licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | code | 604 | using Lattices
ups(::Type{ST}, ltc::Lattices.AbstractLattice) where ST = ups(ST, size(ltc))
downs(::Type{ST}, ltc::Lattices.AbstractLattice) where ST = downs(ST, size(ltc))
Random.rand(::Type{ST}, ltc::Lattices.AbstractLattice) where ST = rand(ST, size(ltc))
ups(ltc::Lattices.AbstractLattice) = ups(Bit{Int}, ltc)
downs(ltc::Lattices.AbstractLattice) = downs(Bit{Int}, ltc)
Random.rand(ltc::Lattices.AbstractLattice) = rand(Bit{Int}, ltc)
HilbertSpace{L}(ltc::Lattices.AbstractLattice) where L = HilbertSpace{L}(size(ltc)...)
HilbertSpace(ltc::Lattices.AbstractLattice) = HilbertSpace{Bit{Int}}(ltc)
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | code | 469 | function Base.round(::Type{Bit{T}}, x::T) where {T <: Integer}
x == zero(T) ? Bit(zero(T)) : Bit(one(T))
end
function Base.round(::Type{Bit{T}}, x::T; threshold::T=T(1e-3)) where {T <: AbstractFloat}
x < threshold ? Bit(zero(T)) : Bit(one(T))
end
function Base.round(::Type{Spin{T}}, x::T) where T
x > 0 ? Spin(one(T)) : Spin(-one(T))
end
function Base.round(::Type{Half{T}}, x::T) where {T <: AbstractFloat}
x > 0 ? Half(T(0.5)) : Half(-T(0.5))
end
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | code | 1816 | export HilbertSpace
"""
HilbertSpace{L, S, M}
`M` dimension Hilbert space of Site type `L` in with shape `S`.
"""
struct HilbertSpace{L, Shape, N, NSite}
cache::Array{L, N}
function HilbertSpace{L}(dims::Int...) where L
Shape = Tuple{dims...}
N = length(dims)
NSite = prod(dims)
new{L, Shape, N, NSite}(downs(L, dims))
end
end
StaticArrays.Size(::Type{HilbertSpace{L, Shape}}) where {L, Shape} = Size(Shape)
Base.@pure Base.size(::Type{<:HilbertSpace{L, S}}) where {L, S} = tuple(S.parameters...)
function carrybit!(a::Array{L}) where L
@inbounds for i in eachindex(a)
if a[i] == up(L)
a[i] = down(L)
else
a[i] = up(L)
break
end
end
a
end
Base.iterate(it::HilbertSpace{L}) where L = (fill!(it.cache, down(L)); iterate(it, 1))
function Base.iterate(it::HilbertSpace{L, S, N, NSite}, state) where {L, S, N, NSite}
if_stop(it, state) && return nothing
state == 1 && return (it.cache, state + 1)
carrybit!(it.cache), state + 1
end
@generated function if_stop(it::HilbertSpace{L, S, N, NSite}, state) where {L, S, N, NSite}
if sizeof(Int) * 8 > NSite
:(state == $((1 << NSite) + 1))
else
quote
flag = true
for each in it.cache
if each != up($L)
flag = false
break
end
end
flag
end
end
end
Base.eltype(::HilbertSpace{L, S, N}) where {L, S, N} = Array{L, N}
Base.length(::HilbertSpace{L, S, N, NSite}) where {L, S, N, NSite} = 1 << NSite
function Base.collect(space::HilbertSpace)
r = Vector{eltype(space)}(undef, length(space))
@inbounds for (i, each) in enumerate(space)
r[i] = copy(each)
end
r
end
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | code | 3263 | export up, down, Bit, Spin, Half, Clock, Potts, Continuous
abstract type AbstractSite{T} end
Base.show(io::IO, s::AbstractSite) = show(io, value(s))
Base.:(==)(lhs::AbstractSite, rhs::Number) = value(lhs) == rhs
Base.:(==)(lhs::Number, rhs::AbstractSite) = lhs == value(rhs)
abstract type IntegerSite{T} <: AbstractSite{T} end
abstract type BinarySite{T} <: IntegerSite{T} end
abstract type ContinuousSite{T} <: AbstractSite{T} end
"""
Bit{T} <: BinarySite{T}
"""
struct Bit{T} <: BinarySite{T}
value::T
end
struct Spin{T} <: BinarySite{T}
value::T
end
struct Half{T} <: BinarySite{T}
value::T
end
struct Clock{T, q} <: IntegerSite{T}
value::T
end
struct Potts{T, q} <: IntegerSite{T}
value::T
end
struct Continuous{T, d} <: ContinuousSite{T}
value::T
end
"""
up(site) -> site
up(site_type) -> site
Up (highest value) tag for this label. e.g. `1` for `Bit`, `0.5` for `Half`.
"""
up(::ST) where {ST<: IntegerSite} = up(ST)
up(::Type{ST}) where {ST <: IntegerSite} = values(ST)[end]
"""
down(site) -> site
down(site_type) -> site
Down (lowest value) tag for this label. e.g. `0` for `Bit`, `-0.5` for `Half`.
"""
down(::ST) where {ST<: IntegerSite} = down(ST)
down(::Type{ST}) where {ST <: IntegerSite} = values(ST)[1]
"""
values(site) -> site
values(site_type) -> site
Returns a tuple of all possible values of the site type
"""
Base.values(::ST) where {ST <: AbstractSite} = values(ST)
Base.values(::Type{ST}) where {ST <: AbstractSite} = map(ST, _values(ST))
Base.values(::ST, i::Int) where {ST <: AbstractSite} = _values(ST)[i]
_values(::Type{Bit{T}}) where T = (zero(T), one(T))
_values(::Type{Spin{T}}) where T = (-one(T), one(T))
_values(::Type{Half{T}}) where T = (-0.5, 0.5)
_values(::Type{Clock{T, q}}) where {T, q} = Base.OneTo(q)
_values(::Type{Potts{T, q}}) where {T, q} = Tuple(-q:q)
# _values(::Type{Continuous{T}}) where {T} = # TODO
value(S::AbstractSite) = S.value
Base.length(::AbstractSite) = 1
Base.iterate(x::AbstractSite) = (x, nothing)
Base.iterate(x::AbstractSite, state) = nothing
Random.rand(rng::Random.AbstractRNG, sp::Random.SamplerType{Bit{T}}) where T = Bit{T}(rand(rng, Bool))
Random.rand(rng::Random.AbstractRNG, sp::Random.SamplerType{Spin{T}}) where T = Spin{T}(2 * rand(rng, Bool) - 1)
Random.rand(rng::Random.AbstractRNG, sp::Random.SamplerType{Half{T}}) where T = Half{T}(rand(rng, Bool) - 0.5)
Random.rand(rng::Random.AbstractRNG, sp::Random.SamplerType{Clock{T, q}}) where {T, q} = Clock{T, q}(rand(rng, 1:q))
Random.rand(rng::Random.AbstractRNG, sp::Random.SamplerType{Potts{T, q}}) where {T, q} = Potts{T, q}(rand(rng, -q:q))
Base.to_index(A::AbstractArray, i::Bit) = Int(value(i) + 1)
Base.to_index(A::AbstractArray, i::Spin) = Int(0.5 * (value(i) + 1) + 1)
Base.to_index(A::AbstractArray, i::Half) = Int(value(i) + 1.5)
Base.to_index(A::AbstractArray, i::Clock) = Int(value(i))
Base.to_index(A::AbstractArray, i::Potts) = Int(value(i) + q + 1)
Base.to_index(A::AbstractArray, I::AbstractArray{Bit{T}, N}) where {T, N} = Int(I) + 1
Base.getindex(t::Tuple, i::Bit) = getindex(t, value(i) + 1)
Base.getindex(t::Tuple, i::Spin) = getindex(t, Int(div(value(i) + 1, 2) + 1))
include("roundings.jl")
include("conversions.jl")
include("arraymath.jl")
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | code | 1160 | using Test, LatticeSites, StaticArrays
@testset "site type" begin
@test up(Bit{Float64}) == Bit(1.0)
@test down(Bit{Float64}) == Bit(0.0)
@test up(Spin{Float64}) == Spin(1.0)
@test down(Spin{Float64}) == Spin(-1.0)
@test up(Half{Float64}) == Half(0.5)
@test down(Half{Float64}) == Half(-0.5)
end
@testset "hilbert space" begin
for (i, each) in enumerate(HilbertSpace{Bit{Float64}}(2, 3))
@test size(each) == (2, 3)
@test i-1 == convert(Int, each)
end
end
@testset "conversion" begin
@test 1 == convert(Int, Bit[1, 0])
@test 1 == convert(Int, Spin[1, -1])
@test 1 == convert(Int, Half[0.5, -0.5])
end
@testset "rounding" begin
@test round(Bit{Float64}, 1.2) == up(Bit{Float64})
@test round(Bit{Float64}, 0.9) == up(Bit{Float64})
@test round(Bit{Float64}, 0.1; threshold=0.5) == down(Bit{Float64})
@test round(Bit{Int}, 2) == up(Bit{Int})
@test round(Bit{Int}, 0) == down(Bit{Int})
end
@testset "static array" begin
@test all(ups(SMatrix{2, 2, Bit{Float64}}) .== up(Bit{Float64}))
@test all(downs(SMatrix{2, 2, Bit{Float64}}) .== down(Bit{Float64}))
end
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"Apache-2.0"
] | 0.2.3 | 8a261ee237dbd5fae2e10192cfd8b1d465c6d7eb | docs | 2109 | # LatticeSites.jl
[](https://travis-ci.org/Roger-luo/LatticeSites.jl)
Type for different kind of sites on different lattices.
## Installation
```
pkg> add https://github.com/Roger-luo/LatticeSites.jl.git
```
## Intro
This package provides types for sites, which defines the configuration of a lattice.
Binary configuration label is provided as:
- `Bit`, refers to `0`/`1`
- `Spin`, refers to `-1`/`+1`
- `Half`, refers to `-0.5`/`+0.5`
- `Clock`, refers to the 2D q-state clock model with `q` discrete spin values (`1:q`)
- `Potts`, refers to the standard Potts model with values `-q, ..., q`
- `Continuous`, is in development still and not ready.
`Array`, `StaticArray` and etc. (e.g `SparseArray`) is supported for store configurations.
It is simple, and you can use it like a `Number` (but it is not a `Number`)
```julia
julia> rand(Bit{Float64})
0.0
julia> rand(Bit{Float64}, 2, 2)
2×2 Array{Bit{Float64},2}:
0.0 0.0
0.0 0.0
julia> using StaticArrays
julia> rand(SMatrix{2, 2, Bit{Int}})
2×2 SArray{Tuple{2,2},Bit{Int64},2,4}:
0 1
0 1
```
and to support indexing, you can convert any `AbstractArray` contains sites to an integer
(as long as this integer type does not overflow).
```julia
julia> convert(Int, rand(SMatrix{2, 2, Bit{Int}}))
12
```
There is also a `HilbertSpace` iterator that help you iterate through the space.
```julia
julia> space = HilbertSpace{Bit{Int}}(2, 2)
HilbertSpace{Bit{Int64},Tuple{2,2},2,4}(Bit{Int64}[0 0; 0 0])
julia> collect(space)
16-element Array{Array{Bit{Int64},2},1}:
[0 0; 0 0]
[1 0; 0 0]
[0 0; 1 0]
[1 0; 1 0]
[0 1; 0 0]
[1 1; 0 0]
[0 1; 1 0]
[1 1; 1 0]
[0 0; 0 1]
[1 0; 0 1]
[0 0; 1 1]
[1 0; 1 1]
[0 1; 0 1]
[1 1; 0 1]
[0 1; 1 1]
[1 1; 1 1]
```
We use the convention that the first index `a[1]` take the first digit position
during the convention, which is opposite to natural notation `0b0101`, where the last
digit in bit string take the first position.
In short
`0b011` is equivalent to `Bit[1, 1, 0]`
## License
Apache License 2.0
| LatticeSites | https://github.com/Roger-luo/LatticeSites.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 34 | using PkgBenchmark, GeometricFlux
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 1193 | using CSV, DataFrames
using Gadfly
import Cairo
julia_bmk_file = joinpath("benchmark", "scatter_julia.tsv")
python_bmk_file = joinpath("benchmark", "scatter_pytorch.tsv")
bmk_jl = CSV.read(julia_bmk_file; delim='\t')
bmk_py = CSV.read(python_bmk_file; delim='\t')
bmk_jl[!, :framework] .= "ScatterNNlib.jl"
bmk_py[!, :framework] .= "Pytorch-scatter"
bmk = vcat(bmk_jl, bmk_py)
bmk[!, :min_time] .= bmk[!, :min_time]/1000
bmk[!, :mean_time] .= bmk[!, :mean_time]/1000
bmk[!, :max_time] .= bmk[!, :max_time]/1000
function plot_benchmark(device)
DEVICE = uppercase(device)
p = plot(bmk[bmk[!,:device] .== device, :], x="sample", y="mean_time", color="framework",
Geom.point, Geom.line, Scale.x_log2, Scale.y_log10,
Guide.title("Scatter add performance on $(DEVICE)"),
Guide.xlabel("Matrix Size"), Guide.ylabel("Time (μs)"),
Coord.cartesian(xmin=4, xmax=21, ymin=0, ymax=6))
draw(SVG(joinpath("benchmark", "pics", "$(device)_scatter.svg"), 9inch, 6inch), p)
draw(PNG(joinpath("benchmark", "pics", "$(device)_scatter.png"), 9inch, 6inch), p)
end
plot_benchmark("cpu")
plot_benchmark("gpu")
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 611 | using CUDA
using GeometricFlux
using Profile
using ProfileView
ENV["JULIA_NUM_THREADS"] = 1
d = 50
nbins = 20
l = 2^20
hist = zeros(Float32, d, nbins)
δ = rand(Float32, d, l)
idx = rand(1:nbins, l)
scatter_add!(hist, δ, idx)
@profile scatter_add!(hist, δ, idx)
Profile.print()
@profview scatter_add!(hist, δ, idx)
# sudo nvprof --profile-from-start off julia benchmark/scatter.jl
# sudo nvprof --profile-from-start off --print-gpu-trace julia --proj benchmark/scatter.jl
# sudo chown $USER -R $HOME/.julia/
# @profview scatter_add!(hist, δ, idx)
# CUDAdrv.@profile scatter_add!(hist_gpu, δ_gpu, idx_gpu)
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 1625 | using Pkg
using CUDA
using ScatterNNlib
using DataFrames
using CSV
using BenchmarkTools
using BenchmarkTools: Trial, TrialEstimate, median, mean
Pkg.status("ScatterNNlib")
Pkg.status("CUDA")
ENV["JULIA_NUM_THREADS"] = 1
d = 50
nbins = 20
getinfo(te::TrialEstimate) = te.time, te.gctime, te.memory
getstats(t::Trial) = [getinfo(minimum(t)), getinfo(mean(t)), getinfo(maximum(t))]
metadata = DataFrame(device=String[], dim=Int[], sample=Int[], bins=Int[])
mintime = DataFrame(min_time=Float64[], min_gc=Float64[], min_mem=Int[])
meantime = DataFrame(mean_time=Float64[], mean_gc=Float64[], mean_mem=Int[])
maxtime = DataFrame(max_time=Float64[], max_gc=Float64[], max_mem=Int[])
for l = [2^5, 2^10, 2^15, 2^20]
hist = zeros(Float32, d, nbins)
δ = rand(Float32, d, l)
idx = rand(1:nbins, l)
hist_gpu = CuArray(hist)
δ_gpu = CuArray(δ)
idx_gpu = CuArray(idx)
scatter_add!(hist, δ, idx)
scatter_add!(hist_gpu, δ_gpu, idx_gpu)
b_cpu = @benchmark scatter_add!($hist, $δ, $idx)
b_gpu = @benchmark scatter_add!($hist_gpu, $δ_gpu, $idx_gpu)
s_cpu = getstats(b_cpu)
s_gpu = getstats(b_gpu)
push!(metadata, ("cpu", d, l, nbins))
push!(mintime, s_cpu[1])
push!(meantime, s_cpu[2])
push!(maxtime, s_cpu[3])
push!(metadata, ("gpu", d, l, nbins))
push!(mintime, s_gpu[1])
push!(meantime, s_gpu[2])
push!(maxtime, s_gpu[3])
end
data = hcat(metadata, mintime, meantime, maxtime)
CSV.write("benchmark/scatter_julia.tsv", data; delim="\t")
## Benchmark
# @benchmark scatter_add!($hist, $δ, $idx)
# CuArrays.@time scatter_add!(hist_gpu, δ_gpu, idx_gpu)
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 1870 | using PyCall
using DataFrames
using CSV
using BenchmarkTools
using BenchmarkTools: Trial, TrialEstimate, median, mean
py"""
import torch
import torch_scatter as sc
print("Pytorch v", torch.__version__)
print("Pytorch-scatter v", sc.__version__)
cuda = torch.device("cuda:0")
d = 50
nbins = 20
"""
d = 50
nbins = 20
getinfo(te::TrialEstimate) = te.time, te.gctime, te.memory
getstats(t::Trial) = [getinfo(minimum(t)), getinfo(mean(t)), getinfo(maximum(t))]
metadata = DataFrame(device=String[], dim=Int[], sample=Int[], bins=Int[])
mintime = DataFrame(min_time=Float64[], min_gc=Float64[], min_mem=Int[])
meantime = DataFrame(mean_time=Float64[], mean_gc=Float64[], mean_mem=Int[])
maxtime = DataFrame(max_time=Float64[], max_gc=Float64[], max_mem=Int[])
for l = [2^5, 2^10, 2^15, 2^20]
py"""
hist = torch.zeros([d, nbins], dtype=torch.float32)
delta = torch.rand([d, $(l)], dtype=torch.float32)
idx = torch.randint(0, nbins, size=($(l),))
hist_gpu = torch.zeros([d, nbins], dtype=torch.float32, device=cuda)
delta_gpu = torch.rand([d, $(l)], dtype=torch.float32, device=cuda)
idx_gpu = torch.randint(0, nbins, size=($(l),), device=cuda)
sc.scatter_add(delta, idx, out=hist)
sc.scatter_add(delta_gpu, idx_gpu, out=hist_gpu)
"""
b_cpu = @benchmark py"sc.scatter(delta, idx, out=hist, reduce='sum')";
b_gpu = @benchmark py"sc.scatter(delta_gpu, idx_gpu, out=hist_gpu, reduce='sum')";
s_cpu = getstats(b_cpu)
s_gpu = getstats(b_gpu)
push!(metadata, ("cpu", d, l, nbins))
push!(mintime, s_cpu[1])
push!(meantime, s_cpu[2])
push!(maxtime, s_cpu[3])
push!(metadata, ("gpu", d, l, nbins))
push!(mintime, s_gpu[1])
push!(meantime, s_gpu[2])
push!(maxtime, s_gpu[3])
end
data = hcat(metadata, mintime, meantime, maxtime)
CSV.write("benchmark/scatter_pytorch.tsv", data; delim="\t")
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 536 | using ScatterNNlib
using Documenter
makedocs(
modules = [ScatterNNlib],
authors = "Yueh-Hua Tu",
repo = "https://github.com/yuehhua/ScatterNNlib.jl/blob/{commit}{path}#L{line}",
sitename = "ScatterNNlib",
format = Documenter.HTML(
canonical = "https://yuehhua.github.io/ScatterNNlib.jl/stable"
),
pages=[
"Home" => "index.md",
"Manual" =>
["Scatter operations" => "manual/scatter.md",
]
],
)
deploydocs(repo = "github.com/yuehhua/ScatterNNlib.jl")
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 917 | module ScatterNNlib
using CUDA
using DataStructures: DefaultDict
using FillArrays: Fill
using Statistics: mean
using StaticArrays: StaticArray
using Zygote
using ZygoteRules
export
# scatter
scatter_add!,
scatter_sub!,
scatter_max!,
scatter_min!,
scatter_mul!,
scatter_div!,
scatter_mean!,
scatter!,
# gather
gather
const IntOrTuple = Union{Integer,Tuple}
const ops = [:add, :sub, :mul, :div, :max, :min, :mean]
const name2op = Dict(:add => :+, :sub => :-, :mul => :*, :div => :/)
include("scatter/densearray.jl")
include("scatter/staticarray.jl")
include("interfaces.jl")
include("grad.jl")
include("gather.jl")
include("utils.jl")
if CUDA.functional()
using CUDA: @cuda
const MAX_THREADS = 1024
include("cuda/cuarray.jl")
include("cuda/grad.jl")
include("cuda/gather.jl")
else
@warn "CUDA unavailable, not loading CUDA support"
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 975 | """
Inverse operation of scatter
"""
function gather(input::AbstractArray{T,N}, index::AbstractArray{<:Integer,N}, dims::Integer) where {T,N}
@assert dims <= N "Specified dimensions must lower or equal to the rank of input matrix."
out = similar(index, T)
@inbounds for x = CartesianIndices(out)
tup = collect(Tuple(x))
tup[dims] = index[x]
view(out, x) .= view(input, tup...)
end
return out
end
function gather(input::Matrix{T}, index::Array{Int}) where T
out = Array{T}(undef, size(input,1), size(index)...)
@inbounds for ind = CartesianIndices(index)
view(out, :, ind) .= view(input, :, index[ind])
end
return out
end
gather(input::Fill{T,2,<:Any}, index::Array{Int}) where T = gather(Matrix(input), index)
function gather_indices(X::Array{T}) where T
Y = DefaultDict{T,Vector{CartesianIndex}}(CartesianIndex[])
@inbounds for (ind, val) = pairs(X)
push!(Y[val], ind)
end
Y
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 2577 | @adjoint function scatter_add!(ys::AbstractArray, us::AbstractArray, xs::AbstractArray)
ys_ = copy(ys)
scatter_add!(ys_, us, xs)
ys_, Δ -> (Δ, gather(Δ, xs), nothing)
end
@adjoint function scatter_sub!(ys::AbstractArray, us::AbstractArray, xs::AbstractArray)
ys_ = copy(ys)
scatter_sub!(ys_, us, xs)
ys_, Δ -> (Δ, -gather(Δ, xs), nothing)
end
@adjoint function scatter_mul!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
ys_ = copy(ys)
scatter_mul!(ys_, us, xs)
ys_, function (Δ)
Δy = Δ .+ zero(ys)
scatter_mul!(Δy, us, xs)
rev_xs = gather_indices(xs)
Δu = gather(ys, xs) .* gather(Δ, xs)
@inbounds for ind = CartesianIndices(xs)
inds = filter(x -> x != ind, rev_xs[xs[ind]])
for i = 1:size(us, 1)
Δu[i, ind] *= prod(j -> us[i, j], inds)
end
end
(Δy, Δu, nothing)
end
end
@adjoint function scatter_div!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
ys_ = copy(ys)
scatter_div!(ys_, us, xs)
ys_, function (Δ)
Δy = Δ .+ zero(ys)
scatter_div!(Δy, us, xs)
rev_xs = gather_indices(xs)
Δu = - gather(ys, xs) .* gather(Δ, xs) ./ us.^2
@inbounds for ind = CartesianIndices(xs)
inds = filter(x -> x != ind, rev_xs[xs[ind]])
for i = 1:size(us, 1)
Δu[i, ind] /= prod(j -> us[i, j], inds)
end
end
(Δy, Δu, nothing)
end
end
@adjoint function scatter_max!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
max = copy(ys)
scatter_max!(max, us, xs)
max, function (Δ)
Δy = (ys .== max) .* Δ
Δu = (us .== gather(max, xs)) .* gather(Δ, xs)
(Δy, Δu, nothing)
end
end
@adjoint function scatter_min!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
min = copy(ys)
scatter_min!(min, us, xs)
min, function (Δ)
Δy = (ys .== min) .* Δ
Δu = (us .== gather(min, xs)) .* gather(Δ, xs)
(Δy, Δu, nothing)
end
end
@adjoint function scatter_mean!(ys::AbstractArray, us::AbstractArray, xs::AbstractArray)
ys_ = copy(ys)
scatter_mean!(ys_, us, xs)
ys_, function (Δ)
Δu = gather(Δ, xs)
counts = zero.(xs)
@inbounds for i = 1:size(ys, 2)
counts += sum(xs.==i) * (xs.==i)
end
@inbounds for ind = CartesianIndices(counts)
view(Δu, :, ind) ./= counts[ind]
end
(Δ, Δu, nothing)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 539 | ## API
function scatter!(op::Symbol, ys::AbstractArray, us::AbstractArray, xs::AbstractArray)
if op == :add
return scatter_add!(ys, us, xs)
elseif op == :sub
return scatter_sub!(ys, us, xs)
elseif op == :mul
return scatter_mul!(ys, us, xs)
elseif op == :div
return scatter_div!(ys, us, xs)
elseif op == :max
return scatter_max!(ys, us, xs)
elseif op == :min
return scatter_min!(ys, us, xs)
elseif op == :mean
return scatter_mean!(ys, us, xs)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 133 | """
save_div(x, y)
Savely divde `x` by `y`. If `y` is zero, return `x` directly.
"""
save_div(x, y) = ifelse(iszero(y), x, x/y)
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 4006 | # Integer
for op = [:add, :sub, :max, :min, :and, :or, :xor]
fn = Symbol("scatter_$(op)!")
atm_op = Symbol("atomic_$(op)!")
@eval function $fn(ys::CuMatrix{T}, us::CuArray{T}, xs::CuArray{Int}) where {T<:Integer}
function kernel!(ys, us, xs)
li = threadIdx().y + (blockIdx().y - 1) * blockDim().y
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
@inbounds if li <= length(xs) && i <= size(ys, 1)
ind = CartesianIndices(xs)[li]
j = Base._to_linear_index(ys, i, xs[li])
CUDA.$atm_op(pointer(ys, j), us[i, ind])
end
return
end
thread_x = min(MAX_THREADS, size(ys, 1))
thread_y = min(MAX_THREADS ÷ thread_x, length(xs))
threads = (thread_x, thread_y)
blocks = ceil.(Int, (size(ys, 1), length(xs)) ./ threads)
@cuda blocks=blocks threads=threads kernel!(ys, us, xs)
return ys
end
@eval function $fn(ys::CuArray{T}, us::CuArray{T}, xs::CuArray{<:Tuple}) where {T<:Integer}
function kernel!(ys, us, xs)
li = threadIdx().y + (blockIdx().y - 1) * blockDim().y
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
@inbounds if li <= length(xs) && i <= size(ys, 1)
ind = CartesianIndices(xs)[li]
j = Base._to_linear_index(ys, i, xs[li]...)
CUDA.$atm_op(pointer(ys, j), us[i, ind])
end
return
end
thread_x = min(MAX_THREADS, size(ys, 1))
thread_y = min(MAX_THREADS ÷ thread_x, length(xs))
threads = (thread_x, thread_y)
blocks = ceil.(Int, (size(ys, 1), length(xs)) ./ threads)
@cuda blocks=blocks threads=threads kernel!(ys, us, xs)
return ys
end
end
# Floating point
for op = [:add, :sub, :mul, :div, :max, :min]
fn = Symbol("scatter_$(op)!")
atm_op = Symbol("atomic_$(op)!")
@eval function $fn(ys::CuMatrix{T}, us::CuArray{T}, xs::CuArray{Int}) where {T<:AbstractFloat}
function kernel!(ys::CuDeviceArray{T}, us::CuDeviceArray{T}, xs)
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
j = threadIdx().y + (blockIdx().y - 1) * blockDim().y
@inbounds if i <= size(ys, 1) && j <= length(xs)
ind = CartesianIndices(xs)[j]
k = Base._to_linear_index(ys, i, xs[j])
CUDA.$atm_op(pointer(ys, k), us[i, ind])
end
return
end
thread_i = min(MAX_THREADS, size(ys, 1))
thread_j = min(MAX_THREADS ÷ thread_i, length(xs))
threads = (thread_i, thread_j)
blocks = ceil.(Int, (size(ys, 1), length(xs)) ./ threads)
@cuda blocks=blocks threads=threads kernel!(ys, us, xs)
return ys
end
@eval function $fn(ys::CuArray{T}, us::CuArray{T}, xs::CuArray{<:Tuple}) where {T<:AbstractFloat}
function kernel!(ys::CuDeviceArray{T}, us::CuDeviceArray{T}, xs)
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
j = threadIdx().y + (blockIdx().y - 1) * blockDim().y
@inbounds if i <= size(ys, 1) && j <= length(xs)
ind = CartesianIndices(xs)[j]
k = Base._to_linear_index(ys, i, xs[j]...)
CUDA.$atm_op(pointer(ys, k), us[i, ind])
end
return
end
thread_i = min(MAX_THREADS, size(ys, 1))
thread_j = min(MAX_THREADS ÷ thread_i, length(xs))
threads = (thread_i, thread_j)
blocks = ceil.(Int, (size(ys, 1), length(xs)) ./ threads)
@cuda blocks=blocks threads=threads kernel!(ys, us, xs)
return ys
end
end
function scatter_mean!(ys::CuMatrix{T}, us::CuArray{T}, xs::CuArray{<:IntOrTuple}) where {T<:AbstractFloat}
yt = CUDA.zero(ys)
ot = CUDA.zero(ys)
os = CUDA.one.(us)
scatter_add!(ot, os, xs)
scatter_add!(yt, us, xs)
ys .+= save_div.(yt, ot)
return ys
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 650 | gather(input::AbstractArray{T}, index::CuArray{Int}) where T = gather(cu(Array(input)), index)
function gather(input::CuMatrix{T}, index::CuArray{Int}) where T
out = CUDA.zeros(T, size(input,1), size(index)...)
@inbounds for ind = CartesianIndices(index)
view(out, :, ind) .= view(input, :, index[ind])
end
return out
end
function gather_indices(X::CuArray{T}) where T
Y = gather_indices(Array(X))
cuY = Dict{T,CuVector}(k => cu(Tuple.(v)) for (k, v) in Y)
cuY
end
function numerical_cmp(X::CuArray{T}, Y::CuArray) where T
Z = map((x,y) -> sign(x - y)^2, X, Y)
Z = map(x -> (one(T) - x)^2, Z)
Z
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 2187 | @adjoint function scatter_mul!(ys::CuArray{T}, us::CuArray{T}, xs::CuArray) where {T<:AbstractFloat}
ys_ = copy(ys)
scatter_mul!(ys_, us, xs)
ys_, function (Δ)
Δy = zero(ys) .+ Δ
scatter_mul!(Δy, us, xs)
rev_xs = gather_indices(xs)
Δu = gather(ys, xs) .* gather(zero(Δ)+Δ, xs)
@inbounds for ind = CartesianIndices(xs)
ind = Tuple(ind)
inds = filter(x -> x != ind, rev_xs[xs[ind...]])
for i = 1:size(us, 1)
multiplier = one(T)
for j = inds
multiplier *= us[i, j...]
end
Δu[i, ind...] *= multiplier
end
end
(Δy, Δu, nothing)
end
end
@adjoint function scatter_div!(ys::CuArray{T}, us::CuArray{T}, xs::CuArray) where {T<:AbstractFloat}
ys_ = copy(ys)
scatter_div!(ys_, us, xs)
ys_, function (Δ)
Δy = zero(ys) .+ Δ
scatter_div!(Δy, us, xs)
rev_xs = gather_indices(xs)
Δu = - gather(ys, xs)
Δu .*= gather(zero(Δ)+Δ, xs)
Δu ./= us.^2
@inbounds for ind = CartesianIndices(xs)
ind = Tuple(ind)
inds = filter(x -> x != ind, rev_xs[xs[ind...]])
for i = 1:size(us, 1)
denom = one(T)
for j = inds
denom *= us[i, j...]
end
Δu[i, ind...] /= denom
end
end
(Δy, Δu, nothing)
end
end
@adjoint function scatter_max!(ys::CuArray{T}, us::CuArray{T}, xs::CuArray) where {T<:AbstractFloat}
max = copy(ys)
scatter_max!(max, us, xs)
max, function (Δ)
Δy = numerical_cmp(ys, max) .* Δ
Δu = gather(max, xs)
Δu = numerical_cmp(us, Δu)
Δu .*= gather(zero(Δ)+Δ, xs)
(Δy, Δu, nothing)
end
end
@adjoint function scatter_min!(ys::CuArray{T}, us::CuArray{T}, xs::CuArray) where {T<:AbstractFloat}
min = copy(ys)
scatter_min!(min, us, xs)
min, function (Δ)
Δy = numerical_cmp(ys, min) .* Δ
Δu = gather(min, xs)
Δu = numerical_cmp(us, Δu)
Δu .*= gather(zero(Δ)+Δ, xs)
(Δy, Δu, nothing)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 6767 | ## Scatter operations
"""
scatter_add!(ys, us, xs)
Scatter addition operation.
ys[:, xs[k]...] = ys[:, xs[k]...] .+ us[:, k...]
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_add! end
"""
scatter_sub!(ys, us, xs)
Scatter subtraction operation.
ys[:, xs[k]...] = ys[:, xs[k]...] .- us[:, k...]
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_sub! end
"""
scatter_mul!(ys, us, xs)
Scatter multiplication operation.
ys[:, xs[k]...] = ys[:, xs[k]...] .* us[:, k...]
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_mul! end
"""
scatter_div!(ys, us, xs)
Scatter division operation.
ys[:, xs[k]...] = ys[:, xs[k]...] ./ us[:, k...]
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_div! end
for op = [:add, :sub, :mul, :div]
fn = Symbol("scatter_$(op)!")
@eval function $fn(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds ys_v .= $(name2op[op]).(ys_v, us_v)
end
ys
end
end
"""
scatter_max!(ys, us, xs)
Scatter maximum operation.
ys[:, xs[k]...] = max.(ys[:, xs[k]...], us[:, k...])
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_max!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds view(ys, :, xs[k]...) .= max.(ys_v, us_v)
end
ys
end
"""
scatter_min!(ys, us, xs)
Scatter minimum operation.
ys[:, xs[k]...] = min.(ys[:, xs[k]...], us[:, k...])
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_min!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds ys_v .= min.(ys_v, us_v)
end
ys
end
"""
scatter_mean!(ys, us, xs)
Scatter mean operation.
ys[:, xs[k]...] = mean.(ys[:, xs[k]...], us[:, k...])
# Arguments
- `ys`: the destination for `us` to aggregate to. This argument will be mutated.
- `us`: the source data for aggregating.
- `xs`: the mapping for aggregation from source (index) to destination (value).
The index of `xs` is corresponding to the index of `us` and the value of `xs` is
corresponding to the index of `ys`. The value of `xs` can be `Int` or `Tuple` type.
The dimension of `us` must equal to one plus dimension of `xs`. `ys`, `us` and `xs`
must be supported array type and be the same type.`Array`, `StaticArray` and `CuArray`
are currently supported.
"""
function scatter_mean!(ys::Array{T}, us::Array{T}, xs::Array{<:IntOrTuple}) where {T<:Real}
Ns = zero(ys)
ys_ = zero(ys)
scatter_add!(Ns, one.(us), xs)
scatter_add!(ys_, us, xs)
ys .+= save_div.(ys_, Ns)
return ys
end
# Support different types of array
for op = ops
fn = Symbol("scatter_$(op)!")
@eval function $fn(ys::Array{T}, us::Array{S}, xs::Array{<:IntOrTuple}) where {T<:Real,S<:Real}
PT = promote_type(T, S)
$fn(PT.(ys), PT.(us), xs)
end
@eval function $fn(ys::StaticArray{<:Tuple,T}, us::StaticArray{<:Tuple,S},
xs::StaticArray{<:Tuple,<:IntOrTuple}) where {T<:Real,S<:Real}
PT = promote_type(T, S)
$fn(PT.(ys), PT.(us), xs)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 1519 | ## Scatter operations for StaticArray
for op = [:add, :sub, :mul, :div]
fn = Symbol("scatter_$(op)!")
@eval function $fn(ys::StaticArray{<:Tuple,T}, us::StaticArray{<:Tuple,T},
xs::StaticArray{<:Tuple,<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds ys_v .= $(name2op[op]).(ys_v, us_v)
end
ys
end
end
function scatter_max!(ys::StaticArray{<:Tuple,T}, us::StaticArray{<:Tuple,T},
xs::StaticArray{<:Tuple,<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds ys_v .= max.(ys_v, us_v)
end
ys
end
function scatter_min!(ys::StaticArray{<:Tuple,T}, us::StaticArray{<:Tuple,T},
xs::StaticArray{<:Tuple,<:IntOrTuple}) where {T<:Real}
@simd for k = 1:length(xs)
k = CartesianIndices(xs)[k]
ys_v = view(ys, :, xs[k]...)
us_v = view(us, :, k)
@inbounds ys_v .= min.(ys_v, us_v)
end
ys
end
function scatter_mean!(ys::StaticArray{<:Tuple,T}, us::StaticArray{<:Tuple,T},
xs::StaticArray{<:Tuple,<:IntOrTuple}) where {T<:Real}
Ns = zero(ys)
ys_ = zero(ys)
scatter_add!(Ns, one.(us), xs)
scatter_add!(ys_, us, xs)
ys .+= save_div.(ys_, Ns)
return ys
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 719 | @testset "gather" begin
@testset "3-argumented" begin
X = [1 2 3; 4 5 6]
ind1 = [1 2 2; 1 1 1]
ind2 = [1 2; 3 1]
for T = [Int8, Int16, Int32, Int64, Int128,
Float16, Float32, Float64]
@test gather(T.(X), ind1, 1) == T.([1 5 6; 1 2 3])
@test gather(T.(X), ind2, 2) == T.([1 2; 6 4])
end
end
@testset "2-argumented" begin
input = [3 3 4 4 5;
5 5 6 6 7]
index = [1 2 3 4;
4 2 1 3;
3 5 5 3]
output = cat([3 4 4; 5 6 6], [3 3 5; 5 5 7],
[4 3 5; 6 5 7], [4 4 4; 6 6 6], dims=3)
@test gather(input, index) == output
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 2308 | ys = [3. 3. 4. 4. 5.;
5. 5. 6. 6. 7.]
us = 2*ones(2, 3, 4)
xs = [1 2 3 4;
4 2 1 3;
3 5 5 3]
∇y_mul = [4. 4. 16. 4. 4.; 4. 4. 16. 4. 4.]
∇y_div = [.25 .25 .0625 .25 .25; .25 .25 .0625 .25 .25]
∇u_mean = cat([.5 .5 .25; .5 .5 .25], [.5 .5 .5; .5 .5 .5],
[.25 .5 .5; .25 .5 .5], [.5 .25 .25; .5 .25 .25], dims=3)
@testset "grad" begin
@testset "scatter" begin
@test Zygote.gradient(x -> sum(scatter_add!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_add!(copy(ys), x, xs)), us) == (ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_add!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_sub!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_sub!(copy(ys), x, xs)), us) == (-ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_sub!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_max!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_max!(copy(ys), x, xs)), us) == (zeros(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_max!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_min!(x, us, xs)), ys) == (zeros(2, 5),)
@test Zygote.gradient(x -> sum(scatter_min!(copy(ys), x, xs)), us) == (ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_min!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_mul!(x, us, xs)), ys) == (∇y_mul,)
@test Zygote.gradient(x -> sum(scatter_mul!(copy(ys), x, xs)), us) == (2048*gather(ys, xs),)
@test Zygote.gradient(x -> sum(scatter_mul!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_div!(x, us, xs)), ys) == (∇y_div,)
@test Zygote.gradient(x -> sum(scatter_div!(copy(ys), x, xs)), us) == (-gather(ys, xs)/8192,)
@test Zygote.gradient(x -> sum(scatter_div!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_mean!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_mean!(copy(ys), x, xs)), us) == (∇u_mean,)
@test Zygote.gradient(x -> sum(scatter_mean!(copy(ys), us, x)), xs) == (nothing,)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 448 | using ScatterNNlib
using StaticArrays: @MMatrix, @MArray
using Zygote
using CUDA
using Test
cuda_tests = [
"cuda/cuarray",
"cuda/grad",
]
tests = [
"scatter/densearray",
"scatter/staticarray",
"grad",
"gather",
]
if CUDA.functional()
append!(tests, cuda_tests)
else
@warn "CUDA unavailable, not testing CUDA support"
end
@testset "ScatterNNlib.jl" begin
for t in tests
include("$(t).jl")
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 5258 | ys = cu([3 3 4 4 5;
5 5 6 6 7])
us = cu(ones(Int, 2, 3, 4))
xs = CuArray{Int64}([1 2 3 4;
4 2 1 3;
3 5 5 3])
xs_tup = CuArray([(1,) (2,) (3,) (4,);
(4,) (2,) (1,) (3,);
(3,) (5,) (5,) (3,)])
@testset "cuda/scatter" begin
for T = [UInt32, UInt64, Int32, Int64]
@testset "$(T)" begin
@testset "add" begin
ys_ = cu([5 5 8 6 7;
7 7 10 8 9])
@test scatter_add!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "sub" begin
ys_ = cu([1 1 0 2 3;
3 3 2 4 5])
@test scatter_sub!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "max" begin
ys_ = cu([3 3 4 4 5;
5 5 6 6 7])
@test scatter_max!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "min" begin
ys_ = cu([1 1 1 1 1;
1 1 1 1 1])
@test scatter_min!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
for T = [Float32, Float64]
@testset "$(T)" begin
@testset "add" begin
ys_ = cu([5 5 8 6 7;
7 7 10 8 9])
@test scatter_add!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "sub" begin
ys_ = cu([1 1 0 2 3;
3 3 2 4 5])
@test scatter_sub!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "max" begin
ys_ = cu([3 3 4 4 5;
5 5 6 6 7])
@test scatter_max!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "min" begin
ys_ = cu([1 1 1 1 1;
1 1 1 1 1])
@test scatter_min!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "mul" begin
ys_ = cu([3 3 4 4 5;
5 5 6 6 7])
@test scatter_mul!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "div" begin
us_div = us .* 2
ys_ = cu([0.75 0.75 0.25 1. 1.25;
1.25 1.25 0.375 1.5 1.75])
@test scatter_div!(T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter_div!(T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
end
@testset "mean" begin
ys_ = cu([4 4 5 5 6;
6 6 7 7 8])
@test scatter_mean!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 2370 | ys = cu([3. 3. 4. 4. 5.;
5. 5. 6. 6. 7.])
us = cu(2*ones(2, 3, 4))
xs = CuArray{Int64}([1 2 3 4;
4 2 1 3;
3 5 5 3])
∇y_mul = [4. 4. 16. 4. 4.; 4. 4. 16. 4. 4.]
∇y_div = [.25 .25 .0625 .25 .25; .25 .25 .0625 .25 .25]
∇u_mean = cat([.5 .5 .25; .5 .5 .25], [.5 .5 .5; .5 .5 .5],
[.25 .5 .5; .25 .5 .5], [.5 .25 .25; .5 .25 .25], dims=3)
@testset "cuda/grad" begin
@testset "scatter" begin
@test Zygote.gradient(x -> sum(scatter_add!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_add!(copy(ys), x, xs)), us) == (ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_add!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_sub!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_sub!(copy(ys), x, xs)), us) == (-ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_sub!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_max!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_max!(copy(ys), x, xs)), us) == (zeros(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_max!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_min!(x, us, xs)), ys) == (zeros(2, 5),)
@test Zygote.gradient(x -> sum(scatter_min!(copy(ys), x, xs)), us) == (ones(2, 3, 4),)
@test Zygote.gradient(x -> sum(scatter_min!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_mul!(x, us, xs)), ys) == (∇y_mul,)
@test Zygote.gradient(x -> sum(scatter_mul!(copy(ys), x, xs)), us) == (2048*gather(ys, xs),)
@test Zygote.gradient(x -> sum(scatter_mul!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_div!(x, us, xs)), ys) == (∇y_div,)
@test Zygote.gradient(x -> sum(scatter_div!(copy(ys), x, xs)), us) == (-gather(ys, xs)/8192,)
@test Zygote.gradient(x -> sum(scatter_div!(copy(ys), us, x)), xs) == (nothing,)
@test Zygote.gradient(x -> sum(scatter_mean!(x, us, xs)), ys) == (ones(2, 5),)
@test Zygote.gradient(x -> sum(scatter_mean!(copy(ys), x, xs)), us) == (∇u_mean,)
@test Zygote.gradient(x -> sum(scatter_mean!(copy(ys), us, x)), xs) == (nothing,)
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 5744 | ys = [3 3 4 4 5;
5 5 6 6 7]
us = ones(Int, 2, 3, 4)
xs = [1 2 3 4;
4 2 1 3;
3 5 5 3]
xs_tup = [(1,) (2,) (3,) (4,);
(4,) (2,) (1,) (3,);
(3,) (5,) (5,) (3,)]
types = [UInt8, UInt16, UInt32, UInt64, UInt128,
Int8, Int16, Int32, Int64, Int128, BigInt,
Float16, Float32, Float64, BigFloat, Rational]
@testset "scatter/densearray" begin
for T = types
@testset "$T" begin
PT = promote_type(T, Int)
@testset "scatter_add!" begin
ys_ = [5 5 8 6 7;
7 7 10 8 9]
@test scatter_add!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_add!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_add!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_add!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_sub!" begin
ys_ = [1 1 0 2 3;
3 3 2 4 5]
@test scatter_sub!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_sub!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_sub!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_max!" begin
ys_ = [3 3 4 4 5;
5 5 6 6 7]
@test scatter_max!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_max!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_max!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_max!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_min!" begin
ys_ = [1 1 1 1 1;
1 1 1 1 1]
@test scatter_min!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_min!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_min!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_min!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_mul!" begin
ys_ = [3 3 4 4 5;
5 5 6 6 7]
@test scatter_mul!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_mul!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_mul!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
for T = [Float16, Float32, Float64, BigFloat, Rational]
@testset "$T" begin
PT = promote_type(T, Float64)
@testset "scatter_div!" begin
us_div = us .* 2
ys_ = [0.75 0.75 0.25 1. 1.25;
1.25 1.25 0.375 1.5 1.75]
@test scatter_div!(T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter_div!(T.(copy(ys)), us_div, xs) == PT.(ys_)
@test scatter_div!(copy(ys), T.(us_div), xs) == PT.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter_div!(T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
@test scatter_div!(T.(copy(ys)), us_div, xs_tup) == PT.(ys_)
@test scatter_div!(copy(ys), T.(us_div), xs_tup) == PT.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
end
@testset "scatter_mean!" begin
ys_ = [4. 4. 5. 5. 6.;
6. 6. 7. 7. 8.]
@test scatter_mean!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_mean!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_mean!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | code | 5616 | ys = @MMatrix [3 3 4 4 5; 5 5 6 6 7]
us = @MArray ones(Int, 2, 3, 4)
xs = @MMatrix [1 2 3 4; 4 2 1 3; 3 5 5 3]
xs_tup = @MMatrix [(1,) (2,) (3,) (4,); (4,) (2,) (1,) (3,); (3,) (5,) (5,) (3,)]
types = [UInt8, UInt16, UInt32, UInt64, UInt128,
Int8, Int16, Int32, Int64, Int128,
Float16, Float32, Float64, Rational]
@testset "scatter/staticarray" begin
for T = types
@testset "$T" begin
PT = promote_type(T, Int)
@testset "scatter_add!" begin
ys_ = @MMatrix [5 5 8 6 7; 7 7 10 8 9]
@test scatter_add!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_add!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_add!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_add!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_add!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:add, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_sub!" begin
ys_ = @MMatrix [1 1 0 2 3; 3 3 2 4 5]
@test scatter_sub!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_sub!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_sub!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_sub!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:sub, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_max!" begin
ys_ = @MMatrix [3 3 4 4 5; 5 5 6 6 7]
@test scatter_max!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_max!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_max!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_max!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_max!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:max, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_min!" begin
ys_ = @MMatrix [1 1 1 1 1; 1 1 1 1 1]
@test scatter_min!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_min!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_min!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_min!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_min!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:min, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
@testset "scatter_mul!" begin
ys_ = @MMatrix [3 3 4 4 5; 5 5 6 6 7]
@test scatter_mul!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_mul!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_mul!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_mul!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:mul, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
for T = [Float16, Float32, Float64, Rational]
@testset "$T" begin
PT = promote_type(T, Float64)
@testset "scatter_div!" begin
us_div = us .* 2
ys_ = @MMatrix [0.75 0.75 0.25 1. 1.25; 1.25 1.25 0.375 1.5 1.75]
@test scatter_div!(T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter_div!(T.(copy(ys)), us_div, xs) == PT.(ys_)
@test scatter_div!(copy(ys), T.(us_div), xs) == PT.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs) == T.(ys_)
@test scatter_div!(T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
@test scatter_div!(T.(copy(ys)), us_div, xs_tup) == PT.(ys_)
@test scatter_div!(copy(ys), T.(us_div), xs_tup) == PT.(ys_)
@test scatter!(:div, T.(copy(ys)), T.(us_div), xs_tup) == T.(ys_)
end
@testset "scatter_mean!" begin
ys_ = @MMatrix [4. 4. 5. 5. 6.; 6. 6. 7. 7. 8.]
@test scatter_mean!(T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), us, xs) == PT.(ys_)
@test scatter_mean!(copy(ys), T.(us), xs) == PT.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
@test scatter_mean!(T.(copy(ys)), us, xs_tup) == PT.(ys_)
@test scatter_mean!(copy(ys), T.(us), xs_tup) == PT.(ys_)
@test scatter!(:mean, T.(copy(ys)), T.(us), xs_tup) == T.(ys_)
end
end
end
end
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | docs | 563 | # Changelog
All notable changes to this project will be documented in this file.
## [0.1.7]
- Support CUDA up to v2.6
- Support FillArrays v0.11
- Support Zygote v0.6
## [0.1.6]
- Support Julia v1.6
- Support StaticArrays v1.0
## [0.1.5]
- Support CUDA v2.2 and v2.3
## [0.1.4]
- Support CUDA v2.1
- Support FillArrays v0.10
## [0.1.3]
- Add doc page
- Bump CUDA to v2.0
- Not support bool type
## [0.1.2]
- Increase test coverage for dense array, static array and cuarray
- Add benchmark
## [0.1.1]
- Add CUDA utilities to fix computation on CUDA
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | docs | 866 | # ScatterNNlib.jl
[](https://yuehhua.github.io/ScatterNNlib.jl/stable)
[](https://yuehhua.github.io/ScatterNNlib.jl/dev)
A scatter operation library for neural network
## Benchmark
Scatter operations are fundamental to ScatterNNlib.jl and they are implemented in CPU and CUDA version. Benchmarks of scatter operations are done with scripts in benchmark folder. Statistics, includes max, min and mean, are shown in the following plots.


Performance of scatter add operations in ScatterNNlib is better than Pytorch_scatter on cuda.
> Version:
> * CUDA 10.2
> * Python 3.7, Pytorch 1.6.0, Pytorch scatter 2.0.5
> * Julia v1.5.0, CUDA v1.2.1, Flux v0.11.0, ScatterNNlib v0.1.1
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | docs | 116 | ```@meta
CurrentModule = ScatterNNlib
```
# ScatterNNlib
```@index
```
```@autodocs
Modules = [ScatterNNlib]
```
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.1.7 | aff60eb73e9fd0d230e39d4ea5a7100334986861 | docs | 211 | # Scatter operations
```@docs
scatter_add!
```
```@docs
scatter_sub!
```
```@docs
scatter_mul!
```
```@docs
scatter_div!
```
```@docs
scatter_max!
```
```@docs
scatter_min!
```
```@docs
scatter_mean!
```
| ScatterNNlib | https://github.com/yuehhua/ScatterNNlib.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 653 | using Bumper
open("Docstrings.md", "w+") do io
println(io, "# Docstrings\n")
println(io, "## User API\n")
for s ∈ (Symbol("@no_escape"), Symbol("@alloc"), Symbol("@alloc_ptr"),
:default_buffer, :SlabBuffer, :reset_buffer!, :with_buffer)
println(io, Base.Docs.doc(Base.Docs.Binding(Bumper, s)))
println(io, "---------------------------------------")
end
println(io, "## Allocator API\n")
for s ∈ (:alloc_ptr!, :alloc!, :checkpoint_save, :checkpoint_restore!)
println(io, Base.Docs.doc(Base.Docs.Binding(Bumper, s)))
println(io, "---------------------------------------")
end
end
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 2269 | module AllocBufferImpl
import Bumper:
alloc_ptr!,
checkpoint_save,
checkpoint_restore!,
default_buffer,
reset_buffer!,
with_buffer
const default_buffer_size = 1_048_576
"""
AllocBuffer{StorageType}
This is a simple bump allocator that could be used to store a fixed amount of memory of type
`StorageType`, so long as `::StoreageType` supports `pointer`, and `sizeof`.
Do not manually manipulate the fields of an AllocBuffer that is in use.
"""
mutable struct AllocBuffer{Store}
buf::Store
offset::UInt
end
AllocBuffer(max_size::Int) = AllocBuffer(Vector{UInt8}(undef, max_size), UInt(0))
AllocBuffer(storage) = AllocBuffer(storage, UInt(0))
"""
AllocBuffer() -> AllocBuffer{Vector{UInt8}}
Create an `AllocBuffer` which can hold at most $default_buffer_size bytes.
"""
AllocBuffer() = AllocBuffer(Vector{UInt8}(undef, UInt(default_buffer_size)))
const default_buffer_key = gensym(:buffer)
"""
default_buffer(::Type{AllocBuffer}) -> AllocBuffer{Vector{UInt8}}
Return the current task-local default `AllocBuffer`, if one does not exist in the current task,
it will create one automatically. This currently can only create `AllocBuffer{Vector{UInt8}}`,
and you cannot adjust the memory size it creates ($default_buffer_size bytes).
"""
function default_buffer(::Type{AllocBuffer})
get!(() -> AllocBuffer(), task_local_storage(), default_buffer_key)::AllocBuffer{Vector{UInt8}}
end
with_buffer(f, b::AllocBuffer{Vector{UInt8}}) = task_local_storage(f, default_buffer_key, b)
function reset_buffer!(b::AllocBuffer = default_buffer())
b.offset = UInt(0)
nothing
end
struct AllocCheckpoint{Store}
buf::AllocBuffer{Store}
offset::UInt
end
function checkpoint_save(buf::AllocBuffer)
AllocCheckpoint(buf, buf.offset)
end
function checkpoint_restore!(cp::AllocCheckpoint)
cp.buf.offset = cp.offset
nothing
end
function alloc_ptr!(b::AllocBuffer, sz::Int)::Ptr{Cvoid}
ptr = pointer(b.buf) + b.offset
b.offset += sz
b.offset > sizeof(b.buf) && oom_error()
ptr
end
@noinline function oom_error()
error("alloc: Buffer out of memory. This might be a sign of a memory leak.
Use Bumper.reset_buffer!(b::AllocBuffer) to reclaim its memory.")
end
end # module AllocBufferImpl
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 5611 | module Bumper
export SlabBuffer, AllocBuffer, @alloc, @alloc_ptr, default_buffer, @no_escape, with_buffer
using UnsafeArrays: UnsafeArrays, UnsafeArray
"""
@no_escape([buf=default_buffer()], expr)
Record the current state of `buf` (which defaults to the `default_buffer()` if there is only one argument), and then run
the code in `expr` and then reset `buf` back to the state it was in before the code ran. This allows us to allocate memory
within the `expr` using `@alloc`, and then have those arrays be automatically de-allocated once the expression is over. This
is a restrictive but highly efficient form of memory management.
See also `Bumper.checkpoint_save`, and `Bumper.checkpoint_restore!`.
Using `return`, `@goto`, and `@label` are not allowed inside of `@no_escape` block.
Example:
function f(x::Vector{Int})
# Set up a scope where memory may be allocated, and does not escape:
@no_escape begin
# Allocate a `UnsafeArray` from UnsafeArrays.jl using memory from the default buffer.
y = @alloc(Int, length(x))
# Now do some stuff with that vector:
y .= x .+ 1
sum(y)
end
end
"""
macro no_escape end
"""
@alloc(T, n::Int...) -> UnsafeArray{T, length(n)}
This can be used inside a `@no_escape` block to allocate a `UnsafeArray` whose dimensions
are determined by `n`. The memory used to allocate this array will come from the buffer
associated with the enclosing `@no_escape` block.
Do not allow any references to this array to escape the enclosing `@no_escape` block, and do
not pass these arrays to concurrent tasks unless that task is guaranteed to terminate before the
`@no_escape` block ends. Any array allocated in this way which is found outside of its parent
`@no_escape` block has undefined contents, and writing to this pointer will have undefined behaviour.
"""
macro alloc(args...)
error("The @alloc macro may only be used inside of a @no_escape block.")
end
"""
@alloc_ptr(n::Integer) -> Ptr{Nothing}
This can be used inside a `@no_escape` block to allocate a pointer which can hold `n` bytes.
The memory used to allocate this pointer will come from the buffer associated with the
enclosing `@no_escape` block.
Do not allow any references to this pointer to escape the enclosing `@no_escape` block, and do
not pass these pointers to concurrent tasks unless that task is guaranteed to terminate before the
`@no_escape` block ends. Any pointer allocated in this way which is found outside of its parent
`@no_escape` block has undefined contents, and writing to this pointer will have undefined behaviour.
"""
macro alloc_ptr(args...)
error("The @alloc_ptr macro may only be used inside of a @no_escape block.")
end
function default_buffer end
"""
Bumper.alloc!(b, ::Type{T}, n::Int...) -> UnsafeArray{T, length(n)}
Function-based alternative to `@alloc` which allocates onto a specified allocator `b`.
You must obey all the rules from `@alloc`, but you can use this outside of the lexical
scope of `@no_escape` for specific (but dangerous!) circumstances where you cannot avoid
a scope barrier between the two.
"""
function alloc! end
"""
Bumper.alloc_ptr!(b, n::Int) -> Ptr{Nothing}
Take a pointer which can store at least `n` bytes from the allocator `b`.
"""
function alloc_ptr! end
"""
with_buffer(f, buf)
Execute the function `f()` in a context where `default_buffer()` will return `buf` instead of the normal
`default_buffer`. This currently only works with `SlabBuffer{1_048_576}`, and `AllocBuffer{Vector{UInt8}}`.
Example:
julia> let b1 = default_buffer()
b2 = SlabBuffer()
with_buffer(b2) do
@show default_buffer() == b2
end
@show default_buffer() == b1
end
default_buffer() == b2 = true
default_buffer() == b1 = true
true
"""
function with_buffer end
allow_ptr_array_to_escape() = false
"""
Bumper.reset_buffer!(buf=default_buffer())
This resets a buffer to its default state, effectively making it like a freshly allocated buffer. This might be
necessary to use if you accidentally over-allocate a buffer or screw up its state in some other way.
"""
function reset_buffer! end
"""
Bumper.checkpoint_save(buf = default_buffer())
Returns a checkpoint object `cp` which stores the state of a `buf` at a given point in
a program. One can then use `Bumper.checkpoint_restore!(cp)` to later on restore
the state of the buffer to it's earlier saved state, undoing any bump allocations which
happened in the meantime on that buffer.
Users should prefer to use `@no_escape` instead of `checkpoint_save` and `checkpoint_restore`,
which is a safer and more structured way of doing the same thing.
"""
function checkpoint_save end
"""
Bumper.checkpoint_restore!(cp)
Restore a buffer (the one used to create `cp`) to the state it was in when the
checkpoint was created, undoing any bump allocations which happened in the meantime on that
buffer. See also `Bumper.checkpoint_save`
Users should prefer to use `@no_escape` instead of `checkpoint_save` and `checkpoint_restore`,
which is a safer and more structured way of doing the same thing.
"""
function checkpoint_restore! end
## Private
# ------------------------------------------------------
include("internals.jl") # module Internals
## Allocator implementations
# ------------------------------------------------------
include("SlabBuffer.jl")
import .SlabBufferImpl: SlabBuffer
include("AllocBuffer.jl")
import .AllocBufferImpl: AllocBuffer
end # Bumper
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 6458 | module SlabBufferImpl
import Bumper:
alloc_ptr!,
checkpoint_save,
checkpoint_restore!,
reset_buffer!,
default_buffer,
with_buffer
import Bumper.Internals: malloc, free
const default_slab_size = 1_048_576
"""
mutable struct SlabBuffer{SlabSize}
A slab-based bump allocator which can dynamically grow to hold an arbitrary amount of memory.
Small allocations live within a specific slab of memory, and if that slab fills up, a new slab
is allocated and future allocations happen on that slab. Small allocations are stored in slabs
of size `SlabSize` bytes, and the list of live slabs are tracked in the `slabs` field.
Allocations which are too large to fit into one slab are stored and tracked in the `custom_slabs`
field.
The default slab size is $default_slab_size bytes.
`SlabBuffer`s are nearly as fast as stack allocation (typically up to within a couple of nanoseconds) for typical
use. One potential performance pitfall is if that `SlabBuffer`'s current position is at the end of a slab, then
the next allocation will be slow because it requires a new slab to be created. This means that if you do something
like
buf = SlabBuffer{N}()
@no_escape buf begin
@alloc(Int8, N÷2 - 1) # Take up just under half the first slab
@alloc(Int8, N÷2 - 1) # Take up another half of the first slab
# Now buf should be practically out of room.
for i in 1:1000
@no_escape buf begin
y = @alloc(Int8, 10) # This will allocate a new slab because there's no room
f(y)
end # At the end of this block, we delete the new slab because it's not needed.
end
end
then the inner loop will run slower than normal because at each iteration, a new slab of size `N` bytes must be freshly
allocated. This should be a rare occurance, but is possible to encounter.
Do not manipulate the fields of a SlabBuffer that is in use.
"""
mutable struct SlabBuffer{SlabSize}
current ::Ptr{Cvoid}
slab_end ::Ptr{Cvoid}
slabs ::Vector{Ptr{Cvoid}}
custom_slabs ::Vector{Ptr{Cvoid}}
function SlabBuffer{_SlabSize}(; finalize::Bool=true) where {_SlabSize}
SlabSize = convert(Int, _SlabSize)
current = malloc(SlabSize)
slab_end = current + SlabSize
slabs = [current]
custom_slabs = Ptr{Cvoid}[]
buf = new{SlabSize}(current, slab_end, slabs, custom_slabs)
finalize && finalizer(free, buf)
buf
end
end
@doc """
SlabBuffer{SlabSize}(;finalize::Bool = true)
Create a slab allocator whose slabs are of size `SlabSize`. If you set the
`finalize` keyword argument to `false`, then you will need to explicitly
call `Bumper.free()` when you are done with a `SlabBuffer`. This is not
recommended.
""" SlabBuffer{SlabSize}()
"""
SlabBuffer(;finalize::Bool = true)
Create a slab allocator whose slabs are of size $default_slab_size. If you set
the `finalize` keyword argument to `false`, then you will need to explicitly
call `Bumper.free()` when you are done with a `SlabBuffer`. This is not
recommended.
"""
SlabBuffer(;finalize=true) = SlabBuffer{default_slab_size}(;finalize)
function free(buf::SlabBuffer)
for ptr ∈ buf.slabs
free(ptr)
end
for ptr ∈ buf.custom_slabs
free(ptr)
end
end
const default_buffer_key = gensym(:slab_buffer)
"""
default_buffer(::Type{SlabBuffer}) -> SlabBuffer{$default_slab_size}
Return the current task-local default `SlabBuffer`, if one does not exist in the current task, it will
create one automatically. This currently can only create `SlabBuffer{$default_slab_size}`, and you
cannot adjust the slab size it creates.
"""
function default_buffer(::Type{SlabBuffer})
get!(() -> SlabBuffer{default_slab_size}(), task_local_storage(), default_buffer_key)::SlabBuffer{default_slab_size}
end
"""
default_buffer() -> SlabBuffer{$default_slab_size}
Return the current task-local default `SlabBuffer`, if one does not exist in the current task, it will
create one automatically. This currently only works with `SlabBuffer{$default_slab_size}`, and you
cannot adjust the slab size it creates.
"""
default_buffer() = default_buffer(SlabBuffer)
function alloc_ptr!(buf::SlabBuffer{SlabSize}, sz::Int)::Ptr{Cvoid} where {SlabSize}
p = buf.current
next = buf.current + sz
if next > buf.slab_end
p = add_new_slab!(buf, sz)
else
buf.current = next
end
p
end
@noinline function add_new_slab!(buf::SlabBuffer{SlabSize}, sz::Int)::Ptr{Cvoid} where {SlabSize}
if sz >= SlabSize
custom = malloc(sz)
push!(buf.custom_slabs, custom)
custom
else
new_slab = malloc(SlabSize)
buf.current = new_slab + sz
buf.slab_end = new_slab + SlabSize
push!(buf.slabs, new_slab)
new_slab
end
end
struct SlabCheckpoint{SlabSize}
buf::SlabBuffer{SlabSize}
current::Ptr{Cvoid}
slab_end::Ptr{Cvoid}
slabs_length::Int
custom_slabs_length::Int
end
function checkpoint_save(buf::SlabBuffer=default_buffer())
SlabCheckpoint(buf, buf.current, buf.slab_end, length(buf.slabs), length(buf.custom_slabs))
end
function checkpoint_restore!(cp::SlabCheckpoint)
buf = cp.buf
slabs = buf.slabs
custom = buf.custom_slabs
if length(slabs) > cp.slabs_length
restore_slabs!(cp)
end
if length(custom) > cp.custom_slabs_length
restore_custom_slabs!(cp)
end
buf.current = cp.current
buf.slab_end = cp.slab_end
nothing
end
@noinline function restore_slabs!(cp)
buf = cp.buf
slabs = buf.slabs
for i ∈ (cp.slabs_length+1):length(slabs)
free(slabs[i])
end
resize!(slabs, cp.slabs_length)
nothing
end
@noinline function restore_custom_slabs!(cp)
buf = cp.buf
custom = buf.custom_slabs
for i ∈ (cp.custom_slabs_length+1):length(custom)
free(custom[i])
end
resize!(custom, cp.custom_slabs_length)
nothing
end
function reset_buffer!(buf::SlabBuffer{SlabSize}) where {SlabSize}
buf.current = buf.slabs[1]
buf.slab_end = buf.current + SlabSize
for ptr ∈ @view buf.slabs[2:end]
free(ptr)
end
for ptr ∈ buf.custom_slabs
free(ptr)
end
resize!(buf.slabs, 1)
resize!(buf.custom_slabs, 0)
buf
end
with_buffer(f, b::SlabBuffer{default_slab_size}) = task_local_storage(f, default_buffer_key, b)
end # module SlabBufferImpl
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 3450 | module Internals
using UnsafeArrays: UnsafeArrays, UnsafeArray
import Bumper:
@no_escape,
alloc!,
default_buffer,
allow_ptr_array_to_escape,
with_buffer,
reset_buffer!,
checkpoint_save,
checkpoint_restore!,
alloc_ptr!
macro no_escape(b_ex, ex)
_no_escape_macro(b_ex, ex, __module__)
end
macro no_escape(ex)
_no_escape_macro(:($default_buffer()), ex, __module__)
end
get_task() = Base.current_task()
isexpr(ex) = ex isa Expr
isexpr(ex, head) = isexpr(ex) && ex.head == head
function _no_escape_macro(b_ex, _ex, __module__)
@gensym b offset tsk
e_offset = esc(offset)
# This'll be the variable labelling the active buffer
e_b = esc(b)
function recursive_handler(ex)
if isexpr(ex)
if isexpr(ex, :macrocall)
if ex.args[1] == Symbol("@alloc")
# replace calls to @alloc(T, size...) with alloc(T, buf, size...) where buf
# is the current buffer in use.
Expr(:block,
:($tsk === $get_task() || $tsk_err()),
Expr(:call, alloc!, b, recursive_handler.(ex.args[3:end])...))
elseif ex.args[1] == Symbol("@alloc_ptr")
Expr(:block,
:($tsk === $get_task() || $tsk_err()),
Expr(:call, alloc_ptr!, b, recursive_handler.(ex.args[3:end])...))
elseif ex.args[1] == Symbol("@no_escape")
# If we encounter nested @no_escape blocks, we'll leave them alone
ex
else
# All other macros must be macroexpanded in case the user has a macro
# in the body which has return or goto in it
expanded = macroexpand(__module__, ex; recursive=false)
recursive_handler(expanded)
end
elseif isexpr(ex, :return)
error("The `return` keyword is not allowed to be used inside the `@no_escape` macro")
elseif isexpr(ex, :symbolicgoto)
error("`@goto` statements are not allowed to be used inside the `@no_escape` macro")
elseif isexpr(ex, :symboliclabel)
error("`@label` statements are not allowed to be used inside the `@no_escape` macro")
else
Expr(ex.head, recursive_handler.(ex.args)...)
end
else
ex
end
end
ex = recursive_handler(_ex)
quote
$e_b = $(esc(b_ex))
$(esc(tsk)) = get_task()
local cp = checkpoint_save($e_b)
local res = $(esc(ex))
checkpoint_restore!(cp)
if res isa UnsafeArray && !(allow_ptr_array_to_escape())
esc_err()
end
res
end
end
@noinline tsk_err() =
error("Tried to use @alloc from a different task than its parent @no_escape block, that is not allowed for thread safety reasons. If you really need to do this, see Bumper.alloc instead of @alloc.")
@noinline esc_err() =
error("Tried to return a UnsafeArray from a `no_escape` block. If you really want to do this, evaluate Bumper.allow_ptrarray_to_escape() = true")
function alloc!(buf, ::Type{T}, s::Vararg{Integer, N}) where {T, N}
ptr::Ptr{T} = alloc_ptr!(buf, prod(s) * sizeof(T))
UnsafeArray(ptr, s)
end
malloc(n::Integer) = Libc.malloc(Int(n))
free(p::Ptr) = Libc.free(p)
end
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | code | 5286 | using Test, Bumper
function f(x, buf=default_buffer())
@no_escape buf begin
y = @alloc(eltype(x), length(x))
y .= x .+ 1
sum(y)
end
end
function g(x, buf)
@no_escape buf begin
y = Bumper.alloc!(buf, eltype(x), length(x))
y .= x .+ 1
sum(y)
end
end
@testset "basic" begin
v = [1,2,3]
b = AllocBuffer(100)
@test f(v) == 9
@test default_buffer().current == default_buffer().slabs[1]
@test f(v, b) == 9
@test b.offset == 0
@test g(v, b) == 9
@test b.offset == 0
@test @allocated(f(v)) == 0
@test @allocated(f(v, b)) == 0
@test @allocated(g(v, b)) == 0
sb = SlabBuffer{16_384}()
@no_escape sb begin
p = sb.current
e = sb.slab_end
x = @alloc(Int8, 16_384 ÷ 2 - 1)
x = @alloc(Int8, 16_384 ÷ 2 - 1)
for i ∈ 1:5
@no_escape sb begin
@test sb.current == p + 16_382
@test p <= sb.current <= e
y = @alloc(Int, 10)
@test !(p <= sb.current <= e)
end
end
z = @alloc(Int, 100_000)
@test sb.current == p + 16_382
@test sb.slab_end == e
@test !(p <= pointer(z) <= e)
@test pointer(z) == sb.custom_slabs[end]
end
@test isempty(sb.custom_slabs)
@test sb.current == sb.slabs[1]
@test sb.slab_end == sb.current + 16_384
@no_escape sb begin
current = sb.current
p = @alloc_ptr(10)
@test p == current
@test sb.current == p + 10
p2 = @alloc_ptr(100_000)
@test p2 == sb.custom_slabs[end]
end
try
@no_escape sb begin
x = @alloc(Int8, 16_383)
y = @alloc(Int8, 100_000)
z = @alloc(Int8, 10)
throw("Boo!")
end
catch e
@test length(sb.custom_slabs) == 1
@test length(sb.slabs) == 2
@test sb.current == sb.slabs[2] + 10
Bumper.reset_buffer!(sb)
@test isempty(sb.custom_slabs)
@test length(sb.slabs) == 1
@test sb.current == sb.slabs[1]
end
@no_escape b begin
y = @alloc(Int, length(v))
off1 = b.offset
@no_escape b begin
z = @alloc(Int, length(v))
@test pointer(z) != pointer(y)
@test Int(pointer(z)) == Int(pointer(y)) + 8*length(v)
@test b.offset == off1 + 8*length(v)
end
b2 = AllocBuffer(100)
@no_escape b2 begin
z = @alloc(Int, length(v))
@test pointer(z) == pointer(b2.buf)
end
@test b.offset == off1
end
@test_throws Exception Bumper.alloc!(b, Int, 100000)
Bumper.reset_buffer!(b)
Bumper.reset_buffer!()
@test_throws Exception @no_escape begin
@alloc(Int, 10)
end
@test_throws Exception @no_escape begin
@sync Threads.@spawn begin
@alloc(Int, 10)
end
end
end
macro sneaky_return(ex)
esc(:(return $ex))
end
macro sneaky_goto(label)
esc(:(@goto $label))
end
@testset "trying to break out of no_escape blocks" begin
# It is very tricky to properly deal with code which uses @goto or return inside
# a @no_escape code block, because could bypass the mechanism for resetting the
# buffer's offset after the block completes.
# I played with some mechanisms for cleaning it up, but they were sometimes incorrect
# if one nested multuple @no_escape blocks, so I decided that they should simply be
# disabled, and throw an error at macroexpansion time.
@test_throws Exception Bumper.Internals._no_escape_macro(
:(default_buffer()),
:(return sum(@alloc(Int, 10) .= 1)),
@__MODULE__()
)
@test_throws Exception Bumper.Internals._no_escape_macro(
:(default_buffer()),
:(@sneaky_return sum(@alloc(Int, 10) .= 1)),
@__MODULE__()
)
@test_throws Exception Bumper.Internals._no_escape_macro(
:(default_buffer()),
:(@goto lab),
@__MODULE__()
)
@test_throws Exception Bumper.Internals._no_escape_macro(
:(default_buffer()),
:(@sneaky_goto lab),
@__MODULE__()
)
@test_throws Exception Bumper.Internals._no_escape_macro(
:(default_buffer()),
:(@label lab),
@__MODULE__()
)
end
@testset "tasks and buffer switching" begin
let b1 = default_buffer(AllocBuffer)
b2 = AllocBuffer(Vector{UInt8}(undef, 100))
with_buffer(b2) do
@test default_buffer(AllocBuffer) == b2
end
@test default_buffer(AllocBuffer) == b1
end
let b2 = AllocBuffer(Vector{Int}(undef, 100))
@test_throws MethodError with_buffer(b2) do
default_buffer()
end
end
@test default_buffer() === default_buffer()
@test default_buffer() !== fetch(@async default_buffer())
@test default_buffer() !== fetch(Threads.@spawn default_buffer())
@test default_buffer() !== with_buffer(default_buffer, SlabBuffer())
@test default_buffer(AllocBuffer) === default_buffer(AllocBuffer)
@test default_buffer(AllocBuffer) !== with_buffer(() -> default_buffer(AllocBuffer), AllocBuffer())
end
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | docs | 2355 | # Changelog
## Version 0.6.0
+ Removed the package extension which was added in v0.5.1, because we plan on making Bumper.jl
a direct dependancy of StaticTools.jl
## Version 0.5.4
+ Changed the default size heuristics for `SlabBuffer`, the default slab size is now 1 megabyte, and custom slabs
are now created for allocations which are larger than *half* the slab size, rather than larger than the slab size.
+ Changed the default size heuristic for `AllocBuffer`. `AllocBuffer()` now creates a buffer of 1 megabyte capacity.
## Version 0.5.3
+ Added `@alloc_ptr(n)` which is like `@alloc` except it returns an `n` byte pointer directly instead of an array.
## Version 0.5.2
## Version 0.5.1
+ Added a package extension (only works on julia versions 1.9+) which lets the `AllocBuffer` work under
StaticCompiler.jl, and defines methods like `AllocBuffer(::Type{MallocVector}, n::Int)` and `free(AllocBuffer{<:MallocArray})` for convenience.
## Version 0.5.0
+ The default allocator is now something known as a *slab* allocator `SlabBuffer`. This comes with a very *slight* performance hit relative to `AllocBuffer`, but the advantage is that it scales very well from handling small allocations all the way up to handling very large allocations. It will only run out of memory when your computer runs out of memory, but it also won't hog memory that's not in use. It is also be much faster to construct than the old default `AllocBuffer`.
+ `AllocBuffer` still exists, but now defaults to 128kb of storage instead of 1/8th of your computer's physical memory. This allocator is very slightly faster than the slab allocator, but will error if it runs out of memory. It also is more flexible in the kinds of types it can wrap to use as underlying storage.
+ There is now an API for hooking user-defined allocators into the `@no_escape` and `@alloc` machinery.
+ `alloc(::Type{T}, buffer, dims...)` is now `alloc!(buffer, ::Type{T}, dims...)`
+ `alloc_nothrow` and `@alloc_nothrow` have been removed. People who need this can instead create custom no-throw buffer types.
## Version 0.4.0
+ `alloc` has been replaced with `@alloc`, a macro that can *only* be used inside of a `@no_escape` block, and always
allocates memory from that specified block. `alloc` still exists, but it is not recommended, and has to be
explicitly imported to use.
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | docs | 8177 | # Docstrings
## User API
```
@no_escape([buf=default_buffer()], expr)
```
Record the current state of `buf` (which defaults to the `default_buffer()` if there is only one argument), and then run the code in `expr` and then reset `buf` back to the state it was in before the code ran. This allows us to allocate memory within the `expr` using `@alloc`, and then have those arrays be automatically de-allocated once the expression is over. This is a restrictive but highly efficient form of memory management.
See also `Bumper.checkpoint_save`, and `Bumper.checkpoint_restore!`.
Using `return`, `@goto`, and `@label` are not allowed inside of `@no_escape` block.
Example:
```
function f(x::Vector{Int})
# Set up a scope where memory may be allocated, and does not escape:
@no_escape begin
# Allocate a `UnsafeArray` from UnsafeArrays.jl using memory from the default buffer.
y = @alloc(Int, length(x))
# Now do some stuff with that vector:
y .= x .+ 1
sum(y)
end
end
```
---------------------------------------
```
@alloc(T, n::Int...) -> UnsafeArray{T, length(n)}
```
This can be used inside a `@no_escape` block to allocate a `UnsafeArray` whose dimensions are determined by `n`. The memory used to allocate this array will come from the buffer associated with the enclosing `@no_escape` block.
Do not allow any references to this array to escape the enclosing `@no_escape` block, and do not pass these arrays to concurrent tasks unless that task is guaranteed to terminate before the `@no_escape` block ends. Any array allocated in this way which is found outside of its parent `@no_escape` block has undefined contents, and writing to this pointer will have undefined behaviour.
---------------------------------------
```
@alloc_ptr(n::Integer) -> Ptr{Nothing}
```
This can be used inside a `@no_escape` block to allocate a pointer which can hold `n` bytes. The memory used to allocate this pointer will come from the buffer associated with the enclosing `@no_escape` block.
Do not allow any references to this pointer to escape the enclosing `@no_escape` block, and do not pass these pointers to concurrent tasks unless that task is guaranteed to terminate before the `@no_escape` block ends. Any pointer allocated in this way which is found outside of its parent `@no_escape` block has undefined contents, and writing to this pointer will have undefined behaviour.
---------------------------------------
```
default_buffer(::Type{SlabBuffer}) -> SlabBuffer{1048576}
```
Return the current task-local default `SlabBuffer`, if one does not exist in the current task, it will create one automatically. This currently can only create `SlabBuffer{1048576}`, and you cannot adjust the slab size it creates.
```
default_buffer() -> SlabBuffer{1048576}
```
Return the current task-local default `SlabBuffer`, if one does not exist in the current task, it will create one automatically. This currently only works with `SlabBuffer{1048576}`, and you cannot adjust the slab size it creates.
```
default_buffer(::Type{AllocBuffer}) -> AllocBuffer{Vector{UInt8}}
```
Return the current task-local default `AllocBuffer`, if one does not exist in the current task, it will create one automatically. This currently can only create `AllocBuffer{Vector{UInt8}}`, and you cannot adjust the memory size it creates (1048576 bytes).
---------------------------------------
```
mutable struct SlabBuffer{SlabSize}
```
A slab-based bump allocator which can dynamically grow to hold an arbitrary amount of memory. Small allocations live within a specific slab of memory, and if that slab fills up, a new slab is allocated and future allocations happen on that slab. Small allocations are stored in slabs of size `SlabSize` bytes, and the list of live slabs are tracked in the `slabs` field. Allocations which are too large to fit into one slab are stored and tracked in the `custom_slabs` field.
The default slab size is 1048576 bytes.
`SlabBuffer`s are nearly as fast as stack allocation (typically up to within a couple of nanoseconds) for typical use. One potential performance pitfall is if that `SlabBuffer`'s current position is at the end of a slab, then the next allocation will be slow because it requires a new slab to be created. This means that if you do something like
```
buf = SlabBuffer{N}()
@no_escape buf begin
@alloc(Int8, N÷2 - 1) # Take up just under half the first slab
@alloc(Int8, N÷2 - 1) # Take up another half of the first slab
# Now buf should be practically out of room.
for i in 1:1000
@no_escape buf begin
y = @alloc(Int8, 10) # This will allocate a new slab because there's no room
f(y)
end # At the end of this block, we delete the new slab because it's not needed.
end
end
```
then the inner loop will run slower than normal because at each iteration, a new slab of size `N` bytes must be freshly allocated. This should be a rare occurance, but is possible to encounter.
Do not manipulate the fields of a SlabBuffer that is in use.
```
SlabBuffer{SlabSize}(;finalize::Bool = true)
```
Create a slab allocator whose slabs are of size `SlabSize`. If you set the `finalize` keyword argument to `false`, then you will need to explicitly call `Bumper.free()` when you are done with a `SlabBuffer`. This is not recommended.
```
SlabBuffer(;finalize::Bool = true)
```
Create a slab allocator whose slabs are of size 1048576. If you set the `finalize` keyword argument to `false`, then you will need to explicitly call `Bumper.free()` when you are done with a `SlabBuffer`. This is not recommended.
---------------------------------------
```
Bumper.reset_buffer!(buf=default_buffer())
```
This resets a buffer to its default state, effectively making it like a freshly allocated buffer. This might be necessary to use if you accidentally over-allocate a buffer or screw up its state in some other way.
---------------------------------------
```
with_buffer(f, buf)
```
Execute the function `f()` in a context where `default_buffer()` will return `buf` instead of the normal `default_buffer`. This currently only works with `SlabBuffer{1_048_576}`, and `AllocBuffer{Vector{UInt8}}`.
Example:
```
julia> let b1 = default_buffer()
b2 = SlabBuffer()
with_buffer(b2) do
@show default_buffer() == b2
end
@show default_buffer() == b1
end
default_buffer() == b2 = true
default_buffer() == b1 = true
true
```
---------------------------------------
## Allocator API
```
Bumper.alloc_ptr!(b, n::Int) -> Ptr{Nothing}
```
Take a pointer which can store at least `n` bytes from the allocator `b`.
---------------------------------------
```
Bumper.alloc!(b, ::Type{T}, n::Int...) -> UnsafeArray{T, length(n)}
```
Function-based alternative to `@alloc` which allocates onto a specified allocator `b`. You must obey all the rules from `@alloc`, but you can use this outside of the lexical scope of `@no_escape` for specific (but dangerous!) circumstances where you cannot avoid a scope barrier between the two.
---------------------------------------
```
Bumper.checkpoint_save(buf = default_buffer())
```
Returns a checkpoint object `cp` which stores the state of a `buf` at a given point in a program. One can then use `Bumper.checkpoint_restore!(cp)` to later on restore the state of the buffer to it's earlier saved state, undoing any bump allocations which happened in the meantime on that buffer.
Users should prefer to use `@no_escape` instead of `checkpoint_save` and `checkpoint_restore`, which is a safer and more structured way of doing the same thing.
---------------------------------------
```
Bumper.checkpoint_restore!(cp)
```
Restore a buffer (the one used to create `cp`) to the state it was in when the checkpoint was created, undoing any bump allocations which happened in the meantime on that buffer. See also `Bumper.checkpoint_save`
Users should prefer to use `@no_escape` instead of `checkpoint_save` and `checkpoint_restore`, which is a safer and more structured way of doing the same thing.
---------------------------------------
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 0.7.0 | a84ae6da7e44400b4d1df7684ac85e98f06765f3 | docs | 15537 | - [Basics](#basics)
- [Important notes](#important-notes)
- [Concurrency and parallelism](#concurrency-and-parallelism)
- [Allocators provided by Bumper](#allocators-provided-by-bumper)
- [Creating your own allocator types](#creating-your-own-allocator-types)
- [Usage with StaticCompiler.jl](#usage-with-staticcompilerjl)
- [Docstrings](Docstrings.md)
# Bumper.jl
Bumper.jl is a package that aims to make working with bump allocators (also known as arena allocators)
easier and safer. You can dynamically allocate memory to these bump allocators, and reset
them at the end of a code block, just like Julia's stack. Allocating to a bump allocator with Bumper.jl
can be just as efficient as stack allocation. Bumper.jl is still a young package, and may have bugs.
Let me know if you find any.
If you use Bumper.jl, please consider submitting a sample of your use-case so I can include it in the test suite.
## Basics
Bumper.jl has a task-local default allocator, using a *slab allocation strategy* which can dynamically
grow to arbitary sizes.
The simplest way to use Bumper is to rely on its default buffer implicitly like so:
``` julia
using Bumper
function f(x)
# Set up a scope where memory may be allocated, and does not escape:
@no_escape begin
# Allocate a `UnsafeVector{eltype(x)}` (see UnsafeArrays.jl) using memory from the default buffer.
y = @alloc(eltype(x), length(x))
# Now do some stuff with that vector:
y .= x .+ 1
sum(y) # It's okay for the sum of y to escape the block, but references to y itself must not do so!
end
end
f([1,2,3])
```
```
9
```
When you use `@no_escape`, you are promising that the code enclosed in the macro will not leak **any** memory
created by `@alloc`. That is, you are *only* allowed to do intermediate `@alloc` allocations inside a `@no_escape` block,
and the lifetime of those allocations is the block. **This is important.** Once a `@no_escape` block finishes running, it
will reset its internal state to the position it had before the block started, potentially overwriting or freeing any
arrays which were created in the block.
In addition to `@alloc` for creating arrays, you can use `@alloc_ptr(n)` to get an `n`-byte pointer (of type
`Ptr{Nothing}`) directly.
Let's compare the performance of `f` to the equivalent with an intermediate heap allocation:
``` julia
using BenchmarkTools
@benchmark f(x) setup=(x = rand(1:10, 30))
```
```
BenchmarkTools.Trial: 10000 samples with 995 evaluations.
Range (min … max): 28.465 ns … 49.843 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 28.718 ns ┊ GC (median): 0.00%
Time (mean ± σ): 28.840 ns ± 0.833 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▄▂▇█▅▆▇▅▂▂▁▁▂▁ ▂
██████████████████▆▇▅▄▅▅▅▆▃▄▄▁▃▄▄▃▄▃▁▁▁▁▁▃▁▁▁▄▅▅▅▅▄▄▃▄▁▃▃▃▄ █
28.5 ns Histogram: log(frequency) by time 31.5 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
```
and
``` julia
function g(x::Vector{Int})
y = x .+ 1
sum(y)
end
@benchmark g(x) setup=(x = rand(1:10, 30))
```
```
BenchmarkTools.Trial: 10000 samples with 993 evaluations.
Range (min … max): 32.408 ns … 64.986 μs ┊ GC (min … max): 0.00% … 99.87%
Time (median): 37.443 ns ┊ GC (median): 0.00%
Time (mean ± σ): 55.929 ns ± 651.009 ns ┊ GC (mean ± σ): 14.68% ± 5.87%
▆█▅▃▁▁▁▁ ▁▁ ▁ ▂▁ ▁
████████▇██▅▄▃▄▁▁▃▁▁▁▁▁▁▁▁▃▃▁▁██████▇▇▅▁▄▃▃▃▁▁▃▁▁▁▄▃▄▅▄▄▅▇██ █
32.4 ns Histogram: log(frequency) by time 227 ns <
Memory estimate: 304 bytes, allocs estimate: 1.
```
So, using Bumper.jl in this benchmark gives a slight speedup relative to regular julia `Vector`s,
and a major increase in performance *consistency* due to the lack of heap allocations.
However, we can actually go a little faster better if we're okay with manually passing around a buffer.
The way I invoked `@no_escape` and `@alloc` implicitly used the task's default buffer, and fetching that
default buffer is not as fast as using a `const` global variable, because Bumper.jl is trying to protect
you against concurrency bugs (more on that later).
If we provide the allocator to `f` explicitly, we go even faster:
``` julia
function f(x, buf)
@no_escape buf begin # <----- Notice I specified buf here
y = @alloc(Int, length(x))
y .= x .+ 1
sum(y)
end
end
@benchmark f(x, buf) setup = begin
x = rand(1:10, 30)
buf = default_buffer()
end
```
```
BenchmarkTools.Trial: 10000 samples with 997 evaluations.
Range (min … max): 19.425 ns … 40.367 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 19.494 ns ┊ GC (median): 0.00%
Time (mean ± σ): 19.620 ns ± 0.983 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▅ ▁
██▅█▇▄▃▄▄▃▃▃▄▅▄▅▄▅▄▇▇▅▄▄▅▆▅▅▅▄▄▄▁▄▃▃▃▁▁▄▃▃▄▁▁▁▁▃▃▃▁▄▄▃▁▄▃▁▃ █
19.4 ns Histogram: log(frequency) by time 25.3 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
```
If you manually specify a buffer like this, it is your responsibility to ensure that you don't have
multiple concurrent tasks using that buffer at the same time.
Running `default_buffer()` will give you the current task's default buffer. You can explicitly construct
your own `N` byte buffer by calling `AllocBuffer(N)`, or you can create a buffer which can dynamically
grow by calling `SlabBuffer()`. `AllocBuffer`s are *slightly* faster than `SlabBuffer`s, but will throw
an error if you overfill them.
## Important notes
- `@no_escape` blocks can be nested as much as you want, just don't let references outlive the specific block they were created in.
- At the end of a `@no_escape` block, all memory allocations from inside that block are erased and the buffer is reset to its previous state
- The `@alloc` marker can only be used directly inside of a `@no_escape` block, and it will always use the buffer that the
corresponding `@no_escape` block uses.
- You cannot use `@alloc` from a different concurrent task than its parent `@no_escape` block as this can cause concurrency bugs.
- If for some reason you need to be able to use `@alloc` outside of the scope of the `@no_escape` block, there is a
function =`Bumper.alloc!(bug, T, n...)`= which takes in an explicit buffer `buf` and uses it to allocate an array of
element type `T`, and dimensions `n...`. Using this is not as safe as `@alloc` and not recommended.
- Bumper.jl only supports `isbits` types. You cannot use it for allocating vectors containing mutable, abstract, or
other pointer-backed objects.
- As mentioned previously, *Do not allow any array which was initialized inside a* `@no_escape`
*block to escape the block.* Doing so will cause incorrect results.
- If you accidentally overfill a buffer, via e.g. a memory leak and need to reset the buffer, use
`Bumper.reset_buffer!` to do this.
- You are not allowed to use `return` or `@goto` inside a `@no_escape` block, since this could compromise the cleanup it performs after the block finishes.
## Concurrency and parallelism
<details><summary>Click me!</summary>
<p>
Every task has its own *independent* default buffer. A task's buffer is only created if it is
used, so this does not slow down the spawning of Julia tasks in general. Here's a demo
showing that the default buffers are different:
``` julia
using Bumper
let b = default_buffer() # The default buffer on the main task
t = @async default_buffer() # Get the default buffer on an asychronous task
fetch(t) === b
end
```
```
false
```
Whereas if we don't spawn any tasks, there is no unnecessary buffer creation:
``` julia
let b = default_buffer()
b2 = default_buffer()
b2 === b
end
```
```
true
```
Because of this, we don't have to worry about `@no_escape begin ... @alloc() ... end` blocks on
different threads or tasks interfering with each other, so long as they are only operating on
buffers local to that task or the `default_buffer()`.
</details>
</p>
## Allocators provided by Bumper
<details><summary>Click me!</summary>
<p>
### SlabBuffer
`SlabBuffer` is a slab-based bump allocator which can dynamically grow to hold an arbitrary amount of memory.
Small allocations from a `SlabBuffer` will live within a specific slab of memory, and if that slab fills up,
a new slab is allocated and future allocations will then happen on that slab. Small allocations are stored
in slabs of size `SlabSize` bytes (default 1 megabyte), and the list of live slabs are tracked in a field called
`slabs`. Allocations which are too large to fit into one slab are stored and tracked in a field called
`custom_slabs`.
`SlabBuffer`s are nearly as fast as stack allocation (typically up to within a couple of nanoseconds) for typical
use. One potential performance pitfall is if that `SlabBuffer`'s current position is at the end of a slab, then
the next allocation will be slow because it requires a new slab to be created. This means that if you do something
like
``` julia
buf = SlabBuffer{N}()
@no_escape buf begin
@alloc(Int8, N÷2 - 1) # Take up just under half the first slab
@alloc(Int8, N÷2 - 1) # Take up another half of the first slab
# Now buf should be practically out of room.
for i in 1:1000
@no_escape buf begin
y = @alloc(Int8, 10) # This will allocate a new slab because there's no room
f(y)
end # At the end of this block, we delete the new slab because it's not needed.
end
end
```
then the inner loop will run slower than normal because at each iteration, a new slab of size `N` bytes must be freshly
allocated. This should be a rare occurance, but is possible to encounter.
Do not manipulate the fields of a SlabBuffer that is in use.
### AllocBuffer
`AllocBuffer{StorageType}` is a very simple bump allocator that could be used to store a fixed amount of memory of type
`StorageType`, so long as `::StoreageType` supports `pointer`, and `sizeof`. If it runs out of memory to allocate, an error
will be thrown. By default, `AllocBuffer` stores a `Vector{UInt8}` of `1` megabyte.
Allocations using `AllocBuffer`s should be just as fast as stack allocation.
Do not manually manipulate the fields of an AllocBuffer that is in use.
</details>
</p>
## Creating your own allocator types
<details><summary>Click me!</summary>
<p>
Bumper.jl's `SlabBuffer` type is very flexible and fast, and so should almost always be preferred, but you
may have specific use-cases where you want to use a different design or make different tradeoffs, but want
to be able to interoperate with Bumper.jl's other features. Hence, Bumper.jl provides an API for you to hook
custom allocator types into it.
When someone writes
``` julia
@no_escape buf begin
y = @alloc(T, n, m, o)
f(y)
end
```
this turns into the equivalent of
``` julia
begin
local cp = Bumper.checkpoint_save(buf)
local result = begin
y = Bumper.alloc!(buf, T, n, m, o)
f(y)
end
Bumper.checkpoint_restore!(cp)
result
end
```
`checkpoint_save` should save the state of `buf`, `alloc!` should create an array using memory from `buf`, and `checkpoint_restor!` needs to reset `buf` to the state it was in when the checkpoint was created.
Hence, in order to use your custom allocator with Bumper.jl, all you need to write is the following methods:
+ `Bumper.alloc_ptr!(::YourAllocator, n::Int)::Ptr{Nothing}` which returns a pointer that can hold up to `n` bytes, and should be created from memory supplied with your allocator type however you see fit.
+ Alternatively, you could implement `Bumper.alloc!(::YourAllocator, ::Type{T}, s::Vararg{Integer})` which should return a multidimensional array whose sizes are determined by `s...`, created from memory supplied by your custom allocator. The default implementation of this method calls `Bumper.alloc_ptr!`.
+ `Bumper.checkpoint_save(::YourAllocator)::YourAllocatorCheckpoint` which saves whatever information your allocator needs to save in order to later on deallocate all objects which were created after `checkpoint_save` was called.
+ `checkpoint_restore!(::YourAllocatorCheckpoint)` which resets the allocator back to the state it was in when the checkpoint was created.
Let's look at a concrete example where we make our own simple copy of `AllocBuffer`:
``` julia
mutable struct MyAllocBuffer
buf::Vector{UInt8} # The memory chunk we'll use for allocations
offset::UInt # A simple offset saying where the current position of the allocator is.
#Default constructor
MyAllocBuffer(n::Int) = new(Vector{UInt8}(undef, n), UInt(0))
end
struct MyCheckpoint
buf::MyAllocBuffer # The buffer we want to store
offset::UInt # The buffer's offset when the checkpoint was created
end
function Bumper.alloc_ptr!(b::MyAllocBuffer, sz::Int)::Ptr{Cvoid}
ptr = pointer(b.buf) + b.offset
b.offset += sz
b.offset > sizeof(b.buf) && error("alloc: Buffer out of memory.")
ptr
end
function Bumper.checkpoint_save(buf::MyAllocBuffer)
MyCheckpoint(buf, buf.offset)
end
function Bumper.checkpoint_restore!(cp::MyCheckpoint)
cp.buf.offset = cp.offset
nothing
end
```
that's it!
``` julia
julia> let x = [1, 2, 3], buf = MyAllocBuffer(100)
@btime f($x, $buf)
end
9.918 ns (0 allocations: 0 bytes)
9
```
As a bonus, this isn't required, but if you want to have functionality like `default_buffer`, it can be simply implemented as follows:
``` julia
#Some default size, say 16kb
MyAllocBuffer() = MyAllocBuffer(16_000)
const default_buffer_key = gensym(:my_buffer)
function Bumper.default_buffer(::Type{MyAllocBuffer})
get!(() -> MyAllocBuffer(), task_local_storage(), default_buffer_key)::MyAllocBuffer
end
```
You may also want to implemet `Bumper.reset_buffer!` for refreshing you allocator to a freshly initialized state.
</details>
</p>
## Usage with StaticCompiler.jl
<details><summary>Click me!</summary>
<p>
Bumper.jl is in the process of becoming a dependancy of
[StaticTools.jl](https://github.com/brenhinkeller/StaticTools.jl) (and thus
[StaticCompiler.jl](https://github.com/tshort/StaticCompiler.jl)), which extends Bumper.jl
with a new buffer type, `MallocSlabBuffer` which is like `SlabBuffer` but designed to work
without needing Julia's runtime at all. This allows for code like the following
``` julia
using Bumper, StaticTools
function times_table(argc::Int, argv::Ptr{Ptr{UInt8}})
argc == 3 || return printf(c"Incorrect number of command-line arguments\n")
rows = argparse(Int64, argv, 2) # First command-line argument
cols = argparse(Int64, argv, 3) # Second command-line argument
buf = MallocSlabBuffer()
@no_escape buf begin
M = @alloc(Int, rows, cols)
for i=1:rows
for j=1:cols
M[i,j] = i*j
end
end
printf(M)
end
free(buf)
end
using StaticCompiler
filepath = compile_executable(times_table, (Int64, Ptr{Ptr{UInt8}}), "./")
```
giving
```
shell> ./times_table 12, 7
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49
8 16 24 32 40 48 56
9 18 27 36 45 54 63
10 20 30 40 50 60 70
11 22 33 44 55 66 77
12 24 36 48 60 72 84
```
</details>
</p>
## Docstrings
See the full list of docstrings [here](Docstrings.md).
| Bumper | https://github.com/MasonProtter/Bumper.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 1189 | using Quantica
using Documenter
DocMeta.setdocmeta!(Quantica, :DocTestSetup, :(using Quantica); recursive=true)
makedocs(;
modules=[Quantica],
authors="Pablo San-Jose",
repo="https://github.com/pablosanjose/Quantica.jl/blob/{commit}{path}#L{line}",
sitename="Quantica.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://pablosanjose.github.io/Quantica.jl",
assets=["assets/custom.css"],
),
pages=[
"Home" => "index.md",
"Tutorial" => [
"Welcome" => "tutorial/tutorial.md",
"Glossary" => "tutorial/glossary.md",
"Lattices" => "tutorial/lattices.md",
"Models" => "tutorial/models.md",
"Hamiltonians" => "tutorial/hamiltonians.md",
"Bandstructures" => "tutorial/bandstructures.md",
"GreenFunctions" => "tutorial/greenfunctions.md",
"Observables" => "tutorial/observables.md",
"Advanced topics" => "tutorial/advanced.md"
],
"Examples" => "examples.md",
"API" => "api.md",
]
)
deploydocs(;
repo="github.com/pablosanjose/Quantica.jl",
)
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 1401 | module QuanticaMakieExt
using Makie
using Quantica
using Makie.GeometryBasics
using Makie.GeometryBasics: Ngon
using Quantica: Lattice, LatticeSlice, AbstractHamiltonian, Hamiltonian, OpenHamiltonian,
ParametricHamiltonian, Harmonic, Bravais, SVector, GreenFunction, GreenSolution,
argerror, harmonics, sublats, siterange, site, norm,
normalize, nsites, nzrange, rowvals, nonzeros, sanitize_SVector, default_hamiltonian
import Quantica: plotlattice, plotlattice!, plotbands, plotbands!, qplot, qplot!, qplotdefaults
## PlotArgumentTypes
const PlotLatticeArgumentType{E} = Union{
Lattice{<:Any,E},
LatticeSlice{<:Any,E},
AbstractHamiltonian{<:Any,E},
GreenFunction{<:Any,E},
OpenHamiltonian{<:Any,E}}
const PlotBandsArgumentType{E} =
Union{Quantica.Bandstructure{<:Any,E},
Quantica.Subband{<:Any,E},
AbstractVector{<:Quantica.Subband{<:Any,E}},
Quantica.Mesh{<:Quantica.BandVertex{<:Any,E}},
AbstractVector{<:Quantica.Mesh{<:Quantica.BandVertex{<:Any,E}}}}
const PlotArgumentType{E} = Union{PlotLatticeArgumentType{E},PlotBandsArgumentType{E}}
## Currying fallbacks
Quantica.qplot(; kw...) = x -> Quantica.qplot(x; kw...)
Quantica.qplot!(; kw...) = x -> Quantica.qplot!(x; kw...)
include("plotlattice.jl")
include("plotbands.jl")
include("tools.jl")
include("defaults.jl")
include("docstrings.jl")
end # module
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 4739 | ############################################################################################
# qplot defaults
#region
## qplot defaults
function qplotdefaults(;
figure::Union{Missing,NamedTuple} = missing,
axis2D::Union{Missing,NamedTuple} = missing,
axis3D::Union{Missing,NamedTuple} = missing,
lscene::Union{Missing,NamedTuple} = missing,
inspector::Union{Missing,NamedTuple} = missing)
ismissing(figure) || (global user_default_figure = figure)
ismissing(axis2D) || (global user_default_axis2D = axis2D)
ismissing(axis3D) || (global user_default_axis3D = axis3D)
ismissing(lscene) || (global user_default_lscene = lscene)
ismissing(inspector) || (global user_default_inspector = inspector)
return (; user_default_figure, user_default_axis2D, user_default_axis3D, user_default_lscene, user_default_inspector)
end
qplotdefaults(defaults::NamedTuple) = qplotdefaults(; defaults...)
user_default_figure = (;)
user_default_axis2D = (;)
user_default_axis3D = (;)
user_default_lscene = (;)
user_default_inspector = (;)
# Choose used_default_axis for each given type of plotted object
axis_defaults(::PlotArgumentType{3}, fancyaxis) = axis_defaults(fancyaxis)
axis_defaults(::PlotArgumentType, fancyaxis) = user_default_axis2D
axis_defaults(fancyaxis::Bool) = ifelse(fancyaxis, user_default_lscene, user_default_axis3D)
empty_fig_axis(b::PlotArgumentType; kw...) = (checkplotdim(b); _empty_fig_axis(b; kw...))
_empty_fig_axis(::PlotLatticeArgumentType{3}; kw...) = empty_fig_axis_3D(plotlat_default_3D...; kw...)
_empty_fig_axis(b::PlotLatticeArgumentType; kw...) = empty_fig_axis_2D(plotlat_default_2D...; kw...)
_empty_fig_axis(::PlotBandsArgumentType{3}; kw...) = empty_fig_axis_3D(plotbands_default_3D...; kw...)
_empty_fig_axis(b::PlotBandsArgumentType; kw...) = empty_fig_axis_2D(plotbands_default_2D...; kw...)
function empty_fig_axis_2D(default_figure, default_axis2D; axis = user_default_axis2D, figure = user_default_figure, kw...)
axis´ = merge(user_default_axis2D, axis)
fig = Figure(; default_figure..., figure...)
ax = Axis(fig[1,1]; default_axis2D..., axis´...)
tight_ticklabel_spacing!(ax) # Workaround for Makie issue #3009
return fig, ax
end
function empty_fig_axis_3D(default_figure, default_axis3D, default_lscene;
fancyaxis = true,
axis = axis_defaults(fancyaxis),
figure = user_default_figure, kw...)
fig = Figure(; default_figure..., figure...)
axis´ = merge(axis_defaults(fancyaxis), axis)
ax = fancyaxis ?
LScene(fig[1,1]; default_lscene..., axis´...) :
Axis3(fig[1,1]; default_axis3D..., axis´...)
return fig, ax
end
checkplotdim(::PlotArgumentType{E}) where {E} =
E > 3 && argerror("Cannot represent a mesh in an $E-dimensional embedding space")
## plotlattice defaults
const plotlat_default_figure = (; size = (870, 1200), fontsize = 20)
const plotlat_default_axis3D = (;
xlabel = "x", ylabel = "y", zlabel = "z",
xticklabelcolor = :gray, yticklabelcolor = :gray, zticklabelcolor = :gray,
xspinewidth = 0.2, yspinewidth = 0.2, zspinewidth = 0.2,
xlabelrotation = 0, ylabelrotation = 0, zlabelrotation = 0,
xticklabelsize = 18, yticklabelsize = 18, zticklabelsize = 18,
xlabelsize = 25, ylabelsize = 25, zlabelsize = 25,
xlabelfont = :italic, ylabelfont = :italic, zlabelfont = :italic,
perspectiveness = 0.3, aspect = :data)
const plotlat_default_axis2D = (; xlabel = "x", ylabel = "y", autolimitaspect = 1)
const plotlat_default_lscene = (;)
const plotlat_default_2D =
(plotlat_default_figure, plotlat_default_axis2D)
const plotlat_default_3D =
(plotlat_default_figure, plotlat_default_axis3D, plotlat_default_lscene)
## plotbands defaults
const plotbands_default_figure = (; size = (870, 1200), fontsize = 20)
const plotbands_default_axis3D = (;
xlabel = "ϕ₁", ylabel = "ϕ₂", zlabel = "ε",
xticklabelcolor = :gray, yticklabelcolor = :gray, zticklabelcolor = :gray,
xspinewidth = 0.2, yspinewidth = 0.2, zspinewidth = 0.2,
xlabelrotation = 0, ylabelrotation = 0, zlabelrotation = 0,
xticklabelsize = 18, yticklabelsize = 18, zticklabelsize = 18,
xlabelsize = 25, ylabelsize = 25, zlabelsize = 25,
xlabelfont = :italic, ylabelfont = :italic, zlabelfont = :italic,
perspectiveness = 0.4, aspect = :data)
const plotbands_default_axis2D = (; xlabel = "ϕ", ylabel = "ε", autolimitaspect = nothing)
const plotbands_default_lscene = (;)
const plotbands_default_2D =
(plotbands_default_figure, plotbands_default_axis2D)
const plotbands_default_3D =
(plotbands_default_figure, plotbands_default_axis3D, plotbands_default_lscene)
## inspector defaults
const default_inspector = (; fontsize = 15)
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 9728 | """
qplot(object; figure = (;), axis = (;), fancyaxis = true, inspector = true, plotkw...)
Render a plot of `object` using the `Makie` package. Supported `object`s and associated
specialized plot recipes:
- `object::Lattice` -> `plotlattice` (supports also `LatticeSlice`s)
- `object::Hamiltonian` -> `plotlattice` (supports also `ParametricHamiltonian`)
- `object::GreenFunction` -> `plotlattice` (supports also `OpenHamiltonian`, see below)
- `object::Bandstructure` -> `plotbands` (supports also slices of `Bandstructure`)
- `object::Subband` -> `plotbands` (supports also collections of `Subbands`)
Supported `Makie` backends include `GLMakie`, `CairoMakie`, `WGLMakie`, etc. Instead of
`using Makie`, load a specific backend directly, e.g. `using GLMakie`.
qplot(g::Union{GreenFunction,OpenHamiltonian}; children = (plotkw₁::NamedTuple, plotkw₂::NamedTuple, ...), kw...)
Render the parent Hamiltonian of `g`, along with a representation of each of `g`'s
self-energies. Specific `plotkwᵢ` keywords for each self-energy can be given in `children`,
cycling over them if necessary.
## Keywords
- `figure`: keywords to pass onto the plot `Figure` (e.g. `size` or `fontsize`, see `Makie.Figure`)
- `axis`: keywords to pass on to the plot axis (see `Makie.LScene`, `Makie.Axis3` or `Makie.Axis` for options)
- `fancyaxis::Bool`: for 3D plots, whether to use `Makie.LScene` (supports zoom+pan) instead of `Makie.Axis3`
- `inspector::Bool`: whether to enable interactive tooltips of plot elements
- `plotkw`: additional keywords to pass on to `plotlattice` or `plotbands`, see their docstring for details.
# See also
`plotlattice`, `plotbands`, `qplotdefaults`
"""
qplot
"""
qplot!(object; plotkw...)
Render `object` on the currently active scene using either `plotlattice!` (for lattice-based
objects) or `plotbands!` (for bands-based object), and passing `plotkw` keywords along. See
their respective docstrings for possible keywords.
"""
qplot!
"""
plotlattice(lat::Lattice; kw...)
Render the lattice unit cell and its Bravais vectors.
plotlattice(lat::LatticeSlice; kw...)
Render a finite subset of sites in a lattice and its Bravais vectors.
plotlattice(h::AbstractHamiltonian; kw...)
Render the lattice on which `h` is defined, together with all hoppings in the form of
inter-site links.
plotlattice(h::GreenFunction; kw...)
Render the lattice on which `h` is defined, together with all hoppings in the form of
inter-site links, and a representation of contacts.
## Keywords
- `flat = true`: whether to render sites and hops as flat circles and lines, or as 3D meshes
- `force_transparency = false`: whether to disable occlusion of all non-transparent elements. Useful in case `inspector` tooltips are occluded.
- `shellopacity = 0.07`: opacity of elements surrounding the unitcell or the set of selected sites (dubbed "shell")
- `cellopacity = 0.03`: opacity of the unitcell's boundingbox
- `cellcolor = RGBAf(0,0,1)`: color of the unitcell's boundingbox
- `boundarycolor = RGBAf(1,0,0)`: color of boundary cells for GreenFunction plots
- `boundaryopacity = 0.07`: opacity of boundary cells for GreenFunction plots
- `sitecolor = missing`: color of sites, as a index in `sitecolormap`, a named color, a `Makie.Colorant`, a collection of either, or as a site shader (see below). If `missing`, cycle through `sitecolormap`. If a collection, cycle through that.
- `sitecolormap = :Spectral_9`: colormap to use for `sitecolor` (see options in https://tinyurl.com/cschemes)
- `siteopacity = missing`: opacity of sites, as a real between 0 and 1, or as a site shader (see below). If `missing`, obey `shellopacity`.
- `siteradius = 0.25`: radius of sites as a real in units of lattice dimensions, or as a site shader (see below)
- `minmaxsiteradius = (0.0, 0.5)`: if `sitedradius` is a shader, minimum and maximum site radius.
- `siteoutline = 2`: thickness of the outline around flat sites
- `siteoutlinedarken = 0.6`: darkening factor of the outline around flat sites
- `sitedarken = 0.0`: darkening factor for sites
- `hopcolor = missing`: color of hops, as a index in `hopcolormap`, a named color, a `Makie.Colorant`, a collection of either, or as a hop shader (see below). If `missing`, cycle through `sitecolormap`. If a collection, cycle through that.
- `hopcolormap = :Spectral_9`: colormap to use for `hopcolor` (see options in https://tinyurl.com/cschemes)
- `hopopacity = missing`: opacity of hops, as a real between 0 and 1, or as a hop shader (see below)
- `hopradius = 0.03`: radius of hops as a real number in units of lattice dimensions, or as a hop shader (see below)
- `hoppixels = 6`: if `flat = true` fixed hop linewidth in pixels, or maximum pixel linewidth if `hopradius` is a shader.
- `minmaxhopradius = (0, 0.1)`: if `hopdradius` is a shader, minimum and maximum hop radius.
- `hopdarken = 0.85`: darkening factor for hops
- `selector = missing`: an optional `siteselector(; sites...)` to filter which sites are shown (see `siteselector`)
- `hide = (:cell,)`: collection of elements to hide, to choose from `(:hops, :sites, :hops, :bravais, :cell, :axes, :shell, :boundary, :contacts, :all)`. It can also be an empty collection or `nothing` to show all elements.
- `children = missing`: collection of `NamedTuple`s of any of the above keywords to be applied (cyclically) to contacts in GreenFunction plots
## Shaders
The element properties in the list above that accept site shaders may take either of these options
- `(i, r) -> Real`: a real function of site index `i::Int` and site position `r::SVector`.
- `AbstractVector`: a real vector representing the shading for each plotted site
- `AbstractMatrix`: a real matrix whose summed rows represent the shading for each plotted site
- `LocalSpectralDensitySolution`: a generator of local density of states at a fixed energy (see `ldos`). It is evaluated at the site position.
- `CurrentDensitySolution`: a generator of local current density at a fixed energy (see `current`). It is taken as the sum of currents along all hops connected to the site.
Element properties marked as accepting hop shaders may take either of these options
- `((src, dst), (r, dr)) -> Real`: a real function of site indices `(src, dst)` and hop coordinates `(r, dr)` (see `hopselector` for definition of hop coordinates)
- `AbstractVector`: a real vector `v` such that `(v[i]+v[j])/2` represents the shading for each hopping `j => i`
- `AbstractMatrix`: a real matrix `m` such that `m[i,j]` represents the shading for each hopping `j => i`
- `LocalSpectralDensitySolution`: a generator of local density of states at a fixed energy (see `ldos`). It is evaluated as the average between connected sites.
- `CurrentDensitySolution`: a generator of local current density at a fixed energy (see `current`). It is taken as the current along the hop.
"""
plotlattice
"""
plotlattice!(object; kw...)
Render lattice-based `object` on currently active scene. See `plotlattice` for possible
keywords `kw`
"""
plotlattice!
"""
plotbands(b::Bandstructure; kw...)
plotbands(s::Subband; kw...)
plotbands(ss::AbstractVector{<:Subbands}; kw...)
Render a `Bandstructure` object, a single subband (e.g. `s = b[1]`) or a collection of
subbands or subband slices (e.g. `ss = b[1:4]` or `ss = b[(:,0,:)]`).
## Keywords
- `color = missing`: color of subbands, as a index in `colormap`, a named color, a `Makie.Colorant`, or as a band shader (see below). If `missing`, cycle through `colormap`.
- `colormap = :Spectral_9`: colormap to use for `color` (see options in https://tinyurl.com/cschemes)
- `opacity = 1.0`: opacity of subbands, as a real between 0 and 1 or as a band shader (see below)
- `size = 2`: stroke thickness, in pixels, when plotting line-like features. May also be a band shader in 2D plots (see below)
- `minmaxsize = (0, 6)`: if `size` is a shader, minimum and maximum stroke thickness, in pixels.
- `nodesizefactor = 4`: relative size of nodes respect to subbands.
- `nodedarken = 0.0`: darkening factor of nodes despect to subband color.
- `hide = ()`: collection of elements to hide, to choose from `(:nodes, :bands, :wireframe)`
## Shaders
The element properties in the list above that accept band shaders may take either of these options
- `(ψ, ϵ, ϕs) -> Real`: a real function of the eigenstates `ψ::Matrix` in the subband, eigenenergy `ϵ`, and Bloch phases `ϕs::SVector`.
"""
plotbands
"""
plotbands!(object; kw...)
Render bands-based `object` on currently active scene. See `plotbands` for possible keywords
`kw`
"""
plotbands!
"""
qplotdefaults(; figure = missing, axis2D = missing, axis3D = missing, lscene = missing, inspector = missing)
Define default values for the `figure` and `axis` keyword arguments of `qplot`. The `axis2D`
defaults are applied to `axis` for 2D plots, while `lscene` or `axis3D` are applied to
`axis` if `fancyaxis` is `true` or `false`, respectively. Similarly, the `inspector`
defaults are passed to `DataInspector` if tooltips are activated.
qplotdefaults(defaults::NamedTuple)
Equivalent to `qplotdefaults(; defaults...)`
# Examples
```jldoctest
julia> qplotdefaults(figure = (size = (1000, 1000),))
(user_default_figure = (size = (1000, 1000),), user_default_axis2D = NamedTuple(), user_default_axis3D = NamedTuple(), user_default_lscene = NamedTuple(), user_default_inspector = NamedTuple())
julia> qplotdefaults(axis2D = (xlabel = "X",), inspector = (fontsize = 30,))
(user_default_figure = (size = (1000, 1000),), user_default_axis2D = (xlabel = "X",), user_default_axis3D = NamedTuple(), user_default_lscene = NamedTuple(), user_default_inspector = (fontsize = 30,))
```
"""
qplotdefaults
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 7851 | ############################################################################################
# plotlattice recipe
#region
@recipe(PlotBands) do scene
Theme(
colormap = :Spectral_9,
color = missing,
opacity = 1.0,
size = 1,
minmaxsize = (0, 6),
nodesizefactor = 4,
nodedarken = 0.0,
hide = () # :nodes, :bands, :wireframe
)
end
#endregion
############################################################################################
# qplot
# Supports plotting b::Bandstructure, but also b[...]::Vector{Subbands} and
# slice(b, ...)::Vector{Mesh}
#region
function Quantica.qplot(b::PlotBandsArgumentType;
fancyaxis = true, axis = axis_defaults(b, fancyaxis), figure = user_default_figure, inspector = true, plotkw...)
fig, ax = empty_fig_axis(b; fancyaxis, axis, figure)
plotbands!(ax, b; plotkw...)
inspector && DataInspector(; default_inspector..., user_default_inspector...)
return fig
end
Quantica.qplot!(b::PlotBandsArgumentType; kw...) = plotbands!(b; kw...)
#endregion
############################################################################################
# PlotBands Primitives
#region
struct MeshPrimitives{E,S}
verts::Vector{Point{E,Float32}}
simps::Vector{Int} # flattened neighbor matrix
hues::Vector{Float32}
opacities::Vector{Float32}
sizes::Vector{Float32}
tooltips::Vector{String}
colors::Vector{RGBAf}
end
#region ## Constructors ##
MeshPrimitives{E,S}() where {E,S} =
MeshPrimitives{E,S}(Point{E,Float32}[], Int[], Float32[], Float32[], Float32[], String[], RGBAf[])
function meshprimitives(meshes, plot) # function barrier
opts = (plot[:color][], plot[:opacity][], plot[:size][])
E, S = Quantica.dims(first(meshes))
mp = MeshPrimitives{E,S}()
for (s, mesh) in enumerate(meshes)
bandprimitives!(mp, mesh, s, opts)
end
update_colors!(mp, plot)
update_sizes!(mp, plot)
return mp
end
function bandprimitives!(mp, mesh, s, (hue, opacity, size))
offset = length(mp.verts)
append!(mp.simps, offset .+ reinterpret(Int, Quantica.simplices(mesh)))
for (ivert, vert) in enumerate(Quantica.vertices(mesh))
ψ = Quantica.states(vert)
kϵ = Quantica.coordinates(vert)
k = Quantica.base_coordinates(vert)
ϵ = Quantica.energy(vert)
push!(mp.verts, kϵ)
push_subbandhue!(mp, hue, ψ, ϵ, k, s)
push_subbandopacity!(mp, opacity, ψ, ϵ, k, s)
push_subbandsize!(mp, size, ψ, ϵ, k, s)
push_subbandtooltip!(mp, ψ, ϵ, k, s, ivert)
end
return mp
end
#endregion
#region ## API ##
simplices_matrix(s::Quantica.Subband) = simplices_matrix(Quantica.mesh(s))
simplices_matrix(m::Quantica.Mesh) =
reshape(reinterpret(Int, Quantica.simplices(m)), Quantica.embdim(m), length(Quantica.simplices(m)))'
simplices_matrix(mp::MeshPrimitives{<:Any,S}) where {S} = reshape(mp.simps, S, length(mp.simps) ÷ S)'
## push! ##
push_subbandhue!(mp, ::Missing, ψ, ϵ, k, s) = push!(mp.hues, s)
push_subbandhue!(mp, hue::Real, ψ, ϵ, k, s) = push!(mp.hues, hue)
push_subbandhue!(mp, hue::Function, ψ, ϵ, k, s) = push!(mp.hues, hue(ψ, ϵ, k))
push_subbandhue!(mp, ::Symbol, ψ, ϵ, k, s) = push!(mp.hues, 0f0)
push_subbandhue!(mp, ::Makie.Colorant, ψ, ϵ, k, s) = push!(mp.hues, 0f0)
push_subbandhue!(mp, hue, ψ, ϵ, k, s) = argerror("Unrecognized color")
push_subbandopacity!(mp, opacity::Real, ψ, ϵ, k, s) = push!(mp.opacities, opacity)
push_subbandopacity!(mp, opacity::Function, ψ, ϵ, k, s) = push!(mp.opacities, opacity(ψ, ϵ, k))
push_subbandopacity!(mp, opacity, ψ, ϵ, k, s) = argerror("Unrecognized opacity")
push_subbandsize!(mp, size::Real, ψ, ϵ, k, s) = push!(mp.sizes, size)
push_subbandsize!(mp, size::Function, ψ, ϵ, k, s) = push!(mp.sizes, size(ψ, ϵ, k))
push_subbandsize!(mp, size, ψ, ϵ, k, s) = argerror("Unrecognized size")
push_subbandtooltip!(mp, ψ, ϵ, k, s, iv) =
push!(mp.tooltips, "Subband $s, vertex $iv:\n k = $k\n ϵ = $ϵ\n degeneracy = $(size(ψ, 2))")
## update_color! ##
function update_colors!(p::MeshPrimitives, plot)
extremahues = safeextrema(p.hues)
extremaops = safeextrema(p.opacities)
color = plot[:color][]
opacity = plot[:opacity][]
colormap = Makie.ColorSchemes.colorschemes[plot[:colormap][]]
# reuse update_colors! from plotlattice.jl
return update_colors!(p, extremahues, extremaops, color, opacity, colormap, 0.0)
end
## update_sizes! ##
function update_sizes!(p::MeshPrimitives, plot)
extremasizes = safeextrema(p.sizes)
size = plot[:size][]
minmaxsize = plot[:minmaxsize][]
return update_sizes!(p, extremasizes, size, minmaxsize) # function barrier
end
# almost identical to update_radii! from plotlattice.jl
function update_sizes!(p, extremasizes, size, minmaxsize)
for (i, r) in enumerate(p.sizes)
p.sizes[i] = primitive_size(normalize_range(r, extremasizes), size, minmaxsize)
end
return p
end
primitive_size(normr, size::Number, minmaxsize) = size
primitive_size(normr, size, (mins, maxs)) = mins + (maxs - mins) * normr
#endregion
#endregion
############################################################################################
# PlotBands for 1D and 2D Bandstructure (2D and 3D embedding space)
#region
function Makie.plot!(plot::PlotBands{Tuple{S}}) where {S<:PlotBandsArgumentType}
meshes = Quantica.meshes(to_value(plot[1]))
mp = meshprimitives(meshes, plot)
return plotmeshes!(plot, mp)
end
plotmeshes!(plot, mp::MeshPrimitives{<:Any,E}) where {E} =
Quantica.argerror("Can only plot meshes in 2D and 3D space, got an $(E)D mesh")
function plotmeshes!(plot, mp::MeshPrimitives{<:Any,2})
if !ishidden((:bands, :subbands), plot)
verts = mp.verts[mp.simps]
color = mp.colors[mp.simps]
linewidth = mp.sizes[mp.simps]
linesegments!(plot, verts; color, linewidth, inspectable = false)
end
if !ishidden((:nodes, :points, :vertices), plot)
inspector_label = (self, i, r) -> mp.tooltips[i]
markersize = mp.sizes .* plot[:nodesizefactor][]
color´ = darken.(mp.colors, plot[:nodedarken][])
scatter!(plot, mp.verts; color = color´, markersize, inspector_label)
end
return plot
end
function plotmeshes!(plot, mp::MeshPrimitives{<:Any,3})
transparency = has_transparencies(plot[:opacity][])
if !ishidden((:bands, :subbands), plot)
simps = simplices_matrix(mp)
if !ishidden((:wireframe, :simplices), plot)
color´ = darken.(mp.colors, plot[:nodedarken][])
poly!(plot, mp.verts, simps; color = mp.colors, inspectable = false, transparency,
strokewidth = plot[:size][])
else
mesh!(plot, mp.verts, simps; color = mp.colors, inspectable = false, transparency)
end
end
if !ishidden((:nodes, :points, :vertices), plot)
inspector_label = (self, i, r) -> mp.tooltips[i]
markersize = mp.sizes .* plot[:nodesizefactor][]
color´ = darken.(mp.colors, plot[:nodedarken][])
scatter!(plot, mp.verts; color = color´, markersize, transparency, inspector_label)
end
return plot
end
#endregion
############################################################################################
# convert_argments
#region
function Makie.convert_arguments(T::Type{<:Makie.Mesh}, s::Quantica.Subband{<:Any,3})
verts = [Point3f(Quantica.coordinates(v)) for v in Quantica.vertices(s)]
simps = simplices_matrix(s)
return convert_arguments(T, verts, simps)
end
function Makie.convert_arguments(::Type{<:LineSegments}, s::Quantica.Subband{<:Any,2})
verts = Quantica.vertices(s)
simps = Quantica.simplices(s)
segments = [Point2f(Quantica.coordinates(verts[i])) for s in simps for i in s]
return (segments,)
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 30351 | ############################################################################################
# plotlattice recipe
#region
@recipe(PlotLattice) do scene
Theme(
flat = true,
force_transparency = false,
shellopacity = 0.07,
cellopacity = 0.03,
cellcolor = RGBAf(0,0,1),
boundarycolor = RGBAf(1,0,0),
boundaryopacity = 0.07,
sitecolor = missing, # accepts (i, r) -> float, IndexableObservable
siteopacity = missing, # accepts (i, r) -> float, IndexableObservable
minmaxsiteradius = (0.0, 0.5),
siteradius = 0.2, # accepts (i, r) -> float, IndexableObservable
siteradiusfactor = 1.0, # independent multiplier to apply to siteradius
siteoutline = 2,
siteoutlinedarken = 0.6,
sitedarken = 0.0,
sitecolormap = :Spectral_9,
hopcolor = missing, # accepts ((i,j), (r,dr)) -> float, IndexableObservable
hopopacity = missing, # accepts ((i,j), (r,dr)) -> float, IndexableObservable
minmaxhopradius = (0.0, 0.1),
hopradius = 0.01, # accepts ((i,j), (r,dr)) -> float, IndexableObservable
hopdarken = 0.85,
hopcolormap = :Spectral_9,
hoppixels = 2,
selector = missing,
hide = :cell, # :hops, :sites, :bravais, :cell, :axes, :shell, :boundary, :contacts, :all
isAxis3 = false, # for internal use, to fix marker scaling
marker = :auto,
children = missing
)
end
#endregion
############################################################################################
# qplot
#region
function Quantica.qplot(h::PlotLatticeArgumentType;
fancyaxis = true, axis = axis_defaults(h, fancyaxis), figure = user_default_figure, inspector = true, plotkw...)
fig, ax = empty_fig_axis(h; fancyaxis, axis, figure)
plotkw´ = (isAxis3 = ax isa Axis3, inspector, plotkw...) # isAxis3 necessary to fix marker scaling
plotlattice!(ax, h; plotkw´...)
inspector && DataInspector(; default_inspector..., user_default_inspector...)
return fig
end
Quantica.qplot!(x::PlotLatticeArgumentType; kw...) = plotlattice!(x; kw...)
#endregion
############################################################################################
# PlotLattice Primitives
#region
struct SitePrimitives{E}
centers::Vector{Point{E,Float32}}
indices::Vector{Int}
hues::Vector{Float32}
opacities::Vector{Float32}
radii::Vector{Float32}
tooltips::Vector{String}
colors::Vector{RGBAf}
end
struct HoppingPrimitives{E}
centers::Vector{Point{E,Float32}}
vectors::Vector{Vec{E,Float32}}
indices::Vector{Tuple{Int,Int}}
hues::Vector{Float32}
opacities::Vector{Float32}
radii::Vector{Float32}
tooltips::Vector{String}
colors::Vector{RGBAf}
end
const ColorOrSymbol = Union{Symbol, Makie.Colorant}
const ColorsPerSublat = Union{NTuple{<:Any,ColorOrSymbol}, AbstractVector{<:ColorOrSymbol}}
#region ## Constructors ##
SitePrimitives{E}() where {E} =
SitePrimitives(Point{E,Float32}[], Int[], Float32[], Float32[], Float32[], String[], RGBAf[])
HoppingPrimitives{E}() where {E} =
HoppingPrimitives(Point{E,Float32}[], Vec{E,Float32}[], Tuple{Int,Int}[], Float32[], Float32[], Float32[], String[], RGBAf[])
function siteprimitives(ls, h, plot, is_shell) # function barrier
opts = (plot[:sitecolor][], plot[:siteopacity][], plot[:shellopacity][], plot[:siteradius][])
opts´ = maybe_evaluate_observable.(opts, Ref(ls))
return _siteprimitives(ls, h, opts´, is_shell)
end
function _siteprimitives(ls::LatticeSlice{<:Any,E}, h, opts, is_shell) where {E}
sp = SitePrimitives{E}()
lat = parent(ls)
for (i´, cs) in enumerate(Quantica.cellsites(ls))
ni = Quantica.cell(cs)
i = Quantica.siteindex(cs)
# in case opts contains some array over latslice (from an observable)
opts´ = maybe_getindex.(opts, i´)
push_siteprimitive!(sp, opts´, lat, i, ni, view(h, cs), is_shell)
end
return sp
end
function hoppingprimitives(ls, ls´, h, siteradii, plot) # function barrier
opts = (plot[:hopcolor][], plot[:hopopacity][], plot[:shellopacity][], plot[:hopradius][], plot[:flat][])
opts´ = maybe_evaluate_observable.(opts, Ref(ls))
return _hoppingprimitives(ls, ls´, h, opts´, siteradii)
end
function _hoppingprimitives(ls::LatticeSlice{<:Any,E}, ls´, h, opts, siteradii) where {E}
hp = HoppingPrimitives{E}()
hp´ = HoppingPrimitives{E}()
lat = parent(ls)
sdict = Quantica.siteindexdict(ls)
sdict´ = Quantica.siteindexdict(ls´)
for (j´, csj) in enumerate(Quantica.cellsites(ls))
nj = Quantica.cell(csj)
j = Quantica.siteindex(csj)
siteradius = isempty(siteradii) ? Float32(0) : siteradii[j´]
for har in harmonics(h)
dn = Quantica.dcell(har)
ni = nj + dn
mat = Quantica.matrix(har)
rows = rowvals(mat)
for ptr in nzrange(mat, j)
i = rows[ptr]
Quantica.isonsite((i, j), dn) && continue
csi = sites(ni, i)
i´ = get(sdict, csi, nothing)
if i´ === nothing # dst is not in latslice
if haskey(sdict´, csi) # dst is in latslice´
opts´ = maybe_getindex.(opts, j´)
push_hopprimitive!(hp´, opts´, lat, (i, j), (ni, nj), siteradius, view(h, csi, csj), false)
end
else
opts´ = maybe_getindex.(opts, i´, j´)
push_hopprimitive!(hp, opts´, lat, (i, j), (ni, nj), siteradius, view(h, csi, csj), true)
end
end
end
end
return hp, hp´
end
maybe_evaluate_observable(o::Quantica.IndexableObservable, ls) = o[ls]
maybe_evaluate_observable(x, ls) = x
maybe_getindex(v::AbstractVector{<:Number}, i) = v[i]
maybe_getindex(m::AbstractMatrix{<:Number}, i) = sum(view(m, i, :))
maybe_getindex(m::Quantica.AbstractSparseMatrixCSC{<:Number}, i) = sum(view(nonzeros(m), nzrange(m, i)))
maybe_getindex(v, i) = v
maybe_getindex(v::AbstractVector{<:Number}, i, j) = 0.5*(v[i] + v[j])
maybe_getindex(m::AbstractMatrix{<:Number}, i, j) = m[i, j]
maybe_getindex(v, i, j) = v
## push! ##
# sitecolor here could be a color, a symbol, a vector/tuple of either, a number, a function, or missing
function push_siteprimitive!(sp, (sitecolor, siteopacity, shellopacity, siteradius), lat, i, ni, matii, is_shell)
r = Quantica.site(lat, i, ni)
s = Quantica.sitesublat(lat, i)
push!(sp.centers, r)
push!(sp.indices, i)
push_sitehue!(sp, sitecolor, i, r, s)
push_siteopacity!(sp, siteopacity, shellopacity, i, r, is_shell)
push_siteradius!(sp, siteradius, i, r)
push_sitetooltip!(sp, i, r, matii)
return sp
end
push_sitehue!(sp, ::Union{Missing,ColorsPerSublat}, i, r, s) = push!(sp.hues, s)
push_sitehue!(sp, sitecolor::Real, i, r, s) = push!(sp.hues, sitecolor)
push_sitehue!(sp, sitecolor::Function, i, r, s) = push!(sp.hues, sitecolor(i, r))
push_sitehue!(sp, ::Symbol, i, r, s) = push!(sp.hues, 0f0)
push_sitehue!(sp, ::Makie.Colorant, i, r, s) = push!(sp.hues, 0f0)
push_sitehue!(sp, sitecolor, i, r, s) = argerror("Unrecognized sitecolor")
push_siteopacity!(sp, ::Missing, shellopacity, i, r, is_shell) = push!(sp.opacities, is_shell ? 1.0 : shellopacity)
push_siteopacity!(sp, ::Missing, ::Missing, i, r, is_shell) = push!(sp.opacities, 1.0)
push_siteopacity!(sp, siteopacity::Real, shellopacity, i, r, is_shell) = push!(sp.opacities, is_shell ? siteopacity : shellopacity)
push_siteopacity!(sp, siteopacity::Function, shellopacity, i, r, is_shell) = push!(sp.opacities, is_shell ? siteopacity(i, r) : shellopacity)
push_siteopacity!(sp, siteopacity, shellopacity, i, r, is_shell) = argerror("Unrecognized siteradius")
push_siteradius!(sp, siteradius::Real, i, r) = push!(sp.radii, siteradius)
push_siteradius!(sp, siteradius::Function, i, r) = push!(sp.radii, siteradius(i, r))
push_siteradius!(sp, siteradius, i, r) = argerror("Unrecognized siteradius")
push_sitetooltip!(sp, i, r, mat) = push!(sp.tooltips, matrixstring(i, mat))
push_sitetooltip!(sp, i, r) = push!(sp.tooltips, positionstring(i, r))
# hopcolor here could be a color, a symbol, a vector/tuple of either, a number, a function, or missing
function push_hopprimitive!(hp, (hopcolor, hopopacity, shellopacity, hopradius, flat), lat, (i, j), (ni, nj), radius, matij, is_shell)
src, dst = Quantica.site(lat, j, nj), Quantica.site(lat, i, ni)
# If end site is opaque (not in outer shell), dst is midpoint, since the inverse hop will be plotted too
# otherwise it is shifted by radius´ = radius minus hopradius correction if flat = false, and src also
radius´ = flat ? radius : sqrt(max(0, radius^2 - hopradius^2))
unitvec = normalize(dst - src)
dst = is_shell ? (src + dst)/2 : dst - unitvec * radius´
src = src + unitvec * radius´
r, dr = (src + dst)/2, (dst - src)
sj = Quantica.sitesublat(lat, j)
push!(hp.centers, r)
push!(hp.vectors, dr)
push!(hp.indices, (i, j))
push_hophue!(hp, hopcolor, (i, j), (r, dr), sj)
push_hopopacity!(hp, hopopacity, shellopacity, (i, j), (r, dr), is_shell)
push_hopradius!(hp, hopradius, (i, j), (r, dr))
push_hoptooltip!(hp, (i, j), matij)
return hp
end
push_hophue!(hp, ::Union{Missing,ColorsPerSublat}, ij, rdr, s) = push!(hp.hues, s)
push_hophue!(hp, hopcolor::Real, ij, rdr, s) = push!(hp.hues, hopcolor)
push_hophue!(hp, hopcolor::Function, ij, rdr, s) = push!(hp.hues, hopcolor(ij, rdr))
push_hophue!(hp, ::Symbol, ij, rdr, s) = push!(hp.hues, 0f0)
push_hophue!(hp, ::Makie.Colorant, ij, rdr, s) = push!(hp.hues, 0f0)
push_hophue!(hp, hopcolor, ij, rdr, s) = argerror("Unrecognized hopcolor")
push_hopopacity!(hp, ::Missing, shellopacity, ij, rdr, is_shell) = push!(hp.opacities, is_shell ? 1.0 : shellopacity)
push_hopopacity!(hp, ::Missing, ::Missing, ij, rdr, is_shell) = push!(hp.opacities, 1.0)
push_hopopacity!(hp, hopopacity::Real, shellopacity, ij, rdr, is_shell) = push!(hp.opacities, hopopacity)
push_hopopacity!(hp, hopopacity::Function, shellopacity, ij, rdr, is_shell) = push!(hp.opacities, hopopacity(ij, rdr))
push_hopopacity!(hp, hopopacity, shellopacity, ij, rdr, is_shell) = argerror("Unrecognized hopradius")
push_hopradius!(hp, hopradius::Real, ij, rdr) = push!(hp.radii, hopradius)
push_hopradius!(hp, hopradius::Function, ij, rdr) = push!(hp.radii, hopradius(ij, rdr))
push_hopradius!(hp, hopradius, ij, rdr) = argerror("Unrecognized hopradius")
push_hoptooltip!(hp, (i, j), mat) = push!(hp.tooltips, matrixstring(i, j, mat))
#endregion
#region ## API ##
embdim(p::SitePrimitives{E}) where {E} = E
embdim(p::HoppingPrimitives{E}) where {E} = E
## update_color! ##
update_colors!(p::Union{SitePrimitives,HoppingPrimitives}, plot) =
update_colors!(p, plot, safeextrema(p.hues), safeextrema(p.opacities))
update_colors!(p::SitePrimitives, plot, extremahues, extremaops) =
update_colors!(p, extremahues, extremaops, plot[:sitecolor][], plot[:siteopacity][],
Makie.ColorSchemes.colorschemes[plot[:sitecolormap][]], plot[:sitedarken][])
update_colors!(p::HoppingPrimitives, plot, extremahues, extremaops) =
update_colors!(p, extremahues, extremaops, plot[:hopcolor][], plot[:hopopacity][],
Makie.ColorSchemes.colorschemes[plot[:hopcolormap][]], plot[:hopdarken][])
function update_colors!(p, extremahues, extremaops, pcolor, popacity, colormap, pdarken)
resize!(p.colors, length(p.hues))
for (i, (c, α)) in enumerate(zip(p.hues, p.opacities))
p.colors[i] = transparent(
darken(primitive_color(c, extremahues, colormap, pcolor), pdarken),
primitite_opacity(α, extremaops, popacity))
end
return p
end
# color == missing means sublat color
primitive_color(colorindex, extrema, colormap, ::Missing) =
RGBAf(colormap[mod1(round(Int, colorindex), length(colormap))])
primitive_color(colorindex, extrema, colormap, colorname::Symbol) =
parse_color(colorname)
primitive_color(colorindex, extrema, colormap, pcolor::Makie.Colorant) =
parse_color(pcolor)
primitive_color(colorindex, extrema, colormap, colors::ColorsPerSublat) =
parse_color(colors[mod1(round(Int, colorindex), length(colors))])
primitive_color(colorindex, extrema, colormap, _) =
parse_color(colormap[normalize_range(colorindex, extrema)])
parse_color(colorname::Symbol) = parse(RGBAf, colorname)
parse_color(color::Makie.Colorant) = convert(RGBAf, color)
# opacity::Function should be scaled
primitite_opacity(α, extrema, ::Function) = normalize_range(α, extrema)
# otherwise (opacity::Union{Missing,Real}) we leave it fixed
primitite_opacity(α, extrema, _) = α
## update_radii! ##
update_radii!(p, plot) = update_radii!(p, plot, safeextrema(p.radii))
function update_radii!(p::SitePrimitives, plot, extremarads)
siteradius = plot[:siteradius][]
minmaxsiteradius = plot[:minmaxsiteradius][]
return update_radii!(p, extremarads, siteradius, minmaxsiteradius)
end
function update_radii!(p::HoppingPrimitives, plot, extremarads)
hopradius = plot[:hopradius][]
minmaxhopradius = plot[:minmaxhopradius][]
return update_radii!(p, extremarads, hopradius, minmaxhopradius)
end
function update_radii!(p, extremarads, radius, minmaxradius)
for (i, r) in enumerate(p.radii)
p.radii[i] = primitive_radius(normalize_range(r, extremarads), radius, minmaxradius)
end
return p
end
primitive_radius(normr, radius::Number, minmaxradius) = radius
primitive_radius(normr, radius, (minr, maxr)) = minr + (maxr - minr) * normr
## primitive_scales ##
function primitive_scales(p::HoppingPrimitives, plot)
hopradius = plot[:hopradius][]
minmaxhopradius = plot[:minmaxhopradius][]
scales = Vec3f[]
for (r, v) in zip(p.radii, p.vectors)
push!(scales, primitive_scale(r, v, hopradius, minmaxhopradius))
end
return scales
end
primitive_scale(normr, v, hopradius::Number, minmaxhopradius) =
Vec3f(hopradius, hopradius, norm(v)/2)
function primitive_scale(normr, v, hopradius, (minr, maxr))
hopradius´ = minr + (maxr - minr) * normr
return Vec3f(hopradius´, hopradius´, norm(v)/2)
end
## primitive_segments ##
function primitive_segments(p::HoppingPrimitives{E}, plot) where {E}
segments = Point{E,Float32}[]
for (r, dr) in zip(p.centers, p.vectors)
push!(segments, r - dr/2)
push!(segments, r + dr/2)
end
return segments
end
## primitive_linewidths ##
function primitive_linewidths(p::HoppingPrimitives{E}, plot) where {E}
hoppixels = plot[:hoppixels][]
hopradius = plot[:hopradius][]
linewidths = Float32[]
for r in p.radii
linewidth = primitive_linewidth(r, hopradius, hoppixels)
append!(linewidths, (linewidth, linewidth))
end
return linewidths
end
primitive_linewidth(normr, hopradius::Number, hoppixels) = hoppixels
primitive_linewidth(normr, hopradius, hoppixels) = hoppixels * normr
#endregion
#endregion
############################################################################################
# PlotLattice for different arguments
#region
function Makie.plot!(plot::PlotLattice{Tuple{L}}) where {L<:Lattice}
lat = to_value(plot[1])
h = Quantica.hamiltonian(lat)
return plotlattice!(plot, h; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{L}}) where {L<:LatticeSlice}
ls = to_value(plot[1])
lat = Quantica.parent(ls)
h = Quantica.hamiltonian(lat)
return plotlattice!(plot, h, ls; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{L}}) where {L<:ParametricHamiltonian}
ph = to_value(plot[1])
h = ph()
return plotlattice!(plot, h; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{H}}) where {H<:Hamiltonian}
h = to_value(plot[1])
lat = Quantica.lattice(h)
sel = sanitize_selector(plot[:selector][], lat)
latslice = lat[sel]
return plotlattice!(plot, h, latslice; plot.attributes...)
end
# For E < 2 Hamiltonians, promote to 2D
function Makie.plot!(plot::PlotLattice{Tuple{H}}) where {H<:Hamiltonian{<:Any,1}}
h = Hamiltonian{2}(to_value(plot[1]))
return plotlattice!(plot, h; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{H,S}}) where {H<:Hamiltonian{<:Any,1},S<:LatticeSlice}
h = Hamiltonian{2}(to_value(plot[1]))
lat = Quantica.lattice(h)
l = Quantica.unsafe_replace_lattice(to_value(plot[2]), lat)
return plotlattice!(plot, h, l; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{H,S,S´}}) where {H<:Hamiltonian{<:Any,1},S<:LatticeSlice,S´<:LatticeSlice}
h = Hamiltonian{2}(to_value(plot[1]))
lat = Quantica.lattice(h)
l = Quantica.unsafe_replace_lattice(to_value(plot[2]), lat)
l´ = Quantica.unsafe_replace_lattice(to_value(plot[3]), lat)
return plotlattice!(plot, h, l, l´; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{H,S}}) where {H<:Hamiltonian,S<:LatticeSlice}
h = to_value(plot[1])
latslice = to_value(plot[2])
latslice´ = Quantica.growdiff(latslice, h)
return plotlattice!(plot, h, latslice, latslice´; plot.attributes...)
end
function Makie.plot!(plot::PlotLattice{Tuple{H,S,S´}}) where {H<:Hamiltonian,S<:LatticeSlice,S´<:LatticeSlice}
h = to_value(plot[1])
latslice = to_value(plot[2]) # selected sites
latslice´ = to_value(plot[3]) # shell around sites
lat = Quantica.lattice(h)
# if e.g. `plot[:sitecolor][] == :hopcolor`, replace with `plot[:hopcolor][]`
resolve_cross_references!(plot)
hidesites = ishidden((:sites, :all), plot)
hidehops = ishidden((:hops, :hoppings, :links, :all), plot)
hidebravais = ishidden((:bravais, :all), plot)
hideshell = ishidden((:shell, :all), plot) || iszero(Quantica.latdim(h))
# plot bravais axes
if !hidebravais
plotbravais!(plot, lat, latslice)
end
# collect sites
if !hidesites
sp = siteprimitives(latslice, h, plot, true) # latslice
if hideshell
update_colors!(sp, plot)
update_radii!(sp, plot)
else
sp´ = siteprimitives(latslice´, h, plot, false) # boundary shell around latslice
joint_colors_radii_update!(sp, sp´, plot)
end
end
# collect hops
if !hidehops
radii = hidesites ? () : sp.radii
hp, hp´ = hoppingprimitives(latslice, latslice´, h, radii, plot)
if hideshell
update_colors!(hp, plot)
update_radii!(hp, plot)
else
joint_colors_radii_update!(hp, hp´, plot)
end
end
# plot hops
if !hidehops
hopopacity = plot[:hopopacity][]
transparency = plot[:force_transparency][] || has_transparencies(hopopacity)
if !plot[:flat][]
plothops_shaded!(plot, hp, transparency)
hideshell || plothops_shaded!(plot, hp´, true)
else
plothops_flat!(plot, hp, transparency)
hideshell || plothops_flat!(plot, hp´, true)
end
end
# plot sites
if !hidesites
siteopacity = plot[:siteopacity][]
transparency = plot[:force_transparency][] || has_transparencies(siteopacity)
if !plot[:flat][]
plotsites_shaded!(plot, sp, transparency)
hideshell || plotsites_shaded!(plot, sp´, true)
else
plotsites_flat!(plot, sp, transparency)
hideshell || plotsites_flat!(plot, sp´, true)
end
end
return plot
end
function Makie.plot!(plot::PlotLattice{Tuple{G}}) where {G<:GreenFunction}
g = to_value(plot[1])
gsel = haskey(plot, :selector) && plot[:selector][] !== missing ?
plot[:selector][] : green_selector(g)
h = hamiltonian(g)
latslice = lattice(h)[gsel]
latslice´ = Quantica.growdiff(latslice, h)
L = Quantica.latdim(h)
squaremarker = !plot[:flat][] ? Rect3f(Vec3f(-0.5), Vec3f(1)) : Rect2
# plot boundary as cells
if !ishidden((:boundary, :boundaries), plot)
bsel = boundary_selector(g)
blatslice = latslice[bsel]
blatslice´ = latslice´[bsel]
if L > 1
bkws = (; plot.attributes..., hide = (:axes, :sites, :hops), cellcolor = :boundarycolor, cellopacity = :boundaryopacity)
isempty(blatslice) || plotlattice!(plot, blatslice; bkws...)
isempty(blatslice´) || plotlattice!(plot, blatslice´; bkws...)
end
hideB = Quantica.tupleflatten(:bravais, plot[:hide][])
bkws´ = (; plot.attributes..., hide = hideB, sitecolor = :boundarycolor, siteopacity = :boundaryopacity,
siteradiusfactor = sqrt(2), marker = squaremarker)
isempty(blatslice) || plotlattice!(plot, blatslice; bkws´...)
isempty(blatslice´) || plotlattice!(plot, blatslice´; bkws´...)
end
# plot cells
plotlattice!(plot, h, latslice, latslice´; plot.attributes...)
# plot contacts
if !ishidden((:contact, :contacts), plot)
Σkws = Iterators.cycle(parse_children(plot[:children]))
Σs = Quantica.selfenergies(Quantica.contacts(g))
hideΣ = Quantica.tupleflatten(:bravais, plot[:hide][])
for (Σ, Σkw) in zip(Σs, Σkws)
Σplottables = Quantica.selfenergy_plottables(Σ)
for Σp in Σplottables
plottables, kws = get_plottables_and_kws(Σp)
plotlattice!(plot, plottables...; plot.attributes..., hide = hideΣ, marker = squaremarker, kws..., Σkw...)
end
end
end
return plot
end
parse_children(::Missing) = (NamedTuple(),)
parse_children(p::Tuple) = p
parse_children(p::NamedTuple) = (p,)
parse_children(p::Attributes) = parse_children(NamedTuple(p))
parse_children(p::Observable) = parse_children(p[])
sanitize_selector(::Missing, lat) = Quantica.siteselector(; cells = Quantica.zerocell(lat))
sanitize_selector(s::Quantica.SiteSelector, lat) = s
sanitize_selector(s, lat) = argerror("Specify a site selector with `selector = siteselector(; kw...)`")
function joint_colors_radii_update!(p, p´, plot)
hext, oext = jointextrema(p.hues, p´.hues), jointextrema(p.opacities, p´.opacities)
update_colors!(p, plot, hext, oext)
update_colors!(p´, plot, hext, oext)
rext = jointextrema(p.radii, p´.radii)
update_radii!(p, plot, rext)
update_radii!(p´, plot, rext)
return nothing
end
############################################################################################
# green_selector and boundary_selector: sites plotted for green functions
#region
function green_selector(g)
mincell, maxcell = green_bounding_box(g)
s = siteselector(cells = n -> all(mincell .<= n .<= maxcell))
return s
end
boundary_selector(g) = siteselector(cells = n -> isboundarycell(n, g))
function green_bounding_box(g)
L = Quantica.latdim(hamiltonian(g))
return isempty(Quantica.contacts(g)) ?
boundary_bounding_box(Val(L), Quantica.boundaries(g)...) :
broaden_bounding_box(Quantica.boundingbox(g), Quantica.boundaries(g)...)
end
function broaden_bounding_box((mincell, maxcell)::Tuple{SVector{N},SVector{N}}, (dir, cell), bs...) where {N}
isfinite(cell) || return (mincell, maxcell)
mincell´ = SVector(ntuple(i -> i == dir ? min(mincell[i], cell + 1) : mincell[i], Val(N)))
maxcell´ = SVector(ntuple(i -> i == dir ? max(maxcell[i], cell - 1) : maxcell[i], Val(N)))
return broaden_bounding_box((mincell´, maxcell´), bs...)
end
broaden_bounding_box(mm::Tuple) = mm
boundary_bounding_box(::Val{0}) = (SVector{0,Int}(), SVector{0,Int}())
function boundary_bounding_box(::Val{L}, (dir, cell), bs...) where {L}
cell´ = isfinite(cell) ? cell + 1 : 0
m = SVector(ntuple(i -> i == dir ? cell´ : 0, Val(L)))
return broaden_bounding_box((m, m), bs...)
end
isboundarycell(n, g) = any(((dir, cell),) -> n[dir] == cell, Quantica.boundaries(g))
get_plottables_and_kws(Σp::Tuple) = (Σp, NamedTuple())
get_plottables_and_kws(Σp::Quantica.FrankenTuple) = (Tuple(Σp), NamedTuple(Σp))
get_plottables_and_kws(Σp) = ((Σp,), NamedTuple())
#endregion
############################################################################################
# core plotting methods
#region
function plotsites_shaded!(plot::PlotLattice, sp::SitePrimitives, transparency)
inspector_label = (self, i, r) -> sp.tooltips[i]
sizefactor = plot[:siteradiusfactor][]
if plot[:marker][] == :auto # circle markers
marker = (;)
else
marker = (; marker = plot[:marker][])
sizefactor *= sqrt(2)
end
markersize = sizefactor * sp.radii
meshscatter!(plot, sp.centers; color = sp.colors, markersize, marker...,
space = :data,
transparency,
inspector_label)
return plot
end
function plotsites_flat!(plot::PlotLattice, sp::SitePrimitives{E}, transparency) where {E}
inspector_label = (self, i, r) -> sp.tooltips[i]
sizefactor = ifelse(plot[:isAxis3][] && plot[:flat][], 0.5, sqrt(2)) * plot[:siteradiusfactor][]
if plot[:marker][] == :auto # default circular markers
marker = (;)
else
marker = (; marker = plot[:marker][])
sizefactor *= 0.5
end
markersize = 2*sp.radii*sizefactor
scatter!(plot, sp.centers;
markersize, marker...,
color = sp.colors,
markerspace = :data,
strokewidth = plot[:siteoutline][],
strokecolor = darken.(sp.colors, Ref(plot[:siteoutlinedarken][])),
transparency,
inspector_label)
return plot
end
function plothops_shaded!(plot::PlotLattice, hp::HoppingPrimitives, transparency)
inspector_label = (self, i, r) -> hp.tooltips[i]
scales = primitive_scales(hp, plot)
cyl = Cylinder(Point3f(0., 0., -1), Point3f(0., 0, 1), Float32(1))
vectors = Quantica.sanitize_SVector.(SVector{3,Float32}, hp.vectors) # convert to 3D
meshscatter!(plot, hp.centers; color = hp.colors,
rotations = vectors, markersize = scales, marker = cyl,
transparency,
inspector_label)
return plot
end
function plothops_flat!(plot::PlotLattice, hp::HoppingPrimitives, transparency)
inspector_label = (self, i, r) -> (hp.tooltips[(i+1) ÷ 2])
colors = hp.colors
segments = primitive_segments(hp, plot)
linewidths = primitive_linewidths(hp, plot)
linesegments!(plot, segments;
space = :data,
color = colors,
linewidth = linewidths,
transparency,
inspector_label)
return plot
end
function plotbravais!(plot::PlotLattice, lat::Lattice{<:Any,E,L}, latslice) where {E,L}
iszero(L) && return plot
bravais = Quantica.bravais(lat)
vs = Point{E,Float32}.(Quantica.bravais_vectors(bravais))
vtot = sum(vs)
r0 = Point{E,Float32}(Quantica.mean(Quantica.sites(lat))) - 0.5 * vtot
if !ishidden(:axes, plot)
for (v, color) in zip(vs, (:red, :green, :blue))
arrows!(plot, [r0], [v]; color, inspectable = false)
end
end
if !ishidden((:cell, :cells), plot) && L > 1
cellcolor = parse(RGBAf, plot[:cellcolor][])
colface = transparent(cellcolor, plot[:cellopacity][])
coledge = transparent(cellcolor, 5 * plot[:cellopacity][])
rect = Rect{L,Int}(Point{L,Int}(0), Point{L,Int}(1))
mrect0 = GeometryBasics.mesh(rect, pointtype=Point{L,Float32}, facetype=QuadFace{Int})
vertices0 = mrect0.position
mat = Quantica.bravais_matrix(bravais)
for sc in Quantica.cellsdict(latslice)
cell = Quantica.cell(sc)
mrect = GeometryBasics.mesh(rect, pointtype=Point{E,Float32}, facetype=QuadFace{Int})
vertices = mrect.position
vertices .= Ref(r0) .+ Ref(mat) .* (vertices0 .+ Ref(cell))
mesh!(plot, mrect; color = colface, transparency = true, shading = NoShading, inspectable = false)
wireframe!(plot, mrect; color = coledge, transparency = true, strokewidth = 1, inspectable = false)
end
end
return plot
end
#endregion
############################################################################################
# tooltip strings
#region
positionstring(i, r) = string("Site[$i] : ", vectorstring(r))
function vectorstring(r::SVector)
rs = repr("text/plain", r)
pos = findfirst(isequal('\n'), rs)
return pos === nothing ? rs : rs[pos:end]
end
matrixstring(row, x) = string("Onsite[$row] : ", matrixstring(x))
matrixstring(row, col, x) = string("Hopping[$row, $col] : ", matrixstring(x))
function matrixstring(s::AbstractMatrix)
ss = repr("text/plain", s)
pos = findfirst(isequal('\n'), ss)
return pos === nothing ? ss : ss[pos:end]
end
numberstring(x) = isreal(x) ? string(" ", real(x)) : isimag(x) ? string(" ", imag(x), "im") : string(" ", x)
isreal(x) = all(o -> imag(o) ≈ 0, x)
isimag(x) = all(o -> real(o) ≈ 0, x)
#endregion
############################################################################################
# convert_arguments
#region
Makie.convert_arguments(::PointBased, lat::Lattice, sublat = missing) =
(Point.(Quantica.sites(lat, sublat)),)
Makie.convert_arguments(p::PointBased, lat::Lattice{<:Any,1}, sublat = missing) =
Makie.convert_arguments(p, Quantica.lattice(lat, dim = Val(2)), sublat)
Makie.convert_arguments(p::PointBased, h::Union{AbstractHamiltonian,GreenFunction,GreenSolution}, sublat = missing) =
Makie.convert_arguments(p, Quantica.lattice(h), sublat)
Makie.convert_arguments(p::Type{<:LineSegments}, g::Union{GreenFunction,GreenSolution}, sublat = missing) =
Makie.convert_arguments(p, Quantica.hamiltonian(g), sublat)
function Makie.convert_arguments(::Type{<:LineSegments}, h::AbstractHamiltonian{<:Any,E}, sublat = missing) where {E}
segments = Point{max(E,2),Float32}[]
lat = Quantica.lattice(h)
for har in harmonics(h)
colrng = sublat === missing ? axes(h, 2) : siterange(lat, sublat)
mat = Quantica.unflat(har)
dn = Quantica.dcell(har)
for col in colrng, ptr in nzrange(mat, col)
row = rowvals(mat)[ptr]
row == col && continue
append!(segments, (site(lat, col, zero(dn)), site(lat, row, dn)))
end
end
return (segments,)
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2057 | ############################################################################################
# tools
#region
function darken(rgba::RGBAf, v = 0.66)
r = max(0, min(rgba.r * (1 - v), 1))
g = max(0, min(rgba.g * (1 - v), 1))
b = max(0, min(rgba.b * (1 - v), 1))
RGBAf(r,g,b,rgba.alpha)
end
darken(colors::Vector, v = 0.66) = darken.(colors, Ref(v))
transparent(rgba::RGBAf, v = 0.5) = RGBAf(rgba.r, rgba.g, rgba.b, clamp(rgba.alpha * v, 0f0, 1f0))
maybedim(color, dn, dimming) = iszero(dn) ? color : transparent(color, 1 - dimming)
dnshell(::Lattice{<:Any,<:Any,L}, span = -1:1) where {L} =
sort!(vec(SVector.(Iterators.product(ntuple(_ -> span, Val(L))...))), by = norm)
ishidden(s, plot::Union{PlotLattice,PlotBands}) = ishidden(s, plot[:hide][])
ishidden(s, ::Nothing) = false
ishidden(s, ::Pair) = false # for cellsites => function
ishidden(s::Symbol, hide::Symbol) = s === hide
ishidden(s::Symbol, hides::Tuple) = s in hides
ishidden(ss, hides) = any(s -> ishidden(s, hides), ss)
normalize_range(c::T, (min, max)) where {T} = min ≈ max ? T(c) : T((c - min)/(max - min))
jointextrema(v, v´) = min(minimum(v; init = 0f0), minimum(v´; init = 0f0)), max(maximum(v; init = 0f0), maximum(v´; init = 0f0))
safeextrema(v::Missing) = (Float32(0), Float32(1))
safeextrema(v) = isempty(v) ? (Float32(0), Float32(1)) : extrema(v)
has_transparencies(x::Real) = !(x ≈ 1)
has_transparencies(::Missing) = false
has_transparencies(x) = true
function resolve_cross_references!(plot::PlotLattice)
names = (:shellopacity, :siteopacity, :hopopacity, :cellcolor, :cellopacity,
:boundarycolor, :boundaryopacity, :sitecolor, :hopcolor, :siteradius, :hopradius)
for name in names
property = plot[name][]
if property isa Symbol && property in names
plot[name][] = plot[property][]
end
end
foreach(names) do name
property = plot[name][]
property isa Symbol && property in names && argerror("Cyclic reference in plot properties")
end
return plot
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2543 | module Quantica
const REPOISSUES = "https://github.com/pablosanjose/Quantica.jl/issues"
using Base.Threads: Iterators
using StaticArrays
using NearestNeighbors
using SparseArrays
using SparseArrays: getcolptr, AbstractSparseMatrix, AbstractSparseMatrixCSC
using LinearAlgebra
using Dictionaries
using ProgressMeter
using Random
using SuiteSparse
using FunctionWrappers: FunctionWrapper
using ExprTools
using IntervalTrees
using FrankenTuples
using Statistics: mean
using QuadGK
using SpecialFunctions
using DelimitedFiles
export sublat, bravais_matrix, lattice, sites, supercell, hamiltonian,
hopping, onsite, @onsite, @hopping, @onsite!, @hopping!, pos, ind, cell,
position,
plusadjoint, neighbors, siteselector, hopselector, diagonal,
unflat, torus, transform, translate, combine,
spectrum, energies, states, bands, subdiv,
greenfunction, selfenergy, attach,
plotlattice, plotlattice!, plotbands, plotbands!, qplot, qplot!, qplotdefaults,
conductance, josephson, ldos, current, transmission, densitymatrix,
OrbitalSliceArray, OrbitalSliceVector, OrbitalSliceMatrix, orbaxes
export LatticePresets, LP, RegionPresets, RP, HamiltonianPresets, HP, ExternalPresets, EP
export EigenSolvers, ES, GreenSolvers, GS
export @SMatrix, @SVector, SMatrix, SVector, SA
export ishermitian, tr, I, norm, dot, diag, det
export ftuple
# Types
include("types.jl")
# Preamble
include("iterators.jl")
include("builders.jl")
include("tools.jl")
include("docstrings.jl")
# API
include("specialmatrices.jl")
include("selectors.jl")
include("lattice.jl")
include("slices.jl")
include("models.jl")
include("hamiltonian.jl")
include("supercell.jl")
include("transform.jl")
include("mesh.jl")
include("bands.jl")
include("greenfunction.jl")
include("observables.jl")
# Plumbing
include("apply.jl")
include("show.jl")
include("convert.jl")
include("sanitizers.jl")
# Solvers
include("solvers/eigen.jl")
include("solvers/green.jl")
include("solvers/selfenergy.jl")
# Presets
include("presets/regions.jl")
include("presets/lattices.jl")
include("presets/hamiltonians.jl")
include("presets/external.jl")
include("presets/docstrings.jl")
# include("precompile.jl")
# Extension stubs for QuanticaMakieExt
function plotlattice end
function plotlattice! end
function plotbands end
function plotbands! end
function qplot end
function qplot! end
function qplotdefaults end
qplot(args...; kw...) =
argerror("No plotting backend found or unexpected argument. Forgot to do e.g. `using GLMakie`?")
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 13644 |
# apply: takes generic user input (model/selector/modifier/etc), and specializes it
# to a given object (Lattice/Hamiltonian/etc), performing some preprocessing task on the
# input that allows to use it on that object (it gets transformed into an AppliedInput)
# Example: a HopSelector input with a `range = neighbors(1)` gets applied onto a lattice
# by computing the actual range for nearest neighbors in that lattice.
############################################################################################
# apply selector
#region
apply(s::Union{SiteSelector,HopSelector}, l::LatticeSlice) = apply(s, parent(l), cells(l))
function apply(s::SiteSelector, lat::Lattice{T,E,L}, cells...) where {T,E,L}
region = r -> applied_region(r, s.region)
intsublats = recursive_apply(name -> sublatindex_or_zero(lat, name), s.sublats)
sublats = recursive_push!(Int[], intsublats)
cells = recursive_push!(SVector{L,Int}[], sanitize_cells(s.cells, Val(L)), cells...)
unique!(sort!(sublats))
unique!(sort!(cells))
# isnull: to distinguish in a type-stable way between s.cells === missing and no-selected-cells
# and the same for sublats
isnull = (s.cells !== missing && isempty(cells)) ||
(s.sublats !== missing && isempty(sublats))
return AppliedSiteSelector{T,E,L}(lat, region, sublats, cells, isnull)
end
function apply(s::HopSelector, lat::Lattice{T,E,L}, cells...) where {T,E,L}
rmin, rmax = sanitize_minmaxrange(s.range, lat)
L > 0 && s.dcells === missing && rmax === missing &&
throw(ErrorException("Tried to apply an infinite-range HopSelector on an unbounded lattice"))
sign = ifelse(s.adjoint, -1, 1)
region = (r, dr) -> applied_region((r, sign*dr), s.region)
intsublats = recursive_apply(names -> sublatindex_or_zero(lat, names), s.sublats)
sublats = recursive_push!(Pair{Int,Int}[], intsublats)
dcells = recursive_push!(SVector{L,Int}[], sanitize_cells(s.dcells, Val(L)), cells...)
unique!(sublats)
unique!(dcells)
if s.adjoint
sublats .= reverse.(sublats)
dcells .*= -1
end
isnull = (s.dcells !== missing && isempty(dcells)) ||
(s.sublats !== missing && isempty(sublats))
return AppliedHopSelector{T,E,L}(lat, region, sublats, dcells, (rmin, rmax), isnull)
end
sublatindex_or_zero(lat, ::Missing) = missing
sublatindex_or_zero(lat, i::Integer) = ifelse(1 <= i <= nsublats(lat), Int(i), 0)
function sublatindex_or_zero(lat, name::Symbol)
i = sublatindex(lat, name)
return ifelse(i === nothing, 0, Int(i))
end
sanitize_minmaxrange(r, lat) = sanitize_minmaxrange((zero(numbertype(lat)), r), lat)
sanitize_minmaxrange((rmin, rmax)::Tuple{Any,Any}, lat) =
padrange(applyrange(rmin, lat), -1), padrange(applyrange(rmax, lat), 1)
sanitize_cells(cell::Number, ::Val{1}) = (sanitize_SVector(SVector{1,Int}, cell),)
sanitize_cells(cell::Union{NTuple{L,<:Integer},SVector{L,<:Number}}, ::Val{L´}) where {L,L´} =
argerror("Dimension $L of `cells` does not match lattice dimension $(L´)")
sanitize_cells(cell::Union{NTuple{L,<:Integer},SVector{L,<:Number}}, ::Val{L}) where {L} =
(sanitize_SVector(SVector{L,Int}, cell),)
sanitize_cells(::Missing, ::Val{L}) where {L} = missing
sanitize_cells(f::Function, ::Val{L}) where {L} = f
sanitize_cells(cells, ::Val{L}) where {L} = sanitize_SVector.(SVector{L,Int}, cells)
applyrange(r::Neighbors, lat) = nrange(Int(r), lat)
applyrange(r::Real, lat) = r
padrange(r::Real, m) = isfinite(r) ? float(r) + m * sqrt(eps(float(r))) : float(r)
applied_region(r, ::Missing) = true
applied_region((r, dr)::Tuple{SVector,SVector}, region::Function) =
ifelse(region(r, dr), true, false)
applied_region(r::SVector, region::Function) = ifelse(region(r), true, false)
recursive_apply(f, t::Tuple) = recursive_apply.(f, t)
recursive_apply(f, t::AbstractVector) = recursive_apply.(f, t)
recursive_apply(f, (a,b)::Pair) = recursive_apply(f, a) => recursive_apply(f, b)
recursive_apply(f, x) = f(x)
recursive_push!(v::Vector, ::Missing) = v
recursive_push!(v::Vector{T}, x::T) where {T} = push!(v, x)
recursive_push!(v::Vector{S}, x::NTuple{<:Any,Integer}) where {S<:SVector} = push!(v, S(x))
recursive_push!(v::Vector{S}, x::Number) where {S<:SVector{1}} = push!(v, S(x))
recursive_push!(v::Vector{Pair{T,T}}, x::T) where {T} = push!(v, x => x)
recursive_push!(v::Vector{Pair{T,T}}, (x, y)::Tuple{T,T}) where {T} = push!(v, x => y)
recursive_push!(v::Vector{Pair{T,T}}, x::Pair{T,T}) where {T} = push!(v, x)
function recursive_push!(v::Vector, xs)
foreach(x -> recursive_push!(v, x), xs)
return v
end
function recursive_push!(v::Vector{Pair{T,T}}, (xs, ys)::Pair) where {T}
for (x, y) in Iterators.product(xs, ys)
push!(v, x => y)
end
return v
end
# for cells::Function without list of cells
function recursive_push!(v::Vector{SVector{L,Int}}, fcell::Function) where {L}
iter = BoxIterator(zero(SVector{L,Int}))
keepgoing = true
for cell in iter
found = fcell(cell)
if found || keepgoing
acceptcell!(iter, cell)
if found
push!(v, cell)
keepgoing = false
end
end
end
return v
end
# for cells::Function with a list of cells (from a LatticeSlice)
function recursive_push!(v::Vector{SVector{L,Int}}, fcell::Function, cells) where {L}
for cell in cells
fcell(cell) && push!(v, cell)
end
return v
end
recursive_push!(v::Vector, f, cells) = recursive_push!(v, f)
#endregion
############################################################################################
# apply model terms
#region
function apply(o::OnsiteTerm, (lat, os)::Tuple{Lattice{T,E,L},OrbitalBlockStructure{B}}) where {T,E,L,B}
f = (r, orbs) -> mask_block(B, o(r), (orbs, orbs))
asel = apply(selector(o), lat)
return AppliedOnsiteTerm{T,E,L,B}(f, asel) # f gets wrapped in a FunctionWrapper
end
function apply(t::HoppingTerm, (lat, os)::Tuple{Lattice{T,E,L},OrbitalBlockStructure{B}}) where {T,E,L,B}
f = (r, dr, orbs) -> mask_block(B, t(r, dr), orbs)
asel = apply(selector(t), lat)
return AppliedHoppingTerm{T,E,L,B}(f, asel) # f gets wrapped in a FunctionWrapper
end
apply(m::TightbindingModel, latos) = TightbindingModel(apply.(terms(m), Ref(latos)))
apply(t::ParametricOnsiteTerm, lat::Lattice) =
ParametricOnsiteTerm(functor(t), apply(selector(t), lat), coefficient(t), is_spatial(t))
apply(t::ParametricHoppingTerm, lat::Lattice) =
ParametricHoppingTerm(functor(t), apply(selector(t), lat), coefficient(t), is_spatial(t))
apply(m::ParametricModel, lat) = ParametricModel(apply.(terms(m), Ref(lat)))
#endregion
############################################################################################
# apply parametric modifiers
# shifts allows to transform lattice(h) sites into the sites of some originating lattice
# unit cell: shifts = [bravais * dn] for each site in lattice(h)
# shifts is useful for supercell, where we want to keep the r, dr of original lat
#region
# Any means it could be wrapped in Intrablock or Interblock
apply(m::BlockModifier, h::Hamiltonian, shifts = missing) =
apply(parent(m), h, shifts, block(m, blockstructure(h)))
function apply(m::OnsiteModifier, h::Hamiltonian, shifts = missing, oblock = missing)
f = parametric_function(m)
sel = selector(m)
asel = apply(sel, lattice(h))
ptrs = pointers(h, asel, shifts, oblock)
B = blocktype(h)
spatial = is_spatial(m)
return AppliedOnsiteModifier(sel, B, f, ptrs, spatial)
end
function apply(m::HoppingModifier, h::Hamiltonian, shifts = missing, oblock = missing)
f = parametric_function(m)
sel = selector(m)
asel = apply(sel, lattice(h))
ptrs = pointers(h, asel, shifts, oblock)
B = blocktype(h)
spatial = is_spatial(m)
return AppliedHoppingModifier(sel, B, f, ptrs, spatial)
end
function pointers(h::Hamiltonian{T,E,L,B}, s::AppliedSiteSelector{T,E,L}, shifts, oblock) where {T,E,L,B}
isempty(cells(s)) || argerror("Cannot constrain cells in an onsite modifier, cell periodicity is assumed.")
ptrs = Tuple{Int,SVector{E,T},CellSitePos{T,E,L,B},Int}[]
isnull(s) && return ptrs
lat = lattice(h)
har0 = first(harmonics(h))
dn0 = zerocell(lat)
umat = unflat(har0)
rows = rowvals(umat)
norbs = norbitals(h)
for scol in sublats(lat), col in siterange(lat, scol)
isinblock(col, oblock) || continue
for p in nzrange(umat, col)
row = rows[p]
col == row || continue
r = site(lat, col)
r = apply_shift(shifts, r, col)
if (scol, r) in s
n = norbs[scol]
sp = CellSitePos(dn0, col, r, B)
push!(ptrs, (p, r, sp, n))
end
end
end
return ptrs
end
function pointers(h::Hamiltonian{T,E,L,B}, s::AppliedHopSelector{T,E,L}, shifts, oblock) where {T,E,L,B}
hars = harmonics(h)
ptrs = [Tuple{Int,SVector{E,T},SVector{E,T},CellSitePos{T,E,L,B},CellSitePos{T,E,L,B},Tuple{Int,Int}}[] for _ in hars]
isnull(s) && return ptrs
lat = lattice(h)
dn0 = zerocell(lat)
norbs = norbitals(h)
for (har, ptrs) in zip(hars, ptrs)
mh = unflat(har)
rows = rowvals(mh)
for scol in sublats(lat), col in siterange(lat, scol), p in nzrange(mh, col)
row = rows[p]
isinblock(row, col, oblock) || continue
srow = sitesublat(lat, row)
dn = dcell(har)
rcol = site(lat, col, dn0)
rrow = site(lat, row, dn)
r, dr = rdr(rcol => rrow)
r = apply_shift(shifts, r, col)
if (scol => srow, (r, dr), dn) in s
ncol = norbs[scol]
nrow = norbs[srow]
srow, scol = CellSitePos(dn, row, rrow, B), CellSitePos(dn0, col, rcol, B)
push!(ptrs, (p, r, dr, srow, scol, (nrow, ncol)))
end
end
end
return ptrs
end
apply_shift(::Missing, r, _) = r
apply_shift(shifts, r, i) = r - shifts[i]
#endregion
############################################################################################
# apply AbstractEigenSolver
#region
function apply(solver::AbstractEigenSolver, h::AbstractHamiltonian, ::Type{S}, mapping, transform) where {T<:Real,S<:SVector{<:Any,T}}
h´ = minimal_callsafe_copy(h)
# Some solvers (e.g. ES.LinearAlgebra) only accept certain matrix types
# so this mat´ could be an alias of the call! output, or an unaliased conversion
mat´ = ES.input_matrix(solver, h´)
function sfunc(φs)
φs´ = apply_map(mapping, φs) # this can be a FrankenTuple
mat = call!(h´, φs´)
mat´ === mat || copy!(mat´, mat)
# mat´ could be dense, while mat is sparse, so if not egal, we copy
# the solver always receives the type of matrix mat´ declared by ES.input_matrix
eigen = solver(mat´)
apply_transform!(eigen, transform)
return eigen
end
# issue #235: for some reason, unless this is called, h´ may be GC'ed despite the
# asolver closure in some systems, leading to segfaults. TODO: why this is needed?
@static (Sys.ARCH === :x86_64 && !Sys.iswindows() && v"1.10" <= VERSION < v"1.11.0-alpha1" && sfunc(zero(S)))
asolver = AppliedEigenSolver(FunctionWrapper{EigenComplex{T},Tuple{S}}(sfunc))
return asolver
end
function apply(solver::AbstractEigenSolver, hf::Function, ::Type{S}, mapping, transform) where {T<:Real,S<:SVector{<:Any,T}}
function sfunc(φs)
φs´ = apply_map(mapping, φs) # can be a FrankenTuple, should be accepted by hf
mat = hf(φs´)
eigen = solver(mat)
apply_transform!(eigen, transform)
return eigen
end
asolver = AppliedEigenSolver(FunctionWrapper{EigenComplex{T},Tuple{S}}(sfunc))
return asolver
end
apply(solver::AbstractEigenSolver, h, S, mapping, transform) =
argerror("Encountered an unexpected type as argument to an eigensolver. Are your mesh vertices real?")
apply_transform!(eigen, ::Missing) = eigen
function apply_transform!(eigen, transform)
ϵs = first(eigen)
map!(transform, ϵs, ϵs)
return eigen
end
apply_map(::Missing, φs) = φs
apply_map(mapping, φs) = mapping(Tuple(φs)...)
function apply_map(mapping, h::AbstractHamiltonian{T}, ::Type{S}) where {T,S<:SVector}
function sfunc(φs)
h´ = minimal_callsafe_copy(h)
φs´ = apply_map(mapping, φs) # can be a FrankenTuple
mat = call!(h´, φs´)
return mat
end
return FunctionWrapper{SparseMatrixCSC{Complex{T},Int},Tuple{S}}(sfunc)
end
function apply_map(mapping, hf::Function, ::Type{S}) where {T,S<:SVector{<:Any,T}}
function sfunc(φs)
φs´ = apply_map(mapping, φs) # can be a FrankenTuple, should be accepted by hf
mat = hf(φs´)
return mat
end
return FunctionWrapper{SparseMatrixCSC{Complex{T},Int},Tuple{S}}(sfunc)
end
#endregion
############################################################################################
# apply CellSites
#region
apply(c::AnyCellSite, ::Lattice{<:Any,<:Any,L}) where {L} = c
apply(c::CellSites{L,Vector{Int}}, ::Lattice{<:Any,<:Any,L}) where {L} = c
apply(c::CellSites{L,Colon}, l::Lattice{<:Any,<:Any,L}) where {L} =
CellSites(cell(c), collect(siterange(l)))
apply(c::CellSites{L}, l::Lattice{<:Any,<:Any,L}) where {L} =
CellSites(cell(c), [i for i in siteindices(c) if i in siterange(l)])
apply(::CellSites{L}, l::Lattice{<:Any,<:Any,L´}) where {L,L´} =
argerror("Cell sites must have $(L´)-dimensional cell indices")
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 31417 | ############################################################################################
# spectrum
#region
function spectrum(h::AbstractHamiltonian{T}, φs; solver = ES.LinearAlgebra(), transform = missing, kw...) where {T}
os = blockstructure(h)
mapping = (φ...) -> ftuple(φ...; kw...)
φs´ = sanitize_SVector(T, φs)
S = typeof(φs´)
asolver = apply(solver, h, S, mapping, transform)
eigen = asolver(φs´)
return Spectrum(eigen, os)
end
spectrum(h::AbstractHamiltonian{T,<:Any,0}; kw...) where {T} =
spectrum(h, SVector{0,T}(); kw...)
function spectrum(b::Bandstructure, φs;)
os = blockstructure(b)
solver = first(solvers(b))
eigen = solver(φs)
return Spectrum(eigen, os)
end
#endregion
############################################################################################
# Spectrum indexing
#region
Base.first(s::Spectrum) = energies(s)
Base.last(s::Spectrum) = states(s)
Base.iterate(s::Spectrum) = first(s), Val(:states)
Base.iterate(s::Spectrum, ::Val{:states}) = last(s), Val(:done)
Base.iterate(::Spectrum, ::Val{:done}) = nothing
Base.Tuple(s::Spectrum) = (first(s), last(s))
Base.getindex(s::Spectrum, i...; around = missing) = get_around(Tuple(s), around, i...)
get_around((es, ss), ε0::Missing, i) = (es[i], ss[:,i])
get_around(s, ε0::Number) = get_around(s, ε0, 1)
get_around(s, ε0::Number, i::Integer) = get_around(s, ε0, i:i)
function get_around((es, ss), ε0::Number, inds)
# Get indices of eachindex(es) such that if sorted by `by` will occupy `inds` positions
if inds isa Union{Integer,OrdinalRange}
rngs = partialsort(eachindex(es), inds, by = rng -> abs(es[rng] - ε0))
return (es[rngs], ss[:, rngs])
else # generic inds (cannot use partialsort)
rngs = sort(eachindex(es), by = rng -> abs(es[rng] - ε0))
return (es[view(rngs, inds)], ss[:, view(rngs, inds)])
end
end
#endregion
############################################################################################
# bands(h, points...; kw...)
# h can be an AbstractHamiltonian or a Function(vertex) -> AbstractMatrix
#region
bands(rng, rngs...; kw...) = h -> bands(h, rng, rngs...; kw...)
bands(h::Function, rng, rngs...; kw...) = bands(h, mesh(rng, rngs...); kw...)
bands(h::AbstractHamiltonian{T}, rng, rngs::Vararg{Any,L´}; kw...) where {T,L´} =
bands(h, convert(Mesh{SVector{L´+1,T}}, mesh(rng, rngs...)); kw...)
bands(h::AbstractHamiltonian{<:Any,<:Any,L}; kw...) where {L} =
bands(h, default_band_ticks(Val(L))...; kw...)
default_band_ticks(::Val{L}) where {L} = ntuple(Returns(subdiv(-π, π, 49)), Val(L))
function bands(h::AbstractHamiltonian, mesh::Mesh{S};
solver = ES.LinearAlgebra(), transform = missing, mapping = missing, kw...) where {S<:SVector}
mapping´ = sanitize_mapping(mapping, h)
solvers = eigensolvers_thread_pool(solver, h, S, mapping´, transform)
hf = apply_map(mapping´, h, S)
ss = subbands(hf, solvers, mesh; kw...)
os = blockstructure(h)
return Bandstructure(ss, solvers, os)
end
function bands(h::Function, mesh::Mesh{S};
solver = ES.LinearAlgebra(), transform = missing, mapping = missing, kw...) where {S<:SVector}
mapping´ = sanitize_mapping(mapping, h)
solvers = eigensolvers_thread_pool(solver, h, S, mapping´, transform)
hf = apply_map(mapping´, h, S)
ss = subbands(hf, solvers, mesh; kw...)
return ss
end
function eigensolvers_thread_pool(solver, h, S, mapping, transform)
# if h::Function we cannot be sure it is thread-safe
nsolvers = ES.is_thread_safe(solver) && h isa AbstractHamiltonian ? Threads.nthreads() : 1
solvers = [apply(solver, h, S, mapping, transform) for _ in 1:nsolvers]
return solvers
end
function subbands(hf, solvers, basemesh::Mesh{SVector{L,T}};
showprogress = true, defects = (), patches = 0, degtol = missing, split = true, warn = true, projectors = false) where {T,L}
defects´ = sanitize_Vector_of_SVectors(SVector{L,T}, defects)
degtol´ = degtol isa Number ? degtol : sqrt(eps(real(T)))
subbands = subbands_precompilable(hf, solvers, basemesh, showprogress, defects´, patches, degtol´, split, warn, projectors)
return subbands
end
sanitize_mapping(mapping, ::AbstractHamiltonian{<:Any,<:Any,L}) where {L} =
sanitize_mapping(mapping, Val(L))
sanitize_mapping(mapping::Union{Missing,Function}, ::Function) = mapping
sanitize_mapping(_, ::Function) =
argerror("Cannot apply this mapping with a function input")
sanitize_mapping(::Missing, ::Val) = missing
sanitize_mapping(f::Function, ::Val) = f
sanitize_mapping(pts::NTuple{N,Any}, ::Val{L}) where {N,L} =
sanitize_mapping(ntuple(i -> i-1, Val(N)) => parsenode.(pts, Val(L)), Val(L))
sanitize_mapping((xs, nodes)::Pair, ::Val{L}) where {L} =
polygonpath(xs, parsenode.(nodes, Val(L)))
sanitize_mapping((xs, nodes)::Pair{X,S}, ::Val{L}) where {N,L,T,X<:NTuple{N,Real},S<:NTuple{N,SVector{L,T}}} =
polygonpath(xs, nodes)
function subbands_precompilable(hf::FunctionWrapper, solvers::Vector{A}, basemesh::Mesh{SVector{L,T}},
showprogress, defects, patches, degtol, split, warn, projectors) where {T,L,A<:AppliedEigenSolver{T,L}}
basemesh = copy(basemesh) # will become part of Band, possibly refined
eigens = Vector{EigenComplex{T}}(undef, length(vertices(basemesh)))
bandverts = BandVertex{T,L+1}[]
bandneighs = Vector{Int}[]
bandneideg = similar(bandneighs)
coloffsets = Int[]
crossed = NTuple{6,Int}[]
frustrated = similar(crossed)
subbands = Subband{T,L+1}[]
data = (; hf, solvers, basemesh, eigens, bandverts, bandneighs, bandneideg, coloffsets,
L, crossed, frustrated, subbands, defects, patches, showprogress, degtol,
split, warn, projectors)
# Step 1 - Diagonalize:
# Uses multiple SpectrumSolvers (one per Julia thread) to diagonalize h at each
# vertex of basemesh. Then, it collects each of the produced Spectrum (aka "columns")
# into a bandverts::Vector{BandVertex}, recording the coloffsets for each column
blasthreads = BLAS.get_num_threads()
Threads.nthreads() == 1 || BLAS.set_num_threads(1) # One BLASthread if JULIAthreads > 1
subbands_diagonalize!(data)
BLAS.set_num_threads(blasthreads) # Restore BLAS threads
# Step 2 - Knit seams:
# Each base vertex holds a column of subspaces. Each subspace s of degeneracy d will
# connect to other subspaces s´ in columns of a neighboring base vertex. Connections are
# possible if the projector ⟨s'|s⟩ has any singular value greater than 1/2
subbands_knit!(data)
# Step 3 - Patch seams:
# Dirac points and other topological band defects will usually produce dislocations in
# mesh connectivity that results in missing simplices.
insert_defects!(data)
if L>1
subbands_patch!(data)
end
# Step 4 - Split subbands:
# Split disconnected subgraphs, rebuild their neighbor lists and convert to Subbands.
# As part of the Subband conversion, subband simplices are computed.
subbands_split!(data)
# Step 5 - Compute projectors:
# Each simplex s has a continuous matrix Fₛ(k) = ψₛ(k)ψₛ(k)⁺ that interpolates between
# the Fₛ(kᵢ) at each vertex i. We compute Pˢᵢ such that F(kᵢ) = φₛ(kᵢ)*Pˢᵢ*φₛ(kᵢ)⁺ for
# any vertex i of s with a degenerate eigenbasis φ(kᵢ). Non-degenerate vertices have P=1
# Required to use a Bandstructure as a GreenSolver
subband_projectors!(data)
return subbands
end
#endregion
############################################################################################
# parsenode
#region
parsenode(pt::SVector, ::Val{L}) where {L} = padright(pt, Val(L))
parsenode(pt::Tuple, val) = parsenode(SVector(float.(pt)), val)
function parsenode(node::Symbol, val)
pt = get(BZpoints, node, missing)
pt === missing && throw(ArgumentError("Unknown Brillouin zone point $pt, use one of $(keys(BZpoints))"))
pt´ = parsenode(pt, val)
return pt´
end
const BZpoints =
( Γ = (0,)
, X = (pi,)
, Y = (0, pi)
, Z = (0, 0, pi)
, K = (2pi/3, -2pi/3)
, K´ = (4pi/3, 2pi/3)
, M = (pi, 0)
)
#endregion
############################################################################################
# polygonpath
#region
polygonpath(xs, nodes) = polygonpath(sanitize_polygonpath(xs), sanitize_polygonpath(nodes))
function polygonpath(xs::AbstractVector, nodes::AbstractVector)
sanitize_polygonpath!(xs, nodes)
minx, maxx = extrema(xs)
mapping = x -> begin
x´ = clamp(only(x), minx, maxx)
i = argmin(i -> ifelse(x´ <= xs[i], Inf, x´ - xs[i]), eachindex(xs))
p = nodes[i] + (nodes[i+1] - nodes[i]) * (x´ - xs[i]) / (xs[i+1] - xs[i])
return p
end
return mapping
end
sanitize_polygonpath(xs::AbstractVector) = xs
sanitize_polygonpath(xs::Tuple) = collect(xs)
function sanitize_polygonpath!(xs, nodes)
if !issorted(xs)
p = sortperm(xs)
permute!(xs, p)
permute!(nodes, p)
end
return nothing
end
#endregion
############################################################################################
# subdiv
#region
subdiv(nodes, pts::Integer) = subdiv(nodes, [pts for _ in 1:length(nodes)-1])
subdiv(x1, x2, pts) = collect(range(x1, x2, length = pts))
function subdiv(nodes, pts)
length(pts) == length(nodes) - 1 ||
argerror("`subdiv(nodes, pts)` requires `length(pts) == length(nodes) - 1` or pts::Integer")
rng = [x for (n, pt) in enumerate(pts) for x in range(nodes[n], nodes[n+1], length = pt) if x != nodes[n+1]]
push!(rng, last(nodes))
return rng
end
#endregion
############################################################################################
# subbands_diagonalize!
#region
function subbands_diagonalize!(data)
baseverts = vertices(data.basemesh)
meter = Progress(length(baseverts); desc = "Step 1 - Diagonalizing: ")
push!(data.coloffsets, 0) # first element
if length(data.solvers) > 1
Threads.@threads :static for i in eachindex(baseverts)
vert = baseverts[i]
solver = data.solvers[Threads.threadid()]
data.eigens[i] = solver(vert)
data.showprogress && ProgressMeter.next!(meter)
end
else
solver = first(data.solvers)
for i in eachindex(baseverts)
vert = baseverts[i]
data.eigens[i] = solver(vert)
data.showprogress && ProgressMeter.next!(meter)
end
end
# Collect band vertices and store column offsets
for (basevert, eigen) in zip(baseverts, data.eigens)
append_bands_column!(data, basevert, eigen)
end
ProgressMeter.finish!(meter)
end
const degeneracy_warning = 16
# collect eigen into a band column (vector of BandVertices for equal base vertex)
function append_bands_column!(data, basevert, eigen)
T = eltype(basevert)
energies, states = eigen
subs = collect(approxruns(energies, data.degtol))
for (i, rng) in enumerate(subs)
deg = length(rng)
data.warn && data.projectors && deg > degeneracy_warning &&
@warn "Encountered a highly degenerate point in bandstructure (deg = $deg), which will likely slow down the computation of projectors"
state = orthonormalize!(view(states, :, rng))
energy = mean(i -> energies[i], rng)
push!(data.bandverts, BandVertex(basevert, energy, state))
end
push!(data.coloffsets, length(data.bandverts))
foreach(_ -> push!(data.bandneideg, Int[]), length(data.bandneideg)+1:length(data.bandverts))
foreach(_ -> push!(data.bandneighs, Int[]), length(data.bandneighs)+1:length(data.bandverts))
return data
end
# Gram-Schmidt but with column normalization only when norm^2 >= threshold (otherwise zero!)
function orthonormalize!(m::AbstractMatrix, threshold = 0)
@inbounds for j in axes(m, 2)
col = view(m, :, j)
for j´ in 1:j-1
col´ = view(m, :, j´)
norm2´ = dot(col´, col´)
iszero(norm2´) && continue
r = dot(col´, col)/norm2´
col .-= r .* col´
end
norm2 = real(dot(col, col))
factor = ifelse(norm2 < threshold, zero(norm2), 1/sqrt(norm2))
col .*= factor
end
return m
end
#endregion
############################################################################################
# subbands_knit!
# Take two eigenpair columns connected on basemesh, and add edges between closest
# eigenpair using projections (svd).
#region
function subbands_knit!(data)
meter = Progress(length(data.eigens); desc = "Step 2 - Knitting: ")
for isrcbase in eachindex(data.eigens)
for idstbase in neighbors_forward(data.basemesh, isrcbase)
knit_seam!(data, isrcbase, idstbase)
end
data.showprogress && ProgressMeter.next!(meter)
end
ProgressMeter.finish!(meter)
return data
end
# Take two intervals (srcrange, dstrange) of bandverts (linked by base mesh)
# and fill bandneighs with their connections, using the projector colproj
function knit_seam!(data, ib, jb)
srcrange = column_range(data, ib)
dstrange = column_range(data, jb)
_, statesib = data.eigens[ib]
_, statesjb = data.eigens[jb]
colproj = statesjb' * statesib
for i in srcrange
src = data.bandverts[i]
for j in dstrange
dst = data.bandverts[j]
proj = view(colproj, parentcols(dst), parentcols(src))
connections = connection_rank(proj)
if connections > 0
push!(data.bandneighs[i], j)
push!(data.bandneighs[j], i)
push!(data.bandneideg[i], connections)
push!(data.bandneideg[j], connections)
# populate crossed with all crossed links if lattice dimension > 1
if data.L > 1
for i´ in first(srcrange):i-1, j´ in data.bandneighs[i´]
j´ in dstrange || continue
# if crossed, push! with ordered i´ < i, j´ > j
j´ > j && push!(data.crossed, (ib, jb, i´, i, j´, j))
end
end
end
end
end
return data
end
# Number of singular values greater than √min_squared_overlap in proj = ψj'*ψi
# Fast rank-1 |svd|^2 is r = tr(proj'proj). For higher ranks and r > 0 we must compute and
# count singular values. The min_squared_overlap is arbitrary, and is fixed heuristically to
# a high enough value to connect in the coarsest base lattices
function connection_rank(proj)
min_squared_overlap = 0.5
rankf = sum(abs2, proj) # = tr(proj'proj)
fastrank = ifelse(rankf > min_squared_overlap, 1, 0) # For rank=1 proj: upon doubt, connect
if iszero(fastrank) || size(proj, 1) == 1 || size(proj, 2) == 1
return fastrank
else
sv = svdvals(proj)
return count(s -> abs2(s) > min_squared_overlap, sv)
end
end
column_range(data, ibase) = data.coloffsets[ibase]+1:data.coloffsets[ibase+1]
#endregion
############################################################################################
# subbands_patch!
# Remove dislocations in mesh edges by edge splitting (adding patches)
#region
function subbands_patch!(data)
data.patches > 0 || return data
queue_frustrated!(data)
data.warn && isempty(data.defects) &&
@warn "Trying to patch $(length(data.frustrated)) band dislocations without a list `defects` of defect positions."
meter = data.patches < Inf ? Progress(data.patches; desc = "Step 3 - Patching: ") :
ProgressUnknown(; desc = "Step 3 - Patching: ")
newcols = 0
done = false
while !isempty(data.frustrated) && !done
(ib, jb, i, i´, j, j´) = pop!(data.frustrated)
# check edge has not been previously split
jb in neighbors(data.basemesh, ib) || continue
newcols += 1
done = newcols == data.patches
# new vertex
k = crossing(data, (ib, jb, i´, i, j´, j))
# insert and connect a new column into band
insert_column!(data, (ib, jb), k)
# From the added crossings, remove all that are non-frustrated
queue_frustrated!(data)
data.showprogress && ProgressMeter.next!(meter)
end
# If we added new columns, base edges will have split -> rebuild base simplices
newcols > 0 && rebuild_cliques!(data.basemesh)
data.showprogress && ProgressMeter.finish!(meter)
ndefects = length(data.frustrated)
data.warn && !iszero(ndefects) &&
@warn("Warning: Band with $ndefects dislocation defects. Consider specifying topological defect locations with `defects` (or adjusting mesh) and/or increasing `patches`")
return data
end
function insert_defects!(data)
# insert user-provided defects as new columns in band
foreach(k -> insert_defect_column!(data, k), data.defects)
# detect possible defects in band and append them to data.defects
mindeg = minimum(degeneracy, data.bandverts)
for (v, ns) in zip(data.bandverts, data.bandneighs)
k = base_coordinates(v)
d = degeneracy(v)
# exclude v if v does not increase degeneracy over minimum
degeneracy(v) == mindeg && continue
# only select vertices that have greater degeneracy than all its neighbors
any(n -> degeneracy(data.bandverts[n]) >= d, ns) && continue
# exclude v if it is already in data.defects
any(kd -> kd ≈ k, data.defects) && continue
push!(data.defects, base_coordinates(v))
end
return data
end
function insert_defect_column!(data, kdefect)
base = data.basemesh
for k in vertices(base)
k ≈ kdefect && return data
end
(ib, jb) = find_closest_edge(kdefect, base)
insert_column!(data, (ib, jb), kdefect)
return data
end
function find_closest_edge(kdefect::SVector{1}, base)
kx = only(kdefect)
for i in eachindex(vertices(base)), j in neighbors(base, i)
only(vertices(base, i)) < kx < only(vertices(base, j)) && return (i, j)
end
argerror("Defects in 1D lattices should be contained inside the lattice, but the provided $kdefect is not")
return (0, 0)
end
function find_closest_edge(kdefect, base)
(ib, jb) = argmin(((i, j) for i in eachindex(vertices(base)) for j in neighbors(base, i))) do (i, j)
sum(abs2, 0.5*(vertices(base, i) + vertices(base, j)) - kdefect)
end
return (ib, jb)
end
function insert_column!(data, (ib, jb), k)
solver = first(data.solvers)
# remove all bandneighs in this seam
delete_seam!(data, ib, jb)
# create new vertex in basemesh by splitting the edge, and connect to neighbors
split_edge!(data.basemesh, (ib, jb), k)
# compute spectrum at new vertex
spectrum = solver(k)
push!(data.eigens, spectrum)
# collect spectrum into a set of new band vertices
append_bands_column!(data, k, spectrum)
# knit all new seams
newbasevertex = length(vertices(data.basemesh)) # index of new base vertex
newbaseneighs = neighbors(data.basemesh, newbasevertex)
jb´ = newbasevertex # destination of all new edges
for ib´ in newbaseneighs # neighbors of new vertex are new edge sources
knit_seam!(data, ib´, jb´) # also pushes new crossings into data.crossed
end
return data
end
# queue frustrated crossings and sort decreasing distance between crossing and defects
function queue_frustrated!(data)
# we must check all crossed each time, as their frustration can change at any point
for c in data.crossed
is_frustrated_crossing(data, c) && !in(c, data.frustrated) && push!(data.frustrated, c)
end
isempty(data.defects) || reverse!(sort!(data.frustrated, by = i -> distance_to_defects(data, i)))
return data
end
function distance_to_defects(data, ic)
kc = crossing(data, ic)
return minimum(d -> sum(abs2, kc - d), data.defects)
end
is_frustrated_crossing(data, (ib, jb, i, i´, j, j´)) =
is_frustrated_link(data, (ib, jb, i, j)) || is_frustrated_link(data, (ib, jb, i´, j´))
function is_frustrated_link(data, (ib, jb, i, j))
deg = degeneracy_link(data, i, j)
for kb in neighbors(data.basemesh, ib), kb´ in neighbors(data.basemesh, jb)
kb == kb´ || continue
count = 0
for k in data.bandneighs[i], k´ in data.bandneighs[j]
k == k´ && k in column_range(data, kb) || continue
count += min(degeneracy_link(data, i, k), degeneracy_link(data, j, k))
end
count < deg && return true
end
return false
end
function degeneracy_link(data, i, j)
for (k, d) in zip(data.bandneighs[i], data.bandneideg[i])
k == j && return d
end
return 0
end
function crossing(data, (ib, jb, i, i´, j, j´))
εi, εi´, εj, εj´ = real.(energy.(getindex.(Ref(data.bandverts), (i, i´, j, j´))))
ki, kj = vertices(data.basemesh, ib), vertices(data.basemesh, jb)
λ = (εi - εi´) / (εj´ - εi´ - εj + εi)
k = ki + λ * (kj - ki)
return k
end
function delete_seam!(data, isrcbase, idstbase)
srcrange = column_range(data, isrcbase)
dstrange = column_range(data, idstbase)
for isrc in srcrange
fast_setdiff!((data.bandneighs[isrc], data.bandneideg[isrc]), dstrange)
end
for idst in dstrange
fast_setdiff!((data.bandneighs[idst], data.bandneideg[idst]), srcrange)
end
return data
end
#endregion
############################################################################################
# subbands_split!
# We have vertex neighbors (data.bandneighs). Now we need to use these to cluster vertices
# into disconnected subbands (i.e. vertex `subsets`). Once we have these, split vertices
# into separate lists and rebuild neighbors using indices of these new lists
#region
function subbands_split!(data)
if data.split
# vsinds are the subband index of each vertex index
# svinds is lists of band vertex indices that belong to the same subband
vsinds, svinds = subsets(data.bandneighs)
meter = Progress(length(svinds); desc = "Step 4 - Splitting: ")
new2old = sortperm(vsinds)
old2new = invperm(new2old)
offset = 0
for subset in svinds
# avoid subbands with no simplices
if length(subset) > data.L
sverts = data.bandverts[subset]
sneighs = [ [old2new[dstold] - offset for dstold in data.bandneighs[srcold]]
for srcold in subset]
sband = Subband(sverts, sneighs)
isempty(sband) || push!(data.subbands, sband)
end
offset += length(subset)
data.showprogress && ProgressMeter.next!(meter)
end
else
sband = Subband(data.bandverts, data.bandneighs)
isempty(sband) || push!(data.subbands, sband)
end
return data
end
#endregion
############################################################################################
# subband_projectors!(s::Subband, hf::Function)
# Fill dictionary of projector matrices for each degenerate vertex in each simplex of s
# Dict([(simp_index, vert_index) => φᵢ * P])
# such that P = U PD U'. U columns are eigenstates of φᵢ hf(k_av) φᵢ⁺, i = vert_index,
# φᵢ are vertex eigenstate matrices, k_av is the basecoordinate at the center of the
# simplex, and PD is a Diagonal{Bool} that filters out M columns of U, so that only
# deg_simplex = minimum(deg_verts) remain. The criterion to filter out the required
# eigenstates is to order them is decreasing energy distance between their eigenvalue ε_av
# and the simplex mean energy mean(ε_j). No φᵢ overlap criterion is used because we need
# to fix the exact number of eliminations.
#region
function subband_projectors!(data)
nsimps = sum(s -> length(simplices(s)), data.subbands)
meter = Progress(nsimps; desc = "Step 5 - Projectors: ")
if data.projectors
for s in data.subbands
subband_projectors!(s, data.hf, meter, data.showprogress)
end
end
return data
end
function subband_projectors!(s::Subband{T}, hf, meter, showprogress) where {T}
projstates = projected_states(s)
isempty(projstates) || return s
verts = vertices(s)
simps = simplices(s)
# a random symmetry-breaking perturbation common to all simplices
perturbation = Complex{T}[]
for (sind, simp) in enumerate(simps)
degs = degeneracy.(getindex.(Ref(verts), simp))
if any(>(1), degs)
kav = mean(i -> base_coordinates(verts[i]), simp)
εav = mean(i -> energy(verts[i]), simp)
hkav = hf(kav)
nzs = nonzeros(hkav)
nnzs = length(nzs)
nnzs == length(perturbation) || resize_perturbation!(perturbation, nnzs)
nzs .+= perturbation # in-place allowed since hkav gets updated on each call
mindeg = minimum(degs)
for (vind, deg) in zip(simp, degs)
if deg > 1 # diagonalize vertex even if all degs are equal and > 1
φP = simplex_projector(hkav, verts, vind, εav, mindeg)
projstates[(sind, vind)] = φP
end
end
end
showprogress && ProgressMeter.next!(meter)
end
return projstates
end
function resize_perturbation!(p::Vector{C}, n) where {C}
l = length(p)
@assert n > l # perturbation length should not decrease
resize!(p, n)
η = sqrt(eps(real(C))) # makes the perturbation small
for i in l+1:n
p[i] = η * rand(C)
end
return p
end
function simplex_projector(hkav, verts, vind, εav, mindeg)
φ = states(verts[vind])
hproj = φ' * hkav * φ
_, P = maybe_eigen!(Hermitian(hproj), sortby = ε -> abs(ε - εav))
Pthin = view(P, :, 1:mindeg)
return φ * Pthin
end
maybe_eigen!(A::AbstractMatrix{<:LinearAlgebra.BlasComplex}; kw...) = eigen!(A; kw...)
maybe_eigen!(A; kw...) = eigen(A; kw...) # generic fallback for e.g. Complex16
#endregion
############################################################################################
# Subband slicing and indexing
# Example: in a 2D lattice, subband[(kx,ky,:)] is a vertical slice at fixed momentum kx, ky
#region
Base.getindex(b::Bandstructure, i) = subbands(b, i)
Base.getindex(b::Bandstructure, xs::Tuple) = [s[xs] for s in subbands(b)]
Base.getindex(s::Subband, xs::Tuple) = Subband(slice(s, xs, Val(true)))
Base.lastindex(b::Bandstructure, args...) = lastindex(subbands(b), args...)
slice(b::Bandstructure, xs) = [slice(s, xs) for s in subbands(b)]
slice(s::Subband, xs::Tuple) = slice(s, xs, Val(false))
# getindex default (Val{true}): mesh with reduced embedding dimension = simplex length + 1
slice(s::Subband, xs::Tuple, ::Val{true}) = slice(s, perp_axes(s, xs...), slice_axes(s, xs...))
# slice default (Val{false}): mesh with same embedding dimension as subband and smaller simplex length
slice(s::Subband, xs::Tuple, ::Val{false}) = slice(s, perp_axes(s, xs...), all_axes(s))
function slice(subband::Subband{<:Any,E}, paxes::NTuple{N}, saxes::Tuple) where {E,N}
isempty(saxes) && argerror("The slice must have at least one unconstrained axis")
isempty(paxes) && return mesh(subband)
maximum(first, paxes) <= embdim(subband) && maximum(saxes) <= embdim(subband) ||
argerror("Cannot slice subband along more than $(embdim(subband)) axes")
V = slice_vertex_type(subband, saxes)
S = slice_skey_type(paxes)
verts = V[]
neighs = Vector{Int}[]
vinds = Dict{S,Int}()
vindstemp = Int[]
subtemp = Int[]
data = (; subband, paxes, saxes, verts, neighs, vinds, vindstemp, subtemp)
foreach_simplex(subband, paxes) do sind
simp = simplices(subband, sind)
slice_simplex!(data, simp)
end
return Mesh{E-N}(verts, neighs)
end
perp_axes(::Subband{T}, xs...) where {T} = perp_axes(T, 1, xs...)
perp_axes(T::Type, dim, ::Colon, xs...) = perp_axes(T, dim + 1, xs...)
perp_axes(T::Type, dim, x::Number, xs...) = ((dim, T(x)), perp_axes(T, dim + 1, xs...)...)
perp_axes(T::Type, dim) = ()
slice_axes(::Subband{<:Any,E}, xs...) where {E} = slice_axes(1, padtuple(xs, :, Val(E))...)
slice_axes(dim::Int, ::Number, xs...) = slice_axes(dim + 1, xs...)
slice_axes(dim::Int, ::Colon, xs...) = (dim, slice_axes(dim + 1, xs...)...)
slice_axes(dim::Int) = ()
all_axes(::Subband{<:Any,E}) where {E} = ntuple(identity, Val(E))
slice_vertex_type(::Subband{T,<:Any}, ::NTuple{N}) where {T,N} = BandVertex{T,N}
slice_skey_type(::NTuple{N}) where {N} = SVector{N+1,Int}
function slice_simplex!(data, simp)
empty!(data.vindstemp)
perpaxes = SVector(first.(data.paxes))
paraxes = SVector(data.saxes)
k = SVector(last.(data.paxes))
sub = data.subtemp
for sub´ in Combinations(length(simp), length(perpaxes) + 1)
# subsimplex must have minimal degeneracy on first vertex
copy!(sub, sub´) # cannot modify sub´ because it also acts as state in Combinations
sort!(sub, by = i -> degeneracy(vertices(data.subband, simp[i])))
key = vindskey(data.paxes, simp, sub)
if !haskey(data.vinds, key)
kε0, edgemat = vertmat_simplex(data.paxes, vertices(data.subband), simp, sub)
dvper = edgemat[perpaxes, :]
λs = dvper \ (k - kε0[perpaxes])
sum(λs) < 1 && all(>=(0), λs) || continue
dvpar = edgemat[paraxes, :]
kε = kε0[paraxes] + dvpar * λs
φ = interpolate_state_along_edges(λs, vertices(data.subband), simp, sub)
push!(data.verts, BandVertex(kε, φ))
push!(data.neighs, Int[])
vind = length(data.verts)
data.vinds[key] = vind
push!(data.vindstemp, vind)
else
vind = data.vinds[key]
push!(data.vindstemp, vind)
end
end
# all-to-all among new vertices
for i in data.vindstemp, j in data.vindstemp
i == j || push!(data.neighs[i], j)
end
return data
end
# a sorted SVector of the N+1 parent vertex indices is = simp[sub] (N = num perp slice axes)
# identifying each distinct vertex in slice -> then, vinds[is] = new vertex index
vindskey(::NTuple{N}, simp, sub) where {N} = sort(SVector(ntuple(i -> simp[sub[i]], Val(N+1))))
function vertmat_simplex(::NTuple{N}, vs, simp, sub) where {N}
kε0 = coordinates(vs[simp[sub[1]]])
mat = hcat(ntuple(i -> coordinates(vs[simp[sub[i+1]]]) - kε0, Val(N))...)
return kε0, mat
end
# we assume that sub is ordered and that simp is sorted so that the first vertex has minimal
# degeneracy within the simplex (note that orient_simplices! preserves first vertex)
function interpolate_state_along_edges(λs, vs, simp, sub)
v0 = vs[simp[sub[1]]]
φ0 = states(v0)
deg0 = degeneracy(v0)
φ = copy(φ0)
φ .*= 1 - sum(λs)
for (i, λi) in enumerate(λs)
vi = vs[simp[sub[i+1]]]
φi = states(vi)
degi = degeneracy(vi)
if degi == deg0
φ .+= λi .* φi
elseif degi > deg0
proj = φi'φ0 # size(proj) == (degi, deg0)
Q = qr!(proj).Q * Matrix(I, degi, deg0)
mul!(φ, φi, Q, λi, 1)
else
throw(ErrorException("Unexpected simplex ordering: first should be minimal degeneracy"))
end
end
return φ
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 9526 | ############################################################################################
# IJV sparse matrix builders
#region
struct IJV{B}
i::Vector{Int}
j::Vector{Int}
v::Vector{B}
end
function IJV{B}(nnzguess = missing) where {B}
i, j, v = Int[], Int[], B[]
if nnzguess isa Integer
sizehint!(i, nnzguess)
sizehint!(j, nnzguess)
sizehint!(v, nnzguess)
end
return IJV(i, j, v)
end
Base.push!(ijv::IJV, (i, j, v)) =
(push!(ijv.i, i); push!(ijv.j, j); push!(ijv.v, v))
Base.append!(ijv::IJV, (is, js, vs)) =
(append!(ijv.i, is); append!(ijv.j, js); append!(ijv.v, vs))
Base.isempty(s::IJV) = length(s) == 0
Base.length(s::IJV) = length(s.v)
# cannot combine these two due to ambiguity with sparse(I, J, v::Number)
SparseArrays.sparse(c::IJV, m::Integer, n::Integer) = sparse(c.i, c.j, c.v, m, n)
SparseArrays.sparse(c::IJV) = sparse(c.i, c.j, c.v)
#endregion
############################################################################################
# CSC sparse matrix builder
#region
mutable struct CSC{B} # must be mutable to update counters
colptr::Vector{Int}
rowval::Vector{Int}
nzval::Vector{B}
colcounter::Int
rowvalcounter::Int
cosorter::CoSort{Int,B}
end
function CSC{B}(cols = missing, nnzguess = missing) where {B}
colptr = [1]
rowval = Int[]
nzval = B[]
if cols isa Integer
sizehint!(colptr, cols + 1)
end
if nnzguess isa Integer
sizehint!(nzval, nnzguess)
sizehint!(rowval, nnzguess)
end
colcounter = 1
rowvalcounter = 0
cosorter = CoSort(rowval, nzval)
return CSC(colptr, rowval, nzval, colcounter, rowvalcounter, cosorter)
end
function pushtocolumn!(s::CSC, row::Int, x, skipdupcheck::Bool = true)
if skipdupcheck || !isintail(row, s.rowval, s.colptr[s.colcounter])
push!(s.rowval, row)
push!(s.nzval, x)
s.rowvalcounter += 1
end
return s
end
function appendtocolumn!(s::CSC, firstrow::Int, vals, skipdupcheck::Bool = true)
len = length(vals)
if skipdupcheck || !any(i->isintail(firstrow + i - 1, s.rowval, s.colptr[s.colcounter]), 1:len)
append!(s.rowval, firstrow:firstrow+len-1)
append!(s.nzval, vals)
s.rowvalcounter += len
end
return s
end
function isintail(element, container, start::Int)
for i in start:length(container)
container[i] == element && return true
end
return false
end
function sync_columns!(s::CSC, col)
missing_cols = col - s.colcounter
for _ in 1:missing_cols
finalizecolumn!(s)
end
return nothing
end
function finalizecolumn!(s::CSC, sortcol::Bool = true)
if sortcol
s.cosorter.offset = s.colptr[s.colcounter] - 1
sort!(s.cosorter)
isgrowing(s.cosorter) || internalerror("finalizecolumn!: repeated rows")
end
s.colcounter += 1
push!(s.colptr, s.rowvalcounter + 1)
return nothing
end
function completecolptr!(colptr, cols, lastrowptr)
colcounter = length(colptr)
if colcounter < cols + 1
resize!(colptr, cols + 1)
for col in (colcounter + 1):(cols + 1)
colptr[col] = lastrowptr + 1
end
end
return colptr
end
function SparseArrays.sparse(s::CSC, m::Integer, n::Integer)
completecolptr!(s.colptr, n, s.rowvalcounter)
rows, cols = isempty(s.rowval) ? 0 : maximum(s.rowval), length(s.colptr) - 1
rows <= m && cols == n ||
internalerror("sparse: matrix size $((rows, cols)) is inconsistent with lattice size $((m, n))")
return SparseMatrixCSC(m, n, s.colptr, s.rowval, s.nzval)
end
Base.isempty(s::CSC) = length(s) == 0
Base.length(s::CSC) = length(s.nzval)
#endregion
############################################################################################
# IJVBuilder and CSCBuilder <: AbstractHamiltonianBuilder
#region
abstract type AbstractHarmonicBuilder{L,B} end
abstract type AbstractHamiltonianBuilder{T,E,L,B} end
struct IJVHarmonic{L,B} <: AbstractHarmonicBuilder{L,B}
dn::SVector{L,Int}
collector::IJV{B}
end
struct CSCHarmonic{L,B} <: AbstractHarmonicBuilder{L,B}
dn::SVector{L,Int}
collector::CSC{B}
end
struct IJVBuilder{T,E,L,B,M<:Union{Missing,Vector{Any}}} <: AbstractHamiltonianBuilder{T,E,L,B}
lat::Lattice{T,E,L}
blockstruct::OrbitalBlockStructure{B}
harmonics::Vector{IJVHarmonic{L,B}}
kdtrees::Vector{KDTree{SVector{E,T},Euclidean,T}}
modifiers::M
end
struct CSCBuilder{T,E,L,B} <: AbstractHamiltonianBuilder{T,E,L,B}
lat::Lattice{T,E,L}
blockstruct::OrbitalBlockStructure{B}
harmonics::Vector{CSCHarmonic{L,B}}
end
const IJVBuilderWithModifiers = IJVBuilder{<:Any,<:Any,<:Any,<:Any,Vector{Any}}
## Constructors ##
function CSCBuilder(lat::Lattice{<:Any,<:Any,L}, blockstruct::OrbitalBlockStructure{B}) where {L,B}
harmonics = CSCHarmonic{L,B}[]
return CSCBuilder(lat, blockstruct, harmonics)
end
IJVBuilder(lat::Lattice{T}, orbitals, modifiers = missing) where {T} =
IJVBuilder(lat, OrbitalBlockStructure(T, orbitals, sublatlengths(lat)), modifiers)
function IJVBuilder(lat::Lattice{T,E,L}, blockstruct::OrbitalBlockStructure{B}, modifiers = missing) where {E,T,L,B}
harmonics = IJVHarmonic{L,B}[]
kdtrees = Vector{KDTree{SVector{E,T},Euclidean,T}}(undef, nsublats(lat))
return IJVBuilder(lat, blockstruct, harmonics, kdtrees, modifiers)
end
# with no modifiers
function IJVBuilder(lat::Lattice{T}, hams::Hamiltonian...) where {T}
bs = blockstructure(lat, hams...)
builder = IJVBuilder(lat, bs)
push_ijvharmonics!(builder, hams...)
return builder
end
# with some modifiers
function IJVBuilder(lat::Lattice{T}, hams::AbstractHamiltonian...) where {T}
bs = blockstructure(lat, hams...)
builder = IJVBuilderWithModifiers(lat, bs)
push_ijvharmonics!(builder, hams...)
mss = modifiers.(hams)
bis = blockindices(hams)
unapplied_block_modifiers = ((ms, bi) -> intrablock.(parent.(ms), Ref(bi))).(mss, bis)
push!(builder, tupleflatten(unapplied_block_modifiers...)...)
return builder
end
(::Type{IJVBuilderWithModifiers})(lat, orbitals) = IJVBuilder(lat, orbitals, Any[])
push_ijvharmonics!(builder, ::OrbitalBlockStructure) = builder
push_ijvharmonics!(builder, hars::Vector{<:IJVHarmonic}) = copy!(builder.harmonics, hars)
push_ijvharmonics!(builder) = builder
function push_ijvharmonics!(builder::IJVBuilder, hs::AbstractHamiltonian...)
offset = 0
B = blocktype(builder)
for h in hs
for har in harmonics(h)
ijv = builder[dcell(har)]
hmat = unflat(matrix(har))
I,J,V = findnz(hmat)
V´ = maybe_mask_blocks(B, V)
append!(ijv, (I .+ offset, J .+ offset, V´))
end
offset += nsites(lattice(h))
end
return builder
end
maybe_mask_blocks(::Type{B}, V::Vector{B}) where {B} = V
maybe_mask_blocks(::Type{B}, V::Vector) where {B} = mask_block.(B, V)
empty_harmonic(b::CSCBuilder{<:Any,<:Any,L,B}, dn) where {L,B} =
CSCHarmonic{L,B}(dn, CSC{B}(nsites(b.lat)))
empty_harmonic(::IJVBuilder{<:Any,<:Any,L,B}, dn) where {L,B} =
IJVHarmonic{L,B}(dn, IJV{B}())
builder(; kw...) = lat -> builder(lat; kw...)
builder(lat::Lattice; orbitals = Val(1)) = IJVBuilderWithModifiers(lat, orbitals)
## API ##
collector(har::AbstractHarmonicBuilder) = har.collector # for IJVHarmonic and CSCHarmonic
dcell(har::AbstractHarmonicBuilder) = har.dn
kdtrees(b::IJVBuilder) = b.kdtrees
modifiers(b::IJVBuilderWithModifiers) = b.modifiers
finalizecolumn!(b::CSCBuilder, x...) =
foreach(har -> finalizecolumn!(collector(har), x...), b.harmonics)
nsites(b::AbstractHamiltonianBuilder) = nsites(lattice(b))
ncells(b::AbstractHamiltonianBuilder) = length(harmonics(b))
Base.isempty(h::IJVHarmonic) = isempty(collector(h))
Base.isempty(s::CSCHarmonic) = isempty(collector(s))
lattice(b::AbstractHamiltonianBuilder) = b.lat
blockstructure(b::AbstractHamiltonianBuilder) = b.blockstruct
blocktype(::AbstractHamiltonianBuilder{<:Any,<:Any,<:Any,B}) where {B} = B
harmonics(b::AbstractHamiltonianBuilder) = b.harmonics
Base.length(b::AbstractHarmonicBuilder) = length(collector(b))
Base.push!(b::IJVBuilderWithModifiers, ms::AnyModifier...) = push!(b.modifiers, ms...)
Base.pop!(b::IJVBuilderWithModifiers) = pop!(b.modifiers)
Base.empty!(b::IJVBuilderWithModifiers) = (empty!(b.harmonics); empty!(b.modifiers); b)
Base.empty!(b::IJVBuilder) = (empty!(b.harmonics); b)
function Base.getindex(b::AbstractHamiltonianBuilder{<:Any,<:Any,L}, dn::SVector{L,Int}) where {L}
hars = b.harmonics
for har in hars
dcell(har) == dn && return collector(har)
end
har = empty_harmonic(b, dn)
push!(hars, har)
return collector(har)
end
function SparseArrays.sparse(builder::AbstractHamiltonianBuilder{T,<:Any,L,B}) where {T,L,B}
HT = Harmonic{T,L,B}
b = blockstructure(builder)
n = nsites(builder)
hars = HT[sparse(b, har, n, n) for har in harmonics(builder) if !isempty(har)]
return hars
end
function SparseArrays.sparse(b::OrbitalBlockStructure{B}, har::AbstractHarmonicBuilder{L,B}, m::Integer, n::Integer) where {L,B}
s = sparse(har, m, n)
return Harmonic(dcell(har), HybridSparseMatrix(b, s))
end
# cannot combine these two due to ambiguity with sparse(I, J, v::Number)
SparseArrays.sparse(har::AbstractHarmonicBuilder, n::Integer, m::Integer) =
sparse(collector(har), m, n)
SparseArrays.sparse(har::AbstractHarmonicBuilder) = sparse(collector(har))
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3204 | # In v0.7+ the idea is that `convert`` is a shortcut to a "safe" subset of the constructors
# for a type, that guarantees the resulting type. The constructor is the central machinery
# to instantiate types and convert between instances. (For parametric types, unless overridden,
# you get an implicit internal constructor without parameters, so no need to define that externally)
Base.convert(::Type{T}, l::T) where T<:SMatrixView = l
Base.convert(::Type{T}, l::SMatrixView) where T<:SMatrixView = T(parent(l))
Base.convert(::Type{T}, l::T) where T<:Sublat = l
Base.convert(::Type{T}, l::Sublat) where T<:Sublat = T(l)
Base.convert(::Type{T}, l::T) where T<:CellSites = l
Base.convert(::Type{T}, l::CellSites) where T<:CellSites = T(l)
Base.convert(::Type{T}, l::T) where T<:AbstractHamiltonian = l
Base.convert(::Type{T}, l::AbstractHamiltonian) where T<:AbstractHamiltonian = T(l)
Base.convert(::Type{T}, l::T) where T<:Mesh = l
Base.convert(::Type{T}, l::Mesh) where T<:Mesh = T(l)
# Constructors for conversion
Sublat{T,E}(s::Sublat, name = s.name) where {T<:AbstractFloat,E} =
Sublat{T,E}([sanitize_SVector(SVector{E,T}, site) for site in sites(s)], name)
CellSites{L,V}(c::CellSites) where {L,V} =
CellIndices(convert(SVector{L,Int}, cell(c)), convert(V, siteindices(c)), SiteLike())
CellSites{L,V}(c::CellSite) where {L,V<:Vector} =
CellIndices(convert(SVector{L,Int}, cell(c)), convert(V, [siteindices(c)]), SiteLike())
function Hamiltonian{E}(h::Hamiltonian) where {E}
lat = lattice(h)
lat´ = lattice(lat, dim = Val(E))
bs = blockstructure(h)
hs = harmonics(h)
b = bloch(h)
return Hamiltonian(lat´, bs, hs, b)
end
function ParametricHamiltonian{E}(ph::ParametricHamiltonian) where {E}
hparent = Hamiltonian{E}(parent(ph))
h = Hamiltonian{E}(hamiltonian(ph))
ms = modifiers(ph)
ptrs = pointers(ph)
pars = parameters(ph)
return ParametricHamiltonian(hparent, h, ms, ptrs, pars)
end
Mesh{S}(m::Mesh) where {S} =
Mesh(convert(Vector{S}, vertices(m)), neighbors(m), simplices(m))
# We need this to promote different sublats into common dimensionality and type to combine
# into a lattice
Base.promote(ss::Sublat{T,E}...) where {T,E} = ss
function Base.promote_rule(::Type{Sublat{T1,E1}}, ::Type{Sublat{T2,E2}}) where {T1,T2,E1,E2}
E = max(E1, E2)
T = float(promote_type(T1, T2))
return Sublat{T,E}
end
# Block type promotion, for use in e.g. combine
const HBtype{B} = AbstractHamiltonian{<:Any,<:Any,<:Any,B}
const SMatrixOrView{N,M,T,NM} = Union{SMatrix{N,M,T,NM}, SMatrixView{N,M,T,NM}}
Base.promote_rule(::Type{<:HBtype{S}}, ::Type{<:HBtype{S}}) where {S} = HBtype{S}
Base.promote_rule(::Type{<:HBtype{C}}, ::Type{<:HBtype{C´}}) where {C<:Complex,C´<:Complex} =
HBtype{promote_type(C,C´)}
Base.promote_rule(::Type{<:HBtype{C´}}, ::Type{<:HBtype{S}}) where {C´<:Complex,C,N,NN,S<:SMatrixOrView{N,N,C,NN}} =
HBtype{SMatrixView{N,N,promote_type(C,C´),NN}}
function Base.promote_rule(::Type{<:HBtype{S1}}, ::Type{<:HBtype{S2}}) where {N1,C1,S1<:SMatrixOrView{N1,N1,C1},N2,C2,S2<:SMatrixOrView{N2,N2,C2}}
N = max(N1,N2)
C = promote_type(C1, C2)
return HBtype{SMatrixView{N,N,C,N*N}}
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 85744 | """
`LatticePresets` is a Quantica submodule containing several pre-defined lattices. The
alias `LP` can be used in place of `LatticePresets`. Currently supported lattices are
LP.linear(; a0 = 1, kw...) # linear lattice in 1D
LP.square(; a0 = 1, kw...) # square lattice in 2D
LP.triangular(; a0 = 1, kw...) # triangular lattice in 2D
LP.honeycomb(; a0 = 1, kw...) # honeycomb lattice in 2D
LP.cubic(; a0 = 1, kw...) # cubic lattice in 3D
LP.fcc(; a0 = 1, kw...) # face-centered-cubic lattice in 3D
LP.bcc(; a0 = 1, kw...) # body-centered-cubic lattice in 3D
LP.hcp(; a0 = 1, kw...) # hexagonal-closed-packed lattice in 3D
In all cases `a0` denotes the lattice constant, and `kw...` are extra keywords forwarded to
`lattice`.
# Examples
```jldoctest
julia> LatticePresets.honeycomb(names = (:C, :D))
Lattice{Float64,2,2} : 2D lattice in 2D space
Bravais vectors : [[0.5, 0.866025], [-0.5, 0.866025]]
Sublattices : 2
Names : (:C, :D)
Sites : (1, 1) --> 2 total per unit cell
julia> LatticePresets.cubic(bravais = ((1, 0), (0, 2)))
Lattice{Float64,3,2} : 2D lattice in 3D space
Bravais vectors : [[1.0, 0.0, 0.0], [0.0, 2.0, 0.0]]
Sublattices : 1
Names : (:A,)
Sites : (1,) --> 1 total per unit cell
```
# See also
`RegionPresets`, `HamiltonianPresets`, `ExternalPresets`
"""
LatticePresets
"""
`HamiltonianPresets` is a Quantica submodule containing several pre-defined Hamiltonians.
The alias `HP` can be used in place of `HamiltonianPresets`. Currently supported
hamiltonians are
HP.graphene(; kw...)
HP.twisted_bilayer_graphene(; kw...)
For details on the keyword arguments `kw` see the corresponding docstring
```jldoctest
julia> HamiltonianPresets.twisted_bilayer_graphene(twistindices = (30, 1))
Hamiltonian{Float64,3,2}: Hamiltonian on a 2D Lattice in 3D space
Bloch harmonics : 7
Harmonic size : 11164 × 11164
Orbitals : [1, 1, 1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 315684
Coordination : 28.27696
```
# See also
`LatticePresets`, `RegionPresets`, `ExternalPresets`
"""
HamiltonianPresets
"""
`RegionPresets` is a Quantica submodule containing several pre-defined regions of type
`Region{E}`, where `E` is the space dimension. The alias `RP` can be used in place of
`RegionPresets`. Supported regions are
RP.circle(radius = 10, center = (0, 0)) # 2D
RP.ellipse((rx, ry) = (10, 15), center = (0, 0)) # 2D
RP.square(side = 10, center = (0, 0)) # 2D
RP.rectangle((sx, sy) = (10, 15), center = (0, 0)) # 2D
RP.sphere(radius = 10, center = (0, 0, 0)) # 3D
RP.spheroid((rx, ry, rz) = (10, 15, 20), center = (0, 0, 0)) # 3D
RP.cube(side = 10, center = (0, 0, 0)) # 3D
RP.cuboid((sx, sy, sz) = (10, 15, 20), center = (0, 0, 0)) # 3D
Calling a `f::Region{E}` object on a `r::Tuple` or `r::SVector` with `f(r)` or `f(r...)`
returns `true` or `false` if `r` is inside the region or not. Note that only the first `E`
coordinates of `r` will be checked. Arbitrary boolean functions can also be wrapped in
`Region{E}` to create custom regions, e.g. `f = Region{2}(r -> r[1]^2 < r[2])`.
Boolean combinations of `Regions` are supported using `&`, `|`, `xor` and `!` operators,
such as `annulus = RP.circle(10) & !RP.circle(5)`.
# Examples
```jldoctest
julia> RegionPresets.circle(10)(20, 0, 0)
false
julia> RegionPresets.circle(10)(0, 0, 20)
true
```
# See also
`LatticePresets`, `HamiltonianPresets`, `ExternalPresets`
"""
RegionPresets
"""
`ExternalPresets` is a Quantica submodule containing utilities to import objects from
external applications The alias `EP` can be used in place of `ExternalPresets`. Currently
supported importers are
EP.wannier90(args...; kw...)
For details on the arguments `args` and keyword arguments `kw` see the docstring for the
corresponding function.
# See also
`LatticePresets`, `RegionPresets`, `HamiltonianPresets`
"""
ExternalPresets
"""
sublat(sites...; name::Symbol = :A)
sublat(sites::AbstractVector; name::Symbol = :A)
Create a `Sublat{E,T}` that adds a sublattice, of name `name`, with sites at positions
`sites` in `E` dimensional space. Sites positions can be entered as `Tuple`s or `SVector`s.
# Examples
```jldoctest
julia> sublat((0.0, 0), (1, 1), (1, -1), name = :A)
Sublat{2,Float64} : sublattice of Float64-typed sites in 2D space
Sites : 3
Name : :A
```
"""
sublat
"""
bravais_matrix(lat::Lattice)
bravais_matrix(h::AbstractHamiltonian)
Return the Bravais matrix of lattice `lat` or AbstractHamiltonian `h`, with Bravais vectors
as its columns.
# Examples
```jldoctest
julia> lat = lattice(sublat((0,0)), bravais = ((1.0, 2), (3, 4)));
julia> bravais_matrix(lat)
2×2 SMatrix{2, 2, Float64, 4} with indices SOneTo(2)×SOneTo(2):
1.0 3.0
2.0 4.0
```
# See also
`lattice`
"""
bravais_matrix
"""
lattice(sublats::Sublat...; bravais = (), dim, type, names)
lattice(sublats::AbstractVector{<:Sublat}; bravais = (), dim, type, names)
Create a `Lattice{T,E,L}` from sublattices `sublats`, where `L` is the number of Bravais
vectors given by `bravais`, `T = type` is the `AbstractFloat` type of spatial site
coordinates, and `dim = E` is the spatial embedding dimension.
lattice(lat::Lattice; bravais = missing, dim = missing, type = missing, names = missing)
Create a new lattice by applying any non-missing keywords to `lat`.
lattice(x)
Return the parent lattice of object `x`, of type e.g. `LatticeSlice`, `Hamiltonian`, etc.
## Keywords
- `bravais`: a collection of one or more Bravais vectors of type NTuple{E} or SVector{E}. It can also be an `AbstractMatrix` of dimension `E×L`. The default `bravais = ()` corresponds to a bounded lattice with no Bravais vectors.
- `names`: a collection of Symbols. Can be used to rename `sublats`. Any repeated names will be replaced if necessary by `:A`, `:B` etc. to ensure that all sublattice names are unique.
## Indexing
lat[kw...]
lat[siteselector(; kw...)]
Indexing into a lattice `lat` with keywords returns `LatticeSlice` representing a finite
collection of sites selected by `siteselector(; kw...)`. See `siteselector` for details on
possible `kw`, and `sites` to obtain site positions.
lat[]
Special case equivalent to `lat[cells = (0,...)]` that returns a `LatticeSlice` of the
zero-th unitcell.
lat[i::CellSites]
With an `i` of type `CellSites` contructed with `sites([cell,] indices)`, return a
`LatticeSlice` of the corresponding sites.
# Examples
```jldoctest
julia> lat = lattice(sublat((0, 0)), sublat((0, 1)); bravais = (1, 0), type = Float32, dim = 3, names = (:up, :down))
Lattice{Float32,3,1} : 1D lattice in 3D space
Bravais vectors : Vector{Float32}[[1.0, 0.0, 0.0]]
Sublattices : 2
Names : (:up, :down)
Sites : (1, 1) --> 2 total per unit cell
julia> lattice(lat; type = Float64, names = (:A, :B), dim = 2)
Lattice{Float64,2,1} : 1D lattice in 2D space
Bravais vectors : [[1.0, 0.0]]
Sublattices : 2
Names : (:A, :B)
Sites : (1, 1) --> 2 total per unit cell
```
# See also
`LatticePresets`, `sublat`, `sites`, `supercell`
"""
lattice
"""
sites(lat::Lattice[, sublat])
Return a collection of site positions in the unit cell of lattice `lat`. If a
`sublat::Symbol` or `sublat::Int` is specified, only sites for the specified sublattice are
returned.
sites(ls::LatticeSlice)
Return a collection of positions of a LatticeSlice, generally obtained by indexing a
lattice `lat[sel...]` with some `siteselector` keywords `sel`. See also `lattice`.
Note: the returned collections can be of different types (vectors, generators, views...)
sites(cell_index, site_indices)
sites(site_indices)
Construct a simple selector of sites, of type `CellSites`, with given `site_indices` in a
given cell at `cell_index`. Here, `site_indices` can be an index, a collection of integers
or `:` (for all sites), and `cell_index` should be a collection of `L` integers, where `L`
is the lattice dimension. If omitted, `cell_index` defaults to the zero-th cell `(0,...)`.
`CellSites` produced with `sites` can be used to index `Lattice`s, `AbstractHamiltonian`s,
`GreenFunction`s, `GreenSlice`s, `OrbitalSliceArray`s, etc. Note that selecting sites based
on cell and site indices requires finding the indices beforehand, which can be done e.g.
through plotting the system with `qplot`. This is lower level and potentially more fragile
than using `siteselector`s, as indices are chosen freely by Quantica in an unspecified way,
but it does have a smaller overhead.
# Examples
```jldoctest
julia> sites(LatticePresets.honeycomb(), :A)
1-element view(::Vector{SVector{2, Float64}}, 1:1) with eltype SVector{2, Float64}:
[0.0, -0.2886751345948129]
```
# See also
`lattice`, `siteselector`
"""
sites
"""
position(b::ExternalPresets.WannierBuilder)
Returns the position operator in the Wannier basis. It is given as a `r::BarebonesOperator`
object, which can be indexed as `r[s, s´]` to obtain matrix elements `⟨s|R|s´⟩` of the
position operator `R` (a vector). Here `s` and `s´` represent site indices, constructed
with `sites(cell, inds)`. To obtain the matrix between cells separated by
`dn::SVector{L,Int}`, do `r[dn]`. The latter will throw an error if the `dn` harmonic is not
present.
# See also
`current`, `sites`
"""
position
"""
supercell(lat::Lattice{E,L}, v::NTuple{L,Integer}...; seed = missing, kw...)
supercell(lat::Lattice{E,L}, uc::SMatrix{L,L´,Int}; seed = missing, kw...)
Generate a new `Lattice` from an `L`-dimensional lattice `lat` with a larger unit cell, such
that its Bravais vectors are `br´= br * uc`. Here `uc::SMatrix{L,L´,Int}` is the integer
supercell matrix, with the `L´` vectors `v`s as its columns. If no `v` are given, the new
lattice will have no Bravais vectors (i.e. it will be bounded, with its shape determined by
keywords `kw...`). Likewise, if `L´ < L`, the resulting lattice will be bounded along `L´ -
L` directions, as dictated by `kw...`.
Only sites selected by `siteselector(; kw...)` will be included in the supercell (see
`siteselector` for details on the available keywords `kw`). If no
keyword `region` is given in `kw`, a single Bravais unit cell perpendicular to the `v` axes
will be selected along the `L-L´` bounded directions.
supercell(lattice::Lattice{E,L}, factors::Integer...; seed = missing, kw...)
Call `supercell` with different scaling along each Bravais vector, so that supercell matrix
`uc` is `Diagonal(factors)`. If a single `factor` is given, `uc = SMatrix{L,L}(factor * I)`
supercell(h::Hamiltonian, v...; mincoordination = 0, seed = missing, kw...)
Transform the `Lattice` of `h` to have a larger unit cell, while expanding the Hamiltonian
accordingly.
## Keywords
- `seed::NTuple{L,Integer}`: starting cell index to perform search of included sites. By default `seed = missing`, which makes search start from the zero-th cell.
- `mincoordination::Integer`: minimum number of nonzero hopping neighbors required for sites to be included in the supercell. Sites with less coordination will be removed recursively, until all remaining sites satisfy `mincoordination`.
## Currying
lat_or_h |> supercell(v...; kw...)
Curried syntax, equivalent to `supercell(lat_or_h, v...; kw...)`
# Examples
```jldoctest
julia> LatticePresets.square() |> supercell((1, 1), region = r -> 0 < r[1] < 5)
Lattice{Float64,2,1} : 1D lattice in 2D space
Bravais vectors : [[1.0, 1.0]]
Sublattices : 1
Names : (:A,)
Sites : (8,) --> 8 total per unit cell
julia> LatticePresets.honeycomb() |> supercell(3)
Lattice{Float64,2,2} : 2D lattice in 2D space
Bravais vectors : [[1.5, 2.598076], [-1.5, 2.598076]]
Sublattices : 2
Names : (:A, :B)
Sites : (9, 9) --> 18 total per unit cell
```
# See also
`supercell`, `siteselector`
"""
supercell
"""
reverse(lat_or_h::Union{Lattice,AbstractHamiltonian})
Build a new lattice or hamiltonian with the orientation of all Bravais vectors reversed.
# See also
`reverse!`, `transform`
"""
Base.reverse
"""
reverse!(lat_or_h::Union{Lattice,AbstractHamiltonian})
In-place version of `reverse`, inverts all Bravais vectors of `lat_or_h`.
# See also
`reverse`, `transform`
"""
Base.reverse!
"""
transform(lat_or_h::Union{Lattice,AbstractHamiltonian}, f::Function)
Build a new lattice or hamiltonian transforming each site positions `r` into `f(r)`.
## Currying
x |> transform(f::Function)
Curried version of `transform`, equivalent to `transform(f, x)`
Note: Unexported `Quantica.transform!` is also available for in-place transforms. Use with
care, as aliasing (i.e. several objects sharing the modified one) can produce unexpected
results.
# Examples
```jldoctest
julia> LatticePresets.square() |> transform(r -> 3r)
Lattice{Float64,2,2} : 2D lattice in 2D space
Bravais vectors : [[3.0, 0.0], [0.0, 3.0]]
Sublattices : 1
Names : (:A,)
Sites : (1,) --> 1 total per unit cell
```
# See also
`translate`, `reverse`, `reverse!`
"""
transform
"""
translate(lat::Lattice, δr)
Build a new lattice translating each site positions from `r` to `r + δr`, where `δr` can be
a `NTuple` or an `SVector` in embedding space.
## Currying
x |> translate(δr)
Curried version of `translate`, equivalent to `translate(x, δr)`
Note: Unexported `Quantica.translate!` is also available for in-place translations. Use with
care, as aliasing (i.e. several objects sharing the modified one) can produce unexpected
results.
# Examples
```jldoctest
julia> LatticePresets.square() |> translate((3,3)) |> sites
1-element Vector{SVector{2, Float64}}:
[3.0, 3.0]
```
# See also
`transform`, `reverse`, `reverse!`
"""
translate
"""
combine(lats::Lattice...)
If all `lats` have compatible Bravais vectors, combine them into a single lattice.
If necessary, sublattice names are renamed to remain unique.
combine(hams::Hamiltonians...; coupling = TighbindingModel())
Combine a collection `hams` of Hamiltonians into one by combining their corresponding
lattices, and optionally by adding a coupling between them, given by the hopping terms in
`coupling`.
Note that the `coupling` model will be applied to the combined lattice (which may have
renamed sublattices to avoid name collissions). However, only hopping terms between
different `hams` blocks will be applied.
## Limitations
Currently, `combine` only works with `Lattice{T}` `AbstractHamiltonians{T}` with the same
`T`. Furthermore, if any of the `hams` is a `ParametricHamiltonian` or `coupling` is a
`ParametricModel`, the sublattice names of all `hams` must be distinct. This ensures that
parametric models, which get applied through `Modifiers` after construction of the
`ParametricHamiltonian`, are not applied to the wrong sublattice, since sublattice names
could be renamed by `combine` if they are not unique. Therefore, be sure to choose unique
sublattice names upon construction for all the `hams` to be combined (see `lattice`).
# Examples
```jldoctest
julia> # Building Bernal-stacked bilayer graphene
julia> hbot = HP.graphene(a0 = 1, dim = 3, names = (:A,:B));
julia> htop = translate(HP.graphene(a0 = 1, dim = 3, names = (:C,:D)), (0, 1/√3, 1/√3));
julia> h2 = combine(hbot, htop; coupling = hopping(1, sublats = :B => :C) |> plusadjoint)
Hamiltonian{Float64,3,2}: Hamiltonian on a 2D Lattice in 3D space
Bloch harmonics : 5
Harmonic size : 4 × 4
Orbitals : [1, 1, 1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 14
Coordination : 3.5
```
# See also
`hopping`
"""
combine
"""
siteselector(; region = missing, sublats = missing, cells = missing)
Return a `SiteSelector` object that can be used to select a finite set of sites in a
lattice. Sites at position `r::SVector{E}`, belonging to a cell of index `n::SVector{L,Int}`
and to a sublattice with name `s::Symbol` will be selected only if
`region(r) && s in sublats && n in cells`
Any missing `region`, `sublat` or `cells` will not be used to constraint the selection.
## Generalization
While `sublats` and `cells` are usually collections of `Symbol`s and `SVector`s,
respectively, they also admit other possibilities:
- If either `cells` or `sublats` are a single cell or sublattice, they will be treated as single-element collections
- If `sublat` is a collection of `Integer`s, it will refer to sublattice numbers.
- If `cells` is an `i::Integer`, it will be converted to an `SVector{1}`
- If `cells` is a collection, each element will be converted to an `SVector`.
- If `cells` is a boolean function, `n in cells` will be the result of `cells(n)`
## Usage
Although the constructor `siteselector(; kw...)` is exported, the end user does not usually
need to call it directly. Instead, the keywords `kw` are input into different functions that
allow filtering sites, which themselves call `siteselector` internally as needed. Some of
these functions are
- getindex(lat::Lattice; kw...) : return a LatticeSlice with sites specified by `kw` (also `lat[kw...]`)
- supercell(lat::Lattice; kw...) : returns a bounded lattice with the sites specified by `kw`
- onsite(...; kw...) : onsite model term to be applied to sites specified by `kw`
- @onsite!(...; kw...) : onsite modifier to be applied to sites specified by `kw`
# See also
`hopselector`, `lattice`, `supercell`, `onsite`, `@onsite`, `@onsite!`
"""
siteselector
"""
hopselector(; range = neighbors(1), dcells = missing, sublats = missing, region = missing)
Return a `HopSelector` object that can be used to select a finite set of hops between sites
in a lattice. Hops between two sites at positions `r₁ = r - dr/2` and `r₂ = r + dr`,
belonging to unit cells with a cell distance `dn::SVector{L,Int}` and to a sublattices with
names `s₁::Symbol` and `s₂::Symbol` will be selected only if
`region(r, dr) && (s₁ => s₂ in sublats) && (dcell in dcells) && (norm(dr) <= range)`
If any of these is `missing` it will not be used to constraint the selection.
## Generalization
While `range` is usually a `Real`, and `sublats` and `dcells` are usually collections of
`Pair{Symbol}`s and `SVector`s, respectively, they also admit other possibilities:
sublats = :A # Hops from :A to :A
sublats = :A => :B # Hops from :A to :B sublattices, but not from :B to :A
sublats = (:A => :B,) # Same as above
sublats = (:A => :B, :C => :D) # Hopping from :A to :B or :C to :D
sublats = (:A, :C) .=> (:B, :D) # Broadcasted pairs, same as above
sublats = (:A, :C) => (:B, :D) # Direct product, (:A=>:B, :A=>:D, :C=>:B, :C=>D)
sublats = 1 => 2 # Hops from 1st to 2nd sublat. All the above patterns also admit Ints
sublats = (spec₁, spec₂, ...) # Hops matching any of the specs with any of the above forms
dcells = dn::SVector{L,Integer} # Hops between cells separated by `dn`
dcells = dn::NTuple{L,Integer} # Hops between cells separated by `SVector(dn)`
dcells = f::Function # Hops between cells separated by `dn` such that `f(dn) == true`
range = neighbors(n) # Hops within the `n`-th nearest neighbor distance in the lattice
range = (min, max) # Hops at distance inside the `[min, max]` closed interval (bounds can also be `neighbors(n)`)
## Usage
Although the constructor `hopselector(; kw...)` is exported, the end user does not usually
need to call it directly. Instead, the keywords `kw` are input into different functions that
allow filtering hops, which themselves call `hopselector` internally as needed. Some of
these functions are
- hopping(...; kw...) : hopping model term to be applied to site pairs specified by `kw`
- @hopping(...; kw...) : parametric hopping model term to be applied to site pairs specified by `kw`
- @hopping!(...; kw...) : hopping modifier to be applied to site pairs specified by `kw`
# Examples
```jldoctest
julia> h = LP.honeycomb() |> hamiltonian(hopping(1, range = neighbors(2), sublats = (:A, :B) .=> (:A, :B)))
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 7
Harmonic size : 2 × 2
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 12
Coordination : 6.0
julia> h = LP.honeycomb() |> hamiltonian(hopping(1, range = (neighbors(2), neighbors(3)), sublats = (:A, :B) => (:A, :B)))
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 9
Harmonic size : 2 × 2
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 18
Coordination : 9.0
```
# See also
`siteselector`, `lattice`, `hopping`, `@hopping`, `@hopping!`
"""
hopselector
"""
neighbors(n::Int)
Create a `Neighbors(n)` object that represents a hopping range to distances corresponding to
the n-th nearest neighbors in a given lattice, irrespective of their sublattice. Neighbors
at equal distance do not count towards `n`.
neighbors(n::Int, lat::Lattice)
Obtain the actual nth-nearest-neighbot distance between sites in lattice `lat`.
# See also
`hopping`
"""
neighbors
"""
hamiltonian(lat::Lattice, model; orbitals = 1)
Create an `AbstractHamiltonian` (i.e. an `Hamiltonian` or `ParametricHamiltonian`) by
applying `model` to the lattice `lat` (see `onsite`, `@onsite`, `hopping` and `@hopping` for
details on building parametric and non-parametric tight-binding models).
hamiltonian(lat::Lattice, model, modifiers...; orbitals = 1)
Create a `ParametricHamiltonian` where all onsite and hopping terms in `model` can be
parametrically modified through the provided parametric `modifiers` (see `@onsite!` and
`@hopping!` for details on defining modifiers).
hamiltonian(h::AbstractHamiltonian, modifier, modifiers...)
Add modifiers to an existing `AbstractHamiltonian`.
hamiltonian(h::ParametricHamiltonian)
Return the base (non-parametric) `Hamiltonian` of `h`, with all modifiers and parametric
model terms removed (see `@onsite`, `@hopping`, `@onsite!`, `@hopping!`).
## Keywords
- `orbitals`: number of orbitals per sublattice. If an `Integer` (or a `Val{<:Integer}` for type-stability), all sublattices will have the same number of orbitals. A collection of values indicates the orbitals on each sublattice.
## Currying
lat |> hamiltonian(model[, modifiers...]; kw...)
Curried form of `hamiltonian` equivalent to `hamiltonian(lat, model, modifiers...; kw...)`.
lat |> model
Alternative and less general curried form equivalent to `hamiltonian(lat, model)`.
h |> modifier
Alternative and less general curried form equivalent to `hamiltonian(h, modifier)`.
## Indexing
h[dn::SVector{L,Int}]
h[dn::NTuple{L,Int}]
Return the Bloch harmonic of an `h::AbstractHamiltonian` in the form of a `SparseMatrixCSC`
with complex scalar `eltype`. This matrix is "flat", in the sense that it contains matrix
elements between individual orbitals, not sites. This distinction is only relevant for
multiorbital Hamiltonians. To access the non-flattened matrix use `h[unflat(dn)]` (see
also `unflat`).
h[()]
Special syntax equivalent to `h[(0...)]`, which access the fundamental Bloch harmonic.
h[i::CellSites, j::CellSites = i]
With `i` and `j` of type `CellSites` and constructed with `sites([cell,] indices)`, return a
`SparseMatrixCSC` block of `h` between the sites with the corresponding `indices` and in the
given `cell`s. Alternatively, one can also use `view(h, i, j = i)`, which should be
non-allocating for `AbstractHamiltonian`s with uniform number of orbitals.
h[srow::SiteSelector, scol::SiteSelector = srow]
h[kwrow::NamedTuple, kwcol::NamedTuple = kwrow]
Return an `OrbitalSliceMatrix` of `h` between row and column sites selected by `srow` and
`scol`, or by `siteselector(; kwrow...)` and `siteselector(; kwcol...)`
Note: `CellSites` and `SiteSelector`s can be mixed when indexing, in which case the matrix
block will be returned as a `SparseMatrixCSC`, instead of an `OrbitalSliceMatrix`.
## Call syntax
ph(; params...)
Return a `h::Hamiltonian` from a `ph::ParametricHamiltonian` by applying specific values to
its parameters `params`. If `ph` is a non-parametric `Hamiltonian` instead, this is a no-op.
h(φs; params...)
Return the flat, sparse Bloch matrix of `h::AbstractHamiltonian` at Bloch phases `φs`, with
applied parameters `params` if `h` is a `ParametricHamiltonian`. The Bloch matrix is defined
as
H = ∑_dn exp(-im φs⋅dn) H_dn
where `H_dn = h[dn]` is the `dn` flat Bloch harmonic of `h`, and `φs[i] = k⋅aᵢ` in terms of
the wavevector `k` and the Bravais vectors `aᵢ`.
# Examples
```jldoctest
julia> h = hamiltonian(LP.honeycomb(), hopping(SA[0 1; 1 0], range = 1/√3), orbitals = 2)
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 5
Harmonic size : 2 × 2
Orbitals : [2, 2]
Element type : 2 × 2 blocks (ComplexF64)
Onsites : 0
Hoppings : 6
Coordination : 3.0
julia> h((0,0))
4×4 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 8 stored entries:
⋅ ⋅ 0.0+0.0im 3.0+0.0im
⋅ ⋅ 3.0+0.0im 0.0+0.0im
0.0+0.0im 3.0+0.0im ⋅ ⋅
3.0+0.0im 0.0+0.0im ⋅ ⋅
julia> h[sites(1), sites(2)]
2×2 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 4 stored entries:
0.0+0.0im 1.0+0.0im
1.0+0.0im 0.0+0.0im
julia> ph = h |> @hopping!((t; p = 3) -> p*t); ph[region = RP.square(1)]
4×4 OrbitalSliceMatrix{SparseArrays.SparseMatrixCSC{ComplexF64, Int64}}:
0.0+0.0im 0.0+0.0im 0.0+0.0im 3.0+0.0im
0.0+0.0im 0.0+0.0im 3.0+0.0im 0.0+0.0im
0.0+0.0im 3.0+0.0im 0.0+0.0im 0.0+0.0im
3.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
```
# See also
`lattice`, `onsite`, `hopping`, `@onsite`, `@hopping`, `@onsite!`, `@hopping!`, `ishermitian`, `OrbitalSliceMatrix`
"""
hamiltonian
"""
ishermitian(h::Hamiltonian)
Check whether `h` is Hermitian. This is not supported for `h::ParametricHamiltonian`, as the
result can depend of the specific values of its parameters.
"""
ishermitian
"""
onsite(o; sites...)
onsite(r -> o(r); sites...)
Build a `TighbindingModel` representing a uniform or a position-dependent onsite potential,
respectively, on sites selected by `siteselector(; sites...)` (see `siteselector` for
details).
Site positions are `r::SVector{E}`, where `E` is the embedding dimension of the lattice. The
onsite potential `o` can be a `Number` (for single-orbital sites), a `UniformScaling` (e.g.
`2I`) or an `AbstractMatrix` (use `SMatrix` for performance) of dimensions matching the
number of orbitals in the selected sites. Models may be applied to a lattice `lat` to
produce a `Hamiltonian` with `hamiltonian(lat, model; ...)`, see `hamiltonian`. Position
dependent models are forced to preserve the periodicity of the lattice.
onsite(m::{TighbindingModel,ParametricModel}; sites...)
Convert `m` into a new model with just onsite terms acting on `sites`.
## Model algebra
Models can be combined using `+`, `-` and `*`, or conjugated with `'`, e.g. `onsite(1) - 2 *
hopping(1)'`.
# Examples
```jldoctest
julia> model = onsite(r -> norm(r) * SA[0 1; 1 0]; sublats = :A) - hopping(I; range = 2)
TightbindingModel: model with 2 terms
OnsiteTerm{Function}:
Region : any
Sublattices : A
Cells : any
Coefficient : 1
HoppingTerm{LinearAlgebra.UniformScaling{Bool}}:
Region : any
Sublattice pairs : any
Cell distances : any
Hopping range : 2.0
Reverse hops : false
Coefficient : -1
julia> LP.cubic() |> supercell(4) |> hamiltonian(model, orbitals = 2)
Hamiltonian{Float64,3,3}: Hamiltonian on a 3D Lattice in 3D space
Bloch harmonics : 27
Harmonic size : 64 × 64
Orbitals : [2]
Element type : 2 × 2 blocks (ComplexF64)
Onsites : 64
Hoppings : 2048
Coordination : 32.0
```
# See also
`hopping`, `@onsite`, `@hopping`, `@onsite!`, `@hopping!`, `hamiltonian`
"""
onsite
"""
hopping(t; hops...)
hopping((r, dr) -> t(r, dr); hops...)
Build a `TighbindingModel` representing a uniform or a position-dependent hopping amplitude,
respectively, on hops selected by `hopselector(; hops...)` (see `hopselector` for details).
Hops from a site at position `r₁` to another at `r₂` are described using the hop center `r =
(r₁ + r₂)/2` and the hop vector `dr = r₂ - r₁`. Hopping amplitudes `t` can be a `Number`
(for hops between single-orbital sites), a `UniformScaling` (e.g. `2I`) or an
`AbstractMatrix` (use `SMatrix` for performance) of dimensions matching the number of
orbitals in the selected sites. Models may be applied to a lattice `lat` to produce an
`Hamiltonian` with `hamiltonian(lat, model; ...)`, see `hamiltonian`. Position dependent
models are forced to preserve the periodicity of the lattice.
hopping(m::Union{TighbindingModel,ParametricModel}; hops...)
Convert `m` into a new model with just hopping terms acting on `hops`.
## Model algebra
Models can be combined using `+`, `-` and `*`, or conjugated with `'`, e.g. `onsite(1) - 2 *
hopping(1)'`.
# Examples
```jldoctest
julia> model = hopping((r, dr) -> cis(dot(SA[r[2], -r[1]], dr)); dcells = (0,0)) + onsite(r -> rand())
TightbindingModel: model with 2 terms
HoppingTerm{Function}:
Region : any
Sublattice pairs : any
Cell distances : (0, 0)
Hopping range : Neighbors(1)
Reverse hops : false
Coefficient : 1
OnsiteTerm{Function}:
Region : any
Sublattices : any
Cells : any
Coefficient : 1
julia> LP.honeycomb() |> supercell(2) |> hamiltonian(model)
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 1
Harmonic size : 8 × 8
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 8
Hoppings : 16
Coordination : 2.0
```
# See also
`onsite`, `@onsite`, `@hopping`, `@onsite!`, `@hopping!`, `hamiltonian`, `plusadjoint`
"""
hopping
"""
@onsite((; params...) -> o(; params...); sites...)
@onsite((r; params...) -> o(r; params...); sites...)
Build a `ParametricModel` representing a uniform or a position-dependent onsite potential,
respectively, on sites selected by `siteselector(; sites...)` (see `siteselector` for
details).
Site positions are `r::SVector{E}`, where `E` is the embedding dimension of the lattice. The
onsite potential `o` can be a `Number` (for single-orbital sites), a `UniformScaling` (e.g.
`2I`) or an `AbstractMatrix` (use `SMatrix` for performance) of dimensions matching the
number of orbitals in the selected sites. Parametric models may be applied to a lattice
`lat` to produce a `ParametricHamiltonian` with `hamiltonian(lat, model; ...)`, see
`hamiltonian`. Position dependent models are forced to preserve the periodicity of the
lattice.
The difference between regular and parametric tight-binding models (see `onsite` and
`hopping`) is that parametric models may depend on arbitrary parameters, specified by the
`params` keyword arguments. These are inherited by `h::ParametricHamiltonian`, which can
then be evaluated very efficiently for different parameter values by callling `h(;
params...)`, to obtain a regular `Hamiltonian` without reconstructing it from scratch.
@onsite((ω; params...) -> Σᵢᵢ(ω; params...); sites...)
@onsite((ω, r; params...) -> Σᵢᵢ(ω, r; params...); sites...)
Special form of a parametric onsite potential meant to model a self-energy (see `attach`).
@onsite((i; params...) --> ...; sites...)
@onsite((ω, i; params...) --> ...; sites...)
The `-->` syntax allows to treat the argument `i` as a site index, instead of a position. In
fact, the type of `i` is `CellSitePos`, so they can be used to index `OrbitalSliceArray`s
(see doctrings for details). The functions `pos(i)`, `cell(i)` and `ind(i)` yield the
position, cell and site index of the site. This syntax is useful to implement models that
depend on observables (in the form of `OrbitalSliceArray`s), like in self-consistent mean
field calculations.
## Model algebra
Parametric models can be combined using `+`, `-` and `*`, or conjugated with `'`, e.g.
`@onsite((; o=1) -> o) - 2 * hopping(1)'`. The combined parametric models can share
parameters.
# Examples
```jldoctest
julia> model = @onsite((r; dμ = 0) -> (r[1] + dμ) * I; sublats = :A) + @onsite((; dμ = 0) -> - dμ * I; sublats = :B)
ParametricModel: model with 2 terms
ParametricOnsiteTerm{ParametricFunction{1}}
Region : any
Sublattices : A
Cells : any
Coefficient : 1
Argument type : spatial
Parameters : [:dμ]
ParametricOnsiteTerm{ParametricFunction{0}}
Region : any
Sublattices : B
Cells : any
Coefficient : 1
Argument type : spatial
Parameters : [:dμ]
julia> LP.honeycomb() |> supercell(2) |> hamiltonian(model, orbitals = 2)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 1
Harmonic size : 8 × 8
Orbitals : [2, 2]
Element type : 2 × 2 blocks (ComplexF64)
Onsites : 8
Hoppings : 0
Coordination : 0.0
Parameters : [:dμ]
```
# See also
`onsite`, `hopping`, `@hopping`, `@onsite!`, `@hopping!`, `attach`, `hamiltonian`, `OrbitalSliceArray`
"""
macro onsite end
"""
@hopping((; params...) -> t(; params...); hops...)
@hopping((r, dr; params...) -> t(r; params...); hops...)
Build a `ParametricModel` representing a uniform or a position-dependent hopping amplitude,
respectively, on hops selected by `hopselector(; hops...)` (see `hopselector` for details).
Hops from a site at position `r₁` to another at `r₂` are described using the hop center `r =
(r₁ + r₂)/2` and the hop vector `dr = r₂ - r₁`. Hopping amplitudes `t` can be a `Number`
(for hops between single-orbital sites), a `UniformScaling` (e.g. `2I`) or an
`AbstractMatrix` (use `SMatrix` for performance) of dimensions matching the number of site
orbitals in the selected sites. Parametric models may be applied to a lattice `lat` to
produce a `ParametricHamiltonian` with `hamiltonian(lat, model; ...)`, see `hamiltonian`.
Position dependent models are forced to preserve the periodicity of the lattice.
The difference between regular and parametric tight-binding models (see `onsite` and
`hopping`) is that parametric models may depend on arbitrary parameters, specified by the
`params` keyword arguments. These are inherited by `h::ParametricHamiltonian`, which can
then be evaluated very efficiently for different parameter values by callling `h(;
params...)`, to obtain a regular `Hamiltonian` without reconstructing it from scratch.
@hopping((ω; params...) -> Σᵢⱼ(ω; params...); hops...)
@hopping((ω, r, dr; params...) -> Σᵢⱼ(ω, r, dr; params...); hops...)
Special form of a parametric hopping amplitude meant to model a self-energy (see `attach`).
@hopping((i, j; params...) --> ...; sites...)
@hopping((ω, i, j; params...) --> ...; sites...)
The `-->` syntax allows to treat the arguments `i, j` as a site indices, instead of a
positions. Here `i` is the destination (row) and `j` the source (column) site. In fact, the
type of `i` and `j` is `CellSitePos`, so they can be used to index `OrbitalSliceArray`s (see
doctrings for details). The functions `pos(i)`, `cell(i)` and `ind(i)` yield the position,
cell and site index of the site. This syntax is useful to implement models that depend on
observables (in the form of `OrbitalSliceArray`s), like in self-consistent mean field
calculations.
## Model algebra
Parametric models can be combined using `+`, `-` and `*`, or conjugated with `'`, e.g.
`@onsite((; o=1) -> o) - 2 * hopping(1)'`. The combined parametric models can share
parameters.
# Examples
```jldoctest
julia> model = @hopping((r, dr; t = 1, A = Returns(SA[0,0])) -> t * cis(-dr' * A(r)))
ParametricModel: model with 1 term
ParametricHoppingTerm{ParametricFunction{2}}
Region : any
Sublattice pairs : any
Cell distances : any
Hopping range : Neighbors(1)
Reverse hops : false
Coefficient : 1
Argument type : spatial
Parameters : [:t, :A]
julia> LP.honeycomb() |> supercell(2) |> hamiltonian(model)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 5
Harmonic size : 8 × 8
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 24
Coordination : 3.0
Parameters : [:A, :t]
```
# See also
`onsite`, `hopping`, `@onsite`, `@onsite!`, `@hopping!`, `attach`, `hamiltonian`, `OrbitalSliceArray`
"""
macro hopping end
"""
@onsite!((o; params...) -> o´(o; params...); sites...)
@onsite!((o, r; params...) -> o´(o, r; params...); sites...)
Build a uniform or position-dependent onsite term modifier, respectively, acting on sites
selected by `siteselector(; sites...)` (see `siteselector` for details).
Site positions are `r::SVector{E}`, where `E` is the embedding dimension of the lattice. The
original onsite potential is `o`, and the modified potential is `o´`, which is a function of
`o` and possibly `r`. It may optionally also depend on parameters, enconded in `params`.
Modifiers are meant to be applied to an `h:AbstractHamiltonian` to obtain a
`ParametricHamiltonian` (with `hamiltonian(h, modifiers...)` or `hamiltonian(lat, model,
modifiers...)`, see `hamiltonian`). Modifiers will affect only pre-existing model terms. In
particular, if no onsite model has been applied to a specific site, its onsite potential
will be zero, and will not be modified by any `@onsite!` modifier. Conversely, if an onsite
model has been applied, `@onsite!` may modify the onsite potential even if it is zero. The
same applies to `@hopping!`.
@onsite((o, i; params...) --> ...; sites...)
The `-->` syntax allows to treat the argument `i` as a site index, instead of a position. In
fact, the type of `i` is `CellSitePos`, so they can be used to index `OrbitalSliceArray`s
(see doctrings for details). The functions `pos(i)`, `cell(i)` and `ind(i)` yield the
position, cell and site index of the site. This syntax is useful to implement models that
depend on observables (in the form of `OrbitalSliceArray`s), like in self-consistent mean
field calculations.
# Examples
```jldoctest
julia> model = onsite(0); disorder = @onsite!((o; W = 0) -> o + W * rand())
OnsiteModifier{ParametricFunction{1}}:
Region : any
Sublattices : any
Cells : any
Argument type : spatial
Parameters : [:W]
julia> LP.honeycomb() |> hamiltonian(model) |> supercell(10) |> hamiltonian(disorder)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 1
Harmonic size : 200 × 200
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 200
Hoppings : 0
Coordination : 0.0
Parameters : [:W]
```
# See also
`onsite`, `hopping`, `@onsite`, `@hopping`, `@hopping!`, `hamiltonian`, `OrbitalSliceArray`
"""
macro onsite! end
"""
@hopping!((t; params...) -> t´(t; params...); hops...)
@hopping!((t, r, dr; params...) -> t´(t, r, dr; params...); hops...)
Build a uniform or position-dependent hopping term modifier, respectively, acting on hops
selected by `hopselector(; hops...)` (see `hopselector` for details).
Hops from a site at position `r₁` to another at `r₂` are described using the hop center `r =
(r₁ + r₂)/2` and the hop vector `dr = r₂ - r₁`. The original hopping amplitude is `t`, and
the modified hopping is `t´`, which is a function of `t` and possibly `r, dr`. It may
optionally also depend on parameters, enconded in `params`.
Modifiers are meant to be applied to an `h:AbstractHamiltonian` to obtain a
`ParametricHamiltonian` (with `hamiltonian(h, modifiers...)` or `hamiltonian(lat, model,
modifiers...)`, see `hamiltonian`). Modifiers will affect only pre-existing model terms. In
particular, if no onsite model has been applied to a specific site, its onsite potential
will be zero, and will not be modified by any `@onsite!` modifier. Conversely, if an onsite
model has been applied, `@onsite!` may modify the onsite potential even if it is zero. The
same applies to `@hopping!`.
@hopping!((t, i, j; params...) --> ...; sites...)
The `-->` syntax allows to treat the arguments `i, j` as a site indices, instead of a
positions. Here `i` is the destination (row) and `j` the source (column) site. In fact, the
type of `i` and `j` is `CellSitePos`, so they can be used to index `OrbitalSliceArray`s (see
doctrings for details). The functions `pos(i)`, `cell(i)` and `ind(i)` yield the position,
cell and site index of the site. This syntax is useful to implement models that depend on
observables (in the form of `OrbitalSliceArray`s), like in self-consistent mean field
calculations.
# Examples
```jldoctest
julia> model = hopping(1); peierls = @hopping!((t, r, dr; A = r -> SA[0,0]) -> t * cis(-dr' * A(r)))
HoppingModifier{ParametricFunction{3}}:
Region : any
Sublattice pairs : any
Cell distances : any
Hopping range : Inf
Reverse hops : false
Argument type : spatial
Parameters : [:A]
julia> LP.honeycomb() |> hamiltonian(model) |> supercell(10) |> hamiltonian(peierls)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 5
Harmonic size : 200 × 200
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 600
Coordination : 3.0
Parameters : [:A]
```
# See also
`onsite`, `hopping`, `@onsite`, `@hopping`, `@onsite!`, `hamiltonian`, `OrbitalSliceArray`
"""
macro hopping! end
"""
plusadjoint(t::Model)
Returns a model `t + t'`. This is a convenience function analogous to the `+ h.c.` notation.
# Example
```jldoctest
julia> model = hopping(im, sublats = :A => :B) |> plusadjoint
TightbindingModel: model with 2 terms
HoppingTerm{Complex{Bool}}:
Region : any
Sublattice pairs : :A => :B
Cell distances : any
Hopping range : Neighbors(1)
Reverse hops : false
Coefficient : 1
HoppingTerm{Complex{Int64}}:
Region : any
Sublattice pairs : :A => :B
Cell distances : any
Hopping range : Neighbors(1)
Reverse hops : true
Coefficient : 1
julia> h = hamiltonian(LP.honeycomb(), model)
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 5
Harmonic size : 2 × 2
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 6
Coordination : 3.0
julia> h((0,0))
2×2 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 2 stored entries:
⋅ 0.0-3.0im
0.0+3.0im ⋅
```
"""
plusadjoint
"""
torus(h::AbstractHamiltonian, (ϕ₁, ϕ₂,...))
For an `h` of lattice dimension `L` and a set of `L` Bloch phases `ϕ = (ϕ₁, ϕ₂,...)`,
contruct a new `h´::AbstractHamiltonian` on a bounded torus, i.e. with all Bravais
vectors eliminated by stitching the lattice onto itself along the corresponding Bravais
vector. Intercell hoppings along stitched directions will pick up a Bloch phase
`exp(-iϕ⋅dn)`.
If a number `L´` of phases `ϕᵢ` are `:` instead of numbers, the corresponding Bravais
vectors will not be stitched, and the resulting `h´` will have a finite lattice dimension
`L´`.
## Currying
h |> torus((ϕ₁, ϕ₂,...))
Currying syntax equivalent to `torus(h, (ϕ₁, ϕ₂,...))`.
# Examples
```jldoctest
julia> h2D = HP.graphene(); h1D = torus(h2D, (:, 0.2))
Hamiltonian{Float64,2,1}: Hamiltonian on a 1D Lattice in 2D space
Bloch harmonics : 3
Harmonic size : 2 × 2
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 4
Coordination : 2.0
julia> h2D((0.3, 0.2)) ≈ h1D(0.3)
true
```
# See also
`hamiltonian`, `supercell`
"""
torus
"""
unflat(dn)
Construct an `u::Unflat` object wrapping some indices `dn`. This object is meant to be used
to index into a `h::AbstractHamiltonian` as `h[u]`, which returns an non-flattened version
of the Bloch harmonic `h[dn]`. Each element in the matrix `h[u]` is an `SMatrix` block
representing onsite or hoppings between whole sites, in contrast to `h[dn]` where they are
scalars representing single orbitals. This is only relevant for multi-orbital Hamiltonians
`h`.
unflat()
Equivalent to `unflat(())`
# Examples
```
julia> h = HP.graphene(orbitals = 2); h[unflat(0,0)]
2×2 SparseArrays.SparseMatrixCSC{SMatrix{2, 2, ComplexF64, 4}, Int64} with 2 stored entries:
⋅ [2.7+0.0im 0.0+0.0im; 0.0+0.0im 2.7+0.0im]
[2.7+0.0im 0.0+0.0im; 0.0+0.0im 2.7+0.0im] ⋅
```
"""
unflat
"""
`EigenSolvers` is a Quantica submodule containing several pre-defined eigensolvers. The
alias `ES` can be used in place of `EigenSolvers`. Currently supported solvers are
ES.LinearAlgebra(; kw...) # Uses `eigen(mat; kw...)` from the `LinearAlgebra` package
ES.Arpack(; kw...) # Uses `eigs(mat; kw...)` from the `Arpack` package (WARNING: Arpack is not thread-safe)
ES.KrylovKit(params...; kw...) # Uses `eigsolve(mat, params...; kw...)` from the `KrylovKit` package
ES.ArnoldiMethod(; kw...) # Uses `partialschur(mat; kw...)` from the `ArnoldiMethod` package
Additionally, to compute interior eigenvalues, we can use a shift-invert method around
energy `ϵ0` (uses `LinearMaps` and a `LinearSolve.lu` factorization), combined with any
solver `s` from the list above:
ES.ShiftInvert(s, ϵ0) # Perform a lu-based shift-invert with solver `s`
If the required packages are not already available, they will be automatically loaded when
calling these solvers.
# Examples
```
julia> h = HP.graphene(t0 = 1) |> supercell(10);
julia> spectrum(h, (0,0); solver = ES.ShiftInvert(ES.ArnoldiMethod(nev = 4), 0.0)) |> energies
4-element Vector{ComplexF64}:
-0.3819660112501042 + 2.407681231060336e-16im
-0.6180339887498942 - 2.7336317916863215e-16im
0.6180339887498937 - 1.7243387890744497e-16im
0.3819660112501042 - 1.083582785131051e-16im
```
# See also
`spectrum`, `bands`
"""
EigenSolvers
"""
spectrum(h::AbstractHamiltonian, ϕs; solver = EigenSolvers.LinearAlgebra(), transform = missing, params...)
Compute the `Spectrum` of the Bloch matrix `h(ϕs; params...)` using the specified
eigensolver, with `transform` applied to the resulting eigenenergies, if not `missing`.
Eigenpairs are sorted by the real part of their energy. See `EigenSolvers` for available
solvers and their options.
spectrum(h::AbstractHamiltonian; kw...)
For a 0D `h`, equivalent to `spectrum(h, (); kw...)`
spectrum(m::AbstractMatrix; solver = EigenSolvers.LinearAlgebra()], transform = missing)
Compute the `Spectrum` of matrix `m` using `solver` and `transform`.
spectrum(b::Bandstructure, ϕs)
Compute the `Spectrum` corresponding to slicing the bandstructure `b` at point `ϕs` of its
base mesh (see `bands` for details).
## Indexing and destructuring
Eigenenergies `ϵs::Tuple` and eigenstates `ψs::Matrix` can be extracted from a spectrum `sp`
using any of the following
ϵs, ψs = sp
ϵs = first(sp)
ϵs = energies(sp)
ψs = last(sp)
ψs = states(sp)
In addition, one can extract the `n` eigenpairs closest (in real energy) to a given energy
`ϵ₀` with
ϵs, ψs = sp[1:n, around = ϵ₀]
More generally, `sp[inds, around = ϵ₀]` will take the eigenpairs at position given by `inds`
after sorting by increasing distance to `ϵ₀`, or the closest eigenpair in `inds` is missing.
If `around` is omitted, the ordering in `sp` is used.
# Examples
```jldoctest
julia> h = HP.graphene(t0 = 1); spectrum(h, (0,0))
Spectrum{Float64,ComplexF64} :
Energies:
2-element Vector{ComplexF64}:
-2.9999999999999982 + 0.0im
2.9999999999999982 + 0.0im
States:
2×2 Matrix{ComplexF64}:
-0.707107+0.0im 0.707107+0.0im
0.707107+0.0im 0.707107+0.0im
```
# See also
`EigenSolvers`, `bands`
"""
spectrum
"""
energies(sp::Spectrum)
Returns the energies in `sp` as a vector of Numbers (not necessarily real). Equivalent to `first(sp)`.
# See also
`spectrum`, `bands`
"""
energies
"""
states(sp::Spectrum)
Returns the eigenstates in `sp` as columns of a matrix. Equivalent to `last(sp)`.
# See also
`spectrum`, `bands`
"""
states
"""
bands(h::AbstractHamiltonian, xcolᵢ...; kw...)
Construct a `Bandstructure` object, which contains in particular a collection of
continuously connected `Subband`s of `h`, obtained by diagonalizing the matrix `h(ϕs;
params...)` on an `M`-dimensional mesh of points `(x₁, x₂, ..., xₘ)`, where each `xᵢ` takes
values in the collection `xcolᵢ`. The mapping between points in the mesh points and values
of `(ϕs; params...)` is defined by keyword `mapping` (`identity` by default, see Keywords).
Diagonalization is multithreaded and will use all available Julia threads (start session
with `julia -t N` to have `N` threads).
bands(f::Function, xcolᵢ...; kw...)
Like the above using `f(ϕs)::AbstractMatrix` in place of `h(ϕs; params...)`, and returning a
`Vector{<:Subband}` instead of a `Bandstructure` object. This is provided as a lower level
driver without the added slicing functionality of a full `Bandstructure` object, see below.
bands(h::AbstractHamiltonian; kw...)
Equivalent to `bands(h::AbstractHamiltonian, xcolᵢ...; kw...)` with a default `xcolᵢ =
subdiv(-π, π, 49)`.
## Keywords
- `solver`: eigensolver to use for each diagonalization (see `Eigensolvers`). Default: `ES.LinearAlgebra()`
- `mapping`: a function of the form `(x, y, ...) -> ϕs` or `(x, y, ...) -> ftuple(ϕs...; params...)` that translates points `(x, y, ...)` in the mesh to Bloch phases `ϕs` or phase+parameter FrankenTuples `ftuple(ϕs...; params...)`. See also linecuts below. Default: `identity`
- `transform`: function to apply to each eigenvalue after diagonalization. Default: `identity`
- `degtol::Real`: maximum distance between to nearby eigenvalue so that they are classified as degenerate. Default: `sqrt(eps)`
- `split::Bool`: whether to split bands into disconnected subbands. Default: `true`
- `projectors::Bool`: whether to compute interpolating subspaces in each simplex (for use as GreenSolver). Default: `true`
- `warn::Bool`: whether to emit warning when band dislocations are encountered. Default: `true`
- `showprogress::Bool`: whether to show or not a progress bar. Default: `true`
- `defects`: (experimental) a collection of extra points to add to the mesh, typically the location of topological band defects such as Dirac points, so that interpolation avoids creating dislocation defects in the bands. You need to also increase `patches` to repair the subband dislocations using the added defect vertices. Default: `()`
- `patches::Integer`: (experimental) if a dislocation is encountered, attempt to patch it by searching for the defect recursively to a given order, or using the provided `defects` (preferred). Default: `0`
## Currying
h |> bands(xcolᵢ...; kw...)
Curried form of `bands` equivalent to `bands(h, xcolᵢ...; kw...)`
## Band linecuts
To do a linecut of a bandstructure along a polygonal path in the `L`-dimensional Brillouin
zone, mapping a set of 1D points `xs` to a set of `nodes`, with `pts` interpolation points
in each segment, one can use the following convenient syntax
bands(h, subdiv(xs, pts); mapping = (xs => nodes))
Here `nodes` can be a collection of `SVector{L}` or of named Brillouin zone points from the
list (`:Γ`,`:K`, `:K´`, `:M`, `:X`, `:Y`, `:Z`). If `mapping = nodes`, then `xs` defaults to
`0:length(nodes)-1`. See also `subdiv` for its alternative methods.
## Indexing and slicing
b[i]
Extract `i`-th subband from `b::Bandstructure`. `i` can also be a `Vector`, an
`AbstractRange` or any other argument accepted by `getindex(subbands::Vector, i)`
b[slice::Tuple]
Compute a section of `b::Bandstructure` with a "plane" defined by `slice = (ϕ₁, ϕ₂,..., ϕₗ[,
ϵ])`, where each `ϕᵢ` or `ϵ` can be a real number (representing a fixed momentum or energy)
or a `:` (unconstrained along that dimension). For bands of an `L`-dimensional lattice,
`slice` will be padded to an `L+1`-long tuple with `:` if necessary. The result is a
collection of of sliced `Subband`s.
# Examples
```
julia> phis = range(0, 2pi, length = 50); h = LP.honeycomb() |> hamiltonian(@hopping((; t = 1) -> t));
julia> bands(h(t = 1), phis, phis)
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 1
Vertices : 5000
Edges : 14602
Simplices : 9588
julia> bands(h, phis, phis; mapping = (x, y) -> ftuple(0, x; t = y/2π))
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 1
Vertices : 4950
Edges : 14553
Simplices : 9604
julia> bands(h(t = 1), subdiv((0, 2, 3), (20, 30)); mapping = (0, 2, 3) => (:Γ, :M, :K))
Bandstructure{Float64,2,1}: 2D Bandstructure over a 1-dimensional parameter space of type Float64
Subbands : 1
Vertices : 97
Edges : 96
Simplices : 96
```
# See also
`spectrum`, `subdiv`
"""
bands
"""
subdiv((x₁, x₂, ..., xₙ), (p₁, p₂, ..., pₙ₋₁))
Build a vector of values between `x₁` and `xₙ` containing all `xᵢ` such that in each
interval `[xᵢ, xᵢ₊₁]` there are `pᵢ` equally space values.
subdiv((x₁, x₂, ..., xₙ), p)
Same as above with all `pᵢ = p`
subdiv(x₁, x₂, p)
Equivalent to `subdiv((x₁, x₂), p) == collect(range(x₁, x₂, length = p))`
"""
subdiv
"""
attach(h::AbstractHamiltonian, args..; sites...)
attach(h::OpenHamiltonian, args...; sites...)
Build an `h´::OpenHamiltonian` by attaching (adding) a `Σ::SelfEnergy` to a finite number of
sites in `h` specified by `siteselector(; sites...)`. This also defines a "contact" on said
sites that can be referred to (with index `i::Integer` for the i-th attached contact) when
slicing Green functions later. Self-energies are taken into account when building the Green
function `g(ω) = (ω - h´ - Σ(ω))⁻¹` of the resulting `h´`, see `greenfunction`.
## Self-energy forms
The different forms of `args` yield different types of self-energies `Σ`. Currently
supported forms are:
attach(h, gs::GreenSlice, coupling::AbstractModel; transform = missing, sites...)
Adds a generic self-energy `Σ(ω) = V´⋅gs(ω)⋅V` on `h`'s `sites`, where `V` and `V´` are
couplings (given by `coupling`) between said `sites` and the `LatticeSlice` in `gs` (after
applying `transform` to the latter). Allowed forms of `gs` include both `g[bath_sites...]`
and `g[contactind::Integer]` where `g` is any `GreenFunction`.
attach(h, model::ParametricModel; sites...)
Add self-energy `Σᵢⱼ(ω)` defined by a `model` composed of parametric terms (`@onsite` and
`@hopping`) with `ω` as first argument, as in e.g. `@onsite((ω, r) -> Σᵢᵢ(ω, r))` and
`@hopping((ω, r, dr) -> Σᵢⱼ(ω, r, dr))`
attach(h, nothing; sites...)
Add a `nothing` contact with a null self-energy `Σᵢⱼ(ω) = 0` on selected sites, which in
effect simply amounts to labeling those sites with a contact number, but does not lead to
any dressing the Green function. This is useful for some `GreenFunction` solvers such as
`GS.KPM` (see `greenfunction`), which need to know the sites of interest beforehand (the
contact sites in this case).
attach(h, g1D::GreenFunction; reverse = false, transform = identity, sites...)
Add a self-energy `Σ(ω) = h₋₁⋅g1D(ω)[surface]⋅h₁` corresponding to a semi-infinite 1D lead
(i.e. with a finite `boundary`, see `greenfunction`), where `h₁` and `h₋₁` are intercell
couplings, and `g1D` is the lead `GreenFunction`. The `g1D(ω)` is taken at the `suface`
unitcell, either adjacent to the `boundary` on its positive side (if `reverse = false`) or
on its negative side (if `reverse = true`). Note that `reverse` only flips the direction we
extend the lattice to form the lead, but does not flip the unit cell (use `transform` for
that). The positions of the selected `sites` in `h` must match, modulo an arbitrary
displacement, those of the left or right unit cell surface of the lead (i.e. sites coupled
to the adjacent unit cells), after applying `transform` to the latter. If they don't match,
use the `attach` syntax below.
Advanced: If the `g1D` does not have any self-energies, the produced self-energy is in fact
an `ExtendedSelfEnergy`, which is numerically more stable than a naive implementation of
`RegularSelfEnergy`'s, since `g1D(ω)[surface]` is never actually computed. Conversely, if
`g1D` has self-energies attached, a `RegularSelfEnergy` is produced.
attach(h, g1D::GreenFunction, coupling::AbstractModel; reverse = false, transform = identity, sites...)
Add a self-energy `Σ(ω) = V´⋅g1D(ω)[surface]⋅V` corresponding to a 1D lead (semi-infinite or
infinite), but with couplings `V` and `V´`, defined by `coupling`, between `sites` and the
`surface` lead unitcell (or the one with index zero if there is no boundary) . See also
Advanced note above.
## Currying
h |> attach(args...; sites...)
Curried form equivalent to `attach(h, args...; sites...)`.
# Examples
```jldoctest
julia> # A graphene flake with two out-of-plane cubic-lattice leads
julia> g1D = LP.cubic(names = :C) |> hamiltonian(hopping(1)) |> supercell((0,0,1), region = RP.square(4)) |> greenfunction(GS.Schur(boundary = 0));
julia> coupling = hopping(1, range = 2);
julia> gdisk = HP.graphene(a0 = 1, dim = 3) |> supercell(region = RP.circle(10)) |> attach(g1D, coupling; region = RP.square(4)) |> attach(g1D, coupling; region = RP.square(4), reverse = true) |> greenfunction;
```
# See also
`greenfunction`, `GreenSolvers`
"""
attach
"""
greenfunction(h::Union{AbstractHamiltonian,OpenHamiltonian}, solver::AbstractGreenSolver)
Build a `g::GreenFunction` of Hamiltonian `h` using `solver`. See `GreenSolvers` for
available solvers. If `solver` is not provided, a default solver is chosen automatically
based on the type of `h`.
## Currying
h |> greenfunction(solver)
Curried form equivalent to `greenfunction(h, solver)`.
## Partial evaluation
`GreenFunction`s allow independent, partial evaluation of their positions (producing a
`GreenSlice`) and energy/parameters (producing a `GreenSolution`). Depending on the solver,
this may avoid repeating calculations unnecesarily when sweeping over either of these with
the other fixed.
g[ss]
g[siteselector(; ss...)]
Build a `gs::GreenSlice` that represents a Green function at arbitrary energy and parameter
values, but at specific sites on the lattice defined by `siteselector(; ss...)`, with
`ss::NamedTuple` (see `siteselector`).
g[contact_index::Integer]
Build a `GreenSlice` equivalent to `g[contact_sites...]`, where `contact_sites...`
correspond to sites in contact number `contact_index` (must have `1<= contact_index <=
number_of_contacts`). See `attach` for details on attaching contacts to a Hamiltonian.
g[:]
Build a `GreenSlice` over all contacts.
g[dst, src]
Build a `gs::GreenSlice` between sites specified by `src` and `dst`, which can take any of
the forms above. Therefore, all the previous single-index slice forms correspond to a
diagonal block `g[i, i]`.
g[diagonal(i, kernel = missing)]
If `kernel = missing`, efficiently construct `diag(g[i, i])`. If `kernel` is a matrix,
return `tr(g[site, site] * kernel)` over each site encoded in `i`. Note that if there are
several orbitals per site, these will have different length (i.e. number of orbitals vs
number of sites). See also `diagonal`.
g(ω; params...)
Build a `gω::GreenSolution` that represents a retarded Green function at arbitrary points on
the lattice, but at fixed energy `ω` and system parameter values `param`. If `ω` is complex,
the retarded or advanced Green function is returned, depending on `sign(imag(ω))`. If `ω` is
`Real`, a small, positive imaginary part is automatically added internally to produce the
retarded `g`.
gω[i]
gω[i, j]
gs(ω; params...)
For any `gω::GreenSolution` or `gs::GreenSlice`, build the Green function matrix fully
evaluated at fixed energy, parameters and positions. The matrix is a dense
`m::OrbitalSliceMatrix` with scalar element type, so that any orbital structure on each site
is flattened. Note that the resulting `m` can itself be indexed over collections of sites
with `m[i, j]`, where `i, j` are `siteselector(; ss...)` or `ss::NamedTuple`.
view(gω, i::C, j::C == i)
For any `gω::GreenSolution` and `C<:Union{Colon,Integer}`, obtain a view (of type
`SubArray`, not `OrbitalSliceMatrix`) of the corresponding intra or inter-contact propagator
`gω[i, j]` with minimal allocations.
g(; params...)
For any `g::Union{GreenFunction,GreenSlice}`, produce a new `GreenFunction` or `GreenSlice`
with all parameters fixed to `params` (or to their default values if not provided).
# Example
```jldoctest
julia> g = LP.honeycomb() |> hamiltonian(@hopping((; t = 1) -> t)) |> supercell(region = RP.circle(10)) |> greenfunction(GS.SparseLU())
GreenFunction{Float64,2,0}: Green function of a Hamiltonian{Float64,2,0}
Solver : AppliedSparseLUGreenSolver
Contacts : 0
Contact solvers : ()
Contact sizes : ()
ParametricHamiltonian{Float64,2,0}: Parametric Hamiltonian on a 0D Lattice in 2D space
Bloch harmonics : 1
Harmonic size : 726 × 726
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 2098
Coordination : 2.88981
Parameters : [:t]
julia> gω = g(0.1; t = 2)
GreenSolution{Float64,2,0}: Green function at arbitrary positions, but at a fixed energy
julia> ss = (; region = RP.circle(2), sublats = :B);
julia> gs = g[ss]
GreenSlice{Float64,2,0}: Green function at arbitrary energy, but at a fixed lattice positions
julia> gω[ss] == gs(0.1; t = 2)
true
```
# See also
`GreenSolvers`, `diagonal`, `ldos`, `conductance`, `current`, `josephson`
"""
greenfunction
"""
`GreenSolvers` is a Quantica submodule containing several pre-defined Green function
solvers. The alias `GS` can be used in place of `GS`. Currently supported solvers and their
possible keyword arguments are
- `GS.SparseLU()` : Direct inversion solver for 0D Hamiltonians using a `SparseArrays.lu(hmat)` factorization
- `GS.Spectrum(; spectrum_kw...)` : Diagonalization solver for 0D Hamiltonians using `spectrum(h; spectrum_kw...)`
- `spectrum_kw...` : keyword arguments passed on to `spectrum`
- This solver does not accept ParametricHamiltonians. Convert to Hamiltonian with `h(; params...)` first. Contact self-energies that depend on parameters are supported.
- `GS.Schur(; boundary = Inf)` : Solver for 1D Hamiltonians based on a deflated, generalized Schur factorization
- `boundary` : 1D cell index of a boundary cell, or `Inf` for no boundaries. Equivalent to removing that specific cell from the lattice when computing the Green function.
- `GS.KPM(; order = 100, bandrange = missing, kernel = I)` : Kernel polynomial method solver for 0D Hamiltonians
- `order` : order of the expansion in Chebyshev polynomials `Tₙ(h)` of the Hamiltonian `h` (lowest possible order is `n = 0`).
- `bandrange` : a `(min_energy, max_energy)::Tuple` interval that encompasses the full band of the Hamiltonian. If `missing`, it is computed automatically.
- `kernel` : generalization that computes momenta as `μₙ = Tr[Tₙ(h)*kernel]`, so that the local density of states (see `ldos`) becomes the density of the `kernel` operator.
- This solver does not allow arbitrary indexing of the resulting `g::GreenFunction`, only on contacts `g[contact_ind::Integer]`. If the system has none, we can add a dummy contact using `attach(h, nothing; sites...)`, see `attach`.
- `GS.Bands(bands_arguments; boundary = missing, bands_kw...)`: solver based on the integration of bandstructure simplices
- `bands_arguments`: positional arguments passed on to `bands`
- `bands_kw`: keyword arguments passed on to `bands`
- `boundary`: either `missing` (no boundary), or `dir => cell_pos` (single boundary), where `dir::Integer` is the Bravais vector normal to the boundary, and `cell_pos::Integer` the value of cell indices `cells[dir]` that define the boundary (i.e. `cells[dir] <= cell_pos` are vaccum)
- This solver only allows zero or one boundary. WARNING: if a boundary is used, the algorithm may become unstable for very fine band meshes.
"""
GreenSolvers
"""
diagonal(i; kernel = missing)
Wrapper over site or orbital indices (used to index into a `g::GreenFunction` or
`g::GreenSolution`) that represent purely diagonal entries. Here `i` can be any index
accepted in `g[i,i]`, e.g. `i::Integer` (contact index), `i::Colon` (merged contacts),
`i::SiteSelector` (selected sites), etc.
diagonal(kernel = missing, sites...)
Equivalent to `diagonal(siteselector(; sites...); kernel)`
## Keywords
- `kernel`: if missing, all orbitals in the diagonal `g[i, i]` are returned when indexing `g[diagonal(i)]`. Otherwise, `tr(g[site, site]*kernel)` for each site included in `i` is returned. See also `ldos`
# Example
```jldoctest
julia> g = HP.graphene(orbitals = 2) |> attach(nothing, cells = (0,0)) |> greenfunction();
julia> g(1)[diagonal(:)] # g diagonal on all contact orbitals
4-element Vector{ComplexF64}:
-0.10919028168061964 - 0.08398577667508965im
-0.10919028168734393 - 0.08398577667508968im
-0.10919028169083328 - 0.08398577667508969im
-0.109190281684109 - 0.08398577667508969im
julia> g(1)[diagonal(:, kernel = SA[1 0; 0 -1])] # σz spin spectral density at ω = 1
2-element Vector{ComplexF64}:
6.724287793247186e-12 + 2.7755575615628914e-17im
-6.724273915459378e-12 + 0.0im
```
# See also
`greenfunction`, `ldos`
"""
"""
ldos(gs::GreenSlice; kernel = I)
Build `ρs::LocalSpectralDensitySlice`, a partially evaluated object representing the local
density of states `ρᵢ(ω)` at specific sites `i` but at arbitrary energy `ω`.
ldos(gω::GreenSolution; kernel = I)
Build `ρω::LocalSpectralDensitySolution`, as above, but for `ρᵢ(ω)` at a fixed `ω` and
arbitrary sites `i`. See also `greenfunction` for details on building a `GreenSlice` and
`GreenSolution`.
The local density of states is defined here as ``ρᵢ(ω) = -Tr(gᵢᵢ(ω))/π``, where `gᵢᵢ(ω)` is
the retarded Green function at a given site `i`.
## Keywords
- `kernel` : for multiorbital sites, `kernel` allows to compute a generalized `ldos` `ρᵢ(ω) = -Tr(gᵢᵢ(ω) * kernel)/π`, where `gᵢᵢ(ω)` is the retarded Green function at site `i` and energy `ω`. If `kernel = missing`, the complete, orbital-resolved `ldos` is returned.
## Full evaluation
ρω[sites...]
ρs(ω; params...)
Given a partially evaluated `ρω::LocalSpectralDensitySolution` or
`ρs::LocalSpectralDensitySlice`, build an `OrbitalSliceVector` `[ρ₁(ω), ρ₂(ω)...]` of fully
evaluated local densities of states. See `OrbitalSliceVector` for further details.
# Example
```
julia> g = HP.graphene(a0 = 1, t0 = 1) |> supercell(region = RP.circle(20)) |> attach(nothing, region = RP.circle(1)) |> greenfunction(GS.KPM(order = 300, bandrange = (-3.1, 3.1)))
GreenFunction{Float64,2,0}: Green function of a Hamiltonian{Float64,2,0}
Solver : AppliedKPMGreenSolver
Contacts : 1
Contact solvers : (SelfEnergyEmptySolver,)
Contact sizes : (6,)
Hamiltonian{Float64,2,0}: Hamiltonian on a 0D Lattice in 2D space
Bloch harmonics : 1
Harmonic size : 2898 × 2898
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 8522
Coordination : 2.94065
julia> ldos(g(0.2))[1]
6-element OrbitalSliceVector{Vector{Float64}}:
0.036802204179316955
0.034933055722650375
0.03493305572265026
0.03493305572265034
0.03493305572265045
0.036802204179317045
julia> ldos(g(0.2))[1] == -imag.(g[diagonal(1; kernel = I)](0.2)) ./ π
true
```
# See also
`greenfunction`, `diagonal`, `current`, `conductance`, `josephson`, `transmission`, `OrbitalSliceVector`
"""
ldos
"""
densitymatrix(gs::GreenSlice; opts...)
Compute a `ρ::DensityMatrix` at thermal equilibrium on sites encoded in `gs`. The actual
matrix for given system parameters `params`, and for a given chemical potential `mu` and
temperature `kBT` is obtained by calling `ρ(mu = 0, kBT = 0; params...)`. The algorithm used is
specialized for the GreenSolver used, if available. In this case, `opts` are options for
said algorithm.
densitymatrix(gs::GreenSlice, (ωmin, ωmax); opts..., quadgk_opts...)
densitymatrix(gs::GreenSlice, (ωpoints...); opts..., quadgk_opts...)
As above, but using a generic algorithm that relies on numerical integration along a contour
in the complex plane, between points `(ωmin, ωmax)` (or along a polygonal path connecting
`ωpoints`), which should be chosen so as to encompass the full system bandwidth. Keywords
`quadgk_opts` are passed to the `QuadGK.quadgk` integration routine. See below for
additiona `opts`.
densitymatrix(gs::GreenSlice, ωmax::Number; opts...)
As above with `ωmin = -ωmax`.
## Full evaluation
ρ(μ = 0, kBT = 0; params...) # where ρ::DensityMatrix
Evaluate the density matrix at chemical potential `μ` and temperature `kBT` (in the same
units as the Hamiltonian) for the given `g` parameters `params`, if any. The result is given
as an `OrbitalSliceMatrix`, see its docstring for further details.
## Algorithms and keywords
The generic integration algorithm allows for the following `opts` (see also `josephson`):
- `omegamap`: a function `ω -> (; params...)` that translates `ω` at each point in the integration contour to a set of system parameters. Useful for `ParametricHamiltonians` which include terms `Σ(ω)` that depend on a parameter `ω` (one would then use `omegamap = ω -> (; ω)`). Default: `ω -> (;)`, i.e. no mapped parameters.
- `imshift`: a small imaginary shift to add to the integration contour. Default: `sqrt(eps)` for the relevant number type.
- `post`: a function to apply to the result of the integration. Default: `identity`.
- `slope`: the integration contour is a sawtooth path connecting `(ωmin, ωmax)`, or more generally `ωpoints`, which are usually real numbers encompasing the system's bandwidth. Between each pair of points the path increases and then decreases linearly with the given `slope`. Default: `1.0`.
Currently, the following GreenSolvers implement dedicated densitymatrix algorithms:
- `GS.Spectrum`: based on summation occupation-weigthed eigenvectors. No `opts`.
- `GS.KPM`: based on the Chebyshev expansion of the Fermi function. Currently only works for zero temperature and only supports `nothing` contacts (see `attach`). No `opts`.
# Example
```
julia> g = HP.graphene(a0 = 1) |> supercell(region = RP.circle(10)) |> greenfunction(GS.Spectrum());
julia> ρ = densitymatrix(g[region = RP.circle(0.5)])
DensityMatrix: density matrix on specified sites with solver of type DensityMatrixSpectrumSolver
julia> ρ() # with mu = kBT = 0 by default
2×2 OrbitalSliceMatrix{Matrix{ComplexF64}}:
0.5+0.0im -0.262865+0.0im
-0.262865+0.0im 0.5+0.0im
```
"""
densitymatrix
"""
current(h::AbstractHamiltonian; charge = -I, direction = 1)
Build an `Operator` object that behaves like a `ParametricHamiltonian` in regards to calls
and getindex, but whose matrix elements are hoppings ``im*(rⱼ-rᵢ)[direction]*charge*tⱼᵢ``,
where `tᵢⱼ` are the hoppings in `h`. This operator is equal to ``∂h/∂Aᵢ``, where `Aᵢ`
is a gauge field along `direction = i`.
current(gs::GreenSlice; charge = -I, direction = missing)
Build `Js::CurrentDensitySlice`, a partially evaluated object representing the equilibrium
local current density `Jᵢⱼ(ω)` at arbitrary energy `ω` from site `j` to site `i`, both taken
from a specific lattice slice. The current is computed along a given `direction` (see
Keywords).
current(gω::GreenSolution; charge = -I, direction = missing)
Build `Jω::CurrentDensitySolution`, as above, but for `Jᵢⱼ(ω)` at a fixed `ω` and arbitrary
sites `i, j`. See also `greenfunction` for details on building a `GreenSlice` and
`GreenSolution`.
The local current density is defined here as ``Jᵢⱼ(ω) = (2/h) rᵢⱼ Re Tr[(Hᵢⱼgⱼᵢ(ω) -
gᵢⱼ(ω)Hⱼᵢ) * charge]``, with the integrated local current given by ``Jᵢⱼ = ∫ f(ω) Jᵢⱼ(ω)
dω``. Here `Hᵢⱼ` is the hopping from site `j` at `rⱼ` to `i` at `rᵢ`, `rᵢⱼ = rᵢ - rⱼ`,
`charge` is the charge of carriers in orbital space (see Keywords), and `gᵢⱼ(ω)` is the
retarded Green function between said sites.
## Keywords
- `charge` : for multiorbital sites, `charge` can be a general matrix, which allows to compute arbitrary currents, such as spin currents.
- `direction`: as defined above, `Jᵢⱼ(ω)` is a vector. If `direction` is `missing` the norm `|Jᵢⱼ(ω)|` is returned. If it is an `u::Union{SVector,Tuple}`, `u⋅Jᵢⱼ(ω)` is returned. If an `n::Integer`, `Jᵢⱼ(ω)[n]` is returned.
## Full evaluation
Jω[sites...]
Js(ω; params...)
Given a partially evaluated `Jω::CurrentDensitySolution` or `ρs::CurrentDensitySlice`, build
a sparse matrix `Jᵢⱼ(ω)` along the specified `direction` of fully evaluated local current
densities.
Note: Evaluating the current density returns a `SparseMatrixCSC` currently, instead of a
`OrbitalSliceMatrix`, since the latter is designed for dense arrays.
# Example
```
julia> # A semi-infinite 1D lead with a magnetic field `B`
julia> g = LP.square() |> supercell((1,0), region = r->-2<r[2]<2) |> hamiltonian(@hopping((r, dr; B = 0.1) -> cis(B * dr' * SA[r[2],-r[1]]))) |> greenfunction(GS.Schur(boundary = 0));
julia> J = current(g[cells = SA[1]])
CurrentDensitySlice{Float64} : current density at a fixed location and arbitrary energy
charge : LinearAlgebra.UniformScaling{Int64}(-1)
direction : missing
julia> J(0.2; B = 0.1)
3×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 4 stored entries:
⋅ 0.0290138 ⋅
0.0290138 ⋅ 0.0290138
⋅ 0.0290138 ⋅
julia> J(0.2; B = 0.0)
3×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 4 stored entries:
⋅ 7.77156e-16 ⋅
7.77156e-16 ⋅ 5.55112e-16
⋅ 5.55112e-16 ⋅
```
# See also
`greenfunction`, `ldos`, `conductance`, `josephson`, `transmission`
"""
current
"""
conductance(gs::GreenSlice; nambu = false)
Given a slice `gs = g[i::Integer, j::Integer]` of a `g::GreenFunction`, build a partially
evaluated object `G::Conductance` representing the zero-temperature, linear,
differential conductance `Gᵢⱼ = dIᵢ/dVⱼ` between contacts `i` and `j` at arbitrary bias `ω =
eV` in units of `e^2/h`. `Gᵢⱼ` is given by
Gᵢⱼ = e^2/h × Tr{[im*δᵢⱼ(gʳ-gᵃ)Γⁱ-gʳΓⁱgᵃΓʲ]} (nambu = false)
Gᵢⱼ = e^2/h × Tr{[im*δᵢⱼ(gʳ-gᵃ)Γⁱτₑ-gʳΓⁱτ₃gᵃΓʲτₑ]} (nambu = true)
Here `gʳ = g(ω)` and `gᵃ = (gʳ)' = g(ω')` are the retarded and advanced Green function of
the system, and `Γⁱ = im * (Σⁱ - Σⁱ')` is the decay rate at contact `i`. For Nambu systems
(`nambu = true`), the matrices `τₑ=[I 0; 0 0]` and `τ₃ = [I 0; 0 -I]` ensure that charge
reversal in Andreev reflections is properly taken into account. For normal systems (`nambu =
false`), the total current at finite bias and temperatures is given by ``Iᵢ = e/h × ∫
dω ∑ⱼ [fᵢ(ω) - fⱼ(ω)] Gᵢⱼ(ω)``, where ``fᵢ(ω)`` is the Fermi distribution in lead `i`.
## Keywords
- `nambu` : whether to consider the Hamiltonian of the system is written in a Nambu basis, each site containing `N` electron orbitals followed by `N` hole orbitals.
## Full evaluation
G(ω; params...)
Compute the conductance at the specified contacts.
# Examples
```jldoctest
julia> # A central system g0 with two 1D leads and transparent contacts
julia> glead = LP.square() |> hamiltonian(hopping(1)) |> supercell((1,0), region = r->-2<r[2]<2) |> greenfunction(GS.Schur(boundary = 0));
julia> g0 = LP.square() |> hamiltonian(hopping(1)) |> supercell(region = r->-2<r[2]<2 && r[1]≈0) |> attach(glead, reverse = true) |> attach(glead) |> greenfunction;
julia> G = conductance(g0[1])
Conductance{Float64}: Zero-temperature conductance dIᵢ/dVⱼ from contacts i,j, in units of e^2/h
Current contact : 1
Bias contact : 1
julia> G(0.2) ≈ 3
true
```
# See also
`greenfunction`, `ldos`, `current`, `josephson`, `transmission`
"""
conductance
"""
transmission(gs::GreenSlice)
Given a slice `gs = g[i::Integer, j::Integer]` of a `g::GreenFunction`, build a partially
evaluated object `T::Transmission` representing the normal transmission probability `Tᵢⱼ(ω)`
from contact `j` to `i` at energy `ω`. It can be written as ``Tᵢⱼ = Tr{gʳΓⁱgᵃΓʲ}``. Here `gʳ
= g(ω)` and `gᵃ = (gʳ)' = g(ω')` are the retarded and advanced Green function of the system,
and `Γⁱ = im * (Σⁱ - Σⁱ')` is the decay rate at contact `i`
## Full evaluation
T(ω; params...)
Compute the transmission `Tᵢⱼ(ω)` at a given `ω` and for the specified `params` of `g`.
# Examples
```jldoctest
julia> # A central system g0 with two 1D leads and transparent contacts
julia> glead = LP.square() |> hamiltonian(hopping(1)) |> supercell((1,0), region = r->-2<r[2]<2) |> greenfunction(GS.Schur(boundary = 0));
julia> g0 = LP.square() |> hamiltonian(hopping(1)) |> supercell(region = r->-2<r[2]<2 && r[1]≈0) |> attach(glead, reverse = true) |> attach(glead) |> greenfunction;
julia> T = transmission(g0[2, 1])
Transmission: total transmission between two different contacts
From contact : 1
To contact : 2
julia> T(0.2) ≈ 3 # The difference from 3 is due to the automatic `im*sqrt(eps(Float64))` added to `ω`
false
julia> T(0.2 + 1e-10im) ≈ 3
true
```
# See also
`greenfunction`, `conductance`, `ldos`, `current`, `josephson`
"""
transmission
"""
josephson(gs::GreenSlice, ωmax; omegamap = ω -> (;), phases = missing, imshift = missing, slope = 1, post = real, atol = 1e-7, quadgk_opts...)
For a `gs = g[i::Integer]` slice of the `g::GreenFunction` of a hybrid junction, build a
`J::Josephson` object representing the equilibrium (static) Josephson current `I_J` flowing
into `g` through contact `i`, integrated from `-ωmax` to `ωmax`. The result of `I_J` is
given in units of `qe/h` (`q` is the dimensionless carrier charge). `I_J` can be written as
``I_J = Re ∫ dω f(ω) j(ω)``, where ``j(ω) = (qe/h) × 2Tr[(ΣʳᵢGʳ - GʳΣʳᵢ)τz]``.
## Full evaluation
J(kBT = 0; params...) # where J::Josephson
Evaluate the current `I_J` at temperature `kBT` (in the same units as the Hamiltonian) for
the given `g` parameters `params`, if any.
## Keywords
- `omegamap`: a function `ω -> (; params...)` that translates `ω` at each point in the integration contour to a set of system parameters. Useful for `ParametricHamiltonians` which include terms `Σ(ω)` that depend on a parameter `ω` (one would then use `omegamap = ω -> (; ω)`). Default: `ω -> (;)`, i.e. no mapped parameters.
- `phases` : collection of superconducting phase biases to apply to the contact, so as to efficiently compute the full current-phase relation `[I_J(ϕ) for ϕ in phases]`. Note that each phase bias `ϕ` is applied by a `[cis(-ϕ/2) 0; 0 cis(ϕ/2)]` rotation to the self energy, which is almost free. If `missing`, a single `I_J` is returned.
- `imshift`: if `missing` the initial and final integration points `± ωmax` are shifted by `im * sqrt(eps(ωmax))`, to avoid the real axis. Otherwise a shift `im*imshift` is applied (may be zero if `ωmax` is greater than the bandwidth).
- `slope`: if non-zero, the integration will be performed along a piecewise-linear path in the complex plane `(-ωmax, -ωmax/2 * (1+slope*im), 0, ωmax/2 * (1+slope*im), ωmax)`, taking advantage of the holomorphic integrand `f(ω) j(ω)` and the Cauchy Integral Theorem for faster convergence.
- `post`: function to apply to the result of `∫ dω f(ω) j(ω)` to obtain the result, `post = real` by default.
- `atol`: absolute integration tolerance. The default `1e-7` is chosen to avoid excessive integration times when the current is actually zero.
- `quadgk_opts` : extra keyword arguments (other than `atol`) to pass on to the function `QuadGK.quadgk` that is used for the integration.
# Examples
```
julia> glead = LP.square() |> hamiltonian(@onsite((; ω = 0) -> 0.0005 * SA[0 1; 1 0] + im*ω*I) + hopping(SA[1 0; 0 -1]), orbitals = 2) |> supercell((1,0), region = r->-2<r[2]<2) |> greenfunction(GS.Schur(boundary = 0));
julia> g0 = LP.square() |> hamiltonian(hopping(SA[1 0; 0 -1]), orbitals = 2) |> supercell(region = r->-2<r[2]<2 && r[1]≈0) |> attach(glead, reverse = true) |> attach(glead) |> greenfunction;
julia> J = josephson(g0[1], 4; omegamap = ω -> (;ω), phases = subdiv(0, pi, 10))
Josephson: equilibrium Josephson current at a specific contact using solver of type JosephsonIntegratorSolver
julia> J(0.0)
10-element Vector{Float64}:
7.060440509787806e-18
0.0008178484258721882
0.0016108816082772972
0.002355033150366814
0.0030277117620820513
0.003608482493380227
0.004079679643085058
0.004426918320990192
0.004639358112465513
2.2618383948099795e-12
```
# See also
`greenfunction`,`ldos`, `current`, `conductance`, `transmission`
"""
josephson
"""
OrbitalSliceArray <: AbstractArray
A type of `AbstractArray` defined over a set of orbitals (see also `orbaxes`). It wraps a
regular array that can be obtained with `parent(::OrbitalSliceArray)`, and supports all the
general AbstractArray interface. In addition, it also supports indexing using
`siteselector`s and `cellindices`. `OrbitalSliceVector` and `OrbitalSliceMatrix` are special
cases of `OrbitalSliceArray` of dimension 1 and 2 respectively.
This is the common output type produced by `GreenFunctions` and most observables.
Note that for `m::OrbitalSliceMatrix`, `mat[i]` is equivalent to `mat[i,i]`, and `mat[;
sel...]` is equivalent to `mat[(; sel...), (; sel...)]`.
# `siteselector` indexing
mat[(; rowsites...), (; colsites...)]
mat[rowsel::SiteSelector, colsel::SiteSelector]
If we index an `OrbitalSliceMatrix` with `s::NamedTuple` or a `siteselector(; s...)`, we
obtain a new `OrbitalSliceMatrix` over the orbitals of the selected sites.
# `sites` indexing
mat[sites(cell_index, site_indices)]
mat[sites(row_cell_index, row_site_indices), sites(col_cell_index, col_site_indices)]
If we index an `OrbitalSliceMatrix` with `sites`, we obtain an unwrapped `Matrix` over
the sites with `site_indices` within cell with `cell_index`. Here `site_indices` can be
an `Int`, a container of `Int`, or a `:` (for all sites in the unit cell). If any of the
specified sites are not already in `orbaxes(mat)`, indexing will throw an error.
Note that in this case we do not obtain a new `OrbitalSliceMatrix`. This behavior is
required for performance, as re-wrapping in a new `OrbitalSliceMatrix` requires recomputing
and allocating the new `orbaxes`.
view(mat, rows::CellSites, cols::Cellsites = rows)
Like the above, but returns a view instead of a copy of the indexed orbital matrix.
Note: `diagonal` indexing is currently not supported by `OrbitalSliceArray`.
# Examples
```
julia> g = LP.linear() |> hamiltonian(hopping(SA[0 1; 1 0]) + onsite(I), orbitals = 2) |> supercell(4) |> greenfunction;
julia> mat = g(0.2)[region = r -> 2<=r[1]<=4]
6×6 OrbitalSliceMatrix{Matrix{ComplexF64}}:
-1.93554e-9-0.545545im 0.0-0.0im 0.0-0.0im -0.5+0.218218im 0.4+0.37097im 0.0+0.0im
0.0-0.0im -1.93554e-9-0.545545im -0.5+0.218218im 0.0-0.0im 0.0+0.0im 0.4+0.37097im
0.0-0.0im -0.5+0.218218im -1.93554e-9-0.545545im 0.0-0.0im 0.0+0.0im -0.5+0.218218im
-0.5+0.218218im 0.0-0.0im 0.0-0.0im -1.93554e-9-0.545545im -0.5+0.218218im 0.0+0.0im
0.4+0.37097im 0.0+0.0im 0.0+0.0im -0.5+0.218218im -1.93554e-9-0.545545im 0.0-0.0im
0.0+0.0im 0.4+0.37097im -0.5+0.218218im 0.0+0.0im 0.0-0.0im -1.93554e-9-0.545545im
julia> mat[(; cells = SA[1]), (; cells = SA[0])]
2×4 OrbitalSliceMatrix{Matrix{ComplexF64}}:
0.4+0.37097im 0.0+0.0im 0.0+0.0im -0.5+0.218218im
0.0+0.0im 0.4+0.37097im -0.5+0.218218im 0.0+0.0im
julia> mat[sites(SA[1], 1)]
2×2 Matrix{ComplexF64}:
-1.93554e-9-0.545545im 0.0-0.0im
0.0-0.0im -1.93554e-9-0.545545im
```
# See also
`siteselector`, `cellindices`, `orbaxes`
"""
OrbitalSliceArray, OrbitalSliceVector, OrbitalSliceMatrix
"""
diagonal(args...)
Wrapper over indices `args` used to obtain the diagonal of a `gω::GreenSolution`. If `d =
diagonal(sel)`, then `gω[d] = diag(gω[sel, sel])`, although in most cases the computation
is done more efficiently internally.
"""
diagonal
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 22386 | ############################################################################################
# greenfunction
#region
greenfunction(s::AbstractGreenSolver) = oh -> greenfunction(oh, s)
greenfunction() = h -> greenfunction(h)
greenfunction(h::AbstractHamiltonian, args...) = greenfunction(OpenHamiltonian(h), args...)
function greenfunction(oh::OpenHamiltonian, s::AbstractGreenSolver = default_green_solver(hamiltonian(oh)))
cs = Contacts(oh)
h = hamiltonian(oh)
as = apply(s, h, cs)
return GreenFunction(h, as, cs)
end
default_green_solver(::AbstractHamiltonian0D) = GS.SparseLU()
default_green_solver(::AbstractHamiltonian1D) = GS.Schur()
default_green_solver(::AbstractHamiltonian) = GS.Bands()
#endregion
############################################################################################
# Contacts call! API
#region
function call!(c::Contacts, ω; params...)
Σblocks = selfenergyblocks(c)
call!.(c.selfenergies, Ref(ω); params...) # updates matrices in Σblocks
return Σblocks
end
call!_output(c::Contacts) = selfenergyblocks(c)
#endregion
############################################################################################
# GreenFuntion call! API
#region
(g::GreenFunction)(ω; params...) = minimal_callsafe_copy(call!(g, ω; params...))
(g::GreenSlice)(ω; params...) = copy(call!(g, ω; params...))
call!(g::G, ω; params...) where {T,G<:Union{GreenFunction{T},GreenSlice{T}}} =
call!(g, real_or_complex_convert(T, ω); params...)
function call!(g::GreenFunction{T}, ω::T; params...) where {T}
ω´ = retarded_omega(ω, solver(g))
return call!(g, ω´; params...)
end
function call!(g::GreenFunction{T}, ω::Complex{T}; params...) where {T}
h = parent(g) # not hamiltonian(h). We want the ParametricHamiltonian if it exists.
contacts´ = contacts(g)
call!(h; params...)
Σblocks = call!(contacts´, ω; params...)
corbs = contactorbitals(contacts´)
slicer = solver(g)(ω, Σblocks, corbs)
return GreenSolution(g, slicer, Σblocks, corbs)
end
call!(g::GreenSlice{T}, ω::T; params...) where {T} =
call!(g, retarded_omega(ω, solver(parent(g))); params...)
call!(g::GreenSlice{T}, ω::Complex{T}; params...) where {T} =
call!(greenfunction(g), ω; params...)[orbinds_or_contactinds(g)...]
real_or_complex_convert(::Type{T}, ω::Real) where {T<:Real} = convert(T, ω)
real_or_complex_convert(::Type{T}, ω::Complex) where {T<:Real} = convert(Complex{T}, ω)
retarded_omega(ω::T, s::AppliedGreenSolver) where {T<:Real} =
ω + im * sqrt(eps(float(T))) * needs_omega_shift(s)
# fallback, may be overridden
needs_omega_shift(s::AppliedGreenSolver) = true
#endregion
############################################################################################
# FixedParamGreenSolver
# support for g(; params...) --> GreenFunction (not a wrapper, completely independent)
# FixedParamGreenSolver doesn't need to implement the AppliedGreenSolver API, since it
# forwards to its parent
#region
struct FixedParamGreenSolver{P,G<:GreenFunction} <: AppliedGreenSolver
gparent::G
params::P
end
Base.parent(s::FixedParamGreenSolver) = s.gparent
parameters(s::FixedParamGreenSolver) = s.params
function (g::GreenFunction)(; params...)
h´ = minimal_callsafe_copy(parent(g))
c´ = minimal_callsafe_copy(contacts(g))
s´ = minimal_callsafe_copy(solver(g), h´, c´)
gparent = GreenFunction(h´, s´, c´)
return GreenFunction(h´, FixedParamGreenSolver(gparent, params), c´)
end
(g::GreenSlice)(; params...) = GreenSlice(parent(g)(; params...), greenindices(g)...)
# params are ignored, solver.params are used instead. T required to disambiguate.
function call!(g::GreenFunction{T,<:Any,<:Any,<:FixedParamGreenSolver}, ω::Complex{T}; params...) where {T}
s = solver(g)
return call!(s.gparent, ω; s.params...)
end
function minimal_callsafe_copy(s::FixedParamGreenSolver, parentham, parentcontacts)
solver´ = minimal_callsafe_copy(solver(s.gparent), parentham, parentcontacts)
gparent = GreenFunction(parentham, solver´, parentcontacts)
s´ = FixedParamGreenSolver(gparent, s.params)
return s´
end
default_hamiltonian(g::GreenFunction{<:Any,<:Any,<:Any,<:FixedParamGreenSolver}) =
default_hamiltonian(parent(g); parameters(solver(g))...)
#endregion
############################################################################################
# GreenSolution indexing
# We convert any index down to cellorbs to pass to slicer, except contacts (Int, Colon)
#region
Base.getindex(g::GreenFunction, i, j = i) = GreenSlice(g, i, j)
Base.getindex(g::GreenFunction; kw...) = g[siteselector(; kw...)]
Base.getindex(g::GreenFunction, kw::NamedTuple) = g[siteselector(; kw...)]
Base.getindex(g::GreenSolution; kw...) = g[getindex(lattice(g); kw...)]
# g[::Integer, ::Integer] and g[:, :] - intra and inter contacts
Base.view(g::GreenSolution, i::CT, j::CT = i) where {CT<:Union{Integer,Colon}} =
view(slicer(g), i, j)
# fastpath for intra and inter-contact
Base.getindex(g::GreenSolution, i::CT, j::CT = i) where {CT<:Union{Integer,Colon}} =
OrbitalSliceMatrix(copy(view(g, i, j)), sites_to_orbs.((i,j), Ref(g)))
# conversion down to CellOrbitals. See sites_to_orbs in slices.jl
Base.getindex(g::GreenSolution, i, j) = getindex(g, sites_to_orbs(i, g), sites_to_orbs(j, g))
Base.getindex(g::GreenSolution, i) = (i´ = sites_to_orbs(i, g); getindex(g, i´, i´))
# wrapped matrix for end user consumption
Base.getindex(g::GreenSolution, i::OrbitalSliceGrouped, j::OrbitalSliceGrouped) =
OrbitalSliceMatrix(
mortar((g[si, sj] for si in cellsdict(i), sj in cellsdict(j))),
(i, j))
Base.getindex(g::GreenSolution, i::AnyOrbitalSlice, j::AnyOrbitalSlice) =
mortar((g[si, sj] for si in cellsdict(i), sj in cellsdict(j)))
Base.getindex(g::GreenSolution, i::AnyOrbitalSlice, j::AnyCellOrbitals) =
mortar((g[si, sj] for si in cellsdict(i), sj in (j,)))
Base.getindex(g::GreenSolution, i::AnyCellOrbitals, j::AnyOrbitalSlice) =
mortar((g[si, sj] for si in (i,), sj in cellsdict(j)))
Base.getindex(g::GreenSolution, i::AnyCellOrbitals, j::AnyCellOrbitals) =
slicer(g)[sanitize_cellorbs(i), sanitize_cellorbs(j)]
# fallback conversion to CellOrbitals
Base.getindex(s::GreenSlicer, i::AnyCellOrbitals, j::AnyCellOrbitals = i) =
getindex(s, sanitize_cellorbs(i), sanitize_cellorbs(j))
# fallback, for GreenSlicers that forgot to implement getindex
Base.getindex(s::GreenSlicer, ::CellOrbitals, ::CellOrbitals) =
argerror("getindex of $(nameof(typeof(s))) not implemented")
# fallback, for GreenSlicers that don't implement view
Base.view(g::GreenSlicer, args...) =
argerror("GreenSlicer of type $(nameof(typeof(g))) doesn't implement view for these arguments")
# must ensure that orbindices is not a scalar, to consistently obtain a Matrix
sanitize_cellorbs(c::CellOrbitals) = c
sanitize_cellorbs(c::CellOrbital) = CellOrbitals(cell(c), orbindex(c):orbindex(c))
sanitize_cellorbs(c::CellOrbitalsGrouped) = CellOrbitals(cell(c), orbindices(c))
#endregion
############################################################################################
# GreenSolution diagonal indexing
# returns a vector of AbstractMatrices or scalars, one per site
#region
Base.getindex(gω::GreenSolution{T}, i::DiagIndices, ::DiagIndices = i) where {T} =
append_diagonal!(Complex{T}[], gω, parent(i), kernel(i)) |>
maybe_OrbitalSliceArray(sites_to_orbs(i, gω))
# If i::Union{SiteSlice,CellSites}, convert to orbitals
append_diagonal!(d, gω, i, kernel; kw...) =
append_diagonal!(d, gω, sites_to_orbs(i, gω), kernel; kw...)
append_diagonal!(d, gω, s::OrbitalSlice, kernel; kw...) =
append_diagonal!(d, gω, cellsdict(s), kernel; kw...) # no OrbitalSliceVector here
append_diagonal!(d, gω, s::AnyOrbitalSlice, kernel; kw...) =
append_diagonal!(d, gω, cellsdict(s), kernel; kw...)
function append_diagonal!(d, gω, s::AnyCellOrbitalsDict, kernel; kw...)
sizehint!(d, length(s))
for sc in s
append_diagonal!(d, gω, sc, kernel; kw...)
end
return d
end
function append_diagonal!(d, gω, o::Union{AnyCellOrbitals,Integer,Colon}, kernel; post = identity)
gblock = diagonal_slice(gω, o)
rngs = orbranges_or_allorbs(kernel, o, gω)
for rng in rngs
push!(d, post(apply_kernel(kernel, view_or_scalar(gblock, rng))))
end
return d
end
# fallback, may be overloaded for gω's that know how to do this more efficiently
# it should include all diagonal blocks for each site, not just the orbital diagonal
diagonal_slice(gω, o) = gω[o, o]
# If no kernel is provided, we return the whole diagonal
orbranges_or_allorbs(kernel::Missing, o::AnyCellOrbitals, gω) = eachindex(orbindices(o))
orbranges_or_allorbs(kernel::Missing, o::Colon, gω) = 1:norbitals(contactorbitals(gω))
orbranges_or_allorbs(kernel::Missing, i::Integer, gω) = 1:norbitals(contactorbitals(gω), i)
orbranges_or_allorbs(kernel, o, gω) = orbranges_or_allorbs(o, gω)
orbranges_or_allorbs(contact::Integer, gω) = orbranges(contactorbitals(gω), contact)
orbranges_or_allorbs(::Colon, gω) = orbranges(contactorbitals(gω))
orbranges_or_allorbs(o::CellOrbitalsGrouped, gω) = orbranges(o)
view_or_scalar(gblock, rng::UnitRange) = view(gblock, rng, rng)
view_or_scalar(gblock, i::Integer) = gblock[i, i]
apply_kernel(kernel::Missing, v::Number) = v
apply_kernel(kernel::AbstractMatrix, v) = tr(kernel * v)
apply_kernel(kernel::UniformScaling, v) = kernel.λ * tr(v)
apply_kernel(kernel::Number, v) = kernel * tr(v)
apply_kernel(kernel::Diagonal, v::AbstractMatrix) = sum(i -> kernel[i] * v[i, i], eachindex(kernel))
apply_kernel(kernel::Diagonal, v::Number) = only(kernel) * v
maybe_scalarize(s::OrbitalSliceGrouped, kernel::Missing) = s
maybe_scalarize(s::OrbitalSliceGrouped, kernel) = scalarize(s)
#endregion
############################################################################################
# selfenergy(::GreenSolution, contactinds::Int...; onlyΓ = false)
# if no contactinds are provided, all are returned. Otherwise, a view of Σ over contacts.
# selfenergy!(Σ::AbstractMatrix, ::GreenSolution, cinds...)
# add blocks from cinds selfenergies to Σ (or all), and return a view over them
# similar_contactΣ(g)
# Matrix to hold MatrixBlocks of any self-energy
# similar_contactΣ(g, cind)
# Matrix that can hold a view of one self-energy
#region
selfenergy(g::GreenSolution, cinds::Int...; kw...) =
selfenergy!(similar_contactΣ(g), g, cinds...; kw...)
# we support also the case for one contact, but it is only used elsewhere
function similar_contactΣ(g::Union{GreenFunction{T},GreenSolution{T}}, cind...) where {T}
n = norbitals(contactorbitals(g), cind...)
Σ = zeros(Complex{T}, n, n)
return Σ
end
function maybe_selfenergy_view(Σ, g, cind, cinds...)
inds = copy(contactinds(g, cind))
foreach(i -> append!(inds, contactinds(g, i)), cinds)
isempty(cinds) || unique!(sort!(inds))
Σv = view(Σ, inds, inds)
return Σv
end
maybe_selfenergy_view(Σ, g) = Σ
function selfenergy!(Σ::AbstractMatrix{T}, g::GreenSolution, cinds...; onlyΓ = false) where {T}
fill!(Σ, zero(T))
addselfenergy!(Σ, g, cinds...)
onlyΓ && extractΓ!(Σ) # faster to do this on Σ than on Σv
Σv = maybe_selfenergy_view(Σ, g, cinds...)
return Σv
end
addselfenergy!(Σ, g::GreenSolution, cind::Int, cinds...) =
addselfenergy!(addselfenergy!(Σ, selfenergies(g)[cind]), g, cinds...)
addselfenergy!(Σ, ::GreenSolution) = Σ
# RegularSelfEnergy case
function addselfenergy!(Σ, b::MatrixBlock)
v = view(Σ, blockrows(b), blockcols(b))
v .+= blockmat(b)
return Σ
end
# ExtendedSelfEnergy case
function addselfenergy!(Σ, (V´, g⁻¹, V)::NTuple{<:Any,MatrixBlock})
v = view(Σ, blockrows(V´), blockcols(V))
Vd = denseblockmat(V)
copy!(Vd, blockmat(V))
ldiv!(lu(blockmat(g⁻¹)), Vd)
mul!(v, blockmat(V´), Vd, 1, 1)
return Σ
end
function extractΓ!(Σ)
Σ .-= Σ'
Σ .*= im
return Σ
end
#endregion
############################################################################################
# selfenergyblocks
# Build MatrixBlocks from contacts, including extended inds for ExtendedSelfEnergySolvers
#region
function selfenergyblocks(contacts::Contacts)
Σs = selfenergies(contacts)
solvers = solver.(Σs)
extoffset = norbitals(contactorbitals(contacts))
cinds = contactinds(contacts)
Σblocks = selfenergyblocks(extoffset, cinds, 1, (), solvers...)
return Σblocks
end
# extoffset: current offset where extended indices start
# contactinds: orbital indices for all selfenergies in contacts
# ci: auxiliary index for current selfenergy being processed
# blocks: tuple accumulating all MatrixBlocks from all selfenergies
# solvers: selfenergy solvers that will update the MatrixBlocks
selfenergyblocks(extoffset, contactinds, ci, blocks) = blocks
function selfenergyblocks(extoffset, contactinds, ci, blocks, s::RegularSelfEnergySolver, ss...)
c = contactinds[ci]
Σblock = MatrixBlock(call!_output(s), c, c)
return selfenergyblocks(extoffset, contactinds, ci + 1, (blocks..., Σblock), ss...)
end
function selfenergyblocks(extoffset, contactinds, ci, blocks, s::ExtendedSelfEnergySolver, ss...)
Vᵣₑ, gₑₑ⁻¹, Vₑᵣ = shiftedmatblocks(call!_output(s), contactinds[ci], extoffset)
extoffset += size(gₑₑ⁻¹, 1)
# there is no minus sign here!
return selfenergyblocks(extoffset, contactinds, ci + 1, (blocks..., (Vᵣₑ, gₑₑ⁻¹, Vₑᵣ)), ss...)
end
function shiftedmatblocks((Vᵣₑ, gₑₑ⁻¹, Vₑᵣ)::NTuple{3,AbstractArray}, cinds, shift)
extsize = size(gₑₑ⁻¹, 1)
Vᵣₑ´ = MatrixBlock(Vᵣₑ, cinds, shift+1:shift+extsize)
# adds denseblock for selfenergy ldiv
Vₑᵣ´ = MatrixBlock(Vₑᵣ, shift+1:shift+extsize, cinds, Matrix(Vₑᵣ))
gₑₑ⁻¹´ = MatrixBlock(gₑₑ⁻¹, shift+1:shift+extsize, shift+1:shift+extsize)
return Vᵣₑ´, gₑₑ⁻¹´, Vₑᵣ´
end
#endregion
############################################################################################
# ContactOrbitals constructors
# Build a ContactOrbitals from a Hamiltonian and a set of latslices
#region
ContactOrbitals(h::AbstractHamiltonian{<:Any,<:Any,L}) where {L} =
ContactOrbitals{L}()
ContactOrbitals(h::AbstractHamiltonian, os, oss...) =
ContactOrbitals(blockstructure(h), os, oss...)
# probably unused, since oss comes from SelfEnergy, so it is already OrbitalSliceGrouped
ContactOrbitals(bs::OrbitalBlockStructure, oss...) =
ContactOrbitals(bs, sites_to_orbs.(oss, Ref(bs))...)
function ContactOrbitals(bs::OrbitalBlockStructure, oss::OrbitalSliceGrouped...)
codicts = cellsdict.(oss)
codictall = combine(codicts...)
contactinds = Vector{Int}[]
corb_to_ind = dictionary(corb => ind for (ind, corb) in enumerate(cellorbs(codictall)))
for codict in codicts
i = [corb_to_ind[co] for co in cellorbs(codict)]
push!(contactinds, i)
end
offsets = lengths_to_offsets(length, codictall)
corbs = ContactOrbitals(codictall, [codicts...], contactinds, offsets)
return corbs
end
#endregion
############################################################################################
# TMatrixSlicer <: GreenSlicer
# Given a slicer that works without any contacts, implement slicing with contacts through
# a T-Matrix equation g(i, j) = g0(i, j) + g0(i, k)T(k,k')g0(k', j), and T = (1-Σ*g0)⁻¹*Σ
#region
struct TMatrixSlicer{C,L,V<:AbstractArray{C},S} <: GreenSlicer{C}
g0slicer::S
tmatrix::V
gcontacts::V
contactorbs::ContactOrbitals{L}
end
struct NothingSlicer{C} <: GreenSlicer{C}
end
#region ## Constructors ##
# if there are no Σblocks, return g0slicer. Otherwise build TMatrixSlicer.
maybe_TMatrixSlicer(g0slicer::GreenSlicer, Σblocks::Tuple{}, contactorbs) = g0slicer
maybe_TMatrixSlicer(g0slicer, Σblocks, contactorbs) =
TMatrixSlicer(g0slicer, Σblocks, contactorbs)
# Uses getindex(g0slicer) to construct g0contacts
function TMatrixSlicer(g0slicer::GreenSlicer{C}, Σblocks, contactorbs) where {C}
if isempty(Σblocks)
tmatrix = gcontacts = view(zeros(C, 0, 0), 1:0, 1:0)
else
nreg = norbitals(contactorbs)
g0contacts = zeros(C, nreg, nreg)
off = offsets(contactorbs)
for (j, sj) in enumerate(cellsdict(contactorbs)), (i, si) in enumerate(cellsdict(contactorbs))
irng = off[i]+1:off[i+1]
jrng = off[j]+1:off[j+1]
g0view = view(g0contacts, irng, jrng)
copy!(g0view, g0slicer[si, sj])
end
Σblocks´ = tupleflatten(Σblocks...)
tmatrix, gcontacts = t_g_matrices(g0contacts, contactorbs, Σblocks´...)
end
return TMatrixSlicer(g0slicer, tmatrix, gcontacts, contactorbs)
end
# Takes a precomputed g0contacts (for dummy g0slicer that doesn't implement indexing)
function TMatrixSlicer(g0contacts::AbstractMatrix{C}, Σblocks, contactorbs) where {C}
tmatrix, gcontacts = t_g_matrices(g0contacts, contactorbs, Σblocks...)
g0slicer = NothingSlicer{C}()
return TMatrixSlicer(g0slicer, tmatrix, gcontacts, contactorbs)
end
# empty Σblocks
function t_g_matrices(g0contacts::AbstractMatrix{C}, contactorbs) where {C}
tmatrix = gcontacts = view(zeros(C, 0, 0), 1:0, 1:0)
return tmatrix, gcontacts
end
# Check whether Σblocks are all spzeros, and if not, compute G and T
function t_g_matrices(g0contacts::AbstractMatrix{C}, contactorbs, Σblocks::MatrixBlock...) where {C}
if isspzeros(Σblocks)
gcontacts = g0contacts
tmatrix = zero(g0contacts)
else
tmatrix, gcontacts = t_g_matrices!(copy(g0contacts), contactorbs, Σblocks...)
end
return tmatrix, gcontacts
end
# rewrites g0contacts
function t_g_matrices!(g0contacts::AbstractMatrix{C}, contactorbs, Σblocks::MatrixBlock...) where {C}
nreg = norbitals(contactorbs) # number of regular orbitals
n = max(nreg, maxrows(Σblocks), maxcols(Σblocks)) # includes extended orbitals
Σmatext = Matrix{C}(undef, n, n)
Σbm = BlockMatrix(Σmatext, Σblocks)
update!(Σbm) # updates Σmat with Σblocks
Σmatᵣᵣ = view(Σmatext, 1:nreg, 1:nreg)
Σmatₑᵣ = view(Σmatext, nreg+1:n, 1:nreg)
Σmatᵣₑ = view(Σmatext, 1:nreg, nreg+1:n)
Σmatₑₑ = view(Σmatext, nreg+1:n, nreg+1:n)
Σmat = copy(Σmatᵣᵣ)
Σmat´ = ldiv!(lu!(Σmatₑₑ), Σmatₑᵣ)
mul!(Σmat, Σmatᵣₑ, Σmat´, 1, 1) # Σmat = Σmatᵣᵣ + ΣmatᵣₑΣmatₑₑ⁻¹ Σmatₑᵣ
den = Matrix{C}(I, nreg, nreg)
mul!(den, Σmat, g0contacts, -1, 1) # den = 1-Σ*g0
luden = lu!(den)
tmatrix = ldiv!(luden, Σmat) # tmatrix = (1 - Σ*g0)⁻¹Σ
gcontacts = rdiv!(g0contacts, luden) # gcontacts = g0 * (1 - Σ*g0)⁻¹
return tmatrix, gcontacts
end
#endregion
#region ## API ##
Base.view(s::TMatrixSlicer, i::Integer, j::Integer) =
view(s.gcontacts, contactinds(s.contactorbs, i), contactinds(s.contactorbs, j))
Base.view(s::TMatrixSlicer, ::Colon, ::Colon) = view(s.gcontacts, :, :)
function Base.getindex(s::TMatrixSlicer, i::CellOrbitals, j::CellOrbitals)
g0 = s.g0slicer
g0ij = ensure_mutable_matrix(g0[i, j])
tkk´ = s.tmatrix
isempty(tkk´) && return g0ij
k = s.contactorbs
g0ik = mortar((g0[si, sk] for si in (i,), sk in cellsdict(k)))
g0k´j = mortar((g0[sk´, sj] for sk´ in cellsdict(k), sj in (j,)))
gij = mul!(g0ij, g0ik, tkk´ * g0k´j, 1, 1) # = g0ij + g0ik * tkk´ * g0k´j
return gij
end
ensure_mutable_matrix(m::SMatrix) = Matrix(m)
ensure_mutable_matrix(m::AbstractMatrix) = m
minimal_callsafe_copy(s::TMatrixSlicer, parentham, parentcontacts) = TMatrixSlicer(
minimal_callsafe_copy(s.g0slicer, parentham, parentcontacts),
s.tmatrix, s.gcontacts, s.contactorbs)
Base.view(::NothingSlicer, i::Union{Integer,Colon}...) =
internalerror("view(::NothingSlicer): unreachable reached")
Base.getindex(::NothingSlicer, i::CellOrbitals...) = argerror("Slicer does not support generic indexing")
minimal_callsafe_copy(s::NothingSlicer, parentham, parentcontacts) = s
#endregion
#endregion
############################################################################################
# GreenSolutionCache
# Cache that memoizes columns of GreenSolution[ci,cj] on columns of single CellSite{L}
# It does not support more general indices, but upon creation, the cache includes the data
# already computed for the intra-contacts Green function (with noncontact sites as undefs)
#region
struct GreenSolutionCache{T,L,G<:GreenSolution{T,<:Any,L}}
gω::G
cache::Dict{Tuple{SVector{L,Int},SVector{L,Int},Int},Matrix{Complex{T}}}
end
function GreenSolutionCache(gω::GreenSolution{T,<:Any,L}) where {T,L}
cache = Dict{Tuple{SVector{L,Int},SVector{L,Int},Int},Matrix{Complex{T}}}()
# if contacts exists, we preallocate columns for each of their sites
if ncontacts(gω) > 0
gmat = gω[:]
g = parent(gω)
h = hamiltonian(g)
bs = blockstructure(h)
co = contactorbitals(g)
corngs = collect(orbranges(co))
cls = latslice(g, :)
nrows = flatsize(h)
j = 0
for colsc in cellsdict(cls)
nj = cell(colsc)
for j´ in siteindices(colsc)
j += 1
jrng = corngs[j]
i = 0
for rowsc in cellsdict(cls)
ni = cell(rowsc)
undefs = Matrix{Complex{T}}(undef, nrows, length(jrng))
for i´ in siteindices(rowsc)
i += 1
irng = corngs[i]
irng´ = flatrange(bs, i´)
copy!(view(undefs, irng´, :), view(gmat, irng, jrng))
end
push!(cache, (ni, nj, j´) => undefs)
end
end
end
end
return GreenSolutionCache(gω, cache)
end
function Base.getindex(c::GreenSolutionCache{<:Any,L}, ci::CellSite, cj::CellSite) where {L}
ci´, cj´ = sanitize_cellindices(ci, Val(L)), sanitize_cellindices(cj, Val(L))
ni, i = cell(ci´), siteindex(ci´)
nj, j = cell(cj´), siteindex(cj´)
if haskey(c.cache, (ni, nj, j))
gs = c.cache[(ni, nj, j)]
else
gs = c.gω[sites(ni, :), cj]
push!(c.cache, (ni, nj, j) => gs)
end
h = hamiltonian(c.gω)
rows = flatrange(h, i)
return view(gs, rows, :)
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 24295 | ############################################################################################
# add!(::IJVBuilder, ...)
# add matrix elements to a builder before assembly into a (Parametric)Hamiltonian
#region
add!(m::TightbindingModel) = b -> add!(b, m)
# direct site indexing
function add!(b::IJVBuilder, val, c::CellSites, d::CellSites)
c´, d´ = sanitize_cellindices(c, b), sanitize_cellindices(d, b)
ijv = b[cell(d´) - cell(c´)]
B = blocktype(b)
val´ = mask_block(B, val) # Warning: we don't check matrix size here, just conversion to B
add!(ijv, val´, siteindices(c´), siteindices(d´))
return b
end
function add!(b::IJVBuilder, val, c::CellSites)
c´ = sanitize_cellindices(c, b)
ijv = b[zero(cell(c´))]
B = blocktype(b)
val´ = mask_block(B, val) # Warning: we don't check matrix size here, just conversion to B
add!(ijv, val´, siteindices(c´))
return b
end
add!(ijv::IJV, v, i::Integer, j::Integer = i) = push!(ijv, (i, j, v))
function add!(ijv::IJV, v, is, js)
foreach(Iterators.product(is, js)) do (i, j)
push!(ijv, (i, j, v))
end
return ijv
end
function add!(ijv::IJV, v, is)
foreach(is) do i
push!(ijv, (i, i, v))
end
return ijv
end
# block may be a tuple of row-col index ranges, to restrict application of model
function add!(b::IJVBuilder, model::TightbindingModel, block = missing)
lat = lattice(b)
bs = blockstructure(b)
amodel = apply(model, (lat, bs))
addterm!.(Ref(b), Ref(block), terms(amodel))
return b
end
function add!(b::IJVBuilderWithModifiers, model::ParametricModel, block = missing)
m0 = basemodel(model)
ms = modifier.(terms(model))
add!(b, m0, block)
push!(b, ms...)
return b
end
function addterm!(builder, block, term::AppliedOnsiteTerm)
sel = selector(term)
isempty(cells(sel)) || argerror("Cannot constrain cells in an onsite term, cell periodicity is assumed.")
lat = lattice(builder)
dn0 = zerocell(lat)
ijv = builder[dn0]
bs = blockstructure(builder)
bsizes = blocksizes(bs)
foreach_site(sel, dn0) do s, i, r
isinblock(i, block) || return nothing
n = bsizes[s]
# conventional terms are never non-spatial, only modifiers can be
vr = term(r, n)
push!(ijv, (i, i, vr))
end
return nothing
end
function addterm!(builder, block, term::AppliedHoppingTerm)
trees = kdtrees(builder)
sel = selector(term)
bs = blockstructure(builder)
bsizes = blocksizes(bs)
foreach_cell(sel) do dn
ijv = builder[dn]
found = foreach_hop(sel, trees, dn) do (si, sj), (i, j), (r, dr)
isinblock(i, j, block) || return nothing
ni = bsizes[si]
nj = bsizes[sj]
# conventional terms are never non-spatial, only modifiers can be
vr = term(r, dr, (ni, nj))
push!(ijv, (i, j, vr))
end
return found
end
return nothing
end
# If block is not Missing, restrict to ranges
# Interblock
isinblock(i, j, ::Missing) = true
function isinblock(i, j, rngs::Tuple)
for (jr, rng´) in enumerate(rngs), (ir, rng) in enumerate(rngs)
jr == ir && continue
isinblock(i, rng) && isinblock(j, rng´) && return true
end
return false
end
# Intrablock
isinblock(i, j, rng) = isinblock(i, rng) && isinblock(j, rng)
isinblock(i, ::Missing) = true
isinblock(i, rng) = i in rng
#endregion
############################################################################################
# hamiltonian
#region
(model::AbstractModel)(lat::Lattice) = hamiltonian(lat, model)
(modifier::Modifier)(h::AbstractHamiltonian) = hamiltonian(h, modifier)
hamiltonian(args...; kw...) = lat -> hamiltonian(lat, args...; kw...)
hamiltonian(h::AbstractHamiltonian, m::AbstractModifier, ms::AbstractModifier...) =
parametric(h, m, ms...)
hamiltonian(lat::Lattice, m0::TightbindingModel, m::Modifier, ms::Modifier...; kw...) =
parametric(hamiltonian(lat, m0; kw...), m, ms...)
hamiltonian(lat::Lattice, m0::ParametricModel, ms::Modifier...; kw...) =
parametric(hamiltonian(lat, basemodel(m0); kw...), modifier.(terms(m0))..., ms...)
hamiltonian(lat::Lattice, m::Modifier, ms::Modifier...; kw...) =
parametric(hamiltonian(lat; kw...), m, ms...)
hamiltonian(lat::Lattice, m::Interblock{<:TightbindingModel}; kw...) =
hamiltonian(lat, parent(m), block(m); kw...)
hamiltonian(lat::Lattice, m::Interblock{<:ParametricModel}; kw...) = parametric(
hamiltonian(lat, basemodel(parent(m)), block(m); kw...),
modifier.(terms(parent(m)))...)
function hamiltonian(lat::Lattice{T}, m::TightbindingModel = TightbindingModel(), block = missing; orbitals = Val(1)) where {T}
b = IJVBuilder(lat, orbitals)
add!(b, m, block)
return hamiltonian(b)
end
hamiltonian(b::IJVBuilder) = Hamiltonian(lattice(b), blockstructure(b), sparse(b))
hamiltonian(b::IJVBuilderWithModifiers) =
maybe_parametric(Hamiltonian(lattice(b), blockstructure(b), sparse(b)), modifiers(b)...)
maybe_parametric(h) = h
maybe_parametric(h, m, ms...) = parametric(h, m, ms...)
#endregion
############################################################################################
# parametric
#region
function parametric(hparent::Hamiltonian)
modifiers = ()
allparams = Symbol[]
allptrs = [Int[] for _ in harmonics(hparent)]
# We must decouple hparent from the result, which will modify h in various ways
h = minimal_callsafe_copy(hparent)
return ParametricHamiltonian(hparent, h, modifiers, allptrs, allparams)
end
# Any means perhaps wrapped in Intrablock or Interblock
parametric(h::Hamiltonian, m::AnyAbstractModifier, ms::AnyAbstractModifier...) =
parametric!(parametric(h), m, ms...)
parametric(p::ParametricHamiltonian, ms::AnyAbstractModifier...) =
parametric!(copy(p), ms...)
# This should not be exported, because it doesn't modify p in place (because of modifiers)
function parametric!(p::ParametricHamiltonian, ms::AnyModifier...)
ams = apply.(ms, Ref(parent(p)))
return parametric!(p, ams...)
end
function parametric!(p::ParametricHamiltonian, ms::AppliedModifier...)
hparent = parent(p)
h = hamiltonian(p)
allmodifiers = (modifiers(p)..., ms...)
allparams = parameters(p)
merge_parameters!(allparams, ms...)
allptrs = pointers(p)
merge_pointers!(allptrs, ms...)
return ParametricHamiltonian(hparent, h, allmodifiers, allptrs, allparams)
end
merge_pointers!(p, m, ms...) = merge_pointers!(_merge_pointers!(p, m), ms...)
function merge_pointers!(p)
for pn in p
unique!(sort!(pn))
end
return p
end
function _merge_pointers!(p, m::AppliedOnsiteModifier)
p0 = first(p)
for (ptr, _) in pointers(m)
push!(p0, ptr)
end
return p
end
function _merge_pointers!(p, m::AppliedHoppingModifier)
for (pn, pm) in zip(p, pointers(m)), (ptr, _) in pm
push!(pn, ptr)
end
return p
end
#endregion
############################################################################################
# Hamiltonian call API
# call!(::AbstractHamiltonian; params...) returns a Hamiltonian with params applied
# call!(::AbstractHamiltonian, ϕs; params...) returns a HybridSparseMatrix with Bloch phases
# ϕs and params applied
# h(...; ...) is a copy decoupled from future call!'s
#region
(h::Hamiltonian)(phi...; params...) = copy(call!(h, phi...; params...))
call!(h::Hamiltonian; params...) = flat_sync!(h) # mimic partial call!(p::ParametricHamiltonian; params...)
call!(h::Hamiltonian, φ1::Number, φ2::Number, φs::Number...; params...) =
argerror("To obtain the (flat) Bloch matrix of `h` use `h(ϕs)`, where `ϕs` is a collection of `L=$(latdim(lattice(h)))` Bloch phases")
call!(h::Hamiltonian{T}, φs; params...) where {T} = flat_bloch!(h, sanitize_SVector(T, φs))
call!(h::Hamiltonian{<:Any,<:Any,0}, ::Tuple{}; params...) = h[()]
call!(h::Hamiltonian, ft::FrankenTuple) = call!(h, Tuple(ft))
# shortcut (see call!_output further below)
flat_bloch!(h::Hamiltonian{<:Any,<:Any,0}, ::SVector{0}, axis = missing) = h[()]
# returns a flat sparse matrix
function flat_bloch!(h::Hamiltonian{T}, φs::SVector, axis = missing) where {T}
hbloch = bloch(h)
needs_initialization(hbloch) && initialize_bloch!(hbloch, harmonics(h))
fbloch = flat(hbloch)
fill!(fbloch, zero(Complex{T})) # This preserves sparsity structure
addblochs!(fbloch, h, φs, axis)
return fbloch
end
function addblochs!(dst::SparseMatrixCSC, h::Hamiltonian, φs, axis)
checkbloch(h, φs)
hars = harmonics(h)
isvelocity = axis isa Integer
for har in hars
iszero(dcell(har)) && isvelocity && continue
e⁻ⁱᵠᵈⁿ = cis(-dot(φs, dcell(har)))
isvelocity && (e⁻ⁱᵠᵈⁿ *= - im * dcell(har)[axis])
merged_mul!(dst, matrix(har), e⁻ⁱᵠᵈⁿ, 1, 1) # see tools.jl
end
return dst
end
function initialize_bloch!(bloch, hars)
fbloch = flat_unsafe(bloch)
fbloch´ = merge_sparse(flat.(matrix.(hars)))
copy!(fbloch, fbloch´)
ubloch = unflat_unsafe(bloch)
ubloch === fbloch || copy!(ubloch, unflat(blockstructure(bloch), fbloch))
needs_no_sync!(bloch)
update_nnz!(bloch)
return bloch
end
@noinline checkbloch(::AbstractHamiltonian{<:Any,<:Any,L}, ::SVector{L´}) where {L,L´} =
L == L´ || throw(ArgumentError("Need $L Bloch phases, got $(L´)"))
# ouput of a call!(h, ϕs)
call!_output(h::Hamiltonian) = flat_unsafe(bloch(h))
call!_output(h::Hamiltonian{<:Any,<:Any,0}) = flat_unsafe(h[hybrid()])
#endregion
############################################################################################
# ParametricHamiltonian call API
#region
(p::ParametricHamiltonian)(; kw...) = copy(call!(p; kw...))
(p::ParametricHamiltonian)(phis; kw...) = copy(call!(call!(p; kw...), phis))
call!(p::ParametricHamiltonian, phi; kw...) = call!(call!(p; kw...), phi)
call!(p::ParametricHamiltonian, ft::FrankenTuple) = call!(p, Tuple(ft); NamedTuple(ft)...)
function call!(ph::ParametricHamiltonian; kw...)
reset_to_parent!(ph)
h = hamiltonian(ph)
applymodifiers!(h, modifiers(ph)...; kw...)
flat_sync!(h) # modifiers are applied to unflat, need to be synced to flat
return h
end
function reset_to_parent!(ph)
h = hamiltonian(ph)
hparent = parent(ph)
nnzfraction = 0.3 # threshold to revert to full copyto!
for (har, har´, ptrs) in zip(harmonics(h), harmonics(hparent), pointers(ph))
m, m´ = matrix(har), matrix(har´)
nz = nonzeros(needs_initialization(m) ? unflat(m) : unflat_unsafe(m))
nz´ = nonzeros(unflat(m´))
if length(ptrs) < length(nz) * nnzfraction
for ptr in ptrs
nz[ptr] = nz´[ptr]
end
else
copyto!(nz, nz´)
end
needs_flat_sync!(m)
end
return ph
end
applymodifiers!(h; kw...) = h
applymodifiers!(h, m, m´, ms...; kw...) = applymodifiers!(applymodifiers!(h, m; kw...), m´, ms...; kw...)
applymodifiers!(h, m::Modifier; kw...) = applymodifiers!(h, apply(m, h); kw...)
function applymodifiers!(h, m::AppliedOnsiteModifier; kw...)
nz = nonzeros(unflat(first(harmonics(h))))
if is_spatial(m) # Branch outside loop
@simd for p in pointers(m)
(ptr, r, s, norbs) = p
@inbounds nz[ptr] = m(nz[ptr], r, norbs; kw...) # @inbounds too risky?
end
else
@simd for p in pointers(m)
(ptr, r, s, norbs) = p
@inbounds nz[ptr] = m(nz[ptr], s, norbs; kw...)
end
end
return h
end
function applymodifiers!(h, m::AppliedOnsiteModifier{B}; kw...) where {B<:SMatrixView}
nz = nonzeros(unflat(first(harmonics(h))))
if is_spatial(m) # Branch outside loop
@simd for p in pointers(m)
(ptr, r, s, norbs) = p
val = view(nz[ptr], 1:norbs, 1:norbs) # this might be suboptimal - do we need view?
@inbounds nz[ptr] = m(val, r, norbs; kw...) # @inbounds too risky?
end
else
@simd for p in pointers(m)
(ptr, r, s, norbs) = p
val = view(nz[ptr], 1:norbs, 1:norbs)
@inbounds nz[ptr] = m(val, s, norbs; kw...)
end
end
return h
end
function applymodifiers!(h, m::AppliedHoppingModifier; kw...)
for (har, ptrs) in zip(harmonics(h), pointers(m))
nz = nonzeros(unflat(har))
if is_spatial(m) # Branch outside loop
@simd for p in ptrs
(ptr, r, dr, si, sj, orborb) = p
@inbounds nz[ptr] = m(nz[ptr], r, dr, orborb; kw...)
end
else
@simd for p in ptrs
(ptr, r, dr, si, sj, orborb) = p
@inbounds nz[ptr] = m(nz[ptr], si, sj, orborb; kw...)
end
end
end
return h
end
function applymodifiers!(h, m::AppliedHoppingModifier{B}; kw...) where {B<:SMatrixView}
for (har, ptrs) in zip(harmonics(h), pointers(m))
nz = nonzeros(unflat(har))
if is_spatial(m) # Branch outside loop
@simd for p in ptrs
(ptr, r, dr, si, sj, (oi, oj)) = p
val = view(nz[ptr], 1:oi, 1:oj) # this might be suboptimal - do we need view?
@inbounds nz[ptr] = m(val, r, dr, (oi, oj); kw...)
end
else
@simd for p in ptrs
(ptr, r, dr, si, sj, (oi, oj)) = p
val = view(nz[ptr], 1:oi, 1:oj)
@inbounds nz[ptr] = m(val, si, sj, (oi, oj); kw...)
end
end
end
return h
end
# ouput of a *full* call!(p, ϕs; kw...)
call!_output(p::ParametricHamiltonian) = call!_output(hamiltonian(p))
#endregion
############################################################################################
# indexing into AbstractHamiltonian - see also slices.jl
#region
# Extraction of Harmonics
Base.getindex(h::AbstractHamiltonian, dn::Union{Tuple,Integer,SVector,AbstractVector}) =
flat(h[hybrid(dn)])
Base.getindex(h::AbstractHamiltonian, dn::UnflatInds) = unflat(h[hybrid(parent(dn))])
Base.getindex(h::AbstractHamiltonian, dn::HybridInds{<:Union{Integer,Tuple}}) =
h[hybrid(SVector(parent(dn)))]
Base.getindex(h::AbstractHamiltonian{<:Any,<:Any,L}, ::HybridInds{Tuple{}}) where {L} =
h[hybrid(zero(SVector{L,Int}))]
Base.getindex(h::ParametricHamiltonian{<:Any,<:Any,L}, dn::HybridInds{SVector{L,Int}}) where {L} =
getindex(hamiltonian(h), dn)
function Base.getindex(h::Hamiltonian{<:Any,<:Any,L}, dn::HybridInds{SVector{L,Int}}) where {L}
for har in harmonics(h)
parent(dn) == dcell(har) && return matrix(har)
end
@boundscheck(boundserror(harmonics(h), parent(dn)))
# this is unreachable, but avoids allocations by having non-Union return type
return matrix(first(harmonics(h)))
end
Base.isassigned(h::AbstractHamiltonian, dn::Tuple) = isassigned(h, SVector(dn))
function Base.isassigned(h::AbstractHamiltonian{<:Any,<:Any,L}, dn::SVector{L,Int}) where {L}
for har in harmonics(h)
dn == dcell(har) && return true
end
return false
end
# SiteSelector indexing - replicates GreenSolution indexing - see GreenFunctions.jl
Base.getindex(h::ParametricHamiltonian; kw...) = getindex(call!(h); kw...)
Base.getindex(h::Hamiltonian; kw...) = h[siteselector(; kw...)]
# conversion down to CellOrbitals. See sites_to_orbs in slices.jl
Base.getindex(h::ParametricHamiltonian, i, j) = getindex(call!(h), i, j)
Base.getindex(h::Hamiltonian, i, j) = getindex(h, sites_to_orbs(i, h), sites_to_orbs(j, h))
# we need AbstractHamiltonian here to avoid ambiguities with dn above
Base.getindex(h::AbstractHamiltonian, i) = (i´ = sites_to_orbs(i, h); getindex(h, i´, i´))
# wrapped matrix for end user consumption
Base.getindex(h::Hamiltonian, i::OrbitalSliceGrouped, j::OrbitalSliceGrouped) =
OrbitalSliceMatrix(
mortar((h[si, sj] for si in cellsdict(i), sj in cellsdict(j))),
(i, j))
Base.getindex(h::Hamiltonian, i::AnyOrbitalSlice, j::AnyOrbitalSlice) =
mortar((h[si, sj] for si in cellsdict(i), sj in cellsdict(j)))
Base.getindex(h::Hamiltonian, i::AnyOrbitalSlice, j::AnyCellOrbitals) =
mortar((h[si, sj] for si in cellsdict(i), sj in (j,)))
Base.getindex(h::Hamiltonian, i::AnyCellOrbitals, j::AnyOrbitalSlice) =
mortar((h[si, sj] for si in (i,), sj in cellsdict(j)))
function Base.getindex(h::Hamiltonian{T}, i::AnyCellOrbitals, j::AnyCellOrbitals) where {T}
dn = cell(i) - cell(j)
oi, oj = orbindices(i), orbindices(j)
mat = isassigned(h, dn) ? h[dn][oi, oj] : spzeros(Complex{T}, length(oi), length(oj))
return mat
end
Base.view(h::ParametricHamiltonian, i::CellSites, j::CellSites = i) = view(call!(h), i, j)
function Base.view(h::Hamiltonian, i::CellSites, j::CellSites = i)
oi, oj = sites_to_orbs_nogroups(i, h), sites_to_orbs_nogroups(j, h)
dn = cell(oi) - cell(oj)
return view(h[dn], orbindices(oi), orbindices(oj))
end
#endregion
############################################################################################
# coordination
#region
function nhoppings(h::AbstractHamiltonian)
count = 0
for har in harmonics(h)
umat = unflat(matrix(har))
count += iszero(dcell(har)) ? (nnz(umat) - nnzdiag(umat)) : nnz(umat)
end
return count
end
nonsites(h::Hamiltonian) = nnzdiag(h[unflat()])
# avoid call!, since params can have no default
nonsites(h::ParametricHamiltonian) = nonsites(hamiltonian(h))
coordination(h::AbstractHamiltonian) = iszero(nhoppings(h)) ? 0.0 : round(nhoppings(h) / nsites(lattice(h)), digits = 5)
#endregion
############################################################################################
# unitcell_hamiltonian
# Builds the intra-unitcell 0D Hamiltonian. If parent is p::ParametricHamiltonian, the
# obtained uh::Hamiltonian is aliased with p, so call!(p,...) also updates uh
#region
function unitcell_hamiltonian(h::Hamiltonian)
lat = lattice(lattice(h); bravais = ())
bs = blockstructure(h)
hars = [Harmonic(SVector{0,Int}(), matrix(first(harmonics(h))))]
return Hamiltonian(lat, bs, hars)
end
unitcell_hamiltonian(ph::ParametricHamiltonian) = unitcell_hamiltonian(hamiltonian(ph))
#endregion
############################################################################################
# combine
# type-stable with Hamiltonians, but not with ParametricHamiltonians, as the field
# builder.modifiers isa Vector{Any} in that case.
#region
function combine(hams::AbstractHamiltonian...; coupling::AbstractModel = TightbindingModel())
check_unique_names(coupling, hams...)
lat = combine(lattice.(hams)...)
builder = IJVBuilder(lat, hams...)
interblockmodel = interblock(coupling, hams...)
model´, blocks´ = parent(interblockmodel), block(interblockmodel)
add!(builder, model´, blocks´)
return hamiltonian(builder)
end
# No need to have unique names if nothing is parametric
check_unique_names(::TightbindingModel, ::Hamiltonian...) = nothing
function check_unique_names(::AbstractModel, hs::AbstractHamiltonian...)
names = tupleflatten(sublatnames.(lattice.(hs))...)
allunique(names) || argerror("Cannot combine ParametricHamiltonians with non-unique sublattice names, since modifiers could be tied to the original names. Assign unique names on construction.")
return nothing
end
function check_unique_names(::AbstractModel, hs::Hamiltonian...)
names = tupleflatten(sublatnames.(lattice.(hs))...)
allunique(names) || argerror("Cannot combine Hamiltonians with non-unique sublattice names using a ParametricModel, since modifiers could be tied to the original names. Assign unique names on construction.")
return nothing
end
#endregion
############################################################################################
# torus(::Hamiltonian, phases)
#region
torus(phases) = h -> torus(h, phases)
function torus(h::Hamiltonian{<:Any,<:Any,L}, phases) where {L}
check_torus_phases(phases, L)
wa, ua = split_axes(phases) # indices for wrapped and unwrapped axes
iszero(length(wa)) && return minimal_callsafe_copy(h)
lat = lattice(h)
b´ = bravais_matrix(lat)[:, SVector(ua)]
lat´ = lattice(lat; bravais = b´)
bs´ = blockstructure(h)
bloch´ = copy_matrices(bloch(h))
hars´ = stitch_harmonics(harmonics(h), phases, wa, ua)
return Hamiltonian(lat´, bs´, hars´, bloch´)
end
check_torus_phases(phases, L) = length(phases) == L ||
argerror("Expected $L `torus` phases, got $(length(phases))")
split_axes(phases) = split_axes((), (), 1, phases...)
split_axes(wa, ua, n, x::Colon, xs...) = split_axes(wa, (ua..., n), n+1, xs...)
split_axes(wa, ua, n, x, xs...) = split_axes((wa..., n), ua, n+1, xs...)
split_axes(wa, ua, n) = wa, ua
function stitch_harmonics(hars, phases, wa::NTuple{W}, ua::NTuple{U}) where {W,U}
phases_w = SVector(phases)[SVector(wa)]
dcells_u = SVector{U,Int}[dcell(har)[SVector(ua)] for har in hars]
dcells_w = SVector{W,Int}[dcell(har)[SVector(wa)] for har in hars]
unique_dcells_u = unique!(sort(dcells_u, by = norm))
groups = [findall(==(dcell), dcells_u) for dcell in unique_dcells_u]
hars´ = [summed_harmonic(inds, hars, phases_w, dcells_u, dcells_w) for inds in groups]
return hars´
end
function summed_harmonic(inds, hars::Vector{<:Harmonic{<:Any,<:Any,B}}, phases_w, dcells_u, dcells_w) where {B}
I,J,V = Int[], Int[], B[]
for i in inds
I´, J´, V´ = findnz(unflat(matrix(hars[i])))
dn_w = dcells_w[i]
e⁻ⁱᵠᵈⁿ = cis(-dot(phases_w, dn_w))
V´ .*= e⁻ⁱᵠᵈⁿ
append!(I, I´)
append!(J, J´)
append!(V, V´)
end
dn_u = dcells_u[first(inds)]
bs = blockstructure(matrix(hars[first(inds)]))
n = unflatsize(bs)
mat = sparse(I, J, V, n, n)
return Harmonic(dn_u, HybridSparseMatrix(bs, mat))
end
#endregion
############################################################################################
# torus(::ParametricHamiltonian, phases)
#region
function torus(p::ParametricHamiltonian, phases)
wa, ua = split_axes(phases) # indices for wrapped and unwrapped axes
iszero(length(wa)) && return minimal_callsafe_copy(p)
h = parent(p)
h´ = torus(h, phases)
ams = modifiers(p)
L = latdim(lattice(h))
S = SMatrix{L,L,Int}(I)[SVector(ua), :] # dnnew = S * dnold
ptrmap = pointer_map(h, h´, S) # [[(ptr´ of har´[S*dn]) for ptr in har] for har in h]
harmap = harmonics_map(h, h´, S) # [(index of har´[S*dn]) for har in h]
ams´ = stitch_modifier.(ams, Ref(ptrmap), Ref(harmap))
p´ = hamiltonian(h´, ams´...)
return p´
end
pointer_map(h, h´, S) =
[pointer_map(har, first(harmonic_index(h´, S*dcell(har)))) for har in harmonics(h)]
function pointer_map(har, har´)
ptrs´ = Int[]
mat, mat´ = unflat(matrix(har)), unflat(matrix(har´))
rows, rows´ = rowvals(mat), rowvals(mat´)
for col in axes(mat, 2), ptr in nzrange(mat, col)
row = rows[ptr]
for ptr´ in nzrange(mat´, col)
if row == rows´[ptr´]
push!(ptrs´, ptr´)
break
end
end
end
return ptrs´
end
harmonics_map(h, h´, S) = [last(harmonic_index(h´, S*dcell(har))) for har in harmonics(h)]
function stitch_modifier(m::AppliedOnsiteModifier, ptrmap, _)
ptrs´ = first(ptrmap)
p´ = [(ptrs´[ptr], r, s, orbs) for (ptr, r, s, orbs) in pointers(m)]
return AppliedOnsiteModifier(m, p´)
end
function stitch_modifier(m::AppliedHoppingModifier, ptrmap, harmap)
ps = pointers(m)
ps´ = [similar(first(ps), 0) for _ in 1:maximum(harmap)]
for (i, p) in enumerate(ps), (ptr, r, dr, si, sj, orborbs) in p
i´ = harmap[i]
ptrs´ = ptrmap[i]
push!(ps´[i´], (ptrs´[ptr], r, dr, si, sj, orborbs))
end
sort!.(ps´)
check_ptr_duplicates(first(ps´))
return AppliedHoppingModifier(m, ps´)
end
function check_ptr_duplicates(h0ptrs)
has_duplicates_ptrs = !allunique(first(p) for p in h0ptrs)
has_duplicates_ptrs &&
@warn "The wrapped ParametricHamiltonian has a modifier on hoppings that are the sum of intra- and intercell hoppings. The modifier will be applied to the sum, which may lead to unexpected results for position-dependent modifiers."
return nothing
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 8335 | #######################################################################
# BoxIterator
#region
"""
BoxIterator(seed::SVector{N,Int}; maxiterations = TOOMANYITERS)
Cartesian iterator `iter` over `SVector{N,Int}`s (`cell`s) that starts at `seed` and
grows outwards in the form of a box of increasing sides (not necesarily equal) until
it encompasses a certain N-dimensional region. To signal that a cell is in the desired
region the user calls `acceptcell!(iter, cell)`.
"""
struct BoxIterator{N}
seed::SVector{N,Int}
maxiter::Int
dimdir::MVector{2,Int}
nmoves::MVector{N,Bool}
pmoves::MVector{N,Bool}
npos::MVector{N,Int}
ppos::MVector{N,Int}
end
const TOOMANYITERS = 10^8
Base.IteratorSize(::Type{BoxIterator}) = Base.SizeUnknown()
Base.IteratorEltype(::Type{BoxIterator}) = Base.HasEltype()
Base.eltype(::Type{BoxIterator{N}}) where {N} = SVector{N,Int}
Base.CartesianIndices(b::BoxIterator) =
CartesianIndices(UnitRange.(Tuple(b.npos), Tuple(b.ppos)))
eldim(::BoxIterator{N}) where {N} = N
function BoxIterator(seed::SVector{N}; maxiterations = TOOMANYITERS) where {N}
BoxIterator(seed, maxiterations, MVector(1, 2),
ones(MVector{N,Bool}), ones(MVector{N,Bool}), MVector{N,Int}(seed), MVector{N,Int}(seed))
end
struct BoxIteratorState{N}
range::CartesianIndices{N, NTuple{N,UnitRange{Int}}}
rangestate::CartesianIndex{N}
iteration::Int
end
Base.iterate(b::BoxIterator{0}) = (SVector{0,Int}(), nothing)
Base.iterate(b::BoxIterator{0}, state) = nothing
function Base.iterate(b::BoxIterator)
N = eldim(b)
range = CartesianIndices(ntuple(i -> b.seed[i]:b.seed[i], Val(N)))
itrange = iterate(range)
if itrange === nothing
return nothing
else
(cell, rangestate) = itrange
return (SVector(Tuple(cell)), BoxIteratorState(range, rangestate, 1))
end
end
function Base.iterate(b::BoxIterator, s::BoxIteratorState)
itrange = iterate(s.range, s.rangestate)
facedone = itrange === nothing
if facedone
alldone = !any(b.pmoves) && !any(b.nmoves) || checkmaxiter(b, s)
if alldone # Last shells in all directions were empty, trim from boundingboxcorners
b.npos .+= 1
b.ppos .-= 1
return nothing
else
newrange = nextface!(b)
# newrange === nothing && return nothing
itrange = iterate(newrange)
# itrange === nothing && return nothing
(cell, rangestate) = itrange
return (SVector(Tuple(cell)), BoxIteratorState(newrange, rangestate, s.iteration + 1))
end
else
(cell, rangestate) = itrange
return (SVector(Tuple(cell)), BoxIteratorState(s.range, rangestate, s.iteration + 1))
end
end
@noinline function checkmaxiter(b::BoxIterator, s::BoxIteratorState)
exceeded = isless(b.maxiter, s.iteration)
exceeded && @warn("Region seems unbounded after $(b.maxiter) iterations")
return exceeded
end
function nextface!(b::BoxIterator)
N = eldim(b)
@inbounds for i in 1:2N
nextdimdir!(b)
newdim, newdir = Tuple(b.dimdir)
if newdir == 1
if b.nmoves[newdim]
b.npos[newdim] -= 1
b.nmoves[newdim] = false
return newrangeneg(b, newdim)
end
else
if b.pmoves[newdim]
b.ppos[newdim] += 1
b.pmoves[newdim] = false
return newrangepos(b, newdim)
end
end
end
return nothing
end
function nextdimdir!(b::BoxIterator)
N = eldim(b)
dim, dir = Tuple(b.dimdir)
if dim < N
dim += 1
else
dim = 1
dir = ifelse(dir == 1, 2, 1)
end
b.dimdir[1] = dim
b.dimdir[2] = dir
return nothing
end
@inline function newrangeneg(b::BoxIterator, dim)
N = eldim(b)
return CartesianIndices(ntuple(
i -> b.npos[i]:(i == dim ? b.npos[i] : b.ppos[i]),
Val(N)))
end
@inline function newrangepos(b::BoxIterator, dim)
N = eldim(b)
return CartesianIndices(ntuple(
i -> (i == dim ? b.ppos[i] : b.npos[i]):b.ppos[i],
Val(N)))
end
function acceptcell!(b::BoxIterator, cell)
N = eldim(b)
dim, dir = Tuple(b.dimdir)
if dir == 1
@inbounds for i in 1:N
(cell[i] == b.ppos[i]) && (b.pmoves[i] = true)
(i == dim || cell[i] == b.npos[i]) && (b.nmoves[i] = true)
end
else
@inbounds for i in 1:N
(i == dim || cell[i] == b.ppos[i]) && (b.pmoves[i] = true)
(cell[i] == b.npos[i]) && (b.nmoves[i] = true)
end
end
return nothing
end
# Fallback for non-BoxIterators
acceptcell!(b, cell) = nothing
#endregion
#######################################################################
# CoSort
#region
struct CoSortTup{T,T´}
x::T
y::T´
end
mutable struct CoSort{T,T´} <: AbstractVector{CoSortTup{T,T´}}
sortvector::Vector{T}
covector::Vector{T´}
offset::Int
function CoSort{T,T´}(sortvector, covector, offset) where {T,T´}
length(covector) >= length(sortvector) ? new(sortvector, covector, offset) :
throw(DimensionMismatch("Coarray length should exceed sorting array"))
end
end
CoSort(sortvector::Vector{T}, covector::Vector{T´}) where {T,T´} =
CoSort{T,T´}(sortvector, covector, 0)
function cosort!(s, c)
cs = CoSort(s, c)
sort!(cs)
return cs.sortvector, cs.covector
end
Base.size(c::CoSort) = (size(c.sortvector, 1) - c.offset,)
Base.getindex(c::CoSort, i) =
CoSortTup(getindex(c.sortvector, i + c.offset), getindex(c.covector, i + c.offset))
Base.setindex!(c::CoSort, t::CoSortTup, i) =
(setindex!(c.sortvector, t.x, i + c.offset); setindex!(c.covector, t.y, i + c.offset); c)
Base.isless(a::CoSortTup, b::CoSortTup) = isless(a.x, b.x)
Base.Sort.defalg(v::C) where {T<:Union{Number, Missing}, C<:CoSort{T}} = Base.DEFAULT_UNSTABLE
isgrowing(c::CoSort) = isgrowing(c.sortvector, c.offset + 1)
function isgrowing(vs::AbstractVector, i0 = 1)
i0 > length(vs) && return true
vprev = vs[i0]
for i in i0 + 1:length(vs)
v = vs[i]
v <= vprev && return false
vprev = v
end
return true
end
#endregion
#######################################################################
# Combinations -- gratefully borrowed from Combinatorics.jl
#region
struct Combinations
n::Int
t::Int
end
@inline function Base.iterate(c::Combinations, s = [min(c.t - 1, i) for i in 1:c.t])
if c.t == 0 # special case to generate 1 result for t==0
isempty(s) && return (s, [1])
return
end
# for i in c.t:-1:1
for ii in 1:c.t
i = c.t + 1 - ii
s[i] += 1
if s[i] > (c.n - (c.t - i))
continue
end
for j in i+1:c.t
s[j] = s[j-1] + 1
end
break
end
s[1] > c.n - c.t + 1 && return
(s, s)
end
Base.length(c::Combinations) = binomial(c.n, c.t)
Base.eltype(::Type{Combinations}) = Vector{Int}
Base.IteratorSize(::Type{Combinations}) = Base.HasLength()
Base.IteratorEltype(::Type{Combinations}) = Base.HasEltype()
#######################################################################
# Runs
#region
# iteration yields ranges of subsequent xs elements such that istogether of consecutive pairs gives true
struct Runs{T,F}
xs::Vector{T}
istogether::F
end
equalruns(xs) = Runs(xs, ==)
approxruns(xs::Vector{T}, atol = sqrt(eps(real(T)))) where {T<:Number} = Runs(xs, (x, y) -> isapprox(x, y; atol))
function Base.iterate(s::Runs, frst = 1)
xs = s.xs
frst > length(xs) && return nothing
# find first element in run
for frst´ in frst:length(xs)
xj´ = xs[frst´]
if s.istogether(xj´, xj´)
frst = frst´
break
elseif frst´ == length(xs)
return nothing
end
end
# find last element in run, which is at least xs[frst]
lst = frst
for lst´ in frst+1:length(xs)
if !s.istogether(xs[lst´-1], xs[lst´])
lst = lst´-1
break
else
lst = lst´
end
end
return frst:lst, lst + 1
end
Base.IteratorSize(::Runs) = Base.SizeUnknown()
Base.IteratorEltype(::Runs) = Base.HasEltype()
Base.eltype(::Runs) = UnitRange{Int}
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 6275 | ############################################################################################
# sublat
#region
sublat(sites::Union{Number,Tuple,SVector,AbstractVector{<:Number}}...; name = :A) =
Sublat([float.(promote(sanitize_SVector.(sites)...))...], Symbol(name))
function sublat(sites::AbstractVector; name = :A)
T = foldl((x, y) -> promote_type(x, eltype(sanitize_SVector(y))), sites; init = Bool)
return Sublat(sanitize_SVector.(float(T), sites), Symbol(name))
end
#endregion
############################################################################################
# lattice
#region
lattice(s::Sublat, ss::Sublat...; kw...) = _lattice(promote(s, ss...)...; kw...)
lattice(ss::AbstractVector{<:Sublat}; kw...) = _lattice(ss; kw...)
# Start with an empty list of nranges, to be filled as they are requested
Lattice(b::Bravais{T}, u::Unitcell{T}) where {T} = Lattice(b, u, Tuple{Int,T}[])
_lattice(ss::Sublat{T,E}...;
bravais = (),
dim = Val(E),
type::Type{T´} = T,
names = sublatname.(ss)) where {T,E,T´} =
_lattice(ss, bravais, dim, type, names)
_lattice(ss::AbstractVector{S};
bravais = (),
dim = Val(E),
type::Type{T´} = T,
names = sublatname.(ss)) where {T,E,T´,S<:Sublat{T,E}} =
_lattice(ss, bravais, dim, type, names)
_lattice(ss, bravais, dim, type, names) =
Lattice(Bravais(type, dim, bravais), unitcell(ss, names, postype(dim, type)))
function lattice(lat::Lattice{T,E};
bravais = bravais_matrix(lat),
dim = Val(E),
type::Type{T´} = T,
names = sublatnames(lat)) where {T,E,T´}
u = unitcell(unitcell(lat), names, postype(dim, type))
b = Bravais(type, dim, bravais)
return Lattice(b, u)
end
postype(dim, type) = SVector{dim,type}
postype(::Val{E}, type) where {E} = SVector{E,type}
function unitcell(sublats, names, postype::Type{S}) where {S<:SVector}
sites´ = S[]
offsets´ = [0] # length(offsets) == length(sublats) + 1
for s in eachindex(sublats)
for site in sites(sublats[s])
push!(sites´, sanitize_SVector(S, site))
end
push!(offsets´, length(sites´))
end
return Unitcell(sites´, names, offsets´)
end
function unitcell(u::Unitcell{T´,E´}, names, postype::Type{S}) where {T´,E´,S<:SVector}
sites´ = sanitize_SVector.(S, sites(u))
offsets´ = offsets(u)
Unitcell(sites´, names, offsets´)
end
# with simple rename, don't copy sites
unitcell(u::Unitcell{T,E}, names, postype::Type{S}) where {T,E,S<:SVector{E,T}} =
Unitcell(sites(u), names, offsets(u))
#endregion
############################################################################################
# combine lattices - combine sublats, rename if equal name
#region
function combine(lats::Lattice{T,E,L}...) where {T,E,L}
isapprox_modulo_shuffle(bravais_matrix.(lats)...) ||
throw(ArgumentError("To combine lattices they must all share the same Bravais matrix. They read $(bravais_matrix.(lats))"))
bravais´ = bravais(first(lats))
unitcell´ = combine(unitcell.(lats)...)
return Lattice(bravais´, unitcell´)
end
# without <:Any here, this method overwrites the one above
combine(lats::Lattice{<:Any}...) =
argerror("Tried to combine lattices with different type or different dimension or embedding dimension")
function combine(ucells::Unitcell...)
names´ = vcat(sublatnames.(ucells)...)
sites´ = vcat(sites.(ucells)...)
offsets´ = combined_offsets(offsets.(ucells)...)
return Unitcell(sites´, names´, offsets´)
end
isapprox_modulo_shuffle() = true
function isapprox_modulo_shuffle(s::AbstractMatrix, ss::AbstractMatrix...)
for s´ in ss, c´ in eachcol(s´)
any(c -> c ≈ c´ || c ≈ -c´, eachcol(s)) || return false
end
return true
end
combined_offsets(offsets...) = lengths_to_offsets(Iterators.flatten(diff.(offsets)))
#endregion
############################################################################################
# neighbors
# TODO: may be simplified/optimized
#region
function nrange(n, lat)
for (n´, r) in nranges(lat)
n == n´ && return r
end
r = compute_nrange(n, lat)
push!(nranges(lat), (n, r))
return r
end
function compute_nrange(n, lat::Lattice{T}) where {T}
latsites = sites(lat)
dns = BoxIterator(zerocell(lat))
br = bravais_matrix(lat)
# 128 is a heuristic cutoff for kdtree vs brute-force search
if length(latsites) <= 128
dists = fill(T(Inf), n)
for dn in dns
iszero(dn) || ispositive(dn) || continue
for (i, ri) in enumerate(latsites), (j, rj) in enumerate(latsites)
j <= i && iszero(dn) && continue
r = ri - rj + br * dn
update_dists!(dists, r'r)
end
isfinite(last(dists)) || acceptcell!(dns, dn)
end
dist = sqrt(last(dists))
else
tree = KDTree(latsites)
dist = T(Inf)
for dn in dns
iszero(dn) || ispositive(dn) || continue
for r0 in latsites
r = r0 + br * dn
dist = min(dist, compute_nrange(n, tree, r, nsites(lat)))
end
isfinite(dist) || acceptcell!(dns, dn)
end
end
return dist
end
function update_dists!(dists, dist)
len = length(dists)
for (n, d) in enumerate(dists)
isapprox(dist, d) && break
if dist < d
dists[n+1:len] .= dists[n:len-1]
dists[n] = dist
break
end
end
return dists
end
function compute_nrange(n, tree, r::AbstractVector, nmax)
for m in n:nmax
_, dists = knn(tree, r, 1 + m, true)
popfirst!(dists)
unique_sorted_approx!(dists)
length(dists) == n && return maximum(dists)
end
return convert(eltype(r), Inf)
end
function unique_sorted_approx!(v::AbstractVector)
i = 1
xprev = first(v)
for j in 2:length(v)
if v[j] ≈ xprev
xprev = v[j]
else
i += 1
xprev = v[i] = v[j]
end
end
resize!(v, i)
return v
end
function ispositive(ndist)
result = false
for i in ndist
i == 0 || (result = i > 0; break)
end
return result
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 4698 | ############################################################################################
# mesh methods
#region
# Marching Tetrahedra mesh
function mesh(rngs::Vararg{Any,L}) where {L}
vmat = [SVector(pt) for pt in Iterators.product(rngs...)]
verts = vec(vmat)
cinds = CartesianIndices(vmat)
neighs = marching_neighbors(cinds) # sorted neighbors of i, with n[i][j] > i
return Mesh{L+1}(verts, neighs)
end
# forward neighbors, cind is a CartesianRange over vertices
function marching_neighbors(cinds)
linds = LinearIndices(cinds)
matrix = [Int[] for _ in cinds]
for cind in cinds
forward = max(cind, first(cinds)):min(cind + oneunit(cind), last(cinds))
for cind´ in forward
cind === cind´ && continue
push!(matrix[cind], linds[cind´])
push!(matrix[cind´], linds[cind])
end
end
neighs = vec(matrix)
return neighs
end
# simplices are not recomputed for performance
function split_edge!(m, (i, j), k)
i == j && return m
if i > j
i, j = j, i
end
delete_edge!(m, (i, j))
verts = vertices(m)
push!(verts, k)
push!(neighbors(m), Int[])
dst = length(verts)
newneighs = intersect(neighbors(m, i), neighbors(m, j))
push!(newneighs, i, j)
sort!(newneighs)
for src in newneighs
push!(neighbors(m, src), dst)
push!(neighbors(m, dst), src)
end
return m
end
function delete_edge!(m, (i, j))
i == j && return m
if i > j
i, j = j, i
end
fast_setdiff!(neighbors(m, i), j)
fast_setdiff!(neighbors(m, j), i)
return m
end
# delete elements in c if it is not in rng
function fast_setdiff!(c::Vector, rng)
i = 0
for x in c
x in rng && continue
i += 1
c[i] = x
end
resize!(c, i)
return c
end
# delete elements in c and d if the one in c is not in rng
function fast_setdiff!((c, d)::Tuple{Vector,Vector}, rng)
i = 0
for (i´, x) in enumerate(c)
x in rng && continue
i += 1
c[i] = x
d[i] = d[i´]
end
resize!(c, i)
resize!(d, i)
return (c, d)
end
# groups of n all-to-all connected neighbors, sorted
build_cliques(neighs, ::Val{N}) where {N} = rebuild_cliques!(NTuple{N,Int}[], neighs)
rebuild_cliques!(mesh::Mesh) = rebuild_cliques!(simplices(mesh), neighbors(mesh))
function rebuild_cliques!(cliques::Vector{NTuple{N,Int}}, neighs) where {N}
empty!(cliques)
for (src, dsts) in enumerate(neighs)
dsts_f = filter(>(src), dsts) # indexable forward neighbors
for ids in Combinations(length(dsts_f), N - 1)
if all_adjacent(ids, dsts_f, neighs)
# clique = (src, dsts_f[ids]...), but non-allocating
clique = ntuple(i -> i == 1 ? src : dsts_f[ids[i - 1]], Val(N))
push!(cliques, clique)
end
end
end
return cliques
end
# Check whether dsts_f[ids] are all mutual neighbors. ids are a total of nverts-1 indices
# of dsts_f = neighbor_forward(neighs, src)
function all_adjacent(ids, dsts_f, neighs)
nids = length(ids)
for (n, id) in enumerate(ids), n´ in n+1:nids
dst = dsts_f[ids[n´]]
dst in neighs[dsts_f[id]] || return false
end
return true
end
# ensure simplex orientation has normals pointing towards positive z
function orient_simplices!(simplices, vertices::Vector{B}) where {E,B<:BandVertex{<:Any,E}}
E <= 2 && return simplices
for (s, simplex) in enumerate(simplices)
if E > 2
k0 = base_coordinates(vertices[simplex[1]])
edges = ntuple(i -> base_coordinates(vertices[simplex[i+1]])-k0, Val(E-1))
volume = det(hcat(edges...))
if volume < 0
simplices[s] = switchlast(simplex)
end
end
end
return simplices
end
switchlast(s::NTuple{N}) where {N} = ntuple(i -> i < N-1 ? s[i] : s[2N-i-1], Val(N))
# Computes connected subsets from a list of neighbors, in the form of a (vsinds, svinds)
# vsinds::Vector{Int} is the subset index for each band vertex
# svinds::Vector{Vector{Int}} is a list of vertex indices for each subset
function subsets(neighs::Vector{Vector{Int}})
vsinds = zeros(Int, length(neighs))
svinds = Vector{Int}[]
sidx = 0
vidx = 1
while vidx !== nothing
sidx += 1
sv = [vidx]
push!(svinds, sv)
vsinds[vidx] = sidx
for i in sv, j in neighs[i]
iszero(vsinds[j]) || continue
vsinds[j] = sidx
push!(sv, j)
end
sort!(sv)
vidx = findfirst(iszero, vsinds)
end
return vsinds, svinds
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 8185 | ############################################################################################
# onsite and hopping
#region
onsite(o; kw...) = onsite(o, siteselector(; kw...))
onsite(o, sel::SiteSelector) = TightbindingModel(OnsiteTerm(o, sel, 1))
hopping(t; kw...) = hopping(t, hopselector(; kw...))
hopping(t, sel::HopSelector) = TightbindingModel(HoppingTerm(t, sel, 1))
plusadjoint(t) = t + t'
## filtering models, and modifying their selectors
onsite(m::AbstractModel; kw...) =
reduce(+, (_onsite(t; kw...) for t in allterms(m) if t isa Union{OnsiteTerm,ParametricOnsiteTerm}); init = TightbindingModel())
hopping(m::AbstractModel; kw...) =
reduce(+, (_hopping(t; kw...) for t in allterms(m) if t isa Union{HoppingTerm,ParametricHoppingTerm}); init = TightbindingModel())
_onsite(o::OnsiteTerm; kw...) =
TightbindingModel(OnsiteTerm(functor(o), siteselector(selector(o); kw...), coefficient(o)))
_hopping(t::HoppingTerm; kw...) =
TightbindingModel(HoppingTerm(functor(t), hopselector(selector(t); kw...), coefficient(t)))
_onsite(o::ParametricOnsiteTerm; kw...) =
ParametricModel(ParametricOnsiteTerm(functor(o), siteselector(selector(o); kw...), coefficient(o), is_spatial(o)))
_hopping(t::ParametricHoppingTerm; kw...) =
ParametricModel(ParametricHoppingTerm(functor(t), hopselector(selector(t); kw...), coefficient(t), is_spatial(t)))
#endregion
############################################################################################
# @onsite, @hopping, @onsite! and @hopping! - Parametric models and model modifiers
#region
# Macros are needed to read out number of f arguments (N) and kwarg names (params).
# A kw... is appended to kwargs in the actual function method definition to skip
# non-applicable kwargs.
# An alternative based on internals (m = first(methods(f)), Base.kwarg_decl(m) and m.nargs)
# has been considered, but decided against due to its fragility and slow runtime
## Parametric models ##
macro onsite(x, ys...)
kw, f, N, params, spatial = parse_term("@onsite", x, ys...)
return esc(:(Quantica.ParametricModel(Quantica.ParametricOnsiteTerm(
Quantica.ParametricFunction{$N}($f, $(params)), Quantica.siteselector($kw), 1, $(spatial)))))
end
macro hopping(x, ys...)
kw, f, N, params, spatial = parse_term("@hopping", x, ys...)
return esc(:(Quantica.ParametricModel(Quantica.ParametricHoppingTerm(
Quantica.ParametricFunction{$N}($f, $(params)), Quantica.hopselector($kw), 1, $(spatial)))))
end
## Model modifiers ##
macro onsite!(x, ys...)
kw, f, N, params, spatial = parse_term("@onsite!", x, ys...)
return esc(:(Quantica.OnsiteModifier(Quantica.ParametricFunction{$N}($f, $(params)), Quantica.siteselector($kw), $(spatial))))
end
macro hopping!(x, ys...)
kw, f, N, params, spatial = parse_term("@hopping!", x, ys...)
# Since the default hopping range is neighbors(1), we need change the default to Inf for @hopping!
return esc(:(Quantica.HoppingModifier(Quantica.ParametricFunction{$N}($f, $(params)), Quantica.hopselector_infrange($kw), $(spatial))))
end
function parse_term(macroname, x, ys...)
if x isa Expr && x.head == :parameters
kw = x
f, N, params, spatial = parse_term_body(macroname, only(ys))
else
kw = parse_term_parameters(ys...)
f, N, params, spatial = parse_term_body(macroname, x)
end
return kw, f, N, params, spatial
end
# parse keywords after a comma as if they were keyword arguments
function parse_term_parameters(exs...)
exs´ = maybe_kw.(exs)
paramex = Expr(:parameters, exs´...)
return paramex
end
maybe_kw(ex::Expr) = Expr(:kw, ex.args...)
maybe_kw(ex::Symbol) = ex
# Extracts normalized f, number of arguments and kwarg names from an anonymous function f
function parse_term_body(macroname, f)
if !(f isa Expr && (f.head == :-> || f.head == :-->))
msg = "Only $(macroname)(args -> body; kw...) syntax supported (or with -->). Received $(macroname)($f, ...) instead."
throw(ArgumentError(msg))
end
# change --> to -> and record change in spatial
spatial = f.head == :->
!spatial && (f.head = :->)
d = ExprTools.splitdef(f)
# process keyword arguments, add splat
kwargs = convert(Vector{Any}, get!(d, :kwargs, []))
d[:kwargs] = kwargs # in case it wasn't Vector{Any} originally
if isempty(kwargs)
params = Symbol[]
push!(kwargs, :(_...)) # normalization : append _... to kwargs
else
params = get_kwname.(kwargs)
if !isempty(params) && last(params) == :...
params = params[1:end-1] # drop _... kwarg from params
else
push!(kwargs, :(_...)) # normalization : append _... to kwargs
end
end
N = haskey(d, :args) ? length(d[:args]) : 0
f´ = ExprTools.combinedef(d)
return f´, N, params, spatial
end
get_kwname(x::Symbol) = x
get_kwname(x::Expr) = x.head === :kw ? x.args[1] : x.head # x.head == :...
hopselector_infrange(; kw...) = hopselector(; range = Inf, kw...)
#endregion
############################################################################################
# @onsite, @hopping conversions
# each ParametricTerm gets converted, using `basemodel` and `modifier`, into two pieces
#region
zero_model(term::ParametricOnsiteTerm) =
OnsiteTerm(r -> 0I, selector(term), coefficient(term))
zero_model(term::ParametricHoppingTerm) =
HoppingTerm((r, dr) -> 0I, selector(term), coefficient(term))
function modifier(term::ParametricOnsiteTerm{N}) where {N}
f = (o, args...; kw...) -> o + term(args...; kw...)
pf = ParametricFunction{N+1}(f, parameters(term))
return OnsiteModifier(pf, selector(term), is_spatial(term))
end
function modifier(term::ParametricHoppingTerm{N}) where {N}
f = (t, args...; kw...) -> t + term(args...; kw...)
pf = ParametricFunction{N+1}(f, parameters(term))
return HoppingModifier(pf, selector(term), is_spatial(term))
end
basemodel(m::ParametricModel) = nonparametric(m) + TightbindingModel(zero_model.(terms(m)))
# transforms the first argument in each model term to a parameter named pname
model_ω_to_param(model::ParametricModel) =
ParametricModel(nonparametric(model), model_ω_to_param.(terms(model)))
model_ω_to_param(model::TightbindingModel) = model_ω_to_param(ParametricModel(model))
function model_ω_to_param(term::ParametricOnsiteTerm{N}, default = 0) where {N}
# parameters(term) only needed for reporting, we omit adding :ω_internal
f = (args...; ω_internal = default, kw...) -> term(ω_internal, args...; kw...)
pf = ParametricFunction{N-1}(f, parameters(term))
return ParametricOnsiteTerm(pf, selector(term), coefficient(term), is_spatial(term))
end
function model_ω_to_param(term::ParametricHoppingTerm{N}, default = 0) where {N}
# parameters(term) only needed for reporting, we omit adding :ω_internal
f = (args...; ω_internal = default, kw...) -> term(ω_internal, args...; kw...)
pf = ParametricFunction{N-1}(f, parameters(term))
return ParametricHoppingTerm(pf, selector(term), coefficient(term), is_spatial(term))
end
#endregion
############################################################################################
# interblock and intrablock
#region
interblock(m::AbstractModel, hams::AbstractHamiltonian...) =
interblock(m, blockindices(hams)...)
interblock(m::AbstractModel, inds...) = isempty(intersect(inds...)) ?
Interblock(hopping(m), inds) :
Interblock(m, inds) # if blocks overlap, don't exclude onsite terms
intrablock(m::AbstractModel, inds) = Intrablock(m, inds)
interblock(m::AbstractModifier, inds) = Interblock(m, inds)
intrablock(m::AbstractModifier, inds) = Intrablock(m, inds)
function blockindices(hams::NTuple{N,Any}) where {N}
offset = 0
inds = ntuple(Val(N)) do i
ns = nsites(lattice(hams[i]))
rng = offset + 1:offset + ns
offset += ns
rng
end
return inds
end
block(m::Intrablock, b::OrbitalBlockStructure) = flatrange(b, block(m))
block(m::Interblock, b::OrbitalBlockStructure) = flatrange.(Ref(b), block(m))
block(::Union{AbstractModel,AbstractModifier}, b...) = missing
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 22107 | ############################################################################################
# Observables - common tools
#region
abstract type IndexableObservable end # any type that can be sliced into (current and ldos)
fermi(ω::C, kBT = 0; atol = sqrt(eps(real(C)))) where {C} =
iszero(kBT) ? ifelse(abs(ω) < atol, C(0.5), ifelse(real(ω) <= 0, C(1), C(0))) : C(1/(exp(ω/kBT) + 1))
normal_size(h::AbstractHamiltonian) = normal_size(blockstructure(h))
function normal_size(b::OrbitalBlockStructure)
n = first(blocksizes(b))
iseven(n) && allequal(blocksizes(b)) ||
argerror("A Nambu Hamiltonian must have an even and uniform number of orbitals per site, got $(blocksizes(b)).")
return n ÷ 2
end
trace_tau(g, ::Missing) = tr(g)
function trace_tau(g, tau)
trace = zero(eltype(g))
for i in axes(g, 2)
trace += g[i, i] * tau[i]
end
return trace
end
mul_tau!(g, ::Missing) = g
mul_tau!(::Missing, g) = g
mul_tau!(g, tau::Vector) = (g .*= tau')
mul_tau!(tau::Vector, g) = (g .*= tau)
tauz_diag(i, normalsize) = ifelse(iseven(fld1(i, normalsize)), -1, 1)
taue_diag(i, normalsize) = ifelse(iseven(fld1(i, normalsize)), 0, 1)
check_contact_slice(gs) = (rows(gs) isa Integer && cols(gs) isa Integer) ||
argerror("Please use a Green slice of the form `g[i::Integer, j::Integer]` or `g[i::Integer]`")
check_same_contact_slice(gs) = (rows(gs) isa Integer && cols(gs) === rows(gs)) ||
argerror("Please use a Green slice of the form `g[i::Integer]`")
check_different_contact_slice(gs) = (rows(gs) isa Integer && cols(gs) != rows(gs)) ||
argerror("Please use a Green slice of the form `g[i::Integer, j::Integer] with `i ≠ j`")
check_nodiag_axes(gs::GreenSlice) = check_nodiag_axes(rows(gs)), check_nodiag_axes(rows(gs))
check_nodiag_axes(::DiagIndices) = argerror("Diagonal indexing not yet supported for this function")
check_nodiag_axes(_) = nothing
#endregion
############################################################################################
# Operators
#region
function current(h::AbstractHamiltonian; charge = -I, direction = 1)
current = parametric(h,
@onsite!(o -> zero(o)),
@hopping!((t, r, dr) -> im*dr[direction]*charge*t))
return Operator(current)
end
#endregion
############################################################################################
# Integrator - integrates a function f along a complex path ωcomplex(ω::Real), connecting ωi
# The path is piecewise linear in the form of a sawtooth with a given ± slope
#region
struct Integrator{I,T,P,O<:NamedTuple,M,F}
integrand::I # call!(integrand, ω::Complex; params...)::Union{Number,Array{Number}}
points::P # a tuple of complex points that form the sawtooth integration path
result::T # can be missing (for scalar integrand) or a mutable type (nonscalar)
opts::O # kwargs for quadgk
omegamap::M # function that maps ω to parameters
post::F # function to apply to the integrand at the end of integration
end
#region ## Constructor ##
function Integrator(result, f, pts::NTuple{<:Any,Number}; omegamap = Returns((;)), imshift = missing, post = identity, slope = 1, opts...)
imshift´ = imshift === missing ?
sqrt(eps(promote_type(typeof.(float.(real.(pts)))...))) : float(imshift)
pts´ = iszero(slope) ? pts .+ (im * imshift´) : sawtooth(imshift´, slope, pts)
opts´ = NamedTuple(opts)
return Integrator(f, pts´, result, opts´, omegamap, post)
end
Integrator(f, pts::NTuple{<:Any,Number}; kw...) = Integrator(missing, f, pts; kw...)
sawtooth(is, sl, ωs) = _sawtooth(is, sl, (), ωs...)
_sawtooth(is, sl, ::Tuple{}, ω1, ωs...) = _sawtooth(is, sl, (ω1 + im * is,), ωs...)
_sawtooth(is, sl, ωs´, ωn, ωs...) = _sawtooth(is, sl,
(ωs´..., 0.5 * (real(last(ωs´)) + ωn) + im * (is + sl * 0.5*(ωn - real(last(ωs´)))), ωn + im * is), ωs...)
_sawtooth(is, sl, ωs´) = ωs´
#endregion
#region ## API ##
integrand(I::Integrator) = I.integrand
points(I::Integrator) = I.points
options(I::Integrator) = I.opts
## call! ##
# scalar version
function call!(I::Integrator{<:Any,Missing}; params...)
fx = x -> call!(I.integrand, x; I.omegamap(x)..., params...)
result, err = quadgk(fx, I.points...; I.opts...)
result´ = I.post(result)
return result´
end
# nonscalar version
function call!(I::Integrator; params...)
fx! = (y, x) -> (y .= call!(I.integrand, x; I.omegamap(x)..., params...))
result, err = quadgk!(fx!, I.result, I.points...; I.opts...)
result´ = I.post(result) # note: post-processing is not element-wise & can be in-place
return result´
end
(I::Integrator)(; params...) = copy(call!(I; params...))
#endregion
#endregion
############################################################################################
# ldos: local spectral density
# d = ldos(::GreenSolution; kernel = I) -> d[sites...]::Vector
# d = ldos(::GreenSlice; kernel = I) -> d(ω; params...)::Vector
# Here ldos is given as Tr(ρᵢᵢ * kernel) where ρᵢᵢ is the spectral function at site i
# Here is the generic fallback that uses G. Any more specialized methods need to be added
# to each GreenSolver
#region
struct LocalSpectralDensitySolution{T,E,L,G<:GreenSolution{T,E,L},K} <: IndexableObservable
gω::G
kernel::K # should return a float when applied to gω[CellSite(n,i)]
end
struct LocalSpectralDensitySlice{T,E,L,G<:GreenSlice{T,E,L},K}
gs::G
kernel::K # should return a float when applied to gω[CellSite(n,i)]
end
#region ## Constructors ##
ldos(gω::GreenSolution; kernel = I) = LocalSpectralDensitySolution(gω, kernel)
function ldos(gs::GreenSlice{T}; kernel = I) where {T}
rows(gs) === cols(gs) ||
argerror("Cannot take ldos of a GreenSlice with rows !== cols")
return LocalSpectralDensitySlice(gs, kernel)
end
#endregion
#region ## API ##
greenfunction(d::LocalSpectralDensitySlice) = d.g
kernel(d::Union{LocalSpectralDensitySolution,LocalSpectralDensitySlice}) = d.kernel
ldos_kernel(g, kernel::UniformScaling) = - kernel.λ * imag(tr(g)) / π
ldos_kernel(g, kernel) = -imag(tr(g * kernel)) / π
Base.getindex(d::LocalSpectralDensitySolution; selectors...) =
d[getindex(lattice(d.gω); selectors...)]
Base.getindex(d::LocalSpectralDensitySolution, s::SiteSelector) =
d[getindex(lattice(d.gω), s)]
Base.getindex(d::LocalSpectralDensitySolution{T}, i) where {T} =
append_diagonal!(T[], d.gω, i, d.kernel, post = x -> -imag(x)/π) |>
maybe_OrbitalSliceArray(sites_to_orbs(i, d.gω)) # see greenfunction.jl
(d::LocalSpectralDensitySlice)(ω; params...) = copy(call!(d, ω; params...))
# fallback through LocalSpectralDensitySolution - overload to allow a more efficient path
function call!(d::LocalSpectralDensitySlice{T}, ω; params...) where {T}
orbslice_or_contact = first(orbinds_or_contactinds(d.gs))
gω = call!(parent(d.gs), ω; params...)
l = ldos(gω; kernel = d.kernel)
return l[orbslice_or_contact]
end
#endregion
#endregion
############################################################################################
# current: current density Jᵢⱼ(ω) as a function of a charge operator
# d = current(::GreenSolution[, dir]; charge) -> d[sites...]::SparseMatrixCSC{SVector{E,T}}
# d = current(::GreenSlice[, dir]; charge) -> d(ω; params...)::SparseMatrixCSC{SVector{E,T}}
# Computes the zero-temperature equilibrium current density Jᵢⱼ from site j to site i
# Jᵢⱼ(ω) = (2/h) rᵢⱼ Re Tr[(Hᵢⱼgʳⱼᵢ - gʳᵢⱼHⱼᵢ)Q]
# Here charge = Q, where Q is usually qe*I for normal, and qe*τz/2 for Nambu systems
# `dir` projects Jᵢⱼ along a certain direction, or takes the norm if missing
# We use a default charge = -I, corresponding to normal currents densities in units of e/h
#region
struct CurrentDensitySolution{T,E,L,G<:GreenSolution{T,E,L},K,V<:Union{Missing,SVector}} <: IndexableObservable
gω::G
charge::K # should return a float when traced with gʳᵢⱼHᵢⱼ
cache::GreenSolutionCache{T,L,G} # memoizes g[sites]
direction::V
end
struct CurrentDensitySlice{T,E,L,G<:GreenFunction{T,E,L},K,V<:Union{Missing,SVector}}
g::G
charge::K # should return a float when traced with gʳᵢⱼHᵢⱼ
orbslice::OrbitalSliceGrouped{T,E,L}
direction::V
end
#region ## Constructors ##
current(gω::GreenSolution; direction = missing, charge = -I) =
CurrentDensitySolution(gω, charge, GreenSolutionCache(gω), sanitize_direction(direction, gω))
function current(gs::GreenSlice; direction = missing, charge = -I)
rows(gs) === cols(gs) ||
argerror("Cannot currently take ldos of a GreenSlice with rows !== cols")
g = parent(gs)
orbslice = orbrows(gs)
return CurrentDensitySlice(g, charge, orbslice, sanitize_direction(direction, g))
end
sanitize_direction(dir, ::GreenSolution{<:Any,E}) where {E} = _sanitize_direction(dir, Val(E))
sanitize_direction(dir, ::GreenFunction{<:Any,E}) where {E} = _sanitize_direction(dir, Val(E))
_sanitize_direction(::Missing, ::Val) = missing
_sanitize_direction(dir::Integer, ::Val{E}) where {E} = unitvector(dir, SVector{E,Int})
_sanitize_direction(dir::SVector{E}, ::Val{E}) where {E} = dir
_sanitize_direction(dir::NTuple{E}, ::Val{E}) where {E} = SVector(dir)
_sanitize_direction(_, ::Val{E}) where {E} =
argerror("Current direction should be an Integer or a NTuple/SVector of embedding dimension $E")
#endregion
#region ## API ##
charge(d::Union{CurrentDensitySolution,CurrentDensitySlice}) = d.charge
direction(d::Union{CurrentDensitySolution,CurrentDensitySlice}) = d.direction
Base.getindex(d::CurrentDensitySolution; kw...) = d[getindex(lattice(d.gω); kw...)]
Base.getindex(d::CurrentDensitySolution, scell::CellSites) = d[lattice(hamiltonian(d.gω))[scell]]
Base.getindex(d::CurrentDensitySolution, i::Union{Integer,Colon}) = d[latslice(parent(d.gω), i)]
Base.getindex(d::CurrentDensitySolution, ls::LatticeSlice) = current_matrix(d.gω, ls, d)
# no call! support here
function (d::CurrentDensitySlice)(ω; params...)
gω = call!(d.g, ω; params...)
ls = d.orbslice
cu = current(gω; charge = d.charge)
return cu[ls]
end
function current_matrix(gω, ls, d)
h = hamiltonian(parent(gω))
# see slices.jl for unflat_getindex
current = unflat_sparse_slice(h, ls, ls,
(hij, cij) -> maybe_project(apply_charge_current(hij, cij, d), d.direction))
return current
end
function apply_charge_current(hij_block::B, (ci, cj), d::CurrentDensitySolution{T,E}) where {T,E,B}
ni, i = cell(ci), siteindex(ci)
nj, j = cell(cj), siteindex(cj)
ni == nj && i == j && return zero(SVector{E,T})
gji = unblock(mask_block(B, d.cache[cj, ci]))
gij = unblock(mask_block(B, d.cache[ci, cj]))
hij = unblock(hij_block)
hji = hij'
hgghQ = (hij * gji - gij * hji) * d.charge
# safeguard in case (hij * gji - gij * hji) isa Number and d.charge isa UniformScaling
Iij = 2 * real(maybe_trace(hgghQ))
lat = lattice(d.gω)
ri = site(lat, i, ni)
rj = site(lat, j, nj)
Jij = (ri - rj) * Iij
return Jij
end
maybe_project(J, ::Missing) = norm(J)
maybe_project(J, dir) = dot(dir, J)
maybe_trace(m::UniformScaling) = m.λ
maybe_trace(m) = tr(m)
#endregion
#endregion
############################################################################################
# conductance(gs::GreenSlice; nambu = false) -> G(ω; params...)::Real
# For gs = g[i::Int, j::Int = i] -> we get zero temperature Gᵢⱼ = dIᵢ/dVⱼ in units of e^2/h
# where i, j are contact indices
# Gᵢⱼ = e^2/h × Tr{[δᵢⱼi(Gʳ-Gᵃ)Γⁱ-GʳΓⁱGᵃΓʲ]} (nambu = false)
# Gᵢⱼ = e^2/h × Tr{[δᵢⱼi(Gʳ-Gᵃ)Γⁱτₑ-GʳΓⁱτzGᵃΓʲτₑ]} (nambu = true)
# and where τₑ = [1 0; 0 0] and τz = [1 0; 0 -1] in Nambu space, and ω = eV.
#region
struct Conductance{T,E,L,C,G<:GreenFunction{T,E,L}}
g::G
i::Int # contact index for Iᵢ
j::Int # contact index for Vⱼ
τezdiag::Tuple{C,C} # diagonal of τₑ and τz, or (missing, missing)
Γ::Matrix{Complex{T}} # prealloc workspace for selfenergy! (over all contacts)
GrΓi::Matrix{Complex{T}} # prealloc workspace GʳⱼᵢΓⁱ
GaΓj::Matrix{Complex{T}} # prealloc workspace GᵃᵢⱼΓʲ
GΓGΓ::Matrix{Complex{T}} # prealloc workspace GʳⱼᵢΓⁱGᵃᵢⱼΓʲ
end
#region ## Constructors ##
function conductance(gs::GreenSlice{T}; nambu = false) where {T}
check_contact_slice(gs)
i = rows(gs)
j = cols(gs)
g = parent(gs)
ni = norbitals(contactorbitals(g), i)
nj = norbitals(contactorbitals(g), j)
Γ = similar_contactΣ(g)
if nambu
nsize = normal_size(hamiltonian(g))
τezdiag = (taue_diag.(1:nj, nsize), tauz_diag.(1:ni, nsize))
else
τezdiag = (missing, missing)
end
GrΓi = Matrix{Complex{T}}(undef, nj, ni)
GaΓj = Matrix{Complex{T}}(undef, ni, nj)
GΓGΓ = Matrix{Complex{T}}(undef, nj, nj)
return Conductance(g, i, j, τezdiag, Γ, GrΓi, GaΓj, GΓGΓ)
end
#endregion
#region ## API ##
currentcontact(G) = G.i
biascontact(G) = G.j
function (G::Conductance)(ω; params...)
τe, τz = G.τezdiag
gω = call!(G.g, ω; params...)
gʳⱼᵢ = gω[G.j, G.i]
gᵃᵢⱼ = gʳⱼᵢ'
Γi = selfenergy!(G.Γ, gω, G.i; onlyΓ = true)
mul!(G.GrΓi, gʳⱼᵢ, Γi)
Γj = G.i == G.j ? Γi : selfenergy!(G.Γ, gω, G.j; onlyΓ = true)
mul!(G.GaΓj, gᵃᵢⱼ, Γj)
mul_tau!(G.GrΓi, τz) # no-op if τz is missing
mul!(G.GΓGΓ, G.GrΓi, G.GaΓj)
# the -Tr{GʳΓⁱτzGᵃΓʲτₑ} term
cond = - real(trace_tau(G.GΓGΓ, τe)) # simple trace if τe is missing
if G.i == G.j
# add the Tr(i(Gʳ-Gᵃ)Γⁱτₑ) term
gmg = gʳⱼᵢ
gmg .-= gᵃᵢⱼ
iGmGΓ = mul!(G.GΓGΓ, gmg, Γi, im, 0)
cond += real(trace_tau(iGmGΓ, τe)) # simple trace if τe is missing
end
return cond
end
#endregion
#endregion
############################################################################################
# tramsission(gs::GreenSlice) -> normal Tᵢⱼ = Tr{GʳΓⁱGᵃΓʲ} from contact j to i ≠ j
#region
struct Transmission{G<:Conductance}
conductance::G
end
#region ## Constructors ##
function transmission(gs::GreenSlice)
check_different_contact_slice(gs)
return Transmission(conductance(gs; nambu = false))
end
#endregion
#region ## API ##
Base.parent(t::Transmission) = t.conductance
function (T::Transmission)(ω; params...)
G = T.conductance
gω = call!(G.g, ω; params...)
gʳⱼᵢ = gω[G.j, G.i]
gᵃᵢⱼ = gʳⱼᵢ'
Γi = selfenergy!(G.Γ, gω, G.i; onlyΓ = true)
mul!(G.GrΓi, gʳⱼᵢ, Γi)
Γj = G.i == G.j ? Γi : selfenergy!(G.Γ, gω, G.j; onlyΓ = true)
mul!(G.GaΓj, gᵃᵢⱼ, Γj)
mul!(G.GΓGΓ, G.GrΓi, G.GaΓj)
t = real(tr(G.GΓGΓ))
return t
end
#endregion
#endregion
############################################################################################
# densitymatrix: equilibrium (static) ρ::DensityMatrix
# ρ = densitymatrix(g::GreenSlice, (ωmin, ωmax); opts...)
# ρ(mu, kBT = 0; params...) gives the DensityMatrix that is solved with an integral over (ωmin, ωmax)
# ρ(mu, kBT; params...) = -(1/π) Im ∫dω f(ω) g(ω; params...)
# ρ = densitymatrix(g::GreenSlice; opts...) uses a GreenSolver-specific algorithm
# Keywords opts are passed to QuadGK.quadgk for the integral or the algorithm used
#region
struct DensityMatrix{S,G<:GreenSlice}
solver::S
gs::G
end
# Default solver (integration in complex plane)
struct DensityMatrixIntegratorSolver{I}
ifunc::I
end
#region ## Constructors ##
(ρ::DensityMatrix)(mu = 0, kBT = 0; params...) = ρ.solver(mu, kBT; params...) |>
maybe_OrbitalSliceArray(axes(ρ.gs))
(s::DensityMatrixIntegratorSolver)(mu, kBT; params...) = s.ifunc(mu, kBT; params...)
# redirects to specialized method
densitymatrix(gs::GreenSlice; kw...) =
densitymatrix(solver(parent(gs)), gs::GreenSlice; kw...)
# generic fallback
densitymatrix(s::AppliedGreenSolver, gs::GreenSlice; kw...) =
argerror("Dedicated `densitymatrix` algorithm not implemented for $(nameof(typeof(s))). Use generic one instead.")
# default integrator solver
densitymatrix(gs::GreenSlice, ωmax::Number; opts...) = densitymatrix(gs, (-ωmax, ωmax); opts...)
function densitymatrix(gs::GreenSlice{T}, (ωmin, ωmax)::Tuple; omegamap = Returns((;)), imshift = missing, atol = 1e-7, opts...) where {T}
check_nodiag_axes(gs)
result = similar_Matrix(gs)
opts´ = (; omegamap, imshift, slope = 1, post = gf_to_rho!, atol, opts...)
integratorfunc(mu, kBT; params...) = iszero(kBT) ?
Integrator(result, GFermi(gs, T(mu), T(kBT)), (ωmin, mu); opts´...)(; params...) :
Integrator(result, GFermi(gs, T(mu), T(kBT)), (ωmin, mu, ωmax); opts´...)(; params...)
return DensityMatrix(DensityMatrixIntegratorSolver(integratorfunc), gs)
end
function gf_to_rho!(x)
x .= x .- x'
x .*= -1/(2π*im)
return x
end
#endregion
#region ## API ##
struct GFermi{G<:GreenSlice,T}
gs::G
mu::T
kBT::T
end
function call!(gf::GFermi, ω; params...)
gω = call!(gf.gs, ω; params...)
f = fermi(ω - gf.mu, gf.kBT)
gω .*= f
return gω
end
#endregion
############################################################################################
# josephson
# The equilibrium (static) Josephson current, in units of qe/h, *from* lead i is given by
# Iᵢ = Re ∫dω J(ω; params...), where J(ω; params...) = (qe/h) × 2f(ω)Tr[(ΣʳᵢGʳ - GʳΣʳᵢ)τz]
# J = josephson(g::GreenSlice, ωmax; contact = i, kBT = 0, phases)
# J(ω; params...) -> scalar or vector [J(ϕⱼ) for ϕⱼ in phases] if `phases` is an
# integer (num phases from 0 to π) or a collection of ϕ's
# A phase ϕ can be applied by gauging it away from the lead and into its coupling:
# Σʳᵢ(ϕ) = UᵩΣʳᵢUᵩ' and Gʳ(ϕ) = [1+Gʳ(Σʳᵢ-Σʳᵢ(ϕ))]⁻¹Gʳ, where Uᵩ = exp(iϕτz/2).
# I = josephson(Integrator(J, (-ωmax, 0, ωmax); post = real, opts...)
# Keywords opts are passed to quadgk for the integral
#region
struct JosephsonDensity{T<:AbstractFloat,P<:Union{Missing,AbstractArray},G<:GreenFunction{T}}
g::G
kBT::T
contactind::Int # contact index
tauz::Vector{Int} # precomputed diagonal of tauz
phaseshifts::P # missing or collection of phase shifts to apply
traces::P # preallocated workspace
Σ::Matrix{Complex{T}} # preallocated workspace, full self-energy
ΣggΣ::Matrix{Complex{T}} # preallocated workspace
Σ´::Matrix{Complex{T}} # preallocated workspace
g´::Matrix{Complex{T}} # preallocated workspace
den::Matrix{Complex{T}} # preallocated workspace
cisτz::Vector{Complex{T}} # preallocated workspace
end
struct Josephson{S}
solver::S
end
# default solver (integration in complex plane)
struct JosephsonIntegratorSolver{I}
ifunc::I
end
#region ## Constructors ##
(j::Josephson)(kBT = 0; params...) = j.solver(kBT; params...)
(s::JosephsonIntegratorSolver)(kBT; params...) = s.ifunc(kBT; params...)
function josephson(gs::GreenSlice{T}, ωmax; omegamap = Returns((;)), phases = missing, imshift = missing, atol = 1e-7, opts...) where {T}
check_nodiag_axes(gs)
check_same_contact_slice(gs)
contact = rows(gs)
g = parent(gs)
Σfull = similar_contactΣ(g)
Σ = similar_contactΣ(g, contact)
normalsize = normal_size(hamiltonian(g))
tauz = tauz_diag.(axes(Σ, 1), normalsize)
phases´, traces = sanitize_phases_traces(phases, T)
jd(kBT) = JosephsonDensity(g, T(kBT), contact, tauz, phases´,
traces, Σfull, Σ, similar(Σ), similar(Σ), similar(Σ), similar(tauz, Complex{T}))
opts´ = (; omegamap, imshift, slope = 1, post = real, atol, opts...)
ifunc(kBT; params...) = iszero(kBT) ?
Integrator(traces, jd(kBT), (-ωmax, 0); opts´...)(; params...) :
Integrator(traces, jd(kBT), (-ωmax, 0, ωmax); opts´...)(; params...)
return Josephson(JosephsonIntegratorSolver(ifunc))
end
sanitize_phases_traces(::Missing, ::Type{T}) where {T} = missing, missing
sanitize_phases_traces(phases::Integer, ::Type{T}) where {T} =
sanitize_phases_traces(range(0, π, length = phases), T)
function sanitize_phases_traces(phases, ::Type{T}) where {T}
phases´ = Complex{T}.(phases)
traces = similar(phases´)
return phases´, traces
end
#endregion
#region ## API ##
temperature(J::JosephsonDensity) = J.kBT
contact(J::JosephsonDensity) = J.contactind
phaseshifts(I::Integrator{<:JosephsonDensity}) = phaseshifts(integrand(I))
phaseshifts(J::JosephsonDensity) = real.(J.phaseshifts)
numphaseshifts(J::JosephsonDensity) = numphaseshifts(J.phaseshifts)
numphaseshifts(::Missing) = 0
numphaseshifts(phaseshifts) = length(phaseshifts)
function call!(J::JosephsonDensity, ω; params...)
gω = call!(J.g, ω; params...)
f = fermi(ω, J.kBT)
traces = josephson_traces(J, gω, f)
return traces
end
function josephson_traces(J, gω, f)
gr = gω[J.contactind, J.contactind]
Σi = selfenergy!(J.Σ, gω, J.contactind)
return josephson_traces!(J, gr, Σi, f)
end
josephson_traces!(J::JosephsonDensity{<:Any,Missing}, gr, Σi, f) = josephson_one_trace!(J, gr, Σi, f)
function josephson_traces!(J, gr, Σi, f)
for (i, phaseshift) in enumerate(J.phaseshifts)
gr´, Σi´ = apply_phaseshift!(J, gr, Σi, phaseshift)
J.traces[i] = josephson_one_trace!(J, gr´, Σi´, f)
end
return J.traces
end
# 2 f(ω) Tr[(Σi * gr - gr * Σi) * τz]
function josephson_one_trace!(J, gr, Σi, f)
ΣggΣ = J.ΣggΣ
mul!(ΣggΣ, Σi, gr)
mul!(ΣggΣ, gr, Σi, -1, 1)
trace = 2 * f * trace_tau(ΣggΣ, J.tauz)
return trace
end
# Σi´ = U Σi U' and gr´ = (gr₀⁻¹ - Σi´)⁻¹ = (1+gr*(Σi-Σi´))⁻¹gr
function apply_phaseshift!(J, gr, Σi, phaseshift)
Σi´ = J.Σ´
U = J.cisτz
phasehalf = phaseshift/2
@. U = cis(-phasehalf * J.tauz)
@. Σi´ = U * Σi * U'
den = J.den
one!(den)
tmp = J.g´
@. tmp = Σi - Σi´
mul!(den, gr, tmp, 1, 1) # den = 1-gr * (Σi - Σi´)
gr´ = ldiv!(J.g´, lu!(den), gr) # gr´ = (1+gr*(Σi-Σi´))⁻¹gr
return gr´, Σi´
end
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 6677 | ############################################################################################
# Non-numerical sanitizers
#region
sanitize_Vector_of_Symbols(name::Symbol) = [name]
sanitize_Vector_of_Symbols(names) = Symbol[convert(Symbol, name) for name in names]
sanitize_orbitals(o::Val) = o
sanitize_orbitals(o::Int) = Val(o)
sanitize_orbitals(o) = allequal(o) ? sanitize_orbitals(first(o)) : o
sanitize_Val(o::Val) = o
sanitize_Val(o) = Val(o)
#endregion
############################################################################################
# Array sanitizers (padding with zeros if necessary)
#region
sanitize_Vector_of_Type(::Type{T}, len, x::T´) where {T,T´<:Union{T,Val}} = fill(val_convert(T, x), len)
function sanitize_Vector_of_Type(::Type{T}, len, xs) where {T}
xs´ = sanitize_Vector_of_Type(T, xs)
length(xs´) == len || throw(ArgumentError("Received a collection with $(length(xs´)) elements, should have $len."))
return xs´
end
function sanitize_Vector_of_Type(::Type{T}, xs) where {T}
xs´ = T[val_convert(T, x) for x in xs]
return xs´
end
val_convert(T, ::Val{N}) where {N} = convert(T, N)
val_convert(T, x) = convert(T, x)
sanitize_Vector_of_SVectors(::Type{T}, ::Tuple{}) where {T} = T[]
sanitize_Vector_of_SVectors(::Type{T}, vs) where {T} =
eltype(vs) <: Number ? [sanitize_SVector(T, vs)] : [sanitize_SVector.(T, vs)...]
sanitize_SVector(::Tuple{}) = SVector{0,Float64}()
sanitize_SVector(x::Number) = SVector{1}(x)
sanitize_SVector(v) = convert(SVector{length(v)}, v)
sanitize_SVector(::Type{T}, v::SVector{<:Any,T}) where {T<:Number} = v
sanitize_SVector(::Type{T}, v) where {T<:Number} =
isempty(v) ? SVector{0,T}() : convert.(T, sanitize_SVector(v))
sanitize_SVector(::Type{SVector{N,T}}, v::SVector{N}) where {N,T} = convert(SVector{N,T}, v)
sanitize_SVector(::Type{SVector{N,T}}, v) where {N,T} =
SVector{N,T}(ntuple(i -> i > length(v) ? zero(T) : convert(T, v[i]), Val(N)))
function sanitize_SMatrix(::Type{S}, x, (rows, cols) = (E, L)) where {T<:Number,E,L,S<:SMatrix{E,L,T}}
t = ntuple(Val(E*L)) do l
j, i = fldmod1(l, E)
i <= max(rows, length(x[j])) && j <= max(cols, length(x)) ? T(x[j][i]) : zero(T)
end
return SMatrix{E,L,T}(t)
end
function sanitize_SMatrix(::Type{S}, s::AbstractMatrix, (rows, cols) = (E, L)) where {T<:Number,E,L,S<:SMatrix{E,L,T}}
t = ntuple(Val(E*L)) do l
j, i = fldmod1(l, E)
i <= rows && j <= cols && checkbounds(Bool, s, i, j) ? convert(T, s[i,j]) : zero(T)
end
return SMatrix{E,L,T}(t)
end
function sanitize_Matrix(::Type{T}, E, cols::Tuple) where {T}
m = zeros(T, E, length(cols))
for (j, col) in enumerate(cols), i in 1:E
if i <= length(col)
m[i, j] = col[i]
end
end
return m
end
function sanitize_Matrix(::Type{T}, E, m::AbstractMatrix) where {T}
m´ = zeros(T, E, size(m, 2))
axs = intersect.(axes(m), axes(m´))
m´[axs...] .= convert.(T, view(m, axs...))
return m´
end
#endregion
############################################################################################
# TEL types
# Family of types with well-defined T,E,L
#region
const TELtypes{T,E,L} = Union{Lattice{T,E,L},LatticeSlice{T,E,L},AbstractHamiltonian{T,E,L},
GreenFunction{T,E,L},GreenSlice{T,E,L},GreenSolution{T,E,L},IJVBuilder{T,E,L},CSCBuilder{T,E,L}}
#endregion
############################################################################################
# CellIndices sanitizers
#region
# an inds::Tuple fails some tests because convert(Tuple, ::UnitRange) doesnt exist, but
# convert(SVector, ::UnitRange) does. Used e.g. in compute_or_retrieve_green @ sparselu.jl
# We should also demand indices to be unique, since siteindsdict cannot have duplicates
sanitize_cellindices(inds::Tuple) = SVector(_check_unique(inds))
sanitize_cellindices(inds) = _check_unique(inds)
_check_unique(x::Colon) = x
function _check_unique(inds)
allunique(inds) || argerror("Cell indices should be unique")
return inds
end
sanitize_cellindices(c::CellIndices{0}, ::Val{L}) where {L} = zerocellinds(c, Val(L))
sanitize_cellindices(c::CellIndices{L}, ::Val{L}) where {L} = c
sanitize_cellindices(c::CellIndices{0}, ::Val{0}) = c
sanitize_cellindices(c::CellIndices{L}, ::TELtypes{<:Any,<:Any,L}) where {L} = c
sanitize_cellindices(c::CellIndices{0}, ::TELtypes{<:Any,<:Any,0}) = c
sanitize_cellindices(c::CellIndices{0}, ::TELtypes{<:Any,<:Any,L}) where {L} =
zerocellinds(c, Val(L))
sanitize_cellindices(c::CellIndices{L}, ::TELtypes{<:Any,<:Any,L´}) where {L,L´} =
argerror("Expected a cell index of dimension $L´, got $L")
#endregion
############################################################################################
# block sanitizers
# if a is the result of indexing an OrbitalSliceArray with an CellSitePos, ensure it can
# be the result of a model term function. Required for e.g. mean-field models.
#region
sanitize_block(::Type{C}, a) where {C<:Number} = complex(C)(only(a))
sanitize_block(::Type{C}, a) where {C<:SMatrix} = C(a)
# here we assume a is already of the correct size and let if fail later otherwise
sanitize_block(::Type{C}, a) where {C<:SMatrixView} = a
#endregion
############################################################################################
# Supercell sanitizers
#region
sanitize_supercell(::Val{L}, ::Tuple{}) where {L} = SMatrix{L,0,Int}()
sanitize_supercell(::Val{L}, ns::NTuple{L´,NTuple{L,Int}}) where {L,L´} =
sanitize_SMatrix(SMatrix{L,L´,Int}, ns)
sanitize_supercell(::Val{L}, n::Tuple{Int}) where {L} =
SMatrix{L,L,Int}(first(n) * I)
sanitize_supercell(::Val{L}, ns::NTuple{L,Int}) where {L} =
SMatrix{L,L,Int}(Diagonal(SVector(ns)))
sanitize_supercell(::Val{L}, s::Tuple{SMatrix{<:Any,<:Any,Int}}) where {L} = only(s)
sanitize_supercell(::Val{L}, v) where {L} =
throw(ArgumentError("Improper supercell specification $v for an $L lattice dimensions, see `supercell`"))
#endregion
############################################################################################
# Eigen sanitizers
#region
sanitize_eigen(ε::AbstractVector, Ψs::AbstractVector{<:AbstractVector}) =
sanitize_eigen(ε, hcat(Ψs...))
sanitize_eigen(ε, Ψ) = Eigen(sorteigs!(sanitize_eigen(ε), sanitize_eigen(Ψ))...)
sanitize_eigen(x::AbstractArray{<:Real}) = complex.(x)
sanitize_eigen(x::AbstractArray{<:Complex}) = x
function sorteigs!(ϵ::AbstractVector, ψ::AbstractMatrix)
p = Vector{Int}(undef, length(ϵ))
p´ = similar(p)
sortperm!(p, ϵ, by = real, alg = Base.DEFAULT_UNSTABLE)
Base.permute!!(ϵ, copy!(p´, p))
Base.permutecols!!(ψ, copy!(p´, p))
return ϵ, ψ
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 7652 | ############################################################################################
# selector constructors
#region
siteselector(s::NamedTuple) = siteselector(; s...)
siteselector(; region = missing, sublats = missing, cells = missing) =
SiteSelector(region, sublats, cells)
siteselector(s::SiteSelector; region = s.region, sublats = s.sublats, cells = s.cells) =
SiteSelector(region, sublats, cells)
hopselector(h::NamedTuple) = hopselector(; h...)
hopselector(; region = missing, sublats = missing, dcells = missing, range = neighbors(1)) =
HopSelector(region, sublats, dcells, range)
hopselector(s::HopSelector; region = s.region, sublats = s.sublats, dcells = s.dcells, range = s.range) =
HopSelector(region, sublats, dcells, range, s.adjoint)
neighbors(n::Int) = Neighbors(n)
neighbors(n::Int, lat::Lattice) = nrange(n, lat)
#endregion
############################################################################################
# Base.in constructors
#region
function Base.in((s, r)::Tuple{Int,SVector{E,T}}, sel::AppliedSiteSelector{T,E}) where {T,E}
return !isnull(sel) && inregion(r, sel) &&
insublats(s, sel)
end
function Base.in((s, r, cell)::Tuple{Int,SVector{E,T},SVector{L,Int}}, sel::AppliedSiteSelector{T,E,L}) where {T,E,L}
return !isnull(sel) && incells(cell, sel) &&
inregion(r, sel) &&
insublats(s, sel)
end
## Cannot add this, as it is ambiguous for L == E
# function Base.in((i, cell)::Tuple{Int,SVector{L,Int}}, sel::AppliedSiteSelector{T,E,L}) where {T,E,L}
# lat = lattice(sel)
# r = site(lat, i, cell)
# return (i, r, cell) in sel
# end
## We therefore also skip this for consistency
# function Base.in(((j, i), (nj, ni))::Tuple{Pair,Pair}, sel::AppliedHopSelector)
# lat = lattice(sel)
# ri, rj = site(lat, i, ni), site(lat, j, nj)
# r, dr = rdr(rj => ri)
# dcell = ni - nj
# return ((j, i), (r, dr), dcell) in sel
# end
function Base.in(((sj, si), (r, dr), dcell)::Tuple{Pair,Tuple,SVector}, sel::AppliedHopSelector)
return !isnull(sel) && !isonsite(dr) &&
indcells(dcell, sel) &&
insublats(sj => si, sel) &&
iswithinrange(dr, sel) &&
inregion((r, dr), sel)
end
isonsite((j, i), dn) = ifelse(i == j && iszero(dn), true, false)
isonsite(dr) = iszero(dr)
#endregion
############################################################################################
# foreach_site, foreach_cell, foreach_hop
#region
# foreach_cell(f,...) should be called with a boolean function f that returns whether the
# cell should be mark as accepted when BoxIterated
function foreach_cell(f, sel::AppliedSiteSelector)
isnull(sel) && return nothing
lat = lattice(sel)
cells_list = cells(sel)
if isempty(cells_list) # no cells specified
iter = BoxIterator(zerocell(lat))
keepgoing = true # will search until we find at least one
for cell in iter
found = f(cell)
if found || keepgoing
acceptcell!(iter, cell)
found && (keepgoing = false)
end
end
else
for cell in cells_list
f(cell)
end
end
return nothing
end
function foreach_cell(f, sel::AppliedHopSelector)
isnull(sel) && return nothing
lat = lattice(sel)
dcells_list = dcells(sel)
if isempty(dcells_list) # no dcells specified
iter = BoxIterator(zerocell(lat))
for dn in iter
found = f(dn)
found && acceptcell!(iter, dn)
end
else
for dn in dcells_list
f(dn)
end
end
return nothing
end
function foreach_site(f, sel::AppliedSiteSelector, cell::SVector)
isnull(sel) && return nothing
lat = lattice(sel)
for s in sublats(lat)
insublats(s, sel) || continue
is = siterange(lat, s)
for i in is
r = site(lat, i, cell)
inregion(r, sel) && f(s, i, r)
end
end
return nothing
end
function foreach_hop(f, sel::AppliedHopSelector, kdtrees::Vector{<:KDTree}, ni::SVector = zerocell(lattice(sel)))
isnull(sel) && return nothing
lat = lattice(sel)
_, rmax = sel.range
# source cell at origin
nj = zero(ni)
found = false
for si in sublats(lat), sj in sublats(lat)
insublats(sj => si, sel) || continue
js = siterange(lat, sj)
for j in js
is = inrange_targets(site(lat, j, nj - ni), lat, si, rmax, kdtrees)
for i in is
isonsite((j, i), ni - nj) && continue
r, dr = rdr(site(lat, j, nj) => site(lat, i, ni))
# Make sure we don't stop searching cells until we reach minimum range
isbelowrange(dr, sel) && (found = true)
if iswithinrange(dr, sel) && inregion((r, dr), sel)
found = true
f((si, sj), (i, j), (r, dr))
end
end
end
end
return found
end
# Although range can be (rmin, rmax) we return all targets within rmax.
# Those below rmin get filtered later
function inrange_targets(rsource, lat, si, rmax, kdtrees)
if isfinite(rmax)
if !isassigned(kdtrees, si)
sitepos = sites(lat, si)
kdtrees[si] = KDTree(sitepos)
end
targetlist = inrange(kdtrees[si], rsource, rmax)
targetlist .+= offsets(lat)[si]
else
# need collect for type-stability
targetlist = collect(siterange(lat, si))
end
return targetlist
end
## Unused
# function foreach_site(f, sel::AppliedSiteSelector, ls::LatticeSlice)
# lat = parent(ls)
# islice = 0
# for scell in subcells(ls)
# n = cell(scell)
# for i in siteindices(scell)
# r = site(lat, i, n)
# islice += 1
# if (i, r, n) in sel
# f(i, r, n, islice)
# end
# end
# end
# return nothing
# end
# function foreach_hop(f, sel::AppliedHopSelector, ls::LatticeSlice, kdtree::KDTree)
# lat = lattice(sel)
# _, rmax = sel.range
# found = false
# isfiniterange = isfinite(rmax)
# jslice = 0
# for scellj in subcells(ls)
# nj = cell(scellj)
# for j in siteindices(scellj)
# jslice += 1
# rj = site(lat, j, nj)
# if isfiniterange
# targetlist = inrange(kdtree, rj, rmax)
# for islice in targetlist
# ni, i = ls[islice]
# ri = site(lat, i, ni)
# r, dr = rdr(rj => ri)
# dcell = ni - nj
# if (j => i, (r, dr), dcell) in sel
# found = true
# f((i, j), (r, dr), (ni, nj), (islice, jslice))
# end
# end
# else
# islice = 0
# for scelli in subcells(ls)
# ni = cell(scelli)
# dcell = ni - nj
# for i in siteindices(scelli)
# islice += 1
# isonsite((j, i), dcell) && continue
# ri = site(lat, i, ni)
# r, dr = rdr(rj => ri)
# if (j => i, (r, dr), dcell) in sel
# found = true
# f((i, j), (r, dr), (ni, nj), (islice, jslice))
# end
# end
# end
# end
# end
# end
# return found
# end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 18346 | ############################################################################################
# show tools
#region
display_as_tuple(v, prefix = "") = isempty(v) ? "()" :
string("(", prefix, join(v, string(", ", prefix)), ifelse(length(v) == 1, ",)", ")"))
display_rounded_vectors(vs) = isempty(vs) ? "[]" : display_rounded_vector.(vs)
display_rounded_vector(v) = round.(v, digits = 6)
pluraltext(m, sing) = ifelse(length(m) == 1, "1 $sing", "$(length(m)) $(sing)s")
displayparameter(::Type{<:Function}) = "Function"
displayparameter(::Type{T}) where {T} = "$T"
displayrange(r::Real) = round(r, digits = 6)
displayrange(::Missing) = "any"
displayrange(nr::Neighbors) = "Neighbors($(Int(nr)))"
displayrange(rs::Tuple) = "($(displayrange(first(rs))), $(displayrange(last(rs))))"
#endregion
############################################################################################
# Lattice
#region
Base.summary(::Sublat{T,E}) where {T,E} =
"Sublat{$E,$T} : sublattice of $T-typed sites in $(E)D space"
Base.show(io::IO, s::Sublat) = print(io, summary(s), "\n",
" Sites : $(nsites(s))
Name : $(displayname(s))")
###
Base.summary(::Lattice{T,E,L}) where {T,E,L} =
"Lattice{$T,$E,$L} : $(L)D lattice in $(E)D space"
function Base.show(io::IO, lat::Lattice)
i = get(io, :indent, "")
print(io, i, summary(lat), "\n",
"$i Bravais vectors : $(display_rounded_vectors(bravais_vectors(lat)))
$i Sublattices : $(nsublats(lat))
$i Names : $(displaynames(lat))
$i Sites : $(display_as_tuple(sublatlengths(lat))) --> $(nsites(lat)) total per unit cell")
end
displaynames(l::Lattice) = display_as_tuple(sublatnames(l), ":")
displayname(s::Sublat) = sublatname(s) == Symbol(:_) ? "pending" : string(":", sublatname(s))
#endregion
############################################################################################
# CellSites
#region
function Base.show(io::IO, c::CellSites)
i = get(io, :indent, "")
print(io, i, summary(c), "\n")
end
Base.summary(c::CellSites{L,V}) where {L,V} =
"CellSites{$L,$V} : $(display_nsites(c)) in $(display_cell(c))"
display_nsites(::CellSites{<:Any,Colon}) = "all sites"
display_nsites(c::CellSites) = length(c) == 1 ? "1 site" : "$(length(c)) sites"
display_cell(c::CellSites{0}) = "cell zero"
display_cell(c::CellSites) = iszero(cell(c)) ? "cell zero" : "cell $(cell(c))"
#endregion
############################################################################################
# LatticeSlice
#region
Base.summary(::SiteSlice{T,E,L}) where {T,E,L} =
"SiteSlice{$T,$E,$L} : collection of subcells of sites for a $(L)D lattice in $(E)D space"
Base.summary(::OrbitalSliceGrouped{T,E,L}) where {T,E,L} =
"OrbitalSliceGrouped{$T,$E,$L} : collection of subcells of orbitals (grouped by sites) for a $(L)D lattice in $(E)D space"
function Base.show(io::IO, ls::LatticeSlice)
i = get(io, :indent, "")
print(io, i, summary(ls), "\n",
"$i Cells : $(length(cellsdict(ls)))
$i Cell range : $(isempty(ls) ? "empty" : boundingbox(ls))
$i Total sites : $(missing_or_nsites(ls))")
end
missing_or_nsites(::OrbitalSlice) = "unknown"
missing_or_nsites(s) = nsites(s)
#endregion
############################################################################################
# Selectors
#region
function Base.show(io::IO, s::Union{SiteSelector,HopSelector})
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(s), "\n")
print_selector(io, s)
end
Base.summary(m::SiteSelector) =
"SiteSelector: a rule that defines a finite collection of sites in a lattice"
Base.summary(m::HopSelector) =
"HopSelector: a rule that defines a finite collection of hops between sites in a lattice"
function print_selector(io::IO, s::SiteSelector)
i = get(io, :indent, "")
print(io,
"$(i) Region : $(s.region === missing ? "any" : "Function")
$(i) Sublattices : $(s.sublats === missing ? "any" : display_maybe_function(s.sublats))
$(i) Cells : $(s.cells === missing ? "any" : display_maybe_function(s.cells))")
end
function print_selector(io::IO, s::HopSelector)
i = get(io, :indent, "")
print(io,
"$(i) Region : $(s.region === missing ? "any" : "Function")
$(i) Sublattice pairs : $(s.sublats === missing ? "any" : display_maybe_function(s.sublats))
$(i) Cell distances : $(s.dcells === missing ? "any" : display_maybe_function(s.dcells))
$(i) Hopping range : $(displayrange(s.range))
$(i) Reverse hops : $(s.adjoint)")
end
display_maybe_function(::Function) = "Function"
display_maybe_function(x) = x
#endregion
############################################################################################
# Models and Modifiers
#region
function Base.show(io::IO, m::TightbindingModel)
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(m))
foreach(t -> print(ioindent, "\n", t), terms(m))
end
function Base.show(io::IO, m::ParametricModel)
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(m))
foreach(t -> print(ioindent, "\n", t), terms(m))
foreach(t -> print(ioindent, "\n", t), terms(nonparametric(m)))
end
function Base.show(io::IO, t::Union{AbstractModelTerm,Modifier})
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(t), "\n")
print_selector(io, t.selector)
if !(t isa Modifier)
print(io, "\n", "$(i) Coefficient : $(t.coefficient)")
end
if t isa AbstractParametricTerm || t isa Modifier
print(io, "\n", "$(i) Argument type : $(display_argument_type(t))")
print(io, "\n", "$(i) Parameters : $(parameters(t))")
end
end
Base.summary(m::TightbindingModel) = "TightbindingModel: model with $(pluraltext(terms(m), "term"))"
Base.summary(m::ParametricModel) = "ParametricModel: model with $(pluraltext(allterms(m), "term"))"
Base.summary(::OnsiteTerm{F}) where {F} = "OnsiteTerm{$(displayparameter(F))}:"
Base.summary(::HoppingTerm{F}) where {F} = "HoppingTerm{$(displayparameter(F))}:"
Base.summary(::ParametricOnsiteTerm{N}) where {N} = "ParametricOnsiteTerm{ParametricFunction{$N}}"
Base.summary(::ParametricHoppingTerm{N}) where {N} = "ParametricHoppingTerm{ParametricFunction{$N}}"
Base.summary(::OnsiteModifier{N}) where {N} = "OnsiteModifier{ParametricFunction{$N}}:"
Base.summary(::HoppingModifier{N}) where {N} = "HoppingModifier{ParametricFunction{$N}}:"
display_argument_type(t) = is_spatial(t) ? "spatial" : "non-spatial"
#endregion
############################################################################################
# AbstractHamiltonian and Operators
#region
function Base.show(io::IO, h::Union{Hamiltonian,ParametricHamiltonian,Operator,BarebonesOperator})
i = get(io, :indent, "")
print(io, i, summary(h), "\n", showstring(h, i))
showextrainfo(io, i, h)
end
showstring(h::Union{Hamiltonian,ParametricHamiltonian}, i) =
"$i Bloch harmonics : $(length(harmonics(h)))
$i Harmonic size : $((n -> "$n × $n")(size(h, 1)))
$i Orbitals : $(norbitals(h))
$i Element type : $(displaytype(blocktype(h)))
$i Onsites : $(nonsites(h))
$i Hoppings : $(nhoppings(h))
$i Coordination : $(round(coordination(h), digits = 5))"
showstring(h::BarebonesOperator, i) =
"$i Bloch harmonics : $(length(harmonics(h)))
$i Harmonic size : $((n -> "$n × $n")(size(h, 1)))
$i Element type : $(eltype(h))
$i Nonzero elements : $(nnz(h))"
showstring(o::Operator, i) = showstring(hamiltonian(o), i)
Base.summary(h::Hamiltonian{T,E,L}) where {T,E,L} =
"Hamiltonian{$T,$E,$L}: Hamiltonian on a $(L)D Lattice in $(E)D space"
Base.summary(h::ParametricHamiltonian{T,E,L}) where {T,E,L} =
"ParametricHamiltonian{$T,$E,$L}: Parametric Hamiltonian on a $(L)D Lattice in $(E)D space"
Base.summary(h::Operator{H}) where {T,E,L,H<:AbstractHamiltonian{T,E,L}} =
"Operator{$T,$E,$L}: Operator on a $(L)D Lattice in $(E)D space"
Base.summary(h::BarebonesOperator{L}) where {L} =
"BarebonesOperator{$L}: a simple collection of $(L)D Bloch harmonics"
displaytype(::Type{S}) where {N,T,S<:SMatrix{N,N,T}} = "$N × $N blocks ($T)"
displaytype(::Type{S}) where {N,T,S<:SMatrixView{N,N,T}} = "At most $N × $N blocks ($T)"
displaytype(::Type{T}) where {T} = "scalar ($T)"
# fallback
showextrainfo(io, i, h) = nothing
showextrainfo(io, i, h::ParametricHamiltonian) = print(io, i, "\n",
"$i Parameters : $(parameters(h))")
showextrainfo(io, i, o::Operator) = showextrainfo(io, i, hamiltonian(o))
#endregion
############################################################################################
# OpenHamiltonian
#region
function Base.show(io::IO, oh::OpenHamiltonian)
i = get(io, :indent, "")
print(io, i, summary(oh), "\n",
"$i Number of contacts : $(length(selfenergies(oh)))
$i Contact solvers : $(solvernames(oh))", "\n")
ioindent = IOContext(io, :indent => i * " ")
show(ioindent, hamiltonian(oh))
end
Base.summary(oh::OpenHamiltonian{T,E,L}) where {T,E,L} = "OpenHamiltonian{$T,$E,$L}: Hamiltonian with a set of open contacts"
solvernames(oh::OpenHamiltonian) = nameof.(typeof.(solver.(selfenergies(oh))))
#endregion
############################################################################################
# AbstractEigenSolver
#region
function Base.show(io::IO, s::AbstractEigenSolver)
i = get(io, :indent, "")
print(io, i, summary(s))
end
Base.summary(s::AbstractEigenSolver) =
"AbstractEigenSolver ($(Base.nameof(typeof(s))))"
#endregion
############################################################################################
# AppliedEigenSolver
#region
function Base.show(io::IO, s::AppliedEigenSolver)
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(s), "\n")
end
Base.summary(::AppliedEigenSolver{T,L}) where {T,L} =
"AppliedEigenSolver{$T,$L}: eigensolver over an $L-dimensional parameter manifold of type $T"
#endregion
############################################################################################
# Spectrum
#region
function Base.show(io::IO, s::Spectrum)
i = get(io, :indent, "")
ioindent = IOContext(io, :indent => i * " ")
print(io, i, summary(s))
println(ioindent, "\nEnergies:")
show(ioindent, MIME("text/plain"), energies(s))
println(ioindent, "\nStates:")
show(ioindent, MIME("text/plain"), states(s))
end
Base.summary(::Spectrum{T,B}) where {T,B} =
"Spectrum{$T,$B} :"
#endregion
############################################################################################
# AbstractMesh
#region
Base.summary(::Mesh{V}) where {V} =
"Mesh{$(nameof(V))}: Mesh with vertices of type $(nameof(V))"
Base.summary(::Subband{T,L}) where {T,L} =
"Subband{$T,$L}: Subband in a $L-dimensional space (like energy-momentum)"
function Base.show(io::IO, m::AbstractMesh)
i = get(io, :indent, "")
print(io, i, summary(m), "\n",
"$i Mesh dim : $(dim(m))
$i Space dim : $(embdim(m))
$i Vertices : $(length(vertices(m)))
$i Edges : $(isempty(neighbors(m)) ? 0 : sum(length, neighbors(m)) ÷ 2)
$i Simplices : $(length(simplices(m)))")
end
#endregion
############################################################################################
# Bandstructure
#region
function Base.show(io::IO, b::Bandstructure)
i = get(io, :indent, "")
print(io, i, summary(b), "\n",
"$i Subbands : $(nsubbands(b))
$i Vertices : $(nvertices(b))
$i Edges : $(nedges(b))
$i Simplices : $(nsimplices(b))")
end
Base.summary(::Bandstructure{T,E,L}) where {T,E,L} =
"Bandstructure{$T,$E,$L}: $(E)D Bandstructure over a $L-dimensional parameter space of type $T"
#endregion
############################################################################################
# GreenFunction, GreenSolution and GreenSlice
#region
function Base.show(io::IO, g::GreenFunction)
i = get(io, :indent, "")
Σs = selfenergies(contacts(g))
print(io, i, summary(g), "\n",
"$i Solver : $(typename(solver(g)))
$i Contacts : $(length(Σs))
$i Contact solvers : $(display_as_tuple(typename.(solver.(Σs))))
$i Contact sizes : $(display_as_tuple(nsites.(orbslice.(Σs))))", "\n")
ioindent = IOContext(io, :indent => i * " ")
show(ioindent, parent(g))
end
Base.summary(g::GreenFunction{T,E,L}) where {T,E,L} =
"GreenFunction{$T,$E,$L}: Green function of a $(typename(hamiltonian(g))){$T,$E,$L}"
function Base.show(io::IO, g::GreenSolution)
i = get(io, :indent, "")
print(io, i, summary(g))
end
Base.summary(g::GreenSolution{T,E,L,S}) where {T,E,L,S} =
"GreenSolution{$T,$E,$L}: Green function at arbitrary positions, but at a fixed energy"
function Base.show(io::IO, g::GreenSlice)
i = get(io, :indent, "")
print(io, i, summary(g))
end
Base.summary(g::GreenSlice{T,E,L}) where {T,E,L} =
"GreenSlice{$T,$E,$L}: Green function at arbitrary energy, but at a fixed lattice positions"
#endregion
############################################################################################
# Conductance
#region
function Base.show(io::IO, G::Conductance)
i = get(io, :indent, "")
print(io, i, summary(G), "\n",
"$i Current contact : $(currentcontact(G))
$i Bias contact : $(biascontact(G))")
end
Base.summary(::Conductance{T}) where {T} =
"Conductance{$T}: Zero-temperature conductance dIᵢ/dVⱼ from contacts i,j, in units of e^2/h"
#endregion
############################################################################################
# Transmission
#region
function Base.show(io::IO, T::Transmission)
i = get(io, :indent, "")
print(io, i, summary(T), "\n",
"$i From contact : $(biascontact(parent(T)))
$i To contact : $(currentcontact(parent(T)))")
end
Base.summary(::Transmission) =
"Transmission: total transmission between two different contacts"
#endregion
############################################################################################
# Integrator
#region
function Base.show(io::IO, I::Integrator)
i = get(io, :indent, "")
print(io, i, summary(I), "\n",
"$i Integration path : $(points(I))
$i Integration options : $(display_namedtuple(options(I)))
$i Integrand : ")
ioindent = IOContext(io, :indent => i * " ")
show(ioindent, integrand(I))
end
Base.summary(::Integrator) = "Integrator: Complex-plane integrator"
display_namedtuple(nt::NamedTuple) = isempty(nt) ? "()" : "$nt"
#endregion
############################################################################################
# Josephson (integrand)
#region
function Base.show(io::IO, J::JosephsonDensity)
i = get(io, :indent, "")
print(io, summary(J), "\n",
"$i kBT : $(temperature(J))
$i Contact : $(contact(J))
$i Number of phase shifts : $(numphaseshifts(J))")
end
Base.summary(::JosephsonDensity{T}) where {T} = "JosephsonDensity{$T}"
#endregion
############################################################################################
# DensityMatrix
#region
function Base.show(io::IO, d::DensityMatrix)
i = get(io, :indent, "")
print(io, summary(d))
end
Base.summary(::DensityMatrix{S}) where {S} =
"DensityMatrix: density matrix on specified sites using solver of type $(nameof(S))"
#endregion
############################################################################################
# Josephson
#region
function Base.show(io::IO, j::Josephson)
i = get(io, :indent, "")
print(io, summary(j))
end
Base.summary(::Josephson{S}) where {S} =
"Josephson: equilibrium Josephson current at a specific contact using solver of type $(nameof(S))"
#endregion
############################################################################################
# ldos
#region
function Base.show(io::IO, D::Union{LocalSpectralDensitySolution, LocalSpectralDensitySlice})
i = get(io, :indent, "")
print(io, i, summary(D), "\n",
"$i kernel : $(kernel(D))")
end
Base.summary(::LocalSpectralDensitySolution{T}) where {T} =
"LocalSpectralDensitySolution{$T} : local density of states at fixed energy and arbitrary location"
Base.summary(::LocalSpectralDensitySlice{T}) where {T} =
"LocalSpectralDensitySlice{$T} : local density of states at a fixed location and arbitrary energy"
#endregion
############################################################################################
# current
#region
function Base.show(io::IO, J::Union{CurrentDensitySolution, CurrentDensitySlice})
i = get(io, :indent, "")
print(io, i, summary(J), "\n",
"$i charge : $(charge(J))
$i direction : $(direction(J))")
end
Base.summary(::CurrentDensitySolution{T}) where {T} =
"CurrentDensitySolution{$T} : current density at a fixed energy and arbitrary location"
Base.summary(::CurrentDensitySlice{T}) where {T} =
"CurrentDensitySlice{$T} : current density at a fixed location and arbitrary energy"
#endregion
############################################################################################
# OrbitalSliceMatrix
#region
# For simplified printing of the array typename
function Base.showarg(io::IO, ::OrbitalSliceMatrix{<:Any,M}, toplevel) where {M}
toplevel || print(io, "::")
print(io, "OrbitalSliceMatrix{$M}")
end
function Base.showarg(io::IO, ::OrbitalSliceVector{<:Any,M}, toplevel) where {M}
toplevel || print(io, "::")
print(io, "OrbitalSliceVector{$M}")
end
#endregion
############################################################################################
# IJVBuilder
#region
function Base.show(io::IO, b::IJVBuilder)
i = get(io, :indent, "")
print(io, i, summary(b), "\n",
"$i Harmonics : $(length(harmonics(b)))
$i IJV tuples : $(display_ijvs(b))
$i Element type : $(displaytype(blocktype(b)))
$i Modifiers : $(display_modifiers(b))")
end
display_modifiers(b::IJVBuilder) = modifiers(b) === missing ? "missing" : length(modifiers(b))
display_ijvs(b::IJVBuilder) = display_as_tuple(length.(collector.(harmonics(b))))
Base.summary(::IJVBuilder{T,E,L}) where {T,E,L} =
"IJVBuilder{$T,$E,$L}: AbstractHamiltonian builder based on IJV tuples (row, col, value)"
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 15685 | ############################################################################################
# slice of Lattice and LatticeSlice - returns a LatticeSlice
#region
Base.getindex(lat::Lattice; kw...) = lat[siteselector(; kw...)]
Base.getindex(lat::Lattice, kw::NamedTuple) = lat[siteselector(; kw...)]
Base.getindex(lat::Lattice, ls::LatticeSlice) = ls
Base.getindex(lat::Lattice, ss::SiteSelector) = lat[apply(ss, lat)]
# Special case for unbounded selector
Base.getindex(lat::Lattice, ::SiteSelectorAll) = lat[siteselector(; cells = zerocell(lat))]
function Base.getindex(lat::Lattice, as::AppliedSiteSelector)
L = latdim(lat)
csites = CellSites{L,Vector{Int}}[]
if !isnull(as)
sinds = Int[]
foreach_cell(as) do cell
isempty(sinds) || (sinds = Int[])
cs = CellSites(cell, sinds)
foreach_site(as, cell) do s, i, r
push!(siteindices(cs), i)
end
if isempty(cs)
return false
else
push!(csites, cs)
return true
end
end
end
cellsdict = CellSitesDict{L}(cell.(csites), csites)
return LatticeSlice(lat, cellsdict)
end
Base.getindex(l::Lattice, c::AnyCellSites) =
LatticeSlice(l, [apply(sanitize_cellindices(c, l), l)])
Base.getindex(ls::LatticeSlice; kw...) = getindex(ls, siteselector(; kw...))
Base.getindex(ls::LatticeSlice, kw::NamedTuple) = getindex(ls, siteselector(; kw...))
Base.getindex(ls::LatticeSlice, ss::SiteSelector, args...) =
getindex(ls, apply(ss, ls), args...)
# return cell, siteindex of the i-th site of LatticeSlice
function Base.getindex(l::LatticeSlice, i::Integer)
offset = 0
for scell in cellsdict(l)
ninds = length(siteindices(scell))
if ninds + offset < i
offset += ninds
else
return cell(scell), siteindices(scell)[i-offset]
end
end
@boundscheck(boundserror(l, i))
return zerocell(lattice(l)), 0
end
function Base.getindex(latslice::SiteSlice, as::AppliedSiteSelector)
lat = parent(latslice)
L = latdim(lat)
cellsdict´ = CellSitesDict{L}()
isnull(as) && return SiteSlice(lat, cellsdict´)
sinds = Int[]
for subcell in cellsdict(latslice)
dn = cell(subcell)
subcell´ = CellSites(dn, sinds)
for i in siteindices(subcell)
r = site(lat, i, dn)
if (i, r, dn) in as
push!(siteindices(subcell´), i)
end
end
if !isempty(subcell´)
set!(cellsdict´, cell(subcell´), subcell´)
sinds = Int[] # start new site list
end
end
return SiteSlice(lat, cellsdict´)
end
function Base.getindex(latslice::OrbitalSliceGrouped, as::AppliedSiteSelector)
lat = parent(latslice)
L = latdim(lat)
cellsdict´ = CellOrbitalsGroupedDict{L}()
isnull(as) && return OrbitalSliceGrouped(lat, cellsdict´)
oinds = Int[]
ogroups = Dictionary{Int,UnitRange{Int}}()
for subcell in cellsdict(latslice)
dn = cell(subcell)
subcell´ = CellOrbitalsGrouped(dn, oinds, ogroups)
orbs´ = orbindices(subcell´)
for (i, orbrng) in pairs(orbgroups(subcell))
r = site(lat, i, dn)
if (i, r, dn) in as
append!(orbs´, orbrng)
set!(ogroups, i, orbrng)
end
end
if !isempty(subcell´)
set!(cellsdict´, cell(subcell´), subcell´)
# start new orb list
oinds = Int[]
ogroups = Dictionary{Int,UnitRange{Int}}()
end
end
return OrbitalSliceGrouped(lat, cellsdict´)
end
# function Base.getindex(latslice::OrbitalSliceGrouped, cs::CellSites)
# lat = parent(latslice)
# cs´ = apply(cs, lat)
# dn = cell(cs´)
# cd = cellsdict(latslice)
# groups = haskey(cd, dn) ? orbgroups(cd[dn]) : argerror("cell not found in lattice slice")
# groups´ = Dictionary{Int,UnitRange{Int}}()
# orbs´ = Int[]
# for i in siteindices(cs´)
# if haskey(groups, i)
# orbrange = groups[i]
# append!(orbs´, orbrange)
# set!(groups´, i, orbrange)
# else
# argerror("cellsite not found in lattice slice")
# end
# end
# cellsorbs´ = CellOrbitalsGrouped(dn, orbs´, groups´)
# cellsdict´ = cellinds_to_dict(cellsorbs´)
# return OrbitalSliceGrouped(lat, cellsdict´)
# end
#endregion
############################################################################################
# unflat_sparse_slice: slice of Hamiltonian h[latslice] - returns a SparseMatrix{B,Int}
# This is a more efficient slice builder than mortar, but does not flatten B
# Elements::B can be transformed by `post(hij, (ci, cj))` with `h[latslice, latslice, post]`
# Here ci and cj are single-site `CellSite` for h
# ParametricHamiltonian deliberately not supported, as the output is not updatable
#region
function unflat_sparse_slice(h::Hamiltonian, lsrows::LS, lscols::LS = lsrows, post = (hij, cij) -> hij) where {LS<:LatticeSlice}
# @assert lattice(h) === lattice(ls) # TODO: fails upon plotting a current density (see tutorial)
cszero = zerocellsites(h, 1) # like `sites(1)`, but with explicit cell
B = typeof(post(zero(blocktype(h)), (cszero, cszero)))
nrows, ncols = length(lsrows), length(lscols)
builder = CSC{B}(ncols)
hars = harmonics(h)
for colcs in cellsites(lscols)
colcell = cell(colcs)
colsite = siteindices(colcs)
for har in hars
rowcell = colcell + dcell(har)
rowsubcell = findsubcell(rowcell, lsrows)
rowsubcell === nothing && continue
rowoffset = offsets(lsrows, rowcell)
rowsubcellinds = siteindices(rowsubcell)
# rowsubcellinds are the site indices in original unitcell for subcell = rowcell
# rowoffset is the latslice site offset for the rowsubcellinds sites
hmat = unflat(matrix(har))
hrows = rowvals(hmat)
for ptr in nzrange(hmat, colsite)
hrow = hrows[ptr]
for (irow, rowsubcellind) in enumerate(rowsubcellinds)
if hrow == rowsubcellind
rowcs = CellSite(rowcell, hrow)
hij, cij = nonzeros(hmat)[ptr], (rowcs, colcs)
# hrow is the original unitcell site index for row.
# We need the latslice site index lsrow
lsrow = rowoffset + irow
pushtocolumn!(builder, lsrow, post(hij, cij))
end
end
end
end
finalizecolumn!(builder)
end
return sparse(builder, nrows, ncols)
end
#endregion
############################################################################################
# combine, combine! and intersect!
#region
function combine(ls::S, lss::S...) where {S<:LatticeSlice}
lat = parent(ls)
all(l -> l === lat, parent.(lss)) ||
argerror("Cannot combine LatticeSlices of different lattices")
sc = combine(cellsdict.((ls, lss...))...)
return LatticeSlice(lat, sc)
end
combine(d) = d
combine(d1::D, d2::D, ds::D...) where {D<:CellIndicesDict} =
mergewith(combine_subcells, d1, d2, ds...)
combine_subcells(c::C, cs::C...) where {C<:CellSites} =
CellSites(cell(c), union(siteindices(c), siteindices.(cs)...))
combine_subcells(c::C, cs::C...) where {C<:CellOrbitals} =
CellOrbitals(cell(c), union(orbindices(c), orbindices.(cs)...))
function combine_subcells(c::C, cs::C...) where {C<:CellOrbitalsGrouped}
groups´ = merge(orbgroups(c), orbgroups.(cs)...)
indices´ = union(orbindices(c), orbindices.(cs)...)
return CellOrbitalsGrouped(cell(c), indices´, groups´)
end
#endregion
############################################################################################
# grow and growdiff
# LatticeSlice generated by hoppings in h and not contained in seed latslice
#region
function grow(ls::LatticeSlice, h::AbstractHamiltonian)
checksamelattice(ls, h)
cdict = grow(cellsdict(ls), h)
return LatticeSlice(parent(ls), cdict)
end
function growdiff(ls::LatticeSlice, h::AbstractHamiltonian)
checksamelattice(ls, h)
cdict = cellsdict(ls)
cdict´ = grow(cdict, h)
setdiff!(cdict´, cdict)
return LatticeSlice(parent(ls), cdict´)
end
checksamelattice(ls, h) = parent(ls) === lattice(h) ||
argerror("Tried to grow a LatticeSlice with a Hamiltonian defined on a different Lattice")
function grow(css::Union{CellSitesDict{L},CellOrbitalsGroupedDict{L}}, h::AbstractHamiltonian) where {L}
css´ = CellSitesDict{L}()
for cs in css
c = cell(cs)
for har in harmonics(h)
c´ = c + dcell(har)
s = findsubcell(c´, css´)
if s === nothing
cs´ = CellSites(c´)
insert!(css´, c´, cs´)
else
cs´ = s
end
mat = unflat(har)
for col in siteindices(cs), ptr in nzrange(mat, col)
row = rowvals(mat)[ptr]
push!(siteindices(cs´), row)
end
end
end
for cs in css´
unique!(sort!(siteindices(cs)))
end
return CellSitesDict{L}(cell.(css´), css´)
end
function Base.setdiff!(cdict::CellSitesDict, cdict0::Union{CellSitesDict,CellOrbitalsGroupedDict})
for cs in cdict
cs0 = findsubcell(cell(cs), cdict0)
cs0 === nothing && continue
setdiff!(siteindices(cs), siteindices(cs0))
end
deleteif!(isempty, cdict)
return cdict
end
function deleteif!(test, d::Dictionary)
for (key, val) in pairs(d)
test(val) && delete!(d, key)
end
return d
end
#endregion
############################################################################################
# convert SiteSlice to a 0D Lattice
# build a 0D Lattice using the sites in LatticeSlice
#region
function lattice0D(ls::LatticeSlice, store = missing)
lat = parent(ls)
missing_or_empty!(store)
sls = [sublat(collect(sublatsites(ls, s, store)); name = sublatname(lat, s))
for s in sublats(lat)]
return lattice(sls)
end
# positions of sites in a given sublattice. Pushes selected slice indices into store
function sublatsites(l::LatticeSlice, s::Integer, store = missing)
n = 0
gen = ((missing_or_push!(store, n); site(lattice(l), i, cell(subcell)))
for subcell in cellsdict(l) for i in siteindices(subcell)
if (n += 1; i in siterange(lattice(l), s)))
return gen
end
#endregion
############################################################################################
# reordered_site_orbitals
# convert a list of site indices for an OrbitalSliceGrouped or CellOrbitalsGroupedDict
# to a list of their of orbital indices
#region
function reordered_site_orbitals(siteinds, orbs::Union{OrbitalSliceGrouped,CellOrbitalsGroupedDict})
rngs = collect(orbranges(orbs)) # consecutive ranges of orbitals for each site in orbs
orbinds = Int[] # will store the reotdered orbital indices for each site
for siteind in siteinds
append!(orbinds, rngs[siteind])
end
return orbinds
end
#endregion
############################################################################################
# sites_to_orbs: convert sites to orbitals, preserving site groups if possible
# sites_to_orbs_nogroups: converts sites to orbitals, without site groups
#region
#region ## sites_to_orbs
## no-ops
sites_to_orbs(s::AnyOrbitalSlice, _) = s
sites_to_orbs(c::AnyCellOrbitalsDict, _) = c
sites_to_orbs(c::AnyCellOrbitals, _) = c
# unused
# sites_to_orbs_nogroups(cs::CellOrbitals, _) = cs
## DiagIndices
sites_to_orbs(d::DiagIndices, g) = DiagIndices(sites_to_orbs(parent(d), g), kernel(d))
## convert SiteSlice -> OrbitalSliceGrouped
sites_to_orbs(kw::NamedTuple, g) = sites_to_orbs(siteselector(; kw...), g)
sites_to_orbs(s::SiteSelector, g) = sites_to_orbs(lattice(g)[s], g)
sites_to_orbs(i::Union{Colon,Integer}, g) = orbslice(contacts(g), i)
sites_to_orbs(l::SiteSlice, g) =
OrbitalSliceGrouped(lattice(l), sites_to_orbs(cellsdict(l), blockstructure(g)))
sites_to_orbs(l::SiteSlice, s::OrbitalSliceGrouped) = s[l]
## convert CellSitesDict to CellOrbitalsGroupedDict
sites_to_orbs(c::CellSitesDict, g) = sites_to_orbs(c, blockstructure(g))
function sites_to_orbs(cellsdict::CellSitesDict{L}, os::OrbitalBlockStructure) where {L}
# inference fails if cellsdict is empty, so we need to specify eltype
co = CellOrbitalsGrouped{L,Vector{Int}}[sites_to_orbs(cellsites, os) for cellsites in cellsdict]
return cellinds_to_dict(co)
end
## convert CellSites -> CellOrbitalsGrouped
sites_to_orbs(c::CellSites, g) = sites_to_orbs(sanitize_cellindices(c, g), blockstructure(g))
function sites_to_orbs(cs::CellSites, os::OrbitalBlockStructure)
sites = siteindices(cs)
groups = _groups(sites, os) # sites, orbranges
orbinds = _orbinds(sites, groups, os)
return CellOrbitalsGrouped(cell(cs), orbinds, Dictionary(groups...))
end
#endregion
#region ## sites_to_orbs_nogroups
## convert SiteSlice -> OrbitalSlice
sites_to_orbs_nogroups(l::SiteSlice, g) =
OrbitalSlice(lattice(l), sites_to_orbs_nogroups(cellsdict(l), blockstructure(g)))
## convert CellSitesDict to CellOrbitalsDict
sites_to_orbs_nogroups(c::CellSitesDict, g) = sites_to_orbs_nogroups(c, blockstructure(g))
function sites_to_orbs_nogroups(cellsdict::CellSitesDict{L}, os::OrbitalBlockStructure) where {L}
# inference fails if cellsdict is empty, so we need to specify eltype
co = CellOrbitals{L,Vector{Int}}[sites_to_orbs_nogroups(cellsites, os) for cellsites in cellsdict]
return cellinds_to_dict(co)
end
## convert CellSites -> CellOrbitals
sites_to_orbs_nogroups(cs::CellSites, g) =
sites_to_orbs_nogroups(sanitize_cellindices(cs, g), blockstructure(g))
function sites_to_orbs_nogroups(cs::CellSites, os::OrbitalBlockStructure)
sites = siteindices(cs)
orbinds = _orbinds(sites, os)
return CellOrbitals(cell(cs), orbinds)
end
## convert CellOrbitalsGrouped -> CellOrbitals
# unused
# sites_to_orbs_nogroups(cs::CellOrbitalsGrouped, _) = CellOrbitals(cell(cs), orbindices(cs))
#endregion
#region ## CORE FUNCTIONS
_groups(i::Integer, os) = [i], [flatrange(os, i)]
_groups(::Colon, os) = _groups(siterange(os), os)
function _groups(sites, os)
siteinds = Int[]
orbranges = UnitRange{Int}[]
sizehint!(siteinds, length(sites))
sizehint!(orbranges, length(sites))
for site in sites
rng = flatrange(os, site)
push!(siteinds, site)
push!(orbranges, rng)
end
return siteinds, orbranges
end
_orbinds(sites::Union{Integer,Colon,AbstractUnitRange}, _, os) = flatrange(os, sites)
_orbinds(sites::Union{Integer,Colon,AbstractUnitRange}, os) = flatrange(os, sites)
function _orbinds(_, (sites, orbrngs), os) # reuse precomputed groups
orbinds = Int[]
sizehint!(orbinds, length(sites))
for rng in orbrngs
append!(orbinds, rng)
end
return orbinds
end
function _orbinds(sites, os)
orbinds = Int[]
sizehint!(orbinds, length(sites))
for i in sites
rng = flatrange(os, i)
append!(orbinds, rng)
end
return orbinds
end
#endregion
#endregion
############################################################################################
# Utilities
#region
missing_or_empty!(::Missing) = missing
missing_or_empty!(v) = empty!(v)
missing_or_push!(::Missing, _) = missing
missing_or_push!(v, n) = push!(v, n)
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 21446 | ############################################################################################
# Functionality for various matrix structures in Quantica.jl
############################################################################################
############################################################################################
## HybridSparseMatrix
#region
############################################################################################
# HybridSparseMatrix - flat/unflat
#region
function unflat(s::HybridSparseMatrix)
check_integrity(s)
needs_unflat_sync(s) && unflat_sync!(s)
return unflat_unsafe(s)
end
function flat(s::HybridSparseMatrix)
check_integrity(s)
needs_flat_sync(s) && flat_sync!(s)
return flat_unsafe(s)
end
# Sync states
needs_no_sync!(s::HybridSparseMatrix) = (syncstate(s)[] = 0)
needs_flat_sync!(s::HybridSparseMatrix) = (syncstate(s)[] = 1)
needs_unflat_sync!(s::HybridSparseMatrix) = (syncstate(s)[] = -1)
needs_initialization!(s::HybridSparseMatrix) = (syncstate(s)[] = 2)
needs_no_sync(s::HybridSparseMatrix) = (syncstate(s)[] == 0)
needs_flat_sync(s::HybridSparseMatrix) = (syncstate(s)[] == 1)
needs_unflat_sync(s::HybridSparseMatrix) = (syncstate(s)[] == -1)
needs_initialization(s::HybridSparseMatrix) = (syncstate(s)[] == 2)
needs_no_sync!(s::HybridSparseMatrix{<:Any,<:Complex}) = (syncstate(s)[] = 0)
needs_flat_sync!(s::HybridSparseMatrix{<:Any,<:Complex}) = (syncstate(s)[] = 0)
needs_unflat_sync!(s::HybridSparseMatrix{<:Any,<:Complex}) = (syncstate(s)[] = 0)
needs_no_sync(s::HybridSparseMatrix{<:Any,<:Complex}) = true
needs_flat_sync(s::HybridSparseMatrix{<:Any,<:Complex}) = false
needs_unflat_sync(s::HybridSparseMatrix{<:Any,<:Complex}) = false
# flat/unflat conversion
function flat(b::OrbitalBlockStructure{B}, unflat::SparseMatrixCSC{B´}) where {N,T,B<:MatrixElementNonscalarType{T,N},B´<:MatrixElementNonscalarType{T,N}}
nnzguess = nnz(unflat) * N * N
builder = CSC{Complex{T}}(flatsize(b), nnzguess)
nzs = nonzeros(unflat)
rows = rowvals(unflat)
cols = 1:unflatsize(b)
for col in cols, bcol in 1:blocksize(b, col)
for ptr in nzrange(unflat, col)
row = rows[ptr]
firstrow´ = flatindex(b, row)
vals = view(nzs[ptr], 1:blocksize(b, row), bcol)
appendtocolumn!(builder, firstrow´, vals)
end
finalizecolumn!(builder, false) # no need to sort column
end
n = flatsize(b)
return sparse(builder, n, n)
end
function unflat(b::OrbitalBlockStructure{B}, flat::SparseMatrixCSC{<:Number}) where {N,B<:MatrixElementNonscalarType{<:Any,N}}
@boundscheck(checkblocks(b, flat))
nnzguess = nnz(flat) ÷ (N * N)
ncols = unflatsize(b)
builder = CSC{B}(ncols, nnzguess)
rowsflat = rowvals(flat)
for ucol in 1:ncols
colrng = flatrange(b, ucol)
fcol = first(colrng)
Ncol = length(colrng)
ptrs = nzrange(flat, fcol)
ptr = first(ptrs)
while ptr in ptrs
frow = rowsflat[ptr]
urow, Nrow = unflatindex_and_blocksize(b, frow)
valview = view(flat, frow:frow+Nrow-1, fcol:fcol+Ncol-1)
val = mask_block(B, valview)
pushtocolumn!(builder, urow, val)
ptr += Nrow
end
finalizecolumn!(builder, false) # no need to sort column
end
n = unflatsize(b)
return sparse(builder, n, n)
end
checkblocks(b, flat) = nothing ## TODO: must check that all structural elements come in blocks
#endregion
############################################################################################
# HybridSparseMatrix - copying
#region
function Base.copy!(h::HybridSparseMatrix{T,B}, h´::HybridSparseMatrix{T,B}) where {T,B}
copy!(blockstructure(h), blockstructure(h´))
copy!(unflat_unsafe(h), unflat_unsafe(h´))
isaliased(h´) || copy!(flat_unsafe(h), flat_unsafe(h´))
syncstate(h)[] = syncstate(h´)[]
return h
end
function Base.copy(h::HybridSparseMatrix)
b = copy(blockstructure(h))
u = copy(unflat_unsafe(h))
f = isaliased(h) ? u : copy(flat_unsafe(h))
s = Ref(syncstate(h)[])
return HybridSparseMatrix(b, u, f, s)
end
function copy_matrices(h::HybridSparseMatrix)
b = blockstructure(h)
u = copy(unflat_unsafe(h))
f = isaliased(h) ? u : copy(flat_unsafe(h))
s = Ref(syncstate(h)[])
return HybridSparseMatrix(b, u, f, s)
end
#endregion
############################################################################################
# HybridSparseMatrix indexing
#region
Base.getindex(b::HybridSparseMatrix{<:Any,<:SMatrixView}, i::Integer, j::Integer) =
view(parent(unflat(b)[i, j]), flatrange(b, i), flatrange(b, j))
Base.getindex(b::HybridSparseMatrix, i::Integer, j::Integer) = unflat(b)[i, j]
# only allowed for elements that are already stored
function Base.setindex!(b::HybridSparseMatrix{<:Any,B}, val::AbstractVecOrMat, i::Integer, j::Integer) where {B<:SMatrixView}
@boundscheck(checkstored(unflat(b), i, j))
val´ = mask_block(B, val, blocksize(blockstructure(b), i, j))
unflat(b)[i, j] = val´
needs_flat_sync!(b)
return val´
end
function Base.setindex!(b::HybridSparseMatrix, val::AbstractVecOrMat, i::Integer, j::Integer)
@boundscheck(checkstored(unflat(b), i, j))
unflat(b)[i, j] = val
needs_flat_sync!(b)
return val
end
checkstored(mat, i, j) = i in view(rowvals(mat), nzrange(mat, j)) ||
throw(ArgumentError("Adding new structural elements is not allowed"))
#endregion
############################################################################################
# mask_block
# converts input to a specific block type B (with or without size check)
#region
# in case the first argument is a value, not a type
@inline mask_block(::B, val) where {B} = mask_block(B, val)
@inline mask_block(::Type{B}, val::UniformScaling, size = (N, N)) where {T,N,B<:MatrixElementNonscalarType{T,N}} =
mask_block(B, sanitize_SMatrix(SMatrix{N,N,T}, SMatrix{N,N}(val), size))
@inline mask_block(::Type{B}, val::UniformScaling, size...) where {B<:Number} =
convert(B, val.λ)
@inline mask_block(::Type{B}, val, size...) where {B<:Number} = convert(B, only(val)) # conversion not needed?
@inline function mask_block(B, val, size)
@boundscheck(checkmatrixsize(val, size)) # tools.jl
return mask_block(B, val)
end
@inline mask_block(::Type{B}, val) where {N,B<:SMatrix{N,N}} = B(val)
@inline mask_block(::Type{B}, val::SMatrix{R,C}) where {R,C,N,T,B<:SMatrixView{N,N,T}} =
SMatrixView(SMatrix{N,R}(I) * val * SMatrix{C,N}(I))
@inline function mask_block(::Type{B}, val) where {N,T,B<:SMatrixView{N,N,T}}
(nrows, ncols) = size_or_1x1(val)
s = ntuple(Val(N*N)) do i
n, m = mod1(i, N), fld1(i, N)
@inbounds n > nrows || m > ncols ? zero(T) : T(val[n,m])
end
return SMatrixView(SMatrix{N,N,T}(s))
end
mask_block(t::Type, val) = argerror("Unexpected block size")
size_or_1x1(::Number) = (1, 1)
size_or_1x1(val) = size(val)
#endregion
############################################################################################
# HybridSparseMatrix syncing
#region
checkinitialized(s) =
needs_initialization(s) && internalerror("sync!: Tried to sync uninitialized matrix")
# Uniform case
function flat_sync!(s::HybridSparseMatrix{<:Any,S}) where {N,S<:SMatrix{N,N}}
checkinitialized(s)
flat, unflat = flat_unsafe(s), unflat_unsafe(s)
cols = axes(unflat, 2)
nzflat, nzunflat = nonzeros(flat), nonzeros(unflat)
ptr´ = 1
for col in cols, bcol in 1:N, ptr in nzrange(unflat, col)
nz = nzunflat[ptr]
for brow in 1:N
nzflat[ptr´] = nz[brow, bcol]
ptr´ += 1
end
end
needs_no_sync!(s)
return s
end
# Non-uniform case
function flat_sync!(s::HybridSparseMatrix{<:Any,S}) where {N,S<:SMatrixView{N,N}}
checkinitialized(s)
flat, unflat = flat_unsafe(s), unflat_unsafe(s)
cols, rows, rowsflat = axes(unflat, 2), rowvals(unflat), rowvals(flat)
nzflat, nzunflat = nonzeros(flat), nonzeros(unflat)
bs = blockstructure(s)
for col in cols
colrng = flatrange(bs, col)
for (j, colflat) in enumerate(colrng)
ptrsflat = nzrange(flat, colflat)
ptrflat = first(ptrsflat)
for ptr in nzrange(unflat, col)
row = rows[ptr]
val = nzunflat[ptr]
rowrng = flatrange(bs, row)
for (i, rowflat) in enumerate(rowrng)
rowsflat[ptrflat] == rowflat && ptrflat in ptrsflat ||
internalerror("flat_sync!: unexpected structural mismatch")
nzflat[ptrflat] = val[i,j]
ptrflat += 1
end
end
end
end
needs_no_sync!(s)
return s
end
# Uniform and non-uniform cases
function unflat_sync!(s::HybridSparseMatrix{<:Any,S}) where {S<:Union{SMatrix,SMatrixView}}
checkinitialized(s)
flat, unflat = flat_unsafe(s), unflat_unsafe(s)
cols, rows = axes(unflat, 2), rowvals(unflat)
nzunflat = nonzeros(unflat)
bs = blockstructure(s)
for col in cols
colrng = flatrange(bs, col)
for ptr in nzrange(unflat, col)
row = rows[ptr]
rowrng = flatrange(bs, row)
val = view(flat, colrng, rowrng)
nzunflat[ptr] = S(val)
end
end
needs_no_sync!(s)
return s
end
#endregion
#endregion top
############################################################################################
## BlockSparseMatrix
#region
############################################################################################
# MatrixBlock simplify
# Revert subarray to parent through a simple reordering of rows and cols
# This is possible if rows and cols is a permutation of the parent axes
# but we only do a weak check of this (parent size == view size) for performance reasons
#region
simplify_matrixblock(block::SubArray, rows, cols) =
simplify_matrixblock(parent(block), block.indices..., rows, cols)
function simplify_matrixblock(mat::AbstractMatrix, viewrows, viewcols, rows, cols)
if size(mat) != (length(viewrows), length(viewcols))
internalerror("simplify_matrixblock: received a SubArray that is not a permutation")
elseif cols === rows
rows´ = cols´ = simplify_indices(viewrows, rows)
else
rows´ = simplify_indices(viewrows, rows)
cols´ = simplify_indices(viewcols, cols)
end
return MatrixBlock(mat, rows´, cols´)
end
simplify_indices(viewinds, inds) =
invpermute!(convert(Vector{Int}, inds), viewinds)
#endregion
############################################################################################
# appendIJ! for MatrixBlocks
# Useful to build a BlockSparseMatrix from a set of MatrixBlocks
#region
function appendIJ!(I, J, b::MatrixBlock{<:Any,<:AbstractSparseMatrixCSC})
for col in axes(blockmat(b), 2), ptr in nzrange(blockmat(b), col)
push!(I, blockrows(b)[rowvals(blockmat(b))[ptr]])
push!(J, blockcols(b)[col])
end
return I, J
end
function appendIJ!(I, J, b::MatrixBlock{<:Any,<:Diagonal})
for col in axes(blockmat(b), 2)
row = col
push!(I, blockrows(b)[row])
push!(J, blockcols(b)[col])
end
return I, J
end
function appendIJ!(I, J, b::MatrixBlock{<:Any,<:StridedArray})
for c in CartesianIndices(blockmat(b))
row, col = Tuple(c)
push!(I, blockrows(b)[row])
push!(J, blockcols(b)[col])
end
return I, J
end
#endregion
############################################################################################
# BlockSparseMatrix getblockptrs
#region
getblockptrs(mblock, mat) = getblockptrs(mblock.block, mblock.rows, mblock.cols, mat)
function getblockptrs(block::AbstractSparseMatrixCSC, is, js, mat)
checkblockinds(block, is, js)
ptrs = Int[]
for col in axes(block, 2)
colmat = js[col]
p = 0
for ptr in nzrange(block, col)
p+=1
row = rowvals(block)[ptr]
rowmat = is[row]
for ptrmat in nzrange(mat, colmat)
rowvals(mat)[ptrmat] == rowmat && (push!(ptrs, ptrmat); break)
end
end
end
nnz(block) == length(ptrs) ||
argerror("Sparse matrix does not contain structural block")
return ptrs
end
function getblockptrs(block::StridedMatrix, is, js, mat)
checkblockinds(block, is, js)
ptrs = Int[]
for c in CartesianIndices(block)
row, col = Tuple(c)
rowmat, colmat = is[row], js[col]
for ptrmat in nzrange(mat, colmat)
rowvals(mat)[ptrmat] == rowmat && (push!(ptrs, ptrmat); break)
end
end
length(block) == length(ptrs) ||
argerror("Sparse matrix does not contain structural block")
return ptrs
end
function getblockptrs(block::Diagonal, is, js, mat)
checkblockinds(block, is, js)
ptrs = Int[]
for (col, colmat) in enumerate(js)
col > size(block, 1) && break
rowmat = is[col]
for ptrmat in nzrange(mat, colmat)
rowvals(mat)[ptrmat] == rowmat && (push!(ptrs, ptrmat); break)
end
end
min(size(block)...) == length(ptrs) ||
argerror("Sparse matrix does not contain structural block")
return ptrs
end
#endregion
############################################################################################
# BlockSparseMatrix/BlockMatrix update!
#region
function update!(m::BlockSparseMatrix)
nzs = nonzeros(matrix(m))
fill!(nzs, 0)
# Since blocks(m) is an inhomogeneous tuple, we cannot do a type-stable loop
sparse_addblocks!(nzs, 1, pointers(m), blocks(m)...)
return m
end
function sparse_addblocks!(nzs, i, ps, mblock, bs...)
ptrs = ps[i]
bmat = blockmat(mblock)
coef = coefficient(mblock)
for (x, ptr) in zip(stored(bmat), ptrs)
nzs[ptr] += coef * x
end
return sparse_addblocks!(nzs, i+1, ps, bs...)
end
sparse_addblocks!(nzs, _, _) = nzs
stored(block::AbstractSparseMatrixCSC) = nonzeros(block)
stored(block::StridedMatrix) = block
stored(block::Diagonal) = block.diag
function update!(m::BlockMatrix)
mat = matrix(m)
fill!(mat, 0)
# Since blocks(m) is an inhomogeneous tuple, we cannot do a type-stable loop
dense_addblocks!(mat, blocks(m)...)
return m
end
function dense_addblocks!(mat, mblock, bs...)
bmat = blockmat(mblock)
coef = coefficient(mblock)
vmat = view(mat, blockrows(mblock), blockcols(mblock))
vmat .+= coef .* bmat
return dense_addblocks!(mat, bs...)
end
dense_addblocks!(mat) = mat
#endregion
#endregion top
############################################################################################
## InverseGreenBlockSparse
#region
# inverse_green from 0D AbstractHamiltonian + contacts
function inverse_green(h::AbstractHamiltonian{T,<:Any,0}, contacts) where {T}
hdim = flatsize(h)
haxis = 1:hdim
ωblock = MatrixBlock((zero(Complex{T}) * I)(hdim), haxis, haxis)
hblock = MatrixBlock(call!_output(h), haxis, haxis)
mat, unitcinds, unitcindsall = inverse_green_mat((ωblock, -hblock), hdim, contacts)
source = zeros(Complex{T}, size(mat, 2), length(unitcindsall))
nonextrng = 1:flatsize(h)
return InverseGreenBlockSparse(mat, nonextrng, unitcinds, unitcindsall, source)
end
# case without contacts
function inverse_green_mat(blocks, _, ::Contacts{<:Any,0})
mat = BlockSparseMatrix(blocks...)
unitcinds = Vector{Int}[]
unitcindsall = Int[]
return mat, unitcinds, unitcindsall
end
function inverse_green_mat(blocks, hdim, contacts)
Σs = selfenergies(contacts)
extoffset = hdim
unitcinds = [orbindices(only(cellsdict(contacts, i))) for i in 1:ncontacts(contacts)]
unitcindsall = orbindices(only(cellsdict(contacts)))
checkcontactindices(unitcindsall, hdim)
solvers = solver.(Σs)
Σblocks = selfenergyblocks(extoffset, unitcinds, 1, (), solvers...)
g⁻¹blocks = maybe_switch_sign.(Σblocks)
blocks´ = (blocks..., g⁻¹blocks...)
# we need to flatten extended blocks, that come as NTuple{3}'s
mat = BlockSparseMatrix(tupleflatten(blocks´...)...)
return mat, unitcinds, unitcindsall
end
# matrix blocks of g⁻¹ have negative signs for Σreg, positive for Σext = (V', g⁻¹´, V)
maybe_switch_sign(Σ::MatrixBlock) = -Σ
maybe_switch_sign(Vg⁻¹V::NTuple{3,MatrixBlock}) = Vg⁻¹V
checkcontactindices(allcontactinds, hdim) = maximum(allcontactinds) <= hdim ||
internalerror("InverseGreenBlockSparse: unexpected contact indices beyond Hamiltonian dimension")
#endregion
############################################################################################
## OrbitalSliceArray
#region
# AbstractArray interface
Base.size(a::OrbitalSliceArray) = size(parent(a))
Base.iterate(a::OrbitalSliceArray, i...) = iterate(parent(a), i...)
Base.length(a::OrbitalSliceArray) = length(parent(a))
Base.IndexStyle(::Type{T}) where {M,T<:OrbitalSliceArray{<:Any,<:Any,M}} = IndexStyle(M)
Base.similar(a::OrbitalSliceArray) = OrbitalSliceArray(similar(parent(a)), orbaxes(a))
Base.similar(a::OrbitalSliceArray, t::Type) = OrbitalSliceArray(similar(parent(a), t), orbaxes(a))
# doesn't make sense to keep orbaxes in similar with different dimensions.
Base.similar(a::OrbitalSliceArray, dims::Tuple) = similar(parent(a), dims)
Base.copy(a::OrbitalSliceArray) = OrbitalSliceArray(copy(parent(a)), orbaxes(a))
Base.@propagate_inbounds Base.getindex(a::OrbitalSliceArray, i::Int) =
getindex(parent(a), i)
Base.@propagate_inbounds Base.getindex(a::OrbitalSliceArray, I::Vararg{Int, N}) where {N} =
getindex(parent(a), I...)
Base.@propagate_inbounds Base.setindex!(a::OrbitalSliceArray, v, i::Int) = setindex!(parent(a), v, i)
Base.@propagate_inbounds Base.setindex!(a::OrbitalSliceArray, v, I::Vararg{Int, N}) where {N} = setindex!(parent(a), v, I...)
# Additional indexing over sites
Base.getindex(a::OrbitalSliceMatrix; sites...) = getindex(a, siteselector(; sites...))
Base.getindex(a::OrbitalSliceMatrix, i::NamedTuple, j::NamedTuple = i) =
getindex(a, siteselector(i), siteselector(j))
Base.getindex(a::OrbitalSliceMatrix, i::NamedTuple, j::SiteSelector) =
getindex(a, siteselector(i), j)
Base.getindex(a::OrbitalSliceMatrix, i::SiteSelector, j::NamedTuple) =
getindex(a, i, siteselector(j))
# SiteSelector: return a new OrbitalSliceMatrix
function Base.getindex(a::OrbitalSliceMatrix, i::SiteSelector, j::SiteSelector = i)
rowslice, colslice = orbaxes(a)
rowslice´, colslice´ = rowslice[i], colslice[j]
rows = collect(indexcollection(rowslice, rowslice´))
cols = i === j && rowslice === colslice ? rows : indexcollection(colslice, colslice´)
m = parent(a)[rows, cols]
return OrbitalSliceMatrix(m, (rowslice´, colslice´))
end
# CellSites: return an unwrapped Matrix or a view thereof (non-allocating)
Base.getindex(a::OrbitalSliceMatrix, i::AnyCellSites, j::AnyCellSites = i) =
copy(view(a, i, j))
Base.getindex(a::OrbitalSliceMatrix, i::C, j::C = i) where {B,C<:CellSitePos{<:Any,<:Any,<:Any,B}} =
sanitize_block(B, view(a, i, j))
function Base.view(a::OrbitalSliceMatrix, i::AnyCellSites, j::AnyCellSites = i)
rowslice, colslice = orbaxes(a)
i´, j´ = apply(i, lattice(rowslice)), apply(j, lattice(colslice))
rows = indexcollection(rowslice, i´)
cols = j === i && rowslice === colslice ? rows : indexcollection(colslice, j´)
return view(parent(a), rows, cols)
end
## broadcasting
# following the manual: https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-array
Broadcast.BroadcastStyle(::Type{<:OrbitalSliceArray}) = Broadcast.ArrayStyle{OrbitalSliceArray}()
Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{OrbitalSliceArray}}, ::Type{ElType}) where {ElType} =
OrbitalSliceArray(similar(Array{ElType}, axes(bc)), orbaxes(find_osa(bc)))
find_osa(bc::Base.Broadcast.Broadcasted) = find_osa(bc.args)
find_osa(args::Tuple) = find_osa(find_osa(args[1]), Base.tail(args))
find_osa(x) = x
find_osa(::Tuple{}) = nothing
find_osa(a::OrbitalSliceArray, rest) = a
find_osa(::Any, rest) = find_osa(rest)
# taken from https://github.com/JuliaArrays/OffsetArrays.jl/blob/756e839563c88faa4ebe4ff971286747863aaff0/src/OffsetArrays.jl#L469
Base.dataids(A::OrbitalSliceArray) = Base.dataids(parent(A))
Broadcast.broadcast_unalias(dest::OrbitalSliceArray, src::OrbitalSliceArray) =
parent(dest) === parent(src) ? src : Broadcast.unalias(dest, src)
## conversion
maybe_OrbitalSliceArray(i) = x -> maybe_OrbitalSliceArray(x, i)
maybe_OrbitalSliceArray(x::AbstractVector, i) = maybe_OrbitalSliceVector(x, i)
maybe_OrbitalSliceArray(x::AbstractMatrix, i) = maybe_OrbitalSliceMatrix(x, i)
maybe_OrbitalSliceVector(x, i::DiagIndices{Missing,<:OrbitalSliceGrouped}) =
maybe_OrbitalSliceVector(x, parent(i))
maybe_OrbitalSliceVector(x, i::DiagIndices{<:Any,<:OrbitalSliceGrouped}) =
maybe_OrbitalSliceVector(x, scalarize(parent(i)))
maybe_OrbitalSliceVector(x, i::OrbitalSliceGrouped) = OrbitalSliceVector(x, (i,))
# fallback
maybe_OrbitalSliceVector(x, i) = x
maybe_OrbitalSliceMatrix(x, i::OrbitalSliceGrouped) =
maybe_OrbitalSliceMatrix(x, (i, i))
maybe_OrbitalSliceMatrix(x, (i, j)::Tuple{OrbitalSliceGrouped,OrbitalSliceGrouped}) =
OrbitalSliceMatrix(x, (i, j))
# fallback
maybe_OrbitalSliceMatrix(x, i) = x
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 13019 | supercell(v...; kw...) = x -> supercell(x, v...; kw...)
############################################################################################
# SupercellData (required to build lattice supercell)
#region
struct SupercellData{T,E,L,L´,LL´}
lat::Lattice{T,E,L}
sitelist::Vector{SVector{E,T}} # [sitepositions...]
masklist::Vector{Tuple{Int,SVector{L,Int},Int}} # [(sublatindex, cell, siteindex)...]
bravais´::Bravais{T,E,L´}
sm::SMatrix{L,L´,Int,LL´}
detsm´::Int
proj_invsm´_detsm´::SMatrix{L´,L,Int,LL´}
end
function supercell_data(lat::Lattice{<:Any,<:Any,L}, vs...; seed = missing, kw...) where {L}
smat = sanitize_supercell(Val(L), vs)
selector = siteselector(; kw...)
applied_selector = apply(selector, lat)
# IMPORTANT BEHAVIOR: if lattice dimensions are reduced and there is no bounding region
# and no cell list, supercell is infinite. In this case: stop at a single perp unit cell
only_one_perp = size(smat, 2) < size(smat, 1) && region(selector) === missing && cells(selector) === missing
cellseed = seed === missing ? zero(SVector{L,Int}) : sanitize_SVector(SVector{L,Int}, seed)
return supercell_data(lat, smat, cellseed, applied_selector, only_one_perp)
end
function supercell_data(lat::Lattice{T,E,L},
sm::SMatrix{L,L´,Int},
cellseed::SVector{L,Int},
applied_selector::AppliedSiteSelector{T,E},
only_one_perp::Bool = false) where {T,E,L,L´}
sm´ = makefull(sm)
detsm´ = round(Int, abs(det(sm´)))
iszero(detsm´) && throw(ArgumentError("Supercell is empty. Singular supercell matrix?"))
# inverse of full supercell sm´ (times det(sm´) to make it integer)
# projected back onto superlattice axes L´
invsm´_detsm´ = round.(Int, inv(sm´) * detsm´)
proj_invsm´_detsm´ = SMatrix{L´,L,Bool}(I) * invsm´_detsm´
bravais´ = Bravais{T,E,L´}(bravais_matrix(lat) * sm)
masklist = supercell_masklist_full(invsm´_detsm´, detsm´, cellseed, lat)
smperp = convert(SMatrix{L,L-L´,Int}, view(sm´, :, L´+1:L))
seedperp = zero(SVector{L-L´,Int})
sitelist = similar(sites(lat), 0)
supercell_sitelist!!(sitelist, masklist, smperp, seedperp, lat, applied_selector, only_one_perp)
cosort!(masklist, sitelist) # sorted by sublat, then cell, then siteidx
return SupercellData(lat, sitelist, masklist, bravais´, sm, detsm´, proj_invsm´_detsm´)
end
smat_projector(::SupercellData{<:Any,<:Any,L,L´}) where {L,L´} = SMatrix{L´,L,Bool}(I)
# Make matrix square by appending (or prepending) independent columns if possible
function makefull(m::SMatrix{L,L´}) where {L,L´}
Q = qr(Matrix(m), NoPivot()).Q * I
for i in 1:L * L´
@inbounds Q[i] = m[i] # overwrite first L´ cols with originals
end
return SMatrix{L,L}(Q)
end
# round to integers to preserve eltype
makefull(m::SMatrix{<:Any,<:Any,Int}) = round.(Int, makefull(float(m)))
# build masklist = [(sublatindex, cell, siteindex)] for all sites
# in full supercell defined by makefull(smat)
function supercell_masklist_full(smat´⁻¹N::SMatrix{L,L,Int}, N, cellseed::SVector{L,Int}, lat) where {L}
supercell_nsites = nsites(lat) * N
masklist = Vector{Tuple{Int,SVector{L,Int},Int}}(undef, supercell_nsites)
counter = 0
iter = BoxIterator(cellseed)
for cell in iter, (i, slat) in sitesublatiter(lat)
δn = smat´⁻¹N * cell
if all(x -> 0 <= x < N, δn)
counter += 1
masklist[counter] = (slat, cell, i)
end
acceptcell!(iter, cell)
counter == supercell_nsites && break
end
counter == supercell_nsites ||
internalerror("supercell_masklist_full: failed to find all sites in supercell, only $counter of $supercell_nsites")
return masklist
end
# build sitelist = [sitepositions...] and masklist´ = [(sublat, cell´, siteidx)...]
# where cell´ varies along axes smatperp not in smat, filtered by selector
function supercell_sitelist!!(sitelist, masklist, smatperp, seedperp, lat, applied_selector, only_one_perp)
masklist´ = copy(masklist)
empty!(masklist)
empty!(sitelist)
isnull(applied_selector) && return nothing
cs = cells(applied_selector)
csbool = zeros(Bool, length(cs))
iter = BoxIterator(seedperp)
for n in iter
keepgoing = isempty(sitelist) # if none have been found, ensure we don't stop
for (s, cell, i) in masklist´
cell´ = cell + smatperp * n
r = site(lat, i, cell´)
if (i, r, cell´) in applied_selector
push!(masklist, (s, cell´, i))
push!(sitelist, r)
foundcell!(csbool, cs, cell´)
keepgoing = true
end
end
only_one_perp && break
# If we haven't found all selector cells, accept supercell n so we keep searching
# note that if isempty(csbool) then all(csbool) is true and we stop accepting
foundall = all(csbool)
keepgoing = keepgoing || !foundall
keepgoing && acceptcell!(iter, n)
end
return nothing
end
function foundcell!(csbool, cs, cell)
isempty(cs) && return true
for (i, c) in enumerate(cs)
if cell == c
csbool[i] = true
return true
end
end
return false
end
#endregion
############################################################################################
# supercell(lattice, ...)
#region
supercell(lat::Lattice, vs...; kw...) =
lattice(supercell_data(lat, vs...; kw...))
function lattice(data::SupercellData)
n = sublatnames(data.lat)
o = supercell_offsets(data.masklist, nsublats(data.lat))
u = Unitcell(data.sitelist, n, o)
lat = Lattice(data.bravais´, u)
return lat
end
function supercell_offsets(masklist, nsublats)
ds = zeros(Int, nsublats)
@simd for m in masklist
ds[first(m)] += 1
end
offsets = lengths_to_offsets(ds)
return offsets
end
# function latslice(data::SupercellData)
# # data.masklist is [(sublat, cell, siteindex)...] for each site in lat´
# cellindsvec = sort!(Base.tail.(data.masklist))
# subcells = splitruns(last, cellindsvec; by = first, reduce = CellSites) # see tools.jl
# ls = LatticeSlice(data.lat, subcells)
# return ls
# end
#endregion
############################################################################################
# supercell(::Hamiltonian, ...)
#region
function supercell(h::Hamiltonian, v...; mincoordination = 0, kw...)
data = supercell_data(lattice(h), v...; kw...)
return supercell(h, data; mincoordination)
end
function supercell(h::Hamiltonian, data::SupercellData; mincoordination = 0)
# data.sitelist === sites(lat´), so any change to data will reflect in lat´ too
lat´ = lattice(data)
B = blocktype(h)
bs´ = OrbitalBlockStructure{B}(norbitals(h), sublatlengths(lat´))
builder = CSCBuilder(lat´, bs´)
har´ = supercell_harmonics(h, data, builder, mincoordination)
return Hamiltonian(lat´, bs´, har´)
end
function supercell_harmonics(h, data, builder, mincoordination)
indexlist, offset = supercell_indexlist(data)
if mincoordination > 0
indexlist, offset = remove_low_coordination_sites!(data, indexlist, offset, h, mincoordination)
end
# Note: masklist = [(sublat, old_cell, old_siteindex)...]
for (col´, (_, cellsrc, col)) in enumerate(data.masklist)
for har in harmonics(h)
celldst = cellsrc + dcell(har)
# cell is the position of celldst within its supercell scell
cell, scell = wrap_cell_onto_supercell(celldst, data)
m = unflat(har)
rows = rowvals(m)
vals = nonzeros(m)
for p in nzrange(m, col)
row = rows[p]
c = CartesianIndex((row, Tuple(cell)...)) + offset
# If any row is out of bounds, all rows are (because cell is out of bounds)
checkbounds(Bool, indexlist, c) || break
# Note: indexlist[(old_site_index, old_site_cell...) + offset] = new_site_index
row´ = indexlist[c]
iszero(row´) && continue
csc = builder[scell]
# if csc is a newly created collector, advance column to current col´
sync_columns!(csc, col´)
# val´ = applymodifiers(vals[p], slat, (source_i, target_i), (source_dn, target_dn), modifiers´...)
val´ = vals[p]
pushtocolumn!(csc, row´, val´)
end
end
finalizecolumn!(builder)
end
return sparse(builder)
end
function wrap_cell_onto_supercell(cell, data)
# This psmat⁻¹N is the inverse of the full supercell matrix sm´ (i.e. full-rank square),
# times N = det(sm´) to make it integer, and projected onto the actual L supercell dims
psmat⁻¹N = data.proj_invsm´_detsm´
N = data.detsm´
smat = data.sm
# `scell` is the indices of the supercell where `cell` lives
scell = fld.(psmat⁻¹N * cell, N)
# `cell´` is `cell` shifted back to the zero supercell
cell´ = cell - smat * scell
return cell´, scell
end
function supercell_indexlist(data)
(cellmin, cellmax), (imin, imax) = mask_bounding_box(data.masklist)
indexlist = zeros(Int, 1 + imax - imin, 1 .+ cellmax .- cellmin...)
offset = CartesianIndex((1 - imin, 1 .- cellmin...))
for (inew, (_, cellold, iold)) in enumerate(data.masklist)
c = CartesianIndex((iold, Tuple(cellold)...)) + offset
indexlist[c] = inew
end
return indexlist, offset
end
# more general version of boundingbox(cells)
function mask_bounding_box(masklist::Vector{Tuple{Int,SVector{L,Int},Int}}) where {L}
cellmin = cellmax = ntuple(Returns(0), Val(L))
imin = imax = 0
for (s, cell, i) in masklist
tcell = Tuple(cell)
cellmin = min.(cellmin, tcell)
cellmax = max.(cellmax, tcell)
imin = min(imin, i)
imax = max(imax, i)
end
return (cellmin, cellmax), (imin, imax)
end
function remove_low_coordination_sites!(data, indexlist, offset, h, mincoordination)
# remove low-coordination sites in masklist and sitelist until they don't change
# when a site is removed, it becomes a zero in indexlist, but the other indices
# are not changed. Hence, at the end we must recompute indexlist with the final
# masklist and sitelist. Note that lat´ in the calling context is updated through
# sitelist too, since sites(lat´) === data.sitelist
masklist = data.masklist
masklist´ = similar(masklist)
sitelist = data.sitelist
sitelist´ = similar(sitelist)
while true
resize!(masklist´, 0)
resize!(sitelist´, 0)
for (r, (sj, cellj, j)) in zip(sitelist, masklist)
coordination = 0
for har in harmonics(h)
dn = dcell(har)
celli, _ = wrap_cell_onto_supercell(cellj + dn, data)
m = matrix(har)
rows = rowvals(m)
vals = nonzeros(m)
for p in nzrange(m, j)
i = rows[p]
c = CartesianIndex((i, Tuple(celli)...)) + offset
checkbounds(Bool, indexlist, c) || break
isonsite = i == j && iszero(dn)
if !isonsite && !iszero(indexlist[c]) && !iszero(vals[p])
coordination += 1
end
end
end
if coordination >= mincoordination
push!(sitelist´, r)
push!(masklist´, (sj, cellj, j))
else
c = CartesianIndex((j, Tuple(cellj)...)) + offset
indexlist[c] = 0
end
end
length(sitelist´) == length(sitelist) && break
sitelist´, sitelist = sitelist, sitelist´
masklist´, masklist = masklist, masklist´
end
data.masklist .= masklist´
data.sitelist .= sitelist´
indexlist´, offset´ = supercell_indexlist(data)
return indexlist´, offset´
end
#endregion
############################################################################################
# supercell(::ParametricHamiltonian, ...)
#region
function supercell(p::ParametricHamiltonian, v...; mincoordination = 0, kw...)
h = parent(p)
data = supercell_data(lattice(h), v...; kw...)
h´ = supercell(h, data; mincoordination)
shifts = supercell_shifts(data) # allows to compute new ptrs to old r, dr
ms = parent.(modifiers(p)) # extract unapplied modifiers to reapply them to h´
ams = apply.(ms, Ref(h´), Ref(shifts))
p´ = hamiltonian(h´, ams...)
return p´
end
# For each site in new lattice, store the corresponding shift = bravais_matrix * cell
function supercell_shifts(data::SupercellData)
b = bravais_matrix(data.lat)
shifts = [b * cell for (_, cell, _) in data.masklist]
return shifts
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 8116 | ############################################################################################
# Misc tools
#region
rdr((r1, r2)::Pair) = (0.5 * (r1 + r2), r2 - r1)
@inline tuplejoin() = ()
@inline tuplejoin(x) = x
@inline tuplejoin(x, y) = (x..., y...)
@inline tuplejoin(x, y, z...) = (x..., tuplejoin(y, z...)...)
@inline tupleflatten() = ()
@inline tupleflatten(x::Tuple) = x
@inline tupleflatten(x0, xs...) = tupleflatten((x0,), xs...)
@inline tupleflatten(x0::Tuple, x1, xs...) = tupleflatten((x0..., x1), xs...)
@inline tupleflatten(x0::Tuple, x1::Tuple, xs...) = tupleflatten((x0..., x1...), xs...)
tuplefill(x, ::Val{N}) where {N} = ntuple(Returns(x), Val(N))
padtuple(t, x, N) = ntuple(i -> i <= length(t) ? t[i] : x, N)
@inline tupletake(x, ::Val{N}) where {N} = ntuple(i -> x[i], Val(N))
@inline function smatrixtake(s::SMatrix, ::Val{N}) where {N}
is = SVector{N,Int}(1:N)
return s[is, is]
end
@noinline internalerror(func::String) =
throw(ErrorException("Internal error in $func. Please file a bug report at https://github.com/pablosanjose/Quantica.jl/issues"))
@noinline argerror(msg) = throw(ArgumentError(msg))
@noinline boundserror(m, i) = throw(BoundsError(m, i))
@noinline checkmatrixsize(::UniformScaling, s) = nothing
@noinline checkmatrixsize(val, s) = (size(val, 1), size(val, 2)) == s ||
throw(ArgumentError("Expected a block or matrix of size $s, got size $((size(val, 1), size(val, 2)))"))
@noinline function_not_defined(name) = argerror("Function $name not defined for the requested types")
unitvector(i, ::Type{SVector{L,T}}) where {L,T} =
SVector{L,T}(ntuple(j -> j == i ? one(T) : zero(T), Val(L)))
function padright(pt, ::Val{L}) where {L}
T = eltype(pt)
L´ = length(pt)
return SVector(ntuple(i -> i > L´ ? zero(T) : pt[i], Val(L)))
end
function boundingbox(positions)
isempty(positions) && argerror("Cannot find bounding box of an empty collection")
posmin = posmax = first(positions)
for pos in positions
posmin = min.(posmin, pos)
posmax = max.(posmax, pos)
end
return (posmin, posmax)
end
copy_ifnotmissing(::Missing) = missing
copy_ifnotmissing(d) = copy(d)
merge_parameters!(p, m, ms...) = merge_parameters!(append!(p, parameters(m)), ms...)
merge_parameters!(p) = unique!(sort!(p))
typename(::T) where {T} = nameof(T)
chop(x::T) where {T<:Real} = ifelse(abs2(x) < eps(real(T)), zero(T), x)
chop(x::Complex) = chop(real(x)) + im*chop(imag(x))
chop(xs) = chop.(xs)
# Flattens matrix of Matrix{<:Number} into a matrix of Number's
function mortar(ms::AbstractMatrix{M}) where {C<:Number,M<:AbstractMatrix{C}}
isempty(ms) && return convert(Matrix{C}, ms)
mrows = size.(ms, 1)
mcols = size.(ms, 2)
allequal(eachrow(mcols)) && allequal(eachcol(mrows)) ||
internalerror("mortar: inconsistent rows or columns")
roff = lengths_to_offsets(view(mrows, :, 1))
coff = lengths_to_offsets(view(mcols, 1, :))
mat = zeros(C, last(roff), last(coff))
for c in CartesianIndices(ms)
src = ms[c]
i, j = Tuple(c)
Rdst = CartesianIndices((roff[i]+1:roff[i+1], coff[j]+1:coff[j+1]))
Rsrc = CartesianIndices(src)
copyto!(mat, Rdst, src, Rsrc)
end
return mat
end
# faspath for generators or other collections
mortar(ms) = length(ms) == 1 ? only(ms) : mortar(collect(ms))
# equivalent to mat = I[:, cols]. Useful for Green function source
# no check of mat size vs cols is done
function one!(mat::AbstractArray{T}, cols = axes(mat, 2)) where {T}
fill!(mat, zero(T))
for (col, row) in enumerate(cols)
mat[row, col] = one(T)
end
return mat
end
one!(mat::AbstractArray, ::Colon) = one!(mat)
lengths_to_offsets(v::NTuple{<:Any,Integer}) = (0, cumsum(v)...)
lengths_to_offsets(v) = prepend!(cumsum(v), 0)
lengths_to_offsets(f::Function, v) = prepend!(accumulate((i,j) -> i + f(j), v; init = 0), 0)
#endregion
############################################################################################
# SparseMatrixCSC tools
# all merged_* functions assume matching structure of sparse matrices
#region
function nnzdiag(b::AbstractSparseMatrixCSC)
count = 0
rowptrs = rowvals(b)
for col in 1:size(b, 2)
for ptr in nzrange(b, col)
rowptrs[ptr] == col && (count += 1; break)
end
end
return count
end
stored_rows(m::AbstractSparseMatrixCSC) = unique!(sort!(copy(rowvals(m))))
function stored_cols(m::AbstractSparseMatrixCSC)
cols = Int[]
for col in axes(m, 2)
isempty(nzrange(m, col)) || push!(cols, col)
end
return cols
end
# merge several sparse matrices onto the first using only structural zeros
function merge_sparse(mats, ::Type{B} = eltype(first(mats))) where {B}
mat0 = first(mats)
nrows, ncols = size(mat0)
nrows == ncols || throw(ArgumentError("Internal error: matrix not square"))
nnzguess = sum(mat -> nnz(mat), mats)
collector = CSC{B}(ncols, nnzguess)
for col in 1:ncols
for (n, mat) in enumerate(mats)
vals = nonzeros(mat)
rows = rowvals(mat)
for p in nzrange(mat, col)
val = zero(B)
row = rows[p]
pushtocolumn!(collector, row, val, false) # skips repeated rows
end
end
finalizecolumn!(collector)
end
matrix = sparse(collector, ncols, ncols)
return matrix
end
function merged_mul!(C::SparseMatrixCSC{<:Number}, A::HybridSparseMatrix, b::Number, α = 1, β = 0)
bs = blockstructure(A)
if needs_flat_sync(A)
merged_mul!(C, bs, unflat(A), b, α, β)
else
merged_mul!(C, bs, flat(A), b, α, β)
end
return C
end
function merged_mul!(C::SparseMatrixCSC{<:Number}, ::OrbitalBlockStructure, A::SparseMatrixCSC{B}, b::Number, α = 1, β = 0) where {B<:Complex}
nzA = nonzeros(A)
nzC = nonzeros(C)
αb = α * b
if length(nzA) == length(nzC) # assume idential structure (C has merged structure)
@. nzC = muladd(αb, nzA, β * nzC)
else
# A has less elements than C
for col in axes(A, 2), p in nzrange(A, col)
row = rowvals(A)[p]
for p´ in nzrange(C, col)
row´ = rowvals(C)[p´]
if row == row´
nzC[p´] = muladd(αb, nzA[p], β * nzC[p´])
break
end
end
end
end
return C
end
function merged_mul!(C::SparseMatrixCSC{<:Number}, bs::OrbitalBlockStructure{B}, A::SparseMatrixCSC{B}, b::Number, α = 1, β = 0) where {B<:MatrixElementNonscalarType}
colsA = axes(A, 2)
rowsA = rowvals(A)
valsA = nonzeros(A)
rowsC = rowvals(C)
valsC = nonzeros(C)
αb = α * b
colC = 1
for colA in colsA
N = blocksize(bs, colA)
for colN in 1:N
ptrsA, ptrsC = nzrange(A, colA), nzrange(C, colC)
ptrA, ptrC = first(ptrsA), first(ptrsC)
while ptrA in ptrsA && ptrC in ptrsC
rowA, rowC = rowsA[ptrA], rowsC[ptrC]
rngflat = flatrange(bs, rowA)
rowAflat, N´ = first(rngflat), length(rngflat)
if rowAflat == rowC
valA = valsA[ptrA]
for rowN in 1:N´
valsC[ptrC] = muladd(αb, valA[rowN, colN], β * valsC[ptrC])
ptrC += 1
end
elseif rowAflat > rowC
ptrC += N´
else
ptrA += 1
end
end
colC += 1
end
end
return C
end
#endregion
############################################################################################
# Dynamic package loader
# This is in global Quantica scope to avoid name collisions
# We also `import` instead of `using` to avoid collisions between different backends
#region
function ensureloaded(package::Symbol)
if !isdefined(Quantica, package)
@warn("Required package $package not loaded. Loading...")
eval(:(import $package))
end
return nothing
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2234 | ############################################################################################
# Currying
#region
transform(f::Function) = x -> transform(x, f)
transform!(f::Function) = x -> transform!(x, f)
translate(δr) = x -> translate(x, δr)
translate!(δr) = x -> translate!(x, δr)
#endregion
############################################################################################
# Lattice transform/translate
#region
function transform!(l::Lattice, f::Function, keepranges = false)
return keepranges ?
Lattice(transform!(bravais(l), f), transform!(unitcell(l), f), nranges(l)) :
Lattice(transform!(bravais(l), f), transform!(unitcell(l), f))
end
function transform!(b::Bravais{<:Any,E}, f::Function) where {E}
m = matrix(b)
for j in axes(m, 2)
v = SVector(ntuple(i -> m[i, j], Val(E)))
m[:, j] .= f(v) - f(zero(v))
end
return b
end
transform!(u::Unitcell, f::Function) = (map!(f, sites(u), sites(u)); u)
transform(l::Lattice, f::Function) = transform!(copy(l), f)
# translate! does not change neighbor ranges, keep whichever have already been computed
translate!(lat::Lattice{T,E}, δr::SVector{E,T}) where {T,E} = transform!(lat, r -> r + δr, true)
translate!(lat::Lattice{T,E}, δr) where {T,E} = translate!(lat, sanitize_SVector(SVector{E,T}, δr))
translate(l::Lattice, δr) = translate!(copy(l), δr)
#endregion
############################################################################################
# Lattice reverse - flip all Bravais vectors
#region
Base.reverse!(lat::Lattice) = (matrix(bravais(lat)) .*= -1; lat)
Base.reverse(lat::Lattice) = reverse!(copy(lat))
Base.reverse!(h::AbstractHamiltonian) = (reverse!(lattice(h)); h)
Base.reverse(h::AbstractHamiltonian) = reverse!(copy(h))
#end
############################################################################################
# Hamiltonian transform/translate
#region
transform(h::AbstractHamiltonian, f::Function) = transform!(copy_lattice(h), f)
transform!(h::AbstractHamiltonian, f::Function) = (transform!(lattice(h), f); h)
translate(h::AbstractHamiltonian, δr) = translate!(copy_lattice(h), δr)
translate!(h::AbstractHamiltonian, δr) = (translate!(lattice(h), δr); h)
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 83702 | ############################################################################################
# Lattice - see lattice.jl for methods
#region
struct Sublat{T<:AbstractFloat,E}
sites::Vector{SVector{E,T}}
name::Symbol
end
struct Unitcell{T<:AbstractFloat,E}
sites::Vector{SVector{E,T}}
names::Vector{Symbol}
offsets::Vector{Int} # Linear site number offsets for each sublat
function Unitcell{T,E}(sites, names, offsets) where {T<:AbstractFloat,E}
names´ = uniquenames!(sanitize_Vector_of_Symbols(names))
length(names´) == length(offsets) - 1 ||
argerror("Incorrect number of sublattice names, got $(length(names´)), expected $(length(offsets) - 1)")
return new(sites, names´, offsets)
end
end
struct Bravais{T,E,L}
matrix::Matrix{T}
function Bravais{T,E,L}(matrix) where {T,E,L}
(E, L) == size(matrix) || internalerror("Bravais: unexpected matrix size $((E,L)) != $(size(matrix))")
L > E &&
throw(DimensionMismatch("Number of Bravais vectors ($L) cannot be greater than embedding dimension $E"))
return new(matrix)
end
end
struct Lattice{T<:AbstractFloat,E,L}
bravais::Bravais{T,E,L}
unitcell::Unitcell{T,E}
nranges::Vector{Tuple{Int,T}} # [(nth_neighbor, min_nth_neighbor_distance)...]
end
#region ## Constructors ##
Bravais(::Type{T}, E, m) where {T} = Bravais(T, Val(E), m)
Bravais(::Type{T}, ::Val{E}, m::Tuple{}) where {T,E} =
Bravais{T,E,0}(sanitize_Matrix(T, E, ()))
Bravais(::Type{T}, ::Val{E}, m::NTuple{<:Any,Number}) where {T,E} =
Bravais{T,E,1}(sanitize_Matrix(T, E, (m,)))
Bravais(::Type{T}, ::Val{E}, m::NTuple{L,Any}) where {T,E,L} =
Bravais{T,E,L}(sanitize_Matrix(T, E, m))
Bravais(::Type{T}, ::Val{E}, m::SMatrix{<:Any,L}) where {T,E,L} =
Bravais{T,E,L}(sanitize_Matrix(T, E, m))
Bravais(::Type{T}, ::Val{E}, m::AbstractMatrix) where {T,E} =
Bravais{T,E,size(m,2)}(sanitize_Matrix(T, E, m))
Bravais(::Type{T}, ::Val{E}, m::AbstractVector) where {T,E} =
Bravais{T,E,1}(sanitize_Matrix(T, E, hcat(m)))
Unitcell(sites::Vector{SVector{E,T}}, names, offsets) where {E,T} =
Unitcell{T,E}(sites, names, offsets)
function uniquenames!(names::Vector{Symbol})
allnames = Symbol[:_]
for (i, name) in enumerate(names)
if name in allnames
names[i] = uniquename(allnames, name, i)
@warn "Renamed repeated sublattice :$name to :$(names[i])"
end
push!(allnames, names[i])
end
return names
end
function uniquename(allnames, name, i)
newname = Symbol(Char(64+i)) # Lexicographic, starting from Char(65) = 'A'
newname = newname in allnames ? uniquename(allnames, name, i + 1) : newname
return newname
end
#endregion
#region ## API ##
bravais(l::Lattice) = l.bravais
unitcell(l::Lattice) = l.unitcell
nranges(l::Lattice) = l.nranges
bravais_vectors(l::Lattice) = bravais_vectors(l.bravais)
bravais_vectors(b::Bravais) = eachcol(b.matrix)
bravais_matrix(l::Lattice) = bravais_matrix(l.bravais)
bravais_matrix(b::Bravais{T,E,L}) where {T,E,L} =
convert(SMatrix{E,L,T}, ntuple(i -> b.matrix[i], Val(E*L)))
matrix(b::Bravais) = b.matrix
sublatnames(l::Lattice) = sublatnames(l.unitcell)
sublatnames(u::Unitcell) = u.names
sublatname(l::Lattice, s) = sublatname(l.unitcell, s)
sublatname(u::Unitcell, s) = u.names[s]
sublatname(s::Sublat) = s.name
sublatindex(l::Lattice, name::Symbol) = sublatindex(l.unitcell, name)
function sublatindex(u::Unitcell, name::Symbol)
i = findfirst(==(name), sublatnames(u))
i === nothing && boundserror(u, string(name))
return i
end
nsublats(l::Lattice) = nsublats(l.unitcell)
nsublats(u::Unitcell) = length(u.names)
sublats(l::Lattice) = sublats(l.unitcell)
sublats(u::Unitcell) = 1:nsublats(u)
nsites(s::Sublat) = length(s.sites)
nsites(lat::Lattice, sublat...) = nsites(lat.unitcell, sublat...)
nsites(u::Unitcell) = length(u.sites)
nsites(u::Unitcell, sublat) = sublatlengths(u)[sublat]
sites(s::Sublat) = s.sites
sites(l::Lattice, sublat...) = sites(l.unitcell, sublat...)
sites(u::Unitcell) = u.sites
sites(u::Unitcell, sublat) = view(u.sites, siterange(u, sublat))
sites(u::Unitcell, ::Missing) = sites(u) # to work with QuanticaMakieExt
sites(l::Lattice, name::Symbol) = sites(unitcell(l), name)
sites(u::Unitcell, name::Symbol) = sites(u, sublatindex(u, name))
site(l::Lattice, i) = sites(l)[i]
site(l::Lattice, i, dn) = site(l, i) + bravais_matrix(l) * dn
siterange(l::Lattice, sublat...) = siterange(l.unitcell, sublat...)
siterange(u::Unitcell, sublat::Integer) = (1+u.offsets[sublat]):u.offsets[sublat+1]
siterange(u::Unitcell, name::Symbol) = siterange(u, sublatindex(u, name))
siterange(u::Unitcell) = 1:last(u.offsets)
sitesublat(lat::Lattice, siteidx) = sitesublat(lat.unitcell.offsets, siteidx)
function sitesublat(offsets, siteidx)
l = length(offsets)
for s in 2:l
@inbounds offsets[s] + 1 > siteidx && return s - 1
end
return l
end
sitesublatname(lat, i) = sublatname(lat, sitesublat(lat, i))
sitesublatiter(l::Lattice) = sitesublatiter(l.unitcell)
sitesublatiter(u::Unitcell) = ((i, s) for s in sublats(u) for i in siterange(u, s))
offsets(l::Lattice) = offsets(l.unitcell)
offsets(u::Unitcell) = u.offsets
sublatlengths(lat::Lattice) = sublatlengths(lat.unitcell)
sublatlengths(u::Unitcell) = diff(u.offsets)
embdim(::Sublat{<:Any,E}) where {E} = E
embdim(::Lattice{<:Any,E}) where {E} = E
latdim(::Lattice{<:Any,<:Any,L}) where {L} = L
numbertype(::Sublat{T}) where {T} = T
numbertype(::Lattice{T}) where {T} = T
zerocell(::Bravais{<:Any,<:Any,L}) where {L} = zero(SVector{L,Int})
zerocell(::Lattice{<:Any,<:Any,L}) where {L} = zero(SVector{L,Int})
zerocellsites(l::Lattice, i) = sites(zerocell(l), i)
Base.length(l::Lattice) = nsites(l)
Base.copy(l::Lattice) = deepcopy(l)
Base.:(==)(l::Lattice, l´::Lattice) = l.bravais == l´.bravais && l.unitcell == l´.unitcell
Base.:(==)(b::Bravais, b´::Bravais) = b.matrix == b´.matrix
# we do not demand equal names for unitcells to be equal
Base.:(==)(u::Unitcell, u´::Unitcell) = u.sites == u´.sites && u.offsets == u´.offsets
#endregion
#endregion
############################################################################################
# Selectors - see selectors.jl for methods
#region
struct SiteSelector{F,S,C}
region::F
sublats::S
cells::C
end
const SiteSelectorAll = SiteSelector{Missing,Missing,Missing}
struct AppliedSiteSelector{T,E,L}
lat::Lattice{T,E,L}
region::FunctionWrapper{Bool,Tuple{SVector{E,T}}}
sublats::Vector{Int}
cells::Vector{SVector{L,Int}}
isnull::Bool # if isnull, the selector selects nothing, regardless of other fields
end
struct HopSelector{F,S,D,R}
region::F
sublats::S
dcells::D
range::R
adjoint::Bool # make apply take the "adjoint" of the selector
end
struct AppliedHopSelector{T,E,L}
lat::Lattice{T,E,L}
region::FunctionWrapper{Bool,Tuple{SVector{E,T},SVector{E,T}}}
sublats::Vector{Pair{Int,Int}}
dcells::Vector{SVector{L,Int}}
range::Tuple{T,T}
isnull::Bool # if isnull, the selector selects nothing, regardless of other fields
end
struct Neighbors
n::Int
end
#region ## Constructors ##
HopSelector(re, su, dc, ra) = HopSelector(re, su, dc, ra, false)
#endregion
#region ## API ##
Base.Int(n::Neighbors) = n.n
region(s::Union{SiteSelector,HopSelector}) = s.region
cells(s::SiteSelector) = s.cells
lattice(ap::AppliedSiteSelector) = ap.lat
lattice(ap::AppliedHopSelector) = ap.lat
cells(ap::AppliedSiteSelector) = ap.cells
dcells(ap::AppliedHopSelector) = ap.dcells
# if isempty(s.dcells) or isempty(s.sublats), none were specified, so we must accept any
inregion(r, s::AppliedSiteSelector) = s.region(r)
inregion((r, dr), s::AppliedHopSelector) = s.region(r, dr)
insublats(n, s::AppliedSiteSelector) = isempty(s.sublats) || n in s.sublats
insublats(npair::Pair, s::AppliedHopSelector) = isempty(s.sublats) || npair in s.sublats
incells(cell, s::AppliedSiteSelector) = isempty(s.cells) || cell in s.cells
indcells(dcell, s::AppliedHopSelector) = isempty(s.dcells) || dcell in s.dcells
iswithinrange(dr, s::AppliedHopSelector) = iswithinrange(dr, s.range)
iswithinrange(dr, (rmin, rmax)::Tuple{Real,Real}) = ifelse(sign(rmin)*rmin^2 <= dr'dr <= rmax^2, true, false)
isbelowrange(dr, s::AppliedHopSelector) = isbelowrange(dr, s.range)
isbelowrange(dr, (rmin, rmax)::Tuple{Real,Real}) = ifelse(dr'dr < rmin^2, true, false)
isnull(s::AppliedSiteSelector) = s.isnull
isnull(s::AppliedHopSelector) = s.isnull
Base.adjoint(s::HopSelector) = HopSelector(s.region, s.sublats, s.dcells, s.range, !s.adjoint)
Base.NamedTuple(s::SiteSelector) =
(; region = s.region, sublats = s.sublats, cells = s.cells)
Base.NamedTuple(s::HopSelector) =
(; region = s.region, sublats = s.sublats, dcells = s.dcells, range = s.range)
#endregion
#endregion
############################################################################################
# MatrixElementTypes
#region
struct SMatrixView{N,M,T,NM}
s::SMatrix{N,M,T,NM}
SMatrixView{N,M,T,NM}(mat) where {N,M,T,NM} = new(sanitize_SMatrix(SMatrix{N,M,T}, mat))
end
const MatrixElementType{T} = Union{
Complex{T},
SMatrix{N,N,Complex{T}} where {N},
SMatrixView{N,N,Complex{T}} where {N}}
const MatrixElementUniformType{T} = Union{
Complex{T},
SMatrix{N,N,Complex{T}} where {N}}
const MatrixElementNonscalarType{T,N} = Union{
SMatrix{N,N,Complex{T}},
SMatrixView{N,N,Complex{T}}}
#region ## Constructors ##
SMatrixView(mat::SMatrix{N,M,T,NM}) where {N,M,T,NM} = SMatrixView{N,M,T,NM}(mat)
SMatrixView{N,M}(mat::AbstractMatrix{T}) where {N,M,T} = SMatrixView{N,M,T}(mat)
SMatrixView{N,M,T}(mat) where {N,M,T} = SMatrixView{N,M,T,N*M}(mat)
SMatrixView(::Type{SMatrix{N,M,T,NM}}) where {N,M,T,NM} = SMatrixView{N,M,T,NM}
#endregion
#region ## API ##
unblock(s::SMatrixView) = s.s
unblock(s) = s
Base.parent(s::SMatrixView) = s.s
Base.view(s::SMatrixView, i...) = view(s.s, i...)
Base.getindex(s::SMatrixView, i...) = getindex(s.s, i...)
Base.zero(::Type{SMatrixView{N,M,T,NM}}) where {N,M,T,NM} = SMatrixView(zero(SMatrix{N,M,T,NM}))
Base.zero(::S) where {S<:SMatrixView} = zero(S)
Base.adjoint(s::SMatrixView) = SMatrixView(s.s')
Base.:+(s::SMatrixView...) = SMatrixView(+(parent.(s)...))
Base.:-(s::SMatrixView) = SMatrixView(-parent.(s))
Base.:*(s::SMatrixView, x::Number) = SMatrixView(parent(s) * x)
Base.:*(x::Number, s::SMatrixView) = SMatrixView(x * parent(s))
Base.:(==)(s::SMatrixView, s´::SMatrixView) = parent(s) == parent(s´)
#endregion
#endregion
############################################################################################
# LatticeSlice - see slices.jl for methods
# Encodes subsets of sites (or orbitals) of a lattice in different cells. Produced e.g. by
# lat[siteselector]. No ordering is guaranteed, but cells and sites must both be unique
#region
struct SiteLike end
struct SiteLikePos{T,E,B<:MatrixElementType{T}}
r::SVector{E,T}
blocktype::Type{B}
end
struct OrbitalLike end
struct OrbitalLikeGrouped
groups::Dictionary{Int,UnitRange{Int}} # site => range of inds in parent
# (non-selected sites are not present)
end
struct CellIndices{L,I,G<:Union{SiteLike,SiteLikePos,OrbitalLike,OrbitalLikeGrouped}}
cell::SVector{L,Int}
inds::I # can be anything: Int, Colon, Vector{Int}, etc.
type::G # can be SiteLike, OrbitalLike or OrbitalLikeGrouped
end
const CellSites{L,I} = CellIndices{L,I,SiteLike}
const CellSite{L} = CellIndices{L,Int,SiteLike}
const CellSitePos{T,E,L,B} = CellIndices{L,Int,SiteLikePos{T,E,B}} # for non-spatial models
const AnyCellSite{L} = Union{CellSite{L},CellSitePos{<:Any,<:Any,L}}
const AnyCellSites{L} = Union{CellSites{L},CellSitePos{<:Any,<:Any,L}}
const CellOrbitals{L,I} = CellIndices{L,I,OrbitalLike}
const CellOrbitalsGrouped{L,I} = CellIndices{L,I,OrbitalLikeGrouped}
const CellOrbital{L} = CellIndices{L,Int,OrbitalLike}
const AnyCellOrbitals{L} = Union{CellOrbital{L},CellOrbitals{L},CellOrbitalsGrouped{L}}
const CellIndicesDict{L,C<:CellIndices{L}} = Dictionary{SVector{L,Int},C}
const CellSitesDict{L} = Dictionary{SVector{L,Int},CellSites{L,Vector{Int}}}
const CellOrbitalsDict{L} = Dictionary{SVector{L,Int},CellOrbitals{L,Vector{Int}}}
const CellOrbitalsGroupedDict{L} = Dictionary{SVector{L,Int},CellOrbitalsGrouped{L,Vector{Int}}}
const AnyCellOrbitalsDict{L} = Union{CellOrbitalsDict{L},CellOrbitalsGroupedDict{L}}
struct LatticeSlice{T,E,L,C<:CellIndices{L}}
lat::Lattice{T,E,L}
cellsdict::CellIndicesDict{L,C}
offsets::Dictionary{SVector{L,Int},Int} # offset from number of indices in each cell
siteindsdict::Dictionary{CellSite{L},UnitRange{Int}} # index range in slice per site
function LatticeSlice{T,E,L,C}(lat, cellsdict) where {T,E,L,C}
all(cs -> allunique(cs.inds), cellsdict) || argerror("CellSlice cells must be unique")
offsetsvec = lengths_to_offsets(length, cellsdict)
pop!(offsetsvec) # remove last entry, so there is one offset per cellsdict value
offsets = Dictionary(cell.(cellsdict), offsetsvec)
siteindsdict = siteindexdict(cellsdict)
return new(lat, cellsdict, offsets, siteindsdict)
end
function LatticeSlice{T,E,L,C}(lat, cellsdict, offsets, siteindsdict) where {T,E,L,C}
return new(lat, cellsdict, offsets, siteindsdict)
end
end
const SiteSlice{T,E,L} = LatticeSlice{T,E,L,CellSites{L,Vector{Int}}}
const OrbitalSlice{T,E,L} = LatticeSlice{T,E,L,CellOrbitals{L,Vector{Int}}}
const OrbitalSliceGrouped{T,E,L} = LatticeSlice{T,E,L,CellOrbitalsGrouped{L,Vector{Int}}}
const AnyOrbitalSlice = Union{OrbitalSlice,OrbitalSliceGrouped}
#region ## Constructors ##
# exported constructor for general site inds in a given cell (defaults to zero cell)
sites(cell, inds) = CellSites(cell, inds)
sites(inds) = CellSites(zero(SVector{0,Int}), inds)
CellSite(cell, ind::Int) = CellIndices(sanitize_SVector(Int, cell), ind, SiteLike())
CellSite(c::CellSitePos) = CellSite(c.cell, c.inds)
CellSites(cell, inds = Int[]) = CellIndices(sanitize_SVector(Int, cell), sanitize_cellindices(inds), SiteLike())
# no check for unique inds
unsafe_cellsites(cell, inds) = CellIndices(cell, inds, SiteLike())
CellOrbitals(cell, inds = Int[]) =
CellIndices(sanitize_SVector(Int, cell), sanitize_cellindices(inds), OrbitalLike())
CellOrbital(cell, ind::Int) =
CellIndices(sanitize_SVector(Int, cell), ind, OrbitalLike())
CellOrbitalsGrouped(cell, inds, groups::Dictionary) =
CellIndices(sanitize_SVector(Int, cell), sanitize_cellindices(inds), OrbitalLikeGrouped(groups))
# B <: MatrixElementType{T}
CellSitePos(cell, ind, r, B) = CellIndices(sanitize_SVector(Int, cell), ind, SiteLikePos(r, B))
# LatticeSlice from an AbstractVector of CellIndices
LatticeSlice(lat::Lattice, cs::AbstractVector{<:CellIndices}) =
LatticeSlice(lat, cellinds_to_dict(cs))
# CellIndices to Dictionary(cell=>cellind)
cellinds_to_dict(cs::AbstractVector{C}) where {L,C<:CellIndices{L}} =
CellIndicesDict{L,C}(cell.(cs), cs)
cellinds_to_dict(cells::AbstractVector{SVector{L,Int}}, cs::AbstractVector{C}) where {L,C<:CellIndices{L}} =
CellIndicesDict{L,C}(cells, cs)
cellinds_to_dict(cs::CellIndices{L}) where {L} = cellinds_to_dict(SVector(cs))
# don't allow single-CellSites in dictionaries (it polutes the LatticeSlice type diversity)
cellinds_to_dict(cs::AbstractVector{C}) where {L,C<:CellSite{L}} =
cellinds_to_dict(CellSites{L,Vector{Int}}.(cs))
# make OrbitalSliceGrouped scalar (i.e. groups are siteindex => siteindex:siteindex)
scalarize(s::OrbitalSliceGrouped) = OrbitalSliceGrouped(s.lat, scalarize(s.cellsdict))
scalarize(d::CellOrbitalsGroupedDict) = scalarize.(d)
scalarize(c::CellOrbitalsGrouped) =
CellOrbitalsGrouped(c.cell, collect(keys(c.type.groups)),
dictionary(i => i:i for i in keys(c.type.groups)))
# outer constructor for LatticeSlice
LatticeSlice(lat::Lattice{T,E,L}, cellsdict::CellIndicesDict{L,C}) where {T,E,L,C} =
LatticeSlice{T,E,L,C}(lat, cellsdict)
SiteSlice(lat::Lattice{T,E,L}, cellsdict::CellIndicesDict{L,C}) where {T,E,L,C<:CellSites} =
LatticeSlice{T,E,L,C}(lat, cellsdict)
OrbitalSlice(lat::Lattice{T,E,L}, cellsdict::CellIndicesDict{L,C}) where {T,E,L,C<:CellOrbitals} =
LatticeSlice{T,E,L,C}(lat, cellsdict)
OrbitalSliceGrouped(lat::Lattice{T,E,L}, cellsdict::CellIndicesDict{L,C}) where {T,E,L,C<:CellOrbitalsGrouped} =
LatticeSlice{T,E,L,C}(lat, cellsdict)
# ranges of inds, where inds are orbital indices for orbgroupeddict, site indices otherwise
siteindexdict(cs::CellOrbitalsGroupedDict) = Dictionary(cellsites(cs), orbranges(cs))
# empty siteindexdict when sites are not known
siteindexdict(::CellOrbitalsDict{L}) where {L} = Dictionary{CellSite{L}, UnitRange{Int}}()
# For CellSitesDict, site indices are used
siteindexdict(cs::CellSitesDict) = dictionary(c => i:i for (i, c) in enumerate(cellsites(cs)))
unsafe_replace_lattice(l::LatticeSlice{T,E,L,C}, lat::Lattice{T,E´,L}) where {T,E,E´,L,C} =
LatticeSlice{T,E´,L,C}(lat, cellsdict(l), offsets(l), siteindexdict(l))
#endregion
#region ## API ##
lattice(ls::LatticeSlice) = ls.lat
siteindices(s::AnyCellSites) = s.inds
siteindices(s::CellOrbitalsGrouped) = keys(s.type.groups)
orbindices(s::AnyCellOrbitals) = s.inds
siteindex(s::AnyCellSite) = s.inds
orbindex(s::CellOrbital) = s.inds
indexcollection(lold::LatticeSlice, lnew::LatticeSlice) =
[j for s in cellsites(lnew) for j in indexcollection(lold, s)]
indexcollection(l::LatticeSlice, c::CellSitePos) =
siteindexdict(l)[sanitize_cellindices(CellSite(c), l)]
indexcollection(l::LatticeSlice, c::CellSite) =
siteindexdict(l)[sanitize_cellindices(c, l)]
indexcollection(l::LatticeSlice, cs::CellSites) =
sanitized_indexcollection(l, sanitize_cellindices(cs, l))
sanitized_indexcollection(l::LatticeSlice, cs::CellSites) =
[j for i in siteindices(cs) for j in indexcollection(l, CellSite(cell(cs), i))]
siteindexdict(l::LatticeSlice) = l.siteindsdict
siteindexdict(l::OrbitalSlice) = missing # in this case, cellsites are not known
cellsdict(l::LatticeSlice) = l.cellsdict
cellsdict(l::LatticeSlice, cell) = l.cellsdict[cell]
offsets(l::LatticeSlice) = l.offsets
offsets(l::LatticeSlice, i) = l.offsets[i]
ncells(x::LatticeSlice) = ncells(cellsdict(x))
ncells(x::CellIndicesDict) = length(x)
ncells(x::CellIndices) = 1
cell(s::CellIndices) = s.cell
cells(l::LatticeSlice) = keys(l.cellsdict)
# replace cell with zero of requested dimension
zerocellinds(c::CellIndices, ::Val{L}) where {L} =
CellIndices(zero(SVector{L,Int}), c.inds, c.type)
nsites(s::LatticeSlice, cell...) = nsites(cellsdict(s, cell...))
nsites(s::CellIndicesDict) = isempty(s) ? 0 : sum(nsites, s)
nsites(c::CellIndices) = length(siteindices(c))
norbitals(s::AnyOrbitalSlice, cell...) = norbitals(cellsdict(s, cell...))
norbitals(s::CellIndicesDict) = isempty(s) ? 0 : sum(norbitals, s)
norbitals(c::AnyCellOrbitals) = length(orbindices(c))
findsubcell(cell::SVector, d::CellIndicesDict) = get(d, cell, nothing)
findsubcell(cell::SVector, l::LatticeSlice) = findsubcell(cell, cellsdict(l))
boundingbox(l::LatticeSlice) = boundingbox(keys(cellsdict(l)))
# interface for non-spatial models (cell already defined for CellIndices)
pos(s::CellSitePos) = s.type.r
ind(s::CellSitePos) = s.inds
# iterators
sites(l::LatticeSlice) =
(site(l.lat, i, cell(subcell)) for subcell in cellsdict(l) for i in siteindices(subcell))
# single-site (CellSite) iterator
cellsites(cs::Union{SiteSlice,OrbitalSliceGrouped}) = cellsites(cs.cellsdict)
cellsites(cdict::CellIndicesDict) =
(CellSite(cell(cinds), i) for cinds in cdict for i in siteindices(cinds))
# single-orbital (CellOrbital) iterator
cellorbs(co::Union{OrbitalSlice,OrbitalSliceGrouped}) = cellorbs(co.cellsdict)
cellorbs(codict::Union{CellOrbitalsDict,CellOrbitalsGroupedDict}) =
(CellOrbital(cell(corbs), i) for corbs in codict for i in orbindices(corbs))
# orbitals in unit cell for each site
orbgroups(s::CellOrbitalsGrouped) = s.type.groups
orbgroups(s::CellOrbitalsGrouped, i::Integer) = s.type.groups[i]
orbgroups(d::CellOrbitalsGroupedDict) = (orbrng for corbs in d for orbrng in orbgroups(corbs))
orbgroups(cs::OrbitalSliceGrouped) = orbgroups(cellsdict(cs))
# set of consecutive orbital ranges for each site in slice
orbranges(cs::OrbitalSliceGrouped) = orbranges(cellsdict(cs))
orbranges(cs::Union{CellOrbitalsGrouped, CellOrbitalsGroupedDict}) = Iterators.accumulate(
(rng, rng´) -> maximum(rng)+1:maximum(rng)+length(rng´), orbgroups(cs), init = 0:0)
Base.isempty(s::LatticeSlice) = isempty(s.cellsdict)
Base.isempty(s::CellIndices) = isempty(s.inds)
Base.length(l::LatticeSlice) = nsites(l)
Base.length(c::CellIndices) = length(c.inds)
Base.parent(ls::LatticeSlice) = ls.lat
Base.copy(ls::LatticeSlice) = LatticeSlice(ls.lat, copy(ls.cellsdict))
#endregion
#endregion
############################################################################################
# Models - see models.jl for methods
#region
abstract type AbstractModel end
abstract type AbstractModelTerm end
# wrapper of a function f(x1, ... xN; kw...) with N arguments and the kwargs in params
struct ParametricFunction{N,F}
f::F
params::Vector{Symbol}
end
## Non-parametric ##
struct OnsiteTerm{F,S<:SiteSelector,T<:Number} <: AbstractModelTerm
f::F
selector::S
coefficient::T
end
# specialized for a given lattice *and* hamiltonian - for hamiltonian building
struct AppliedOnsiteTerm{T,E,L,B} <: AbstractModelTerm
f::FunctionWrapper{B,Tuple{SVector{E,T},Int}} # o(r, sublat_orbitals)
selector::AppliedSiteSelector{T,E,L}
end
struct HoppingTerm{F,S<:HopSelector,T<:Number} <: AbstractModelTerm
f::F
selector::S
coefficient::T
end
# specialized for a given lattice *and* hamiltonian - for hamiltonian building
struct AppliedHoppingTerm{T,E,L,B} <: AbstractModelTerm
f::FunctionWrapper{B,Tuple{SVector{E,T},SVector{E,T},Tuple{Int,Int}}} # t(r, dr, (orbs1, orbs2))
selector::AppliedHopSelector{T,E,L}
end
const AbstractTightbindingTerm = Union{OnsiteTerm, AppliedOnsiteTerm,
HoppingTerm, AppliedHoppingTerm}
struct TightbindingModel{T<:NTuple{<:Any,AbstractTightbindingTerm}} <: AbstractModel
terms::T # Collection of `AbstractTightbindingTerm`s
end
## Parametric ##
# We fuse applied and non-applied versions, since these only apply the selector, not f
struct ParametricOnsiteTerm{N,S<:Union{SiteSelector,AppliedSiteSelector},F<:ParametricFunction{N},T<:Number} <: AbstractModelTerm
f::F
selector::S
coefficient::T
spatial::Bool # If true, f is a function of position r. Otherwise it takes a single CellSite
end
struct ParametricHoppingTerm{N,S<:Union{HopSelector,AppliedHopSelector},F<:ParametricFunction{N},T<:Number} <: AbstractModelTerm
f::F
selector::S
coefficient::T
spatial::Bool # If true, f is a function of positions r, dr. Otherwise it takes two CellSite's
end
const AbstractParametricTerm{N} = Union{ParametricOnsiteTerm{N},ParametricHoppingTerm{N}}
const AppliedParametricTerm{N} = Union{ParametricOnsiteTerm{N,<:AppliedSiteSelector},
ParametricHoppingTerm{N,<:AppliedHopSelector}}
struct ParametricModel{T<:NTuple{<:Any,AbstractParametricTerm},M<:TightbindingModel} <: AbstractModel
npmodel::M # non-parametric model to use as base
terms::T # Collection of `AbstractParametricTerm`s
end
#region ## Constructors ##
ParametricFunction{N}(f::F, params = Symbol[]) where {N,F} =
ParametricFunction{N,F}(f, params)
TightbindingModel(ts::AbstractTightbindingTerm...) = TightbindingModel(ts)
ParametricModel(ts::AbstractParametricTerm...) = ParametricModel(TightbindingModel(), ts)
ParametricModel(m::TightbindingModel) = ParametricModel(m, ())
ParametricModel(m::ParametricModel) = m
#endregion
#region ## API ##
(f::ParametricFunction)(args...; kw...) = f.f(args...; kw...)
nonparametric(m::TightbindingModel) = m
nonparametric(m::ParametricModel) = m.npmodel
terms(t::AbstractModel) = t.terms
allterms(t::TightbindingModel) = t.terms
allterms(t::ParametricModel) = (terms(nonparametric(t))..., t.terms...)
selector(t::AbstractModelTerm) = t.selector
functor(t::AbstractModelTerm) = t.f
parameters(t::AbstractParametricTerm) = t.f.params
coefficient(t::OnsiteTerm) = t.coefficient
coefficient(t::HoppingTerm) = t.coefficient
coefficient(t::AbstractParametricTerm) = t.coefficient
narguments(t::OnsiteTerm{<:Function}) = 1
narguments(t::HoppingTerm{<:Function}) = 2
narguments(t::OnsiteTerm) = 0
narguments(t::HoppingTerm) = 0
narguments(t::AbstractParametricTerm) = narguments(t.f)
narguments(::ParametricFunction{N}) where {N} = N
is_spatial(t::AbstractParametricTerm) = t.spatial
is_spatial(t) = true
## call API##
(term::OnsiteTerm{<:Function})(r) = term.coefficient * term.f(r)
(term::OnsiteTerm)(r) = term.coefficient * term.f
(term::AppliedOnsiteTerm)(r, orbs) = term.f(r, orbs)
(term::HoppingTerm{<:Function})(r, dr) = term.coefficient * term.f(r, dr)
(term::HoppingTerm)(r, dr) = term.coefficient * term.f
(term::AppliedHoppingTerm)(r, dr, orbs) = term.f(r, dr, orbs)
(term::AbstractParametricTerm{0})(args...; kw...) = term.coefficient * term.f.f(; kw...)
(term::AbstractParametricTerm{1})(x, args...; kw...) = term.coefficient * term.f.f(x; kw...)
(term::AbstractParametricTerm{2})(x, y, args...; kw...) = term.coefficient * term.f.f(x, y; kw...)
(term::AbstractParametricTerm{3})(x, y, z, args...; kw...) = term.coefficient * term.f.f(x, y, z; kw...)
# We need these for SelfEnergyModelSolver, which uses a ParametricModel. We return a
# ParametricOnsiteTerm, not an OnsiteTerm because the latter is tied to a Hamiltonian at its
# orbital structure, not only to a site selection
function (t::ParametricOnsiteTerm{N})(; kw...) where {N}
f = ParametricFunction{N}((args...) -> t.f(args...; kw...)) # no params
return ParametricOnsiteTerm(f, t.selector, t.coefficient, t.spatial)
end
function (t::ParametricHoppingTerm{N})(; kw...) where {N}
f = ParametricFunction{N}((args...) -> t.f(args...; kw...)) # no params
return ParametricHoppingTerm(f, t.selector, t.coefficient, t.spatial)
end
## Model term algebra
Base.:*(x::Number, m::TightbindingModel) = TightbindingModel(x .* terms(m))
Base.:*(x::Number, m::ParametricModel) = ParametricModel(x * nonparametric(m), x .* terms(m))
Base.:*(m::AbstractModel, x::Number) = x * m
Base.:-(m::AbstractModel) = (-1) * m
Base.:+(m::TightbindingModel, m´::TightbindingModel) =
TightbindingModel((terms(m)..., terms(m´)...))
Base.:+(m::ParametricModel, m´::ParametricModel) =
ParametricModel(nonparametric(m) + nonparametric(m´), (terms(m)..., terms(m´)...))
Base.:+(m::TightbindingModel, m´::ParametricModel) =
ParametricModel(m + nonparametric(m´), terms(m´))
Base.:+(m::ParametricModel, m´::TightbindingModel) = m´ + m
Base.:-(m::AbstractModel, m´::AbstractModel) = m + (-m´)
Base.:*(x::Number, o::OnsiteTerm) = OnsiteTerm(o.f, o.selector, x * o.coefficient)
Base.:*(x::Number, t::HoppingTerm) = HoppingTerm(t.f, t.selector, x * t.coefficient)
Base.:*(x::Number, o::ParametricOnsiteTerm) =
ParametricOnsiteTerm(o.f, o.selector, x * o.coefficient, o.spatial)
Base.:*(x::Number, t::ParametricHoppingTerm) =
ParametricHoppingTerm(t.f, t.selector, x * t.coefficient, t.spatial)
Base.adjoint(m::TightbindingModel) = TightbindingModel(adjoint.(terms(m))...)
Base.adjoint(m::ParametricModel) = ParametricModel(adjoint.(terms(m))...)
Base.adjoint(t::OnsiteTerm{<:Function}) = OnsiteTerm(r -> t.f(r)', t.selector, t.coefficient')
Base.adjoint(t::OnsiteTerm) = OnsiteTerm(t.f', t.selector, t.coefficient')
Base.adjoint(t::HoppingTerm{<:Function}) = HoppingTerm((r, dr) -> t.f(r, -dr)', t.selector', t.coefficient')
Base.adjoint(t::HoppingTerm) = HoppingTerm(t.f', t.selector', t.coefficient')
function Base.adjoint(o::ParametricOnsiteTerm{N}) where {N}
f = ParametricFunction{N}((args...; kw...) -> o.f(args...; kw...)', o.f.params)
return ParametricOnsiteTerm(f, o.selector, o.coefficient', o.spatial)
end
function Base.adjoint(t::ParametricHoppingTerm{N}) where {N}
f = ParametricFunction{N}((args...; kw...) -> t.f(args...; kw...)', t.f.params)
return ParametricHoppingTerm(f, t.selector, t.coefficient', t.spatial)
end
#endregion
#endregion
############################################################################################
# Model Modifiers - see models.jl for methods
#region
abstract type AbstractModifier end
struct OnsiteModifier{N,S<:SiteSelector,F<:ParametricFunction{N}} <: AbstractModifier
f::F
selector::S
spatial::Bool
end
struct AppliedOnsiteModifier{B,N,R<:SVector,F<:ParametricFunction{N},S<:SiteSelector,P<:CellSitePos} <: AbstractModifier
parentselector::S # unapplied selector, needed to grow a ParametricHamiltonian
blocktype::Type{B} # These are needed to cast the modification to the sublat block type
f::F
ptrs::Vector{Tuple{Int,R,P,Int}}
# [(ptr, r, si, norbs)...] for each selected site, dn = 0 harmonic
spatial::Bool # If true, f is a function of position r. Otherwise it takes a single CellSite
end
struct HoppingModifier{N,S<:HopSelector,F<:ParametricFunction{N}} <: AbstractModifier
f::F
selector::S
spatial::Bool # If true, f is a function of positions r, dr. Otherwise it takes two CellSite's
end
struct AppliedHoppingModifier{B,N,R<:SVector,F<:ParametricFunction{N},S<:HopSelector,P<:CellSitePos} <: AbstractModifier
parentselector::S # unapplied selector, needed to grow a ParametricHamiltonian
blocktype::Type{B} # These are needed to cast the modification to the sublat block type
f::F
ptrs::Vector{Vector{Tuple{Int,R,R,P,P,Tuple{Int,Int}}}}
# [[(ptr, r, dr, si, sj, (norbs, norbs´)), ...], ...] for each selected hop on each harmonic
spatial::Bool # If true, f is a function of positions r, dr. Otherwise it takes two CellSite's
end
const Modifier = Union{OnsiteModifier,HoppingModifier}
const AppliedModifier = Union{AppliedOnsiteModifier,AppliedHoppingModifier}
#region ## Constructors ##
AppliedOnsiteModifier(m::AppliedOnsiteModifier, ptrs) =
AppliedOnsiteModifier(m.parentselector, m.blocktype, m.f, ptrs, m.spatial)
AppliedHoppingModifier(m::AppliedHoppingModifier, ptrs) =
AppliedHoppingModifier(m.parentselector, m.blocktype, m.f, ptrs, m.spatial)
#endregion
#region ## API ##
selector(m::Modifier) = m.selector
selector(m::AppliedModifier) = m.parentselector
parameters(m::AbstractModifier) = m.f.params
parametric_function(m::AbstractModifier) = m.f
pointers(m::AppliedModifier) = m.ptrs
blocktype(m::AppliedModifier) = m.blocktype
is_spatial(m::AbstractModifier) = m.spatial
narguments(m::AbstractModifier) = narguments(m.f)
@inline (m::AppliedOnsiteModifier{B,1})(o, r, orbs; kw...) where {B} =
mask_block(B, m.f.f(o; kw...), (orbs, orbs))
@inline (m::AppliedOnsiteModifier{B,2})(o, r, orbs; kw...) where {B} =
mask_block(B, m.f.f(o, r; kw...), (orbs, orbs))
@inline (m::AppliedHoppingModifier{B,1})(t, r, dr, orborb; kw...) where {B} =
mask_block(B, m.f.f(t; kw...), orborb)
@inline (m::AppliedHoppingModifier{B,3})(t, r, dr, orborb; kw...) where {B} =
mask_block(B, m.f.f(t, r, dr; kw...), orborb)
Base.similar(m::A) where {A <: AppliedModifier} = A(m.blocktype, m.f, similar(m.ptrs, 0), m.spatial)
Base.parent(m::AppliedOnsiteModifier) = OnsiteModifier(m.f, m.parentselector, m.spatial)
Base.parent(m::AppliedHoppingModifier) = HoppingModifier(m.f, m.parentselector, m.spatial)
#endregion
#endregion
############################################################################################
# Intrablock and Interblock - see models.jl
# Wrappers to restrict models and modifiers to certain blocks of a Hamiltonian
#region
struct Interblock{M<:Union{AbstractModel,AbstractModifier},N}
parent::M
block::NTuple{N,UnitRange{Int}} # May be two or more ranges
end
struct Intrablock{M<:Union{AbstractModel,AbstractModifier}}
parent::M
block::UnitRange{Int}
end
const AnyAbstractModifier = Union{AbstractModifier,Interblock{<:AbstractModifier},Intrablock{<:AbstractModifier}}
const AnyModifier = Union{Modifier,Interblock{<:Modifier},Intrablock{<:Modifier}}
const BlockModifier = Union{Interblock{<:AbstractModifier},Intrablock{<:AbstractModifier}}
Base.parent(m::Union{Interblock,Intrablock}) = m.parent
block(m::Union{Interblock,Intrablock}) = m.block
#endregion
############################################################################################
# OrbitalBlockStructure
# Block structure for Hamiltonians, sorted by sublattices
#region
struct OrbitalBlockStructure{B}
blocksizes::Vector{Int} # number of orbitals per site in each sublattice
subsizes::Vector{Int} # number of blocks (sites) in each sublattice
function OrbitalBlockStructure{B}(blocksizes, subsizes) where {B}
subsizes´ = Quantica.sanitize_Vector_of_Type(Int, subsizes)
# This checks also that they are of equal length
blocksizes´ = Quantica.sanitize_Vector_of_Type(Int, length(subsizes´), blocksizes)
return new(blocksizes´, subsizes´)
end
end
#region ## Constructors ##
@inline function OrbitalBlockStructure(T, orbitals, subsizes)
orbitals´ = sanitize_orbitals(orbitals) # <:Union{Val,distinct_collection}
B = blocktype(T, orbitals´)
return OrbitalBlockStructure{B}(orbitals´, subsizes)
end
# Useful as a minimal constructor when no orbital information is known
OrbitalBlockStructure{B}(hsize::Int) where {B} = OrbitalBlockStructure{B}(Val(1), [hsize])
blocktype(::Type{T}, m::Val{1}) where {T} = Complex{T}
blocktype(::Type{T}, m::Val{N}) where {T,N} = SMatrix{N,N,Complex{T},N*N}
blocktype(T::Type, distinct_norbs) = maybe_SMatrixView(blocktype(T, val_maximum(distinct_norbs)))
maybe_SMatrixView(C::Type{<:Complex}) = C
maybe_SMatrixView(S::Type{<:SMatrix}) = SMatrixView(S)
val_maximum(n::Int) = Val(n)
val_maximum(ns) = Val(maximum(argval.(ns)))
argval(::Val{N}) where {N} = N
argval(n::Int) = n
#endregion
#region ## API ##
blocktype(::OrbitalBlockStructure{B}) where {B} = B
blockeltype(::OrbitalBlockStructure{<:MatrixElementType{T}}) where {T} = Complex{T}
blocksizes(b::OrbitalBlockStructure) = b.blocksizes
subsizes(b::OrbitalBlockStructure) = b.subsizes
flatsize(b::OrbitalBlockStructure) = blocksizes(b)' * subsizes(b)
flatsize(b::OrbitalBlockStructure{B}, ls::SiteSlice) where {B<:Union{Complex,SMatrix}} =
length(ls) * blocksize(b)
flatsize(b::OrbitalBlockStructure, ls::SiteSlice) = sum(cs -> flatsize(b, cs), cellsites(ls); init = 0)
flatsize(b::OrbitalBlockStructure, cs::AnyCellSite) = blocksize(b, siteindex(cs))
unflatsize(b::OrbitalBlockStructure) = sum(subsizes(b))
blocksize(b::OrbitalBlockStructure, iunflat, junflat) = (blocksize(b, iunflat), blocksize(b, junflat))
blocksize(b::OrbitalBlockStructure{<:SMatrixView}, iunflat) = length(flatrange(b, iunflat))
blocksize(b::OrbitalBlockStructure{B}, iunflat...) where {N,B<:SMatrix{N}} = N
blocksize(b::OrbitalBlockStructure{B}, iunflat...) where {B<:Number} = 1
siterange(b::OrbitalBlockStructure) = 1:unflatsize(b)
orbrange(b::OrbitalBlockStructure) = 1:flatsize(b)
function sublatorbrange(b::OrbitalBlockStructure, sind::Integer)
bss = blocksizes(b)
sss = subsizes(b)
offset = sind == 1 ? 0 : sum(i -> bss[i] * sss[i], 1:sind-1)
rng = offset + 1:offset + bss[sind] * sss[sind]
return rng
end
# Basic relation: iflat - 1 == (iunflat - soffset - 1) * b + soffset´
function flatrange(b::OrbitalBlockStructure{<:SMatrixView}, iunflat::Integer)
checkinrange(iunflat, b)
soffset = 0
soffset´ = 0
@inbounds for (s, b) in zip(b.subsizes, b.blocksizes)
if soffset + s >= iunflat
offset = muladd(iunflat - soffset - 1, b, soffset´)
return offset+1:offset+b
end
soffset += s
soffset´ += b * s
end
@boundscheck(blockbounds_error())
return 1:0
end
flatrange(b::OrbitalBlockStructure{<:SMatrix{N}}, iunflat::Integer) where {N} =
(checkinrange(iunflat, b); ((iunflat - 1) * N + 1 : iunflat * N))
flatrange(b::OrbitalBlockStructure{<:Number}, iunflat::Integer) =
(checkinrange(iunflat, b); iunflat:iunflat)
flatrange(o::OrbitalBlockStructure, ::Colon) = orbrange(o)
function flatrange(o::OrbitalBlockStructure, runflat::AbstractUnitRange)
imin, imax = first(runflat), last(runflat)
checkinrange(imin, o)
checkinrange(imax, o)
orng = first(flatrange(o, imin)) : last(flatrange(o, imax))
return orng
end
checkinrange(siteind::Integer, b::OrbitalBlockStructure) =
@boundscheck(1 <= siteind <= flatsize(b) ||
argerror("Requested site $siteind out of range [1, $(flatsize(b))]"))
flatindex(b::OrbitalBlockStructure, i) = first(flatrange(b, i))
function unflatindex_and_blocksize(o::OrbitalBlockStructure{<:SMatrixView}, iflat::Integer)
soffset = 0
soffset´ = 0
@boundscheck(iflat < 0 && blockbounds_error())
@inbounds for (s, b) in zip(o.subsizes, o.blocksizes)
if soffset´ + b * s >= iflat
iunflat = (iflat - soffset´ - 1) ÷ b + soffset + 1
return iunflat, b
end
soffset += s
soffset´ += b * s
end
@boundscheck(blockbounds_error())
end
@noinline blockbounds_error() = throw(BoundsError())
unflatindex_and_blocksize(::OrbitalBlockStructure{B}, iflat::Integer) where {N,B<:SMatrix{N}} =
(iflat - 1)÷N + 1, N
unflatindex_and_blocksize(::OrbitalBlockStructure{<:Number}, iflat::Integer) = (iflat, 1)
Base.copy(b::OrbitalBlockStructure{B}) where {B} =
OrbitalBlockStructure{B}(copy(blocksizes(b)), copy(subsizes(b)))
Base.:(==)(b::OrbitalBlockStructure{B}, b´::OrbitalBlockStructure{B}) where {B} =
b.blocksizes == b´.blocksizes && b.subsizes == b´.subsizes
#endregion
#endregion
############################################################################################
## Special matrices - see specialmatrices.jl for methods
#region
############################################################################################
# HybridSparseMatrix
# Internal Matrix type for Bloch harmonics in Hamiltonians
# Wraps site-block + flat versions of the same SparseMatrixCSC
#region
struct HybridSparseMatrix{T,B<:MatrixElementType{T}} <: SparseArrays.AbstractSparseMatrixCSC{B,Int}
blockstruct::OrbitalBlockStructure{B}
unflat::SparseMatrixCSC{B,Int}
flat::SparseMatrixCSC{Complex{T},Int}
# 0 = in sync, 1 = flat needs sync, -1 = unflat needs sync, 2 = none initialized
sync_state::Base.RefValue{Int}
# Number of stored nonzeros in unflat and flat - to guard against tampering
ufnnz::Vector{Int}
end
#region ## Constructors ##
HybridSparseMatrix(bs, unflat, flat, sync_state) =
HybridSparseMatrix(bs, unflat, flat, sync_state, [nnz(unflat), nnz(flat)])
HybridSparseMatrix(b::OrbitalBlockStructure{Complex{T}}, flat::SparseMatrixCSC{Complex{T},Int}) where {T} =
HybridSparseMatrix(b, flat, flat, Ref(0)) # aliasing
function HybridSparseMatrix(b::OrbitalBlockStructure{B}, unflat::SparseMatrixCSC{B,Int}) where {T,B<:MatrixElementNonscalarType{T}}
m = HybridSparseMatrix(b, unflat, flat(b, unflat), Ref(0))
needs_flat_sync!(m)
return m
end
function HybridSparseMatrix(b::OrbitalBlockStructure{B}, flat::SparseMatrixCSC{Complex{T},Int}) where {T,B<:MatrixElementNonscalarType{T}}
m = HybridSparseMatrix(b, unflat(b, flat), flat, Ref(0))
needs_unflat_sync!(m)
return m
end
#endregion
#region ## API ##
blockstructure(s::HybridSparseMatrix) = s.blockstruct
unflat_unsafe(s::HybridSparseMatrix) = s.unflat
flat_unsafe(s::HybridSparseMatrix) = s.flat
syncstate(s::HybridSparseMatrix) = s.sync_state
check_integrity(s::HybridSparseMatrix) =
(nnz(s.unflat) == s.ufnnz[1] && nnz(s.flat) == s.ufnnz[2]) ||
argerror("The AbstractHamiltonian seems to have been modified externally and has become corrupted")
update_nnz!(s::HybridSparseMatrix) = (s.ufnnz .= (nnz(s.unflat), nnz(s.flat)))
# are flat === unflat? Only for scalar eltype
isaliased(::HybridSparseMatrix{<:Any,<:Complex}) = true
isaliased(::HybridSparseMatrix) = false
Base.size(h::HybridSparseMatrix, i::Integer...) = size(unflat_unsafe(h), i...)
flatsize(h::HybridSparseMatrix, args...) = flatsize(blockstructure(h), args...)
SparseArrays.getcolptr(s::HybridSparseMatrix) = getcolptr(s.unflat)
SparseArrays.rowvals(s::HybridSparseMatrix) = rowvals(s.unflat)
SparseArrays.nonzeros(s::HybridSparseMatrix) = nonzeros(s.unflat)
#endregion
#endregion
############################################################################################
# SparseMatrixView
# View of a SparseMatrixCSC that can produce a proper (non-view) SparseMatrixCSC
# of size possibly larger than the view (padded with zeros)
#region
struct SparseMatrixView{C,V<:SubArray}
matview::V
mat::SparseMatrixCSC{C,Int}
ptrs::Vector{Int} # ptrs of parent(matview) that affect mat
end
#region ## Constructor ##
function SparseMatrixView(matview::SubArray{C,<:Any,<:SparseMatrixCSC}, dims = missing) where {C}
matparent = parent(matview)
viewrows, viewcols = matview.indices
rows = rowvals(matparent)
ptrs = Int[]
for col in viewcols, ptr in nzrange(matparent, col)
rows[ptr] in viewrows && push!(ptrs, ptr)
end
if dims === missing || dims == size(matview)
mat = sparse(matview)
else
nr, nc = dims
nrv, ncv = size(matview)
nr >= nrv && nc >= ncv ||
argerror("SparseMatrixView dims cannot be smaller than size(view) = $((nrv, ncv))")
# it's important to preserve structural zeros in mat, which sparse(matview) does
mat = [sparse(matview) spzeros(C, nrv, nc - ncv);
spzeros(C, nr - nrv, ncv) spzeros(C, nr - nrv, nc - ncv)]
end
return SparseMatrixView(matview, mat, ptrs)
end
#endregion
#region ## API ##
matrix(s::SparseMatrixView) = s.mat
function update!(s::SparseMatrixView)
nzs = nonzeros(s.mat)
nzs´ = nonzeros(parent(s.matview))
for (i, ptr) in enumerate(s.ptrs)
nzs[i] = nzs´[ptr]
end
return s
end
Base.size(s::SparseMatrixView, i...) = size(s.mat, i...)
minimal_callsafe_copy(s::SparseMatrixView) =
SparseMatrixView(view(copy(parent(s.matview)), s.matview.indices...), copy(s.mat), s.ptrs)
minimal_callsafe_copy(s::SparseMatrixView, aliasham) =
SparseMatrixView(view(call!_output(aliasham), s.matview.indices...), copy(s.mat), s.ptrs)
#endregion
#endregion
############################################################################################
# BlockSparseMatrix and BlockMatrix
# MatrixBlock : Block within a parent matrix, at a given set of rows and cols
# BlockSparseMatrix : SparseMatrixCSC with added blocks that can be updated in place
# BlockMatrix : Matrix with added blocks that can be updated in place
#region
abstract type AbstractBlockMatrix end
struct MatrixBlock{C<:Number,A<:AbstractMatrix,UR,UC,D<:Union{Missing,Matrix}}
block::A
rows::UR # row indices in parent matrix for each row in block
cols::UC # col indices in parent matrix for each col in block
coefficient::C # coefficient to apply to block
denseblock::D # either missing or Matrix(block), to aid in ldiv
end
struct BlockSparseMatrix{C,N,M<:NTuple{N,MatrixBlock}} <: AbstractBlockMatrix
mat::SparseMatrixCSC{C,Int}
blocks::M
ptrs::NTuple{N,Vector{Int}} # nzvals indices for blocks
end
struct BlockMatrix{C,N,M<:NTuple{N,MatrixBlock}} <: AbstractBlockMatrix
mat::Matrix{C}
blocks::M
end
#region ## Constructors ##
function MatrixBlock(block::AbstractMatrix{C}, rows, cols, denseblock = missing) where {C}
checkblockinds(block, rows, cols)
return MatrixBlock(block, rows, cols, one(C), denseblock)
end
function MatrixBlock(block::SubArray, rows, cols, denseblock = missing)
checkblockinds(block, rows, cols)
m = simplify_matrixblock(block, rows, cols)
return MatrixBlock(m.block, m.rows, m.cols, m.coefficient, denseblock)
end
BlockSparseMatrix(mblocks::MatrixBlock...) = BlockSparseMatrix(mblocks)
function BlockSparseMatrix(mblocks::NTuple{<:Any,MatrixBlock}, dims = missing)
blocks = blockmat.(mblocks)
C = promote_type(eltype.(blocks)...)
I, J = Int[], Int[]
foreach(b -> appendIJ!(I, J, b), mblocks)
mat = dims === missing ? sparse(I, J, zero(C)) : sparse(I, J, zero(C), dims...)
ptrs = getblockptrs.(mblocks, Ref(mat))
return BlockSparseMatrix(mat, mblocks, ptrs)
end
function BlockMatrix(mblocks::MatrixBlock...)
nrows = maxrows(mblocks)
ncols = maxcols(mblocks)
C = promote_type(eltype.(blocks)...)
mat = zeros(C, nrows, ncols)
return BlockMatrix(mat, blocks)
end
#endregion
#region ## API ##
blockmat(m::MatrixBlock) = m.block
blockrows(m::MatrixBlock) = m.rows
blockcols(m::MatrixBlock) = m.cols
coefficient(m::MatrixBlock) = m.coefficient
denseblockmat(m::MatrixBlock) = m.denseblock
pointers(m::BlockSparseMatrix) = m.ptrs
blocks(m::AbstractBlockMatrix) = m.blocks
matrix(b::AbstractBlockMatrix) = b.mat
maxrows(mblocks::NTuple{<:Any,MatrixBlock}) = maximum(b -> maximum(b.rows), mblocks; init = 0)
maxcols(mblocks::NTuple{<:Any,MatrixBlock}) = maximum(b -> maximum(b.cols), mblocks; init = 0)
Base.size(b::AbstractBlockMatrix, i...) = size(b.mat, i...)
Base.size(b::MatrixBlock, i...) = size(blockmat(b), i...)
Base.eltype(b::MatrixBlock) = eltype(blockmat(b))
Base.eltype(m::AbstractBlockMatrix) = eltype(matrix(m))
Base.:-(b::MatrixBlock) =
MatrixBlock(blockmat(b), blockrows(b), blockcols(b), -coefficient(b), denseblockmat(b))
@noinline function checkblockinds(block, rows, cols)
length.((rows, cols)) == size(block) && allunique(rows) &&
(cols === rows || allunique(cols)) || internalerror("MatrixBlock: mismatched size")
return nothing
end
isspzeros(b::MatrixBlock) = isspzeros(b.block)
isspzeros(b::SubArray) = isspzeros(parent(b))
isspzeros(b::SparseMatrixCSC) = iszero(nnz(b))
isspzeros(b::Tuple) = all(isspzeros, b)
isspzeros(b) = false
minimal_callsafe_copy(s::BlockSparseMatrix) =
BlockSparseMatrix(copy(s.mat), minimal_callsafe_copy.(s.blocks), s.ptrs)
minimal_callsafe_copy(s::BlockMatrix) =
BlockMatrix(copy(s.mat), minimal_callsafe_copy.(s.blocks))
minimal_callsafe_copy(m::MatrixBlock) =
MatrixBlock(m.block, m.rows, m.cols, m.coefficient, copy_ifnotmissing(m.denseblock))
#endregion
#endregion
############################################################################################
# InverseGreenBlockSparse
# BlockSparseMatrix representing G⁻¹ on a unitcell (+ possibly extended sites)
# with self-energies as blocks. It knows which indices correspond to which contacts
#region
struct InverseGreenBlockSparse{C}
mat::BlockSparseMatrix{C}
nonextrng::UnitRange{Int} # range of indices for non-extended sites
unitcinds::Vector{Vector{Int}} # orbital indices in parent unitcell of each contact
unitcindsall::Vector{Int} # merged, uniqued and sorted unitcinds
source::Matrix{C} # preallocation for ldiv! solve
end
#region ## API ##
matrix(s::InverseGreenBlockSparse) = matrix(s.mat)
orbrange(s::InverseGreenBlockSparse) = s.nonextrng
extrange(s::InverseGreenBlockSparse) = last(s.nonextrng + 1):size(mat, 1)
Base.size(s::InverseGreenBlockSparse, I::Integer...) = size(matrix(s), I...)
Base.axes(s::InverseGreenBlockSparse, I::Integer...) = axes(matrix(s), I...)
# updates only ω block and applies all blocks to BlockSparseMatrix
function update!(s::InverseGreenBlockSparse, ω)
bsm = s.mat
Imat = blockmat(first(blocks(bsm)))
Imat.diag .= ω # Imat should be <: Diagonal
return update!(bsm)
end
#endregion
#endregion
#endregion top
############################################################################################
# Harmonic - see hamiltonian.jl for methods
#region
struct Harmonic{T,L,B}
dn::SVector{L,Int}
h::HybridSparseMatrix{T,B}
end
#region ## API ##
dcell(h::Harmonic) = h.dn
matrix(h::Harmonic) = h.h
flat(h::Harmonic) = flat(h.h)
unflat(h::Harmonic) = unflat(h.h)
flat_unsafe(h::Harmonic) = flat_unsafe(h.h)
unflat_unsafe(h::Harmonic) = unflat_unsafe(h.h)
Base.size(h::Harmonic, i...) = size(matrix(h), i...)
Base.isless(h::Harmonic, h´::Harmonic) = sum(abs2, dcell(h)) < sum(abs2, dcell(h´))
Base.zero(h::Harmonic{<:Any,<:Any,B}) where {B} = Harmonic(zero(dcell(h)), zero(matrix(h)))
Base.copy(h::Harmonic) = Harmonic(dcell(h), copy(matrix(h)))
Base.:(==)(h::Harmonic, h´::Harmonic) = h.dn == h´.dn && unflat(h.h) == unflat(h´.h)
Base.iszero(h::Harmonic) = iszero(flat(h))
#endregion
#endregion
############################################################################################
# UnflatInds, HybridInds - getindex(::AbstractHamiltonian), see hamiltonian.jl for methods
#region
struct UnflatInds{T}
inds::T
end
struct HybridInds{T}
inds::T
end
unflat(i) = UnflatInds(i)
unflat(i, is...) = UnflatInds((i, is...))
unflat() = UnflatInds(())
hybrid(i) = HybridInds(i)
hybrid(i, is...) = HybridInds((i, is...))
hybrid() = HybridInds(())
Base.parent(u::UnflatInds) = u.inds
Base.parent(u::HybridInds) = u.inds
#endregion
############################################################################################
# Hamiltonian - see hamiltonian.jl for methods
#region
abstract type AbstractHamiltonian{T,E,L,B} end
const AbstractHamiltonian0D{T,E,B} = AbstractHamiltonian{T,E,0,B}
const AbstractHamiltonian1D{T,E,B} = AbstractHamiltonian{T,E,1,B}
struct Hamiltonian{T,E,L,B} <: AbstractHamiltonian{T,E,L,B}
lattice::Lattice{T,E,L}
blockstruct::OrbitalBlockStructure{B}
harmonics::Vector{Harmonic{T,L,B}}
bloch::HybridSparseMatrix{T,B}
# Enforce sorted-dns-starting-from-zero invariant onto harmonics
function Hamiltonian{T,E,L,B}(lattice, blockstruct, harmonics, bloch) where {T,E,L,B}
n = nsites(lattice)
all(har -> size(matrix(har)) == (n, n), harmonics) ||
throw(DimensionMismatch("Harmonic $(size.(matrix.(harmonics), 1)) sizes don't match number of sites $n"))
sort!(harmonics)
(isempty(harmonics) || !iszero(dcell(first(harmonics)))) && pushfirst!(harmonics,
Harmonic(zero(SVector{L,Int}), HybridSparseMatrix(blockstruct, spzeros(B, n, n))))
return new(lattice, blockstruct, harmonics, bloch)
end
end
#region ## API ##
## AbstractHamiltonian
latdim(h::AbstractHamiltonian) = latdim(lattice(h))
bravais_matrix(h::AbstractHamiltonian) = bravais_matrix(lattice(h))
norbitals(h::AbstractHamiltonian) = blocksizes(blockstructure(h))
blockeltype(::AbstractHamiltonian) = blockeltype(blockstructure(h))
blocktype(h::AbstractHamiltonian) = blocktype(blockstructure(h))
nsites(h::AbstractHamiltonian) = nsites(lattice(h))
flatsize(h::AbstractHamiltonian, args...) = flatsize(blockstructure(h), args...)
flatrange(h::AbstractHamiltonian, iunflat) = flatrange(blockstructure(h), iunflat)
flatrange(h::AbstractHamiltonian, name::Symbol) =
sublatorbrange(blockstructure(h), sublatindex(lattice(h), name))
zerocell(h::AbstractHamiltonian) = zerocell(lattice(h))
zerocellsites(h::AbstractHamiltonian, i) = zerocellsites(lattice(h), i)
# OpenHamiltonian is not <: AbstractHamiltonian
ncontacts(h::AbstractHamiltonian) = 0
function harmonic_index(h::AbstractHamiltonian, dn)
for (i, har) in enumerate(harmonics(h))
dcell(har) == dn && return har, i
end
boundserror(harmonics(h), dn)
return first(harmonics(h)), 1 # unreachable
end
# Unless params are given, it returns the Hamiltonian with defaults parameters
default_hamiltonian(h::AbstractHamiltonian; params...) = h(; params...)
# type-stable computation of common blocktype (for e.g. combine)
blocktype(h::AbstractHamiltonian, hs::AbstractHamiltonian...) =
blocktype(promote_type(typeof.((h, hs...))...))
blocktype(::Type{<:AbstractHamiltonian{<:Any,<:Any,<:Any,B}}) where {B} = B
# lat must be the result of combining the lattices of h, hs...
function blockstructure(lat::Lattice{T}, h::AbstractHamiltonian{T}, hs::AbstractHamiltonian{T}...) where {T}
B = blocktype(h, hs...)
orbitals = sanitize_orbitals(vcat(norbitals.((h, hs...))...))
subsizes = sublatlengths(lat)
return OrbitalBlockStructure{B}(orbitals, subsizes)
end
## Hamiltonian
Hamiltonian(l::Lattice{T,E,L}, b::OrbitalBlockStructure{B}, h::Vector{Harmonic{T,L,B}}, bl) where {T,E,L,B} =
Hamiltonian{T,E,L,B}(l, b, h, bl)
function Hamiltonian(l, b::OrbitalBlockStructure{B}, h) where {B}
n = nsites(l)
bloch = HybridSparseMatrix(b, spzeros(B, n, n))
needs_initialization!(bloch)
return Hamiltonian(l, b, h, bloch)
end
hamiltonian(h::Hamiltonian) = h
blockstructure(h::Hamiltonian) = h.blockstruct
lattice(h::Hamiltonian) = h.lattice
harmonics(h::Hamiltonian) = h.harmonics
bloch(h::Hamiltonian) = h.bloch
minimal_callsafe_copy(h::Hamiltonian) = Hamiltonian(
lattice(h), blockstructure(h), copy.(harmonics(h)), copy_matrices(bloch(h)))
function flat_sync!(h::Hamiltonian)
for har in harmonics(h)
harmat = matrix(har)
needs_flat_sync(harmat) && flat_sync!(harmat)
end
return h
end
Base.size(h::Hamiltonian, i...) = size(bloch(h), i...)
Base.axes(h::Hamiltonian, i...) = axes(bloch(h), i...)
Base.iszero(h::Hamiltonian) = all(iszero, harmonics(h))
Base.copy(h::Hamiltonian) = Hamiltonian(
copy(lattice(h)), copy(blockstructure(h)), copy.(harmonics(h)), copy(bloch(h)))
copy_lattice(h::Hamiltonian) = Hamiltonian(
copy(lattice(h)), blockstructure(h), harmonics(h), bloch(h))
function LinearAlgebra.ishermitian(h::Hamiltonian)
for hh in h.harmonics
isassigned(h, -hh.dn) || return false
flat(hh.h) ≈ h[-hh.dn]' || return false
end
return true
end
function Base.:(==)(h::Hamiltonian, h´::Hamiltonian)
hs = sort(h.harmonics, by = har -> har.dn)
hs´ = sort(h.harmonics, by = har -> har.dn)
equalharmonics = length(hs) == length(hs´) && all(splat(==), zip(hs, hs´))
return h.lattice == h´.lattice && h.blockstruct == h´.blockstruct && equalharmonics
end
#endregion
#endregion
############################################################################################
# ParametricHamiltonian - see hamiltonian.jl for methods
#region
struct ParametricHamiltonian{T,E,L,B,M<:NTuple{<:Any,AppliedModifier}} <: AbstractHamiltonian{T,E,L,B}
hparent::Hamiltonian{T,E,L,B}
h::Hamiltonian{T,E,L,B} # To be modified upon application of parameters
modifiers::M # Tuple of AppliedModifier's. Cannot FunctionWrapper them
# because they involve kwargs
allptrs::Vector{Vector{Int}} # allptrs are all modified ptrs in each harmonic (needed for reset!)
allparams::Vector{Symbol}
end
#region ## API ##
# Note: this gives the *modified* hamiltonian, not parent
hamiltonian(h::ParametricHamiltonian) = h.h
bloch(h::ParametricHamiltonian) = h.h.bloch
parameters(h::ParametricHamiltonian) = h.allparams
modifiers(h::ParametricHamiltonian) = h.modifiers
modifiers(h::Hamiltonian) = ()
pointers(h::ParametricHamiltonian) = h.allptrs
# refers to hparent [not h.h, which is only used as the return of call!(ph, ω; ...)]
harmonics(h::ParametricHamiltonian) = harmonics(h.hparent)
blockstructure(h::ParametricHamiltonian) = blockstructure(parent(h))
blocktype(h::ParametricHamiltonian) = blocktype(parent(h))
lattice(h::ParametricHamiltonian) = lattice(hamiltonian(h))
minimal_callsafe_copy(p::ParametricHamiltonian) = ParametricHamiltonian(
p.hparent, minimal_callsafe_copy(p.h), p.modifiers, p.allptrs, p.allparams)
Base.parent(h::ParametricHamiltonian) = h.hparent
Base.size(h::ParametricHamiltonian, i...) = size(parent(h), i...)
Base.copy(p::ParametricHamiltonian) = ParametricHamiltonian(
copy(p.hparent), copy(p.h), p.modifiers, copy.(p.allptrs), copy(p.allparams))
LinearAlgebra.ishermitian(h::ParametricHamiltonian) =
argerror("`ishermitian(::ParametricHamiltonian)` not supported, as the result can depend on the values of parameters.")
copy_lattice(p::ParametricHamiltonian) = ParametricHamiltonian(
copy_lattice(p.hparent), p.h, p.modifiers, p.allptrs, p.allparams)
#endregion
#endregion
############################################################################################
# Mesh - see mesh.jl for methods
#region
abstract type AbstractMesh{V,S} end
struct Mesh{V,S} <: AbstractMesh{V,S} # S-1 is the manifold dimension
verts::Vector{V}
neighs::Vector{Vector{Int}} # all neighbors neighs[i][j] of vertex i
simps::Vector{NTuple{S,Int}} # list of simplices, each a group of S neighboring
# vertex indices
end
#region ## Constructors ##
function Mesh{S}(verts, neighs) where {S}
simps = build_cliques(neighs, Val(S))
return Mesh(verts, neighs, simps)
end
#endregion
#region ## API ##
dim(::AbstractMesh{<:Any,S}) where {S} = S - 1
coordinates(s::AbstractMesh) = (coordinates(v) for v in vertices(s))
coordinates(s::AbstractMesh, i::Int) = coordinates(vertices(s, i))
nvertices(m::Mesh) = length(m.verts)
vertices(m::Mesh) = m.verts
vertices(m::Mesh, i) = m.verts[i]
neighbors(m::Mesh) = m.neighs
neighbors(m::Mesh, i::Int) = m.neighs[i]
neighbors_forward(m::Mesh, i::Int) = Iterators.filter(>(i), m.neighs[i])
neighbors_forward(v::Vector, i::Int) = Iterators.filter(>(i), v[i])
simplices(m::Mesh) = m.simps
simplices(m::Mesh, i::Int) = m.simps[i]
Base.copy(m::Mesh) = Mesh(copy(m.verts), copy.(m.neighs), copy(m.simps))
#endregion
#endregion
############################################################################################
# Spectrum and Bandstructure - see solvers/eigensolvers.jl for solver backends <: AbstractEigenSolver
# - see bands.jl for methods
# AppliedEigenSolver - wraps a solver vs ϕs, with a mapping and transform, into a FunctionWrapper
#region
abstract type AbstractEigenSolver end
const EigenComplex{T} = Eigen{Complex{T},Complex{T},Matrix{Complex{T}},Vector{Complex{T}}}
const MatrixView{C} = SubArray{C,2,Matrix{C},Tuple{Base.Slice{Base.OneTo{Int}}, UnitRange{Int}}, true}
struct Spectrum{T<:AbstractFloat,B}
eigen::EigenComplex{T}
blockstruct::OrbitalBlockStructure{B}
end
struct AppliedEigenSolver{T<:AbstractFloat,L}
solver::FunctionWrapper{EigenComplex{T},Tuple{SVector{L,T}}}
end
struct BandVertex{T<:AbstractFloat,E}
coordinates::SVector{E,Complex{T}} # SVector(momentum..., energy)
states::MatrixView{Complex{T}}
end
# Subband: an AbstractMesh with manifold_dimension (S-1) = embedding_dimension (E) - 1
# and with interval search trees to allow slicing
# CAUTION: "embedding" dimension E here refers to the Mesh object (unrelated to Lattice's E)
# unlike a Subband, a general Mesh can have S≠E, like a 1D curve (S=2) in 3D (E=3) space.
struct Subband{T,E} <: AbstractMesh{BandVertex{T,E},E} # we restrict S == E
mesh::Mesh{BandVertex{T,E},E}
trees::NTuple{E,IntervalTree{T,IntervalValue{T,Int}}} # for interval searches
projstates::Dict{Tuple{Int,Int},Matrix{Complex{T}}} # (simpind, vind) => projected_states
end
struct Bandstructure{T,E,L,B} # E = L+1
subbands::Vector{Subband{T,E}}
solvers::Vector{AppliedEigenSolver{T,L}} # one per Julia thread
blockstruct::OrbitalBlockStructure{B}
end
#region ## Constructors ##
Spectrum(eigen::Eigen, h::AbstractHamiltonian) = Spectrum(eigen, blockstructure(h))
Spectrum(eigen::Eigen, h, ::Missing) = Spectrum(eigen, h)
function Spectrum(ss::Vector{Subband{<:Any,1}}, os::OrbitalBlockStructure)
ϵs = [energy(only(vertices(s))) for s in ss]
ψs = stack(hcat, (states(only(vertices(s))) for s in ss))
eigen = Eigen(ϵs, ψs)
return Spectrum(eigen, os)
end
BandVertex(ke::SVector{N}, s::MatrixView{Complex{T}}) where {N,T} =
BandVertex(SVector{N,Complex{T}}(ke), s)
BandVertex(ke, s::Matrix) = BandVertex(ke, view(s, :, 1:size(s, 2)))
BandVertex(k, e, s::Matrix) = BandVertex(k, e, view(s, :, 1:size(s, 2)))
BandVertex(k, e, s::SubArray) = BandVertex(vcat(k, e), s)
Subband(verts::Vector{<:BandVertex{<:Any,E}}, neighs::Vector) where {E} =
Subband(Mesh{E}(verts, neighs))
function Subband(mesh::Mesh)
verts, simps = vertices(mesh), simplices(mesh)
orient_simplices!(simps, verts) # see mesh.jl
trees = subband_trees(verts, simps)
return Subband(mesh, trees)
end
function Subband(mesh::Mesh{<:BandVertex{T}}, trees) where {T}
projs = Dict{Tuple{Int,Int},Matrix{Complex{T}}}()
return Subband(mesh, trees, projs)
end
function subband_trees(verts::Vector{BandVertex{T,E}}, simps) where {T,E}
trees = ntuple(Val(E)) do i
list = [IntervalValue(shrinkright(extrema(j->coordinates(verts[j])[i], s))..., n)
for (n, s) in enumerate(simps)]
sort!(list)
return IntervalTree{T,IntervalValue{T,Int}}(list)
end
return trees
end
# Interval is closed, we want semiclosed on the left -> exclude the upper limit
shrinkright((x, y)) = (x, prevfloat(y))
#endregion
#region ## API ##
(s::AppliedEigenSolver{T,0})() where {T} = s.solver(SVector{0,T}())
(s::AppliedEigenSolver{T,L})(φs::SVector{L}) where {T,L} = s.solver(sanitize_SVector(SVector{L,T}, φs))
(s::AppliedEigenSolver{T,L})(φs::NTuple{L,Any}) where {T,L} = s.solver(sanitize_SVector(SVector{L,T}, φs))
(s::AppliedEigenSolver{T,L})(φs...) where {T,L} =
throw(ArgumentError("AppliedEigenSolver call requires $L parameters/Bloch phases, received $φs"))
energies(s::Spectrum) = s.eigen.values
states(s::Spectrum) = s.eigen.vectors
blockstructure(s::Spectrum) = s.blockstruct
blockstructure(b::Bandstructure) = b.blockstruct
solvers(b::Bandstructure) = b.solvers
subbands(b::Bandstructure) = b.subbands
subbands(b::Bandstructure, i...) = getindex(b.subbands, i...)
nsubbands(b::Bandstructure) = nsubbands(subbands(b))
nsubbands(b::Vector{<:Subband}) = length(b)
nvertices(b::Bandstructure) = nvertices(subbands(b))
nvertices(b::Vector{<:Subband}) = sum(s->length(vertices(s)), b; init = 0)
nedges(b::Bandstructure) = nedges(subbands(b))
nedges(b::Vector{<:Subband}) = sum(s -> sum(length, neighbors(s)), b; init = 0) ÷ 2
nsimplices(b::Bandstructure) = nsimplices(subbands(b))
nsimplices(b::Vector{<:Subband}) = sum(s->length(simplices(s)), b)
# vertex coordinates can be complex, interally, but always appear real through the API
coordinates(s::SVector) = real(s)
coordinates(v::BandVertex) = real(v.coordinates)
energy(v::BandVertex) = last(v.coordinates)
base_coordinates(v::BandVertex) = SVector(Base.front(Tuple(coordinates(v))))
states(v::BandVertex) = v.states
degeneracy(v::BandVertex) = size(v.states, 2)
parentrows(v::BandVertex) = first(parentindices(v.states))
parentcols(v::BandVertex) = last(parentindices(v.states))
vertices(s::Subband, i...) = vertices(s.mesh, i...)
neighbors(s::Subband, i...) = neighbors(s.mesh, i...)
neighbors_forward(s::Subband, i) = neighbors_forward(s.mesh, i)
simplices(s::Subband, i...) = simplices(s.mesh, i...)
energy(s::Subband, vind::Int) = energy(vertices(s, vind))
energies(s::Subband, vinds::NTuple{D´,Int}) where {D´} =
SVector{D´}(energy.(Ref(s), vinds))
base_coordinates(s::Subband, vind::Int) = base_coordinates(vertices(s, vind))
base_coordinates(s::Subband, vinds::NTuple{D,Int}) where {D} =
reduce(hcat, base_coordinates.(Ref(s), vinds))
trees(s::Subband) = s.trees
trees(s::Subband, i::Int) = s.trees[i]
projected_states(s::Subband) = s.projstates
# last argument: saxes = ((dim₁, x₁), (dim₂, x₂)...)
function foreach_simplex(f, s::Subband, ((dim, k), xs...))
for interval in intersect(trees(s, dim), (k, k))
interval_in_slice!(interval, s, xs...) || continue
sind = value(interval)
f(sind)
end
return nothing
end
interval_in_slice!(interval, s, (dim, k), xs...) =
interval in intersect(trees(s, dim), (k, k)) && interval_in_slice!(interval, s, xs...)
interval_in_slice!(interval, s) = true
mesh(s::Subband) = s.mesh
mesh(m::Mesh) = m
meshes(b::Bandstructure) = (mesh(s) for s in subbands(b))
meshes(s::Subband) = (mesh(s),)
meshes(s::Mesh) = (s,)
meshes(xs) = (mesh(x) for x in xs)
embdim(::AbstractMesh{<:SVector{E}}) where {E} = E
embdim(::AbstractMesh{<:BandVertex{<:Any,E}}) where {E} = E
meshdim(::AbstractMesh{<:Any,S}) where {S} = S
dims(m::AbstractMesh) = (embdim(m), meshdim(m))
Base.size(s::Spectrum, i...) = size(s.eigen.vectors, i...)
Base.isempty(s::Subband) = isempty(simplices(s))
Base.length(b::Bandstructure) = length(b.subbands)
#endregion
#endregion
############################################################################################
# SelfEnergySolvers - see solvers/selfenergy.jl for self-energy solvers
#region
abstract type AbstractSelfEnergySolver end
abstract type RegularSelfEnergySolver <: AbstractSelfEnergySolver end
abstract type ExtendedSelfEnergySolver <: AbstractSelfEnergySolver end
#endregion
############################################################################################
# Green solvers - see solvers/greensolvers.jl
#region
# Generic system-independent directives for solvers, e.g. GS.Schur()
abstract type AbstractGreenSolver end
# Application to a given OpenHamiltonian, but still independent from (ω; params...)
# It should support call!(::AppliedGreenSolver, ω; params...) -> GreenSolution
abstract type AppliedGreenSolver end
# Solver with fixed ω and params that can compute G[subcell, subcell´] or G[cell, cell´]
# It should also be able to return contact G with G[]
abstract type GreenSlicer{C<:Complex} end # C is the eltype of the slice
#endregion
############################################################################################
# SelfEnergy - see solvers/selfenergy.jl
# Wraps an AbstractSelfEnergySolver and a SiteSlice
# -It produces Σs(ω)::AbstractMatrix defined over a SiteSlice
# -If solver::ExtendedSelfEnergySolver -> 3 AbstractMatrix blocks over latslice+extended
# AbstractSelfEnergySolvers can be associated with methods of attach(h, sargs...; kw...)
# To associate such a method we add a SelfEnergy constructor that will be used by attach
# - SelfEnergy(h::AbstractHamiltonian, sargs...; kw...) -> SelfEnergy
#region
struct SelfEnergy{T,E,L,S<:AbstractSelfEnergySolver}
solver::S # returns AbstractMatrix block(s) over latslice
orbslice::OrbitalSliceGrouped{T,E,L} # sites on each unitcell with a selfenergy
function SelfEnergy{T,E,L,S}(solver, orbslice) where {T,E,L,S<:AbstractSelfEnergySolver}
isempty(orbslice) && argerror("Cannot create a self-energy over an empty LatticeSlice")
return new(solver, orbslice)
end
end
#region ## Constructors ##
SelfEnergy(solver::S, orbslice::OrbitalSliceGrouped{T,E,L}) where {T,E,L,S<:AbstractSelfEnergySolver} =
SelfEnergy{T,E,L,S}(solver, orbslice)
#endregion
#region ## API ##
orbslice(Σ::SelfEnergy) = Σ.orbslice
solver(Σ::SelfEnergy) = Σ.solver
has_selfenergy(s::SelfEnergy) = has_selfenergy(solver(s))
has_selfenergy(s::AbstractSelfEnergySolver) = true
# see nothing.jl for override for the case of SelfEnergyEmptySolver
call!(Σ::SelfEnergy, ω; params...) = call!(Σ.solver, ω; params...)
call!_output(Σ::SelfEnergy) = call!_output(solver(Σ))
(Σ::SelfEnergy)(; params...) = SelfEnergy(Σ.solver(; params...), Σ.orbslice)
minimal_callsafe_copy(Σ::SelfEnergy) =
SelfEnergy(minimal_callsafe_copy(Σ.solver), Σ.orbslice)
#endregion
#endregion
############################################################################################
# OpenHamiltonian
# A collector of selfenergies `attach`ed to an AbstractHamiltonian
#region
struct OpenHamiltonian{T,E,L,H<:AbstractHamiltonian{T,E,L},S<:NTuple{<:Any,SelfEnergy}}
h::H
selfenergies::S
end
#region ## Constructors ##
OpenHamiltonian(h::AbstractHamiltonian) = OpenHamiltonian(h, ())
#endregion
#region ## API ##
selfenergies(oh::OpenHamiltonian) = oh.selfenergies
hamiltonian(oh::OpenHamiltonian) = oh.h
default_hamiltonian(oh::OpenHamiltonian) = default_hamiltonian(oh.h)
lattice(oh::OpenHamiltonian) = lattice(oh.h)
zerocell(h::OpenHamiltonian) = zerocell(parent(h))
ncontacts(h::OpenHamiltonian) = length(selfenergies(h))
attach(Σ::SelfEnergy) = oh -> attach(oh, Σ)
attach(args...; kw...) = oh -> attach(oh, args...; kw...)
attach(oh::OpenHamiltonian, args...; kw...) = attach(oh, SelfEnergy(oh.h, args...; kw...))
attach(oh::OpenHamiltonian, Σ::SelfEnergy) = OpenHamiltonian(oh.h, (oh.selfenergies..., Σ))
attach(h::AbstractHamiltonian, args...; kw...) = attach(h, SelfEnergy(h, args...; kw...))
attach(h::AbstractHamiltonian, Σ::SelfEnergy) = OpenHamiltonian(h, (Σ,))
# fallback for SelfEnergy constructor
SelfEnergy(h::AbstractHamiltonian, args...; kw...) = argerror("Unknown attach/SelfEnergy systax")
minimal_callsafe_copy(oh::OpenHamiltonian) =
OpenHamiltonian(minimal_callsafe_copy(oh.h), minimal_callsafe_copy.(oh.selfenergies))
Base.size(oh::OpenHamiltonian, i...) = size(oh.h, i...)
Base.parent(oh::OpenHamiltonian) = oh.h
boundingbox(oh::OpenHamiltonian) =
boundingbox(tupleflatten(boundingbox.(orbslice.(selfenergies(oh)))...))
#endregion
#endregion
############################################################################################
# Contacts - see greenfunction.jl
# Collection of selfenergies supplemented with a ContactOrbitals
# ContactOrbitals includes orbslice = flat merged Σlatslices + block info
# Supports call!(c, ω; params...) -> (Σs::MatrixBlock...) over orbslice
#region
struct ContactOrbitals{L}
orbsdict::CellOrbitalsGroupedDict{L} # non-extended orbital indices for merged contact
corbsdict::Vector{CellOrbitalsGroupedDict{L}} # same for each contact (alias of Σ's)
contactinds::Vector{Vector{Int}} # orbital indices in orbdict for each contact
offsets::Vector{Int} # orbsdict offset from number of orbs per cell
end
struct Contacts{L,N,S<:NTuple{N,SelfEnergy},O<:OrbitalSliceGrouped}
selfenergies::S # one per contact, produce flat AbstractMatrices
orbitals::ContactOrbitals{L} # needed to extract site/subcell/contact blocks
orbslice::O
end
const EmptyContacts{L} = Contacts{L,0,Tuple{}}
#region ## Constructors ##
ContactOrbitals{L}() where {L} =
ContactOrbitals(CellOrbitalsGroupedDict{L}(), CellOrbitalsGroupedDict{L}[], Vector{Int}[], Int[])
function Contacts(oh::OpenHamiltonian)
Σs = selfenergies(oh)
Σorbslices = orbslice.(Σs)
h = hamiltonian(oh)
orbitals = ContactOrbitals(h, Σorbslices...) # see greenfunction.jl for constructor
oslice = OrbitalSliceGrouped(lattice(oh), cellsdict(orbitals))
return Contacts(Σs, orbitals, oslice)
end
#endregion
#region ## API ##
cellsdict(c::ContactOrbitals) = c.orbsdict
cellsdict(c::ContactOrbitals, i::Integer) = c.corbsdict[i]
contactinds(c::ContactOrbitals) = c.contactinds
contactinds(c::ContactOrbitals, i) = c.contactinds[i]
ncontacts(c::Contacts) = ncontacts(c.orbitals)
ncontacts(c::ContactOrbitals) = length(c.corbsdict)
offsets(c::Contacts) = offsets(c.orbitals)
offsets(c::ContactOrbitals) = c.offsets
selfenergies(c::Contacts) = c.selfenergies
selfenergies(c::Contacts, i::Integer) = (check_contact_index(i, c); c.selfenergies[i])
has_selfenergy(c::Contacts) = any(has_selfenergy, selfenergies(c))
# c::Union{Contacts,ContactOrbitals} here
check_contact_index(i, c) = 1 <= i <= ncontacts(c) ||
argerror("Cannot get contact $i, there are $(ncontacts(c)) contacts")
# for checks in contact construction
check_contact_slice(s::LatticeSlice) =
isempty(s) && argerror("No contact sites found in selection")
contactorbitals(c::Contacts) = c.orbitals
function contact_orbslice(h; sites...)
contactslice = getindex(lattice(h); sites...)
check_contact_slice(contactslice) # in case it is empty
lsparent = sites_to_orbs(contactslice, h)
return lsparent
end
orbslice(c::Contacts) = c.orbslice
orbslice(c::Contacts, ::Colon) = c.orbslice
orbslice(c::Contacts, i::Integer) = orbslice(selfenergies(c, i))
cellsdict(c::Contacts, i...) = cellsdict(c.orbitals, i...)
contactinds(c::Contacts, i...) = contactinds(c.orbitals, i...)
norbitals(c::ContactOrbitals) = norbitals(c.orbsdict)
norbitals(c::ContactOrbitals, i) = norbitals(c.corbsdict[i])
orbgroups(c::ContactOrbitals) = orbgroups(c.orbsdict)
orbgroups(c::ContactOrbitals, i) = orbgroups(c.corbsdict[i])
orbranges(c::ContactOrbitals) = orbranges(c.orbsdict)
orbranges(c::ContactOrbitals, i) = orbranges(c.corbsdict[i])
boundingbox(c::Contacts) = boundingbox(orbslice(c))
Base.isempty(c::Contacts) = isempty(selfenergies(c))
# Base.length(c::Contacts) = length(selfenergies(c)) # unused
minimal_callsafe_copy(c::Contacts) =
Contacts(minimal_callsafe_copy.(c.selfenergies), c.orbitals, c.orbslice)
#endregion
#endregion
############################################################################################
# Green - see greenfunction.jl and solvers/green
# General strategy:
# -Contacts: Σs::Tuple(Selfenergy...) + contactBS -> call! produces MatrixBlocks for Σs
# -SelfEnergy: latslice + solver -> call! produces flat matrices (one or three)
# -GreenFunction: ham + c::Contacts + an AppliedGreenSolver = apply(GS.AbsSolver, ham, c)
# -call!(::GreenFunction, ω; params...) -> call! ham + Contacts, returns GreenSolution
# -AppliedGreenSolver: usually wraps the SelfEnergy flat matrices. call! -> GreenSlicer
# -GreenSolution: ham, slicer, Σblocks, contactBS
# -GreenSlicer: implements getindex to build g(ω)[rows, cols]
#region
struct GreenFunction{T,E,L,S<:AppliedGreenSolver,H<:AbstractHamiltonian{T,E,L},C<:Contacts}
parent::H
solver::S
contacts::C
end
# Obtained with gω = call!(g::GreenFunction, ω; params...) or g(ω; params...)
# Allows gω[i, j] for i,j integer Σs indices ("contacts")
# Allows gω[cell, cell´] using T-matrix, with cell::Union{SVector,CellSites}
# Allows also view(gω, ...)
struct GreenSolution{T,E,L,S<:GreenSlicer,G<:GreenFunction{T,E,L},Σs}
parent::G
slicer::S # gives G(ω; p...)[i,j] for i,j::AppliedGreenIndex
contactΣs::Σs # Tuple of selfenergies Σ(ω)::MatrixBlock or NTuple{3,MatrixBlock}, one per contact
contactorbs::ContactOrbitals{L}
end
struct DiagIndices{K,V} # represents Green indices to return only diagonal elements
inds::V
kernel::K
end
struct GreenIndices{I,R}
inds::I
orbinds::R # orbinds = sites_to_orbs(inds)
end
# Obtained with gs = g[; siteselection...]
# Alows call!(gs, ω; params...) or gs(ω; params...)
# required to do e.g. h |> attach(g´[sites´], couplingmodel; sites...)
struct GreenSlice{T,E,L,G<:GreenFunction{T,E,L},R<:GreenIndices,C<:GreenIndices}
parent::G
rows::R
cols::C
end
#region ## Constuctors ##
function GreenSlice(parent, rows, cols)
if rows isa DiagIndices || cols isa DiagIndices
rows === cols || argerror("Diagonal indices should be identical for rows and columns")
end
rows´ = greenindices(rows, parent)
cols´ = cols === rows ? rows´ : greenindices(cols, parent)
return GreenSlice(parent, rows´, cols´)
end
# see sites_to_orbs in slices.jl
greenindices(inds, g) = GreenIndices(inds, sites_to_orbs(inds, g))
greenindices(g::GreenSlice) = g.rows, g.cols
#endregion
#region ## API ##
diagonal(inds; kernel = missing) = DiagIndices(inds, kernel) # exported
diagonal(; kernel = missing, kw...) = DiagIndices(siteselector(; kw...), kernel) # exported
Base.parent(i::DiagIndices) = i.inds
kernel(i::DiagIndices) = i.kernel
# returns the Hamiltonian field
hamiltonian(g::Union{GreenFunction,GreenSolution,GreenSlice}) = hamiltonian(g.parent)
# Like the above, but it may not be === the field (it can be a copy with parameters applied)
# needed for qplot(g(; params...))
default_hamiltonian(g::GreenFunction) = default_hamiltonian(parent(g)) # default params
lattice(g::Union{GreenFunction,GreenSolution,GreenSlice}) = lattice(g.parent)
latslice(g::GreenFunction, i) = orbslice(g.contacts, i)
# function latslice(g::GreenFunction, ls::LatticeSlice)
# lattice(g) === lattice(ls) || internalerror("latslice: parent lattice mismatch")
# return ls
# end
# latslice(g::GreenFunction, is::SiteSelector) = lattice(g)[is]
# latslice(g::GreenFunction; kw...) = latslice(g, siteselector(; kw...))
zerocell(g::Union{GreenFunction,GreenSolution,GreenSlice}) = zerocell(lattice(g))
solver(g::GreenFunction) = g.solver
contacts(g::GreenFunction) = g.contacts
contacts(g::Union{GreenSolution,GreenSlice}) = contacts(parent(g))
ncontacts(g::GreenFunction) = ncontacts(g.contacts)
ncontacts(g::Union{GreenSolution,GreenSlice}) = ncontacts(parent(g))
slicer(g::GreenSolution) = g.slicer
selfenergies(g::GreenFunction) = selfenergies(contacts(g))
selfenergies(g::GreenSolution) = g.contactΣs
has_selfenergy(g::Union{GreenFunction,GreenSlice,GreenSolution}) =
has_selfenergy(contacts(g))
contactorbitals(g::GreenFunction) = contactorbitals(g.contacts)
contactorbitals(g::GreenSolution) = g.contactorbs
contactorbitals(g::GreenSlice) = contactorbitals(parent(g))
blockstructure(g::GreenFunction) = blockstructure(hamiltonian(g))
blockstructure(g::GreenSolution) = blockstructure(hamiltonian(g))
blockstructure(g::GreenSlice) = blockstructure(parent(g))
norbitals(g::GreenFunction) = norbitals(g.parent)
norbitals(g::GreenSlice) = norbitals(g.parent.parent)
contactinds(g::GreenFunction, i...) = contactinds(contacts(g), i...)
contactinds(g::Union{GreenSolution,GreenSlice}, i...) = contactinds(contactorbitals(g), i...)
greenfunction(g::GreenSlice) = g.parent
rows(g::GreenSlice) = g.rows.inds
cols(g::GreenSlice) = g.cols.inds
orbrows(g::GreenSlice) = g.rows.orbinds
orbcols(g::GreenSlice) = g.cols.orbinds
Base.axes(g::GreenSlice) = (orbrows(g), orbcols(g))
# ifelse(rows && cols are contacts, (rows, cols), (orbrows, orbcols))
# I.e: if rows, cols are contact indices retrieve them instead of orbslices.
orbinds_or_contactinds(g) = orbinds_or_contactinds(rows(g), cols(g), orbrows(g), orbcols(g))
orbinds_or_contactinds(r::Union{Colon,Integer}, c::Union{Colon,Integer}, _, _) = (r, c)
orbinds_or_contactinds(_, _, or, oc) = (or, oc)
Base.parent(g::GreenFunction) = g.parent
Base.parent(g::GreenSolution) = g.parent
Base.parent(g::GreenSlice) = g.parent
Base.size(g::GreenFunction, i...) = size(g.parent, i...)
Base.size(g::GreenSolution, i...) = size(g.parent, i...)
flatsize(g::GreenFunction, i...) = flatsize(g.parent, i...)
flatsize(g::GreenSolution, i...) = flatsize(g.parent, i...)
function similar_Matrix(gs::GreenSlice{T}) where {T}
m = norbitals(orbrows(gs))
n = norbitals(orbcols(gs))
return Matrix{Complex{T}}(undef, m, n)
end
boundaries(g::GreenFunction) = boundaries(solver(g))
# fallback (for solvers without boundaries, or for OpenHamiltonian)
boundaries(_) = ()
boundingbox(g::GreenFunction) = isempty(contacts(g)) ?
(zerocell(lattice(g)), zerocell(lattice(g))) : boundingbox(contacts(g))
copy_lattice(g::GreenFunction) = GreenFunction(copy_lattice(g.parent), g.solver, g.contacts)
copy_lattice(g::GreenSolution) = GreenSolution(
copy_lattice(g.parent), g.slicer, g.contactΣs, g.contactbs)
copy_lattice(g::GreenSlice) = GreenSlice(
copy_lattice(g.parent), g.rows, g.cols)
function minimal_callsafe_copy(g::GreenFunction)
parent´ = minimal_callsafe_copy(g.parent)
contacts´ = minimal_callsafe_copy(g.contacts)
solver´ = minimal_callsafe_copy(g.solver, parent´, contacts´)
return GreenFunction(parent´, solver´, contacts´)
end
function minimal_callsafe_copy(g::GreenSolution)
parentg´ = minimal_callsafe_copy(g.parent)
parentham = hamiltonian(parentg´)
parentcontacts = contacts(parentg´)
slicer´ = minimal_callsafe_copy(g.slicer, parentham, parentcontacts)
g´ = GreenSolution(parentg´, slicer´, g.contactΣs, g.contactorbs)
return g´
end
minimal_callsafe_copy(g::GreenSlice) =
GreenSlice(minimal_callsafe_copy(g.parent), g.rows, g.cols)
Base.:(==)(g::GreenFunction, g´::GreenFunction) = function_not_defined("==")
Base.:(==)(g::GreenSolution, g´::GreenSolution) = function_not_defined("==")
Base.:(==)(g::GreenSlice, g´::GreenSlice) = function_not_defined("==")
#endregion
#endregion
############################################################################################
# Operator - Hamiltonian-like operator representing observables other than a Hamiltonian
# It works as a wrapper of an AbstractHamiltonian, see observables.jl for constructors
# VectorOperator - like the above for a collection of AbstractHamiltonians
# BarebonesOperator - same thing but with arbitrary element type and no support for call!
#region
struct Operator{H<:AbstractHamiltonian}
h::H
end
struct BarebonesHarmonic{L,B}
dn::SVector{L,Int}
mat::SparseMatrixCSC{B,Int}
end
struct BarebonesOperator{L,B}
harmonics::Dictionary{SVector{L,Int},BarebonesHarmonic{L,B}}
end
#region ## Constructors ##
BarebonesOperator(harmonics::Vector) =
BarebonesOperator(index(dcell, BarebonesHarmonic.(harmonics)))
BarebonesHarmonic(har) = BarebonesHarmonic(dcell(har), sparse(har))
#endregion
#region ## API ##
hamiltonian(o::Operator) = o.h
harmonics(o::BarebonesOperator) = o.harmonics
matrix(h::BarebonesHarmonic) = h.mat
dcell(h::BarebonesHarmonic) = h.dn
(o::Operator)(φ...; kw...) = o.h(φ...; kw...)
call!(o::Operator, φ...; kw...) = call!(o.h, φ...; kw...)
Base.getindex(o::Operator, i...) = getindex(o.h, i...)
Base.eltype(::BarebonesOperator{<:Any,B}) where {B} = B
Base.size(o::BarebonesOperator, is...) = size(matrix(first(harmonics(o))), is...)
Base.getindex(o::BarebonesOperator{L}, dn) where {L} =
getindex(o, sanitize_SVector(SVector{L,Int}, dn))
Base.getindex(o::BarebonesOperator{L}, dn::SVector{L,Int}) where {L} =
matrix(harmonics(o)[dn])
# Unlike o[dn][i, j], o[si::AnyCellSites, sj::AnyCellSites] returns a zero if !haskey(dn)
function Base.getindex(o::BarebonesOperator{L}, i::AnyCellSites, j::AnyCellSites = i) where {L}
i´, j´ = sanitize_cellindices(i, Val(L)), sanitize_cellindices(j, Val(L))
dn = cell(j´) - cell(i´)
si, sj = siteindices(i´), siteindices(j´)
if haskey(harmonics(o), dn)
x = o[dn][si, sj]
else
checkbounds(Bool, matrix(first(harmonics(o))), si, sj)
x = zero(eltype(o))
end
return x
end
SparseArrays.nnz(h::BarebonesOperator) = sum(har -> nnz(matrix(har)), harmonics(h))
#endregion
############################################################################################
# OrbitalSliceArray: array type over orbital slice - see specialmatrices.jl
# orbaxes is a tuple of OrbitalSlice's or Missing's, one per dimension
# if missing, the dimension does not span orbitals but something else
#region
struct OrbitalSliceArray{C,N,M<:AbstractArray{C,N},A<:NTuple{N,Union{OrbitalSliceGrouped,Missing}}} <: AbstractArray{C,N}
parent::M
orbaxes::A
end
const OrbitalSliceVector{C,V,A} = OrbitalSliceArray{C,1,V,A}
const OrbitalSliceMatrix{C,M,A} = OrbitalSliceArray{C,2,M,A}
OrbitalSliceVector(v::AbstractVector, axes) = OrbitalSliceArray(v, axes)
OrbitalSliceMatrix(m::AbstractMatrix, axes) = OrbitalSliceArray(m, axes)
orbaxes(a::OrbitalSliceArray) = a.orbaxes
Base.parent(a::OrbitalSliceArray) = a.parent
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2253 | """
ExternalPresets.wannier90(filename::String; kw...)
Import a Wannier90 tight-binding file in the form of a `w::EP.WannierBuilder` object. It can
be used to obtain a `Hamiltonian` with `hamiltonian(w)`, and the matrix of the position
operator with `sites(w)`.
ExternalPresets.wannier90(filename, model::AbstractModel; kw...)
Modify the `WannierBuilder` after import by adding `model` to it.
push!(w::EP.WannierBuilder, modifier::AbstractModifier)
w |> modifier
Applies a `modifier` to `w`.
## Keywords
- htol: skip matrix elements of the Hamiltonian smaller than this (in absolute value). Default: `1e-8`
- rtol: skip non-diagonal matrix elements of the position operator smaller than this (in absolute value). Default: `1e-8`
- dim: dimensionality of the embedding space for the Wannier orbitals, dropping trailing dimensions beyond `dim` if smaller than 3. Default: `3`
- latdim: dimensionality of the lattice, dropping trailing dimensions beyond `latdim` if smaller than 3. Should be `latdim <= dim`. Default: `dim`
- type: override the real number type of the imported system. Default: `Float64`
# Examples
```
julia> w = EP.wannier90("wannier_tb.dat", @onsite((; o) -> o); htol = 1e-4, rtol = 1e-4, dim = 2, type = Float32)
WannierBuilder{Float32,2,2} : 2-dimensional Hamiltonian builder from Wannier90 input, with positions of type Float32 in 2D-dimensional space
cells : 151
elements : 6724
modifiers : 1
julia> h = hamiltonian(w)
ParametricHamiltonian{Float32,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 151
Harmonic size : 10 × 10
Orbitals : [1]
Element type : scalar (ComplexF32)
Onsites : 10
Hoppings : 6704
Coordination : 670.4
Parameters : [:o]
julia> r = position(w)
BarebonesOperator{2}: a simple collection of 2D Bloch harmonics
Bloch harmonics : 151
Harmonic size : 10 × 10
Element type : SVector{2, ComplexF32}
Nonzero elements : 7408
julia> r[sites(SA[0,0], 3), sites(SA[1,0],2)]
2-element SVector{2, ComplexF32} with indices SOneTo(2):
-0.0016230071f0 - 0.00012927242f0im
0.008038711f0 + 0.004102786f0im
```
# See also
`hamiltonian`, `position`
"""
ExternalPresets.wannier90
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 6808 | ############################################################################################
# ExternalPresets
#region
module ExternalPresets
using Quantica
############################################################################################
# WannierBuilder
#region
using Quantica: IJVBuilder, IJVHarmonic, IJV, AbstractHamiltonianBuilder, AbstractModel,
BarebonesOperator, Modifier, push_ijvharmonics!, postype, tupleflatten, dcell, ncells,
collector, builder, modifiers, harmonics, sanitize_Val, add!
struct WannierBuilder{T,E,L} <: AbstractHamiltonianBuilder{T,L,L,Complex{T}}
hbuilder::IJVBuilder{T,E,L,Complex{T},Vector{Any}}
rharmonics::Vector{IJVHarmonic{L,SVector{E,Complex{T}}}}
end
struct Wannier90Data{T,E,L}
brvecs::NTuple{L,SVector{E,T}}
norbs::Int
ncells::Int
h::Vector{IJVHarmonic{L,Complex{T}}} # must be dn-sorted, with (0,0,0) first
r::Vector{IJVHarmonic{L,SVector{E,Complex{T}}}} # must be dn-sorted, with (0,0,0) first
end
#region ## Constructors ##
function WannierBuilder(file::AbstractString; kw...)
data = load_wannier90(file; kw...)
lat = lattice(data)
hbuilder = builder(lat; orbitals = Val(1)) # one orbital per site
push_ijvharmonics!(hbuilder, data.h)
rharmonics = data.r
return WannierBuilder(hbuilder, rharmonics)
end
function WannierBuilder(file, model::AbstractModel; kw...)
b = WannierBuilder(file; kw...)
add!(b.hbuilder, model)
return b
end
(m::Quantica.Modifier)(b::WannierBuilder) = (push!(b, m); b)
#endregion
#region ## API ##
wannier90(args...; kw...) = WannierBuilder(args...; kw...) # API (extendable)
Quantica.hamiltonian(b::WannierBuilder) = hamiltonian(b.hbuilder)
Quantica.position(b::WannierBuilder) = BarebonesOperator(b.rharmonics)
Quantica.ncells(b::WannierBuilder) = ncells(b.hbuilder)
Quantica.modifiers(b::WannierBuilder) = modifiers(b.hbuilder)
Quantica.harmonics(b::WannierBuilder) = harmonics(b.hbuilder)
Quantica.lattice(b::WannierBuilder) = lattice(b.hbuilder)
Quantica.blockstructure(b::WannierBuilder) = blockstructure(b.hbuilder)
Base.push!(b::WannierBuilder, m::Modifier) = push!(b.hbuilder, m)
Base.pop!(b::WannierBuilder) = pop!(b.hbuilder)
hbuilder(b::WannierBuilder) = b.hbuilder
nelements(b::WannierBuilder) = sum(length, harmonics(b))
#endregion
#region ## Wannier90Data ##
load_wannier90(filename; type = Float64, dim = Val(3), latdim = dim, kw...) =
load_wannier90(filename, sanitize_Val(latdim), postype(dim, type); kw...)
function load_wannier90(filename, ::Val{L}, ::Type{SVector{E,T}}; htol = 1e-8, rtol = 1e-8) where {L,E,T}
L > 3 && argerror("dim = $L should be dim <= 3")
data = open(filename, "r") do f
# skip header
readline(f)
# read three Bravais 3D-vectors, keep L Bravais LD-vectors
brvecs3 = ntuple(_ -> SVector{3,T}(readline_realtypes(f, SVector{3,T})), Val(3))
brvecs = ntuple(i -> brvecs3[i][SVector{E,Int}(1:E)], Val(L))
# read number of orbitals
norbs = readline_realtypes(f, Int)
# read number of cells
ncells = readline_realtypes(f, Int)
# skip symmetry degeneracies
while !eof(f)
isempty(readline(f)) && break
end
# read Hamiltonian
h = load_harmonics(f, Val(L), Complex{T}, norbs, ncells, htol)
# read positions
r = load_harmonics(f, Val(L), SVector{E,Complex{T}}, norbs, ncells, rtol)
return Wannier90Data(brvecs, norbs, ncells, h, r)
end
return data
end
function load_harmonics(f, ::Val{L}, ::Type{B}, norbs, ncells, atol) where {L,B}
ncell = 0
hars = IJVHarmonic{L,B}[]
ijv = IJV{B}(norbs^2)
while !eof(f)
ncell += 1
dn3D = SVector{3,Int}(readline_realtypes(f, SVector{3,Int}))
dn = dn3D[SVector{L,Int}(1:L)]
# if skip, read but not write harmonic (since it is along a non-projected axes)
skip = L < 3 && !iszero(dn3D[SVector{3-L,Int}(L+1:3)])
for j in 1:norbs, i in 1:norbs
skip && (readline(f); continue)
i´, j´, reims... = readline_realtypes(f, Int, Int, B)
i´ == i && j´ == j ||
argerror("load_wannier90: unexpected entry in file at element $((dn, i, j))")
v = build_complex(reims, B)
push_if_nonzero!(ijv, (i, j, v), dn, atol)
end
if !skip && !isempty(ijv)
push!(hars, IJVHarmonic(dn, ijv))
ijv = IJV{B}(norbs^2) # allocate new IJV
end
isempty(readline(f)) ||
argerror("load_wannier90: unexpected line after harmonic $dn")
ncell == ncells && break
end
sort!(hars, by = ijv -> abs.(dcell(ijv)))
iszero(dcell(first(hars))) ||
pushfirst!(hars, IJVHarmonic(zero(SVector{L,Int}), IJV{B}()))
return hars
end
readline_realtypes(f, type::Type{<:Real}) = parse(type, readline(f))
readline_realtypes(f, types::Type...) =
readline_realtypes(f, tupleflatten(realtype.(types)...)...)
function readline_realtypes(f, realtypes::Vararg{Type{<:Real},N}) where {N}
tokens = split(readline(f))
# realtypes could be less than originally read tokens if we have reduced dimensionality
reals = ntuple(i -> parse(realtypes[i], tokens[i]), Val(N))
return reals
end
realtype(t::Type{<:Real}) = t
realtype(::Type{Complex{T}}) where {T} = (T, T)
realtype(::Type{SVector{N,T}}) where {N,T<:Real} = ntuple(Returns(T), Val(N))
realtype(::Type{SVector{N,Complex{T}}}) where {N,T<:Real} =
(t -> (t..., t...))(realtype(SVector{N,T}))
build_complex((r, i), ::Type{B}) where {B<:Complex} = Complex(r, i)
build_complex(ri, ::Type{B}) where {C<:Complex,N,B<:SVector{N,C}} =
SVector{N,C}(ntuple(i -> C(ri[2i-1], ri[2i]), Val(N)))
push_if_nonzero!(ijv::IJV{<:Number}, (i, j, v), dn, htol) =
abs(v) > htol && push!(ijv, (i, j, v))
push_if_nonzero!(ijv::IJV{<:SVector}, (i, j, v), dn, rtol) =
(i == j && iszero(dn) || any(>(rtol), abs.(v))) && push!(ijv, (i, j, v))
function Quantica.lattice(data::Wannier90Data{T,E}) where {T,E}
bravais = hcat(data.brvecs...)
rs = SVector{E,T}[]
ijv = collector(first(data.r))
for (i, j, r) in zip(ijv.i, ijv.j, ijv.v)
i == j && push!(rs, real(r))
end
return lattice(sublat(rs); bravais)
end
#endregion
#region ## show ##
function Base.show(io::IO, b::WannierBuilder)
i = get(io, :indent, "")
print(io, i, summary(b), "\n",
"$i cells : $(ncells(b))
$i elements : $(nelements(b))
$i modifiers : $(length(modifiers(b)))")
end
Base.summary(::WannierBuilder{T,E,L}) where {T,E,L} =
"WannierBuilder{$T,$E,$L} : $(L)D Hamiltonian builder from Wannier90 input with positions of type $T in $(E)D space"
#endregion
#endregion
end # module
const EP = ExternalPresets
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2746 | ############################################################################################
# HamiltonianPresets
#region
module HamiltonianPresets
using Quantica, LinearAlgebra
function graphene(; a0 = 0.246, range = neighbors(1), t0 = 2.7, β = 3, dim = 2, type = Float64, names = (:A, :B), kw...)
lat = LatticePresets.honeycomb(; a0, dim, type, names)
h = hamiltonian(lat,
hopping((r, dr) -> t0 * exp(-β*(sqrt(3) * norm(dr)/a0 - 1)) * I, range = range); kw...)
return h
end
function twisted_bilayer_graphene(;
twistindex = 1, twistindices = (twistindex, 1), a0 = 0.246,
interlayerdistance = 1.36a0, rangeintralayer = neighbors(1), rangeinterlayer = 4a0/sqrt(3),
hopintra = 2.70 * I, hopinter = 0.48, modelintra = hopping(hopintra, range = rangeintralayer),
type = Float64, names = (:Ab, :Bb, :At, :Bt),
kw...)
(m, r) = twistindices
θ = acos((3m^2 + 3m*r +r^2/2)/(3m^2 + 3m*r + r^2))
sAbot = sublat((0.0, -0.5a0/sqrt(3.0), - interlayerdistance / 2); name = :Ab)
sBbot = sublat((0.0, 0.5a0/sqrt(3.0), - interlayerdistance / 2); name = :Bb)
sAtop = sublat((0.0, -0.5a0/sqrt(3.0), interlayerdistance / 2); name = :At)
sBtop = sublat((0.0, 0.5a0/sqrt(3.0), interlayerdistance / 2); name = :Bt)
brbot = a0 * SA[ cos(pi/3) sin(pi/3) 0; -cos(pi/3) sin(pi/3) 0]'
brtop = a0 * SA[ cos(pi/3) sin(pi/3) 0; -cos(pi/3) sin(pi/3) 0]'
# Supercell matrices sc.
# The one here is a [1 0; -1 1] rotation of the one in Phys. Rev. B 86, 155449 (2012)
if gcd(r, 3) == 1
scbot = SA[m -(m+r); (m+r) 2m+r] * SA[1 0; -1 1]
sctop = SA[m+r -m; m 2m+r] * SA[1 0; -1 1]
else
scbot = SA[m+r÷3 -r÷3; r÷3 m+2r÷3] * SA[1 0; -1 1]
sctop = SA[m+2r÷3 r÷3; -r÷3 m+r÷3] * SA[1 0; -1 1]
end
latbot = lattice(sAbot, sBbot; bravais = brbot, dim = Val(3), type, names = (names[1], names[2]))
lattop = lattice(sAtop, sBtop; bravais = brtop, dim = Val(3), type, names = (names[3], names[4]))
htop = hamiltonian(lattop, modelintra; kw...) |> supercell(sctop)
hbot = hamiltonian(latbot, modelintra; kw...) |> supercell(scbot)
let R = SA[cos(θ/2) -sin(θ/2) 0; sin(θ/2) cos(θ/2) 0; 0 0 1]
Quantica.transform!(htop, r -> R * r)
end
let R = SA[cos(θ/2) sin(θ/2) 0; -sin(θ/2) cos(θ/2) 0; 0 0 1]
Quantica.transform!(hbot, r -> R * r)
end
modelinter = hopping((r,dr) -> (
I * hopintra * exp(-3*(norm(dr)/a0 - 1)) * dot(dr, SVector(1,1,0))^2/sum(abs2, dr) -
I * hopinter * exp(-3*(norm(dr)/a0 - interlayerdistance/a0)) * dr[3]^2/sum(abs2, dr)),
range = rangeinterlayer)
return combine(hbot, htop; coupling = modelinter)
end
end # module
const HP = HamiltonianPresets
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 1274 | ############################################################################################
# LatticePresets
#region
module LatticePresets
using Quantica
linear(; a0 = 1, kw...) =
lattice(sublat((0.,)); bravais = a0 .* (1,), kw...)
square(; a0 = 1, kw...) =
lattice(sublat((0., 0.)); bravais = a0 * SA[1. 0.; 0. 1.]', kw...)
triangular(; a0 = 1, kw...) =
lattice(sublat((0., 0.)); bravais = a0 * SA[cos(pi/3) sin(pi/3); -cos(pi/3) sin(pi/3)]', kw...)
honeycomb(; a0 = 1, kw...) =
lattice(sublat((0.0, -0.5*a0/sqrt(3.0)), name = :A),
sublat((0.0, 0.5*a0/sqrt(3.0)), name = :B);
bravais = a0 * SA[cos(pi/3) sin(pi/3); -cos(pi/3) sin(pi/3)]', kw...)
cubic(; a0 = 1, kw...) =
lattice(sublat((0., 0., 0.)); bravais = a0 * SA[1. 0. 0.; 0. 1. 0.; 0. 0. 1.]', kw...)
fcc(; a0 = 1, kw...) =
lattice(sublat((0., 0., 0.)); bravais = (a0/sqrt(2.)) * SA[-1. -1. 0.; 1. -1. 0.; 0. 1. -1.]', kw...)
bcc(; a0 = 1, kw...) =
lattice(sublat((0., 0., 0.)); bravais = a0 * SA[1. 0. 0.; 0. 1. 0.; 0.5 0.5 0.5]', kw...)
hcp(; a0 = 1, kw...) =
lattice(sublat((0., 0., 0.), (a0*0.5, a0*0.5/sqrt(3.), a0*0.5)); bravais = a0 * SA[1. 0. 0.; -0.5 0.5*sqrt(3.) 0.; 0. 0. 1.]', kw...)
end # module
const LP = LatticePresets
#endregion | Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2796 | ############################################################################################
# RegionPresets
#region
module RegionPresets
using StaticArrays
using Quantica: sanitize_SVector
struct Region{E,F} <: Function
f::F
end
Region{E}(f::F) where {E,F<:Function} = Region{E,F}(f)
(region::Region{E})(r::SVector{E}) where {E} = region.f(r)
(region::Region{E})(r) where {E} = region.f(sanitize_SVector(SVector{E,Float64}, r))
(region::Region{E})(r::Number...) where {E} = region(r)
Base.:&(r1::Region{E}, r2::Region{E}) where {E} = Region{E}(r -> r1.f(r) && r2.f(r))
Base.:|(r1::Region{E}, r2::Region{E}) where {E} = Region{E}(r -> r1.f(r) || r2.f(r))
Base.xor(r1::Region{E}, r2::Region{E}) where {E} = Region{E}(r -> xor(r1.f(r), r2.f(r)))
Base.:!(r1::Region{E}) where {E} = Region{E}(r -> !r1.f(r))
extended_eps(T = Float64) = sqrt(eps(T))
segment(side = 10.0, c...) = Region{1}(_region_segment(side, c...))
circle(radius = 10.0, c...) = Region{2}(_region_ellipse((radius, radius), c...))
ellipse(radii = (10.0, 15.0), c...) = Region{2}(_region_ellipse(radii, c...))
square(side = 10.0, c...) = Region{2}(_region_rectangle((side, side), c...))
rectangle(sides = (10.0, 15.0), c...) = Region{2}(_region_rectangle(sides, c...))
sphere(radius = 10.0, c...) = Region{3}(_region_ellipsoid((radius, radius, radius), c...))
spheroid(radii = (10.0, 15.0, 20.0), c...) = Region{3}(_region_ellipsoid(radii, c...))
cube(side = 10.0, c...) = Region{3}(_region_cuboid((side, side, side), c...))
cuboid(sides = (10.0, 15.0, 20.0), c...) = Region{3}(_region_cuboid(sides, c...))
function _region_segment(l, c = 0)
return r -> abs(2*(r[1]-c)) <= l * (1 + extended_eps())
end
function _region_ellipse((rx, ry), (cx, cy) = (0, 0))
return r -> ((r[1]-cx)/rx)^2 + ((r[2]-cy)/ry)^2 <= 1 + extended_eps(Float64)
end
function _region_rectangle((lx, ly), (cx, cy) = (0, 0))
return r -> abs(2*(r[1]-cx)) <= lx * (1 + extended_eps()) &&
abs(2*(r[2]-cy)) <= ly * (1 + extended_eps())
end
function _region_ellipsoid((rx, ry, rz), (cx, cy, cz) = (0, 0, 0))
return r -> ((r[1]-cx)/rx)^2 + ((r[2]-cy)/ry)^2 + ((r[3]-cz)/rz)^2 <= 1 + eps()
end
function _region_cuboid((lx, ly, lz), (cx, cy, cz) = (0, 0, 0))
return r -> abs(2*(r[1]-cx)) <= lx * (1 + extended_eps()) &&
abs(2*(r[2]-cy)) <= ly * (1 + extended_eps()) &&
abs(2*(r[3]-cy)) <= lz * (1 + extended_eps())
end
#endregion
############################################################################################
# show
#region
Base.summary(::Region{E}) where {E} =
"Region{$E} : boolean region function in $E-dimensional space"
Base.show(io::IO, ::MIME"text/plain", r::Region) = print(io, summary(r))
#end
end # module
const RP = RegionPresets
#endregion | Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3520 | ############################################################################################
# EigenSolvers module
# An AbstractEigenSolver is defined by a set of kwargs for the eigensolver and a set of
# methods AbstractMatrix -> Eigen associated to that AbstractEigenSolver
#region
module EigenSolvers
using FunctionWrappers: FunctionWrapper
using SparseArrays: SparseMatrixCSC, AbstractSparseMatrix
using Quantica: Eigen, I, lu, ldiv!
using Quantica: Quantica, AbstractEigenSolver, ensureloaded, SVector, SMatrix,
sanitize_eigen, call!_output
#endregion
############################################################################################
# AbstractEigensolvers
#region
## Fallbacks
(s::AbstractEigenSolver)(mat) =
throw(ArgumentError("The eigensolver backend $(typeof(s)) is not defined to work on $(typeof(mat))"))
# an alias of h's call! output makes apply call! conversion a no-op, see apply.jl
input_matrix(::AbstractEigenSolver, h) = call!_output(h)
is_thread_safe(::AbstractEigenSolver) = true
#### LinearAlgebra #####
struct LinearAlgebra{K} <: AbstractEigenSolver
kwargs::K
end
function LinearAlgebra(; kw...)
return LinearAlgebra(kw)
end
function (solver::LinearAlgebra)(mat::AbstractMatrix{<:Number})
ε, Ψ = Quantica.LinearAlgebra.eigen(mat; solver.kwargs...)
return sanitize_eigen(ε, Ψ)
end
# LinearAlgebra.eigen doesn't like sparse Matrices as input, must convert
input_matrix(::LinearAlgebra, h) = Matrix(call!_output(h))
#### Arpack #####
struct Arpack{K} <: AbstractEigenSolver
kwargs::K
end
function Arpack(; kw...)
ensureloaded(:Arpack)
return Arpack(kw)
end
function (solver::Arpack)(mat::AbstractMatrix{<:Number})
ε, Ψ, _ = Quantica.Arpack.eigs(mat; solver.kwargs...)
return sanitize_eigen(ε, Ψ)
end
# See https://github.com/JuliaLinearAlgebra/Arpack.jl/issues/86
is_thread_safe(::Arpack) = false
#### KrylovKit #####
struct KrylovKit{P<:Tuple,K<:NamedTuple} <: AbstractEigenSolver
params::P
kwargs::K
end
function KrylovKit(params...; kw...)
ensureloaded(:KrylovKit)
return KrylovKit(params, NamedTuple(kw))
end
function (solver::KrylovKit)(mat)
ε, Ψ, _ = Quantica.KrylovKit.eigsolve(mat, solver.params...; solver.kwargs...)
return sanitize_eigen(ε, Ψ)
end
#### ArnoldiMethod #####
struct ArnoldiMethod{K} <: AbstractEigenSolver
kwargs::K
end
function ArnoldiMethod(; kw...)
ensureloaded(:ArnoldiMethod)
return ArnoldiMethod(kw)
end
function (solver::ArnoldiMethod)(mat)
pschur, _ = Quantica.ArnoldiMethod.partialschur(mat; solver.kwargs...)
ε, Ψ = Quantica.ArnoldiMethod.partialeigen(pschur)
return sanitize_eigen(ε, Ψ)
end
#### ShiftInvert ####
struct ShiftInvert{T,E<:AbstractEigenSolver} <: AbstractEigenSolver
eigensolver::E
origin::T
function ShiftInvert{T,E}(eigensolver, origin) where {T,E<:AbstractEigenSolver}
ensureloaded(:LinearMaps)
return new(eigensolver, origin)
end
end
ShiftInvert(eigensolver::E, origin::T) where {E,T} = ShiftInvert{T,E}(eigensolver, origin)
function (solver::ShiftInvert)(mat::AbstractSparseMatrix{T}) where {T<:Number}
mat´ = mat - I * solver.origin
F = lu(mat´)
lmap = Quantica.LinearMaps.LinearMap{T}((x, y) -> ldiv!(x, F, y), size(mat)...;
ismutating = true, ishermitian = false)
eigen = solver.eigensolver(lmap)
@. eigen.values = 1 / (eigen.values) + solver.origin
return eigen
end
#endregion
end # module
const ES = EigenSolvers
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 4433 | ############################################################################################
# Green solvers
# All new solver::AbstractGreenSolver must live in the GreenSolvers module, and must implement
# - apply(solver, h::AbstractHamiltonian, c::Contacts) -> AppliedGreenSolver
# All new s::AppliedGreenSolver must implement (with Σblock a [possibly nested] tuple of MatrixBlock's)
# - s(ω, Σblocks, ::ContactOrbitals) -> GreenSlicer
# - minimal_callsafe_copy(s, parentham, parentcontacts) # injects aliases from parent
# - optional: needs_omega_shift(s) (has a `true` default fallback)
# A gs::GreenSlicer's allows to compute G[gi, gi´]::AbstractMatrix for indices gi
# To do this, it must implement contact slicing (unless it relies on TMatrixSlicer)
# - view(gs, ::Int, ::Int) -> g(ω; kw...) between specific contacts (has error fallback)
# - view(gs, ::Colon, ::Colon) -> g(ω; kw...) between all contacts (has error fallback)
# - Both of the above are of type `SubArray`
# It must also implement generic slicing, and minimal copying
# - gs[i::CellOrbitals, j::CellOrbitals] -> must return a `Matrix` for type stability
# - minimal_callsafe_copy(gs, parentham, parentcontacts)
# The user-facing indexing API accepts:
# - i::Integer -> Sites of Contact number i
# - sites(cell::Tuple, sind::Int)::Subcell -> Single site in a cell
# - sites(cell::Tuple, sindcollection)::Subcell -> Site collection in a cell
# - sites(cell::Tuple, slat::Symbol)::Subcell -> Whole sublattice in a cell
# - sites(cell::Tuple, :) ~ cell::Union{NTuple,SVector} -> All sites in a cell
# - sel::SiteSelector ~ NamedTuple -> forms a LatticeSlice
# Optional: to properly plot boundaries, an ::AbstractGreenSolver may also implement
# - boundaries(s::AbstractGreenSolver) -> collection of (dir => cell)::Pair{Int,Int}
# Aliasing: Green solvers may only alias fields from the parent Hamiltonian and Contacts
############################################################################################
module GreenSolvers
using Quantica: Quantica, AbstractGreenSolver, ensureloaded, I
struct SparseLU <:AbstractGreenSolver end
struct Schur{T<:AbstractFloat} <: AbstractGreenSolver
shift::T # Tunable parameter in algorithm, see Ω in scattering.pdf
boundary::T # Cell index for boundary (float to allow boundary at Inf)
end
Schur(; shift = 1.0, boundary = Inf) = Schur(shift, float(boundary))
struct KPM{B<:Union{Missing,NTuple{2}},A} <: AbstractGreenSolver
order::Int
bandrange::B
kernel::A
padfactor::Float64 # for automatically computed bandrange
end
function KPM(; order = 100, bandrange = missing, padfactor = 1.01, kernel = I)
bandrange === missing && ensureloaded(:Arpack)
return KPM(order, bandrange, kernel, padfactor)
end
# Used in kpm.jl
function bandrange_arpack(h::AbstractMatrix{T}) where {T}
R = real(T)
ϵL, _ = Quantica.Arpack.eigs(h, nev=1, tol=1e-4, which = :LR);
ϵR, _ = Quantica.Arpack.eigs(h, nev=1, tol=1e-4, which = :SR);
ϵmax = R(real(ϵL[1]))
ϵmin = R(real(ϵR[1]))
return (ϵmin, ϵmax)
end
## Alternative bandrange, requires ensureloaded(:ArnoldiMethod) in KPM constructor
# function bandrange_arnoldi(h::AbstractMatrix{T}) where {T}
# # ensureloaded(:ArnoldiMethod)
# R = real(T)
# decompl, _ = Quantica.ArnoldiMethod.partialschur(h, nev=1, tol=1e-4, which = Main.ArnoldiMethod.LR());
# decomps, _ = Quantica.ArnoldiMethod.partialschur(h, nev=1, tol=1e-4, which = Main.ArnoldiMethod.SR());
# ϵmax = R(real(decompl.eigenvalues[1]))
# ϵmin = R(real(decomps.eigenvalues[1]))
# return (ϵmin, ϵmax)
# end
struct Spectrum{K} <:AbstractGreenSolver
spectrumkw::K
end
Spectrum(; spectrumkw...) = Spectrum(NamedTuple(spectrumkw))
struct Bands{B<:Union{Missing,Pair},A,K} <: AbstractGreenSolver
bandsargs::A # sorted to make slices easier
bandskw::K
boundary::B
end
Bands(bandargs...; boundary = missing, bandskw...) =
Bands(sort.(bandargs), NamedTuple(bandskw), boundary)
Bands(bandargs::Quantica.Mesh; kw...) =
argerror("Positional arguments of GS.Bands should be collections of Bloch phases or parameters")
end # module
const GS = GreenSolvers
include("green/sparselu.jl")
include("green/spectrum.jl")
include("green/schur.jl")
include("green/kpm.jl")
include("green/bands.jl")
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2133 | ############################################################################################
# SelfEnergy solvers
# All s::AbstractSelfEnergySolver must support the call! API
# - call!(s::RegularSelfEnergySolver, ω; params...) -> Σreg::AbstractMatrix
# - call!(s::ExtendedSelfEnergySolver, ω; params...) -> (Vᵣₑ, gₑₑ⁻¹, Vₑᵣ) AbsMats
# With the extended case, the equivalent Σreg reads Σreg = VᵣₑgₑₑVₑᵣ
# - call!_output(s::AbstractSelfEnergySolver) -> object returned by call!(s, ω; kw...)
# - minimal_callsafe_copy(s::AbstractSelfEnergySolver) # no aliasing
# These AbstractMatrices are flat, defined on the LatticeSlice in parent SelfEnergy
# Note: `params` are only needed in cases where s adds new parameters that must be
# applied (e.g. SelfEnergyModelSolver). Otherwise one must assume that any parent
# ParametricHamiltonian to GreenFunction has already been call!-ed before calling s.
# Optional: AbstractSelfEnergySolver's can also implement `selfenergy_plottables`
# - selfenergy_plottables(s::AbstractSelfEnergySolver, parent_latslice)
# -> collection of tuples to be passed to plotlattice!(axis, tup...) for visualization
# Aliasing: AbstractSelfEnergySolver's are not allowed to alias anything from outside
############################################################################################
############################################################################################
# SelfEnergy constructors
# For each attach(h, sargs...; kw...) syntax we need, we must implement:
# - SelfEnergy(h::AbstractHamiltonian, sargs...; kw...) -> SelfEnergy
# SelfEnergy wraps the corresponding SelfEnergySolver, be it Regular or Extended
############################################################################################
selfenergy_plottables(s::SelfEnergy) = selfenergy_plottables(s.solver, orbslice(s))
# fallback
selfenergy_plottables(s::AbstractSelfEnergySolver, parent_latslice) = (parent_latslice,)
include("selfenergy/nothing.jl")
include("selfenergy/model.jl")
include("selfenergy/schur.jl")
include("selfenergy/generic.jl")
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 30825 | ############################################################################################
# Series
# A generalization of dual numbers to arbitrary powers of differential ε, also negative
# When inverting (dividing), negative powers may be produced if leading terms are zero
# Higher terms can be lost throughout operations.
# Series{N}(f(x), f'(x)/1!, f''(x)/2!,..., f⁽ᴺ⁾(x)/N!) = Series[f(x + ε), {ε, 0, N-1}]
# If we need derivatives respect to x/α instead of x, we do rescale(::Series, α)
#region
struct Series{N,T}
x::SVector{N,T} # term coefficients
pow::Int # power of first term
end
Series(x::Tuple, pow = 0) = Series(SVector(x), pow)
Series(x...) = Series(SVector(x), 0)
Series{N}(x...) where {N} = Series{N}(SVector(x))
Series{N}(t::Tuple) where {N} = Series{N}(SVector(t))
Series{N}(d::Series) where {N} = Series{N}(d.x)
Series{N}(x::SVector{<:Any,T}, pow = 0) where {N,T} =
Series(SVector(padtuple(x, zero(T), Val(N))), pow)
function rescale(d::Series{N}, α::Number) where {N}
αp = cumprod((α ^ d.pow, ntuple(Returns(α), Val(N-1))...))
d´ = Series(Tuple(d.x) .* αp, d.pow)
return d´
end
chop(d::Series) = Series(chop(d.x), d.pow)
function trim(d::Series{N}) where {N}
nz = leading_zeros(d)
iszero(nz) && return d
pow = d.pow + nz
t = ntuple(i -> d[i + pow - 1], Val(N))
return Series(t, pow)
end
trim(x) = x
function leading_zeros(d::Series{N}) where {N}
@inbounds for i in 0:N-1
iszero(d[d.pow + i]) || return i
end
return 0
end
function trim_and_map(func, d::Series{N}, d´::Series{N}) where {N}
f, f´ = trim(d), trim(d´)
pow = min(f.pow, f´.pow)
t = ntuple(i -> func(f[pow + i - 1], f´[pow + i - 1]), Val(N))
return Series(t, pow)
end
scalar(d::Series) = d[0]
scalar(d) = d
Base.first(d::Series) = first(d.x)
function Base.getindex(d::Series{N,T}, i::Integer) where {N,T}
i´ = i - d.pow + 1
checkbounds(Bool, d.x, i´) ? (@inbounds d.x[i´]) : zero(T)
end
Base.eltype(::Series{<:Any,T}) where {T} = T
Base.one(::Type{<:Series{N,T}}) where {N,T} = Series{N}(one(T))
Base.one(d::S) where {S<:Series} = one(S)
Base.zero(::Type{<:Series{N,T}}) where {N,T} = Series(zero(SVector{N,T}), 0)
Base.zero(d::S) where {S<:Series} = zero(S)
Base.iszero(d::Series) = iszero(d.x)
Base.transpose(d::Series) = d # act as a scalar
Base.:-(d::Series) = Series(-d.x, d.pow)
Base.:+(d::Series, d´::Series) = trim_and_map(+, d, d´)
Base.:-(d::Series, d´::Series) = trim_and_map(-, d, d´)
Base.:+(d::Number, d´::Series{N}) where {N} = Series{N}(d) + d´
Base.:-(d::Number, d´::Series{N}) where {N} = Series{N}(d) - d´
Base.:*(d::Number, d´::Series) = Series(d * d´.x, d´.pow)
Base.:*(d´::Series, d::Number) = Series(d * d´.x, d´.pow)
Base.:/(d::Series{N}, d´::Series{N}) where {N} = d * inv(d´)
Base.:/(d::Series, d´::Number) = Series(d.x / d´, d.pow)
Base.:^(d::Series, n::Integer) = Base.power_by_squaring(d, n)
# necessary for the case n = 0 and n = 1 in power_by_squaring
Base.copy(d::Series) = d
function Base.:*(d::Series{N}, d´::Series{N}) where {N}
x, x´ = promote(d.x, d´.x)
dp = Series(x, d.pow)
dp´ = Series(x´, d´.pow)
return dp * dp´
end
function Base.:*(d::Series{N,T}, d´::Series{N,T}) where {N,T}
iszero(d´) && return d´
f, f´ = trim(d), trim(d´)
pow = f.pow + f´.pow
s = product_matrix(f.x) * f´.x
return Series(s, pow)
end
function Base.inv(d::Series)
d´ = trim(d) # remove leading zeros
iszero(d´) && argerror("Divide by zero")
pow = d´.pow
# impose d * inv(d) = 1. This is equivalent to Ud * inv(d).x = 1.x, where
# Ud = hcat(d.x, shift(d.x, 1), ...)
s = inv(product_matrix(d´.x))[:, 1] # faster than \
invd = Series(Tuple(s), -pow)
return invd
end
# Ud = [x1 0 0 0; x2 x1 0 0; x3 x2 x1 0; x4 x3 x2 x1]
# product of two series d*d´ is Ud * d´.x
function product_matrix(s::SVector{N}) where {N}
t = ntuple(Val(N)) do i
shiftpad(s, i - 1)
end
return hcat(t...)
end
# shift SVector to the right by i, padding on the left with zeros
shiftpad(s::SVector{N,T}, i) where {N,T} =
SVector(ntuple(j -> j - i > 0 ? s[j - i] : zero(T), Val(N)))
#endregion
############################################################################################
# BandSimplex: encodes energy and momenta of vertices, and derived quantitities
#region
struct Expansions{D,T,DD}
cis::Tuple{Complex{T},Vararg{Complex{T},D}}
J0::NTuple{D,Complex{T}}
Jmat::SMatrix{D,D,Complex{T},DD}
log::NTuple{D,T}
end
struct BandSimplex{D,T,S1<:SVector{<:Any,<:Real},S2<:SMatrix{<:Any,D,<:Real},S3<:SMatrix{<:Any,<:Any,<:Real},R<:Ref{<:Expansions}} # D = manifold dimension
ei::S1 # eᵢ::SVector{D´,T} = energy of vertex i
kij::S2 # kᵢ[j]::SMatrix{D´,D,T,DD´} = coordinate j of momentum for vertex i
eij::S3 # ϵᵢʲ::SMatrix{D´,D´,T,D´D´} = e_j - e_i
dualphi::S1 # dual::SVector{D´,T}, first hyperdual coefficient
VD::T # D!V = |det(kᵢʲ - kᵢ⁰)|
refex::R # Ref to Series expansions for necessary functions
end
# Precomputes the Series expansion coefficients for cis, J(z->0) and J(z)
function Expansions(::Val{D}, ::Type{T}) where {D,T} # here order = D
C = complex(T)
# series coefs of cis(t) around t = 0
cis = ntuple(n -> C(im)^(n-1)/(factorial(n-1)), Val(D+1))
# series coefs of Ci(t) - im * Si(t) around t = 0, starting at order 1
J0 = ntuple(n -> C(-im)^n/(n*factorial(n)), Val(D))
# series coefs of Ci(t) - im * Si(t) around t = t_0 is cis(t0) * Jmat * SA[1/t, 1/t², ...]
Jmat = ntuple(Val(D*D)) do ij
j, i = fldmod1(ij, D)
j > i ? zero(C) : ifelse(isodd(i), 1, -1) * C(im)^(i-j) / (i*factorial(i-j))
end |> SMatrix{D,D,C}
# series coefs of ln(x) around x = Δ is ln(Δ) + log .* SA[1/Δ, 1/Δ², ...]
log = ntuple(n -> -T(-1)^n/n, Val(D))
return Expansions(cis, J0, Jmat, log)
end
#region ## Constructors ##
BandSimplex(ei, kij, refex...) = BandSimplex(real(ei), real(kij), refex...)
BandSimplex(sb::Subband, simpinds, refex...) = # for simpinds = (v1::Int, v2::Int,...)
BandSimplex(energies(sb, simpinds), transpose(base_coordinates(sb, simpinds)), refex...)
function BandSimplex(ei::SVector{D´,T}, kij::SMatrix{D´,D,T}, refex = Ref(Expansions(Val(D), T))) where {D´,D,T}
D == D´ - 1 ||
argerror("The dimension $D of Bloch phases in simplex should be one less than the number of vertices $(D´)")
ei, eij = snap_and_diff(ei)
k0 = kij[1, :]
U = kij[SVector{D}(2:D´),:]' .- k0 # edges as columns
VD = T(abs(det(U)) / (2π)^D)
dualphi = generate_dual_phi(eij)
return BandSimplex(ei, kij, eij, dualphi, VD, refex)
end
# make similar ei[i] exactly the same, and compute the pairwise difference
function snap_and_diff(es)
mes = MVector(es)
for j in eachindex(es), i in j+1:lastindex(es)
ei, ej = es[i], es[j]
if ei ≈ ej
mes[i] = mes[j]
end
end
ess = SVector(mes)
return ess, chop(ess' .- ess)
end
# e_j such that e^j_k are all nonzero
generate_dual_e(::Type{SVector{D´,T}}) where {D´,T} = SVector(ntuple(i -> T(i^2), Val(D´)))
# dϕ such that M = tʲ₁tʲ₂tʲ₃...(tʲ₁-tʲ₂)(tʲ₁-tʲ₃)...(tʲ₂-tʲ₃)... is maximal
# This is a (pseudo-)vandermonde determinant, and tʲₖ = dϕʲₖ/eʲₖ
# The empirical solution turns out to be tʲₙ ≈ normalize((-1)ⁿsqrt((1+n^2)/2)) (n != j, e.g. j = 0)
function generate_dual_phi(eij::SMatrix{D´,D´,T}) where {D´,T}
t⁰ₙ = SVector(ntuple(n -> T((-1)^n*sqrt(0.5*(1 + n^2))), Val(D´-1)))
t⁰ₙ = SVector(zero(T), normalize(t⁰ₙ)...)
dϕₙ = multiply_if_nonzero.(t⁰ₙ, eij[:, 1])
return dϕₙ
end
#endregion
#region ## API ##
g_integrals(s::BandSimplex, ω, dn, val...) = isreal(ω) ?
_g_integrals(s, real(ω), dn, val...) : # this may be faster
_g_integrals(s, ω, dn, val...)
function _g_integrals(s::BandSimplex, ω, dn, val...)
g₀, gi = iszero(dn) ?
g_integrals_local(s, ω, val...) :
g_integrals_nonlocal(s, ω, dn, val...)
return NaN_to_Inf(g₀), NaN_to_Inf.(gi)
end
# Since complex(1) * (Inf+Inf*im) is NaN, we convert the result to Inf in this case
NaN_to_Inf(x::T) where {T} = ifelse(isnan(x), T(Inf), x)
#endregion
#endregion
############################################################################################
# g_integrals_local: zero-dn g₀(ω) and gⱼ(ω) with normal or hyperdual numbers for φ
#region
function g_integrals_local(s::BandSimplex{<:Any,<:Any,SVector{D´,T}}, ω, ::Val{N} = Val(0)) where {D´,T,N}
eⱼ = s.ei
eₖʲ = s.eij
g₀, gⱼ = begin
if N > 0 || is_degenerate(eₖʲ)
eⱼ´ = generate_dual_e(SVector{D´,T})
order = ifelse(N > 0, N, D´)
eⱼseries = Series{order}.(eⱼ, eⱼ´)
g_integrals_local_e(s, ω, eⱼseries)
else
g_integrals_local_e(s, ω, eⱼ)
end
end
return g₀, gⱼ
end
# whether any eₖ == eⱼ for j != k
function is_degenerate(eₖʲ::SMatrix{D´}) where {D´}
for j in 2:D´, k in 1:j-1
iszero(eₖʲ[k,j]) && return true
end
return false
end
function g_integrals_local_e(s::BandSimplex{D,T}, ω::Number, eⱼ) where {D,T}
Δⱼ = ω .- eⱼ
eₖʲ = map(chop, transpose(eⱼ) .- eⱼ) # broadcast too hard for inference
qⱼ = q_vector(eₖʲ) # SVector{D´,T}
lΔⱼ = logim.(Δⱼ, s.refex)
Eᴰⱼ = (-1)^D .* Δⱼ.^(D-1) .* lΔⱼ ./ factorial(D-1)
Eᴰ⁺¹ⱼ = (-1)^(D+1) .* Δⱼ.^D .* lΔⱼ ./ factorial(D)
if iszero(eₖʲ) # special case, full energy degeneracy
Δ0 = chop(first(Δⱼ))
if iszero(Δ0)
g₀ = zero(complex(T))
gⱼ = SVector(ntuple(Returns(g₀), Val(D)))
else
g₀ = complex(scalar(inv(Δ0)))/factorial(D)
gⱼ = SVector(ntuple(Returns(g₀/(D+1)), Val(D)))
end
else
g₀ = scalar(sum(qⱼ .* Eᴰⱼ))
gⱼ = ntuple(Val(D)) do j
j´ = j + 1
D´ = D + 1
x = (Eᴰⱼ[j´] - (-Δⱼ[j´])^(D-1)/factorial(D)) * qⱼ[j´]
for k in 1:D´
if k != j´
x -= (qⱼ[j´] * Eᴰ⁺¹ⱼ[j´] + qⱼ[k] * Eᴰ⁺¹ⱼ[k]) / eₖʲ[k, j´]
end
end
return scalar(x)
end |> SVector
end
return g₀, gⱼ
end
function q_vector(eₖʲ::SMatrix{D´,D´,S}) where {D´,S}
qⱼ = ntuple(Val(D´)) do j
x = one(S)
for k in 1:D´
j != k && (x *= eₖʲ[k, j])
end
return inv(x)
end
return qⱼ
end
# imaginary log with branchcut in the lower plane
logim(x::Complex) = iszero(imag(x)) ? logim(real(x)) : log(-im * x)
logim(x::T) where {T<:Real} = log(abs(x)) - im * T(0.5π) * sign(x)
logim(x, ex) = logim(x)
# required for local degenerate case (expansion of logim(Δ::Series, ex))
function logim(s::Series{N}, ex) where {N}
s₀ = scalar(s)
l₀ = logim(s₀)
log_coeff = tupletake(ex.log, Val(N-1))
invzΔ = cumprod(ntuple(Returns(1/s₀), Val(N-1)))
lⱼ = log_coeff .* invzΔ
l = Series(l₀, lⱼ...)
return rescale(l, s[1])
end
#endregion
############################################################################################
# g_integrals_nonlocal: finite-dn g₀(ω) and gⱼ(ω) with normal or hyperdual numbers for φ
#region
function g_integrals_nonlocal(s::BandSimplex{D,T}, ω, dn, ::Val{N} = Val(0)) where {D,T,N}
ϕⱼ = s.kij * dn
ϕₖʲ = chop.(transpose(ϕⱼ) .- ϕⱼ)
eₖʲ = s.eij
g₀, gⱼ = begin
if N > 0 || is_degenerate(ϕₖʲ, eₖʲ)
order = ifelse(N > 0, N, D+1)
## This dynamical estimate of the order is not type-stable. Not worth it
# order = N == 0 ? simplex_degeneracy(ϕₖʲ, eₖʲ) + 1 : N
# if order > 1
ϕⱼ´ = s.dualphi
ϕⱼseries = Series{order}.(ϕⱼ, ϕⱼ´)
g_integrals_nonlocal_ϕ(s, ω, ϕⱼseries)
else
g_integrals_nonlocal_ϕ(s, ω, ϕⱼ)
end
end
return g₀, gⱼ
end
# If any ϕₖʲ = 0, or if any tₖʲ and tₗʲ are equal
function is_degenerate(ϕₖʲ::SMatrix{D´}, eₖʲ) where {D´}
for j in 2:D´, k in 1:j-1
# iszero(ϕₖʲ[k,j]) && iszero(eₖʲ[k,j]) && return true # fails for g₁
iszero(ϕₖʲ[k,j]) && return true
if !iszero(eₖʲ[k,j])
for l in 1:D´
if l != k && l != j
ϕₖʲ[k,j]*eₖʲ[l,j] ≈ eₖʲ[k,j]*ϕₖʲ[l,j] && return true
end
end
end
end
return false
end
function g_integrals_nonlocal_ϕ(s::BandSimplex{D,T}, ω::Number, ϕⱼ) where {D,T}
eⱼ = s.ei
eₖʲ = s.eij
Δⱼ = ω .- eⱼ
ϕₖʲ = map(chop, transpose(ϕⱼ) .- ϕⱼ) # broadcast too hard for inference
tₖʲ = divide_if_nonzero.(ϕₖʲ, eₖʲ)
eϕⱼ = cis_scalar.(ϕⱼ, s.refex)
αₖʲγⱼ = αγ_matrix(ϕₖʲ, tₖʲ, eₖʲ) # αₖʲγⱼ :: SMatrix{D´,D´}
if iszero(eₖʲ) # special case, full energy degeneracy
Δ0 = chop(first(Δⱼ))
if iszero(Δ0)
g₀ = zero(complex(T))
gⱼ = ntuple(Returns(g₀), Val(D))
else
Δ0⁻¹ = inv(Δ0)
γⱼ = αₖʲγⱼ[1,:] # if eₖʲ == 0, then αₖʲ == 1
λⱼ = γⱼ .* eϕⱼ
λₖʲ = divide_if_nonzero.(transpose(λⱼ), ϕₖʲ)
q = (-im)^D * Δ0⁻¹
g₀ = q * sum(scalar.(λⱼ))
gⱼ = ntuple(Val(D)) do j
q * scalar(λⱼ[j+1] + im * sum(λₖʲ[:,j+1] - transpose(λₖʲ)[:,j+1]))
end
end
else
αₖʲγⱼeϕⱼ = αₖʲγⱼ .* transpose(eϕⱼ) # αₖʲγⱼeϕⱼ :: SMatrix{D´,D´}
Jₖʲ = J_scalar.(tₖʲ, eₖʲ, transpose(Δⱼ), s.refex) # Jₖʲ :: SMatrix{D´,D´}
αₖʲγⱼeϕⱼJₖʲ = αₖʲγⱼeϕⱼ .* Jₖʲ
Λⱼ = sum(αₖʲγⱼeϕⱼJₖʲ, dims = 1)
Λₖʲ = Λ_matrix(eₖʲ, ϕₖʲ, Λⱼ, Δⱼ, tₖʲ, αₖʲγⱼeϕⱼ, Jₖʲ)
q´ = (-im)^(D+1)
g₀ = q´ * sum(scalar.(Λⱼ))
gⱼ = ntuple(Val(D)) do j
q´ * scalar(Λⱼ[j+1] + im * sum(Λₖʲ[:,j+1] - transpose(Λₖʲ)[:,j+1]))
end
end
return Complex{T}(g₀), SVector{D,Complex{T}}(gⱼ)
end
# Series of cis(ϕ)
function cis_scalar(s::Series{N}, ex) where {N}
@assert iszero(s.pow)
cis_series = Series(tupletake(ex.cis, Val(N)))
c = cis(s[0]) * cis_series
# Go from ds differential to dϕ
return rescale(c, s[1])
end
cis_scalar(s, ex) = cis(s)
divide_if_nonzero(a, b) = iszero(b) ? a : a/b
multiply_if_nonzero(a, b) = iszero(b) ? a : a*b
function αγ_matrix(ϕedges::S, tedges::S, eedges::SMatrix{D´,D´}) where {D´,S<:SMatrix{D´,D´}}
js = ks = SVector{D´}(1:D´)
kjs = tuple.(ks, js')
α⁻¹ = α⁻¹_scalar.(kjs, Ref(tedges), Ref(eedges))
γ⁻¹ = γ⁻¹_scalar.(js', Ref(ϕedges), Ref(eedges))
γα = inv.(α⁻¹ .* γ⁻¹)
return γα
end
function α⁻¹_scalar((k, j), tedges::SMatrix{D´,D´,S}, eedges) where {D´,S}
x = one(S)
j != k && !iszero(eedges[k, j]) || return x
@inbounds for l in 1:D´
if l != j && !iszero(eedges[l, j])
x *= eedges[l, j]
if l != k # ekj != 0, already constrained above
x *= chop(tedges[l, j] - tedges[k, j])
end
end
end
return x
end
function γ⁻¹_scalar(j, ϕedges::SMatrix{D´,D´,S}, eedges) where {D´,S}
x = one(S)
@inbounds for l in 1:D´
if l != j && iszero(eedges[l, j])
x *= ϕedges[l, j]
end
end
return x
end
function Λ_matrix(eₖʲ::SMatrix{D´}, ϕₖʲ, Λⱼ, Δⱼ, tₖʲ, αₖʲγⱼeϕⱼ, Jₖʲ) where {D´}
js = ks = SVector{D´}(1:D´)
## Inference currently struggles with this
# kjs = tuple.(ks, js')
# Λₖʲ = Λ_scalar.(kjs, ϕₖʲ, transpose(Λⱼ), transpose(Δⱼ), Ref(eₖʲ), Ref(tₖʲ), Ref(αₖʲγⱼeϕⱼ), Ref(Jₖʲ))
kjs = Tuple(tuple.(ks, js'))
Λₖʲtup = ntuple(Val(D´*D´)) do i
(k,j) = kjs[i]
Λ_scalar((k,j), ϕₖʲ[k,j], Λⱼ[j], Δⱼ[j], eₖʲ, tₖʲ, αₖʲγⱼeϕⱼ, Jₖʲ)
end
Λₖʲ = SMatrix{D´,D´}(Λₖʲtup)
return Λₖʲ
end
function Λ_scalar((k, j), ϕₖʲ, Λⱼ, Δⱼ, emat::SMatrix{D´,D´,T}, tmat, αγeϕmat, Jmat) where {D´,T}
Λₖʲ = zero(typeof(Λⱼ))
j == k && return Λₖʲ
eₖʲ = emat[k,j]
if iszero(eₖʲ)
Λₖʲ = Λⱼ / ϕₖʲ
else
tₖʲ = tmat[k,j]
Jₖʲ = Jmat[k,j]
@inbounds for l in 1:D´
if !iszero(emat[l,j])
tₗʲ = tmat[l,j]
Jₗʲ = Jmat[l,j]
if tₗʲ == tₖʲ
Λₖʲ -= (αγeϕmat[l, j] / eₖʲ) * (inv(tₗʲ) + im * Δⱼ * Jₗʲ)
else
Λₖʲ -= (αγeϕmat[l, j] / eₖʲ) * chop(Jₗʲ - Jₖʲ) * inv(chop(tₗʲ - tₖʲ))
end
end
end
end
return Λₖʲ
end
function J_scalar(t::T, e, Δ, ex) where {T<:Real}
iszero(e) && return zero(complex(T))
tΔ = t * Δ
J = iszero(tΔ) ? logim(Δ) : cis(tΔ) * J_integral(tΔ, t, Δ)
return Complex{T}(J)
end
function J_scalar(t::Series{N,T}, e, Δ, ex) where {N,T<:Real}
iszero(e) && return zero(Series{N,Complex{T}})
N´ = N - 1
C = Complex{T}
iszero(Δ) && return Series{N}(C(Inf))
t₀ = t[0]
tΔ = t₀ * Δ
if iszero(tΔ)
J₀ = logim(Δ)
Jᵢ = tupletake(ex.J0, Val(N´)) # ntuple(n -> C(-im)^n/(n*factorial(n)), Val(N´))
J = Series{N}(J₀, Jᵢ...)
cis_coefs = tupletake(ex.cis, Val(N))
E = Series(cis_coefs) # cis(tΔ) == 1
EJ = E * J
else
cistΔ = cis(tΔ)
J₀ = J_integral(tΔ, t₀, Δ)
if N > 1
invzΔ = cumprod(ntuple(Returns(1/tΔ), Val(N-1)))
Jmat = smatrixtake(ex.Jmat, Val(N´))
Jᵢ = Tuple(inv(cistΔ) * (Jmat * SVector(invzΔ)))
J = Series(J₀, Jᵢ...)
else
J = Series(J₀)
end
cis_coefs = tupletake(ex.cis, Val(N))
Eᵢ = cistΔ .* cis_coefs
E = Series(Eᵢ)
EJ = E * J
end
return rescale(EJ, t[1] * Δ)
end
function J_integral(tΔ, t::T, Δ) where {T}
J = iszero(imag(tΔ)) ?
cosint(abs(tΔ)) - im*sinint(real(tΔ)) - im*T(0.5π)*sign(Δ) :
-gamma(0, im*tΔ) - im*T(0.5π)*(sign(real(Δ))+sign(real(tΔ)))
return Complex{T}(J)
end
#endregion
############################################################################################
# AppliedBandsGreenSolver <: AppliedGreenSolver
#region
struct SubbandSimplices{BS<:BandSimplex}
simps::Vector{BS} # collection of k_∥-ordered simplices
simpslices::Vector{UnitRange{Int}} # ranges of simplices with "equal" k_∥ to boundary
end
struct BoundaryOrbs{L}
boundary::Pair{Int,Int} # dir => pos
orbsright::OrbitalSlice{L} # 1D boundary orbslice coupled to right half-"plane"
orbsleft::OrbitalSlice{L} # 1D boundary orbslice coupled to left half-"plane"
end
struct AppliedBandsGreenSolver{B<:Union{Missing,BoundaryOrbs},SB<:Subband,SS<:SubbandSimplices} <: AppliedGreenSolver
subband::SB # single (non-split) subband
subbandsimps::SS # BandSimplices in subband
boundaryorbs::B # missing or BoundaryOrbs
end
#region ## Constructors ##
boundaryorbs(::Missing, h::AbstractHamiltonian) = missing
function boundaryorbs((dir, pos), h::AbstractHamiltonian)
L = latdim(h)
rcell = (pos+1) * unitvector(dir, SVector{L,Int})
lcell = (pos-1) * unitvector(dir, SVector{L,Int})
orbsright = coupled_orbslice(<=(pos), h, rcell, dir)
orbsleft = coupled_orbslice(>=(pos), h, lcell, dir)
return BoundaryOrbs(dir => pos, orbsright, orbsleft)
end
function coupled_orbslice(condition, h, seedcell, dir)
lat = lattice(h)
ls = grow(lat[CellSites(seedcell, :)], h)
(cells, inds) = group_projected_cell_indices(condition, dir, cellsdict(ls))
cdict = cellinds_to_dict(cells, unsafe_cellsites.(cells, inds)) # no uniqueness check here
sslice = SiteSlice(lat, cdict) # here we get an (unnecessary) uniqueness check
oslice = sites_to_orbs_nogroups(sslice, h)
return oslice
end
projected_cell(cell::SVector{L,Int}, dir) where {L} =
cell[dir] * unitvector(dir, SVector{L,Int})
# A merged version of:
# [(projected_cell(cell(c), dir), inds(c)) for c in cellsdict(ls) if condition(cell(c)[dir])]
function group_projected_cell_indices(condition, dir, d::CellSitesDict{L}) where {L}
keys´ = SVector{L,Int}[]
indvals´ = Vector{Int}[]
if !isempty(d)
# get [cell => sites(cell, inds)...]
ps = collect(pairs(d))
# get [projcell => sites(cell, inds)...]
map!(kv -> projected_cell(first(kv), dir) => last(kv), ps, ps)
# remove those pcells that do not satisfy condition
filter!(kv -> condition(first(kv)[dir]), ps)
# sort by projcell
sort!(ps, by = first)
# Do an append!-merge of equal projcells
key´ = first(first(ps))
indval´ = Int[]
for (key, val) in ps
if key != key´
push!(keys´, key´)
push!(indvals´, unique!(sort!(indval´)))
key´ = key
indval´ = copy(siteindices(val))
else
append!(indval´, siteindices(val))
end
end
push!(keys´, key´)
push!(indvals´, unique!(sort!(indval´)))
end
return keys´, indvals´
end
#endregion
#region ## API ##
# Parent hamiltonian needs to be non-parametric, so no need to alias
minimal_callsafe_copy(s::AppliedBandsGreenSolver, parentham, parentcontacts) = s
needs_omega_shift(s::AppliedBandsGreenSolver) = false
bands(g::GreenFunction{<:Any,<:Any,<:Any,<:AppliedBandsGreenSolver}) = g.solver.subband
boundaries(s::AppliedBandsGreenSolver{Missing}) = ()
boundaries(s::AppliedBandsGreenSolver) = (s.boundaryorbs.boundary,)
#endregion
#region ## apply ##
function apply(s::GS.Bands, h::AbstractHamiltonian{T,<:Any,L}, cs::Contacts) where {T,L}
L == 0 && argerror("Cannot use GreenSolvers.Bands with 0D AbstractHamiltonians")
ticks = s.bandsargs
kw = s.bandskw
b = bands(h, ticks...; kw..., projectors = true, split = false)
sb = only(subbands(b))
ex = Expansions(Val(L), T)
subbandsimps = subband_simplices!(sb, ex, s)
boundary = boundaryorbs(s.boundary, h)
return AppliedBandsGreenSolver(sb, subbandsimps, boundary)
end
# reorders simplices(sb) (simp indices) to match simps::Vector{<:BandSimplex}
function subband_simplices!(sb::Subband, ex::Expansions, s::GS.Bands)
refex = Ref(ex)
simpinds = simplices(sb)
simps = [BandSimplex(sb, simp, refex) for simp in simpinds]
simpslices = simplex_slices!(simps, simpinds, s)
return SubbandSimplices(simps, simpslices)
end
# order simplices by their k∥ and compute ranges in each kranges bin
function simplex_slices!(simps::Vector{<:BandSimplex{D}}, simpinds, s::GS.Bands) where {D}
boundary = s.boundary
ticks = applied_ticks(s.bandsargs, Val(D))
if boundary !== missing
dir = first(boundary)
checkdirection(dir, simps)
if D > 1
p = sortperm(simps, by = simp -> parallel_base_coordinate(simp, dir))
permute!(simps, p)
permute!(simpinds, p)
# Discrete values for L-1 dimensional k∥ mesh
kticks = ntuple(i -> ifelse(i < dir, ticks[i], ticks[i+1]), Val(D-1))
simpslices = collect(Runs(simps, (s1, s2) -> in_same_interval((s1, s2), kticks, dir)))
else
simpslices = [UnitRange(eachindex(simps))]
end
return simpslices
end
return UnitRange{Int}[]
end
# in case s.bandargs is empty (relying on defauld_band_ticks)
applied_ticks(bandsargs::Tuple{}, val) = default_band_ticks(val)
applied_ticks(bandsargs, val) = bandsargs
checkdirection(dir, ::Vector{<:BandSimplex{D}}) where {D} =
1 <= dir <= D || argerror("Boundary direction $dir should be 1 <= dir <= $D")
function parallel_base_coordinate(s::BandSimplex{D}, dir) where {D}
kmean = mean(s.kij, dims = 1)
notdir = SVector(ntuple(i -> ifelse(i < dir, i, i+1), Val(D-1)))
kpar = kmean[notdir]
return kpar
end
# assumes kticks are sorted, see GS.Bands constructor
function in_same_interval((s1, s2), kticks, dir)
kvec1 = parallel_base_coordinate(s1, dir)
kvec2 = parallel_base_coordinate(s2, dir)
for (k1, k2, ks) in zip(kvec1, kvec2, kticks)
for i in firstindex(ks):lastindex(ks)-1
in1 = ks[i] < k1 < ks[i+1]
in2 = ks[i] < k2 < ks[i+1]
xor(in1, in2) && return false
in1 && in2 && break
end
end
return true
end
#endregion
#region ## call ##
function (s::AppliedBandsGreenSolver)(ω, Σblocks, corbitals)
g0slicer = BandsGreenSlicer(complex(ω), s)
gslicer = maybe_TMatrixSlicer(g0slicer, Σblocks, corbitals)
return gslicer
end
#endregion
#endregion
############################################################################################
# BandsGreenSlicer <: GreenSlicer
#region
struct BandsGreenSlicer{C,B,S<:AppliedBandsGreenSolver{B}} <: GreenSlicer{C}
ω::C
solver::S
end
#region ## API ##
Base.getindex(s::BandsGreenSlicer{<:Any,Missing}, i::CellOrbitals, j::CellOrbitals) =
inf_band_slice(s, i, j)
Base.getindex(s::BandsGreenSlicer, i::CellOrbitals, j::CellOrbitals) =
semi_band_slice(s, i, j)
function inf_band_slice(s::BandsGreenSlicer{C}, i::CellOrbitals, j::CellOrbitals) where {C}
solver = s.solver
gmat = zeros(C, norbitals(i), norbitals(j))
inf_band_slice!(gmat, s.ω, (i, j), solver.subband, solver.subbandsimps)
return gmat
end
function inf_band_slice!(gmat, ω, (i, j)::Tuple{CellOrbitals,CellOrbitals},
subband::Subband, subbandsimps::SubbandSimplices,
simpinds = eachindex(simplices(subband)))
dist = cell(i) - cell(j)
orbs = orbindices(i), orbindices(j)
return inf_band_slice!(gmat, ω, dist, orbs, subband, subbandsimps, simpinds)
end
# main driver
function inf_band_slice!(gmat, ω, dist, orbs, subband, subbandsimps, simpinds)
ψPdict = projected_states(subband)
for simpind in simpinds
bandsimplex = subbandsimps.simps[simpind]
g₀, gⱼs = g_integrals(bandsimplex, ω, dist)
isinf(g₀) && continue
v₀, vⱼs... = simplices(subband)[simpind]
ψ = states(vertices(subband, v₀))
pind = (simpind, v₀)
muladd_ψPψ⁺!(gmat, bandsimplex.VD * (g₀ - sum(gⱼs)), ψ, ψPdict, pind, orbs)
for (j, gⱼ) in enumerate(gⱼs)
vⱼ = vⱼs[j]
ψ = states(vertices(subband, vⱼ))
pind = (simpind, vⱼ)
muladd_ψPψ⁺!(gmat, bandsimplex.VD * gⱼ, ψ, ψPdict, pind, orbs)
end
end
return gmat
end
function inf_band_slice!(gmat, ω, (si, sj)::Tuple, args...) # si, sj can be orbslice or cellorbs
if ncells(si) == ncells(sj) == 1
# boundary slice is one-cell-wide, no need for views
i, j = get_single_cellorbs(si), get_single_cellorbs(sj)
inf_band_slice!(gmat, ω, (i, j), args...)
else
offsetj = 0
for j in get_multiple_cellorbs(sj)
offseti = 0
nj = norbitals(j)
for i in get_multiple_cellorbs(si)
ni = norbitals(i)
gv = view(gmat, offseti+1:offseti+ni, offsetj+1:offsetj+nj)
inf_band_slice!(gv, ω, (i, j), args...)
offseti += ni
end
offsetj += nj
end
end
return gmat
end
get_single_cellorbs(c::CellOrbitals) = c
get_single_cellorbs(c::OrbitalSlice) = only(cellsdict(c))
get_multiple_cellorbs(c::CellOrbitals) = (c,)
get_multiple_cellorbs(c::LatticeSlice) = cellsdict(c)
# Gᵢⱼ(k∥) = G⁰ᵢⱼ(k∥) - G⁰ᵢᵦ(k∥)G⁰ᵦᵦ(k∥)⁻¹G⁰ᵦⱼ(k∥), where β are removed sites at boundary
function semi_band_slice(s::BandsGreenSlicer{C}, i::CellOrbitals{L}, j::CellOrbitals{L}) where {C,L}
borbs = s.solver.boundaryorbs
ni, nj = length(orbindices(i)), length(orbindices(j))
gij = zeros(C, ni, nj)
(dir, pos) = borbs.boundary
xi, xj = cell(i)[dir] - pos, cell(j)[dir] - pos
if sign(xi) == sign(xj) != 0
subband, subbandsimps = s.solver.subband, s.solver.subbandsimps
b = ifelse(xi > 0, borbs.orbsright, borbs.orbsleft) # 1D boundary orbital slice
n0 = norbitals(b)
g0j = zeros(C, n0, nj)
gi0 = zeros(C, ni, n0)
g00 = zeros(C, n0, n0)
for simpinds in subbandsimps.simpslices
fill!(g00, zero(C))
fill!(g0j, zero(C))
fill!(gi0, zero(C))
inf_band_slice!(gij, s.ω, (i, j), subband, subbandsimps, simpinds)
inf_band_slice!(g00, s.ω, (b, b), subband, subbandsimps, simpinds)
inf_band_slice!(g0j, s.ω, (b, j), subband, subbandsimps, simpinds)
inf_band_slice!(gi0, s.ω, (i, b), subband, subbandsimps, simpinds)
gg = ldiv!(lu!(g00), g0j)
mul!(gij, gi0, gg, -1, 1)
end
end
return gij
end
# does g += α * ψPψ´ = α * ψP * (ψP)´, where ψP = ψPdict[pind] is the vertex projection onto
# the simplex subspace. If pind = (simpind, vind) is not in ψPdict::Dict, no P is necessary
function muladd_ψPψ⁺!(gmat, α, ψ, ψPdict, pind, orbs)
if haskey(ψPdict, pind)
muladd_ψPψ⁺!(gmat, α, ψPdict[pind], orbs)
else
muladd_ψPψ⁺!(gmat, α, ψ, orbs)
end
return gmat
end
function muladd_ψPψ⁺!(gmat, α, ψ, (rows, cols)::Tuple)
if size(ψ, 1) == length(rows) == length(cols)
mul!(gmat, ψ, ψ', α, 1)
else
ψrows = view_or_copy(ψ, rows, :)
ψcols = view_or_copy(ψ, cols, :)
mul!(gmat, ψrows, ψcols', α, 1)
end
return gmat
end
view_or_copy(ψ, rows::Union{Colon,AbstractRange}, cols::Union{Colon,AbstractRange}) =
view(ψ, rows, cols)
view_or_copy(ψ, rows, cols) = ψ[rows, cols]
minimal_callsafe_copy(s::BandsGreenSlicer, parentham, parentcontacts) = s # it is read-only
#endregion
############################################################################################
# diagonal_slice
# optimized block diagonal of g[::CellOrbitals] for BandsGreenSlicer without boundary
# otherwise we need to do it the normal way
#region
function diagonal_slice(gω::GreenSolution{T,<:Any,<:Any,G}, o::CellOrbitals) where {T,G<:BandsGreenSlicer{<:Any,Missing}}
s = slicer(gω) # BandsGreenSlicer
norbs = flatsize(gω)
rngs = orbranges(o)
dist = zero(cell(o))
C = complex(T)
gmat = Matrix{C}(undef, norbs, norbs)
for rng in rngs
gmat[rng, rng] .= zero(C)
end
subband, subbandsimps = s.solver.subband, s.solver.subbandsimps
simpinds = eachindex(simplices(subband))
# to main driver with orbs = rngs
inf_band_slice!(gmat, s.ω, dist, rngs, subband, subbandsimps, simpinds)
return gmat
end
function muladd_ψPψ⁺!(gmat, α, ψ, rngs::Vector{<:UnitRange})
for rng in rngs
if length(rng) == 1
i = only(rng)
gmat[i, i] += α * abs2(ψ[i])
else
gv = view(gmat, rng, rng)
ψv = view(ψ, rng, :)
mul!(gv, ψv, ψv', α, 1)
end
end
return gmat
end
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 8918 | ############################################################################################
# KPMBuilder
# computes μⁱʲₙ = ⟨ψⱼ|kernel T_n(h)|ψᵢ⟩
#region
struct KPMBuilder{O,M,T,K,H}
h::H
kernel::O
ket::K
ket1::K
ket2::K
bandCH::T # (center, halfwidth)
mulist::M
end
function KPMBuilder(h, kernel, ket, bandCH, order)
mulist = empty_mulist(ket, order)
ket1, ket2 = similar(ket), similar(ket)
return KPMBuilder(h, kernel, ket, ket1, ket2, bandCH, mulist)
end
empty_mulist(::Vector{C}, order) where {C<:Complex} =
zeros(C, order + 1)
empty_mulist(ket::Matrix{C}, order) where {C<:Complex} =
[zeros(C, size(ket, 2), size(ket, 2)) for _ in 1:(order + 1)]
function momentaKPM(h, ket, (center, halfwidth); order = 10, kernel = I)
pmeter = Progress(order; desc = "Computing moments: ")
builder = KPMBuilder(h, kernel, ket, (center, halfwidth), order)
mulist = addmomentaKPM!(builder, pmeter)
jackson!(mulist)
return mulist
end
# Single step algorithm (non-identity Kernel)
function addmomentaKPM!(b::KPMBuilder{<:AbstractMatrix}, pmeter)
seed_singlestep_KPM!(b)
mulist, h, bandCH, kmat, kmat0, kmat1 = b.mulist, b.h, b.bandCH, b.ket, b.ket1, b.ket2
order = length(mulist) - 1
for n in 3:(order+1)
ProgressMeter.next!(pmeter; showvalues = ())
iterateKPM!(kmat0, h', kmat1, bandCH)
mulat!(mulist, n, kmat0', kmat, 1, 1) # μ[n] += kmat0'*kmat1
kmat0, kmat1 = kmat1, kmat0
end
return mulist
end
# Double step algorithm (identity Kernel)
function addmomentaKPM!(b::KPMBuilder{<:UniformScaling}, pmeter)
μ0, μ1 = seed_doublestep_KPM!(b)
mulist, h, bandCH, A, kmat0, kmat1 = b.mulist, b.h, b.bandCH, b.kernel, b.ket1, b.ket2
order = length(mulist) - 1
for n in 3:2:(order+1)
ProgressMeter.next!(pmeter; showvalues = ())
ProgressMeter.next!(pmeter; showvalues = ()) # twice because of 2-step
iterateKPM!(kmat0, h', kmat1, bandCH)
mulat!(mulist, n, kmat1', kmat1, 2, 1)
minusat!(mulist, n, μ0) # μ[n] += 2*kmat1'*kmat1 - μ0
n + 1 > order + 1 && break
mulat!(mulist, n + 1, kmat1', kmat0, 2, 1)
minusat!(mulist, n + 1, μ1) # μ[n+1] += 2*kmat1'*kmat0 - μ1
kmat0, kmat1 = kmat1, kmat0
end
A.λ ≈ 1 || (mulist .*= A.λ)
return mulist
end
function seed_singlestep_KPM!(b::KPMBuilder)
mul!(b.ket1, b.kernel', b.ket)
mulscaled!(b.ket2, b.h', b.ket1, b.bandCH)
mulat!(b.mulist, 1, b.ket1', b.ket, 1, 1)
mulat!(b.mulist, 2, b.ket2', b.ket, 1, 1)
return nothing
end
function seed_doublestep_KPM!(b::KPMBuilder{<:UniformScaling,Vector{T}}) where {T<:Matrix}
copy!(b.ket1, b.ket)
mulscaled!(b.ket2, b.h', b.ket1, b.bandCH)
μ0, μ1 = copy(b.mulist[1]), copy(b.mulist[2])
mulat!(b.mulist, 1, b.ket1', b.ket1, 1, 1)
mulat!(b.mulist, 2, b.ket2', b.ket1, 1, 1)
μ0 .= b.mulist[1] .- μ0
μ1 .= b.mulist[2] .- μ1
return μ0, μ1
end
function seed_doublestep_KPM!(b::KPMBuilder{<:UniformScaling,Vector{T}}) where {T<:Number}
copy!(b.ket1, b.ket)
mulscaled!(b.ket2, b.h', b.ket1, b.bandCH)
b.mulist[1] += μ0 = b.ket1' * b.ket1
b.mulist[2] += μ1 = b.ket2' * b.ket1
return μ0, μ1
end
# y = rescaled(h) * x
function mulscaled!(y, h´, x, (center, halfwidth))
mul!(y, h´, x)
invhalfwidth = 1/halfwidth
@. y = (y - center * x) * invhalfwidth
return y
end
# kmat0 = 2 * rescaled(h) * kmat1 - kmat1
function iterateKPM!(kmat0, h, kmat1, (center, halfwidth))
α = 2/halfwidth
β = 2center/halfwidth
mul!(kmat0, h, kmat1, α, -1)
@. kmat0 = kmat0 - β * kmat1
return kmat0
end
mulat!(C::Vector{<:Matrix}, n, A, B, α, β) = mul!(C[n], A, B, α, β)
mulat!(C::Vector{<:Number}, n, A, B, α, β) = (C[n] = α * A * B + β * C[n])
minusat!(A::Vector{<:Matrix}, n, x) = (A[n] .-= x)
minusat!(A::Vector{<:Number}, n, x) = (A[n] -= x)
function jackson!(μ::AbstractVector)
order = length(μ) - 1
@inbounds for n in eachindex(μ)
μ[n] *= ((order - n + 1) * cos(π * n / (order + 1)) +
sin(π * n / (order + 1)) * cot(π / (order + 1))) / (order + 1)
end
return μ
end
#endregion
############################################################################################
# AppliedKPMGreenSolver
#region
struct AppliedKPMGreenSolver{T<:AbstractFloat,M<:Union{Complex{T},AbstractMatrix{Complex{T}}}} <: AppliedGreenSolver
momenta::Vector{M}
bandCH::Tuple{T,T}
end
#region ## API ##
moments(s::AppliedKPMGreenSolver) = s.moments
# Parent ham needs to be non-parametric, so no need to alias
minimal_callsafe_copy(s::AppliedKPMGreenSolver, parentham, parentcontacts) = s
needs_omega_shift(s::AppliedKPMGreenSolver) = false
#endregion
#region ## apply ##
function apply(s::GS.KPM, h::Hamiltonian{T,<:Any,0}, cs::Contacts) where {T}
isempty(cs) && argerror("The KPM solver requires at least one contact to be added that defiens where the Green function will be computed. A dummy contact can be created with `attach(nothing; sites...)`.")
hmat = h(())
bandCH = T.(band_ceter_halfwidth(hmat, s.bandrange, s.padfactor))
ket = contact_basis(h, cs)
momenta = momentaKPM(hmat, ket, bandCH; order = s.order, kernel = s.kernel)
return AppliedKPMGreenSolver(momenta, bandCH)
end
apply(::GS.KPM, h::AbstractHamiltonian, cs::Contacts) =
argerror("Can only use KPM with bounded non-parametric Hamiltonians")
band_ceter_halfwidth(_, (emin, emax), padfactor) = 0.5 * (emin + emax), 0.5 * (emax - emin)
function band_ceter_halfwidth(h, ::Missing, padfactor)
@warn "Computing spectrum bounds... Consider using the `bandrange` option for faster performance."
# (ϵmin, ϵmax) = GS.bandrange_arnoldi(h)
(emin, emax) = GS.bandrange_arpack(h)
@warn "Computed real bandrange = ($emin, $emax)"
bandCH = 0.5 * (emin + emax), 0.5 * (emax - emin) * padfactor
return bandCH
end
function contact_basis(h::AbstractHamiltonian{T}, contacts) where {T}
n = flatsize(h)
# Orbital indices in merged contacts, all belonging to a single unit cell
mergedorbinds = orbindices(only(cellsdict(contacts)))
basis = zeros(Complex{T}, n, length(mergedorbinds))
one!(basis, mergedorbinds)
return basis
end
#endregion
#region ## call ##
function (s::AppliedKPMGreenSolver{T})(ω, Σblocks, corbitals) where {T}
g0contacts = KPMgreen(s.momenta, ω, s.bandCH)
# We rely on TMatrixSlicer to incorporate contact self-energie, and to slice contacts
gslicer = TMatrixSlicer(g0contacts, Σblocks, corbitals)
return gslicer
end
#endregion
#endregion
############################################################################################
# KPM Green
# h = rescaled(H) = (H - ω0)/Δ, where (ω0, Δ) = bandsCH = (center, halfwidth)
# G_H(ω) = 1/(ω-H) = 1/(ω - Δ*h - ω0*I) = Δ⁻¹/((ω - ω0)/Δ - h) = Δ⁻¹ G_h((ω-ω0)/Δ)
#region
function KPMgreen(momenta::Vector{<:Matrix}, ω, (ω0, Δ) = (0, 1))
Δ⁻¹ = 1/Δ
ω´ = (ω - ω0) * Δ⁻¹
g0 = zero(first(momenta))
for (i, μi) in enumerate(momenta)
g0n = Δ⁻¹ * KPMgreen_coefficient(i - 1, ω´)
g0 .+= g0n .* μi
end
return g0
end
function KPMgreen_coefficient(n, ω)
σ = ifelse(imag(ω) < 0, -1, 1)
ωc = complex(ω)
g0n = -2 * im * σ * cis(-n * σ * acos(ωc)) / (ifelse(iszero(n), 2, 1) * sqrt(1 - ωc^2))
return g0n
end
#endregion
############################################################################################
# densitymatrix
# specialized DensityMatrix method for GS.KPM
#region
struct DensityMatrixKPMSolver{T,M}
momenta::Vector{M}
bandCH::Tuple{T,T}
end
## Constructor
function densitymatrix(s::AppliedKPMGreenSolver, gs::GreenSlice{T}) where {T}
check_nodiag_axes(gs)
has_selfenergy(gs) && argerror("The KPM densitymatrix solver currently support only `nothing` contacts")
momenta = slice_momenta(s.momenta, gs)
solver = DensityMatrixKPMSolver(momenta, s.bandCH)
return DensityMatrix(solver, gs)
end
function slice_momenta(momenta, gs)
r = _maybe_contactinds(gs, rows(gs))
c = _maybe_contactinds(gs, cols(gs))
momenta´ = [view(m, r, c) for m in momenta]
return momenta´
end
_maybe_contactinds(gs, ::Colon) = Colon()
_maybe_contactinds(gs, i::Integer) = contactinds(gs, i)
_maybe_contactinds(gs, _) = throw(argerror("KPM doesn't support generic indexing"))
## call
function (d::DensityMatrixKPMSolver)(mu, kBT; params...)
ω0, Δ = d.bandCH
kBT´ = kBT / Δ
mu´ = (mu - ω0) / Δ
if kBT´ ≈ 0
ϕ = acos(mu´)
ρ = copy(first(d.momenta)) * (1-ϕ/π)
for n in 1:length(d.momenta)-1
@. ρ += d.momenta[n+1] * 2 * (sin(π*n)-sin(n*ϕ))/(π*n)
end
else
throw(argerror("KPM densitymatrix currently doesn't support finite temperatures"))
end
return ρ
end
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 23071 | ############################################################################################
# SchurFactorsSolver - see scattering.pdf notes for derivations
# Auxiliary functions for AppliedSchurGreenSolverSolver
# Computes dense factors PR*R*Z21, Z11 and R'*PR'. The retarded self-energy on the open
# unitcell surface of a semi-infinite rightward lead reads Σᵣ = PR R Z21 Z11⁻¹ R' PR'
# Computes also the leftward PL*L*Z11´, Z21´, L'*PL', with Σₗ = PL L Z11´ Z21´⁻¹ L' PL'
#region
struct SchurWorkspace{C}
GL::Matrix{ComplexF64}
GR::Matrix{ComplexF64}
LG::Matrix{C}
RG::Matrix{C}
A::Matrix{C}
B::Matrix{C}
Z11::Matrix{C}
Z21::Matrix{C}
Z11´::Matrix{C}
Z21´::Matrix{C}
LD::Matrix{C}
DL::Matrix{C}
RD::Matrix{C}
DR::Matrix{C}
end
struct SchurFactorsSolver{T,B}
shift::T # called Ω in the scattering.pdf notes
hm::HybridSparseMatrix{T,B} # aliases parent hamiltonian
h0::HybridSparseMatrix{T,B} # aliases parent hamiltonian
hp::HybridSparseMatrix{T,B} # aliases parent hamiltonian
l_leq_r::Bool # whether l <= r (left and right surface dims)
iG::SparseMatrixCSC{Complex{T},Int} # to store iG = ω - h0 - Σₐᵤₓ
ptrs::Tuple{Vector{Int},Vector{Int},Vector{Int}} # iG ptrs for h0 nzvals, diagonal and Σₐᵤₓ surface
linds::Vector{Int} # orbital indices on left surface
rinds::Vector{Int} # orbital indices on right surface
sinds::Vector{Int} # orbital indices on the smallest surface (left for l<=r, right for l>r)
L::Matrix{ComplexF64} # l<=r ? PL : PL*H' === hp PR (n × min(l,r))
R::Matrix{ComplexF64} # l<=r ? PR*H === hm PL : PR (n × min(l,r))
R´L´::Matrix{ComplexF64} # [R'; -L']. L and R must be dense for iG \ (L,R)
tmp::SchurWorkspace{Complex{T}} # L, R, R´L´ need 64bit
end
#region ## Constructors ##
SchurFactorsSolver(::AbstractHamiltonian, _) =
argerror("The Schur solver requires 1D Hamiltonians with 0 and ±1 as only Bloch Harmonics.")
function SchurFactorsSolver(h::Hamiltonian{T,<:Any,1}, shift = one(Complex{T})) where {T}
hm, h0, hp = nearest_cell_harmonics(h)
fhm, fh0, fhp = flat(hm), flat(h0), flat(hp)
# h*'s may be updated after flat but only fh* structure matters
linds, rinds, L, R, sinds, l_leq_r = left_right_projectors(fhm, fhp)
R´L´ = [R'; -L']
iG, (p, pd) = store_diagonal_ptrs(fh0)
ptrs = (p, pd, pd[sinds])
workspace = SchurWorkspace{Complex{T}}(size(L), length(linds), length(rinds))
return SchurFactorsSolver(T(shift), hm, h0, hp, l_leq_r, iG, ptrs, linds, rinds, sinds, L, R, R´L´, workspace)
end
function SchurWorkspace{C}((n, d), l, r) where {C}
GL = Matrix{ComplexF64}(undef, n, d)
GR = Matrix{ComplexF64}(undef, n, d)
LG = Matrix{C}(undef, d, n)
RG = Matrix{C}(undef, d, n)
A = Matrix{C}(undef, 2d, 2d)
B = Matrix{C}(undef, 2d, 2d)
Z11 = Matrix{C}(undef, d, d)
Z21 = Matrix{C}(undef, d, d)
Z11´ = Matrix{C}(undef, d, d)
Z21´ = Matrix{C}(undef, d, d)
LD = Matrix{C}(undef, l, d)
DL = Matrix{C}(undef, d, l)
RD = Matrix{C}(undef, r, d)
DR = Matrix{C}(undef, d, r)
return SchurWorkspace(GL, GR, LG, RG, A, B, Z11, Z21, Z11´, Z21´, LD, DL, RD, DR)
end
function nearest_cell_harmonics(h)
is_nearest = length(harmonics(h)) == 3 && all(harmonics(h)) do hh
dn = dcell(hh)
dn == SA[0] || dn == SA[1] || dn == SA[-1]
end
is_nearest ||
argerror("Too many or too few harmonics. Perhaps try `supercell` to ensure strictly nearest-cell harmonics.")
hm, h0, hp = h[hybrid(-1)], h[hybrid(0)], h[hybrid(1)]
flat(hm) == flat(hp)' ||
argerror("The Hamiltonian should have h[1] == h[-1]' to use the Schur solver")
return hm, h0, hp
end
# hp = L*R' = PL H' PR'. We assume hm = hp'
function left_right_projectors(hm::SparseMatrixCSC, hp::SparseMatrixCSC)
linds = stored_cols(hm)
rinds = stored_cols(hp)
# dense projectors
o = one(ComplexF64) * I
allrows = 1:size(hp,1)
l_leq_r = length(linds) <= length(rinds)
PR = o[allrows, rinds]
PL = o[allrows, linds]
if l_leq_r
sinds = linds
R = Matrix{ComplexF64}(hm[:, linds]) # R = PR H = hm PL
L = PL
else
sinds = rinds
R = PR
L = Matrix{ComplexF64}(hp[:, rinds]) # L = PL H' = hp PR
end
return linds, rinds, L, R, sinds, l_leq_r
end
# Build a new sparse matrix mat´ with same structure as mat plus the diagonal
# Return also:
# (1) pointers pmat´ to mat´ for each nonzero in mat
# (2) diagonal ptrs pdiag´ in mat´
function store_diagonal_ptrs(mat::SparseMatrixCSC{T}) where {T}
mat´ = store_diagonal(mat)
pmat´, pdiag´ = Int[], Int[]
rows, rows´ = rowvals(mat), rowvals(mat´)
for col in axes(mat´, 2)
ptrs = nzrange(mat, col)
ptrs´ = nzrange(mat´, col)
p, p´ = first(ptrs), first(ptrs´)
while p´ in ptrs´
row´ = rows´[p´]
row´ == col && push!(pdiag´, p´)
if p in ptrs && row´ == rows[p]
push!(pmat´, p´)
p += 1
end
p´ += 1
end
end
return mat´, (pmat´, pdiag´)
end
# ensure diagonal is stored *without* dropping any structural zeros
function store_diagonal(mat::SparseMatrixCSC{T}) where {T}
m, n = size(mat)
d = min(m, n)
I, J, V = findnz(mat)
append!(I, 1:d)
append!(J, 1:d)
append!(V, Iterators.repeated(zero(T), d))
return sparse(I, J, V, m, n)
end
#endregion
#region ## API ##
## Call API ##
call!_output(s::SchurFactorsSolver) =
(s.tmp.RD, s.tmp.Z11, s.tmp.DR), (s.tmp.LD, s.tmp.Z21´, s.tmp.DL)
function call!(s::SchurFactorsSolver, ω)
R, Z11, Z21, L, Z11´, Z21´ = s.R, s.tmp.Z11, s.tmp.Z21, s.L, s.tmp.Z11´, s.tmp.Z21´
update_LR!(s) # We must update L, R in case a parametric parent has been call!-ed
update_iG!(s, ω) # also iG = ω - h0 + iΩP'P
A, B = pencilAB!(s)
sch = schur!(A, B)
whichmodes = Vector{Bool}(undef, length(sch.α))
r = size(A, 1) ÷ 2
# Retarded modes
retarded_modes!(whichmodes, sch)
checkmodes(whichmodes)
ordschur!(sch, whichmodes)
copy!(Z11, view(sch.Z, 1:r, 1:sum(whichmodes)))
copy!(Z21, view(sch.Z, r+1:2r, 1:sum(whichmodes)))
# Advanced modes
advanced_modes!(whichmodes, sch)
checkmodes(whichmodes)
ordschur!(sch, whichmodes)
copy!(Z11´, view(sch.Z, 1:r, 1:sum(whichmodes)))
copy!(Z21´, view(sch.Z, r+1:2r, 1:sum(whichmodes)))
RZ21, LZ11´, LD, DL, RD, DR = s.tmp.GR, s.tmp.GL, s.tmp.LD, s.tmp.DL, s.tmp.RD, s.tmp.DR
linds, rinds = s.linds, s.rinds
# compute rightward blocks: PR*R*Z21, Z11 and R'*PR'
mul!(RZ21, R, Z21)
PR_R_Z21 = copy!(RD, view(RZ21, rinds, :))
R´_PR = copy!(DR, view(R', :, rinds))
# compute leftward blocks: PL*L*Z11´, Z21´, L'*PL'
mul!(LZ11´, L, Z11´)
PL_L_Z11´ = copy!(LD, view(LZ11´, linds, :))
L´_PL = copy!(DL, view(L', :, linds))
return (PR_R_Z21, Z11, R´_PR), (PL_L_Z11´, Z21´, L´_PL)
end
# need this barrier for type-stability (sch.α and sch.β are finicky)
function retarded_modes!(whichmodes, sch)
whichmodes .= abs.(sch.α) .< abs.(sch.β)
return whichmodes
end
function advanced_modes!(whichmodes, sch)
whichmodes .= abs.(sch.β) .< abs.(sch.α)
return whichmodes
end
checkmodes(whichmodes) = sum(whichmodes) == length(whichmodes) ÷ 2 ||
argerror("Cannot differentiate retarded from advanced modes. Consider increasing imag(ω) or check that your Hamiltonian is Hermitian")
# this does not include a parentcontacts because there are none
# (SchurFactorsSolver is not an AppliedGreenSolver, so it may have different API)
function minimal_callsafe_copy(s::SchurFactorsSolver, parentham)
hm´, h0´, hp´ = nearest_cell_harmonics(parentham)
s´ = SchurFactorsSolver(s.shift, hm´, h0´, hp´, s.l_leq_r, copy(s.iG),
s.ptrs, s.linds, s.rinds, s.sinds, copy(s.L), copy(s.R), copy(s.R´L´),
minimal_callsafe_copy(s.tmp))
return s´
end
minimal_callsafe_copy(s::SchurWorkspace) =
SchurWorkspace(copy.((s.GL, s.GR, s.LG, s.RG, s.A, s.B, s.Z11, s.Z21, s.Z11´, s.Z21´,
s.LD, s.DL, s.RD, s.DR))...)
## Pencil A - λB ##
# Compute G*R and G*L where G = inv(ω - h0 - Σₐᵤₓ) for Σₐᵤₓ = -iΩL'L or -iΩR'R
# From this compute the deflated A - λB, whose eigenstates are the deflated eigenmodes
# Pencil A - λB :
# A = [R'GL (1-δ)iΩR'GL; -L'GL 1-(1-δ)iΩL´GL] and B = [1-δiΩR'GR -R'GR; δiΩL'GR L'GR]
# where δ = l <= r ? 1 : 0
# A = [Γₗ (1-δ)iΩΓₗ] + [0 0; 0 1] and B = [-Γᵣ -δiΩΓᵣ] + [1 0; 0 0]
# Γₗ = [R'; -L']GL and Γᵣ = [R'; -L']GR
function pencilAB!(s::SchurFactorsSolver{T}) where {T}
o, z = one(Complex{T}), zero(Complex{T})
iGlu = lu(s.iG)
Ω = s.shift
d = size(s.L, 2)
GL = ldiv!(s.tmp.GL, iGlu, s.L)
GR = ldiv!(s.tmp.GR, iGlu, s.R)
A, B, R´L´ = s.tmp.A, s.tmp.B, s.R´L´
fill!(A, z)
fill!(B, z)
mul!(view(A, :, 1:d), R´L´, GL)
mul!(view(B, :, d+1:2d), R´L´, GR, -1, 0)
if s.l_leq_r
view(A, :, d+1:2d) .= view(A, :, 1:d) .* (im*Ω)
else
view(B, :, 1:d) .= view(B, :, d+1:2d) .* (im*Ω)
end
for i in 1:d
A[d+i, d+i] += o
B[i, i] += o
end
return A, B
end
# updates L and R from the current hm and hp
function update_LR!(s)
d = size(s.L, 2)
if s.l_leq_r
# slicing is faster than a view of sparse
copy!(s.R, flat(s.hm)[:, s.sinds])
view(s.R´L´, 1:d, :) .= s.R'
else
# slicing is faster than a view of sparse
copy!(s.L, flat(s.hp)[:, s.sinds])
view(s.R´L´, d+1:2d, :) .= .- s.L'
end
return s
end
# updates iG = ω - h0 - Σₐᵤₓ from the present h0
function update_iG!(s::SchurFactorsSolver{T}, ω) where {T}
Ω = s.shift
nzs, nzsh0 = nonzeros(s.iG), nonzeros(flat(s.h0))
ps, pds, pss = s.ptrs
fill!(nzs, zero(Complex{T}))
for (p, p´) in enumerate(ps)
nzs[p´] = -nzsh0[p]
end
for pd in pds
nzs[pd] += ω
end
for ps in pss
nzs[ps] += im*Ω
end
return s
end
#endregion
#endregion
############################################################################################
# AppliedSchurGreenSolver
#region
# Mutable: we delay initialization of some fields until they are first needed (which may be never)
mutable struct AppliedSchurGreenSolver{T,B,O,O∞,G,G∞} <: AppliedGreenSolver
fsolver::SchurFactorsSolver{T,B}
boundary::T
ohL::O # OpenHamiltonian for unitcell with ΣL (aliases parent h)
ohR::O # OpenHamiltonian for unitcell with ΣR (aliases parent h)
oh∞::O∞ # OpenHamiltonian for unitcell with ΣL + ΣR (aliases parent h)
gL::G # Lazy field: GreenFunction for ohL
gR::G # Lazy field: GreenFunction for ohR
g∞::G∞ # Lazy field: GreenFunction for oh∞
function AppliedSchurGreenSolver{T,B,O,O∞,G,G∞}(fsolver, boundary, ohL, ohR, oh∞) where {T,B,O,O∞,G,G∞}
s = new()
s.fsolver = fsolver
s.boundary = boundary
s.ohL = ohL
s.ohR = ohR
s.oh∞ = oh∞
return s
end
end
AppliedSchurGreenSolver{G,G∞}(fsolver::SchurFactorsSolver{T,B}, boundary, ohL::O, ohR::O, oh∞::O∞) where {T,B,O,O∞,G,G∞} =
AppliedSchurGreenSolver{T,B,O,O∞,G,G∞}(fsolver, boundary, ohL, ohR, oh∞)
#region ## API ##
schurfactorsolver(s::AppliedSchurGreenSolver) = s.fsolver
boundaries(s::AppliedSchurGreenSolver) = (1 => s.boundary,)
#endregion
#region ## getproperty ##
function Base.getproperty(s::AppliedSchurGreenSolver, f::Symbol)
if !isdefined(s, f)
if f == :gL
s.gL = greenfunction(s.ohL, GS.SparseLU()) # oh's harmonics alias parent h[()],
elseif f == :gR # but not used until called with ω
s.gR = greenfunction(s.ohR, GS.SparseLU())
elseif f == :g∞
s.g∞ = greenfunction(s.oh∞, GS.SparseLU())
else
argerror("Unknown field $f for AppliedSchurGreenSolver")
end
end
return getfield(s, f)
end
#endregion
#region ## apply ##
function apply(s::GS.Schur, h::AbstractHamiltonian1D{T}, contacts::Contacts) where {T}
h´ = hamiltonian(h)
fsolver = SchurFactorsSolver(h´, s.shift)
boundary = T(round(only(s.boundary)))
ohL, ohR, oh∞, G, G∞ = schur_openhams_types(fsolver, h, boundary)
solver = AppliedSchurGreenSolver{G,G∞}(fsolver, boundary, ohL, ohR, oh∞)
return solver
end
function schur_openhams_types(fsolver, h, boundary)
h0 = unitcell_hamiltonian(h) # h0 is non-parametric, but will alias h.h first harmonic
rsites = stored_cols(hamiltonian(h)[unflat(1)])
lsites = stored_cols(hamiltonian(h)[unflat(-1)])
orbslice_l = sites_to_orbs(lattice(h0)[sites(lsites)], h)
orbslice_r = sites_to_orbs(lattice(h0)[sites(rsites)], h)
ΣR_solver = SelfEnergySchurSolver(fsolver, h, :R, boundary)
ΣL_solver = SelfEnergySchurSolver(fsolver, h, :L, boundary)
ΣL = SelfEnergy(ΣL_solver, orbslice_l)
ΣR = SelfEnergy(ΣR_solver, orbslice_r)
# ohL, ohR, oh∞ have no parameters, but will be updated by call!(h; params...)
ohL = attach(h0, ΣL)
ohR = attach(h0, ΣR)
oh∞ = ohR |> attach(ΣL)
G, G∞ = green_type(h0, ΣL), green_type(h0, ΣL, ΣR)
return ohL, ohR, oh∞, G, G∞
end
apply(::GS.Schur, h::AbstractHamiltonian, cs::Contacts) =
argerror("Can only use GreenSolvers.Schur with 1D AbstractHamiltonians")
const GFUnit{T,E,H,N,S} =
GreenFunction{T,E,0,AppliedSparseLUGreenSolver{Complex{T}},H,Contacts{0,N,S,OrbitalSliceGrouped{T,E,0}}}
green_type(::H,::S) where {T,E,H<:AbstractHamiltonian{T,E},S} =
GFUnit{T,E,H,1,Tuple{S}}
green_type(::H,::S1,::S2) where {T,E,H<:AbstractHamiltonian{T,E},S1,S2} =
GFUnit{T,E,H,2,Tuple{S1,S2}}
#endregion
#region ## call API ##
function minimal_callsafe_copy(s::AppliedSchurGreenSolver, parentham, _)
fsolver´ = minimal_callsafe_copy(s.fsolver, parentham)
ohL´, ohR´, oh∞´, G, G∞ = schur_openhams_types(fsolver´, parentham, s.boundary)
s´ = AppliedSchurGreenSolver{G,G∞}(fsolver´, s.boundary, ohL´, ohR´, oh∞´)
# we don't copy the lazy fields gL, gR, g∞, even if already materialized, since they
# must be linked to ohL´, ohR´, oh∞´, not the old ones.
return s´
end
function (s::AppliedSchurGreenSolver)(ω, Σblocks, corbitals)
# call! fsolver once for all the g's
call!(s.fsolver, ω)
g0slicer = SchurGreenSlicer(ω, s)
gslicer = maybe_TMatrixSlicer(g0slicer, Σblocks, corbitals)
return gslicer
end
#endregion
#endregion
############################################################################################
# SchurGreenSlicer
# Slicer for a 1D lead using the LR Schur factors, with or without a single boundary
# For n >= 1:
# hⁿ ≡ h₊ⁿ = (LR')ⁿ
# h⁻ⁿ ≡ h₋ⁿ = (RL')ⁿ
# Infinite lattice:
# G∞ₙₙ = G∞₀₀ = (ω*I - h0 - ΣR - ΣL)⁻¹
# G∞ₙₘ = (G₁₁h₊)ⁿ⁻ᵐ G∞₀₀ = G₁₁L (R'G₁₁L)ⁿ⁻ᵐ⁻¹ R'G∞₀₀ for n-m >= 1
# G∞ₙₘ = (G₋₁₋₁h₋)ᵐ⁻ⁿ G∞₀₀ = G₋₁₋₁R(L'G₋₁₋₁R)ᵐ⁻ⁿ⁻¹L'G∞₀₀ for n-m <= -1
# Semiinifinite lattice:
# Gₙₘ = (Ghⁿ⁻ᵐ - GhⁿGh⁻ᵐ)G∞₀₀ = G∞ₙₘ - GhⁿG∞₀ₘ
# Gₙₘ = G∞ₙₘ - G₁₁L(R'G₁₁L)ⁿ⁻¹ R'G∞₀ₘ for m,n >= 1
# Gₙₘ = G∞ₙₘ - G₋₁₋₁R(L'G₋₁₋₁R)¹⁻ⁿL'G∞₀ₘ for m,n <= -1
#region
# We delay initialization of most fields until they are first needed (which may be never)
mutable struct SchurGreenSlicer{C,A<:AppliedSchurGreenSolver} <: GreenSlicer{C}
ω::C
solver::A
boundary::C
L::Matrix{C}
R::Matrix{C}
G₋₁₋₁::SparseLUGreenSlicer{C} # These are independent of parent hamiltonian
G₁₁::SparseLUGreenSlicer{C} # as they only rely on call!_output(fsolver)
G∞₀₀::SparseLUGreenSlicer{C} # which is updated after call!(solver.fsolver, ω)
L´G∞₀₀::Matrix{C}
R´G∞₀₀::Matrix{C}
G₁₁L::Matrix{C}
G₋₁₋₁R::Matrix{C}
R´G₁₁L::Matrix{C}
L´G₋₁₋₁R::Matrix{C}
function SchurGreenSlicer{C,A}(ω, solver) where {C,A}
s = new()
s.ω = ω
s.solver = solver
s.boundary = solver.boundary
s.L = solver.fsolver.L
s.R = solver.fsolver.R
return s
end
end
SchurGreenSlicer(ω, solver::A) where {T,A<:AppliedSchurGreenSolver{T}} =
SchurGreenSlicer{Complex{T},A}(ω, solver)
#region ## getproperty ##
function Base.getproperty(s::SchurGreenSlicer, f::Symbol)
if !isdefined(s, f)
solver = s.solver
d = size(s.L, 2)
# Issue #268: the result of the following call!'s depends on the current value of h0
# which aliases the parent h. This is only a problem if `s` was obtained through
# `gs = call!(g, ω; params...)`. In that case, doing call!(g, ω; params´...) before
# gs[sites...] will be call!-ing e.g. solver.g∞ with the wrong h0 (the one from
# params´...). However, if `gs = g(ω; params...)` a copy was made, so it is safe.
if f == :G₋₁₋₁
s.G₋₁₋₁ = slicer(call!(solver.gL, s.ω; skipsolve_internal = true))
elseif f == :G₁₁
s.G₁₁ = slicer(call!(solver.gR, s.ω; skipsolve_internal = true))
elseif f == :G∞₀₀
s.G∞₀₀ = slicer(call!(solver.g∞, s.ω; skipsolve_internal = true))
elseif f == :L´G∞₀₀
tmp = solver.fsolver.tmp.LG
s.L´G∞₀₀ = extended_rdiv!(tmp, s.L, s.G∞₀₀)
elseif f == :R´G∞₀₀
tmp = solver.fsolver.tmp.RG
s.R´G∞₀₀ = extended_rdiv!(tmp, s.R, s.G∞₀₀)
elseif f == :G₁₁L
tmp = solver.fsolver.tmp.GL
s.G₁₁L = extended_ldiv!(tmp, s.G₁₁, s.L)
elseif f == :G₋₁₋₁R
tmp = solver.fsolver.tmp.GR
s.G₋₁₋₁R = extended_ldiv!(tmp, s.G₋₁₋₁, s.R)
elseif f == :R´G₁₁L
tmp = similar(s.R, d, d)
s.R´G₁₁L = mul!(tmp, s.R', s.G₁₁L)
elseif f == :L´G₋₁₋₁R
tmp = similar(s.L, d, d)
s.L´G₋₁₋₁R = mul!(tmp, s.L', s.G₋₁₋₁R)
else
argerror("Unknown field $f for SchurGreenSlicer")
end
end
return getfield(s, f)
end
# note that g.sourceC is taller than L, R, due to extended sites, but of >= witdth
# size(L, 2) = size(R, 2) = min(l, r) = d (deflated surface)
function extended_ldiv!(gL::Matrix{C}, g::SparseLUGreenSlicer, L) where {C}
Lext = view(g.source64, :, axes(L, 2))
fill!(Lext, zero(C))
copyto!(Lext, CartesianIndices(L), L, CartesianIndices(L))
copy!(gL, view(ldiv!(g.fact, Lext), axes(L)...))
return gL
end
function extended_rdiv!(L´g::Matrix{C}, L, g::SparseLUGreenSlicer) where {C}
Lext = view(g.source64, :, axes(L, 2))
fill!(Lext, zero(C))
copyto!(Lext, CartesianIndices(L), L, CartesianIndices(L))
copy!(L´g, view(ldiv!(g.fact', Lext), axes(L)...)')
return L´g
end
#endregion
#region ## API ##
function Base.getindex(s::SchurGreenSlicer, i::CellOrbitals, j::CellOrbitals)
G = isinf(s.boundary) ? inf_schur_slice(s, i, j) : semi_schur_slice(s, i, j)
# for type-stability with SVector indices
return maybe_SMatrix(G, orbindices(i), orbindices(j))
end
function inf_schur_slice(s::SchurGreenSlicer, i::CellOrbitals, j::CellOrbitals)
rows, cols = orbindices(i), orbindices(j)
dist = only(cell(i) - cell(j))
if dist == 0
g = s.G∞₀₀
i´, j´ = CellOrbitals((), rows), CellOrbitals((), cols)
return g[i´, j´]
elseif dist >= 1 # G∞ₙₘ = G₁₁L (R'G₁₁L)ⁿ⁻ᵐ⁻¹ R'G∞₀₀
R´G∞₀₀ = view(s.R´G∞₀₀, :, cols)
R´G₁₁L = s.R´G₁₁L
G₁₁L = view(s.G₁₁L, rows, :)
G = G₁₁L * (R´G₁₁L^(dist - 1)) * R´G∞₀₀
return G
else # dist <= -1 # G∞ₙₘ = G₋₁₋₁R (L'G₋₁₋₁R)ᵐ⁻ⁿ⁻¹ L'G∞₀₀
L´G∞₀₀ = view(s.L´G∞₀₀, :, cols)
L´G₋₁₋₁R = s.L´G₋₁₋₁R
G₋₁₋₁R = view(s.G₋₁₋₁R, rows, :)
G = G₋₁₋₁R * (L´G₋₁₋₁R^(- dist - 1)) * L´G∞₀₀
return G
end
end
function semi_schur_slice(s::SchurGreenSlicer{C}, i, j) where {C}
n = only(cell(i)) - Int(s.boundary)
m = only(cell(j)) - Int(s.boundary)
rows, cols = orbindices(i), orbindices(j)
if n * m <= 0 # This includes inter-boundary
# need to add view with specific index types for type stability
return zeros(C, norbitals(i), norbitals(j))
elseif n == m == 1
g = s.G₁₁
i´, j´ = CellOrbitals((), rows), CellOrbitals((), cols)
return g[i´, j´]
elseif n == m == -1
g = s.G₋₁₋₁
i´, j´ = CellOrbitals((), rows), CellOrbitals((), cols)
return g[i´, j´]
elseif m >= 1 # also n >= 1 # Gₙₘ = G∞ₙₘ - G₁₁L(R'G₁₁L)ⁿ⁻¹ R'G∞₀ₘ
i´ = CellOrbitals(n, rows)
j´ = CellOrbitals(m, cols)
G∞ₙₘ = inf_schur_slice(s, i´, j´)
i´ = CellOrbitals(0, :)
R´G∞₀ₘ = s.R' * inf_schur_slice(s, i´, j´)
R´G₁₁L = s.R´G₁₁L
G₁₁L = view(s.G₁₁L, rows, :)
Gₙₘ = n == 1 ?
mul!(G∞ₙₘ, G₁₁L, R´G∞₀ₘ, -1, 1) :
mul!(G∞ₙₘ, G₁₁L, (R´G₁₁L^(n-1)) * R´G∞₀ₘ, -1, 1)
return Gₙₘ
else # m, n <= -1 # Gₙₘ = G∞ₙₘ - G₋₁₋₁R(L'G₋₁₋₁R)⁻ⁿ⁻¹L'G∞₀ₘ
i´ = CellOrbitals(n, rows)
j´ = CellOrbitals(m, cols)
G∞ₙₘ = inf_schur_slice(s, i´, j´)
i´ = CellOrbitals(0, :)
L´G∞₀ₘ = s.L' * inf_schur_slice(s, i´, j´)
L´G₋₁₋₁R = s.L´G₋₁₋₁R
G₋₁₋₁R = view(s.G₋₁₋₁R, rows, :)
Gₙₘ = n == -1 ?
mul!(G∞ₙₘ, G₋₁₋₁R, L´G∞₀ₘ, -1, 1) :
mul!(G∞ₙₘ, G₋₁₋₁R, (L´G₋₁₋₁R^(-n-1)) * L´G∞₀ₘ, -1, 1)
return Gₙₘ
end
end
maybe_SMatrix(G::Matrix, rows::SVector{L}, cols::SVector{L´}) where {L,L´} = SMatrix{L,L´}(G)
maybe_SMatrix(G, rows, cols) = G
# TODO: Perhaps too conservative
function minimal_callsafe_copy(s::SchurGreenSlicer, parentham, parentcontacts)
s´ = SchurGreenSlicer(s.ω, minimal_callsafe_copy(s.solver, parentham, parentcontacts))
isdefined(s, :G₋₁₋₁) && (s´.G₋₁₋₁ = minimal_callsafe_copy(s.G₋₁₋₁, parentham, parentcontacts))
isdefined(s, :G₁₁) && (s´.G₁₁ = minimal_callsafe_copy(s.G₁₁, parentham, parentcontacts))
isdefined(s, :G∞₀₀) && (s´.G∞₀₀ = minimal_callsafe_copy(s.G∞₀₀, parentham, parentcontacts))
isdefined(s, :L´G∞₀₀) && (s´.L´G∞₀₀ = copy(s.L´G∞₀₀))
isdefined(s, :R´G∞₀₀) && (s´.R´G∞₀₀ = copy(s.R´G∞₀₀))
isdefined(s, :G₁₁L) && (s´.G₁₁L = copy(s.G₁₁L))
isdefined(s, :G₋₁₋₁R) && (s´.G₋₁₋₁R = copy(s.G₋₁₋₁R))
isdefined(s, :R´G₁₁L) && (s´.R´G₁₁L = copy(s.R´G₁₁L))
isdefined(s, :L´G₋₁₋₁R) && (s´.L´G₋₁₋₁R = copy(s.L´G₋₁₋₁R))
return s´
end
#endregion
#endregion
#endregion top
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 6636 | ############################################################################################
# SparseLU - for 0D AbstractHamiltonians
# It doesn't use T-matrix for contacts. Instead it incorporates them into the LU factor-
# ization, possibly using inverse-free self-energies (using extended sites).
#region
# invgreen aliases contacts (they are not implemented through a TMatrixSlicer)
struct AppliedSparseLUGreenSolver{C} <: AppliedGreenSolver
invgreen::InverseGreenBlockSparse{C} # aliases parent contacts
end
mutable struct SparseLUGreenSlicer{C} <:GreenSlicer{C}
fact::SparseArrays.UMFPACK.UmfpackLU{ComplexF64,Int} # of full system plus extended orbs
nonextrng::UnitRange{Int} # range of non-extended orbital indices
unitcinds::Vector{Vector{Int}} # non-extended fact indices per contact
unitcindsall::Vector{Int} # merged and uniqued unitcinds
source64::Matrix{ComplexF64} # preallocation for ldiv! source @ contacts
sourceC::Matrix{C} # alias of source64 or C conversion
unitg::Matrix{C} # lazy storage of a full ldiv! solve of all (nonextrng) sites
function SparseLUGreenSlicer{C}(fact, nonextrng, unitcinds, unitcindsall, source64) where {C}
s = new()
s.fact = fact # Note that there is no SparseArrays.UMFPACK.UmfpackLU{ComplexF32}
s.nonextrng = nonextrng
s.unitcinds = unitcinds
s.unitcindsall = unitcindsall
s.source64 = source64
s.sourceC = convert(Matrix{C}, source64)
# note that unitg is not allocated here. It is allocated on first use.
return s
end
end
#region ## API ##
inverse_green(s::AppliedSparseLUGreenSolver) = s.invgreen
unitcellinds_contacts(s::SparseLUGreenSlicer) = s.unitcinds
unitcellinds_contacts(s::SparseLUGreenSlicer, i::Integer) =
1 <= i <= length(s.unitcinds) ? s.unitcinds[i] :
argerror("Cannot access contact $i, there are $(length(s.unitcinds)) contacts")
unitcellinds_contacts_merged(s::SparseLUGreenSlicer) = s.unitcindsall
function minimal_callsafe_copy(s::AppliedSparseLUGreenSolver, parentham, parentcontacts)
invgreen´ = inverse_green(parentham, parentcontacts)
return AppliedSparseLUGreenSolver(invgreen´)
end
#endregion
#region ## apply ##
function apply(::GS.SparseLU, h::AbstractHamiltonian0D, cs::Contacts)
invgreen = inverse_green(h, cs)
return AppliedSparseLUGreenSolver(invgreen)
end
apply(::GS.SparseLU, h::AbstractHamiltonian, cs::Contacts) =
argerror("Can only use GreenSolvers.SparseLU with 0D AbstractHamiltonians")
#endregion
#region ## call ##
# Σblocks and contactorbitals are not used here, because they are already inside invgreen
function (s::AppliedSparseLUGreenSolver{C})(ω, Σblocks, contactorbitals) where {C}
invgreen = s.invgreen
nonextrng = orbrange(invgreen)
unitcinds = invgreen.unitcinds
unitcindsall = invgreen.unitcindsall
source64 = convert(Matrix{ComplexF64}, s.invgreen.source)
# the H0 and Σs inside invgreen have already been updated by the parent call!(g, ω; ...)
update!(invgreen, ω)
igmat = matrix(invgreen)
fact = try
lu(igmat)
catch
argerror("Encountered a singular G⁻¹(ω) at ω = $ω, cannot factorize")
end
so = SparseLUGreenSlicer{C}(fact, nonextrng, unitcinds, unitcindsall, source64)
return so
end
#endregion
#endregion
############################################################################################
# SparseLUGreenSlicer indexing
#region
function Base.view(s::SparseLUGreenSlicer, i::Integer, j::Integer)
dstinds = unitcellinds_contacts(s, i)
srcinds = unitcellinds_contacts(s, j)
source64 = view(s.source64, :, 1:length(srcinds))
sourceC = view(s.sourceC, :, 1:length(srcinds))
return compute_or_retrieve_green(s, dstinds, srcinds, source64, sourceC)
end
Base.view(s::SparseLUGreenSlicer, ::Colon, ::Colon) =
compute_or_retrieve_green(s, s.unitcindsall, s.unitcindsall, s.source64, s.sourceC)
function Base.view(s::SparseLUGreenSlicer{C}, i::CellOrbitals, j::CellOrbitals) where {C}
# we only preallocate if we actually need to call ldiv! below (empty unitg cache)
must_call_ldiv! = !isdefined(s, :unitg)
# need similar because s.source64 has only ncols = number of orbitals in contacts
source64 = must_call_ldiv! ? similar_source64(s, j) : s.source64
# this will alias if C == ComplexF64
sourceC = must_call_ldiv! ? convert(Matrix{C}, source64) : s.sourceC
v = compute_or_retrieve_green(s, orbindices(i), orbindices(j), source64, sourceC)
return v
end
# Implements cache for full ldiv! solve (unitg)
# source64 and sourceC are of size (total_orbs_including_extended, length(srcinds))
function compute_or_retrieve_green(s::SparseLUGreenSlicer{C}, dstinds, srcinds, source64, sourceC) where {C}
if isdefined(s, :unitg) # we have already computed the full-cell slice
g = view(s.unitg, dstinds, srcinds)
else # we haven't, so we must do some work still
fact = s.fact
allinds = 1:size(fact, 1) # axes not defined on SparseArrays.UMFPACK.UmfpackLU
one!(source64, srcinds)
gext = ldiv!(fact, source64)
sourceC === gext || copy!(sourceC, gext) # required when C != ComplexF64
# allinds may include extended orbs -> exclude them from the view
dstinds´ = ifelse(dstinds === allinds, s.nonextrng, dstinds)
srcinds´ = convert(typeof(srcinds), 1:length(srcinds))
g = view(sourceC, dstinds´, srcinds´)
if srcinds == allinds
s.unitg = copy(view(gext, s.nonextrng, s.nonextrng)) # exclude extended orbs
end
end
return g
end
similar_source64(s::SparseLUGreenSlicer, ::CellOrbitals{<:Any,Colon}) =
similar(s.source64, size(s.source64, 1), maximum(s.nonextrng))
similar_source64(s::SparseLUGreenSlicer, j::CellOrbitals) =
similar(s.source64, size(s.source64, 1), norbitals(j))
# getindex must return a Matrix
Base.getindex(s::SparseLUGreenSlicer, i::CellOrbitals, j::CellOrbitals) = copy(view(s, i, j))
# the lazy unitg field only aliases source64 or a copy of it. It is not necessary to
# maintain the alias, as this is just a prealloc for a full-cell slice. We don't even need
# to copy it, since once it is computed, it is never modified, only read
function minimal_callsafe_copy(s::SparseLUGreenSlicer{C}, parentham, parentcontacts) where {C}
s´ = SparseLUGreenSlicer{C}(s.fact, s.nonextrng, s.unitcinds, s.unitcindsall, copy(s.source64))
isdefined(s, :unitg) && (s´.unitg = s.unitg)
return s´
end
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3149 | ############################################################################################
# Spectrum - for 0D AbstractHamiltonians
#region
struct AppliedSpectrumGreenSolver{B,S<:Spectrum{<:Any,B}} <: AppliedGreenSolver
spectrum::S
end
struct SpectrumGreenSlicer{C,B,S<:AppliedSpectrumGreenSolver{B}} <: GreenSlicer{C}
ω::C
solver::S
end
#region ## Constructor ##
#end
#region ## API ##
spectrum(s::AppliedSpectrumGreenSolver) = s.spectrum
# Parent ham needs to be non-parametric, so no need to alias
minimal_callsafe_copy(s::AppliedSpectrumGreenSolver, parentham, parentcontacts) =
AppliedSpectrumGreenSolver(s.spectrum)
minimal_callsafe_copy(s::SpectrumGreenSlicer, parentham, parentcontacts) =
SpectrumGreenSlicer(s.ω, s.solver)
#endregion
#region ## apply ##
apply(s::GS.Spectrum, h::Hamiltonian{<:Any,<:Any,0}, ::Contacts) =
AppliedSpectrumGreenSolver(spectrum(h; s.spectrumkw...))
apply(s::GS.Spectrum, h::ParametricHamiltonian, ::Contacts) =
argerror("Cannot use GS.Spectrum with ParametricHamiltonian. Apply parameters with h(;params...) first.")
apply(::GS.Spectrum, h::AbstractHamiltonian, ::Contacts) =
argerror("Can only use Spectrum with bounded Hamiltonians")
#endregion
#region ## call ##
function (s::AppliedSpectrumGreenSolver)(ω, Σblocks, corbitals)
g0slicer = SpectrumGreenSlicer(complex(ω), s)
gslicer = maybe_TMatrixSlicer(g0slicer, Σblocks, corbitals)
return gslicer
end
#endregion
#endregion
############################################################################################
# SpectrumGreenSlicer indexing
# We don't implement view over contacts because that is taken care of by TMatrixSlicer
#region
function Base.getindex(s::SpectrumGreenSlicer{C}, i::CellOrbitals{0}, j::CellOrbitals{0}) where {C}
oi, oj = orbindices(i), orbindices(j)
es, psis = spectrum(s.solver)
vi, vj = view(psis, oi, :), view(psis, oj, :)
vj´ = vj' ./ (s.ω .- es)
return vi * vj´
end
#endregion
############################################################################################
# densitymatrix
# specialized DensityMatrix method for GS.Spectrum
#region
struct DensityMatrixSpectrumSolver{T,R,C}
es::Vector{Complex{T}}
psirows::R
psicols::C
end
## Constructor
function densitymatrix(s::AppliedSpectrumGreenSolver, gs::GreenSlice)
# SpectrumGreenSlicer is 0D, so there is a single cellorbs in dict.
# If rows/cols are contacts, we need their orbrows/orbcols (unlike for gs(ω; params...))
check_nodiag_axes(gs)
i, j = only(cellsdict(orbrows(gs))), only(cellsdict(orbcols(gs)))
oi, oj = orbindices(i), orbindices(j)
es, psis = spectrum(s)
solver = DensityMatrixSpectrumSolver(es, _maybe_view(psis, oi), _maybe_view(psis, oj))
return DensityMatrix(solver, gs)
end
## API
## call
function (d::DensityMatrixSpectrumSolver)(mu, kBT; params...)
vi = d.psirows
vj´ = d.psicols' .* fermi.(d.es .- mu, kBT)
return vi * vj´
end
# if the orbindices cover all the unit cell, use matrices instead of
_maybe_view(m, oi) = length(oi) == size(m, 1) ? m : view(m, oi, :)
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3476 | ############################################################################################
# SelfEnergy(h, gs::GreenSlice, model::AbstractModel; sites...)
# A RegularSelfEnergy -> Σ(ω) = V' gs(ω) V, where V = model coupling from sites to slice
#region
struct SelfEnergyGenericSolver{C,G<:GreenSlice,S,S´,H<:AbstractHamiltonian} <: RegularSelfEnergySolver
hcoupling::H
V´::S´ # parent <- bath block view of call!_output(hcoupling)
gslice::G # bath GreenSlice, allows gslice(ω)
V::S # bath <- parent block view of call!_output(hcoupling)
V´g::Matrix{C} # prealloc matrix
Σ::Matrix{C} # prealloc matrix
end
#region ## Constructors ##
# nparent is the number of sites in gs, to know how to split hcoupling into (parent, bath) blocks
function SelfEnergyGenericSolver(gslice::GreenSlice, hcoupling::AbstractHamiltonian, nparent::Integer)
lastflatparent = last(flatrange(hcoupling, nparent))
parentinds, bathinds = 1:lastflatparent, lastflatparent+1:flatsize(hcoupling)
hmatrix = call!_output(hcoupling)
V = SparseMatrixView(view(hmatrix, bathinds, parentinds))
V´ = SparseMatrixView(view(hmatrix, parentinds, bathinds))
return SelfEnergyGenericSolver(gslice, hcoupling, V´, V)
end
function SelfEnergyGenericSolver(gslice::GreenSlice{T}, hcoupling::AbstractHamiltonian, V´::SparseMatrixView, V::SparseMatrixView) where {T}
V´g = Matrix{Complex{T}}(undef, size(V´, 1), size(V, 1))
Σ = Matrix{Complex{T}}(undef, size(V´, 1), size(V, 2))
return SelfEnergyGenericSolver(hcoupling, V´, gslice, V, V´g, Σ)
end
#endregion
#region ## API ##
function SelfEnergy(hparent::AbstractHamiltonian, gslice::GreenSlice, model::AbstractModel; transform = missing, sites...)
rows(gslice) === cols(gslice) ||
argerror("To attach a Greenfunction with `attach(h, g[cols, rows], coupling; ...)`, we must have `cols == rows`")
lsbath = orbrows(gslice)
lat0bath = lattice0D(lsbath)
transform === missing || transform!(lat0bath, transform)
lsparent = contact_orbslice(hparent; sites...)
lat0parent = lattice0D(lsparent)
lat0 = combine(lat0parent, lat0bath)
nparent, ntotal = nsites(lat0parent), nsites(lat0)
# apply model to lat0 to get hcoupling
interblockmodel = interblock(model, 1:nparent, nparent+1:ntotal)
hcoupling = hamiltonian(lat0, interblockmodel;
orbitals = vcat(norbitals(hparent), norbitals(gslice)))
solver´ = SelfEnergyGenericSolver(gslice, hcoupling, nparent)
return SelfEnergy(solver´, lsparent)
end
function call!(s::SelfEnergyGenericSolver, ω; params...)
gω = call!(s.gslice, ω; params...)
call!(s.hcoupling; params...)
V = matrix(update!(s.V))
V´ = matrix(update!(s.V´))
mul!(s.V´g, V´, gω)
Σω = mul!(s.Σ, s.V´g, V)
return Σω
end
call!_output(s::SelfEnergyGenericSolver) = s.Σ
function minimal_callsafe_copy(s::SelfEnergyGenericSolver)
hcoupling´ = minimal_callsafe_copy(s.hcoupling)
s´ = SelfEnergyGenericSolver(
hcoupling´,
minimal_callsafe_copy(s.V´, hcoupling´),
minimal_callsafe_copy(s.gslice),
minimal_callsafe_copy(s.V, hcoupling´),
copy(s.V´g), copy(s.Σ))
return s´
end
function selfenergy_plottables(s::SelfEnergyGenericSolver, ls::LatticeSlice)
p1 = s.hcoupling
p2 = ls
return (p1, p2)
end
#endregion
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 2157 | ############################################################################################
# SelfEnergy(h, model::AbstractModel; sites...)
# A SelfEnergy solver that implements an AbstractModel on a selection of sites
#region
struct SelfEnergyModelSolver{T,E,P<:ParametricHamiltonian{T,E,0}} <: RegularSelfEnergySolver
ph::P # pham over lat0D lattice == parent latslice
# pham has an extra parameter :ω_internal for the frequency
parentinds::Vector{Int} # stores the orb index in parent latslice for each ph orbital
end
#region ## Constructor ##
function SelfEnergyModelSolver(h::AbstractHamiltonian, model::AbstractModel, orbslice::OrbitalSliceGrouped)
modelω = model_ω_to_param(model) # see models.jl - transforms ω into a ω_internal param
siteinds = Int[]
# this converts orbslice to a 0D Lattice lat0
# and fills siteinds::Vector{Int} with the site index for each lat0 site (i.e. for sites ordered by sublattices)
lat0 = lattice0D(orbslice, siteinds)
# this is a 0D ParametricHamiltonian to build the Σ(ω) as a view over flat(ph(; ...))
ph = hamiltonian(lat0, modelω; orbitals = norbitals(h)) # WARNING: type-unstable orbs
# translation from orbitals in lat0 to orbslice indices
# i.e. orbital index on orbslice for each orbital in lat0 (this is just a reordering!)
parentinds = reordered_site_orbitals(siteinds, orbslice)
return SelfEnergyModelSolver(ph, parentinds)
end
#endregion
#region ## API ##
function SelfEnergy(h::AbstractHamiltonian, model::AbstractModel; kw...)
orbslice = contact_orbslice(h; kw...)
solver = SelfEnergyModelSolver(h, model, orbslice)
return SelfEnergy(solver, orbslice)
end
function call!(s::SelfEnergyModelSolver, ω; params...)
m = call!(s.ph, (); ω_internal = ω, params...)
rows = cols = s.parentinds
return view(m, rows, cols)
end
call!_output(s::SelfEnergyModelSolver) =
view(call!_output(s.ph), s.parentinds, s.parentinds)
minimal_callsafe_copy(s::SelfEnergyModelSolver) =
SelfEnergyModelSolver(minimal_callsafe_copy(s.ph), s.parentinds)
#endregion
#endregion top
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 792 | ############################################################################################
# Selfenergy(h, nothing; siteselection...)
# Empty self energy at selectors
#region
struct SelfEnergyEmptySolver{C} <: RegularSelfEnergySolver
emptymat::SparseMatrixCSC{C,Int}
end
function SelfEnergy(h::AbstractHamiltonian{T}, ::Nothing; kw...) where {T}
orbslice = contact_orbslice(h; kw...)
norbs = norbitals(orbslice)
emptyΣ = spzeros(Complex{T}, norbs, norbs)
solver = SelfEnergyEmptySolver(emptyΣ)
return SelfEnergy(solver, orbslice)
end
call!(s::SelfEnergyEmptySolver, ω; params...) = s.emptymat
call!_output(s::SelfEnergyEmptySolver) = s.emptymat
has_selfenergy(::SelfEnergyEmptySolver) = false
minimal_callsafe_copy(s::SelfEnergyEmptySolver) = s
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 13465 |
const GreenFunctionSchurEmptyLead{T,E} = GreenFunction{T,E,1,<:AppliedSchurGreenSolver,<:Any,<:EmptyContacts}
const GreenFunctionSchurLead{T,E} = GreenFunction{T,E,1,<:AppliedSchurGreenSolver,<:Any,<:Any}
############################################################################################
# SelfEnergy(h, glead::GreenFunctionSchurEmptyLead; kw...)
# Extended self energy solver for deflated ΣL or ΣR Schur factors of lead unitcell
#region
struct SelfEnergySchurSolver{T,B,V<:Union{Missing,Vector{Int}},H<:AbstractHamiltonian} <: ExtendedSelfEnergySolver
fsolver::SchurFactorsSolver{T,B}
hlead::H
isleftside::Bool
boundary::T
leadtoparent::V # orbital index in parent for each orbital in open lead surface
# so that Σlead[leadtoparent, leadtoparent] == Σparent
end
#region ## Constructors ##
SelfEnergySchurSolver(fsolver::SchurFactorsSolver, hlead, side::Symbol, boundary, parentinds = missing) =
SelfEnergySchurSolver(fsolver, hlead, isleftside(side), boundary, parentinds)
function isleftside(side)
if side == :L
return true
elseif side == :R
return false
else
argerror("Unexpeced side = $side in SelfEnergySchurSolver. Only :L and :R are allowed.")
end
end
#endregion
#region ## API ##
# This syntax checks that the selected sites of hparent match the L/R surface of the
# semi-infinite lead (possibly by first transforming the lead lattice with `transform`)
# and if so, builds the extended Self Energy directly, using the same intercell coupling of
# the lead, but using the correct site order of hparent
function SelfEnergy(hparent::AbstractHamiltonian, glead::GreenFunctionSchurEmptyLead; reverse = false, transform = missing, kw...)
lsparent = contact_orbslice(hparent; kw...)
schursolver = solver(glead)
fsolver = schurfactorsolver(schursolver)
boundary = schursolver.boundary
isfinite(boundary) ||
argerror("The form attach(h, glead; sites...) assumes a semi-infinite lead, but got `boundary = Inf`")
# we obtain latslice of open surface in gL/gR
gunit = reverse ? schursolver.gL : schursolver.gR
blocksizes(blockstructure(gunit)) == blocksizes(blockstructure(hparent)) ||
argerror("The orbital/sublattice structure of parent and lead Hamiltonians do not match. Maybe you meant to use `attach(h, g1D, coupling; sites...)`?")
# This is a SelfEnergy for a lead unit cell with a SelfEnergySchurSolver
Σlead = only(selfenergies(contacts(gunit)))
lslead = orbslice(Σlead)
# find lead site index in lslead for each site in lsparent
leadsites, displacement = lead_siteind_foreach_parent_siteind(lsparent, lslead, transform)
# convert lead site indices to lead orbital indices using lead's ContactOrbitals
leadorbs = reordered_site_orbitals(leadsites, cellsdict(contactorbitals(gunit)))
# translate glead unitcell by displacement, so it overlaps sel sites (modulo transform)
hlead = copy_lattice(parent(glead)) # don't copy, since you would break === link to fsolver
transform === missing || Quantica.transform!(hlead, transform)
translate!(hlead, displacement)
reverse && Base.reverse!(hlead) # only flips bravais vectors in place
solver´ = SelfEnergySchurSolver(fsolver, hlead, reverse, boundary, leadorbs)
return SelfEnergy(solver´, lsparent)
end
# find ordering of lslead sites that match lsparent sites, modulo a displacement
function lead_siteind_foreach_parent_siteind(lsparent, lslead, transform)
np, nl = nsites(lsparent), nsites(lslead)
np == nl || argerror("The contact surface has $np sites, which doesn't match the $nl sites in the lead surface")
sp = collect(sites(lsparent))
sl = collect(sites(lslead))
transform === missing || (sl .= transform.(sl))
displacement = mean(sp) - mean(sl)
sl .+= Ref(displacement)
tree = KDTree(sl)
indslead, dists = nn(tree, sp)
iszero(chop(maximum(dists))) && allunique(indslead) ||
argerror("The contact and lead surface sites have the same number of sites but do not match (modulo a displacement). Perhaps an error in the `attach` site selection? Otherwise consider using the `transform` keyword to specify an attachment transformation.")
return indslead, displacement
end
# This solver produces two solutions (L/R) for the price of one. We can opt out of calling
# it if we know it has already been called, so the solution is already in its call!_output
function call!(s::SelfEnergySchurSolver, ω;
skipsolve_internal = false, params...)
fsolver = s.fsolver
Rfactors, Lfactors = if skipsolve_internal
call!_output(fsolver)
else
# first apply params to the lead Hamiltonian
call!(s.hlead; params...)
call!(fsolver, ω)
end
factors = maybe_match_parent(ifelse(s.isleftside, Lfactors, Rfactors), s.leadtoparent)
return factors
end
call!_output(s::SelfEnergySchurSolver) = call!(s, missing; skipsolve_internal = true)
maybe_match_parent((V, ig, V´), leadtoparent) =
(view(V, leadtoparent, :), ig, view(V´, :, leadtoparent))
maybe_match_parent(factors, ::Missing) = factors
function minimal_callsafe_copy(s::SelfEnergySchurSolver)
hlead´ = minimal_callsafe_copy(s.hlead)
fsolver´ = minimal_callsafe_copy(s.fsolver, hlead´)
s´ = SelfEnergySchurSolver(fsolver´, hlead´, s.isleftside, s.boundary, s.leadtoparent)
return s´
end
function selfenergy_plottables(s::SelfEnergySchurSolver, ls::LatticeSlice)
p1 = ftuple(s.hlead; selector = siteselector(cells = SA[1]))
p2 = (ls, )
return p1, p2
end
#endregion
#endregion
############################################################################################
# SelfEnergy(h, glead, model::AbstractModel; kw...)
# Depending on whether glead has zero contacts or not, it yields an Extended or Generic
# self-energy. Model gives arbitrary couplings to parent Hamiltonian.
# For the Extended self energy, is uses g⁻¹ = h0 + ExtendedSchurΣ (adds extended sites)
# V and V´ are SparseMatrixView because they span only the coupled parent <-> unitcell
# sites, but for Extended they need to be padded with zeros over the extended sites
#region
mutable struct SelfEnergyCouplingSchurSolver{C,G,H,S<:SparseMatrixView,S´<:SparseMatrixView} <: ExtendedSelfEnergySolver
gunit::G
hcoupling::H
V´::S´ # aliases a view of hcoupling
g⁻¹::InverseGreenBlockSparse{C} # aliases the one in solver(gunit)::AppliedSparseLUGreenSolver
V::S # aliases a view of hcoupling
end
#region ## Constructors ##
# This is similar to SelfEnergyGenericSolver in generic.jl, but <: ExtendedSelfEnergySolver
# It relies on gunit having a AppliedSparseLUGreenSolver, so a sparse g⁻¹ can be extracted
function SelfEnergyCouplingSchurSolver(gunit::GreenFunction{T}, hcoupling::AbstractHamiltonian{T}, nparent) where {T}
hmatrix = call!_output(hcoupling)
invgreen = inverse_green(solver(gunit)) # the solver is AppliedSparseLUGreenSolver
lastflatparent = last(flatrange(hcoupling, nparent))
size(hmatrix, 1) == lastflatparent + length(orbrange(invgreen)) ||
internalerror("SelfEnergyCouplingSchurSolver builder: $(size(hmatrix, 1)) != $lastflatparent + $(length(orbrange(invgreen)))")
parentrng, leadrng = 1:lastflatparent, lastflatparent+1:size(hmatrix, 1)
sizeV = size(invgreen, 1), lastflatparent
V = SparseMatrixView(view(hmatrix, leadrng, parentrng), sizeV)
V´ = SparseMatrixView(view(hmatrix, parentrng, leadrng), reverse(sizeV))
return SelfEnergyCouplingSchurSolver(gunit, hcoupling, V´, invgreen, V)
end
#endregion
#region ## API ##
# With this syntax we attach the surface unit cell of the lead (left or right) to hparent
# through the model coupling. The lead is transformed with `transform` to align it to
# hparent. Then we apply the model to the 0D lattice of hparent's selected surface plus the
# lead unit cell, and then build an extended self energy
function SelfEnergy(hparent::AbstractHamiltonian, glead::GreenFunctionSchurLead, model::AbstractModel;
reverse = false, transform = missing, kw...)
schursolver = solver(glead)
gunit = copy_lattice(reverse ? schursolver.gL : schursolver.gR)
lat0lead = lattice(gunit) # lat0lead is the zero cell of parent(glead)
hlead = copy_lattice(parent(glead))
# move hlead and lat0lead to the left or right of boundary (if boundary is finite)
boundary = schursolver.boundary
xunit = isfinite(boundary) ? boundary + ifelse(reverse, -1, 1) : zero(boundary)
if !iszero(xunit)
bm = bravais_matrix(hlead)
translate!(hlead, bm * SA[xunit])
translate!(lat0lead, bm * SA[xunit])
end
# apply transform
if transform !== missing
transform!(lat0lead, transform)
transform!(hlead, transform)
end
# combine gunit and parent sites into lat0
lsparent = contact_orbslice(hparent; kw...)
isempty(lsparent) && argerror("No sites selected in the parent lattice")
lat0parent = lattice0D(lsparent)
lat0 = combine(lat0parent, lat0lead)
nparent, ntotal = nsites(lat0parent), nsites(lat0)
# apply model to lat0 to get hcoupling
interblockmodel = interblock(model, 1:nparent, nparent+1:ntotal)
hcoupling = hamiltonian(lat0, interblockmodel;
orbitals = vcat(norbitals(hparent), norbitals(hlead)))
gslice = glead[cells = SA[xunit]]
Σs = selfenergies(contacts(glead))
solver´ = extended_or_regular_solver(Σs, gslice, gunit, hcoupling, nparent)
reverse && Base.reverse!(hlead)
return SelfEnergy(solver´, lsparent)
end
# No contacts -> Extended solver
extended_or_regular_solver(::Tuple{}, gslice, gunit, hcoupling, nparent) =
SelfEnergyCouplingSchurSolver(gunit, hcoupling, nparent)
# With contacts -> Regular Generic solver - see generic.jl
extended_or_regular_solver(::Tuple, gslice, gunit, hcoupling, nparent) =
SelfEnergyGenericSolver(gslice, hcoupling, nparent)
function call!(s::SelfEnergyCouplingSchurSolver, ω; params...)
call!(s.hcoupling; params...)
call!(s.gunit, ω; params...)
update!(s.V)
update!(s.V´)
return matrix(s.V´), matrix(s.g⁻¹), matrix(s.V)
end
call!_output(s::SelfEnergyCouplingSchurSolver) = matrix(s.V´), matrix(s.g⁻¹), matrix(s.V)
function minimal_callsafe_copy(s::SelfEnergyCouplingSchurSolver)
hcoupling´ = minimal_callsafe_copy(s.hcoupling)
gunit´ = minimal_callsafe_copy(s.gunit)
s´ = SelfEnergyCouplingSchurSolver(gunit´, hcoupling´,
minimal_callsafe_copy(s.V´, hcoupling´),
inverse_green(solver(gunit´)), # alias of the invgreen from the solver
minimal_callsafe_copy(s.V, hcoupling´))
return s´
end
function selfenergy_plottables(s::SelfEnergyCouplingSchurSolver, ls::LatticeSlice)
p1 = ftuple(s.hcoupling; hide = :sites)
p2 = hamiltonian(s.gunit)
p3 = ls
return (p1, p2, p3)
end
#endregion
#endregion
############################################################################################
# SelfEnergy(h, glead::GreenFunctionSchurLead; kw...)
# Regular (Generic) self energy, since Extended is not possible for lead with contacts
# Otherwise equivalent to SelfEnergy(h, glead::GreenFunctionSchurEmptyLead; kw...)
#region
function SelfEnergy(hparent::AbstractHamiltonian, glead::GreenFunctionSchurLead; reverse = false, transform = missing, sites...)
blocksizes(blockstructure(glead)) == blocksizes(blockstructure(hparent)) ||
argerror("The orbital/sublattice structure of parent and lead Hamiltonians do not match")
# find boundary ± 1
schursolver = solver(glead)
boundary = schursolver.boundary
isfinite(boundary) ||
argerror("The form attach(h, glead; sites...) assumes a semi-infinite lead, but got `boundary = Inf`")
xunit = boundary + ifelse(reverse, -1, 1)
gslice = glead[cells = SA[xunit]]
# lattice slices for parent and lead unit cell
lsparent = contact_orbslice(hparent; sites...)
# The above is currently broken when unitcell surface does not match full unit cell. Perhaps use some version of this:
# Compute lslead as lead unicell surface:
# gL and gR are unitcell GreenFunctions with ΣL and ΣR, but same ordering as gslice
gunit = reverse ? schursolver.gL : schursolver.gR
Σlead = only(selfenergies(contacts(gunit)))
lslead = orbslice(Σlead)
# find lead site index in lslead for each site in lsparent
leadsites, displacement = lead_siteind_foreach_parent_siteind(lsparent, lslead, transform)
displacement += bravais_matrix(hamiltonian(glead)) * SA[xunit]
# convert lead site indices to lead orbital indices using lead's ContactOrbitals
leadorbs = reordered_site_orbitals(leadsites, cellsdict(contactorbitals(glead)))
# build V and V´ as a leadorbs reordering of inter-cell harmonics of hlead
hlead = copy_lattice(hamiltonian(glead)) # careful, not parent, which could be a ParametricHamiltonian
h₊₁, h₋₁ = hlead[SA[1]], hlead[SA[-1]]
V = SparseMatrixView(view(h₊₁, :, leadorbs))
V´ = SparseMatrixView(view(h₋₁, leadorbs, :))
transform === missing || Quantica.transform!(hlead, transform)
translate!(hlead, displacement)
reverse && Base.reverse!(hlead)
solver´ = SelfEnergyGenericSolver(gslice, hlead, V´, V)
return SelfEnergy(solver´, lsparent)
end
#endregion
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 280 | using Test
using Quantica
@testset "Quantica.jl" begin
include("test_lattice.jl")
include("test_hamiltonian.jl")
include("test_bandstructure.jl")
include("test_greenfunction.jl")
include("test_show.jl")
Sys.WORD_SIZE == 64 && include("test_plots.jl")
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 6512 | using Quantica: nsubbands, nvertices, nedges, nsimplices
using Random
@testset "basic bandstructures" begin
h = LatticePresets.honeycomb() |> hamiltonian(hopping(-1))
b = bands(h, subdiv(-pi, pi, 13), subdiv(-pi, pi, 13), showprogress = false)
@test nsubbands(b) == 1
h = LatticePresets.honeycomb() |> hamiltonian(hopping(-1)) |> supercell(2)
b = bands(h, 0.99 * subdiv(-pi, pi, 13), 0.99 * subdiv(-pi, pi, 13), showprogress = false)
@test nsubbands(b) == 3
h = LatticePresets.honeycomb() |>
hamiltonian(onsite(0.5, sublats = :A) + onsite(-0.5, sublats = :B) +
hopping(-1, range = 1/√3))
b = h |> bands(subdiv(-pi, pi, 13), subdiv(-pi, pi, 15), showprogress = false)
@test nsubbands(b) == 2
h = LatticePresets.cubic() |> hamiltonian(hopping((r,dr)-> im*dr'SA[1,1.5,2])) |> supercell(2)
b = bands(h, subdiv(-pi, pi, 5), subdiv(-pi, pi, 7), subdiv(-pi, pi, 5), showprogress = false)
@test nsubbands(b) == 1
b = bands(h, subdiv(0, 1, 4), mapping = (:Γ, :X), showprogress = false)
@test nsubbands(b) == 1
b = bands(h, subdiv(0, 4, 13), mapping = (:Γ, :X, (0, π), :Z, :Γ), showprogress = false)
@test nsubbands(b) == 1
@test nvertices(b) == 32
b = bands(h, subdiv(1:5, (4,5,6,7)), mapping = [1,2,3,5,4] => (:Γ, :X, (0, π), :Z, :Γ), showprogress = false)
@test nsubbands(b) == 1
@test nvertices(b) == 42
b = bands(h, subdiv((1,3,4), 5), mapping = (1,4,3) => (:Γ, :X, :Z), showprogress = false)
@test nsubbands(b) == 1
@test nvertices(b) == 23
# complex spectra
h = LatticePresets.honeycomb() |> hamiltonian(onsite(im) + hopping(-1)) |> supercell(2)
b = bands(h, subdiv(-pi, pi, 13), subdiv(-pi,pi, 13), showprogress = false)
@test nsubbands(b) == 1
# spectrum sorting
h = LatticePresets.honeycomb() |> hamiltonian(hopping(-1)) |> supercell(10)
b = bands(h, subdiv(0, 1, 7); solver = ES.Arpack(sigma = 0.1im, nev = 12), mapping = (:K, :K´), showprogress = false)
@test nsubbands(b) == 1
# defect insertion and patching
h = LatticePresets.honeycomb() |> hamiltonian(hopping(-1))
b = bands(h, subdiv(0, 2pi, 8), subdiv(0, 2pi, 8); showprogress = false, defects = ((2pi/3, 4pi/3), (4pi/3, 2pi/3)), patches = 10)
@test nvertices(b) == 140
end
@testset "functional bandstructures" begin
hc = LatticePresets.honeycomb() |> hamiltonian(hopping(-1, sublats = :A=>:B) |> plusadjoint) |> supercell(3)
hf1((x,)) = Matrix(Quantica.call!(hc, (x, -x)))
m = subdiv(0, 1, 4)
b = bands(hf1, m, showprogress = false, mapping = x -> 2π * x)
@test nsubbands(b) == 1
@test nsimplices(b) == 36
# teting thread safety - we should fall back to a single thread for hf2::Function
hf2((x,)) = Quantica.call!(hc, (x, -x))
m = subdiv(0,2π,40)
Random.seed!(1) # to have ArnoldiMethod be deterministic
b = bands(hf2, m, showprogress = false, solver = ES.ArnoldiMethod(nev = 18))
@test nsubbands(b) <= 2 # there is a random, platform-dependent component to this
hp2 = LatticePresets.honeycomb() |> hamiltonian(hopping(-1), @hopping!((t; s) -> s*t))
hf3((s, x)) = Matrix(Quantica.call!(hp2, (x, x); s))
m = subdiv(0, pi, 13)
b = bands(hf3, m, m, showprogress = false)
@test nsubbands(b) == 1
@test nsimplices(b) == 288 * 2
b = bands(hf3, m, m, showprogress = false, transform = ω -> ω^2) # degeneracies doubled
@test nsubbands(b) == 1
@test nsimplices(b) == 288
end
@testset "parametric bandstructures" begin
ph = LatticePresets.linear() |> hamiltonian(onsite(0I) + hopping(-I), orbitals = Val(2)) |> supercell(2) |>
hamiltonian(@onsite!((o; k) -> o + k*I), @hopping!((t; k = 2, p = [1,2])-> t - k*I .+ p'p))
mesh2D = subdiv(0, 1, 15), subdiv(0, 2π, 15)
b = bands(ph, mesh2D..., mapping = (x, k) -> ftuple(x; k = k), showprogress = false)
@test nsubbands(b) == 4
b = bands(ph, mesh2D..., mapping = (k, φ) -> ftuple(1; k = k, p = SA[1, φ]), showprogress = false)
@test nsubbands(b) == 1
ph = LatticePresets.linear() |> hamiltonian(onsite(0I) + hopping(-I), orbitals = Val(2)) |> supercell(2) |>
supercell |> hamiltonian(@onsite!((o; k) -> o + k*I), @hopping!((t; k = 2, p = [1,2])-> t - k*I .+ p'p))
b = bands(ph, mesh2D..., mapping = (k, φ) -> ftuple(; k = k, p = SA[1, φ]), showprogress = false)
@test nsubbands(b) == 1
# multithreading loop does not throw error
b = bands(ph, mesh2D..., mapping = (k, φ) -> ftuple(; k, p = SA[1, φ]), showprogress = false)
@test nsubbands(b) == 1
end
@testset "spectrum" begin
h = LatticePresets.honeycomb() |> hamiltonian(onsite(2I) + hopping(I, range = 1), orbitals = (Val(2), Val(1))) |> supercell(2) |> supercell
for solver in (ES.LinearAlgebra(), ES.Arpack(), ES.KrylovKit(), ES.ArnoldiMethod(), ES.ShiftInvert(ES.ArnoldiMethod(), 0.4))
sp = spectrum(h; solver)
e1, s1 = sp
e2, s2 = first(sp), last(sp)
e3, s3 = energies(sp), states(sp)
@test e1 === e2 === e3
@test s1 === s2 === s3
@test Tuple(sp) === (e1, s1)
for sp´ in (sp[[3,5]], sp[1:2], sp[[2,3], around = 0])
@test length(sp´[1]) == 2
@test size(sp´[2]) == (Quantica.flatsize(h), 2)
end
@test sp[around = 0] isa Tuple
@test sp[2, around = 0] isa Tuple
@test sp[[2,3,4], around = 0] == sp[2:4, around = 0]
@test sp[[2,3,4], around = 0] !== sp[2:4, around = 0]
@test sp[[2,4,3], around = -Inf][2] == hcat(sp[2][2], sp[4][2], sp[3][2])
end
end
@testset "bandstructures/spectrum slices" begin
h = LatticePresets.honeycomb() |> hamiltonian(hopping(-1, range = 1/√3)) |> supercell(4)
b = bands(h, subdiv(0, 2pi, 13), subdiv(0, 2pi, 15), showprogress = false)
@test b[(:, pi)] isa Vector{Quantica.Subband{Float64,2}}
@test length(b[(pi,)]) == length(b[(pi, :)]) == length(b[(pi, :, :)]) == 1
@test b[1] isa Quantica.Subband
@test b[[1,end]] isa Vector{<:Quantica.Subband}
m = Quantica.slice(b, (:,1))
@test only(m) isa Quantica.Mesh
m = Quantica.slice(b[1], (:,1))
@test m isa Quantica.Mesh
s = spectrum(b, (pi, pi))
s´ = spectrum(torus(h, (pi, pi)))
s´´ = spectrum(h, (pi, pi))
ϵs, ψs = ES.LinearAlgebra()(Matrix(h((pi, pi))))
@test s isa Quantica.Spectrum
@test Tuple(s) == Tuple(s´) == Tuple(s´´) == (ϵs, ψs)
@test s[1:10, around = 0] == s´[1:10, around = 0] == s´´[1:10, around = 0]
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 21369 | using Quantica: GreenFunction, GreenSlice, GreenSolution, zerocell, CellOrbitals, ncontacts,
solver
function testgreen(h, s; kw...)
ω = 0.2
g = greenfunction(h, s)
@test g isa GreenFunction
gω = g(ω; kw...)
@test gω isa GreenSolution
@test g(0) isa GreenSolution # promote Int to AbstractFloat to add eps
L = Quantica.latdim(lattice(h))
z = zero(SVector{L,Int})
o = Quantica.unitvector(1, SVector{L,Int})
conts = ntuple(identity, ncontacts(h))
locs = (sites(z, :), sites(z, 2), sites(1:2), sites(o, (1,2)),
CellOrbitals(o, 1), CellOrbitals(z, 1:2), CellOrbitals(z, SA[2,1]),
conts...)
for loc in locs, loc´ in locs
gs = g[loc, loc´]
@test gs isa GreenSlice
gsω = gs(ω; kw...)
gωs = gω[loc, loc´]
@test gsω == gωs
loc === loc´ && @test all(x->imag(x)<=0, diag(gωs))
end
return nothing
end
@testset "basic greenfunctions" begin
h0 = LP.honeycomb() |> hamiltonian(hopping(SA[0 1; 1 0]), orbitals = 2) |> supercell(region = RP.circle(10))
s0 = GS.SparseLU()
s0´ = GS.Spectrum()
h1 = LP.square() |> hamiltonian(@onsite((; o = 1) -> o*I) + hopping(SA[0 1; 1 0]), orbitals = 2) |> supercell((1,0), region = r -> abs(r[2]) < 2)
s1 = GS.Schur()
s1´ = GS.Schur(boundary = -1)
for (h, s) in zip((h0, h0, h1, h1), (s0, s0´, s1, s1´))
testgreen(h, s; o = 2)
end
# This ensures that flat_sync! is called with multiorbitals when call!-ing ph upon calling g
g = LP.square() |> hamiltonian(@onsite(()->I), orbitals = 2) |> supercell |> greenfunction
@test g[](0.0 + 0im) ≈ SA[-1 0; 0 -1]
g = LP.linear() |> hopping(0) + @onsite((;ω=0) -> ω)|> greenfunction;
@test only(g[sites(SA[1],1)](1.0; ω = 0)) ≈ 1.0 atol = 0.000001
@test only(g[sites(SA[1],1)](1.0; ω = -1)) ≈ 0.5 atol = 0.000001
end
@testset "greenfunction with contacts" begin
g = LP.linear() |> hamiltonian(hopping(I), orbitals = 2) |> attach(@onsite(ω->im*I), cells = 1) |> attach(@onsite(ω->im*I), cells = 4) |> greenfunction
@test size(g[(; cells = 2), (; cells = 3)](0.2)) == (2,2)
h0 = LP.square() |> hamiltonian(hopping(SA[0 1; 1 0]), orbitals = 2) |> supercell(region = RP.circle(10))
s0 = GS.SparseLU()
s0´ = GS.Spectrum()
h1 = LP.square() |> hamiltonian(@onsite((; o = 1) -> o*I) + hopping(SA[0 1; 1 0]), orbitals = 2) |> supercell((1,0), region = r -> abs(r[2]) < 2)
s1 = GS.Schur()
s1´ = GS.Schur(boundary = -1)
sites´ = (; region = r -> abs(r[2]) < 2 && r[1] == 0)
# non-hermitian Σ model
mod = @onsite((ω, r; o = 1) -> (o - im*ω)*I) + @onsite((ω, s; o = 1, b = 2) --> o*b*pos(s)[1]*I) +
plusadjoint(@onsite((ω; p=1)-> p*I) + @hopping((ω, r, dr; t = 1) -> im*dr[1]*t*I; range = 1))
g0, g0´, g1´ = greenfunction(h0, s0), greenfunction(h0, s0´), greenfunction(h1, s1´)
for (h, s) in zip((h0, h0, h1, h1), (s0, s0´, s1, s1´))
oh = h |> attach(nothing; sites´...)
testgreen(oh, s)
oh = h |> attach(mod; sites´...)
testgreen(oh, s)
for glead in (g0, g0´, g1´)
oh = h |> attach(glead[sites´], hopping(I; range = (1,2)); sites´...)
testgreen(oh, s)
L´ = Quantica.latdim(lattice(parent(glead)))
iszero(L´) && continue
oh = h |> attach(glead; sites´...)
testgreen(oh, s)
oh = h |> attach(glead, hopping(I; range = (1,2)); sites´...)
testgreen(oh, s)
end
end
# SparseLU and Spectrum are equivalent
@test g0[(; region = RP.circle(2)), (; region = RP.circle(3))](0.2) ≈
g0´[(; region = RP.circle(2)), (; region = RP.circle(3))](0.2)
# contacts that don't include all sublattices
h = lattice(sublat(0, name = :L), sublat(1, name = :R)) |> hamiltonian
@test h |> attach(onsite(ω->1), sublats = :L) |> greenfunction isa GreenFunction
# multiple contacts
h0 = LP.square(type = Float32) |> hopping(1)
hc = h0 |> supercell(region = RP.rectangle((2, 2)))
glead = h0 |> supercell((1,0), region = r -> -1 <= r[2] <= 1) |> attach(nothing; cells = SA[1]) |> greenfunction(GS.Schur(boundary = 0));
g = hc |> attach(glead, region = r -> r[1] == 1) |> attach(glead, region = r -> r[1] == -1, reverse = true) |> attach(onsite(ω->1), region = r -> r == SA[0,0]) |> greenfunction
@test Quantica.ncontacts(g) == 3
# 1D leads with contacts
glead = LP.honeycomb() |> hopping(1) |> supercell((1,-1), region = r -> 0<=r[2]<=5) |> attach(nothing, cells = SA[5]) |> greenfunction(GS.Schur(boundary = 0));
g = LP.honeycomb() |> hopping(1) |> supercell(region = r -> -6<=r[1]<=6 && 0<=r[2]<=5) |> attach(glead, region = r -> r[1] > 5.1) |> greenfunction
@test g isa GreenFunction
# attach(gslice, model; transform)
Rot = r -> SA[0 -1; 1 0] * r
glead = LP.square(a0 = 1, dim = 2) |> onsite(4) - hopping(1) |> supercell((1,0), region = r -> -1 <= r[2] <= 1) |> greenfunction(GS.Schur(boundary = 0));
central = LP.honeycomb() |> onsite(4) - hopping(1) |> supercell(region = RP.rectangle((3,3))) |> transform(Rot)
g = central |> attach(glead[cells = 1], -hopping(1), region = r -> r[1] > 1.3 && -1.1 <= r[2] <= 1.1, transform = r -> r + SA[1.2,0]) |> greenfunction
@test g isa GreenFunction
@test_throws ArgumentError central |> attach(glead[cells = 1], -hopping(1), region = r -> r[1] > 2.3 && -1.1 <= r[2] <= 1.1, transform = r -> r + SA[1.2,0])
# cheap views
g = LP.linear() |> hopping(1) |> attach(@onsite((ω; p = 1) -> p), cells = 1) |> attach(@onsite((ω; p = 1) -> p), cells = 3) |> greenfunction
gs = g(0.2)
@test view(gs, 1, 2) isa SubArray
@test (@allocations view(gs, 1, 2)) <= 2 # should be 1, but in some platforms/versions it could be 2
end
@testset "GreenFunction partial evaluation" begin
g = LP.linear() |> hamiltonian(@hopping((; q = 1) -> q*I), orbitals = 2) |> attach(@onsite((ω; p = 0) ->p*SA[0 1; 1 0]), cells = 1) |> greenfunction
g´ = g(p = 2)
h´, h = hamiltonian(g´), hamiltonian(g)
@test h´ !== h
@test h´ == h(p = 2)
@test g(0.2, p = 2)[] == g´(0.2)[]
@test g(0.2, p = 1)[] != g´(0.2, p = 1)[] # p = 1 is ignored by g´, fixed to p = 2
@test solver(g) !== solver(parent(solver(g´))) # no aliasing
gs = g[]
gs´ = gs(p = 2)
@test gs´ isa GreenSlice
@test gs´(0.3) == gs(0.3, p = 2)
@test gs´(0.3, p = 1) != gs(0.3, p = 1)
end
@testset "GreenSolvers applicability" begin
h = HP.graphene()
@test_throws ArgumentError greenfunction(h, GS.Schur())
@test_throws ArgumentError greenfunction(h, GS.KPM())
@test_throws ArgumentError greenfunction(h, GS.SparseLU())
@test_throws ArgumentError greenfunction(h, GS.Spectrum())
h = supercell(h)
@test_throws ArgumentError greenfunction(h, GS.Schur())
@test_throws ArgumentError greenfunction(h, GS.Bands())
h = LP.honeycomb() |> @onsite((; o = 1) -> o*I) |> supercell
@test_throws ArgumentError greenfunction(h, GS.Spectrum())
@test greenfunction(h(), GS.Spectrum()) isa GreenFunction
end
@testset "greenfunction KPM" begin
g = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1)) |> supercell(region = RP.circle(20)) |>
attach(nothing, region = RP.circle(1)) |> greenfunction(GS.KPM(order = 300, bandrange = (-3.1, 3.1)))
ρs = ldos(g[1], kernel = missing)
for ω in -3:0.1:3
@test all(>=(0), ρs(ω))
end
ω = -0.1
gωs = g[1](ω)
ρflat = -imag.(diag(gωs))/pi
@test all(>(0), ρflat)
ρs = ldos(g[1], kernel = missing)
ρ = ρs(ω)
@test sum(ρ) ≈ sum(ρflat)
@test (length(ρflat), length(ρ)) == (9, 9)
ω = -0.1
gωs = g[1](ω)
ρflat = -imag.(diag(gωs))/pi
@test all(>(0), ρflat)
ρs = ldos(g[1], kernel = I)
ρ = ρs(ω)
@test ρ isa OrbitalSliceVector
@test sum(ρ) ≈ sum(ρflat)
@test (length(ρflat), length(ρ)) == (9, 6)
g = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1)) |> supercell(region = RP.circle(20)) |>
attach(nothing, region = RP.circle(1)) |> greenfunction(GS.KPM(order = 500))
gωs = g[1](ω)
ρflat´ = -imag.(diag(gωs))/pi
ρ´ = ldos(g[1])(ω)
@test all(<(0.01), abs.(ρ .- ρ´))
@test all(<(0.01), abs.(ρflat .- ρflat´))
@test_throws ArgumentError g[sites((), 3:4)](ω)
@test g[:](ω) == g[1](ω) == g(ω)[1] == g(ω)[:]
g´ = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1)) |> supercell(region = RP.circle(20)) |>
attach(g[1], hopping((r, dr) -> I, range = 1), region = RP.circle(1)) |> attach(nothing, region = RP.circle(1, (2,2))) |>
greenfunction(GS.KPM(order = 500))
ρs = ldos(g´[1])
for ω in -3:0.1:3
@test all(>=(0), ρs(ω))
end
h = HP.graphene(a0 = 1) |> supercell(region = RP.circle(20))
hmat = h[()]
g = h |> attach(nothing, region = RP.circle(1)) |> greenfunction(GS.KPM(order = 500, kernel = hmat))
ρs = ldos(g[1])
for ω in subdiv(-3, 3, 20)
@test all(x -> sign(x) == sign(ω), ρs(ω))
end
end
@testset "greenfunction bands" begin
h = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1))
ga = h |> attach(nothing, cells = 1) |> greenfunction()
gb = h |> attach(nothing, cells = 1) |> greenfunction(GS.Bands(boundary = 2 => -3))
for g in (ga, gb)
@test Quantica.solver(g) isa Quantica.AppliedBandsGreenSolver
@test bands(g) isa Quantica.Subband
g1 = g[1](0.2)
@test size(g1) == (3,3)
@test abs(g1[2,2] - 1/0.2) < 0.02
@test all(x -> Quantica.chop(imag(x)) ≈ 0, g1[2,:])
@test all(x -> Quantica.chop(imag(x)) ≈ 0, g1[:,2])
g2 = g[sites((0,0),:), sites((1,1),2)](0.2)
@test size(g2) == (3,1)
end
ha = LP.honeycomb() |> hopping(1) |> supercell((1,-1), region = r -> abs(r[2])<2)
hb = LP.honeycomb() |> hopping(1, range = 1) |> supercell((1,-1), region = r -> abs(r[2])<2)
hc = LP.honeycomb() |> hamiltonian(hopping(I, range = 1), orbitals = (2,1)) |> supercell((3,-3), region = r -> abs(r[2])<2)
hd = LP.square() |> hopping(1) |> supercell((1,0), region = r -> abs(r[2])<2)
for h in (ha, hb, hc, hd)
gc = h |> attach(nothing, cells = 3) |> greenfunction(GS.Bands(subdiv(-π, π, 89)))
gd = h |> attach(nothing, cells = 3) |> greenfunction(GS.Schur())
@test maximum(abs.(gc[cells = 1](0.5) - gd[cells = 1](0.5))) < 0.08
@test all(>=(0), ldos(gc[1])(0.2))
@test all(>=(0), ldos(gc[region = RP.circle(2)])(0.2))
gc = h |> attach(nothing, cells = 3) |> greenfunction(GS.Bands(subdiv(-π, π, 89), boundary = 1 => 0))
gd = h |> attach(nothing, cells = 3) |> greenfunction(GS.Schur(boundary = 0))
@test maximum(abs.(gc[cells = 1](0.5) - gd[cells = 1](0.5))) < 0.08
@test all(>=(0), ldos(gc[1])(0.2))
@test all(>=(0), ldos(gc[region = RP.circle(2)])(0.2))
end
# Issue #252
g = LP.honeycomb() |> hopping(1, range = 3) |> supercell((1,-1), (1,1)) |>
attach(nothing, region = RP.circle(1, SA[2,3])) |> attach(nothing, region = RP.circle(1, SA[3,-3])) |>
greenfunction(GS.Bands(subdiv(-π, π, 13), subdiv(-π, π, 13), boundary = 2=>-3))
@test g isa GreenFunction
@test iszero(g[cells = SA[1,-3]](0.2))
# Issue #257
h = LP.square() |> hopping(-1)
ϕs = subdiv(0, 0.6π, 2)
b = bands(h, ϕs, ϕs, showprogress = false)
g = h |> attach(@onsite(ω->-im), cells = SA[20,0]) |> greenfunction(GS.Bands(ϕs, ϕs))
@test g(-1)[sites(SA[1,-1], 1), sites(1)] isa AbstractMatrix
end
@testset "greenfunction 32bit" begin
# GS.Bands
# skip for older versions due to https://github.com/JuliaLang/julia/issues/53054
# which makes solve not deterministic when adding sufficiently many band simplices
if VERSION >= v"1.11.0-DEV.632"
h = HP.graphene(type = Float32)
s = GS.Bands()
testgreen(h, s)
end
h = HP.graphene(type = Float32, a0 = 1) |> supercell(10) |> supercell
s = GS.SparseLU()
testgreen(h, s)
# GS.Schur
h = HP.graphene(type = Float32, a0 = 1) |> supercell((1,-1), region = r -> 0<=r[2]<=3)
s = GS.Schur()
testgreen(h, s)
s = GS.Schur(boundary = -1)
testgreen(h, s)
# GS.KPM
g = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1), type = Float32) |>
supercell(region = RP.circle(20)) |>
attach(nothing, region = RP.circle(1)) |> greenfunction(GS.KPM(order = 300, bandrange = (-3.1, 3.1)))
ρs = ldos(g[1], kernel = missing)
for ω in -3:0.1:3
@test all(>=(0), ρs(ω))
end
end
@testset "diagonal slicing" begin
g = HP.graphene(a0 = 1, t0 = 1, orbitals = (2,1)) |> supercell((2,-2), region = r -> 0<=r[2]<=5) |>
attach(nothing, cells = 2, region = r -> 0<=r[2]<=2) |> attach(nothing, cells = 3) |>
greenfunction(GS.Schur(boundary = -2))
ω = 0.6
@test g[diagonal(2)](ω) isa OrbitalSliceVector
@test g[diagonal(2)](ω) == g(ω)[diagonal(2)]
@test size(g[diagonal(1)](ω)) == (12,)
@test size(g[diagonal(1, kernel = I)](ω)) == (8,)
@test length(g[diagonal(:)](ω)) == length(g[diagonal(1)](ω)) + length(g[diagonal(2)](ω)) == 48
@test length(g[diagonal(:, kernel = I)](ω)) == length(g[diagonal(1, kernel = I)](ω)) + length(g[diagonal(2, kernel = I)](ω)) == 32
@test length(g[diagonal(cells = 2:3)](ω)) == 72
@test length(g[diagonal(cells = 2:3, kernel = I)](ω)) == 48
@test ldos(g[1])(ω) ≈ -imag.(g[diagonal(1; kernel = I)](ω)) ./ π
end
@testset "OrbitalSliceArray slicing" begin
g = LP.linear() |> hopping(1) + onsite(1) |> supercell(4) |> greenfunction
gmat = g[cells = SA[2]](0.2)
@test gmat isa Quantica.OrbitalSliceMatrix
@test size(gmat) == (4, 4)
gmat´ = gmat[cells = SA[1]]
@test gmat´ isa Quantica.OrbitalSliceMatrix
@test isempty(gmat´)
gmat = g[(; cells = SA[2]), sites(SA[1], 1:2)](0.2)
@test gmat isa Matrix
@test size(gmat) == (4, 2)
gmat = g[(; cells = SA[1]), (; region = r -> 3<=r[1]<=5)](0.2)
@test gmat isa Quantica.OrbitalSliceMatrix
@test size(gmat) == (4, 3)
gmat´ = gmat[(; cells = SA[1]), (; cells = SA[0])]
@test gmat´ isa Quantica.OrbitalSliceMatrix
@test size(gmat´) == (4, 1)
gmat´ = gmat[(; cells = SA[1])]
@test gmat´ isa Quantica.OrbitalSliceMatrix
@test size(gmat´) == (4, 2)
@test_throws Quantica.Dictionaries.IndexError gmat[sites(SA[1],:)] # `:` means all sites in cell
gmat´ = gmat[sites(SA[1], 1:2)]
@test gmat´ isa Matrix
@test size(gmat´) == (2, 2)
c = sites(SA[1], 1)
view(gmat, c)
@test (@allocations view(gmat, c)) <= 2
end
function testcond(g0; nambu = false)
G1 = conductance(g0[1]; nambu)
G2 = conductance(g0[2]; nambu)
G12 = conductance(g0[1,2]; nambu)
T12 = transmission(g0[1,2])
@test_throws ArgumentError transmission(g0[1])
@test_throws ArgumentError transmission(g0[1, 1])
for ω in -3:0.1:3
ωc = ω + im*1e-10
@test ifelse(nambu, 6.000001, 3.00000001) >= G1(ωc) >= 0
@test G1(ωc) ≈ G1(-ωc) ≈ G2(ωc) ≈ G2(-ωc)
@test T12(ωc) ≈ T12(-ωc)
nambu || @test G1(ωc) ≈ T12(ωc) atol = 0.000001
@test G12(ωc) ≈ G12(-ωc) atol = 0.000001
nambu || @test G1(ωc) ≈ -G12(ωc) atol = 0.000001
end
end
function testjosephson(g0)
J1 = josephson(g0[1], 4; phases = subdiv(0, pi, 10))
J2 = josephson(g0[2], 4; phases = subdiv(0, pi, 10))
@test all(>=(0), Quantica.chop.(J1()))
@test all(((j1, j2) -> ≈(j1, j2, atol = 0.000001)).(J1(), J2()))
end
@testset "greenfunction observables" begin
# single-orbital vs two-orbital
g1 = LP.square() |> supercell((1,0), region = r->-2<r[2]<2) |> hamiltonian(@hopping((r, dr; B = 0.1) -> I * cis(B * dr' * SA[r[2],-r[1]])), orbitals = 1) |> greenfunction(GS.Schur(boundary = 0));
g2 = LP.square() |> supercell((1,0), region = r->-2<r[2]<2) |> hamiltonian(@hopping((r, dr; B = 0.1) -> I * cis(B * dr' * SA[r[2],-r[1]])), orbitals = 2) |> greenfunction(GS.Schur(boundary = 0));
J1 = current(g1[cells = SA[1]])
J2 = current(g2[cells = SA[1]])
@test size(J1(0.2)) == size(J2(0.2)) == (3, 3)
@test 2*J1(0.2; B = 0.1) ≈ J2(0.2; B = 0.1)
ρ = densitymatrix(g1[cells = SA[1]], 5)
@test all(≈(0.5), diag(ρ(0, 0; B=0.3))) # half filling
ρ = densitymatrix(g1[cells = SA[1]], 7)
@test all(<(0.96), real(diag(ρ(4, 1; B=0.1)))) # thermal depletion
h = LP.honeycomb() |> hopping(1) |> supercell(region = RP.circle(10))
reg = (; region = RP.circle(0.5))
gLU = h |> greenfunction(GS.SparseLU());
gSpectrum = h |> greenfunction(GS.Spectrum());
gKPM = h |> attach(nothing; reg...) |> greenfunction(GS.KPM(order = 100000, bandrange = (-3,3)));
ρ1, ρ2, ρ3 = densitymatrix(gLU[reg], (-3,3)), densitymatrix(gSpectrum[reg]), densitymatrix(gKPM[1])
@test ρ1() ≈ ρ2() atol = 0.00001
@test ρ2() ≈ ρ3() atol = 0.00001
gLU´ = h |> attach(nothing; reg...) |> greenfunction(GS.SparseLU());
ρ1´ = densitymatrix(gLU´[1], (-3, 3))
@test ρ1() ≈ ρ1´()
gSpectrum´ = h |> attach(nothing; reg...) |> greenfunction(GS.Spectrum());
ρ2´ = densitymatrix(gSpectrum´[1])
@test ρ2() ≈ ρ2´()
ρ = densitymatrix(g2[(; cells = SA[0]), (; cells = SA[1])], 5)
ρ0 = ρ(0, 0; B=0.3)
@test ρ0 isa OrbitalSliceMatrix
@test iszero(ρ0) # rows are on boundary
@test ρ0[sites(1), sites(SA[1], 1)] isa Matrix
@test size(view(ρ0, sites(1), sites(SA[1], 1))) == (2, 2)
# Diagonal slicing not yet supported
@test_broken densitymatrix(g1[diagonal(cells = SA[1])], 5)
@test_broken densitymatrix(gSpectrum[diagonal(cells = SA[])])
@test_broken densitymatrix(gKPM[diagonal(1)])
glead = LP.square() |> hamiltonian(hopping(1)) |> supercell((0,1), region = r -> -1 <= r[1] <= 1) |> attach(nothing; cells = SA[10]) |> greenfunction(GS.Schur(boundary = 0));
contact1 = r -> r[1] ≈ 5 && -1 <= r[2] <= 1
contact2 = r -> r[2] ≈ 5 && -1 <= r[1] <= 1
g0 = LP.square() |> hamiltonian(hopping(1)) |> supercell(region = RP.square(10)) |> attach(glead, reverse = true; region = contact2) |> attach(glead; transform = r->SA[0 1; 1 0] * r, region = contact1) |> greenfunction;
testcond(g0)
glead = LP.square() |> hamiltonian(hopping(1)) |> supercell((1,0), region = r -> -1 <= r[2] <= 1) |> greenfunction(GS.Schur(boundary = 0));
contact1 = r -> r[1] ≈ 5 && -1 <= r[2] <= 1
contact2 = r -> r[1] ≈ -5 && -1 <= r[2] <= 1
g0 = LP.square() |> hamiltonian(hopping(1)) |> supercell(region = RP.square(10)) |> attach(glead, reverse = true; region = contact2) |> attach(glead; region = contact1) |> greenfunction;
testcond(g0)
glead = LP.square() |> hamiltonian(hopping(I) + onsite(SA[0 1; 1 0]), orbitals = 2) |> supercell((1,0), region = r -> -1 <= r[2] <= 1) |> greenfunction(GS.Schur(boundary = 0));
g0 = LP.square() |> hamiltonian(hopping(I), orbitals = 2) |> supercell(region = RP.square(10)) |> attach(glead, reverse = true; region = contact2) |> attach(glead; region = contact1) |> greenfunction;
testcond(g0; nambu = true)
testjosephson(g0)
# test fermi at zero temperature
g = LP.linear() |> hopping(1) |> supercell(3) |> supercell |> greenfunction(GS.Spectrum())
@test ρ = diag(densitymatrix(g[])()) ≈ [0.5, 0.5, 0.5]
end
@testset "mean-field models" begin
h1 = LP.honeycomb() |> supercell(2) |> supercell |> hamiltonian(onsite(0I) + hopping(I), orbitals = 1)
h2 = LP.honeycomb() |> supercell(2) |> supercell |> hamiltonian(onsite(0I) + hopping(I), orbitals = 2)
h3 = LP.honeycomb() |> supercell(2) |> supercell |> hamiltonian(onsite(0I) + hopping(I), orbitals = (1,2))
for h0 in (h1, h2, h3)
ρ0 = densitymatrix(greenfunction(h0, GS.Spectrum())[cells = SA[]])();
h = h0 |> @onsite!((o, s; ρ = ρ0, t) --> o + t*ρ[s])
@test diag(h(t = 2)[()]) ≈ 2*diag(ρ0) atol = 0.0000001
h = h0 |> @hopping!((t, si, sj; ρ = ρ0, α = 2) --> α*ρ[si, sj])
@test h() isa Quantica.Hamiltonian
diff = (h()[()] - 2ρ0) .* h()[()]
@test iszero(diff)
end
end
@testset "aliasing" begin
# Issue #267
g = LP.linear() |> hamiltonian(@hopping((; q = 1) -> q*I), orbitals = 2) |> greenfunction
g´ = Quantica.minimal_callsafe_copy(g)
@test g(0.2; q = 2)[cells = 1] == g´(0.2; q = 2)[cells = 1]
@test g´.solver.fsolver.h0 === g´.parent.h.harmonics[1].h
# The Schur slicer has uninitialized fields whose eventual value depends on the parent hamiltonian
# at call time, not creation time. This can produce bugs if Quantica.call!(g, ω; params...) is used.
# The exported g(ω; params...) syntax decouples the slicer's parent Hamiltonian, so it is safe.
g = LP.linear() |> hamiltonian(@onsite((; q = 1) -> q) + @hopping((; q = 1) -> q)) |> greenfunction
m = g(0.4, q = 0.1)[cells = 0]
gs = Quantica.call!(g, 0.4, q = 0.1)
@test gs[cells = 0] == m
gs = Quantica.call!(g, 0.4, q = 0.1)
parent(g)(q = 2)
@test_broken gs[cells = 0] == m
# Ensure that g.solver.invgreen alias of parent contacts is not broken by minimal_callsafe_copy
glead = LP.linear() |> @onsite((; o = 1) -> o) - hopping(1) |> greenfunction(GS.Schur(boundary = 0));
g = LP.linear() |> -hopping(1) |> supercell |> attach(glead) |> greenfunction;
g´ = Quantica.minimal_callsafe_copy(g);
@test g´(0, o = 0)[] == g(0, o = 0)[]
@test g´(0, o = 1)[] == g(0, o = 1)[]
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 24232 | using Quantica: Hamiltonian, ParametricHamiltonian, BarebonesOperator, OrbitalSliceMatrix, SparseMatrixCSC,
sites, nsites, nonsites, nhoppings, coordination, flat, hybrid, transform!, nnz, nonzeros
@testset "basic hamiltonians" begin
presets = (LatticePresets.linear, LatticePresets.square, LatticePresets.triangular, LatticePresets.honeycomb,
LatticePresets.cubic, LatticePresets.fcc, LatticePresets.bcc, LatticePresets.hcp)
types = (Float16, Float32, Float64)
ts = (1, 2.0I, @SMatrix[1 2; 3 4], 1.0f0*I)
orbs = (1, Val(1), Val(2), 2)
for preset in presets, type in types, lat in (preset(; type), supercell(preset(; type)))
E, L = Quantica.embdim(lat), Quantica.latdim(lat)
dn0 = ntuple(_ -> 1, Val(L))
for (t, o) in zip(ts, orbs)
@test hamiltonian(lat, onsite(t) + hopping(t; range = 1), orbitals = o) isa Hamiltonian
@test hamiltonian(lat, onsite(t) - hopping(t; dcells = dn0), orbitals = o) isa Hamiltonian
end
end
h = LatticePresets.honeycomb() |> hopping(1, range = 1/√3)
@test h[SA[0,0]] === h[()] === flat(h.harmonics[1].h)
# Inf range
h = LatticePresets.square() |> supercell(region = RegionPresets.rectangle((5,6))) |>
hamiltonian(hopping(1, range = Inf))
@test Quantica.nhoppings(h) == 1190
h = LatticePresets.square() |> hamiltonian(hopping(1, dcells = (10,0), range = Inf)) |> transform(r -> SA[0 1; 2 0] * r)
@test Quantica.nhoppings(h) == 1
@test isassigned(h, (10,0))
@test bravais_matrix(h) == SA[0 1; 2 0]
h = LatticePresets.honeycomb() |> hamiltonian(onsite(1.0, sublats = :A) + hopping(I, range = 2/√3), orbitals = (Val(1), Val(2)))
@test Quantica.nonsites(h) == 1
@test Quantica.nhoppings(h) == 24
@test ishermitian(h)
h = LatticePresets.square() |> supercell(3) |> hamiltonian(hopping(1, range = 3) |> plusadjoint)
@test Quantica.nhoppings(h) == 252
@test ishermitian(h)
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (1, 1)))
@test Quantica.nhoppings(h) == 12
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (1, 2), sublats = :A => :B))
@test Quantica.nhoppings(h) == 9
@test !ishermitian(h)
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (1, 2), sublats = :A => :B) |> plusadjoint)
@test Quantica.nhoppings(h) == 18
@test ishermitian(h)
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (1, 2/√3)))
@test Quantica.nhoppings(h) == 18
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (2, 1)))
@test Quantica.Quantica.nhoppings(h) == 0
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (30, 30)))
@test Quantica.Quantica.nhoppings(h) == 12
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = (10, 10.1)))
@test Quantica.Quantica.nhoppings(h) == 48
@test Hamiltonian{3}(h) isa Hamiltonian{<:Any,3}
@test convert(Hamiltonian{3}, h) isa Hamiltonian{<:Any,3}
end
@testset "hamiltonian orbitals" begin
lat = LP.honeycomb()
hop = hopping(SA[1 0], sublats = :A => :B)
h = hamiltonian(lat, plusadjoint(hopping(hop)) + onsite(1, sublats = 2), orbitals = (2, Val(1)))
h´ = hamiltonian(lat, hop + hop' + onsite(1, sublats = 2), orbitals = (2, Val(1)))
@test h isa Hamiltonian
@test h == h´
@test_throws ArgumentError hamiltonian(lat, hopping(SA[1 0]), orbitals = (2, Val(1)))
h = hamiltonian(lat, hopping(I) + onsite(SA[1 0; 0 1], sublats = :A), orbitals = (2, Val(1)))
@test h isa Hamiltonian
end
@testset "hamiltonian sublats" begin
lat = LP.honeycomb()
h = hamiltonian(lat, hopping(1, sublats = (:A,:B) .=> (:A, :B)))
@test iszero(h((1,2)))
h = hamiltonian(lat, hopping(1, sublats = :A => :B))
@test h((0,0)) == SA[0 0; 3 0]
h = hamiltonian(lat, hopping(1, sublats = :A => :B) |> plusadjoint)
@test h((0,0)) == SA[0 3; 3 0]
h = hamiltonian(lat, hopping(1, sublats = (:A,:B) .=> (:B, :A), range = neighbors(2)))
@test h((0,0)) == SA[0 3; 3 0]
h = hamiltonian(lat, hopping(1, sublats = (:A,:B) => (:A, :B), range = neighbors(2)))
@test h((0,0)) == SA[6 3; 3 6]
h = hamiltonian(lat, hopping(1, sublats = (:A => :B, :A => :A), range = neighbors(2)))
@test h((0,0)) == SA[6 0; 3 0]
h = hamiltonian(lat, hopping(1, sublats = (:A => :B, (:A, :B) .=> (:A, :B)), range = neighbors(2)))
@test h((0,0)) == SA[6 0; 3 6]
end
@testset "hamiltonian presets" begin
h = HP.graphene(; a0 = 1, dim = 3, range = neighbors(2), t0 = 2.7, β = 3, orbitals = 2, names = (:a, :b), type = Float32)
@test h isa Hamiltonian{Float32,3,2}
h = HP.twisted_bilayer_graphene(; twistindex = 0, rangeinterlayer = 2, interlayerdistance = 1, a0 = 1, hopintra = 2.7 * I, orbitals = 2, names = (:A, :B, :A´, :B´))
@test h isa Hamiltonian{Float64,3,2}
end
@testset "siteselectors/hopselectors" begin
lat = LatticePresets.linear()
@test supercell(lat, region = RP.segment(10)) isa Quantica.Lattice
lat = LatticePresets.bcc()
for r in (RP.sphere(3), RP.cube(3), RP.spheroid((3,4,5), (3,3,3)), RP.cuboid((3,4,5), (2,3,4)))
@test supercell(lat, region = r) isa Quantica.Lattice
end
lat = LatticePresets.honeycomb()
for r in (RP.circle(10), missing), s in (:A, 1, (:A, :B), [1, :B], missing), c in (SA[0,1], (0,1)), cs in (c, (c, 2 .* c), [c, 2 .* c], missing)
@test supercell(lat, region = r, sublats = s, cells = cs) isa Quantica.Lattice
end
r1 = RP.ellipse((10,15))
r2 = (r, dr) -> norm(r) + norm(dr) < 2
for region in (r1, missing),
sublats in (:A, 1, (:A, :B), missing),
c in (SA[0,1], (0,1)), dcells in (c, (c, 2 .* c), missing),
range in (1, neighbors(2), (1, 2.0), (1, neighbors(3))),
sublats´ in (:A, 1, (:A, :B)),
regionhop in (r2, missing)
sublatshop = ifelse(sublats === missing, missing, sublats´ .=> sublats)
@test Quantica.apply(siteselector(; region, sublats), lat) isa Quantica.AppliedSiteSelector
@test Quantica.apply(hopselector(; range, dcells, region = regionhop, sublats = sublatshop), lat) isa Quantica.AppliedHopSelector
sublatshop = ifelse(sublats === missing, missing, sublats´ => sublats)
@test Quantica.apply(hopselector(; range, dcells, region = regionhop, sublats = sublatshop), lat) isa Quantica.AppliedHopSelector
end
end
@testset "models" begin
mo = (onsite(1), onsite(r-> r[1]), @onsite((; o) -> o), @onsite((r; o=2) -> r[1]*o),
@onsite((s; o, p) --> pos(s)[1]*o))
mh = (hopping(1), hopping((r, dr)-> im*dr[1]), @hopping((; t) -> t), @hopping((r, dr; t) -> r[1]*t),
@hopping((si, sj) --> im*ind(si)), @hopping((si, sj; t, p = 2) --> pos(sj)[1]*t))
argso, argsh = (0, 1, 0, 1, 1), (0, 2, 0, 2, 2, 2)
for (o, no) in zip(mo, argso)
@test Quantica.narguments(only(Quantica.terms(o))) == no
end
for (h, nh) in zip(mh, argsh)
@test Quantica.narguments(only(Quantica.terms(h))) == nh
end
for o in mo, h in mh
@test length(Quantica.allterms(-o - 2*h)) == 2
@test Quantica.ParametricModel(o+h) isa Quantica.ParametricModel
m = onsite(o + h; cells = 1)
ts = Quantica.allterms(m)
@test length(ts) == 1 && all(t->Quantica.selector(t).cells == 1, ts)
m = hopping(2*(o' + h'); dcells = 1)
ts = Quantica.allterms(m)
@test length(ts) == 1 && all(t->Quantica.selector(t).dcells == 1, ts)
end
end
@testset "hamiltonian supercell" begin
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1)) |> supercell((1,-1), region = r -> abs(r[2])<2)
@test nhoppings(h) == 22
h = LatticePresets.square() |> hamiltonian(hopping(1)) |> supercell(3) |> supercell((1,0))
@test nsites(h) == 9
h = LatticePresets.square() |> hamiltonian(hopping(1, range = √2)) |> supercell(5) |> supercell((1,0))
@test nhoppings(h) == 170
@test nsites(h) == 25
# dim-preserving supercell reshaping should always preserve coordination
lat = lattice(sublat((0.0, -0.1), (0,0), (0,1/√3), (0.0,1.6/√3)), bravais = SA[cos(pi/3) sin(pi/3); -cos(pi/3) sin(pi/3)]')
h = lat |> hamiltonian(hopping(1, range = 1/√3))
c = coordination(h)
iter = CartesianIndices((-3:3, -3:3))
for Ic´ in iter, Ic in iter
sc = SMatrix{2,2,Int}(Tuple(Ic)..., Tuple(Ic´)...)
iszero(det(sc)) && continue
h´ = supercell(h, sc)
h´´ = supercell(h´, 2)
@test coordination(h´´) ≈ coordination(h´) ≈ c
h´ = supercell(h´, Tuple(Ic))
h´´ = supercell(h´, 2)
@test coordination(h´´) ≈ coordination(h´)
end
h = LP.honeycomb() |> hamiltonian(hopping(1)) |> supercell(2) |> supercell(mincoordination = 2)
@test nsites(h) == 6
h = LP.cubic() |> hamiltonian(hopping(1)) |> supercell(4) |> supercell(mincoordination = 4)
@test nsites(h) == 0
h = LP.honeycomb() |> hamiltonian(hopping(1)) |> supercell(region = RP.circle(5) & !RP.circle(2)) |> supercell(mincoordination = 2)
@test nsites(h) == 144
h = LP.honeycomb() |> hamiltonian(hopping(1)) |> supercell(10, region = !RP.circle(2, (0,8)))
h´ = h |> supercell(1, mincoordination = 2)
@test nsites(h´) == nsites(h) - 1
h = LP.square() |> hamiltonian(hopping(0)) |> supercell(4, mincoordination = 2)
@test nsites(h) == 0
# check dn=0 invariant
h = LP.linear() |> hamiltonian(hopping(1)) |> supercell((1,))
@test length(h.harmonics) == 3 && iszero(first(h.harmonics).dn)
# seeds
p1 = SA[100,0]
p2 = SA[0,20]
lat = LatticePresets.honeycomb()
model = hopping(1, range = 1/√3) + onsite(2)
h1 = lat |> hamiltonian(model) |> supercell(region = r -> norm(r-p1)<3, seed = p1)
h2 = lat |> hamiltonian(model) |> supercell(region = r -> norm(r-p2)<3, seed = p2)
h = combine(h1, h2)
h3 = lat |> hamiltonian(model) |> supercell(region = r -> norm(r-p1)<3 || norm(r-p2)<3, seed = p2)
@test Quantica.nsites(h) == 130
@test Quantica.nsites(h3) == 64
end
@testset "hamiltonian torus" begin
for o in (1, (2,3))
h = LatticePresets.honeycomb() |> hamiltonian(hopping((r, dr) -> 1/norm(dr) * I, range = 10), orbitals = o)
@test_throws ArgumentError torus(h, (1,2,3))
@test_throws ArgumentError torus(h, 1)
wh = h |> torus((1,2))
@test wh(()) ≈ h(SA[1,2])
wh = torus(h, (1,:))
@test wh(SA[2]) ≈ h(SA[1,2])
h = LatticePresets.honeycomb() |> hamiltonian(hopping((r, dr) -> 1/norm(dr) * I, range = 10)) |> supercell(3)
wh = torus(h, (1,2))
@test wh(()) ≈ h(SA[1,2])
wh = torus(h, (1,:))
@test wh(SA[2]) ≈ h(SA[1,2])
wh = torus(h, (:,:))
@test wh == h
@test wh !== h
h = LP.linear() |> supercell(2) |> hopping(1) |> @hopping!((t, r, dr) -> t*(r[1]-1/2))
@test_warn "unexpected results for position-dependent modifiers" torus(h, (0.2,))
end
end
@testset "hamiltonian HybridSparseMatrix" begin
for o in (1, 2, (2, 2), (2,3))
h = HP.graphene(orbitals = o) |> supercell(2)
@test h[()] === h[(0,0)]
s = h[hybrid((1,0))]
@test !Quantica.needs_unflat_sync(s)
if o == 1
@test eltype(h[hybrid()]) === ComplexF64
@test !Quantica.needs_flat_sync(s)
@test Quantica.isaliased(s)
@test h[()] === h[unflat()]
elseif o == (2,2) || o == 2
@test eltype(h[unflat()]) <: Quantica.SMatrix
@test Quantica.needs_flat_sync(s)
@test !Quantica.isaliased(s)
h[()]
@test Quantica.needs_flat_sync(s)
else
@test eltype(h[unflat()]) <: Quantica.SMatrixView
@test Quantica.needs_flat_sync(s)
@test !Quantica.isaliased(s)
h[()]
@test Quantica.needs_flat_sync(s)
end
@test_throws BoundsError h[(1,1)]
bs = Quantica.blockstructure(h)
hflat, hunflat = h[()], h[unflat()]
@test Quantica.flat(Quantica.HybridSparseMatrix(bs, hflat)) == hflat
@test unflat(Quantica.HybridSparseMatrix(bs, hunflat)) == hunflat
@test Quantica.flat(Quantica.HybridSparseMatrix(bs, hunflat)) == hflat
@test unflat(Quantica.HybridSparseMatrix(bs, hflat)) == hunflat
# Tampering protection
h[(1,0)][1,1] = 1
@test_throws ArgumentError h[(1,0)]
@test h[unflat(0,0)] isa Quantica.SparseMatrixCSC
@test_throws ArgumentError h((0,0))
end
end
@testset "hamiltonian call" begin
for o in (1, (2,3))
h = HP.graphene(orbitals = o) |> supercell(2)
@test h() == h
@test h() !== h
@test h(; param = 1) == h
@test_throws ArgumentError h(())
@test_throws ArgumentError h(1,2)
@test h((1,2)) == h(SA[1,2])
@test Quantica.call!(h, (1,2)) === Quantica.call!(h, SA[2,3]) === Quantica.call!_output(h)
h = supercell(h)
@test h(()) == h(SA[]) == h[()]
@test Quantica.call!(h, ()) === Quantica.call!(h, SA[]) === h[()] === Quantica.call!_output(h)
end
h = hamiltonian(LP.linear(), hopping(1))
@test h(π) == h((π,)) == h([π]) == [-2;;]
end
@testset "parametric hamiltonian" begin
lat = LP.honeycomb() |> supercell(2)
h = hamiltonian(lat, @onsite((; o) -> o))
h0 = h((0,0); o = 2)
@test h0 == 2I
@test Quantica.nnz(h0) == 8
@test_throws UndefKeywordError h((0,0))
h = hamiltonian(lat, @onsite((r; o = 0) -> o*r[1]))
@test h((0,0); o = 2) ≈ Quantica.Diagonal([0, -1, 1, 0, 0, -1, 1, 0])
@test h(; o = 1)[()] !== h(; o = 2)[()]
@test Quantica.call!(h; o = 1)[()] === Quantica.call!(h; o = 2)[()]
h´ = hamiltonian(h, @onsite!((o´, r; o = 0) -> o´ - o*r[1]))
@test iszero(h´((0,0), o = 3))
@test Quantica.nnz(h´((0,0), o = 3)) == 8
h = hamiltonian(lat, onsite(1) + @hopping((r, dr; t) -> t * cis(dr[2])),
@hopping!((t´, r, dr; takeabs = false) -> ifelse(takeabs, abs(t´), t´)))
@test ishermitian(h(t = 1))
h0 = h(t = 1)((0,0))
@test !all(x -> x isa Real, h0)
h0 = h(t = 1, takeabs = true)((0,0))
@test all(==(1), Quantica.nonzeros(h0))
h = LatticePresets.linear() |> hopping(1) |> @onsite!((o; k) -> o + k*I)
# No onsites, no need to specify k
@test h() isa Hamiltonian
# Issue #35
for orb in (Val(1), Val(2))
h = LatticePresets.triangular() |> hamiltonian(hopping(I) + onsite(I), orbitals = orb) |> supercell(10)
h´ = hamiltonian(h, @onsite!((o, r; b) -> o+b*I), @hopping!((t, r, dr; a = 2) -> t+r[1]*I),
@onsite!((o, r; b) -> o-b*I), @hopping!((t, r, dr; a = 2) -> t-r[1]*I))
@test isapprox(h´(a=1, b=2)((1, 2)), h((1, 2)))
end
# Issue #37
for orb in (Val(1), Val(2))
h = LatticePresets.triangular() |> hamiltonian(hopping(I) + onsite(I), orbitals = orb) |> supercell(10)
h´ = hamiltonian(h, @onsite!(o -> o*cis(1)))
@test h´()[()][1,1] ≈ h[()][1,1]*cis(1)
end
# Issue #54. Parametric Haldane model, unbounded modifiers
sK(dr::SVector) = sK(atan(dr[2],dr[1]))
sK(ϕ) = 2*mod(round(Int, 6*ϕ/(2π)), 2) - 1
h = LatticePresets.honeycomb() |> hamiltonian(hopping(1, range = 1),
@hopping!((t, r, dr; λ, k = SA[0,0]) -> λ*im*sK(dr+k); sublats = :A=>:A), # These should have range = Inf
@hopping!((t, r, dr; λ, k = SA[0,0]) -> -λ*im*sK(dr+k); sublats = :B=>:B)) # These should have range = Inf
@test h((π/2, -π/2), λ=1) ≈ [4 1; 1 -4]
# Non-numeric parameters
@test h((π/2, -π/2); λ = 1, k = SA[1,0]) ≈ [-4 1; 1 4]
# # Issue #61, type stability. TODO: must review this test
# h = LatticePresets.honeycomb() |> hamiltonian(onsite(0))
# @inferred hamiltonian(h, @onsite!((o;μ) -> o- μ))
# @test_broken @inferred hamiltonian(h, @onsite!(o->2o), @hopping!((t)->2t), @onsite!((o, r)->o+r[1]))
# @test_broken @inferred hamiltonian(h, @onsite!((o, r)->o*r[1]), @hopping!((t; p)->p*t), @onsite!((o; μ)->o-μ))
h = LatticePresets.honeycomb() |> hamiltonian(hopping(2I), orbitals = (Val(2), Val(1)), @hopping!((t; α, β = 0) -> α * t .+ β))
b = h((0, 0); α = 2)
@test b == [0 0 12; 0 0 0; 12 0 0]
@test ParametricHamiltonian{3}(h) isa ParametricHamiltonian{<:Any,3}
# Old bug in apply
h = LP.honeycomb() |> supercell(2) |> onsite(1) |> @onsite!(o -> 0; sublats = :A)
@test tr(h((0,0))) == 4
# torus and supercell commutativity with modifier application
h = LP.linear() |> hopping(1) |> supercell(3) |> @onsite!((o,r; E = 1)-> E*r[1]) |> @hopping!((t, r,dr; A = SA[1])->t*cis(dot(A,dr[1])))
@test supercell(h(), 4)((1,)) ≈ supercell(h, 4)((1,))
@test torus(h, (2,))(()) ≈ torus(h(), (2,))(()) ≈ h((2,))
h = LP.linear() |> supercell(3) |> @hopping((r,dr; ϕ = 1) -> cis(ϕ * dr[1]))
@test supercell(h(), 4)((1,)) ≈ supercell(h, 4)((1,))
@test torus(h(), (2,))(()) ≈ h((2,))
h0 = LP.square() |> hopping(1) |> supercell(3) |> @hopping!((t, r, dr; A = SA[1,2]) -> t*cis(A'dr))
h = torus(h0, (0.2,:))
@test h0((0.2, 0.3)) ≈ h((0.3,))
# non-spatial models
h = LP.linear() |> @hopping((i,j) --> ind(i) + ind(j)) + @onsite((i; k = 1) --> pos(i)[k])
@test ishermitian(h())
# null selectors
h0 = LP.square() |> onsite(0) + hopping(0) |> supercell(3) |> @onsite!((t, r) -> 1; sublats = Symbol[])
@test iszero(h0())
h0 = LP.square() |> hopping(0) |> supercell(3) |> @hopping!((t, r, dr) -> 1; dcells = SVector{2,Int}[])
@test iszero(h0())
# Issue #118
sublats = :A;
h0 = LP.honeycomb() |>
@hopping(r->0, sublats, range = 2) + @onsite((r; p = 3) ->3p; sublats) + @onsite((r; q = 3) ->3q, sublats, region = RP.circle(2)) |>
@hopping!((t, r, dr; p = 1) -> p+r[2], dcells = SVector{2,Int}[]) |> @onsite!((o, r; q = 1) -> o + q, sublats, region = RP.circle(3))
@test h0 isa ParametricHamiltonian
@test Quantica.parameters(h0) == [:p, :q]
end
@testset "ExternalPresets.wannier90" begin
# wannier import
w = EP.wannier90("wannier_test_tb.dat", htol = 1e-4, rtol = 1e-4, dim = 2, type = Float32);
h = hamiltonian(w)
@test h isa Hamiltonian{Float32,2,2,ComplexF32}
R = position(w)
@test R isa BarebonesOperator{2,SVector{2,ComplexF32}}
@test R[sites(1)] isa SVector{2,ComplexF32}
@test_throws Quantica.Dictionaries.IndexError R[SA[1000,0]]
@test iszero(R[sites(1), sites(SA[1000,0],1)])
# Wannier90 coupling to dipole moments
w = EP.wannier90("wannier_test2_tb.dat", onsite(2); dim = 2, htol = 1e-4, rtol = 1e-4) |> @onsite!((o; k = 1) -> o * k)
h = hamiltonian(w)
R = position(w)
hE = h |> @onsite!((o, i; E = SA[0,0]) --> o + E'*R[i,i]) |> @hopping!((t, i, j; E = SA[0,0]) --> t + E'*R[i,j])
@test hE() isa Hamiltonian{Float64,2,2}
end
@testset "hamiltonian nrange" begin
lat = LatticePresets.honeycomb(a0 = 2)
@test Quantica.nrange(1, lat) ≈ 2/√3
@test Quantica.nrange(2, lat) ≈ 2
@test Quantica.nrange(3, lat) ≈ 4/√3
@test hamiltonian(lat, hopping(1)) |> nhoppings == 6
@test hamiltonian(lat, hopping(1, range = neighbors(2))) |> nhoppings == 18
@test hamiltonian(lat, hopping(1, range = neighbors(3))) |> nhoppings == 24
@test hamiltonian(lat, hopping(1, range = (neighbors(2), neighbors(3)))) |> nhoppings == 18
@test hamiltonian(lat, hopping(1, range = (neighbors(20), neighbors(20)))) |> nhoppings == 18
@test hamiltonian(lat, hopping(1, range = (neighbors(20), neighbors(21)))) |> nhoppings == 30
end
@testset "hamiltonians transform" begin
h = LP.honeycomb(dim = 3) |> hamiltonian(hopping(1))
h1 = copy(h)
h2 = transform!(h1, r -> SA[1 2 0; 2 3 0; 0 0 1] * r + SA[0,0,1])
h3 = h1 |> transform!(r -> SA[1 2 0; 2 3 0; 0 0 1] * r + SA[0,0,1])
@test h1 === h2 === h3
@test all(r->r[3] == 2.0, sites(lattice(h3)))
@test h((1,2)) == h3((1,2))
h = LP.square() |> @hopping((; t=1) -> t) |> supercell((2,0), (0, 1))
h´ = h |> transform(r -> SA[r[2], r[1]])
@test sites(lattice(h´)) == sites(h´.h.lattice) != sites(lattice(parent(h´)))
@test sites(lattice(h´)) == [SA[0,0], SA[0,1]]
h´´ = reverse(h´)
@test bravais_matrix(lattice(h´´)) == - bravais_matrix(lattice(h´))
@test reverse!(h´´) === h´´
@test bravais_matrix(lattice(h´´)) == bravais_matrix(lattice(h´))
end
@testset "hamiltonians combine" begin
h1 = LP.square(dim = Val(3)) |> hamiltonian(hopping(1))
h2 = transform(h1, r -> r + SA[0,0,1])
h = combine(h1, h2; coupling = hopping((r,dr) -> exp(-norm(dr)), range = √2))
@test Quantica.coordination(h) == 9
h0 = LP.honeycomb(dim = Val(3), names = (:A, :B)) |> hamiltonian(hopping(1))
ht = LP.honeycomb(dim = Val(3), names = (:At, :Bt)) |> hamiltonian(hopping(1)) |> transform!(r -> r + SA[0,1/√3,1])
hb = LP.honeycomb(dim = Val(3), names = (:Ab, :Bb)) |> hamiltonian(hopping(1)) |> transform!(r -> r + SA[0,1/√3,-1])
h = combine(hb, h0, ht; coupling = hopping((r,dr) -> exp(-norm(dr)), range = 2,
sublats = ((:A,:B) => (:At, :Bt), (:A,:B) => (:Ab, :Bb))) |> plusadjoint)
@test iszero(h((0,0))[1:2, 5:6])
h = combine(hb, h0, ht; coupling = hopping((r,dr) -> exp(-norm(dr)), range = 2))
@test !iszero(h((0,0))[1:2, 5:6])
# Parametric combine
h1 = LP.linear(dim = 2) |> hopping(1)
h2 = LP.linear(dim = 2) |> hamiltonian(@hopping((; p = 1) -> p*I), orbitals = 2)
coupling = @hopping((; p = 1) -> im*p*SA[1 0], range = 3, sublats = :B => :A) |> plusadjoint
@test_throws ArgumentError combine(h1, h2)
@test_throws ArgumentError combine(h1, h2(); coupling)
@test combine(h1, h2()) isa Hamiltonian
h2 = LP.linear(dim = 2, names = :B) |> hamiltonian(@hopping((; p = 1) -> p*I), orbitals = 2)
@test combine(h1, h2) isa ParametricHamiltonian{Float64,2,1,Quantica.SMatrixView{2,2,ComplexF64,4}}
h = combine(h1, h2; coupling)
@test h isa ParametricHamiltonian{Float64,2,1,Quantica.SMatrixView{2,2,ComplexF64,4}}
# plustadjoint broken for ParametricModels
@test_broken h((p = 10))
end
@testset "current operator" begin
h = LP.honeycomb() |> hamiltonian(@onsite((; μ = 0) -> (2-μ)*I) - hopping(SA[0 1; 1 0]), orbitals = 2) |> supercell(2)
co = current(h, direction = 2)
c = co(SA[0,0])
@test c ≈ c'
@test iszero(diag(c))
@test all(x -> real(x) ≈ 0, c)
cp = co[unflat(SA[1,0])]
cm = co[unflat(SA[-1,0])]
@test nnz(cp) == nnz(cm) == 2
@test cp ≈ cm'
@test all(x -> x[1] ≈ x[2]', zip(nonzeros(cp), nonzeros(cm)))
@test all(x -> iszero(real(x)), nonzeros(cp))
end
@testset "hamiltonian builder" begin
b = LP.linear() |> Quantica.builder(orbitals = 2)
@test b isa Quantica.IJVBuilder
@test hamiltonian(b) isa Hamiltonian
Quantica.add!(b, hopping(2I))
Quantica.add!(b, @onsite((; w = 0) -> w*I))
Quantica.add!(b, SA[0 1; 1 0], sites(1))
@test length(Quantica.modifiers(b)) == 1
h = hamiltonian(b)
@test h(w=3)[()] == 3*I + SA[0 1; 1 0]
push!(b, @onsite!((o; w = 0) -> o*w))
@test length(Quantica.modifiers(b)) == 2
h = hamiltonian(b)
@test h(w=3)[()] == 9*I + + SA[0 3; 3 0]
b = LP.honeycomb() |> Quantica.builder(orbitals = (1,2))
Quantica.add!(b, SA[0 1; 1 0], sites(2))
Quantica.add!(b, 2, sites(1))
h = hamiltonian(b)
@test h[()] == SA[2 0 0; 0 0 1; 0 1 0]
b = LP.honeycomb() |> Quantica.builder(orbitals = (1,2))
Quantica.add!(b, 2I, sites(1:2))
h = hamiltonian(b)
@test h[()] == 2I
b = LP.honeycomb() |> Quantica.builder
Quantica.add!(b, 2, sites(1:2), sites(1:2))
h = hamiltonian(b)
@test all(isequal(2), h[()])
end
@testset "hamiltonian indexing" begin
h = LP.honeycomb() |> hamiltonian(hopping(I), orbitals = (2, 1)) |> @hopping!((t; p = 1) -> p*t)
m = h[sites(1), sites(2)]
@test m isa SparseMatrixCSC
@test m == SA[1; 0;;]
@test iszero(h[sites(1), sites(SA[2,3], 2)])
m = h[cells = 1]
@test m isa OrbitalSliceMatrix
@test m == SA[0 0 1; 0 0 0; 1 0 0]
m = h[sites(2), (; cells = 1)]
@test m isa SparseMatrixCSC
@test m == SA[1 0 0]
m = view(h, sites(2), sites(1))
@test m isa SubArray
@test m == SA[1 0]
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 9075 | using Quantica: Sublat, Lattice, transform!, translate!, nsites
@testset "Internal API" begin
s = sublat((0,0,0))
@test Quantica.embdim(s) == 3
@test Quantica.numbertype(s) <: AbstractFloat
lat = LP.honeycomb()
@test length(Quantica.bravais_vectors(lat)) == 2
@test_throws BoundsError sites(lat, :C)
@test length(sites(lat, 1)) == 1
@test length(lat) == 2
nt = (; region = r -> r[1] == 1, sublats = :C)
s = siteselector(; nt...)
@test NamedTuple(s) === (; nt..., cells = missing)
h = hopselector(; nt...)
@test NamedTuple(h).sublats == :C
h = HP.graphene(orbitals = 2)
@test Quantica.flatrange(h, :B) === 3:4
end
@testset "lattice sublats" begin
sitelist = [(3,3), (3,3.), [3,3.], SA[3, 3], SA[3, 3f0], SA[3f0, 3.0]]
for site2 in sitelist, site1 in sitelist
T = float(promote_type(typeof.(site1)..., typeof.(site2)...))
@test sublat(site1, site2) isa Sublat{T,2}
@test sublat([site1, site2]) isa Sublat{T,2}
@test lattice(sublat(site1), sublat(site2)) isa Lattice
end
@test sublat((3,)) isa Sublat{Float64,1}
@test sublat(()) isa Sublat{Float64,0}
@test sublat(SVector{3,Float64}[]) isa Sublat{Float64,3}
end
@testset "lattice construction" begin
s = sublat((1, 2))
s´ = sublat([0,0f0])
for t in (Float32, Float64), e in 1:4, l = 1:4
br = SMatrix{e,l,Float64}(I)
if l > e
@test_throws DimensionMismatch lattice(s; bravais = br, type = t, dim = Val(e))
@test_throws DimensionMismatch lattice(s; bravais = br, type = t, dim = e)
else
@test lattice(s; bravais = br, type = t, dim = Val(e)) isa Lattice{t,e,l}
@test lattice([s, s´]; bravais = Matrix(br), type = t, dim = e) isa Lattice{t,e,l}
end
if l > 2
@test_throws DimensionMismatch lattice(s; bravais = br, type = t)
else
@test lattice(s; bravais = br, type = t) isa Lattice{t,2,l}
end
end
lat = lattice(sublat((0,0,0)); names = :A) # scalar `names`
@test lat isa Lattice{Float64,3,0}
lat = lattice(sublat((0,0,0f0)), sublat((1,1,1f0)); bravais = SMatrix{3,3}(I))
lat2 = lattice(lat, bravais = ())
@test lat2 isa Lattice{Float32,3,0}
@test sites(lat) === sites(lat2) # site aliasing
lat2 = lattice(lat, bravais = (), names = (:A,:B))
@test lat2 isa Lattice{Float32,3,0}
@test sites(lat) === sites(lat2) # site aliasing
@test_throws ArgumentError lattice(lat, names = (:A,:B,:C)) # too many `names`
lat2 = lattice(lat, type = Float64)
@test lat2 isa Lattice{Float64,3,3}
@test sites(lat) !== sites(lat2) # no site aliasing
lat2 = lattice(lat, dim = Val(2), bravais = SA[1 2; 3 4])
@test lat2 isa Lattice{Float32,2,2} # dimension cropping
@test bravais_matrix(lat2) == SA[1 2; 3 4]
# dim/type promotion
@test lattice(sublat(Float16(0), name = :A), sublat(SA[1,2f0], name = :B)) isa Lattice{Float32,2}
end
@testset "lattice presets" begin
a0s = (1, 2)
presets = (LatticePresets.linear, LatticePresets.square, LatticePresets.triangular,
LatticePresets.honeycomb, LatticePresets.cubic, LatticePresets.fcc,
LatticePresets.bcc, LatticePresets.hcp)
for a0 in a0s, t in (Float32, Float64), preset in presets
@test preset(; a0 = a0, type = t) isa Lattice{t}
end
@test LatticePresets.cubic(bravais = (1,0)) isa Lattice{Float64,3,1}
@test LatticePresets.cubic(bravais = ((1,0), (0,1)), dim = Val(2)) isa Lattice{Float64,2,2}
end
# @testset "siteindices/sitepositions" begin
# lat = LatticePresets.honeycomb() |> unitcell(region = RegionPresets.circle(10))
# @test sum(sitepositions(lat, sublats = :A)) ≈ -sum(sitepositions(lat, sublats = :B))
# @test length(collect(siteindices(lat, sublats = :A))) == nsites(lat) ÷ 2
# lat = LatticePresets.honeycomb() |> unitcell(2)
# @test collect(siteindices(lat)) == 1:8
# @test collect(siteindices(lat; indices = 10)) == Int[]
# @test collect(siteindices(lat; indices = 5:10)) == 5:8
# @test collect(siteindices(lat; indices = 5:10)) == 5:8
# @test collect(siteindices(lat; indices = 5:10)) == 5:8
# @test collect(siteindices(lat; indices = (1, 5:10))) == [1, 5 ,6, 7, 8]
# @test collect(siteindices(lat; indices = (1, 10))) == [1]
# end
@testset "lattice combine" begin
lat0 = transform!(LatticePresets.honeycomb(), r -> SA[r[2], -r[1]]) |> supercell((1,1), (-1,1))
br = bravais_matrix(lat0)
cell_1 = lat0 |>
supercell(region = r -> -1.01/√3 <= r[1] <= 4/√3 && 0 <= r[2] <= 3.5)
cell_2 = translate(transform(cell_1, r -> r + br * SA[2.2, -1]), SA[1,2])
cell_p = lattice(sublat(br * SA[1.6,0.73], br * SA[1.6,1.27]))
cells = combine(cell_1, cell_2, cell_p)
@test length.(sites.(Ref(cells), 1:5)) == [14, 14, 14, 14, 2]
@test_throws ArgumentError combine(LatticePresets.honeycomb(), LatticePresets.square())
@test_throws ArgumentError combine(LatticePresets.honeycomb(), LatticePresets.linear())
lat1 = transform(LatticePresets.honeycomb(), r -> SA[r[2], -r[1]]) |> supercell((-1,1), (1,1))
lat2 = combine(lat0, lat1)
@test lat2 isa typeof(lat0)
@test allunique(Quantica.sublatnames(lat2))
lat1 = transform(LatticePresets.honeycomb(), r -> SA[r[2], -r[1]]) |> supercell((-3,3), (1,1))
@test_throws ArgumentError combine(lat0, lat1)
end
@testset "lattice nrange" begin
lat = LP.honeycomb(a0 = 1)
@test Quantica.nrange(1, lat) ≈ 1/√3
@test Quantica.nrange(2, lat) ≈ 1
@test Quantica.nrange(3, lat) ≈ 2/√3
lat = LP.cubic(a0 = 1) |> supercell(10)
@test Quantica.nrange(1, lat) ≈ 1
@test Quantica.nrange(2, lat) ≈ √2
@test Quantica.nrange(3, lat) ≈ √3
end
@testset "lattice supercell" begin
presets = (LatticePresets.linear, LatticePresets.square, LatticePresets.triangular,
LatticePresets.honeycomb, LatticePresets.cubic, LatticePresets.fcc,
LatticePresets.bcc, LatticePresets.hcp)
for preset in presets
lat = preset()
E, L = Quantica.embdim(lat), Quantica.latdim(lat)
for l in 1:L
# some ramdon but deterministic svecs
svecs = ntuple(i -> ntuple(j -> i*round(Int, cos(2j)) + j*round(Int, sin(2i)) , Val(E)), L-l)
@test supercell(lat, svecs...) isa Lattice{Float64,E,L-l}
@test supercell(lat, l) isa Lattice{Float64,E,L}
end
end
@test supercell(LatticePresets.honeycomb(), region = RegionPresets.circle(10, (10,0))) isa Lattice{Float64,2,0}
@test supercell(LatticePresets.honeycomb(), (2,1), region = RegionPresets.circle(10)) isa Lattice{Float64,2,1}
@test supercell(LatticePresets.bcc(), (2,1,0), region = RegionPresets.circle(10)) isa Lattice{Float64,3,1}
@test supercell(LatticePresets.cubic(), (2,1,0), region = RegionPresets.sphere(10, (10,2,1))) isa Lattice{Float64,3,1}
end
@testset "lattice boolean regions" begin
lat = supercell(LP.square(), region = xor(RP.square(10), RP.square(20)), seed = SA[20,0])
@test length(sites(lat)) == 320
lat = supercell(LP.honeycomb(), region = xor(RP.circle(20), RP.square(10)))
lat´ = supercell(LP.honeycomb(), region = RP.circle(20) & !RP.square(10))
@test sites(lat) == sites(lat´)
lat = supercell(LP.honeycomb(), region = RP.circle(5, (5,0)) | RP.circle(5, (15,0)) | RP.circle(5, (25,0)))
lat´ = supercell(LP.honeycomb(), region = RP.circle(5, (5,0)))
@test length(sites(lat)) == 3 * length(sites(lat´))
end
@testset "lattice slices" begin
lat = LP.honeycomb() |> supercell(2)
ls = lat[sites(1:2)]
@test length(ls) == 2
ls = lat[sites(:)]
@test length(ls) == 8
ls = lat[sites(SA[1,2], :)]
@test length(ls) == 8
ls1 = lat[sublats = :B, region = RP.ellipse((10, 20), (0, 1/√3))]
ls2 = lat[sublats = :A, region = RP.ellipse((10, 20))]
ls3 = lat[region = RP.ellipse((10, 20))]
@test length(ls1) == length(ls2)
@test ls2[2] isa Tuple{SVector{2, Int}, Int}
ls = ls1[sublats = :B]
@test isempty(ls)
ls = ls3[sublats = :B, region = RP.ellipse((1, 2))]
@test !isempty(ls)
ls´ = ls3[(; sublats = :B, region = RP.ellipse((1, 2)))]
@test nsites(ls) == nsites(ls´)
ls = lat[cells = n -> 5 < norm(n) < 10]
@test !isempty(Quantica.cells(ls)) && all(n -> 5 < norm(n) < 10, Quantica.cells(ls))
ls = lat[region = r -> 5 < norm(r) < 10]
@test !isempty(Quantica.cells(ls)) && all(r -> 5 < norm(r) < 10, Quantica.sites(ls))
ls = lat[sites(SA[1,0], 1:3)]
@test ls isa Quantica.SiteSlice
@test nsites(ls) == 3
ls = lat[sites(SA[1,0], 2)]
@test ls isa Quantica.SiteSlice
@test nsites(ls) == 1
# test the difference between a null selector and an unspecified one
ls = lat[cells = SVector{2,Int}[]]
@test isempty(ls)
ls = lat[cells = missing]
@test !isempty(ls)
ls = lat[region = RP.circle(4)]
ls´ = ls[cells = n -> !isreal(n[1])]
@test isempty(ls´)
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3934 | @test_throws ArgumentError qplot(LP.linear()) # no backend loaded
using CairoMakie
@testset "plot lattice" begin
# Makie issue #3009 workaround
lat = LP.linear() |> supercell(10) |> supercell
@test display(qplot(lat)) isa CairoMakie.Screen{CairoMakie.IMAGE}
end
@testset "plot hamiltonian" begin
h = LP.bcc() |> hamiltonian(hopping(1)) |> supercell(3) |> supercell((1,0,0))
g = greenfunction(h)
@test qplot(h, sitecolor = :blue, siteradius = 0.3, inspector = true) isa Figure
@test qplot(h, sitecolor = :yellow, siteopacity = (i, r) -> r[1], inspector = true, flat = false) isa Figure
h = LP.honeycomb() |> hamiltonian(hopping(1)) |> supercell(3) |> supercell
g = h |> attach(nothing) |> greenfunction
@test qplot(h, hopcolor = :blue, hopradius = ldos(g(0.2)), inspector = true) isa Figure
@test qplot(h, hopcolor = (:blue, RGBAf(1,0,0)), sitecolor = [:orange, :white], inspector = true) isa Figure
@test qplot(h, hopcolor = :yellow, hopopacity = current(g(0.2)), inspector = true, flat = false) isa Figure
@test qplot(g, hopcolor = :yellow, hopopacity = (ij, (r, dr)) -> r[1], inspector = true, flat = false) isa Figure
@test scatter(h, :A) isa Makie.FigureAxisPlot
@test scatter(g, 1) isa Makie.FigureAxisPlot
@test scatter(lattice(g)) isa Makie.FigureAxisPlot
@test lines(h, :A) isa Makie.FigureAxisPlot
@test lines(g) isa Makie.FigureAxisPlot
@test_throws BoundsError lines(lattice(h), 3)
h = LP.linear() |> hamiltonian(@hopping(()->I), orbitals = 2)
@test qplot(h) isa Figure
g = LP.linear() |> hamiltonian(hopping(I), orbitals = 2) |> attach(@onsite(ω->im*I), cells = 1) |> attach(@onsite(ω->im*I), cells = 4) |> greenfunction
@test qplot(g, selector = siteselector(; cells = -10:10)) isa Figure
# matrix shader
gx1 = abs2.(g(0.01)[siteselector(cells = 1:10), 1])
@test qplot(g, selector = siteselector(cells = 1:10), sitecolor = gx1) isa Figure
# vector shader
gx1´ = vec(sum(gx1, dims = 2))
@test qplot(g, selector = siteselector(cells = 1:10), sitecolor = gx1´) isa Figure
# green with leads
glead = LP.honeycomb() |> hopping(1, range = 1) |> supercell((1,-1), region = r -> 0<=r[2]<=5) |> attach(nothing, cells = SA[5]) |> greenfunction(GS.Schur(boundary = 0));
g = LP.honeycomb() |> hopping(1) |> supercell(region = r -> -6<=r[1]<=6 && 0<=r[2]<=5) |> attach(glead, region = r -> r[1] > 4.9) |> greenfunction;
@test qplot(g, shellopacity = 0.3) isa Figure
hlead = LP.square() |> supercell((1,0), region = r -> 0 <= r[2] < 2) |> hopping(1)
glead = LP.square() |> onsite(4) - hopping(1) |> supercell((1, 0), region = r -> abs(r[2]) <= 5/2) |> attach(nothing, cells = SA[2]) |> greenfunction(GS.Schur(boundary = -2))
@test qplot(glead, siteradius = 0.25, children = (; sitecolor = :blue)) isa Figure
g = LP.honeycomb() |> hopping(1, range = 1) |>
attach(nothing, region = RP.circle(1, SA[2,3])) |> attach(nothing, region = RP.circle(1, SA[3,-3])) |>
greenfunction(GS.Bands(subdiv(-π, π, 13), subdiv(-π, π, 13), boundary = 2=>-3))
@test qplot(g) isa Figure
# Issue 200
g = LP.linear() |> hamiltonian(@hopping((; q = 1) -> q*I), orbitals = 2) |> attach(@onsite((ω; p = 0) ->p*SA[0 1; 1 0]), cells = 1) |> greenfunction
@test qplot(g) isa Figure
@test qplot(g(p = 3)) isa Figure
end
@testset "plot bands" begin
SOC(dr) = ifelse(iseven(round(Int, atan(dr[2], dr[1])/(pi/3))), im, -im)
model = hopping(1) + @hopping((r, dr; α = 0) -> α * SOC(dr); sublats = :A => :A, range = 1) - @hopping((r, dr; α = 0) -> α * SOC(dr); sublats = :B => :B, range = 1)
h = LatticePresets.honeycomb(a0 = 1) |> hamiltonian(model)
b = bands(h(α = 0.05), range(0, 2pi, length=60), range(0, 2pi, length = 60))
@test qplot(b, color = (psi, e, k) -> angle(psi[1] / psi[2]), colormap = :cyclic_mrybm_35_75_c68_n256, inspector = true) isa Figure
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | code | 3104 | @testset "show methods" begin
hs = HP.graphene(orbitals = 2), HP.graphene(orbitals = (2,1))
for h in hs
b = bands(h, subdiv(0,2pi,10), subdiv(0,2pi,10))
g = greenfunction(supercell(h) |> attach(@onsite(ω -> im*I)) |> attach(nothing), GS.Spectrum())
@test nothing === show(stdout, sublat((0,0)))
@test nothing === show(stdout, LP.honeycomb())
@test nothing === show(stdout, LP.honeycomb()[cells = (0,0)])
@test nothing === show(stdout, siteselector(; cells = (0,0)))
@test nothing === show(stdout, hopselector(; range = 1))
@test nothing === show(stdout, onsite(1) + hopping(1))
@test nothing === show(stdout, @onsite(()->1) + @hopping(()->1))
@test nothing === show(stdout, @onsite!(o->1))
@test nothing === show(stdout, @hopping!(t->1))
@test nothing === show(stdout, h)
@test nothing === show(stdout, h |> hamiltonian(@onsite!(o->2o)))
@test nothing === show(stdout, h |> attach(nothing, cells = (0,0)))
@test nothing === show(stdout, current(h))
@test nothing === show(stdout, ES.LinearAlgebra())
@test nothing === show(stdout, spectrum(h, (0,0)))
@test nothing === show(stdout, b)
@test nothing === show(stdout, b[(0,0)])
@test nothing === show(stdout, Quantica.slice(b, (0,0)))
@test nothing === show(stdout, Quantica.slice(b, (0,0)))
@test nothing === show(stdout, g)
@test nothing === show(stdout, g[cells = ()])
@test nothing === show(stdout, MIME("text/plain"), g[diagonal(cells = ())](0.1))
@test nothing === show(stdout, g(0.1))
@test nothing === show(stdout, ldos(g[1]))
@test nothing === show(stdout, ldos(g(0.1)))
@test nothing === show(stdout, current(g[1]))
@test nothing === show(stdout, current(g(0.1)))
@test nothing === show(stdout, conductance(g[1]))
@test nothing === show(stdout, transmission(g[1,2]))
@test nothing === show(stdout, densitymatrix(g[1]))
@test nothing === show(stdout, MIME("text/plain"), densitymatrix(g[1])())
@test nothing === show(stdout, sites(1))
@test nothing === show(stdout, sites(SA[1], 2:4))
@test nothing === show(stdout, sites(:))
@test nothing === show(stdout, sites(SA[0], :))
end
h = first(hs)
g = greenfunction(supercell(h) |> attach(@onsite(ω -> im*I)) |> attach(nothing))
@test nothing === show(stdout, josephson(g[1], 2))
@test nothing === show(stdout, densitymatrix(g[1], 2))
h = supercell(h, 3) |> supercell
g = greenfunction(supercell(h) |> attach(nothing), GS.KPM())
@test nothing === show(stdout, densitymatrix(g[1]))
g = greenfunction(supercell(h) |> attach(@onsite(ω -> im*I)) |> attach(nothing), GS.Spectrum())
@test nothing === show(stdout, densitymatrix(g[1]))
b = LP.honeycomb() |> Quantica.builder(orbitals = 2)
@test nothing === show(stdout, b)
w = EP.wannier90("wannier_test_tb.dat");
@test nothing === show(stdout, w)
@test nothing === show(stdout, position(w))
end
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | docs | 3390 | 
<!-- [](https://pablosanjose.github.io/Quantica.jl/stable) -->
[](https://pablosanjose.github.io/Quantica.jl/dev)
[](https://doi.org/10.5281/zenodo.4762964)
[](https://github.com/pablosanjose/Quantica.jl/actions)
[](https://codecov.io/gh/pablosanjose/Quantica.jl)
[](https://github.com/pablosanjose/Quantica.jl)
The Quantica.jl package provides an expressive API to build arbitrary quantum systems on a discrete lattice, and a collection of algorithms to compute some of their properties.
Quantica.jl requires Julia v1.9 or later.
# Some current features
- Build and visualize Hamiltonians on discrete lattices of arbitrary dimensions, using tight-binding models with arbitrary number of orbitals
- Compute and visualize band structures of periodic systems
- Couple arbitrary Hamiltonians and compute non-interacting Green functions
- Compute transport and spectral observables, such as local density of states, current densities, conductance and Josephson currents
Some of this functionality, particularly visualization, requires loading some plot backend from the Makie repository, such as GLMakie (GPU-accelerated interactive visualization), CairoMakie (for pdf/svg output) or WGLMakie (Web-GL backend for use inside browsers)
# Example
A step-by-step construction and visualization of a Kane-Mele model (parametrized by spin orbit strength α)and of its bandstructure, encoding the pseudospin orientation in the color of the subbands.
```julia
julia> using Quantica, GLMakie
julia> SOC(dr) = ifelse(iseven(round(Int, atan(dr[2], dr[1])/(pi/3))), im, -im); # Kane-Mele spin-orbit coupling
julia> model = hopping(1, range = 1/√3) + @hopping((r, dr; α = 0) -> α * SOC(dr); sublats = :A => :A, range = 1) - @hopping((r, dr; α = 0) -> α * SOC(dr); sublats = :B => :B, range = 1);
julia> h = LatticePresets.honeycomb(a0 = 1) |> hamiltonian(model)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 7
Harmonic size : 2 × 2
Orbitals : [1, 1]
Element type : scalar (ComplexF64)
Onsites : 0
Hoppings : 18
Coordination : 9.0
Parameters : [:α]
julia> qplot(h(α = 0.02))
julia> b = bands(h(α = 0.05), range(0, 2pi, length=60), range(0, 2pi, length = 60))
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 2
Vertices : 7200
Edges : 21122
Simplices : 13924
julia> qplot(b, color = (psi, e, k) -> angle(psi[1] / psi[2]), colormap = :cyclic_mrybm_35_75_c68_n256, hide = :wireframe)
```
<p float="left">
<img height="400" alt="Kane-Mele Hamiltonian" src="docs/src/assets/latticeKM.png">
<img height="400" alt="Kane-Mele bandstructure" src="docs/src/assets/bandsKM.png">
</p>
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | docs | 108 | # [API](@id api)
```@meta
CurrentModule = Quantica
```
```@index
```
```@autodocs
Modules = [Quantica]
``` | Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | docs | 1487 | 
[Quantica.jl](https://github.com/pablosanjose/Quantica.jl/) is a Julia package for building generic tight-binding models and computing spectral and transport properties.
## Installation
```julia
julia> import Pkg; Pkg.add("Quantica")
```
Quantica.jl requires Julia v1.9 or later. Some of its functionality, notably plotting, will become available only after `using GLMakie`, or some other plotting package from the [Makie.jl](https://docs.makie.org/stable/) family. Install `GLMakie` with
```julia
julia> import Pkg; Pkg.add("GLMakie")
```
Then, to begin using Quantica, just load it by doing
```julia
julia> using Quantica
```
(and possibly also e.g. `using GLMakie` if you need to plot Quantica objects).
## Asking questions, reporting bugs
If you encounter problems, please read the tutorial and examples, your question is probably answered there. You can also check the docstring of each Quantica.jl function [here](@ref api) or within the Julia REPL, by entering the function preceded by a `?`, e.g. `?hamiltonian`.
If you are still stuck, you may sometimes find me (`@pablosanjose`) at the [Julia Slack](https://julialang.slack.com) or [Julia Discourse](https://discourse.julialang.org).
If you believe you found a bug in Quantica.jl, please don't hesitate to file a [GitHub issue](https://github.com/pablosanjose/Quantica.jl/issues), preferably with detailed instructions to reproduce it. Pull requests with fixes are also welcome!
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | docs | 12171 | # Non-spatial models and self-consistent mean-field problems
As briefly mentioned when discussing parametric models and modifiers, we have a special syntax that allows models to depend on sites directly, instead of on their spatial location. We call these non-spatial models. A simple example, with an onsite energy proportional to the site **index**
```julia
julia> model = @onsite((i; p = 1) --> ind(i) * p)
ParametricModel: model with 1 term
ParametricOnsiteTerm{ParametricFunction{1}}
Region : any
Sublattices : any
Cells : any
Coefficient : 1
Argument type : non-spatial
Parameters : [:p]
```
or a modifier that changes a hopping between different cells
```julia
julia> modifier = @hopping!((t, i, j; dir = 1) --> (cell(i) - cell(j))[dir])
HoppingModifier{ParametricFunction{3}}:
Region : any
Sublattice pairs : any
Cell distances : any
Hopping range : Inf
Reverse hops : false
Argument type : non-spatial
Parameters : [:dir]
```
Note that we use the special syntax `-->` instead of `->`. This indicates that the positional arguments of the function, here called `i` and `j`, are no longer site positions as up to now. These `i, j` are non-spatial arguments, as noted by the `Argument type` property shown above. Instead of a position, a non-spatial argument `i` represent an individual site, whose index is `ind(i)`, its position is `pos(i)` and the cell it occupies on the lattice is `cell(i)`.
Technically `i` is of type `CellSitePos`, which is an internal type not meant for the end user to instantiate. One special property of this type, however, is that it can efficiently index `OrbitalSliceArray`s. We can use this to build a Hamiltonian that depends on an observable, such as a `densitymatrix`. A simple example of a four-site chain with onsite energies shifted by a potential proportional to the local density on each site:
```julia
julia> h = LP.linear() |> onsite(2) - hopping(1) |> supercell(4) |> supercell;
julia> h(SA[])
4×4 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 10 stored entries:
2.0+0.0im -1.0+0.0im ⋅ ⋅
-1.0+0.0im 2.0+0.0im -1.0+0.0im ⋅
⋅ -1.0+0.0im 2.0+0.0im -1.0+0.0im
⋅ ⋅ -1.0+0.0im 2.0+0.0im
julia> g = greenfunction(h, GS.Spectrum());
julia> ρ = densitymatrix(g[])(0.5, 0) ## density matrix at chemical potential `µ=0.5` and temperature `kBT = 0` on all sites
4×4 OrbitalSliceMatrix{Matrix{ComplexF64}}:
0.138197+0.0im 0.223607+0.0im 0.223607+0.0im 0.138197+0.0im
0.223607+0.0im 0.361803+0.0im 0.361803+0.0im 0.223607+0.0im
0.223607+0.0im 0.361803+0.0im 0.361803+0.0im 0.223607+0.0im
0.138197+0.0im 0.223607+0.0im 0.223607+0.0im 0.138197+0.0im
julia> hρ = h |> @onsite!((o, i; U = 0, ρ) --> o + U * ρ[i])
ParametricHamiltonian{Float64,1,0}: Parametric Hamiltonian on a 0D Lattice in 1D space
Bloch harmonics : 1
Harmonic size : 4 × 4
Orbitals : [1]
Element type : scalar (ComplexF64)
Onsites : 4
Hoppings : 6
Coordination : 1.5
Parameters : [:U, :ρ]
julia> hρ(SA[]; U = 1, ρ = ρ0)
4×4 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 10 stored entries:
2.1382+0.0im -1.0+0.0im ⋅ ⋅
-1.0+0.0im 2.3618+0.0im -1.0+0.0im ⋅
⋅ -1.0+0.0im 2.3618+0.0im -1.0+0.0im
⋅ ⋅ -1.0+0.0im 2.1382+0.0im
```
Note the `ρ[i]` above. This indexes `ρ` at site `i`. For a multiorbital hamiltonian, this will be a matrix (the local density matrix on each site `i`). Here it is just a number, either ` 0.138197` (sites 1 and 4) or `0.361803` (sites 2 and 3).
The above provides the tools to implement self-consistent mean field. We just need to find a fixed point `ρf(ρ) = ρ` of the function `ρf` that produces the density matrix of the system.
In the following example we use the FixedPoint.jl package. It provides a simple utility `afps(f, x0)` that computes the solution of `f(x) = x` with initial condition `x0`. The package requires `x0` to be a (real) `AbstractArray`. Note that any other fixed-point search routine that work with `AbstractArray`s should also work.
```julia
julia> using FixedPoint
julia> ρf(hρ; µ = 0.5, kBT = 0, U = 0.1) = ρ -> densitymatrix(greenfunction(hρ(; U, ρ), GS.Spectrum())[])(µ, kBT)
ρf (generic function with 1 method)
julia> (ρsol, ρerror, iters) = @time afps(ρf(hρ; U = 0.4), real(ρ0), tol = 1e-8, ep = 0.95, vel = 0.0); @show iters, ρerror; ρsol
0.000627 seconds (1.91 k allocations: 255.664 KiB)
(iters, ρerror) = (8, 2.0632459629688071e-10)
4×4 OrbitalSliceMatrix{Matrix{ComplexF64}}:
0.145836+0.0im 0.227266+0.0im 0.227266+0.0im 0.145836+0.0im
0.227266+0.0im 0.354164+0.0im 0.354164+0.0im 0.227266+0.0im
0.227266+0.0im 0.354164+0.0im 0.354164+0.0im 0.227266+0.0im
0.145836+0.0im 0.227266+0.0im 0.227266+0.0im 0.145836+0.0im
```
!!! note "Bring your own fixed-point solution!"
Note that fixed-point calculations can be tricky, and the search algorithm can have a huge impact in convergence (if the problem converges at all!). For this reason, Quantica.jl does not provide built-in fixed-point routines, only the functionality to write functions such as `ρf` above.
!!! tip "Sparse mean fields"
The method explained above to build a Hamiltonian supports all the `SiteSelector` and `HopSelector` functionality of conventional models. Therefore, although the density matrix computed above is dense, its application to the Hamiltonian is sparse: it only touches the onsite matrix elements. Likewise, we could for example use `@hopping!` with a finite `range` to apply a Fock mean field within a finite range. In the future we will support built-in Hartree-Fock model presets with adjustable sparsity.
# Wannier90 imports
A common way to obtain quantitative tight-binding models of materials is to *Wannierize* density-functional-theory (DFT) bandstructures. In a nutshell, this procedure consists in obtaining a basis set of a subspace of some DFT bandstructure, subject to the condition that the obtained states are maximally localized. A popular implementation of this algorithm is (Wannier90)[https://wannier.org]. Among other things, this tool produces output files that encode a tight-binding Hamiltonian for the material and the matrix elements of the position operator in the maximally localized Wannier basis.
Quantica.jl includes a function that can import Wannier90 tight-binding files. By default these files are 3D systems
```
julia> w = ExternalPresets.wannier90("wannier_tb.dat")
WannierBuilder{Float64,3} : 3-dimensional Hamiltonian builder of type Float64 from Wannier90 input
cells : 755
elements : 36388
modifiers : 0
```
In this case, however, the model in the "wannier_tb.dat" file is a 2D MoS2 crystal. We can project out all out-of-plane matrix elements by specifying the dimension with `dim`. We can also drop any Hamiltonian matrix element smaller than, say `htol = 1e-5`, and any position matrix element of norm smaller than `rtol = 1e-4`. This greatly simplifies the problem
```
julia> w = ExternalPresets.wannier90("wannier_tb.dat"; dim = 2, htol = 1e-5, rtol = 1e-4)
WannierBuilder{Float64,2} : 2-dimensional Hamiltonian builder of type Float64 from Wannier90 input
cells : 151
elements : 7510
modifiers : 0
```
This object can then be converted into a Hamiltonian `h` or a position operator `r`
```
julia> h = hamiltonian(w)
Hamiltonian{Float64,2,2}: Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 151
Harmonic size : 10 × 10
Orbitals : [1]
Element type : scalar (ComplexF64)
Onsites : 10
Hoppings : 7500
Coordination : 750.0
julia> r = sites(w)
BarebonesOperator{2}: a simple collection of 2D Bloch harmonics
Bloch harmonics : 151
Harmonic size : 10 × 10
Element type : SVector{2, ComplexF64}
Nonzero elements : 7408
```
Note that `r` is not of type `Hamiltonian`. The `BarebonesOperator` is a specially simple operator type that simply encodes a number of Bloch harmonics (matrices between different unit cells) of arbitrary element type. It supports only a subset of the funcitionality of `AbstractHamiltonian`s. In particular, it supports indexing:
```
julia> r[SA[0,0]]
10×10 SparseArrays.SparseMatrixCSC{SVector{2, ComplexF64}, Int64} with 50 stored entries:
[-0.000563148+0.0im, 1.79768+0.0im] … ⋅
⋅ [0.164126-2.15538e-5im, -0.000484848-0.0144407im]
⋅ [0.0195449-4.9251e-5im, 2.02798e-7+0.00140866im]
[2.48859e-5-0.0185437im, -0.00534254-1.88085e-5im] ⋅
⋅ [2.07772e-7-0.00769914im, 0.00831306+1.45056e-5im]
[-0.00340134-1.02057e-5im, 1.89607e-5+0.00656423im] … ⋅
[-0.000371236+0.0227337im, -0.101768+1.64659e-5im] ⋅
⋅ [0.210672-5.77589e-5im, -0.000233323-0.00456068im]
[0.164126-2.14909e-5im, -0.000483435-0.0144407im] ⋅
⋅ [0.000608652+0.0im, 2.12317+0.0im]
julia> r[sites(1), sites(4)]
2-element SVector{2, ComplexF64} with indices SOneTo(2):
2.4885857e-5 + 0.018543702im
-0.0053425408 + 1.8808481e-5im
```
It is possible to modify the imported Wannier90 models using the full Quantica.jl machinery. For example, we can add any `AbstractModel` to the Wannier90 model upon import just by passing it as a second argument
```
julia> w = EP.wannier90("wannier_tb.dat", @onsite((; Δ = 0) -> Δ); dim = 2)
WannierBuilder{Float64,2} : 2-dimensional Hamiltonian builder of type Float64 from Wannier90 input
cells : 151
elements : 7560
modifiers : 1
julia> h = hamiltonian(w)
ParametricHamiltonian{Float64,2,2}: Parametric Hamiltonian on a 2D Lattice in 2D space
Bloch harmonics : 151
Harmonic size : 10 × 10
Orbitals : [1]
Element type : scalar (ComplexF64)
Onsites : 10
Hoppings : 7540
Coordination : 754.0
Parameters : [:Δ]
```
Note that since we used a `ParametricModel` with a single parametric term, this introduced one `modifier`, since ParametricModels are simply an ordinary base model plus one modifier for each parametric term. As a result, `h` is now parametric.
!!! note "Adding models after import"
Although the above is the recommended way to add a Quantica model to a Wannier90 model (i.e. explicitly at import time), one can also do the same with `Quantica.add!(EP.hbuilder(w), model)` to modify `w` in place after its creation. This employs internal functionality, so it is not recommended, as it could change without warning.
We can also use the following syntax apply one or more modifiers explicitly
```
julia> w´ = w |> @onsite!((o; k = 0) -> o + k)
WannierBuilder{Float64,2} : 2-dimensional Hamiltonian builder of type Float64 from Wannier90 input
cells : 151
elements : 7560
modifiers : 2
```
An interesting application of modifiers is the addition of an electric field that couples to the full `r` operator. In an strict tight-binding limit, we would add an electric field `E` simply as an onsite potential
```
julia> hE = h |> @onsite!((o, r; E = SA[0,0]) -> o + E'*r);
```
However, we actually have the full `r` operator now, which includes non-diagonal matrix elements. We can then incorporate the electric field term `E'*r` more precisely. We can do so using the `-->` syntax and the indexing functionality of the `r::BarebonesOperator` that we obtained from Wannier90
```
julia> hE = h |> @onsite!((o, i; E = SA[0,0]) --> o + E'*r[i,i]) |> @hopping!((t, i, j; E = SA[0,0]) --> t + E'*r[i,j]);
```
!!! note "Closures over non-constant objects"
Note that the above creates a closure over `r`, which is not `const`. As a result this would incur a small performance and allocation cost when evaluating `hE(E=...)`. We can avoid it e.g. by defining `r` as a constant, `const r = sites(w)`.
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
|
[
"MIT"
] | 1.1.0 | 258274c47afd63fe67dade9c3f12244b086288e8 | docs | 10539 | # Bandstructures
The eigenpairs (eigenvalues and eigenvectors) of a `Hamiltonian` or `ParametricHamiltonian` at given Bloch phases `ϕᵢ` can be obtained with `spectrum`:
```julia
julia> h = LP.honeycomb() |> hopping(1); ϕᵢ = (0, π);
julia> eᵢ, ψᵢ = spectrum(h, ϕᵢ; solver = EigenSolvers.LinearAlgebra())
Spectrum{Float64,ComplexF64} :
Energies:
2-element Vector{ComplexF64}:
-1.0 + 0.0im
1.0 + 0.0im
States:
2×2 Matrix{ComplexF64}:
0.707107-8.65956e-17im 0.707107-8.65956e-17im
-0.707107+0.0im 0.707107+0.0im
```
The above destructuring syntax assigns eigenvalues and eigenvectors to `eᵢ` and `ψᵢ`, respectively. The available eigensolvers and their options can be checked in the `EigenSolvers` docstrings.
!!! warning "Arpack solver is not thread-safe"
`EigenSolvers.Arpack` relies on a Fortran library that is not currently thread-safe. If you launch Julia with multiple threads, they will not be used with this specific solver. Otherwise Arpack would segfault.
We define a "bandstructure" of an `h::AbstractHamiltonian` as a linear interpolation of its eigenpairs over a portion of the Brillouin zone, which is discretized with a base mesh of `ϕᵢ` values. At each `ϕᵢ` of the base mesh, the Bloch matrix `h(ϕᵢ)` is diagonalized with `spectrum`. The adjacent eigenpairs `eⱼ(ϕᵢ), ψⱼ(ϕᵢ)` are then connected ("stitched") together into a number of band meshes with vertices `(ϕᵢ..., eⱼ(ϕᵢ))` by maximizing the overlap of adjacent `ψⱼ(ϕᵢ)` (since the bands should be continuuous). Degenerate eigenpairs are collected into a single node of the band mesh.
The bandstructure of an `h::AbstractHamiltonian` is computed using `bands`:
```julia
julia> ϕ₁points = ϕ₂points = range(0, 2π, length = 19);
julia> b = bands(h, ϕ₁points, ϕ₂points)
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 1
Vertices : 720
Edges : 2016
Simplices : 1296
```
The first argument is the `AbstractHamiltonian`. Here it is defined on an `L=2` dimensional lattice. The subsequent arguments are collections of Bloch phases on each of the `L` axes of the Brillouin zone, whose direct product `ϕ₁points` ⊗ `ϕ₂points` defines our base mesh of `ϕᵢ` points. Here it is a uniform 19×19 grid. We can once more use `qplot` to visualize the bandstructure, or more precisely the band meshes:
```julia
julia> using GLMakie; qplot(b)
```
```@raw html
<img src="../../assets/graphene_bands.png" alt="Graphene bands" width="400" class="center"/>
```
The dots on the bands are the band mesh vertices `(ϕᵢ..., eⱼ(ϕᵢ))`. They can be omitted with the `qplot` keyword `hide = :nodes` (or `hide = :vertices`, both are equivalent).
## Band defects
Note that the uniform grid contains the Dirac points. This is the reason for the number `19` of Bloch phases used above. Note also that it is identified as a point in the bands with `degeneracy = 2` (the rest have `degeneracy = 1`). As mentioned, the points on the bands are connected based on eigenstate overlaps between adjacent `ϕᵢ`s. This interpolation algorithm can deal with subspace degeneracies, as here. However, Dirac points (and Diabolical Points in general) must belong to the mesh for the method to work. If the number of points is reduced to 18 per axis, the Dirac points become unavoidable band dislocations, that appear as missing simplices in the bands:
```@raw html
<img src="../../assets/graphene_bands_bad.png" alt="Graphene bands with Dirac point dislocation" width="400" class="center"/>
```
!!! tip "Advanced: band defects and patching"
If a Dirac point or other type of band dislocation point happens to not belong to the sampling grid, it can be added with the `bands` keyword `defects`. Then, it can be reconnected with the rest of the band by increasing the `patches::Integer` keyword (see `bands` docstring for details). This "band repair" functionality is experimental, and should only be necessary in some cases with Diabolical Points.
## Coordinate mapping and band linecuts
The direct product of the `ϕᵢpoints` above define a rectangular mesh over which we want to compute the bandstructure. By default, this mesh is taken as a discretization of Bloch phases, so `h(ϕᵢ)` is diagonalized at each point of the base mesh. We might want, however, a different relation between the mesh and the parameters passed to `h`, for example if we wish to use wavevectors `k` instead of Bloch phases `ϕᵢ = k⋅Aᵢ` for the mesh. This is achieved with the `mapping` keyword, which accepts a function `mapping = (mesh_points...) -> bloch_phases`,
```julia
julia> h = LP.honeycomb() |> hopping(2); k₁points = range(-2π, 2π, length = 51); k₂points = range(-2π, 2π, length = 51);
julia> Kpoints = [SA[cos(θ) -sin(θ); sin(θ) cos(θ)] * SA[4π/3,0] for θ in range(0, 5*2π/6, length = 6)];
julia> ϕ(k...) = SA[k...]' * bravais_matrix(h)
ϕ (generic function with 1 method)
julia> b = bands(h, k₁points, k₂points; mapping = ϕ, defects = Kpoints, patches = 20);
julia> using GLMakie; qplot(b, hide = (:nodes, :wireframe), color = :orange)
```
```@raw html
<img src="../../assets/graphene_bands_k.png" alt="Graphene bands in k-space" width="400" class="center"/>
```
To compute a bandstructure linecut along a polygonal line in the Brillouin zone, we could once more use the `mapping` functionality, mapping a set of points `xᵢ::Real` in the mesh to Bloch phases `ϕᵢ` that defines the nodes of the polygonal path, and interpolating linearly between them. To avoid having to construct this mapping ourselves, `mapping` accepts a second type of input for this specific usecase, `mapping = xᵢ => ϕᵢ`. Here, `ϕᵢ` can be a collection of `Tuple`s, `SVector{L}`, or even `Symbols` denoting common names for high-symmetry points in the Brillouin zone, such as :Γ, :K, :K´, :M, :X, :Y, and :Z. The following gives a Γ-K-M-Γ linecut for the bands above, where the (Γ, K, M, Γ) points lie at `x = (0, 2, 3, 4)`, respectively, with 10 subdivisions in each segment,
```julia
julia> b = bands(h, subdiv((0, 2, 3, 4), 10); mapping = (0, 2, 3, 4) => (:Γ, :K, :M, :Γ));
julia> qplot(b, axis = (; xticks = ([0, 2, 3, 4], ["Γ", "K", "M", "Γ"]), ylabel = "ϵ"))
```
```@raw html
<img src="../../assets/graphene_bands_linecut.png" alt="Graphene bands along a Γ-K-M-Γ cut" width="400" class="center"/>
```
!!! tip "subdiv"
The `subdiv` function is a convenience function provided by Quantica.jl that generalizes `range` (see the corresponding docstring for comprehensive details). It is useful to create collections of numbers as subdivisions of intervals, as in the example above. In its simplest form `subdiv(min, max, npoints)` is is equivalent to `range(min, max, length = npoints)` or `collect(LinRange(min, max, npoints))`
The `mapping` keyword understand a third syntax that can be used to map a mesh to the space of Bloch phases and parameters of a `ParametricHamiltonian`. To this end we use `mapping = (mesh_points...) -> ftuple(bloch_phases...; params...)`. The `ftuple` function creates a `FrankenTuple`, which is a hybrid between a `Tuple` and a `NamedTuple`. For example, in the following 1D SSH chain we can compute the bandstructure as a function of Bloch phase `ϕ` *and* hopping `t´`, and plot it using more customization options
```julia
julia> h = LP.linear() |> supercell(2) |> @hopping((r, dr; t = 1, t´ = 1) -> iseven(r[1]-1/2) ? t : t´);
julia> b = bands(h, subdiv(0, 2π, 11), subdiv(0, 10, 11), mapping = (ϕ, y) -> ftuple(ϕ; t´ = y/5), patches = 20)
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 1
Vertices : 249
Edges : 664
Simplices : 416
julia> qplot(b, nodedarken = 0.5, axis = (; aspect = (1,1,1), perspectiveness = 0.5, xlabel = "ϕ", ylabel = "t´/t", zlabel = "ϵ"), fancyaxis = false)
```
```@raw html
<img src="../../assets/ssh_bands.png" alt="SSH bandstructure as a function of `ϕ` and `t´/t" width="400" class="center"/>
```
Note that since we didn't specify a value for `t`, it assumed its default `t=1`. In this case we needed to patch the defect at `(ϕ, t´) = (π, 1)` (topological transition) using the `patches` keyword to avoid a band dislocation.
## Band indexing and slicing
The individual subbands in a given `b::Bandstructure` can be obtained with `b[inds]` with `inds::Integer` or `inds::Vector`, just as if `b` where a normal `AbstractVector`. The extracted subbands can also be plotted directly. The following example has 12 subbands, of which we extract and plot the first and last
```julia
julia> h = LP.triangular() |> supercell(4) |> hopping(1) + onsite(r -> 4*rand());
julia> b = bands(h, subdiv(0, 2π, 31), subdiv(0, 2π, 31))
Bandstructure{Float64,3,2}: 3D Bandstructure over a 2-dimensional parameter space of type Float64
Subbands : 12
Vertices : 15376
Edges : 44152
Simplices : 28696
julia> qplot(b, hide = (:nodes, :wireframe))
julia> qplot(b[[1, end]], hide = (:nodes, :wireframe))
```
```@raw html
<img src="../../assets/bands_indexed.png" alt="Extracting and plotting a subset of the subbands in a bandstructure" width="600" class="center"/>
```
For a band in a 2D Brillouin zone, we can also obtain the intersection of a bandstructure with a plane of constant energy `ϵ=2` using the syntax `b[(:,:,2)]`. A section at fixed Bloch phase `ϕ₁=0` (or mesh coordinate `x₁=0` if `mapping` was used), can be obtained with `b[(0,:,:)]`. This type of band slicing can be generalized to higher dimensional bandstructures, or to more than one constrain (e.g. energy and/or a subset of Bloch phases).
As an example, this would be the Fermi surface of a nearest-neighbor cubic-lattice Hamiltonian at Fermi energy `µ = 0.2t`
```julia
julia> pts = subdiv(0, 2π, 41); b = LP.cubic() |> hopping(1) |> bands(pts, pts, pts)
Bandstructure{Float64,4,3}: 4D Bandstructure over a 3-dimensional parameter space of type Float64
Subbands : 1
Vertices : 68921
Edges : 462520
Simplices : 384000
julia> qplot(b[(:, :, :, 0.2)], hide = (:nodes, :wireframe))
```
```@raw html
<img src="../../assets/cubic_Fermi_surface.png" alt="Fermi surface of a cubic crystal at `µ = 0.2t`" width="400" class="center"/>
```
!!! warning "On simplex orientation of bandstructure slices"
The above example showcases a current (cosmetic) limitation of the band slicing algorithm: it sometimes fails to align all faces of the resulting manifold to the same orientation. The dark and bright regions of the surface above reveals that approximately half of the faces in this case are facing inward and the rest outward.
| Quantica | https://github.com/pablosanjose/Quantica.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.