(:z)), xterms=TermSet(term(:x))))
@test sp6 ≊ @did [noproceed] TestDID yterm=term(:y) testterm treatintterms=:z xterms=:x
end
@testset "did @did" begin
r = result(TestDID, NamedTuple()).result
d0 = @did TestDID TR PR
d1 = @did PR TR TestDID
@test d0 == r
@test d1 == d0
@test did(TestDID, TR, PR) == r
@test did(PR, TR, TestDID) == r
d = @did [keepall] TestDID testterm
@test d ≊ (tr=TR, pr=PR, treatname=:g, str=sprint(show, TR), spr=sprint(show, PR),
next="next"*sprint(show, TR), result=r)
@test did(TestDID, testterm; keepall=true) == d
d0 = @did [keepall] TestDID yterm=term(:y) testterm treatintterms=() xterms=()
@test d0 ≊ merge(d, (yterm=term(:y), treatintterms=TermSet(), xterms=TermSet()))
d0 = @did [keepall] TestDID yterm=term(:y) testterm treatintterms=:z xterms=:x
@test d0 ≊ merge(d, (yterm=term(:y), treatintterms=TermSet(term(:z)),
xterms=TermSet(term(:x))))
d = @did [keep=:treatname] TestDID testterm
@test d ≊ (treatname=:g, result=r)
@test did(TestDID, testterm; keep=:treatname) == d
d = @did [keep=[:treatname,:tr]] TestDID testterm
@test d ≊ (treatname=:g, tr=TR, result=r)
@test did(TestDID, testterm; keep=[:treatname,:tr]) == d
@test_throws ArgumentError @did TestDID
@test_throws ArgumentError did(TestDID)
@test_throws ArgumentError @did TestDID TR
@test_throws ArgumentError did(TestDID, TR)
@test_throws ArgumentError @did TestDID TR PR 1
@test_throws ArgumentError did(TestDID, TR, PR, 1)
@test_throws ErrorException @did NotImplemented TR PR
@test_throws ErrorException did(NotImplemented, TR, PR)
@test_throws ArgumentError @did [keep] TestDID testterm
@test_throws ArgumentError did(TestDID, testterm, keep=true)
@test_throws ArgumentError @did [keep=1] TestDID testterm
@test_throws ArgumentError did(TestDID, testterm, keep=1)
@test_throws ArgumentError @did [keep="treatname"] TestDID testterm
@test_throws ArgumentError did(TestDID, testterm, keep="treatname")
end
@testset "@specset @did" begin
s = @specset [noproceed] begin
@did TestDID TR PR
end
@test s == [didspec(TestDID, TR, PR)]
@test proceed(s) == [@did TestDID TR PR]
s = @specset [noproceed] begin
@did TestDID TR PR
@did PR TR TestDID
end
@test s == StatsSpec[didspec(TestDID, TR, PR), didspec(PR, TR, TestDID)]
s = @specset [noproceed] DefaultDID PR a=1 begin
@did TR PR TestDID a=2
@did TR TestDID
end
@test s[1] ≊ didspec(TestDID, TR, PR; a=2)
@test s[2] ≊ didspec(TestDID, TR, PR; a=1)
s = @specset [noproceed] DefaultDID PR begin
@did [keep=:treatname verbose] TestDID testterm
end
@test s[1] ≊ didspec(TestDID, TR, PR; treatname=:g)
s = @specset [noproceed] for i in 1:2
@did "name"*"$i" TestDID TR PR a=i
end
@test s[1] ≊ didspec("name1", TestDID, TR, PR; a=1)
@test s[2] ≊ didspec("name2", TestDID, TR, PR; a=2)
s = @specset [noproceed] DefaultDID PR a=1 begin
@did "name" TR PR TestDID a=0
for i in 1:2
@did "name"*"$i" TR TestDID a=i
end
end
@test s[1] ≊ didspec("name", TestDID, TR, PR; a=0)
@test s[2] ≊ didspec("name1", TestDID, TR, PR; a=1)
@test s[3] ≊ didspec("name2", TestDID, TR, PR; a=2)
end
@testset "DIDResult" begin
r = TestResult(2, 2)
@test coef(r) == r.coef
@test coef(r, 1) == 1
@test coef(r, "rel: 1 & c: 1") == 1
@test coef(r, :c5) == 5
@test coef(r, 1:2) == [1.0, 2.0]
@test coef(r, 5:-1:3) == [5.0, 4.0, 3.0]
@test coef(r, (1, :c5, "rel: 1 & c: 1")) == [1.0, 5.0, 1.0]
@test coef(r, [1 "rel: 1 & c: 1" :c5]) == [1.0 1.0 5.0]
@test coef(r, :rel=>x->x==1) == [1.0, 2.0]
@test coef(r, :rel=>x->x==1, :c=>x->x==1) == [1.0]
@test coef(r, (:rel, :c)=>(x, y)->x==1) == [1.0, 2.0]
@test vcov(r) == r.vcov
@test vcov(r, 1) == 1
@test vcov(r, 1, 2) == 2
@test vcov(r, "rel: 1 & c: 1") == 1
@test vcov(r, :c5) == 25
@test vcov(r, "rel: 1 & c: 1", :c5) == 5
@test vcov(r, 1:2) == r.vcov[1:2, 1:2]
@test vcov(r, 5:-1:3) == r.vcov[5:-1:3, 5:-1:3]
@test vcov(r, (1, :c5, "rel: 1 & c: 1")) == r.vcov[[1,5,1], [1,5,1]]
@test vcov(r, [1 :c5 "rel: 1 & c: 1"]) == r.vcov[[1,5,1], [1,5,1]]
@test vcov(r, :rel=>x->x==1) == r.vcov[[1,2], [1,2]]
@test vcov(r, :rel=>x->x==1, :c=>x->x==1) == reshape([1.0], 1, 1)
@test vcov(r, (:rel, :c)=>(x, y)->x==1) == r.vcov[[1,2], [1,2]]
@test vce(r) === nothing
cfint = confint(r)
@test length(cfint) == 2
@test all(cfint[1] + cfint[2] .≈ 2 * coef(r))
@test treatment(r) === TR
@test nobs(r) == 6
@test outcomename(r) == "y"
@test coefnames(r) == r.coefnames
@test treatcells(r) == r.treatcells
@test weights(r) == :w
@test ntreatcoef(r) == 4
@test treatcoef(r) == r.coef[1:4]
@test treatvcov(r) == r.vcov[1:4, 1:4]
@test treatnames(r) == r.coefnames[1:4]
@test parent(r) === r
@test dof_residual(r) == 5
@test responsename(r) == "y"
@test coefinds(r) == r.coefinds
@test ncovariate(r) == 2
@test_throws ErrorException agg(r)
w = VERSION < v"1.6.0" ? " " : ""
@test sprint(show, r) == """
─────────────────────────────────────────────────────────────────────────
Estimate Std. Error t Pr(>|t|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────────────────
rel: 1 & c: 1 1.0 1.0 1.00 0.3632 -1.57058 3.57058
rel: 1 & c: 2 2.0 2.0 1.00 0.3632 -3.14116 7.14116
rel: 2 & c: 1 3.0 3.0 1.00 0.3632 -4.71175 10.7117$w
rel: 2 & c: 2 4.0 4.0 1.00 0.3632 -6.28233 14.2823$w
c5 5.0 5.0 1.00 0.3632 -7.85291 17.8529$w
c6 6.0 6.0 1.00 0.3632 -9.42349 21.4235$w
─────────────────────────────────────────────────────────────────────────"""
r = TestResultBARE(2, 2)
@test dof_residual(r) === nothing
@test coefinds(r) === nothing
w = VERSION < v"1.6.0" ? " " : ""
@test sprint(show, r) == """
─────────────────────────────────────────────────────────────────────────
Estimate Std. Error z Pr(>|z|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────────────────
rel: 1 & c: 1 1.0 1.0 1.00 0.3173 -0.959964 2.95996
rel: 1 & c: 2 2.0 2.0 1.00 0.3173 -1.91993 5.91993
rel: 2 & c: 1 3.0 3.0 1.00 0.3173 -2.87989 8.87989
rel: 2 & c: 2 4.0 4.0 1.00 0.3173 -3.83986 11.8399$w
─────────────────────────────────────────────────────────────────────────"""
end
@testset "_treatnames" begin
t = VecColumnTable((rel=[1, 2],))
@test _treatnames(t) == ["rel: 1", "rel: 2"]
r = TestResult(2, 2)
@test _treatnames(r.treatcells) == ["rel: $a & c: $b" for a in 1:2 for b in 1:2]
end
@testset "_parse_bycells!" begin
cells = VecColumnTable((rel=repeat(1:2, inner=2), c=repeat(1:2, outer=2)))
bycols = copy(getfield(cells, :columns))
_parse_bycells!(bycols, cells, :rel=>isodd)
@test bycols[1] == isodd.(cells.rel)
@test bycols[2] === cells.c
bycols = copy(getfield(cells, :columns))
_parse_bycells!(bycols, cells, :rel=>:c=>isodd)
@test bycols[1] == isodd.(cells.c)
@test bycols[2] === cells.c
bycols = copy(getfield(cells, :columns))
_parse_bycells!(bycols, cells, (:rel=>1=>isodd, 2=>1=>isodd))
@test bycols[1] == isodd.(cells.rel)
@test bycols[2] == isodd.(cells.rel)
bycols = copy(getfield(cells, :columns))
_parse_bycells!(bycols, cells, nothing)
@test bycols[1] == cells.rel
@test bycols[2] == cells.c
@test_throws ArgumentError _parse_bycells!(bycols, cells, (:rel,))
end
@testset "_parse_subset _nselected" begin
r = TestResult(2, 2)
@test _parse_subset(r, 1:4, true) == 1:4
@test _parse_subset(r, collect(1:4), true) == 1:4
@test _parse_subset(r, trues(4), true) == trues(4)
@test _parse_subset(r, :rel=>isodd, true) == ((1:6) .< 3)
@test _parse_subset(r, :rel=>isodd, false) == ((1:4) .< 3)
@test _parse_subset(r, (:rel=>isodd, :c=>isodd), true) == ((1:6) .< 2)
@test _parse_subset(r, (:rel=>isodd, :c=>isodd), false) == ((1:4) .<2)
@test _parse_subset(r, :, false) == 1:4
@test _parse_subset(r, :, true) == 1:6
@test _nselected(1:10) == 10
@test _nselected(collect(1:10)) == 10
@test _nselected(isodd.(1:10)) == 5
@test _nselected([true, false]) == 1
@test_throws ArgumentError _nselected(:)
end
@testset "treatindex checktreatindex" begin
@test treatindex(10, :) == 1:10
@test treatindex(10, 1) == 1
@test length(treatindex(10, 11)) == 0
@test treatindex(10, 1:5) == 1:5
@test treatindex(10, collect(1:20)) == 1:10
@test treatindex(10, isodd.(1:20)) == isodd.(1:10)
@test_throws ArgumentError treatindex(10, :a)
@test checktreatindex([3,2,1,5,4], [1,2,3])
@test checktreatindex(1:10, 1:5)
@test_throws ArgumentError checktreatindex([3,2,1,5,4], [3,5])
@test_throws ArgumentError checktreatindex(10:-1:1, 1:5)
@test checktreatindex(trues(10), trues(5))
@test checktreatindex(:, 1:5)
@test checktreatindex(5, 1:0)
end
@testset "SubDIDResult" begin
r = TestResult(2, 2)
sr = view(r, :)
@test coef(sr) == coef(r)
@test vcov(sr) == vcov(r)
@test vce(sr) === nothing
@test treatment(sr) === TR
@test nobs(sr) == nobs(r)
@test outcomename(sr) == outcomename(r)
@test coefnames(sr) == coefnames(r)
@test treatcells(sr) == treatcells(r)
@test weights(sr) == weights(r)
@test ntreatcoef(sr) == ntreatcoef(r)
@test treatcoef(sr) == treatcoef(r)
@test treatvcov(sr) == treatvcov(r)
@test treatnames(sr) == treatnames(r)
@test parent(sr) === r
@test dof_residual(sr) == dof_residual(r)
@test responsename(sr) == responsename(r)
@test coefinds(sr) == coefinds(r)
@test ncovariate(sr) == 2
sr = view(r, isodd.(1:6))
@test coef(sr) == coef(r)[[1,3,5]]
@test vcov(sr) == vcov(r)[[1,3,5],[1,3,5]]
@test vce(sr) === nothing
@test treatment(sr) === TR
@test nobs(sr) == nobs(r)
@test outcomename(sr) == outcomename(r)
@test coefnames(sr) == coefnames(r)[[1,3,5]]
@test treatcells(sr) == view(treatcells(r), [1,3])
@test weights(sr) == weights(r)
@test ntreatcoef(sr) == 2
@test treatcoef(sr) == treatcoef(r)[[1,3]]
@test treatvcov(sr) == treatvcov(r)[[1,3],[1,3]]
@test treatnames(sr) == treatnames(r)[[1,3]]
@test parent(sr) === r
@test dof_residual(sr) == dof_residual(r)
@test responsename(sr) == responsename(r)
@test coefinds(sr) == Dict("rel: 1 & c: 1"=>1, "rel: 2 & c: 1"=>2, "c5"=>3)
@test ncovariate(sr) == 1
@test_throws BoundsError view(r, 1:7)
@test_throws ArgumentError view(r, [6,1])
end
@testset "TransformedDIDResult" begin
r = TestResult(2, 2)
m = reshape(1:36, 6, 6)
tr = TransformedDIDResult(r, m, copy(r.coef), copy(r.vcov))
@test coef(tr) === tr.coef
@test vcov(tr) === tr.vcov
@test vce(tr) === nothing
@test treatment(tr) === TR
@test nobs(tr) == nobs(r)
@test outcomename(tr) == outcomename(r)
@test coefnames(tr) === coefnames(r)
@test treatcells(tr) === treatcells(r)
@test weights(tr) == weights(r)
@test ntreatcoef(tr) == 4
@test treatcoef(tr) == tr.coef[1:4]
@test treatvcov(tr) == tr.vcov[1:4,1:4]
@test treatnames(tr) == treatnames(r)
@test parent(tr) === r
@test dof_residual(tr) == dof_residual(r)
@test responsename(tr) == responsename(r)
@test coefinds(tr) === coefinds(r)
@test ncovariate(tr) == 2
end
@testset "TransSubDIDResult" begin
r = TestResult(2, 2)
m = reshape(1:18, 3, 6)
inds = [2,1,6]
tr = TransSubDIDResult(r, m, r.coef[inds], r.vcov[inds, inds], inds)
@test coef(tr) === tr.coef
@test vcov(tr) === tr.vcov
@test vce(tr) === nothing
@test treatment(tr) === TR
@test nobs(tr) == nobs(r)
@test outcomename(tr) == outcomename(r)
@test coefnames(tr) == coefnames(r)[inds]
@test treatcells(tr) == view(treatcells(r), 2:-1:1)
@test weights(tr) == weights(r)
@test ntreatcoef(tr) == 2
@test treatcoef(tr) == tr.coef[1:2]
@test treatvcov(tr) == tr.vcov[1:2,1:2]
@test treatnames(tr) == treatnames(r)[2:-1:1]
@test parent(tr) === r
@test dof_residual(tr) == dof_residual(r)
@test responsename(tr) == responsename(r)
@test coefinds(tr) === tr.coefinds
@test ncovariate(tr) == 1
@test_throws BoundsError TransSubDIDResult(r, m, r.coef[1:2], r.vcov[1:2,1:2], 1:7)
@test_throws ArgumentError TransSubDIDResult(r, m, r.coef[1:2], r.vcov[1:2,1:2], [6,1])
end
@testset "lincom" begin
r = TestResult(2, 2)
m = reshape(1:36, 6, 6)
tr = lincom(r, m)
@test coef(tr) == m * r.coef
@test vcov(tr) == m * r.vcov * m'
tr = lincom(r, m, nothing)
@test coef(tr) == m * r.coef
@test vcov(tr) == m * r.vcov * m'
@test tr isa TransformedDIDResult
m = reshape(1:18, 3, 6)
inds = [1,2,6]
tr = lincom(r, m, inds)
@test coef(tr) == m * r.coef
@test vcov(tr) == m * r.vcov * m'
m1 = reshape(1:15, 3, 5)
@test_throws DimensionMismatch lincom(r, m1)
@test_throws DimensionMismatch lincom(r, m1, 1:3)
@test_throws ArgumentError lincom(r, m)
@test_throws ArgumentError lincom(r, m, 1:6)
end
@testset "rescale" begin
r = TestResult(2, 2)
scale = fill(2, 6)
m = Diagonal(scale)
tr = rescale(r, scale)
@test coef(tr) == m * r.coef
@test vcov(tr) == m * r.vcov * m'
tr = rescale(r, scale, nothing)
@test coef(tr) == m * r.coef
@test vcov(tr) == m * r.vcov * m'
@test tr isa TransformedDIDResult
scale = fill(2, 3)
m = Diagonal(scale)
inds = [1,2,6]
tr = rescale(r, scale, inds)
@test coef(tr) == m * r.coef[inds]
@test vcov(tr) == m * r.vcov[inds,inds] * m'
tr = rescale(r, :rel=>identity)
@test coef(tr) == r.treatcells.rel.*r.coef[1:4]
m = Diagonal(r.treatcells.rel)
@test vcov(tr) == m * r.vcov[1:4,1:4] * m'
tr = rescale(r, :rel=>identity, 1:3)
@test coef(tr) == r.treatcells.rel[1:3].*r.coef[1:3]
m = Diagonal(r.treatcells.rel[1:3])
@test vcov(tr) == m * r.vcov[1:3,1:3] * m'
end
@testset "post!" begin
@test getexportformat() == DefaultExportFormat[1]
setexportformat!(StataPostHDF())
@test DefaultExportFormat[1] == StataPostHDF()
f = Dict{String,Any}()
r = TestResult(2, 2)
post!(f, r)
@test f["model"] == "TestResult{TestTreatment}"
@test f["b"] == coef(r)
@test f["V"] == vcov(r)
@test f["vce"] == "nothing"
@test f["N"] == nobs(r)
@test f["depvar"] == "y"
@test f["coefnames"][1] == "rel: 1 & c: 1"
@test f["weights"] == "w"
@test f["ntreatcoef"] == 4
f = Dict{String,Any}()
fds = Union{Symbol, Pair{String,Symbol}}[Symbol("extra$i") for i in 1:8]
fds[1] = "e1"=>:extra1
post!(f, StataPostHDF(), r, model="test", fields=fds, at=1:6)
@test f["e1"] == 1
@test f["extra2"] == "a"
@test f["extra3"] == "a"
@test f["extra4"] == [1.0]
@test f["extra5"] == ["a"]
@test f["extra6"] == [1.0 2.0]
@test f["extra7"] == ["a"]
@test f["extra8"] == ""
f = Dict{String,Any}()
@test_throws ArgumentError post!(f, StataPostHDF(), r, fields=[:extra9])
f = Dict{String,Any}()
@test_throws ArgumentError post!(f, StataPostHDF(), r, at=false)
f = Dict{String,Any}()
@test_throws ArgumentError post!(f, StataPostHDF(), r, at=1:2)
r1 = TestResultBARE(2, 2)
f = Dict{String,Any}()
post!(f, StataPostHDF(), r1, at=true)
@test f["at"] == treatcells(r1).rel
f = Dict{String,Any}()
post!(f, StataPostHDF(), r1, at=false)
@test !haskey(f, "at")
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 7014 | @testset "_mult!" begin
a = collect(0:5)
b = collect(1:6)
_mult!(a, b, 6)
@test a == 0:7:35
end
@testset "findcell" begin
hrs = exampledata("hrs")
@test_throws ArgumentError findcell((), hrs)
@test_throws ArgumentError findcell((:wave,), hrs, falses(size(hrs, 1)))
rows = findcell((:wave,), hrs)
@test length(rows) == 5
@test rows[UInt32(5)] == findall(x->x==7, hrs.wave)
df = DataFrame(hrs)
df.wave = PooledArray(df.wave)
@test findcell((:wave,), df) == rows
esample = hrs.wave.!=11
rows = findcell((:wave, :wave_hosp), hrs, esample)
@test length(rows) == 16
@test rows[one(UInt32)] == intersect(findall(x->x==10, view(hrs.wave, esample)), findall(x->x==10, view(hrs.wave_hosp, esample)))
rows = findcell((:wave, :wave_hosp, :male), hrs)
@test length(rows) == 40
end
@testset "cellrows" begin
hrs = exampledata("hrs")
cols0 = subcolumns(hrs, (:wave, :wave_hosp), falses(size(hrs, 1)))
cols = subcolumns(hrs, (:wave, :wave_hosp))
rows_dict0 = IdDict{UInt32, Vector{Int}}()
@test_throws ArgumentError cellrows(cols, rows_dict0)
rows_dict = findcell(cols)
@test_throws ArgumentError cellrows(cols0, rows_dict)
cells, rows = cellrows(cols, rows_dict)
@test length(cells[1]) == length(rows) == 20
@test Tables.matrix(cells) ==
sortslices(unique(hcat(hrs.wave, hrs.wave_hosp), dims=1), dims=1)
@test propertynames(cells) == [:wave, :wave_hosp]
@test rows[1] == intersect(findall(x->x==7, hrs.wave), findall(x->x==8, hrs.wave_hosp))
df = DataFrame(hrs)
df.wave = ScaledArray(hrs.wave, 1)
df.wave_hosp = ScaledArray(hrs.wave_hosp, 1)
cols1 = subcolumns(df, (:wave, :wave_hosp))
cells1, rows1 = cellrows(cols1, rows_dict)
@test rows1 == rows
@test cells1 == cells
@test cells1.wave isa ScaledArray
@test cells1.wave_hosp isa ScaledArray
rot = ones(size(df, 1))
df.wave = RotatingTimeArray(rot, hrs.wave)
df.wave_hosp = RotatingTimeArray(rot, hrs.wave_hosp)
cols2 = subcolumns(df, (:wave, :wave_hosp))
cells2, rows2 = cellrows(cols2, rows_dict)
@test rows2 == rows
@test cells2 == cells
@test cells2.wave isa RotatingTimeArray
@test cells2.wave_hosp isa RotatingTimeArray
end
@testset "settime aligntime" begin
hrs = exampledata("hrs")
t = settime(hrs.wave, 2, reftype=Int16)
@test eltype(refarray(t)) == Int16
@test sort!(unique(refarray(t))) == 1:3
t = settime(hrs.wave, 0.5)
@test eltype(t) == Float64
rot = isodd.(hrs.wave)
t = settime(hrs.wave, rotation=rot)
@test eltype(t) == RotatingTimeValue{Bool, eltype(hrs.wave)}
@test refpool(t) === nothing
@test eltype(refarray(t.time)) == Int32
@test t.rotation == rot
@test t.time == hrs.wave
df = DataFrame(hrs)
df.wave1 = Date.(df.wave)
t = settime(df.wave1, Year(1))
@test t == df.wave1
@test t.pool == Date(7):Year(1):Date(11)
t = settime(df.wave1, Year(1), rotation=rot)
@test eltype(t) == RotatingTimeValue{Bool, eltype(df.wave1)}
@test eltype(refarray(t.time)) == Int32
@test t.time isa ScaledArray
df.t1 = settime(df.wave, 1)
df.t2 = settime(df.wave, 2)
t = aligntime(df, :t2, :t1)
@test t == df.t2
@test t.pool == df.t1.pool
@test t.invpool == df.t1.invpool
df.t2 = settime(df.wave, start=0, stop=20)
t = aligntime(df, :t2, :t1)
@test t == df.t2
@test t.pool == df.t1.pool
t1 = settime(df.wave1, Year(1), rotation=rot)
t2 = settime(df.wave1, Year(1), start=Date(5))
t = aligntime(t2, t1)
@test t == t1
@test t.time.pool == t1.time.pool
t2 = settime(df.wave1, Year(1), start=Date(5), rotation=rot)
t = aligntime(t2, t1)
@test t == t1
@test t.time.pool == t1.time.pool
end
@testset "PanelStructure" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
panel = setpanel(hrs, :hhidpn, :wave)
@test length(unique(panel.refs)) == N
inidbounds = view(hrs.hhidpn, 2:N) .== view(hrs.hhidpn, 1:N-1)
@test view(diff(panel.refs), inidbounds) == view(diff(hrs.wave), inidbounds)
@test length(panel.idpool) == 656
@test panel.timepool == 7:11
panel1 = setpanel(hrs, :hhidpn, :wave, step=0.5, reftype=Int)
@test view(diff(panel1.refs), inidbounds) == 2 .* view(diff(hrs.wave), inidbounds)
@test panel1.timepool == 7.0:0.5:11.0
@test eltype(panel1.refs) == Int
@test_throws ArgumentError setpanel(hrs, :hhidpn, :oop_spend)
@test_throws DimensionMismatch setpanel(hrs.hhidpn, 1:100)
@test sprint(show, panel) == "Panel Structure"
t = VERSION < v"1.6.0" ? "Array{Int64,1}" : " Vector{Int64}"
@test sprint(show, MIME("text/plain"), panel) == """
Panel Structure:
idpool: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 … 647, 648, 649, 650, 651, 652, 653, 654, 655, 656]
timepool: 7:1:11
laginds: Dict{Int64,$t}()"""
lags = findlag!(panel)
@test sprint(show, MIME("text/plain"), panel) == """
Panel Structure:
idpool: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 … 647, 648, 649, 650, 651, 652, 653, 654, 655, 656]
timepool: 7:1:11
laginds: Dict(1 => [4, 5, 1, 2, 0, 7, 0, 10, 8, 6 … 0, 3275, 3271, 3273, 3274, 3279, 3280, 3277, 3278, 0])"""
leads = findlead!(panel, -1)
@test leads == leads
@test_throws ArgumentError findlag!(panel, 5)
@test ilag!(panel) === panel.laginds[1]
@test ilag!(panel, 2) === panel.laginds[2]
@test ilead!(panel) === panel.laginds[-1]
l1 = lag(panel, hrs.wave)
@test view(l1, hrs.wave.!=7) == view(hrs.wave, hrs.wave.!=7) .- 1
@test all(ismissing, view(l1, hrs.wave.==7))
l2 = lag(panel, hrs.wave, 2, default=-1)
@test view(l2, hrs.wave.>=9) == view(hrs.wave, hrs.wave.>=9) .- 2
@test all(x->x==-1, view(l2, hrs.wave.<9))
@test eltype(l2) == Int
l_2 = lead(panel, hrs.wave, 2, default=-1.0)
@test view(l_2, hrs.wave.<=9) == view(hrs.wave, hrs.wave.<=9) .+ 2
@test all(x->x==-1, view(l_2, hrs.wave.>9))
@test eltype(l_2) == Int
@test_throws DimensionMismatch lag(panel, 1:10)
d1 = diff(panel, hrs.wave)
@test all(x->x==1, view(d1, hrs.wave.!=7))
@test all(ismissing, view(d1, hrs.wave.==7))
d2 = diff(panel, hrs.wave, l=2, default=-1)
@test all(x->x==2, view(d2, hrs.wave.>=9))
@test all(x->x==-1, view(d2, hrs.wave.<9))
@test eltype(d2) == Int
d_2 = diff(panel, hrs.wave, l=-2, default=-1.0)
@test all(x->x==-2, view(d_2, hrs.wave.<=9))
@test all(x->x==-1, view(d_2, hrs.wave.>9))
@test eltype(d_2) == Int
d2 = diff(panel, hrs.wave, order=2)
@test all(x->x==0, view(d2, hrs.wave.>=9))
@test all(ismissing, view(d2, hrs.wave.<9))
d2 = diff(panel, hrs.wave, order=2, l=2)
@test all(x->x==0, view(d2, hrs.wave.==11))
@test all(ismissing, view(d2, hrs.wave.!=11))
@test_throws ArgumentError diff(panel, hrs.wave, l=5)
@test_throws ArgumentError diff(panel, hrs.wave, order=5)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 6418 | @testset "singletons" begin
@testset "alias" begin
@test unconditional() == Unconditional()
@test exact() == Exact()
end
@testset "show" begin
@test sprint(show, Unconditional()) == "Unconditional"
@test sprintcompact(Unconditional()) == "U"
@test sprint(show, Exact()) == "Parallel"
@test sprintcompact(Exact()) == "P"
end
end
@testset "unspecifiedpr" begin
us = UnspecifiedParallel()
@test unspecifiedpr() === us
@test unspecifiedpr(Unconditional()) === us
@test unspecifiedpr(Unconditional(), Exact()) === us
@test sprint(show, us) == "Unspecified{U,P}"
@test sprint(show, MIME("text/plain"), us) ==
"Parallel among unspecified treatment groups"
end
@testset "nevertreated" begin
nt0 = NeverTreatedParallel([0], Unconditional(), Exact())
nt0y = NeverTreatedParallel(Date(0), Unconditional(), Exact())
nt1 = NeverTreatedParallel([0,1], Unconditional(), Exact())
nt1y = NeverTreatedParallel([Date(0), Date(1)], Unconditional(), Exact())
@testset "inner constructor" begin
@test NeverTreatedParallel([1,1,0], Unconditional(), Exact()) == nt1
@test_throws ErrorException NeverTreatedParallel([], Unconditional(), Exact())
@test_throws MethodError NeverTreatedParallel([-0.5], Unconditional(), Exact())
end
@testset "without @formula" begin
@test nevertreated(0) == nt0
@test nevertreated([0,1]) == nt1
@test nevertreated(0:1) == nt1
@test nevertreated(Set([0,1])) == nt1
@test nevertreated([0,1,1]) == nt1
@test nevertreated(Date(0)) == nt0y
@test nevertreated((Date(0), Date(1))) == nt1y
@test nevertreated(0, Unconditional(), Exact()) == nt0
@test nevertreated(0, c=Unconditional(), s=Exact()) == nt0
@test nevertreated([0,1], Unconditional(), Exact()) == nt1
@test nevertreated([0,1], c=Unconditional(), s=Exact()) == nt1
end
@testset "show" begin
@test sprint(show, nt0) == "NeverTreated{U,P}(0)"
@test sprint(show, MIME("text/plain"), nt0) == """
Parallel trends with any never-treated group:
Never-treated groups: 0"""
@test sprint(show, nt1) == "NeverTreated{U,P}(0, 1)"
@test sprint(show, MIME("text/plain"), nt1) == """
Parallel trends with any never-treated group:
Never-treated groups: 0, 1"""
end
end
@testset "notyettreated" begin
ny0 = NotYetTreatedParallel([0], [0], Unconditional(), Exact())
ny0y = NotYetTreatedParallel(Date(0), Date(0), Unconditional(), Exact())
ny1 = NotYetTreatedParallel([0,1], [0], Unconditional(), Exact())
ny1y = NotYetTreatedParallel([Date(0), Date(1)], [Date(0)], Unconditional(), Exact())
ny2 = NotYetTreatedParallel([0,1], [0], Unconditional(), Exact())
ny3 = NotYetTreatedParallel([0,1], [0,1], Unconditional(), Exact())
@testset "inner constructor" begin
@test NotYetTreatedParallel([1,1,0], [1,0,0], Unconditional(), Exact()) == ny3
@test_throws ArgumentError NotYetTreatedParallel([0], [], Unconditional(), Exact())
@test_throws ArgumentError NotYetTreatedParallel([], [0], Unconditional(), Exact())
@test_throws ArgumentError NotYetTreatedParallel([-0.5], [-1], Unconditional(), Exact())
end
@testset "without @formula" begin
@test notyettreated(0) == ny0
@test notyettreated([0,1], 0) == ny1
@test notyettreated(0:1, (0,)) == ny2
@test notyettreated(Set([0,1]), 0:1) == ny3
@test notyettreated([0,1,1], [0,1,1]) == ny3
@test notyettreated(Date(0)) == ny0y
@test notyettreated((Date(0), Date(1)), Date(0)) == ny1y
@test notyettreated(0, 0, Unconditional(), Exact()) == ny0
@test notyettreated(0, c=Unconditional(), s=Exact()) == ny0
@test notyettreated([0,1], [0], Unconditional(), Exact()) == ny1
@test notyettreated([0,1], 0, c=Unconditional(), s=Exact()) == ny1
end
@testset "show" begin
@test sprint(show, ny0) == "NotYetTreated{U,P}(0)"
@test sprint(show, MIME("text/plain"), ny0) == """
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 0
Treated since: 0"""
@test sprint(show, ny1) == "NotYetTreated{U,P}(0, 1)"
@test sprint(show, MIME("text/plain"), ny1) == """
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 0, 1
Treated since: 0"""
@test sprint(show, ny2) == "NotYetTreated{U,P}(0, 1)"
@test sprint(show, MIME("text/plain"), ny2) == """
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 0, 1
Treated since: 0"""
@test sprint(show, ny3) == "NotYetTreated{U,P}(0, 1)"
@test sprint(show, MIME("text/plain"), ny3) == """
Parallel trends with any not-yet-treated group:
Not-yet-treated groups: 0, 1
Treated since: 0, 1"""
end
end
@testset "istreated istreated!" begin
nt = nevertreated(-1)
@test istreated(nt, -1) == false
@test istreated(nt, 0)
out = BitVector(undef, 3)
x = [1, -1, missing]
@test istreated!(out, nt, x) == [true, false, true]
x = ScaledArray([1, -1, missing], 1)
@test istreated!(out, nt, x) == [true, false, true]
x = ScaledArray([1, 0, missing], 1)
@test istreated!(out, nt, x) == [true, true, true]
ny = notyettreated(5)
@test istreated(ny, 5) == false
@test istreated(ny, 4)
ny = notyettreated(5, 4)
@test istreated(ny, 4)
out = BitVector(undef, 3)
x = [1, 5, missing]
@test istreated!(out, ny, x) == [true, false, true]
x = ScaledArray([1, 5, missing], 1)
@test istreated!(out, ny, x) == [true, false, true]
x = ScaledArray([1, 0, missing], 1)
@test istreated!(out, ny, x) == [true, true, true]
end
@testset "termvars" begin
@test termvars(Unconditional()) == Symbol[]
@test termvars(Exact()) == Symbol[]
@test termvars(unspecifiedpr()) == Symbol[]
@test termvars(nevertreated(-1)) == Symbol[]
@test termvars(notyettreated(5)) == Symbol[]
@test_throws ErrorException termvars(TestParaCondition())
@test_throws ErrorException termvars(TestParaStrength())
@test_throws ErrorException termvars(PR)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 12488 | @testset "CheckData" begin
@testset "checkdata!" begin
hrs = exampledata("hrs")
nt = (data=hrs, subset=nothing, weightname=nothing)
ret = checkdata!(nt...)
@test ret.esample == trues(size(hrs,1))
ismale = hrs.male.==1
nt = merge(nt, (weightname=:rwthh, subset=ismale))
ret = checkdata!(nt...)
@test ret.esample == ismale
@test ret.esample !== ismale
df = DataFrame(hrs)
allowmissing!(df, :rwthh)
df.rwthh[1] = missing
nt = merge(nt, (data=df, subset=nothing))
ret = checkdata!(nt...)
@test ret.esample == (hrs.rwthh.>0) .& (.!ismissing.(df.rwthh))
nt = merge(nt, (data=rand(10,10),))
@test_throws ArgumentError checkdata!(nt...)
nt = merge(nt, (data=[(a=1, b=2), (a=1, b=2)],))
@test_throws ArgumentError checkdata!(nt...)
nt = merge(nt, (data=hrs, subset=BitArray(hrs.male[1:100])))
@test_throws DimensionMismatch checkdata!(nt...)
nt = merge(nt, (subset=falses(size(hrs,1)),))
@test_throws ErrorException checkdata!(nt...)
end
@testset "StatsStep" begin
@test sprint(show, CheckData()) == "CheckData"
@test sprint(show, MIME("text/plain"), CheckData()) ==
"CheckData (StatsStep that calls DiffinDiffsBase.checkdata!)"
@test _f(CheckData()) == checkdata!
hrs = exampledata("hrs")
nt = (data=hrs, subset=nothing, weightname=nothing)
ret = CheckData()(nt)
@test ret.esample == trues(size(hrs,1))
@test ret.aux isa BitVector
@test_throws ErrorException CheckData()()
end
end
@testset "GroupTreatintterms" begin
@testset "grouptreatintterms" begin
nt = (treatintterms=TermSet(),)
@test grouptreatintterms(nt...) == nt
end
@testset "StatsStep" begin
@test sprint(show, GroupTreatintterms()) == "GroupTreatintterms"
@test sprint(show, MIME("text/plain"), GroupTreatintterms()) ==
"GroupTreatintterms (StatsStep that calls DiffinDiffsBase.grouptreatintterms)"
@test _byid(SharedStatsStep(GroupTreatintterms(),1)) == false
nt = (treatintterms=TermSet(),)
@test GroupTreatintterms()() == nt
end
end
@testset "GroupXterms" begin
@testset "groupxterms" begin
nt = (xterms=TermSet(term(:x)),)
@test groupxterms(nt...) == nt
end
@testset "StatsStep" begin
@test sprint(show, GroupXterms()) == "GroupXterms"
@test sprint(show, MIME("text/plain"), GroupXterms()) ==
"GroupXterms (StatsStep that calls DiffinDiffsBase.groupxterms)"
@test _byid(SharedStatsStep(GroupXterms(), 1)) == false
nt = (xterms=TermSet(),)
@test GroupXterms()() == nt
end
end
@testset "GroupContrasts" begin
@testset "groupcontrasts" begin
nt = (contrasts=Dict{Symbol,Any}(),)
@test groupcontrasts(nt...) == nt
end
@testset "StatsStep" begin
@test sprint(show, GroupContrasts()) == "GroupContrasts"
@test sprint(show, MIME("text/plain"), GroupContrasts()) ==
"GroupContrasts (StatsStep that calls DiffinDiffsBase.groupcontrasts)"
@test _byid(SharedStatsStep(GroupContrasts(), 1)) == false
nt = (contrasts=nothing,)
@test GroupContrasts()() == nt
end
end
@testset "CheckVars" begin
@testset "checkvars!" begin
hrs = exampledata("hrs")
N = size(hrs,1)
us = unspecifiedpr()
tr = dynamic(:wave, -1)
nt = (data=hrs, pr=us, yterm=term(:oop_spend),
treatname=:wave_hosp, esample=trues(N), aux=BitVector(undef, N),
treatintterms=TermSet(), xterms=TermSet(),
tytr=typeof(tr), trvars=(termvars(tr)...,), tr=tr)
@test checkvars!(nt...) == (esample=trues(N), tr_rows=trues(N))
nt = merge(nt, (pr=nevertreated(11),))
@test checkvars!(nt...) == (esample=trues(N), tr_rows=hrs.wave_hosp.!=11)
nt = merge(nt, (pr=notyettreated(11),))
@test checkvars!(nt...) == (esample=hrs.wave.!=11,
tr_rows=(hrs.wave_hosp.!=11).&(hrs.wave.!=11))
nt = merge(nt, (pr=notyettreated(11, 10), esample=trues(N)))
@test checkvars!(nt...) ==
(esample=.!(hrs.wave_hosp.∈(10,)).& .!(hrs.wave.∈((10,11),)),
tr_rows=(.!(hrs.wave_hosp.∈((10,11),)).& .!(hrs.wave.∈((10,11),))))
nt = merge(nt, (pr=notyettreated(10),
esample=.!((hrs.wave_hosp.==10).&(hrs.wave.==9))))
@test checkvars!(nt...) == (esample=(hrs.wave.<9).&(hrs.wave_hosp.<=10),
tr_rows=(hrs.wave.<9).&(hrs.wave_hosp.<=9))
nt = merge(nt, (pr=us, treatintterms=TermSet(term(:male)),
xterms=TermSet(term(:white)), esample=trues(N)))
@test checkvars!(nt...) == (esample=trues(N), tr_rows=trues(N))
nt = merge(nt, (pr=nevertreated(11), treatintterms=TermSet(term(:male)),
xterms=TermSet(term(:white)), esample=trues(N)))
@test checkvars!(nt...) == (esample=trues(N), tr_rows=hrs.wave_hosp.!=11)
df = DataFrame(hrs)
allowmissing!(df, :male)
df.male .= ifelse.(hrs.wave_hosp.==11, missing, df.male)
nt = merge(nt, (data=df, pr=us, esample=trues(N)))
@test checkvars!(nt...) == (esample=hrs.wave_hosp.!=11, tr_rows=hrs.wave_hosp.!=11)
df.male .= ifelse.(hrs.wave_hosp.==10, missing, hrs.male)
nt = merge(nt, (esample=trues(N),))
@test checkvars!(nt...) == (esample=hrs.wave_hosp.!=10, tr_rows=hrs.wave_hosp.!=10)
df.male .= ifelse.(hrs.wave_hosp.==11, missing, hrs.male)
nt = merge(nt, (pr=nevertreated(11), esample=trues(N)))
@test checkvars!(nt...) == (esample=trues(N), tr_rows=hrs.wave_hosp.!=11)
df.male .= ifelse.(hrs.wave_hosp.==10, missing, df.male)
@test checkvars!(nt...) == (esample=hrs.wave_hosp.!=10, tr_rows=hrs.wave_hosp.∈((8,9),))
df.white = ifelse.(hrs.wave_hosp.==9, missing, df.white.+0.5)
ret = (esample=hrs.wave_hosp.∈((8,11),), tr_rows=hrs.wave_hosp.==8)
@test checkvars!(nt...) == ret
df.wave_hosp = Date.(df.wave_hosp)
@test_throws ArgumentError checkvars!(nt...)
df.wave = Date.(df.wave)
@test_throws ArgumentError checkvars!(nt...)
nt = merge(nt, (pr=nevertreated(Date(11)),))
@test_throws ArgumentError checkvars!(nt...)
df.wave = settime(df.wave, Year(1))
df.wave_hosp = settime(df.wave_hosp, Year(1))
@test_throws ArgumentError checkvars!(nt...)
df.wave_hosp = aligntime(df, :wave_hosp, :wave)
@test checkvars!(nt...) == ret
nt = merge(nt, (pr=notyettreated(Date(11)), esample=trues(N)))
ret = checkvars!(nt...)
@test ret == (esample=(df.wave_hosp.∈((Date(8),Date(11)),)).&(df.wave.!=Date(11)),
tr_rows=(df.wave_hosp.==Date(8)).&(df.wave.!=Date(11)))
allowmissing!(df, :wave)
df[:,:wave] .= ifelse.((df.wave_hosp.==Date(8)).&(df.wave.∈((Date(7), Date(8)),)),
missing, df.wave)
nt = merge(nt, (esample=trues(N), pr=nevertreated(Date(11))))
ret = checkvars!(nt...)
@test ret.esample == (df.wave_hosp.∈((Date(8),Date(11)),)).& (.!(hrs.wave.∈((7,8),)))
@test ret.tr_rows == ret.esample.&(df.wave_hosp.!=Date(11))
nt = merge(nt, (esample=trues(N), pr=notyettreated(Date(11))))
ret = checkvars!(nt...)
@test ret.esample == (df.wave_hosp.∈((Date(8),Date(11)),)).& (hrs.wave.∈((9,10),))
@test ret.tr_rows == ret.esample.&(df.wave_hosp.!=Date(11))
df = DataFrame(hrs)
rot = ifelse.(isodd.(df.hhidpn), 1, 2)
df.wave_hosp = rotatingtime(rot, df.wave_hosp)
df.wave = rotatingtime(rot, df.wave)
e = rotatingtime((1,2), 11)
nt = merge(nt, (data=df, pr=nevertreated(e), treatintterms=TermSet(),
xterms=TermSet(), esample=trues(N)))
# Check RotatingTimeArray
@test_throws ArgumentError checkvars!(nt...)
df.wave_hosp = settime(hrs.wave_hosp, rotation=rot)
df.wave = settime(hrs.wave, rotation=rot)
# Check aligntime
@test_throws ArgumentError checkvars!(nt...)
df.wave_hosp = aligntime(df.wave_hosp, df.wave)
ret1 = checkvars!(nt...)
@test ret1 == (esample=trues(N), tr_rows=hrs.wave_hosp.!=11)
df.wave_hosp = settime(hrs.wave_hosp, start=7, rotation=ones(N))
df.wave = settime(hrs.wave, rotation=ones(N))
# Check the match of field type of pr.e
@test_throws ArgumentError checkvars!(nt...)
df.wave_hosp = settime(hrs.wave_hosp, start=7, rotation=ones(Int, N))
df.wave = settime(hrs.wave, rotation=ones(Int, N))
nt = merge(nt, (esample=trues(N), pr=notyettreated(e),))
ret2 = checkvars!(nt...)
@test ret2 == (esample=hrs.wave.!=11, tr_rows=(hrs.wave_hosp.!=11).&(hrs.wave.!=11))
# RotatingTimeArray with time field of type Array
df.wave_hosp = RotatingTimeArray(rot, hrs.wave_hosp)
df.wave = RotatingTimeArray(rot, hrs.wave)
e = rotatingtime((1,2), (10,11))
nt = merge(nt, (esample=trues(N), pr=notyettreated(e)))
ret3 = checkvars!(nt...)
ret3e = (hrs.wave.!=11).&(.!((hrs.wave.==10).&(rot.==1))).&
(.!((hrs.wave_hosp.==11).&(rot.==1)))
@test ret3 == (esample=ret3e, tr_rows=ret3e.&
(hrs.wave_hosp.!=11).&(.!((hrs.wave_hosp.==10).&(rot.==1))))
df.wave = settime(Date.(hrs.wave), Year(1), rotation=rot)
df.wave_hosp = settime(Date.(hrs.wave_hosp), Year(1), start=Date(7), rotation=rot)
e = rotatingtime((1,2), Date(11))
nt = merge(nt, (esample=trues(N), pr=nevertreated(e)))
@test checkvars!(nt...) == ret1
nt = merge(nt, (esample=trues(N), pr=notyettreated(e),))
@test checkvars!(nt...) == ret2
end
@testset "StatsStep" begin
@test sprint(show, CheckVars()) == "CheckVars"
@test sprint(show, MIME("text/plain"), CheckVars()) ==
"CheckVars (StatsStep that calls DiffinDiffsBase.checkvars!)"
@test _f(CheckVars()) == checkvars!
hrs = exampledata("hrs")
N = size(hrs,1)
nt = (data=hrs, tr=dynamic(:wave, -1), pr=nevertreated(11), yterm=term(:oop_spend),
treatname=:wave_hosp, treatintterms=TermSet(), xterms=TermSet(),
esample=trues(N), aux=BitVector(undef, N))
gargs = groupargs(CheckVars(), nt)
@test gargs[copyargs(CheckVars())...] == nt.esample
@test CheckVars()(nt) ==
merge(nt, (esample=trues(N), tr_rows=hrs.wave_hosp.!=11))
nt = (data=hrs, tr=dynamic(:wave, -1), pr=nevertreated(11), yterm=term(:oop_spend),
treatname=:wave_hosp, esample=trues(N), aux=BitVector(undef, N),
treatintterms=TermSet(), xterms=TermSet())
@test CheckVars()(nt) ==
merge(nt, (esample=trues(N), tr_rows=hrs.wave_hosp.!=11))
@test_throws ErrorException CheckVars()()
end
end
@testset "GroupSample" begin
@testset "groupsample" begin
nt = (esample=trues(3),)
@test groupsample(nt...) == nt
end
@testset "StatsStep" begin
@test sprint(show, GroupSample()) == "GroupSample"
@test sprint(show, MIME("text/plain"), GroupSample()) ==
"GroupSample (StatsStep that calls DiffinDiffsBase.groupsample)"
@test _byid(SharedStatsStep(GroupSample(), 1)) == false
nt = (esample=trues(3),)
@test GroupSample()(nt) == nt
end
end
@testset "MakeWeights" begin
@testset "makeweights" begin
hrs = exampledata("hrs")
nt = (data=hrs, esample=trues(size(hrs,1)), weightname=nothing)
r = makeweights(nt...)
@test r.weights isa UnitWeights && sum(r.weights) == size(hrs,1)
nt = merge(nt, (weightname=:rwthh,))
r = makeweights(nt...)
@test r.weights isa Weights && sum(r.weights) == sum(hrs.rwthh)
end
@testset "StatsStep" begin
@test sprint(show, MakeWeights()) == "MakeWeights"
@test sprint(show, MIME("text/plain"), MakeWeights()) ==
"MakeWeights (StatsStep that calls DiffinDiffsBase.makeweights)"
@test _f(MakeWeights()) == makeweights
hrs = exampledata("hrs")
nt = (data=hrs, esample=trues(size(hrs,1)))
r = MakeWeights()(nt)
@test r.weights isa UnitWeights && sum(r.weights) == size(hrs,1)
end
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1237 | using Test
using DiffinDiffsBase
using DataAPI: refarray, refvalue, refpool, invrefpool
using DataFrames
using Dates: Date, Year
using DiffinDiffsBase: @fieldequal, exampledata, checktable,
isintercept, isomitsintercept, parse_intercept!,
ncol, nrow, _mult!,
checkdata!, grouptreatintterms, groupxterms, groupcontrasts,
checkvars!, groupsample, makeweights,
_totermset!, parse_didargs!, _treatnames, _parse_bycells!, _parse_subset, _nselected,
treatindex, checktreatindex, DefaultExportFormat
using LinearAlgebra: Diagonal
using Missings: allowmissing, disallowmissing
using PooledArrays: PooledArray
using StatsBase: Weights, UnitWeights
using StatsModels: termvars
using StatsProcedures: _f, _byid, groupargs, copyargs, pool, ≊
using Tables: table
import Base: ==, show
import DiffinDiffsBase: valid_didargs
import StatsProcedures: required, result
include("testutils.jl")
const tests = [
"tables",
"utils",
"time",
"ScaledArrays",
"terms",
"treatments",
"parallels",
"operations",
"procedures",
"did"
]
printstyled("Running tests:\n", color=:blue, bold=true)
@time for test in tests
include("$test.jl")
println("\033[1m\033[32mPASSED\033[0m: $(test)")
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 8564 | @testset "VecColumnTable" begin
hrs = DataFrame(exampledata("hrs"))
cols = VecColumnTable(AbstractVector[], Symbol[], Dict{Symbol,Int}())
cols1 = VecColumnTable(AbstractVector[], Symbol[])
@test cols1 == cols
cols2 = VecColumnTable(cols1)
@test cols2 === cols1
cols3 = VecColumnTable(DataFrame())
@test cols3 == cols
@test size(cols) == (0, 0)
@test length(cols) == 0
@test isempty(cols)
@test_throws BoundsError cols[1]
@test_throws ArgumentError size(cols, 3)
@test sprint(show, MIME("text/plain"), cols) == "0×0 VecColumnTable"
cols = VecColumnTable(AbstractVector[[]], Symbol[:a], Dict{Symbol,Int}(:a=>1))
@test size(cols) == (0, 1)
@test length(cols) == 1
@test isempty(cols)
@test sprint(show, MIME("text/plain"), cols) == "0×1 VecColumnTable"
cols = VecColumnTable((wave=hrs.wave,))
@test size(cols) == (3280, 1)
rows = collect(Tables.rows(cols))
@test hash(rows[2]) == hash(rows[6])
@test isequal(rows[2], rows[6])
@test !isequal(rows[1], rows[2])
@test isless(rows[1], rows[3])
@test !isless(rows[1], rows[2])
cols = VecColumnTable(AbstractVector[hrs.wave, hrs.oop_spend], [:wave, :oop_spend],
Dict(:wave=>1, :oop_spend=>2))
cols1 = VecColumnTable(AbstractVector[hrs.wave, hrs.oop_spend], [:wave, :oop_spend])
@test cols1 == cols
@test nrow(cols) == 3280
@test ncol(cols) == 2
@test size(cols) == (3280, 2)
@test length(cols) == 2
@test isempty(cols) === false
cols2 = VecColumnTable(hrs)
@test size(cols2) == (3280, 11)
cols3 = VecColumnTable(cols2)
@test cols3 === cols2
esample = hrs.wave.==7
cols3 = VecColumnTable(hrs, esample)
@test size(cols3) == (sum(esample), 11)
cols4 = VecColumnTable(cols2, esample)
@test cols4 == cols3
@test VecColumnTable(cols2, :) == view(cols2, :) == cols2
@test VecColumnTable(cols2, 1:3280) == view(cols2, 1:3280) == cols2
@test VecColumnTable(cols2, [2,1]) == view(cols2, [2,1])
@test cols[1] === hrs.wave
@test cols[:] == cols[1:2] == cols[[1,2]] == cols[trues(2)] == [hrs.wave, hrs.oop_spend]
@test cols[:wave] === cols[1]
@test cols[[:oop_spend, :wave]] == [hrs.oop_spend, hrs.wave]
@test_throws ArgumentError cols[[1, :oop_spend]]
@test_throws BoundsError cols[1:3]
@test propertynames(cols) == [:wave, :oop_spend]
@test cols.wave === cols[1]
@test keys(cols) == [:wave, :oop_spend]
@test values(cols) == [hrs.wave, hrs.oop_spend]
@test haskey(cols, :wave)
@test haskey(cols, 1)
@test get(cols, :wave, nothing) == cols[1]
@test get(cols, :none, nothing) === nothing
@test [col for col in cols] == cols[:]
@test cols == deepcopy(cols)
@test sprint(show, cols) == "3280×2 VecColumnTable"
@test sprint(show, MIME("text/plain"), cols, context=:displaysize=>(18,80)) == """
3280×2 VecColumnTable:
Row │ wave oop_spend
│ Int64 Float64
──────┼──────────────────
1 │ 10 6532.91
2 │ 8 1326.93
3 │ 11 1050.33
4 │ 9 979.418
5 │ 7 5498.68
⋮ │ ⋮ ⋮
3276 │ 11 3020.78
3277 │ 8 2632.0
3278 │ 9 657.34
3279 │ 10 782.795
3280 │ 7 4182.39"""
@test summary(cols) == "3280×2 VecColumnTable"
@test sprint(summary, cols) == "3280×2 VecColumnTable"
@test Tables.istable(typeof(cols))
@test Tables.columnaccess(typeof(cols))
@test Tables.columns(cols) === cols
@test Tables.getcolumn(cols, 1) === cols[1]
@test Tables.getcolumn(cols, :wave) === cols[1]
@test Tables.columnnames(cols) == [:wave, :oop_spend]
@test Tables.schema(cols) == Tables.Schema{(:wave, :oop_spend), Tuple{Int, Float64}}()
@test Tables.materializer(cols) == VecColumnTable
@test Tables.columnindex(cols, :wave) == 1
@test Tables.columntype(cols, :wave) == Int
@test Tables.rowcount(cols) == 3280
@test eltype(Tables.rows(cols)) == VecColsRow
rows0 = collect(Tables.rows(cols))
@test ncol(rows0[1]) == 2
@test hash(rows0[2]) != hash(rows0[6])
@test isequal(rows0[1], rows0[1])
@test isequal(rows0[1], rows0[2]) == false
@test isless(rows0[2], rows0[1])
# Same data but different parent tables
rows1 = collect(Tables.rows(cols1))
@test hash(rows0[1]) == hash(rows1[1])
@test isequal(rows0[1], rows1[1])
@test isless(rows0[2], rows1[1])
# Rows do not have the same length
@test !isequal(rows[1], rows0[1])
@test_throws ArgumentError isless(rows[1], rows0[1])
cols2 = VecColumnTable((wave=hrs.wave, male=hrs.male))
rows2 = collect(Tables.rows(cols2))
@test hash(rows2[2]) == hash(rows2[6])
@test isequal(rows2[2], rows2[6])
# Different column names but otherwise the same table
cols3 = VecColumnTable((wave1=hrs.wave, oop_spend1=hrs.oop_spend))
rows3 = collect(Tables.rows(cols3))
@test hash(rows0[2]) == hash(rows3[2])
@test isequal(rows0[2], rows3[2])
@test isless(rows0[2], rows3[1])
df = DataFrame(hrs)
@test sortperm(cols) == sortperm(rows0) == sortperm(df, [:wave, :oop_spend])
cols_sorted = sort(cols)
df_sorted = sort(df, [:wave, :oop_spend])
@test cols_sorted.oop_spend == df_sorted.oop_spend
sort!(cols)
@test cols.oop_spend == df_sorted.oop_spend
end
@testset "subcolumns" begin
hrs = exampledata("hrs")
df = DataFrame(hrs)
allowmissing!(df)
cols = subcolumns(df, [])
@test size(cols) == (0, 0)
@test isempty(cols)
cols = subcolumns(df, :wave, falses(size(df,1)))
@test size(cols) == (0, 1)
@test isempty(cols)
@test cols.wave == cols[:wave] == cols[1] == Int[]
cols = subcolumns(df, :wave)
@test cols.wave == hrs.wave
@test eltype(cols.wave) == Int
@test size(cols) == (3280, 1)
cols = subcolumns(df, :wave, nomissing=false)
@test cols.wave == hrs.wave
@test eltype(cols.wave) == Union{Int, Missing}
df[:,:male] .= ifelse.(df.wave.==11, missing, df.male)
@test_throws MethodError subcolumns(df, :male)
cols = subcolumns(df, :male, df.wave.!=11)
@test cols.male == hrs.male[hrs.wave.!=11]
@test eltype(cols.male) == Int
cols = subcolumns(df, (:wave, :male), df.wave.!=11)
@test cols.wave == hrs.wave[hrs.wave.!=11]
@test eltype(cols.wave) == Int
@test subcolumns(df, [:wave, :male], df.wave.!=11) == cols
end
@testset "apply apply_and" begin
cols = VecColumnTable((a=collect(1:10), b=collect(2:11)))
@test apply(cols, :a=>identity) == cols.a
@test apply(cols, 2=>identity) == cols.b
@test apply(cols, (:a,2)=>(x,y)->x+y) == cols.a .+ cols.b
r = apply(cols, (:a,)=>isodd)
@test r == isodd.(cols.a)
@test r isa Vector{Bool}
@test_throws MethodError apply(cols, :a=>identity, :b=>identity)
inds = trues(10)
apply_and!(inds, cols, :a=>isodd)
@test inds == isodd.(cols.a)
inds = trues(10)
apply_and!(inds, cols, [1,:b]=>(x,y)->isodd(x)&&isodd(y))
@test inds == falses(10)
inds = trues(10)
apply_and!(inds, cols, :a=>isodd, :a=>isodd)
@test inds == isodd.(cols.a)
inds = trues(10)
@test all(apply_and!(inds, cols, :a=>cols.a))
inds = trues(10)
@test all(.!(apply_and!(inds, cols, 2=>cols.a)))
inds = trues(10)
apply_and!(inds, cols, :a=>isodd, 2=>isodd)
@test inds == falses(10)
@test all(apply_and(cols, :a=>cols.a))
r = apply_and(cols, :a=>isodd)
@test r == isodd.(cols.a)
@test r isa BitArray
@test all(apply_and(cols, 2=>cols.b))
@test apply_and(cols, :a=>isodd, 2=>isodd) == falses(10)
end
@testset "_parse_subset" begin
cols = VecColumnTable((a=collect(1:10), b=collect(2:11)))
@test _parse_subset(cols, :a=>isodd) == isodd.(cols.a)
inds = trues(2)
@test _parse_subset(cols, inds) === inds
@test _parse_subset(cols, (:a=>isodd, 2=>isodd)) == falses(10)
@test _parse_subset(cols, :) === Colon()
end
@testset "TableIndexedMatrix" begin
m = reshape(1:100, 10, 10)
r = VecColumnTable((a=collect(1:10),))
c = VecColumnTable((b=collect(1:10),))
tm = TableIndexedMatrix(m, r, c)
@test size(tm) == size(m)
@test tm[1] == 1
@test tm[1, 1] == 1
@test IndexStyle(typeof(tm)) == IndexLinear()
@test_throws ArgumentError TableIndexedMatrix(m, 1:10, c)
r1 = VecColumnTable((a=collect(1:11),))
@test_throws DimensionMismatch TableIndexedMatrix(m, r1, c)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 2993 | const t0 = TreatmentTerm(:g, TestTreatment(:t, 0), TestParallel(0))
const t1 = treat(:g, TestTreatment(:t, 0), TestParallel(0))
const t2 = treat(:g, TestTreatment(:t, 1), TestParallel(0))
const t3 = treat(:g, TestTreatment(:t, 0), TestParallel(1))
@testset "TermSet" begin
@test TermSet() == termset()
@test TermSet([term(:a)]) == termset([term(:a)]) == TermSet(Set{AbstractTerm}([term(:a)]))
@test TermSet(1, :a, term(:a)) == termset(1, :a, term(:a)) ==
TermSet(Set{AbstractTerm}([term(1), term(:a)]))
ts0 = TermSet()
@test isempty(ts0)
@test length(ts0) == 0
ts1 = TermSet(term(:a))
@test isempty(ts1) == false
@test length(ts1) == 1
@test term(:a) in ts1
@test push!(ts0, term(:a)) == ts1
@test pop!(ts0, term(:a)) == term(:a)
@test isempty(ts0)
@test pop!(ts0, term(:a), 0) === 0
delete!(ts1, term(:a))
@test ts1 == ts0
ts1 = TermSet(term(:a))
@test empty!(ts1) == ts0
@test eltype(TermSet) == AbstractTerm
ts1 = TermSet(term(:a))
@test iterate(ts1)[1] == term(:a)
@test Base.emptymutable(ts1) == ts0
end
@testset "==" begin
@test term(:x) + term(:y) == term(:y) + term(:x)
@test term(:x) + term(:y) + term(:y) == term(:y) + term(:x) + term(:x)
@test term(:x) & term(:y) == term(:y) & term(:x)
@test term(:x) & term(:y) + term(:y) & term(:x) == term(:y) & term(:x)
@test term(:x) & term(:y) + term(:z) == term(:z) + term(:y) & term(:x)
@test lag(term(:x),1) & term(:z) == term(:z) & lag(term(:x),1)
end
@testset "treat" begin
@test t1 == t0
@test t2 != t0
@test t3 != t0
end
@testset "parse_intercept!" begin
@test isintercept(term(1))
@test isomitsintercept(term(0))
@test isomitsintercept(term(-1))
@test parse_intercept!(TermSet()) == (false, false)
@test parse_intercept!(TermSet(term(:x))) == (false, false)
ts = TermSet(term(1))
@test parse_intercept!(ts) == (true, false)
@test isempty(ts)
ts = TermSet((term(0), term(-1)))
@test parse_intercept!(ts) == (false, true)
@test isempty(ts)
ts = TermSet((term(1), term(0), term(:x)))
@test parse_intercept!(ts) == (true, true)
@test collect(ts) == [term(:x)]
end
@testset "schema" begin
hrs = exampledata("hrs")
sc = schema(termset(:wave, :oop_spend), hrs)
@test sc[term(:wave)] isa ContinuousTerm
@test sc[term(:oop_spend)] isa ContinuousTerm
sc = schema(termset(:wave, :oop_spend), hrs, Dict(:wave=>CategoricalTerm))
@test sc[term(:wave)] isa CategoricalTerm
@test sc[term(:oop_spend)] isa ContinuousTerm
cols = VecColumnTable(hrs)
@test concrete_term(term(:wave), cols, nothing) isa ContinuousTerm
@test concrete_term(term(:wave), cols, Dict(:wave=>CategoricalTerm)) isa CategoricalTerm
@test concrete_term(term(:wave), cols, term(:wave)) isa Term
@test termvars(termset()) == Symbol[]
@test termvars(termset(:wave, :oop_spend)) in ([:wave, :oop_spend], [:oop_spend, :wave])
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 3051 | # Define simple generic types and methods for testing
sprintcompact(x) = sprint(show, x; context=:compact=>true)
struct TestSharpness <: TreatmentSharpness end
struct TestParaCondition <: ParallelCondition end
struct TestParaStrength <: ParallelStrength end
struct TestTreatment <: AbstractTreatment
time::Symbol
ref::Int
end
ttreat(time::Term, ref::ConstantTerm) = TestTreatment(time.sym, ref.n)
struct TestParallel{C,S} <: AbstractParallel{C,S}
e::Int
end
TestParallel(e::Int) = TestParallel{ParallelCondition,ParallelStrength}(e)
tpara(c::ConstantTerm) = TestParallel{ParallelCondition,ParallelStrength}(c.n)
teststep(tr::AbstractTreatment, pr::AbstractParallel) =
(str=sprint(show, tr), spr=sprint(show, pr))
const TestStep = StatsStep{:TestStep, typeof(teststep), true}
required(::TestStep) = (:tr, :pr)
testnextstep(::AbstractTreatment, str::String) = (next="next"*str,)
const TestNextStep = StatsStep{:TestNextStep, typeof(testnextstep), true}
required(::TestNextStep) = (:tr, :str)
const TestDID = DiffinDiffsEstimator{:TestDID, Tuple{TestStep,TestNextStep}}
const NotImplemented = DiffinDiffsEstimator{:NotImplemented, Tuple{}}
const TR = TestTreatment(:t, 0)
const PR = TestParallel(0)
struct TestResult{TR} <: DIDResult{TR}
coef::Vector{Float64}
vcov::Matrix{Float64}
vce::Nothing
tr::AbstractTreatment
nobs::Int
dof_residual::Int
yname::String
coefnames::Vector{String}
coefinds::Dict{String, Int}
treatcells::VecColumnTable
weightname::Symbol
extra1::Int
extra2::Symbol
extra3::String
extra4::Vector{Float64}
extra5::Vector{String}
extra6::Matrix{Float64}
extra7::Vector{Symbol}
extra8::Nothing
extra9::Array{Float64,3}
end
@fieldequal TestResult
function TestResult(n1::Int, n2::Int)
N = n1*(n2+1)
coef = collect(Float64, 1:N)
tr = TR
tnames = ["rel: $a & c: $b" for a in 1:n1 for b in 1:n2]
cnames = vcat(tnames, ["c"*string(i) for i in n1*n2+1:N])
cinds = Dict(cnames .=> 1:N)
tcells = VecColumnTable((rel=repeat(1:n1, inner=n2), c=repeat(1:n2, outer=n1)))
return TestResult{typeof(tr)}(coef, coef.*coef', nothing, tr, N, N-1, "y", cnames, cinds,
tcells, :w, 1, :a, "a", [1.0], ["a"], [1.0 2.0], [:a], nothing, ones(1,1,1))
end
struct TestResultBARE{TR} <: DIDResult{TR}
coef::Vector{Float64}
vcov::Matrix{Float64}
vce::Nothing
tr::AbstractTreatment
nobs::Int
yname::String
coefnames::Vector{String}
treatcells::VecColumnTable
weightname::Symbol
end
@fieldequal TestResultBARE
function TestResultBARE(n1::Int, n2::Int)
N = n1*n2
coef = collect(Float64, 1:N)
tr = dynamic(:time, (-1,))
tnames = ["rel: $a & c: $b" for a in 1:n1 for b in 1:n2]
tcells = VecColumnTable((rel=repeat(1:n1, inner=n2), c=repeat(1:n2, outer=n1)))
return TestResultBARE{typeof(tr)}(coef, coef.*coef', nothing, tr, N, "y", tnames, tcells, :w)
end
function result(::Type{TestDID}, nt::NamedTuple)
return merge(nt, (result=TestResult(2, 2),))
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 2732 | @testset "RotatingTimeValue" begin
rt0 = RotatingTimeValue(1, Date(1))
rt1 = RotatingTimeValue(1.0, Date(1))
@test RotatingTimeValue(typeof(rt0), 1.0, Date(1)) === rt0
@test rotatingtime(1.0, Date(1)) == rt1
rot = repeat(5:-1:1, inner=5)
time = repeat(1:5, outer=5)
rt = rotatingtime(rot, time)
@test eltype(rt) == RotatingTimeValue{Int, Int}
@test getfield.(rt, :rotation) == rot
@test getfield.(rt, :time) == time
@test isless(rt[1], rt[2])
@test isless(rt[6], rt[1])
@test isless(rt[1], rt[7])
@test isless(rt[1], 2.0)
@test isless(1, rt[2])
@test isless(rt[1], missing)
@test !isless(missing, rt[1])
@test isequal(rt[1], RotatingTimeValue(5, 1))
@test rt[1] == RotatingTimeValue(Int32(5), Int32(1))
@test isequal(rt[1] == RotatingTimeValue(missing, 1), missing)
@test isequal(rt[1] == RotatingTimeValue(5, missing), missing)
@test isequal(rt[1] == RotatingTimeValue(1, missing), missing)
@test rt[1] == 1
@test 1 == rt[1]
@test isequal(rt[1] == missing, missing)
@test isequal(missing == rt[1], missing)
@test zero(typeof(rt[1])) === RotatingTimeValue(0, 0)
@test iszero(RotatingTimeValue(1, 0))
@test !iszero(RotatingTimeValue(0, 1))
@test one(typeof(rt[1])) === RotatingTimeValue(1, 1)
@test isone(RotatingTimeValue(1, 1))
@test !isone(RotatingTimeValue(1, 0))
@test convert(typeof(rt[1]), RotatingTimeValue(Int32(5), Int32(1))) ===
RotatingTimeValue(5, 1)
@test nonmissingtype(RotatingTimeValue{Union{Int,Missing}, Union{Int,Missing}}) ==
RotatingTimeValue{Int, Int}
@test iterate(rt1) == (rt1, nothing)
@test iterate(rt1, 1) === nothing
@test length(rt1) == 1
@test sprint(show, rt[1]) == "5_1"
w = VERSION < v"1.6.0" ? "" : " "
@test sprint(show, MIME("text/plain"), rt[1]) == """
RotatingTimeValue{Int64,$(w)Int64}:
rotation: 5
time: 1"""
end
@testset "RotatingTimeArray" begin
rot = collect(1:5)
time = collect(1.0:5.0)
a = RotatingTimeArray(rot, time)
@test eltype(a) == RotatingTimeValue{Int, Float64}
@test size(a) == (5,)
@test IndexStyle(typeof(a)) == IndexLinear()
@test a[1] == RotatingTimeValue(1, 1.0)
@test a[5:-1:1] == RotatingTimeArray(rot[5:-1:1], time[5:-1:1])
a[1] = RotatingTimeValue(2, 2.0)
@test a[1] == RotatingTimeValue(2, 2.0)
a[1:2] = a[3:4]
@test a[1:2] == a[3:4]
v = view(a, 2:4)
@test v isa RotatingTimeArray
@test v == a[2:4]
@test typeof(similar(a)) == typeof(a)
@test size(similar(a, 3)) == (3,)
@test v.rotation == rot[2:4]
@test v.time == time[2:4]
@test refarray(a).rotation == rot
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 2179 | @testset "singletons" begin
@testset "alias" begin
@test sharp() == SharpDesign()
end
@testset "show" begin
@test sprint(show, SharpDesign()) == "Sharp"
@test sprintcompact(SharpDesign()) == "S"
end
end
@testset "dynamic" begin
dt0 = DynamicTreatment(:month, nothing, SharpDesign())
dt1 = DynamicTreatment(:month, -1, SharpDesign())
dt2 = DynamicTreatment(:month, [-2,-1], SharpDesign())
@testset "inner constructor" begin
@test DynamicTreatment(:month, [], SharpDesign()) == dt0
@test DynamicTreatment(:month, [-1], SharpDesign()) == dt1
@test DynamicTreatment(:month, [-1,-1,-2], SharpDesign()) == dt2
@test DynamicTreatment(:month, [-1.0], SharpDesign()) == dt1
@test_throws InexactError DynamicTreatment(:month, [-1.5], SharpDesign())
end
@testset "without @formula" begin
@test dynamic(:month, nothing) == dt0
@test dynamic(:month, []) == dt0
@test dynamic(:month, -1) == dt1
@test dynamic(:month, [-1], sharp()) == dt1
@test dynamic(:month, -2:-1) == dt2
@test dynamic(:month, Set([-1,-2]), sharp()) == dt2
end
@testset "show" begin
@test sprint(show, dt0) == "Dynamic{S}()"
@test sprint(show, MIME("text/plain"), dt0) == """
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: none"""
@test sprint(show, dt1) == "Dynamic{S}(-1)"
@test sprint(show, MIME("text/plain"), dt1) == """
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: -1"""
@test sprint(show, dt2) == "Dynamic{S}(-2, -1)"
@test sprint(show, MIME("text/plain"), dt2) == """
Sharp dynamic treatment:
column name of time variable: month
excluded relative time: -2, -1"""
end
end
@testset "termvars" begin
@test termvars(sharp()) == Symbol[]
@test termvars(dynamic(:month, -1)) == [:month]
@test_throws ErrorException termvars(TestSharpness())
@test_throws ErrorException termvars(TR)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 424 | @testset "exampledata" begin
@test exampledata() == (:hrs, :nsw, :mpdta)
hrs = exampledata("hrs")
@test size(hrs) == (3280, 11)
@test hrs[1] isa Vector
@test size(exampledata(:nsw)) == (32834, 11)
@test size(exampledata(:mpdta)) == (2500, 5)
end
@testset "checktable" begin
@test_throws ArgumentError checktable(rand(3,3))
@test_throws ArgumentError checktable([(a=1, b=2), (a=1, b=2)])
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1491 | module InteractionWeightedDIDs
using Base: Callable
using DataAPI: refarray
using FixedEffectModels: FixedEffectTerm, fe, fesymbol, _multiply,
basis!, invsym!, isnested, nunique
using FixedEffects
using LinearAlgebra: Symmetric, diag, mul!
using Reexport
using StatsBase: AbstractWeights, CovarianceEstimator, UnitWeights, PValue, TestStat, NoQuote
using StatsFuns: fdistccdf
using StatsModels: coefnames
using Tables
using Tables: getcolumn, columnnames
using Vcov
@reexport using DiffinDiffsBase
using DiffinDiffsBase: ValidTimeType, termvars, isintercept, parse_intercept!,
_groupfind, _treatnames, _parse_bycells!, _parse_subset
using DiffinDiffsBase.StatsProcedures: _count!
import Base: show
import DiffinDiffsBase: valid_didargs, vce, treatment, nobs, outcomename, weights,
treatnames, dof_residual, agg, post!
import DiffinDiffsBase.StatsProcedures: required, default, transformed, combinedargs,
copyargs, result, prerequisites
import FixedEffectModels: has_fe
export Vcov,
fe
export CheckVcov,
ParseFEterms,
GroupFEterms,
MakeFEs,
CheckFEs,
MakeFESolver,
MakeYXCols,
MakeTreatCols,
SolveLeastSquares,
EstVcov,
SolveLeastSquaresWeights,
RegressionBasedDID,
Reg,
RegressionBasedDIDResult,
has_fe,
AggregatedRegDIDResult,
has_lsweights,
ContrastResult,
contrast
include("utils.jl")
include("procedures.jl")
include("did.jl")
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 24177 | """
RegressionBasedDID <: DiffinDiffsEstimator
Estimation procedure for regression-based difference-in-differences.
A `StatsSpec` for this procedure accepts the following arguments:
| Key | Type restriction | Default value | Description |
|:---|:---|:---|:---|
| `data` | | | A `Tables.jl`-compatible data table |
| `tr` | `DynamicTreatment{SharpDesign}` | | Treatment specification |
| `pr` | `TrendOrUnspecifiedPR{Unconditional,Exact}` | | Parallel trend assumption |
| `yterm` | `AbstractTerm` | | A term for outcome variable |
| `treatname` | `Symbol` | | Column name for the variable representing treatment time |
| `subset` | `Union{BitVector,Nothing}` | `nothing` | Rows from `data` to be used for estimation |
| `weightname` | `Union{Symbol,Nothing}` | `nothing` | Column name of the sample weight variable |
| `vce` | `Vcov.CovarianceEstimator` | `Vcov.CovarianceEstimator` | Variance-covariance estimator |
| `treatintterms` | `TermSet` | `TermSet()` | Terms interacted with the treatment indicators |
| `xterms` | `TermSet` | `TermSet()` | Terms for covariates and fixed effects |
| `contrasts` | `Union{Dict{Symbol,Any},Nothing}` | `nothing` | Contrast coding to be processed by `StatsModels.jl` |
| `drop_singletons` | `Bool` | `true` | Drop singleton observations for fixed effects |
| `nfethreads` | `Int` | `Threads.nthreads()` | Number of threads to be used for solving fixed effects |
| `fetol` | `Float64` | `1e-8` | Tolerance level for the fixed effect solver |
| `femaxiter` | `Int` | `10000` | Maximum number of iterations allowed for the fixed effect solver |
| `cohortinteracted` | `Bool` | `true` | Interact treatment indicators by treatment time |
| `solvelsweights` | `Bool` | `false` | Solve the cell-level least-square weights with default cell partition |
| `lswtnames` | Iterable of `Symbol`s | `tuple()` | Column names from `treatcells` defining the cell partition used for solving least-square weights |
"""
const RegressionBasedDID = DiffinDiffsEstimator{:RegressionBasedDID,
Tuple{CheckData, GroupTreatintterms, GroupXterms, GroupContrasts,
CheckVcov, CheckVars, GroupSample,
ParseFEterms, GroupFEterms, MakeFEs, CheckFEs, MakeWeights, MakeFESolver,
MakeYXCols, MakeTreatCols, SolveLeastSquares, EstVcov, SolveLeastSquaresWeights}}
"""
Reg <: DiffinDiffsEstimator
Alias for [`RegressionBasedDID`](@ref).
"""
const Reg = RegressionBasedDID
function valid_didargs(d::Type{Reg}, ::DynamicTreatment{SharpDesign},
::TrendOrUnspecifiedPR{Unconditional,Exact}, args::Dict{Symbol,Any})
name = get(args, :name, "")::String
treatintterms = haskey(args, :treatintterms) ? args[:treatintterms] : TermSet()
xterms = haskey(args, :xterms) ? args[:xterms] : TermSet()
solvelsweights = haskey(args, :lswtnames) || get(args, :solvelsweights, false)::Bool
ntargs = (data=args[:data],
tr=args[:tr]::DynamicTreatment{SharpDesign},
pr=args[:pr]::TrendOrUnspecifiedPR{Unconditional,Exact},
yterm=args[:yterm]::AbstractTerm,
treatname=args[:treatname]::Symbol,
subset=get(args, :subset, nothing)::Union{BitVector,Nothing},
weightname=get(args, :weightname, nothing)::Union{Symbol,Nothing},
vce=get(args, :vce, Vcov.RobustCovariance())::Vcov.CovarianceEstimator,
treatintterms=treatintterms::TermSet,
xterms=xterms::TermSet,
contrasts=get(args, :contrasts, nothing)::Union{Dict{Symbol,Any},Nothing},
drop_singletons=get(args, :drop_singletons, true)::Bool,
nfethreads=get(args, :nfethreads, Threads.nthreads())::Int,
fetol=get(args, :fetol, 1e-8)::Float64,
femaxiter=get(args, :femaxiter, 10000)::Int,
cohortinteracted=get(args, :cohortinteracted, true)::Bool,
solvelsweights=solvelsweights::Bool,
lswtnames=get(args, :lswtnames, ()))
return name, d, ntargs
end
prerequisites(::Reg, ::CheckData) = ()
prerequisites(::Reg, ::GroupTreatintterms) = ()
prerequisites(::Reg, ::GroupXterms) = ()
prerequisites(::Reg, ::GroupContrasts) = ()
prerequisites(::Reg, ::CheckVcov) = (CheckData(),)
prerequisites(::Reg, ::CheckVars) = (CheckData(), GroupTreatintterms(), GroupXterms())
prerequisites(::Reg, ::GroupSample) = (CheckVcov(), CheckVars())
prerequisites(::Reg, ::ParseFEterms) = (GroupXterms(),)
prerequisites(::Reg, ::GroupFEterms) = (ParseFEterms(),)
prerequisites(::Reg, ::MakeFEs) = (GroupSample(), GroupFEterms())
prerequisites(::Reg, ::CheckFEs) = (MakeFEs(),)
prerequisites(::Reg, ::MakeWeights) = (CheckFEs(),)
prerequisites(::Reg, ::MakeFESolver) = (MakeWeights(),)
prerequisites(::Reg, ::MakeYXCols) = (MakeFESolver(), GroupContrasts())
prerequisites(::Reg, ::MakeTreatCols) = (MakeFESolver(),)
prerequisites(::Reg, ::SolveLeastSquares) = (MakeYXCols(), MakeTreatCols())
prerequisites(::Reg, ::EstVcov) = (SolveLeastSquares(),)
prerequisites(::Reg, ::SolveLeastSquaresWeights) = (SolveLeastSquares(),)
"""
RegressionBasedDIDResult{TR,CohortInteracted,Haslsweights} <: DIDResult{TR}
Estimation results from regression-based difference-in-differences.
# Fields
- `coef::Vector{Float64}`: coefficient estimates.
- `vcov::Matrix{Float64}`: variance-covariance matrix for the estimates.
- `vce::CovarianceEstimator`: variance-covariance estiamtor.
- `tr::TR`: treatment specification.
- `pr::AbstractParallel`: parallel trend assumption.
- `treatweights::Vector{Float64}`: total sample weights from observations for which the corresponding treatment indicator takes one.
- `treatcounts::Vector{Int}`: total number of observations for which the corresponding treatment indicator takes one.
- `esample::BitVector`: indicator for the rows from `data` involved in estimation.
- `nobs::Int`: number of observations involved in estimation.
- `dof_residual::Int`: residual degree of freedom.
- `F::Float64`: F-statistic for overall significance of regression model.
- `p::Float64`: p-value corresponding to the F-statistic.
- `yname::String`: name of the outcome variable.
- `coefnames::Vector{String}`: coefficient names.
- `coefinds::Dict{String, Int}`: a map from `coefnames` to integer indices for retrieving estimates by name.
- `treatcells::VecColumnTable`: a tabular description of cells where a treatment indicator takes one.
- `treatname::Symbol`: column name for the variable representing treatment time.
- `yxterms::Dict{AbstractTerm, AbstractTerm}`: a map from all specified terms to concrete terms.
- `yterm::AbstractTerm`: the specified term for outcome variable.
- `xterms::Vector{AbstractTerm}`: the specified terms for covariates and fixed effects.
- `contrasts::Union{Dict{Symbol, Any}, Nothing}`: contrast coding to be processed by `StatsModels.jl`.
- `weightname::Union{Symbol, Nothing}`: column name of the sample weight variable.
- `fenames::Vector{String}`: names of the fixed effects.
- `nfeiterations::Union{Int, Nothing}`: number of iterations for the fixed effect solver to reach convergence.
- `feconverged::Union{Bool, Nothing}`: whether the fixed effect solver has converged.
- `nfesingledropped::Int`: number of singleton observations for fixed effects that have been dropped.
- `lsweights::Union{TableIndexedMatrix, Nothing}`: cell-level least-square weights.
- `cellymeans::Union{Vector{Float64}, Nothing}`: cell-level averages of the outcome variable.
- `cellweights::Union{Vector{Float64}, Nothing}`: total sample weights for each cell.
- `cellcounts::Union{Vector{Int}, Nothing}`: number of observations for each cell.
"""
struct RegressionBasedDIDResult{TR,CohortInteracted,Haslsweights} <: DIDResult{TR}
coef::Vector{Float64}
vcov::Matrix{Float64}
vce::CovarianceEstimator
tr::TR
pr::AbstractParallel
treatweights::Vector{Float64}
treatcounts::Vector{Int}
esample::BitVector
nobs::Int
dof_residual::Int
F::Float64
p::Float64
yname::String
coefnames::Vector{String}
coefinds::Dict{String, Int}
treatcells::VecColumnTable
treatname::Symbol
yxterms::Dict{AbstractTerm, AbstractTerm}
yterm::AbstractTerm
xterms::Vector{AbstractTerm}
contrasts::Union{Dict{Symbol, Any}, Nothing}
weightname::Union{Symbol, Nothing}
fenames::Vector{String}
nfeiterations::Union{Int, Nothing}
feconverged::Union{Bool, Nothing}
nfesingledropped::Int
lsweights::Union{TableIndexedMatrix{Float64, Matrix{Float64}, VecColumnTable, VecColumnTable}, Nothing}
cellymeans::Union{Vector{Float64}, Nothing}
cellweights::Union{Vector{Float64}, Nothing}
cellcounts::Union{Vector{Int}, Nothing}
end
function result(::Type{Reg}, @nospecialize(nt::NamedTuple))
yterm = nt.yxterms[nt.yterm]
yname = coefnames(yterm)
cnames = _treatnames(nt.treatcells)
cnames = append!(cnames, coefnames.(nt.xterms))[nt.basiscols]
coefinds = Dict(cnames .=> 1:length(cnames))
didresult = RegressionBasedDIDResult{typeof(nt.tr),
nt.cohortinteracted, nt.lsweights!==nothing}(
nt.coef, nt.vcov_mat, nt.vce, nt.tr, nt.pr, nt.treatweights, nt.treatcounts,
nt.esample, sum(nt.esample), nt.dof_resid, nt.F, nt.p,
yname, cnames, coefinds, nt.treatcells, nt.treatname, nt.yxterms,
yterm, nt.xterms, nt.contrasts, nt.weightname,
nt.fenames, nt.nfeiterations, nt.feconverged, nt.nsingle,
nt.lsweights, nt.cellymeans, nt.cellweights, nt.cellcounts)
return merge(nt, (result=didresult,))
end
"""
has_fe(r::RegressionBasedDIDResult)
Test whether any fixed effect is involved in regression.
"""
has_fe(r::RegressionBasedDIDResult) = !isempty(r.fenames)
_top_info(r::RegressionBasedDIDResult) = (
"Number of obs" => nobs(r),
"Degrees of freedom" => nobs(r) - dof_residual(r),
"F-statistic" => TestStat(r.F),
"p-value" => PValue(r.p)
)
_nunique(t, s::Symbol) = length(unique(getproperty(t, s)))
_excluded_rel_str(tr::DynamicTreatment) =
isempty(tr.exc) ? "none" : join(string.(tr.exc), " ")
_treat_info(r::RegressionBasedDIDResult{<:DynamicTreatment, true}) = (
"Number of cohorts" => _nunique(r.treatcells, r.treatname),
"Interactions within cohorts" => length(columnnames(r.treatcells)) - 2,
"Relative time periods" => _nunique(r.treatcells, :rel),
"Excluded periods" => NoQuote(_excluded_rel_str(r.tr))
)
_treat_info(r::RegressionBasedDIDResult{<:DynamicTreatment, false}) = (
"Relative time periods" => _nunique(r.treatcells, :rel),
"Excluded periods" => NoQuote(_excluded_rel_str(r.tr))
)
_treat_spec(r::RegressionBasedDIDResult{DynamicTreatment{SharpDesign}, true}) =
"Cohort-interacted sharp dynamic specification"
_treat_spec(r::RegressionBasedDIDResult{DynamicTreatment{SharpDesign}, false}) =
"Sharp dynamic specification"
_fe_info(r::RegressionBasedDIDResult) = (
"Converged" => r.feconverged,
"Singletons dropped" => r.nfesingledropped
)
show(io::IO, ::RegressionBasedDIDResult) = print(io, "Regression-based DID result")
function show(io::IO, ::MIME"text/plain", r::RegressionBasedDIDResult;
totalwidth::Int=70, interwidth::Int=4+mod(totalwidth,2))
halfwidth = div(totalwidth-interwidth, 2)
top_info = _top_info(r)
fe_info = has_fe(r) ? _fe_info(r) : ()
tr_info = _treat_info(r)
blocks = (top_info, tr_info, fe_info)
fes = has_fe(r) ? join(string.(r.fenames), " ") : "none"
fetitle = string("Fixed effects: ", fes)
blocktitles = ("Summary of results: Regression-based DID",
_treat_spec(r), fetitle[1:min(totalwidth,length(fetitle))])
for (ib, b) in enumerate(blocks)
println(io, repeat('─', totalwidth))
println(io, blocktitles[ib])
if !isempty(b)
# Print line between block title and block content
println(io, repeat('─', totalwidth))
for (i, e) in enumerate(b)
print(io, e[1], ':')
print(io, lpad(e[2], halfwidth - length(e[1]) - 1))
print(io, isodd(i) ? repeat(' ', interwidth) : '\n')
end
end
end
print(io, repeat('─', totalwidth))
end
"""
AggregatedRegDIDResult{TR,Haslsweights,P<:RegressionBasedDIDResult,I} <: AggregatedDIDResult{TR,P}
Estimation results aggregated from a [`RegressionBasedDIDResult`](@ref).
See also [`agg`](@ref).
# Fields
- `parent::P`: the [`RegressionBasedDIDResult`](@ref) from which the results are generated.
- `inds::I`: indices of the coefficient estimates from `parent` used to generate the results.
- `coef::Vector{Float64}`: coefficient estimates.
- `vcov::Matrix{Float64}`: variance-covariance matrix for the estimates.
- `coefweights::Matrix{Float64}`: coefficient weights used to aggregate the coefficient estimates from `parent`.
- `treatweights::Vector{Float64}`: sum of `treatweights` from `parent` over combined `treatcells`.
- `treatcounts::Vector{Int}`: sum of `treatcounts` from `parent` over combined `treatcells`.
- `coefnames::Vector{String}`: coefficient names.
- `coefinds::Dict{String, Int}`: a map from `coefnames` to integer indices for retrieving estimates by name.
- `treatcells::VecColumnTable`: cells combined from the `treatcells` from `parent`.
- `lsweights::Union{TableIndexedMatrix, Nothing}`: cell-level least-square weights.
- `cellymeans::Union{Vector{Float64}, Nothing}`: cell-level averages of the outcome variable.
- `cellweights::Union{Vector{Float64}, Nothing}`: total sample weights for each cell.
- `cellcounts::Union{Vector{Int}, Nothing}`: number of observations for each cell.
"""
struct AggregatedRegDIDResult{TR,Haslsweights,P<:RegressionBasedDIDResult,I} <: AggregatedDIDResult{TR,P}
parent::P
inds::I
coef::Vector{Float64}
vcov::Matrix{Float64}
coefweights::Matrix{Float64}
treatweights::Vector{Float64}
treatcounts::Vector{Int}
coefnames::Vector{String}
coefinds::Dict{String, Int}
treatcells::VecColumnTable
lsweights::Union{TableIndexedMatrix{Float64, Matrix{Float64}, VecColumnTable, VecColumnTable}, Nothing}
cellymeans::Union{Vector{Float64}, Nothing}
cellweights::Union{Vector{Float64}, Nothing}
cellcounts::Union{Vector{Int}, Nothing}
end
"""
agg(r::RegressionBasedDIDResult{<:DynamicTreatment}, names=nothing; kwargs...)
Aggregate coefficient estimates from `r` by values taken by
the columns from `r.treatcells` indexed by `names`
with weights proportional to `treatweights` within each relative time.
# Keywords
- `bys=nothing`: columnwise transformations over `r.treatcells` before grouping by `names`.
- `subset=nothing`: subset of treatment coefficients used for aggregation.
"""
function agg(r::RegressionBasedDIDResult{<:DynamicTreatment}, names=nothing;
bys=nothing, subset=nothing)
inds = subset === nothing ? Colon() : _parse_subset(r, subset, false)
bycells = view(treatcells(r), inds)
isempty(bycells) && throw(ArgumentError(
"No coefficient left for aggregation after taking the subset"))
_parse_bycells!(getfield(bycells, :columns), bycells, bys)
names === nothing || (bycells = subcolumns(bycells, names, nomissing=false))
tcells, rows = cellrows(bycells, findcell(bycells))
ncell = length(rows)
pcf = view(treatcoef(r), inds)
cweights = zeros(length(pcf), ncell)
ptreatweights = view(r.treatweights, inds)
ptreatcounts = view(r.treatcounts, inds)
# Ensure the weights for each relative time always sum up to one
rels = view(r.treatcells.rel, inds)
for (i, rs) in enumerate(rows)
if length(rs) > 1
relgroups = _groupfind(view(rels, rs))
for ids in values(relgroups)
if length(ids) > 1
cwts = view(ptreatweights, view(rs, ids))
cweights[view(rs, ids), i] .= cwts ./ sum(cwts)
else
cweights[rs[ids[1]], i] = 1.0
end
end
else
cweights[rs[1], i] = 1.0
end
end
cf = cweights' * pcf
v = cweights' * view(treatvcov(r), inds, inds) * cweights
treatweights = [sum(ptreatweights[rows[i]]) for i in 1:ncell]
treatcounts = [sum(ptreatcounts[rows[i]]) for i in 1:ncell]
cnames = _treatnames(tcells)
coefinds = Dict(cnames .=> keys(cnames))
if r.lsweights === nothing
lswt = nothing
else
lswtmat = view(r.lsweights.m, :, inds) * cweights
lswt = TableIndexedMatrix(lswtmat, r.lsweights.r, tcells)
end
return AggregatedRegDIDResult{typeof(r.tr), lswt!==nothing, typeof(r), typeof(inds)}(
r, inds, cf, v, cweights, treatweights, treatcounts, cnames, coefinds, tcells,
lswt, r.cellymeans, r.cellweights, r.cellcounts)
end
vce(r::AggregatedRegDIDResult) = vce(parent(r))
treatment(r::AggregatedRegDIDResult) = treatment(parent(r))
nobs(r::AggregatedRegDIDResult) = nobs(parent(r))
outcomename(r::AggregatedRegDIDResult) = outcomename(parent(r))
weights(r::AggregatedRegDIDResult) = weights(parent(r))
treatnames(r::AggregatedRegDIDResult) = coefnames(r)
dof_residual(r::AggregatedRegDIDResult) = dof_residual(parent(r))
"""
RegDIDResultOrAgg{TR,Haslsweights}
Union type of [`RegressionBasedDIDResult`](@ref) and [`AggregatedRegDIDResult`](@ref).
"""
const RegDIDResultOrAgg{TR,Haslsweights} =
Union{RegressionBasedDIDResult{TR,<:Any,Haslsweights},
AggregatedRegDIDResult{TR,Haslsweights}}
"""
has_lsweights(r::RegDIDResultOrAgg)
Test whether `r` contains computed least-sqaure weights (`r.lsweights!==nothing`).
"""
has_lsweights(::RegDIDResultOrAgg{TR,H}) where {TR,H} = H
"""
ContrastResult{T,M,R,C} <: AbstractMatrix{T}
Matrix type that holds least-square weights obtained from one or more
[`RegDIDResultOrAgg`](@ref)s computed over the same set of cells
and cell-level averages.
See also [`contrast`](@ref).
The least-square weights are stored in a `Matrix` that can be retrieved
with property name `:m`,
where the weights for each treatment coefficient
are stored columnwise starting from the second column and
the first column contains the cell-level averages of outcome variable.
The indices for cells can be accessed with property name `:r`;
and indices for identifying the coefficients can be accessed with property name `:c`.
The [`RegDIDResultOrAgg`](@ref)s used to generate the `ContrastResult`
can be accessed by calling `parent`.
"""
struct ContrastResult{T,M,R,C} <: AbstractMatrix{T}
rs::Vector{RegDIDResultOrAgg}
m::TableIndexedMatrix{T,M,R,C}
function ContrastResult(rs::Vector{RegDIDResultOrAgg},
m::TableIndexedMatrix{T,M,R,C}) where {T,M,R,C}
cnames = columnnames(m.c)
cnames[1]==:iresult && cnames[2]==:icoef && cnames[3]==:name || throw(ArgumentError(
"Table paired with column indices has unaccepted column names"))
return new{T,M,R,C}(rs, m)
end
end
_getmat(cr::ContrastResult) = getfield(cr, :m)
Base.size(cr::ContrastResult) = size(_getmat(cr))
Base.getindex(cr::ContrastResult, i) = _getmat(cr)[i]
Base.getindex(cr::ContrastResult, i, j) = _getmat(cr)[i,j]
Base.IndexStyle(::Type{<:ContrastResult{T,M}}) where {T,M} = IndexStyle(M)
Base.getproperty(cr::ContrastResult, n::Symbol) = getproperty(_getmat(cr), n)
Base.parent(cr::ContrastResult) = getfield(cr, :rs)
"""
contrast(r1::RegDIDResultOrAgg, rs::RegDIDResultOrAgg...; kwargs)
Construct a [`ContrastResult`](@ref) by collecting the computed least-square weights
from each of the [`RegDIDResultOrAgg`](@ref).
# Keywords
- `subset=nothing`: indices for cells to be included (rows in output).
- `coefs=nothing`: indices for coefficients from each result to be included (columns in output).
"""
function contrast(r1::RegDIDResultOrAgg, rs::RegDIDResultOrAgg...;
subset=nothing, coefs=nothing)
has_lsweights(r1) && all(r->has_lsweights(r), rs) || throw(ArgumentError(
"Results must contain computed least-sqaure weights"))
ri = r1.lsweights.r
rinds = subset === nothing ? Colon() : _parse_subset(ri, subset)
# Make a copy to avoid accidentally overwriting cells for DIDResult
ri = deepcopy(view(ri, rinds))
dcoefs = coefs === nothing ? NamedTuple() : IdDict{Int,Any}(coefs)
rs = RegDIDResultOrAgg[r1, rs...]
m = Vector{Array}(undef, length(rs)+1)
m[1] = view(r1.cellymeans, rinds)
iresult = [0]
icoef = [0]
names = ["cellymeans"]
for (i, r) in enumerate(rs)
view(r.lsweights.r, rinds) == ri || throw(ArgumentError(
"Cells for least-square weights comparisons must be identical across the inputs"))
cinds = get(dcoefs, i, nothing)
cinds = cinds === nothing ? (1:ntreatcoef(r)) : _parse_subset(treatcells(r), cinds)
m[i+1] = view(r.lsweights.m, rinds, cinds)
ic = view(1:ntreatcoef(r), cinds)
push!(iresult, (i for k in 1:length(ic))...)
append!(icoef, ic)
append!(names, view(treatnames(r), cinds))
end
m = hcat(m...)
ci = VecColumnTable((iresult=iresult, icoef=icoef, name=names))
return ContrastResult(rs, TableIndexedMatrix(m, ri, ci))
end
function Base.:(==)(x::ContrastResult, y::ContrastResult)
# Assume no missing
x.m == y.m || return false
x.r == y.r || return false
x.c == y.c || return false
return parent(x) == parent(y)
end
function Base.sort!(cr::ContrastResult; @nospecialize(kwargs...))
p = sortperm(cr.r; kwargs...)
@inbounds for col in cr.r
col .= col[p]
end
@inbounds cr.m .= cr.m[p,:]
return cr
end
function Base.view(cr::ContrastResult, subset)
inds = _parse_subset(cr.r, subset)
r = view(cr.r, inds)
m = view(cr.m, inds, :)
return ContrastResult(parent(cr), TableIndexedMatrix(m, r, cr.c))
end
function _checklengthmatch(v, name::String, N::Int)
length(v) == N || throw(ArgumentError(
"The length of $name ($(length(v))) does not match the number of rows of cr ($(N))"))
end
_checklengthmatch(v::Nothing, name::String, N::Int) = nothing
"""
post!(gl, gr, gd, ::StataPostHDF, cr::ContrastResult, left::Int=2, right::Int=3; kwargs...)
Export the least-square weights for coefficients indexed by `left` and `right`
from `cr` for Stata module [`posthdf`](https://github.com/junyuan-chen/posthdf).
The contribution of each cell to the difference between two coefficients
are computed and also exported.
The weights and contributions are stored as coefficient estimates
in three groups `gl`, `gr` and `gd` respectively.
The groups can be `HDF5.Group`s or objects that can be indexed by strings.
# Keywords
- `lefttag::String=string(left)`: name to be used as `depvar` in Stata after being prefixed by `"l_"` for the coefficient indexed by `left`.
- `righttag::String=string(right)`: name to be used as `depvar` in Stata after being prefixed by `"r_"` for the coefficient indexed by `right`.
- `model::String="InteractionWeightedDIDs.ContrastResult"`: name of the model.
- `eqnames::Union{AbstractVector, Nothing}=nothing`: equation names prefixed to coefficient names in Stata.
- `colnames::Union{AbstractVector, Nothing}=nothing`: column names used as coefficient names in Stata.
- `at::Union{AbstractVector{<:Real}, Nothing}=nothing`: the `at` vector in Stata.
"""
function post!(gl, gr, gd, ::StataPostHDF, cr::ContrastResult, left::Int=2, right::Int=3;
lefttag::String=string(left), righttag::String=string(right),
model::String="InteractionWeightedDIDs.ContrastResult",
eqnames::Union{AbstractVector, Nothing}=nothing,
colnames::Union{AbstractVector, Nothing}=nothing,
at::Union{AbstractVector{<:Real}, Nothing}=nothing)
N = size(cr.m, 1)
_checklengthmatch(eqnames, "eqnames", N)
_checklengthmatch(colnames, "colnames", N)
_checklengthmatch(at, "at", N)
gl["depvar"] = string("l_", lefttag)
wtl = view(cr.m, :, left)[:]
gl["b"] = wtl
gr["depvar"] = string("r_", righttag)
wtr = view(cr.m, :, right)[:]
gr["b"] = wtr
gd["depvar"] = string("d_", lefttag, "_", righttag)
diff = (wtl.-wtr).*view(cr.m,:,1)[:]
gd["b"] = diff
colnames === nothing && (colnames = 1:N)
cnames = eqnames === nothing ? string.(colnames) : string.(eqnames, ":", colnames)
for g in (gl, gr, gd)
g["model"] = model
g["coefnames"] = cnames
at === nothing || (g["at"] = at)
end
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 22452 | """
checkvcov!(args...)
Exclude rows that are invalid for variance-covariance estimator.
See also [`CheckVcov`](@ref).
"""
checkvcov!(data, esample::BitVector, aux::BitVector,
vce::Union{Vcov.SimpleCovariance, Vcov.RobustCovariance}) = NamedTuple()
function checkvcov!(data, esample::BitVector, aux::BitVector, vce::Vcov.ClusterCovariance)
for name in Vcov.names(vce)
col = getcolumn(data, name)
if Missing <: eltype(col)
aux .= .!ismissing.(col)
esample .&= aux
end
end
return (esample=esample,)
end
"""
CheckVcov <: StatsStep
Call [`InteractionWeightedDIDs.checkvcov!`](@ref) to
exclude rows that are invalid for variance-covariance estimator.
"""
const CheckVcov = StatsStep{:CheckVcov, typeof(checkvcov!), true}
# Get esample and aux directly from CheckData
required(::CheckVcov) = (:data, :esample, :aux)
default(::CheckVcov) = (vce=Vcov.robust(),)
copyargs(::CheckVcov) = (2,)
"""
parsefeterms!(xterms)
Extract any `FixedEffectTerm` or interaction of `FixedEffectTerm` from `xterms`
and determine whether any intercept term should be omitted.
See also [`ParseFEterms`](@ref).
"""
function parsefeterms!(xterms::TermSet)
feterms = Set{FETerm}()
has_fe_intercept = false
for t in xterms
result = _parsefeterm(t)
if result !== nothing
push!(feterms, result)
delete!(xterms, t)
end
end
if !isempty(feterms)
if any(t->isempty(t[2]), feterms)
has_fe_intercept = true
for t in xterms
t isa Union{ConstantTerm,InterceptTerm} && delete!(xterms, t)
end
push!(xterms, InterceptTerm{false}())
end
end
return (xterms=xterms, feterms=feterms, has_fe_intercept=has_fe_intercept)
end
"""
ParseFEterms <: StatsStep
Call [`InteractionWeightedDIDs.parsefeterms!`](@ref)
to extract any `FixedEffectTerm` or interaction of `FixedEffectTerm` from `xterms`.
Whether any intercept term should be omitted is also determined.
"""
const ParseFEterms = StatsStep{:ParseFEterms, typeof(parsefeterms!), true}
required(::ParseFEterms) = (:xterms,)
"""
groupfeterms(feterms)
Return the argument without change for allowing later comparisons based on object-id.
See also [`GroupFEterms`](@ref).
"""
groupfeterms(feterms::Set{FETerm}) = (feterms=feterms,)
"""
GroupFEterms <: StatsStep
Call [`InteractionWeightedDIDs.groupfeterms`](@ref)
to obtain one of the instances of `feterms`
that have been grouped by equality (`hash`)
for allowing later comparisons based on object-id.
This step is only useful when working with [`@specset`](@ref) and [`proceed`](@ref).
"""
const GroupFEterms = StatsStep{:GroupFEterms, typeof(groupfeterms), false}
required(::GroupFEterms) = (:feterms,)
"""
makefes(args...)
Construct `FixedEffect`s from `data` (the full sample).
See also [`MakeFEs`](@ref).
"""
function makefes(data, allfeterms::Vector{FETerm})
# Must use Dict instead of IdDict since the same feterm can be in multiple feterms
allfes = Dict{FETerm,FixedEffect}()
for t in allfeterms
haskey(allfes, t) && continue
if isempty(t[2])
allfes[t] = FixedEffect((getcolumn(data, n) for n in t[1])...)
else
allfes[t] = FixedEffect((getcolumn(data, n) for n in t[1])...;
interaction=_multiply(data, t[2]))
end
end
return (allfes=allfes,)
end
"""
MakeFEs <: StatsStep
Call [`InteractionWeightedDIDs.makefes`](@ref)
to construct `FixedEffect`s from `data` (the full sample).
"""
const MakeFEs = StatsStep{:MakeFEs, typeof(makefes), false}
required(::MakeFEs) = (:data,)
combinedargs(::MakeFEs, allntargs) = (FETerm[t for nt in allntargs for t in nt.feterms],)
"""
checkfes!(args...)
Drop any singleton observation from fixed effects over the relevant subsample.
See also [`CheckFEs`](@ref).
"""
function checkfes!(feterms::Set{FETerm}, allfes::Dict{FETerm,FixedEffect},
esample::BitVector, drop_singletons::Bool)
nsingle = 0
nfe = length(feterms)
if nfe > 0
fes = Vector{FixedEffect}(undef, nfe)
fenames = Vector{String}(undef, nfe)
# Loop together to ensure the orders are the same
for (i, t) in enumerate(feterms)
fes[i] = allfes[t]
fenames[i] = getfename(t)
end
# Determine the unique order based on names
order = sortperm(fenames)
fes = fes[order]
fenames = fenames[order]
if drop_singletons
for fe in fes
nsingle += drop_singletons!(esample, fe)
end
end
sum(esample) == 0 && error("no nonmissing data")
for i in 1:nfe
fes[i] = fes[i][esample]
end
return (esample=esample, fes=fes, fenames=fenames, nsingle=nsingle)
else
return (esample=esample, fes=FixedEffect[], fenames=String[], nsingle=0)
end
end
"""
CheckFEs <: StatsStep
Call [`InteractionWeightedDIDs.checkfes!`](@ref)
to drop any singleton observation from fixed effects over the relevant subsample.
"""
const CheckFEs = StatsStep{:CheckFEs, typeof(checkfes!), true}
required(::CheckFEs) = (:feterms, :allfes, :esample)
default(::CheckFEs) = (drop_singletons=true,)
copyargs(::CheckFEs) = (3,)
"""
makefesolver(args...)
Construct `FixedEffects.AbstractFixedEffectSolver`.
See also [`MakeFESolver`](@ref).
"""
function makefesolver(fes::Vector{FixedEffect}, weights::AbstractWeights, nfethreads::Int)
if !isempty(fes)
feM = AbstractFixedEffectSolver{Float64}(fes, weights, Val{:cpu}, nfethreads)
return (feM=feM,)
else
return (feM=nothing,)
end
end
"""
MakeFESolver <: StatsStep
Call [`InteractionWeightedDIDs.makefesolver`](@ref) to construct the fixed effect solver.
"""
const MakeFESolver = StatsStep{:MakeFESolver, typeof(makefesolver), true}
required(::MakeFESolver) = (:fes, :weights)
default(::MakeFESolver) = (nfethreads=Threads.nthreads(),)
function _makeyxcols!(yxterms::Dict, yxcols::Dict, yxschema, data, t::AbstractTerm)
ct = apply_schema(t, yxschema, StatisticalModel)
yxterms[t] = ct
if width(ct) > 0
tcol = convert(Array{Float64}, modelcols(ct, data))
all(isfinite, tcol) || error("data for term $ct contain NaN or Inf")
yxcols[ct] = tcol
end
end
function _feresiduals!(M, feM::AbstractFixedEffectSolver, tol::Real, maxiter::Integer)
_, iters, convs = _solve_residuals!(M, feM; tol=tol, maxiter=maxiter, progress_bar=false)
iter = maximum(iters)
conv = all(convs)
conv || @warn "no convergence of fixed effect solver in $(iter) iterations"
return iter, conv
end
"""
makeyxcols(args...)
Construct columns for outcome variables and covariates
and residualize them with fixed effects.
See also [`MakeYXCols`](@ref).
"""
function makeyxcols(data, weights::AbstractWeights, esample::BitVector,
feM::Union{AbstractFixedEffectSolver, Nothing}, has_fe_intercept::Bool,
contrasts::Union{Dict, Nothing}, fetol::Real, femaxiter::Int, allyxterms::TermSet)
# Standardize how an intercept or omitsintercept is represented
parse_intercept!(allyxterms)
yxdata = subcolumns(data, termvars(allyxterms), esample)
yxschema = StatsModels.FullRank(schema(allyxterms, yxdata, contrasts))
has_fe_intercept && push!(yxschema.already, InterceptTerm{true}())
yxterms = Dict{AbstractTerm, AbstractTerm}()
yxcols = Dict{AbstractTerm, VecOrMat{Float64}}()
for t in allyxterms
_makeyxcols!(yxterms, yxcols, yxschema, yxdata, t)
end
if !has_fe_intercept
yxcols[InterceptTerm{true}()] = ones(sum(esample))
end
iter, conv = nothing, nothing
if feM !== nothing
YX = values(yxcols)
iter, conv = _feresiduals!(YX, feM, fetol, femaxiter)
end
if !(weights isa UnitWeights)
for col in values(yxcols)
col .*= sqrt.(weights)
end
end
return (yxterms=yxterms, yxcols=yxcols, nfeiterations=iter, feconverged=conv)
end
"""
MakeYXCols <: StatsStep
Call [`InteractionWeightedDIDs.makeyxcols`](@ref) to obtain
residualized outcome variables and covariates.
"""
const MakeYXCols = StatsStep{:MakeYXCols, typeof(makeyxcols), true}
required(::MakeYXCols) = (:data, :weights, :esample, :feM, :has_fe_intercept)
default(::MakeYXCols) = (contrasts=nothing, fetol=1e-8, femaxiter=10000)
function combinedargs(::MakeYXCols, allntargs)
yx = TermSet()
for nt in allntargs
push!(yx, nt.yterm)
foreach(x->push!(yx, x), nt.xterms)
end
return (yx,)
end
"""
maketreatcols(args...)
Construct residualized binary columns that capture treatment effects
and obtain cell-level weight sums and observation counts.
See also [`MakeTreatCols`](@ref).
"""
function maketreatcols(data, treatname::Symbol, treatintterms::TermSet,
feM::Union{AbstractFixedEffectSolver, Nothing},
weights::AbstractWeights, esample::BitVector,
cohortinteracted::Bool, fetol::Real, femaxiter::Int, time::Symbol,
exc::Dict{Int,Int}, notreat::IdDict{ValidTimeType,Int})
nobs = sum(esample)
# Putting treatname before time avoids sorting twice if cohortinteracted
cellnames = Symbol[treatname, time, sort!(termvars(treatintterms))...]
cols = subcolumns(data, cellnames, esample)
cells, rows = cellrows(cols, findcell(cols))
if cells[1] isa RotatingTimeArray
rel = refarray(cells[2].time) .- refarray(cells[1].time)
else
rel = refarray(cells[2]) .- refarray(cells[1])
end
kept = .!haskey.(Ref(exc), rel) .& .!haskey.(Ref(notreat), cells[1])
treatrows = rows[kept]
# Construct cells needed for treatment indicators
if cohortinteracted
ntcellcol = length(cellnames)
tcellcols = Vector{AbstractVector}(undef, ntcellcol)
tcellnames = Vector{Symbol}(undef, ntcellcol)
tcellcols[1] = view(cells[1], kept)
tcellnames[1] = cellnames[1]
tcellcols[2] = view(rel, kept)
tcellnames[2] = :rel
if ntcellcol > 2
@inbounds for i in 3:ntcellcol
tcellcols[i] = view(cells[i], kept)
tcellnames[i] = cellnames[i]
end
end
treatcells = VecColumnTable(tcellcols, tcellnames)
else
ntcellcol = length(cellnames) - 1
tcellcols = Vector{AbstractVector}(undef, ntcellcol)
tcellnames = Vector{Symbol}(undef, ntcellcol)
tcellcols[1] = view(rel, kept)
tcellnames[1] = :rel
if ntcellcol > 1
@inbounds for i in 2:ntcellcol
tcellcols[i] = view(cells[i+1], kept)
tcellnames[i] = cellnames[i+1]
end
end
tcols = VecColumnTable(tcellcols, tcellnames)
treatcells, subtrows = cellrows(tcols, findcell(tcols))
trows = Vector{Vector{Int}}(undef, length(subtrows))
@inbounds for (i, rs) in enumerate(subtrows)
trows[i] = vcat(view(treatrows, rs)...)
end
treatrows = trows
end
# Generate treatment indicators
ntcells = length(treatrows)
treatcols = Vector{Vector{Float64}}(undef, ntcells)
treatweights = Vector{Float64}(undef, ntcells)
treatcounts = Vector{Int}(undef, ntcells)
@inbounds for i in 1:ntcells
rs = treatrows[i]
tcol = zeros(nobs)
tcol[rs] .= 1.0
treatcols[i] = tcol
treatcounts[i] = length(rs)
if weights isa UnitWeights
treatweights[i] = treatcounts[i]
else
treatweights[i] = sum(view(weights, rs))
end
end
if feM !== nothing
M = values(treatcols)
_feresiduals!(M, feM, fetol, femaxiter)
end
if !(weights isa UnitWeights)
for tcol in values(treatcols)
tcol .*= sqrt.(weights)
end
end
return (cells=cells::VecColumnTable, rows=rows::Vector{Vector{Int}},
treatcells=treatcells::VecColumnTable, treatrows=treatrows::Vector{Vector{Int}},
treatcols=treatcols::Vector{Vector{Float64}}, treatweights=treatweights,
treatcounts=treatcounts)
end
"""
MakeTreatCols <: StatsStep
Call [`InteractionWeightedDIDs.maketreatcols`](@ref) to obtain
residualized binary columns that capture treatment effects
and obtain cell-level weight sums and observation counts.
"""
const MakeTreatCols = StatsStep{:MakeTreatCols, typeof(maketreatcols), true}
required(::MakeTreatCols) = (:data, :treatname, :treatintterms, :feM, :weights, :esample)
default(::MakeTreatCols) = (cohortinteracted=true, fetol=1e-8, femaxiter=10000)
# No need to consider typeof(tr) and typeof(pr) given the restrictions by valid_didargs
transformed(::MakeTreatCols, @nospecialize(nt::NamedTuple)) = (nt.tr.time,)
# Obtain the relative time periods excluded by all tr
# and the treatment groups excluded by all pr in allntargs
function combinedargs(::MakeTreatCols, allntargs)
# exc cannot be IdDict for comparing different types of one
exc = Dict{Int,Int}()
notreat = IdDict{ValidTimeType,Int}()
for nt in allntargs
foreach(x->_count!(exc, x), nt.tr.exc)
if nt.pr isa TrendParallel
foreach(x->_count!(notreat, x), nt.pr.e)
end
end
nnt = length(allntargs)
for (k, v) in exc
v == nnt || delete!(exc, k)
end
for (k, v) in notreat
v == nnt || delete!(notreat, k)
end
return (exc, notreat)
end
"""
solveleastsquares!(args...)
Solve the least squares problem for regression coefficients and residuals.
See also [`SolveLeastSquares`](@ref).
"""
function solveleastsquares!(tr::DynamicTreatment{SharpDesign}, pr::TrendOrUnspecifiedPR,
yterm::AbstractTerm, xterms::TermSet, yxterms::Dict, yxcols::Dict,
treatcells::VecColumnTable, treatcols::Vector,
treatweights::Vector, treatcounts::Vector,
cohortinteracted::Bool, has_fe_intercept::Bool)
y = yxcols[yxterms[yterm]]
if cohortinteracted
if pr isa TrendParallel
tinds = .!((treatcells[2] .∈ (tr.exc,)) .| (treatcells[1] .∈ (pr.e,)))
else
tinds = .!(treatcells[2] .∈ (tr.exc,))
end
else
tinds = .!(treatcells[1] .∈ (tr.exc,))
end
treatcells = VecColumnTable(treatcells, tinds)
tcols = view(treatcols, tinds)
# Copy the relevant weights and counts
tweights = treatweights[tinds]
tcounts = treatcounts[tinds]
has_intercept, has_omitsintercept = parse_intercept!(xterms)
xwidth = 0
# Only terms with positive width should be collected into xs
xs = Vector{AbstractTerm}()
for x in xterms
cx = yxterms[x]
w = width(cx)
xwidth += w
w > 0 && push!(xs, cx)
end
sort!(xs, by=coefnames)
# Add back an intercept to the last position if needed
if !has_fe_intercept && !has_omitsintercept
push!(xs, InterceptTerm{true}())
xwidth += 1
end
X = hcat(tcols..., (yxcols[x] for x in xs)...)
# Get linearly independent columns
# The approach follows FixedEffectModels.jl
crossx = X'X
basiscols = basis!(Symmetric(copy(crossx)); has_intercept = has_intercept)
if !all(basiscols)
X = X[:, basiscols]
crossx = crossx[basiscols, basiscols]
end
crossx = Symmetric(crossx)
# Solve the least squares problem
N = size(X, 2)
Xy = zeros(N+1, N+1)
Xy[1:N, 1:N] .= crossx
mul!(view(Xy, 1:N, N+1), X', y)
Xy = Symmetric(Xy)
invsym!(Xy; diagonal = 1:N)
invcrossx = Symmetric(-view(Xy, 1:N, 1:N))
coef = Xy[1:end-1,end]
# Check collinearity of xterms with treatment vars
ntcols = length(tcols)
if N > ntcols
# Do not drop any treatment indicator
sum(basiscols[1:ntcols]) == ntcols ||
error("covariates are collinear with treatment indicators")
end
residuals = copy(y)
mul!(residuals, X, coef, -1.0, 1.0)
return (coef=coef::Vector{Float64}, X=X::Matrix{Float64},
crossx=crossx::Symmetric{Float64, Matrix{Float64}},
invcrossx=invcrossx::Symmetric{Float64, Matrix{Float64}},
residuals=residuals::Vector{Float64}, treatcells=treatcells::VecColumnTable,
xterms=xs::Vector{AbstractTerm}, basiscols=basiscols::BitVector,
treatweights=tweights::Vector{Float64}, treatcounts=tcounts::Vector{Int})
end
"""
SolveLeastSquares <: StatsStep
Call [`InteractionWeightedDIDs.solveleastsquares!`](@ref) to
solve the least squares problem for regression coefficients and residuals.
"""
const SolveLeastSquares = StatsStep{:SolveLeastSquares, typeof(solveleastsquares!), true}
required(::SolveLeastSquares) = (:tr, :pr, :yterm, :xterms, :yxterms, :yxcols,
:treatcells, :treatcols, :treatweights, :treatcounts,
:cohortinteracted, :has_fe_intercept)
copyargs(::SolveLeastSquares) = (4,)
function _vce(data, esample::BitVector,
vce::Union{Vcov.SimpleCovariance,Vcov.RobustCovariance}, fes::Vector{FixedEffect})
dof_absorb = 0
for fe in fes
dof_absorb += nunique(fe)
end
return vce, dof_absorb
end
function _vce(data, esample::BitVector, vce::Vcov.ClusterCovariance,
fes::Vector{FixedEffect})
cludata = subcolumns(data, Vcov.names(vce), esample)
concrete_vce = Vcov.materialize(cludata, vce)
dof_absorb = 0
for fe in fes
dof_absorb += any(c->isnested(fe, c.groups), concrete_vce.clusters) ? 1 : nunique(fe)
end
return concrete_vce, dof_absorb
end
"""
estvcov(args...)
Estimate variance-covariance matrix and F-statistic.
See also [`EstVcov`](@ref).
"""
function estvcov(data, esample::BitVector, vce::CovarianceEstimator, coef::Vector,
X::Matrix, crossx::Symmetric, invcrossx::Symmetric, residuals::Vector,
xterms::Vector{AbstractTerm}, fes::Vector{FixedEffect}, has_fe_intercept::Bool)
concrete_vce, dof_absorb = _vce(data, esample, vce, fes)
dof_resid = max(1, sum(esample) - size(X,2) - dof_absorb)
vce_data = Vcov.VcovData(X, crossx, invcrossx, residuals, dof_resid)
vcov_mat = vcov(vce_data, concrete_vce)
# Fstat assumes the last coef is intercept if having any intercept
has_intercept = !isempty(xterms) && isintercept(xterms[end])
F = Fstat(coef, vcov_mat, has_intercept)
has_intercept = has_intercept || has_fe_intercept
df_F = max(1, Vcov.dof_residual(vce_data, concrete_vce) - has_intercept)
p = fdistccdf(max(length(coef) - has_intercept, 1), df_F, F)
return (vcov_mat=vcov_mat::Symmetric{Float64,Array{Float64,2}},
vce=concrete_vce, dof_resid=dof_resid::Int, F=F::Float64, p=p::Float64)
end
"""
EstVcov <: StatsStep
Call [`InteractionWeightedDIDs.estvcov`](@ref) to
estimate variance-covariance matrix and F-statistic.
"""
const EstVcov = StatsStep{:EstVcov, typeof(estvcov), true}
required(::EstVcov) = (:data, :esample, :vce, :coef, :X, :crossx, :invcrossx,
:residuals, :xterms, :fes, :has_fe_intercept)
"""
solveleastsquaresweights(args...)
Solve the cell-level weights assigned by least squares.
If `lswtnames` is not specified,
cells are defined by the partition based on treatment time and calendar time.
See also [`SolveLeastSquaresWeights`](@ref).
"""
function solveleastsquaresweights(::DynamicTreatment{SharpDesign},
solvelsweights::Bool, lswtnames,
cells::VecColumnTable, rows::Vector{Vector{Int}},
X::Matrix, crossx::Symmetric, coef::Vector, treatcells::VecColumnTable,
yterm::AbstractTerm, xterms::Vector{AbstractTerm}, yxterms::Dict, yxcols::Dict,
feM::Union{AbstractFixedEffectSolver, Nothing}, fetol::Real, femaxiter::Int,
weights::AbstractWeights)
solvelsweights || return (lsweights=nothing, cellymeans=nothing, cellweights=nothing,
cellcounts=nothing)
cellnames = propertynames(cells)
length(lswtnames) == 0 && (lswtnames = cellnames)
for n in lswtnames
n in cellnames || throw(ArgumentError("$n is invalid for lswtnames"))
end
# Construct Y residualized by covariates and FEs but not treatment indicators
yresid = yxcols[yxterms[yterm]]
nx = length(xterms)
nt = size(treatcells, 1)
if nx > 0
yresid = copy(yresid)
for i in 1:nx
yresid .-= coef[nt+i] .* yxcols[xterms[i]]
end
end
weights isa UnitWeights || (yresid .*= sqrt.(weights))
if lswtnames == cellnames
lswtcells = cells
lswtrows = 1:size(cells,1)
else
cols = subcolumns(cells, lswtnames)
lswtcells, lswtrows = cellrows(cols, findcell(cols))
end
# Dummy variable on the left-hand-side
d = Vector{Float64}(undef, length(yresid))
nlswtrow = length(lswtrows)
lswtmat = Matrix{Float64}(undef, nlswtrow, nt)
cellymeans = zeros(nlswtrow)
cellweights = zeros(nlswtrow)
cellcounts = zeros(Int, nlswtrow)
Nx = size(X, 2)
Xy = Symmetric(Matrix{Float64}(undef, Nx+1, Nx+1))
@inbounds for i in 1:nlswtrow
# Reinitialize d for reuse
fill!(d, 0.0)
for r in lswtrows[i]
rs = rows[r]
d[rs] .= 1.0
wts = view(weights, rs)
cellymeans[i] += sum(view(yresid, rs).*wts)
cellweights[i] += sum(wts)
cellcounts[i] += length(rs)
end
feM === nothing || _feresiduals!(d, feM, fetol, femaxiter)
weights isa UnitWeights || (d .*= sqrt.(weights))
Xy.data[1:Nx, 1:Nx] .= crossx
mul!(view(Xy.data, 1:Nx, Nx+1), X', d)
Xy.data[end,:] .= 0.0
invsym!(Xy; diagonal = 1:Nx)
lswtmat[i,:] .= view(Xy, 1:nt, Nx+1)
end
cellymeans ./= cellweights
lswt = TableIndexedMatrix(lswtmat, lswtcells, treatcells)
return (lsweights=lswt, cellymeans=cellymeans, cellweights=cellweights,
cellcounts=cellcounts)
end
"""
SolveLeastSquaresWeights <: StatsStep
Call [`InteractionWeightedDIDs.solveleastsquaresweights`](@ref)
to solve the cell-level weights assigned by least squares.
If `lswtnames` is not specified,
cells are defined by the partition based on treatment time and calendar time.
"""
const SolveLeastSquaresWeights = StatsStep{:SolveLeastSquaresWeights,
typeof(solveleastsquaresweights), true}
required(::SolveLeastSquaresWeights) = (:tr, :solvelsweights, :lswtnames, :cells, :rows,
:X, :crossx, :coef, :treatcells, :yterm, :xterms, :yxterms, :yxcols,
:feM, :fetol, :femaxiter, :weights)
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 2095 | # A vector of fixed effects paired with a vector of interactions (empty if not interacted)
const FETerm = Pair{Vector{Symbol},Vector{Symbol}}
# Parse fixed effects from a generic term
function _parsefeterm(@nospecialize(t::AbstractTerm))
if has_fe(t)
s = fesymbol(t)
return [s]=>Symbol[]
end
end
# Parse fixed effects from an InteractionTerm
function _parsefeterm(@nospecialize(t::InteractionTerm))
fes = (x for x in t.terms if has_fe(x))
interactions = (x for x in t.terms if !has_fe(x))
if !isempty(fes)
fes = sort!([fesymbol(x) for x in fes])
feints = sort!([Symbol(x) for x in interactions])
return fes=>feints
end
end
getfename(feterm::FETerm) = join(vcat("fe_".*string.(feterm[1]), feterm[2]), "&")
# Count the number of singletons dropped
function drop_singletons!(esample, fe::FixedEffect)
cache = zeros(Int, fe.n)
n = 0
@inbounds for i in eachindex(esample)
if esample[i]
cache[fe.refs[i]] += 1
end
end
@inbounds for i in eachindex(esample)
if esample[i] && cache[fe.refs[i]] <= 1
esample[i] = false
n += 1
end
end
return n
end
# A work around for the type restrictions in FixedEffects.jl
function _solve_residuals!(xs::Base.ValueIterator, feM::AbstractFixedEffectSolver;
progress_bar=false, kwargs...)
iterations = Int[]
convergeds = Bool[]
for x in xs
_, iteration, converged = solve_residuals!(x, feM; kwargs...)
push!(iterations, iteration)
push!(convergeds, converged)
end
return xs, iterations, convergeds
end
# Fallback method
_solve_residuals!(xs, feM::AbstractFixedEffectSolver; progress_bar = true, kwargs...) =
solve_residuals!(xs, feM; kwargs...)
function Fstat(coef::Vector{Float64}, vcov_mat::AbstractMatrix{Float64}, has_intercept::Bool)
length(coef) == has_intercept && return NaN
if has_intercept
coef = coef[1:end-1]
vcov_mat = vcov_mat[1:end-1, 1:end-1]
end
return (coef' * (vcov_mat \ coef)) / length(coef)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 18598 | @testset "RegressionBasedDID" begin
hrs = exampledata("hrs")
r = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
# Compare estimates with Stata
@test coef(r, "wave_hosp: 8 & rel: 0") ≈ 2825.5659 atol=1e-4
@test coef(r, "wave_hosp: 8 & rel: 1") ≈ 825.14585 atol=1e-5
@test coef(r, "wave_hosp: 8 & rel: 2") ≈ 800.10647 atol=1e-5
@test coef(r, "wave_hosp: 9 & rel: -2") ≈ 298.97735 atol=1e-5
@test coef(r, "wave_hosp: 9 & rel: 0") ≈ 3030.8408 atol=1e-4
@test coef(r, "wave_hosp: 9 & rel: 1") ≈ 106.83785 atol=1e-5
@test coef(r, "wave_hosp: 10 & rel: -3") ≈ 591.04639 atol=1e-5
@test coef(r, "wave_hosp: 10 & rel: -2") ≈ 410.58102 atol=1e-5
@test coef(r, "wave_hosp: 10 & rel: 0") ≈ 3091.5084 atol=1e-4
@test coef(r) === r.coef
@test vcov(r) === r.vcov
@test vce(r) === r.vce
@test treatment(r) == dynamic(:wave, -1)
@test nobs(r) == 2624
@test outcomename(r) == "oop_spend"
@test coefnames(r) == ["wave_hosp: $w & rel: $r"
for (w, r) in zip(repeat(8:10, inner=3), [0, 1, 2, -2, 0, 1, -3, -2, 0])]
@test treatcells(r) == r.treatcells
@test weights(r) === nothing
@test ntreatcoef(r) == 9
@test treatcoef(r) == coef(r)
@test treatvcov(r) == vcov(r)
@test treatnames(r) == coefnames(r)
@test dof_residual(r) == 2610
@test responsename(r) == "oop_spend"
@test coefinds(r) == r.coefinds
@test ncovariate(r) == 0
@test has_lsweights(r)
@test r.cellweights == r.cellcounts
@test r.cellcounts == repeat([252, 176, 163, 65], inner=4)
@test all(i->r.coef[i] ≈ sum(r.lsweights[:,i].*r.cellymeans), 1:ntreatcoef(r))
@test has_fe(r)
@test sprint(show, r) == "Regression-based DID result"
pv = VERSION < v"1.6.0" ? " <1e-7" : "<1e-07"
@test sprint(show, MIME("text/plain"), r) == """
──────────────────────────────────────────────────────────────────────
Summary of results: Regression-based DID
──────────────────────────────────────────────────────────────────────
Number of obs: 2624 Degrees of freedom: 14
F-statistic: 6.42 p-value: $pv
──────────────────────────────────────────────────────────────────────
Cohort-interacted sharp dynamic specification
──────────────────────────────────────────────────────────────────────
Number of cohorts: 3 Interactions within cohorts: 0
Relative time periods: 5 Excluded periods: -1
──────────────────────────────────────────────────────────────────────
Fixed effects: fe_hhidpn fe_wave
──────────────────────────────────────────────────────────────────────
Converged: true Singletons dropped: 0
──────────────────────────────────────────────────────────────────────"""
df = DataFrame(hrs)
df.wave = settime(Date.(hrs.wave), Year(1))
df.wave_hosp = settime(Date.(hrs.wave_hosp), Year(1), start=Date(7))
r1 = @did(Reg, data=df, dynamic(:wave, -1), notyettreated(Date(11)),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
@test coef(r1) ≈ coef(r)
@test r1.coefnames[1] == "wave_hosp: 0008-01-01 & rel: 0"
rot = ifelse.(isodd.(hrs.hhidpn), 1, 2)
df.wave = settime(Date.(hrs.wave), Year(1), rotation=rot)
df.wave_hosp = settime(Date.(hrs.wave_hosp), Year(1), start=Date(7), rotation=rot)
e = rotatingtime((1,2), Date(11))
r2 = @did(Reg, data=df, dynamic(:wave, -1), notyettreated(e),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
@test length(coef(r2)) == 18
@test coef(r2)[1] ≈ 3790.7218412450593
@test r2.coefnames[1] == "wave_hosp: 1_0008-01-01 & rel: 0"
r = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated([11]),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), cohortinteracted=false, lswtnames=(:wave_hosp, :wave))
@test all(i->r.coef[i] ≈ sum(r.lsweights[:,i].*r.cellymeans), 1:ntreatcoef(r))
@test sprint(show, MIME("text/plain"), r) == """
──────────────────────────────────────────────────────────────────────
Summary of results: Regression-based DID
──────────────────────────────────────────────────────────────────────
Number of obs: 2624 Degrees of freedom: 6
F-statistic: 12.50 p-value: <1e-10
──────────────────────────────────────────────────────────────────────
Sharp dynamic specification
──────────────────────────────────────────────────────────────────────
Relative time periods: 5 Excluded periods: -1
──────────────────────────────────────────────────────────────────────
Fixed effects: none
──────────────────────────────────────────────────────────────────────"""
r0 = @did(Reg, data=hrs, dynamic(:wave, -1), unspecifiedpr(),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave),),
cohortinteracted=false, solvelsweights=true)
# Compare estimates with Stata
# gen rel = wave - wave_hosp
# gen irel?? = rel==??
# reghdfe oop_spend irel*, a(wave) cluster(hhidpn)
@test coef(r0) ≈ [-1029.0482, 245.20926, 188.59266, 3063.2707,
1060.5317, 1152.3315, 1986.7811] atol=1e-4
@test diag(vcov(r0)) ≈ [764612.86, 626165.68, 236556.13, 163459.83,
130471.28, 294368.49, 677821.36] atol=1e0
pv = VERSION < v"1.6.0" ? " <1e-8" : "<1e-08"
@test sprint(show, MIME("text/plain"), r0) == """
──────────────────────────────────────────────────────────────────────
Summary of results: Regression-based DID
──────────────────────────────────────────────────────────────────────
Number of obs: 3280 Degrees of freedom: 12
F-statistic: 9.12 p-value: $pv
──────────────────────────────────────────────────────────────────────
Sharp dynamic specification
──────────────────────────────────────────────────────────────────────
Relative time periods: 7 Excluded periods: -1
──────────────────────────────────────────────────────────────────────
Fixed effects: fe_wave
──────────────────────────────────────────────────────────────────────
Converged: true Singletons dropped: 0
──────────────────────────────────────────────────────────────────────"""
sr = view(r, 1:3)
@test coef(sr)[1] == r.coef[1]
@test vcov(sr)[1] == r.vcov[1]
@test parent(sr) === r
tr = rescale(r, fill(2, 5), 1:5)
@test coef(tr)[1] ≈ 2 * coef(sr)[1]
@test vcov(tr)[1] ≈ 4 * vcov(sr)[1]
end
@testset "AggregatedRegDIDResult" begin
hrs = exampledata("hrs")
r = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)))
a = agg(r)
@test coef(a) == coef(r)
@test vcov(a) == vcov(r)
@test vce(a) == vce(r)
@test treatment(a) == dynamic(:wave, -1)
@test nobs(a) == nobs(r)
@test outcomename(a) == outcomename(r)
@test coefnames(a) === a.coefnames
@test treatcells(a) === a.treatcells
@test weights(a) == weights(r)
@test ntreatcoef(a) == 9
@test treatcoef(a) == coef(a)
@test treatvcov(a) == vcov(a)
@test treatnames(a) == a.coefnames
@test parent(a) === r
@test dof_residual(a) == dof_residual(r)
@test responsename(a) == "oop_spend"
@test coefinds(a) === a.coefinds
@test ncovariate(a) == 0
@test !has_lsweights(a)
pv = VERSION < v"1.6.0" ? "<1e-4 " : "<1e-04"
@test sprint(show, a) === """
───────────────────────────────────────────────────────────────────────────────────
Estimate Std. Error t Pr(>|t|) Lower 95% Upper 95%
───────────────────────────────────────────────────────────────────────────────────
wave_hosp: 8 & rel: 0 2825.57 1038.18 2.72 0.0065 789.825 4861.31
wave_hosp: 8 & rel: 1 825.146 912.101 0.90 0.3657 -963.368 2613.66
wave_hosp: 8 & rel: 2 800.106 1010.81 0.79 0.4287 -1181.97 2782.18
wave_hosp: 9 & rel: -2 298.977 967.362 0.31 0.7573 -1597.9 2195.85
wave_hosp: 9 & rel: 0 3030.84 704.631 4.30 $pv 1649.15 4412.53
wave_hosp: 9 & rel: 1 106.838 652.767 0.16 0.8700 -1173.16 1386.83
wave_hosp: 10 & rel: -3 591.046 1273.08 0.46 0.6425 -1905.3 3087.39
wave_hosp: 10 & rel: -2 410.581 1030.4 0.40 0.6903 -1609.9 2431.06
wave_hosp: 10 & rel: 0 3091.51 998.667 3.10 0.0020 1133.25 5049.77
───────────────────────────────────────────────────────────────────────────────────"""
r = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
# Compare estimates with Stata results from Sun and Abraham (2020)
a = agg(r, :rel)
@test coef(a, "rel: -3") ≈ 591.04639 atol=1e-5
@test coef(a, "rel: -2") ≈ 352.63929 atol=1e-5
@test coef(a, "rel: 0") ≈ 2960.0448 atol=1e-4
@test coef(a, "rel: 1") ≈ 529.76686 atol=1e-5
@test coef(a, "rel: 2") ≈ 800.10647 atol=1e-5
@test has_lsweights(a)
@test a.treatweights == a.treatcounts
@test a.treatcounts == [163, 339, 591, 428, 252]
@test all(i->a.coef[i] ≈ sum(a.lsweights[:,i].*r.cellymeans), 1:ntreatcoef(a))
a1 = agg(r, (:rel,), subset=:rel=>isodd)
@test length(coef(a1)) == 2
@test coef(a1, "rel: -3") == coef(a, "rel: -3")
@test coef(a1, "rel: 1") == coef(a, "rel: 1")
@test sprint(show, a1) === """
───────────────────────────────────────────────────────────────────
Estimate Std. Error t Pr(>|t|) Lower 95% Upper 95%
───────────────────────────────────────────────────────────────────
rel: -3 591.046 1273.08 0.46 0.6425 -1905.3 3087.39
rel: 1 529.767 586.831 0.90 0.3667 -620.935 1680.47
───────────────────────────────────────────────────────────────────"""
a1 = agg(r, [:rel], bys=:rel=>isodd)
@test length(coef(a1)) == 2
@test coef(a1, "rel: false") ≈ sum(coef(a, "rel: $r") for r in ["-2", "0", "2"])
@test coef(a1, "rel: true") ≈ sum(coef(a, "rel: $r") for r in ["-3", "1"])
a2 = agg(r, :rel, bys=:rel=>isodd, subset=:rel=>isodd)
@test coef(a2) == coef(a1, 2:2)
@test_throws ArgumentError agg(r, subset=:rel=>x->x>10)
end
const TestDID = DiffinDiffsEstimator{:TestDID,
Tuple{CheckData, GroupTreatintterms, GroupXterms, GroupContrasts,
CheckVcov, CheckVars, GroupSample,
ParseFEterms, GroupFEterms, MakeFEs, CheckFEs, MakeWeights}}
prerequisites(::TestDID, ::CheckData) = ()
prerequisites(::TestDID, ::GroupTreatintterms) = ()
prerequisites(::TestDID, ::GroupXterms) = ()
prerequisites(::TestDID, ::GroupContrasts) = ()
prerequisites(::TestDID, ::CheckVcov) = (CheckData(),)
prerequisites(::TestDID, ::CheckVars) = (CheckData(), GroupTreatintterms(), GroupXterms())
prerequisites(::TestDID, ::GroupSample) = (CheckVcov(), CheckVars())
prerequisites(::TestDID, ::ParseFEterms) = (GroupXterms(),)
prerequisites(::TestDID, ::GroupFEterms) = (ParseFEterms(),)
prerequisites(::TestDID, ::MakeFEs) = (GroupFEterms(),)
prerequisites(::TestDID, ::CheckFEs) = (MakeFEs(),)
prerequisites(::TestDID, ::MakeWeights) = (CheckFEs(),)
@testset "@specset" begin
hrs = exampledata("hrs")
ps = AbstractStatsProcedure[Reg(), TestDID()]
p1 = pool(ps)
# Order of the steps needs to be checked manually
@test length(p1) == length(Reg())
# The first two specs are identical hence no repetition of steps should occur
# The third spec should share all the steps until SolveLeastSquares
# The fourth and fifth specs should not add tasks for MakeFEs and MakeYXCols
# The sixth spec should not add any task for MakeFEs
r = @specset [verbose] data=hrs yterm=term(:oop_spend) treatname=:wave_hosp begin
@did(Reg, dynamic(:wave, -1), notyettreated(11),
xterms=(fe(:wave)+fe(:hhidpn)))
@did(Reg, dynamic(:wave, -1), notyettreated(11),
xterms=[fe(:hhidpn), fe(:wave)])
@did(Reg, dynamic(:wave, -2:-1), notyettreated(11),
xterms=[fe(:hhidpn), fe(:wave)])
@did(Reg, dynamic(:wave, -1), notyettreated(11),
xterms=[term(:male), fe(:hhidpn), fe(:wave)])
@did(Reg, dynamic(:wave, -1), notyettreated(11),
treatintterms=TermSet(:male), xterms=[fe(:hhidpn), fe(:wave)])
@did(Reg, dynamic(:wave, -1), nevertreated(11),
xterms=(fe(:wave)+fe(:hhidpn)))
end
@test r[2][4] == didspec(Reg, dynamic(:wave, -1), notyettreated(11), data=hrs,
yterm=term(:oop_spend), treatname=:wave_hosp, treatintterms=(),
xterms=TermSet(term(:male), fe(:wave), fe(:hhidpn)))()
r = @specset data=hrs yterm=term(:oop_spend) treatname=:wave_hosp begin
@did(Reg, dynamic(:wave, -2:-1), nevertreated(11),
xterms=(fe(:wave)+fe(:hhidpn)))
@did(Reg, dynamic(:wave, -1), nevertreated(11),
xterms=[fe(:hhidpn), fe(:wave)])
end
@test r[2][1] == @did(Reg, data=hrs, yterm=term(:oop_spend), treatname=:wave_hosp,
dynamic(:wave, -2:-1), nevertreated(11), xterms=(fe(:wave)+fe(:hhidpn)))
end
@testset "contrast" begin
hrs = exampledata("hrs")
r1 = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
r2 = agg(r1, :rel)
c1 = contrast(r1)
@test size(c1) == (16, 10)
@test parent(c1) == [r1]
c2 = contrast(r1, r2)
@test size(c2) == (16, 15)
@test c2[1] == r1.cellymeans[1]
@test c2[1,2] == r1.lsweights[1]
@test IndexStyle(typeof(c2)) == IndexLinear()
@test c2.r == r1.lsweights.r == r2.lsweights.r
@test c2.c.name[1] == "cellymeans"
@test c2.c.name[2] == r1.coefnames[c2.c.icoef[2]]
@test c2.c.iresult == [0, (1 for i in 1:9)..., (2 for i in 1:5)...]
@test c2.c.icoef == [0, 1:9..., 1:5...]
@test parent(c2)[1] === r1
@test parent(c2)[2] === r2
@test c1.r !== r1.lsweights.r
sort!(c1, rev=true)
@test c1.r == sort(r1.lsweights.r, rev=true)
@test view(c1, :) == c1
v = view(c1, :wave=>x->x==10)
@test v.m == c1.m[c1.r.wave.==10,:]
v = view(c1, 1:10)
@test v.m == c1.m[1:10,:]
@test v.r == view(c1.r, 1:10)
v = view(c1, [:wave=>x->x==10, :wave_hosp=>x->x==10])
@test v.m == c1.m[(c1.r.wave.==10).&(c1.r.wave_hosp.==10),:]
@test v.r == view(c1.r, (c1.r.wave.==10).&(c1.r.wave_hosp.==10))
c3 = contrast(r1, r2, subset=:wave=>7, coefs=1=>(:wave_hosp,2)=>(x,y)->x+y==8)
@test size(c3) == (4, 8)
@test parent(c3)[1] === r1
@test c3.c.name[2] == "wave_hosp: 8 & rel: 0"
@test c3.c.name[3] == "wave_hosp: 10 & rel: -2"
@test c3.c.iresult == [0, (1 for i in 1:2)..., (2 for i in 1:5)...]
@test c3.c.icoef == [0, 1, 8, 1:5...]
@test all(c3.r.wave.==7)
ri = r1.lsweights.r.wave.==7
@test c3[:,1] == r1.cellymeans[ri]
@test c3[:,2:end] == c2[ri,[2,9,11:15...]]
c4 = contrast(r1, r2, subset=1:3, coefs=(1=>1:2, 2=>:))
@test size(c4) == (3, 8)
@test c4.c.iresult == [0, (1 for i in 1:2)..., (2 for i in 1:5)...]
@test c4.c.icoef == [0:2..., 1:5...]
@test c4.r == view(r1.lsweights.r, 1:3)
@test c4[:,2:end] == c2[1:3,[2,3,11:15...]]
end
@testset "post!" begin
hrs = exampledata("hrs")
r1 = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)), solvelsweights=true)
c1 = contrast(r1)
gl = Dict{String,Any}()
gr = Dict{String,Any}()
gd = Dict{String,Any}()
post!(gl, gr, gd, StataPostHDF(), c1, model="m")
@test gl["model"] == "m"
@test gl["depvar"] == "l_2"
@test gl["b"] == r1.lsweights[:,1]
@test gr["depvar"] == "r_3"
@test gr["b"] == r1.lsweights[:,2]
@test gd["depvar"] == "d_2_3"
@test gd["b"] == (r1.lsweights[:,1].-r1.lsweights[:,2]).*r1.cellymeans
cnames = string.(1:16)
@test all(g->g["coefnames"]==cnames, (gl, gr, gd))
@test all(g->!haskey(g, "at"), (gl, gr, gd))
gl = Dict{String,Any}()
gr = Dict{String,Any}()
gd = Dict{String,Any}()
post!(gl, gr, gd, StataPostHDF(), c1,
lefttag="x", righttag="y", colnames=16:-1:1, at=1:16)
@test gl["depvar"] == "l_x"
@test gl["b"] == r1.lsweights[:,1]
@test gr["depvar"] == "r_y"
@test gr["b"] == r1.lsweights[:,2]
cnames = string.(16:-1:1)
@test all(g->g["coefnames"]==cnames, (gl, gr, gd))
@test all(g->g["at"]==1:16, (gl, gr, gd))
gl = Dict{String,Any}()
gr = Dict{String,Any}()
gd = Dict{String,Any}()
post!(gl, gr, gd, StataPostHDF(), c1, eqnames=1:16)
cnames = [string(i,":",i) for i in 1:16]
@test all(g->g["coefnames"]==cnames, (gl, gr, gd))
gl = Dict{String,Any}()
gr = Dict{String,Any}()
gd = Dict{String,Any}()
post!(gl, gr, gd, StataPostHDF(), c1, eqnames=1:16, colnames=16:-1:1)
cnames = [string(i,":",17-i) for i in 1:16]
@test all(g->g["coefnames"]==cnames, (gl, gr, gd))
gl = Dict{String,Any}()
gr = Dict{String,Any}()
gd = Dict{String,Any}()
@test_throws ArgumentError post!(gl, gr, gd, StataPostHDF(), c1, eqnames=1:2)
@test_throws ArgumentError post!(gl, gr, gd, StataPostHDF(), c1, colnames=1:2)
@test_throws ArgumentError post!(gl, gr, gd, StataPostHDF(), c1, at=1:2)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 27719 | @testset "CheckVcov" begin
hrs = exampledata("hrs")
nt = (data=hrs, esample=trues(size(hrs,1)), aux=trues(size(hrs,1)), vce=Vcov.robust())
@test checkvcov!(nt...) == NamedTuple()
nt = merge(nt, (vce=Vcov.cluster(:hhidpn),))
@test checkvcov!(nt...) == (esample=trues(size(hrs,1)),)
df = DataFrame(hrs)
allowmissing!(df, :hhidpn)
nt = merge(nt, (data=df,))
@test checkvcov!(nt...) == (esample=trues(size(hrs,1)),)
@test CheckVcov()((data=hrs, esample=trues(size(hrs,1)), aux=trues(size(hrs,1)))) ==
(data=hrs, esample=trues(size(hrs,1)), aux=trues(size(hrs,1)))
end
@testset "ParseFEterms" begin
hrs = exampledata(:hrs)
ret = parsefeterms!(TermSet())
@test (ret...,) == (TermSet(), Set{FETerm}(), false)
ts = TermSet((term(1), term(:male)))
ret = parsefeterms!(ts)
@test (ret...,) == (ts, Set{FETerm}(), false)
ts = TermSet(term(1)+term(:male)+fe(:hhidpn))
ret = parsefeterms!(ts)
@test (ret...,) == (TermSet(InterceptTerm{false}(), term(:male)),
Set(([:hhidpn]=>Symbol[],)), true)
ts = TermSet(fe(:wave)+fe(:hhidpn))
ret = parsefeterms!(ts)
@test (ret...,) == (TermSet(InterceptTerm{false}()),
Set(([:hhidpn]=>Symbol[], [:wave]=>Symbol[])), true)
# Verify that no change is made on intercept
ts = TermSet((term(:male), fe(:hhidpn)&term(:wave)))
ret = parsefeterms!(ts)
@test (ret...,) == (TermSet(term(:male)), Set(([:hhidpn]=>[:wave],)), false)
ts = TermSet((term(:male), fe(:hhidpn)&term(:wave)))
nt = (xterms=ts,)
@test ParseFEterms()(nt) == (xterms=TermSet(term(:male)),
feterms=Set(([:hhidpn]=>[:wave],)), has_fe_intercept=false)
end
@testset "GroupFEterms" begin
nt = (feterms=Set(([:hhidpn]=>[:wave],)),)
@test groupfeterms(nt...) === nt
@test _byid(SharedStatsStep(GroupFEterms(), 1)) == false
@test GroupFEterms()(nt) === nt
end
@testset "MakeFEs" begin
hrs = exampledata("hrs")
@test makefes(hrs, FETerm[]) == (allfes=Dict{FETerm,FixedEffect}(),)
feterms = [[:hhidpn]=>Symbol[], [:hhidpn,:wave]=>[:male]]
ret = makefes(hrs, feterms)
@test ret == (allfes=Dict{FETerm,FixedEffect}(feterms[1]=>FixedEffect(hrs.hhidpn),
feterms[2]=>FixedEffect(hrs.hhidpn, hrs.wave, interaction=_multiply(hrs, [:male]))),)
allntargs = NamedTuple[(feterms=Set{FETerm}(),), (feterms=Set(feterms),),
(feterms=Set(([:hhidpn]=>Symbol[],)),)]
@test Set(combinedargs(MakeFEs(), allntargs)...) ==
Set(push!(feterms, [:hhidpn]=>Symbol[]))
nt = (data=hrs, feterms=feterms)
@test MakeFEs()(nt) == merge(nt, ret)
end
@testset "CheckFEs" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
nt = (feterms=Set{FETerm}(), allfes=Dict{FETerm,FixedEffect}(),
esample=trues(N), drop_singletons=true)
@test checkfes!(nt...) == (esample=nt.esample, fes=FixedEffect[],
fenames=String[], nsingle=0)
feterm = [:hhidpn]=>Symbol[]
allfes = makefes(hrs, [[:hhidpn]=>Symbol[], [:wave]=>[:male]]).allfes
nt = merge(nt, (feterms=Set((feterm,)), allfes=allfes))
@test checkfes!(nt...) == (esample=trues(N), fes=[FixedEffect(hrs.hhidpn)],
fenames=["fe_hhidpn"], nsingle=0)
# fes are sorted by name
feterms = Set(([:wave]=>Symbol[], [:hhidpn]=>Symbol[]))
allfes = makefes(hrs, [[:hhidpn]=>Symbol[], [:wave]=>Symbol[]]).allfes
nt = merge(nt, (feterms=feterms, allfes=allfes))
@test checkfes!(nt...) == (esample=trues(N),
fes=[FixedEffect(hrs.hhidpn), FixedEffect(hrs.wave)],
fenames=["fe_hhidpn", "fe_wave"], nsingle=0)
df = DataFrame(hrs)
df = df[(df.wave.==7).|((df.wave.==8).&(df.wave_hosp.==8)), :]
N = size(df, 1)
feterm = [:hhidpn]=>Symbol[]
allfes = makefes(df, [[:hhidpn]=>Symbol[]]).allfes
nt = merge(nt, (feterms=Set((feterm,)), allfes=allfes, esample=trues(N)))
kept = df.wave_hosp.==8
@test checkfes!(nt...) == (esample=kept, fes=[FixedEffect(df.hhidpn)[kept]],
fenames=["fe_hhidpn"], nsingle=N-sum(kept))
df = df[df.wave.==7, :]
N = size(df, 1)
allfes = makefes(df, [[:hhidpn]=>Symbol[]]).allfes
nt = merge(nt, (allfes=allfes, esample=trues(N)))
@test_throws ErrorException checkfes!(nt...)
nt = merge(nt, (esample=trues(N),))
@test_throws ErrorException CheckFEs()(nt)
nt = merge(nt, (esample=trues(N), drop_singletons=false))
@test CheckFEs()(nt) == merge(nt, (fes=[FixedEffect(df.hhidpn)],
fenames=["fe_hhidpn"], nsingle=0))
end
@testset "MakeFESolver" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
fes = FixedEffect[FixedEffect(hrs.hhidpn)]
fenames = [:fe_hhidpn]
nt = (fes=fes, weights=uweights(N), default(MakeFESolver())...)
ret = makefesolver(nt...)
@test ret.feM isa FixedEffects.FixedEffectSolverCPU{Float64}
nt = merge(nt, (fes=FixedEffect[],))
@test makefesolver(nt...) == (feM=nothing,)
@test MakeFESolver()(nt) == merge(nt, (feM=nothing,))
end
@testset "MakeYXCols" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
t1 = InterceptTerm{true}()
nt = (data=hrs, weights=uweights(N), esample=trues(N), feM=nothing,
has_fe_intercept=false, default(MakeYXCols())...)
ret = makeyxcols(nt..., TermSet(term(:oop_spend), term(1)))
@test ret.yxterms[term(:oop_spend)] isa ContinuousTerm
@test ret.yxcols == Dict(ret.yxterms[term(:oop_spend)]=>hrs.oop_spend,
t1=>ones(N))
@test ret.nfeiterations === nothing
@test ret.feconverged === nothing
# Verify that an intercept will be added if not having one
ret1 = makeyxcols(nt..., TermSet(term(:oop_spend)))
@test ret1 == ret
ret1 = makeyxcols(nt..., TermSet(term(:oop_spend), term(0)))
@test collect(keys(ret1.yxterms)) == [term(:oop_spend)]
@test ret1.yxcols == ret.yxcols
wt = Weights(hrs.rwthh)
nt = merge(nt, (weights=wt,))
ret = makeyxcols(nt..., TermSet(term(:oop_spend), term(:riearnsemp), term(:male)))
@test ret.yxcols == Dict(ret.yxterms[term(:oop_spend)]=>hrs.oop_spend.*sqrt.(wt),
ret.yxterms[term(:riearnsemp)]=>hrs.riearnsemp.*sqrt.(wt),
ret.yxterms[term(:male)]=>reshape(hrs.male.*sqrt.(wt), N),
t1=>reshape(sqrt.(wt), N))
df = DataFrame(hrs)
df.riearnsemp[1] = NaN
nt = merge(nt, (data=df,))
@test_throws ErrorException makeyxcols(nt..., TermSet(term(:riearnsemp), term(1)))
df.spouse = convert(Vector{Float64}, df.spouse)
df.spouse[1] = Inf
@test_throws ErrorException makeyxcols(nt..., TermSet(term(:oop_spend), term(:spouse)))
df = DataFrame(hrs)
x = randn(N)
df.x = x
wt = uweights(N)
fes = [FixedEffect(df.hhidpn)]
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
nt = merge(nt, (data=df, weights=wt, feM=feM, has_fe_intercept=true))
ret = makeyxcols(nt..., TermSet(term(:oop_spend), InterceptTerm{false}(), term(:x)))
resids = reshape(copy(df.oop_spend), N, 1)
_feresiduals!(resids, feM, 1e-8, 10000)
resids .*= sqrt.(wt)
@test ret.yxcols[ret.yxterms[term(:oop_spend)]] == reshape(resids, N)
# Verify input data are not modified
@test df.oop_spend == hrs.oop_spend
@test df.x == x
df = DataFrame(hrs)
esample = df.rwthh.> 0
N = sum(esample)
wt = Weights(hrs.rwthh[esample])
fes = [FixedEffect(df.hhidpn[esample])]
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
nt = merge(nt, (data=df, esample=esample, weights=wt, feM=feM, has_fe_intercept=true))
ret = makeyxcols(nt..., TermSet(term(:oop_spend), InterceptTerm{false}()))
resids = reshape(df.oop_spend[esample], N, 1)
_feresiduals!(resids, feM, 1e-8, 10000)
resids .*= sqrt.(wt)
@test ret.yxcols == Dict(ret.yxterms[term(:oop_spend)]=>reshape(resids, N))
@test ret.nfeiterations isa Int
@test ret.feconverged
# Verify input data are not modified
@test df.oop_spend == hrs.oop_spend
allntargs = NamedTuple[(yterm=term(:oop_spend), xterms=TermSet())]
@test combinedargs(MakeYXCols(), allntargs) == (TermSet(term(:oop_spend)),)
push!(allntargs, allntargs[1])
@test combinedargs(MakeYXCols(), allntargs) == (TermSet(term(:oop_spend)),)
push!(allntargs, (yterm=term(:riearnsemp),
xterms=TermSet(InterceptTerm{false}())))
@test combinedargs(MakeYXCols(), allntargs) ==
(TermSet(term(:oop_spend), term(:riearnsemp), InterceptTerm{false}()),)
push!(allntargs, (yterm=term(:riearnsemp), xterms=TermSet(term(:male))))
@test combinedargs(MakeYXCols(), allntargs) ==
(TermSet(term(:oop_spend), term(:riearnsemp), InterceptTerm{false}(), term(:male)),)
nt = merge(nt, (data=df, yterm=term(:oop_spend), xterms=TermSet(InterceptTerm{false}())))
@test MakeYXCols()(nt) == merge(nt, ret)
end
@testset "MakeTreatCols" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
tr = dynamic(:wave, -1)
pr = nevertreated(11)
nt = (data=hrs, treatname=:wave_hosp, treatintterms=TermSet(), feM=nothing,
weights=uweights(N), esample=trues(N), default(MakeTreatCols())...)
ret = maketreatcols(nt..., tr.time, Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
@test size(ret.cells) == (20, 2)
@test length(ret.rows) == 20
@test size(ret.treatcells) == (12, 2)
@test length(ret.treatcols) == length(ret.treatrows) == 12
@test length(ret.treatweights) == length(ret.treatcounts) == length(ret.treatrows)
@test ret.cells.wave_hosp == repeat(8:11, inner=5)
@test ret.cells.wave == repeat(7:11, 4)
@test ret.rows[end] == findall((hrs.wave_hosp.==11).&(hrs.wave.==11))
@test ret.treatcells.wave_hosp == repeat(8:10, inner=4)
rel = ret.cells.wave .- ret.cells.wave_hosp
@test ret.treatcells.rel == rel[(rel.!=-1).&(ret.cells.wave_hosp.!=11)]
@test ret.treatrows[1] == findall((hrs.wave_hosp.==8).&(hrs.wave.==8))
col = convert(Vector{Float64}, (hrs.wave_hosp.==8).&(hrs.wave.==8))
@test ret.treatcols[1] == col
@test ret.treatweights == ret.treatcounts
w = ret.treatweights
@test all(w[ret.treatcells.wave_hosp.==8].==252)
@test all(w[ret.treatcells.wave_hosp.==9].==176)
@test all(w[ret.treatcells.wave_hosp.==10].==163)
nt = merge(nt, (treatintterms=TermSet(term(:male)),))
ret1 = maketreatcols(nt..., tr.time, Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
@test size(ret1.cells) == (40, 3)
@test length(ret1.rows) == 40
@test size(ret1.treatcells) == (24, 3)
@test length(ret1.treatcols) == length(ret1.treatrows) == 24
@test length(ret1.treatweights) == length(ret1.treatcounts) == length(ret1.treatrows)
@test ret1.cells.wave_hosp == repeat(8:11, inner=10)
@test ret1.cells.wave == repeat(repeat(7:11, inner=2), 4)
@test ret1.cells.male == repeat(0:1, 20)
@test ret1.rows[end] == findall((hrs.wave_hosp.==11).&(hrs.wave.==11).&(hrs.male.==1))
@test ret1.treatcells.wave_hosp == repeat(8:10, inner=8)
rel = ret1.cells.wave .- ret1.cells.wave_hosp
@test ret1.treatcells.rel == rel[(rel.!=-1).&(ret1.cells.wave_hosp.!=11)]
@test ret1.treatrows[1] == findall((hrs.wave_hosp.==8).&(hrs.wave.==8).&(hrs.male.==0))
col1 = convert(Vector{Float64}, (hrs.wave_hosp.==8).&(hrs.wave.==8).&(hrs.male.==0))
@test ret1.treatcols[1] == col1
@test ret1.treatweights == ret1.treatcounts
nt = merge(nt, (cohortinteracted=false, treatintterms=TermSet()))
ret2 = maketreatcols(nt..., tr.time, Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
@test ret2.cells[1] == ret.cells[1]
@test ret2.cells[2] == ret.cells[2]
@test ret2.rows == ret.rows
@test size(ret2.treatcells) == (6, 1)
@test length(ret2.treatcols) == length(ret2.treatrows) == 6
@test length(ret2.treatweights) == length(ret2.treatcounts) == length(ret2.treatrows)
@test ret2.treatcells.rel == [-3, -2, 0, 1, 2, 3]
@test ret2.treatrows[1] == findall((hrs.wave.-hrs.wave_hosp.==-3).&(hrs.wave_hosp.!=11))
col2 = convert(Vector{Float64}, (hrs.wave.-hrs.wave_hosp.==-3).&(hrs.wave_hosp.!=11))
@test ret2.treatcols[1] == col2
@test ret2.treatweights == ret2.treatcounts
nt = merge(nt, (treatintterms=TermSet(term(:male)),))
ret3 = maketreatcols(nt..., tr.time, Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
@test ret3.cells[1] == ret1.cells[1]
@test ret3.cells[2] == ret1.cells[2]
@test ret3.cells[3] == ret1.cells[3]
@test ret3.rows == ret1.rows
@test size(ret3.treatcells) == (12, 2)
@test length(ret3.treatcols) == length(ret3.treatrows) == 12
@test length(ret3.treatweights) == length(ret3.treatcounts) == length(ret3.treatrows)
@test ret3.treatcells.rel == repeat([-3, -2, 0, 1, 2, 3], inner=2)
@test ret3.treatcells.male == repeat(0:1, 6)
@test ret3.treatrows[1] ==
findall((hrs.wave.-hrs.wave_hosp.==-3).&(hrs.wave_hosp.!=11).&(hrs.male.==0))
df = DataFrame(hrs)
esample = df.rwthh.> 0
N = sum(esample)
wt = Weights(hrs.rwthh[esample])
fes = [FixedEffect(df.hhidpn[esample])]
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
nt = merge(nt, (data=df, feM=feM, weights=wt, esample=esample,
treatintterms=TermSet(), cohortinteracted=true))
ret = maketreatcols(nt..., tr.time, Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
col = reshape(col[esample], N, 1)
defaults = (default(MakeTreatCols())...,)
_feresiduals!(col, feM, defaults[2:3]...)
@test ret.treatcols[1] == (col.*sqrt.(wt))[:]
@test ret.treatcounts == [252, 252, 252, 251, 176, 176, 176, 175, 162, 160, 163, 162]
@test ret.treatweights[1] == 1776173
allntargs = NamedTuple[(tr=tr, pr=pr)]
@test combinedargs(MakeTreatCols(), allntargs) ==
(Dict(-1=>1), IdDict{ValidTimeType,Int}(11=>1))
push!(allntargs, allntargs[1])
@test combinedargs(MakeTreatCols(), allntargs) ==
(Dict(-1=>2), IdDict{ValidTimeType,Int}(11=>2))
push!(allntargs, (tr=dynamic(:wave, [-1,-2]), pr=nevertreated(10:11)))
@test combinedargs(MakeTreatCols(), allntargs) ==
(Dict(-1=>3), IdDict{ValidTimeType,Int}(11=>3))
push!(allntargs, (tr=dynamic(:wave, [-3]), pr=nevertreated(10)))
@test combinedargs(MakeTreatCols(), allntargs) ==
(Dict{Int,Int}(), IdDict{ValidTimeType,Int}())
allntargs = NamedTuple[(tr=tr, pr=pr), (tr=tr, pr=unspecifiedpr())]
@test combinedargs(MakeTreatCols(), allntargs) ==
(Dict(-1=>2), IdDict{ValidTimeType,Int}())
df.wave = settime(Date.(hrs.wave), Year(1))
df.wave_hosp = settime(Date.(hrs.wave_hosp), Year(1), start=Date(7))
ret1 = maketreatcols(nt..., tr.time,
Dict(-1=>1), IdDict{ValidTimeType,Int}(Date(11)=>1))
@test ret1.cells[1] == Date.(ret.cells[1])
@test ret1.cells[2] == Date.(ret.cells[2])
@test ret1.rows == ret.rows
@test ret1.treatcells[1] == Date.(ret.treatcells[1])
@test ret1.treatcells[2] == ret.treatcells[2]
@test ret1.treatrows == ret.treatrows
@test ret1.treatcols == ret.treatcols
@test ret1.treatweights == ret.treatweights
@test ret1.treatcounts == ret.treatcounts
rot = ifelse.(isodd.(hrs.hhidpn), 1, 2)
df.wave = RotatingTimeArray(rot, hrs.wave)
df.wave_hosp = RotatingTimeArray(rot, hrs.wave_hosp)
e = rotatingtime((1,1,2), (10,11,11))
ret2 = maketreatcols(nt..., tr.time,
Dict(-1=>1), IdDict{ValidTimeType,Int}(c=>1 for c in e))
@test ret2.cells[1] == sort!(append!((rotatingtime(r, ret.cells[1]) for r in (1,2))...))
rt = append!((rotatingtime(r, 7:11) for r in (1,2))...)
@test ret2.cells[2] == repeat(rt, 4)
@test size(ret2.treatcells) == (20, 2)
@test sort!(unique(ret2.treatcells[1])) ==
sort!(append!(rotatingtime(1, 8:9), rotatingtime(2, 8:10)))
df.wave = settime(Date.(hrs.wave), Year(1), rotation=rot)
df.wave_hosp = settime(Date.(hrs.wave_hosp), Year(1), start=Date(7), rotation=rot)
e = rotatingtime((1,1,2), Date.((10,11,11)))
ret3 = maketreatcols(nt..., tr.time,
Dict(-1=>1), IdDict{ValidTimeType,Int}(c=>1 for c in e))
@test ret3.cells[1].time == Date.(ret2.cells[1].time)
@test ret3.cells[2].time == Date.(ret2.cells[2].time)
@test ret3.rows == ret2.rows
@test ret3.treatcells[1].time == Date.(ret2.treatcells[1].time)
@test ret3.treatcells[2] == ret2.treatcells[2]
@test ret3.treatrows == ret2.treatrows
@test ret3.treatcols == ret2.treatcols
@test ret3.treatweights == ret2.treatweights
@test ret3.treatcounts == ret2.treatcounts
nt = merge(nt, (data=hrs, tr=tr, pr=pr))
@test MakeTreatCols()(nt) == merge(nt, (cells=ret.cells, rows=ret.rows,
treatcells=ret.treatcells, treatrows=ret.treatrows, treatcols=ret.treatcols,
treatweights=ret.treatweights, treatcounts=ret.treatcounts))
end
@testset "SolveLeastSquares" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
df = DataFrame(hrs)
df.t2 = fill(2.0, N)
t1 = InterceptTerm{true}()
t0 = InterceptTerm{false}()
tr = dynamic(:wave, -1)
pr = nevertreated(11)
yxterms = Dict([x=>apply_schema(x, schema(x, df), StatisticalModel)
for x in (term(:oop_spend), t1, term(:t2), t0, term(:male), term(:spouse))])
yxcols0 = Dict(yxterms[term(:oop_spend)]=>hrs.oop_spend, t1=>ones(N, 1),
yxterms[term(:male)]=>hrs.male, yxterms[term(:spouse)]=>hrs.spouse)
col0 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==10))
col1 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==11))
col2 = convert(Vector{Float64}, (hrs.wave_hosp.==11).&(hrs.wave.==11))
treatcells0 = VecColumnTable((wave_hosp=[10, 10, 11], rel=[0, 1, 0]))
treatcols0 = [col0, col1, col2]
treatcounts0 = [sum(c.==1) for c in treatcols0]
treatweights0 = convert(Vector{Float64}, treatcounts0)
nt = (tr=tr, pr=pr, yterm=term(:oop_spend), xterms=TermSet(term(1)), yxterms=yxterms,
yxcols=yxcols0, treatcells=treatcells0, treatcols=treatcols0,
treatweights=treatweights0, treatcounts=treatcounts0,
cohortinteracted=true, has_fe_intercept=false)
ret = solveleastsquares!(nt...)
# Compare estimates with Stata
# gen col0 = wave_hosp==10 & wave==10
# gen col1 = wave_hosp==10 & wave==11
# reg oop_spend col0 col1
@test ret.coef[1] ≈ 2862.4141 atol=1e-4
@test ret.coef[2] ≈ 490.44869 atol=1e-4
@test ret.coef[3] ≈ 3353.6565 atol=1e-4
@test ret.treatcells.wave_hosp == [10, 10]
@test ret.treatcells.rel == [0, 1]
@test ret.xterms == AbstractTerm[t1]
@test ret.basiscols == trues(3)
# Verify that an intercept will only be added when needed
nt1 = merge(nt, (xterms=TermSet(),))
ret1 = solveleastsquares!(nt1...)
@test ret1 == ret
nt1 = merge(nt, (xterms=TermSet(term(0)),))
ret1 = solveleastsquares!(nt1...)
@test ret1.xterms == AbstractTerm[]
@test size(ret1.X, 2) == 2
nt1 = merge(nt, (xterms=TermSet((term(:spouse), term(:male))),))
ret1 = solveleastsquares!(nt1...)
@test ret1.xterms == AbstractTerm[yxterms[term(:male)], yxterms[term(:spouse)],
InterceptTerm{true}()]
# Test colliner xterms are handled
yxcols1 = Dict(yxterms[term(:oop_spend)]=>hrs.oop_spend, t1=>ones(N),
yxterms[term(:t2)]=>df.t2)
nt1 = merge(nt, (xterms=TermSet(term(1), term(:t2)), yxcols=yxcols1))
ret1 = solveleastsquares!(nt1...)
@test ret1.coef[1:2] == ret.coef[1:2]
@test sum(ret1.basiscols) == 3
treatcells1 = VecColumnTable((rel=[0, 1, 1, 1], wave_hosp=[10, 10, 0, 1]))
treatcols1 = push!(treatcols0[1:2], ones(N), ones(N))
treatweights1 = push!(copy(treatweights0), 10.0)
treatcounts1 = push!(copy(treatcounts0), 10)
# Need to have at least one term in xterms for the check to work
yxcols2 = Dict(yxterms[term(:oop_spend)]=>hrs.oop_spend, yxterms[term(:male)]=>hrs.male)
nt1 = merge(nt1, (xterms=TermSet(term(:male), term(0)), treatcells=treatcells1,
yxcols=yxcols2, treatcols=treatcols1, treatweights=treatweights1,
treatcounts=treatcounts1))
@test SolveLeastSquares()(nt) == merge(nt, ret)
end
@testset "EstVcov" begin
hrs = exampledata("hrs")
N = size(hrs, 1)
col0 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==10))
col1 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==11))
y = convert(Vector{Float64}, hrs.oop_spend)
X = hcat(col0, col1, ones(N, 1))
crossx = Symmetric(X'X)
Nx = size(X, 2)
Xy = Symmetric(hvcat(2, crossx, X'y, zeros(1, Nx), [0.0]))
invsym!(Xy; diagonal = 1:Nx)
invcrossx = Symmetric(-view(Xy, 1:Nx, 1:Nx))
cf = Xy[1:end-1,end]
residuals = y - X * cf
nt = (data=hrs, esample=trues(N), vce=Vcov.simple(), coef=cf, X=X, crossx=crossx,
invcrossx=invcrossx, residuals=residuals, xterms=AbstractTerm[term(1)],
fes=FixedEffect[], has_fe_intercept=false)
ret = estvcov(nt...)
# Compare estimates with Stata
# reg oop_spend col0 col1
# mat list e(V)
@test ret.vcov_mat[1,1] ≈ 388844.2 atol=0.1
@test ret.vcov_mat[2,2] ≈ 388844.2 atol=0.1
@test ret.vcov_mat[3,3] ≈ 20334.169 atol=1e-3
@test ret.vcov_mat[2,1] ≈ 20334.169 atol=1e-3
@test ret.vcov_mat[3,1] ≈ -20334.169 atol=1e-3
@test ret.dof_resid == N - 3
@test ret.F ≈ 10.68532285556941 atol=1e-6
nt = merge(nt, (vce=Vcov.robust(), fes=FixedEffect[]))
ret = estvcov(nt...)
# Compare estimates with Stata
# reg oop_spend col0 col1, r
# mat list e(V)
@test ret.vcov_mat[1,1] ≈ 815817.44 atol=0.1
@test ret.vcov_mat[2,2] ≈ 254993.93 atol=1e-2
@test ret.vcov_mat[3,3] ≈ 19436.209 atol=1e-3
@test ret.vcov_mat[2,1] ≈ 19436.209 atol=1e-3
@test ret.vcov_mat[3,1] ≈ -19436.209 atol=1e-3
@test ret.dof_resid == N - 3
@test ret.F ≈ 5.371847047691197 atol=1e-6
nt = merge(nt, (vce=Vcov.cluster(:hhidpn),))
ret = estvcov(nt...)
# Compare estimates with Stata
# reghdfe oop_spend col0 col1, noa clu(hhidpn)
# mat list e(V)
@test ret.vcov_mat[1,1] ≈ 744005.01 atol=0.1
@test ret.vcov_mat[2,2] ≈ 242011.45 atol=1e-2
@test ret.vcov_mat[3,3] ≈ 28067.783 atol=1e-3
@test ret.vcov_mat[2,1] ≈ 94113.386 atol=1e-2
@test ret.vcov_mat[3,1] ≈ 12640.559 atol=1e-2
@test ret.dof_resid == N - 3
@test ret.F ≈ 5.542094561672688 atol=1e-6
fes = FixedEffect[FixedEffect(hrs.hhidpn)]
wt = uweights(N)
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
X = hcat(col0, col1)
_feresiduals!(y, feM, 1e-8, 10000)
_feresiduals!(X, feM, 1e-8, 10000)
crossx = Symmetric(X'X)
Nx = size(X, 2)
Xy = Symmetric(hvcat(2, crossx, X'y, zeros(1, Nx), [0.0]))
invsym!(Xy; diagonal = 1:Nx)
invcrossx = Symmetric(-view(Xy, 1:Nx, 1:Nx))
cf = Xy[1:end-1,end]
residuals = y - X * cf
nt = merge(nt, (vce=Vcov.robust(), coef=cf, X=X, crossx=crossx, invcrossx=invcrossx,
residuals=residuals, xterms=AbstractTerm[], fes=fes, has_fe_intercept=true))
ret = estvcov(nt...)
# Compare estimates with Stata
# reghdfe oop_spend col0 col1, a(hhidpn) vce(robust)
# mat list e(V)
@test ret.vcov_mat[1,1] ≈ 654959.97 atol=0.1
@test ret.vcov_mat[2,2] ≈ 503679.27 atol=0.1
@test ret.vcov_mat[2,1] ≈ 192866.2 atol=0.1
@test ret.dof_resid == N - nunique(fes[1]) - 2
@test ret.F ≈ 7.559815337537517 atol=1e-6
nt = merge(nt, (vce=Vcov.cluster(:hhidpn),))
ret = estvcov(nt...)
# Compare estimates with Stata
# reghdfe oop_spend col0 col1, a(hhidpn) clu(hhidpn)
# mat list e(V)
@test ret.vcov_mat[1,1] ≈ 606384.66 atol=0.1
@test ret.vcov_mat[2,2] ≈ 404399.89 atol=0.1
@test ret.vcov_mat[2,1] ≈ 106497.43 atol=0.1
@test ret.dof_resid == N - 3
@test ret.F ≈ 8.197452252592386 atol=1e-6
@test EstVcov()(nt) == merge(nt, ret)
end
@testset "SolveLeastSquaresWeights" begin
hrs = exampledata("hrs")
tr = dynamic(:wave, -1)
N = size(hrs, 1)
col0 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==10))
col1 = convert(Vector{Float64}, (hrs.wave_hosp.==10).&(hrs.wave.==11))
cellnames = [:wave_hosp, :wave]
cols = subcolumns(hrs, cellnames)
cells, rows = cellrows(cols, findcell(cols))
yterm = term(:oop_spend)
yxterms = Dict(x=>apply_schema(x, schema(x, hrs), StatisticalModel)
for x in (term(:oop_spend), term(:male)))
yxcols = Dict(yxterms[term(:oop_spend)]=>convert(Vector{Float64}, hrs.oop_spend))
wt = uweights(N)
fes = [FixedEffect(hrs.hhidpn)]
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
y = yxcols[yxterms[term(:oop_spend)]]
fetol = 1e-8
_feresiduals!([y, col0, col1], feM, fetol, 10000)
X = hcat(col0, col1)
crossx = Symmetric(X'X)
cf = crossx \ (X'y)
tcells = VecColumnTable((rel=[0, 1],))
nt = (tr=tr, solvelsweights=true, lswtnames=(), cells=cells, rows=rows,
X=X, crossx=crossx, coef=cf, treatcells=tcells, yterm=yterm, xterms=AbstractTerm[],
yxterms=yxterms, yxcols=yxcols, feM=feM, fetol=1e-8, femaxiter=10000, weights=wt)
ret = solveleastsquaresweights(nt...)
lswt = ret.lsweights
@test lswt.r === cells
@test lswt.c === tcells
@test lswt[lswt.r.wave_hosp.==10, 1] ≈ [-1/3, -1/3, -1/3, 1, 0] atol=fetol
@test lswt[lswt.r.wave_hosp.==10, 1] ≈ [-1/3, -1/3, -1/3, 1, 0] atol=fetol
@test lswt[lswt.r.wave_hosp.==10, 2] ≈ [-1/3, -1/3, -1/3, 0, 1] atol=fetol
@test all(x->isapprox(x, 0, atol=fetol), lswt[lswt.r.wave_hosp.!=10, :])
@test ret.cellweights == ret.cellcounts == length.(rows)
@test all(i->ret.cellymeans[i] ≈ sum(y[rows[i]])/length(rows[i]), 1:length(rows))
nt0 = merge(nt, (lswtnames=(:no,),))
@test_throws ArgumentError solveleastsquaresweights(nt0...)
nt = merge(nt, (lswtnames=(:wave,),))
ret = solveleastsquaresweights(nt...)
lswt = ret.lsweights
@test size(lswt.r) == (5, 1)
@test lswt.r.wave == 7:11
nt = merge(nt, (lswtnames=(:wave, :wave_hosp),))
ret = solveleastsquaresweights(nt...)
lswt = ret.lsweights
@test size(lswt.r) == (20, 2)
@test lswt.r.wave == repeat(7:11, inner=4)
@test lswt.r.wave_hosp == repeat(8:11, outer=5)
@test lswt[lswt.r.wave_hosp.==10, 1] ≈ [-1/3, -1/3, -1/3, 1, 0] atol=fetol
@test lswt[lswt.r.wave_hosp.==10, 2] ≈ [-1/3, -1/3, -1/3, 0, 1] atol=fetol
df = DataFrame(hrs)
df.x = zeros(N)
df.x[df.wave.==7] .= rand(656)
yxterms = Dict(x=>apply_schema(x, schema(x, df), StatisticalModel)
for x in (term(:oop_spend), term(:x)))
yxcols = Dict(yxterms[term(:oop_spend)]=>convert(Vector{Float64}, hrs.oop_spend),
yxterms[term(:x)]=>convert(Vector{Float64}, df.x))
fes = [FixedEffect(hrs.hhidpn), FixedEffect(hrs.wave)]
feM = AbstractFixedEffectSolver{Float64}(fes, wt, Val{:cpu}, Threads.nthreads())
y = yxcols[yxterms[term(:oop_spend)]]
x = yxcols[yxterms[term(:x)]]
_feresiduals!(hcat(y, col0, col1, x), feM, fetol, 10000)
X = hcat(col0, col1, x)
crossx = Symmetric(X'X)
cf = crossx \ (X'y)
xterms = AbstractTerm[yxterms[term(:x)]]
nt = merge(nt, (lswtnames=(:wave_hosp, :wave), X=X, crossx=crossx, coef=cf,
xterms=xterms, yxterms=yxterms, yxcols=yxcols))
ret = solveleastsquaresweights(nt...)
lswt = ret.lsweights
@test lswt[lswt.r.wave.<=9, 1] ≈ lswt[lswt.r.wave.<=9, 2]
@test lswt[lswt.r.wave.==10, 1] ≈ lswt[lswt.r.wave.==11, 2]
@test lswt[lswt.r.wave.==11, 1] ≈ lswt[lswt.r.wave.==10, 2]
y1 = y .- cf[3].*x
@test all(i->ret.cellymeans[i] == sum(y1[rows[i]])/length(rows[i]), 1:length(rows))
@test SolveLeastSquaresWeights()(nt) == merge(nt, ret)
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 1027 | using Test
using InteractionWeightedDIDs
using DataFrames
using Dates: Date, Year
using DiffinDiffsBase: exampledata, ValidTimeType, @fieldequal, valid_didargs
using DiffinDiffsBase.StatsProcedures: required, default, transformed, combinedargs, _byid,
pool
using FixedEffectModels: nunique, _multiply, invsym!
using FixedEffects
using InteractionWeightedDIDs: FETerm, _parsefeterm, getfename,
checkvcov!, parsefeterms!, groupfeterms, makefes, checkfes!, makefesolver,
_feresiduals!, makeyxcols, maketreatcols, solveleastsquares!, estvcov,
solveleastsquaresweights
using LinearAlgebra
using StatsBase: Weights, uweights
import Base: ==
import DiffinDiffsBase.StatsProcedures: prerequisites
@fieldequal FixedEffect
@fieldequal Vcov.ClusterCovariance
@fieldequal RegressionBasedDIDResult
const tests = [
"utils",
"procedures",
"did"
]
printstyled("Running tests:\n", color=:blue, bold=true)
@time for test in tests
include("$test.jl")
println("\033[1m\033[32mPASSED\033[0m: $(test)")
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 395 | @testset "_parsefeterm" begin
@test _parsefeterm(term(:male)) === nothing
@test _parsefeterm(fe(:hhidpn)) == ([:hhidpn]=>Symbol[])
@test _parsefeterm(fe(:hhidpn)&fe(:wave)&term(:male)) == ([:hhidpn, :wave]=>[:male])
end
@testset "getfename" begin
@test getfename([:hhidpn]=>Symbol[]) == "fe_hhidpn"
@test getfename([:hhidpn, :wave]=>[:male]) == "fe_hhidpn&fe_wave&male"
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 113 | module DiffinDiffs
using Reexport
@reexport using DiffinDiffsBase
@reexport using InteractionWeightedDIDs
end
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | code | 305 | # Redirect test to the library package if TEST_TARGET is set
using Pkg
tar = get(ENV, "TEST_TARGET", nothing)
libpath = joinpath(dirname(@__DIR__), "lib")
if tar in readdir(libpath)
Pkg.test(tar; coverage=true)
exit()
end
using Test
using DiffinDiffs
using Documenter
@time doctest(DiffinDiffs)
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 3870 | <p align="center">
<img src="docs/src/assets/banner.svg" height="200"><br><br>
<a href="https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/actions?query=workflow%3ACI-stable">
<img alt="CI-stable" src="https://img.shields.io/github/actions/workflow/status/JuliaDiffinDiffs/DiffinDiffs.jl/.github/workflows/CI-stable.yml?branch=master&label=CI-stable&logo=github&style=flat-square">
</a>
<a href="https://codecov.io/gh/JuliaDiffinDiffs/DiffinDiffs.jl">
<img alt="codecov" src="https://img.shields.io/codecov/c/github/JuliaDiffinDiffs/DiffinDiffs.jl?label=codecov&logo=codecov&style=flat-square">
</a>
<a href="https://JuliaDiffinDiffs.github.io/DiffinDiffs.jl/stable">
<img alt="docs-stable" src="https://img.shields.io/badge/docs-stable-blue?style=flat-square">
</a>
<a href="https://JuliaDiffinDiffs.github.io/DiffinDiffs.jl/dev">
<img alt="docs-dev" src="https://img.shields.io/badge/docs-dev-blue?style=flat-square">
</a>
<a href="https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/blob/master/LICENSE.md">
<img alt="license" src="https://img.shields.io/github/license/JuliaDiffinDiffs/DiffinDiffs.jl?color=blue&style=flat-square">
</a>
</p>
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
is a suite of Julia packages for difference-in-differences (DID).
The goal of its development is to promote applications of
the latest advances in econometric methodology related to DID in academic research
while leveraging the performance and composability of the Julia language.
## Why DiffinDiffs.jl?
- **Fast:** Handle datasets of multiple gigabytes with ease
- **Transparent:** Completely open source and natively written in Julia
- **Extensible:** Unified interface with modular package organization
## Package Organization
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
reexports types, functions and macros defined in
component packages that are separately registered.
The package itself does not host any concrete functionality except documentation.
This facilitates decentralized code development under a unified framework.
| Package | Description | Version | Status |
|:--------|:------------|:-------|:---|
[DiffinDiffsBase](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/tree/master/lib/DiffinDiffsBase) | Base package for DiffinDiffs.jl | [](https://juliahub.com/ui/Packages/DiffinDiffsBase/AGMId) | [](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/D/DiffinDiffsBase.html) |
[InteractionWeightedDIDs](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/tree/master/lib/InteractionWeightedDIDs) | Regression-based multi-period DID | [](https://juliahub.com/ui/Packages/InteractionWeightedDIDs/Vf93d) | [](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/I/InteractionWeightedDIDs.html) |
More components will be included in the future as development moves forward.
## Installation
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
can be installed with the Julia package manager
[Pkg](https://docs.julialang.org/en/v1/stdlib/Pkg/).
From the Julia REPL, type `]` to enter the Pkg REPL and run:
```
pkg> add DiffinDiffs
```
This will install all the component packages of
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
as dependencies.
There is no need to explicitly add the individual components
unless one needs to access internal objects.
## Usage
For details on the usage, please see the
[documentation](https://JuliaDiffinDiffs.github.io/DiffinDiffs.jl/stable).
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 2521 | # DiffinDiffs.jl
Welcome to the documentation site for DiffinDiffs.jl!
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
is a suite of Julia packages for difference-in-differences (DID).
The goal of its development is to promote applications of
the latest advances in econometric methodology related to DID in academic research
while leveraging the performance and composability of the Julia language.
## Why DiffinDiffs.jl?
- **Fast:** Handle datasets of multiple gigabytes with ease
- **Transparent:** Completely open source and natively written in Julia
- **Extensible:** Unified interface with modular package organization
## Package Organization
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
reexports types, functions and macros defined in
component packages that are separately registered.
The package itself does not host any concrete functionality except documentation.
This facilitates decentralized code development under a unified framework.
| Package | Description | Version | Status |
|:--------|:------------|:--------|:-------|
[DiffinDiffsBase](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/tree/master/lib/DiffinDiffsBase) | Base package for DiffinDiffs.jl | [](https://juliahub.com/ui/Packages/DiffinDiffsBase/AGMId) | [](https://juliahub.com/ui/Packages/DiffinDiffsBase/AGMId) |
[InteractionWeightedDIDs](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/tree/master/lib/InteractionWeightedDIDs) | Regression-based multi-period DID | [](https://juliahub.com/ui/Packages/InteractionWeightedDIDs/Vf93d) | [](https://juliahub.com/ui/Packages/InteractionWeightedDIDs/Vf93d) |
More components will be included in the future as development moves forward.
## Installation
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
can be installed with the Julia package manager
[Pkg](https://docs.julialang.org/en/v1/stdlib/Pkg/).
From the Julia REPL, type `]` to enter the Pkg REPL and run:
```
pkg> add DiffinDiffs
```
This will install all the component packages of
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
as dependencies.
There is no need to explicitly add the individual components
unless one needs to access internal objects.
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 35 | # References
```@bibliography
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 93 | # ScaledArrays
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/ScaledArrays.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 64 | # StatsProcedures
```@autodocs
Modules = [StatsProcedures]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 150 | # Estimators
```@autodocs
Modules = [DiffinDiffsBase, InteractionWeightedDIDs]
Filter = t -> typeof(t) === DataType && t <: DiffinDiffsEstimator
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 47 | # Inference
```@autodocs
Modules = [Vcov]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 110 | # Miscellanea
```@autodocs
Modules = [DiffinDiffsBase, InteractionWeightedDIDs]
Pages = ["src/utils.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 110 | # Panel Operations
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/operations.jl", "src/time.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 92 | # Parallel Types
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/parallels.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 114 | # Procedures
```@autodocs
Modules = [DiffinDiffsBase, InteractionWeightedDIDs]
Pages = ["src/procedures.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 173 | # Results
```@autodocs
Modules = [DiffinDiffsBase, InteractionWeightedDIDs]
Pages = ["src/did.jl"]
Filter = t -> !(typeof(t) === DataType && t <: DiffinDiffsEstimator)
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 81 | # Tables
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/tables.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 89 | # Treatment Terms
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/terms.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 94 | # Treatment Types
```@autodocs
Modules = [DiffinDiffsBase]
Pages = ["src/treatments.jl"]
```
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 4947 | # Getting Started
To demonstrate the basic usage of
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl),
we walk through the processes of reproducing empirical results from relevant studies.
Please refer to the original papers for details on the context.
## Dynamic Effects in Event Studies
As a starting point,
we reproduce results from the empirical illustration in [SunA21E](@citet).
### Data Preparation
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
requires that the data used for estimation
are stored in a column table compatible with the interface defined in
[Tables.jl](https://github.com/JuliaData/Tables.jl).
This means that virtually all types of data frames,
including [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl),
are supported.
For the sake of illustration,
here we directly load the dataset that is bundled with the package
by calling `DiffinDiffsBase.exampledata`:
```@example reprSA
using DiffinDiffs
hrs = DiffinDiffsBase.exampledata("hrs")
```
In this example, `hhidpn`, `wave`, and `wave_hosp`
are columns for the unit IDs, time IDs and treatment time respectively.
The rest of the columns contain the outcome variables and covariates.
It is important that the time IDs and treatment time
refer to each time period in a compatible way
so that subtracting a value of treatment time from a value of calendar time
(represented by a time ID) with operator `-` yields a meaningful value of relative time,
the amount of time elapsed since treatment time.
### Empirical Specifications
To produce the estimates reported in panel (a) of Table 3 from [SunA21E](@citet),
we specify the estimation via [`@did`](@ref) as follows:
```@example reprSA
r = @did(Reg, data=hrs, dynamic(:wave, -1), notyettreated(11),
vce=Vcov.cluster(:hhidpn), yterm=term(:oop_spend), treatname=:wave_hosp,
treatintterms=(), xterms=(fe(:wave)+fe(:hhidpn)))
nothing # hide
```
Before we look at the results,
we briefly explain some of the arguments that are relatively more important.
[`Reg`](@ref), which is a shorthand for [`RegressionBasedDID`](@ref),
is the type of the estimation to be conducted.
Here, we need estimation that is conducted by directly solving least-squares regression
and hence we use [`Reg`](@ref) to inform [`@did`](@ref)
the relevant set of procedures,
which also determines the set of arguments that are accepted by [`@did`](@ref).
We are interested in the dynamic treatment effects.
Hence, we use [`dynamic`](@ref) to specify the data column
containing values representing calendar time of the observations
and the reference period, which is `-1`.
For identification, a crucial assumption underlying DID
is the parallel trends assumption.
Here, we assume that the average outcome paths of units treated in periods before `11`
would be parallel to the observed paths of units treated in period `11`.
That is, we are taking units with treatment time `11` as the not-yet-treated control group.
We specify `treatname` to be `:wave_hosp`,
which indicates the column that contains the treatment time.
The interpretation of `treatname` depends on the context
that is jointly determined by the type of the estimator, the type of the treatment
and possibly the type of parallel trends assumption.
The rest of the arguments provide additional information on the regression specifications.
The use of them can be found in the documentation for [`RegressionBasedDID`](@ref).
We now move on to the result returned by [`@did`](@ref):
```@example reprSA
r # hide
```
The object returned is of type [`RegressionBasedDIDResult`](@ref),
which contains the estimates for treatment-group-specific average treatment effects
among other information.
Instead of printing the estimates from the regression,
which can be very long if there are many treatment groups,
REPL prints a summary table for `r`.
Here we verify that the estimate for relative time `0` among the cohort
who received treatment in period `8` is about `2826`,
the value reported in the third column of Table 3(a) in the paper.
```@example reprSA
coef(r, "wave_hosp: 8 & rel: 0")
```
Various accessor methods are defined for retrieving values from a result such as `r`.
See [Results](@ref) for a full list of them.
### Aggregation of Estimates
The treatment-group-specific estimates in `r`
are typically not the ultimate objects of interest.
We need to estimate the path of the average dynamic treatment effects
across all treatment groups.
Such estimates can be easily obtained
by aggregating the estimates in `r` via [`agg`](@ref):
```@example reprSA
a = agg(r, :rel)
```
Notice that `:rel` is a special value used to indicate that
the aggregation is conducted for each value of relative time separately.
The aggregation takes into account sample weights of each treatment group
and the variance-covariance matrix.
The resulting estimates match those reported in the second column of Table 3(a) exactly.
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 1172 | # DiffinDiffsBase.jl
*Base package for [DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)*
[![CI-stable][CI-stable-img]][CI-stable-url]
[![codecov][codecov-img]][codecov-url]
[![version][version-img]][version-url]
[![PkgEval][pkgeval-img]][pkgeval-url]
[CI-stable-img]: https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/workflows/CI-stable/badge.svg
[CI-stable-url]: https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/actions?query=workflow%3ACI-stable
[codecov-img]: https://codecov.io/gh/JuliaDiffinDiffs/DiffinDiffs.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/JuliaDiffinDiffs/DiffinDiffs.jl
[version-img]: https://juliahub.com/docs/DiffinDiffsBase/version.svg
[version-url]: https://juliahub.com/ui/Packages/DiffinDiffsBase/AGMId
[pkgeval-img]: https://juliahub.com/docs/DiffinDiffsBase/pkgeval.svg
[pkgeval-url]: https://juliahub.com/ui/Packages/DiffinDiffsBase/AGMId
This package provides types, functions, macros and [example data](data)
that are shared among other component packages of
[DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl).
It is not intended to be used as a standalone package.
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 2697 | # Example Data
A collection of data files are provided here for the ease of testing and illustrations.
The included data are modified from the original sources
and stored in compressed CSV (`.csv.gz`) files.
See [`data/src/make.jl`](src/make.jl) for the source code
that generates these files from original data.
[DiffinDiffsBase.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffsBase.jl)
provides methods for looking up and loading these example data.
Call `exampledata()` for a name list of the available datasets.
To load one of them, call `exampledata(name)`
where `name` is the `Symbol` of filename without extension (e.g., `:hrs`).
## Sources and Licenses
| Name | Source | File Link | License | Note |
| :--- | :----: | :-------: | :-----: | :--- |
| hrs | [Dobkin et al. (2018)](https://doi.org/10.1257/aer.20161038) | [HRS_long.dta](https://doi.org/10.3886/E116186V1-73160) | [CC BY 4.0](https://doi.org/10.3886/E116186V1-73120) | Data are processed as in [Sun and Abraham (2020)](https://doi.org/10.1016/j.jeconom.2020.09.006) |
| nsw | [Diamond and Sekhon (2013)](https://doi.org/10.1162/REST_a_00318) | [ec675_nsw.tab](https://doi.org/10.7910/DVN/23407/DYEWLO) | [CC0 1.0](https://dataverse.org/best-practices/harvard-dataverse-general-terms-use) | Data are rearranged in a long format as in the R package [DRDID](https://github.com/pedrohcgs/DRDID/blob/master/data-raw/nsw.R) |
| mpdta | [Callaway and Sant'Anna (2020)](https://doi.org/10.1016/j.jeconom.2020.12.001) | [mpdta.rda](https://github.com/bcallaway11/did/blob/master/data/mpdta.rda) | [GPL-2](https://cran.r-project.org/web/licenses/GPL-2) | |
## References
<a name="CallawayS20">**Callaway, Brantly, and Pedro H. C. Sant'Anna.** 2020. "Difference-in-Differences with Multiple Time Periods." *Journal of Econometrics*, forthcoming.</a>
<a name="DiamondS13G">**Diamond, Alexis and Jasjeet S. Sekhon.** 2013. "Replication data for: Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies." *MIT Press* [publisher], Harvard Dataverse [distributor]. https://doi.org/10.7910/DVN/23407/DYEWLO.</a>
<a name="DobkinFK18E">**Dobkin, Carlos, Amy Finkelstein, Raymond Kluender, and Matthew J. Notowidigdo.** 2018. "Replication data for: The Economic Consequences of Hospital Admissions." *American Economic Association* [publisher], Inter-university Consortium for Political and Social Research [distributor]. https://doi.org/10.3886/E116186V1.</a>
<a name="SunA20">**Sun, Liyang, and Sarah Abraham.** 2020. "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects." *Journal of Econometrics*, forthcoming.</a>
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 0.2.0 | 9e21bd90ad9f49c460197dc45a340deaf3038bf4 | docs | 5186 | # InteractionWeightedDIDs.jl
*Regression-based multi-period difference-in-differences with heterogenous treatment effects*
[![CI-stable][CI-stable-img]][CI-stable-url]
[![codecov][codecov-img]][codecov-url]
[![version][version-img]][version-url]
[![PkgEval][pkgeval-img]][pkgeval-url]
[CI-stable-img]: https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/workflows/CI-stable/badge.svg
[CI-stable-url]: https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl/actions?query=workflow%3ACI-stable
[codecov-img]: https://codecov.io/gh/JuliaDiffinDiffs/DiffinDiffs.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/JuliaDiffinDiffs/DiffinDiffs.jl
[version-img]: https://juliahub.com/docs/InteractionWeightedDIDs/version.svg
[version-url]: https://juliahub.com/ui/Packages/InteractionWeightedDIDs/Vf93d
[pkgeval-img]: https://juliahub.com/docs/InteractionWeightedDIDs/pkgeval.svg
[pkgeval-url]: https://juliahub.com/ui/Packages/InteractionWeightedDIDs/Vf93d
This package provides a collection of regression-based estimators
and auxiliary tools for difference-in-differences (DID)
across multiple treatment groups over multiple time periods.
It is a component of [DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl)
that can also be used as a standalone package.
> **Note:**
>
> The development of this package is not fully complete.
> New features and improvements are being added over time.
## Applicable Environment
The baseline empirical environment this package focuses on
is the same as the one considered by [Sun and Abraham (2020)](https://doi.org/10.1016/j.jeconom.2020.09.006):
* Treatment states are binary, irreversible and sharp.
* Units may receive treatment in different periods in a staggered fashion.
* Treatment effects may evolve over time following possibly heterogenous paths across treated groups.
The parameters of interest include:
* A collection of average treatment effects
on each group of treated units in different periods.
* Interpretable aggregations of these group-time-level parameters.
## Main Features
This package is developed with dedication to
both the credibility of econometric methodology
and high performance for working with relatively large datasets.
The main features are the following:
* Automatic and efficient generation of indicator variables based on empirical design and data coverage.
* Enforcement of an overlap condition based on the parallel trends assumption.
* Fast residualization of regressors from fixed effects via [FixedEffects.jl](https://github.com/FixedEffects/FixedEffects.jl).
* Interaction-weighted DID estimators proposed by [Sun and Abraham (2020)](https://doi.org/10.1016/j.jeconom.2020.09.006).
* Cell-level decomposition of coefficient estimates for analytical reconciliation across specifications.
As a component of [DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl),
it follows the same programming interface shared by all component packages.
In particular, it is benefited from the macros `@did` and `@specset`
that largely simplify the construction of groups of related specifications
and reduce unnecessary repetitions of identical intermediate steps
(e.g., partialling out fixed effects for the same regressors).
Tools for easing the export of estimation results are also being developed.
## Econometric Foundations
The package does not enforce the use of a specific estimation procedure
and allows some flexibility from the users.
However, it is mainly designed to ease the adoption of
recent advances in the difference-in-differences literature
that overcome certain pitfalls that may arise
in scenarios where the treated units get treated in different periods
(i.e., the staggered adoption design).
The development of this package is directly based on the following studies:
* [Sun and Abraham (2020)](https://doi.org/10.1016/j.jeconom.2020.09.006)
* Unpublished work by the package author
Some other studies are also relevant and have provided inspiration:
* [de Chaisemartin and D'Haultfœuille (2020)](https://doi.org/10.1257/aer.20181169)
* [Borusyak and Jaravel (2018)](#BorusyakJ18)
* [Goodman-Bacon (2020)](#Goodman20)
* [Callaway and Sant'Anna (2020)](https://doi.org/10.1016/j.jeconom.2020.12.001)
## References
<a name="BorusyakJ18">**Borusyak, Kirill, and Xavier Jaravel.** 2018. "Revisiting Event Study Designs with an Application to the Estimation of the Marginal Propensity to Consume." Unpublished.</a>
<a name="CallawayS20">**Callaway, Brantly, and Pedro H. C. Sant'Anna.** 2020. "Difference-in-Differences with Multiple Time Periods." *Journal of Econometrics*, forthcoming.</a>
<a name="ChaisemartD20T">**de Chaisemartin, Clément, and Xavier D'Haultfœuille.** 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects." *American Economic Review* 110 (9): 2964-96.</a>
<a name="Goodman20">**Goodman-Bacon, Andrew.** 2020. "Difference-in-Differences with Variation in Treatment Timing." Unpublished.</a>
<a name="SunA20">**Sun, Liyang, and Sarah Abraham.** 2020. "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects." *Journal of Econometrics*, forthcoming.</a>
| DiffinDiffs | https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl.git |
|
[
"MIT"
] | 1.0.0 | f5250392b7837dce007760f9becab963b54e1a42 | code | 2948 | module HierarchialPerformanceTest
using HypothesisTests
using Statistics
const PerfMatrix = Array{Float64,2}
function hptRankSumTest(x::AbstractVector{S}, y::AbstractVector{T}, num_runs::Int) where {S<:Real,T<:Real}
# Custom threshold as specified by the paper
if num_runs < 12
ExactMannWhitneyUTest(x, y)
else
ApproximateMannWhitneyUTest(x, y)
end
end
function hptSignedRankTest(x::AbstractVector{T}, num_tests::Int) where T<:Real
# Custom threshold as specified by the paper
if num_tests < 25
ExactSignedRankTest(x)
else
ApproximateSignedRankTest(x)
end
end
function hpt(a::PerfMatrix, b::PerfMatrix; tail=:right)
# Enforce identical and sane matrix sizes
if size(a) != size(b)
error("mismatching number of benchmarks/runs")
elseif length(a) == 0
error("no benchmarks given")
end
num_tests = size(a, 1) # n
num_runs = size(a, 2) # m
# Max significance for the *null* hypothesis, not the alternative
maxNullSignificance = if (num_runs >= 5) 0.05 else 0.10 end
# Calculate performance delta per benchmark
test_deltas = Array{Float64}(undef, num_tests) # dT
for test = 1:num_tests
aRuns = a[test,:]
bRuns = b[test,:]
# Use SHT to determine which side is better
shtP = pvalue(hptRankSumTest(aRuns, bRuns, num_runs), tail=tail)
# Check is inverted because shtP = probability of null hypothesis (equal)
test_deltas[test] = if (shtP < maxNullSignificance)
median(aRuns) - median(bRuns)
else
0
end
end
# Evaluate general performance using the selected SHT
1 - pvalue(hptSignedRankTest(test_deltas, num_tests), tail=tail)
end
function hptSpeedup(a::PerfMatrix, b::PerfMatrix, minConfidence::Float64 = 0.95, digits::Int = 3, increment::Int = 1)
# Calculate an extra digit internally to facilitate rounding
baseSpeedup = 10 ^ digits
# Use int for storing speedup to mitigate floating-point precision loss
intSpeedup = baseSpeedup
speedup = 1.0
tail = :right
# Invert if slower
if hpt(a, b) < minConfidence
increment *= -1
tail = :left
end
while true
confidence = hpt(a / speedup, b, tail=tail)
if confidence >= minConfidence
# Increment int and recalculate float to mitigate floating-point precision loss
intSpeedup += increment
speedup = intSpeedup / baseSpeedup
else
break
end
end
speedup
end
function calcScore(results::PerfMatrix, reference::PerfMatrix, refScore::Int = 1000)
# 95%-confidence speedup
# We swap a and b because HPT considers higher values to be better, but
# since our values are times rather than performance, lower is better
round(Int, hptSpeedup(reference, results) * refScore)
end
export PerfMatrix, hpt, hptSpeedup, calcScore
end
| HierarchialPerformanceTest | https://github.com/kdrag0n/HierarchialPerformanceTest.jl.git |
|
[
"MIT"
] | 1.0.0 | f5250392b7837dce007760f9becab963b54e1a42 | code | 125 | using HierarchialPerformanceTest
using Test
@testset "HierarchialPerformanceTest.jl" begin
# Write your tests here.
end
| HierarchialPerformanceTest | https://github.com/kdrag0n/HierarchialPerformanceTest.jl.git |
|
[
"MIT"
] | 1.0.0 | f5250392b7837dce007760f9becab963b54e1a42 | docs | 1244 | # Hierarchial Performance Test
This is a Julia implementation of the Non-parametric Hierarchial Performance Testing statistical technique described in [Statistical Performance Comparisons of Computers](https://parsec.cs.princeton.edu/publications/chen14ieeetc.pdf). It is meant to compare the performance of different computers on a common set of benchmarks with high statistical confidence, rather than .
For more information, check the [official website](http://novel.ict.ac.cn/tchen/hpt/) maintained by one of the technique's creators.
## Example usage
Each set of benchmark results should be provided as a 2D matrix where each row is comprised of the same benchmark's results.
```julia
using HierarchialPerformanceTest
# Computer A's benchmark matrix
a = [86 86 86; 46 46 46; 2.491 2.3 2.314; 5.629 5.31 5.91; 262.69 262.39 262.632; 17.761 16.882 15.541; 3.264 3.205 3.256; 3678 3612 3642; 4251 4220 4170; 58176 56384 56512]
# Computer B's benchmark matrix
b = [83 83 83; 46 46 46; 2.263 2.239 2.228; 5.663 6.488 5.383; 260.977 261.075 260.757; 14.816 11.811 15.633; 2.323 2.153 2.315; 3456 3540 3442; 4009 4118 4090; 57664 58432 54848]
hptSpeedup(a, b) # => 1.013
```
This shows that computer B is 1.013x faster than computer A.
| HierarchialPerformanceTest | https://github.com/kdrag0n/HierarchialPerformanceTest.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | code | 523 | using Ising2D
using Documenter
makedocs(;
modules=[Ising2D],
authors="genkuroki <[email protected]> and contributors",
repo="https://github.com/genkuroki/Ising2D.jl/blob/{commit}{path}#L{line}",
sitename="Ising2D.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://genkuroki.github.io/Ising2D.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/genkuroki/Ising2D.jl",
)
| Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | code | 11662 | """
Ising2D is a simple Julia module of 2D Ising model.
Benchmark 1:
```julia
using Ising2D, BenchmarkTools
s = rand_ising2d()
print("VERSION = \$VERSION:")
@btime ising2d!(\$s; algorithm=IfElse());
```
Benchmark 2:
```julia
using Ising2D, BenchmarkTools
s = rand_ising2d()
print("VERSION = \$VERSION:")
@btime ising2d!(\$s; algorithm=MultiFor());
```
"""
module Ising2D
using Plots
using Plots.PlotMeasures
using Random
using Random: default_rng
using ProgressMeter
export
default_rng,
β_ising2d, rand_ising2d, ones_ising2d,
IfElse, MultiFor, ising2d!,
plot_ising2d, gif_ising2d,
mcmc_ising2d!, energy_density_ising2d, magnetization_ising2d,
plot_mcmc_ising2d, histogram_mcmc_ising2d, gif_mcmc_ising2d
"""
β_ising2d = log(1 + √2)/2
is the critical inverse temperature of 2D Ising model on the square lattice.
"""
const β_ising2d = log(1 + √2)/2
"""
rand_ising2d(rng::AbstractRNG, m=100, n=m)
rand_ising2d(m=100, n=m)
generate the random state of 2D Ising model.
"""
rand_ising2d(rng::AbstractRNG, m=100, n=m) = rand(rng, Int8[-1, 1], m, n)
rand_ising2d(m=100, n=m) = rand(Int8[-1, 1], m, n)
"""
ones_ising2d(m=100, n=m)
generates the all-one state of 2D Ising model.
"""
ones_ising2d(m=100, n=m) = ones(Int8, m, n)
"""
`IfElse()` = Algorithm using ifelse
"""
struct IfElse end
"""
`MultiFor()` = Algorithm using multiple for-loops
"""
struct MultiFor end
"""
`default_algorithm() = MultiFor()`
"""
default_algorithm() = MultiFor()
"""
ising2d!(s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng();
algorithm=default_algorithm())
updates the 2-dimensional array `s` with values ±1 randomly by 2D Ising model rule.
Example 1:
```julia
using Ising2D
@time s = ising2d!(rand_ising2d(), β_ising2d, 10^5)
plot_ising2d(s)
```
Example 2:
```julia
using Ising2D
@time s = ising2d!(rand_ising2d(), β_ising2d, 10^5; algorithm=IfElse())
plot_ising2d(s)
```
"""
function ising2d!(s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng();
algorithm=default_algorithm())
ising2d!(algorithm, s, β, niters, rng)
end
"""
ising2d!(::IfElse, s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng())
uses the algorithm using ifelse in only one for-loop.
Example:
```julia
s = ones_ising2d()
ising2d!(IfElse(), s)
plot_ising2d(s)
```
"""
function ising2d!(::IfElse, s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng())
m, n = size(s)
prob = [exp(-2*β*k) for k in -4:4]
@inbounds for iter in 1:niters, j in 1:n, i in 1:m
NN = s[ifelse(i == 1, m, i-1), j]
SS = s[ifelse(i == m, 1, i+1), j]
WW = s[i, ifelse(j == 1, n, j-1)]
EE = s[i, ifelse(j == n, 1, j+1)]
CT = s[i, j]
k = CT * (NN + SS + WW + EE)
s[i,j] = ifelse(rand(rng) < prob[k+5], -CT, CT)
end
s
end
"""
ising2d!(::MultiFor, s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng())
uses the algorithm using multiple for-loops.
Example:
```julia
s = ones_ising2d()
ising2d!(MultiFor(), s)
plot_ising2d(s)
```
"""
function ising2d!(::MultiFor, s=rand_ising2d(), β=β_ising2d, niters=10^3, rng=default_rng())
m, n = size(s)
prob = [exp(-2*β*r) for r in -4:4]
@inbounds for iter in 1:niters
let s₁ = s[1,1], k = s₁ * (s[2,1] + s[m,1] + s[1,2] + s[1,n])
s[1,1] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
for i in 2:m-1
let s₁ = s[i,1], k = s₁ * (s[i+1,1] + s[i-1,1] + s[i,2] + s[i,n])
s[i,1] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
end
let s₁ = s[m,1], k = s₁ * (s[1,1] + s[m-1,1] + s[m,2] + s[m,n])
s[m,1] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
for j in 2:n-1
let s₁ = s[1,j], k = s₁ * (s[2,j] + s[m,j] + s[1,j+1] + s[1,j-1])
s[1,j] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
for i in 2:m-1
let s₁ = s[i,j], k = s₁ * (s[i+1,j] + s[i-1,j] + s[i,j+1] + s[i,j-1])
s[i,j] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
end
let s₁ = s[m,j], k = s₁ * (s[1,j] + s[m-1,j] + s[m,j+1] + s[m,j-1])
s[m,j] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
end
let s₁ = s[1,n], k = s₁ * (s[2,n] + s[m,n] + s[1,1] + s[1,n-1])
s[1,n] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
for i in 2:m-1
let s₁ = s[i,n], k = s₁ * (s[i+1,n] + s[i-1,n] + s[i,1] + s[i,n-1])
s[i,n] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
end
let s₁ = s[m,n], k = s₁ * (s[1,n] + s[m-1,n] + s[m,1] + s[m,n-1])
s[m,n] = ifelse(rand(rng) < prob[k+5], -s₁, s₁)
end
end
s
end
"""
plot_ising2d(s; size=(201.5, 201.5), color=:gist_earth, clim=(-2, 1.1), kwargs...)
plots the state `s` of 2D Ising model.
"""
function plot_ising2d(s; size=(201.5, 201.5), color=:gist_earth, clim=(-2, 1.1), kwargs...)
heatmap(s; size=size, color=color, clim=clim,
colorbar = false, axis = false,
leftmargin = -20mm, rightmargin = -20mm,
top_margin = -2mm, bottom_margin = -20mm,
titlefontsize = 8
)
plot!(; kwargs...)
end
"""
gif_ising2d(; s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=0, nskips=10, niters=100,
gifname="ising2d.gif", fps=10,
size=(201.5, 217.5), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
creates the gif animation of 2D Ising model.
Example: To create a 200x200 GIF animation, run
```julia
gif_ising2d(s=rand_ising2d(200))
```
"""
function gif_ising2d(; s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=0, nskips=10, niters=100,
gifname="ising2d.gif", fps=10,
size=(201.5, 217.5), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
ising2d!(algorithm, s, β, nwarmups, rng)
progress && (prog = Progress(niters, 0))
anim = @animate for t in 0:niters
iszero(t) || ising2d!(algorithm, s, β, nskips, rng)
title="β=$(round(β/β_ising2d, digits=4))β_c, t=$t"
plot_ising2d(s; size=size, color=color, clim=clim, title=title, kwargs...)
progress && next!(prog)
end
gif(anim, gifname; fps=fps)
end
"""
mcmc_ising2d!(; s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=1000, nskips=100, niters=5000
)
returns the result of the Markov Chain Monte Carlo simulation with length niters, which is the array of the states of 2D Ising model.
"""
function mcmc_ising2d!(; s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=1000, nskips=100, niters=5000
)
S = Array{typeof(s), 1}(undef, niters)
ising2d!(algorithm, s, β, nwarmups, rng)
progress && (prog = Progress(niters, 1, "mcmc_ising2d!: "))
for i in 1:niters
ising2d!(algorithm, s, β, nskips, rng)
S[i] = copy(s)
progress && next!(prog)
end
S
end
"""
energy_ising2d(s)
returns the energy density (energy per site) of the state `s` of 2D Ising model.
"""
function energy_density_ising2d(s)
m, n = size(s)
E = 0.0
@inbounds begin
for j in 1:n, i in 1:m-1
E -= s[i,j]*s[i+1,j]
end
for j in 1:n
E -= s[m,j]*s[1,j]
end
for j in 1:n-1, i in 1:m
E -= s[i,j]*s[i,j+1]
end
for i in 1:m
E -= s[i,m]*s[i,1]
end
end
E/(m*n)
end
"""
magnetization_ising2d(s)
returns the magnetization of the state `s` of 2D Ising model.
"""
function magnetization_ising2d(s)
m, n = size(s)
sum(s)/(m*n)
end
"""
plot_mcmc_ising2d(S, E=nothing, M=nothing;
k=1.0, β=k*β_ising2d, niters=length(S), t=niters,
ylim_E=(-1.50, -1.35), ylim_M=(-0.75, 0.75), lw=0.5, alpha=0.8,
size=(600, 300), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
plots the MCMC result S with energy per site and magnetization.
"""
function plot_mcmc_ising2d(S, E=nothing, M=nothing;
k=1.0, β=k*β_ising2d, niters=length(S), t=niters,
ylim_E=(-1.55, -1.3), ylim_M=(-0.8, 0.8), lw=0.5, alpha=0.8,
size=(600, 300), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
if isnothing(E)
E = energy_density_ising2d.(S)
end
if isnothing(M)
M = magnetization_ising2d.(S)
end
title="β=$(round(β/β_ising2d, digits=4))β_c, t=$t"
P1 = heatmap(S[t]; color=color, clim=clim, colorbar=false, axis=false,
title=title)
P2 = plot(@view(E[1:t]); xlim=(1, niters), ylim=ylim_E, lw=lw, alpha=alpha,
title="energy per site")
P3 = plot(@view(M[1:t]); xlim=(1, niters), ylim=ylim_M, lw=lw, alpha=alpha,
title="magnetization")
plot(P1, P2, P3; size=size, legend=false, titlefontsize=10,
layout=@layout([a [b; c]]))
plot!(; kwargs...)
end
"""
histogram_mcmc_ising2d(S, E=nothing, M=nothing;
niters=length(S), bin=min(100, max(10, round(Int, 1.2*√niters))),
size=(600, 200), kwargs...
)
plots the histogram of energy per site and magnetization of the MCMC result S.
"""
function histogram_mcmc_ising2d(S, E=nothing, M=nothing;
niters=length(S), bin=min(100, max(10, round(Int, 1.2*√niters))),
size=(600, 200), kwargs...
)
if isnothing(E)
E = energy_density_ising2d.(S)
end
if isnothing(M)
M = magnetization_ising2d.(S)
end
P1 = histogram(E; norm=true, bin=bin, alpha=0.3, title="energy per site")
P2 = histogram(M; norm=true, bin=bin, alpha=0.3, title="magnetization")
plot(P1, P2; size=size, legend=false, titlefontsize=10)
plot!(; kwargs...)
end
"""
gif_mcmc_ising2d(S=nothing, E=nothing, M=nothing;
s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=1000, nskips=1000, niters=500,
ylim_E=(-1.55, -1.30), ylim_M=(-0.8, 0.8), lw=1.0, alpha=0.8,
gifname="ising2d_mcmc.gif", fps=10,
size=(600, 300), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
creates the gif animation of 2D Ising model with energy per site and magnetization.
Example:
```
gif_mcmc_ising2d()
```
"""
function gif_mcmc_ising2d(S=nothing, E=nothing, M=nothing;
s=rand_ising2d(), k=1.0, β=k*β_ising2d, rng=default_rng(),
algorithm=default_algorithm(), progress=true,
nwarmups=1000, nskips=1000, niters=500,
ylim_E=(-1.55, -1.30), ylim_M=(-0.8, 0.8), lw=1.0, alpha=0.8,
gifname="ising2d_mcmc.gif", fps=10,
size=(600, 300), color=:gist_earth, clim=(-2, 1.1), kwargs...
)
if isnothing(S)
S = mcmc_ising2d!(; s=s, k=k, β=β, rng=rng, algorithm=algorithm,
progress=progress, nwarmups=nwarmups, nskips=nskips, niters=niters)
else
niters = length(S)
end
if isnothing(E)
E = energy_density_ising2d.(S)
end
if isnothing(M)
M = magnetization_ising2d.(S)
end
progress && (prog = Progress(niters, 1, "@animate for: "))
anim = @animate for t in 1:niters
plot_mcmc_ising2d(S, E, M; k=k, β=β, t=t,
ylim_E=ylim_E, ylim_M=ylim_M, lw=lw, alpha=alpha,
size=size, color=color, clim=clim, kwargs...
)
progress && next!(prog)
end
gif(anim, gifname; fps=fps)
end
end # module
| Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | code | 628 | using Ising2D
using Random: seed!
using Test
@testset "Ising2D.jl" begin
N = 100
seed!(4649373)
S_ifelse = [ising2d!(IfElse(), rand_ising2d(), β_ising2d, 100) for _ in 1:N]
@test abs(sum(energy_density_ising2d.(S_ifelse))/N + 1.37) < 0.015
@test abs(sum(abs.(magnetization_ising2d.(S_ifelse)))/N - 0.184) < 0.07
seed!(4649373)
S_multifor = [ising2d!(MultiFor(), rand_ising2d(), β_ising2d, 100) for _ in 1:N]
@test abs(sum(energy_density_ising2d.(S_multifor))/N + 1.37) < 0.015
@test abs(sum(abs.(magnetization_ising2d.(S_multifor)))/N - 0.184) < 0.07
@test S_ifelse == S_multifor
end
| Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | docs | 1258 | # Ising2D.jl - Julia package of the 2D Ising model
<!-- [](https://genkuroki.github.io/Ising2D.jl/stable) -->
[](https://genkuroki.github.io/Ising2D.jl/dev)
[](https://travis-ci.com/genkuroki/Ising2D.jl)
## Install
```
julia> ]
pkg> add Ising2D#master
```
```
julia> ]
pkg> add https://github.com/genkuroki/Ising2D.jl
```
## Example
Jupyter notebook: [Ising2D.ipynb](https://nbviewer.jupyter.org/github/genkuroki/Ising2D.jl/blob/master/Ising2D.ipynb)
```julia
using Ising2D
```
Generate a 100x100 random state of 2D Ising model:
```julia
s = rand_ising2d(200)
P0 = plot_ising2d(s)
```
<img src="s0.png" />
Update the whole state 500 times:
```julia
ising2d!(s, β_ising2d, 500)
P1 = plot_ising2d(s)
```
<img src="s1.png" />
Create PNG files:
```julia
Ising2D.Plots.png(P0, "s0.png")
Ising2D.Plots.png(P1, "s1.png")
```
Create the GIF animation of 2D Ising model:
```julia
s = rand_ising2d(200)
gif_ising2d(s, 1.0; nwarmups=0, nskips=1, nframes=500, fps=15)
```
<img src="ising2d.gif" />
```julia
gif_mcmc_ising2d()
```
<img src="ising2d_mcmc.gif" /> | Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | docs | 1152 | # Ising2D.jl - Julia package of the 2D Ising model
<!-- [](https://genkuroki.github.io/Ising2D.jl/stable) -->
[](https://genkuroki.github.io/Ising2D.jl/dev)
[](https://travis-ci.com/genkuroki/Ising2D.jl)
## Install
```
julia> ]
pkg> add https://github.com/genkuroki/Ising2D.jl
```
## Example
Jupyter notebook: [Ising2D.ipynb](https://nbviewer.jupyter.org/github/genkuroki/Ising2D.jl/blob/master/Ising2D.ipynb)
```julia
using Ising2D
```
Generate a 100x100 random state of 2D Ising model:
```julia
s = rand_ising2d(200)
P0 = plot_ising2d(s)
```
<img src="s0.png" />
Update the whole state 500 times:
```julia
ising2d!(s, β_ising2d, 500)
P1 = plot_ising2d(s)
```
<img src="s1.png" />
Create PNG files:
```julia
Ising2D.Plots.png(P0, "s0.png")
Ising2D.Plots.png(P1, "s1.png")
```
Create the GIF animation of 2D Ising model:
```julia
s = rand_ising2d(200)
gif_ising2d(s, 1.0; nwarmups=0, nskips=1, nframes=500, fps=15)
```
<img src="ising2d.gif" />
| Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 0.1.1 | a3f7ec76e7632834193e3985728b2c913731424b | docs | 101 | ```@meta
CurrentModule = Ising2D
```
# Ising2D
```@index
```
```@autodocs
Modules = [Ising2D]
```
| Ising2D | https://github.com/genkuroki/Ising2D.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | code | 744 | using Documenter, DocumenterMarkdown
using Literate
get_example_path(p) = joinpath(@__DIR__, ".", "examples", p)
OUTPUT = joinpath(@__DIR__, "src", "examples", "generated")
folders = readdir(joinpath(@__DIR__, ".", "examples"))
setdiff!(folders, [".DS_Store"])
function getfiles()
srcsfiles = []
for f in folders
names = readdir(joinpath(@__DIR__, ".", "examples", f))
setdiff!(names, [".DS_Store"])
fpaths = "$(f)/" .* names
srcsfiles = vcat(srcsfiles, fpaths...)
end
return srcsfiles
end
srcsfiles = getfiles()
for (d, paths) in (("tutorial", srcsfiles),)
for p in paths
Literate.markdown(get_example_path(p), joinpath(OUTPUT, dirname(p));
documenter=true)
end
end | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | code | 2241 | using Documenter, DocumenterVitepress
using Tidier, DataFrames, RDatasets
DocTestMeta = quote
using Tidier, DataFrames, Chain, Statistics
end
DocMeta.setdocmeta!(Tidier,
:DocTestSetup,
DocTestMeta;
recursive=true
)
pgs = [
"Home" => "index.md",
"Get Started" => [
"Installation" => "installation.md",
"A Simple Data Analysis" => "simple-analysis.md",
"From Data to Plots" => "simple-plotting.md"
],
# "API Reference" => "reference.md",
"Changelog" => "news.md",
"FAQ" => "faq.md",
# "Contributing" => "contributing.md",
]
fmt = DocumenterVitepress.MarkdownVitepress(
repo = "https://github.com/TidierOrg/Tidier.jl",
devurl = "dev",
# deploy_url = "yourgithubusername.github.io/Tidier.jl.jl",
)
makedocs(;
modules = [Tidier],
authors = "Karandeep Singh et al.",
repo = "https://github.com/TidierOrg/Tidier.jl",
sitename = "Tidier.jl",
format = fmt,
pages= pgs,
warnonly = true,
)
deploydocs(;
repo = "https://github.com/TidierOrg/Tidier.jl",
target="build", # this is where Vitepress stores its output
branch = "gh-pages",
devbranch = "main",
push_preview = true,
)
# makedocs(
# modules=[Tidier],
# clean=true,
# doctest=true,
# #format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
# sitename="Tidier.jl",
# authors="Karandeep Singh et al.",
# strict=[
# :doctest,
# :linkcheck,
# :parse_error,
# :example_block,
# # Other available options are
# # :autodocs_block, :cross_references, :docs_block, :eval_block, :example_block,
# # :footnote, :meta_block, :missing_docs, :setup_block
# ],
# checkdocs=:all,
# format=Markdown(),
# draft=false,
# build=joinpath(@__DIR__, "docs")
# )
# deploydocs(; repo="https://github.com/TidierOrg/Tidier.jl", push_preview=true,
# deps=Deps.pip("mkdocs", "pygments", "python-markdown-math", "mkdocs-material",
# "pymdown-extensions", "mkdocstrings", "mknotebooks",
# "pytkdocs_tweaks", "mkdocs_include_exclude_files", "jinja2", "mkdocs-video"),
# make=() -> run(`mkdocs build`), target="site", devbranch="main")
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | code | 1431 | # ## Contribute to Documentation
# Contributing with examples can be done by first creating a new file example
# [here](https://tidierorg.github.io/Tidier.jl/tree/main/docs/examples/UserGuide)
# !!! info
# - `your_new_file.jl` at `docs/examples/UserGuide/`
# Once this is done you need to add a new entry [here](https://tidierorg.github.io/Tidier.jl/blob/main/docs/mkdocs.yml)
# at the bottom and the appropriate level.
# !!! info
# Your new entry should look like:
# - `"Your title example" : "examples/generated/UserGuide/your_new_file.md"`
# ## Build docs locally
# If you want to take a look at the docs locally before doing a PR
# follow the next steps:
# !!! warning "build docs locally"
# Install the following dependencies in your system via pip, i.e.
# - `pip install mkdocs pygments python-markdown-math`
# - `pip install mkdocs-material pymdown-extensions mkdocstrings`
# - `pip mknotebooks pytkdocs_tweaks mkdocs_include_exclude_files jinja2 mkdocs-video`
# Then simply go to your `docs` env and activate it, i.e.
# `docs> julia`
# `julia> ]`
# `(docs) pkg> activate .`
# Next, run the scripts:
# !!! info
# Generate files and build docs by running:
# - `genfiles.jl`
# - `make.jl`
# Now go to your `terminal` in the same path `docs>` and run:
# `mkdocs serve`
# This should output `http://127.0.0.1:8000`, copy/paste this into your
# browser and you are all set.
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | code | 316 | module Tidier
export DB
using Reexport
@reexport using TidierData
@reexport using TidierPlots
@reexport using TidierCats
@reexport using TidierDates
@reexport import TidierDB
const DB = TidierDB
@reexport using TidierFiles
@reexport using TidierStrings
@reexport using TidierText
@reexport using TidierVest
end | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | code | 162 | module TestTidier
using Tidier
using Test
using Documenter
# DocMeta.setdocmeta!(Tidier, :DocTestSetup, :(using Tidier); recursive=true)
# doctest(Tidier)
end | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 29047 | # Tidier.jl
[](https://github.com/TidierOrg/Tidier.jl/blob/main/LICENSE)
[](https://tidierorg.github.io/Tidier.jl/dev)
[](https://github.com/TidierOrg/Tidier.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://pkgs.genieframework.com?packages=Tidier)
<a href="https://github.com/TidierOrg/Tidier.jl"><img src="https://raw.githubusercontent.com/TidierOrg/Tidier.jl/main/docs/src/assets/Tidier_jl_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://github.com/TidierOrg/Tidier.jl">Tidier.jl</a>
Tidier.jl is a data analysis package inspired by R's tidyverse and crafted specifically for Julia. Tidier.jl is a meta-package in that its functionality comes from a series of smaller packages. Installing and using Tidier.jl brings the combined functionality of each of these packages to your fingertips.
[[GitHub]](https://github.com/TidierOrg/Tidier.jl) | [[Documentation]](https://tidierorg.github.io/Tidier.jl/dev/)
## Installing Tidier.jl
There are 2 ways to install Tidier.jl: using the package console, or using Julia code when you're using the Julia console. You might also see the console referred to as the "REPL," which stands for Read-Evaluate-Print Loop. The REPL is where you can interactively run code and view the output.
Julia's REPL is particularly cool because it provides a built-in package REPL and shell REPL, which allow you to take actions on managing packages (in the case of the package REPL) or run shell commands (in the shell REPL) without ever leaving the Julia REPL.
To install the stable version of Tidier.jl, you can type the following into the Julia REPL:
```
]add Tidier
```
The `]` character starts the Julia [package manager](https://docs.julialang.org/en/v1/stdlib/Pkg/). The `add Tidier` command tells the package manager to install the Tidier package from the Julia registry. You can exit the package REPL by pressing the backspace key to return to the Julia prompt.
If you already have the Tidier package installed, the `add Tidier` command *will not* update the package. Instead, you can update the package using the the `update Tidier` (or `up Tidier` for short) commnds. As with the `add Tidier` command, make sure you are in the package REPL before you run these package manager commands.
If you need to (or prefer to) install packages using Julia code, you can achieve the same outcome using the following code to install Tidier:
```julia
import Pkg
Pkg.add("Tidier")
```
You can update Tidier.jl using the `Pkg.update()` function, as follows:
```julia
import Pkg; Pkg.update("Tidier")
```
Note that while Julia allows you to separate statements by using multiple lines of code, you can also use a semi-colon (`;`) to separate multiple statements. This is convenient for short snippets of code. There's another practical reason to use semi-colons in coding, which is to silence the output of a function call. We will come back to this in the "Getting Started" section below.
In general, installing the latest version of the package from the Julia registry should be sufficient because we follow a continuous-release cycle. After every update to the code, we update the version based on the magnitude of the change and then release the latest version to the registry. That's why it's so important to know how to update the package!
However, if for some reason you do want to install the package directly from GitHub, you can get the newest version using either the package REPL...
```
]add Tidier#main
```
...or using Julia code.
```julia
import Pkg; Pkg.add(url="https://github.com/TidierOrg/Tidier.jl")
```
## Loading Tidier.jl
Once you've installed Tidier.jl, you can load it by typing:
```julia
using Tidier
```
When you type this command, multiple things happen behind the scenes. First, the following packages are loaded and re-exported, which is to say that all of the exported macros and functions from these packages become available:
- TidierData
- TidierPlots
- TidierCats
- TidierDates
- TidierStrings
- TidierText
- TidierVest
Don't worry if you don't know what each of these packages does yet. We will cover them in package-specific documentation pages, which can be accessed below. For now, all you need to know is that these smaller packages are actually the ones doing all the work when you use Tidier.
There are also a few other packages whose exported functions also become available. We will discuss these in the individual package documentation, but the most important ones for you to know about are:
- The `DataFrame()` function from the DataFrames package is re-exported so that you can create a data frame without loading the DataFrames package.
- The `@chain()` macro from the Chain package is re-exported, so you chain together functions and macros
- The entire Statistics package is re-exported so you can access summary statistics like `mean()` and `median()`
- The CategoricalArrays package is re-exported so you can access the `categorical()` function to define categorical variables
- The Dates package is re-exported to enable support for variables containing dates
## What can Tidier.jl do?
Before we dive into an introduction of Julia and a look into how Tidier.jl works, it's useful to show you what Tidier.jl can do. First, we will read in some data, and then we will use Tidier.jl to chain together some data analysis operations.
### First, let's read in the "Visits to Physician Office" dataset.
This dataset comes with the Ecdat R package and and is titled OFP. [You can read more about the dataset here](https://rdrr.io/cran/Ecdat/man/OFP.html). To read in datasets packaged with commonly used R packages, we can use the RDatasets Julia package.
```julia
julia> using Tidier, RDatasets
julia> ofp = dataset("Ecdat", "OFP")
4406×19 DataFrame
Row │ OFP OFNP OPP OPNP EMR Hosp NumChro ⋯
│ Int32 Int32 Int32 Int32 Int32 Int32 Int32 ⋯
──────┼────────────────────────────────────────────────────
1 │ 5 0 0 0 0 1 ⋯
2 │ 1 0 2 0 2 0
3 │ 13 0 0 0 3 3
4 │ 16 0 5 0 1 1
5 │ 3 0 0 0 0 0 ⋯
6 │ 17 0 0 0 0 0
7 │ 9 0 0 0 0 0
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
4401 │ 12 4 1 0 0 0
4402 │ 11 0 0 0 0 0 ⋯
4403 │ 12 0 0 0 0 0
4404 │ 10 0 20 0 1 1
4405 │ 16 1 0 0 0 0
4406 │ 0 0 0 0 0 0 ⋯
13 columns and 4393 rows omitted
```
Note that a preview of the data frame is automatically printed to the console. The reason this happens is that when you run this code line by line, the output of each line is printed to the console. This is convenient because it saves you from having to directly print the newly created `ofp` to the console in order to get a preview for what it contains. If this code were bundled in a code chunk (such as in a Jupyter notebook), then only the final line of the code chunk would be printed.
The exact number of rows and columns that print will depend on the physical size of the REPL window. If you resize the console (e.g., in VS Code), Julia will adjust the number of rows/columns accordingly.
If you want to suppress the output, you can add a `;` at the end of this statement, like this:
```julia
julia> ofp = dataset("Ecdat", "OFP"); # Nothing prints
```
### With the OFP dataset loaded, let's ask some basic questions.
#### What does the dataset consist of?
We can use `@glimpse()` to find out the columns, data types, and peek at the first few values contained within the dataset.
```julia
julia> @glimpse(ofp)
Rows: 4406
Columns: 19
.OFP Int32 5, 1, 13, 16, 3, 17, 9, 3, 1, 0, 0, 44, 2, 1, 19,
.OFNP Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0,
.OPP Int32 0, 2, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0,
.OPNP Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
.EMR Int32 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.Hosp Int32 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
.NumChron Int32 2, 2, 4, 2, 2, 5, 0, 0, 0, 0, 1, 5, 1, 1, 1, 0, 1,
.AdlDiff Int32 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
.Age Float64 6.9, 7.4, 6.6, 7.6, 7.9, 6.6, 7.5, 8.7, 7.3, 7.8,
.Black CategoricalValue{String, UInt8}yes, no, yes, no, no, no, no, no,
.Sex CategoricalValue{String, UInt8}male, female, female, male, female
.Married CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, no, no
.School Int32 6, 10, 10, 3, 6, 7, 8, 8, 8, 8, 8, 15, 8, 8, 12, 8
.FamInc Float64 2.881, 2.7478, 0.6532, 0.6588, 0.6588, 0.3301, 0.8
.Employed CategoricalValue{String, UInt8}yes, no, no, no, no, no, no, no, n
.Privins CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, yes, y
.Medicaid CategoricalValue{String, UInt8}no, no, yes, no, no, yes, no, no,
.Region CategoricalValue{String, UInt8}other, other, other, other, other,
.Hlth CategoricalValue{String, UInt8}other, other, poor, poor, other, p
```
If you're wondering why we need to place a `@` at the beginning of the word so that it reads `@glimpse()` rather than `glimpse()`, that's because including a `@` at the beginning denotes that this is a special type of function known as a macro. Macros have special capabilities in Julia, and many Tidier.jl functions that operate on data frames are implemented as macros. In this specific instance, we could have implemented `@glimpse()` without making use of any of the macro capabilities. However, for the sake of consistency, we have kept `@glimpse()` as a macro so that you can remember a basic rule of thumb: if Tidier.jl operates on a dataframe, then we will use macros rather than functions. The TidierPlots.jl package is a slight exception to this rule in that it is nearly entirely implemented as functions (rather than macros), and this will be described more in the TidierPlots documentation.
#### Can we clean up the names of the columns?
To avoid having to keep track of capitalization, data analysts often prefer column names to be in snake_case rather than TitleCase. Let's quickly apply this transformation to the `ofp` dataset.
```julia
julia> ofp = @clean_names(ofp)
julia> @glimpse(ofp)
Rows: 4406
Columns: 19
.ofp Int32 5, 1, 13, 16, 3, 17, 9, 3, 1, 0, 0, 44, 2, 1, 19,
.ofnp Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0,
.opp Int32 0, 2, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0,
.opnp Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
.emr Int32 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.hosp Int32 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
.num_chron Int32 2, 2, 4, 2, 2, 5, 0, 0, 0, 0, 1, 5, 1, 1, 1, 0, 1,
.adl_diff Int32 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
.age Float64 6.9, 7.4, 6.6, 7.6, 7.9, 6.6, 7.5, 8.7, 7.3, 7.8,
.black CategoricalValue{String, UInt8}yes, no, yes, no, no, no, no, no,
.sex CategoricalValue{String, UInt8}male, female, female, male, female
.married CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, no, no
.school Int32 6, 10, 10, 3, 6, 7, 8, 8, 8, 8, 8, 15, 8, 8, 12, 8
.fam_inc Float64 2.881, 2.7478, 0.6532, 0.6588, 0.6588, 0.3301, 0.8
.employed CategoricalValue{String, UInt8}yes, no, no, no, no, no, no, no, n
.privins CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, yes, y
.medicaid CategoricalValue{String, UInt8}no, no, yes, no, no, yes, no, no,
.region CategoricalValue{String, UInt8}other, other, other, other, other,
.hlth CategoricalValue{String, UInt8}other, other, poor, poor, other, p
```
Now that our column names are cleaned up, we can ask some basic analysis questions.
#### What is the mean age for people in each of the regions
Because age is measured in decades according to the [dataset documentation](https://rdrr.io/cran/Ecdat/man/OFP.html)), we will multiply everyone's age by 10 before we calculate the median.
```julia
julia> @chain ofp @group_by(region) @summarize(mean_age = mean(age * 10))
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
Overall, the mean age looks pretty similar across regions. The fact that we were able to calculate each region's age also reveals that there are no missing values. Any region containing a missing value would have returned `missing` instead of a number.
The `@chain` macro, which is defined in the Chain package and re-exported by Tidier, allows us to pipe together multiple operations sequentially from left to right. In the example above, the `ofp` dataset is being piped into the first argument of the `@group_by()` macro, the result of which is then being piped into the `@summarize()` macro, which is then automatically removing the grouping and returning the result.
For grouped data frames, `@summarize()` behaves differently than other Tidier.jl macros: `@summarize()` removes one layer of grouping. Because the data frame was only grouped by one column, the result is no longer grouped. Had we grouped by multiple columns, the result would still be grouped by all but the last column. The other Tidier.jl macros keep the data grouped. Grouped data frames can be ungrouped using `@ungroup()`. If you apply a new `@group_by()` macro to an already-grouped data frame, then the newly specified groups override the old ones.
When we use the `@chain` macro, we are taking advantage of the fact that Julia macros can either be called using parentheses syntax, where each argument is separated by a comma, or they can be called with a spaced syntax where no parentheses are used. In the case of Tidier.jl macros, we always use the parentheses syntax, which makes is very easy to use the spaced syntax when working with `@chain`.
An alternate way of calling `@chain` using the parentheses syntax is as follows. From a purely stylistic perspective, I don't recommend this because it adds a number of extra characters. However, if you're new to Julia, it's worth knowing about this form so that you realize that there is no magic involved when working with macros.
```julia
julia> @chain(ofp, @group_by(region), @summarize(mean_age = mean(age * 10)))
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
On the other hand, either of these single-line expressions can get quite hard-to-read as more and more expressions are chained together. To make this easier to handle, `@chain` supports multi-line expressions using `begin-end` blocks like this:
```julia
julia> @chain ofp begin
@group_by(region)
@summarize(mean_age = mean(age * 10))
end
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
This format is convenient for interactive data analysis because you can easily comment out individual operations and view the result. For example, if we wanted to know the mean age for the overall dataset, we could simply comment out the `@group_by()` operation.
```julia
julia> @chain ofp begin
# @group_by(region)
@summarize(mean_age = mean(age * 10))
end
1×1 DataFrame
Row │ mean_age
│ Float64
─────┼──────────
1 │ 74.0241
```
## Frequently asked questions
### I'm a Julia user. Why should I use Tidier.jl rather than other data analysis packages?
While Julia has a number of great data analysis packages, the most mature and idiomatic Julia package for data analysis is DataFrames.jl. Most other data analysis packages in Julia build on top of DataFrames.jl, and Tidier.jl is no exception.
DataFrames.jl emphasizes idiomatic Julia code without macros. While it is elegant, it can be verbose because of the need to write out anonymous functions. DataFrames.jl also emphasizes correctness, which means that errors are favored over warnings. For example, grouping by one variable and then subsequently grouping the already-grouped data frame by another variable results in an error in DataFrames.jl. These restrictions, while justified in some instances, can make interactive data analysis feel clunky and slow.
A number of macro-based data analysis packages have emerged as extensions of DataFrames.jl to make data analysis syntax less verbose, including DataFramesMeta.jl, Query.jl, and DataFrameMacros.jl. All of these packages have their strengths, and each of these served as an inspiration towards the creation of Tidier.jl.
What sets Tidier.jl apart is that it borrows the design of the tried-and-widely-adopted tidyverse and brings it to Julia. Our goal is to make data analysis code as easy and readable as possible. In our view, the reason you should use Tidier.jl is because of the richness, consistency, and thoroughness of the design made possible by bringing together two powerful tools: DataFrames.jl and the tidyverse. In Tidier.jl, nearly every possible transformation on data frames (e.g., aggregating, pivoting, nesting, and joining) can be accomplished using a consistent syntax. While you always have the option to intermix Tidier.jl code with DataFrames.jl code, Tidier.jl strives for completeness -- there should never be a requirement to fall back to DataFrames.jl for any kind of data analysis task.
Tidier.jl also focuses on conciseness. This shows up most readily in two ways: the use of bare column names, and an approach to auto-vectorizing code.
1. **Bare column names:** If you are referring to a column named `a`, you can simply refer to it as `a` in Tidier.jl. You are essentially referring to `a` as if it was within an anonymous function, where the variable `a` was mapped to the column `a` in the data frame. If you want to refer to an object `a` that is defined outside of the data frame, then you can write `!!a`, which we refer to as "bang-bang interpolation." This syntax is motivated by the tidyverse, where [the `!!` operator was selected because it is the least-bad "polite fiction" way of representing lazy interpolation](https://adv-r.hadley.nz/quasiquotation.html#the-polite-fiction-of).
2. **Auto-vectorized code:** Most data transformation functions and operators are intended to be used on scalars. However, transformations are usually performed on columns of data (represented as 1-dimensional arrays, or vectors), which means that most functions need to be vectorized, which can get unwieldy and verbose. However, there are functions which operate directly on vectors and thus should not be vectorized when applied to columns (e.g., `mean()` and `median()`). Tidier.jl uses a customizable look-up table to know which functions to vectorize and which ones not to vectorize. This means that you can largely leave code as un-vectorized (i.e., `mean(a + 1)` rather than `mean(a .+ 1)`), and Tidier.jl will correctly infer convert the first code into the second before running it. There are several ways to manually override the defaults.
Lastly, the reason you should consider using Tidier.jl is that it brings a consistent syntax not only to data manipulation but also to plotting (by wrapping Makie.jl and AlgebraOfGraphics.jl) and to the handling of categorical variables, strings, and dates. Wherever possible, Tidier.jl uses existing classes rather than defining new ones. As a result, using Tidier.jl should never preclude you from using other Base Julia functions with which you may already be familiar.
### I'm an R user and I'm perfectly happy with the tidyverse. Why should I consider using Tidier.jl?
If you're happy with the R tidyverse, then there's no imminent reason to switch to using Tidier.jl. While DataFrames.jl (the package on which TidierData.jl depends) [is faster than R's dplyr and tidyr on benchmarks](https://duckdblabs.github.io/db-benchmark/), there are other faster backends in R that allow for the use of tidyverse syntax with better speed (e.g., dtplyr, tidytable, tidypolars).
The primary reason to consider using Tidier.jl is the value proposition of using Julia itself. Julia has many similarities to R (e.g., interactive coding in a console, functional style, multiple dispatch, dynamic data types), but unlike R, Julia is automatically compiled (to LLVM) before it runs. This means that certain compiler optimations, which are normally only possible in more verbose languages like C/C++ become available to Julia. There are a number of situations in R where the end-user is able to write fast R code as a direct result of C++ being used on the backend (e.g., through the use of the Rcpp package). This is why R is sometimes referred to as a glue language -- because it provides a very nice way of glueing together faster C++ code.
The main value proposition of Julia is that you can use it as *both* a glue language *and* as a backend language. Tidier.jl embraces the glue language aspect of Julia while relying on packages like DataFrames.jl and Makie.jl on the backend.
While Julia has very mature backends, we hope that Tidier.jl demonstrates the value of, and need for, more glue-oriented data analysis packages in Julia.
### Why does Tidier.jl re-export so many packages?
Tidier comes with batteries included. If you are using Tidier, you generally won't have to load in other packages for basic data analysis. Tidier is meant for interactive use. You can start your code with `using Tidier` and expect to have what you need at your fingertips.
If you are a package developer, then you definitely should consider depending on one of the smaller packages that make up Tidier.jl rather than Tidier itself. For example, if you want to use the categorical variable functions from Tidier, then you should use rely on only TidierCats.jl as a dependency.
### Should I update Tidier.jl or the underlying packages (e.g., TidierPlots.jl) individually?
Either approach is okay. For most users, we recommend updating Tidier.jl directly, as this will update the underlying packages up to their latest minor versions (but not necessarily up to their latest patch release). However, if you need access to the latest functionality in the underlying packages, you should feel free to update them directly. We will keep Tidier.jl future-proof to underlying package updates, so this shouldn't cause any problems with Tidier.jl.
### Where can I learn more about the underlying packages that make up Tidier.jl?
<a href="https://tidierorg.github.io/TidierData.jl/latest/"><img src="https://raw.githubusercontent.com/TidierOrg/TidierData.jl/main/docs/src/assets/Tidier_jl_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierData.jl/latest/">TidierData.jl</a>
TidierData.jl is a package dedicated to data transformation and reshaping, powered by DataFrames.jl, ShiftedArrays.jl, and Cleaner.jl. It focuses on functionality within the dplyr, tidyr, and janitor R packages.
[[GitHub]](https://github.com/TidierOrg/TidierData.jl) | [[Documentation]](https://tidierorg.github.io/TidierData.jl/latest/)
<br><br>
<a href="https://tidierorg.github.io/TidierPlots.jl/latest/"><img src="https://raw.githubusercontent.com/TidierOrg/TidierPlots.jl/main/assets/logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierPlots.jl/latest/">TidierPlots.jl</a>
TidierPlots.jl is a package dedicated to plotting, powered by Makie.jl. It focuses on functionality within the ggplot2 R package.
[[GitHub]](https://github.com/TidierOrg/TidierPlots.jl) | [[Documentation]](https://tidierorg.github.io/TidierPlots.jl/latest/)
<br><br>
<a href="https://tidierorg.github.io/TidierDB.jl/latest/"><img src="https://github.com/TidierOrg/TidierDB.jl/raw/main/assets/logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierDB.jl/latest/">TidierDB.jl</a>
TidierDB.jl is a package dedicated to data transformation on databases using syntax similar to TidierData. It focuses on functionality within the dbplyr R package.
[[GitHub]](https://github.com/TidierOrg/TidierDB.jl) | [[Documentation]](https://tidierorg.github.io/TidierDB.jl/latest/)
<br><br>
<a href="https://tidierorg.github.io/TidierFiles.jl/latest/"><img src="https://github.com/TidierOrg/TidierFiles.jl/raw/main/assets/logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierFiles.jl/latest/">TidierFiles.jl</a>
TidierFiles.jl is a package dedicated to reading and writing tabular data. It focuses on functionality within the readr, haven, readxl, and writexl R packages.
[[GitHub]](https://github.com/TidierOrg/TidierFiles.jl) | [[Documentation]](https://tidierorg.github.io/TidierFiles.jl/latest/)
<br><br>
<a href="https://tidierorg.github.io/TidierCats.jl/dev/"><img src="https://raw.githubusercontent.com/TidierOrg/TidierCats.jl/main/docs/src/assets/TidierCats_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierCats.jl/dev/">TidierCats.jl</a>
TidierCats.jl is a package dedicated to handling categorical variables, powered by CategoricalArrays.jl. It focuses on functionality within the forcats R package.
[[GitHub]](https://github.com/TidierOrg/TidierCats.jl) | [[Documentation]](https://tidierorg.github.io/TidierCats.jl/dev/)
<br><br>
<a href="https://github.com/TidierOrg/TidierDates.jl"><img src="https://raw.githubusercontent.com/TidierOrg/TidierDates.jl/main/docs/src/assets/TidierDates_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://github.com/TidierOrg/TidierDates.jl">TidierDates.jl</a>
TidierDates.jl is a package dedicated to handling dates and times. It focuses on functionality within the lubridate R package.
[[GitHub]](https://github.com/TidierOrg/TidierDates.jl) | [[Documentation]](https://tidierorg.github.io/TidierDates.jl/dev/)
<br><br>
<a href="https://tidierorg.github.io/TidierStrings.jl/dev/"><img src="https://raw.githubusercontent.com/TidierOrg/TidierStrings.jl/main/docs/src/assets/TidierStrings_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://tidierorg.github.io/TidierStrings.jl/dev/">TidierStrings.jl</a>
TidierStrings.jl is a package dedicated to handling strings. It focuses on functionality within the stringr R package.
[[GitHub]](https://github.com/TidierOrg/TidierStrings.jl) | [[Documentation]](https://tidierorg.github.io/TidierStrings.jl/dev/)
<br><br>
<a href="https://github.com/TidierOrg/TidierText.jl"><img src="https://raw.githubusercontent.com/TidierOrg/TidierText.jl/main/docs/src/assets/TidierText_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://github.com/TidierOrg/TidierText.jl">TidierText.jl</a>
TidierText.jl is a package dedicated to handling and tidying text data. It focuses on functionality within the tidytext R package.
[[GitHub]](https://github.com/TidierOrg/TidierText.jl)
<br><br>
<a href="https://github.com/TidierOrg/TidierVest.jl"><img src="https://raw.githubusercontent.com/TidierOrg/TidierVest.jl/main/docs/src/assets/TidierVest_logo.png" align="left" style="padding-right:10px;" width="150"></img></a>
## <a href="https://github.com/TidierOrg/TidierVest.jl">TidierVest.jl</a>
TidierVest.jl is a package dedicated to scraping and tidying website data. It focuses on functionality within the rvest R package.
[[GitHub]](https://github.com/TidierOrg/TidierVest.jl)
<br><br>
## What’s new in the Tidier.jl meta-package?
See [NEWS.md](https://github.com/TidierOrg/Tidier.jl/blob/main/NEWS.md) for the latest updates.
## What's missing
Is there a tidyverse feature missing that you would like to see in Tidier.jl? Please file a GitHub issue to start a discussion.
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 6987 | ## Frequently asked questions
### I'm a Julia user. Why should I use Tidier.jl rather than other data analysis packages?
While Julia has a number of great data analysis packages, the most mature and idiomatic Julia package for data analysis is DataFrames.jl. Most other data analysis packages in Julia build on top of DataFrames.jl, and Tidier.jl is no exception.
DataFrames.jl emphasizes idiomatic Julia code without macros. While it is elegant, it can be verbose because of the need to write out anonymous functions. DataFrames.jl also emphasizes correctness, which means that errors are favored over warnings. For example, grouping by one variable and then subsequently grouping the already-grouped data frame by another variable results in an error in DataFrames.jl. These restrictions, while justified in some instances, can make interactive data analysis feel clunky and slow.
A number of macro-based data analysis packages have emerged as extensions of DataFrames.jl to make data analysis syntax less verbose, including DataFramesMeta.jl, Query.jl, and DataFrameMacros.jl. All of these packages have their strengths, and each of these served as an inspiration towards the creation of Tidier.jl.
What sets Tidier.jl apart is that it borrows the design of the tried-and-widely-adopted tidyverse and brings it to Julia. Our goal is to make data analysis code as easy and readable as possible. In our view, the reason you should use Tidier.jl is because of the richness, consistency, and thoroughness of the design made possible by bringing together two powerful tools: DataFrames.jl and the tidyverse. In Tidier.jl, nearly every possible transformation on data frames (e.g., aggregating, pivoting, nesting, and joining) can be accomplished using a consistent syntax. While you always have the option to intermix Tidier.jl code with DataFrames.jl code, Tidier.jl strives for completeness -- there should never be a requirement to fall back to DataFrames.jl for any kind of data analysis task.
Tidier.jl also focuses on conciseness. This shows up most readily in two ways: the use of bare column names, and an approach to auto-vectorizing code.
1. **Bare column names:** If you are referring to a column named `a`, you can simply refer to it as `a` in Tidier.jl. You are essentially referring to `a` as if it was within an anonymous function, where the variable `a` was mapped to the column `a` in the data frame. If you want to refer to an object `a` that is defined outside of the data frame, then you can write `!!a`, which we refer to as "bang-bang interpolation." This syntax is motivated by the tidyverse, where [the `!!` operator was selected because it is the least-bad "polite fiction" way of representing lazy interpolation](https://adv-r.hadley.nz/quasiquotation.html#the-polite-fiction-of).
2. **Auto-vectorized code:** Most data transformation functions and operators are intended to be used on scalars. However, transformations are usually performed on columns of data (represented as 1-dimensional arrays, or vectors), which means that most functions need to be vectorized, which can get unwieldy and verbose. However, there are functions which operate directly on vectors and thus should not be vectorized when applied to columns (e.g., `mean()` and `median()`). Tidier.jl uses a customizable look-up table to know which functions to vectorize and which ones not to vectorize. This means that you can largely leave code as un-vectorized (i.e., `mean(a + 1)` rather than `mean(a .+ 1)`), and Tidier.jl will correctly infer convert the first code into the second before running it. There are several ways to manually override the defaults.
Lastly, the reason you should consider using Tidier.jl is that it brings a consistent syntax not only to data manipulation but also to plotting (by wrapping Makie.jl and AlgebraOfGraphics.jl) and to the handling of categorical variables, strings, and dates. Wherever possible, Tidier.jl uses existing classes rather than defining new ones. As a result, using Tidier.jl should never preclude you from using other Base Julia functions with which you may already be familiar.
### I'm an R user and I'm perfectly happy with the tidyverse. Why should I consider using Tidier.jl?
If you're happy with the R tidyverse, then there's no imminent reason to switch to using Tidier.jl. While DataFrames.jl (the package on which TidierData.jl depends) [is faster than R's dplyr and tidyr on benchmarks](https://duckdblabs.github.io/db-benchmark/), there are other faster backends in R that allow for the use of tidyverse syntax with better speed (e.g., dtplyr, tidytable, tidypolars).
The primary reason to consider using Tidier.jl is the value proposition of using Julia itself. Julia has many similarities to R (e.g., interactive coding in a console, functional style, multiple dispatch, dynamic data types), but unlike R, Julia is automatically compiled (to LLVM) before it runs. This means that certain compiler optimations, which are normally only possible in more verbose languages like C/C++ become available to Julia. There are a number of situations in R where the end-user is able to write fast R code as a direct result of C++ being used on the backend (e.g., through the use of the Rcpp package). This is why R is sometimes referred to as a glue language -- because it provides a very nice way of glueing together faster C++ code.
The main value proposition of Julia is that you can use it as *both* a glue language *and* as a backend language. Tidier.jl embraces the glue language aspect of Julia while relying on packages like DataFrames.jl and Makie.jl on the backend.
While Julia has very mature backends, we hope that Tidier.jl demonstrates the value of, and need for, more glue-oriented data analysis packages in Julia.
### Why does Tidier.jl re-export so many packages?
Tidier comes with batteries included. If you are using Tidier, you generally won't have to load in other packages for basic data analysis. Tidier is meant for interactive use. You can start your code with `using Tidier` and expect to have what you need at your fingertips.
If you are a package developer, then you definitely should consider depending on one of the smaller packages that make up Tidier.jl rather than Tidier itself. For example, if you want to use the categorical variable functions from Tidier, then you should use rely on only TidierCats.jl as a dependency.
### Should I update Tidier.jl or the underlying packages (e.g., TidierPlots.jl) individually?
Either approach is okay. For most users, we recommend updating Tidier.jl directly, as this will update the underlying packages up to their latest minor versions (but not necessarily up to their latest patch release). However, if you need access to the latest functionality in the underlying packages, you should feel free to update them directly. We will keep Tidier.jl future-proof to underlying package updates, so this shouldn't cause any problems with Tidier.jl. | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 4478 | ```@raw html
---
# https://vitepress.dev/reference/default-theme-home-page
layout: home
hero:
name: "Tidier.jl"
tagline: Tidier.jl is a data analysis package inspired by R's tidyverse and crafted specifically for Julia.
image:
src: /Tidier_jl_logo.png
actions:
- theme: brand
text: Get Started
link: installation.md
- theme: alt
text: View on GitHub
link: https://github.com/TidierOrg/Tidier.jl
features:
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierData.jl/raw/main/docs/src/assets/Tidier_jl_logo.png" alt="tidierdata"/>
title: TidierData.jl
details: "TidierData.jl is a 100% Julia implementation of the dplyr and tidyr R packages. Powered by the DataFrames.jl package and Julia’s extensive meta-programming capabilities, TidierData.jl is an R user’s love letter to data analysis in Julia."
link: https://tidierorg.github.io/TidierData.jl/latest/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierPlots.jl/raw/main/assets/logo.png" alt="tidierplots"/>
title: TidierPlots.jl
details: "TidierPlots.jl is a 100% Julia implementation of the R package ggplot in Julia. Powered by Makie.jl, and Julia’s extensive meta-programming capabilities, TidierPlots.jl is an R user’s love letter to data visualization in Julia."
link: https://tidierorg.github.io/TidierPlots.jl/latest/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierDB.jl/raw/main/assets/logo.png" alt="tidierdb"/>
title: TidierDB.jl
details: "TidierDB.jl is a 100% Julia implementation of the R package dbplyr in Julia and similar to Python's ibis package. Its main goal is to bring the syntax of Tidier.jl to multiple SQL backends, making it possible to analyze data directly on databases without needing to copy the entire database into memory."
link: https://tidierorg.github.io/TidierDB.jl/latest/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierFiles.jl/raw/main/assets/logo.png" alt="tidierfiles"/>
title: TidierFiles.jl
details: "TidierFiles.jl leverages the CSV.jl, XLSX.jl, and ReadStatTables.jl packages to reimplement the R haven and readr packages."
link: https://tidierorg.github.io/TidierFiles.jl/latest/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierCats.jl/raw/main/docs/src/assets/TidierCats_logo.png" alt="tidiercats"/>
title: TidierCats.jl
details: "TidierCats.jl is a 100% Julia implementation of the R package forcats in Julia. It has one main goal: to implement forcats's straightforward syntax and of ease of use while working with categorical variables for Julia users."
link: https://tidierorg.github.io/TidierCats.jl/dev/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierDates.jl/raw/main/docs/src/assets/TidierDates_logo.png" alt="tidierdates"/>
title: TidierDates.jl
details: "TidierDates.jl is a 100% Julia implementation of the R package lubridate in Julia. It has one main goal: to implement lubridate's straightforward syntax and of ease of use while working with dates for Julia users."
link: https://tidierorg.github.io/TidierDates.jl/dev/
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierStrings.jl/raw/main/docs/src/assets/TidierStrings_logo.png" alt="tidierstrings"/>
title: TidierStrings.jl
details: "TidierStrings.jl is a 100% Julia implementation of the R package stringr in Julia. It has one main goal: to implement stringr's straightforward syntax and of ease of use while working with strings for Julia users."
link: https://tidierorg.github.io/TidierStrings.jl/dev/
- icon: <img width="200" height="200" src="https://raw.githubusercontent.com/TidierOrg/TidierText.jl/main/docs/src/assets/TidierText_logo.png" alt="tidiertext"/>
title: TidierText.jl
details: "TidierText.jl is a 100% Julia implementation of the R tidytext package. The purpose of the package is to make it easy analyze text data using DataFrames."
link: https://github.com/TidierOrg/TidierText.jl
- icon: <img width="200" height="200" src="https://github.com/TidierOrg/TidierVest.jl/raw/main/docs/src/assets/TidierVest_logo.png" alt="tidierstrings"/>
title: TidierVest.jl
details: "This library combines HTTP, Gumbo and Cascadia for a more simple way to scrape data"
link: https://github.com/TidierOrg/TidierVest.jl
---
``` | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 2677 | # Installation
## Installing Tidier.jl
There are 2 ways to install Tidier.jl: using the package console, or using Julia code when you're using the Julia console. You might also see the console referred to as the "REPL," which stands for Read-Evaluate-Print Loop. The REPL is where you can interactively run code and view the output.
Julia's REPL is particularly cool because it provides a built-in package REPL and shell REPL, which allow you to take actions on managing packages (in the case of the package REPL) or run shell commands (in the shell REPL) without ever leaving the Julia REPL.
To install the stable version of Tidier.jl, you can type the following into the Julia REPL:
```julia
]add Tidier
```
The `]` character starts the Julia [package manager](https://docs.julialang.org/en/v1/stdlib/Pkg/). The `add Tidier` command tells the package manager to install the Tidier package from the Julia registry. You can exit the package REPL by pressing the backspace key to return to the Julia prompt.
If you already have the Tidier package installed, the `add Tidier` command *will not* update the package. Instead, you can update the package using the the `update Tidier` (or `up Tidier` for short) commnds. As with the `add Tidier` command, make sure you are in the package REPL before you run these package manager commands.
If you need to (or prefer to) install packages using Julia code, you can achieve the same outcome using the following code to install Tidier:
```julia
import Pkg
Pkg.add("Tidier")
```
You can update Tidier.jl using the `Pkg.update()` function, as follows:
```julia
import Pkg; Pkg.update("Tidier")
```
Note that while Julia allows you to separate statements by using multiple lines of code, you can also use a semi-colon (`;`) to separate multiple statements. This is convenient for short snippets of code. There's another practical reason to use semi-colons in coding, which is to silence the output of a function call. We will come back to this in the "Getting Started" section below.
In general, installing the latest version of the package from the Julia registry should be sufficient because we follow a continuous-release cycle. After every update to the code, we update the version based on the magnitude of the change and then release the latest version to the registry. That's why it's so important to know how to update the package!
However, if for some reason you do want to install the package directly from GitHub, you can get the newest version using either the package REPL...
```julia
]add Tidier#main
```
...or using Julia code.
```julia
import Pkg; Pkg.add(url="https://github.com/TidierOrg/Tidier.jl")
```
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 8166 | # Tidier.jl updates
## v1.4.0 - 2024-04-19
- Add and re-export TidierDB.jl as DB
- Add and re-export TidierFiles.jl
## v1.3.0 - 2024-04-09
- Update minimum Julia required version to 1.9
- Base package version updates
- New documentation
## v1.2.1 - 2024-01-02
- Base package version updates
## v1.2.0 - 2023-11-28
- Add and re-export TidierText.jl
- Bugfix: Re-export TidierVest.jl (forgot to do this in 1.1.0)
## v1.1.0 - 2023-11-18
- Update versions of base packages
- Add TidierVest.jl
## v1.0.0 - 2023-08-07
- Convert Tidier.jl to a meta-package that only re-exports other Tidier packages
## v0.7.7 - 2023-07-15
- Added documentation on how to interpolate variables inside of `for` loops. Note: `!!` interpolation doesn't work inside of `for` loops because macros are expanded during parsing and not at runtime.
- Fixed bug in `parse_pivot_arg()` to enable interpolation inside of pivoting functions when used inside a `for` loop.
- Added `cumsum()`, `cumprod()`, and `accumulate()` to the do-not-vectorize list.
## v0.7.6 - 2023-05-04
- Fixed bug to allow multiple columns in `@distinct()` separated by commas or using selection helpers.
## v0.7.5 - 2023-04-30
- Fixed bug to ensure that `&&` and `||` are auto-vectorized
- Added docstrings and examples to show different ways of filtering by multiple "and" conditions, including `&&`, `&`, and separating multiple expressions with commas.
## v0.7.4 - 2023-04-11
- Added `as_float()`, `as_integer()`, and `as_string()`
## v0.7.3 - 2023-04-10
- Added `@glimpse()`
## v0.7.2 - 2023-04-05
- Moved repo to TidierOrg
## v0.7.1 - 2023-04-01
- Added `@drop_na()` with optional column selection parameter
- Re-exported `lead()` and `lag()` from ShiftedArrays.jl and added both to the do-not-vectorize list
- Bug fix: Fixed `ntile()` condition for when all elements are missing
## v0.7.0 - 2023-03-27
- Added `@count()` and `@tally()`
- Added `@bind_rows()` and `@bind_cols()`
- Added `@clean_names()` to mimic R's `janitor::clean_names()` by wrapping the Cleaner.jl package
- Added support for backticks to select columns containing spaces.
- Added support for `ntile()`, which is on the do-not-vectorize list because it takes in a vector and returns a vector.
- Bug fix: removed selection helpers (`startswith`, `contains`, and `endswith` from the do-not-vectorize list).
## v0.6.0 - 2023-03-18
- Added `@distinct()`. It behaves slightly differently from dplyr when provided arguments in that it returns all columns, not just the selected ones.
- Added support for `n()` and `row_number()`.
- Added support for negative selection helper functions (e.g., `-contains("a")`).
- Added support for negative selection using `!` (e.g., `!a`, `!(a:b)`, `!contains("a")`).
- In `@pivot_longer()`, the `names_to` and `values_to` arguments now also support strings (in addition to bare unquoted names).
- In `@pivot_wider()`, the `names_from` and `values_from` arguments now also support strings (in addition to bare unquoted names).
- Bug fix: `@mutate(a = 1)` or any scalar previously errored because the `1` was being wrapped inside a `QuoteNode`. Now, 1 is correctly broadcasted.
- Bug fix: `@slice(df, 1,2,1)` previously only returned rows 1 and 2 only (and not 1 again). `@slice(df, 1,2,1)` now returns rows 1, 2, and 1 again.
- Bug fix: added `repeat()` to the do-not-vectorize list.
## v0.5.0 - 2023-03-10
- Added `@pivot_wider()` and `@pivot_wider()`.
- Added `if_else()` and `case_when()`.
- Updated documentation to include `Main.variable` example as an alternative syntax for interpolation.
- Simplified internal use of `subset()` by using keyword argument of `skipmissing = true` instead of using `coalesce(..., false)`.
- For developers: doctests can now be run locally using `runtests.jl`.
## v0.4.1 - 2023-03-05
- In addition to `in` being auto-vectorized as before, the second argument is automatically wrapped inside of `Ref(Set(arg2))` if not already done to ensure that it is evaluated correctly and fast. See: https://bkamins.github.io/julialang/2023/02/10/in.html for details. This same behavior is also implemented for `∈` and `∉`.
- Added documentation and docstrings for new `in` behavior with `@filter()` and `@mutate()`.
- Improved interpolation to support values and not just column names. Note: there is a change of behavior now for strings, which are treated as values and not as column names. Updated examples in the documentation webpage for interpolation.
- Bug fix: Re-exported `Cols()` because this is required for interpolated columns inside of `across()`. Previously, this was passing tests because `using RDatasets` was exporting `Cols()`.
## v0.4.0 - 2023-02-29
- Rewrote the parsing engine to remove all regular expression and string parsing
- Selection helpers now work within both `@select()` and `across()`.
- `@group_by()` now sorts the groups (similar to `dplyr`) and supports tidy expressions, for example `@group_by(df, d = b + c)`.
- `@slice()` now supports grouped data frames. For example, `@slice(gdf, 1:2)` will slice the first 2 rows from each group if `gdf` is a grouped data frame.
- All functions now work correctly with both grouped and ungrouped data frames following `dplyr` behavior. In other words, all functions retain grouping for grouped data frames (e.g., `ungroup = false`), other than `@summarize()`, which "peels off" one layer of grouping in a similar fashion to `dplyr`.
- Added `@ungroup` to explicitly remove grouping
- Added `@pull` macro to extract vectors
- Added joins: `@left_join()`, `@right_join()`, `@inner_join()`, and `@full_join()`, which support natural joins (i.e., where no `by` argument is given) or explicit joins by providing keys. All join functions ungroup both data frames before joining.
- Added `starts_with()` as an alias for Julia's `startswith()`, `ends_with()` as an alias for Julia's `endswith()`, and `matches()` as an alias for Julia's `Regex()`.
- Enabled interpolation of global user variables using `!!` similar to R's `rlang`.
- Enabled a `~` tilde operator to mark functions (or operators) as unvectorized so that Tidier.jl does not "auto-vectorize" them.
- Disabled `@info` logging of generated `DataFrames.jl` code. This code can be shown by setting an option using the new `Tidier_set()` function.
- Fixed a bug where functions were evaluated inside the module, which meant that user-provided functions would not work.
- `@filter()` now skips rows that evaluate to missing values.
- Re-export a handful of functions from the `DataFrames.jl` package.
- Added doctests to all examples in the docstrings.
## v0.3.0 - 2023-02-11
- Updated auto-vectorization so that operators are vectorized differently from other types of functions. This leads to nicer printing of the generated DataFrames.jl code. For example, 1 .+ 1 instead of (+).(1,1)
- The generated DataFrames.jl code now prints to the screen
- Updated the ordering of columns when using `across()` so that each column is summarized in consecutive columns (e.g., `Rating_mean`, `Rating_median`, `Budget_mean`, `Budget_median`) instead of being organized by function (e.g. of prior ordering: `Rating_mean`, `Budget_mean`, `Rating_median`, `Budget_median`)
- Added exported functions for `across()` and `desc()` as a placeholder for documentation, though these functions will throw an error if called because they should only be called inside of Tidier macros
- Corrected GitHub actions and added tests (contributed by @rdboyes)
- Bumped version to 0.3.0
## v0.2.0 - 2023-02-09
- Fixed bug with `@rename()` so that it supports multiple arguments
- Added support for numerical selection (both positive and negative) to `@select()`
- Added support for `@slice()`, including positive and negative indexing
- Added support for `@arrange()`, including the use of `desc()` to specify descending order
- Added support for `across()`, which has been confirmed to work with both `@mutate()`, `@summarize()`, and `@summarise()`.
- Updated auto-vectorization so that `@summarize` and `@summarise` do not vectorize any functions
- Re-export `Statistics` and `Chain.jl`
- Bumped version to 0.2.0
## v0.1.0 - 2023-02-07
- Initial release, version 0.1.0
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 223 | ```@meta
DocTestSetup= quote
using Tidier
end
```
## Reference - Exported functions
```@autodocs
Modules = [Tidier]
Private = false
```
## Reference - Internal functions
```@autodocs
Modules = [Tidier]
Public = false
```
| Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 12562 | # A Simple Data Analysis
## Loading Tidier.jl
Once you've installed Tidier.jl, you can load it by typing:
```julia
using Tidier
```
When you type this command, multiple things happen behind the scenes. First, the following packages are loaded and re-exported, which is to say that all of the exported macros and functions from these packages become available, TidierData, TidierPlots, TidierCats, TidierDates, TidierStrings, TidierText, TidierVest
Don't worry if you don't know what each of these packages does yet. We will cover them in package-specific documentation pages, which can be accessed below. For now, all you need to know is that these smaller packages are actually the ones doing all the work when you use Tidier.
There are also a few other packages whose exported functions also become available. We will discuss these in the individual package documentation, but the most important ones for you to know about are:
- The `DataFrame()` function from the DataFrames package is re-exported so that you can create a data frame without loading the DataFrames package.
- The `@chain()` macro from the Chain package is re-exported, so you chain together functions and macros
- The entire Statistics package is re-exported so you can access summary statistics like `mean()` and `median()`
- The CategoricalArrays package is re-exported so you can access the `categorical()` function to define categorical variables
- The Dates package is re-exported to enable support for variables containing dates
## What can Tidier.jl do?
Before we dive into an introduction of Julia and a look into how Tidier.jl works, it's useful to show you what Tidier.jl can do. First, we will read in some data, and then we will use Tidier.jl to chain together some data analysis operations.
### First, let's read in the "Visits to Physician Office" dataset.
This dataset comes with the Ecdat R package and and is titled OFP. [You can read more about the dataset here](https://rdrr.io/cran/Ecdat/man/OFP.html). To read in datasets packaged with commonly used R packages, we can use the RDatasets Julia package.
```julia
julia> using Tidier, RDatasets
julia> ofp = dataset("Ecdat", "OFP")
4406×19 DataFrame
Row │ OFP OFNP OPP OPNP EMR Hosp NumChro ⋯
│ Int32 Int32 Int32 Int32 Int32 Int32 Int32 ⋯
──────┼────────────────────────────────────────────────────
1 │ 5 0 0 0 0 1 ⋯
2 │ 1 0 2 0 2 0
3 │ 13 0 0 0 3 3
4 │ 16 0 5 0 1 1
5 │ 3 0 0 0 0 0 ⋯
6 │ 17 0 0 0 0 0
7 │ 9 0 0 0 0 0
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
4401 │ 12 4 1 0 0 0
4402 │ 11 0 0 0 0 0 ⋯
4403 │ 12 0 0 0 0 0
4404 │ 10 0 20 0 1 1
4405 │ 16 1 0 0 0 0
4406 │ 0 0 0 0 0 0 ⋯
13 columns and 4393 rows omitted
```
Note that a preview of the data frame is automatically printed to the console. The reason this happens is that when you run this code line by line, the output of each line is printed to the console. This is convenient because it saves you from having to directly print the newly created `ofp` to the console in order to get a preview for what it contains. If this code were bundled in a code chunk (such as in a Jupyter notebook), then only the final line of the code chunk would be printed.
The exact number of rows and columns that print will depend on the physical size of the REPL window. If you resize the console (e.g., in VS Code), Julia will adjust the number of rows/columns accordingly.
If you want to suppress the output, you can add a `;` at the end of this statement, like this:
```julia
julia> ofp = dataset("Ecdat", "OFP"); # Nothing prints
```
### With the OFP dataset loaded, let's ask some basic questions.
#### What does the dataset consist of?
We can use `@glimpse()` to find out the columns, data types, and peek at the first few values contained within the dataset.
```julia
julia> @glimpse(ofp)
Rows: 4406
Columns: 19
.OFP Int32 5, 1, 13, 16, 3, 17, 9, 3, 1, 0, 0, 44, 2, 1, 19,
.OFNP Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0,
.OPP Int32 0, 2, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0,
.OPNP Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
.EMR Int32 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.Hosp Int32 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
.NumChron Int32 2, 2, 4, 2, 2, 5, 0, 0, 0, 0, 1, 5, 1, 1, 1, 0, 1,
.AdlDiff Int32 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
.Age Float64 6.9, 7.4, 6.6, 7.6, 7.9, 6.6, 7.5, 8.7, 7.3, 7.8,
.Black CategoricalValue{String, UInt8}yes, no, yes, no, no, no, no, no,
.Sex CategoricalValue{String, UInt8}male, female, female, male, female
.Married CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, no, no
.School Int32 6, 10, 10, 3, 6, 7, 8, 8, 8, 8, 8, 15, 8, 8, 12, 8
.FamInc Float64 2.881, 2.7478, 0.6532, 0.6588, 0.6588, 0.3301, 0.8
.Employed CategoricalValue{String, UInt8}yes, no, no, no, no, no, no, no, n
.Privins CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, yes, y
.Medicaid CategoricalValue{String, UInt8}no, no, yes, no, no, yes, no, no,
.Region CategoricalValue{String, UInt8}other, other, other, other, other,
.Hlth CategoricalValue{String, UInt8}other, other, poor, poor, other, p
```
If you're wondering why we need to place a `@` at the beginning of the word so that it reads `@glimpse()` rather than `glimpse()`, that's because including a `@` at the beginning denotes that this is a special type of function known as a macro. Macros have special capabilities in Julia, and many Tidier.jl functions that operate on data frames are implemented as macros. In this specific instance, we could have implemented `@glimpse()` without making use of any of the macro capabilities. However, for the sake of consistency, we have kept `@glimpse()` as a macro so that you can remember a basic rule of thumb: if Tidier.jl operates on a dataframe, then we will use macros rather than functions. The TidierPlots.jl package is a slight exception to this rule in that it is nearly entirely implemented as functions (rather than macros), and this will be described more in the TidierPlots documentation.
#### Can we clean up the names of the columns?
To avoid having to keep track of capitalization, data analysts often prefer column names to be in snake_case rather than TitleCase. Let's quickly apply this transformation to the `ofp` dataset.
```julia
julia> ofp = @clean_names(ofp)
julia> @glimpse(ofp)
Rows: 4406
Columns: 19
.ofp Int32 5, 1, 13, 16, 3, 17, 9, 3, 1, 0, 0, 44, 2, 1, 19,
.ofnp Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0,
.opp Int32 0, 2, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0,
.opnp Int32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
.emr Int32 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.hosp Int32 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
.num_chron Int32 2, 2, 4, 2, 2, 5, 0, 0, 0, 0, 1, 5, 1, 1, 1, 0, 1,
.adl_diff Int32 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
.age Float64 6.9, 7.4, 6.6, 7.6, 7.9, 6.6, 7.5, 8.7, 7.3, 7.8,
.black CategoricalValue{String, UInt8}yes, no, yes, no, no, no, no, no,
.sex CategoricalValue{String, UInt8}male, female, female, male, female
.married CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, no, no
.school Int32 6, 10, 10, 3, 6, 7, 8, 8, 8, 8, 8, 15, 8, 8, 12, 8
.fam_inc Float64 2.881, 2.7478, 0.6532, 0.6588, 0.6588, 0.3301, 0.8
.employed CategoricalValue{String, UInt8}yes, no, no, no, no, no, no, no, n
.privins CategoricalValue{String, UInt8}yes, yes, no, yes, yes, no, yes, y
.medicaid CategoricalValue{String, UInt8}no, no, yes, no, no, yes, no, no,
.region CategoricalValue{String, UInt8}other, other, other, other, other,
.hlth CategoricalValue{String, UInt8}other, other, poor, poor, other, p
```
Now that our column names are cleaned up, we can ask some basic analysis questions.
#### What is the mean age for people in each of the regions
Because age is measured in decades according to the [dataset documentation](https://rdrr.io/cran/Ecdat/man/OFP.html)), we will multiply everyone's age by 10 before we calculate the median.
```julia
julia> @chain ofp @group_by(region) @summarize(mean_age = mean(age * 10))
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
Overall, the mean age looks pretty similar across regions. The fact that we were able to calculate each region's age also reveals that there are no missing values. Any region containing a missing value would have returned `missing` instead of a number.
The `@chain` macro, which is defined in the Chain package and re-exported by Tidier, allows us to pipe together multiple operations sequentially from left to right. In the example above, the `ofp` dataset is being piped into the first argument of the `@group_by()` macro, the result of which is then being piped into the `@summarize()` macro, which is then automatically removing the grouping and returning the result.
For grouped data frames, `@summarize()` behaves differently than other Tidier.jl macros: `@summarize()` removes one layer of grouping. Because the data frame was only grouped by one column, the result is no longer grouped. Had we grouped by multiple columns, the result would still be grouped by all but the last column. The other Tidier.jl macros keep the data grouped. Grouped data frames can be ungrouped using `@ungroup()`. If you apply a new `@group_by()` macro to an already-grouped data frame, then the newly specified groups override the old ones.
When we use the `@chain` macro, we are taking advantage of the fact that Julia macros can either be called using parentheses syntax, where each argument is separated by a comma, or they can be called with a spaced syntax where no parentheses are used. In the case of Tidier.jl macros, we always use the parentheses syntax, which makes is very easy to use the spaced syntax when working with `@chain`.
An alternate way of calling `@chain` using the parentheses syntax is as follows. From a purely stylistic perspective, I don't recommend this because it adds a number of extra characters. However, if you're new to Julia, it's worth knowing about this form so that you realize that there is no magic involved when working with macros.
```julia
julia> @chain(ofp, @group_by(region), @summarize(mean_age = mean(age * 10)))
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
On the other hand, either of these single-line expressions can get quite hard-to-read as more and more expressions are chained together. To make this easier to handle, `@chain` supports multi-line expressions using `begin-end` blocks like this:
```julia
julia> @chain ofp begin
@group_by(region)
@summarize(mean_age = mean(age * 10))
end
4×2 DataFrame
Row │ region mean_age
│ Cat… Float64
─────┼───────────────────
1 │ other 73.987
2 │ midwest 74.0769
3 │ noreast 73.9343
4 │ west 74.1165
```
This format is convenient for interactive data analysis because you can easily comment out individual operations and view the result. For example, if we wanted to know the mean age for the overall dataset, we could simply comment out the `@group_by()` operation.
```julia
julia> @chain ofp begin
# @group_by(region)
@summarize(mean_age = mean(age * 10))
end
1×1 DataFrame
Row │ mean_age
│ Float64
─────┼──────────
1 │ 74.0241
``` | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"MIT"
] | 1.4.0 | 23b118d06bb897dec5c972af0c39458799e8cb52 | docs | 4214 | # From data to plots
## Exploring the penguins data
A very well known dataset in the R community is the `palmerpenguins` dataset. It contains data about penguins, including their species and some ecological measurements. Let's load the data and take a look at it.
```julia
using Tidier #exports TidierPlots.jl and others
using DataFrames
using PalmerPenguins
penguins = dropmissing(DataFrame(PalmerPenguins.load()));
```
The `penguins` DataFrame contains the following columns (from `TiderData.jl` let us take a glimpse):
```julia
@glimpse penguins
```
```
Rows: 333
Columns: 7
.species InlineStrings.String15Adelie, Adelie, Adelie, Adelie, Adelie, Ade
.island InlineStrings.String15Torgersen, Torgersen, Torgersen, Torgersen,
.bill_length_mm Float64 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38
.bill_depth_mm Float64 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21
.flipper_length _mmInt64 181, 186, 195, 193, 190, 181, 195, 182, 191, 19
.body_mass_g Int64 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 38
.sex InlineStrings.String7male, female, female, female, male, female,
```
## A simple `TiderPlots.jl` scatterplot
Now the experience to plot using `TidierPlots.jl` will be as seamless as in R. Let's start by plotting the `bill_length_mm` and `bill_depth_mm` columns.
```julia
ggplot(penguins, @aes(x=bill_length_mm, y=bill_depth_mm, color = species))+
geom_point()
```

This is *not* R code, its pure Julia. And if you are familiar with R, you will find it very similar. The `ggplot` function creates a plot object, and the `geom_point` function adds a scatter layer on top of it. The `@aes` macro is used to map the variables of the `penguins` DataFrame to the aesthetics of the plot. In this case, we are mapping the `bill_length_mm` column to the x-axis, the `bill_depth_mm` column to the y-axis, and the `species` column to the color of the points. The output is a scatter plot of the `bill_length_mm` and `bill_depth_mm` columns, colored by the `species` column.
Now, `@aes()` is used to map variables in your data to visual properties (aesthetics) of the plot. These aesthetics can include things like position (x and y coordinates), color, shape, size, etc. Each aesthetic is a way of visualizing a variable or a statistical transformation of a variable.
Aesthetics are specified in the form aes(aesthetic = variable), where aesthetic is the name of the aesthetic, and variable is the column name in your data that you want to map to the aesthetic. The variable names do not need to be preceded by a colon. This is the first difference you might encounter when using `TidierPlots.jl`, and the best part is that it also accepts multiple forms for `aes` specification, none of which is exactly the same as ggplot2.
Option 1: `@aes` macro, aes as in ggplot2:
```julia
@aes(x = x, y = y)
```
Option 2: `@es`:
```julia
@es(x = x, y = y)
```
Option 3: `aes` function, julia-style columns:
```julia
aes(x = :x, y = :y)
```
Option 4: `aes` function, strings for columns:
```julia
aes(x = "x", y = "y")
```
## Customizing the plot
Moving from general rules, to specific plots, let us first explore `geom_point()`
`geom_point()` is used to create a scatter plot. It is typically used with aesthetics mapping variables to x and y positions, and optionally to other aesthetics like color, shape, and size. `geom_point()` can be used to visualize the relationship between two continuous variables, or a continuous and a discrete variable. The following visuals features can be changed within geom_point(), shape, size, stroke, strokecolour, and alpha.
```julia
ggplot(penguins, @aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point(
size = 20,
stroke = 1,
strokecolor = "black",
alpha = 0.2) +
labs(x = "Bill Length (mm)", y = "Bill Width (mm)") +
lims(x = c(40, 60), y = c(15, 20)) +
theme_minimal()
```

To see more about the `TidierPlots.jl` package, you can visit the [documentation](https://tidierorg.github.io/TidierPlots.jl/latest/). | Tidier | https://github.com/TidierOrg/Tidier.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1865 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior: parseonly
using Behavior.Gherkin: ParseOptions
argslength = length(ARGS)
if argslength !== 1 && argslength !== 2
println("Usage: julia parseonly.jl <root-directory> [--experimental]")
exit(1)
end
use_experimental = argslength == 2 && ARGS[2] == "--experimental"
parseoptions = ParseOptions(allow_any_step_order=true, use_experimental=use_experimental)
results = parseonly(ARGS[1], parseoptions=parseoptions)
num_files = length(results)
num_success = count(x -> x.success === true, results)
if num_success === num_files
println("All good!")
else
num_failed = num_files - num_success
println("Files failed parsing:")
for rs in results
print(rs.filename)
if rs.success
println(": OK")
else
if use_experimental
println(": NOT OK")
println(rs.result)
else
println()
println(" reason: ", rs.result.reason)
println(" expected: ", rs.result.expected)
println(" actual: ", rs.result.actual)
println(" line $(rs.result.linenumber): $(rs.result.line)")
end
end
end
println("Parsing failed: ", num_failed)
println("Total number of files: ", num_files)
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1073 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior
using Behavior.Gherkin
# In case you want a more lenient parser, you can do something like this.
# For instance, the below options allows the Given/When/Then steps to be in any order
# exitcode = runspec(; parseoptions=ParseOptions(allow_any_step_order=true)) ? 0 : - 1
const use_experimental = length(ARGS) == 1 && ARGS[1] == "--experimental"
const options = Gherkin.ParseOptions(use_experimental=use_experimental)
exitcode = runspec(parseoptions=options) ? 0 : - 1
exit(exitcode) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1067 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior: suggestmissingsteps, ParseOptions
if length(ARGS) !== 2 && length(ARGS) !== 3
println("Usage: julia suggeststeps.jl <feature file> <steps root path> [--experimental]")
exit(1)
end
featurefile = ARGS[1]
stepsrootpath = ARGS[2]
const use_experimental = length(ARGS) == 3 && ARGS[3] == "--experimental"
parseoptions = ParseOptions(allow_any_step_order=true, use_experimental=use_experimental)
suggestmissingsteps(featurefile, stepsrootpath, parseoptions=parseoptions) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 280 | using Documenter, Behavior
makedocs(
sitename="Behavior",
pages = [
"Home" => "index.md",
"Usage" => "usage.md",
"Tutorial" => "tutorial.md",
"Functions" => "functions.md",
"Gherkin Experimental" => "gherkin_experimental.md"
]) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1685 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior: @given, @when, @then, @expect
@given("that the context variable :x has value 1") do context
context[:x] = 1
end
@when("the context variable :x is compared with 1") do context
v = context[:x] == 1
context[:result] = v
end
@then("the comparison is true") do context
@expect context[:result]
end
@when("this step fails") do context
@expect 1 == 2
end
@then("this step is skipped") do context
@assert false "This code is never executed, because the previous step failed."
end
@when("this step throws an exception, the result is \"Unknown exception\"") do context
throw(ErrorException("This is an unknown exception"))
end
# This step is commented to show what happens when a step definition is not found.
#@given("a step that has no corresponding step definition in steps/spec.jl") do context
#
#end
@when("it is executed") do context
@assert false "This step should be skipped, because the previous failed."
end
@then("it fails with error \"No matching step\"") do context
@assert false "This step should be skipped, because a previous step failed."
end
| Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1832 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior: @given, @when, @then, @expect
@given("some precondition which does nothing") do context
end
@when("we perform a no-op step") do context
end
@then("the scenario as a whole succeeds") do context
end
@when("a step has more than one matching step definition") do context
end
@when("a step has more than one matching step definition") do context
end
# This demonstrates the use of a String parameter, which will match
# more than one step.
# NOTE: At the time of writing, only String parameters are supported.
# In the near future, one will be able to write {Int} directly,
# and the argument `vstr` will be of type `Int` instead.
@when("foo is set to value {String}") do context, vstr
v = parse(Int, vstr)
context[:foo] = v
end
@then("foo is greater than zero") do context
@expect context[:foo] > 0
end
@then("foo is less than zero") do context
@expect context[:foo] < 0
end
@when("we need multiple lines of text") do context
docstring = context[:block_text]
@expect docstring == """
This is line 1.
This is line 2."""
end
@then("we can use doc strings like this") do context
docstring = context[:block_text]
@expect docstring == """
And like
this."""
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 1299 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module Behavior
include("Gherkin.jl")
include("Selection.jl")
"Abstraction for presenting results from scenario steps."
abstract type Presenter end
"Presenting results from scenario steps as they occur."
abstract type RealTimePresenter <: Presenter end
include("stepdefinitions.jl")
include("exec_env.jl")
include("executor.jl")
include("asserts.jl")
include("presenter.jl")
include("terse_presenter.jl")
include("result_accumulator.jl")
include("engine.jl")
include("runner.jl")
export @given, @when, @then, @expect, @fail, @beforescenario, @afterscenario, runspec
export @beforefeature, @afterfeature, @beforeall, @afterall
export suggestmissingsteps
export TerseRealTimePresenter, ColorConsolePresenter
end # module
| Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 25891 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module Gherkin
import Base: ==, hash
export Scenario, ScenarioOutline, Feature, FeatureHeader, Given, When, Then, ScenarioStep
export parsefeature, hastag, ParseOptions
"A step in a Gherkin Scenario."
abstract type ScenarioStep end
"Equality for scenario steps is their text and their block text."
function ==(a::T, b::T) where {T <: ScenarioStep}
a.text == b.text && a.block_text == b.block_text
end
"Hash scenario steps by their text and block text."
hash(a::T, h::UInt) where {T <: ScenarioStep} = hash((a.text, a.block_text), h)
const DataTableRow = Vector{String}
const DataTable = Array{DataTableRow, 1}
"A Given scenario step."
struct Given <: ScenarioStep
text::String
block_text::String
datatable::DataTable
Given(text::AbstractString; block_text = "", datatable=DataTable()) = new(text, block_text, datatable)
end
"A When scenario step."
struct When <: ScenarioStep
text::String
block_text::String
datatable::DataTable
When(text::AbstractString; block_text="", datatable=DataTable()) = new(text, block_text, datatable)
end
"A Then scenario step."
struct Then <: ScenarioStep
text::String
block_text::String
datatable::DataTable
Then(text::AbstractString; block_text="", datatable=DataTable()) = new(text, block_text, datatable)
end
"An AbstractScenario is a Scenario or a Scenario Outline in Gherkin."
abstract type AbstractScenario end
"""
A Gherkin Scenario.
# Example
```
@tag1 @tag2
Scenario: Some description
Given some precondition
When some action is taken
Then some postcondition holds
```
becomes a `Scenario` struct with description "Some description", tags `["@tag1", "@tag2"]`, and
steps
```[
Given("some precondition"),
When("some action is taken"),
Then("some postcondition holds")
]```.
"""
struct Scenario <: AbstractScenario
description::String
tags::Vector{String}
steps::Vector{ScenarioStep}
long_description::String
function Scenario(description::AbstractString, tags::Vector{String}, steps::Vector{ScenarioStep}; long_description::AbstractString = "")
new(description, tags, steps, long_description)
end
end
"""
A `ScenarioOutline` is a scenario with multiple examples.
# Example
```
@tag1 @tag2
Scenario: Some description
Given some precondition
When some action is taken
Then some postcondition holds
```
"""
struct ScenarioOutline <: AbstractScenario
description::String
tags::Vector{String}
steps::Vector{ScenarioStep}
placeholders::Vector{String}
examples::AbstractArray
long_description::String
function ScenarioOutline(
description::AbstractString,
tags::Vector{String},
steps::Vector{ScenarioStep},
placeholders::AbstractVector{String},
examples::AbstractArray;
long_description::AbstractString = "")
new(description, tags, steps, placeholders, examples, long_description)
end
end
struct Background
description::String
steps::Vector{ScenarioStep}
long_description::String
Background(description::AbstractString, steps::Vector{ScenarioStep}; long_description::String = "") = new(description, steps, long_description)
end
Background() = Background("", ScenarioStep[])
"""
A FeatureHeader has a (short) description, a longer description, and a list of applicable tags.
# Example
```
@tag1 @tag2
Feature: This is a description
This is
a longer description.
```
"""
struct FeatureHeader
description::String
long_description::Vector{String}
tags::Vector{String}
end
"""
A Feature has a feature header and a list of Scenarios and Scenario Outlines.
"""
struct Feature
header::FeatureHeader
background::Background
scenarios::Vector{AbstractScenario}
Feature(header::FeatureHeader, background::Background, scenarios::Vector{<:AbstractScenario}) = new(header, background, scenarios)
Feature(header::FeatureHeader, scenarios::Vector{<:AbstractScenario}) = new(header, Background(), scenarios)
Feature(feature::Feature, newscenarios::Vector{<:AbstractScenario}) = new(feature.header, feature.background, newscenarios)
end
"""
ParseOptions lets the user control certain behavior of the parser, making it more lenient towards errors.
"""
struct ParseOptions
allow_any_step_order::Bool
use_experimental::Bool
function ParseOptions(;
allow_any_step_order::Bool = false,
use_experimental::Bool = false)
new(allow_any_step_order, use_experimental)
end
end
"""
ByLineParser takes a long text and lets the Gherkin parser work line by line.
"""
mutable struct ByLineParser
current::String
rest::Vector{String}
isempty::Bool
linenumber::Union{Nothing, Int}
options::ParseOptions
function ByLineParser(text::String, options::ParseOptions = ParseOptions())
lines = split(text, "\n")
current = lines[1]
rest = lines[2:end]
new(current, rest, false, 1, options)
end
end
"""
consume!(p::ByLineParser)
The current line has been consumed by the Gherkin parser.
"""
function consume!(p::ByLineParser)
if isempty(p.rest)
p.current = ""
p.isempty = true
p.linenumber = nothing
else
p.current = p.rest[1]
p.rest = p.rest[2:end]
p.linenumber += 1
end
end
"A good or bad result when parsing Gherkin."
abstract type ParseResult{T} end
"A successful parse that results in the expected value."
struct OKParseResult{T} <: ParseResult{T}
value::T
end
"An unsuccessful parse that results in an error."
struct BadParseResult{T} <: ParseResult{T}
reason::Symbol
expected::Symbol
actual::Symbol
linenumber::Union{Nothing, Int}
line::String
function BadParseResult{T}(reason::Symbol, expected::Symbol, actual::Symbol, parser::ByLineParser) where {T}
new(reason, expected, actual, parser.linenumber, parser.current)
end
function BadParseResult{T}(reason::Symbol, expected::Symbol, actual::Symbol, linenumber::Int, line::String) where {T}
new(reason, expected, actual, linenumber, line)
end
end
function BadParseResult{T}(inner::BadParseResult{K}) where {T, K}
BadParseResult{T}(inner.reason, inner.expected, inner.actual, inner.linenumber, inner.line)
end
"Was the parsing successful?"
issuccessful(::OKParseResult{T}) where {T} = true
issuccessful(::BadParseResult{T}) where {T} = false
"""
lookaheadfor(byline::ByLineParser, istarget::Function, isallowedprefix::Function)
Look ahead to see if all lines match isallowedprefix until we reach a line
matching istarget.
Example: Here the tags mark the start of the scenario
@tag1
@tag2
@tag3
Scenario: Some scenario
`lookaheadfor(byline, iscurrentlineasection, istagline) -> true`
Example: Here the tags _do_ not mark the start of the scenario
@tag1
@tag2
@tag3
This is some free text.
Scenario: Some scenario
`lookaheadfor(byline, iscurrentlineasection, istagline) -> false`
"""
function lookaheadfor(byline::ByLineParser, istarget::Function, isallowedprefix::Function) :: Bool
for nextline in byline.rest
if istarget(nextline)
return true
end
if isallowedprefix(nextline)
continue
end
# The line matched neither istarget or isallowedprefix.
# Therefore the current line did not mark the beginning of an
# istarget line.
break
end
false
end
"""
@untilemptyline(byline::Symbol,)
Execute the function for each line, until an empty line is encountered, or no further lines are
available.
"""
macro untilemptyline(ex::Expr)
esc(quote
while !isempty(byline)
if iscurrentlineempty(byline)
consume!(byline)
break
end
$ex
consume!(byline)
end
end)
end
function iscurrentlineasection(s::String)
m = match(r"(Background|Scenario|Scenario Outline|Examples):.*", s)
m !== nothing
end
iscomment(s::AbstractString) = startswith(strip(s), "#")
"""
@untilnextsection(byline::Symbol,)
Execute the function for each line, until another section is encountered, or no further lines are
available.
A section is another Scenario, Scenario Outline.
Also skips empty lines and comment lines.
"""
macro untilnextsection(ex::Expr)
esc(quote
while !isempty(byline)
if iscurrentlineasection(byline.current)
break
end
if istagsline(byline.current) && lookaheadfor(byline, iscurrentlineasection, x -> istagsline(x) || iscomment(x))
break
end
if iscurrentlineempty(byline)
consume!(byline)
continue
end
$ex
consume!(byline)
end
end)
end
isstoppingline(pattern::Regex, s::AbstractString) = match(pattern, s) !== nothing
"""
@untilnextstep(byline::Symbol[, steps])
Execute the function for each line, until a step is encountered, or no further lines are
available.
Also skips empty lines and comment lines.
The optional parameter steps can specify exactly which keywords to stop at.
"""
macro untilnextstep(ex::Expr, steps = ["Given", "When", "Then", "And", "But", "Scenario"])
esc(quote
stepsregex = join($steps, "|")
regex = "^($(stepsregex))"
r = Regex(regex)
while !isempty(byline)
if isstoppingline(r, strip(byline.current))
break
end
$ex
consume!(byline)
end
end)
end
"""
ignoringemptylines!(f::Function, byline::ByLineParser)
Execute function `f` for all non-empty lines, until the end of the file.
"""
macro ignoringemptylines(ex::Expr)
esc(quote
while !isempty(byline)
if iscurrentlineempty(byline)
consume!(byline)
continue
end
$ex
end
end)
end
"""
Override the normal `isempty` method for `ByLineParser`.
"""
Base.isempty(p::ByLineParser) = p.isempty
"""
iscurrentlineempty(p::ByLineParser)
Check if the current line in the parser is empty.
"""
iscurrentlineempty(p::ByLineParser) = strip(p.current) == "" || startswith(strip(p.current), "#")
function consumeemptylines!(p::ByLineParser)
while !isempty(p) && iscurrentlineempty(p)
consume!(p)
end
end
"""
istagsline(current::String)
True if this is a line containing only tags, false otherwise.
"""
function istagsline(current::String)
tagsandwhitespace = split(current, r"\s+")
thesetags = filter(x -> !isempty(x), tagsandwhitespace)
# the all function will match an empty list, which would happen on blank lines,
# so we have to manually check for an empty list.
!isempty(thesetags) && all(startswith("@"), thesetags)
end
"""
parsetags!(byline::ByLineParser)
Parse all tags on form @tagname until a non-tag is encountered. Return a possibly empty list of
tags.
"""
function parsetags!(byline::ByLineParser) :: Vector{String}
tags = String[]
while !isempty(byline)
if iscomment(byline.current)
consume!(byline)
continue
end
tagsandwhitespace = split(byline.current, r"\s+")
thesetags = filter(x -> !isempty(x), tagsandwhitespace)
istags = all(startswith("@"), thesetags)
# Break if something that isn't a list of tags is encountered.
if !istags
break
end
consume!(byline)
append!(tags, thesetags)
end
tags
end
"""
parsefeatureheader!(byline::ByLineParser) :: ParseResult{FeatureHeader}
Parse a feature header and return the feature header on success, or a bad parse result on failure.
# Example of a feature header
```
@tag1
@tag2
Feature: Some description
A longer description
on multiple lines.
```
"""
function parsefeatureheader!(byline::ByLineParser) :: ParseResult{FeatureHeader}
feature_tags = parsetags!(byline)
description_match = match(r"Feature: (?<description>.+)", byline.current)
if description_match == nothing
return BadParseResult{FeatureHeader}(:unexpected_construct, :feature, :scenario, byline)
end
consume!(byline)
# Consume all lines after the `Feature:` row as a long description, until a keyword is
# encountered.
long_description_lines = []
@untilnextsection begin
push!(long_description_lines, strip(byline.current))
end
feature_header = FeatureHeader(description_match[:description],
long_description_lines,
feature_tags)
return OKParseResult{FeatureHeader}(feature_header)
end
"""
parseblocktext!(byline::ByLineParser)
Parse a block of text that may occur as part of a scenario step.
A block of text is multiple lines of text surrounded by three double quotes.
For example, this comment is a valid block text.
Precondition: This function assumes that the current line is the starting line of three double
quotes.
"""
function parseblocktext!(byline::ByLineParser)
# Consume the current line with three double quotes """
consume!(byline)
block_text_lines = []
# Consume and save all lines, until we reach one that is the ending line of three double quotes.
@untilnextstep begin
line = byline.current
push!(block_text_lines, strip(line))
end ["\"\"\""]
consume!(byline)
return OKParseResult{String}(join(block_text_lines, "\n"))
end
"""
parsetable!(byline::ByLineParser)
Parse a table delimited by |.
# Example
```Gherkin
Scenario: Table
Given a data table
| header 1 | header 2 |
| foo | bar |
| baz | quux |
```
If `parsetable!` is called on the line containing the headers,
then all lines of the table will be returned.
"""
function parsetable!(byline::ByLineParser) :: ParseResult{DataTable}
table = DataTable()
while !isempty(byline)
# Skip comments and empty lines
if iscurrentlineempty(byline) || iscomment(byline.current)
consume!(byline)
continue
end
# If the line does not contain a | otherwise, then the last
# line was the last table line. Break out.
line = strip(byline.current)
if !startswith(line, "|")
break
end
# Each variable is in a column, separated by |
row = split(line, "|")
# The split will have two empty elements at either end, which are before and
# after the | separators. We need to strip them away.
row = row[2:length(row) - 1]
# Remove surrounding whitespace around each value.
row = map(strip, row)
push!(table, row)
consume!(byline)
end
OKParseResult{DataTable}(table)
end
"""
parsescenariosteps!(byline::ByLineParser)
Parse all scenario steps following a Scenario or Scenario Outline.
"""
function parsescenariosteps!(byline::ByLineParser; valid_step_types::String = "Given|When|Then")
steps = []
allowed_step_types = Set([Given, When, Then])
@untilnextsection begin
# Match Given, When, or Then on the line, or match a block text.
# Note: This is a place where English Gherkin is hard coded.
step_match = match(Regex("(?<step_type>$(valid_step_types)|And|But|\\*) (?<step_definition>.+)"), byline.current)
block_text_start_match = match(r"\"\"\"", byline.current)
data_table_start_match = match(r"^\|", strip(byline.current))
# A line must either be a new scenario step, data table, or a block text following the previous scenario
# step.
if step_match === nothing && block_text_start_match === nothing && data_table_start_match === nothing
return BadParseResult{Vector{ScenarioStep}}(:invalid_step, :step_definition, :invalid_step_definition, byline)
end
if data_table_start_match !== nothing
table_result = parsetable!(byline)
prev_step_type = typeof(steps[end])
steps[end] = prev_step_type(steps[end].text; datatable=table_result.value)
continue
end
# The current line starts a block text. Parse the rest of the block text and continue with
# the following line.
# Note: The method parseblocktext!(byline) consumes the current line, so it doesn't need to
# be done here.
if block_text_start_match !== nothing
block_text_result = parseblocktext!(byline)
prev_step_type = typeof(steps[end])
steps[end] = prev_step_type(steps[end].text; block_text=block_text_result.value)
continue
end
# The current line is a scenario step.
# Check that the scenario step is allowed, and create a Given/When/Then object.
# Note that scenario steps must occur in the order Given, When, Then. A Given may not follow
# once a When has been seen, and a When must not follow when a Then has been seen.
# This is what `allowed_step_types` keeps track of.
# Options: allow_any_step_order disables this check.
step_type = step_match[:step_type]
step_definition = strip(step_match[:step_definition])
if step_type == "Given"
if !byline.options.allow_any_step_order && !(Given in allowed_step_types)
return BadParseResult{Vector{ScenarioStep}}(:bad_step_order, :NotGiven, :Given, byline)
end
step = Given(step_definition)
elseif step_type == "When"
if !byline.options.allow_any_step_order && !(When in allowed_step_types)
return BadParseResult{Vector{ScenarioStep}}(:bad_step_order, :NotWhen, :When, byline)
end
step = When(step_definition)
delete!(allowed_step_types, Given)
elseif step_type == "Then"
step = Then(step_definition)
delete!(allowed_step_types, Given)
delete!(allowed_step_types, When)
elseif step_type == "And" || step_type == "But" || step_type == "*"
# A scenario step may be And, in which case it's the same type as the previous step.
# This means that an And may not be the first scenario step.
if isempty(steps)
return BadParseResult{Vector{ScenarioStep}}(:leading_and, :specific_step, :and_step, byline)
end
last_specific_type = typeof(steps[end])
step = last_specific_type(step_definition)
end
push!(steps, step)
end
return OKParseResult{Vector{ScenarioStep}}(steps)
end
"""
parsescenario!(byline::ByLineParser)
Parse a Scenario or a Scenario Outline.
# Example of a scenario
```
@tag1 @tag2
Scenario: Some description
Given some precondition
When some action is taken
Then some postcondition holds
```
"""
function parsescenario!(byline::ByLineParser)
tags = parsetags!(byline)
# The scenario is either a Scenario or a Scenario Outline. Check for Scenario Outline first.
scenario_outline_match = match(r"Scenario Outline: (?<description>.+)", byline.current)
if scenario_outline_match != nothing
description = scenario_outline_match[:description]
consume!(byline)
# Parse longer descriptions
long_description_lines = []
@untilnextstep begin
push!(long_description_lines, strip(byline.current))
end
long_description = strip(join(long_description_lines, "\n"))
# Parse scenario outline steps.
steps_result = parsescenariosteps!(byline)
if !issuccessful(steps_result)
return steps_result
end
steps = steps_result.value
# Consume the Example: line.
consume!(byline)
# Get the name of each placeholder variable.
placeholders = split(strip(byline.current), "|")
placeholders = placeholders[2:length(placeholders) - 1]
placeholders = map(strip, placeholders)
placeholders = map(String, placeholders)
consume!(byline)
# Parse the examples, until we hit an empty line.
# TODO: This needs to be updated to allow for multiple Examples sections.
examples = Array{String,2}(undef, length(placeholders), 0)
@untilnextsection begin
# Each variable is in a column, separated by |
example = split(strip(byline.current), "|")
# The split will have two empty elements at either end, which are before and
# after the | separators. We need to strip them away.
example = example[2:length(example) - 1]
# Remove surrounding whitespace around each value.
example = map(strip, example)
examples = [examples example]
end
return OKParseResult{ScenarioOutline}(
ScenarioOutline(description, tags, steps, placeholders, examples; long_description=long_description))
end
# Here we parse a normal Scenario instead.
scenario_match = match(r"Scenario: (?<description>.+)", byline.current)
if scenario_match === nothing
return BadParseResult{Scenario}(:invalid_scenario_header, :scenario_or_outline, :invalid_header, byline)
end
description = scenario_match[:description]
consume!(byline)
# Parse longer descriptions
long_description_lines = []
@untilnextstep begin
push!(long_description_lines, strip(byline.current))
end
long_description = strip(join(long_description_lines, "\n"))
steps_result = parsescenariosteps!(byline)
if !issuccessful(steps_result)
return steps_result
end
steps = steps_result.value
OKParseResult{Scenario}(Scenario(description, tags, steps, long_description=long_description))
end
function parsebackground!(byline::ByLineParser) :: ParseResult{Background}
consumeemptylines!(byline)
background_match = match(r"Background:(?<description>.*)", byline.current)
if background_match !== nothing
consume!(byline)
steps_result = parsescenariosteps!(byline; valid_step_types = "Given")
if !issuccessful(steps_result)
return BadParseResult{Background}(steps_result.reason,
steps_result.expected,
steps_result.actual,
byline)
end
steps = steps_result.value
description = strip(background_match[:description])
return OKParseResult{Background}(Background(description, steps))
end
OKParseResult{Background}(Background())
end
"""
parsefeature(::String)
Parse an entire feature file.
# Example of a feature file
```
@tag1 @tag2
Feature: Some feature description
This is some block text,
and it may be multiple lines.
Scenario: Some scenario description
Given some precondition
When some action is taken
Then some postcondition holds
```
"""
function parsefeature(text::String; options :: ParseOptions = ParseOptions()) :: ParseResult{Feature}
byline = ByLineParser(text, options)
try
# Skip any leading blank lines or comments
consumeemptylines!(byline)
# The feature header includes all feature level tags, the description, and the long multiline
# description.
feature_header_result = parsefeatureheader!(byline)
if !issuccessful(feature_header_result)
return BadParseResult{Feature}(feature_header_result.reason,
feature_header_result.expected,
feature_header_result.actual,
byline)
end
# Optionally read a Background section
background_result = parsebackground!(byline)
if !issuccessful(background_result)
return BadParseResult{Feature}(background_result.reason,
background_result.expected,
background_result.actual,
byline)
end
background = background_result.value
# Each `parsescenario!`
scenarios = AbstractScenario[]
@ignoringemptylines begin
scenario_parse_result = parsescenario!(byline)
if issuccessful(scenario_parse_result)
push!(scenarios, scenario_parse_result.value)
else
return BadParseResult{Feature}(scenario_parse_result)
end
end
OKParseResult{Feature}(
Feature(feature_header_result.value, background, scenarios))
catch ex
println(ex)
BadParseResult{Feature}(:exception, :nothing, Symbol(ex), byline)
end
end
"""
hastag(feature::Feature, tag::String)
Check if a feature has a given tag.
# Example
```
feature = parsefeature(featuretext)
hassometag = hastag(feature, "@sometag")
```
"""
hastag(feature::Feature, tag::String) = tag in feature.header.tags
hastag(scenario::Scenario, tag::String) = tag in scenario.tags
include("GherkinExperimental.jl")
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 20225 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module Experimental
import Base: (|), show
using Behavior.Gherkin: Given, When, Then, Scenario, ScenarioStep, AbstractScenario
using Behavior.Gherkin: Feature, FeatureHeader, Background, DataTableRow, DataTable
using Behavior.Gherkin: ScenarioOutline
struct GherkinSource
lines::Vector{String}
GherkinSource(source::String) = new(split(source, "\n"))
end
notempty(s) = !isempty(strip(s))
notcomment(s) = !startswith(strip(s), "#")
defaultlinecondition(s) = notempty(s) && notcomment(s)
anyline(s) = true
"""
ParserInput
ParserInput encapsulates
- the Gherkin source
- the parser state (current line)
- the parser line operation (not implemented yet)
"""
struct ParserInput
source::GherkinSource
index::Int
condition::Function
ParserInput(source::String) = new(GherkinSource(source), 1, defaultlinecondition)
ParserInput(input::ParserInput, index::Int) = new(input.source, index, defaultlinecondition)
ParserInput(input::ParserInput, index::Int, condition::Function) = new(input.source, index, condition)
end
consume(input::ParserInput, n::Int) :: ParserInput = ParserInput(input, input.index + n)
function line(input::ParserInput) :: Tuple{Union{Nothing, String}, ParserInput}
nextline = findfirst(input.condition, input.source.lines[input.index:end])
if nextline === nothing
return nothing, input
end
strip(input.source.lines[input.index + nextline - 1]), consume(input, nextline)
end
"""
Parser{T}
A Parser{T} is a callable that takes a ParserInput and produces
a ParseResult{T}. The parameter T is the type of what it parses.
"""
abstract type Parser{T} end
"""
ParseResult{T}
A ParseResult{T} is the either successful or failed result of trying to parse
a value of T from the input.
"""
abstract type ParseResult{T} end
"""
OKParseResult{T}(value::T)
OKParseResult{T} is a successful parse result.
"""
struct OKParseResult{T} <: ParseResult{T}
value::T
newinput::ParserInput
end
"""
BadParseResult{T}
BadParseResult{T} is an abstract supertype for all failed parse results.
"""
abstract type BadParseResult{T} <: ParseResult{T} end
"""
isparseok(::ParseResult{T})
isparseok returns true for successful parse results, and false for unsuccessful ones.
"""
isparseok(::OKParseResult{T}) where {T} = true
isparseok(::BadParseResult{T}) where {T} = false
struct BadExpectationParseResult{T} <: BadParseResult{T}
expected::String
actual::String
newinput::ParserInput
end
struct BadUnexpectedParseResult{T} <: BadParseResult{T}
unexpected::String
newinput::ParserInput
end
struct BadInnerParseResult{S, T} <: BadParseResult{T}
inner::ParseResult{<:S}
newinput::ParserInput
end
function Base.show(io::IO, result::BadInnerParseResult{S, T}) where {S, T}
show(io, result.inner)
end
function Base.show(io::IO, mime::MIME"text/plain", result::BadInnerParseResult{S, T}) where {S, T}
show(io, mime, result.inner)
end
struct BadCardinalityParseResult{S, T} <: BadParseResult{T}
inner::BadParseResult{S}
atleast::Int
actual::Int
newinput::ParserInput
end
struct BadUnexpectedEOFParseResult{T} <: BadParseResult{T}
newinput::ParserInput
end
struct BadExpectedEOFParseResult{T} <: BadParseResult{T}
newinput::ParserInput
end
function Base.show(io::IO, result::BadExpectedEOFParseResult{T}) where {T}
s, _newinput = line(result.newinput)
println(io, "Expected EOF but found at line $(result.newinput.index):")
println(io)
println(io, " $s")
end
struct BadExceptionParseResult{T} <: BadParseResult{T}
ex
end
function Base.show(io::IO, result::BadExceptionParseResult{T}) where {T}
show(io, "Exception: $(result.ex)")
end
"""
Line(expected::String)
Line is a parser that recognizes when a line is exactly an expected value.
It returns the expected value if it is found, or a bad parse result if not.
"""
struct Line <: Parser{String}
expected::String
end
function (parser::Line)(input::ParserInput) :: ParseResult{String}
s, newinput = line(input)
if s === nothing
BadUnexpectedEOFParseResult{String}(input)
elseif s == parser.expected
OKParseResult{String}(parser.expected, newinput)
else
BadExpectationParseResult{String}(parser.expected, s, input)
end
end
"""
Optionally{T}
Optionally{T} parses a value of type T if the inner parser succeeds, or nothing
if the inner parser fails. It always succeeds.
"""
struct Optionally{T} <: Parser{Union{Nothing, T}}
inner::Parser{T}
end
function (parser::Optionally{T})(input::ParserInput) :: ParseResult{Union{Nothing, T}} where {T}
result = parser.inner(input)
if isparseok(result)
OKParseResult{Union{Nothing, T}}(result.value, result.newinput)
else
OKParseResult{Union{Nothing, T}}(nothing, input)
end
end
"""
optionalordefault(value, default)
Return `value` if it is not nothing, default otherwise.
"""
function optionalordefault(value, default)
if value === nothing
default
else
value
end
end
"""
Or{T}(::Parser{T}, ::Parser{T})
Or matches either of the provided parsers. It short-circuits.
"""
struct Or{T} <: Parser{T}
a::Parser{<:T}
b::Parser{<:T}
end
function (parser::Or{T})(input::ParserInput) :: ParseResult{<:T} where {T}
result = parser.a(input)
if isparseok(result)
result
else
parser.b(input)
end
end
(|)(a::Parser{T}, b::Parser{T}) where {T} = Or{T}(a, b)
"""
Transformer{S, T}
Transforms a parser of type S to a parser of type T, using a transform function.
"""
struct Transformer{S, T} <: Parser{T}
inner::Parser{S}
transform::Function
end
function (parser::Transformer{S, T})(input::ParserInput) where {S, T}
result = parser.inner(input)
if isparseok(result)
newvalue = parser.transform(result.value)
OKParseResult{T}(newvalue, result.newinput)
else
BadInnerParseResult{S, T}(result, input)
end
end
"""
Sequence{T}
Combine parsers into a sequence, that matches all of them in order.
"""
struct Sequence{T} <: Parser{Vector{T}}
inner::Vector{Parser{<:T}}
Sequence{T}(parsers...) where {T} = new(collect(parsers))
end
function (parser::Sequence{T})(input::ParserInput) :: ParseResult{Vector{T}} where {T}
values = Vector{T}()
currentinput = input
for p in parser.inner
result = p(currentinput)
if isparseok(result)
push!(values, result.value)
currentinput = result.newinput
else
return BadInnerParseResult{T, Vector{T}}(result, input)
end
end
OKParseResult{Vector{T}}(values, currentinput)
end
"""
Joined
Joins a sequence of strings together into one string.
"""
Joined(inner::Parser{Vector{String}}) = Transformer{Vector{String}, String}(inner, x -> join(x, "\n"))
"""
Repeating{T}
Repeats the provided parser until it no longer recognizes the input.
"""
struct Repeating{T} <: Parser{Vector{T}}
inner::Parser{T}
atleast::Int
Repeating{T}(inner::Parser{T}; atleast::Int = 0) where {T} = new(inner, atleast)
end
function (parser::Repeating{T})(input::ParserInput) :: ParseResult{Vector{T}} where {T}
values = Vector{T}()
currentinput = input
while true
result = parser.inner(currentinput)
if !isparseok(result)
cardinality = length(values)
if cardinality < parser.atleast
return BadCardinalityParseResult{T, Vector{T}}(result, parser.atleast, cardinality, input)
end
break
end
push!(values, result.value)
currentinput = result.newinput
end
OKParseResult{Vector{T}}(values, currentinput)
end
"""
LineIfNot
Consumes a line if it does not match a given parser.
"""
struct LineIfNot <: Parser{String}
inner::Parser{<:Any}
linecondition::Function
LineIfNot(inner::Parser{<:Any}) = new(inner, defaultlinecondition)
LineIfNot(inner::Parser{<:Any}, condition::Function) = new(inner, condition)
end
function (parser::LineIfNot)(realinput::ParserInput) :: ParseResult{String}
# This parser has support for providing the inner parser with a
# non-default line condition.
input = ParserInput(realinput, realinput.index, parser.linecondition)
result = parser.inner(input)
if isparseok(result)
badline, _badinput = line(input)
BadUnexpectedParseResult{String}(badline, input)
else
s, newinput = line(input)
if s === nothing
BadUnexpectedEOFParseResult{String}(input)
else
OKParseResult{String}(s, newinput)
end
end
end
"""
StartsWith
Consumes a line if it starts with a given string.
"""
struct StartsWith <: Parser{String}
prefix::String
end
function (parser::StartsWith)(input::ParserInput) :: ParseResult{String}
s, newinput = line(input)
if s === nothing
BadUnexpectedEOFParseResult{String}(input)
elseif startswith(s, parser.prefix)
OKParseResult{String}(s, newinput)
else
BadExpectationParseResult{String}(parser.prefix, s, input)
end
end
struct EOFParser <: Parser{Nothing} end
function (parser::EOFParser)(input::ParserInput) :: ParseResult{Nothing}
s, newinput = line(input)
if s === nothing
OKParseResult{Nothing}(nothing, newinput)
else
BadExpectedEOFParseResult{Nothing}(input)
end
end
##
## Gherkin-specific parser
##
takeelement(i::Int) = xs -> xs[i]
"""
BlockText
Parses a Gherkin block text.
"""
BlockText() = Transformer{Vector{String}, String}(
Sequence{String}(
Line("\"\"\""),
Joined(Repeating{String}(LineIfNot(Line("\"\"\""), anyline))),
Line("\"\"\""),
),
takeelement(2)
)
struct Keyword
keyword::String
rest::String
end
"""
DataTableParser()
Consumes a data table in a scenario step.
## Example
| Header 1 | Header 2 |
| Foo | Bar |
| Baz | Quux |
"""
struct DataTableRowParser <: Parser{DataTableRow} end
function (parser::DataTableRowParser)(input::ParserInput) :: ParseResult{DataTableRow}
s, newinput = line(input)
if s === nothing
return BadUnexpectedEOFParseResult{DataTableRow}(input)
end
parts = split(s, "|")
if length(parts) >= 3
columns = collect([strip(p) for p in parts if strip(p) != ""])
OKParseResult{DataTableRow}(columns, newinput)
else
BadExpectationParseResult{DataTableRow}("| column 1 | column 2 | ... | column n |", s, input)
end
end
DataTableParser() = Transformer{Vector{DataTableRow}, DataTable}(
Repeating{DataTableRow}(DataTableRowParser(), atleast=1),
rows -> rows
)
struct AnyLine <: Parser{String} end
function (parser::AnyLine)(input::ParserInput) :: ParseResult{String}
s, newinput = line(input)
if s === nothing
BadUnexpectedEOFParseResult{String}(input)
else
OKParseResult{String}(s, newinput)
end
end
Splitter(inner::Parser{String}, delimiter) :: Parser{Vector{String}} = Transformer{String, Vector{String}}(
inner,
s -> split(s, delimiter, keepempty=false)
)
struct Validator{T} <: Parser{Vector{T}}
inner::Parser{Vector{T}}
f::Function
end
function (parser::Validator{T})(input::ParserInput) :: ParseResult{Vector{T}} where {T}
result = parser.inner(input)
if isparseok(result) && all(parser.f, result.value)
OKParseResult{Vector{T}}(result.value, result.newinput)
else
BadInnerParseResult{Vector{T}, Vector{T}}(result, input)
end
end
const TagList = Vector{String}
"""
TagParser()
Consumes a single tag in the form `@tagname`.
"""
TagParser() :: Parser{TagList} = Validator{String}(Splitter(AnyLine(), isspace), x -> startswith(x, "@"))
"""
TagLinesParser()
Read tags until they stop.
"""
TagLinesParser() :: Parser{TagList} = Transformer{Vector{TagList}, TagList}(
Repeating{TagList}(TagParser()),
taglines -> vcat(taglines...)
)
"""
KeywordParser
Recognizes a keyword, and any following text on the same line.
"""
KeywordParser(word::String) = Transformer{String, Keyword}(
StartsWith(word),
s -> begin
Keyword(word, strip(replace(s, word => "", count=1)))
end
)
const TableOrBlockTextTypes = Union{String, DataTable}
const DataTableOrBlockText = (
Sequence{TableOrBlockTextTypes}(DataTableParser(), BlockText()) |
Sequence{TableOrBlockTextTypes}(BlockText(), DataTableParser()) |
Sequence{TableOrBlockTextTypes}(BlockText()) |
Sequence{TableOrBlockTextTypes}(DataTableParser())
)
const StepPieces = Union{Keyword, Union{Nothing, Vector{TableOrBlockTextTypes}}}
mutable struct StepBuilder{T}
steptype::Type{T}
keyword::Keyword
blocktext::String
datatable::DataTable
StepBuilder{T}(steptype::Type{T}, keyword::Keyword) where {T} = new(steptype, keyword, "", DataTable())
end
accumulate!(sb::StepBuilder{T}, table::DataTable) where {T} = sb.datatable = table
accumulate!(sb::StepBuilder{T}, blocktext::String) where {T} = sb.blocktext = blocktext
accumulate!(sb::StepBuilder{T}, vs::Vector{TableOrBlockTextTypes}) where {T} = foreach(v -> accumulate!(sb, v), vs)
accumulate!(::StepBuilder{T}, ::Nothing) where {T} = nothing
buildstep(sb::StepBuilder{T}) where {T} = sb.steptype(sb.keyword.rest, block_text=sb.blocktext, datatable=sb.datatable)
function StepParser(steptype::Type{T}, keyword::String) :: Parser{T} where {T}
Transformer{Vector{StepPieces}, T}(
Sequence{StepPieces}(KeywordParser(keyword), Optionally(DataTableOrBlockText)),
sequence -> begin
keyword = sequence[1]
stepbuilder = StepBuilder{T}(steptype, keyword)
accumulate!(stepbuilder, sequence[2])
buildstep(stepbuilder)
end
)
end
"""
And
An `And` type scenario step
"""
struct And <: ScenarioStep
text::String
block_text::String
datatable::DataTable
And(text::AbstractString; block_text = "", datatable=DataTable()) = new(text, block_text, datatable)
end
"""
GivenParser
Consumes a Given step.
"""
GivenParser() = StepParser(Given, "Given ")
WhenParser() = StepParser(When, "When ")
ThenParser() = StepParser(Then, "Then ")
AndParser() = StepParser(And, "And ")
# TODO Find a way to express this as
# GivenParser() | WhenParser() | ThenParser()
const AnyStepParser = Or{ScenarioStep}(
Or{ScenarioStep}(GivenParser(), WhenParser()),
Or{ScenarioStep}(ThenParser(), AndParser())
)
"""
StepsParser
Parses zero or more steps.
"""
StepsParser() = Repeating{ScenarioStep}(AnyStepParser)
const AnyKeyword = (
KeywordParser("Given ") |
KeywordParser("When ") |
KeywordParser("Then ") |
KeywordParser("Feature:") |
KeywordParser("Scenario:") |
KeywordParser("Scenario Outline:") |
KeywordParser("Background:") |
KeywordParser("Rule:")
)
const MaybeTags = Union{Nothing, Vector{String}}
const ScenarioBits = Union{Keyword, String, Vector{ScenarioStep}, MaybeTags}
const LongDescription = Joined(Repeating{String}(LineIfNot(AnyKeyword)))
"""
ScenarioParser()
Consumes a Scenario.
"""
ScenarioParser() = Transformer{Vector{ScenarioBits}, Scenario}(
Sequence{ScenarioBits}(
Optionally(TagLinesParser()),
KeywordParser("Scenario:"),
Optionally(LongDescription),
StepsParser()),
sequence -> begin
tags = optionalordefault(sequence[1], [])
keyword = sequence[2]
longdescription = optionalordefault(sequence[3], "")
Scenario(keyword.rest, tags, Vector{ScenarioStep}(sequence[4]), long_description=longdescription)
end
)
const ScenarioOutlineBits = Union{Keyword, String, Vector{ScenarioStep}, MaybeTags, DataTable}
"""
ScenarioOutlineParser()
Consumes a Scenario Outline.
"""
ScenarioOutlineParser() = Transformer{Vector{ScenarioOutlineBits}, ScenarioOutline}(
Sequence{ScenarioOutlineBits}(
Optionally(TagLinesParser()),
KeywordParser("Scenario Outline:"),
Optionally(LongDescription),
StepsParser(),
Line("Examples:"),
DataTableParser()
),
sequence -> begin
tags = optionalordefault(sequence[1], [])
keyword = sequence[2]
longdescription = optionalordefault(sequence[3], "")
steps = sequence[4]
examples = sequence[6]
# The DataTableParser guarantees at least 1 row.
placeholders = examples[1]
ScenarioOutline(
keyword.rest,
tags,
steps,
placeholders,
examples[2:end],
long_description=longdescription
)
end
)
const BackgroundBits = ScenarioBits
"""
BackgroundParser()
Consume a Background.
"""
BackgroundParser() = Transformer{Vector{BackgroundBits}, Background}(
Sequence{BackgroundBits}(
KeywordParser("Background:"),
Optionally(LongDescription),
StepsParser()
),
sequence -> begin
keyword = sequence[1]
longdescription = optionalordefault(sequence[2], "")
Background(keyword.rest, sequence[3], long_description=longdescription)
end
)
struct Rule <: AbstractScenario
description::String
longdescription::String
scenarios::Vector{AbstractScenario}
tags::Vector{String}
end
const ScenarioList = Vector{Scenario}
const RuleBits = Union{Keyword, MaybeTags, Nothing, String, ScenarioList}
"""
RuleParser
Consumes a Rule and its child scenarios.
"""
RuleParser() = Transformer{Vector{RuleBits}, Rule}(
Sequence{RuleBits}(
Optionally(TagLinesParser()),
KeywordParser("Rule:"),
Optionally(LongDescription),
Repeating{Scenario}(ScenarioParser())),
sequence -> begin
tags = optionalordefault(sequence[1], String[])
keyword = sequence[2]
longdescription = optionalordefault(sequence[3], "")
scenarios = sequence[4]
Rule(keyword.rest, longdescription, scenarios, tags)
end
)
const FeatureBits = Union{Keyword, String, Background, Nothing, Vector{AbstractScenario}, MaybeTags}
"""
FeatureParser
Consumes a full feature file.
"""
const ScenarioOrRule = Or{AbstractScenario}(
Or{AbstractScenario}(ScenarioParser(), ScenarioOutlineParser()),
RuleParser()
)
FeatureParser() = Transformer{Vector{FeatureBits}, Feature}(
Sequence{FeatureBits}(
Optionally(TagLinesParser()),
KeywordParser("Feature:"),
Optionally(LongDescription),
Optionally(BackgroundParser()),
Repeating{AbstractScenario}(ScenarioOrRule)),
sequence -> begin
keyword = sequence[2]
tags = optionalordefault(sequence[1], String[])
longdescription = optionalordefault(sequence[3], "")
background = optionalordefault(sequence[4], Background())
Feature(FeatureHeader(keyword.rest, [longdescription], tags), background, sequence[5])
end
)
const FeatureFileBits = Union{Feature, Nothing}
FeatureFileParser() = Transformer{Vector{FeatureFileBits}, Feature}(
Sequence{FeatureFileBits}(FeatureParser(), EOFParser()),
takeelement(1)
)
##
## Exports
##
export ParserInput, OKParseResult, BadParseResult, isparseok
# Basic combinators
export Line, Optionally, Or, Transformer, Sequence
export Joined, Repeating, LineIfNot, StartsWith, EOFParser
# Gherkin combinators
export BlockText, KeywordParser
export StepsParser, GivenParser, WhenParser, ThenParser
export ScenarioParser, RuleParser, FeatureParser, FeatureFileParser, BackgroundParser
export DataTableParser, TagParser, TagLinesParser, ScenarioOutlineParser
# Data carrier types
export Keyword, Rule
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 12131 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Selecting which features and scenarios to run, based on tags.
# Exports
TagSelector
select(::TagSelector, tags::AbstractVector{String}) :: Bool
parsetagselector(::String) :: TagSelector
"""
module Selection
using Behavior.Gherkin
export select, parsetagselector, TagSelector
"""
Abstract type for a tag expression.
Each tag expression can be matched against a set of tags.
"""
abstract type TagExpression end
"""
matches(ex::TagExpression, tags::AbstractVector{String}) :: Bool
Returns true if `tags` matches the tag expression `ex`, false otherwise.
This must be implemented for each `TagExpression` subtype.
"""
matches(::TagExpression, tags::AbstractVector{String}) :: Bool = error("Implement this in TagExpression types")
"""
Tag is an expression that matches against a single tag.
It will match if the tag in the `value` is in the `tags` set.
"""
struct Tag <: TagExpression
value::String
end
matches(ex::Tag, tags::AbstractVector{String}) = ex.value in tags
"""
Not matches a tag set if and only if the `inner` tag expression _does not_ match.
"""
struct Not <: TagExpression
inner::TagExpression
end
matches(ex::Not, tags::AbstractVector{String}) = !matches(ex.inner, tags)
"""
All is a tag expression that matches any tags or no tags.
"""
struct All <: TagExpression end
matches(::All, ::AbstractVector{String}) = true
"""
Any matches any tags in a list.
"""
struct Any <: TagExpression
exs::Vector{TagExpression}
end
matches(anyex::Any, tags::AbstractVector{String}) = any(ex -> matches(ex, tags), anyex.exs)
"""
Or(::TagExpression, ::TagExpression)
Match either expression.
"""
struct Or <: TagExpression
a::TagExpression
b::TagExpression
end
struct OrResult <: TagExpression
b::TagExpression
end
"""
Parentheses(::TagExpression)
An expression in parentheses.
"""
struct Parentheses <: TagExpression
ex::TagExpression
end
"""
NothingExpression
Represents an empty parse result.
"""
struct NothingExpression <: TagExpression end
"""
parsetagexpression(s::String) :: TagExpression
Parse the string `s` into a `TagExpression`.
"""
function parsetagexpression(s::String) :: TagExpression
if isempty(strip(s))
All()
elseif startswith(s, "not ")
tag = replace(s, "not " => "")
Not(parsetagexpression(tag))
else
tags = split(s, ",")
Any([Tag(t) for t in tags])
end
end
"""
TagSelector is used to select a feature or scenario based on its tags.
The `TagSelector` is created by parsing a tag expression in string form. Then the
`select` method can be used to query if a given feature or scenario should be selected for execution.
"""
struct TagSelector
expression::TagExpression
end
"""
selectscenario(::TagSelector, feature::Feature, scenario::Scenario) :: Boolean
Check if a given scenario ought to be included in the execution. Returns true if that is the case,
false otherwise.
"""
function select(ts::TagSelector, feature::Feature, scenario::Gherkin.AbstractScenario) :: Bool
tags = vcat(feature.header.tags, scenario.tags)
matches(ts.expression, tags)
end
"""
select(::TagSelector, feature::Feature) :: Union{Feature,Nothing}
Filter a feature and its scenarios based on the selected tags.
Returns a feature with zero or more scenarios, or nothing if the feature
and none of the scenarios matched the tag selector.
"""
function select(ts::TagSelector, feature::Feature) :: Feature
newscenarios = [scenario
for scenario in feature.scenarios
if select(ts, feature, scenario)]
Feature(feature, newscenarios)
end
"""
parsetagselector(s::String) :: TagSelector
Parse a string into a `TagSelector` struct. This can then be used with the `select` query to determine
if a given feature or scenario should be selected for execution.
# Examples
```julia-repl
julia> # Will match any feature/scenario with the tag @foo
julia> parsetagselector("@foo")
julia> # Will match any feature/scenario without the tag @bar
julia> parsetagselector("not @bar")
```
"""
function parsetagselector(s::String) :: TagSelector
TagSelector(parsetagexpression(s))
end
const AllScenarios = TagSelector(All())
##
## Parser combinators for tag expressions
##
## This will soonish replace most of the code above.
##
struct TagExpressionInput
source::String
position::Int
function TagExpressionInput(source::String, position::Int = 1)
nextnonwhitespace = findnext(c -> c != ' ', source, position)
newposition = if nextnonwhitespace !== nothing
nextnonwhitespace
else
length(source) + 1
end
new(source, newposition)
end
end
currentchar(input::TagExpressionInput) = (input.source[input.position], TagExpressionInput(input.source, input.position + 1))
iseof(input::TagExpressionInput) = input.position > length(input.source)
abstract type ParseResult{T} end
struct OKParseResult{T} <: ParseResult{T}
value::T
newinput::TagExpressionInput
end
struct BadParseResult{T} <: ParseResult{T}
newinput::TagExpressionInput
end
abstract type TagExpressionParser{T} end
"""
AnyTagExpression()
Consumes any type of tag expression. The actual parser constructor is defined further down below,
after all expression types have been defined.
"""
struct AnyTagExpression <: TagExpressionParser{TagExpression} end
"""
Repeating(::TagExpressionParser)
Repeat a given parser while it succeeds.
"""
struct Repeating{T} <: TagExpressionParser{Vector{T}}
inner::TagExpressionParser{T}
end
function (parser::Repeating{T})(input::TagExpressionInput) :: ParseResult{Vector{T}} where {T}
result = Vector{T}()
currentinput = input
while true
innerresult = parser.inner(currentinput)
if innerresult isa BadParseResult{T}
break
end
push!(result, innerresult.value)
currentinput = innerresult.newinput
end
OKParseResult{Vector{T}}(result, currentinput)
end
"""
Transforming(::TagExpressionParser, f::Function)
Transforms an OK parse result using a provided function
"""
struct Transforming{S, T} <: TagExpressionParser{T}
inner::TagExpressionParser{S}
f::Function
end
function (parser::Transforming{S, T})(input::TagExpressionInput) :: ParseResult{T} where {S, T}
result = parser.inner(input)
if result isa OKParseResult{S}
OKParseResult{T}(parser.f(result.value), result.newinput)
else
BadParseResult{T}(input)
end
end
struct TakeUntil <: TagExpressionParser{String}
anyof::String
end
function (parser::TakeUntil)(input::TagExpressionInput) :: ParseResult{String}
delimiterindex = findnext(c -> contains(parser.anyof, c), input.source, input.position)
lastindex = if delimiterindex !== nothing
delimiterindex - 1
else
length(input.source)
end
s = input.source[input.position:lastindex]
OKParseResult{String}(s, TagExpressionInput(input.source, lastindex + 1))
end
SingleTagParser() = Transforming{Vector{String}, Tag}(
SequenceParser{String}(
Literal("@"),
TakeUntil("() "),
),
s -> Tag(join(s)))
"""
SequenceParser{T}(parsers...)
Consumes a sequence of other parsers.
"""
struct SequenceParser{T} <: TagExpressionParser{Vector{T}}
inner::Vector{TagExpressionParser{<:T}}
SequenceParser{T}(parsers...) where {T} = new(collect(parsers))
end
function (parser::SequenceParser{T})(input::TagExpressionInput) :: ParseResult{Vector{T}} where {T}
values = Vector{T}()
currentinput = input
for p in parser.inner
result = p(currentinput)
if result isa BadParseResult
return BadParseResult{Vector{T}}(input)
end
push!(values, result.value)
currentinput = result.newinput
end
OKParseResult{Vector{T}}(values, currentinput)
end
"""
Literal(::String)
Consumes an exact literal string.
"""
struct Literal <: TagExpressionParser{String}
value::String
end
function (parser::Literal)(input::TagExpressionInput) :: ParseResult{String}
n = length(parser.value)
endposition = min(input.position + n - 1, length(input.source))
actual = input.source[input.position:endposition]
if parser.value == actual
OKParseResult{String}(actual, TagExpressionInput(input.source, endposition + 1))
else
BadParseResult{String}(input)
end
end
const NotBits = Union{String, TagExpression}
"""
NotTagParser()
Consumes a logical not of some tag expression.
"""
NotTagParser() = Transforming{Vector{NotBits}, Not}(
SequenceParser{NotBits}(
Literal("not"),
AnyTagExpression()
),
xs -> Not(xs[2])
)
const OrBits = Union{String, TagExpression}
"""
OrParser()
Consumes a logical or expression.
"""
OrParser() = Transforming{Vector{OrBits}, OrResult}(
SequenceParser{OrBits}(
Literal("or"),
SingleTagParser()
),
xs -> OrResult(xs[2])
)
# TODO Create And expression parser
const ParenthesesBits = Union{String, TagExpression}
"""
ParenthesesParser()
Consumes a tag expression in parentheses.
"""
ParenthesesParser() = Transforming{Vector{ParenthesesBits}, Parentheses}(
SequenceParser{ParenthesesBits}(
Literal("("),
AnyTagExpression(),
Literal(")")
),
xs -> Parentheses(xs[2])
)
"""
AnyOfParser(parsers...)
Consume any of the supplied parsers.
"""
struct AnyOfParser <: TagExpressionParser{TagExpression}
parsers::Vector{TagExpressionParser{<:TagExpression}}
AnyOfParser(parsers...) = new(collect(parsers))
end
function (parser::AnyOfParser)(input::TagExpressionInput) :: ParseResult{TagExpression}
results = Vector{OKParseResult{<:TagExpression}}()
for p in parser.parsers
result = p(input)
if result isa OKParseResult
push!(results, result)
end
end
if isempty(results)
BadParseResult{TagExpression}(input)
else
# Return the longest successful parse
resultlength = result -> result.newinput.position - input.position
maxresultlength = maximum(resultlength, results)
maxresultindex = findfirst(result -> resultlength(result) == maxresultlength, results)
maxresult = results[maxresultindex]
OKParseResult{TagExpression}(maxresult.value, maxresult.newinput)
end
end
"""
NothingParser()
Consumes nothing and always succeeds.
"""
struct NothingParser <: TagExpressionParser{TagExpression} end
function (parser::NothingParser)(input::TagExpressionInput) :: ParseResult{TagExpression}
OKParseResult{TagExpression}(NothingExpression(), input)
end
#
# The AnyTagExpression constructor is defined here at the bottom, where it
# can find all expression types.
#
const StartExprParser = AnyOfParser(
ParenthesesParser(),
NotTagParser(),
SingleTagParser()
)
const EndExprParser = AnyOfParser(
OrParser(),
SingleTagParser(),
NothingParser(),
)
function combineResult(a::TagExpression, other::OrResult) :: TagExpression
Or(a, other.b)
end
function combineResult(a::TagExpression, ::NothingExpression) :: TagExpression
a
end
function (::AnyTagExpression)(input::TagExpressionInput) :: ParseResult{TagExpression}
combineStartAndEnd = (vs) -> combineResult(vs...)
inner = Transforming{Vector{TagExpression}, TagExpression}(
SequenceParser{TagExpression}(
StartExprParser,
EndExprParser,
),
combineStartAndEnd
)
inner(input)
end
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 2547 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"Thrown at @expect failures in step definitions."
struct StepAssertFailure <: Exception
assertion::String
evaluated::String
StepAssertFailure(assertion::String) = new(assertion, "")
StepAssertFailure(assertion::String, evaluated::String) = new(assertion, evaluated)
end
"""
expect(ex)
Assert that a condition `ex` is true. Throws a StepAssertFailure if false.
Warning: The expressions in the `ex` condition may be evaluated more than once,
so only use expression without side effects in the condition.
# Examples
```
@then "this condition should hold" begin
@expect 1 == 1
end
```
This will fail and throw a `StepAssertFailure`
```
@then "this condition should not hold" begin
@expect 1 == 2
end
```
"""
macro expect(ex)
comparisonops = [:(==), :(===), :(!=), :(!==)]
if hasproperty(ex, :head)
iscomparison = ex.head === :call && length(ex.args) == 3 && ex.args[1] in comparisonops
else
iscomparison = false
end
if iscomparison
comparisonop = QuoteNode(ex.args[1])
quote
# Evaluate each argument separately
local value1 = $(esc(ex.args[2]))
local value2 = $(esc(ex.args[3]))
# Create a en expression to show
local showexpr = Expr(:call, $comparisonop, value1, value2)
local msg = $(string(ex))
local evaluated = string(showexpr)
# Check the expectation by evaluating the original expression
if !($(esc(ex)))
throw(StepAssertFailure(msg, evaluated))
end
end
else
quote
local msg = $(string(ex))
# Check the expectation.
if !(Bool($(esc(ex))))
throw(StepAssertFailure(msg))
end
end
end
end
"""
@fail(message)
Fail a step with a descriptive message.
"""
macro fail(message)
quote
throw(StepAssertFailure($message))
end
end
| Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 5156 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
abstract type Engine end
abstract type OSAbstraction end
findfileswithextension(::OSAbstraction, ::String, ::String) = error("override this method")
readfile(::OSAbstraction, ::String) = error("override this method")
fileexists(::OSAbstraction, ::String) = error("override this method")
struct ExecutorEngine <: Engine
accumulator::ResultAccumulator
executor::Executor
matcher::StepDefinitionMatcher
selector::Selection.TagSelector
function ExecutorEngine(realtimepresenter::RealTimePresenter;
executionenv=NoExecutionEnvironment(),
selector::Selection.TagSelector = Selection.AllScenarios)
matcher = CompositeStepDefinitionMatcher()
executor = Executor(matcher, realtimepresenter; executionenv=executionenv)
new(ResultAccumulator(), executor, matcher, selector)
end
end
addmatcher!(engine::ExecutorEngine, matcher::StepDefinitionMatcher) = addmatcher!(engine.matcher, matcher)
executionenvironment(engine::ExecutorEngine) = engine.executor.executionenv
"""
runfeature!(::ExecutorEngine, ::Feature; [keepgoing=true])
Run the scenarios in a feature and record the result.
The keyword argument `keepgoing` (default: true) controls whether the execution stops
after a failing scenario (`keepgoing=false`), or continues (`keepgoing=true`).
"""
function runfeature!(engine::ExecutorEngine, feature::Feature; keepgoing=true)
result = executefeature(engine.executor, feature; keepgoing=keepgoing)
accumulateresult!(engine.accumulator, result)
end
"""
runfeature!(::ExecutorEngine, ::Gherkin.OKParseResult{Feature})
Wrapper method for the above runfeature!.
"""
const GoodParseResultType = Union{Gherkin.OKParseResult{Feature}, Gherkin.Experimental.OKParseResult{Feature}}
function runfeature!(engine::ExecutorEngine, parseresult::GoodParseResultType, _featurefile::String, keepgoing::Bool)
# Filter all features to run only the scenarios chosen by the tag selector, if any.
# Any features or scenarios that do not match the tag selector will be removed here.
filteredfeature = Selection.select(engine.selector, parseresult.value)
# If there are no scenarios in this feature, then do not run it at all.
# This matters because we don't want it listed in the results view having 0 successes
# and 0 failures.
if !isempty(filteredfeature.scenarios)
runfeature!(engine, filteredfeature; keepgoing=keepgoing)
end
end
"""
runfeature!(::ExecutorEngine, ::Gherkin.BadParseResult{Feature})
A feature could not be parsed. Record the result.
"""
function runfeature!(engine::ExecutorEngine, parsefailure::Gherkin.BadParseResult{Feature}, featurefile::String, _keepgoing::Bool)
accumulateresult!(engine.accumulator, parsefailure, featurefile)
end
function runfeature!(engine::ExecutorEngine, parsefailure::Gherkin.Experimental.BadParseResult{Feature}, featurefile::String, _keepgoing::Bool)
accumulateresult!(engine.accumulator, parsefailure, featurefile)
end
finish(engine::ExecutorEngine) = engine.accumulator
struct Driver
os::OSAbstraction
engine::Engine
Driver(os::OSAbstraction, engine::Engine) = new(os, engine)
end
function readstepdefinitions!(driver::Driver, path::String)
stepdefinitionfiles = findfileswithextension(driver.os, path, ".jl")
for f in stepdefinitionfiles
addmatcher!(driver.engine, FromMacroStepDefinitionMatcher(readfile(driver.os, f), filename = f))
end
end
function readfeature(driver::Driver, featurefile::String, parseoptions::ParseOptions)
if parseoptions.use_experimental
input = Gherkin.Experimental.ParserInput(read(featurefile, String))
parser = Gherkin.Experimental.FeatureFileParser()
parser(input)
else
parsefeature(readfile(driver.os, featurefile), options=parseoptions)
end
end
function runfeatures!(driver::Driver, path::String; parseoptions::ParseOptions = ParseOptions(), keepgoing::Bool=true)
featurefiles = findfileswithextension(driver.os, path, ".feature")
# Call the hook that runs before any feature
beforeall(executionenvironment(driver.engine))
for featurefile in featurefiles
featureparseresult = readfeature(driver, featurefile, parseoptions)
runfeature!(driver.engine, featureparseresult, featurefile, keepgoing)
if !issuccess(driver.engine.accumulator) && !keepgoing
break
end
end
# Call the hook that runs after all features
afterall(executionenvironment(driver.engine))
finish(driver.engine)
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 3714 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
abstract type ExecutionEnvironment end
struct NoExecutionEnvironment <: ExecutionEnvironment end
beforescenario(::NoExecutionEnvironment, ::StepDefinitionContext, ::Gherkin.Scenario) = nothing
afterscenario(::NoExecutionEnvironment, ::StepDefinitionContext, ::Gherkin.Scenario) = nothing
beforefeature(::NoExecutionEnvironment, ::Gherkin.Feature) = nothing
afterfeature(::NoExecutionEnvironment, ::Gherkin.Feature) = nothing
beforeall(::NoExecutionEnvironment) = nothing
afterall(::NoExecutionEnvironment) = nothing
module GlobalExecEnv
envs = Dict{Symbol, Function}()
function clear()
global envs
envs = Dict{Symbol, Function}()
end
end
macro beforescenario(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:beforescenario] = $(esc(envdefinition))
end
end
macro afterscenario(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:afterscenario] = $(esc(envdefinition))
end
end
macro beforefeature(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:beforefeature] = $(esc(envdefinition))
end
end
macro afterfeature(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:afterfeature] = $(esc(envdefinition))
end
end
macro beforeall(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:beforeall] = $(esc(envdefinition))
end
end
macro afterall(ex::Expr)
envdefinition = :( $ex )
quote
GlobalExecEnv.envs[:afterall] = $(esc(envdefinition))
end
end
struct FromSourceExecutionEnvironment <: ExecutionEnvironment
envdefinitions::Dict{Symbol, Function}
function FromSourceExecutionEnvironment(source::String)
include_string(Main, source)
this = new(GlobalExecEnv.envs)
GlobalExecEnv.clear()
this
end
end
function invokeenvironmentmethod(
executionenv::FromSourceExecutionEnvironment,
methodsym::Symbol,
args...)
if haskey(executionenv.envdefinitions, methodsym)
method = executionenv.envdefinitions[methodsym]
Base.invokelatest(method, args...)
end
end
beforescenario(executionenv::FromSourceExecutionEnvironment,
context::StepDefinitionContext,
scenario::Gherkin.Scenario) = invokeenvironmentmethod(executionenv, :beforescenario, context, scenario)
afterscenario(executionenv::FromSourceExecutionEnvironment,
context::StepDefinitionContext,
scenario::Gherkin.Scenario) = invokeenvironmentmethod(executionenv, :afterscenario, context, scenario)
beforefeature(executionenv::FromSourceExecutionEnvironment,
feature::Gherkin.Feature) = invokeenvironmentmethod(executionenv, :beforefeature, feature)
afterfeature(executionenv::FromSourceExecutionEnvironment,
feature::Gherkin.Feature) = invokeenvironmentmethod(executionenv, :afterfeature, feature)
beforeall(executionenv::FromSourceExecutionEnvironment) = invokeenvironmentmethod(executionenv, :beforeall)
afterall(executionenv::FromSourceExecutionEnvironment) = invokeenvironmentmethod(executionenv, :afterall) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 13474 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Base.StackTraces
"Executes a feature or scenario, and presents the results in real time."
struct Executor
stepdefmatcher::StepDefinitionMatcher
presenter::RealTimePresenter
executionenv::ExecutionEnvironment
Executor(matcher::StepDefinitionMatcher,
presenter::RealTimePresenter = QuietRealTimePresenter();
executionenv::ExecutionEnvironment = NoExecutionEnvironment()) = new(matcher, presenter, executionenv)
end
"Abstract type for a result when executing a scenario step."
abstract type StepExecutionResult end
"No matching step definition was found."
struct NoStepDefinitionFound <: StepExecutionResult
step::Gherkin.ScenarioStep
end
"More than one matching step definition was found."
struct NonUniqueMatch <: StepExecutionResult
locations::Vector{StepDefinitionLocation}
end
"Successfully executed a step."
struct SuccessfulStepExecution <: StepExecutionResult end
"An assert failed in the step."
struct StepFailed <: StepExecutionResult
assertion::String
evaluated::String
StepFailed(assertion::AbstractString) = new(assertion, "")
StepFailed(assertion::AbstractString, evaluated::AbstractString) = new(assertion, evaluated)
end
"An unexpected error or exception occurred during the step execution."
struct UnexpectedStepError <: StepExecutionResult
ex::Exception
stack::StackTrace
end
"The step was not executed."
struct SkippedStep <: StepExecutionResult end
"""
issuccess(::StepExecutionResult)
True for successful step executions, and false otherwise.
"""
issuccess(::SuccessfulStepExecution) = true
issuccess(::StepExecutionResult) = false
"A result for a complete scenario."
struct ScenarioResult
steps::Vector{StepExecutionResult}
scenario::Scenario
background::Gherkin.Background
backgroundresult::Vector{StepExecutionResult}
end
issuccess(sr::ScenarioResult) = all(x -> issuccess(x), sr.steps)
issuccess(srs::AbstractVector{ScenarioResult}) = all(x -> issuccess(x), srs)
function executesteps(executor::Executor, context::StepDefinitionContext, steps::Vector{ScenarioStep}, isfailedyet::Bool)
# The `steps` vector contains the results for all steps. At initialization,
# they are all `Skipped`, because if one step fails then we stop the execution of the following
# steps.
results = Vector{StepExecutionResult}(undef, length(steps))
fill!(results, SkippedStep())
# Find a unique step definition for each step and execute it.
# Present each step, first as it is about to be executed, and then once more with the result.
for i = 1:length(steps)
# If any previous step has failed, then skip all the steps that follow.
if isfailedyet
present(executor.presenter, steps[i])
present(executor.presenter, steps[i], results[i])
continue
end
step = steps[i]
# Tell the presenter that this step is about to be executed.
present(executor.presenter, step)
results[i] = try
# Find a step definition matching the step text.
stepdefinitionmatch = findstepdefinition(executor.stepdefmatcher, step)
# The block text is provided to the step definition via the context.
context[:block_text] = step.block_text
context.datatable = step.datatable
try
# Execute the step definition. Note that it's important to use `Base.invokelatest` here,
# because otherwise it might not find that function defined yet.
Base.invokelatest(stepdefinitionmatch.stepdefinition.definition, context, stepdefinitionmatch.variables)
catch ex
UnexpectedStepError(ex, stacktrace(catch_backtrace()))
end
catch ex
if ex isa NoMatchingStepDefinition
NoStepDefinitionFound(step)
elseif ex isa NonUniqueStepDefinition
NonUniqueMatch(ex.locations)
else
rethrow(ex)
end
end
# Present the result after execution.
present(executor.presenter, step, results[i])
# If this step failed, then we skip any remaining steps.
if !issuccess(results[i])
isfailedyet = true
end
end
results, isfailedyet
end
"""
executescenario(::Executor, ::Gherkin.Scenario)
Execute each step in a `Scenario`. Present the results in real time.
Returns a `ScenarioResult`.
"""
function executescenario(executor::Executor, background::Gherkin.Background, scenario::Gherkin.Scenario)
# Tell the presenter of the start of a scenario execution.
present(executor.presenter, scenario)
# The `context` object for a scenario execution is provided to each step,
# so they may store intermediate values.
context = StepDefinitionContext()
beforescenario(executor.executionenv, context, scenario)
# Execute the Background section
isfailedyet = false
backgroundresults, isfailedyet = executesteps(executor, context, background.steps, isfailedyet)
# Execute the Scenario
results, _isfailedyet = executesteps(executor, context, scenario.steps, isfailedyet)
afterscenario(executor.executionenv, context, scenario)
scenarioresult = ScenarioResult(results, scenario, background, backgroundresults)
present(executor.presenter, scenario, scenarioresult)
scenarioresult
end
"""
executescenario(::Executor, ::Gherkin.ScenarioOutline)
Execute a `Scenario Outline`, which contains one or more examples. Each example is transformed into
a regular `Scenario`, and it's executed.
Reeturns a list of `ScenarioResult`s.
"""
function executescenario(executor::Executor, background::Gherkin.Background, outline::Gherkin.ScenarioOutline)
scenarios = transformoutline(outline)
[executescenario(executor, background, scenario)
for scenario in scenarios]
end
"The execution result for a feature, containing one or more scenarios."
struct FeatureResult
feature::Feature
scenarioresults::Vector{ScenarioResult}
end
"""
extendresults!(scenarioresults, result::ScenarioResult)
extendresults!(scenarioresults, result::AbstractVector{ScenarioResult})
Push or append results from a feature to a list of scenario results.
"""
extendresult!(scenarioresults::AbstractVector{ScenarioResult}, result::ScenarioResult) = push!(scenarioresults, result)
extendresult!(scenarioresults::AbstractVector{ScenarioResult}, result::AbstractVector{ScenarioResult}) = append!(scenarioresults, result)
"""
executefeature(::Executor, ::Gherkin.Feature)
Execute all scenarios and scenario outlines in a feature.
"""
function executefeature(executor::Executor, feature::Gherkin.Feature; keepgoing::Bool=true)
# A hook that runs before each feature.
beforefeature(executor.executionenv, feature)
# Present that a new feature is about to be executed.
present(executor.presenter, feature)
# Execute each scenario and scenario outline in the feature.
scenarioresults = ScenarioResult[]
for scenario in feature.scenarios
scenarioresult = executescenario(executor, feature.background, scenario)
extendresult!(scenarioresults, scenarioresult)
if !issuccess(scenarioresult) && !keepgoing
break
end
end
# A hook that runs after each feature
afterfeature(executor.executionenv, feature)
# Return a list of `ScenarioResults`.
# Since regular scenarios return a `ScenarioResult` directly, and scenario outlines return lists
# of `ScenarioResult`s, we have to flatten that list.
FeatureResult(feature, reduce(vcat, scenarioresults, init=[]))
end
#
# Finding missing step implementations
#
function findmissingsteps(executor::Executor, steps::Vector{ScenarioStep}) :: Vector{ScenarioStep}
findstep = step -> begin
try
findstepdefinition(executor.stepdefmatcher, step)
catch ex
if ex isa NoMatchingStepDefinition
NoStepDefinitionFound(step)
else
rethrow(ex)
end
end
end
filter(step -> findstep(step) isa NoStepDefinitionFound, steps)
end
function findmissingsteps(executor::Executor, feature::Feature) :: Vector{ScenarioStep}
backgroundmissingsteps = findmissingsteps(executor, feature.background.steps)
# findmissingstep(executor, scenario.steps) returns a list of missing steps,
# so we're creating a list of lists here. We flatten it into one list of missing steps.
missingsteps = Iterators.flatten([
findmissingsteps(executor, scenario.steps)
for scenario in feature.scenarios
])
# We call unique to remove duplicate steps.
# We check uniqueness using only the step text, ignoring block text
# and data tables.
unique(step -> step.text, vcat(collect(missingsteps), backgroundmissingsteps))
end
function stepimplementationsuggestion(steptype::String, text::String) :: String
# Escaping the string here ensures that the step text is a valid Julia string.
# If the text is
# some precondition with $x and a quote "
# then the $x will be interpreted as string interpolation by Julia, which is
# not what we intend. Also, the " needs to be escaped so we don't have mismatched
# double quotes.
escaped_text = escape_string(text, "\$\"")
"""$steptype(\"$(escaped_text)\") do context
@fail "Implement me"
end
"""
end
stepimplementationsuggestion(given::Given) :: String = stepimplementationsuggestion("@given", given.text)
stepimplementationsuggestion(when::When) :: String = stepimplementationsuggestion("@when", when.text)
stepimplementationsuggestion(then::Then) :: String = stepimplementationsuggestion("@then", then.text)
function suggestmissingsteps(executor::Executor, feature::Feature) :: String
missingsteps = findmissingsteps(executor, feature)
missingstepimpls = [
stepimplementationsuggestion(step)
for step in missingsteps
]
missingstepcode = join(missingstepimpls, "\n\n")
"""
using Behavior
$(missingstepcode)
"""
end
#
# Interpolation of Scenario Outlines
#
function transformoutline(outline::ScenarioOutline)
# The examples are in a multidimensional array.
# The size of dimension 1 is the number of placeholders.
# The size of dimension 2 is the number of examples.
[interpolatexample(outline, outline.examples[:,exampleindex])
for exampleindex in 1:size(outline.examples, 2)]
end
function interpolatexample(outline::ScenarioOutline, example::Vector{T}) where {T <: AbstractString}
# Create placeholders on the form `<foo>` for each placeholder `foo`, and map it against the
# value for this particular example.
#
# An example Scenario Outline could have two placeholders `foo` and `bar`:
# Scenario Outline: An example
# When some action <foo>
# Then some postcondition <bar>
#
# Examples:
# | foo | bar |
# | 1 | 2 |
# | 17 | 42 |
#
# The parsed Scenario Outline object already has a list of the placeholders `foo` and `bar`.
# This method is called twice, once with example vector `[1, 2]` and once with `[17, 42]`.
#
placeholders_kv = ["<$(outline.placeholders[i])>" => example[i] for i in 1:length(example)]
placeholders = Dict{String, T}(placeholders_kv...)
# `interpolatestep` just creates a new scenario step of the same type, but with all occurrences
# of placeholders replace with the example value.
fromplaceholders = x -> placeholders[x]
steps = ScenarioStep[interpolatestep(step, fromplaceholders) for step in outline.steps]
Scenario(outline.description, outline.tags, steps)
end
interpolatestep(step::Given, fromplaceholders::Function) = Given(interpolatesteptext(step.text, fromplaceholders);
block_text=interpolatesteptext(step.block_text, fromplaceholders),
datatable=step.datatable)
interpolatestep(step::When, fromplaceholders::Function) = When(interpolatesteptext(step.text, fromplaceholders);
block_text=interpolatesteptext(step.block_text, fromplaceholders),
datatable=step.datatable)
interpolatestep(step::Then, fromplaceholders::Function) = Then(interpolatesteptext(step.text, fromplaceholders);
block_text=interpolatesteptext(step.block_text, fromplaceholders),
datatable=step.datatable)
interpolatesteptext(text::String, fromplaceholders::Function) = replace(text, r"<[^>]*>" => fromplaceholders) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 4269 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A `QuietRealTimePresenter` prints nothing as scenarios are being executed.
This is useful if you're only after a final report, after all features have been executed.
"""
struct QuietRealTimePresenter <: RealTimePresenter end
present(::QuietRealTimePresenter, ::Scenario) = nothing
present(::QuietRealTimePresenter, ::Scenario, ::ScenarioResult) = nothing
present(::QuietRealTimePresenter, ::Gherkin.ScenarioStep) = nothing
present(::QuietRealTimePresenter, ::Gherkin.ScenarioStep, ::StepExecutionResult) = nothing
present(::QuietRealTimePresenter, ::Gherkin.Feature) = nothing
"""
This presenter prints a line to the console before, during, and after a scenario. Results are color
coded.
"""
struct ColorConsolePresenter <: RealTimePresenter
io::IO
colors::Dict{Type, Symbol}
function ColorConsolePresenter(io::IO = stdout)
colors = Dict{Type, Symbol}(
NoStepDefinitionFound => :yellow,
NonUniqueMatch => :magenta,
SuccessfulStepExecution => :green,
StepFailed => :red,
UnexpectedStepError => :light_magenta,
SkippedStep => :light_black
)
new(io, colors)
end
end
"""
stepformat(step::ScenarioStep)
Format a step according to Gherkin syntax.
"""
stepformat(step::Given) = "Given $(step.text)"
stepformat(step::When) = " When $(step.text)"
stepformat(step::Then) = " Then $(step.text)"
stepformat(step::Gherkin.Experimental.And) = " And $(step.text)"
"""
stepcolor(::Presenter, ::StepExecutionResult)
Get a console color for a given result when executing a scenario step.
"""
stepcolor(presenter::Presenter, step::StepExecutionResult) = presenter.colors[typeof(step)]
"""
stepresultmessage(::StepExecutionResult)
A human readable message for a given result.
"""
function stepresultmessage(step::StepFailed)
if isempty(step.evaluated) || step.assertion == step.evaluated
["FAILED: " * step.assertion]
else
["FAILED", " Expression: " * step.assertion, " Evaluated: " * step.evaluated]
end
end
stepresultmessage(nomatch::NoStepDefinitionFound) = ["No match for '$(stepformat(nomatch.step))'"]
stepresultmessage(nonunique::NonUniqueMatch) = vcat(["Multiple matches found:"], [" In " * location.filename for location in nonunique.locations])
stepresultmessage(::SuccessfulStepExecution) = []
stepresultmessage(::SkippedStep) = []
stepresultmessage(unexpected::UnexpectedStepError) = vcat(["Exception: $(string(unexpected.ex))"], [" " * string(x) for x in unexpected.stack])
stepresultmessage(::StepExecutionResult) = []
function present(presenter::ColorConsolePresenter, feature::Feature)
println()
printstyled(presenter.io, "Feature: $(feature.header.description)\n"; color=:white)
end
function present(presenter::ColorConsolePresenter, scenario::Scenario)
printstyled(presenter.io, " Scenario: $(scenario.description)\n"; color=:blue)
end
function present(presenter::ColorConsolePresenter, scenario::Scenario, ::ScenarioResult)
printstyled(presenter.io, "\n")
end
function present(presenter::ColorConsolePresenter, step::Gherkin.ScenarioStep)
printstyled(presenter.io, " $(stepformat(step))"; color=:light_cyan)
end
function present(presenter::ColorConsolePresenter, step::Gherkin.ScenarioStep, result::StepExecutionResult)
color = stepcolor(presenter, result)
printstyled(presenter.io, "\r $(stepformat(step))\n"; color=color)
resultmessage = stepresultmessage(result)
if !isempty(resultmessage)
# The result message may be one or more lines. Indent them all.
s = [" " ^ 8 * x * "\n" for x in resultmessage]
println()
println(join(s))
end
end
| Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 3131 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Combine a feature along with the number of scenario successes and failures.
"""
struct FeatureSuccessAndFailure
feature::Feature
n_success::UInt
n_failure::UInt
end
"""
Accumulate results from executed features as they are being executed. Keep track of whether the
total run is a success of a failure.
"""
mutable struct ResultAccumulator
isaccumsuccess::Bool
features::Vector{FeatureSuccessAndFailure}
errors::Vector{Tuple{String, Gherkin.BadParseResult{Feature}}}
ResultAccumulator() = new(true, [], [])
end
"""
accumulateresult!(acc::ResultAccumulator, result::FeatureResult)
Check for success or failure in this feature result and update the accumulator accordingly.
"""
function accumulateresult!(acc::ResultAccumulator, result::FeatureResult)
n_success::UInt = 0
n_failure::UInt = 0
# Count the number of successes and failures for each step in each scenario. A scenario is
# successful if all its steps are successful.
for scenarioresult in result.scenarioresults
arestepssuccessful = [issuccess(step) for step in scenarioresult.steps]
arebackgroundstepsgood = [issuccess(result) for result in scenarioresult.backgroundresult]
isscenariosuccessful = all(arestepssuccessful) && all(arebackgroundstepsgood)
if isscenariosuccessful
n_success += 1
else
n_failure += 1
end
acc.isaccumsuccess &= isscenariosuccessful
end
push!(acc.features, FeatureSuccessAndFailure(result.feature, n_success, n_failure))
end
"""
accumulateresult!(acc::ResultAccumulator, parsefailure::Gherkin.BadParseResult{Feature})
A feature file could not be parsed properly. Record the error.
"""
const BadParseType = Union{Gherkin.BadParseResult{Feature}, Gherkin.Experimental.BadParseResult{Feature}}
function accumulateresult!(acc::ResultAccumulator, parsefailure::BadParseType, featurefile::String)
push!(acc.errors, (featurefile, parsefailure))
acc.isaccumsuccess = false
end
"""
issuccess(acc::ResultAccumulator)
True if all scenarios in all accumulated features are successful.
"""
issuccess(acc::ResultAccumulator) = acc.isaccumsuccess
"""
featureresults(accumulator::ResultAccumulator)
A public getter for the results of all features.
"""
function featureresults(accumulator::ResultAccumulator)
accumulator.features
end
"""
isempty(r::ResultAccumulator) :: Bool
True if no results have been accumulated, false otherwise.
"""
Base.isempty(r::ResultAccumulator) :: Bool = isempty(r.features) | Behavior | https://github.com/erikedin/Behavior.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 6836146e6131a4cdc48722eb9700e19603278875 | code | 8469 | # Copyright 2018 Erik Edin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Behavior:
ExecutorEngine, ColorConsolePresenter, Driver,
readstepdefinitions!, runfeatures!, issuccess,
FromSourceExecutionEnvironment, NoExecutionEnvironment
import Behavior:
findfileswithextension, readfile, fileexists
using Behavior.Gherkin
using Behavior.Gherkin.Experimental
using Glob
struct OSAL <: Behavior.OSAbstraction end
function findfileswithextension(::OSAL, path::String, extension::String)
return rglob("*$extension", path)
end
readfile(::OSAL, path::String) = read(path, String)
fileexists(::OSAL, path::String) = isfile(path)
"""
rglob(pattern, path)
Find files recursively.
"""
rglob(pattern, path) = Base.Iterators.flatten(map(d -> glob(pattern, d[1]), walkdir(path)))
function parseonly(featurepath::String; parseoptions::ParseOptions=ParseOptions())
# -----------------------------------------------------------------------------
# borrowed code from runspec; should be refactored later
os = OSAL()
engine = ExecutorEngine(ColorConsolePresenter(); executionenv=NoExecutionEnvironment())
driver = Driver(os, engine)
# -----------------------------------------------------------------------------
featurefiles = rglob("*.feature", featurepath)
# Parse all feature files and collect results to an array of named tuples
results = []
for featurefile in featurefiles
if parseoptions.use_experimental
try
input = Experimental.ParserInput(read(featurefile, String))
featureparser = Experimental.FeatureFileParser()
result = featureparser(input)
if Experimental.isparseok(result)
push!(results, (filename = featurefile, success = true, result = result.value))
else
push!(results, (filename = featurefile, success = false, result = result))
end
catch ex
push!(results, (filename = featurefile, success = false, result = Experimental.BadExceptionParseResult{Feature}(ex)))
end
else
try
parseddata = parsefeature(readfile(driver.os, featurefile), options=parseoptions)
isbad = parseddata isa BadParseResult
push!(results, (filename = featurefile, success = !isbad, result = parseddata))
catch ex
push!(results, (filename = featurefile, success = false, result = Gherkin.BadParseResult{Feature}(:exception, :nothing, Symbol("$ex"), 0, "")))
end
end
end
return results
end
"""
printbadparseresult(error::BadParseResult{T})
Print parse errors.
"""
function printbadparseresult(featurefile::String, err::Gherkin.BadParseResult{T}) where {T}
println("ERROR: $(featurefile):$(err.linenumber)")
println(" Line: $(err.line)")
println(" Reason: $(err.reason)")
println(" Expected: $(err.expected)")
println(" Actual: $(err.actual)")
end
"""
runspec(rootpath; featurepath, stepspath, execenvpath, parseoptions, presenter, tags)
Execute all features found from the `rootpath`.
By default, it looks for feature files in `<rootpath>/features` and step files
`<rootpath>/features/steps`. An `environment.jl` file may be added to
`<rootpath>/features` directory for running certain before/after code.
You may override the default locations by specifying `featurepath`,
`stepspath`, or `execenvpath`.
The `tagselector` option is an expression you can use to select which scenarios to run
based on tags. For instance, the tag selector `@foo` will run only those scenarios that
have the tag `@foo`, while `not @ignore` will run only that scenarios that _do not_ have
the `@ignore` tag.
See also: [Gherkin.ParseOptions](@ref).
"""
function runspec(
rootpath::String = ".";
featurepath = joinpath(rootpath, "features"),
stepspath = joinpath(featurepath, "steps"),
execenvpath = joinpath(featurepath, "environment.jl"),
parseoptions::ParseOptions=ParseOptions(),
presenter::RealTimePresenter=ColorConsolePresenter(),
tags::String = "",
keepgoing::Bool=true
)
os = OSAL()
executionenv = if fileexists(os, execenvpath)
FromSourceExecutionEnvironment(readfile(os, execenvpath))
else
NoExecutionEnvironment()
end
if parseoptions.use_experimental
println("WARNING: Experimental parser used for feature files!")
println()
end
# TODO: Handle tag selector errors once the syntax is more complex.
selector = Selection.parsetagselector(tags)
engine = ExecutorEngine(presenter; executionenv=executionenv, selector=selector)
driver = Driver(os, engine)
readstepdefinitions!(driver, stepspath)
resultaccumulator = runfeatures!(driver, featurepath, parseoptions=parseoptions, keepgoing=keepgoing)
if isempty(resultaccumulator)
println("No features found.")
return true
end
#
# Present number of scenarios that succeeded and failed for each feature
#
results = featureresults(resultaccumulator)
# Find the longest feature name, so we can align the result table.
maxfeature = maximum(length(r.feature.header.description) for r in results)
featureprefix = " Feature: "
printstyled(" " ^ (length(featureprefix) + maxfeature + 1), "| Success | Failure\n"; color=:white)
for r in results
linecolor = r.n_failure == 0 ? :green : :red
printstyled(featureprefix, rpad(r.feature.header.description, maxfeature); color=linecolor)
printstyled(" | "; color=:white)
printstyled(rpad("$(r.n_success)", 7); color=:green)
printstyled(" | "; color=:white)
printstyled(rpad("$(r.n_failure)", 7), "\n"; color=linecolor)
end
println()
#
# Present any syntax errors
#
for (featurefile, err) in resultaccumulator.errors
println()
printbadparseresult(featurefile, err)
end
println()
istotalsuccess = issuccess(resultaccumulator)
if istotalsuccess
println("SUCCESS")
else
println("FAILURE")
end
istotalsuccess
end
"""
suggestmissingsteps(featurepath::String, stepspath::String; parseoptions::ParseOptions=ParseOptions(), tagselector::String = "")
Find missing steps from the feature and print suggestions on step implementations to
match those missing steps.
"""
function suggestmissingsteps(
featurepath::String,
stepspath = joinpath(dirname(featurepath), "steps");
parseoptions::ParseOptions=ParseOptions())
# All of the below is quite hacky, which I'm motivating by the fact that
# I just want something working. It most definitely indicates that I need to rework the whole
# Driver/ExecutorEngine design.
# -----------------------------------------------------------------------------
# borrowed code from runspec; should be refactored later
os = OSAL()
engine = ExecutorEngine(QuietRealTimePresenter(); executionenv=NoExecutionEnvironment())
driver = Driver(os, engine)
readstepdefinitions!(driver, stepspath)
# Parse the feature file and suggest missing steps.
BadParseResultTypes = Union{Gherkin.BadParseResult{Feature}, Experimental.BadParseResult{Feature}}
parseresult = if parseoptions.use_experimental
println("WARNING: suggestmissingsteps is using the experimental Gherkin parser")
input = ParserInput(read(featurepath, String))
parser = Experimental.FeatureFileParser()
parser(input)
else
parsefeature(read(featurepath, String), options=parseoptions)
end
if parseresult isa BadParseResultTypes
println("Failed to parse feature file $featurepath")
println(parseresult)
return
end
feature = parseresult.value
suggestedcode = suggestmissingsteps(driver.engine.executor, feature)
println(suggestedcode)
end | Behavior | https://github.com/erikedin/Behavior.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.