licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
6439
## function _locpoly_alt1!( eX::Matrix{T}, w::Vector{T}, X::Matrix{T}, z::Vector{T}, y::Vector{T}, z0::T, degree::Int64, kernel::SmoothingKernel{T}) where {T <: AbstractFloat} @. w = evaluate(kernel, z, z0) _expand_X!(eX, X, z, z0, degree) ((eX' * diagm(w)) * eX) \ ((eX' * diagm(w)) * y) end function locpoly_alt1( X::Matrix{T}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, degree::Int64, # degree of the polynomial kernel::SmoothingKernel{T}=GaussianKernel(one(T))) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) out = Array{T}(ep, length(zgrid)) w = Array{T}(n) eX = Array{T}(n, ep) ind = 0 for z0 in zgrid ind += 1 out[:, ind] = _locpoly_alt1!(eX, w, X, z, y, z0, degree, kernel) end out end ## function _locpoly_alt!( Xt_w_X::Matrix{T}, Xt_w_Y::Vector{T}, w::Vector{T}, X::Matrix{T}, z::Vector{T}, y::Vector{T}, z0::T, degree::Int64, kernel::SmoothingKernel{T}) where {T <: AbstractFloat} @. w = evaluate(kernel, z, z0) _expand_Xt_w_X!(Xt_w_X, w, X, z, z0, degree) _expand_Xt_w_Y!(Xt_w_Y, w, X, z, y, z0, degree) cholfact!(Xt_w_X) \ Xt_w_Y end function locpoly_alt( X::Matrix{T}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, degree::Int64, # degree of the polynomial kernel::SmoothingKernel{T}) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) out = Array{T}(ep, length(zgrid)) w = Array{T}(n) Xt_w_X = Array{T}(ep, ep) Xt_w_Y = Array{T}(ep) ind = 0 for z0 in zgrid ind += 1 out[:, ind] = _locpoly_alt!(Xt_w_X, Xt_w_Y, w, X, z, y, z0, degree, kernel) end out end ## function locpolyl1_alt( X::Matrix{T}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, degree::Int64, kernel::SmoothingKernel{T}, λ0::T, options::CDOptions=CDOptions()) where {T <: AbstractFloat} # construct inner options because we do not want warmStart = false # we want to start from the previous iteration since the points # on the grid should be close to each other opt = CDOptions(options.maxIter, options.optTol, options.randomize, true, options.numSteps) n, p = size(X) ep = p * (degree + 1) out = Array{SparseVector{T, Int64}}(length(zgrid)) # temporary storage w = Array{T}(n) wX = Array{T}(n, ep) stdX = ones(T, ep) ind = 0 for z0 in zgrid ind += 1 # the following two should update f @. w = evaluate(kernel, z, z0) _expand_X!(wX, X, z, z0, degree) # compute std for each column @inbounds for j=1:ep v = zero(T) @simd for i=1:n v += wX[i, j] * wX[i, j] * w[i] end stdX[j] = sqrt(v / n) end @. w = sqrt(w) f = CDLeastSquaresLoss(diagm(w)*y, diagm(w)*wX) g = ProximalBase.ProxL1(λ0, stdX) β = ProximalBase.SparseIterate(ep) # solve for β coordinateDescent!(β, f, g, opt) out[ind] = convert(SparseVector, β) end out end ## function _expand_Xt_w_X_alt!( Xt_w_X::Matrix{T}, w::Vector{T}, X::Matrix{T}, z::Vector{T}, z0::T, degree::Int64) where {T <: AbstractFloat} n, p = size(X) fill!(Xt_w_X, zero(T)) @inbounds for j=1:p, jj=0:degree col=(j-1)*(degree+1)+1+jj for k=j:p if k != j krange = 0:degree else krange = jj:degree end for kk=krange row = (k-1)*(degree+1)+1+kk # compute Xt_w_X[row, col] for i=1:n Xt_w_X[row, col] += X[i, j] * (z[i] - z0)^(jj+kk) * X[i, k] * w[i] end if row != col Xt_w_X[col, row] = Xt_w_X[row, col] end end end end Xt_w_X end function genData(n, p) X = randn(n, p) Z = rand(n) ɛ = 0.1 * randn(n) Y = zeros(n) betaMat = zeros(p, n) randBeta = [rand([2,4,6,8]) for j=1:p] for i=1:n betaMat[:, i] = sin.(randBeta * Z[i]) Y[i] = dot(betaMat[:, i], X[i, :]) + ɛ[i] end Y, X, Z, betaMat end function genDataIID(n, p) X = randn(n, p) Z = rand(n) ɛ = 0.1 * randn(n) Y = zeros(n) beta = 0.5+rand(p) for i=1:n Y[i] = dot(beta, X[i, :]) + ɛ[i] end Y, X, Z, beta end # using BenchmarkTools #### # # n, p = 100, 2 # Y, X, Z, betaMat = genData(n, p) # zgrid = collect(0.01:0.1:0.99) # # gk = GaussianKernel(0.2) # degree = 3 # # @time o1 = locpoly(X, Z, Y, zgrid, 1, gk) # @time o2 = locpoly_alt(X, Z, Y, zgrid, 1, gk) # @time o3 = locpoly_alt1(X, Z, Y, zgrid, 1, gk) # # maximum(abs.(o1-o2)) # maximum(abs.(o1-o3)) # # @benchmark locpoly($X, $Z, $Y, $zgrid, $degree, $gk) # @benchmark locpoly_alt($X, $Z, $Y, $zgrid, $degree, $gk) # @benchmark locpoly_alt1($X, $Z, $Y, $zgrid, $degree, $gk) #### # p = 10 # X = randn(100, p) # z = rand(100) # w = zeros(100) # k = GaussianKernel(0.2) # @. w = evaluate(k, z, 0.5) # # # degree = 2 # cp = p*(degree+1) # # eX = zeros(100, cp) # _expand_X!(eX, X, z, 0.5, degree) # # Xt_w_X = zeros(cp, cp) # Xt_w_X1 = zeros(cp, cp) # o1 = _expand_Xt_w_X!(Xt_w_X, w, X, z, 0.5, degree) # o2 = _expand_Xt_w_X_alt!(Xt_w_X1, w, X, z, 0.5, degree) # o3 = (eX'*diagm(w))*eX # # maximum(abs.(o1 - o2)) # maximum(abs.(o1 - o3)) # # using BenchmarkTools # @benchmark _expand_Xt_w_X!($Xt_w_X, $w, $X, $z, 0.5, degree) # @benchmark _expand_Xt_w_X_alt!($Xt_w_X1, $w, $X, $z, 0.5, degree) ### benchmark local lasso # # # n, s, p = 500, 2, 50 # degree = 2 # gk = GaussianKernel(0.2) # w = zeros(n) # sw = zeros(n) # # # Y, X, Z, betaMat = genData(n, s) # X = [X zeros(n, p-s)] # z0 = rand() # # cp = p*(degree+1) # eX = zeros(n, cp) # CoordinateDescent._expand_X!(eX, X, Z, z0, degree) # # @. w = evaluate(gk, Z, z0) # @. sw = sqrt(w) # # λ = 0.1 # g = ProximalBase.ProxL1(λ) # f1 = CDLeastSquaresLoss(diagm(sw) * Y, diagm(sw)*X) # f2 = CDWeightedLSLoss(Y, X, w) # # opt = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=false, randomize=true) # x1 = convert(ProximalBase.SparseIterate, sprand(p, 0.6)) # x2 = convert(ProximalBase.SparseIterate, sprand(p, 0.6)) # # @benchmark coordinateDescent!($x1, $f1, $g, $opt) # @benchmark coordinateDescent!($x2, $f2, $g, $opt) ## benchmark locpolyl1 # # n, s, p = 500, 2, 50 # degree = 0 # gk = GaussianKernel(0.2) # # Y, X, Z, betaT = genData(n, s) # X = [X zeros(n, p-s)] # zgrid = collect(0.01:0.1:0.99) # # λ0 = 0.01 # # opt = CDOptions(;randomize=false) # o1 = locpolyl1(X,Z,Y,zgrid,degree,gk,λ0, opt) # o2 = locpolyl1_alt(X,Z,Y,zgrid,degree,gk,λ0, opt) # # maximum( maximum(abs.(o1[i] - o2[i])) for i=1:length(zgrid) ) #
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
726
module CoordinateDescent using ProximalBase using DataStructures: nlargest using SparseArrays using Statistics using LinearAlgebra export lasso, sqrtLasso, feasibleLasso!, scaledLasso, scaledLasso!, LassoPath, refitLassoPath, IterLassoOptions, # CD CoordinateDifferentiableFunction, CDLeastSquaresLoss, CDWeightedLSLoss, CDQuadraticLoss, CDSqrtLassoLoss, CDOptions, coordinateDescent, coordinateDescent!, # var coef GaussianKernel, SmoothingKernel, EpanechnikovKernel, evaluate, createKernel, locpoly, locpolyl1 include("utils.jl") include("atom_iterator.jl") include("cd_differentiable_function.jl") include("coordinate_descent.jl") include("lasso.jl") include("varying_coefficient_lasso.jl") end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
2601
abstract type AtomIterator end Base.eltype(::AtomIterator) = Int64 Base.length(x::AtomIterator) = x.fullPass ? ProximalBase.numCoordinates(x.iterate) : nnz(x.iterate) # T = SparseIterate, SymmetricSparseIterate, AtomIterate # last argument represents full pass mutable struct OrderedIterator{T} <: AtomIterator iterate::T fullPass::Bool OrderedIterator{T}(iterate::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, fullPass) where {T} = new(iterate, fullPass) end OrderedIterator(iterate) = OrderedIterator{typeof(iterate)}(iterate, true) Base.iterate(x::OrderedIterator) = iterate(x, 1) function Base.iterate(x::OrderedIterator, i) # check if done done = x.fullPass ? i > ProximalBase.numCoordinates(x.iterate) : i > nnz(x.iterate) if done return nothing end x.fullPass ? (i, i + 1) : (x.iterate.nzval2ind[i], i + 1) end # Base.start(x::OrderedIterator) = 1 # # current item, next state # Base.next(x::OrderedIterator, i) = x.fullPass ? (i, i + 1) : (x.iterate.nzval2ind[i], i + 1) # Base.done(x::OrderedIterator, i) = x.fullPass ? i > ProximalBase.numCoordinates(x.iterate) : i > nnz(x.iterate) # function reset!(x::OrderedIterator, fullPass::Bool) x.fullPass = fullPass x end mutable struct RandomIterator{T} <: AtomIterator iterate::T order::Vector{Int64} fullPass::Bool RandomIterator{T}(iterate::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, order, fullPass) where {T} = new(iterate, order, fullPass) end RandomIterator(iterate::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}) = RandomIterator{typeof(iterate)}(iterate, collect(1:ProximalBase.numCoordinates(iterate)), true) function reset!(x::RandomIterator, fullPass::Bool) x.fullPass = fullPass newLength = fullPass ? ProximalBase.numCoordinates(x.iterate) : nnz(x.iterate) @inbounds for i=1:newLength x.order[i] = i end @inbounds for i=1:newLength-1 j = rand(i:newLength) x.order[i], x.order[j] = x.order[j], x.order[i] end x end Base.iterate(x::RandomIterator) = iterate(x, 1) function Base.iterate(x::RandomIterator, i) # check if done done = x.fullPass ? i > ProximalBase.numCoordinates(x.iterate) : i > nnz(x.iterate) if done return nothing end x.fullPass ? (x.order[i], i + 1) : (x.iterate.nzval2ind[x.order[i]], i + 1) end # Base.start(x::RandomIterator) = 1 # Base.next(x::RandomIterator, i) = x.fullPass ? (x.order[i], i + 1) : (x.iterate.nzval2ind[x.order[i]], i + 1) # Base.done(x::RandomIterator, i) = x.fullPass ? i > ProximalBase.numCoordinates(x.iterate) : i > nnz(x.iterate)
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
7905
abstract type CoordinateDifferentiableFunction end """ Set internal parameters of the function f at the point x. """ initialize!(f, x) = error("initialize! not implemented for $(typeof(f))") """ Coordinate k of the gradient of f evaluated at x. """ gradient(f, x, k) = error("gradient not implemented for $(typeof(f))") """ This should return number of coordinates or blocks of coordinates over which the coordinate descent iterates. """ numCoordinates(f) = error("numCoordinates not implemented for $(typeof(f))") """ Arguments: * f is CoordinateDifferentiableFunction * g is a prox function This function does two things: * It finds h such that f(x + e_k⋅h) + g(x_k + h) decreses f(x) + g(x). Often h = arg_min f(x + e_k⋅h) + g(x_k + h), but it could also minimize a local quadratic approximation. * The function also updates its internals. This is done by expecting that the algorithm to call this function again is coordinate descent. In future, we may want to implement other variants of coordinate descent. """ descendCoordinate!(f, g, x, k) = error("descendCoordinate not implemented for $(typeof(f))") #################################### # # loss |Y - X⋅β|^2 / (2⋅n) # #################################### struct CDLeastSquaresLoss{T<:AbstractFloat, S, U} <: CoordinateDifferentiableFunction y::S X::U r::Vector{T} CDLeastSquaresLoss{T, S, U}(y::AbstractVector{T}, X::AbstractMatrix{T}, r::Vector{T}) where {T,S,U} = new(y,X,r) end function CDLeastSquaresLoss(y::AbstractVector{T}, X::AbstractMatrix{T}) where {T<:AbstractFloat} length(y) == size(X, 1) || throw(DimensionMismatch()) CDLeastSquaresLoss{T, typeof(y), typeof(X)}(y,X,copy(y)) end numCoordinates(f::CDLeastSquaresLoss) = size(f.X, 2) function initialize!(f::CDLeastSquaresLoss{T}, x::SparseIterate{T}) where {T<:AbstractFloat} # compute residuals for the loss X = f.X y = f.y r = f.r n = size(X, 1) @simd for i=1:n @inbounds r[i] = y[i] - A_mul_B_row(X, x, i) end nothing end gradient(f::CDLeastSquaresLoss{T}, x::SparseIterate{T}, j::Int64) where {T<:AbstractFloat} = - At_mul_B_row(f.X, f.r, j) / size(f.X, 1) # a = X[:, k]' X[:, k] # b = X[:, k]' r # # h = arg_min a/(2n) (h-b/a)^2 + λ_k⋅|x_k + h| # xnew[k] = arg_min a/(2n) (xnew_k - (x_k + b/a))^2 + λ_k⋅|xnew_k| function descendCoordinate!( f::CDLeastSquaresLoss{T}, g::ProxL1{T}, x::SparseIterate{T}, k::Int64) where {T<:AbstractFloat} y = f.y X = f.X r = f.r n = length(f.y) a = zero(T) b = zero(T) @inbounds @simd for i=1:n a += X[i, k] * X[i, k] b += r[i] * X[i, k] end oldVal = x[k] x[k] += b / a newVal = cdprox!(g, x, k, n / a) h = newVal - oldVal # update internals -- residuls = y - X * xnew @inbounds @simd for i=1:n r[i] -= X[i, k] * h end h end ################################################################################ # # loss ∑_i w_i ⋅ |Y_i - X_i⋅β|^2 / (2⋅n) # ################################################################################ struct CDWeightedLSLoss{T<:AbstractFloat, S, U} <: CoordinateDifferentiableFunction y::S X::U w::S r::Vector{T} CDWeightedLSLoss{T, S, U}(y::AbstractVector{T}, X::AbstractMatrix{T}, w::AbstractVector{T}, r::Vector{T}) where {T,S,U} = new(y,X,w,r) end function CDWeightedLSLoss(y::AbstractVector{T}, X::AbstractMatrix{T}, w::AbstractVector{T}) where {T<:AbstractFloat} length(y) == size(X, 1) == length(w) || throw(DimensionMismatch()) CDWeightedLSLoss{T, typeof(y), typeof(X)}(y,X,w,copy(y)) end numCoordinates(f::CDWeightedLSLoss) = size(f.X, 2) function initialize!(f::CDWeightedLSLoss{T}, x::SparseIterate{T}) where {T<:AbstractFloat} # compute residuals for the loss X = f.X y = f.y r = f.r n = size(X, 1) @simd for i=1:n @inbounds r[i] = y[i] - A_mul_B_row(X, x, i) end nothing end function gradient(f::CDWeightedLSLoss{T}, x::SparseIterate{T}, j::Int64) where {T<:AbstractFloat} out = zero(T) n = length(f.r) @inbounds @simd for i=1:n out += f.w[i] * f.X[i, j] * f.r[i] end - out / n end # a = X[:, k]' X[:, k] # b = X[:, k]' r # # h = arg_min a/(2n) (h-b/a)^2 + λ_k⋅|x_k + h| # xnew[k] = arg_min a/(2n) (xnew_k - (x_k + b/a))^2 + λ_k⋅|xnew_k| function descendCoordinate!( f::CDWeightedLSLoss{T}, g::ProxL1{T}, x::SparseIterate{T}, k::Int64) where {T<:AbstractFloat} y = f.y X = f.X r = f.r w = f.w n = length(f.y) a = zero(T) b = zero(T) @inbounds @simd for i=1:n a += X[i, k] * X[i, k] * w[i] b += r[i] * X[i, k] * w[i] end oldVal = x[k] x[k] += b / a newVal = cdprox!(g, x, k, n / a) h = newVal - oldVal # update internals -- residuls = y - X * xnew @inbounds @simd for i=1:n r[i] -= X[i, k] * h end h end #################################### # # loss |Y - X⋅β|_2 / sqrt(n) # #################################### struct CDSqrtLassoLoss{T<:AbstractFloat, S, U} <: CoordinateDifferentiableFunction y::S X::U r::Vector{T} CDSqrtLassoLoss{T, S, U}(y::AbstractVector{T}, X::AbstractMatrix{T}, r::Vector{T}) where {T,S,U} = new(y,X,r) end function CDSqrtLassoLoss(y::AbstractVector{T}, X::AbstractMatrix{T}) where {T<:AbstractFloat} length(y) == size(X, 1) || throw(DimensionMismatch()) CDSqrtLassoLoss{T, typeof(y), typeof(X)}(y,X,copy(y)) end numCoordinates(f::CDSqrtLassoLoss) = size(f.X, 2) function initialize!(f::CDSqrtLassoLoss{T}, x::SparseIterate{T}) where {T<:AbstractFloat} # compute residuals for the loss X = f.X y = f.y r = f.r n, p = size(f.X) @simd for i=1:n @inbounds r[i] = y[i] - A_mul_B_row(X, x, i) end nothing end gradient(f::CDSqrtLassoLoss{T}, x::SparseIterate{T}, j::Int64) where {T<:AbstractFloat} = - At_mul_B_row(f.X, f.r, j) / norm(f.r) # a = X[:, k]' X[:, k] # b = X[:, k]' r # # h = arg_min a/(2n) (h-b/a)^2 + λ_k⋅|x_k + h| # xnew[k] = arg_min a/(2n) (xnew_k - (x_k + b/a))^2 + λ_k⋅|xnew_k| function descendCoordinate!( f::CDSqrtLassoLoss{T}, g::ProxL1{T}, x::SparseIterate{T}, k::Int64) where {T<:AbstractFloat} y = f.y X = f.X r = f.r n = length(f.y) # residuls = y - X * x + X[:, k] * x[k] @inbounds @simd for i=1:n r[i] += X[i, k] * x[k] end # r = y - X*x + X[:,k]*x[k] s = zero(T) xsqr = zero(T) rsqr = zero(T) @inbounds @simd for i=1:n xsqr += X[i, k] * X[i, k] s += r[i] * X[i, k] rsqr += r[i] * r[i] end # s = dot(r, X[:,k]) # xsqr = dot(X[:,k], X[:, k]) # rsqr = dot(r, r) λ = g.λ0 if !isa(g, ProxL1{T, Nothing}) λ *= g.λ[k] end oldVal = x[k] if abs(s) <= λ * sqrt(rsqr) x[k] = zero(T) elseif s > λ * sqrt(rsqr) x[k] = ( s - λ / sqrt(1 - λ^2 / xsqr) * sqrt(rsqr - s^2/xsqr) ) / xsqr else x[k] = ( s + λ / sqrt(1 - λ^2 / xsqr) * sqrt(rsqr - s^2/xsqr) ) / xsqr end # update internals -- residuls = y - X * xnew @inbounds @simd for i=1:n r[i] -= X[i, k] * x[k] end x[k] - oldVal end #################################### # # quadratic x'Ax/2 + x'b # #################################### struct CDQuadraticLoss{T<:AbstractFloat, S, U} <: CoordinateDifferentiableFunction A::S b::U end function CDQuadraticLoss(A::AbstractMatrix{T}, b::AbstractVector{T}) where {T<:AbstractFloat} (issymmetric(A) && length(b) == size(A, 2)) || throw(ArgumentError()) CDQuadraticLoss{T, typeof(A), typeof(b)}(A,b) end numCoordinates(f::CDQuadraticLoss) = length(f.b) initialize!(f::CDQuadraticLoss, x::SparseIterate) = nothing gradient(f::CDQuadraticLoss{T}, x::SparseIterate{T}, j::Int64) where {T<:AbstractFloat} = At_mul_B_row(f.A, x, j) + f.b[j] function descendCoordinate!( f::CDQuadraticLoss{T}, g::ProxL1{T}, x::SparseIterate{T}, k::Int64) where {T<:AbstractFloat} a = f.A[k,k] b = gradient(f, x, k) oldVal = x[k] a = one(T) / a x[k] -= b * a newVal = cdprox!(g, x, k, a) h = newVal - oldVal end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
3716
# # minimize f(x) + ∑ λi⋅|xi| # # If warmStart is true, the descent will start from the supplied x # otherwise it will start from 0 by setting a large value of λ which is # decreased to the target value function coordinateDescent!( x::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, f::CoordinateDifferentiableFunction, g::ProxL1, options::CDOptions=CDOptions()) ProximalBase.numCoordinates(x) == numCoordinates(f) || throw(DimensionMismatch()) if !isa(g, ProxL1{typeof(g.λ0), Nothing}) # TODO: create a test for this length(g.λ) == numCoordinates(f) || throw(DimensionMismatch()) end coef_iterator = options.randomize ? RandomIterator(x) : OrderedIterator(x) if options.warmStart initialize!(f, x) return _coordinateDescent!(x, f, g, coef_iterator, options) else # set x to zero and initialize fill!(x, zero(eltype(x))) initialize!(f, x) # find λmax λmax = _findLambdaMax(x, f, g) # find decreasing schedule for λ l1, l2 = log(λmax), log(g.λ0) for l in l1:(l2-l1)/options.numSteps:l2 g1 = ProxL1(exp(l), g.λ) _coordinateDescent!(x, f, g1, coef_iterator, options) end return x end end function coordinateDescent!( x::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, f::CoordinateDifferentiableFunction, g::ProxZero, options::CDOptions=CDOptions()) ProximalBase.numCoordinates(x) == numCoordinates(f) || throw(DimensionMismatch()) coef_iterator = options.randomize ? RandomIterator(x) : OrderedIterator(x) if options.warmStart initialize!(f, x) else # set x to zero and initialize fill!(x, zero(eltype(x))) initialize!(f, x) end return _coordinateDescent!(x, f, g, coef_iterator, options) end # assumes that f is initialized before the call here function _coordinateDescent!( x::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, f::CoordinateDifferentiableFunction, g::Union{ProxL1, ProxZero}, coef_iterator::AtomIterator, options::CDOptions) prev_converged = false converged = true for iter=1:options.maxIter if converged reset!(coef_iterator, true) # maxH = fullPass!(x, f, g) else reset!(coef_iterator, false) # maxH = nonZeroPass!(x, f, g) end maxH = _cdPass!(x, f, g, coef_iterator) prev_converged = converged # test for convergence converged = maxH < options.optTol prev_converged && converged && break end x end function _cdPass!( x::Union{SparseIterate,SymmetricSparseIterate,AtomIterate}, f::CoordinateDifferentiableFunction, g::Union{ProxL1, ProxZero}, coef_iterator::AtomIterator ) maxH = zero(eltype(x)) for ipred = coef_iterator # coef_iterator produces original indexes h = descendCoordinate!(f, g, x, ipred) if abs(h) > maxH maxH = abs(h) end end dropzeros!(x) maxH end ###### """ Helper function that finds the smallest value of λ for which the solution is equal to zero. """ function _findLambdaMax(x::Union{SparseIterate{T},SymmetricSparseIterate{T}}, f::CoordinateDifferentiableFunction, ::ProxL1{T, Nothing}) where {T<:AbstractFloat} λmax = zero(T) for k=1:ProximalBase.numCoordinates(x) f_g = gradient(f, x, k) t = abs(f_g) if t > λmax λmax = t end end λmax end """ Helper function that finds the smallest value of λ0 for which the solution is equal to zero. """ function _findLambdaMax(x::SparseIterate{T}, f::CoordinateDifferentiableFunction, g::ProxL1{T, S}) where {T<:AbstractFloat} where S <: AbstractArray λmax = zero(T) for k=1:length(x) f_g = gradient(f, x, k) t = abs(f_g) / g.λ[k] if t > λmax λmax = t end end λmax end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
5880
###################################################################### # # Lasso Solution # ###################################################################### struct LassoSolution{T, S} x::SparseIterate{T} residuals::Vector{T} penalty::S σ::Union{T, Nothing} LassoSolution{T, S}(x::SparseIterate{T}, residuals::AbstractVector{T}, penalty::ProxL1{T}, σ::T) where {T, S} = new(x, residuals, penalty, σ) LassoSolution{T, S}(x::SparseIterate{T}, residuals::AbstractVector{T}, penalty::ProxL1{T}) where {T, S} = new(x, residuals, penalty, nothing) end ###################################################################### # # Lasso Interface # ###################################################################### function lasso( X::StridedMatrix{T}, y::StridedVector{T}, λ::T, options::CDOptions=CDOptions()) where {T<:AbstractFloat} x = SparseIterate( size(X, 2) ) f = CDLeastSquaresLoss(y, X) g = ProxL1(λ) coordinateDescent!(x, f, g, options) LassoSolution{T, typeof(g)}(x, f.r, g, std(f.r)) end function lasso( X::StridedMatrix{T}, y::StridedVector{T}, λ::T, ω::Array{T}, options::CDOptions=CDOptions()) where {T<:AbstractFloat} x = SparseIterate( size(X, 2) ) f = CDLeastSquaresLoss(y, X) g = ProxL1(λ, ω) coordinateDescent!(x, f, g, options) LassoSolution{T, typeof(g)}(x, f.r, g, std(f.r)) end ###################################################################### # # Sqrt-Lasso Interface # ###################################################################### function sqrtLasso( X::StridedMatrix{T}, y::StridedVector{T}, λ::T, options::CDOptions=CDOptions(); standardizeX=true) where {T<:AbstractFloat} p = size(X, 2) x = SparseIterate( p ) f = CDSqrtLassoLoss(y, X) if standardizeX stdX = Array{T}(p) _stdX!(stdX, X) g = ProxL1(λ, stdX) else g = ProxL1(λ) end coordinateDescent!(x, f, g, options) LassoSolution{T, typeof(g)}(x, f.r, g, std(f.r)) end function sqrtLasso( X::StridedMatrix{T}, y::StridedVector{T}, λ::T, ω::Array{T}, options::CDOptions=CDOptions()) where {T<:AbstractFloat} p = size(X, 2) x = SparseIterate( p ) f = CDSqrtLassoLoss(y, X) g = ProxL1(λ, ω) coordinateDescent!(x, f, g, options) LassoSolution{T, typeof(g)}(x, f.r, g, std(f.r)) end ###################################################################### # # Scaled Lasso Interface # ###################################################################### function scaledLasso!( x::SparseIterate{T}, X::AbstractMatrix{T}, y::AbstractVector{T}, λ::T, ω::AbstractVector{T}, options::IterLassoOptions=IterLassoOptions() ) where {T<:AbstractFloat} n, p = size(X) f = CDLeastSquaresLoss(y,X) # initializa σ if options.initProcedure == :Screening σ = _findInitSigma!(X, y, options.sinit, f.r) elseif options.initProcedure == :InitStd σ = options.σinit elseif options.initProcedure == :WarmStart initialize!(f, x) σ = std(f.r) else throw(ArgumentError("Incorrect initialization Symbol")) end g = ProxL1(λ * σ, ω) for iter=1:options.maxIter coordinateDescent!(x, f, g, options.optionsCD) σnew = sqrt( sum(abs2, f.r) / n ) if abs(σnew - σ) / σ < options.optTol break end σ = σnew g = ProxL1(λ * σ, ω) end LassoSolution{T, typeof(g)}(x, f.r, g, std(f.r)) end ###################################################################### # # Lasso Path Interface # ###################################################################### function feasibleLasso!( x::SparseIterate{T}, X::AbstractMatrix{T}, y::AbstractVector{T}, λ0::T, options::IterLassoOptions=IterLassoOptions() ) where {T<:AbstractFloat} n, p = size(X) f = CDLeastSquaresLoss(y,X) Γ = Array{T}(p) # stores loadings Γold = Array{T}(p) # initializa residuals if options.initProcedure == :Screening _findInitResiduals!(X, y, options.sinit, f.r) elseif options.initProcedure == :InitStd σ = options.σinit _stdX!(Γ, X) coordinateDescent!(x, f, ProxL1(λ0*σ, Γ), options.optionsCD) elseif options.initProcedure == :WarmStart initialize!(f, x) else throw(ArgumentError("Incorrect initialization Symbol")) end _getLoadings!(Γ, X, f.r) g = ProxL1(λ0, Γ) for iter=1:options.maxIter copy!(Γold, Γ) coordinateDescent!(x, f, g, options.optionsCD) _getLoadings!(Γ, X, f.r) if maximum(abs.(Γold - Γ)) / maximum(Γ) < options.optTol break end end LassoSolution(x, f.r, g, std(f.r)) end ###################################################################### # # Lasso Path Interface # ###################################################################### struct LassoPath{T<:AbstractFloat} λpath::Vector{T} βpath::Vector{SparseIterate{T,1}} end function refitLassoPath( path::LassoPath{T}, X::StridedMatrix{T}, Y::StridedVector{T}) where {T<:AbstractFloat} λpath = path.λpath βpath = path.βpath out = Dict{Vector{Int64},Vector{Float64}}() for i=1:length(λpath) S = findall(!iszero, βpath[i]) if haskey(out, S) continue end out[S] = X[:, S] \ Y end out end # λArr is in decreasing order function LassoPath( X::StridedMatrix{T}, Y::StridedVector{T}, λpath::Vector{T}, options=CDOptions(); max_hat_s=Inf, standardizeX::Bool=true) where {T<:AbstractFloat} n, p = size(X) stdX = Array{T}(undef, p) if standardizeX _stdX!(stdX, X) else fill!(stdX, one(T)) end x = SparseIterate(T, p) f = CDLeastSquaresLoss(Y, X) numλ = length(λpath) βpath = Vector{SparseIterate{T}}(undef, numλ) for indλ=1:numλ coordinateDescent!(x, f, ProxL1(λpath[indλ], stdX), options) βpath[indλ] = copy(x) if nnz(x) > max_hat_s resize!(λpath, indλ) break end end LassoPath{T}(copy(λpath), βpath) end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
4084
#################################### # # options # #################################### struct CDOptions maxIter::Int64 optTol::Float64 randomize::Bool # coordinate are visitied in a randomized order or not warmStart::Bool # when running CD, should we do path following or not numSteps::Int64 # when pathFollowing, how many points are there on the path end CDOptions(; maxIter::Int64=2000, optTol::Float64=1e-7, randomize::Bool=true, warmStart::Bool=true, numSteps::Int=50) = CDOptions(maxIter, optTol, randomize, warmStart, numSteps) # this is used for ScaledLasso and FeasibleLasso struct IterLassoOptions maxIter::Int64 optTol::Float64 initProcedure::Symbol # :Screening, :InitStd, :WarmStart sinit::Int64 # how many columns of X to use to estimate initial variance or obtain initial residuals σinit::Float64 optionsCD::CDOptions end IterLassoOptions(; maxIter::Int64=20, optTol::Float64=1e-2, initProcedure::Symbol=:Screening, sinit::Int64=5, σinit::Float64=1., optionsCD::CDOptions=CDOptions()) = IterLassoOptions(maxIter, optTol, initProcedure, sinit, σinit, optionsCD) #################################### # # helper functions # #################################### """ Helper function that finds an initial estimate for σ that is needed for Lasso and ScaledLasso procedures. The procedure works as follows: * s input variables that are most correlated with the response y are found * y is regressed on those s features * σ is estimated based on the residuals, which gives an upper bound on the true sigma """ _findInitSigma!( X::AbstractMatrix{T}, y::AbstractVector{T}, s::Int, storage::Vector{T}) where {T <: AbstractFloat} = std(_findInitResiduals!(X, y, s, storage)) function _findInitResiduals!( X::AbstractMatrix{T}, y::AbstractVector{T}, s::Int, storage::Vector{T}) where {T <: AbstractFloat} S = _findLargestCorrelations(X, y, s) Xs = view(X, :, S) mul!(storage, Xs, Xs \ y) @. storage = y - storage return storage end function _findInitResiduals!( w::AbstractVector{T}, X::AbstractMatrix{T}, y::AbstractVector{T}, s::Int, storage::Vector{T}) where {T <: AbstractFloat} S = _findLargestCorrelations(w, X, y, s) Xs = view(X, :, S) mul!(storage, Xs, (Xs' * Diagonal(w) * Xs) \ (Xs' * Diagonal(w) * y)) @. storage = y - storage return storage end # return a bit array containing indices of columns function _findLargestCorrelations( X::AbstractMatrix{T}, y::AbstractVector{T}, s::Int) where {T <: AbstractFloat} p = size(X, 2) storage = Array{T}(undef, p) mul!(storage, transpose(X), y) @. storage = abs(storage) S = storage .>= nlargest(s, storage)[end] end function _findLargestCorrelations( w::AbstractVector{T}, X::AbstractMatrix{T}, y::AbstractVector{T}, s::Int) where {T <: AbstractFloat} n, p = size(X) storage = Array{T}(undef, p) @inbounds for j=1:p val = zero(T) @simd for i=1:n val += X[i,j] * w[i] * y[i] end storage[j] = abs(val) end S = storage .>= nlargest(s, storage)[end] end function _stdX!(out::Vector{T}, X::AbstractMatrix{T}) where {T <: AbstractFloat} n, p = size(X) @inbounds for j=1:p v = zero(T) @simd for i=1:n v += X[i, j]^2. end out[j] = sqrt(v / n) end out end function _stdX!(out::Vector{T}, w::AbstractVector{T}, X::AbstractMatrix{T}) where {T <: AbstractFloat} n, p = size(X) @inbounds for j=1:p v = zero(T) @simd for i=1:n v += w[i] * X[i, j]^2. end out[j] = sqrt(v / n) end out end function _getLoadings!(out::Vector{T}, X::AbstractMatrix{T}, e::AbstractVector{T}) where {T <: AbstractFloat} n, p = size(X) @inbounds for j=1:p v = zero(T) @simd for i=1:n v += (X[i, j]*e[i])^2. end out[j] = sqrt(v / n) end out end function _getSigma(w::AbstractVector{T}, r::AbstractVector{T}) where {T <: AbstractFloat} n = length(w) σ = zero(T) for ii = 1:n σ += r[ii]^2 * w[ii] end σ /= sum(w) sqrt(σ) end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
16896
### Kernel functions abstract type SmoothingKernel{T} end struct GaussianKernel{T} <: SmoothingKernel{T} h::T end struct EpanechnikovKernel{T} <: SmoothingKernel{T} h::T end createKernel(::Type{GaussianKernel{T}}, h::T) where {T <: AbstractFloat} = GaussianKernel{T}(h) createKernel(::Type{EpanechnikovKernel{T}}, h::T) where {T <: AbstractFloat} = EpanechnikovKernel{T}(h) evaluate(k::GaussianKernel{T}, x::T, y::T) where {T <: AbstractFloat} = exp(-(x-y)^2. / k.h) / k.h function evaluate(k::EpanechnikovKernel{T}, x::T, y::T) where {T <: AbstractFloat} u = (x - y) / k.h abs(u) >= 1. ? zero(T) : 0.75 * (1. - u^2.) / k.h end ############################################################ # # local polynomial regression with lasso # ############################################################ function locpolyl1( X::Matrix{T}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, degree::Int64, kernel::SmoothingKernel{T}, λ0::T, refit::Bool, options::CDOptions=CDOptions()) where {T <: AbstractFloat} # construct inner options because we do not want warmStart = false # we want to start from the previous iteration since the points # on the grid should be close to each other opt = CDOptions(options.maxIter, options.optTol, options.randomize, true, options.numSteps) n, p = size(X) ep = p * (degree + 1) out = spzeros(T, ep, length(zgrid)) outR = spzeros(T, ep, length(zgrid)) # temporary storage w = Array{T}(undef, n) expandX = Array{T}(undef, n, ep) S = BitArray(undef, ep) stdX = Array{T}(undef, ep) f = CDWeightedLSLoss(y, expandX, w) # inner parts of f will be modified in a loop g = ProxL1(λ0, stdX) β = SparseIterate(ep) ind = 0 for z0 in zgrid ind += 1 # the following two should update f w .= evaluate.(Ref(kernel), z, Ref(z0)) _expand_X!(expandX, X, z, z0, degree) _stdX!(stdX, w, expandX) # solve for β coordinateDescent!(β, f, g, opt) out[:, ind] = β if refit get_nonzero_coordinates!(S, β, p, degree, true) Xs = view(expandX, :, S) tmp = Xs' * Diagonal(w) outR[S, ind] = (tmp * Xs) \ (tmp * y) end end out, outR end # leave one out for h selection function lvocv_locpolyl1( X::Matrix{T}, z::Vector{T}, y::Vector{T}, degree::Int64, # degree of the polynomial hArr::Vector{T}, kernelType::Type{<:SmoothingKernel}, λ0::T, options::CDOptions=CDOptions()) where {T <: AbstractFloat} n, p = size(X) numH = length(hArr) MSE = zeros(numH) opt = CDOptions(options.maxIter, options.optTol, options.randomize, true, options.numSteps) ep = p * (degree + 1) w = Array{T}(undef, n) wX = Array{T}(undef, n, ep) stdX = Array{T}(undef, ep) S = BitArray(undef, ep) f = CDWeightedLSLoss(y, wX, w) β = SparseIterate(ep) for indH = 1:numH kernel = createKernel(kernelType, hArr[indH]) for i = 1:n # update variables z0 = z[i] w .= evaluate.(Ref(kernel), z, Ref(z0)) w[i] = zero(T) _expand_X!(wX, X, z, z0, degree) _stdX!(stdX, w, wX) _findInitResiduals!(w, wX, y, min(10, ep), f.r) # compute sigma σ = _getSigma(w, f.r) g = ProxL1(λ0 * σ, stdX) for iter=1:10 coordinateDescent!(β, f, g, opt) σnew = _getSigma(w, f.r) if abs(σnew - σ) / σ < 1e-2 break end σ = σnew g = ProxL1(λ0 * σ, stdX) end # refit and make prediction get_nonzero_coordinates!(S, β, p, degree, true) Xs = view(wX, :, S) Yh = dot(wX[i, S], (Xs' * Diagonal(w) * Xs) \ (Xs' * Diagonal(w) * y)) MSE[indH] += (Yh - y[i])^2. end end MSE end function refit_locpolyl1( X::Matrix{T}, z::Vector{T}, y::Vector{T}, z0::T, degree::Int64, kernel::SmoothingKernel{T}, β::Union{SparseIterate{T}, SparseVector{T}} ) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) S = BitArray(undef, p) get_nonzero_coordinates!(S, β, p, degree, false) βr = locpoly(view(X, :, S), z, y, z0, degree, kernel) (βr, S) end # function refit_locpolyl1( # X::Matrix{T}, z::Vector{T}, y::Vector{T}, # zgrid::Vector{T}, # degree::Int64, # kernel::SmoothingKernel{T}, # β::SparseMatrixCSC{T} # ) where {T <: AbstractFloat} # # n, p = size(X) # ep = p * (degree + 1) # S = BitArray(undef, p, length(zgrid)) # fill!(S, false) # w = Array{T}(undef, n) # expandedX = Array{T}(undef, n, ep) # βr = Array{Array{T}}(undef, length(zgrid)) # tS = BitArray(undef, p) # # for indZ = 1:length(zgrid) # o_coordinates!(tS, β[:, indZ], p, degree, false) # @show β[:, indZ] # @show S[:, indZ] = tS # z0 = zgrid[indZ] # num_col_refit = sum(S[:, indZ])*(degree+1) # Xs = view(X, :, S[:, indZ]) # βr[indZ] = _locpoly!(view(expandedX, :, 1:num_col_refit), w, Xs, z, y, z0, degree, kernel) # end # (βr, S) # end ############################################################ # # local polynomial regression low dimensions # ############################################################ function _locpoly!( wX::Union{SubArray{T, 2}, Matrix{T}}, w::Vector{T}, X::Union{SubArray{T, 2}, Matrix{T}}, z::Union{SubArray{T, 1}, Vector{T}}, y::Union{SubArray{T, 1}, Vector{T}}, z0::T, degree::Int64, kernel::SmoothingKernel{T}) where {T <: AbstractFloat} w .= sqrt.(evaluate.(Ref(kernel), z, Ref(z0))) # square root of kernel weights _expand_wX!(wX, w, X, z, z0, degree) # √w ⋅ x ⊗ [1 (zi - z0) ... (zi-z0)^q] @. w *= y # √w ⋅ y qr!(wX) \ w end locpoly( X::Union{SubArray{T, 2}, Matrix{T}}, z::Vector{T}, y::Vector{T}, z0::T, degree::Int64, kernel::SmoothingKernel=GaussianKernel(one(T))) where {T <: AbstractFloat} = _locpoly!(Array{T}(undef, length(y), size(X, 2) * (degree+1)), similar(y), X, z, y, z0, degree, kernel) function locpoly( X::Union{SubArray{T, 2}, Matrix{T}}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, degree::Int64, # degree of the polynomial kernel::SmoothingKernel{T}=GaussianKernel(one(T))) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) out = Array{T}(undef, ep, length(zgrid)) w = Array{T}(undef, n) wX = Array{T}(undef, n, ep) ind = 0 for z0 in zgrid ind += 1 out[:, ind] = _locpoly!(wX, w, X, z, y, z0, degree, kernel) end out end function getResiduals!( ϵhat::Vector{T}, X::Union{SubArray{T, 2}, Matrix{T}}, z::Vector{T}, y::Vector{T}, zgrid::Vector{T}, βhat::Union{Matrix{T}, SparseMatrixCSC{T}}, degree::Int64, kernel::SmoothingKernel{T}=GaussianKernel(one(T)) ) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) βi = spzeros(ep) for i=1:n get_beta!(βi, zgrid, βhat, z[i]) ϵhat[i] = y[i] - dot(X[i, :], βi[1:(degree+1):ep]) end ϵhat end function getStandardError( X::Union{SubArray{T, 2}, Matrix{T}}, z::Vector{T}, σ2::T, z0::T, degree::Int64, # degree of the polynomial kernel::SmoothingKernel{T}) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) out = Array{T}(undef, p) w = Array{T}(undef, n) w1 = Array{T}(undef, n) XtwX = Array{T}(undef, ep, ep) XtwwX = Array{T}(undef, ep, ep) w .= evaluate.(Ref(kernel), z, Ref(z0)) _expand_Xt_w_X!(XtwX, w, X, z, z0, degree) w .= w .* w _expand_Xt_w_X!(XtwwX, w, X, z, z0, degree) A = inv(XtwX) varMat = A * XtwwX * A for j=1:p out[j] = varMat[(j-1)*(degree+1)+1, (j-1)*(degree+1)+1] end out end function getStandardErrorHEW( X::Union{SubArray{T, 2}, Matrix{T}}, z::Vector{T}, ϵ_sqr::Vector{T}, z0::T, degree::Int64, # degree of the polynomial kernel::SmoothingKernel{T}) where {T <: AbstractFloat} n, p = size(X) ep = p * (degree + 1) out = Array{T}(undef, p) w = Array{T}(undef, n) w1 = Array{T}(undef, n) XtwX = Array{T}(undef, ep, ep) XtwΨwX = Array{T}(undef, ep, ep) w .= evaluate.(Ref(kernel), z, Ref(z0)) _expand_Xt_w_X!(XtwX, w, X, z, z0, degree) @. w = w * w * ϵ_sqr _expand_Xt_w_X!(XtwΨwX, w, X, z, z0, degree) A = inv(XtwX) varMat = A * XtwΨwX * A for j=1:p out[j] = varMat[(j-1)*(degree+1)+1, (j-1)*(degree+1)+1] end out end # function locpoly_alt( # X::Matrix{T}, z::Vector{T}, y::Vector{T}, # zgrid::Vector{T}, # degree::Int64, # degree of the polynomial # kernel::SmoothingKernel{T}=GaussianKernel(one(T))) where {T <: AbstractFloat} # # n, p = size(X) # ep = p * (degree + 1) # out = Array{T}(undef, ep, length(zgrid)) # w = Array{T}(undef, n) # Xt_w_Y = Array{T}(undef, ep) # Xt_w_X = Array{T}(undef, ep, ep) # # ind = 0 # for z0 in zgrid # w .= evaluate.(Ref(kernel), z, Ref(z0)) # _expand_Xt_w_Y!(Xt_w_Y, w, X, z, y, z0, degree) # _expand_Xt_w_X!(Xt_w_X, w, X, z, z0, degree) # ind += 1 # out[:, ind] = Xt_w_X \ Xt_w_Y # end # out # end # leave one out for h selection function lvocv_locpoly( X::Matrix{T}, z::Vector{T}, y::Vector{T}, degree::Int64, # degree of the polynomial hArr::Vector{T}, kernelType::Type{<:SmoothingKernel}) where {T <: AbstractFloat} n, p = size(X) numH = length(hArr) MSE = zeros(numH) ep = p * (degree + 1) w = Array{T}(undef, n-1) wX = Array{T}(undef, n-1, ep) indOut = BitArray(undef, n) for indH = 1:numH kernel = createKernel(kernelType, hArr[indH]) for i = 1:n fill!(indOut, true) indOut[i] = false Xview = view(X, indOut, :) Yview = view(y, indOut) Zview = view(z, indOut) hbeta = _locpoly!(wX, w, Xview, Zview, Yview, z[i], degree, kernel) # make prediction Yh = dot(X[i, :], hbeta[1:(degree+1):ep]) MSE[indH] += (Yh - y[i])^2. end end MSE end # data split for h selection function split_locpoly( X::Matrix{T}, z::Vector{T}, y::Vector{T}, Xtest::Matrix{T}, ztest::Vector{T}, ytest::Vector{T}, zgrid::Vector{T}, degree::Int64, # degree of the polynomial hArr::Vector{T}, kernelType::Type{<:SmoothingKernel}) where {T <: AbstractFloat} n, p = size(X) numH = length(hArr) MSE = zeros(numH) ep = p * (degree + 1) βhati = zeros(ep) for indH = 1:numH kernel = createKernel(kernelType, hArr[indH]) βhat = locpoly(X, z, y, zgrid, degree, kernel) for i = 1:n get_beta!(βhati, zgrid, βhat, ztest[i]) # make prediction Yh = dot(Xtest[i, :], βhati[1:(degree+1):ep]) MSE[indH] += (ytest[i] - Yh)^2. end end MSE end # # leave one out for h selection # function lvocv_locpoly( # X::Matrix{T}, z::Vector{T}, y::Vector{T}, # degree::Int64, # degree of the polynomial # hArr::Vector{T}, # kernelType::Type{<:SmoothingKernel}) where {T <: AbstractFloat} # # n, p = size(X) # numH = length(hArr) # MSE = zeros(numH) # # ep = p * (degree + 1) # w = Array{T}(undef, n) # Xt_w_Y = Array{T}(undef, ep) # Xt_w_X = Array{T}(undef, ep, ep) # # for indH = 1:numH # kernel = createKernel(kernelType, hArr[indH]) # for i = 1:n # z0 = z[i] # w .= evaluate.(Ref(kernel), z, Ref(z0)) # w[i] = zero(T) # _expand_Xt_w_Y!(Xt_w_Y, w, X, z, y, z0, degree) # _expand_Xt_w_X!(Xt_w_X, w, X, z, z0, degree) # hbeta = Xt_w_X \ Xt_w_Y # # make prediction # Yh = dot(X[i, :], hbeta[1:(degree+1):ep]) # MSE[indH] += (Yh - y[i])^2. # end # end # MSE # end ############################################################ # # utils # ############################################################ """ For a given z0 finds two closest points in zgrid and corresponding values of beta. The output is obtained by interpolating the beta values. """ function get_beta!( out::Union{SparseVector{T}, Vector{T}}, zgrid::Vector{T}, beta_grid::Union{Matrix{T}, SparseMatrixCSC{T}}, z0::T) where {T <: AbstractFloat} id1 = searchsortedlast(zgrid, z0) id2 = searchsortedfirst(zgrid, z0) if id1 == id2 out .= beta_grid[:, id1] else z1 = zgrid[id1] z2 = zgrid[id2] α = (z0 - z1) / (z2 - z1) out .= α * beta_grid[:, id1] .+ (1-α) * beta_grid[:, id2] end out end get_nonzero_coordinates( β::Union{SparseVector{T}, SparseIterate{T}}, p::Int, degree::Int, expanded::Bool ) where {T <: AbstractFloat} = expanded ? get_nonzero_coordinates!(BitArray(undef, p*(degree+1)), β, p, degree, expanded) : get_nonzero_coordinates!(BitArray(undef, p), β, p, degree, expanded) function get_nonzero_coordinates!( S::BitArray, β::Union{SparseVector{T}, SparseIterate{T}}, p::Int, degree::Int, expanded::Bool) where {T <: AbstractFloat} fill!(S, false) for j = 1:p nonzero = false for k=((j-1)*(degree+1)+1):(j*(degree+1)) nonzero = nonzero | !iszero(β[k]) end if nonzero if expanded for k=((j-1)*(degree+1)+1):(j*(degree+1)) S[k] = true end else S[j] = true end end end S end """ Computes matrix whose each row is equal to w[i] ⋅ (X[i, :] ⊗ [1, (z - z0), ..., (z-z0)^q]) where q is the degree of the polynomial. The output matrix is preallocated. """ function _expand_wX!( wX::Union{SubArray{T, 2}, Matrix{T}}, w::Vector{T}, X::Union{SubArray{T, 2}, Matrix{T}}, z::Union{SubArray{T, 1}, Vector{T}}, z0::T, degree::Int64) where {T <: AbstractFloat} n, p = size(X) # wX = zeros(n, p*(degree+1)) for j=1:p @inbounds for i=1:n v = X[i, j] * w[i] df = z[i] - z0 col = (j-1)*(degree+1) + 1 @inbounds wX[i, col] = v for l=1:degree v *= df @inbounds wX[i, col + l] = v end end end # return qrfact!(tX) wX end # expands the data matrix X # each row becomes # (X[i, :] ⊗ [1, (z - z0), ..., (z-z0)^q]) function _expand_X!( tX::Matrix{T}, X::Union{SubArray{T, 2}, Matrix{T}}, z::Union{SubArray{T, 1}, Vector{T}}, z0::T, degree::Int64) where {T <: AbstractFloat} n, p = size(X) for j=1:p for i=1:n v = X[i, j] df = z[i] - z0 col = (j-1)*(degree+1) + 1 @inbounds tX[i, col] = v for l=1:degree v *= df @inbounds tX[i, col + l] = v end end end tX end function _expand_Xt_w_X!( Xt_w_X::Matrix{T}, w::Vector{T}, X::Matrix{T}, z::Vector{T}, z0::T, degree::Int64) where {T <: AbstractFloat} n, p = size(X) fill!(Xt_w_X, zero(T)) @inbounds for j=1:p @inbounds for k=j:p @inbounds for i=1:n # if iszero(w[i]) # continue # end v1 = X[i, j] * w[i] df1 = z[i] - z0 col=(j-1)*(degree+1)+1 for jj=0:degree v2 = X[i, k] df2 = z[i] - z0 if k != j krange = 0:degree else krange = jj:degree v2 = v2 * df2^jj end row = (k-1)*(degree+1)+1 for kk=krange # need X[i, j] * (z[i] - z0)^(jj+kk) * X[i, k] * w[i] # v2 = (z[i] - z0)^kk * X[i, k] # v1 = (z[i] - z0)^jj * X[i, k] * w[i] Xt_w_X[row+kk, col+jj] += v2 * v1 v2 *= df2 end v1 *= df1 end end end end @inbounds for c=1:size(Xt_w_X, 2) for r=c+1:size(Xt_w_X, 1) Xt_w_X[c, r] = Xt_w_X[r, c] end end Xt_w_X end function _expand_Xt_w_Y!( Xt_w_Y::Vector{T}, w::Vector{T}, X::Matrix{T}, z::Vector{T}, y::Vector{T}, z0::T, degree::Int64) where {T <: AbstractFloat} n, p = size(X) fill!(Xt_w_Y, zero(T)) @inbounds for j=1:p @inbounds for i=1:n # if iszero(w[i]) # continue # end v = X[i, j] * w[i] * y[i] df = z[i] - z0 col=(j-1)*(degree+1)+1 @inbounds for jj=0:degree # need X[i, j] * (z[i] - z0)^jj * Y[i, k] * w[i] Xt_w_Y[col+jj] += v v *= df end end end Xt_w_Y end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
2249
module AtomIteratorTest using Test using ProximalBase using CoordinateDescent using Random Random.seed!(1) @testset "Ordered" begin p = 5 x = SparseIterate(p) x[2] = 1. x[1] = 2. it = CoordinateDescent.OrderedIterator(x) fullPass = collect(1:5) sparsePass = [2, 1] @test collect(it) == fullPass # this should be a full pass CoordinateDescent.reset!(it, true) @test collect(it) == fullPass # this should be a full pass CoordinateDescent.reset!(it, false) @test collect(it) == sparsePass # pass over non-zeros # SymmetricSparseIterate x = SymmetricSparseIterate(3) x[2] = 1. x[1] = 2. it = CoordinateDescent.OrderedIterator(x) fullPass = collect(1:6) sparsePass = [2, 1] @test collect(it) == fullPass # this should be a full pass CoordinateDescent.reset!(it, true) @test collect(it) == fullPass # this should be a full pass CoordinateDescent.reset!(it, false) @test collect(it) == sparsePass # pass over non-zeros end @testset "Random" begin p = 50 s = 10 x = SparseIterate(p) for i=1:s x[rand(1:p)] = randn() end it = CoordinateDescent.RandomIterator(x) @test collect(it) == collect(1:ProximalBase.numCoordinates(it.iterate)) # this should be a full pass over 1:p CoordinateDescent.reset!(it, true) @test collect(it) == it.order # this should be a full pass over 1:p in a random order CoordinateDescent.reset!(it, false) @test collect(it) == [x.nzval2ind[it.order[i]] for i=1:nnz(x)] # this should be a sparse pass # SymmetricSparseIterate x = SymmetricSparseIterate(10) for i=1:s x[rand(1:55)] = randn() end it = CoordinateDescent.RandomIterator(x) @test collect(it) == collect(1:ProximalBase.numCoordinates(it.iterate)) # this should be a full pass over 1:p CoordinateDescent.reset!(it, true) @test collect(it) == it.order # this should be a full pass over 1:p in a random order CoordinateDescent.reset!(it, false) @test collect(it) == [x.nzval2ind[it.order[i]] for i=1:nnz(x)] # this should be a sparse pass end end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
4738
module CoordinateDescentTest const NUMBER_REPEAT = 1 using CoordinateDescent using Test using ProximalBase using Random using LinearAlgebra using SparseArrays # test |Y - β|_2^2 + λ⋅|β|_1 @testset "Small ProxL1" begin Y = [1., 1.5] λ = 1.2 g = ProximalBase.ProxL1(λ) f = CDQuadraticLoss(Matrix(1.0I, 2, 2), -Y) opt = CDOptions(;maxIter=100, optTol=1e-8, warmStart=true, randomize=false) x = SparseIterate(2) coordinateDescent!(x, f, g, opt) @test Vector(x) ≈ Vector([0., 0.3]) end # check that the warm start and non warm start produce the same result @testset "ProxL1" begin for i=1:NUMBER_REPEAT n = 500 p = 50 s = 5 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ = 0.02 g = ProximalBase.ProxL1(λ) f = CDLeastSquaresLoss(Y, X) opt1 = CDOptions(;maxIter=5000, optTol=1e-12, warmStart=true, randomize=false) opt2 = CDOptions(;maxIter=5000, optTol=1e-12, warmStart=true, randomize=true) opt3 = CDOptions(;maxIter=5000, optTol=1e-12, warmStart=false, randomize=false) opt4 = CDOptions(;maxIter=5000, optTol=1e-12, warmStart=false, randomize=true) x1 = SparseIterate(sprand(p, 0.6)) x2 = SparseIterate(sprand(p, 0.6)) x3 = SparseIterate(sprand(p, 0.6)) x4 = SparseIterate(sprand(p, 0.6)) coordinateDescent!(x1, f, g, opt1) coordinateDescent!(x2, f, g, opt2) coordinateDescent!(x3, f, g, opt3) coordinateDescent!(x4, f, g, opt4) @test Vector(x1) ≈ Vector(x2) atol=1e-5 @test Vector(x3) ≈ Vector(x2) atol=1e-5 @test Vector(x4) ≈ Vector(x2) atol=1e-5 end end @testset "AProxL1" begin for i=1:NUMBER_REPEAT n = 500 p = 50 s = 10 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ = 0.01 g = ProximalBase.ProxL1(λ, rand(p)) f = CDLeastSquaresLoss(Y, X) opt1 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=true, randomize=false) opt2 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=true, randomize=true) opt3 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=false, randomize=false) opt4 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=false, randomize=true) x1 = SparseIterate(sprand(p, 0.6)) x2 = SparseIterate(sprand(p, 0.6)) x3 = SparseIterate(sprand(p, 0.6)) x4 = SparseIterate(sprand(p, 0.6)) coordinateDescent!(x1, f, g, opt1) coordinateDescent!(x2, f, g, opt2) coordinateDescent!(x3, f, g, opt3) coordinateDescent!(x4, f, g, opt4) @test Vector(x1) ≈ Vector(x2) atol=1e-5 @test Vector(x3) ≈ Vector(x2) atol=1e-5 @test Vector(x4) ≈ Vector(x2) atol=1e-5 end end # @testset "weighted least squares loss" begin # # n, s, p = 500, 2, 50 # gk = GaussianKernel(0.3) # w = zeros(n) # sw = zeros(n) # # for i=1:NUMBER_REPEAT # for degree=0:2 # Y, X, Z, betaMat = genData(n, s) # X = [X zeros(n, p-s)] # z0 = rand() # # cp = p*(degree+1) # eX = zeros(n, cp) # _expand_X!(eX, X, Z, z0, degree) # # @. w = evaluate(gk, Z, z0) # @. sw = sqrt(w) # # λ = 0.001 # g = ProximalBase.ProxL1(λ) # f1 = CDLeastSquaresLoss(diagm(sw) * Y, diagm(sw)*X) # f2 = CDWeightedLSLoss(Y, X, w) # # opt1 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=true, randomize=false) # opt2 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=true, randomize=true) # opt3 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=false, randomize=false) # opt4 = CDOptions(;maxIter=5000, optTol=1e-8, warmStart=false, randomize=true) # # x1 = SparseIterate(sprand(p, 0.6)) # x2 = SparseIterate(sprand(p, 0.6)) # x3 = SparseIterate(sprand(p, 0.6)) # x4 = SparseIterate(sprand(p, 0.6)) # x5 = SparseIterate(sprand(p, 0.6)) # x6 = SparseIterate(sprand(p, 0.6)) # x7 = SparseIterate(sprand(p, 0.6)) # x8 = SparseIterate(sprand(p, 0.6)) # # coordinateDescent!(x1, f1, g, opt1) # coordinateDescent!(x2, f1, g, opt2) # coordinateDescent!(x3, f1, g, opt3) # coordinateDescent!(x4, f1, g, opt4) # # coordinateDescent!(x5, f2, g, opt1) # coordinateDescent!(x6, f2, g, opt2) # coordinateDescent!(x7, f2, g, opt3) # coordinateDescent!(x8, f2, g, opt4) # # # @test Vector(x1) ≈ Vector(x2) atol=1e-5 # @test Vector(x3) ≈ Vector(x2) atol=1e-5 # @test Vector(x4) ≈ Vector(x2) atol=1e-5 # @test Vector(x5) ≈ Vector(x2) atol=1e-5 # @test Vector(x6) ≈ Vector(x2) atol=1e-5 # @test Vector(x7) ≈ Vector(x2) atol=1e-5 # @test Vector(x8) ≈ Vector(x2) atol=1e-5 # end # end # # end end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
6752
module LassoTest const NUMBER_REPEAT = 1 using CoordinateDescent using Test using ProximalBase using Random using LinearAlgebra using SparseArrays Random.seed!(1) ############################################## # # Lasso # ############################################## @testset "lasso" begin @testset "zero" begin n = 100 p = 10 X = randn(n, p) Y = X * ones(p) + 0.1 * randn(n) Xy = X' * Y / n lambda = maximum(abs.(Xy)) + 0.1 out = lasso(X, Y, lambda) @test out.x == SparseIterate(p) end @testset "non-zero" begin for i=1:NUMBER_REPEAT n = 100 p = 10 s = 5 X = randn(n, p) Y = X[:,1:s] * ones(s) + 0.1 * randn(n) λ = fill(0.3, p) beta = lasso(X, Y, 1., λ, CDOptions(;optTol=1e-12)) f = CDQuadraticLoss(X'X/n, -X'Y/n) g = ProximalBase.ProxL1(1., λ) x1 = SparseIterate( p ) coordinateDescent!(x1, f, g, CDOptions(;optTol=1e-12)) @test beta.x ≈ x1 atol=1e-5 @test (maximum(abs.(X'*(Y - X*beta.x) / n)) - 0.3) / 0.3 ≈ 0. atol=1e-5 end end @testset "different interfaces" begin n = 500 p = 500 s = 50 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ = 0.1 x1 = lasso(X, Y, λ) x2 = lasso(X, Y, λ, ones(p)) @test Vector(x1.x) ≈ Vector(x2.x) atol=1e-5 end end @testset "cd lasso" begin for i=1:NUMBER_REPEAT n = 200 p = 50 s = 10 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + 0.1 * randn(n) g = ProximalBase.ProxL1(0.2) f1 = CDQuadraticLoss(X'X/n, -X'Y/n) f2 = CDLeastSquaresLoss(Y, X) x1 = SparseIterate(p) x2 = SparseIterate(p) coordinateDescent!(x1, f1, g, CDOptions(;optTol=1e-12)) coordinateDescent!(x2, f2, g, CDOptions(;optTol=1e-12)) @test maximum(abs.(x1 - x2)) ≈ 0. atol=1e-5 @test (maximum(abs.(X'*(Y - X*x1) / n)) - 0.2) / 0.2 ≈ 0. atol=1e-5 @test (maximum(abs.(X'*(Y - X*x2) / n)) - 0.2) / 0.2 ≈ 0. atol=1e-5 end end @testset "cd sqrt-lasso" begin @testset "kkt" begin for i=1:NUMBER_REPEAT n = 100 p = 50 s = 5 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ = 2.8 g = ProximalBase.ProxL1(λ) f = CDSqrtLassoLoss(Y, X) x1 = SparseIterate(p) coordinateDescent!(x1, f, g, CDOptions(;maxIter=5000, optTol=1e-8)) @test max(0, maximum(abs.(X'*(Y - X*x1) / norm(Y - X*x1))) - λ) / λ ≈ 0. atol=1e-3 end end @testset "interfaces" begin for i=1:NUMBER_REPEAT n = 500 p = 500 s = 50 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) opt1 = CDOptions(;maxIter=5000, optTol=1e-10, warmStart=true, randomize=false) opt2 = CDOptions(;maxIter=5000, optTol=1e-10, warmStart=true, randomize=true) opt3 = CDOptions(;maxIter=5000, optTol=1e-10, warmStart=false, randomize=false) opt4 = CDOptions(;maxIter=5000, optTol=1e-10, warmStart=false, randomize=true) x1 = SparseIterate(sprand(p, 0.6)) x2 = SparseIterate(sprand(p, 0.6)) x3 = SparseIterate(sprand(p, 0.6)) x4 = SparseIterate(sprand(p, 0.6)) λ = 1.5 g = ProximalBase.ProxL1(λ) f = CDSqrtLassoLoss(Y, X) coordinateDescent!(x1, f, g, opt1) coordinateDescent!(x2, f, g, opt2) coordinateDescent!(x3, f, g, opt3) coordinateDescent!(x4, f, g, opt4) @test Vector(x1) ≈ Vector(x2) atol=1e-4 @test Vector(x3) ≈ Vector(x2) atol=1e-4 @test Vector(x4) ≈ Vector(x2) atol=1e-4 y1 = sqrtLasso(X, Y, λ, opt1, standardizeX=false) y2 = sqrtLasso(X, Y, λ, opt2, standardizeX=false) y3 = sqrtLasso(X, Y, λ, opt3, standardizeX=false) y4 = sqrtLasso(X, Y, λ, opt4, standardizeX=false) @test Vector(y1.x) ≈ Vector(x2) atol=1e-4 @test Vector(y2.x) ≈ Vector(x2) atol=1e-4 @test Vector(y3.x) ≈ Vector(x2) atol=1e-4 @test Vector(y4.x) ≈ Vector(x2) atol=1e-4 z1 = sqrtLasso(X, Y, λ, ones(p), opt1) z2 = sqrtLasso(X, Y, λ, ones(p), opt2) z3 = sqrtLasso(X, Y, λ, ones(p), opt3) z4 = sqrtLasso(X, Y, λ, ones(p), opt4) @test Vector(z1.x) ≈ Vector(x2) atol=1e-4 @test Vector(z2.x) ≈ Vector(x2) atol=1e-4 @test Vector(z3.x) ≈ Vector(x2) atol=1e-4 @test Vector(z4.x) ≈ Vector(x2) atol=1e-4 end end end @testset "scaled lasso" begin for i=1:NUMBER_REPEAT n = 1000 p = 500 s = 50 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ = rand() / 5. opt1 = IterLassoOptions(;maxIter=100, optTol=1e-8, optionsCD=CDOptions(;maxIter=5000, optTol=1e-8)) opt2 = IterLassoOptions(;maxIter=100, optTol=1e-8, initProcedure=:InitStd, σinit=2., optionsCD=CDOptions(;maxIter=5000, optTol=1e-8)) x1 = SparseIterate(p) x2 = SparseIterate(p) sol1 = scaledLasso!(x1, X, Y, λ, ones(p), opt1) sol2 = scaledLasso!(x2, X, Y, λ, ones(p), opt2) σ1 = sol1.σ σ2 = sol2.σ @test max.((maximum(abs.(X'*(Y - X*x1) / n)) - λ*σ1), 0.) / (σ1*λ) ≈ 0. atol=1e-4 @test max.((maximum(abs.(X'*(Y - X*x2) / n)) - λ*σ2), 0.) / (σ2*λ) ≈ 0. atol=1e-4 @test Vector(x1) ≈ Vector(x2) atol=1e-4 end end @testset "lasso path" begin @testset "standardizeX = false" begin n = 1000 p = 500 s = 50 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) λ1 = 0.3 λ2 = 0.1 opt = CDOptions(;maxIter=5000, optTol=1e-8) x1 = lasso(X, Y, λ1) x2 = lasso(X, Y, λ2) λpath = [λ1, λ2] path = LassoPath(X, Y, λpath, opt; standardizeX=false) @test typeof(path) == LassoPath{Float64} @test Vector(path.βpath[1]) ≈ Vector(x1.x) atol=1e-5 @test Vector(path.βpath[2]) ≈ Vector(x2.x) atol=1e-5 S1 = findall(!iszero, x1.x) S2 = findall(!iszero, x2.x) rf = refitLassoPath(path, X, Y) @test rf[S1] ≈ X[:,S1] \ Y atol=1e-5 @test rf[S2] ≈ X[:,S2] \ Y atol=1e-5 end @testset "standardizeX = true" begin n = 1000 p = 500 s = 50 X = randn(n, p) β = randn(s) Y = X[:,1:s] * β + randn(n) loadingX = Array{Float64}(undef, p) CoordinateDescent._stdX!(loadingX, X) λ1 = 0.3 λ2 = 0.1 opt = CDOptions(;maxIter=5000, optTol=1e-8) x1 = lasso(X, Y, λ1, loadingX, opt) x2 = lasso(X, Y, λ2, loadingX, opt) λpath = [λ1, λ2] path = LassoPath(X, Y, λpath, opt) @test typeof(path) == LassoPath{Float64} @test Vector(path.βpath[1]) ≈ Vector(x1.x) atol=1e-5 @test Vector(path.βpath[2]) ≈ Vector(x2.x) atol=1e-5 S1 = findall(!iszero, x1.x) S2 = findall(!iszero, x2.x) rf = refitLassoPath(path, X, Y) @test rf[S1] ≈ X[:,S1] \ Y atol=1e-5 @test rf[S2] ≈ X[:,S2] \ Y atol=1e-5 end end end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
263
using CoordinateDescent include(joinpath(@__DIR__, "..", "benchmark", "locpoly_bench.jl")) tests = [ "atom_iterator", "coordinate_descent", "lasso", "varying_coefficient_lasso" ] for t in tests f = "$t.jl" println("* running $f ...") include(f) end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
code
3030
module VarCoeffLassoTest const NUMBER_REPEAT = 1 using CoordinateDescent using Test using ProximalBase using Random using LinearAlgebra using SparseArrays Random.seed!(1) @testset "kernels" begin x = 0.3 y = 0.4 k = GaussianKernel(1.) @test evaluate(k, x, y) ≈ exp(-0.01) function evaluate!(g::GaussianKernel{T}, buffer::Array{T}, x::Array{T}, y::Float64) where {T <: AbstractFloat} size(buffer) == size(x) || throw(DimensionMismatch()) @inbounds @simd for i=1:length(x) buffer[i] = evaluate(g, x[i], y) end buffer end x = rand(100, 1000) y = rand() k = GaussianKernel(0.5) o1 = zero(x) o2 = zero(x) o1 = evaluate.(Ref(k), x, Ref(y)) evaluate!(k, o2, x, y) @test o1 ≈ o2 end @testset "expand_X" begin X = reshape(collect(1.:6.), 2, 3) z = [0.2, 0.4] z0 = 0.3 tX = similar(X) @test CoordinateDescent._expand_X!(tX, X, z, z0, 0) == X tX = zeros(2, 6) tX1 = zeros(2, 6) Q = [1. -0.1; 1. 0.1] for i=1:2 tX1[i, :] = kron(X[i,:], Q[i, :]) end @test CoordinateDescent._expand_X!(tX, X, z, z0, 1) ≈ tX1 tX = zeros(2, 9) tX1 = zeros(2, 9) Q = [1. -0.1 0.01; 1. 0.1 0.01] for i=1:2 tX1[i, :] = kron(X[i,:], Q[i, :]) end @test CoordinateDescent._expand_X!(tX, X, z, z0, 2) ≈ tX1 end @testset "expand_X multiplications" begin p = 10 X = randn(100, p) Y = randn(100) z = rand(100) w = zeros(100) k = GaussianKernel(0.2) w = evaluate.(Ref(k), z, Ref(0.5)) for degree=0:2 cp = p*(degree+1) eX = zeros(100, cp) ewX = zeros(100, cp) CoordinateDescent._expand_X!(eX, X, z, 0.5, degree) @test CoordinateDescent._expand_wX!(ewX, w, X, z, 0.5, degree) ≈ Diagonal(w)*eX Xt_w_Y = zeros(cp) @test CoordinateDescent._expand_Xt_w_Y!(Xt_w_Y, w, X, z, Y, 0.5, degree) ≈ eX' * Diagonal(w) * Y Xt_w_X = zeros(cp, cp) @test CoordinateDescent._expand_Xt_w_X!(Xt_w_X, w, X, z, 0.5, degree) ≈ (eX'*Diagonal(w))*eX end end # # @testset "locpoly" begin # # n, p = 500, 2 # Y, X, Z, betaMat = genData(n, p) # zgrid = collect(0.01:0.2:0.99) # # gk = GaussianKernel(0.4) # # w = zeros(n) # # for degree=0:2 # @test locpoly(X, Z, Y, zgrid, degree, gk) ≈ locpoly_alt(X, Z, Y, zgrid, degree, gk) # # z0 = 0.5 # cp = p*(degree+1) # # eX = zeros(n, cp) # _expand_X!(eX, X, Z, z0, degree) # # @. w = evaluate(gk, Z, z0) # # @test locpoly(X, Z, Y, z0, degree, gk) ≈ (eX' * diagm(w) * eX)\(eX' * diagm(w) * Y) # end # end # # # # @testset "locpolyl1" begin # # n, s, p = 500, 10, 50 # gk = GaussianKernel(0.1) # zgrid = collect(0.01:0.1:0.99) # opt = CDOptions(;randomize=false) # # for i=1:NUMBER_REPEAT # Y, X, Z, betaT = genData(n, s) # X = [X zeros(n, p-s)] # # λ0 = rand() / 10 # # for degree=0:2 # o1 = locpolyl1(X,Z,Y,zgrid,degree,gk,λ0, opt) # o2 = locpolyl1_alt(X,Z,Y,zgrid,degree,gk,λ0, opt) # # @test maximum( maximum(abs.(o1[i] - o2[i])) for i=1:length(zgrid) ) ≈ 0. atol=1e-4 # end # end # # end end
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.3.0
bd00a6c0f899a0f8e7f8cac53e78c6f24cbd8080
docs
669
# CoordinateDescent.jl [![Build Status](https://travis-ci.org/mlakolar/CoordinateDescent.jl.svg?branch=master)](https://travis-ci.org/mlakolar/CoordinateDescent.jl) [![codecov](https://codecov.io/gh/mlakolar/CoordinateDescent.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/mlakolar/CoordinateDescent.jl) Implements coordinate descent for a smooth function plus penalty that decomposes across coordinates. Curently a naive version of the active-set coordinate descent is implemented that works for L1 and weighted L1 penalty. Examples: * Lasso * Sqrt-Lasso * Scaled-Lasso Package depends on [ProximalBase.jl](https://github.com/mlakolar/ProximalBase.jl)
CoordinateDescent
https://github.com/mlakolar/CoordinateDescent.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
322
module ModelBasedCF # package code goes here using Persa using ProgressMeter using Statistics using LinearAlgebra: norm using Random: shuffle abstract type MatrixFactorization{T} <: Persa.Model{T} end include("irsvd.jl") include("rsvd.jl") include("train.jl") include("baseline.jl") include("random.jl") end # module
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
1171
mutable struct Baseline{T} <: MatrixFactorization{T} μ::Float64 bias_user::Array bias_item::Array preference::Persa.Preference{T} users::Int items::Int end function Baseline(dataset::Persa.Dataset) (users, items) = size(dataset) μ = mean(dataset) bu = zeros(users) bv = zeros(items) return Baseline(μ, bu, bv, dataset.preference, Persa.users(dataset), Persa.items(dataset)) end Persa.predict(model::Baseline, user::Int, item::Int) = model.μ + model.bias_user[user] + model.bias_item[item] function objective(model::Baseline, dataset::Persa.Dataset, λ::Float64) total = 0 for (u, v, r) in dataset total += (r - model[u, v])^2 total += λ * (model.bias_user[u]^2 + model.bias_item[v]^2) end return total end function update!(model::Baseline, dataset::Persa.Dataset, γ::Float64, λ::Float64) idx = shuffle(1:length(dataset)) for i = 1:length(dataset) (u, v, r) = dataset[idx[i]] e = r - Persa.predict(model, u, v) model.bias_user[u,:] += γ * (e .- λ * model.bias_user[u,:]); model.bias_item[v,:] += γ * (e .- λ * model.bias_item[v,:]); end end
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
1653
mutable struct ImprovedRegularizedSVD{T} <: MatrixFactorization{T} μ::Float64 bias_user::Array bias_item::Array P::Array Q::Array preference::Persa.Preference{T} users::Int items::Int end const IRSVD = ImprovedRegularizedSVD function ImprovedRegularizedSVD(dataset::Persa.Dataset, features::Int) (users, items) = size(dataset) μ = mean(dataset) bu = zeros(users) bv = zeros(items) P = rand(users, features) Q = rand(items, features) return ImprovedRegularizedSVD(μ, bu, bv, P, Q, dataset.preference, Persa.users(dataset), Persa.items(dataset)) end Persa.predict(model::ImprovedRegularizedSVD, user::Int, item::Int) = model.μ + model.bias_user[user] + model.bias_item[item] + model.P[user, :]' * model.Q[item, :] function objective(model::ImprovedRegularizedSVD, dataset::Persa.Dataset, λ::Float64) total = 0 for (u, v, r) in dataset total += (r - model[u, v])^2 total += λ * (model.bias_user[u]^2 + model.bias_item[v]^2) total += λ * (norm(model.P[u,:])^2 + norm(model.Q[v,:])^2) end return total end function update!(model::ImprovedRegularizedSVD, dataset::Persa.Dataset, γ::Float64, λ::Float64) idx = shuffle(1:length(dataset)) for i = 1:length(dataset) (u, v, r) = dataset[idx[i]] e = r - Persa.predict(model, u, v) model.bias_user[u,:] += γ * (e .- λ * model.bias_user[u,:]); model.bias_item[v,:] += γ * (e .- λ * model.bias_item[v,:]); P = model.P[u,:] Q = model.Q[v,:] model.P[u,:] += γ * (e .* Q .- λ .* P) model.Q[v,:] += γ * (e .* P .- λ .* Q) end end
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
339
using Random mutable struct RandomModel{T} <: Persa.Model{T} preference::Persa.Preference{T} users::Int items::Int end RandomModel(dataset::Persa.Dataset) = RandomModel(dataset.preference, Persa.users(dataset), Persa.items(dataset)) Persa.predict(model::RandomModel, user::Int, item::Int) = rand(model.preference.possibles)
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
1197
mutable struct RegularizedSVD{T} <: MatrixFactorization{T} P::Array Q::Array preference::Persa.Preference{T} users::Int items::Int end const RSVD = RegularizedSVD function RegularizedSVD(dataset::Persa.Dataset, features::Int) (users, items) = size(dataset) P = rand(users, features) Q = rand(items, features) return RegularizedSVD(P, Q, dataset.preference, Persa.users(dataset), Persa.items(dataset)) end Persa.predict(model::RegularizedSVD, user::Int, item::Int) = model.P[user, :]' * model.Q[item, :] function objective(model::RegularizedSVD, dataset::Persa.Dataset, λ::Float64) total = 0 for (u, v, r) in dataset total += (r - model[u, v])^2 total += λ * (norm(model.P[u,:])^2 + norm(model.Q[v,:])^2) end return total end function update!(model::RegularizedSVD, dataset::Persa.Dataset, γ::Float64, λ::Float64) idx = shuffle(1:length(dataset)) for i = 1:length(dataset) (u, v, r) = dataset[idx[i]] e = r - Persa.predict(model, u, v) P = model.P[u,:] Q = model.Q[v,:] model.P[u,:] += γ * (e .* Q .- λ .* P) model.Q[v,:] += γ * (e .* P .- λ .* Q) end end
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
510
function Persa.train!(model::MatrixFactorization, dataset::Persa.Dataset; γ = 0.001, λ = 0.02, max_epochs = 1000) err = Inf p = Progress(max_epochs) for epoch = 1:max_epochs update!(model, dataset, γ, λ) e = objective(model, dataset, 0.1) if e > err break end err = e ProgressMeter.next!(p; showvalues = [(:epoch, epoch), (:error, err)]) end return nothing end
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
code
827
using Persa using Test using DatasetsCF using ModelBasedCF dataset = DatasetsCF.MovieLens() @testset "Random Model Tests" begin model = ModelBasedCF.RandomModel(dataset) Persa.train!(model, dataset) @test !isnan(model[1,1]) end @testset "Factorization Matrix Models Tests" begin @testset "Baseline Tests" begin model = ModelBasedCF.Baseline(dataset) Persa.train!(model, dataset, max_epochs = 1) @test !isnan(model[1,1]) end @testset "RSVD Tests" begin model = ModelBasedCF.RSVD(dataset, 1) Persa.train!(model, dataset, max_epochs = 1) @test !isnan(model[1,1]) end @testset "IRSVD Tests" begin model = ModelBasedCF.IRSVD(dataset, 1) Persa.train!(model, dataset, max_epochs = 1) @test !isnan(model[1,1]) end end
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
0.2.0
4cb65f7f7e50feed0a8c9bbbf215d641f7116f3e
docs
1491
# ModelBasedCF.jl *Model based algorithms for Collaborative Filtering in Julia* [![][ci-img]][ci-url] [![][codecov-img]][codecov-url] **Installation**: at the Julia REPL, `Pkg.add("ModelBasedCF")` **Reporting Issues and Contributing**: See [CONTRIBUTING.md](CONTRIBUTING.md) ## Example ``` julia> using DatasetsCF julia> dataset = DatasetsCF.MovieLens(); julia> using ModelBasedCF julia> model = ModelBasedCF.IRSVD(dataset, 10) julia> Persa.train!(model, dataset, max_epochs = 10) julia> model[1,1] ``` ## Models List of package models: Models | Title -------------|------------------------------------------------------------------------ Baseline | Koren, Y. (2009). Collaborative filtering with temporal dynamics. Knowledge Discovery and Data Mining {KDD}, 447–456. Regularized SVD | Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. Improved Regularized SVD | Koren, Y. (2009). Collaborative filtering with temporal dynamics. Knowledge Discovery and Data Mining {KDD}, 447–456. [ci-img]: https://img.shields.io/github/checks-status/JuliaRecsys/ModelBasedCF.jl/master?style=flat-square [ci-url]: https://github.com/JuliaRecsys/ModelBasedCF.jl/actions [codecov-img]: https://img.shields.io/codecov/c/github/JuliaRecsys/ModelBasedCF.jl?style=flat-square [codecov-url]: https://codecov.io/gh/JuliaRecsys/ModelBasedCF.jl [issues-url]: https://github.com/JuliaRecsys/ModelBasedCF.jl/issues
ModelBasedCF
https://github.com/JuliaRecsys/ModelBasedCF.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
438
using Plots, Roots, FileIO julia_colors = [:royalblue, :brown3, :forestgreen, :mediumorchid3] f(x) = x^5 - x - 1/4 a, b = -9/8, 5/4 zs = find_zeros(f, (a,b)) p = plot(f, a, b; color=:black, linewidth=2, grid=false, legend=false, showaxis = false, background_color = :transparent) plot!(p, zero, color=julia_colors[1]) scatter!(p, zs, zero.(zs), color=julia_colors[2:4], markersize=10) save("src/assets/logo.png", p)
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
468
ENV["GKSwstype"] = "100" using Documenter using Roots DocMeta.setdocmeta!(Roots, :DocTestSetup, :(using Roots); recursive=true) makedocs( sitename = "Roots", format = Documenter.HTML(ansicolor=true), modules = [Roots], pages=[ "Home" => "index.md", "Overview" => "roots.md", "Reference/API" => "reference.md", "Geometry" => "geometry-zero-finding.md" ] ) deploydocs( repo = "github.com/JuliaMath/Roots.jl" )
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
4573
module RootsChainRulesCoreExt using Roots import ChainRulesCore # View find_zero as solving `f(x, p) = 0` for `xᵅ(p)`. # This is implicitly defined. By the implicit function theorem, we have: # ∇f = 0 => ∂/∂ₓ f(xᵅ, p) ⋅ ∂xᵅ/∂ₚ + ∂/∂ₚf(x\^α, p) ⋅ I = 0 # or ∂xᵅ/∂ₚ = - ∂/∂ₚ f(xᵅ, p) / ∂/∂ₓ f(xᵅ, p) # There are two cases considered # F(p) = find_zero(f(x,p), x₀, M, p) # f a function # G(p) = find_zero(𝐺(p), x₀, M) # 𝐺 a functor # For G(p) first order derivatives are working # **but** hessian is not with Zygote. *MOREOVER* it fails # with the **wrong answer** not an error. # # (`Zygote.hessian` calls `ForwardDiff` and that isn't working with a functor; # `Zygote.hessian_reverse` doesn't seem to work here, though perhaps # that is fixable.) # this assumes a function and a parameter `p` passed in function ChainRulesCore.frule( config::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasForwardsMode}, (_, _, _, Δp), ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, p; kwargs..., ) xᵅ = solve(ZP, M, p; kwargs...) # Use a single reverse-mode AD call with `rrule_via_ad` if `config` supports it? F = p -> Roots.Callable_Function(M, ZP.F, p) fₓ(x) = first(F(p)(x)) fₚ(p) = first(F(p)(xᵅ)) fx = ChainRulesCore.frule_via_ad(config, (ChainRulesCore.NoTangent(), true), fₓ, xᵅ)[2] fp = ChainRulesCore.frule_via_ad(config, (ChainRulesCore.NoTangent(), Δp), fₚ, p)[2] xᵅ, -fp / fx end # Case of Functor carrying parameters ChainRulesCore.frule( config::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasForwardsMode}, xdots, ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, ::Nothing; kwargs..., ) = ChainRulesCore.frule(config, xdots, solve, ZP, M; kwargs...) function ChainRulesCore.frule( config::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasForwardsMode}, (_, Δq, _), ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod; kwargs..., ) # no `p`; make ZP.F the parameter (issue 408) foo = ZP.F zprob2 = ZeroProblem(|>, ZP.x₀) nms = fieldnames(typeof(foo)) nt = NamedTuple{nms}(getfield(foo, n) for n in nms) dfoo = ChainRulesCore.Tangent{typeof(foo)}(; nt...) return ChainRulesCore.frule( config, (ChainRulesCore.NoTangent(), ChainRulesCore.NoTangent(), ChainRulesCore.NoTangent(), dfoo), solve, zprob2, M, foo, ) end ## ## modified from ## https://github.com/gdalle/ImplicitDifferentiation.jl/blob/main/src/implicit_function.jl # this is for passing a parameter `p` function ChainRulesCore.rrule( rc::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasReverseMode}, ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, p; kwargs..., ) xᵅ = solve(ZP, M, p; kwargs...) f(x, p) = first(Roots.Callable_Function(M, ZP.F, p)(x)) _, pullback_f = ChainRulesCore.rrule_via_ad(rc, f, xᵅ, p) _, fx, fp = pullback_f(true) yp = -fp / fx function pullback_solve_ZeroProblem(dy) dp = yp * dy return ( ChainRulesCore.NoTangent(), ChainRulesCore.NoTangent(), ChainRulesCore.NoTangent(), dp, ) end return xᵅ, pullback_solve_ZeroProblem end # this assumes a functor 𝐺(p) for the function *and* no parameter ChainRulesCore.rrule( rc::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasReverseMode}, ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, ::Nothing; kwargs..., ) = ChainRulesCore.rrule(rc, solve, ZP, M; kwargs...) function ChainRulesCore.rrule( rc::ChainRulesCore.RuleConfig{>:ChainRulesCore.HasReverseMode}, ::typeof(solve), ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod; kwargs..., ) 𝑍𝑃 = ZeroProblem(|>, ZP.x₀) xᵅ = solve(ZP, M; kwargs...) f(x, p) = first(Roots.Callable_Function(M, 𝑍𝑃.F, p)(x)) _, pullback_f = ChainRulesCore.rrule_via_ad(rc, f, xᵅ, ZP.F) _, fx, fp = pullback_f(true) yp = NamedTuple{keys(fp)}(-fₚ / fx for fₚ in values(fp)) function pullback_solve_ZeroProblem(dy) dF = ChainRulesCore.Tangent{typeof(ZP.F)}(; yp...) dZP = ChainRulesCore.Tangent{typeof(ZP)}(; F=dF, x₀=ChainRulesCore.NoTangent()) dsolve = ChainRulesCore.NoTangent() dM = ChainRulesCore.NoTangent() dp = ChainRulesCore.NoTangent() return dsolve, dZP, dM, dp end return xᵅ, pullback_solve_ZeroProblem end end # module
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1809
module RootsForwardDiffExt using Roots using ForwardDiff import ForwardDiff: Dual, value, partials, Partials, derivative, gradient! # What works # F(p) = find_zero(f, x0, M, p) # G(p) = find_zero(𝐺(p), x0, M) # F G # ForwardDiff.derivative ✓ x (wrong answer, 0.0) # ForwardDiff.gradient ✓ x (wrong answer, 0.0) # ForwardDiff.hessian ✓ x (wrong answer, 0.0) # Zygote.gradient ✓ ✓ # Zygote.hessian ✓ x (wrong answer!) # Zygote.hessian_reverse ✓ x (MethodError) function Roots.solve(ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, 𝐩::Dual{T}; kwargs...) where {T} # p_and_dp = 𝐩 p, dp = value.(𝐩), partials.(𝐩) xᵅ = solve(ZP, M, p; kwargs...) f = ZP.F fₓ = derivative(_x -> f(_x, p), xᵅ) fₚ = derivative(_p -> f(xᵅ, _p), p) # x and dx dx = - (fₚ * dp) / fₓ Dual{T}(xᵅ, dx) end # cf https://discourse.julialang.org/t/custom-rule-for-differentiating-through-newton-solver-using-forwarddiff-works-for-gradient-fails-for-hessian/93002/22 function Roots.solve(ZP::ZeroProblem, M::Roots.AbstractUnivariateZeroMethod, 𝐩::AbstractArray{<:Dual{T,R,N}}; kwargs...) where {T,R,N} # p_and_dp = 𝐩 p, dp = value.(𝐩), partials.(𝐩) xᵅ = solve(ZP, M, p; kwargs...) f = ZP.F fₓ = derivative(_x -> f(_x, p), xᵅ) fₚ = similar(𝐩) # <-- need this, not output of gradient(p->f(x,p), p) gradient!(fₚ, _p -> f(xᵅ, _p), p) # x_and_dx dx = - (fₚ' * dp) / fₓ Dual{T}(xᵅ, Partials(ntuple(k -> dx[k], Val(N)))) end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
779
module RootsIntervalRootFindingExt using IntervalRootFinding using Roots function Roots.find_zeros(f, x0::IntervalRootFinding.Interval{T′}, M=IntervalRootFinding.Newton; kwargs...) where {T′} rts = IntervalRootFinding.roots(f, x0, M) T = float(T′) unique_roots = T[find_zero(f, (interval(r).lo, interval(r).hi)) for r ∈ rts if r.status == :unique] unknown = Interval{T}[interval(r) for r ∈ rts if r.status != :unique] (zeros = unique_roots, unknown=unknown) end Roots.find_zeros(f, x0::IntervalRootFinding.Interval, M::Roots.Newton; kwargs...) = Roots.find_zeros(f, x0, IntervalRootFinding.Newton) Roots.find_zeros(f, x0::IntervalRootFinding.Interval, M::Roots.Bisection; kwargs...) = Roots.find_zeros(f, x0, IntervalRootFinding.Bisection) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
682
module RootsSymPyExt using Roots using SymPy ## Allow equations to specify a problem to solve function Roots.Callable_Function(M::Roots.AbstractUnivariateZeroMethod, f::SymPy.Sym, p=nothing) if f.is_Equality == true f = lhs(f) - rhs(f) end Roots.Callable_Function(M, lambdify(f), p) end function Roots.FnWrapper(f::SymPy.Sym) if f.is_Equality == true f = lhs(f) - rhs(f) end Roots.FnWrapper(lambdify(f)) end ## allow find_zeros to use symbolic equation function Roots.find_zeros(f::SymPy.Sym, a, b=nothing; kwargs...) if f.is_Equality == true f = lhs(f) - rhs(f) end find_zeros(lambdify(f), a, b; kwargs...) end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
733
module RootsSymPyPythonCallExt using Roots using SymPyPythonCall ## Allow equations to specify a problem to solve function Roots.Callable_Function(M::Roots.AbstractUnivariateZeroMethod, f::SymPyPythonCall.Sym, p=nothing) if f.is_Equality == true f = lhs(f) - rhs(f) end Roots.Callable_Function(M, lambdify(f), p) end function Roots.FnWrapper(f::SymPyPythonCall.Sym) if f.is_Equality == true f = lhs(f) - rhs(f) end Roots.FnWrapper(lambdify(f)) end ## allow find_zeros to use symbolic equation function Roots.find_zeros(f::SymPyPythonCall.Sym, a, b=nothing; kwargs...) if f.is_Equality == true f = lhs(f) - rhs(f) end find_zeros(lambdify(f), a, b; kwargs...) end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2126
""" Roots A package for solving `f(x) = 0` for univariate, scalar functions. The basic methods are * [`find_zero`](@ref) for using one of several methods to identify a zero * [`ZeroProblem`](@ref) for solving for a zero using the `CommonSolve` interface * [`find_zeros`](@ref) for heuristically identifying all zeros in a specified interval # Extended help $(replace(read(joinpath(@__DIR__, "..", "README.md"), String), "```julia" => "```jldoctest readme")) """ module Roots if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel")) @eval Base.Experimental.@optlevel 1 end using Printf import CommonSolve import CommonSolve: solve, solve!, init using Accessors export fzero, fzeros, secant_method export find_zero, find_zeros, ZeroProblem, solve, solve!, init, Order0, Secant, Order1, Orderφ, Steffensen, Order2, Order5, Order8, Order16, AllZeros export Bisection, A42, AlefeldPotraShi, FalsePosition include("utils.jl") include("abstract_types.jl") include("state.jl") include("convergence.jl") include("functions.jl") include("trace.jl") include("find_zero.jl") include("hybrid.jl") include("Bracketing/bracketing.jl") include("Bracketing/bisection.jl") include("Bracketing/alefeld_potra_shi.jl") include("Bracketing/brent.jl") include("Bracketing/ridders.jl") include("Bracketing/itp.jl") include("Bracketing/chandrapatlu.jl") include("Bracketing/false_position.jl") include("DerivativeFree/derivative_free.jl") include("DerivativeFree/secant.jl") include("DerivativeFree/steffensen.jl") include("DerivativeFree/order5.jl") include("DerivativeFree/order8.jl") include("DerivativeFree/order16.jl") include("DerivativeFree/king.jl") include("DerivativeFree/esser.jl") include("DerivativeFree/order0.jl") include("Derivative/newton.jl") include("Derivative/halley_like.jl") include("Derivative/thukralb.jl") include("Derivative/lith.jl") include("find_zeros.jl") include("simple.jl") include("alternative_interfaces.jl") if !isdefined(Base, :get_extension) include("../ext/RootsChainRulesCoreExt.jl") end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1056
### Method types abstract type AbstractUnivariateZeroMethod end Base.broadcastable(method::AbstractUnivariateZeroMethod) = Ref(method) abstract type AbstractBracketingMethod <: AbstractUnivariateZeroMethod end abstract type AbstractBisectionMethod <: AbstractBracketingMethod end abstract type AbstractNonBracketingMethod <: AbstractUnivariateZeroMethod end abstract type AbstractSecantMethod <: AbstractNonBracketingMethod end abstract type AbstractDerivativeMethod <: AbstractNonBracketingMethod end abstract type AbstractNewtonLikeMethod <: AbstractDerivativeMethod end abstract type AbstractHalleyLikeMethod <: AbstractDerivativeMethod end abstract type AbstractΔMethod <: AbstractHalleyLikeMethod end # deprecated but not clear way to do so, hence these definitions not to be used const AbstractBracketing = AbstractBracketingMethod const AbstractBisection = AbstractBisectionMethod const AbstractNonBracketing = AbstractNonBracketingMethod const AbstractSecant = AbstractSecantMethod ### State abstract type AbstractUnivariateZeroState{T,S} end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
8323
## Some **legacy** alternative interfaces. ## several named interfaces to methods ## newton, halley, quadratic_inverse, superhalley, chebyshevlike """ Roots.newton(f, fp, x0; kwargs...) Implementation of Newton's method: `xᵢ₊₁ = xᵢ - f(xᵢ)/f'(xᵢ)`. Arguments: * `f::Function` -- function to find zero of * `fp::Function` -- the derivative of `f`. * `x0::Number` -- initial guess. For Newton's method this may be complex. With the `ForwardDiff` package derivatives may be computed automatically. For example, defining `D(f) = x -> ForwardDiff.derivative(f, float(x))` allows `D(f)` to be used for the first derivative. Keyword arguments are passed to `find_zero` using the `Roots.Newton()` method. See also `Roots.newton((f,fp), x0)` and `Roots.newton(fΔf, x0)` for simpler implementations. """ newton(f, fp, x0; kwargs...) = find_zero((f, fp), x0, Newton(); kwargs...) ## -------------------------------------------------- #= """ Roots.halley(f, fp, fpp, x0; kwargs...) Implementation of Halley's method (cf `?Roots.Halley()`). Arguments: * `f::Function` -- function to find zero of * `fp::Function` -- derivative of `f`. * `fpp:Function` -- second derivative of `f`. * `x0::Number` -- initial guess With the `ForwardDiff` package derivatives may be computed automatically. For example, defining `D(f) = x -> ForwardDiff.derivative(f, float(x))` allows `D(f)` and `D(D(f))` to be used for the first and second derivatives, respectively. Keyword arguments are passed to `find_zero` using the `Roots.Halley()` method. """ =# halley(f, fp, fpp, x0; kwargs...) = find_zero((f, fp, fpp), x0, Halley(); kwargs...) #= """ Roots.quadratic_inverse(f, fp, fpp, x0; kwargs...) Implementation of the quadratic inverse method (cf `?Roots.QuadraticInverse()`). Arguments: * `f::Function` -- function to find zero of * `fp::Function` -- derivative of `f`. * `fpp:Function` -- second derivative of `f`. * `x0::Number` -- initial guess With the `ForwardDiff` package derivatives may be computed automatically. For example, defining `D(f) = x -> ForwardDiff.derivative(f, float(x))` allows `D(f)` and `D(D(f))` to be used for the first and second derivatives, respectively. Keyword arguments are passed to `find_zero` using the `Roots.QuadraticInverse()` method. """ =# quadratic_inverse(f, fp, fpp, x0; kwargs...) = find_zero((f, fp, fpp), x0, QuadraticInverse(); kwargs...) superhalley(f, fp, fpp, x0; kwargs...) = find_zero((f, fp, fpp), x0, SuperHalley(); kwargs...) chebyshev_like(f, fp, fpp, x0; kwargs...) = find_zero((f, fp, fpp), x0, ChebyshevLike(); kwargs...) ## -------------------------------------------------- ## MATLAB interface to find_zero ## Main functions are ## * fzero(f, ...) to find _a_ zero of f, a univariate function ## * fzeros(f, ...) to attempt to find all zeros of f, a univariate function ## unlike `find_zero` these do not specialize on f, so ## will be faster the first use, and slower for subsequent uses (for the same f) struct FnWrapper f end (F::FnWrapper)(x::Number) = first(F.f(x)) """ fzero(f, x0; order=0; kwargs...) fzero(f, x0, M; kwargs...) fzero(f, x0, M, N; kwargs...) fzero(f, x0; kwargs...) fzero(f, a::Number, b::Number; kwargs...) fzero(f, a::Number, b::Number; order=?, kwargs...) fzero(f, fp, a::Number; kwargs...) Find zero of a function using one of several iterative algorithms. * `f`: a scalar function or callable object * `x0`: an initial guess, a scalar value or tuple of two values * `order`: An integer, symbol, or string indicating the algorithm to use for `find_zero`. The `Order0` default may be specified directly by `order=0`, `order=:0`, or `order="0"`; `Order1()` by `order=1`, `order=:1`, `order="1"`, or `order=:secant`; `Order1B()` by `order="1B"`, etc. * `M`: a specific method, as would be passed to `find_zero`, bypassing the use of the `order` keyword * `N`: a specific bracketing method. When given, if a bracket is identified, method `N` will be used to finish instead of method `M`. * `a`, `b`: When two values are passed along, if no `order` value is specified, `Bisection` will be used over the bracketing interval `(a,b)`. If an `order` value is specified, the value of `x0` will be set to `(a,b)` and the specified method will be used. * `fp`: when `fp` is specified (assumed to compute the derivative of `f`), Newton's method will be used * `kwargs...`: See `find_zero` for the specification of tolerances and other keyword arguments Examples: ``` fzero(sin, 3) # use Order0() method, the default fzero(sin, 3, order=:secant) # use secant method (also just `order=1`) fzero(sin, 3, Roots.Order1B()) # use secant method variant for multiple roots. fzero(sin, 3, 4) # use bisection method over (3,4) fzero(sin, 3, 4, xatol=1e-6) # use bisection method until |x_n - x_{n-1}| <= 1e-6 fzero(sin, 3, 3.1, order=1) # use secant method with x_0=3.0, x_1 = 3.1 fzero(sin, (3, 3.1), order=2) # use Steffensen's method with x_0=3.0, x_1 = 3.1 fzero(sin, cos, 3) # use Newton's method ``` !!! note Unlike `find_zero`, `fzero` does not specialize on the type of the function argument. This has the advantage of making the first use of the function `f` faster, but subsequent uses slower. """ function fzero(f, x0::Number; kwargs...) x = float(x0) isinf(x) && throw(ConvergenceFailed("An initial value must be finite")) derivative_free(f, x; kwargs...) end function fzero(f, x0, M::AbstractUnivariateZeroMethod; kwargs...) find_zero(FnWrapper(f), x0, M; kwargs...) end function fzero( f, x0, M::AbstractUnivariateZeroMethod, N::AbstractBracketingMethod; kwargs..., ) find_zero(FnWrapper(f), x0, M, N; kwargs...) end function fzero(f, bracket::Tuple{T,S}; kwargs...) where {T<:Number,S<:Number} d = Dict(kwargs) if haskey(d, :order) find_zero(FnWrapper(f), bracket, _method_lookup[d[:order]]; kwargs...) else find_zero(FnWrapper(f), bracket, Bisection(); kwargs...) end end fzero(f, a::Number, b::Number, args...; kwargs...) = fzero(f, (a, b), args...; kwargs...) fzero(f, x; kwargs...) = find_zero(FnWrapper(f), x; kwargs...) fzero(f::Function, fp::Function, x0::Real; kwargs...) = find_zero((f, fp), x0, Newton(); kwargs...) # match fzero up with find_zero _method_lookup = Dict( 0 => Order0(), :0 => Order0(), "0" => Order0(), 1 => Order1(), :1 => Order1(), "1" => Order1(), :secant => Order1(), :Secant => Order1(), "1B" => Order1B(), :king => Order1B(), :King => Order1B(), 2 => Order2(), :2 => Order2(), :steffensen => Order2(), :Steffensen => Order2(), "2" => Order2(), "2B" => Order2B(), :esser => Order2B(), :Esser => Order2B(), 5 => Order5(), :5 => Order5(), "5" => Order5(), 8 => Order8(), :8 => Order8(), "8" => Order8(), 16 => Order16(), :16 => Order16(), "16" => Order16(), ) @noinline function derivative_free(f, x0; order=0, kwargs...) if haskey(_method_lookup, order) M = _method_lookup[order] else warn("Invalid order specified. See ?fzero.") throw(ArgumentError()) end # d = (kv[1] == :ftol ? :atol=>kv[2] : # kv[1] == :ftolrel ? :rtol=>kv[2] : # kv[1] == :xtol ? :xatol=>kv[2] : # kv[1] == :xtolrel ? xrtol=>kv[2] : # kv[1] => kv[1] for kv in kwargs) d = Dict(kwargs) for (o, n) in ((:ftol, :atol), (:ftolrel, :rtol), (:xtol, :xatol), (:xtolrel, :xrtol)) if haskey(d, o) d[n] = d[o] end end find_zero(FnWrapper(f), x0, M; d...) end ## fzeros """ fzeros(f, a, b; kwargs...) fzeros(f, ab; kwargs...) Searches for all zeros of `f` within an interval `(a,b)`. Assumes neither `a` or `b` is a zero. Compatibility interface for [`find_zeros`](@ref). """ function fzeros(f, a::Number, b::Number; kwargs...) find_zeros(FnWrapper(f), float(a), float(b); kwargs...) end fzeros(f, ab; kwargs...) = fzeros(f, _extrema(ab)...; kwargs...)
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
11492
### Options abstract type AbstractUnivariateZeroOptions end struct UnivariateZeroOptions{Q,R,S,T} <: AbstractUnivariateZeroOptions xabstol::Q xreltol::R abstol::S reltol::T maxiters::Int strict::Bool end struct XExactOptions{S,T} <: AbstractUnivariateZeroOptions abstol::S reltol::T maxiters::Int strict::Bool end struct FExactOptions{S,T} <: AbstractUnivariateZeroOptions xabstol::S xreltol::T maxiters::Int strict::Bool end struct ExactOptions <: AbstractUnivariateZeroOptions maxiters::Int strict::Bool end init_options( M::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState{T,S}; kwargs..., ) where {T,S} = init_options(M, T, S; kwargs...) # this function is an issue (#446) it is type unstable. # this is a fall back now, but in #446 more # specific choices based on M are made. function init_options(M, T=Float64, S=Float64; kwargs...) d = kwargs defs = default_tolerances(M, T, S) δₐ = get(d, :xatol, get(d, :xabstol, defs[1])) δᵣ = get(d, :xrtol, get(d, :xreltol, defs[2])) ϵₐ = get(d, :atol, get(d, :abstol, defs[3])) ϵᵣ = get(d, :rtol, get(d, :reltol, defs[4])) maxiters = get(d, :maxiters, get(d, :maxevals, get(d, :maxsteps, defs[5]))) strict = get(d, :strict, defs[6]) iszero(δₐ) && iszero(δᵣ) && iszero(ϵₐ) && iszero(ϵᵣ) && return ExactOptions(maxiters, strict) iszero(δₐ) && iszero(δᵣ) && return XExactOptions(ϵₐ, ϵᵣ, maxiters, strict) iszero(ϵₐ) && iszero(ϵᵣ) && return FExactOptions(δₐ, δᵣ, maxiters, strict) return UnivariateZeroOptions(δₐ, δᵣ, ϵₐ, ϵᵣ, maxiters, strict) end function init_options( M::AbstractNonBracketingMethod, state::AbstractUnivariateZeroState{T,S}; kwargs..., ) where {T,S} d = kwargs defs = default_tolerances(M, T, S) δₐ = get(d, :xatol, get(d, :xabstol, defs[1])) δᵣ = get(d, :xrtol, get(d, :xreltol, defs[2])) ϵₐ = get(d, :atol, get(d, :abstol, defs[3])) ϵᵣ = get(d, :rtol, get(d, :reltol, defs[4])) maxiters = get(d, :maxiters, get(d, :maxevals, get(d, :maxsteps, defs[5]))) strict = get(d, :strict, defs[6]) return UnivariateZeroOptions(δₐ, δᵣ, ϵₐ, ϵᵣ, maxiters, strict) end ## -------------------------------------------------- """ default_tolerances(M::AbstractUnivariateZeroMethod, [T], [S]) The default tolerances for most methods are `xatol=eps(T)`, `xrtol=eps(T)`, `atol=4eps(S)`, and `rtol=4eps(S)`, with the proper units (absolute tolerances have the units of `x` and `f(x)`; relative tolerances are unitless). For `Complex{T}` values, `T` is used. The number of iterations is limited by `maxiters=40`. """ default_tolerances(M::AbstractUnivariateZeroMethod) = default_tolerances(M, Float64, Float64) function default_tolerances( ::AbstractUnivariateZeroMethod, ::Type{T}, ::Type{S}, ) where {T,S} xatol = eps(real(T)) * oneunit(real(T)) xrtol = eps(real(T)) # unitless atol = 4 * eps(real(float(S))) * oneunit(real(S)) rtol = 4 * eps(real(float(S))) * one(real(S)) maxiters = 40 strict = false (xatol, xrtol, atol, rtol, maxiters, strict) end ## -------------------------------------------------- # ## Assess convergence ## test f == 0 not f ≈ 0 function is_exact_zero_f( ::AbstractNonBracketingMethod, state::AbstractUnivariateZeroState, options, ) fb = state.fxn1 iszero(fb) end function is_exact_zero_f( ::AbstractBracketingMethod, state::AbstractUnivariateZeroState, options, ) fa, fb = state.fxn0, state.fxn1 iszero(fa) || iszero(fb) end ## test f ≈ 0 not f == 0 function is_approx_zero_f( ::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:AbstractUnivariateZeroOptions} ab, afb = abs(state.xn1), abs(state.fxn1) ϵₐ, ϵᵣ = options.abstol, options.reltol Δ = max(_unitless(ϵₐ), _unitless(ab) * ϵᵣ) afb ≤ Δ * oneunit(afb) end ## test f ≈ 0 not f == 0 function is_approx_zero_f( ::AbstractBracketingMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:AbstractUnivariateZeroOptions} ab₁, afb₁ = abs(state.xn1), abs(state.fxn1) ab₀, afb₀ = abs(state.xn0), abs(state.fxn0) ϵₐ, ϵᵣ = options.abstol, options.reltol u, fu = afb₀ < afb₁ ? (ab₀, afb₀) : (ab₁, afb₁) Δ = max(_unitless(ϵₐ), _unitless(u) * ϵᵣ) fu ≤ Δ * oneunit(fu) end function is_approx_zero_f( ::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, options::O, relaxed::Any, ) where {O<:AbstractUnivariateZeroOptions} ab, afb = abs(state.xn1), abs(state.fxn1) ϵₐ, ϵᵣ = options.abstol, options.reltol Δ = max(_unitless(ϵₐ), _unitless(ab) * ϵᵣ) Δ = cbrt(abs(_unitless(Δ))) * oneunit(afb) # relax test afb <= Δ end function is_approx_zero_f( ::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:Union{ExactOptions,FExactOptions}} false end function is_approx_zero_f( ::AbstractBracketingMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:Union{ExactOptions,FExactOptions}} false end ## -------------------------------------------------- # test xₙ₊₁ - xₙ ≈ 0 function iszero_Δx( ::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:Union{ExactOptions,XExactOptions}} a, b = state.xn0, state.xn1 if b < a a, b = b, a end nextfloat(float(a)) == float(b) end function iszero_Δx( ::AbstractBracketingMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:Union{FExactOptions,UnivariateZeroOptions}} a, b, fa, fb = state.xn0, state.xn1, state.fxn0, state.fxn1 u, fu = choose_smallest(a, b, fa, fb) δₐ, δᵣ = options.xabstol, options.xreltol δₓ = max(δₐ, 2 * abs(u) * δᵣ) # needs non-zero δₐ to stop near 0 abs(b - a) ≤ δₓ end function iszero_Δx( ::AbstractNonBracketingMethod, state::AbstractUnivariateZeroState, options::O, ) where {O<:Union{FExactOptions,UnivariateZeroOptions}} a, b, fa, fb = state.xn0, state.xn1, state.fxn0, state.fxn1 δₐ, δᵣ = options.xabstol, options.xreltol isapprox(a, b, atol=δₐ, rtol=δᵣ) end # test when fconverged to ensure not runawa function is_small_Δx( M::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, options, ) δ = _unitless(abs(state.xn1 - state.xn0)) δₐ, δᵣ = options.xabstol, options.xreltol Δₓ = max(_unitless(δₐ), _unitless(abs(state.xn1)) * δᵣ) Δₓ = sqrt(sqrt(sqrt((abs(_unitless(Δₓ)))))) # faster than x^(1/8) return δ ≤ Δₓ end isnan_f(M::AbstractBracketingMethod, state) = isnan(state.fxn1) || isnan(state.fxn0) isnan_f(M::AbstractNonBracketingMethod, state) = isnan(state.fxn1) isinf_f(M::AbstractBracketingMethod, state) = isinf(state.fxn1) || isinf(state.fxn0) isinf_f(M::AbstractNonBracketingMethod, state) = isinf(state.fxn1) ## -------------------------------------------------- """ Roots.assess_convergence(method, state, options) Assess if algorithm has converged. Return a convergence flag and a Boolean indicating if algorithm has terminated (converged or not converged) If algorithm hasn't converged this returns `(:not_converged, false)`. If algorithm has stopped or converged, return flag and `true`. Flags are: * `:x_converged` if `xn1 ≈ xn`, typically with non-zero tolerances specified. * `:f_converged` if `|f(xn1)| < max(atol, |xn1|*rtol)` * `:nan` or `:inf` if fxn1 is `NaN` or an infinity. * `:not_converged` if algorithm should continue Does not check number of steps taken nor number of function evaluations. In `decide_convergence`, stopped values (and `:x_converged` when `strict=false`) are checked for convergence with a relaxed tolerance. """ function assess_convergence(M::Any, state::AbstractUnivariateZeroState, options) # return convergence_flag, boolean is_exact_zero_f(M, state, options) && return (:exact_zero, true) isnan_f(M, state) && return (:nan, true) isinf_f(M, state) && return (:inf, true) is_approx_zero_f(M, state, options) && return (:f_converged, true) iszero_Δx(M, state, options) && return (:x_converged, true) return (:not_converged, false) end # speeds up exact f values by just a bit (2% or so) over the above, so guess this is worth it. function assess_convergence( M::AbstractBracketingMethod, state::AbstractUnivariateZeroState, options::FExactOptions, # options::Union{ExactOptions,FExactOptions}, ) (iszero(state.fxn1) || iszero(state.fxn0)) && return (:exact_zero, true) (isnan(state.fxn1) || isnan(state.fxn0)) && return (:nan, true) a, b, fa, fb = state.xn0, state.xn1, state.fxn0, state.fxn1 u, fu = choose_smallest(a, b, fa, fb) δₐ, δᵣ = options.xabstol, options.xreltol δₓ = max(δₐ, 2 * abs(u) * δᵣ) # needs non-zero δₐ to stop near 0 abs(b - a) ≤ δₓ && return (:x_converged, true) return (:not_converged, false) end # state has stopped, this identifies if it has converged #= """ decice_convergence(M,F,state,options, convergence_flag) When the algorithm terminates, this function decides the stopped value or returns NaN """ =# function decide_convergence( M::AbstractNonBracketingMethod, F, state::AbstractUnivariateZeroState{T,S}, options, val, ) where {T,S} xn0, xn1 = state.xn0, state.xn1 fxn1 = state.fxn1 val ∈ (:f_converged, :exact_zero, :converged) && return xn1 ## XXX this could be problematic val == :nan && return xn1 val == :inf_nan && return xn1 ## stopping is a heuristic, x_converged can mask issues ## if strict=true or the tolerance for f is 0 this will return xn1 if x_converged ## if strict == false, this will also check f(xn) ~ - with a relaxed ## tolerance if options.strict || isa(options, ExactOptions) || isa(options, FExactOptions) #|| (iszero(options.abstol) && iszero(options.reltol)) val == :x_converged && return xn1 is_approx_zero_f(M, state, options) && return xn1 #_is_f_approx_0(fxn1, xn1, options.abstol, options.reltol) && return xn1 else if val == :x_converged # The XExact case isn't always spelled out in the type, so # we replicate a bit here δ, ϵ = options.abstol, options.reltol iszero(δ) && iszero(ϵ) && return xn1 is_approx_zero_f(M, state, options, true) && return xn1 elseif val == :not_converged # this is the case where runaway can happen ## XXX Need a good heuristic to catch that is_approx_zero_f(M, state, options, :relaxed) && is_small_Δx(M, state, options) && return xn1 end end nan(T) * xn1 end # assumes stopped = :x_converged function decide_convergence( ::AbstractBracketingMethod, F, state::AbstractUnivariateZeroState, options, val, ) a, b = state.xn0, state.xn1 fa, fb = state.fxn0, state.fxn1 iszero(fa) && return a iszero(fb) && return b isnan(fa) && return a isnan(fb) && return b # get as close as possible with one extra function call when closeness # is requested if b == nextfloat(nextfloat(float(a))) c = nextfloat(float(a)) fc = first(F(c)) m = minimum(abs, (fa, fb, fc)) abs(fc) == m && return c abs(fa) == m && return a return b end abs(fa) < abs(fb) ? a : b end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
16615
""" find_zero(f, x0, M, [N::AbstractBracketingMethod], [p=nothing]; kwargs...) Interface to one of several methods for finding zeros of a univariate function, e.g. solving ``f(x)=0``. # Arguments ## Positional arguments * `f`: the function (univariate or `f(x,p)` with `p` holding parameters) * `x0`: the initial condition (a value, initial values, or bracketing interval) * `M`: some `AbstractUnivariateZeroMethod` specifying the solver * `N`: some bracketing method, when specified creates a hybrid method * `p`: for specifying a parameter to `f`. Also can be a keyword, but a positional argument is helpful with broadcasting. ## Keyword arguments * `xatol`, `xrtol`: absolute and relative tolerance to decide if `xₙ₊₁ ≈ xₙ` * `atol`, `rtol`: absolute and relative tolerance to decide if `f(xₙ) ≈ 0` * `maxiters`: specify the maximum number of iterations the algorithm can take. * `verbose::Bool`: specifies if details about algorithm should be shown * `tracks`: allows specification of `Tracks` objects # Extended help # Initial starting value For most methods, `x0` is a scalar value indicating the initial value in the iterative procedure. (Secant methods can have a tuple specify their initial values.) Values must be a subtype of `Number` and have methods for `float`, `real`, and `oneunit` defined. For bracketing intervals, `x0` is specified using a tuple, a vector, or any iterable with `extrema` defined. A bracketing interval, ``[a,b]``, is one where ``f(a)`` and ``f(b)`` have different signs. # Return value If the algorithm succeeds, the approximate root identified is returned. A `ConvergenceFailed` error is thrown if the algorithm fails. The alternate form `solve(ZeroProblem(f,x0), M)` returns `NaN` in case of failure. # Specifying a method A method is specified to indicate which algorithm to employ: * There are methods where a bracket is specified: [`Bisection`](@ref), [`A42`](@ref), [`AlefeldPotraShi`](@ref), [`Roots.Brent`](@ref), among others. Bisection is the default for basic floating point types, but `A42` generally requires far fewer iterations. * There are several derivative-free methods: cf. [`Order0`](@ref), [`Order1`](@ref) (also [`Roots.Secant`](@ref)), [`Order2`](@ref) (also [`Steffensen`](@ref)), [`Order5`](@ref), [`Order8`](@ref), and [`Order16`](@ref), where the number indicates the order of the convergence. * There are some classical methods where derivatives need specification: [`Roots.Newton`](@ref), [`Roots.Halley`](@ref), [`Roots.Schroder`](@ref), among others. * Methods intended for problems with multiplicities include [`Roots.Order1B`](@ref), [`Roots.Order2B`](@ref), and `Roots.ThukralXB` for different `X`s. * The family [`Roots.LithBoonkkampIJzerman{S,D}`](@ref) ,for different `S` and `D`, uses a linear multistep method root finder. The `(2,0)` method is the secant method, `(1,1)` is Newton's method. For more detail, see the help page for each method (e.g., `?Order1`). Non-exported methods must be qualified with the module name, as in `?Roots.Schroder`. If no method is specified, the default method depends on `x0`: * If `x0` is a scalar, the default is the more robust `Order0` method. * If `x0` is a tuple, vector, or iterable with `extrema` defined indicating a *bracketing* interval, then the `Bisection` method is used for `Float64`, `Float32` or `Float16` types; otherwise the `A42` method is used. The default methods are chosen to be robust; they may not be as efficient as some others. # Specifying the function The function(s) are passed as the first argument. For the few methods that use one or more derivatives (`Newton`, `Halley`, `Schroder`, `LithBoonkkampIJzerman(S,D)`, etc.) a tuple of functions is used. For the classical algorithms, a function returning `(f(x), f(x)/f'(x), [f'(x)/f''(x)])` may be used. # Optional arguments (tolerances, limit evaluations, tracing) * `xatol` - absolute tolerance for `x` values. * `xrtol` - relative tolerance for `x` values. * `atol` - absolute tolerance for `f(x)` values. * `rtol` - relative tolerance for `f(x)` values. * `maxiters` - limit on maximum number of iterations. * `strict` - if `false` (the default), when the algorithm stops, possible zeros are checked with a relaxed tolerance. * `verbose` - if `true` a trace of the algorithm will be shown on successful completion. See the internal [`Roots.Tracks`](@ref) object to save this trace. See the help string for `Roots.assess_convergence` for details on convergence. See the help page for `Roots.default_tolerances(method)` for details on the default tolerances. In general, with floating point numbers, convergence must be understood as not an absolute statement. Even if mathematically `α` is an answer and `xstar` the floating point realization, it may be that `f(xstar) - f(α) ≈ xstar ⋅ f'(α) ⋅ eps(α)`, so the role of tolerances must be appreciated, and at times specified. For the `Bisection` methods, convergence is guaranteed over `Float64` values, so the tolerances are set to be ``0`` by default. If a bracketing method is passed in after the method specification, then whenever a bracket is identified during the algorithm, the method will switch to the bracketing method to identify the zero. (Bracketing methods are mathematically guaranteed to converge, non-bracketing methods may or may not converge.) This is what `Order0` does by default, with an initial secant method switching to the `AlefeldPotraShi` method should a bracket be encountered. Note: The order of the method is hinted at in the naming scheme. A scheme is order `r` if, with `eᵢ = xᵢ - α`, `eᵢ₊₁ = C⋅eᵢʳ`. If the error `eᵢ` is small enough, then essentially the error will gain `r` times as many leading zeros each step. However, if the error is not small, this will not be the case. Without good initial guesses, a high order method may still converge slowly, if at all. The `OrderN` methods have some heuristics employed to ensure a wider range for convergence at the cost of not faithfully implementing the method, though those are available through unexported methods. # Examples: Default methods. ```jldoctest find_zero julia> using Roots julia> find_zero(sin, 3) # use Order0() 3.141592653589793 julia> find_zero(sin, (3,4)) # use Bisection() 3.141592653589793 ``` Specifying a method, ```jldoctest find_zero julia> find_zero(sin, (3,4), Order1()) # can specify two starting points for secant method 3.141592653589793 julia> find_zero(sin, 3.0, Order2()) # Use Steffensen method 3.1415926535897936 julia> find_zero(sin, big(3.0), Order16()) # rapid convergence 3.141592653589793238462643383279502884197169399375105820974944592307816406286198 julia> find_zero(sin, (3, 4), A42()) # fewer function calls than Bisection(), in this case 3.141592653589793 julia> find_zero(sin, (3, 4), FalsePosition(8)) # 1 of 12 possible algorithms for false position 3.141592653589793 julia> find_zero((sin,cos), 3.0, Roots.Newton()) # use Newton's method 3.141592653589793 julia> find_zero((sin, cos, x->-sin(x)), 3.0, Roots.Halley()) # use Halley's method 3.141592653589793 ``` Changing tolerances. ```jldoctest find_zero julia> fn = x -> (2x*cos(x) + x^2 - 3)^10/(x^2 + 1); julia> x0, xstar = 3.0, 2.9947567209477; julia> fn(find_zero(fn, x0, Order2())) <= 1e-14 # f(xₙ) ≈ 0, but Δxₙ can be largish true julia> find_zero(fn, x0, Order2(), atol=0.0, rtol=0.0) # error: x_n ≉ x_{n-1}; just f(x_n) ≈ 0 ERROR: Roots.ConvergenceFailed("Algorithm failed to converge") [...] julia> fn = x -> (sin(x)*cos(x) - x^3 + 1)^9; julia> x0, xstar = 1.0, 1.112243913023029; julia> isapprox(find_zero(fn, x0, Order2()), xstar; atol=1e-4) true julia> find_zero(fn, x0, Order2(), maxiters=3) # need more steps to converge ERROR: Roots.ConvergenceFailed("Algorithm failed to converge") [...] ``` # Tracing Passing `verbose=true` will show details on the steps of the algorithm. The `tracks` argument allows the passing of a [`Roots.Tracks`](@ref) object to record the values of `x` and `f(x)` used in the algorithm. !!! note See [`solve!`](@ref) and [`ZeroProblem`](@ref) for an alternate interface. """ function find_zero( f, x0, M::AbstractUnivariateZeroMethod, p′=nothing; p=nothing, verbose=false, tracks::AbstractTracks=NullTracks(), kwargs..., ) xstar = solve( ZeroProblem(f, x0), M, p′ === nothing ? p : p′; verbose=verbose, tracks=tracks, kwargs..., ) isnan(xstar) && throw(ConvergenceFailed("Algorithm failed to converge")) xstar end # defaults when method is not specified # if a number, use Order0 # O/w use a bracketing method of an assumed iterable find_zero_default_method(x0::Number) = Order0() function find_zero_default_method(x0) T = eltype(float.(_extrema(x0))) T <: Union{Float16,Float32,Float64} ? Bisection() : A42() end find_zero(f, x0; kwargs...) = find_zero(f, x0, find_zero_default_method(x0); kwargs...) find_zero(f, x0, p; kwargs...) = find_zero(f, x0, find_zero_default_method(x0), p; kwargs...) ## --------------- ## Create an Iterator interface # returns NaN, not an error, if there are issues """ ZeroProblem{F,X} A container for a function and initial guess to be used with `solve`. """ struct ZeroProblem{F,X} F::F x₀::X end Base.broadcastable(p::ZeroProblem) = Ref(p) # possible unicode operator to lighten `solve(ZeroProblem(f,x), M)` at `solve(f ≀ x, M)` f ≀ x = ZeroProblem(f, x) # \wr[tab] ## -------------------------------------------------- ## The actual iterating object struct ZeroProblemIterator{M,N,F,S,O,L} M::M N::N F::F state::S options::O logger::L end Base.show(io::IO, Z::ZeroProblemIterator) = print(io, "A problem object to pass to `solve!`") ## Initialize a Zero Problem Iterator ## init(Z,p) ## init(Z,M,p) ## init(M,F,state, [options], [logger]) ## p is both a keyword and positional ## positional allows broadcasting ## keyword more explicit function init( 𝑭𝑿::ZeroProblem, M::AbstractUnivariateZeroMethod, p′=nothing; p=nothing, verbose::Bool=false, tracks=NullTracks(), kwargs..., ) F = Callable_Function(M, 𝑭𝑿.F, something(p′, p, missing)) state = init_state(M, F, 𝑭𝑿.x₀) options = init_options(M, state; kwargs...) l = Tracks(verbose, tracks, state) incfn(l, initial_fncalls(M)) ZeroProblemIterator(M, nothing, F, state, options, l) end function init(𝑭𝑿::ZeroProblem, p′=nothing; kwargs...) M = length(𝑭𝑿.x₀) == 1 ? Order0() : AlefeldPotraShi() init(𝑭𝑿, M, p′; kwargs...) end function init( M::AbstractUnivariateZeroMethod, F, state::AbstractUnivariateZeroState, options::AbstractUnivariateZeroOptions=init_options(M, state), l::AbstractTracks=NullTracks(), ) ZeroProblemIterator(M, Nothing, Callable_Function(M, F), state, options, l) end """ solve!(P::ZeroProblemIterator) solve(fx::ZeroProblem, [M], [N]; p=nothing, kwargs...) init(fx::ZeroProblem, [M], [N]; p=nothing, verbose=false, tracks=NullTracks(), kwargs...) Solve for the zero of a scalar-valued univariate function specified through `ZeroProblem` or `ZeroProblemIterator` using the `CommonSolve` interface. The defaults for `M` and `N` depend on the `ZeroProblem`: if `x0` is a number, then `M=Secant()` and `N=AlefeldPotraShi()` is used (`Order0`); if `x0` has `2` (or more values) then it is assumed to be a bracketing interval and `M=AlefeldPotraShi()` is used. The methods involved with this interface are: * `ZeroProblem`: used to specify a problem with a function (or functions) and an initial guess * `solve`: to solve for a zero in a `ZeroProblem` The latter calls the following, which can be useful independently: * `init`: to initialize an iterator with a method for solution, any adjustments to the default tolerances, and a specification to log the steps or not. * `solve!` to iterate to convergence. Returns `NaN`, not an error like `find_zero`, when the problem can not be solved. Tested for zero allocations. ## Examples: ```jldoctest find_zero julia> using Roots julia> fx = ZeroProblem(sin, 3) ZeroProblem{typeof(sin), Int64}(sin, 3) julia> solve(fx) 3.141592653589793 ``` Or, if the iterable is required ```jldoctest find_zero julia> problem = init(fx); julia> solve!(problem) 3.141592653589793 ``` keyword arguments can be used to adjust the default tolerances. ```jldoctest find_zero julia> solve(fx, Order5(); atol=1/100) 3.1425464815525403 ``` The above is equivalent to: ```jldoctest find_zero julia> problem = init(fx, Order5(), atol=1/100); julia> solve!(problem) 3.1425464815525403 ``` The keyword argument `p` may be used if the function(s) to be solved depend on a parameter in their second positional argument (e.g., `f(x, p)`). For example ```jldoctest find_zero julia> f(x,p) = exp(-x) - p # to solve p = exp(-x) f (generic function with 1 method) julia> fx = ZeroProblem(f, 1) ZeroProblem{typeof(f), Int64}(f, 1) julia> solve(fx; p=1/2) # log(2) 0.6931471805599453 ``` This would be recommended, as there is no recompilation due to the function changing. For use with broadcasting, `p` may also be the last positional argument. The argument `verbose=true` for `init` instructs that steps to be logged; The iterator interface allows for the creation of hybrid solutions, such as is used when two methods are passed to `solve`. For example, this is essentially how the hybrid default is constructed: ```jldoctest find_zero julia> function order0(f, x) fx = ZeroProblem(f, x) p = init(fx, Roots.Secant()) xᵢ,st = ϕ = iterate(p) while ϕ !== nothing xᵢ, st = ϕ state, ctr = st fᵢ₋₁, fᵢ = state.fxn0, state.fxn1 if sign(fᵢ₋₁)*sign(fᵢ) < 0 # check for bracket x0 = (state.xn0, state.xn1) fx′ = ZeroProblem(f, x0) p = init(fx′, Bisection()) xᵢ = solve!(p) break end ϕ = iterate(p, st) end xᵢ end order0 (generic function with 1 method) julia> order0(sin, 3) 3.141592653589793 ``` """ function solve!(P::ZeroProblemIterator; verbose=false) M, F, state, options, l = P.M, P.F, P.state, P.options, P.logger val, stopped = :not_converged, false ctr = 1 log_step(l, M, state; init=true) while !stopped val, stopped = assess_convergence(M, state, options) stopped && break ctr > options.maxiters && break state, stopped = update_state(M, F, state, options, l) log_step(l, M, state) ctr += 1 end val, stopped = assess_convergence(M, state, options) # update val flag α = decide_convergence(M, F, state, options, val) log_convergence(l, val) log_method(l, M) log_last(l, α) verbose && display(l) α end # thread verbose through """ solve(fx::ZeroProblem, args...; verbose=false, kwargs...) Disptaches to `solve!(init(fx, args...; kwargs...))`. See [`solve!`](@ref) for details. """ function solve(𝑭𝑿::ZeroProblem, args...; verbose=false, kwargs...) Z = init(𝑭𝑿, args...; verbose=verbose, kwargs...) solve!(Z; verbose=verbose) end # avoid splatting (issue #323, caused allocations) function solve( 𝑭𝑿::ZeroProblem, M::AbstractUnivariateZeroMethod, p=nothing; verbose=false, kwargs..., ) Z = init(𝑭𝑿, M, p; verbose=verbose, kwargs...) solve!(Z; verbose=verbose) end # Optional iteration interface to handle looping # * returns xₙ or (aₙ, bₙ) depending # * throws error on non-convergence function Base.iterate(P::ZeroProblemIterator, st=nothing) ## st = (val, (state, ctr, flag, stopped)) M, F, options, l = P.M, P.F, P.options, P.logger if st === nothing state = P.state ctr, flag, stopped = 1, :not_converged, false log_method(l, M) log_step(l, M, state; init=true) else state, ctr, flag, stopped = st ctr += 1 end stopped && return nothing ctr > options.maxiters && return nothing state, stopped = update_state(M, F, state, options, l) log_step(l, M, state) flag, stopped = assess_convergence(M, state, options) if stopped α = decide_convergence(M, F, state, options, flag) log_last(l, α) isnan(α) && throw(ConvergenceFailed("Algorithm did not converge.")) end return (last(state, M), (state, ctr, flag, stopped)) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
13477
# Attempt to find all zeros in an interval (a,b) # Algorithm due to @djsegal in https://github.com/JuliaMath/Roots.jl/pull/113 # A naive approach to find zeros: split (a,b) by n points, look into each for a zero # * k is oversampling rate for bisection. (It is relatively cheap to check for a bracket so we # oversample our intervals looking for brackets # * assumes f(a) *not* a zero function _fz(f, a, b, no_pts, k=4) zs = Real[] _fz!(zs, f, a, b, no_pts, k) zs end function _fz!(zs, f, a::T, b, no_pts, k=4) where {T} pts = range(a, stop=b, length=(no_pts - 1) * k + 1) n::Int = length(pts) fs = f.(pts) sfs = sign.(fs) u::T = first(pts) # keep track of bigger interval found_bisection_zero = false for (i, x) in enumerate(pts[1:end]) q, r = divrem(i - 1, k) if i > 1 && iszero(r) v::T = x if !found_bisection_zero try p1::T = identify_starting_point(u, v, sfs[(i - k):i]) rt::T = dfree(f, p1) if !isnan(rt) && u < rt <= v push!(zs, rt) end catch err end end u = v found_bisection_zero = false end if i < n if iszero(fs[i + 1]) found_bisection_zero = true # kinda push!(zs, pts[i + 1]) elseif sfs[i] * sfs[i + 1] < 0 found_bisection_zero = true rt = bisection(f, x, pts[i + 1]) push!(zs, rt) end end end sort!(zs) end # the algorithm first scans for zeros using the naive approach, then # splits (a,b) by these zeros. This struct holds the subintervals struct Interval{T} a::T b::T depth::Int end Base.show(io::IO, alpha::Interval) = print(io, "($(alpha.a), $(alpha.b))") # check if f(a) is non zero using tolerances max(atol, eps()), rtol function _non_zero(fa, a::T, atol, rtol) where {T} abs(fa) >= max(atol, abs(a) * rtol * oneunit(fa) / oneunit(a), oneunit(fa) * eps(T)) end # After splitting by zeros we have intervals (zm, zn) this is used to shrink # to (zm+, zn-) where both are non-zeros, as defined above function find_non_zero(f, a::T, barrier, xatol, xrtol, atol, rtol) where {T} nan = (0 * a) / (0 * a) # try to get typed NaN xtol = max(xatol, abs(a) * xrtol, oneunit(a) * eps(T)) sgn = barrier > a ? 1 : -1 ctr = 0 x = a + 2^ctr * sgn * xtol while !_non_zero(f(x), x, atol, rtol) ctr += 1 x += 2^ctr * sgn * xtol ((sgn > 0 && x > barrier) || (sgn < 0 && x < barrier)) && return nan ctr > 100 && return nan end x end # split a < z1 < z2 < ... < zn < b into intervals (a+,z1-), (z1+, z2-), ... # where possible; push! onto ints function make_intervals!(ints, f, a, b, zs, depth, xatol, xrtol, atol, rtol) pts = vcat(a, zs, b) for (u, v) in zip(pts[1:(end - 1)], pts[2:end]) ur = find_non_zero(f, u, v, xatol, xrtol, atol, rtol) isnan(ur) && continue vl = find_non_zero(f, v, u, xatol, xrtol, atol, rtol) isnan(vl) && continue push!(ints, Interval(ur, vl, depth)) end end # adjust what we mean by x1 ~ x2 for purposes of adding a new zero function approx_close(z1, z2, xatol, xrtol) z₁, z₂, δ, ϵ = _unitless.((z1, z2, xatol, xrtol)) return isapprox(z₁, z₂; atol=sqrt(δ), rtol=sqrt(ϵ)) end # is proposed not near xs? (false and we add proposed) function not_near(proposed, xs, xatol, xrtol) n = length(xs) n <= 1 && return true ind = n + 1 for (i, rt) in enumerate(xs) if proposed < rt ind = i break end end if ind > 1 # xs[ind-1] <= propose < xs[ind] rt = xs[ind - 1] approx_close(proposed, rt, xatol, xrtol) && return false end if ind <= n # value to right rt = xs[ind] approx_close(proposed, rt, xatol, xrtol) && return false end return true end """ find_zeros(f, a, [b]; [no_pts=12, k=8, naive=false, xatol, xrtol, atol, rtol]) Search for zeros of `f` in the interval `[a,b]` with an heuristic algorithm. * `f`: a function or callable object * `a`, `b`: If `b` is specified, the interval ``[a,b]`` is used. If only `a` is specified, it is passed to `extrema` to define the interval to search over. It is assumed that neither endpoint is a zero. Returns a vector of zeros in sorted order, possibly empty. # Extended help # Examples ```jldoctest find_zeros julia> using Roots julia> find_zeros(x -> exp(x) - x^4, -5, 20) # a few well-spaced zeros 3-element Vector{Float64}: -0.8155534188089606 1.4296118247255556 8.613169456441398 julia> find_zeros(x -> sin(x^2) + cos(x)^2, 0, 2pi) # many zeros 12-element Vector{Float64}: 1.78518032659534 2.391345462376604 3.2852368649448853 3.3625557095737544 4.016412952618305 4.325091924521049 4.68952781386834 5.00494459113514 5.35145266881871 5.552319796014526 5.974560835055425 6.039177477770888 julia> find_zeros(x -> cos(x) + cos(2x), (0, 4pi)) # mix of simple, non-simple zeros 6-element Vector{Float64}: 1.0471975511965976 3.141592653589943 5.235987755982988 7.330382858376184 9.424777960769228 11.519173063162574 julia> f(x) = (x-0.5) * (x-0.5001) * (x-1) # nearby zeros f (generic function with 1 method) julia> find_zeros(f, 0, 2) 3-element Vector{Float64}: 0.5 0.5001 1.0 julia> f(x) = (x-0.5) * (x-0.5001) * (x-4) * (x-4.001) * (x-4.2) f (generic function with 1 method) julia> find_zeros(f, 0, 10) 3-element Vector{Float64}: 0.5 0.5001 4.2 julia> f(x) = (x-0.5)^2 * (x-0.5001)^3 * (x-4) * (x-4.001) * (x-4.2)^2 # hard to identify f (generic function with 1 method) julia> find_zeros(f, 0, 10, no_pts=21) # too hard for default 5-element Vector{Float64}: 0.49999999999999994 0.5001 4.0 4.001 4.200000000000001 ``` !!! note Some cases where the number of zeros may be underreported: * if the initial interval, `(a,b)`, is too wide * if there are zeros that are very nearby * the function is flat, e.g., `x->0`. ---- The basic algorithm checks for zeros among the endpoints, and then divides the interval `(a,b)` into `no_pts-1` subintervals and then proceeds to look for zeros through bisection or a derivative-free method. As checking for a bracketing interval is relatively cheap and bisection is guaranteed to converge, each interval has `k` pairs of intermediate points checked for a bracket. If any zeros are found, the algorithm uses these to partition `(a,b)` into subintervals. Each subinterval is shrunk so that the endpoints are not zeros and the process is repeated on the subinterval. If the initial interval is too large, then the naive scanning for zeros may be fruitless and no zeros will be reported. If there are nearby zeros, the shrinking of the interval may jump over them, though as seen in the examples, nearby roots can be identified correctly, though for really nearby points, or very flat functions, it may help to increase `no_pts`. The tolerances are used to shrink the intervals, but not to find zeros within a search. For searches, bisection is guaranteed to converge with no specified tolerance. For the derivative free search, a modification of the `Order0` method is used, which at worst case compares `|f(x)| <= 8*eps(x)` to identify a zero. The algorithm might identify more than one value for a zero, due to floating point approximations. If a potential pair of zeros satisfy `isapprox(a,b,atol=sqrt(xatol), rtol=sqrt(xrtol))` then they are consolidated. The algorithm can make many function calls. When zeros are found in an interval, the naive search is carried out on each subinterval. To cut down on function calls, though with some increased chance of missing some zeros, the adaptive nature can be skipped with the argument `naive=true` or the number of points stepped down. The algorithm is derived from one in a [PR](https://github.com/JuliaMath/Roots.jl/pull/113) by @djsegal. !!! note The `IntervalRootFinding` package provides a rigorous alternative to this heuristic one. That package uses interval arithmetic, so can compute bounds on the size of the image of an interval under `f`. If this image includes `0`, then it can look for the zero. Bisection, on the other hand, only will look for a zero if the two endpoints have different signs, a much more rigid condition for a potential zero. !!! note "`IntervalRootFinding` extension" As of version `1.9` an extension is provided so that when the `IntervalRootFinding` package is loaded, the `find_zeros` function will call `IntervalRootFinding.roots` to find the isolating brackets and `find_zero` to find the roots, when possible, **if** the interval is specified as an `Interval` object, as created by `-1..1`, say. For example, this function (due to `@truculentmath`) is particularly tricky, as it is positive at every floating point number, but has two zeros (the vertical asymptote at `15//11` is only negative within adjacent floating point values): ``` julia> using IntervalArithmetic, IntervalRootFinding, Roots julia> g(x) = x^2 + 1 +log(abs( 11*x-15 ))/99 g (generic function with 1 method) julia> find_zeros(g, -3, 3) Float64[] julia> IntervalRootFinding.roots(g, -3..3, IntervalRootFinding.Bisection) 1-element Vector{Root{Interval{Float64}}}: Root([1.36363, 1.36364], :unknown) ``` A less extreme usage might be the following, where `unique` indicates Bisection could be useful and indeed `find_zeros` will identify these values: ``` julia> g(x) = exp(x) - x^5 g (generic function with 1 method) julia> rts = IntervalRootFinding.roots(g, -20..20) 2-element Vector{Root{Interval{Float64}}}: Root([12.7132, 12.7133], :unique) Root([1.29585, 1.29586], :unique) julia> find_zeros(g, -20, 20) 2-element Vector{Float64}: 1.2958555090953687 12.713206788867632 ``` """ function find_zeros(f, a, b=nothing; no_pts=12, k=8, naive=false, kwargs...) if b === nothing a0, b0 = map(float, _extrema(a)) else a0, b0 = promote(float(a), float(b)) end a0 = isinf(a0) ? nextfloat(a0) : a0 b0 = isinf(b0) ? prevfloat(b0) : b0 # set tolerances if not specified fa0, fb0 = promote(float(f(a0)), float(f(b0))) d = Dict(kwargs) T, S = real(eltype(a0)), real(eltype(fa0)) xatol::T = get(d, :xatol, eps(one(T))^(4 / 5) * oneunit(T)) xrtol = get(d, :xrtol, eps(one(T)) * one(T)) atol::S = get(d, :atol, eps(float(S)) * oneunit(S)) rtol = get(d, :rtol, eps(float(S)) * one(S)) zs = T[] # collect zeros # check endpoints for exact zeros, then narrow abs(fa0) * oneunit(T) / oneunit(S) <= 8 * eps(a0) && push!(zs, a0) abs(fb0) * oneunit(T) / oneunit(S) <= 8 * eps(b0) && push!(zs, b0) a0 = find_non_zero(f, a0, b0, xatol, xrtol, atol, rtol) b0 = find_non_zero(f, b0, a0, xatol, xrtol, atol, rtol) (isnan(a0) || isnan(b0)) && throw(DomainError("no non-zero initial points found.")) _fz!(zs, f, a0, b0, no_pts, k) # initial zeros ints = Interval{T}[] # collect subintervals !naive && !isempty(zs) && make_intervals!(ints, f, a0, b0, zs, 1, xatol, xrtol, atol, rtol) nzs = T[] cnt = 0 while !naive && !isempty(ints) cnt += 1 i = pop!(ints) # this is fussy. Ideally, we would want to explore intervals # with fewer points (each interval is already probed for k=4 # bisections) but how many fewer? We already had ~ (i.b-i.a) * # no_pts / (b-a) points. Would want an increased density so n # > (i.b - i.a) / (b - a) * no_pts but this doesn't perform as # well as we might expect # sub_no_pts = ceil(Int, (i.b - i.a) / (b-a) * no_pts * 2^(i.depth)) #sub_no_pts <= 2 && continue # stop on depth, always divide if roots #sub_no_pts = max(3, floor(Int, no_pts / (2.0)^(i.depth))) sub_no_pts = floor(Int, no_pts / (2.0)^(i.depth)) empty!(nzs) if sub_no_pts >= 2 _fz!(nzs, f, i.a, i.b, sub_no_pts, k) end if !isempty(nzs) azs = filter(rt -> not_near(rt, zs, xatol, xrtol), nzs) # trim out nearby roots length(azs) == 0 && continue append!(zs, azs) sort!(zs) i.depth > 4 && continue make_intervals!(ints, f, i.a, i.b, azs, i.depth + 1, xatol, xrtol, atol, rtol) end end length(zs) <= 1 && return zs sort!(zs) # may identify same zero with nearby values along the way # this trims out with a relaxed tolerance on how close # nearby roots can be. Default is epsilon^(2/5) ≈ 5e-7 inds = Int[1] z1 = first(zs) for i in 2:length(zs) z2 = zs[i] if !approx_close(z1, z2, xatol, xrtol) push!(inds, i) end z1 = z2 end return zs[inds] end # solve interface """ AllZeros Type to indicate to `solve` that `find_zeros` should be used to solve the given `ZeroProblem`. ## Example ``` julia> Z = ZeroProblem(cos, (0, 2pi)); julia> solve(Z, AllZeros()) 2-element Vector{Float64}: 1.5707963267948966 4.71238898038469 ``` """ struct AllZeros <: AbstractUnivariateZeroMethod end function solve(𝑭𝑿::ZeroProblem, ::AllZeros; kwargs...) F, x₀ = 𝑭𝑿.F, 𝑭𝑿.x₀ find_zeros(F, x₀; kwargs...) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
4527
## Wrapper for functions to abstract out f, (f,f'), ... # indicate if we expect f() to return one or multiple values (e.g. Newton) fn_argout(::AbstractUnivariateZeroMethod) = 1 # A hacky means to call a function so that parameters can be passed as desired # and the correct number of outputs are computed struct Callable_Function{Single,Tup,F,P} f::F p::P end function Callable_Function(M::AbstractUnivariateZeroMethod, f, p=nothing) Single = Val{fn_argout(M)} Tup = Val{isa(f, Tuple)} F = typeof(f) p′ = ismissing(p) ? nothing : p P′ = typeof(p′) Callable_Function{Single,Tup,F,P′}(f, p′) end function Callable_Function(M::AbstractUnivariateZeroMethod, F::Callable_Function, p=F.p) Callable_Function(M, F.f, p) end # return f(x); (f(x), f(x)/f'(x)); *or* f(x), (f(x)/f'(x), f'(x)/f''(x), ...) # so N=1, 2 are special cased # Callable_Function(output_arity, input_arity, F, p) # First handle: x -> (f,f/f', f'/f'', ...) (F::Callable_Function{Val{1},Val{false},𝑭,Nothing})(x) where {𝑭} = first(F.f(x)) (F::Callable_Function{Val{1},Val{false},𝑭,P})(x) where {𝑭,P} = first(F.f(x, F.p)) (F::Callable_Function{Val{2},Val{false},𝑭,Nothing})(x) where {𝑭} = F.f(x)[1:2] (F::Callable_Function{Val{2},Val{false},𝑭,P})(x) where {𝑭,P} = F.f(x, F.p)[1:2] # N ≥ 3 returns (f, (...)) function (F::Callable_Function{Val{N},Val{false},𝑭,Nothing})(x) where {N,𝑭} fs = F.f(x) fs[1], ntuple(i -> fs[i + 1], Val(N - 1)) end function (F::Callable_Function{Val{N},Val{false},𝑭,P})(x) where {N,𝑭,P} fs = F.f(x, F.p) fs[1], ntuple(i -> fs[i + 1], Val(N - 1)) end ## f is specified as a tuple (f,f',f'', ...) ## N =1 return f(x) (F::Callable_Function{Val{1},Val{true},𝑭,Nothing})(x) where {𝑭} = first(F.f)(x) (F::Callable_Function{Val{1},Val{true},𝑭,P})(x) where {𝑭,P} = first(F.f)(x, F.p) ## N=2 return (f(x), f(x)/f'(x)) function (F::Callable_Function{Val{2},Val{true},𝑭,Nothing})(x) where {𝑭} f, f′ = (F.f[1])(x), (F.f[2])(x) f, f / f′ end function (F::Callable_Function{Val{2},Val{true},𝑭,P})(x) where {𝑭,P} f, f′ = (F.f[1])(x, F.p), (F.f[2])(x, F.p) f, f / f′ end ## For N ≥ 3 we return (f, (f/f', f'/f'', ...); ## Pay no attention to this code; we hand write a bunch, as the ## general formula later runs more slowly. function (F::Callable_Function{Val{3},Val{true},𝑭,Nothing})(x) where {𝑭} f, f′, f′′ = (F.f[1])(x), (F.f[2])(x), (F.f[3])(x) f, (f / f′, f′ / f′′) end function (F::Callable_Function{Val{3},Val{true},𝑭,P})(x) where {𝑭,P} f, f′, f′′ = (F.f[1])(x, F.p), (F.f[2])(x, F.p), (F.f[3])(x, F.p) f, (f / f′, f′ / f′′) end function (F::Callable_Function{Val{4},Val{true},𝑭,Nothing})(x) where {𝑭} f, f′, f′′, f′′′ = (F.f[1])(x), (F.f[2])(x), (F.f[3])(x), (F.f[4])(x) f, (f / f′, f′ / f′′, f′′ / f′′′) end function (F::Callable_Function{Val{4},Val{true},𝑭,P})(x) where {𝑭,P} f, f′, f′′, f′′′ = (F.f[1])(x, F.p), (F.f[2])(x, F.p), (F.f[3])(x, F.p), (F.f[4])(x, F.p) 𝐓 = eltype(f / f′) f, NTuple{3,𝐓}((f / f′, f′ / f′′, f′′ / f′′′)) end function (F::Callable_Function{Val{5},Val{true},𝑭,Nothing})(x) where {𝑭} f, f′, f′′, f′′′, f′′′′ = (F.f[1])(x), (F.f[2])(x), (F.f[3])(x), (F.f[4])(x), (F.f[5])(x) f, (f / f′, f′ / f′′, f′′ / f′′′, f′′′ / f′′′′) end function (F::Callable_Function{Val{5},Val{true},𝑭,P})(x) where {𝑭,P} f, f′, f′′, f′′′, f′′′′ = (F.f[1])(x, F.p), (F.f[2])(x, F.p), (F.f[3])(x, F.p), (F.f[4])(x, F.p), (F.f[5])(x, F.p) f, (f / f′, f′ / f′′, f′′ / f′′′, f′′′ / f′′′′) end function (F::Callable_Function{Val{6},Val{true},𝑭,Nothing})(x) where {𝑭} f, f′, f′′, f′′′, f′′′′, f′′′′′ = (F.f[1])(x), (F.f[2])(x), (F.f[3])(x), (F.f[4])(x), (F.f[5])(x), (F.f[6])(x) f, (f / f′, f′ / f′′, f′′ / f′′′, f′′′ / f′′′′, f′′′′ / f′′′′′) end function (F::Callable_Function{Val{6},Val{true},𝑭,P})(x) where {𝑭,P} f, f′, f′′, f′′′, f′′′′, f′′′′′ = (F.f[1])(x, F.p), (F.f[2])(x, F.p), (F.f[3])(x, F.p), (F.f[4])(x, F.p), (F.f[5])(x, F.p), (F.f[6])(x, F.p) f, (f / f′, f′ / f′′, f′′ / f′′′, f′′′ / f′′′′, f′′′′ / f′′′′′) end # faster with the above written out, should generate them... function (F::Callable_Function{Val{𝐍},Val{true},𝑭,Nothing})(x) where {𝐍,𝑭} fs = ntuple(i -> F.f[i](x), Val(𝐍)) first(fs), ntuple(i -> fs[i] / fs[i + 1], Val(𝐍 - 1)) end function (F::Callable_Function{Val{𝐍},Val{true},𝑭,P})(x) where {𝐍,𝑭,P} fs = ntuple(i -> F.f[i](x, F.p), Val(𝐍)) first(fs), ntuple(i -> fs[i] / fs[i + 1], Val(𝐍 - 1)) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
5197
## Init for hybrid method -- start with a non-bracketing, finish with bracketing ## When passing 2 methods, any parameters must be passed as a named argument through ## the keyword p function init( 𝑭𝑿::ZeroProblem, M::AbstractNonBracketingMethod, N::AbstractBracketingMethod, p′=nothing; p=nothing, verbose::Bool=false, tracks=NullTracks(), kwargs..., ) F = Callable_Function(M, 𝑭𝑿.F, something(p′, p, missing)) state = init_state(M, F, 𝑭𝑿.x₀) options = init_options(M, state; kwargs...) l = Tracks(verbose, tracks, state) incfn(l, initial_fncalls(M)) ZeroProblemIterator(M, N, F, state, options, l) end # Robust version using some tricks: idea from algorithm described in # [The SOLVE button from the # HP-34]C(http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1979-12.pdf). # * use bracketing method if one is identified # * limit steps so as not too far or too near the previous one # * if not decreasing, use a quad step upto 4 times to bounce out of trap, if possible # First uses M, then N if bracket is identified function solve!( 𝐙::ZeroProblemIterator{𝐌,𝐍}; verbose=false, ) where {𝐌,𝐍<:AbstractBracketingMethod} M, N, F, state, options, l = 𝐙.M, 𝐙.N, 𝐙.F, 𝐙.state, 𝐙.options, 𝐙.logger incfn(l, 2) log_step(l, M, state; init=true) log_method(l, M) log_nmethod(l, N) quad_ctr = 0 flag = :not_converged ctr = 0 α = nan(typeof(state.xn1)) * state.xn1 while true ctr += 1 flag, converged = assess_convergence(M, state, options) converged && break ctr >= options.maxiters && break state0 = state state0, stopped = update_state(M, F, state0, options) # state0 is proposed step ## did we find a zero or a bracketing interval? if iszero(state0.fxn1) state = state0 break elseif sign(state0.fxn0) * sign(state0.fxn1) < 0 log_step(l, M, state0) !isa(l, NullTracks) && log_message( l, "Used bracketing method $N on [$(min(state0.xn0,state0.xn1)),$(max(state0.xn0,state0.xn1))]", ) Fₙ = Callable_Function(N, F) stateₙ = init_state(N, state0, Fₙ) # save function calls by using state0 values optionsₙ = init_options(N, stateₙ) α = solve!(init(N, Fₙ, stateₙ, optionsₙ, l)) log_method(l, M) verbose && display(l) return α end ## did we move too far? adj = false r, a, b = state0.xn1, state.xn0, state.xn1 Δr = abs(r - b) Δx = abs(b - a) ts, TB = one(r) / 1000, 100 * one(r) # too small, too big if Δr >= TB * Δx adj = true r = b + sign(r - b) * TB * Δx ## too big elseif Δr <= ts * Δx adj = true r = b + sign(r - b) * ts * Δx end @reset state0.xn1 = r @reset state0.fxn1 = first(F(r)) incfn(l) # a sign change after shortening? if sign(state.fxn1) * sign(state0.fxn1) < 0 log_step(l, M, state) a, b = state.xn1, state0.xn1 fa, fb = state.fxn1, state0.fxn1 !isa(l, NullTracks) && log_message(l, "Used bracketing method $N on [$a,$b]") Fₙ = Callable_Function(N, F) stateₙ = init_state(N, Fₙ, a, b, fa, fb) optionsₙ = init_options(N, stateₙ) α = solve!(init(N, Fₙ, stateₙ, optionsₙ, l)) log_method(l, M) verbose && display(l) return α end ## did we improve? if adj || abs(state0.fxn1) < abs(state.fxn1) if isnan(state0.xn1) || isnan(state0.fxn1) || isinf(state0.xn1) || isinf(state0.fxn1) break end state = state0 log_step(l, M, state) quad_ctr = 0 continue end ## try quad_vertex, unless that has gotten old if quad_ctr > 4 state = state0 break else quad_ctr += 1 r = quad_vertex( state0.xn1, state0.fxn1, state.xn1, state.fxn1, state.xn0, state.fxn0, ) if isnan(r) || isinf(r) state = state0 else fr = F(r) incfn(l) @reset state0.xn1 = r @reset state0.fxn1 = fr state = state0 end end log_step(l, M, state) end val, stopped = assess_convergence(M, state, options) α = decide_convergence(M, F, state, options, val) log_convergence(l, val) log_last(l, α) verbose && display(l) isnan(α) ? decide_convergence(M, F, state, options, flag) : α end function find_zero( fs, x0, M::AbstractUnivariateZeroMethod, N::AbstractBracketingMethod, p′=nothing; verbose=false, kwargs..., ) 𝐏 = ZeroProblem(fs, x0) solve!(init(𝐏, M, N, p′; verbose=verbose, kwargs...), verbose=verbose) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
17049
# some simpler (and faster) implementations for root finding # # Not exported # # These avoid the setup costs of the `find_zero` method, so should be faster # though they will take similar number of function calls. # # `Roots.bisection(f, a, b)` (Bisection). # `Roots.secant_method(f, xs)` (Order1) secant method # `Roots.dfree(f, xs)` (Order0) more robust secant method # ## Bisection ## ## Essentially from Jason Merrill https://gist.github.com/jwmerrill/9012954 ## cf. http://squishythinking.com/2014/02/22/bisecting-floats/ ## This also borrows a trick from https://discourse.julialang.org/t/simple-and-fast-bisection/14886 ## where we keep x1 so that y1 is negative, and x2 so that y2 is positive ## this allows the use of signbit over y1*y2 < 0 which avoid < and a multiplication ## this has a small, but noticeable impact on performance. """ bisection(f, a, b; [xatol, xrtol]) Performs bisection method to find a zero of a continuous function. It is assumed that `(a,b)` is a bracket, that is, the function has different signs at `a` and `b`. The interval `(a,b)` is converted to floating point and shrunk when `a` or `b` is infinite. The function `f` may be infinite for the typical case. If `f` is not continuous, the algorithm may find jumping points over the x axis, not just zeros. If non-trivial tolerances are specified, the process will terminate when the bracket `(a,b)` satisfies `isapprox(a, b, atol=xatol, rtol=xrtol)`. For zero tolerances, the default, for `Float64`, `Float32`, or `Float16` values, the process will terminate at a value `x` with `f(x)=0` or `f(x)*f(prevfloat(x)) < 0 ` or `f(x) * f(nextfloat(x)) < 0`. For other number types, the `Roots.A42` method is used. """ function bisection(f, a::Number, b::Number; xatol=nothing, xrtol=nothing) x1, x2 = adjust_bracket(float.((a, b))) T = eltype(x1) atol = xatol === nothing ? zero(T) : abs(xatol) rtol = xrtol === nothing ? zero(one(T)) : abs(xrtol) CT = iszero(atol) && iszero(rtol) ? Val(:exact) : Val(:inexact) x1, x2 = float(x1), float(x2) y1, y2 = f(x1), f(x2) _unitless(y1 * y2) >= 0 && error("the interval provided does not bracket a root") if isneg(y2) x1, x2, y1, y2 = x2, x1, y2, y1 end xm = Roots._middle(x1, x2) # for possibly mixed sign x1, x2 ym = f(xm) while true if has_converged(CT, x1, x2, xm, ym, atol, rtol) return xm end if isneg(ym) x1, y1 = xm, ym else x2, y2 = xm, ym end xm = Roots.__middle(x1, x2) ym = f(xm) end end # -0.0 not returned by __middle, so isneg true on [-Inf, 0.0) @inline isneg(x::T) where {T<:AbstractFloat} = signbit(x) @inline isneg(x) = _unitless(x) < 0 @inline function has_converged(::Val{:exact}, x1, x2, m, ym, atol, rtol) iszero(ym) && return true isnan(ym) && return true x1 != m && m != x2 && return false return true end @inline function has_converged(::Val{:inexact}, x1, x2, m, ym, atol, rtol) iszero(ym) && return true isnan(ym) && return true val = abs(x1 - x2) <= atol + max(abs(x1), abs(x2)) * rtol return val end #= """ Roots.a42(f, ab; atol=nothing, rtol=nothing, λ=0.7, μ = 0.5) Direct implementation of Alefeld, Potra, and Shi's Algorithm 4.2. See also [`A42()`](@ref). * `f`: function to find zero of. (If `f` is 4-times continuously differentiable, convergence to a simple root will be like ``(2 + 7^{1/2})^{1/3} = 1.6686...`` * `ab`: a *bracketing interval * `atol`, `rtol`: optional tolerances. These are `0` and `eps` respectively by default. Not exported """ =# function a42(f, ab; atol=nothing, rtol=nothing, λ=0.7, μ=0.5) a, b = adjust_bracket(ab) δ₀ = b - a fa, fb = f(a), f(b) assert_bracket(fa, fb) tols = ( λ = λ, atol = isnothing(atol) ? zero(one(a)) : atol, rtol = isnothing(rtol) ? eps(one(a)) : rtol, ) c = a - fa * (b - a) / (fb - fa) c = avoid_boundaries(a, c, b, fa, fb, tols) fc = f(c) iszero(fc) && return c e, fee = c, fc a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) n = 2 while true δ = tolₑ(a, b, fa, fb, tols.atol, tols.rtol) (b - a) ≤ δ && return (abs(fa) < abs(fb) ? a : b) ee, fee = d, fd for k in 1:2 if n == 2 || iszero(_pairwise_prod(fa, fb, fd, fee)) c = newton_quadratic(a, b, d, fa, fb, fd, k + 1) else c = ipzero(a, b, d, ee, fa, fb, fd, fee) if (c <= a || b <= c) c = newton_quadratic(a, b, d, fa, fb, fd, k + 1) end end n += 1 c = avoid_boundaries(a, c, b, fa, fb, tols) fc = f(c) iszero(fc) && return c ee, fee = d, fd a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) δ = tolₑ(a, b, fa, fb, tols.atol, tols.rtol) (b - a) ≤ 2δ && return (abs(fa) < abs(fb) ? a : b) end n += 1 u, fu = abs(fa) < abs(fb) ? (a, fa) : (b, fb) c = u - 2 * fu * (b - a) / (fb - fa) if 2abs(c - u) > (b - a) c = a / 2 + b / 2 end c = avoid_boundaries(a, c, b, fa, fb, tols) fc = f(c) iszero(fc) && return c ee, fee = d, fd a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) δ = tolₑ(a, b, fa, fb, tols.atol, tols.rtol) (b - a) ≤ 2δ && return (abs(fa) < abs(fb) ? a : b) if (b - a) ≥ μ * δ₀ c = a / 2 + b / 2 fc = f(c) iszero(fc) && return c ee, fee = d, fd a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) end n += 1 end end """ secant_method(f, xs; [atol=0.0, rtol=8eps(), maxevals=1000]) Perform secant method to solve `f(x) = 0.` The secant method is an iterative method with update step given by `b - fb/m` where `m` is the slope of the secant line between `(a,fa)` and `(b,fb)`. The initial values can be specified as a pair of 2, as in `(x₀, x₁)` or `[x₀, x₁]`, or as a single value, `x₁` in which case a value of `x₀` is chosen. The algorithm returns m when `abs(fm) <= max(atol, abs(m) * rtol)`. If this doesn't occur before `maxevals` steps or the algorithm encounters an issue, a value of `NaN` is returned. If too many steps are taken, the current value is checked to see if there is a sign change for neighboring floating point values. The `Order1` method for `find_zero` also implements the secant method. This one should be slightly faster, as there are fewer setup costs. Examples: ```julia Roots.secant_method(sin, (3,4)) Roots.secant_method(x -> x^5 -x - 1, 1.1) ``` !!! note "Specialization" This function will specialize on the function `f`, so that the initial call can take more time than a call to the `Order1()` method, though subsequent calls will be much faster. Using `FunctionWrappers.jl` can ensure that the initial call is also equally as fast as subsequent ones. """ function secant_method( f, xs; atol=zero(float(real(first(xs)))), rtol=8eps(one(float(real(first(xs))))), maxevals=100, ) if length(xs) == 1 # secant needs x0, x1; only x0 given a = float(xs[1]) h = eps(one(real(a)))^(1 / 3) da = h * oneunit(a) + abs(a) * h^2 # adjust for if eps(a) > h b = a + da else a, b = promote(float(xs[1]), float(xs[2])) end secant(f, a, b, atol, rtol, maxevals) end function secant(f, a::T, b::T, atol=zero(T), rtol=8eps(T), maxevals=100) where {T} nan = (0a) / (0a) cnt = 0 fa, fb = f(a), f(b) fb == fa && return nan uatol = atol / oneunit(atol) * oneunit(real(a)) adjustunit = oneunit(real(fb)) / oneunit(real(b)) while cnt < maxevals m = b - (b - a) * fb / (fb - fa) fm = f(m) iszero(fm) && return m isnan(fm) && return nan abs(fm) <= adjustunit * max(uatol, abs(m) * rtol) && return m if fm == fb sign(fm) * sign(f(nextfloat(m))) <= 0 && return m sign(fm) * sign(f(prevfloat(m))) <= 0 && return m return nan end a, b, fa, fb = b, m, fb, fm cnt += 1 end return nan end """ muller(f, xᵢ; xatol=nothing, xrtol=nothing, maxevals=100) muller(f, xᵢ₋₂, xᵢ₋₁, xᵢ; xatol=nothing, xrtol=nothing, maxevals=100) > *Muller’s method* generalizes the secant method, but uses quadratic > interpolation among three points instead of linear interpolation between two. > Solving for the zeros of the quadratic allows the method to find complex > pairs of roots. > Given three previous guesses for the root `xᵢ₋₂`, `xᵢ₋₁`, `xᵢ`, and the values > of the polynomial `f` at those points, the next approximation `xᵢ₊₁` is produced. Excerpt and the algorithm taken from > W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery > *Numerical Recipes in C*, Cambridge University Press (2002), p. 371 Convergence here is decided by `xᵢ₊₁ ≈ xᵢ` using the tolerances specified, which both default to `eps(one(typeof(abs(xᵢ))))^4/5` in the appropriate units. Each iteration performs three evaluations of `f`. The first method picks two remaining points at random in relative proximity of `xᵢ`. Note that the method may return complex result even for real initial values as this depends on the function. Examples: ``` muller(x->x^3-1, 0.5, 0.5im, -0.5) # → -0.500 + 0.866…im muller(x->x^2+2, 0.0, 0.5, 1.0) # → ≈ 0.00 - 1.41…im muller(x->(x-5)*x*(x+5), rand(3)...) # → ≈ 0.00 muller(x->x^3-1, 1.5, 1.0, 2.0) # → 2.0, Not converged ``` """ muller(f, x₀::T; kwargs...) where {T} = muller(f, (rand(T, 2) .* x₀)..., x₀; kwargs...) muller(f, xᵢ₋₂, xᵢ₋₁, xᵢ; kwargs...) = muller(f, promote(xᵢ₋₂, xᵢ₋₁, xᵢ)...; kwargs...) function muller( f, oldest::T, older::T, old::T; xatol=nothing, xrtol=nothing, maxevals=300, ) where {T} @assert old ≠ older ≠ oldest ≠ old # we want q to be non-degenerate xᵢ₋₂, xᵢ₋₁, xᵢ = oldest, older, old fxᵢ₋₂, fxᵢ₋₁ = f(xᵢ₋₂), f(xᵢ₋₁) RT = typeof(abs(oldest)) atol = xatol !== nothing ? xatol : oneunit(RT) * (eps(one(RT)))^(4 / 5) rtol = xrtol !== nothing ? xrtol : eps(one(RT))^(4 / 5) for i in 1:(maxevals ÷ 3) # one evaluation per iteration fxᵢ = f(xᵢ) x = muller_step(xᵢ₋₂, xᵢ₋₁, xᵢ, fxᵢ₋₂, fxᵢ₋₁, fxᵢ) if isnan(x) @warn "The algorithm might not have converged, stopping at i=$i:" abs(xᵢ - xᵢ₋₁) return xᵢ end # @debug "Iteration $i:" xᵢ₋₂ xᵢ₋₁ xᵢ x abs(x-xᵢ) xᵢ₋₂, xᵢ₋₁, xᵢ = xᵢ₋₁, xᵢ, x fxᵢ₋₂, fxᵢ₋₁ = fxᵢ₋₁, fxᵢ #stopping criterion isapprox(xᵢ, xᵢ₋₁, atol=atol, rtol=rtol) && return xᵢ end @warn "The algorithm might not have converged, maxevals limit hit:" abs(xᵢ₋₁ - xᵢ) return xᵢ end function muller_step(a, b, c, fa, fb, fc) a, b, c = promote(a, b, c) q = qq(a, b, c) q² = q^2 q1 = q + one(q) A = q * fc - q * q1 * fb + q² * fa B = (q1 + q) * fc - q1^2 * fb + q² * fa C = q1 * fc den = let Δ = B^2 - 4A * C typeof(Δ) <: Real && Δ < 0 && throw( DomainError( Δ, "Discriminant is negative and the function most likely has complex roots. You might want to call muller with complex input.", ), ) Δ = √Δ d⁺ = B + Δ d⁻ = B - Δ abs(d⁺) > abs(d⁻) ? d⁺ : d⁻ end return c - (c - b) * 2C / den end @inline qq(a, b, c) = (c - b) / (b - a) struct TupleWrapper{F,Fp} f::F fp::Fp end (F::TupleWrapper)(x) = begin u, v = F.f(x), F.fp(x) return (u, u / v) end #= """ newton((f, f'), x0; xatol=nothing, xrtol=nothing, maxevals=100) newton(fΔf, x0; xatol=nothing, xrtol=nothing, maxevals=100) Newton's method. Function may be passed in as a tuple (f, f') *or* as function which returns (f,f/f'). Examples: ``` newton((sin, cos), 3.0) newton(x -> (sin(x), sin(x)/cos(x)), 3.0, xatol=1e-10, xrtol=1e-10) ``` Note: unlike the call `newton(f, fp, x0)`--which dispatches to a method of `find_zero`, these two interfaces will specialize on the function that is passed in. This means, these functions will be faster for subsequent calls, but may be slower for an initial call. Convergence here is decided by x_n ≈ x_{n-1} using the tolerances specified, which both default to `eps(T)^4/5` in the appropriate units. If the convergence fails, will return a `ConvergenceFailed` error. """ =# newton(f::Tuple, x0; kwargs...) = newton(TupleWrapper(f[1], f[2]), x0; kwargs...) function newton(f, x0; xatol=nothing, xrtol=nothing, maxevals=100) x = float(x0) T = typeof(x) atol = xatol !== nothing ? xatol : oneunit(T) * (eps(one(T)))^(4 / 5) rtol = xrtol !== nothing ? xrtol : eps(one(T))^(4 / 5) xo = Inf for i in 1:maxevals fx, Δx = f(x) iszero(fx) && return x x -= Δx if isapprox(x, xo, atol=atol, rtol=rtol) return x end xo = x end throw(ConvergenceFailed("No convergence")) end ## -------------------------------------------------- ## This is basically Order0(), but with different, default, tolerances employed ## It takes more function calls, but works harder to find exact zeros ## where exact means either iszero(fx), adjacent floats have sign change, or ## abs(fxn) <= 8 eps(xn) """ dfree(f, xs) A more robust secant method implementation Solve for `f(x) = 0` using an algorithm from *Personal Calculator Has Key to Solve Any Equation f(x) = 0*, the SOLVE button from the [HP-34C](http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1979-12.pdf). This is also implemented as the `Order0` method for `find_zero`. The initial values can be specified as a pair of two values, as in `(a,b)` or `[a,b]`, or as a single value, in which case a value of `b` is computed, possibly from `fb`. The basic idea is to follow the secant method to convergence unless: * a bracket is found, in which case `AlefeldPotraShi` is used; * the secant method is not converging, in which case a few steps of a quadratic method are used to see if that improves matters. Convergence occurs when `f(m) == 0`, there is a sign change between `m` and an adjacent floating point value, or `f(m) <= 2^3*eps(m)`. A value of `NaN` is returned if the algorithm takes too many steps before identifying a zero. # Examples ```julia Roots.dfree(x -> x^5 - x - 1, 1.0) ``` """ function dfree(f, xs) if length(xs) == 1 a = float(xs[1]) fa = f(a) h = eps(one(a))^(1 / 3) da = h * oneunit(a) + abs(a) * h^2 # adjust for if eps(a) > h b = float(a + da) fb = f(b) else a, b = promote(float(xs[1]), float(xs[2])) fa, fb = f(a), f(b) end nan = (0 * a) / (0 * a) # try to preserve type cnt, MAXCNT = 0, 5 * ceil(Int, -log(eps(one(a)))) # must be higher for BigFloat MAXQUAD = 3 if abs(fa) > abs(fb) a, fa, b, fb = b, fb, a, fa end # we keep a, b, fa, fb, gamma, fgamma quad_ctr = 0 while !iszero(fb) cnt += 1 if sign(fa) * sign(fb) < 0 return solve(ZeroProblem(f, (a, b))) # faster than bisection(f, a, b) end # take a secant step gamma = float(b - (b - a) * fb / (fb - fa)) # modify if gamma is too small or too big if iszero(abs(gamma - b)) gamma = b + 1 / 1000 * abs(b - a) # too small elseif abs(gamma - b) >= 100 * abs(b - a) gamma = b + sign(gamma - b) * 100 * abs(b - a) ## too big end fgamma = f(gamma) # change sign if sign(fgamma) * sign(fb) < 0 return solve(ZeroProblem(f, (gamma, b))) # faster than bisection(f, gamma, b) end # decreasing if abs(fgamma) < abs(fb) a, fa, b, fb = b, fb, gamma, fgamma quad_ctr = 0 cnt < MAXCNT && continue end gamma = float(quad_vertex(a, fa, b, fb, gamma, fgamma)) fgamma = f(gamma) # decreasing now? if abs(fgamma) < abs(fb) a, fa, b, fb = b, fb, gamma, fgamma quad_ctr = 0 cnt < MAXCNT && continue end quad_ctr += 1 if (quad_ctr > MAXQUAD) || (cnt > MAXCNT) || iszero(gamma - b) || isnan(gamma) bprev, bnext = prevfloat(b), nextfloat(b) fbprev, fbnext = f(bprev), f(bnext) sign(fb) * sign(fbprev) < 0 && return b sign(fb) * sign(fbnext) < 0 && return b for (u, fu) in ((b, fb), (bprev, fbprev), (bnext, fbnext)) abs(fu) / oneunit(fu) <= 2^3 * eps(u / oneunit(u)) && return u end return nan # Failed. end if abs(fgamma) < abs(fb) b, fb, a, fa = gamma, fgamma, b, fb else a, fa = gamma, fgamma end end b end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1645
### States struct UnivariateZeroState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T fxn1::S fxn0::S end TS(::AbstractUnivariateZeroState{T,S}) where {T,S} = T, S # simple helper to set main properties of a state object function _set(state, xf1) x, fx = xf1 @reset state.xn1 = x @reset state.fxn1 = fx state end function _set(state, xf1, xf0) x, fx = xf1 @reset state.xn1 = x @reset state.fxn1 = fx x, fx = xf0 @reset state.xn0 = x @reset state.fxn0 = fx state end # init_state(M, F, x; kwargs...) # init_state(M, F x₀,x₁,fx₀,fx₁; kwargs...) # init_state(M, state, F) # # A state holds at a minimum: # # * the values xₙ₋₁, xₙ and f(xₙ₋₁), f(xₙ) along with # * some method-specific values # # # A state is initialized with `init_state(M, F, x)` which sets up xₙ₋₁, xₙ, f(xₙ₋₁), f(xₙ) # which then calls `init_state(M, F, xₙ₋₁, xₙ, f(xₙ₋₁), f(xₙ))` to finish the initialization # to change to a new state use `init_state(M, state, F)` # basic idea to convert from N to M: # Fₘ = some state # stateₘ = init_state(M, stateₙ, Fₘ) function init_state(M::AbstractUnivariateZeroMethod, state::AbstractUnivariateZeroState, F) init_state(M, F, state.xn0, state.xn1, state.fxn0, state.fxn1) end # init_state(M,F,x) --> call init_state(M,F,x₀,x₁,fx₀, fx₁) function init_state(M::AbstractUnivariateZeroMethod, F, x) error("no default method") end # initialize from xs, fxs function init_state(::AbstractUnivariateZeroMethod, F, x₀, x₁, fx₀, fx₁) error("no default method") end Base.last(state::AbstractUnivariateZeroState, M::AbstractNonBracketingMethod) = state.xn1
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
10499
### -------------------------------------------------- ## Tracks (for logging actual steps) ## when no logging this should get optimized out ## when logging, this allocates abstract type AbstractTracks end struct NullTracks <: AbstractTracks end # logging api # how many function evaluations in init_state # this is a worst case estimate leading to the function call count being an upper bound only initial_fncalls(M::AbstractUnivariateZeroState) = @warn "initial_fncalls fix $M" log_step(s::NullTracks, M, x; init=false) = nothing # log a step (x,f(x)) or (a,b) log_iteration(::NullTracks, n=1) = nothing # log an iteration (call to update state) log_fncall(::NullTracks, n=1) = nothing # add a function call (aliased to incfn); only one called in update_step log_message(::NullTracks, msg) = nothing # append to a message log_convergence(::NullTracks, msg) = nothing # flag for convergence log_last(::NullTracks, state) = nothing # log α log_method(::NullTracks, method) = nothing # record M log_nmethod(::NullTracks, method) = nothing # record N (if hybrid) incfn(T::AbstractTracks, i=1) = log_fncall(T, i) # legacy alias # a tracks object to record tracks """ Roots.Tracks{T,S} A `Tracks` instance is used to record the progress of an algorithm. `T` is the type of function inputs, and `S` is the type of function outputs. They both default to `Float64`. Note that because this type is not exported, you have to write `Roots.Tracks()` to construct a `Tracks` object. By default, no tracking is done while finding a root. To change this, construct a `Tracks` object, and pass it to the keyword argument `tracks`. This will modify the `Tracks` object, storing the input and function values at each iteration, along with additional information about the root-finding process. `Tracks` objects are shown in an easy-to-read format. Internally either a tuple of `(x,f(x))` pairs or `(aₙ, bₙ)` pairs are stored, the latter for bracketing methods. (These implementation details may change without notice.) The methods `empty!`, to reset the `Tracks` object; `get`, to get the tracks; `last`, to get the value converted to, may be of interest. If you only want to print the information, but you don't need it later, this can conveniently be done by passing `verbose=true` to the root-finding function. This will not effect the return value, which will still be the root of the function. ## Examples ```jldoctest Tracks julia> using Roots julia> f(x) = x^2-2 f (generic function with 1 method) julia> tracker = Roots.Tracks() Algorithm has not been run julia> find_zero(f, (0, 2), Roots.Secant(), tracks=tracker) ≈ √2 true julia> tracker Results of univariate zero finding: * Converged to: 1.4142135623730947 * Algorithm: Secant() * iterations: 7 * function evaluations ≈ 9 * stopped as |f(x_n)| ≤ max(δ, |x|⋅ϵ) using δ = atol, ϵ = rtol Trace: x₁ = 0, fx₁ = -2 x₂ = 2, fx₂ = 2 x₃ = 1, fx₃ = -1 x₄ = 1.3333333333333333, fx₄ = -0.22222222222222232 x₅ = 1.4285714285714286, fx₅ = 0.04081632653061229 x₆ = 1.4137931034482758, fx₆ = -0.0011890606420930094 x₇ = 1.4142114384748701, fx₇ = -6.0072868388605372e-06 x₈ = 1.4142135626888697, fx₈ = 8.9314555751229818e-10 x₉ = 1.4142135623730947, fx₉ = -8.8817841970012523e-16 julia> empty!(tracker) # resets julia> find_zero(sin, (3, 4), Roots.A42(), tracks=tracker) ≈ π true julia> get(tracker) 4-element Vector{NamedTuple{names, Tuple{Float64, Float64}} where names}: (a = 3.0, b = 4.0) (a = 3.0, b = 3.157162792479947) (a = 3.141592614491745, b = 3.1415926926910007) (a = 3.141592653589793, b = 3.141592653589794) julia> last(tracker) 3.141592653589793 ``` !!! note As designed, the `Tracks` object may not record actions taken while the state object is initialized. An example is the default bisection algorithm where an initial midpoint is found to ensure the bracket does not straddle ``0``. """ mutable struct Tracks{T,S} <: AbstractTracks xfₛ::Vector{Tuple{T,S}} # (x,f(x)) abₛ::Vector{Tuple{T,T}} # (aᵢ, bᵢ) steps::Int fncalls::Int convergence_flag::Symbol message::String alpha::T method nmethod end Tracks(T, S) = Tracks( Tuple{T,S}[], Tuple{T,T}[], 0, 0, :algorithm_not_run, "", nan(T), nothing, nothing, ) Tracks(s::AbstractUnivariateZeroState{T,S}) where {T,S} = Tracks(T, S) Tracks(verbose, tracks, state::AbstractUnivariateZeroState{T,S}) where {T,S} = (verbose && isa(tracks, NullTracks)) ? Tracks(T, S) : tracks Tracks() = Tracks(Float64, Float64) # give default function log_step(l::Tracks, M::AbstractNonBracketingMethod, state; init=false) init && push!(l.xfₛ, (state.xn0, state.fxn0)) push!(l.xfₛ, (state.xn1, state.fxn1)) !init && log_iteration(l, 1) nothing end log_fncall(l::Tracks, i=1) = (l.fncalls += i; nothing) log_iteration(l::Tracks, n=1) = (l.steps += n; nothing) log_message(l::Tracks, msg) = (l.message *= msg; nothing) log_convergence(l::Tracks, msg) = (l.convergence_flag = msg; nothing) log_last(l::Tracks, α) = (l.alpha = α; nothing) log_method(l::Tracks, method) = (l.method = method; nothing) log_nmethod(l::Tracks, method) = (l.nmethod = method; nothing) # copy some API from ValueHistories Base.first(l::AbstractTracks) = (@warn "No tracking information was kept"; nothing) function Base.first(l::Tracks) l.convergence_flag == :algorithm_not_run && error("Algorithm not run") !isempty(l.xfₛ) && return (x₁=l.xfₛ[1][1], f₁=l.xfₛ[1][2]) return (a₁=l.abₛ[1][1], b₁=l.abₛ[1][2]) end # return last value of algorithm Base.last(l::AbstractTracks) = (@warn "No tracking information was kept"; nothing) function Base.last(l::Tracks) convergence_flag = l.convergence_flag α = l.alpha if convergence_flag == :algorithm_not_run @warn "The algorithm has not run" end α end # Returns all available observations. Base.get(l::NullTracks) = (@warn "No tracking information was kept"; nothing) function Base.get(l::Tracks) xf = [(xn=xᵢ, fn=fᵢ) for (xᵢ, fᵢ) in l.xfₛ] ab = [(a=min(u, v), b=max(u, v)) for (u, v) in l.abₛ] vcat(xf, ab) end # reset tracker Base.empty!(l::NullTracks) = nothing function Base.empty!(l::Tracks{T,S}) where {T,S} empty!(l.xfₛ) empty!(l.abₛ) l.steps = 0 l.fncalls = 0 l.convergence_flag = :algorithm_not_run l.message = "" l.alpha = nan(T) l.method = l.nmethod = nothing nothing end Base.show(io::IO, l::Tracks) = show_trace(io, l.method, l.nmethod, l) function show_trace(io::IO, method, N, tracks) flag = tracks.convergence_flag if flag == :algorithm_not_run print(io, "Algorithm has not been run") return nothing end converged = !isnan(tracks.alpha) println(io, "Results of univariate zero finding:\n") if converged println(io, "* Converged to: $(tracks.alpha)") if N === nothing || length(tracks.abₛ) == 0 println(io, "* Algorithm: $(method)") else println(io, "* Algorithm: $(method); finished with bracketing method $N") end println(io, "* iterations: $(tracks.steps)") println(io, "* function evaluations ≈ $(tracks.fncalls)") tracks.convergence_flag == :x_converged && println(io, "* stopped as x_n ≈ x_{n-1} using atol=xatol, rtol=xrtol") tracks.convergence_flag == :f_converged && tracks.message == "" && println(io, "* stopped as |f(x_n)| ≤ max(δ, |x|⋅ϵ) using δ = atol, ϵ = rtol") tracks.convergence_flag == :exact_zero && println(io, "* stopped as f(x_n) = 0") tracks.message != "" && println(io, "* Note: $(tracks.message)") else println(io, "* Convergence failed: $(tracks.message)") println(io, "* Algorithm $(method)") end println(io, "") println(io, "Trace:") show_tracks(io, tracks, method) end function show_tracks(io::IO, s::Tracks, M::AbstractUnivariateZeroMethod) # show (x,f(x)) for (i, (xi, fxi)) in enumerate(s.xfₛ) println( io, @sprintf( "%s%s = %.17g,\t %s%s = %.17g", "x", sprint(io -> unicode_subscript(io, i)), float(xi), "fx", sprint(io -> unicode_subscript(io, i)), float(fxi) ) ) end # show bracketing i₀ = length(s.xfₛ) for (i, (a, b)) in enumerate(s.abₛ) j = i₀ + i println( io, @sprintf( "(%s%s, %s%s) = ( %.17g, %.17g )", "a", sprint(io -> unicode_subscript(io, j - 1)), "b", sprint(io -> unicode_subscript(io, j - 1)), a, b ) ) end println(io, "") end # support for complex values # Issue 336. (Could DRY this up...) function show_tracks( io::IO, s::Roots.Tracks{T,S}, M::Roots.AbstractUnivariateZeroMethod, ) where {T<:Complex,S<:Complex} # show (x,f(x)) for (i, (xi, fxi)) in enumerate(s.xfₛ) println( io, @sprintf( "%s%s = (%.17g, %.17g),\t %s%s = (%.17g, %.17g)", "x", sprint(io -> Roots.unicode_subscript(io, i)), real(xi), imag(xi), "fx", sprint(io -> Roots.unicode_subscript(io, i)), real(fxi), imag(fxi) ) ) end # show bracketing i₀ = length(s.xfₛ) for (i, (a, b)) in enumerate(s.abₛ) j = i₀ + i println( io, @sprintf( "(%s%s, %s%s) = ( %.17g, %.17g )", "a", sprint(io -> unicode_subscript(io, j - 1)), "b", sprint(io -> unicode_subscript(io, j - 1)), a, b ) ) end println(io, "") end ## needs better name, but is this useful? #= """ find_zerov(f, x, M; kwargs...) Run `find_zero` return a `Tracks` object, not the value, which can be extracted via the `last` method. """ =# function find_zerov(f, x, M; verbose=nothing, kwargs...) Z = init(ZeroProblem(f, x), M; verbose=true, kwargs...) solve!(Z) Z.logger end find_zerov(f, x; verbose=nothing, kwargs...) = find_zerov(f, x, find_zero_default_method(x); kwargs...)
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
5137
################################################## # type to throw on successful convergence mutable struct StateConverged x0::Number end # type to throw on failure mutable struct ConvergenceFailed reason::AbstractString end ################################################## ## Helpers for the various methods _unitless(x) = x / oneunit(x) # NaN of correct type nan(::Type{Float16}) = NaN16 nan(::Type{Float32}) = NaN32 nan(::Type{Float64}) = NaN nan(x::T) where {T<:Number} = NaN * one(T) nan(x::Type{T}) where {T<:Number} = NaN * one(T) nan(::Any) = NaN ## issue with approx derivative isissue(x) = iszero(x) || isnan(x) || isinf(x) # of (a,fa), (b,fb) choose pair where |f| is smallest @inline choose_smallest(a, b, fa, fb) = abs(fa) < abs(fb) ? (a, fa) : (b, fb) @inline sort_smallest(a, b, fa, fb) = abs(fa) < abs(fb) ? (a, b, fa, fb) : (b, a, fb, fa) # from an interable extract a bracketing interval and promote to floating point values # used when an interval is desired _extrema(x::Number) = throw(ArgumentError("Need extrema to return two distinct values")) function _extrema(x) a, b = extrema(x) a == b && throw(ArgumentError("Need extrema to return two distinct values")) a, b end # fix type instability issues of tuples of mixed types function _extrema(x::Tuple{<:Number,<:Number}) a, b = x a == b && throw(ArgumentError("Need extrema to return two distinct values")) extrema(promote(a, b)) end # used by secant. Get x₀, x₁ for x function x₀x₁(x::Number) x₁ = float(x) promote(_default_secant_step(x₁), x₁) end function x₀x₁(x) x₀, x₁′ = x x₁ = first(x₁′) promote(float(x₀), float(x₁)) end ## find a default secant step function _default_secant_step(x1) ϵ = eps(one(real(x1))) h = cbrt(ϵ) dx = h * oneunit(x1) + abs(x1) * h^2 # adjust for if eps(x1) > h x0 = x1 + dx x0 end # a bit better than a - fa/f_ab @inline secant_step(a, b, fa, fb) = a - fa * (b - a) / (fb - fa) function guarded_secant_step(alpha, beta, falpha, fbeta) fp = (fbeta - falpha) / (beta - alpha) Δ = fbeta / fp ## odd, we get allocations if we define Delta, then beta - Delta ## Δ = beta - fbeta * (beta - alpha) / (fbeta - falpha) if isissue(Δ) Δ = oneunit(alpha) / 1000 elseif abs(Δ) >= 100 * abs(alpha - beta) # guard runaway Δ = sign(Δ) * 100 * min(oneunit(alpha), abs(alpha - beta)) end if isissue(Δ) return (alpha + (beta - alpha) * (0.5), true) # midpoint else return (beta - Δ, false) end end #= """ steff_step(M, x, fx) Return first Steffensen step x + fx (with proper units). May be overridden to provide a guard when fx is too large. """ =# function steff_step(M::Any, x::T, fx::S) where {T,S} x + fx * oneunit(T) / oneunit(S) end # return vertex of parabola through (a,fa),(b,fb),(c,fc) # first time through, we have picture of a > b > c; |fa|, |fc| > |fb|, all same sign function quad_vertex(c, fc, b, fb, a, fa) fba = (fb - fa) / (b - a) fbc = (fb - fc) / (b - c) ((a + b) - fba / (fbc - fba) * (c - a)) / 2 end ## inverse quadratic function inverse_quadratic_step(a::T, b, c, fa, fb, fc) where {T} s = zero(T) s += a * fb * fc / (fa - fb) / (fa - fc) # quad step s += b * fa * fc / (fb - fa) / (fb - fc) s += c * fa * fb / (fc - fa) / (fc - fb) s end ## Different functions for approximating f'(xn) ## return fpxn and whether it is an issue ## use f[a,b] to approximate f'(x) function _fbracket(a, b, fa, fb) num, den = fb - fa, b - a iszero(num) && iszero(den) && return Inf, true out = num / den out, isissue(out) end ## use f[y,z] - f[x,y] + f[x,z] to approximate function _fbracket_diff(a, b, c, fa, fb, fc) x1, issue = _fbracket(b, c, fb, fc) issue && return x1, issue x2, issue = _fbracket(a, b, fa, fb) issue && return x2, issue x3, issue = _fbracket(a, c, fa, fc) issue && return x3, issue out = x1 - x2 + x3 out, isissue(out) end ## use f[a,b] * f[a,c] / f[b,c] function _fbracket_ratio(a, b, c, fa, fb, fc) x1, _ = _fbracket(a, b, fa, fb) x2, _ = _fbracket(a, c, fa, fc) x3, _ = _fbracket(b, c, fb, fc) out = (x1 * x2) / x3 out, isissue(out) end ## from https://core.ac.uk/download/pdf/82282744.pdf ## signum based iteration allows one to guarantee a valid starting point ## if N is big enough. (THough this depends on algorithm, a, b and function) ## N here would need to be tuned. But, as is, this may prove useful anyways. function identify_starting_point(f, a, b, N) pts = range(a, stop=b, length=N + 1) fxs = f.(pts) sfxs = sign.(f.(pts)) identify_starting_point(a, b, sfxs) end function identify_starting_point(a, b, sfxs) N = length(sfxs) - 1 p0 = a + (b - a) / 2 p1 = p0 + (b - a) / (2N) * sfxs[1] * sum(s for s in sfxs[2:(end - 1)]) p1 end ## not used function _unicode_subscript(io, j) a = ("⁻", "", "", "₀", "₁", "₂", "₃", "₄", "₅", "₆", "₇", "₈", "₉") for i in string(j) print(io, a[Int(i) - 44]) end end unicode_subscript(io, j) = _unicode_subscript.(Ref(io), reverse(digits(j)))
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
12103
## -------------------------------------------------- ## Algorithms of Alefeld, Potra, and Shi ## Main paper is ## [Algorithm 748: enclosing zeros of continuous functions](https://na.math.kit.edu/alefeld/download/1995_Algorithm_748_Enclosing_Zeros_of_Continuous_Functions.pdf) with supporting material at ## [Algorithm 748: enclosing zeros of continuous functions](https://doi.org/10.1145/210089.210111) ## -------------------------------------------------- #= """ AbstractAlefeldPotraShi An abstract type for Alefeld-Potra-Shi type bracketing problems, as discussed in [*Algorithm 748: enclosing zeros of continuous functions*](https://na.math.kit.edu/alefeld/download/1995_Algorithm_748_Enclosing_Zeros_of_Continuous_Functions.pdf). These consist of an interpolation step, such as quadratic interpolation or inverse cubic interpolation along with a double-secant step. For a smooth function and finite bracketing interval, these methods should always converge. The `update_step` method calls a `calculateΔ` method that can be customized to turn an algorithm based on interpolation into a bracketed algorithm. See [`Roots.BracketedHalley`](@ref) for an example. This implementation deviates slightly from the printed algorithm, as it may use an initial call to `_middle` rather than a secant step, depending on the signs of ``a`` and ``b``. """ =# abstract type AbstractAlefeldPotraShi <: AbstractBracketingMethod end initial_fncalls(::AbstractAlefeldPotraShi) = 3 # worst case assuming fx₀, fx₁,fc must be computed ## initial step, needs to log a,b,d function log_step(l::Tracks, M::AbstractAlefeldPotraShi, state; init::Bool=false) a, b, c = state.xn0, state.xn1, state.d init && push!(l.abₛ, extrema((a, b, c))) init && log_iteration(l, 1) # take an initial step push!(l.abₛ, (a, b)) !init && log_iteration(l, 1) nothing end struct AbstractAlefeldPotraShiState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T d::T ee::T fxn1::S fxn0::S fd::S fee::S end # basic init state is like bracketing state # keep a < b # set d, ee to a function init_state(::AbstractAlefeldPotraShi, F, x₀, x₁, fx₀, fx₁; c=nothing, fc=nothing) a, b, fa, fb = x₀, x₁, fx₀, fx₁ iszero(fa) && return AbstractAlefeldPotraShiState( promote(b, a, a, a)..., promote(fb, fa, fa, fa)..., ) iszero(fb) && return AbstractAlefeldPotraShiState( promote(b, a, a, a)..., promote(fb, fa, fa, fa)..., ) assert_bracket(fa, fb) if a > b a, b, fa, fb = b, a, fb, fa end if c === nothing # need c, fc to be defined if one is c = a < zero(a) < b ? _middle(a, b) : secant_step(a, b, fa, fb) fc = first(F(c)) end (iszero(fc) || !isfinite(fc)) && return AbstractAlefeldPotraShiState( promote(c, a, a, a)..., promote(fc, fa, fa, fa)..., ) a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) assert_bracket(fa, fb) T = typeof(d) ee, fe = T(NaN) / oneunit(T(NaN)) * d, fd # use NaN for initial ee value AbstractAlefeldPotraShiState(promote(b, a, d, ee)..., promote(fb, fa, fd, fe)...) end # avoid type-stability issue due to dynamic dispatch based on kwargs function init_options( M::AbstractAlefeldPotraShi, state::AbstractUnivariateZeroState{T,S}; kwargs..., ) where {T,S} d = kwargs defs = default_tolerances(M, T, S) δₐ = get(d, :xatol, get(d, :xabstol, defs[1])) δᵣ = get(d, :xrtol, get(d, :xreltol, defs[2])) maxiters = get(d, :maxiters, get(d, :maxevals, get(d, :maxsteps, defs[5]))) strict = get(d, :strict, defs[6]) Roots.FExactOptions(δₐ, δᵣ, maxiters, strict) end # fn calls w/in calculateΔ # 1 is default, but this should be adjusted for different methods fncalls_per_step(::AbstractAlefeldPotraShi) = 1 function update_state( M::AbstractAlefeldPotraShi, F::Callable_Function, o::AbstractAlefeldPotraShiState{T,S}, options, l=NullTracks(), ) where {T,S} atol, rtol = options.xabstol, options.xreltol μ, λ = oftype(rtol, 0.5), oftype(rtol, 0.7) tols = (; λ=λ, atol=atol, rtol=rtol) a::T, b::T, d::T, ee::T = o.xn0, o.xn1, o.d, o.ee fa::S, fb::S, fd::S, fee::S = o.fxn0, o.fxn1, o.fd, o.fee δ₀ = b - a # use c to track smaller of |fa|, |fb| c, fc = abs(fa) < abs(fb) ? (a, fa) : (b, fb) ps = (; a=a, b=b, d=d, ee=ee, fa=fa, fb=fb, fd=fd, fee=fee, atol=atol, rtol=rtol) # (may modify ps) <<---- Δ, ps = calculateΔ(M, F, c, ps) incfn(l, fncalls_per_step(M)) a, b, d = ps.a, ps.b, ps.d fa, fb, fd = ps.fa, ps.fb, ps.fd if iszero(fa) || iszero(fb) || (b - a) <= tolₑ(a, b, fa, fb, atol, rtol) @reset o.xn0 = a @reset o.xn1 = b @reset o.fxn0 = fa @reset o.fxn1 = fb return o, true end x = c - Δ x = avoid_boundaries(a, x, b, fa, fb, tols) fx = first(F(x)) incfn(l) ā, b̄, d, fā, fb̄, fd = bracket(a, b, x, fa, fb, fx) if iszero(fx) || (b̄ - ā) <= tolₑ(ā, b̄, fā, fb̄, atol, rtol) @reset o.xn0 = ā @reset o.xn1 = b̄ @reset o.fxn0 = fā @reset o.fxn1 = fb̄ return o, true end u, fu = abs(fā) < abs(fb̄) ? (ā, fā) : (b̄, fb̄) # 4.16 double secant step fab⁻¹ = (b̄ - ā) / (fb̄ - fā) c̄ = u - 2 * fab⁻¹ * fu # 4.16 if 2abs(u - c̄) > b̄ - ā # 4.17 c̄ = __middle(ā, b̄) end c̄ = avoid_boundaries(ā, c̄, b̄, fā, fb̄, tols) fc̄ = first(F(c̄)) incfn(l) (iszero(fc̄) || !isfinite(fc̄)) && return (_set(o, (c̄, fc̄)), true) â, b̂, d̂, fâ, fb̂, fd̂ = bracket(ā, b̄, c̄, fā, fb̄, fc̄) # 4.18 if (b̂ - â) < μ * δ₀ # 4.19 ee, fee = d, fd a, b, d, fa, fb, fd = â, b̂, d̂, fâ, fb̂, fd̂ else m = __middle(ā, b̄) m = avoid_boundaries(â, m, b̂, fâ, fb̂, tols) fm = first(F(m)) incfn(l) (iszero(fm) || !isfinite(fm)) && return (_set(o, (m, fm)), true) ee, fee = d̂, fd̂ a, b, d, fa, fb, fd = bracket(â, b̂, m, fâ, fb̂, fm) end @reset o.xn0 = a @reset o.xn1 = b @reset o.d = d @reset o.ee = ee @reset o.fxn0 = fa @reset o.fxn1 = fb @reset o.fd = fd @reset o.fee = fee return o, false end ## --- Methods # algorithms 2.4 and 2.5 can be implemented this way: struct A2425{K} <: AbstractAlefeldPotraShi end function calculateΔ(::A2425{K}, F::Callable_Function, c₀::T, ps) where {K,T} a, b, d, ee = ps.a, ps.b, ps.d, ps.ee fa, fb, fd, fee = ps.fa, ps.fb, ps.fd, ps.fee tols = (λ=oftype(ps.rtol, 0.7), atol=ps.atol, rtol=ps.rtol) c = a for k in 1:K c = newton_quadratic(a, b, d, fa, fb, fd, k + 1) k == K && break c = avoid_boundaries(a, c, b, fa, fb, tols) fc = first(F(c)) a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) iszero(fc) && break if (isnan(fc) || !isfinite(c)) c = c₀ break end end @reset ps.a = a @reset ps.fa = fa @reset ps.b = b @reset ps.fb = fb @reset ps.d = d @reset ps.fd = fd c₀ - c, ps end """ Roots.AlefeldPotraShi() Follows Algorithm 4.1 in "ON ENCLOSING SIMPLE ROOTS OF NONLINEAR EQUATIONS", by Alefeld, Potra, Shi; DOI: [10.1090/S0025-5718-1993-1192965-2](https://doi.org/10.1090/S0025-5718-1993-1192965-2). The order of convergence is `2 + √5`; asymptotically there are 3 function evaluations per step. Asymptotic efficiency index is ``(2+√5)^{1/3} ≈ 1.618...``. Less efficient, but can run faster than the related [`A42`](@ref) method. Originally by John Travers. """ const AlefeldPotraShi = A2425{2} # Algorithm 5.7 is parameterized by K # 4.1 -> K=1; 4.2 -> K=2 struct A57{K} <: AbstractAlefeldPotraShi end fncalls_per_step(::A57{K}) where {K} = K - 1 function calculateΔ(::A57{K}, F::Callable_Function, c₀::T, ps) where {K,T} a, b, d, ee = ps.a, ps.b, ps.d, ps.ee fa, fb, fd, fee = ps.fa, ps.fb, ps.fd, ps.fee tols = (λ=oftype(ps.rtol, 0.7), atol=ps.atol, rtol=ps.rtol) c, fc = a, fa for k in 1:K if isnan(ee) || iszero(_pairwise_prod(fa, fb, fd, fee)) c = newton_quadratic(a, b, d, fa, fb, fd, k + 1) else c = ipzero(a, b, d, ee, fa, fb, fd, fee) if (c <= a || b <= c) c = newton_quadratic(a, b, d, fa, fb, fd, k + 1) end end k == K && break ee, fee = d, fd c = avoid_boundaries(a, c, b, fa, fb, tols) fc = first(F(c)) a, b, d, fa, fb, fd = bracket(a, b, c, fa, fb, fc) iszero(fc) && break # fa or fb is 0 if (!isfinite(fc) || !isfinite(c)) c = c₀ break end end @reset ps.a = a @reset ps.fa = fa @reset ps.b = b @reset ps.fb = fb @reset ps.d = d @reset ps.fd = fd @reset ps.ee = ee @reset ps.fee = fee c₀ - c, ps end """ Roots.A42() Bracketing method which finds the root of a continuous function within a provided bracketing interval `[a, b]`, without requiring derivatives. It is based on Algorithm 4.2 described in: G. E. Alefeld, F. A. Potra, and Y. Shi, "Algorithm 748: enclosing zeros of continuous functions," ACM Trans. Math. Softw. 21, 327–344 (1995), DOI: [10.1145/210089.210111](https://doi.org/10.1145/210089.210111). The asymptotic efficiency index, ``q^{1/k}``, is ``(2 + 7^{1/2})^{1/3} = 1.6686...``. Originally by John Travers. !!! note The paper refenced above shows that for a continuously differentiable ``f`` over ``[a,b]`` with a simple root the algorithm terminates at a zero or asymptotically the steps are of the inverse cubic type (Lemma 5.1). This is proved under an assumption that ``f`` is four-times continuously differentiable. """ const A42 = A57{2} ## --- utilities ## Brent-style tole from paper function tolₑ(a, b, fa, fb, atol, rtol) u = abs(fa) < abs(fb) ? abs(a) : abs(b) return 2 * u * rtol + atol end ## adjustment before calling bracket function avoid_boundaries(a, c, b, fa, fb, tols) δ = tols.λ * tolₑ(a, b, fa, fb, tols.atol, tols.rtol) if (b - a) ≤ 4δ c = a / 2 + b / 2 elseif c ≤ a + 2δ c = a + 2δ elseif c ≥ b - 2δ c = b - 2δ end c end # assume fc != 0 ## return a1,b1,d with a < a1 < < b1 < b, d not there @inline function bracket(a, b, c, fa, fb, fc) if isbracket(fa, fc) # switch b,c return (a, c, b, fa, fc, fb) else # switch a,c return (c, b, a, fc, fb, fa) end end # f[a, b] divided differences @inline f_ab(a, b, fa, fb) = (fb - fa) / (b - a) # f[a,b,d] @inline function f_abd(a, b, d, fa, fb, fd) fab, fbd = f_ab(a, b, fa, fb), f_ab(b, d, fb, fd) (fbd - fab) / (d - a) end # iterative quadratic solution to P(x) = 0 where P=f(a) + f[a,b]*(x-a) + f[a,b,d]*(x-a)*(x-b) function newton_quadratic(a, b, d, fa, fb, fd, k::Int) A = f_abd(a, b, d, fa, fb, fd) B = f_ab(a, b, fa, fb) (iszero(A) || !isfinite(A)) && return a - fa / B r = sign(A) * sign(fa) > 0 ? a : b for i in 1:k P = fa + B * (r - a) + A * (r - a) * (r - b) P′ = (B + A * (2r - a - b)) r -= P / P′ end return r end # zero of inverse interpolation polynomial through (a,fa), (b,fb), (c,fc), (d, fd) # may not lie in [a,b], though asymptotically will under smoothness assumptions function ipzero(a, b, c, d, fa, fb, fc, fd) Q11 = (c - d) * fc / (fd - fc) Q21 = (b - c) * fb / (fc - fb) Q31 = (a - b) * fa / (fb - fa) D21 = (b - c) * fc / (fc - fb) D31 = (a - b) * fb / (fb - fa) Q22 = (D21 - Q11) * fb / (fd - fb) Q32 = (D31 - Q21) * fa / (fc - fa) D32 = (D31 - Q21) * fc / (fc - fa) Q33 = (D32 - Q22) * fa / (fd - fa) a + (Q31 + Q32 + Q33) end # check if fa,fb,fc,fd are distinct function _pairwise_prod(as...) t = one(first(as)) n = length(as) for i in 1:(n - 1) for j in (i + 1):n t *= (as[i] - as[j]) end end t end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
7071
""" Bisection() If possible, will use the bisection method over `Float64` values. The bisection method starts with a bracketing interval `[a,b]` and splits it into two intervals `[a,c]` and `[c,b]`, If `c` is not a zero, then one of these two will be a bracketing interval and the process continues. The computation of `c` is done by `_middle`, which reinterprets floating point values as unsigned integers and splits there. It was contributed by [Jason Merrill](https://gist.github.com/jwmerrill/9012954). This method avoids floating point issues and when the tolerances are set to zero (the default) guarantees a "best" solution (one where a zero is found or the bracketing interval is of the type `[a, nextfloat(a)]`). When tolerances are given, this algorithm terminates when the interval length is less than or equal to the tolerance `max(δₐ, 2abs(u)δᵣ)` with `u` in `{a,b}` chosen by the smaller of `|f(a)|` and `|f(b)|`, or or the function value is less than `max(tol, min(abs(a), abs(b)) * rtol)`. The latter is used only if the default tolerances (`atol` or `rtol`) are adjusted. When solving ``f(x,p) = 0`` for ``x^*(p)`` using `Bisection` one can not take the derivative directly via automatatic differentiation, as the algorithm is not differentiable. See [Sensitivity](https://juliamath.github.io/Roots.jl/stable/roots/#Sensitivity) in the documentation for alternatives. """ struct Bisection <: AbstractBisectionMethod end initial_fncalls(::AbstractBisectionMethod) = 3 # middle # Bisection using __middle should have a,b on same side of 0.0 (though # possibly, may be -0.0, 1.0 so not guaranteed to be of same sign) function init_state( ::AbstractBisectionMethod, F, x₀, x₁, fx₀, fx₁; m=_middle(x₀, x₁), fm=F(m), ) if x₀ > x₁ x₀, x₁, fx₀, fx₁ = x₁, x₀, fx₁, fx₀ end # handle interval if fa*fb ≥ 0 (explicit, but also not needed) (iszero(fx₀) || iszero(fx₁)) && return UnivariateZeroState(promote(x₁, x₀)..., promote(fx₁, fx₀)...) assert_bracket(fx₀, fx₁) if sign(fm) * fx₀ < 0 * oneunit(fx₀) a, b, fa, fb = x₀, m, fx₀, fm else a, b, fa, fb = m, x₁, fm, fx₁ end # handles case where a=-0.0, b=1.0 without error sign(a) * sign(b) < 0 && throw(ArgumentError("_middle error")) UnivariateZeroState(promote(b, a)..., promote(fb, fa)...) end const FloatNN = Union{Float64,Float32,Float16} # for Bisection, the defaults are zero tolerances and strict=true """ default_tolerances(M::AbstractBisectionMethod, [T], [S]) For `Bisection` when the `x` values are of type `Float64`, `Float32`, or `Float16`, the default tolerances are zero and there is no limit on the number of iterations. In this case, the algorithm is guaranteed to converge to an exact zero, or a point where the function changes sign at one of the answer's adjacent floating point values. For other types, default non-zero tolerances for `xatol` and `xrtol` are given. """ function default_tolerances( ::AbstractBisectionMethod, ::Type{T}, ::Type{S′}, ) where {T<:FloatNN,S′} S = real(float(S′)) xatol = 0 * oneunit(S) xrtol = 0 * one(T) atol = 0 * oneunit(S) rtol = 0 * one(S) maxiters = typemax(Int) strict = true (xatol, xrtol, atol, rtol, maxiters, strict) end # not float uses some non-zero tolerances for `x` function default_tolerances(::AbstractBisectionMethod, ::Type{T′}, ::Type{S′}) where {T′,S′} T, S = real(float(T′)), real(float(S′)) xatol = eps(T)^3 * oneunit(T) xrtol = eps(T) * one(T) # unitless atol = 0 * oneunit(S) rtol = 0 * one(S) maxiters = typemax(Int) strict = true (xatol, xrtol, atol, rtol, maxiters, strict) end # find middle of (a,b) with convention that # * if a, b finite, they are made non-finite # if a,b of different signs, middle is 0 # middle falls back to a/2 + b/2, but # for Float64 values, middle is over the # reinterpreted unsigned integer. function _middle(x, y) a = isinf(x) ? nextfloat(x) : x b = isinf(y) ? prevfloat(y) : y if sign(a) * sign(b) < 0 return zero(a) else __middle(a, b) end end ## find middle assuming a,b same sign, finite ## Alternative "mean" definition that operates on the binary representation ## of a float. Using this definition, bisection will never take more than ## 64 steps (over Float64) __middle(x::Float64, y::Float64) = __middle(Float64, UInt64, x, y) __middle(x::Float32, y::Float32) = __middle(Float32, UInt32, x, y) __middle(x::Float16, y::Float16) = __middle(Float16, UInt16, x, y) ## fallback for non FloatNN number types __middle(x::Number, y::Number) = x / 2 + y / 2 function __middle(T, S, x, y) # Use the usual float rules for combining non-finite numbers # do division over unsigned integers with bit shift xint = reinterpret(S, abs(x)) yint = reinterpret(S, abs(y)) mid = (xint + yint) >> 1 # reinterpret in original floating point sign(x + y) * reinterpret(T, mid) end ## -------------------------------------------------- function update_state( M::AbstractBisectionMethod, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} a, b = o.xn0, o.xn1 fa, fb = o.fxn0, o.fxn1 c::T = __middle(a, b) fc::S = F(c) incfn(l) if sign(fa) * sign(fc) < 0 b, fb = c, fc else a, fa = c, fc end @reset o.xn0 = a @reset o.xn1 = b @reset o.fxn0 = fa @reset o.fxn1 = fb return o, false end ## Special case default method for `find_zero(f, (a,b))`; gives ~10% speedup by avoiding assess_convergence/update state dispatch function solve!( P::ZeroProblemIterator{𝑴,𝑵,𝑭,𝑺,𝑶,𝑳}; verbose=false, ) where {𝑴<:Bisection,𝑵,𝑭,𝑺,𝑶<:ExactOptions,𝑳} M, F, state, options, l = P.M, P.F, P.state, P.options, P.logger val, stopped = :not_converged, false ctr = 1 log_step(l, M, state; init=true) T, S = TS(state) while !stopped a::T, b::T = state.xn0, state.xn1 fa::S, fb::S = state.fxn0, state.fxn1 ## assess_convergence if nextfloat(a) ≥ b val = :x_converged break end if (isnan(fa) || isnan(fb)) val = :nan break end if (iszero(fa) || iszero(fb)) val = :exact_zero break end ctr > options.maxiters && break # ---- ## update step c = __middle(a, b) fc = F(c) incfn(l) if sign(fa) * sign(fc) < 0 b, fb = c, fc else a, fa = c, fc end ## ---- @reset state.xn0 = a @reset state.xn1 = b @reset state.fxn0 = fa @reset state.fxn1 = fb log_step(l, M, state) ctr += 1 end # val, stopped = assess_convergence(M, state, options) # update val flag α = decide_convergence(M, F, state, options, val) log_convergence(l, val) log_method(l, M) log_last(l, α) verbose && display(l) α end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2226
### Bracketing method defaults function init_state(M::AbstractBracketingMethod, F::Callable_Function, x) x₀, x₁ = adjust_bracket(x) fx₀, fx₁ = first(F(x₀)), first(F(x₁)) state = init_state(M, F, x₀, x₁, fx₀, fx₁) end function init_state(M::AbstractBracketingMethod, F, x₀, x₁, fx₀, fx₁) (iszero(fx₀) || iszero(fx₁)) && return UnivariateZeroState(x₁, x₀, fx₁, fx₀) assert_bracket(fx₀, fx₁) a, b, fa, fb = (x₀ < x₁) ? (x₀, x₁, fx₀, fx₁) : (x₁, x₀, fx₁, fx₀) UnivariateZeroState(promote(b, a)..., promote(fb, fa)...) end Base.last(state::AbstractUnivariateZeroState, M::AbstractBracketingMethod) = state.xn0 < state.xn1 ? (state.xn0, state.xn1) : (state.xn1, state.xn0) fn_argout(::AbstractBracketingMethod) = 1 initial_fncalls(::AbstractBracketingMethod) = 2 ## tracks for bisection, different from secant, we show bracketing interval ## No init here; for Bisection() [a₀, b₀] is just lost. function log_step(l::Tracks, M::AbstractBracketingMethod, state; init::Bool=false) a, b = state.xn0, state.xn1 push!(l.abₛ, a < b ? (a, b) : (b, a)) !init && log_iteration(l, 1) nothing end # use xatol, xrtol only, but give some breathing room over the strict ones and cap number of steps function default_tolerances(::AbstractBracketingMethod, ::Type{T}, ::Type{S}) where {T,S} xatol = eps(real(T))^3 * oneunit(real(T)) xrtol = eps(real(T)) # unitless atol = zero(oneunit(real(S))) rtol = zero(one(real(S))) maxevals = 60 strict = true (xatol, xrtol, atol, rtol, maxevals, strict) end ## -------------------------------------------------- const bracketing_error = """The interval [a,b] is not a bracketing interval. You need f(a) and f(b) to have different signs (f(a) * f(b) < 0). Consider a different bracket or try fzero(f, c) with an initial guess c. """ ## utils @inline isbracket(fa, fb) = sign(fa) * sign(fb) < 0 assert_bracket(fx0, fx1) = isbracket(fx0, fx1) || throw(ArgumentError(bracketing_error)) ## helper function: floating point, sorted, finite function adjust_bracket(x0) u, v = map(float, _extrema(x0)) if u > v u, v = v, u end isinf(u) && (u = nextfloat(u)) isinf(v) && (v = prevfloat(v)) u, v end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2273
""" Roots.Brent() An implementation of [Brent's](https://en.wikipedia.org/wiki/Brent%27s_method) (or Brent-Dekker) method. This method uses a choice of inverse quadratic interpolation or a secant step, falling back on bisection if necessary. """ struct Brent <: AbstractBracketingMethod end struct BrentState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T c::T d::T fxn1::S fxn0::S fc::S mflag::Bool end # # we store mflag as -1, or +1 in state.mflag function init_state(::Brent, F, x₀, x₁, fx₀, fx₁) u, v, fu, fv = x₀, x₁, fx₀, fx₁ if abs(fu) > abs(fv) u, v, fu, fv = v, u, fv, fu end # check if fu*fv ≥ 0 (iszero(fu) || iszero(fv)) && return BrentState(promote(u, v, v, v)..., promote(fu, fv, fv)..., true) assert_bracket(fu, fv) BrentState(promote(u, v, v, v)..., promote(fu, fv, fv)..., true) end function update_state( ::Brent, f, state::BrentState{T,S}, options, l=NullTracks(), ) where {T,S} mflag = state.mflag a, b, c, d = state.xn0, state.xn1, state.c, state.d fa, fb, fc = state.fxn0, state.fxn1, state.fc # next step depends on points; inverse quadratic s::T = inverse_quadratic_step(a, b, c, fa, fb, fc) (isnan(s) || isinf(s)) && (s = secant_step(a, b, fa, fb)) # guard step u, v = (3a + b) / 4, b if u > v u, v = v, u end tol = max(options.xabstol, max(abs(b), abs(c), abs(d)) * options.xreltol) if !(u < s < v) || (mflag && abs(s - b) >= abs(b - c) / 2) || (!mflag && abs(s - b) >= abs(b - c) / 2) || (mflag && abs(b - c) <= tol) || (!mflag && abs(c - d) <= tol) s = _middle(a, b) mflag = true else mflag = false end fs::S = f(s) incfn(l) iszero(fs) && return (_set(state, (s, fs)), true) (isnan(fs) || isinf(fs)) && return (state, true) d = c c, fc = b, fb if sign(fa) * sign(fs) < 0 b, fb = s, fs else a, fa = s, fs end if abs(fa) < abs(fb) a, b, fa, fb = b, a, fb, fa end state = _set(state, (b, fb), (a, fa)) @reset state.c = c @reset state.d = d @reset state.fc = fc @reset state.mflag = mflag return state, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1639
""" Roots.Chandrapatla() Use [Chandrapatla's algorithm](https://doi.org/10.1016/S0965-9978(96)00051-8) (cf. [Scherer](https://www.google.com/books/edition/Computational_Physics/cC-8BAAAQBAJ?hl=en&gbpv=1&pg=PA95&printsec=frontcover)) to solve ``f(x) = 0``. Chandrapatla's algorithm chooses between an inverse quadratic step or a bisection step based on a computed inequality. """ struct Chandrapatla <: AbstractBracketingMethod end struct ChandrapatlaState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T c::T # keep xₙ₋₂ around for quadratic step fxn1::S fxn0::S fc::S end # a = most recent, b prior function init_state(::Chandrapatla, F, x₀, x₁, fx₀, fx₁) a, b, fa, fb = x₁, x₀, fx₁, fx₀ assert_bracket(fa, fb) c, fc = a, fa ChandrapatlaState(promote(a, b, c)..., promote(fa, fb, fc)...) end function update_state( ::Chandrapatla, F, o::ChandrapatlaState{T,S}, options, l=NullTracks(), ) where {T,S} a, b, c = o.xn1, o.xn0, o.c fa, fb, fc = o.fxn1, o.fxn0, o.fc # encoding: a = xₙ, b=xₙ₋₁, c= xₙ₋₂ ξ = (a - b) / (c - b) ϕ = (fa - fb) / (fc - fb) ϕ² = ϕ^2 Δ = (ϕ² < ξ) && (1 - 2ϕ + ϕ² < 1 - ξ) # Chandrapatla's inequality to determine next step xₜ::T = Δ ? inverse_quadratic_step(a, b, c, fa, fb, fc) : _middle(a, b) fₜ::S = F(xₜ) incfn(l) if sign(fₜ) * sign(fa) < 0 a, b, c = xₜ, a, b fa, fb, fc = fₜ, fa, fb else a, c = xₜ, a fa, fc = fₜ, fa end o = _set(o, (a, fa), (b, fb)) # a is xₙ, b is xₙ₋₁ @reset o.c = c @reset o.fc = fc return (o, false) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3587
struct FalsePosition{R} <: AbstractSecantMethod end """ FalsePosition([galadino_factor]) Use the [false position](https://en.wikipedia.org/wiki/False_position_method) method to find a zero for the function `f` within the bracketing interval `[a,b]`. The false position method is a modified bisection method, where the midpoint between `[aₖ, bₖ]` is chosen to be the intersection point of the secant line with the ``x`` axis, and not the average between the two values. To speed up convergence for concave functions, this algorithm implements the ``12`` reduction factors of Galdino (*A family of regula falsi root-finding methods*). These are specified by number, as in `FalsePosition(2)` or by one of three names `FalsePosition(:pegasus)`, `FalsePosition(:illinois)`, or `FalsePosition(:anderson_bjork)` (the default). The default choice has generally better performance than the others, though there are exceptions. For some problems, the number of function calls can be greater than for the `Bisection` method, but generally this algorithm will make fewer function calls. Examples ``` find_zero(x -> x^5 - x - 1, (-2, 2), FalsePosition()) ``` """ FalsePosition FalsePosition(x=:anderson_bjork) = FalsePosition{x}() # 12 is tough; needs more evaluations function default_tolerances(::FalsePosition{12}, ::Type{T}, ::Type{S}) where {T,S} xatol = eps(real(T)) * oneunit(real(T)) xrtol = eps(real(T)) # unitless atol = 4 * eps(real(float(S))) * oneunit(real(S)) rtol = 4 * eps(real(float(S))) * one(real(S)) maxiters = 250 strict = false (xatol, xrtol, atol, rtol, maxiters, strict) end init_state(M::FalsePosition, F, x₀, x₁, fx₀, fx₁) = init_state(Bisection(), F, x₀, x₁, fx₀, fx₁) function update_state( method::FalsePosition, fs, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} a, b = o.xn0, o.xn1 fa, fb = o.fxn0, o.fxn1 lambda = fb / (fb - fa) ϵ = √eps(T) / 100 # some engineering to avoid short moves; still fails on some ϵ ≤ lambda ≤ 1 - ϵ || (lambda = 1 / 2) x::T = b - lambda * (b - a) fx::S = fs(x) incfn(l) iszero(fx) && return (_set(o, (x, fx)), true) if sign(fx) * sign(fb) < 0 a, fa = b, fb else fa = galdino_reduction(method, fa, fb, fx) end b, fb = x, fx o = _set(o, (b, fb), (a, fa)) return (o, false) end # the 12 reduction factors offered by Galdino # In RootsTesting.jl, we can see :12 has many more failures. galdino = Dict{Union{Int,Symbol},Function}( :1 => (fa, fb, fx) -> fa * fb / (fb + fx), :2 => (fa, fb, fx) -> (fa - fb) / 2, :3 => (fa, fb, fx) -> (fa - fx) / (2 + fx / fb), :4 => (fa, fb, fx) -> (fa - fx) / (1 + fx / fb)^2, :5 => (fa, fb, fx) -> (fa - fx) / (1.5 + fx / fb)^2, :6 => (fa, fb, fx) -> (fa - fx) / (2 + fx / fb)^2, :7 => (fa, fb, fx) -> (fa + fx) / (2 + fx / fb)^2, :8 => (fa, fb, fx) -> fa / 2, :9 => (fa, fb, fx) -> fa / (1 + fx / fb)^2, :10 => (fa, fb, fx) -> (fa - fx) / 4, :11 => (fa, fb, fx) -> fx * fa / (fb + fx), :12 => (fa, fb, fx) -> (fa * (1 - fx / fb > 0 ? 1 - fx / fb : 1 / 2)), ) # give common names for (nm, i) in [(:pegasus, 1), (:illinois, 8), (:anderson_bjork, 12)] galdino[nm] = galdino[i] end # from Chris Elrod; https://raw.githubusercontent.com/chriselrod/AsymptoticPosteriors.jl/master/src/false_position.jl @generated function galdino_reduction(methods::FalsePosition{R}, fa, fb, fx) where {R} f = galdino[R] quote $Expr(:meta, :inline) $f(fa, fb, fx) end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3882
""" Roots.ITP(;[κ₁-0.2, κ₂=2, n₀=1]) Use the [ITP](https://en.wikipedia.org/wiki/ITP_method) bracketing method. This method claims it "is the first root-finding algorithm that achieves the superlinear convergence of the secant method while retaining the optimal worst-case performance of the bisection method." The values `κ1`, `κ₂`, and `n₀` are tuning parameters. The [suggested](https://docs.rs/kurbo/0.8.1/kurbo/common/fn.solve_itp.html) value of `κ₁` is `0.2/(b-a)`, but the default here is `0.2`. The value of `κ₂` is `2`, and the default value of `n₀` is `1`. ## Note: Suggested on [discourse](https://discourse.julialang.org/t/julia-implementation-of-the-interpolate-truncate-project-itp-root-finding-algorithm/77739) by `@TheLateKronos`, who supplied the original version of the code. """ struct ITP{T,S} <: AbstractBracketingMethod κ₁::T κ₂::S n₀::Int function ITP(κ₁::T′, κ₂::S, n₀::Int) where {T′,S} 0 ≤ κ₁ < Inf || throw(ArgumentError("κ₁ must be between 0 and ∞")) 1 ≤ κ₂ < (3 + √5) / 2 || throw(ArgumentError("κ₂ must be between 1 and 1 plus the golden ratio")) 0 < n₀ < Inf || throw(ArgumentError("n₀ must be between 0 and ∞")) T = float(T′) ## κ₂ == 2 || throw(ArgumentError("κ₂ is hardcoded to be 2")) new{T,S}(float(κ₁), κ₂, n₀) end end ITP(; κ₁=0.2, κ₂=2, n₀=1) = ITP(κ₁, κ₂, n₀) struct ITPState{T,S,R} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T fxn1::S fxn0::S j::Int ϵ2n₁₂::R d::T end function init_state(M::ITP, F, x₀, x₁, fx₀, fx₁) if x₀ > x₁ x₀, x₁, fx₀, fx₁ = x₁, x₀, fx₁, fx₀ end ## we compute this once the options and initial state are known ϵ2n₁₂ = zero(float(x₁) / x₁) # ϵ*2^(ceil(Int, log2((b-a)/(2*ϵ))) + n₀) # handle interval if fa*fb ≥ 0 (explicit, but also not needed) (iszero(fx₀) || iszero(fx₁)) && return ITPState(promote(x₁, x₀)..., promote(fx₁, fx₀)..., 0, ϵ2n₁₂, x₁) assert_bracket(fx₀, fx₁) a, b, fa, fb = x₀, x₁, fx₀, fx₁ ITPState(promote(b, a)..., promote(fb, fa)..., 0, ϵ2n₁₂, a) end function init_options( M::ITP, state::AbstractUnivariateZeroState{T,S}; kwargs..., ) where {T,S} d = kwargs defs = default_tolerances(M, T, S) δₐ = get(d, :xatol, get(d, :xabstol, defs[1])) δᵣ = get(d, :xrtol, get(d, :xreltol, defs[2])) ϵₐ = get(d, :atol, get(d, :abstol, defs[3])) ϵᵣ = get(d, :rtol, get(d, :reltol, defs[4])) maxiters = get(d, :maxiters, get(d, :maxevals, get(d, :maxsteps, defs[5]))) strict = get(d, :strict, defs[6]) return UnivariateZeroOptions(δₐ, δᵣ, ϵₐ, ϵᵣ, maxiters, strict) end function update_state(M::ITP, F, o::ITPState{T,S,R}, options, l=NullTracks()) where {T,S,R} a, b = o.xn0, o.xn1 fa, fb = o.fxn0, o.fxn1 j, ϵ2n₁₂ = o.j, o.ϵ2n₁₂ κ₁, κ₂ = M.κ₁, M.κ₂ if iszero(ϵ2n₁₂) # we need the options to set the ϵ⋅2^n₁₂ part of r. ϵ = max(options.xabstol, max(abs(a), abs(b)) * options.xreltol) ϵ2n₁₂ = ϵ * exp2(ceil(Int, log2((b - a) / (2ϵ))) + M.n₀) @reset o.ϵ2n₁₂ = ϵ2n₁₂ end Δ = b - a x₁₂ = a + Δ / 2 # middle must be (a+b)/2 r = ϵ2n₁₂ * exp2(-j) - Δ / 2 δ′ = κ₁ * Δ^κ₂ # a numeric literal for κ₂ is faster δ = δ′ / oneunit(δ′) # δ = κ₁ * Δ^2 xᵣ = (b * fa - a * fb) / (fa - fb) σ = sign(x₁₂ - xᵣ) xₜ = δ ≤ abs(x₁₂ - xᵣ) / oneunit(xᵣ) ? xᵣ + σ * δ * oneunit(xᵣ) : x₁₂ c::T = xᵢₜₚ = abs(xₜ - x₁₂) ≤ r ? xₜ : x₁₂ - σ * r if !(a < c < b) nextfloat(a) ≥ b && log_message(l, "Algorithm stopped narrowing bracketing interval") return (o, true) end fc::S = F(c) incfn(l) if sign(fa) * sign(fc) < 0 b, fb = c, fc else a, fa = c, fc end o = _set(o, (b, fb), (a, fa)) @reset o.j = j + 1 return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1837
""" Roots.Ridders() Implements [Ridders'](https://en.wikipedia.org/wiki/Ridders%27_method) method. This bracketing method finds the midpoint, `x₁`; then interpolates an exponential; then uses false position with the interpolated value to find `c`. If `c` and `x₁` form a bracket is used, otherwise the subinterval `[a,c]` or `[c,b]` is used. Example: ```jldoctest julia> using Roots julia> find_zero(x -> exp(x) - x^4, (5, 15), Roots.Ridders()) ≈ 8.61316945644 true julia> find_zero(x -> x*exp(x) - 10, (-100, 100), Roots.Ridders()) ≈ 1.74552800274 true julia> find_zero(x -> tan(x)^tan(x) - 1e3, (0, 1.5), Roots.Ridders()) ≈ 1.3547104419 true ``` [Ridders](https://cs.fit.edu/~dmitra/SciComp/Resources/RidderMethod.pdf) showed the error satisfies `eₙ₊₁ ≈ 1/2 eₙeₙ₋₁eₙ₋₂ ⋅ (g^2-2fh)/f` for `f=F', g=F''/2, h=F'''/6`, suggesting converence at rate `≈ 1.839...`. It uses two function evaluations per step, so its order of convergence is `≈ 1.225...`. """ struct Ridders <: AbstractBracketingMethod end function update_state( M::Ridders, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} a, b = o.xn0, o.xn1 fa, fb = o.fxn0, o.fxn1 x₁ = a + (b - a) / 2 fx₁ = F(x₁) incfn(l) c::T = x₁ + (x₁ - a) * sign(fa) * fx₁ / sqrt(fx₁^2 - fa * fb) fc::S = F(c) incfn(l) if !(a < c < b) nextfloat(a) ≥ b && log_message(l, "Algorithm stopped narrowing bracketing interval") return (o, true) end # choose bracketing interval from [x₁, c], [c, x₁], [a,c], [c,b] if sign(fx₁) * sign(fc) < 0 a, b, fa, fc = x₁ < c ? (x₁, c, fx₁, fc) : (c, x₁, fc, fx₁) elseif sign(fa) * sign(fc) < 0 b, fb = c, fc else a, fa = c, fc end o = _set(o, (b, fb), (a, fa)) return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
7803
struct HalleyState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T Δ::T ΔΔ::T fxn1::S fxn0::S end # we compute one step here to get x₁ function init_state(M::AbstractHalleyLikeMethod, F::Callable_Function, x) x₀ = float(first(x)) T = eltype(x₀) fx₀, (Δ, ΔΔ) = F(x₀) Δx = calculateΔ(M, Δ, ΔΔ) x₁::T = x₀ - Δx state = init_state(M, F, x₀, x₁, fx₀, fx₀) end function init_state(::AbstractHalleyLikeMethod, F, x₀::T, x₁::T, fx₀, fx₁) where {T} fx₁, (Δ::T, ΔΔ::T) = F(x₁) HalleyState(promote(x₁, x₀)..., Δ, ΔΔ, promote(fx₁, fx₀)...) end initial_fncalls(M::AbstractHalleyLikeMethod) = 2 * 3 fn_argout(::AbstractHalleyLikeMethod) = 3 function update_state( M::AbstractΔMethod, F, o::HalleyState{T,S}, options, l=NullTracks(), ) where {T,S} xn = o.xn1 fxn = o.fxn1 r1::T, r2::T = o.Δ, o.ΔΔ Δ::T = calculateΔ(M, r1, r2) if isissue(Δ) log_message(l, "Issue with computing `Δ`") return (o, true) end xn1::T = xn - Δ fxn1::S, (r1, r2) = F(xn1) incfn(l, 3) @reset o.xn0 = xn @reset o.xn1 = xn1 @reset o.fxn0 = fxn @reset o.fxn1 = fxn1 @reset o.Δ = r1 @reset o.ΔΔ = r2 return o, false end """ Roots.Halley() Implements Halley's [method](https://en.wikipedia.org/wiki/Halley%27s_method), `xᵢ₊₁ = xᵢ - (f/f')(xᵢ) * (1 - (f/f')(xᵢ) * (f''/f')(xᵢ) * 1/2)^(-1)` This method is cubically converging, it requires ``3`` function calls per step. Halley's method finds `xₙ₊₁` as the zero of a hyperbola at the point `(xₙ, f(xₙ))` matching the first and second derivatives of `f`. The function, its derivative and second derivative can be passed either as a tuple of ``3`` functions *or* as a function returning values for ``(f, f/f', f'/f'')``, which could be useful when function evaluations are expensive. ## Examples ```jldoctest with_derivative julia> using Roots julia> find_zero((sin, cos, x->-sin(x)), 3.0, Roots.Halley()) ≈ π true julia> function f(x) s,c = sincos(x) (s, s/c, -c/s) end; julia> find_zero(f, 3.0, Roots.Halley()) ≈ π true ``` This can be advantageous if the derivatives are easily computed from the computation for f, but otherwise would be expensive to compute separately. ---- The error, `eᵢ = xᵢ - α`, satisfies `eᵢ₊₁ ≈ -(2f'⋅f''' -3⋅(f'')²)/(12⋅(f'')²) ⋅ eᵢ³` (all evaluated at `α`). """ struct Halley <: AbstractΔMethod end """ Roots.QuadraticInverse() Implements the [quadratic inverse method](https://doi.org/10.2307/2322644) also known as [Chebyshev's method](https://dl.acm.org/doi/10.1080/00207160802208358), `xᵢ₊₁ = xᵢ - (f/f')(xᵢ) * (1 + (f/f')(xᵢ) * (f''/f')(xᵢ) * 1/2)`. This method is cubically converging, it requires ``3`` function calls per step. Example ```jldoctest with_derivative julia> using Roots julia> find_zero((sin, cos, x->-sin(x)), 3.0, Roots.QuadraticInverse()) ≈ π true ``` If function evaluations are expensive one can pass in a function which returns `(f, f/f',f'/f'')` as follows ```jldoctest with_derivative julia> find_zero(x -> (sin(x), sin(x)/cos(x), -cos(x)/sin(x)), 3.0, Roots.QuadraticInverse()) ≈ π true ``` This can be advantageous if the derivatives are easily computed from the computation for f, but otherwise would be expensive to compute separately. The error, `eᵢ = xᵢ - α`, [satisfies](https://dl.acm.org/doi/10.1080/00207160802208358) `eᵢ₊₁ ≈ (1/2⋅(f''/f')² - 1/6⋅f'''/f')) ⋅ eᵢ³` (all evaluated at `α`). """ struct QuadraticInverse <: AbstractΔMethod end """ Chebyshev-like methods and quadratic equations (J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández and M. A. Salanova) """ struct ChebyshevLike <: AbstractΔMethod end """ An acceleration of Newton's method: Super-Halley method (J.M. Gutierrez, M.A. Hernandez) """ struct SuperHalley <: AbstractΔMethod end # also Euler. Fits a parabola to point (x_n, f(x_n)) struct IrrationalHalley <: AbstractΔMethod end """ Roots.Schroder() Schröder's method, like Halley's method, utilizes `f`, `f'`, and `f''`. Unlike Halley it is quadratically converging, but this is independent of the multiplicity of the zero (cf. Schröder, E. "Über unendlich viele Algorithmen zur Auflösung der Gleichungen." Math. Ann. 2, 317-365, 1870; [mathworld](http://mathworld.wolfram.com/SchroedersMethod.html)). Schröder's method applies Newton's method to `f/f'`, a function with all simple zeros. ## Example ``` m = 2 f(x) = (cos(x)-x)^m fp(x) = (-x + cos(x))*(-2*sin(x) - 2) fpp(x) = 2*((x - cos(x))*cos(x) + (sin(x) + 1)^2) find_zero((f, fp, fpp), pi/4, Roots.Halley()) # 14 steps find_zero((f, fp, fpp), 1.0, Roots.Schroder()) # 3 steps ``` (Whereas, when `m=1`, Halley is 2 steps to Schröder's 3.) If function evaluations are expensive one can pass in a function which returns `(f, f/f',f'/f'')` as follows ``` find_zero(x -> (sin(x), sin(x)/cos(x), -cos(x)/sin(x)), 3.0, Roots.Schroder()) ``` This can be advantageous if the derivatives are easily computed from the value of `f`, but otherwise would be expensive to compute. The error, `eᵢ = xᵢ - α`, is the same as `Newton` with `f` replaced by `f/f'`. """ struct Schroder <: AbstractΔMethod end const Schroeder = Schroder # either spelling const Schröder = Schroder ## r1, r2 are o.Δ, o.ΔΔ calculateΔ(::IrrationalHalley, r1, r2) = 2 / (1 + sqrt(1 - 2r1 / r2)) * r1 calculateΔ(::Halley, r1, r2) = 2r2 / (2r2 - r1) * r1 calculateΔ(::QuadraticInverse, r1, r2) = (1 + r1 / (2r2)) * r1 calculateΔ(::ChebyshevLike, r1, r2) = (1 + r1 / (2r2) * (1 + r1 / r2)) * r1 calculateΔ(::SuperHalley, r1, r2) = (1 + r1 / (2r2 - 2r1)) * r1 calculateΔ(::Schroder, r1, r2) = r2 / (r2 - r1) * r1 ## Bracketed versions of Halley and Chebyshev using Alefeld, Potra, Shi approach ## calculateΔ has *different* calling pattern ## May take more steps and function evaluations, but should always converge """ BracketedHalley For a bracket `[a,b]`, uses the [`Roots.Halley`](@ref) method starting at the `x` value for which `fa` or `fb` is closest to `0`. Uses the `Roots.AbstractAlefeldPotraShi` framework to enforce the bracketing, taking an additional double secant step each time. """ struct BracketedHalley <: AbstractAlefeldPotraShi end fn_argout(::BracketedHalley) = 3 fncalls_per_step(::BracketedHalley) = 3 function calculateΔ(::BracketedHalley, F::Callable_Function, c, ps) a, b = ps.a, ps.b fc, (Δ, Δ₂) = F(c) d = calculateΔ(Halley(), Δ, Δ₂) !(a <= c - d <= b) && (d = Δ) # Newton d, ps end """ BracketedChebyshev For a bracket `[a,b]`, uses the [`Roots.QuadraticInverse`](@ref) method starting at the `x` value for which `fa` or `fb` is closest to `0`. Uses the `Roots.AbstractAlefeldPotraShi` framework to enforce the bracketing, taking an additional double secant step each time. """ struct BracketedChebyshev <: AbstractAlefeldPotraShi end fn_argout(::BracketedChebyshev) = 3 fncalls_per_step(::BracketedChebyshev) = 3 function calculateΔ(::BracketedChebyshev, F::Callable_Function, c, ps) a, b = ps.a, ps.a fc, (Δ, Δ₂) = F(c) d = calculateΔ(QuadraticInverse(), Δ, Δ₂) !(a <= c - d <= b) && (d = Δ) # Newton d, ps end """ BracketedSchroder For a bracket `[a,b]`, uses the [`Roots.Schroder`](@ref) method starting at the `x` value for which `fa` or `fb` is closest to `0`. Uses the `Roots.AbstractAlefeldPotraShi` framework to enforce the bracketing, taking an additional double secant step each time. """ struct BracketedSchroder <: AbstractAlefeldPotraShi end fn_argout(::BracketedSchroder) = 3 fncalls_per_step(::BracketedSchroder) = 3 function calculateΔ(::BracketedSchroder, F::Callable_Function, c, ps) a, b = ps.a, ps.b fc, (Δ, Δ₂) = F(c) d = calculateΔ(Schroder(), Δ, Δ₂) !(a <= c - d <= b) && (d = Δ) # Newton d, ps end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
68487
""" LithBoonkkampIJzerman{S,D} <: AbstractNewtonLikeMethod LithBoonkkampIJzerman(S,D) A family of different methods that includes the secant method and Newton's method. Specifies a linear multistep solver with `S` steps and `D` derivatives following [Lith, Boonkkamp, and IJzerman](https://doi.org/10.1016/j.amc.2017.09.003). # Extended help ## Examples ```jldoctest lith julia> using Roots julia> find_zero(sin, 3, Roots.LithBoonkkampIJzerman(2,0)) ≈ π # the secant method true julia> find_zero((sin,cos), 3, Roots.LithBoonkkampIJzerman(1,1)) ≈ π # Newton's method true julia> find_zero((sin,cos), 3, Roots.LithBoonkkampIJzerman(3,1)) ≈ π # Faster convergence rate true julia> find_zero((sin,cos, x->-sin(x)), 3, Roots.LithBoonkkampIJzerman(1,2)) ≈ π # Halley-like method true ``` The method can be more robust to the initial condition. This example is from the paper (p13). Newton's method (the `S=1`, `D=1` case) fails if `|x₀| ≥ 1.089` but methods with more memory succeed. ```jldoctest lith julia> fx = ZeroProblem((tanh,x->sech(x)^2), 1.239); # zero at 0.0 julia> solve(fx, Roots.LithBoonkkampIJzerman(1,1)) |> isnan# Newton, NaN true julia> solve(fx, Roots.LithBoonkkampIJzerman(2,1)) |> abs |> <(eps()) true julia> solve(fx, Roots.LithBoonkkampIJzerman(3,1)) |> abs |> <(eps()) true ``` Multiple derivatives can be constructed automatically using automatic differentiation. For example, ```jldoctest lith julia> using ForwardDiff julia> function δ(f, n::Int=1) n <= 0 && return f n == 1 && return x -> ForwardDiff.derivative(f,float(x)) δ(δ(f,1),n-1) end; julia> fs(f,n) = ntuple(i -> δ(f,i-1), Val(n+1)); julia> f(x) = cbrt(x) * exp(-x^2); # cf. Table 6 in paper, α = 0 julia> fx = ZeroProblem(fs(f,1), 0.1147); julia> opts = (xatol=2eps(), xrtol=0.0, atol=0.0, rtol=0.0); # converge if |xₙ - xₙ₋₁| <= 2ϵ julia> solve(fx, Roots.LithBoonkkampIJzerman(1, 1); opts...) |> isnan # NaN -- no convergence true julia> solve(fx, Roots.LithBoonkkampIJzerman(2, 1); opts...) |> abs |> <(eps()) # converges true julia> fx = ZeroProblem(fs(f,2), 0.06); # need better starting point julia> solve(fx, Roots.LithBoonkkampIJzerman(2, 2); opts...) |> abs |> <(eps()) # converges true ``` For the case `D=1`, a bracketing method based on this approach is implemented in [`LithBoonkkampIJzermanBracket`](@ref) ## Reference In [Lith, Boonkkamp, and IJzerman](https://doi.org/10.1016/j.amc.2017.09.003) an analysis is given of the convergence rates when using linear multistep methods to solve `0=f(x)` using `f⁻¹(0) = x` when `f` is a sufficiently smooth linear function. The reformulation, attributed to Grau-Sanchez, finds a differential equation for `f⁻¹`: `dx/dy = [f⁻¹]′(y) = 1/f′(x) = F` as `x(0) = x₀ + ∫⁰_y₀ F(x(y)) dy`. A linear multi-step method is used to solve this equation numerically. Let S be the number of memory steps (S= 1,2,...) and D be the number of derivatives employed, then, with `F(x) = dx/dy` `x_{n+S} = ∑_{k=0}^{S-1} aₖ x_{n+k} +∑d=1^D ∑_{k=1}^{S-1} aᵈ_{n+k}F⁽ᵈ⁾(x_{n+k})`. The `aₖ`s and `aᵈₖ`s are computed each step. This table is from Tables 1 and 3 of the paper and gives the convergence rate for simple roots identified therein: ``` s: number of steps remembered d: number of derivatives uses s/d 0 1 2 3 4 1 . 2 3 4 5 2 1.62 2.73 3.79 4.82 5.85 3 1.84 2.91 3.95 4.97 5.98 4 1.92 2.97 3.99 4.99 5.996 5 1.97 . . . . ``` That is, more memory leads to a higher convergence rate; more derivatives leads to a higher convergence rate. However, the interval about `α`, the zero, where the convergence rate is guaranteed may get smaller. !!! note For the larger values of `S`, the expressions to compute the next value get quite involved. The higher convergence rate is likely only to be of help for finding solutions to high precision. """ struct LithBoonkkampIJzerman{S,D} <: AbstractNewtonLikeMethod end LithBoonkkampIJzerman(s::Int, d::Int) = LithBoonkkampIJzerman{s,d}() fn_argout(::LithBoonkkampIJzerman{S,D}) where {S,D} = 1 + D struct LithBoonkkampIJzermanState{S′,D⁺,T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T m::NTuple{S′,T} fxn1::S fxn0::S fm::NTuple{D⁺,NTuple{S′,S}} end log_step(l::Tracks, M::LithBoonkkampIJzerman, state; init=false) = log_step(l, Secant(), state; init=init) # return f^(i-1)(x) for i in 0:N-1; not the same as default eval call function evalf( F::Callable_Function{S,T,𝑭,P}, x, ) where {N,S<:Val{N},T<:Val{true},𝑭,P<:Nothing} fi = map(f -> f(x), F.f) #recommended on Slack to not allocate R = typeof(float(first(fi))) convert(NTuple{N,R}, fi) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {N,S<:Val{N},T<:Val{true},𝑭,P} fi = map(f -> f(x, F.p), F.f) R = typeof(float(first(fi))) convert(NTuple{N,R}, fi) end #specializations for N = 1,2,3,4,5,6 ## lmm(::Roots.LithBoonkkampIJzerman{1, D}) is defined up until D = 6, so specialize those function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{1},T<:Val{false},𝑭,P} F(x) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{2},T<:Val{false},𝑭,P} f, Δ = F(x) f′ = f / Δ (f, f′) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{3},T<:Val{false},𝑭,P} f, Δ = F(x) Δ₁, Δ₂ = Δ f′ = f / Δ₁ f′′ = f′ / Δ₂ (f, f′, f′′) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{4},T<:Val{false},𝑭,P} f, Δ = F(x) Δ₁, Δ₂, Δ₃ = Δ f′ = f / Δ₁ f′′ = f′ / Δ₂ f′′′ = f′′ / Δ₃ (f, f′, f′′, f′′′) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{5},T<:Val{false},𝑭,P} f, Δ = F(x) Δ₁, Δ₂, Δ₃, Δ₄ = Δ f′ = f / Δ₁ f′′ = f′ / Δ₂ f′′′ = f′′ / Δ₃ f′′′′ = f′′′ / Δ₄ (f, f′, f′′, f′′′, f′′′′) end function evalf(F::Callable_Function{S,T,𝑭,P}, x) where {S<:Val{6},T<:Val{false},𝑭,P} f, Δ = F(x) Δ₁, Δ₂, Δ₃, Δ₄, Δ₅ = Δ f′ = f / Δ₁ f′′ = f′ / Δ₂ f′′′ = f′′ / Δ₃ f′′′′ = f′′′ / Δ₄ f′′′′′ = f′′′′ / Δ₅ (f, f′, f′′, f′′′, f′′′′, f′′′′′) end #function to obtain just the first value. optimized in case of tuple function function only_f(F::Callable_Function{S,T,𝑭,P}, x) where {N,S<:Val{N},T<:Val{true},𝑭,P} return F.f[1](x, F.p) end function only_f( F::Callable_Function{S,T,𝑭,P}, x, ) where {N,S<:Val{N},T<:Val{true},𝑭,P<:Nothing} return F.f[1](x) end function only_f(F::Callable_Function{S,T,𝑭,P}, x) where {N,S<:Val{N},T<:Val{false},𝑭,P} return first(F(x)) end function init_state(L::LithBoonkkampIJzerman{S,0}, F::Callable_Function, x) where {S} x₀, x₁ = x₀x₁(x) fx₀, fx₁ = only_f(F, x₀), only_f(F, x₁) state = init_state(L, F, x₀, x₁, fx₀, fx₁, nothing) end function init_state(L::LithBoonkkampIJzerman{S,D}, F::Callable_Function, x) where {S,D} x₀ = float(first(x)) ys₀ = evalf(F, x₀) fx₀ = first(ys₀) state = init_state(L, F, nan(x₀), x₀, nan(fx₀), fx₀, ys₀) end function init_state( L::LithBoonkkampIJzerman{S,D}, F, x₀, x₁::R, fx₀, fx₁::T, ys₀, ) where {S,D,R,T} xs, ys = init_lith(L, F, x₁, fx₁, x₀, fx₀, ys₀) # [x₀,x₁,…,xₛ₋₁], ... # skip unit consideration here, as won't fit within storage of ys state = LithBoonkkampIJzermanState{S,D + 1,R,T}( xs[end], # xₙ S > 1 ? xs[end - 1] : nan(xs[end]), # xₙ₋₁ xs, # all xs ys[1][end], # fₙ S > 1 ? ys[1][end - 1] : nan(ys[1]), # fₙ₋₁ ys, # ) state end initial_fncalls(::LithBoonkkampIJzerman{S,D}) where {S,D} = S * (D + 1) function update_state( L::LithBoonkkampIJzerman{S,D}, F::Callable_Function, o::LithBoonkkampIJzermanState{S⁺,D′,R,T}, options, l=NullTracks(), ) where {S,D,S⁺,D′,R,T} xs, ys = o.m, o.fm xᵢ::R = lmm(L, xs, ys...) isissue(o.xn1 - xᵢ) && return (o, true) for i in 1:(S - 1) @reset xs[i] = xs[i + 1] end @reset xs[end] = xᵢ ysᵢ = evalf(F, xᵢ) for i in 0:D i′ = i + 1 for j in 1:(S - 1) @reset ys[i′][j] = ys[i′][j + 1] end yij::T = ysᵢ[i′] @reset ys[i′][end] = yij end incfn(l, 1 + D) @reset o.xn0 = o.xn1 @reset o.xn1 = xᵢ @reset o.fxn0 = o.fxn1 @reset o.fxn1 = ys[1][end] @reset o.m = xs @reset o.fm = ys return (o, false) end # manufacture initial xs, ys # use lower memory terms to boot strap up. Secant uses initial default step #D=0, generate [x0].x1,...,xs function init_lith( L::LithBoonkkampIJzerman{S,0}, F::Callable_Function{Si,Tup,𝑭,P}, x₁::R, fx₁::T, x₀::R, fx₀::T, ys₀, ) where {S,Si,Tup,𝑭,P,R,T} xs = NTuple{S,R}(ntuple(_ -> one(R), Val(S))) yᵢ = NTuple{S,T}(ntuple(_ -> one(T), Val(S))) ys = NTuple{1,NTuple{S,T}}((yᵢ,)) # build up to get S of them x0::R = zero(R) if isnan(x₀) x0 = _default_secant_step(x₁) fx0::T = only_f(F, x0) else x0, fx0 = x₀, fx₀ end @reset xs[1] = x0 @reset xs[2] = x₁ @reset ys[1][1] = fx0 @reset ys[1][2] = fx₁ # build up xs, ys # redundant code, but here to avoid allocations S < 3 && return (xs, ys) xᵢ = lmm(Val(2), Val(0), xs, ys) y1i = only_f(F, xᵢ) @reset xs[3] = xᵢ @reset ys[1][3] = y1i S < 4 && return (xs, ys) xᵢ = lmm(Val(3), Val(0), xs, ys) y1i = only_f(F, xᵢ) @reset xs[4] = xᵢ @reset ys[1][4] = y1i S < 5 && return (xs, ys) xᵢ = lmm(Val(4), Val(0), xs, ys) y1i = only_f(F, xᵢ) @reset xs[5] = xᵢ @reset ys[1][5] = y1i S < 6 && return (xs, ys) xᵢ = lmm(Val(5), Val(0), xs, ys) y1i = only_f(F, xᵢ) @reset xs[6] = xᵢ @reset ys[1][6] = y1i for i in 7:S #3:S xᵢ::R = lmm(Val(i - 1), Val(0), xs, ys) # XXX allocates due to runtime i-1 y1i::T = only_f(F, xᵢ) @reset xs[i] = xᵢ @reset ys[1][i] = y1i end xs, ys end #D≥1. ignore x₀ function init_lith( L::LithBoonkkampIJzerman{S,D}, F::Callable_Function{Si,Tup,𝑭,P}, x₁::R, fx₁::T, x₀::R, fx₀::T, ys₀, ) where {S,D,Si,Tup,𝑭,P,R,T} xs = NTuple{S,R}(ntuple(_ -> one(R), Val(S))) yᵢ = NTuple{S,T}(ntuple(_ -> one(T), Val(S))) ys = NTuple{D + 1,NTuple{S,T}}(ntuple(_ -> yᵢ, Val(D + 1))) @reset xs[1] = x₁ for j in 1:(D + 1) @reset ys[j][1] = ys₀[j] end # build up to get S of them # redundant code, but here to avoid allocations S < 2 && return xs, ys xᵢ = lmm(Val(1), Val(D), xs, ys) @reset xs[2] = xᵢ ysᵢ = evalf(F, xᵢ) for j in 1:(D + 1) @reset ys[j][2] = ysᵢ[j] end S < 3 && return xs, ys xᵢ = lmm(Val(2), Val(D), xs, ys) @reset xs[3] = xᵢ ysᵢ = evalf(F, xᵢ) for j in 1:(D + 1) @reset ys[j][3] = ysᵢ[j] end S < 4 && return xs, ys xᵢ = lmm(Val(3), Val(D), xs, ys) @reset xs[4] = xᵢ ysᵢ = evalf(F, xᵢ) for j in 1:(D + 1) @reset ys[j][4] = ysᵢ[j] end for i in 5:S xᵢ::R = lmm(Val(i - 1), Val(D), xs, ys) # XXX allocates! clean up @reset xs[i] = xᵢ ysᵢ = evalf(F, xᵢ) for j in 1:(D + 1) @reset ys[j][i] = ysᵢ[j] end end return xs, ys end """ LithBoonkkampIJzermanBracket() A bracketing method which is a modification of Brent's method due to [Lith, Boonkkamp, and IJzerman](https://doi.org/10.1016/j.amc.2017.09.003). The best possible convergence rate is 2.91. A function, its derivative, and a bracketing interval need to be specified. The state includes the 3 points -- a bracket `[a,b]` (`b=xₙ` has `f(b)` closest to `0`) and `c=xₙ₋₁` -- and the corresponding values for the function and its derivative at these three points. The next proposed step is either a `S=2` or `S=3` selection for the [`LithBoonkkampIJzerman`](@ref) methods with derivative information included only if it would be of help. The proposed is modified if it is dithering. The proposed is compared against a bisection step; the one in the bracket and with the smaller function value is chosen as the next step. """ struct LithBoonkkampIJzermanBracket <: AbstractBracketingMethod end struct LithBoonkkampIJzermanBracketState{T,S,R} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T c::T fxn1::S fxn0::S fc::S fp1::R fp0::R fpc::R end fn_argout(::LithBoonkkampIJzermanBracket) = 2 function init_state(M::LithBoonkkampIJzermanBracket, F::Callable_Function, x) x₀, x₁ = adjust_bracket(x) fx₀, Δfx₀ = F(x₀) fx₁, Δfx₁ = F(x₁) a, b, fa, fb, f′a, f′b = x₀, x₁, fx₀, fx₁, fx₀ / Δfx₀, fx₁ / Δfx₁ if abs(fa) < abs(fb) a, b, fa, fb = b, a, fb, fa end assert_bracket(fa, fb) c, fc, f′c = a, fa, f′a # skip unit consideration here, as won't fit within storage of ys state = LithBoonkkampIJzermanBracketState( promote(b, a, c)..., # xₙ, xₙ₋₁ promote(fb, fa, fc)..., # fₙ, fₙ₋₁ promote(f′b, f′a, f′c)..., ) state end function update_state( M::LithBoonkkampIJzermanBracket, F, state::LithBoonkkampIJzermanBracketState{T,S,R}, options, l=NullTracks(), ) where {T,S,R} b::T, c::T, a::T = state.xn1, state.c, state.xn0 fb::S, fc::S, fa::S = state.fxn1, state.fc, state.fxn0 f′a::R, f′c::R, f′b::R = state.fp0, state.fpc, state.fp1 # Get next interpolating step # decide on S and D; # S is 3 if a,b,c are distinct; D=1 unless all derivative info will be of the wrong sign. s::Int = ((a == c) || (b == c)) ? 2 : 3 # which derivatives do we include sₘ = sign((fb - fa) / (b - a)) mc, mb = sign(f′c) == sₘ, sign(f′b) == sₘ d₀::S = zero(S) if s == 2 if mc || mb # D = 1 a2s, b2s = lmm_coefficients(LithBoonkkampIJzerman{2,1}(), (c, b), (fc, fb)) h = -fb d₀ = -sum(a2s .* (c, b)) mb && (d₀ += h * b2s[2] / f′b) mc && (d₀ += h * b2s[1] / f′c) else d₀ = lmm(LithBoonkkampIJzerman{2,0}(), (c, b), (fc, fb)) end else ma = sign(f′a) == sₘ if mc || mb || ma # D = 1 as, bs = lmm_coefficients(LithBoonkkampIJzerman{3,1}(), (a, c, b), (fa, fc, fb)) h = -fb d₀ = -sum(as .* (a, c, b)) mb && (d₀ += h * bs[end] / f′b) # only when helpful mc && (d₀ += h * bs[end - 1] / f′c) ma && (d₀ += h * bs[end - 2] / f′a) else d₀ = lmm(LithBoonkkampIJzerman{3,0}(), (a, c, b), (fa, fc, fb)) end end # If the step is smaller than the tolerance, use the tolerance as step size. xatol, xrtol = options.xabstol, options.xreltol δ = xatol + abs(b) * xrtol Δ₀ = b - d₀ if abs(Δ₀) <= δ d₀ = b - sign(Δ₀) * δ end # compare to bisection step; extra function evaluation d₁ = a + (b - a) * (0.5) #_middle(a, b) f₀, Δf₀ = F(d₀) f₁, Δf₁ = F(d₁) # interpolation outside a,b or bisection better use that d::T, fd::S, f′d::S = zero(T), zero(S), zero(S) if (abs(f₀) < abs(f₁)) && (min(a, b) < d₀ < max(a, b)) d, fd, f′d = d₀, f₀, f₀ / Δf₀# interp else d, fd, f′d = d₁, f₁, f₁ / Δf₁# bisection end # either [a,d] a bracket or [d,b] # [a < d] < b ...c -- b -> d, c-> b (update?) # a < [d < b] ...c -- a -> d (update?) if sign(fa) * sign(fd) <= 0 c, fc, f′c = b, fb, f′b b, fb, f′b = d, fd, f′d else a, fa, f′a = d, fd, f′d end # a,b bracket; keep |fb| ≤ |fa| if abs(fa) < abs(fb) c, fc, f′c = b, fb, f′b a, b, fa, fb, f′a, f′b = b, a, fb, fa, f′b, f′a end incfn(l, 3) @reset state.xn1 = b @reset state.xn0 = a @reset state.c = c @reset state.fxn1 = fb @reset state.fxn0 = fa @reset state.fc = fc @reset state.fp0 = f′a @reset state.fpc = f′c @reset state.fp1 = f′b return (state, false) end function default_tolerances( ::M, ::Type{T}, ::Type{S}, ) where {M<:LithBoonkkampIJzermanBracket,T,S} xatol = 2eps(T) xrtol = zero(one(T)) atol = zero(float(one(S))) * oneunit(S) rtol = 2eps(float(one(S))) * one(S) maxevals = typemax(Int) strict = true (xatol, xrtol, atol, rtol, maxevals, strict) end ### ------ # Script used to generate expressions # # Finds expressions by assuming an interpolating polynomial # goes through the points. From (20) in the paper # some cases take a **long** time to run. # At some point, early on, this gets to be more of an academic exercise than # a performant solution #= ------- using SymPy # see Ansatz (20) on p10 function inverse_polynomial_interpretation(s=2,d=2) @vars y hs = [Sym("h$i") for i ∈ 0:(1+d)*s-1] xs = [Sym("x$i") for i ∈ 0:s-1] fs = [Sym("f$i") for i ∈ 0:s-1] f′s = [Sym("f′$i") for i ∈ 0:s-1] f′′s = [Sym("f′′$i") for i ∈ 0:s-1] f′′′s = [Sym("f′′′$i") for i ∈ 0:s-1] f′′′′s = [Sym("f′′′′$i") for i ∈ 0:s-1] f′′′′′s = [Sym("f′′′′′$i") for i ∈ 0:s-1] f′′′′′′s = [Sym("f′′′′′′$i") for i ∈ 0:s-1] h0 = first(hs) H(y) = sum(hs[i+1]*(y-fs[s])^i for i ∈ 0:(1+d)*s-1) Hⁱ = H⁰ = H(y) Hⁱs = eltype(H⁰)[] for i ∈ 1:d Hⁱ = diff(Hⁱ,y) push!(Hⁱs, Hⁱ) end eqs = Sym[subs(H(fs[i]), Dict(h0=>xs[s])) - xs[i] for i ∈ 1:s-1] for i ∈ 1:s # cf. Liptag f1,f2,f3,f4,f5,f6 = f′s[i],f′′s[i],f′′′s[i],f′′′′s[i],f′′′′′s[i],f′′′′′′s[i] g′ = 1/f1 g′′ = -f2/f1^3 g′′′ = (3*f2^2 - f1*f3)/(f1^5) g′′′′ = -(15*f2^2 + 10*f1*f2*f3+f1^2*f4)/f1^7 g′′′′′ = (105*f2^4 -105*f1*f2^2*f3 + 10*f1^2*f3^2 + 15*f1^2*f2*f4 -f1^3*f5)/f1^9 g′′′′′′ = (-f1^4*f6 + 21*f1^3*f2*f5 + 35*f1^3*f3*f4 - 210*f1^2*f2^2*f4 - 280*f1^2*f2*f3^2 + 1260*f1*f2^3*f3 - 945*f2^5)/f1^11 gⁱs = [g′,g′′,g′′′, g′′′′,g′′′′′,g′′′′′′] for j ∈ 1:d push!(eqs, subs(Hⁱs[j], Dict(y=>fs[i], h0=>xs[s])) - gⁱs[j]) end end ϕ = sympy.linsolve(eqs, hs[2:end]...) ϕ = first(elements(ϕ)) ϕ = Sym.(convert(Tuple, ϕ.__pyobject__)) D = Dict{Any,Any}(h0=>xs[s]) for i in 1:(d+1)*s-1 D[hs[i+1]] = ϕ[i] end subs(H(0), D) |> simplify end # For g = f⁻¹ return [g', g'', g''',..., g⁽ⁿ⁾] # (cf [Liptaj](https://vixra.org/pdf/1703.0295v1.pdf) function liptag(N) @vars x₀ Δₓ fs = [Sym("f$i") for i ∈ 1:N] gs = [Sym("g$i") for i ∈ 1:N] a(i) = fs[i]/factorial(i) b(i) = gs[i]/factorial(i) gᵏs = [1/fs[1]] for n ∈ 2:N Δy = sum(a(j) * Δₓ^j for j ∈ 1:n) l = x₀ + Δₓ r = x₀ + sum(b(i)*Δy^i for i ∈ 1:n) ϕ = solve(l-r, gs[n])[1] for j ∈ 1:n-1 ϕ = subs(ϕ, gs[j] => gᵏs[j]) end L = limit(ϕ, Δₓ => 0) push!(gᵏs, L) end gᵏs end =# # have computed these # S/D 0 1 2 3 4 5 6 # 1 x ✓ ✓ ✓ ✓ ✓ ✓ # 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ # 3 ✓ ✓ - - x x x # 4 ✓ - x x x x x # 5 ✓ x x x x x x # 6 - x x x x x x # - can be found with script, but answers are too long for # inclusion here ## We have two means to do this: ## Using coefficients as,bs, ... returned by lmm_coefficients ## x = ∑ aᵢxᵢ + ∑ⱼ₊₁ⁿ ∑ᵢ bʲᵢFʲᵢ, where Fʲ is the jth derivative of g⁻¹ (F¹ = 1/f'...) ## Using a polynomial interpolant, H(y), going through (xᵢ,fʲ(xᵢ)), j ∈ 0:N) function lmm(::Val{S}, ::Val{D}, xs, ys) where {S,D} xi = ntuple(ii -> xs[ii], Val(S)) yi = ntuple(ii -> ntuple(j -> ys[ii][j], Val(S)), Val(D + 1)) lmm(LithBoonkkampIJzerman{S,D}(), xi, yi...) end # secant function lmm(::LithBoonkkampIJzerman{2,0}, xs, fs) x0, x1 = xs f0, f1 = fs (f0 * x1 - f1 * x0) / (f0 - f1) end function lmm(::LithBoonkkampIJzerman{3,0}, xs, fs) x0, x1, x2 = xs f0, f1, f2 = fs ( f0^2 * f1 * x2 - f0^2 * f2 * x1 - f0 * f1^2 * x2 + f0 * f2^2 * x1 + f1^2 * f2 * x0 - f1 * f2^2 * x0 ) / (f0^2 * f1 - f0^2 * f2 - f0 * f1^2 + f0 * f2^2 + f1^2 * f2 - f1 * f2^2) end function lmm(::LithBoonkkampIJzerman{4,0}, xs, fs) x0, x1, x2, x3 = xs f0, f1, f2, f3 = fs ( f0^3 * f1^2 * f2 * x3 - f0^3 * f1^2 * f3 * x2 - f0^3 * f1 * f2^2 * x3 + f0^3 * f1 * f3^2 * x2 + f0^3 * f2^2 * f3 * x1 - f0^3 * f2 * f3^2 * x1 - f0^2 * f1^3 * f2 * x3 + f0^2 * f1^3 * f3 * x2 + f0^2 * f1 * f2^3 * x3 - f0^2 * f1 * f3^3 * x2 - f0^2 * f2^3 * f3 * x1 + f0^2 * f2 * f3^3 * x1 + f0 * f1^3 * f2^2 * x3 - f0 * f1^3 * f3^2 * x2 - f0 * f1^2 * f2^3 * x3 + f0 * f1^2 * f3^3 * x2 + f0 * f2^3 * f3^2 * x1 - f0 * f2^2 * f3^3 * x1 - f1^3 * f2^2 * f3 * x0 + f1^3 * f2 * f3^2 * x0 + f1^2 * f2^3 * f3 * x0 - f1^2 * f2 * f3^3 * x0 - f1 * f2^3 * f3^2 * x0 + f1 * f2^2 * f3^3 * x0 ) / ( f0^3 * f1^2 * f2 - f0^3 * f1^2 * f3 - f0^3 * f1 * f2^2 + f0^3 * f1 * f3^2 + f0^3 * f2^2 * f3 - f0^3 * f2 * f3^2 - f0^2 * f1^3 * f2 + f0^2 * f1^3 * f3 + f0^2 * f1 * f2^3 - f0^2 * f1 * f3^3 - f0^2 * f2^3 * f3 + f0^2 * f2 * f3^3 + f0 * f1^3 * f2^2 - f0 * f1^3 * f3^2 - f0 * f1^2 * f2^3 + f0 * f1^2 * f3^3 + f0 * f2^3 * f3^2 - f0 * f2^2 * f3^3 - f1^3 * f2^2 * f3 + f1^3 * f2 * f3^2 + f1^2 * f2^3 * f3 - f1^2 * f2 * f3^3 - f1 * f2^3 * f3^2 + f1 * f2^2 * f3^3 ) end function lmm(::LithBoonkkampIJzerman{5,0}, xs, fs) x0, x1, x2, x3, x4 = xs f0, f1, f2, f3, f4 = fs ( f0^4 * f1^3 * f2^2 * f3 * x4 - f0^4 * f1^3 * f2^2 * f4 * x3 - f0^4 * f1^3 * f2 * f3^2 * x4 + f0^4 * f1^3 * f2 * f4^2 * x3 + f0^4 * f1^3 * f3^2 * f4 * x2 - f0^4 * f1^3 * f3 * f4^2 * x2 - f0^4 * f1^2 * f2^3 * f3 * x4 + f0^4 * f1^2 * f2^3 * f4 * x3 + f0^4 * f1^2 * f2 * f3^3 * x4 - f0^4 * f1^2 * f2 * f4^3 * x3 - f0^4 * f1^2 * f3^3 * f4 * x2 + f0^4 * f1^2 * f3 * f4^3 * x2 + f0^4 * f1 * f2^3 * f3^2 * x4 - f0^4 * f1 * f2^3 * f4^2 * x3 - f0^4 * f1 * f2^2 * f3^3 * x4 + f0^4 * f1 * f2^2 * f4^3 * x3 + f0^4 * f1 * f3^3 * f4^2 * x2 - f0^4 * f1 * f3^2 * f4^3 * x2 - f0^4 * f2^3 * f3^2 * f4 * x1 + f0^4 * f2^3 * f3 * f4^2 * x1 + f0^4 * f2^2 * f3^3 * f4 * x1 - f0^4 * f2^2 * f3 * f4^3 * x1 - f0^4 * f2 * f3^3 * f4^2 * x1 + f0^4 * f2 * f3^2 * f4^3 * x1 - f0^3 * f1^4 * f2^2 * f3 * x4 + f0^3 * f1^4 * f2^2 * f4 * x3 + f0^3 * f1^4 * f2 * f3^2 * x4 - f0^3 * f1^4 * f2 * f4^2 * x3 - f0^3 * f1^4 * f3^2 * f4 * x2 + f0^3 * f1^4 * f3 * f4^2 * x2 + f0^3 * f1^2 * f2^4 * f3 * x4 - f0^3 * f1^2 * f2^4 * f4 * x3 - f0^3 * f1^2 * f2 * f3^4 * x4 + f0^3 * f1^2 * f2 * f4^4 * x3 + f0^3 * f1^2 * f3^4 * f4 * x2 - f0^3 * f1^2 * f3 * f4^4 * x2 - f0^3 * f1 * f2^4 * f3^2 * x4 + f0^3 * f1 * f2^4 * f4^2 * x3 + f0^3 * f1 * f2^2 * f3^4 * x4 - f0^3 * f1 * f2^2 * f4^4 * x3 - f0^3 * f1 * f3^4 * f4^2 * x2 + f0^3 * f1 * f3^2 * f4^4 * x2 + f0^3 * f2^4 * f3^2 * f4 * x1 - f0^3 * f2^4 * f3 * f4^2 * x1 - f0^3 * f2^2 * f3^4 * f4 * x1 + f0^3 * f2^2 * f3 * f4^4 * x1 + f0^3 * f2 * f3^4 * f4^2 * x1 - f0^3 * f2 * f3^2 * f4^4 * x1 + f0^2 * f1^4 * f2^3 * f3 * x4 - f0^2 * f1^4 * f2^3 * f4 * x3 - f0^2 * f1^4 * f2 * f3^3 * x4 + f0^2 * f1^4 * f2 * f4^3 * x3 + f0^2 * f1^4 * f3^3 * f4 * x2 - f0^2 * f1^4 * f3 * f4^3 * x2 - f0^2 * f1^3 * f2^4 * f3 * x4 + f0^2 * f1^3 * f2^4 * f4 * x3 + f0^2 * f1^3 * f2 * f3^4 * x4 - f0^2 * f1^3 * f2 * f4^4 * x3 - f0^2 * f1^3 * f3^4 * f4 * x2 + f0^2 * f1^3 * f3 * f4^4 * x2 + f0^2 * f1 * f2^4 * f3^3 * x4 - f0^2 * f1 * f2^4 * f4^3 * x3 - f0^2 * f1 * f2^3 * f3^4 * x4 + f0^2 * f1 * f2^3 * f4^4 * x3 + f0^2 * f1 * f3^4 * f4^3 * x2 - f0^2 * f1 * f3^3 * f4^4 * x2 - f0^2 * f2^4 * f3^3 * f4 * x1 + f0^2 * f2^4 * f3 * f4^3 * x1 + f0^2 * f2^3 * f3^4 * f4 * x1 - f0^2 * f2^3 * f3 * f4^4 * x1 - f0^2 * f2 * f3^4 * f4^3 * x1 + f0^2 * f2 * f3^3 * f4^4 * x1 - f0 * f1^4 * f2^3 * f3^2 * x4 + f0 * f1^4 * f2^3 * f4^2 * x3 + f0 * f1^4 * f2^2 * f3^3 * x4 - f0 * f1^4 * f2^2 * f4^3 * x3 - f0 * f1^4 * f3^3 * f4^2 * x2 + f0 * f1^4 * f3^2 * f4^3 * x2 + f0 * f1^3 * f2^4 * f3^2 * x4 - f0 * f1^3 * f2^4 * f4^2 * x3 - f0 * f1^3 * f2^2 * f3^4 * x4 + f0 * f1^3 * f2^2 * f4^4 * x3 + f0 * f1^3 * f3^4 * f4^2 * x2 - f0 * f1^3 * f3^2 * f4^4 * x2 - f0 * f1^2 * f2^4 * f3^3 * x4 + f0 * f1^2 * f2^4 * f4^3 * x3 + f0 * f1^2 * f2^3 * f3^4 * x4 - f0 * f1^2 * f2^3 * f4^4 * x3 - f0 * f1^2 * f3^4 * f4^3 * x2 + f0 * f1^2 * f3^3 * f4^4 * x2 + f0 * f2^4 * f3^3 * f4^2 * x1 - f0 * f2^4 * f3^2 * f4^3 * x1 - f0 * f2^3 * f3^4 * f4^2 * x1 + f0 * f2^3 * f3^2 * f4^4 * x1 + f0 * f2^2 * f3^4 * f4^3 * x1 - f0 * f2^2 * f3^3 * f4^4 * x1 + f1^4 * f2^3 * f3^2 * f4 * x0 - f1^4 * f2^3 * f3 * f4^2 * x0 - f1^4 * f2^2 * f3^3 * f4 * x0 + f1^4 * f2^2 * f3 * f4^3 * x0 + f1^4 * f2 * f3^3 * f4^2 * x0 - f1^4 * f2 * f3^2 * f4^3 * x0 - f1^3 * f2^4 * f3^2 * f4 * x0 + f1^3 * f2^4 * f3 * f4^2 * x0 + f1^3 * f2^2 * f3^4 * f4 * x0 - f1^3 * f2^2 * f3 * f4^4 * x0 - f1^3 * f2 * f3^4 * f4^2 * x0 + f1^3 * f2 * f3^2 * f4^4 * x0 + f1^2 * f2^4 * f3^3 * f4 * x0 - f1^2 * f2^4 * f3 * f4^3 * x0 - f1^2 * f2^3 * f3^4 * f4 * x0 + f1^2 * f2^3 * f3 * f4^4 * x0 + f1^2 * f2 * f3^4 * f4^3 * x0 - f1^2 * f2 * f3^3 * f4^4 * x0 - f1 * f2^4 * f3^3 * f4^2 * x0 + f1 * f2^4 * f3^2 * f4^3 * x0 + f1 * f2^3 * f3^4 * f4^2 * x0 - f1 * f2^3 * f3^2 * f4^4 * x0 - f1 * f2^2 * f3^4 * f4^3 * x0 + f1 * f2^2 * f3^3 * f4^4 * x0 ) / ( f0^4 * f1^3 * f2^2 * f3 - f0^4 * f1^3 * f2^2 * f4 - f0^4 * f1^3 * f2 * f3^2 + f0^4 * f1^3 * f2 * f4^2 + f0^4 * f1^3 * f3^2 * f4 - f0^4 * f1^3 * f3 * f4^2 - f0^4 * f1^2 * f2^3 * f3 + f0^4 * f1^2 * f2^3 * f4 + f0^4 * f1^2 * f2 * f3^3 - f0^4 * f1^2 * f2 * f4^3 - f0^4 * f1^2 * f3^3 * f4 + f0^4 * f1^2 * f3 * f4^3 + f0^4 * f1 * f2^3 * f3^2 - f0^4 * f1 * f2^3 * f4^2 - f0^4 * f1 * f2^2 * f3^3 + f0^4 * f1 * f2^2 * f4^3 + f0^4 * f1 * f3^3 * f4^2 - f0^4 * f1 * f3^2 * f4^3 - f0^4 * f2^3 * f3^2 * f4 + f0^4 * f2^3 * f3 * f4^2 + f0^4 * f2^2 * f3^3 * f4 - f0^4 * f2^2 * f3 * f4^3 - f0^4 * f2 * f3^3 * f4^2 + f0^4 * f2 * f3^2 * f4^3 - f0^3 * f1^4 * f2^2 * f3 + f0^3 * f1^4 * f2^2 * f4 + f0^3 * f1^4 * f2 * f3^2 - f0^3 * f1^4 * f2 * f4^2 - f0^3 * f1^4 * f3^2 * f4 + f0^3 * f1^4 * f3 * f4^2 + f0^3 * f1^2 * f2^4 * f3 - f0^3 * f1^2 * f2^4 * f4 - f0^3 * f1^2 * f2 * f3^4 + f0^3 * f1^2 * f2 * f4^4 + f0^3 * f1^2 * f3^4 * f4 - f0^3 * f1^2 * f3 * f4^4 - f0^3 * f1 * f2^4 * f3^2 + f0^3 * f1 * f2^4 * f4^2 + f0^3 * f1 * f2^2 * f3^4 - f0^3 * f1 * f2^2 * f4^4 - f0^3 * f1 * f3^4 * f4^2 + f0^3 * f1 * f3^2 * f4^4 + f0^3 * f2^4 * f3^2 * f4 - f0^3 * f2^4 * f3 * f4^2 - f0^3 * f2^2 * f3^4 * f4 + f0^3 * f2^2 * f3 * f4^4 + f0^3 * f2 * f3^4 * f4^2 - f0^3 * f2 * f3^2 * f4^4 + f0^2 * f1^4 * f2^3 * f3 - f0^2 * f1^4 * f2^3 * f4 - f0^2 * f1^4 * f2 * f3^3 + f0^2 * f1^4 * f2 * f4^3 + f0^2 * f1^4 * f3^3 * f4 - f0^2 * f1^4 * f3 * f4^3 - f0^2 * f1^3 * f2^4 * f3 + f0^2 * f1^3 * f2^4 * f4 + f0^2 * f1^3 * f2 * f3^4 - f0^2 * f1^3 * f2 * f4^4 - f0^2 * f1^3 * f3^4 * f4 + f0^2 * f1^3 * f3 * f4^4 + f0^2 * f1 * f2^4 * f3^3 - f0^2 * f1 * f2^4 * f4^3 - f0^2 * f1 * f2^3 * f3^4 + f0^2 * f1 * f2^3 * f4^4 + f0^2 * f1 * f3^4 * f4^3 - f0^2 * f1 * f3^3 * f4^4 - f0^2 * f2^4 * f3^3 * f4 + f0^2 * f2^4 * f3 * f4^3 + f0^2 * f2^3 * f3^4 * f4 - f0^2 * f2^3 * f3 * f4^4 - f0^2 * f2 * f3^4 * f4^3 + f0^2 * f2 * f3^3 * f4^4 - f0 * f1^4 * f2^3 * f3^2 + f0 * f1^4 * f2^3 * f4^2 + f0 * f1^4 * f2^2 * f3^3 - f0 * f1^4 * f2^2 * f4^3 - f0 * f1^4 * f3^3 * f4^2 + f0 * f1^4 * f3^2 * f4^3 + f0 * f1^3 * f2^4 * f3^2 - f0 * f1^3 * f2^4 * f4^2 - f0 * f1^3 * f2^2 * f3^4 + f0 * f1^3 * f2^2 * f4^4 + f0 * f1^3 * f3^4 * f4^2 - f0 * f1^3 * f3^2 * f4^4 - f0 * f1^2 * f2^4 * f3^3 + f0 * f1^2 * f2^4 * f4^3 + f0 * f1^2 * f2^3 * f3^4 - f0 * f1^2 * f2^3 * f4^4 - f0 * f1^2 * f3^4 * f4^3 + f0 * f1^2 * f3^3 * f4^4 + f0 * f2^4 * f3^3 * f4^2 - f0 * f2^4 * f3^2 * f4^3 - f0 * f2^3 * f3^4 * f4^2 + f0 * f2^3 * f3^2 * f4^4 + f0 * f2^2 * f3^4 * f4^3 - f0 * f2^2 * f3^3 * f4^4 + f1^4 * f2^3 * f3^2 * f4 - f1^4 * f2^3 * f3 * f4^2 - f1^4 * f2^2 * f3^3 * f4 + f1^4 * f2^2 * f3 * f4^3 + f1^4 * f2 * f3^3 * f4^2 - f1^4 * f2 * f3^2 * f4^3 - f1^3 * f2^4 * f3^2 * f4 + f1^3 * f2^4 * f3 * f4^2 + f1^3 * f2^2 * f3^4 * f4 - f1^3 * f2^2 * f3 * f4^4 - f1^3 * f2 * f3^4 * f4^2 + f1^3 * f2 * f3^2 * f4^4 + f1^2 * f2^4 * f3^3 * f4 - f1^2 * f2^4 * f3 * f4^3 - f1^2 * f2^3 * f3^4 * f4 + f1^2 * f2^3 * f3 * f4^4 + f1^2 * f2 * f3^4 * f4^3 - f1^2 * f2 * f3^3 * f4^4 - f1 * f2^4 * f3^3 * f4^2 + f1 * f2^4 * f3^2 * f4^3 + f1 * f2^3 * f3^4 * f4^2 - f1 * f2^3 * f3^2 * f4^4 - f1 * f2^2 * f3^4 * f4^3 + f1 * f2^2 * f3^3 * f4^4 ) end function lmm(::LithBoonkkampIJzerman{6,0}, xs, fs) x0, x1, x2, x3, x4, x5 = xs f0, f1, f2, f3, f4, f5 = fs error("not implemented") end ## d = 1; Newton-like # return (as, bs⁰,[bs¹,...,bsⁿ⁻¹]) # where -∑ aᵢ xᵢ + h ⋅ ∑ₙ (∑ bsʲᵢ Fʲᵢ)l function lmm_coefficients(::LithBoonkkampIJzerman{1,1}, xs, fs) a0 = -one(xs[1]) b0 = one(fs[1]) return (a0,), (b0,) end function lmm_coefficients(::LithBoonkkampIJzerman{2,1}, xs, fs) q = fs[1] / fs[2] # from the paper # x2 + a1 x1 + a0x0 = h3 * (b1 * 1/fp1 + b0 * 1/fp0) a0 = (1 - 3q) / (q - 1)^3 a1 = -1 - a0 b0 = q / (q - 1)^2 b1 = q * b0 return (a0, a1), (b0, b1) end function lmm_coefficients(::LithBoonkkampIJzerman{3,1}, xs, fs) # from the paper q0 = fs[3 - 2] / fs[3] q1 = fs[3 - 1] / fs[3] a0 = (q1^2 * (q0 * (3 + 3q1 - 5q0) - q1)) / ((q0 - 1)^3 * (q0 - q1)^3) a1 = (q0^2 * (q1 * (5q1 - 3q0 - 3) + q0)) / ((q1 - 1)^3 * (q0 - q1)^3) a2 = (q0^2 * q1^2 * (3q1 - q0 * (q1 - 3) - 5)) / ((q0 - 1)^3 * (q1 - 1)^3) # minor typo in (27c) b0 = (q0 * q1^2) / ((q0 - 1)^2 * (q0 - q1)^2) b1 = (q0^2 * q1) / ((q0 - q1)^2 * (q1 - 1)^2) b2 = (q0^2 * q1^2) / ((q0 - 1)^2 * (q1 - 1)^2) return (a0, a1, a2), (b0, b1, b2) end function lmm_coefficients(::LithBoonkkampIJzerman{S,1}, xs, fs) where {S} error("not computed") end function lmm(L::LithBoonkkampIJzerman{S,1}, xs, fs, f′s) where {S} as, bs = lmm_coefficients(L, xs, fs) Fs = 1 ./ f′s # F = (g⁻¹)' h = -fs[S] -sum(as[i] * xs[i] for i in 1:S) + h * sum(bs[i] * Fs[i] for i in 1:S) end function lmm(::LithBoonkkampIJzerman{4,1}, xs, fs, f′s) x0, x1, x2, x3 = xs f0, f1, f2, f3 = fs f′0, f′1, f′2, f′3 = f′s # can get with script, but too long as found error("not implemented") end ## d = 2; Halley-like function lmm(::LithBoonkkampIJzerman{1,2}, xs, fs, f′s, f′′s) x0 = xs[1] f0 = fs[1] f′0 = f′s[1] f′′0 = f′′s[1] -f0^2 * f′′0 / (2 * f′0^3) - f0 / f′0 + x0 end function lmm(::LithBoonkkampIJzerman{2,2}, xs, fs, f′s, f′′s) x0, x1 = xs f0, f1 = fs f′0, f′1 = f′s f′′0, f′′1 = f′′s ( -f0^5 * f1^2 * f′0^3 * f′′1 / 2 - f0^5 * f1 * f′0^3 * f′1^2 + f0^5 * f′0^3 * f′1^3 * x1 + f0^4 * f1^3 * f′0^3 * f′′1 + f0^4 * f1^3 * f′1^3 * f′′0 / 2 + 5 * f0^4 * f1^2 * f′0^3 * f′1^2 - 5 * f0^4 * f1 * f′0^3 * f′1^3 * x1 - f0^3 * f1^4 * f′0^3 * f′′1 / 2 - f0^3 * f1^4 * f′1^3 * f′′0 - 4 * f0^3 * f1^3 * f′0^3 * f′1^2 + 4 * f0^3 * f1^3 * f′0^2 * f′1^3 + 10 * f0^3 * f1^2 * f′0^3 * f′1^3 * x1 + f0^2 * f1^5 * f′1^3 * f′′0 / 2 - 5 * f0^2 * f1^4 * f′0^2 * f′1^3 - 10 * f0^2 * f1^3 * f′0^3 * f′1^3 * x0 + f0 * f1^5 * f′0^2 * f′1^3 + 5 * f0 * f1^4 * f′0^3 * f′1^3 * x0 - f1^5 * f′0^3 * f′1^3 * x0 ) / ( f′0^3 * f′1^3 * (f0^5 - 5 * f0^4 * f1 + 10 * f0^3 * f1^2 - 10 * f0^2 * f1^3 + 5 * f0 * f1^4 - f1^5) ) end function lmm(::LithBoonkkampIJzerman{3,2}, xs, fs, f′s, f′′s) x0, x1, x2 = xs f0, f1, f2 = fs f′0, f′1, f′2 = f′s f′′0, f′′1, f′′2 = f′′s ## can get from script, but too long for inclusion here error("not implemented") end function lmm(::LithBoonkkampIJzerman{4,2}, xs, fs, f′s, f′′s) error("Not computed") end ## d = 3 function lmm(::LithBoonkkampIJzerman{1,3}, xs, fs, f′s, f′′s, f′′′s) x0 = xs[1] f0 = fs[1] f′0 = f′s[1] f′′0 = f′′s[1] f′′′0 = f′′′s[1] ( f0^3 * (f′0 * f′′′0 - 3 * f′′0^2) / 6 - f0^2 * f′0^2 * f′′0 / 2 - f0 * f′0^4 + f′0^5 * x0 ) / f′0^5 end function lmm(::LithBoonkkampIJzerman{2,3}, xs, fs, f′s, f′′s, f′′′s) x0, x1 = xs f0, f1 = fs f′0, f′1 = f′s f′′0, f′′1 = f′′s f′′′0, f′′′1 = f′′′s ( f0^7 * f1^3 * f′0^5 * f′1 * f′′′1 - 3 * f0^7 * f1^3 * f′0^5 * f′′1^2 - 3 * f0^7 * f1^2 * f′0^5 * f′1^2 * f′′1 - 6 * f0^7 * f1 * f′0^5 * f′1^4 + 6 * f0^7 * f′0^5 * f′1^5 * x1 - 3 * f0^6 * f1^4 * f′0^5 * f′1 * f′′′1 + 9 * f0^6 * f1^4 * f′0^5 * f′′1^2 + f0^6 * f1^4 * f′0 * f′1^5 * f′′′0 - 3 * f0^6 * f1^4 * f′1^5 * f′′0^2 + 21 * f0^6 * f1^3 * f′0^5 * f′1^2 * f′′1 + 42 * f0^6 * f1^2 * f′0^5 * f′1^4 - 42 * f0^6 * f1 * f′0^5 * f′1^5 * x1 + 3 * f0^5 * f1^5 * f′0^5 * f′1 * f′′′1 - 9 * f0^5 * f1^5 * f′0^5 * f′′1^2 - 3 * f0^5 * f1^5 * f′0 * f′1^5 * f′′′0 + 9 * f0^5 * f1^5 * f′1^5 * f′′0^2 - 33 * f0^5 * f1^4 * f′0^5 * f′1^2 * f′′1 - 15 * f0^5 * f1^4 * f′0^2 * f′1^5 * f′′0 - 126 * f0^5 * f1^3 * f′0^5 * f′1^4 + 126 * f0^5 * f1^2 * f′0^5 * f′1^5 * x1 - f0^4 * f1^6 * f′0^5 * f′1 * f′′′1 + 3 * f0^4 * f1^6 * f′0^5 * f′′1^2 + 3 * f0^4 * f1^6 * f′0 * f′1^5 * f′′′0 - 9 * f0^4 * f1^6 * f′1^5 * f′′0^2 + 15 * f0^4 * f1^5 * f′0^5 * f′1^2 * f′′1 + 33 * f0^4 * f1^5 * f′0^2 * f′1^5 * f′′0 + 90 * f0^4 * f1^4 * f′0^5 * f′1^4 - 90 * f0^4 * f1^4 * f′0^4 * f′1^5 - 210 * f0^4 * f1^3 * f′0^5 * f′1^5 * x1 - f0^3 * f1^7 * f′0 * f′1^5 * f′′′0 + 3 * f0^3 * f1^7 * f′1^5 * f′′0^2 - 21 * f0^3 * f1^6 * f′0^2 * f′1^5 * f′′0 + 126 * f0^3 * f1^5 * f′0^4 * f′1^5 + 210 * f0^3 * f1^4 * f′0^5 * f′1^5 * x0 + 3 * f0^2 * f1^7 * f′0^2 * f′1^5 * f′′0 - 42 * f0^2 * f1^6 * f′0^4 * f′1^5 - 126 * f0^2 * f1^5 * f′0^5 * f′1^5 * x0 + 6 * f0 * f1^7 * f′0^4 * f′1^5 + 42 * f0 * f1^6 * f′0^5 * f′1^5 * x0 - 6 * f1^7 * f′0^5 * f′1^5 * x0 ) / ( 6 * f′0^5 * f′1^5 * ( f0^7 - 7 * f0^6 * f1 + 21 * f0^5 * f1^2 - 35 * f0^4 * f1^3 + 35 * f0^3 * f1^4 - 21 * f0^2 * f1^5 + 7 * f0 * f1^6 - f1^7 ) ) end function lmm(::LithBoonkkampIJzerman{3,3}, xs, fs, f′s, f′′s, f′′′s) x0, x1, x2 = xs f0, f1, f2 = fs f′0, f′1, f′2 = f′s f′′0, f′′1, f′′2 = f′′s f′′′0, f′′′1, f′′′2 = f′′′s # can get from script, but too long for inclusion here error("not implemented") end function lmm(::LithBoonkkampIJzerman{4,3}, xs, fs, f′s, f′′s, f′′′s) x0, x1, x2, x3 = xs f0, f1, f2, f3 = fs f′0, f′1, f′2, f′3 = f′s f′′0, f′′1, f′′2, f′′3 = f′′s f′′′0, f′′′1, f′′′2, f′′′3 = f′′′s error("not computed") end ## d = 4 function lmm(::LithBoonkkampIJzerman{1,4}, xs, fs, f′s, f′′s, f′′′s, f′′′′s) x0 = xs[1] f0 = fs[1] f′0 = f′s[1] f′′0 = f′′s[1] f′′′0 = f′′′s[1] f′′′′0 = f′′′′s[1] ( -f0^4 * (f′0^2 * f′′′′0 + 10 * f′0 * f′′0 * f′′′0 + 15 * f′′0^2) / 24 + f0^3 * f′0^2 * (f′0 * f′′′0 - 3 * f′′0^2) / 6 - f0^2 * f′0^4 * f′′0 / 2 - f0 * f′0^6 + f′0^7 * x0 ) / f′0^7 end function lmm(::LithBoonkkampIJzerman{2,4}, xs, fs, f′s, f′′s, f′′′s, f′′′′s) x0, x1 = xs f0, f1 = fs f′0, f′1 = f′s f′′0, f′′1 = f′′s f′′′0, f′′′1 = f′′′s f′′′′0, f′′′′1 = f′′′′s ( -f0^9 * f1^4 * f′0^7 * f′1^2 * f′′′′1 - 10 * f0^9 * f1^4 * f′0^7 * f′1 * f′′1 * f′′′1 - 15 * f0^9 * f1^4 * f′0^7 * f′′1^2 + 4 * f0^9 * f1^3 * f′0^7 * f′1^3 * f′′′1 - 12 * f0^9 * f1^3 * f′0^7 * f′1^2 * f′′1^2 - 12 * f0^9 * f1^2 * f′0^7 * f′1^4 * f′′1 - 24 * f0^9 * f1 * f′0^7 * f′1^6 + 24 * f0^9 * f′0^7 * f′1^7 * x1 + 4 * f0^8 * f1^5 * f′0^7 * f′1^2 * f′′′′1 + 40 * f0^8 * f1^5 * f′0^7 * f′1 * f′′1 * f′′′1 + 60 * f0^8 * f1^5 * f′0^7 * f′′1^2 + f0^8 * f1^5 * f′0^2 * f′1^7 * f′′′′0 + 10 * f0^8 * f1^5 * f′0 * f′1^7 * f′′0 * f′′′0 + 15 * f0^8 * f1^5 * f′1^7 * f′′0^2 - 36 * f0^8 * f1^4 * f′0^7 * f′1^3 * f′′′1 + 108 * f0^8 * f1^4 * f′0^7 * f′1^2 * f′′1^2 + 108 * f0^8 * f1^3 * f′0^7 * f′1^4 * f′′1 + 216 * f0^8 * f1^2 * f′0^7 * f′1^6 - 216 * f0^8 * f1 * f′0^7 * f′1^7 * x1 - 6 * f0^7 * f1^6 * f′0^7 * f′1^2 * f′′′′1 - 60 * f0^7 * f1^6 * f′0^7 * f′1 * f′′1 * f′′′1 - 90 * f0^7 * f1^6 * f′0^7 * f′′1^2 - 4 * f0^7 * f1^6 * f′0^2 * f′1^7 * f′′′′0 - 40 * f0^7 * f1^6 * f′0 * f′1^7 * f′′0 * f′′′0 - 60 * f0^7 * f1^6 * f′1^7 * f′′0^2 + 84 * f0^7 * f1^5 * f′0^7 * f′1^3 * f′′′1 - 252 * f0^7 * f1^5 * f′0^7 * f′1^2 * f′′1^2 - 24 * f0^7 * f1^5 * f′0^3 * f′1^7 * f′′′0 + 72 * f0^7 * f1^5 * f′0^2 * f′1^7 * f′′0^2 - 432 * f0^7 * f1^4 * f′0^7 * f′1^4 * f′′1 - 864 * f0^7 * f1^3 * f′0^7 * f′1^6 + 864 * f0^7 * f1^2 * f′0^7 * f′1^7 * x1 + 4 * f0^6 * f1^7 * f′0^7 * f′1^2 * f′′′′1 + 40 * f0^6 * f1^7 * f′0^7 * f′1 * f′′1 * f′′′1 + 60 * f0^6 * f1^7 * f′0^7 * f′′1^2 + 6 * f0^6 * f1^7 * f′0^2 * f′1^7 * f′′′′0 + 60 * f0^6 * f1^7 * f′0 * f′1^7 * f′′0 * f′′′0 + 90 * f0^6 * f1^7 * f′1^7 * f′′0^2 - 76 * f0^6 * f1^6 * f′0^7 * f′1^3 * f′′′1 + 228 * f0^6 * f1^6 * f′0^7 * f′1^2 * f′′1^2 + 76 * f0^6 * f1^6 * f′0^3 * f′1^7 * f′′′0 - 228 * f0^6 * f1^6 * f′0^2 * f′1^7 * f′′0^2 + 588 * f0^6 * f1^5 * f′0^7 * f′1^4 * f′′1 + 252 * f0^6 * f1^5 * f′0^4 * f′1^7 * f′′0 + 2016 * f0^6 * f1^4 * f′0^7 * f′1^6 - 2016 * f0^6 * f1^3 * f′0^7 * f′1^7 * x1 - f0^5 * f1^8 * f′0^7 * f′1^2 * f′′′′1 - 10 * f0^5 * f1^8 * f′0^7 * f′1 * f′′1 * f′′′1 - 15 * f0^5 * f1^8 * f′0^7 * f′′1^2 - 4 * f0^5 * f1^8 * f′0^2 * f′1^7 * f′′′′0 - 40 * f0^5 * f1^8 * f′0 * f′1^7 * f′′0 * f′′′0 - 60 * f0^5 * f1^8 * f′1^7 * f′′0^2 + 24 * f0^5 * f1^7 * f′0^7 * f′1^3 * f′′′1 - 72 * f0^5 * f1^7 * f′0^7 * f′1^2 * f′′1^2 - 84 * f0^5 * f1^7 * f′0^3 * f′1^7 * f′′′0 + 252 * f0^5 * f1^7 * f′0^2 * f′1^7 * f′′0^2 - 252 * f0^5 * f1^6 * f′0^7 * f′1^4 * f′′1 - 588 * f0^5 * f1^6 * f′0^4 * f′1^7 * f′′0 - 1344 * f0^5 * f1^5 * f′0^7 * f′1^6 + 1344 * f0^5 * f1^5 * f′0^6 * f′1^7 + 3024 * f0^5 * f1^4 * f′0^7 * f′1^7 * x1 + f0^4 * f1^9 * f′0^2 * f′1^7 * f′′′′0 + 10 * f0^4 * f1^9 * f′0 * f′1^7 * f′′0 * f′′′0 + 15 * f0^4 * f1^9 * f′1^7 * f′′0^2 + 36 * f0^4 * f1^8 * f′0^3 * f′1^7 * f′′′0 - 108 * f0^4 * f1^8 * f′0^2 * f′1^7 * f′′0^2 + 432 * f0^4 * f1^7 * f′0^4 * f′1^7 * f′′0 - 2016 * f0^4 * f1^6 * f′0^6 * f′1^7 - 3024 * f0^4 * f1^5 * f′0^7 * f′1^7 * x0 - 4 * f0^3 * f1^9 * f′0^3 * f′1^7 * f′′′0 + 12 * f0^3 * f1^9 * f′0^2 * f′1^7 * f′′0^2 - 108 * f0^3 * f1^8 * f′0^4 * f′1^7 * f′′0 + 864 * f0^3 * f1^7 * f′0^6 * f′1^7 + 2016 * f0^3 * f1^6 * f′0^7 * f′1^7 * x0 + 12 * f0^2 * f1^9 * f′0^4 * f′1^7 * f′′0 - 216 * f0^2 * f1^8 * f′0^6 * f′1^7 - 864 * f0^2 * f1^7 * f′0^7 * f′1^7 * x0 + 24 * f0 * f1^9 * f′0^6 * f′1^7 + 216 * f0 * f1^8 * f′0^7 * f′1^7 * x0 - 24 * f1^9 * f′0^7 * f′1^7 * x0 ) / ( 24 * f′0^7 * f′1^7 * ( f0^9 - 9 * f0^8 * f1 + 36 * f0^7 * f1^2 - 84 * f0^6 * f1^3 + 126 * f0^5 * f1^4 - 126 * f0^4 * f1^5 + 84 * f0^3 * f1^6 - 36 * f0^2 * f1^7 + 9 * f0 * f1^8 - f1^9 ) ) end function lmm(::LithBoonkkampIJzerman{3,4}, xs, fs, f′s, f′′s, f′′′s, f′′′′s) x0, x1, x2 = xs f0, f1, f2 = fs f′0, f′1, f′2 = f′s f′′0, f′′1, f′′2 = f′′s f′′′0, f′′′1, f′′′2 = f′′′s f′′′′0, f′′′′1, f′′′′2 = f′′′′s error("not computed") end # n = 5 function lmm(::LithBoonkkampIJzerman{1,5}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s) x0 = xs[1] f0 = fs[1] f′0 = f′s[1] f′′0 = f′′s[1] f′′′0 = f′′′s[1] f′′′′0 = f′′′′s[1] f′′′′′0 = f′′′′′s[1] ( f0^5 * ( f′0^3 * f′′′′′0 - 15 * f′0^2 * f′′0 * f′′′′0 - 10 * f′0^2 * f′′′0^2 + 105 * f′0 * f′′0^2 * f′′′0 - 105 * f′′0^4 ) - 5 * f0^4 * f′0^2 * (f′0^2 * f′′′′0 + 10 * f′0 * f′′0 * f′′′0 + 15 * f′′0^2) + 20 * f0^3 * f′0^4 * (f′0 * f′′′0 - 3 * f′′0^2) - 60 * f0^2 * f′0^6 * f′′0 - 120 * f0 * f′0^8 + 120 * f′0^9 * x0 ) / (120 * f′0^9) end function lmm(::LithBoonkkampIJzerman{2,5}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s) x0, x1 = xs f0, f1 = fs f′0, f′1 = f′s f′′0, f′′1 = f′′s f′′′0, f′′′1 = f′′′s f′′′′0, f′′′′1 = f′′′′s f′′′′′0, f′′′′′1 = f′′′′′s ( f0^11 * f1^5 * f′0^9 * f′1^3 * f′′′′′1 - 15 * f0^11 * f1^5 * f′0^9 * f′1^2 * f′′1 * f′′′′1 - 10 * f0^11 * f1^5 * f′0^9 * f′1^2 * f′′′1^2 + 105 * f0^11 * f1^5 * f′0^9 * f′1 * f′′1^2 * f′′′1 - 105 * f0^11 * f1^5 * f′0^9 * f′′1^4 - 5 * f0^11 * f1^4 * f′0^9 * f′1^4 * f′′′′1 - 50 * f0^11 * f1^4 * f′0^9 * f′1^3 * f′′1 * f′′′1 - 75 * f0^11 * f1^4 * f′0^9 * f′1^2 * f′′1^2 + 20 * f0^11 * f1^3 * f′0^9 * f′1^5 * f′′′1 - 60 * f0^11 * f1^3 * f′0^9 * f′1^4 * f′′1^2 - 60 * f0^11 * f1^2 * f′0^9 * f′1^6 * f′′1 - 120 * f0^11 * f1 * f′0^9 * f′1^8 + 120 * f0^11 * f′0^9 * f′1^9 * x1 - 5 * f0^10 * f1^6 * f′0^9 * f′1^3 * f′′′′′1 + 75 * f0^10 * f1^6 * f′0^9 * f′1^2 * f′′1 * f′′′′1 + 50 * f0^10 * f1^6 * f′0^9 * f′1^2 * f′′′1^2 - 525 * f0^10 * f1^6 * f′0^9 * f′1 * f′′1^2 * f′′′1 + 525 * f0^10 * f1^6 * f′0^9 * f′′1^4 + f0^10 * f1^6 * f′0^3 * f′1^9 * f′′′′′0 - 15 * f0^10 * f1^6 * f′0^2 * f′1^9 * f′′0 * f′′′′0 - 10 * f0^10 * f1^6 * f′0^2 * f′1^9 * f′′′0^2 + 105 * f0^10 * f1^6 * f′0 * f′1^9 * f′′0^2 * f′′′0 - 105 * f0^10 * f1^6 * f′1^9 * f′′0^4 + 55 * f0^10 * f1^5 * f′0^9 * f′1^4 * f′′′′1 + 550 * f0^10 * f1^5 * f′0^9 * f′1^3 * f′′1 * f′′′1 + 825 * f0^10 * f1^5 * f′0^9 * f′1^2 * f′′1^2 - 220 * f0^10 * f1^4 * f′0^9 * f′1^5 * f′′′1 + 660 * f0^10 * f1^4 * f′0^9 * f′1^4 * f′′1^2 + 660 * f0^10 * f1^3 * f′0^9 * f′1^6 * f′′1 + 1320 * f0^10 * f1^2 * f′0^9 * f′1^8 - 1320 * f0^10 * f1 * f′0^9 * f′1^9 * x1 + 10 * f0^9 * f1^7 * f′0^9 * f′1^3 * f′′′′′1 - 150 * f0^9 * f1^7 * f′0^9 * f′1^2 * f′′1 * f′′′′1 - 100 * f0^9 * f1^7 * f′0^9 * f′1^2 * f′′′1^2 + 1050 * f0^9 * f1^7 * f′0^9 * f′1 * f′′1^2 * f′′′1 - 1050 * f0^9 * f1^7 * f′0^9 * f′′1^4 - 5 * f0^9 * f1^7 * f′0^3 * f′1^9 * f′′′′′0 + 75 * f0^9 * f1^7 * f′0^2 * f′1^9 * f′′0 * f′′′′0 + 50 * f0^9 * f1^7 * f′0^2 * f′1^9 * f′′′0^2 - 525 * f0^9 * f1^7 * f′0 * f′1^9 * f′′0^2 * f′′′0 + 525 * f0^9 * f1^7 * f′1^9 * f′′0^4 - 170 * f0^9 * f1^6 * f′0^9 * f′1^4 * f′′′′1 - 1700 * f0^9 * f1^6 * f′0^9 * f′1^3 * f′′1 * f′′′1 - 2550 * f0^9 * f1^6 * f′0^9 * f′1^2 * f′′1^2 - 35 * f0^9 * f1^6 * f′0^4 * f′1^9 * f′′′′0 - 350 * f0^9 * f1^6 * f′0^3 * f′1^9 * f′′0 * f′′′0 - 525 * f0^9 * f1^6 * f′0^2 * f′1^9 * f′′0^2 + 1100 * f0^9 * f1^5 * f′0^9 * f′1^5 * f′′′1 - 3300 * f0^9 * f1^5 * f′0^9 * f′1^4 * f′′1^2 - 3300 * f0^9 * f1^4 * f′0^9 * f′1^6 * f′′1 - 6600 * f0^9 * f1^3 * f′0^9 * f′1^8 + 6600 * f0^9 * f1^2 * f′0^9 * f′1^9 * x1 - 10 * f0^8 * f1^8 * f′0^9 * f′1^3 * f′′′′′1 + 150 * f0^8 * f1^8 * f′0^9 * f′1^2 * f′′1 * f′′′′1 + 100 * f0^8 * f1^8 * f′0^9 * f′1^2 * f′′′1^2 - 1050 * f0^8 * f1^8 * f′0^9 * f′1 * f′′1^2 * f′′′1 + 1050 * f0^8 * f1^8 * f′0^9 * f′′1^4 + 10 * f0^8 * f1^8 * f′0^3 * f′1^9 * f′′′′′0 - 150 * f0^8 * f1^8 * f′0^2 * f′1^9 * f′′0 * f′′′′0 - 100 * f0^8 * f1^8 * f′0^2 * f′1^9 * f′′′0^2 + 1050 * f0^8 * f1^8 * f′0 * f′1^9 * f′′0^2 * f′′′0 - 1050 * f0^8 * f1^8 * f′1^9 * f′′0^4 + 230 * f0^8 * f1^7 * f′0^9 * f′1^4 * f′′′′1 + 2300 * f0^8 * f1^7 * f′0^9 * f′1^3 * f′′1 * f′′′1 + 3450 * f0^8 * f1^7 * f′0^9 * f′1^2 * f′′1^2 + 145 * f0^8 * f1^7 * f′0^4 * f′1^9 * f′′′′0 + 1450 * f0^8 * f1^7 * f′0^3 * f′1^9 * f′′0 * f′′′0 + 2175 * f0^8 * f1^7 * f′0^2 * f′1^9 * f′′0^2 - 2180 * f0^8 * f1^6 * f′0^9 * f′1^5 * f′′′1 + 6540 * f0^8 * f1^6 * f′0^9 * f′1^4 * f′′1^2 + 560 * f0^8 * f1^6 * f′0^5 * f′1^9 * f′′′0 - 1680 * f0^8 * f1^6 * f′0^4 * f′1^9 * f′′0^2 + 9900 * f0^8 * f1^5 * f′0^9 * f′1^6 * f′′1 + 19800 * f0^8 * f1^4 * f′0^9 * f′1^8 - 19800 * f0^8 * f1^3 * f′0^9 * f′1^9 * x1 + 5 * f0^7 * f1^9 * f′0^9 * f′1^3 * f′′′′′1 - 75 * f0^7 * f1^9 * f′0^9 * f′1^2 * f′′1 * f′′′′1 - 50 * f0^7 * f1^9 * f′0^9 * f′1^2 * f′′′1^2 + 525 * f0^7 * f1^9 * f′0^9 * f′1 * f′′1^2 * f′′′1 - 525 * f0^7 * f1^9 * f′0^9 * f′′1^4 - 10 * f0^7 * f1^9 * f′0^3 * f′1^9 * f′′′′′0 + 150 * f0^7 * f1^9 * f′0^2 * f′1^9 * f′′0 * f′′′′0 + 100 * f0^7 * f1^9 * f′0^2 * f′1^9 * f′′′0^2 - 1050 * f0^7 * f1^9 * f′0 * f′1^9 * f′′0^2 * f′′′0 + 1050 * f0^7 * f1^9 * f′1^9 * f′′0^4 - 145 * f0^7 * f1^8 * f′0^9 * f′1^4 * f′′′′1 - 1450 * f0^7 * f1^8 * f′0^9 * f′1^3 * f′′1 * f′′′1 - 2175 * f0^7 * f1^8 * f′0^9 * f′1^2 * f′′1^2 - 230 * f0^7 * f1^8 * f′0^4 * f′1^9 * f′′′′0 - 2300 * f0^7 * f1^8 * f′0^3 * f′1^9 * f′′0 * f′′′0 - 3450 * f0^7 * f1^8 * f′0^2 * f′1^9 * f′′0^2 + 1840 * f0^7 * f1^7 * f′0^9 * f′1^5 * f′′′1 - 5520 * f0^7 * f1^7 * f′0^9 * f′1^4 * f′′1^2 - 1840 * f0^7 * f1^7 * f′0^5 * f′1^9 * f′′′0 + 5520 * f0^7 * f1^7 * f′0^4 * f′1^9 * f′′0^2 - 12240 * f0^7 * f1^6 * f′0^9 * f′1^6 * f′′1 - 5040 * f0^7 * f1^6 * f′0^6 * f′1^9 * f′′0 - 39600 * f0^7 * f1^5 * f′0^9 * f′1^8 + 39600 * f0^7 * f1^4 * f′0^9 * f′1^9 * x1 - f0^6 * f1^10 * f′0^9 * f′1^3 * f′′′′′1 + 15 * f0^6 * f1^10 * f′0^9 * f′1^2 * f′′1 * f′′′′1 + 10 * f0^6 * f1^10 * f′0^9 * f′1^2 * f′′′1^2 - 105 * f0^6 * f1^10 * f′0^9 * f′1 * f′′1^2 * f′′′1 + 105 * f0^6 * f1^10 * f′0^9 * f′′1^4 + 5 * f0^6 * f1^10 * f′0^3 * f′1^9 * f′′′′′0 - 75 * f0^6 * f1^10 * f′0^2 * f′1^9 * f′′0 * f′′′′0 - 50 * f0^6 * f1^10 * f′0^2 * f′1^9 * f′′′0^2 + 525 * f0^6 * f1^10 * f′0 * f′1^9 * f′′0^2 * f′′′0 - 525 * f0^6 * f1^10 * f′1^9 * f′′0^4 + 35 * f0^6 * f1^9 * f′0^9 * f′1^4 * f′′′′1 + 350 * f0^6 * f1^9 * f′0^9 * f′1^3 * f′′1 * f′′′1 + 525 * f0^6 * f1^9 * f′0^9 * f′1^2 * f′′1^2 + 170 * f0^6 * f1^9 * f′0^4 * f′1^9 * f′′′′0 + 1700 * f0^6 * f1^9 * f′0^3 * f′1^9 * f′′0 * f′′′0 + 2550 * f0^6 * f1^9 * f′0^2 * f′1^9 * f′′0^2 - 560 * f0^6 * f1^8 * f′0^9 * f′1^5 * f′′′1 + 1680 * f0^6 * f1^8 * f′0^9 * f′1^4 * f′′1^2 + 2180 * f0^6 * f1^8 * f′0^5 * f′1^9 * f′′′0 - 6540 * f0^6 * f1^8 * f′0^4 * f′1^9 * f′′0^2 + 5040 * f0^6 * f1^7 * f′0^9 * f′1^6 * f′′1 + 12240 * f0^6 * f1^7 * f′0^6 * f′1^9 * f′′0 + 25200 * f0^6 * f1^6 * f′0^9 * f′1^8 - 25200 * f0^6 * f1^6 * f′0^8 * f′1^9 - 55440 * f0^6 * f1^5 * f′0^9 * f′1^9 * x1 - f0^5 * f1^11 * f′0^3 * f′1^9 * f′′′′′0 + 15 * f0^5 * f1^11 * f′0^2 * f′1^9 * f′′0 * f′′′′0 + 10 * f0^5 * f1^11 * f′0^2 * f′1^9 * f′′′0^2 - 105 * f0^5 * f1^11 * f′0 * f′1^9 * f′′0^2 * f′′′0 + 105 * f0^5 * f1^11 * f′1^9 * f′′0^4 - 55 * f0^5 * f1^10 * f′0^4 * f′1^9 * f′′′′0 - 550 * f0^5 * f1^10 * f′0^3 * f′1^9 * f′′0 * f′′′0 - 825 * f0^5 * f1^10 * f′0^2 * f′1^9 * f′′0^2 - 1100 * f0^5 * f1^9 * f′0^5 * f′1^9 * f′′′0 + 3300 * f0^5 * f1^9 * f′0^4 * f′1^9 * f′′0^2 - 9900 * f0^5 * f1^8 * f′0^6 * f′1^9 * f′′0 + 39600 * f0^5 * f1^7 * f′0^8 * f′1^9 + 55440 * f0^5 * f1^6 * f′0^9 * f′1^9 * x0 + 5 * f0^4 * f1^11 * f′0^4 * f′1^9 * f′′′′0 + 50 * f0^4 * f1^11 * f′0^3 * f′1^9 * f′′0 * f′′′0 + 75 * f0^4 * f1^11 * f′0^2 * f′1^9 * f′′0^2 + 220 * f0^4 * f1^10 * f′0^5 * f′1^9 * f′′′0 - 660 * f0^4 * f1^10 * f′0^4 * f′1^9 * f′′0^2 + 3300 * f0^4 * f1^9 * f′0^6 * f′1^9 * f′′0 - 19800 * f0^4 * f1^8 * f′0^8 * f′1^9 - 39600 * f0^4 * f1^7 * f′0^9 * f′1^9 * x0 - 20 * f0^3 * f1^11 * f′0^5 * f′1^9 * f′′′0 + 60 * f0^3 * f1^11 * f′0^4 * f′1^9 * f′′0^2 - 660 * f0^3 * f1^10 * f′0^6 * f′1^9 * f′′0 + 6600 * f0^3 * f1^9 * f′0^8 * f′1^9 + 19800 * f0^3 * f1^8 * f′0^9 * f′1^9 * x0 + 60 * f0^2 * f1^11 * f′0^6 * f′1^9 * f′′0 - 1320 * f0^2 * f1^10 * f′0^8 * f′1^9 - 6600 * f0^2 * f1^9 * f′0^9 * f′1^9 * x0 + 120 * f0 * f1^11 * f′0^8 * f′1^9 + 1320 * f0 * f1^10 * f′0^9 * f′1^9 * x0 - 120 * f1^11 * f′0^9 * f′1^9 * x0 ) / ( 120 * f′0^9 * f′1^9 * ( f0^11 - 11 * f0^10 * f1 + 55 * f0^9 * f1^2 - 165 * f0^8 * f1^3 + 330 * f0^7 * f1^4 - 462 * f0^6 * f1^5 + 462 * f0^5 * f1^6 - 330 * f0^4 * f1^7 + 165 * f0^3 * f1^8 - 55 * f0^2 * f1^9 + 11 * f0 * f1^10 - f1^11 ) ) end function lmm(::LithBoonkkampIJzerman{3,5}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s) x0, x1, x2 = xs f0, f1, f2 = fs f′0, f′1, f′2 = f′s f′′0, f′′1, f′′2 = f′′s f′′′0, f′′′1, f′′′2 = f′′′s f′′′′0, f′′′′1, f′′′′2 = f′′′′s f′′′′′0, f′′′′′1, f′′′′′2 = f′′′′′s error("not computed") end ## n = 6 function lmm( ::LithBoonkkampIJzerman{1,6}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s, f′′′′′′s, ) x0 = xs[1] f0 = fs[1] f′0 = f′s[1] f′′0 = f′′s[1] f′′′0 = f′′′s[1] f′′′′0 = f′′′′s[1] f′′′′′0 = f′′′′′s[1] f′′′′′′0 = f′′′′′′s[1] ( f0^6 * ( -f′0^4 * f′′′′′′0 + 21 * f′0^3 * f′′0 * f′′′′′0 + 35 * f′0^3 * f′′′0 * f′′′′0 - 210 * f′0^2 * f′′0^2 * f′′′′0 - 280 * f′0^2 * f′′0 * f′′′0^2 + 1260 * f′0 * f′′0^3 * f′′′0 - 945 * f′′0^5 ) + 6 * f0^5 * f′0^2 * ( f′0^3 * f′′′′′0 - 15 * f′0^2 * f′′0 * f′′′′0 - 10 * f′0^2 * f′′′0^2 + 105 * f′0 * f′′0^2 * f′′′0 - 105 * f′′0^4 ) - 30 * f0^4 * f′0^4 * (f′0^2 * f′′′′0 + 10 * f′0 * f′′0 * f′′′0 + 15 * f′′0^2) + 120 * f0^3 * f′0^6 * (f′0 * f′′′0 - 3 * f′′0^2) - 360 * f0^2 * f′0^8 * f′′0 - 720 * f0 * f′0^10 + 720 * f′0^11 * x0 ) / (720 * f′0^11) end function lmm( ::LithBoonkkampIJzerman{2,6}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s, f′′′′′′s, ) x0, x1 = xs f0, f1 = fs f′0, f′1 = f′s f′′0, f′′1 = f′′s f′′′0, f′′′1 = f′′′s f′′′′0, f′′′′1 = f′′′′s f′′′′′0, f′′′′′1 = f′′′′′s f′′′′′′0, f′′′′′′1 = f′′′′′′s ( -f0^13 * f1^6 * f′0^11 * f′1^4 * f′′′′′′1 + 21 * f0^13 * f1^6 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 + 35 * f0^13 * f1^6 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 - 210 * f0^13 * f1^6 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 - 280 * f0^13 * f1^6 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 + 1260 * f0^13 * f1^6 * f′0^11 * f′1 * f′′1^3 * f′′′1 - 945 * f0^13 * f1^6 * f′0^11 * f′′1^5 + 6 * f0^13 * f1^5 * f′0^11 * f′1^5 * f′′′′′1 - 90 * f0^13 * f1^5 * f′0^11 * f′1^4 * f′′1 * f′′′′1 - 60 * f0^13 * f1^5 * f′0^11 * f′1^4 * f′′′1^2 + 630 * f0^13 * f1^5 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 - 630 * f0^13 * f1^5 * f′0^11 * f′1^2 * f′′1^4 - 30 * f0^13 * f1^4 * f′0^11 * f′1^6 * f′′′′1 - 300 * f0^13 * f1^4 * f′0^11 * f′1^5 * f′′1 * f′′′1 - 450 * f0^13 * f1^4 * f′0^11 * f′1^4 * f′′1^2 + 120 * f0^13 * f1^3 * f′0^11 * f′1^7 * f′′′1 - 360 * f0^13 * f1^3 * f′0^11 * f′1^6 * f′′1^2 - 360 * f0^13 * f1^2 * f′0^11 * f′1^8 * f′′1 - 720 * f0^13 * f1 * f′0^11 * f′1^10 + 720 * f0^13 * f′0^11 * f′1^11 * x1 + 6 * f0^12 * f1^7 * f′0^11 * f′1^4 * f′′′′′′1 - 126 * f0^12 * f1^7 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 - 210 * f0^12 * f1^7 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 + 1260 * f0^12 * f1^7 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 + 1680 * f0^12 * f1^7 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 - 7560 * f0^12 * f1^7 * f′0^11 * f′1 * f′′1^3 * f′′′1 + 5670 * f0^12 * f1^7 * f′0^11 * f′′1^5 + f0^12 * f1^7 * f′0^4 * f′1^11 * f′′′′′′0 - 21 * f0^12 * f1^7 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 - 35 * f0^12 * f1^7 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 + 210 * f0^12 * f1^7 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 + 280 * f0^12 * f1^7 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 - 1260 * f0^12 * f1^7 * f′0 * f′1^11 * f′′0^3 * f′′′0 + 945 * f0^12 * f1^7 * f′1^11 * f′′0^5 - 78 * f0^12 * f1^6 * f′0^11 * f′1^5 * f′′′′′1 + 1170 * f0^12 * f1^6 * f′0^11 * f′1^4 * f′′1 * f′′′′1 + 780 * f0^12 * f1^6 * f′0^11 * f′1^4 * f′′′1^2 - 8190 * f0^12 * f1^6 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 + 8190 * f0^12 * f1^6 * f′0^11 * f′1^2 * f′′1^4 + 390 * f0^12 * f1^5 * f′0^11 * f′1^6 * f′′′′1 + 3900 * f0^12 * f1^5 * f′0^11 * f′1^5 * f′′1 * f′′′1 + 5850 * f0^12 * f1^5 * f′0^11 * f′1^4 * f′′1^2 - 1560 * f0^12 * f1^4 * f′0^11 * f′1^7 * f′′′1 + 4680 * f0^12 * f1^4 * f′0^11 * f′1^6 * f′′1^2 + 4680 * f0^12 * f1^3 * f′0^11 * f′1^8 * f′′1 + 9360 * f0^12 * f1^2 * f′0^11 * f′1^10 - 9360 * f0^12 * f1 * f′0^11 * f′1^11 * x1 - 15 * f0^11 * f1^8 * f′0^11 * f′1^4 * f′′′′′′1 + 315 * f0^11 * f1^8 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 + 525 * f0^11 * f1^8 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 - 3150 * f0^11 * f1^8 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 - 4200 * f0^11 * f1^8 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 + 18900 * f0^11 * f1^8 * f′0^11 * f′1 * f′′1^3 * f′′′1 - 14175 * f0^11 * f1^8 * f′0^11 * f′′1^5 - 6 * f0^11 * f1^8 * f′0^4 * f′1^11 * f′′′′′′0 + 126 * f0^11 * f1^8 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 + 210 * f0^11 * f1^8 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 - 1260 * f0^11 * f1^8 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 - 1680 * f0^11 * f1^8 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 + 7560 * f0^11 * f1^8 * f′0 * f′1^11 * f′′0^3 * f′′′0 - 5670 * f0^11 * f1^8 * f′1^11 * f′′0^5 + 300 * f0^11 * f1^7 * f′0^11 * f′1^5 * f′′′′′1 - 4500 * f0^11 * f1^7 * f′0^11 * f′1^4 * f′′1 * f′′′′1 - 3000 * f0^11 * f1^7 * f′0^11 * f′1^4 * f′′′1^2 + 31500 * f0^11 * f1^7 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 - 31500 * f0^11 * f1^7 * f′0^11 * f′1^2 * f′′1^4 - 48 * f0^11 * f1^7 * f′0^5 * f′1^11 * f′′′′′0 + 720 * f0^11 * f1^7 * f′0^4 * f′1^11 * f′′0 * f′′′′0 + 480 * f0^11 * f1^7 * f′0^4 * f′1^11 * f′′′0^2 - 5040 * f0^11 * f1^7 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 + 5040 * f0^11 * f1^7 * f′0^2 * f′1^11 * f′′0^4 - 2340 * f0^11 * f1^6 * f′0^11 * f′1^6 * f′′′′1 - 23400 * f0^11 * f1^6 * f′0^11 * f′1^5 * f′′1 * f′′′1 - 35100 * f0^11 * f1^6 * f′0^11 * f′1^4 * f′′1^2 + 9360 * f0^11 * f1^5 * f′0^11 * f′1^7 * f′′′1 - 28080 * f0^11 * f1^5 * f′0^11 * f′1^6 * f′′1^2 - 28080 * f0^11 * f1^4 * f′0^11 * f′1^8 * f′′1 - 56160 * f0^11 * f1^3 * f′0^11 * f′1^10 + 56160 * f0^11 * f1^2 * f′0^11 * f′1^11 * x1 + 20 * f0^10 * f1^9 * f′0^11 * f′1^4 * f′′′′′′1 - 420 * f0^10 * f1^9 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 - 700 * f0^10 * f1^9 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 + 4200 * f0^10 * f1^9 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 + 5600 * f0^10 * f1^9 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 - 25200 * f0^10 * f1^9 * f′0^11 * f′1 * f′′1^3 * f′′′1 + 18900 * f0^10 * f1^9 * f′0^11 * f′′1^5 + 15 * f0^10 * f1^9 * f′0^4 * f′1^11 * f′′′′′′0 - 315 * f0^10 * f1^9 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 - 525 * f0^10 * f1^9 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 + 3150 * f0^10 * f1^9 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 + 4200 * f0^10 * f1^9 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 - 18900 * f0^10 * f1^9 * f′0 * f′1^11 * f′′0^3 * f′′′0 + 14175 * f0^10 * f1^9 * f′1^11 * f′′0^5 - 540 * f0^10 * f1^8 * f′0^11 * f′1^5 * f′′′′′1 + 8100 * f0^10 * f1^8 * f′0^11 * f′1^4 * f′′1 * f′′′′1 + 5400 * f0^10 * f1^8 * f′0^11 * f′1^4 * f′′′1^2 - 56700 * f0^10 * f1^8 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 + 56700 * f0^10 * f1^8 * f′0^11 * f′1^2 * f′′1^4 + 246 * f0^10 * f1^8 * f′0^5 * f′1^11 * f′′′′′0 - 3690 * f0^10 * f1^8 * f′0^4 * f′1^11 * f′′0 * f′′′′0 - 2460 * f0^10 * f1^8 * f′0^4 * f′1^11 * f′′′0^2 + 25830 * f0^10 * f1^8 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 - 25830 * f0^10 * f1^8 * f′0^2 * f′1^11 * f′′0^4 + 6060 * f0^10 * f1^7 * f′0^11 * f′1^6 * f′′′′1 + 60600 * f0^10 * f1^7 * f′0^11 * f′1^5 * f′′1 * f′′′1 + 90900 * f0^10 * f1^7 * f′0^11 * f′1^4 * f′′1^2 + 1080 * f0^10 * f1^7 * f′0^6 * f′1^11 * f′′′′0 + 10800 * f0^10 * f1^7 * f′0^5 * f′1^11 * f′′0 * f′′′0 + 16200 * f0^10 * f1^7 * f′0^4 * f′1^11 * f′′0^2 - 34320 * f0^10 * f1^6 * f′0^11 * f′1^7 * f′′′1 + 102960 * f0^10 * f1^6 * f′0^11 * f′1^6 * f′′1^2 + 102960 * f0^10 * f1^5 * f′0^11 * f′1^8 * f′′1 + 205920 * f0^10 * f1^4 * f′0^11 * f′1^10 - 205920 * f0^10 * f1^3 * f′0^11 * f′1^11 * x1 - 15 * f0^9 * f1^10 * f′0^11 * f′1^4 * f′′′′′′1 + 315 * f0^9 * f1^10 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 + 525 * f0^9 * f1^10 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 - 3150 * f0^9 * f1^10 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 - 4200 * f0^9 * f1^10 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 + 18900 * f0^9 * f1^10 * f′0^11 * f′1 * f′′1^3 * f′′′1 - 14175 * f0^9 * f1^10 * f′0^11 * f′′1^5 - 20 * f0^9 * f1^10 * f′0^4 * f′1^11 * f′′′′′′0 + 420 * f0^9 * f1^10 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 + 700 * f0^9 * f1^10 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 - 4200 * f0^9 * f1^10 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 - 5600 * f0^9 * f1^10 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 + 25200 * f0^9 * f1^10 * f′0 * f′1^11 * f′′0^3 * f′′′0 - 18900 * f0^9 * f1^10 * f′1^11 * f′′0^5 + 510 * f0^9 * f1^9 * f′0^11 * f′1^5 * f′′′′′1 - 7650 * f0^9 * f1^9 * f′0^11 * f′1^4 * f′′1 * f′′′′1 - 5100 * f0^9 * f1^9 * f′0^11 * f′1^4 * f′′′1^2 + 53550 * f0^9 * f1^9 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 - 53550 * f0^9 * f1^9 * f′0^11 * f′1^2 * f′′1^4 - 510 * f0^9 * f1^9 * f′0^5 * f′1^11 * f′′′′′0 + 7650 * f0^9 * f1^9 * f′0^4 * f′1^11 * f′′0 * f′′′′0 + 5100 * f0^9 * f1^9 * f′0^4 * f′1^11 * f′′′0^2 - 53550 * f0^9 * f1^9 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 + 53550 * f0^9 * f1^9 * f′0^2 * f′1^11 * f′′0^4 - 7590 * f0^9 * f1^8 * f′0^11 * f′1^6 * f′′′′1 - 75900 * f0^9 * f1^8 * f′0^11 * f′1^5 * f′′1 * f′′′1 - 113850 * f0^9 * f1^8 * f′0^11 * f′1^4 * f′′1^2 - 4590 * f0^9 * f1^8 * f′0^6 * f′1^11 * f′′′′0 - 45900 * f0^9 * f1^8 * f′0^5 * f′1^11 * f′′0 * f′′′0 - 68850 * f0^9 * f1^8 * f′0^4 * f′1^11 * f′′0^2 + 60600 * f0^9 * f1^7 * f′0^11 * f′1^7 * f′′′1 - 181800 * f0^9 * f1^7 * f′0^11 * f′1^6 * f′′1^2 - 14400 * f0^9 * f1^7 * f′0^7 * f′1^11 * f′′′0 + 43200 * f0^9 * f1^7 * f′0^6 * f′1^11 * f′′0^2 - 257400 * f0^9 * f1^6 * f′0^11 * f′1^8 * f′′1 - 514800 * f0^9 * f1^5 * f′0^11 * f′1^10 + 514800 * f0^9 * f1^4 * f′0^11 * f′1^11 * x1 + 6 * f0^8 * f1^11 * f′0^11 * f′1^4 * f′′′′′′1 - 126 * f0^8 * f1^11 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 - 210 * f0^8 * f1^11 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 + 1260 * f0^8 * f1^11 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 + 1680 * f0^8 * f1^11 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 - 7560 * f0^8 * f1^11 * f′0^11 * f′1 * f′′1^3 * f′′′1 + 5670 * f0^8 * f1^11 * f′0^11 * f′′1^5 + 15 * f0^8 * f1^11 * f′0^4 * f′1^11 * f′′′′′′0 - 315 * f0^8 * f1^11 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 - 525 * f0^8 * f1^11 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 + 3150 * f0^8 * f1^11 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 + 4200 * f0^8 * f1^11 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 - 18900 * f0^8 * f1^11 * f′0 * f′1^11 * f′′0^3 * f′′′0 + 14175 * f0^8 * f1^11 * f′1^11 * f′′0^5 - 246 * f0^8 * f1^10 * f′0^11 * f′1^5 * f′′′′′1 + 3690 * f0^8 * f1^10 * f′0^11 * f′1^4 * f′′1 * f′′′′1 + 2460 * f0^8 * f1^10 * f′0^11 * f′1^4 * f′′′1^2 - 25830 * f0^8 * f1^10 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 + 25830 * f0^8 * f1^10 * f′0^11 * f′1^2 * f′′1^4 + 540 * f0^8 * f1^10 * f′0^5 * f′1^11 * f′′′′′0 - 8100 * f0^8 * f1^10 * f′0^4 * f′1^11 * f′′0 * f′′′′0 - 5400 * f0^8 * f1^10 * f′0^4 * f′1^11 * f′′′0^2 + 56700 * f0^8 * f1^10 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 - 56700 * f0^8 * f1^10 * f′0^2 * f′1^11 * f′′0^4 + 4590 * f0^8 * f1^9 * f′0^11 * f′1^6 * f′′′′1 + 45900 * f0^8 * f1^9 * f′0^11 * f′1^5 * f′′1 * f′′′1 + 68850 * f0^8 * f1^9 * f′0^11 * f′1^4 * f′′1^2 + 7590 * f0^8 * f1^9 * f′0^6 * f′1^11 * f′′′′0 + 75900 * f0^8 * f1^9 * f′0^5 * f′1^11 * f′′0 * f′′′0 + 113850 * f0^8 * f1^9 * f′0^4 * f′1^11 * f′′0^2 - 48600 * f0^8 * f1^8 * f′0^11 * f′1^7 * f′′′1 + 145800 * f0^8 * f1^8 * f′0^11 * f′1^6 * f′′1^2 + 48600 * f0^8 * f1^8 * f′0^7 * f′1^11 * f′′′0 - 145800 * f0^8 * f1^8 * f′0^6 * f′1^11 * f′′0^2 + 297000 * f0^8 * f1^7 * f′0^11 * f′1^8 * f′′1 + 118800 * f0^8 * f1^7 * f′0^8 * f′1^11 * f′′0 + 926640 * f0^8 * f1^6 * f′0^11 * f′1^10 - 926640 * f0^8 * f1^5 * f′0^11 * f′1^11 * x1 - f0^7 * f1^12 * f′0^11 * f′1^4 * f′′′′′′1 + 21 * f0^7 * f1^12 * f′0^11 * f′1^3 * f′′1 * f′′′′′1 + 35 * f0^7 * f1^12 * f′0^11 * f′1^3 * f′′′1 * f′′′′1 - 210 * f0^7 * f1^12 * f′0^11 * f′1^2 * f′′1^2 * f′′′′1 - 280 * f0^7 * f1^12 * f′0^11 * f′1^2 * f′′1 * f′′′1^2 + 1260 * f0^7 * f1^12 * f′0^11 * f′1 * f′′1^3 * f′′′1 - 945 * f0^7 * f1^12 * f′0^11 * f′′1^5 - 6 * f0^7 * f1^12 * f′0^4 * f′1^11 * f′′′′′′0 + 126 * f0^7 * f1^12 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 + 210 * f0^7 * f1^12 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 - 1260 * f0^7 * f1^12 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 - 1680 * f0^7 * f1^12 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 + 7560 * f0^7 * f1^12 * f′0 * f′1^11 * f′′0^3 * f′′′0 - 5670 * f0^7 * f1^12 * f′1^11 * f′′0^5 + 48 * f0^7 * f1^11 * f′0^11 * f′1^5 * f′′′′′1 - 720 * f0^7 * f1^11 * f′0^11 * f′1^4 * f′′1 * f′′′′1 - 480 * f0^7 * f1^11 * f′0^11 * f′1^4 * f′′′1^2 + 5040 * f0^7 * f1^11 * f′0^11 * f′1^3 * f′′1^2 * f′′′1 - 5040 * f0^7 * f1^11 * f′0^11 * f′1^2 * f′′1^4 - 300 * f0^7 * f1^11 * f′0^5 * f′1^11 * f′′′′′0 + 4500 * f0^7 * f1^11 * f′0^4 * f′1^11 * f′′0 * f′′′′0 + 3000 * f0^7 * f1^11 * f′0^4 * f′1^11 * f′′′0^2 - 31500 * f0^7 * f1^11 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 + 31500 * f0^7 * f1^11 * f′0^2 * f′1^11 * f′′0^4 - 1080 * f0^7 * f1^10 * f′0^11 * f′1^6 * f′′′′1 - 10800 * f0^7 * f1^10 * f′0^11 * f′1^5 * f′′1 * f′′′1 - 16200 * f0^7 * f1^10 * f′0^11 * f′1^4 * f′′1^2 - 6060 * f0^7 * f1^10 * f′0^6 * f′1^11 * f′′′′0 - 60600 * f0^7 * f1^10 * f′0^5 * f′1^11 * f′′0 * f′′′0 - 90900 * f0^7 * f1^10 * f′0^4 * f′1^11 * f′′0^2 + 14400 * f0^7 * f1^9 * f′0^11 * f′1^7 * f′′′1 - 43200 * f0^7 * f1^9 * f′0^11 * f′1^6 * f′′1^2 - 60600 * f0^7 * f1^9 * f′0^7 * f′1^11 * f′′′0 + 181800 * f0^7 * f1^9 * f′0^6 * f′1^11 * f′′0^2 - 118800 * f0^7 * f1^8 * f′0^11 * f′1^8 * f′′1 - 297000 * f0^7 * f1^8 * f′0^8 * f′1^11 * f′′0 - 570240 * f0^7 * f1^7 * f′0^11 * f′1^10 + 570240 * f0^7 * f1^7 * f′0^10 * f′1^11 + 1235520 * f0^7 * f1^6 * f′0^11 * f′1^11 * x1 + f0^6 * f1^13 * f′0^4 * f′1^11 * f′′′′′′0 - 21 * f0^6 * f1^13 * f′0^3 * f′1^11 * f′′0 * f′′′′′0 - 35 * f0^6 * f1^13 * f′0^3 * f′1^11 * f′′′0 * f′′′′0 + 210 * f0^6 * f1^13 * f′0^2 * f′1^11 * f′′0^2 * f′′′′0 + 280 * f0^6 * f1^13 * f′0^2 * f′1^11 * f′′0 * f′′′0^2 - 1260 * f0^6 * f1^13 * f′0 * f′1^11 * f′′0^3 * f′′′0 + 945 * f0^6 * f1^13 * f′1^11 * f′′0^5 + 78 * f0^6 * f1^12 * f′0^5 * f′1^11 * f′′′′′0 - 1170 * f0^6 * f1^12 * f′0^4 * f′1^11 * f′′0 * f′′′′0 - 780 * f0^6 * f1^12 * f′0^4 * f′1^11 * f′′′0^2 + 8190 * f0^6 * f1^12 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 - 8190 * f0^6 * f1^12 * f′0^2 * f′1^11 * f′′0^4 + 2340 * f0^6 * f1^11 * f′0^6 * f′1^11 * f′′′′0 + 23400 * f0^6 * f1^11 * f′0^5 * f′1^11 * f′′0 * f′′′0 + 35100 * f0^6 * f1^11 * f′0^4 * f′1^11 * f′′0^2 + 34320 * f0^6 * f1^10 * f′0^7 * f′1^11 * f′′′0 - 102960 * f0^6 * f1^10 * f′0^6 * f′1^11 * f′′0^2 + 257400 * f0^6 * f1^9 * f′0^8 * f′1^11 * f′′0 - 926640 * f0^6 * f1^8 * f′0^10 * f′1^11 - 1235520 * f0^6 * f1^7 * f′0^11 * f′1^11 * x0 - 6 * f0^5 * f1^13 * f′0^5 * f′1^11 * f′′′′′0 + 90 * f0^5 * f1^13 * f′0^4 * f′1^11 * f′′0 * f′′′′0 + 60 * f0^5 * f1^13 * f′0^4 * f′1^11 * f′′′0^2 - 630 * f0^5 * f1^13 * f′0^3 * f′1^11 * f′′0^2 * f′′′0 + 630 * f0^5 * f1^13 * f′0^2 * f′1^11 * f′′0^4 - 390 * f0^5 * f1^12 * f′0^6 * f′1^11 * f′′′′0 - 3900 * f0^5 * f1^12 * f′0^5 * f′1^11 * f′′0 * f′′′0 - 5850 * f0^5 * f1^12 * f′0^4 * f′1^11 * f′′0^2 - 9360 * f0^5 * f1^11 * f′0^7 * f′1^11 * f′′′0 + 28080 * f0^5 * f1^11 * f′0^6 * f′1^11 * f′′0^2 - 102960 * f0^5 * f1^10 * f′0^8 * f′1^11 * f′′0 + 514800 * f0^5 * f1^9 * f′0^10 * f′1^11 + 926640 * f0^5 * f1^8 * f′0^11 * f′1^11 * x0 + 30 * f0^4 * f1^13 * f′0^6 * f′1^11 * f′′′′0 + 300 * f0^4 * f1^13 * f′0^5 * f′1^11 * f′′0 * f′′′0 + 450 * f0^4 * f1^13 * f′0^4 * f′1^11 * f′′0^2 + 1560 * f0^4 * f1^12 * f′0^7 * f′1^11 * f′′′0 - 4680 * f0^4 * f1^12 * f′0^6 * f′1^11 * f′′0^2 + 28080 * f0^4 * f1^11 * f′0^8 * f′1^11 * f′′0 - 205920 * f0^4 * f1^10 * f′0^10 * f′1^11 - 514800 * f0^4 * f1^9 * f′0^11 * f′1^11 * x0 - 120 * f0^3 * f1^13 * f′0^7 * f′1^11 * f′′′0 + 360 * f0^3 * f1^13 * f′0^6 * f′1^11 * f′′0^2 - 4680 * f0^3 * f1^12 * f′0^8 * f′1^11 * f′′0 + 56160 * f0^3 * f1^11 * f′0^10 * f′1^11 + 205920 * f0^3 * f1^10 * f′0^11 * f′1^11 * x0 + 360 * f0^2 * f1^13 * f′0^8 * f′1^11 * f′′0 - 9360 * f0^2 * f1^12 * f′0^10 * f′1^11 - 56160 * f0^2 * f1^11 * f′0^11 * f′1^11 * x0 + 720 * f0 * f1^13 * f′0^10 * f′1^11 + 9360 * f0 * f1^12 * f′0^11 * f′1^11 * x0 - 720 * f1^13 * f′0^11 * f′1^11 * x0 ) / ( 720 * f′0^11 * f′1^11 * ( f0^13 - 13 * f0^12 * f1 + 78 * f0^11 * f1^2 - 286 * f0^10 * f1^3 + 715 * f0^9 * f1^4 - 1287 * f0^8 * f1^5 + 1716 * f0^7 * f1^6 - 1716 * f0^6 * f1^7 + 1287 * f0^5 * f1^8 - 715 * f0^4 * f1^9 + 286 * f0^3 * f1^10 - 78 * f0^2 * f1^11 + 13 * f0 * f1^12 - f1^13 ) ) end function lmm( ::LithBoonkkampIJzerman{3,6}, xs, fs, f′s, f′′s, f′′′s, f′′′′s, f′′′′′s, f′′′′′′s, ) error("not computed") end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2354
# 1 step taken in set up function log_step(l::Tracks, M::AbstractDerivativeMethod, state; init=false) init && push!(l.xfₛ, (state.xn0, state.fxn0)) push!(l.xfₛ, (state.xn1, state.fxn1)) init && log_iteration(l, 1) !init && log_iteration(l, 1) nothing end """ Roots.Newton() Implements Newton's [method](https://en.wikipedia.org/wiki/Newton%27s_method): `xᵢ₊₁ = xᵢ - f(xᵢ)/f'(xᵢ)`. This is a quadratically convergent method requiring one derivative and two function calls per step. ## Examples ```jldoctest with_derivative julia> using Roots julia> find_zero((sin,cos), 3.0, Roots.Newton()) ≈ π true ``` If function evaluations are expensive one can pass in a function which returns (f, f/f') as follows ```jldoctest with_derivative julia> find_zero(x -> (sin(x), sin(x)/cos(x)), 3.0, Roots.Newton()) ≈ π true ``` This can be advantageous if the derivative is easily computed from the value of f, but otherwise would be expensive to compute. ---- The error, `eᵢ = xᵢ - α`, can be expressed as `eᵢ₊₁ = f[xᵢ,xᵢ,α]/(2f[xᵢ,xᵢ])eᵢ²` (Sidi, Unified treatment of regula falsi, Newton-Raphson, secant, and Steffensen methods for nonlinear equations). """ struct Newton <: AbstractNewtonLikeMethod end fn_argout(::AbstractNewtonLikeMethod) = 2 # we store x0,x1,fx0,fx1 **and** Δ = fx1/f'(x1) struct NewtonState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T Δ::T fxn1::S fxn0::S end function init_state(M::Newton, F::Callable_Function, x) x₀ = float(first(x)) T = eltype(x₀) fx₀, Δ::T = F(x₀) x₁::T = x₀ - Δ state = init_state(M, F, x₀, x₁, fx₀, fx₀) end # compute fx₁, Δ function init_state(::Newton, F, x₀::T, x₁::T, fx₀, fx₁) where {T} fx₁, Δ::T = F(x₁) NewtonState(promote(x₁, x₀)..., Δ, promote(fx₁, fx₀)...) end initial_fncalls(M::Newton) = 2 function update_state( M::Newton, F, o::NewtonState{T,S}, options, l=NullTracks(), ) where {T,S} xn0, xn1 = o.xn0, o.xn1 fxn0, fxn1 = o.fxn0, o.fxn1 Δ::T = o.Δ if isissue(Δ) log_message(l, "Issue with `f/f′'") return o, true end xn0, xn1::T = xn1, xn1 - Δ fxn0 = fxn1 fxn1::S, Δ = F(xn1) incfn(l, 2) @reset o.xn0 = xn0 @reset o.xn1 = xn1 @reset o.Δ = Δ @reset o.fxn0 = fxn0 @reset o.fxn1 = fxn1 return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3591
## Thukral 3,4,5 (2) is Schroder """ AbstractThukralBMethod Abstract type for `ThukralXB` methods for `X` being `2`,`3`,`4`, or `5`. These are a family of methods which are * efficient (order `X`) for non-simple roots (e.g. `Thukral2B` is the `Schroder` method) * take `X+1` function calls per step * require `X` derivatives. These can be passed as a tuple of functions, `(f, f', f'', …)`, *or* as a function returning the ratios: `x -> (f(x), f(x)/f'(x), f'(x)/f''(x), …)`. ## Examples ```julia using ForwardDiff Base.adjoint(f::Function) = x -> ForwardDiff.derivative(f, float(x)) f(x) = (exp(x) + x - 2)^6 x0 = 1/4 find_zero((f, f', f''), x0, Roots.Halley()) # 14 iterations; ≈ 48 function evaluations find_zero((f, f', f''), big(x0), Roots.Thukral2B()) # 3 iterations; ≈ 9 function evaluations find_zero((f, f', f'', f'''), big(x0), Roots.Thukral3B()) # 2 iterations; ≈ 8 function evaluations ``` ## Reference *Introduction to a family of Thukral ``k``-order method for finding multiple zeros of nonlinear equations*, R. Thukral, JOURNAL OF ADVANCES IN MATHEMATICS 13(3):7230-7237, DOI: [10.24297/jam.v13i3.6146](https://doi.org/10.24297/jam.v13i3.6146). """ abstract type AbstractThukralBMethod <: AbstractHalleyLikeMethod end initial_fncalls(M::AbstractThukralBMethod) = fn_argout(M) struct Thukral2B <: AbstractThukralBMethod end fn_argout(::Thukral2B) = 3 struct Thukral3B <: AbstractThukralBMethod end fn_argout(::Thukral3B) = 4 struct Thukral4B <: AbstractThukralBMethod end fn_argout(::Thukral4B) = 5 struct Thukral5B <: AbstractThukralBMethod end fn_argout(::Thukral5B) = 6 struct ThukralBState{N,T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T Δs::NTuple{N,T} fxn1::S fxn0::S end function init_state(M::AbstractThukralBMethod, F::Callable_Function, x) x₁ = float(first(x)) fx₁, Δs = F(x₁) state = init_state(M, F, nan(x₁), x₁, nan(fx₁), fx₁; Δs=Δs) end function init_state( M::AbstractThukralBMethod, F, x₀::T, x₁::T, fx₀, fx₁; Δs=nothing, ) where {T} ThukralBState(promote(x₁, x₀)..., NTuple{fn_argout(M) - 1,T}(Δs), promote(fx₁, fx₀)...) end function update_state( M::AbstractThukralBMethod, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} x₀ = o.xn1 Δ = compute_thukral_Δ(M, o) isissue(Δ) && return (o, true) x₁::T = x₀ - Δ fx₁::S, Δs = F(x₁) incfn(l, fn_argout(M)) @reset o.xn0 = x₀ @reset o.fxn0 = o.fxn1 @reset o.Δs = NTuple{fn_argout(M) - 1,T}(Δs) @reset o.xn1 = x₁ @reset o.fxn1 = fx₁ return (o, false) end function compute_thukral_Δ(M::Thukral2B, o) r₁, r₂ = o.Δs t₁, t₂ = 1 / r₁, 1 / r₂ Δ = one(o.xn1) Δ /= (t₁ - t₂) Δ end function compute_thukral_Δ(M::Thukral3B, o) r₁, r₂, r₃ = o.Δs t₁, t₂, t₃ = 1 / r₁, 1 / r₂, 1 / r₃ Δ = (2t₁ - 2t₂) Δ /= (2t₁^2 - 3t₁ * t₂ + t₂ * t₃) Δ end function compute_thukral_Δ(M::Thukral4B, o) r₁, r₂, r₃, r₄ = o.Δs t₁, t₂, t₃, t₄ = 1 / r₁, 1 / r₂, 1 / r₃, 1 / r₄ Δ = 6t₁^2 - 9t₁ * t₂ + 3t₂ * t₃ Δ /= 6t₁^3 - 12 * t₁^2 * t₂ + 4t₁ * t₂ * t₃ - t₂ * t₃ * t₄ + 3 * t₁ * t₂^2 Δ end function compute_thukral_Δ(M::Thukral5B, o) r₁, r₂, r₃, r₄, r₅ = o.Δs t₁, t₂, t₃, t₄, t₅ = 1 / r₁, 1 / r₂, 1 / r₃, 1 / r₄, 1 / r₅ Δ = 24 * t₁^3 - 48t₁^2 * t₂ + 16 * t₁ * t₂ * t₃ - 4 * t₂ * t₃ * t₄ + 12t₁ * t₂^2 Δ /= 24t₁^4 - 60t₁^3 * t₂ + 20 * t₁^2 * t₂ * t₃ - 5 * t₁ * t₂ * t₃ * t₄ + 30t₁^2 * t₂^2 - 10 * t₁ * t₂^2 * t₃ + t₂ * t₃ * t₄ * t₅ Δ end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2538
## Derivative free methods inherit from abstract secant # init_state(M,F,x) --> call init_state(M,F,x₀,x₁,fx₀, fx₁) function init_state(M::AbstractSecantMethod, F::Callable_Function, x) x₀, x₁ = x₀x₁(x) fx₀, fx₁ = first(F(x₀)), first(F(x₁)) state = init_state(M, F, x₀, x₁, fx₀, fx₁) end # initialize from xs, fxs function init_state(::AbstractSecantMethod, F, x₀, x₁, fx₀, fx₁) UnivariateZeroState(promote(x₁, x₀)..., promote(fx₁, fx₀)...) end initial_fncalls(::AbstractSecantMethod) = 2 ################################################## ## Guard against non-robust algorithms ## ## By default, we do this by deciding if we ## should take a secant step instead of the algorithm For example, for ## Steffensen which is quadratically convergent and the Secant method ## which is only superlinear, ## the error, e_{n+1} = x_{n+1} - alpha, may be smaller after a secant ## step than a Steffensen step. (It is only once x_n is close enough ## to alpha that the method is quadratically convergent. ## The Steffensen error is ## Δn+1 = f[x,x+fx, alpha]/f[x, x+fx] * (1 - f[x, alpha]) (x-alpha)^2 ## ≈ f''/(2f') * ( 1 + f') Δn^2 ## The Secant error is ## Δn+1 = f[x,x_{-1},alpha] / f[x,x_{-1}] * (x-alpha) * (x_{-1} - alpha) ## ≈ f''/(2f') Δn ⋅ Δn-1 ## The ratio is ≈ (1 + f')(Δn / Δn-1) ## It seems reasonable, that a Steffensen step is preferred when ## the ratio satisfies -1 < (1+f') ⋅ Δn /Δn-1 < 1 ## We could use f' ~ fp = (fx1-fx0)/(x1-x0); but our proxy for ## Δn/Δn-1 is problematic, as we don't know alpha, and using xn-x_{n-1} ## can be an issue when only x1 and not x0 is specified. This needs ## working around. ## ## Instead, as Steffensen is related to Newton as much as ## (f(x+fx) - fx)/fx ≈ f'(x), we take a Steffensen step if |fx| ## is small enough. For this we use |fx| <= x/1000; which ## seems to work reasonably well over several different test cases. @inline function do_guarded_step( M::AbstractSecantMethod, o::AbstractUnivariateZeroState{T,S}, ) where {T,S} x, fx = o.xn1, o.fxn1 1000 * abs(fx) > max(oneunit(S), abs(x) * oneunit(S) / oneunit(T)) * one(T) end # check if we should guard against step for method M; call N if yes, P if not function update_state_guarded( M::AbstractSecantMethod, N::AbstractUnivariateZeroMethod, P::AbstractUnivariateZeroMethod, fs, o, options, l=NullTracks(), ) if do_guarded_step(M, o) return update_state(N, fs, o, options, l) else update_state(P, fs, o, options, l) end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2286
### Order2B() Esser method """ Roots.Esser() Esser's method. This is a quadratically convergent method that, like Schroder's method, does not depend on the multiplicity of the zero. Schroder's method has update step `x - r2/(r2-r1) * r1`, where `ri = fⁱ⁻¹/fⁱ`. Esser approximates `f' ~ f[x-h, x+h], f'' ~ f[x-h,x,x+h]`, where `h = fx`, as with Steffensen's method, Requiring 3 function calls per step. The implementation `Order2B` uses a secant step when `|fx|` is considered too large. Esser, H. Computing (1975) 14: 367. DOI: [10.1007/BF02253547](https://doi.org/10.1007/BF02253547) Eine stets quadratisch konvergente Modification des Steffensen-Verfahrens ## Examples ``` f(x) = cos(x) - x g(x) = f(x)^2 x0 = pi/4 find_zero(f, x0, Order2(), verbose=true) # 3 steps / 7 function calls find_zero(f, x0, Roots.Order2B(), verbose=true) # 4 / 9 find_zero(g, x0, Order2(), verbose=true) # 22 / 45 find_zero(g, x0, Roots.Order2B(), verbose=true) # 4 / 10 ``` """ struct Esser <: AbstractSecantMethod end """ Roots.Order2B() [`Esser`](@ref) method with guarded secant step. """ struct Order2B <: AbstractSecantMethod end function update_state( M::Order2B, fs, o::AbstractUnivariateZeroState, options, l=NullTracks(), ) update_state_guarded(M, Secant(), Esser(), fs, o, options, l) end function update_state( ::Esser, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} x1, fx1 = o.xn1, o.fxn1 f0 = fx1 f1 = F(x1 + f0 * oneunit(T) / oneunit(S)) f_1 = F(x1 - f0 * oneunit(T) / oneunit(S)) incfn(l, 2) # h = f0 # r1 = f/f' ~ f/f[x+h,x-h] # r2 = f'/f'' ~ f[x+h, x-h]/f[x-h,x,x+h] r1 = f0 * 2 * f0 / (f1 - f_1) * oneunit(T) / oneunit(S) r2 = (f1 - f_1) / (f1 - 2 * f0 + f_1) * f0 / 2 * oneunit(T) / oneunit(S) k = r2 / (r2 - r1) # ~ m if abs(k) <= 1e-2 * oneunit(k) log_message(l, "Estimate for multiplicity had issues. ") return o, true end delta = k * r1 if isissue(delta) log_message(l, "Increment `Δx` has issues. ") return o, true end x0::T, x1::T = x1, x1 - delta fx0::S, fx1::S = fx1, F(x1) incfn(l) o = _set(o, (x1, fx1), (x0, fx0)) return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2374
""" Roots.King() A superlinear (order `1.6...`) modification of the secant method for multiple roots. Presented in A SECANT METHOD FOR MULTIPLE ROOTS, by RICHARD F. KING, BIT 17 (1977), 321-328 The basic idea is similar to Schroder's method: apply the secant method to `f/f'`. However, this uses `f' ~ fp = (fx - f(x-fx))/fx` (a Steffensen step). In this implementation, `Order1B`, when `fx` is too big, a single secant step of `f` is used. The *asymptotic* error, `eᵢ = xᵢ - α`, is given by `eᵢ₊₂ = 1/2⋅G''/G'⋅ eᵢ⋅eᵢ₊₁ + (1/6⋅G'''/G' - (1/2⋅G''/G'))^2⋅eᵢ⋅eᵢ₊₁⋅(eᵢ+eᵢ₊₁)`. """ struct King <: AbstractSecantMethod end """ Roots.Order1B() [`King`](@ref) method with guarded secant step. """ struct Order1B <: AbstractSecantMethod end struct KingState{T,S} <: AbstractUnivariateZeroState{T,S} xn1::T xn0::T fxn1::S fxn0::S G0::S end function init_state(::Union{King,Order1B}, F, x₀, x₁, fx₀, fx₁) fₛ₀ = F(x₀ - fx₀ * oneunit(x₀) / oneunit(fx₀)) G₀ = -fx₀^2 / (fₛ₀ - fx₀) KingState(promote(x₁, x₀)..., promote(fx₁, fx₀, G₀)...) end initial_fncalls(::Union{King,Order1B}) = 3 function update_state(::Order1B, F, o::KingState, options, l=NullTracks()) if do_guarded_step(Order1B(), o) state, flag = update_state(Order1(), F, o, options, l) x0, fx0 = state.xn0, state.fxn0 # clunky! Need to update G₀ after Order1() step fₛ = F(x0 - fx0 * oneunit(x0) / oneunit(fx0)) incfn(l) G₀ = -fx0^2 / (fₛ - fx0) @reset state.G0 = G₀ return (state, flag) else update_state(King(), F, o, options, l) end end function update_state(::King, F, o::KingState{T,S}, options, l=NullTracks()) where {T,S} x0, x1 = o.xn0, o.xn1 fx0, fx1 = o.fxn0, o.fxn1 G₀ = o.G0 fₛ₁ = F(x1 - fx1 * oneunit(x1) / oneunit(fx1)) incfn(l) G₁ = -fx1^2 / (fₛ₁ - fx1) m = (x1 - x0) / (G₁ - G₀) # approximate value of `m`, the multiplicity if abs(m) <= 1e-2 * oneunit(m) log_message(l, "Estimate for multiplicity has issues. ") return (o, true) end Δ = G₁ * (x1 - x0) / (G₁ - G₀) if isissue(Δ) log_message(l, "Increment `Δx` has issues. ") return o, true end x0, x1::T = x1, x1 - Δ fx0, fx1::S = fx1, F(x1) incfn(l) o = _set(o, (x1, fx1), (x0, fx0)) @reset o.G0 = G₁ return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1608
""" Order0() The `Order0` method is engineered to be a more robust, though possibly slower, alternative to the other derivative-free root-finding methods. The implementation roughly follows the algorithm described in *Personal Calculator Has Key to Solve Any Equation ``f(x) = 0``*, the SOLVE button from the [HP-34C](http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1979-12.pdf). The basic idea is to use a secant step. If along the way a bracket is found, switch to a bracketing algorithm, using `AlefeldPotraShi`. If the secant step fails to decrease the function value, a quadratic step is used up to ``4`` times. This is not really ``0``-order: the secant method has order ``1.6...`` [Wikipedia](https://en.wikipedia.org/wiki/Secant_method#Comparison_with_other_root-finding_methods) and the the bracketing method has order ``1.6180...`` [Wikipedia](http://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1192965-2/S0025-5718-1993-1192965-2.pdf) so for reasonable starting points and functions, this algorithm should be superlinear, and relatively robust to non-reasonable starting points. """ struct Order0 <: AbstractSecantMethod end # special case Order0 to be hybrid function init( 𝑭𝑿::ZeroProblem, M::Order0, p′=nothing; p=nothing, verbose::Bool=false, tracks=NullTracks(), kwargs..., ) p = p′ === nothing ? p : p′ init(𝑭𝑿, Secant(), AlefeldPotraShi(); p=p, verbose=verbose, tracks=tracks, kwargs...) end init(::ZeroProblem, ::Order0, ::AbstractBracketingMethod; kwargs...) = throw(ArgumentError("No bracketing method specified with Order0"))
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3486
""" Order16() Thukral16() Implements the order 16 algorithm from *New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations* by R. Thukral, American Journal of Computational and Applied Mathematics p-ISSN: 2165-8935; e-ISSN: 2165-8943; 2012; 2(3): 112-118 DOI: [10.5923/j.ajcam.20120203.08](https://doi.org/10.5923/j.ajcam.20120203.08). Five function calls per step are required. Though rapidly converging, this method generally isn't faster (fewer function calls/steps) over other methods when using `Float64` values, but may be useful for solving over `BigFloat`. The `Order16` method replaces a Steffensen step with a secant step when `f(x)` is large. The error, `eᵢ = xᵢ - α`, is expressed as `eᵢ₊₁ = K⋅eᵢ¹⁶` for an explicit `K` in equation (50) of the paper. """ struct Order16 <: AbstractSecantMethod end struct Thukral16 <: AbstractSecantMethod end function update_state( M::Order16, fs, o::UnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} update_state_guarded(M, Secant(), Thukral16(), fs, o, options, l) end function update_state( M::Thukral16, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} xn = o.xn1 fxn = o.fxn1 wn::T = steff_step(M, xn, fxn) fwn::S = F(wn) incfn(l) fp, issue = _fbracket(xn, wn, fxn, fwn) if issue log_message(l, "issue with f[xn,wn]") o = _set(o, (wn, fwn), (xn, fxn)) return o, true end yn::T = xn - fxn / fp fyn::S = F(yn) incfn(l) fp, issue = _fbracket_ratio(yn, xn, wn, fyn, fxn, fwn) if issue log_message(l, "issue with f[xn,yn]*f[yn,wn]/f[xn,wn]") o = _set(o, (yn, fyn), (xn, fxn)) return o, true end zn::T = yn - fyn / fp fzn::S = F(zn) incfn(l) fp, issue = _fbracket_diff(xn, yn, zn, fxn, fyn, fzn) u2, u3, u4 = fzn / fwn, fyn / fxn, fyn / fwn eta = 1 / (1 + 2 * u3 * u4^2) / (1 - u2) if issue log_message(l, "Approximate derivative failed") o = _set(o, (zn, fzn), (xn, fxn)) return o, true end an::T = zn - eta * fzn / fp fan::S = F(an) incfn(l) fp, issue = _fbracket_ratio(an, yn, zn, fan, fyn, fzn) if issue log_message(l, "Approximate derivative failed") o = _set(o, (an, fan), (xn, fxn)) return o, true end u1, u5, u6 = fzn / fxn, fan / fxn, fan / fwn fp1, issue = _fbracket(xn, yn, fxn, fyn) sigma = 1 + u1 * u2 - u1 * u3 * u4^2 + u5 + u6 + u1^2 * u4 + u2^2 * u3 + 3 * u1 * u4^2 * (u3^2 - u4^2) / (fp1 / oneunit(fp1)) xn1::T = an - sigma * fan / fp fxn1::S = F(xn1) incfn(l) o = _set(o, (xn1, fxn1), (xn, fxn)) return o, false end ################################################## ## some means of guarding against large fx when taking a steffensen step ## for Orders 5, 8, and 16 we restrict the size of the steffensen step ## to make the underlying methods more robust. As we need the types defined ## below, this must be included after Order5, Order8, and Order16 are defined ## function steff_step(M::Union{Order5,Order8,Order16}, x::S, fx::T) where {S,T} xbar, fxbar = real(x / oneunit(x)), fx / oneunit(fx) thresh = max(1, abs(xbar)) * sqrt(eps(one(xbar))) #^(1/2) # max(1, sqrt(abs(x/fx))) * 1e-6 out = abs(fxbar) <= thresh ? fxbar : sign(fx) * thresh x + out * oneunit(x) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2571
""" Order5() KumarSinghAkanksha() Implements an order 5 algorithm from *A New Fifth Order Derivative Free Newton-Type Method for Solving Nonlinear Equations* by Manoj Kumar, Akhilesh Kumar Singh, and Akanksha, Appl. Math. Inf. Sci. 9, No. 3, 1507-1513 (2015), DOI: [10.12785/amis/090346](https://doi.org/10.12785/amis/090346). Four function calls per step are needed. The `Order5` method replaces a Steffensen step with a secant step when `f(x)` is large. The error, `eᵢ = xᵢ - α`, satisfies `eᵢ₊₁ = K₁ ⋅ K₅ ⋅ M ⋅ eᵢ⁵ + O(eᵢ⁶)` """ struct Order5 <: AbstractSecantMethod end struct KumarSinghAkanksha <: AbstractSecantMethod end function update_state(M::Order5, fs, o::UnivariateZeroState, options, l=NullTracks()) update_state_guarded(M, Secant(), KumarSinghAkanksha(), fs, o, options, l) end function update_state( M::KumarSinghAkanksha, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} xn = o.xn1 fxn = o.fxn1 wn::T = steff_step(M, o.xn1, o.fxn1) fwn::S = F(wn) incfn(l) fp, issue = _fbracket(o.xn1, wn, o.fxn1, fwn) if issue log_message(l, "Issue with divided difference f[xn, wn]. ") o = _set(o, (wn, fwn), (xn, fxn)) return o, true end yn::T = o.xn1 - o.fxn1 / fp fyn::S = F(yn) incfn(l) zn::T = xn - (fxn + fyn) / fp fzn::S = F(zn) incfn(l) fp, issue = _fbracket_ratio(yn, o.xn1, wn, fyn, o.fxn1, fwn) if issue log_message(l, "Issue with f[xn,yn] * f[yn,wn] / f[xn, wn].") o = _set(o, (yn, fyn), (xn, fxn)) return o, true end x₁::T = zn - fzn / fp f₁ = F(x₁) incfn(l) o = _set(o, (x₁, f₁), (xn, fxn)) return o, false # nothing end struct Order5Derivative <: AbstractSecantMethod end fn_argout(::Order5Derivative) = 2 function update_state( m::Order5Derivative, f, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} xn, fxn = o.xn1, o.fxn1 a::T, b::S = f(xn) fpxn = a / b incfn(l) if isissue(fpxn) return o, true end yn::T = xn - fxn / fpxn fyn::S, Δyn::T = f(yn) fpyn = fyn / Δyn incfn(l, 2) if isissue(fpyn) log_message(l, "Issue computing `fpyn`") o = _set(o, (yn, fyn), (o.xn1, o.fxn1)) return o, true end zn::T = xn - (fxn + fyn) / fpxn fzn::S, _ = f(zn) incfn(l, 2) xn1::T = zn - fzn / fpyn fxn1::S, _ = f(xn1) incfn(l, 2) o = _set(o, (xn1, fxn1), (xn, fxn)) return o end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2305
""" Order8() Thukral8() Implements an eighth-order algorithm from *New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations* by Rajinder Thukral, International Journal of Mathematics and Mathematical Sciences Volume 2012 (2012), Article ID 493456, 12 pages DOI: [10.1155/2012/493456](https://doi.org/10.1155/2012/493456). Four function calls per step are required. The `Order8` method replaces a Steffensen step with a secant step when `f(x)` is large. The error, `eᵢ = xᵢ - α`, is expressed as `eᵢ₊₁ = K ⋅ eᵢ⁸` in (2.25) of the paper for an explicit `K`. """ struct Order8 <: AbstractSecantMethod end struct Thukral8 <: AbstractSecantMethod end ## cf also: https://doi.org/10.1515/tmj-2017-0049 function update_state( M::Order8, fs, o::UnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} update_state_guarded(M, Secant(), Thukral8(), fs, o, options, l) end function update_state( M::Thukral8, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} xn = o.xn1 fxn = o.fxn1 wn::T = steff_step(M, xn, fxn) fwn::S = F(wn) incfn(l) if isissue(fwn) log_message(l, "issue with Steffensen step fwn") o = _set(o, (wn, fwn), (xn, fxn)) return o, true end fp, issue = _fbracket(xn, wn, fxn, fwn) if issue log_message(l, "issue with divided difference f[xn, wn]. ") return o, true end yn::T = xn - fxn / fp fyn::S = F(yn) incfn(l) fp, issue = _fbracket(yn, xn, fyn, fxn) if issue #fp log_message(l, "issue with divided difference f[xn, yn]. ") o = _set(o, (yn, fyn), (xn, fxn)) return o, true end phi = (1 + fyn / fwn) # pick one of options zn::T = yn - phi * fyn / fp fzn::S = F(zn) incfn(l) fp, issue = _fbracket_diff(xn, yn, zn, fxn, fyn, fzn) if issue log_message(l, "issue with divided difference f[y,z] - f[x,y] + f[x,z]. ") o = _set(o, (zn, fzn), (xn, fxn)) return o, true end w = 1 / (1 - fzn / fwn) xi = (1 - 2fyn * fyn * fyn / (fwn * fwn * fxn)) xn1::T = zn - w * xi * fzn / fp fxn1::S = F(xn1) incfn(l) o = _set(o, (xn1, fxn1), (xn, fxn)) return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1100
""" Secant() Order1() Orderφ() The `Order1()` method is an alias for `Secant`. It specifies the [secant method](https://en.wikipedia.org/wiki/Secant_method). This method keeps two values in its state, `xₙ` and `xₙ₋₁`. The updated point is the intersection point of ``x`` axis with the secant line formed from the two points. The secant method uses ``1`` function evaluation per step and has order `φ≈ (1+sqrt(5))/2`. The error, `eᵢ = xᵢ - α`, satisfies `eᵢ₊₂ = f[xᵢ₊₁,xᵢ,α] / f[xᵢ₊₁,xᵢ] * (xᵢ₊₁-α) * (xᵢ - α)`. """ struct Secant <: AbstractSecantMethod end const Order1 = Secant const Orderφ = Secant function update_state( ::Order1, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} xn0, xn1 = o.xn0, o.xn1 fxn0, fxn1 = o.fxn0, o.fxn1 Δ = fxn1 * (xn1 - xn0) / (fxn1 - fxn0) if isissue(Δ) log_message(l, "Increment `Δx` has issues. ") return o, true end x0::T, x1::T = xn1, xn1 - Δ fx0::S, fx1::S = fxn1, F(x1) incfn(l) o = _set(o, (x1, fx1), (x0, fx0)) return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1676
""" Steffensen() The quadratically converging [Steffensen](https://en.wikipedia.org/wiki/Steffensen's_method#Simple_description) method is used for the derivative-free `Order2()` algorithm. Unlike the quadratically converging Newton's method, no derivative is necessary, though like Newton's method, two function calls per step are. Steffensen's algorithm is more sensitive than Newton's method to poor initial guesses when `f(x)` is large, due to how `f'(x)` is approximated. The `Order2` method replaces a Steffensen step with a secant step when `f(x)` is large. The error, `eᵢ - α`, satisfies `eᵢ₊₁ = f[xᵢ, xᵢ+fᵢ, α] / f[xᵢ,xᵢ+fᵢ] ⋅ (1 - f[xᵢ,α] ⋅ eᵢ²` """ struct Steffensen <: AbstractSecantMethod end """ Order2 [`Steffensen`](@ref) with a guard on the secant step. """ struct Order2 <: AbstractSecantMethod end function update_state( M::Order2, fs, o::UnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} update_state_guarded(M, Secant(), Steffensen(), fs, o, options, l) end function update_state( ::Steffensen, F, o::AbstractUnivariateZeroState{T,S}, options, l=NullTracks(), ) where {T,S} x0, x1 = o.xn0, o.xn1 fx0, fx1 = o.fxn0, o.fxn1 sgn = sign((fx1 - fx0) / (x1 - x0)) x2 = x1 - sgn * fx1 / oneunit(S) * oneunit(T) f0 = fx1 f1::S = F(x2) incfn(l, 1) delta = -sgn * f0 * f0 / (f1 - f0) * oneunit(T) / oneunit(S) if isissue(delta) log_message(l, "Increment `Δx` has issues. ") return o, true end x0, x1::T = x1, x1 - delta fx0, fx1::S = fx1, F(x1) incfn(l) o = _set(o, (x1, fx1), (x0, fx0)) return o, false end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3813
# v1.0 only # Import dependency. using BenchmarkTools, Roots, Statistics #Create benchmark group and benchmarks benchmarks = BenchmarkGroup() #Put in specific benchmarks bracket_methods = (bisection=Roots.Bisection(), a42=Roots.A42(), aps=Roots.AlefeldPotraShi()) derivative_free_methods = ( o0=Roots.Order0(), o1=Roots.Order1(), o1b=Roots.Order1B(), o2=Roots.Order2(), o2b=Roots.Order2B(), o5=Roots.Order5(), o8=Roots.Order8(), o16=Roots.Order16(), ) # collection of doable problems problems = Dict( "f1" => (x -> sin(x), 3.0, (3.0, 4.0)), "f2" => (x -> x^5 - x - 1, 1.0, (0.5, 5.0)), "f3" => (x -> exp(x) - x^4, 7.0, (5.0, 20.0)), "f4" => (x -> cos(x) - x / 2, pi / 4, (0.0, pi / 2)), "f5" => (x -> x^2 - exp(x) - 3x + 2, -0.5, (-1.0, 1.0)), "f6" => (x -> x^2 - exp(x) - 3x + 2, 2.0, (0.0, 3.0)), "f7" => (x -> tanh(x) - tan(x), 7.6, (4.0, 8.0)), "f8" => (x -> exp(-x^2 + x + 2) - cos(x) + x^3 + 1, -0.5, (-2.0, 1.0)), "f9" => (x -> log(x) + sqrt(x) - 5, 7, (7.0, 10.0)), "f10" => (x -> log(x) + sqrt(x) - 5, 20, (7.0, 10.0)), ) function run_bracket(problems, Ms) for (nm, prob) in problems fn, x0, ab = prob for (mnm, M) in zip(fieldnames(typeof(Ms)), Ms) solve(ZeroProblem(fn, ab), M) #find_zero(fn, ab, M) end end end function run_bracketing(problems, Ms) rts = Float64[] for (nm, prob) in problems fn, x0, ab = prob for M in Ms rt = solve(ZeroProblem(fn, ab), M) #rt = find_zero(fn, ab, M) push!(rts, rt) end end rts end function run_derivative_free(problems, Ms) rts = Float64[] for (nm, prob) in problems fn, x0, ab = prob for M in Ms if M == Order0() rt = find_zero(fn, x0, M) else rt = solve(ZeroProblem(fn, ab), M) end push!(rts, rt) end end rts end function run_simple(problems) rts = Float64[] for (nm, prob) in problems fn, x0, ab = prob push!(rts, Roots.bisection(fn, ab[1], ab[2])) push!(rts, Roots.bisection(fn, ab[1], ab[2], xatol=1e-6)) push!(rts, Roots.secant_method(fn, x0)) end rts end benchmarks = BenchmarkGroup() benchmarks["bracketing"] = @benchmarkable run_bracketing($problems, $bracket_methods) benchmarks["derivative_free"] = @benchmarkable run_derivative_free($problems, $derivative_free_methods) benchmarks["simple"] = @benchmarkable run_simple($problems) for (nm, prob) in problems fn, x0, ab = prob @assert fn(ab[1]) * fn(ab[2]) < 0 Ms = bracket_methods for (mnm, M) in zip(fieldnames(typeof(Ms)), Ms) benchmarks[nm * "-" * string(mnm)] = @benchmarkable find_zero($fn, $ab, $M) end Ms = derivative_free_methods for (mnm, M) in zip(fieldnames(typeof(Ms)), Ms) benchmarks[nm * "-" * string(mnm)] = @benchmarkable find_zero($fn, $x0, $M) end # simple methods u, v = ab benchmarks[nm * "-bisection"] = @benchmarkable Roots.bisection($fn, $u, $v) benchmarks[nm * "-bisection-atol"] = @benchmarkable Roots.bisection($fn, $u, $v, xatol=1e-6) benchmarks[nm * "-secant"] = @benchmarkable Roots.secant_method($fn, $x0) end results = run(benchmarks) # Get results. results = median(results) # Condense to median. nm = "benchmarks.json" fname = joinpath(@__DIR__, nm) if isinteractive() println(""" To save results, manually call in the REPL: BenchmarkTools.save("benchmarks.json", results) """) end #Compare to old results try oldresults = BenchmarkTools.load(fname)[1] judge(oldresults, results) catch err error("Couldn't load file- make sure that you've previously saved results.", err.prefix) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
925
using Roots using Test using Aqua import SpecialFunctions.erf struct SomeInterval{T} a::T b::T end SomeInterval(a, b) = SomeInterval(promote(a, b)...) Base.extrema(I::SomeInterval) = I.a < I.b ? (I.a, I.b) : (I.b, I.a) # count function calls mutable struct Cnt cnt::Int f Cnt(f) = new(0, f) end (f::Cnt)(x) = (f.cnt += 1; f.f(x)) avg(x) = sum(x) / length(x) include("./test_find_zero.jl") include("./test_bracketing.jl") include("./test_derivative_free.jl") include("./test_simple.jl") include("./test_find_zeros.jl") include("./test_fzero.jl") include("./test_newton.jl") include("./test_chain_rules.jl") include("./test_simple.jl") include("./test_composable.jl") VERSION >= v"1.6.0" && include("./test_allocations.jl") VERSION >= v"1.9.0" && include("./test_extensions.jl") #include("./runbenchmarks.jl") #include("./test_derivative_free_interactive.jl") Aqua.test_all(Roots; ambiguities=false)
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3826
using Test import BenchmarkTools @testset "solve: zero allocations" begin fs = (sin, cos, x -> -sin(x)) x0 = (3, 4) x0′ = big.(x0) Ms = ( Order0(), Order1(), Order2(), Order5(), Order8(), Order16(), Roots.Order1B(), Roots.Order2B(), Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi(), Roots.Brent(), Roots.Ridders(), Roots.ITP(), ) # not FalsePosition() Ns = (Roots.Newton(), Roots.Halley(), Roots.Schroder()) for M in Ms @test BenchmarkTools.@ballocated(solve(ZeroProblem($fs, $x0), $M)) == 0 @inferred solve(ZeroProblem(fs, x0′), M) end for M in Ns @test BenchmarkTools.@ballocated(solve(ZeroProblem($fs, $x0), $M)) == 0 @inferred solve(ZeroProblem(fs, x0′), M) end # Allocations in Lith F(x) = (sin(x), tan(x), -cot(x), tan(x), -cot(x), tan(x), -cot(x), tan(x)) x0 = collect(range(3, 4, length=6)) VERSION >= v"1.7" && @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{1,1}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{1,2}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{1,3}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{1,4}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{1,5}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,0}()) ) == 0 VERSION >= v"1.7" && @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,1}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,2}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,3}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,4}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{2,5}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{3,0}()) ) == 0 VERSION >= v"1.7" && @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{3,1}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{4,0}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{5,0}()) ) == 0 @test BenchmarkTools.@ballocated( solve(ZeroProblem($F, $x0), Roots.LithBoonkkampIJzerman{6,0}()) ) == 0 # issue #323, test allocations with parameter f(x, p) = x^2 - p x0 = (1.0, 2.0) p = 2.0 for M in Ms @test BenchmarkTools.@ballocated(solve(ZeroProblem($f, $x0), $M, $p)) == 0 @test BenchmarkTools.@ballocated(solve(ZeroProblem($f, $x0), $M; p=$p)) == 0 end # issue #423 type instability for M in Ms @test @inferred solve(ZeroProblem(sin, 3.0f0)) ≈ pi end end @testset "simple: zero allocations" begin @test BenchmarkTools.@ballocated(Roots.bisection(sin, 3, 4)) == 0 @test BenchmarkTools.@ballocated(Roots.secant_method(sin, 3)) == 0 @test BenchmarkTools.@ballocated(Roots.muller(sin, 2.9, 3.0, 3.1)) == 0 @test BenchmarkTools.@ballocated(Roots.newton((sin, cos), 3)) == 0 @test BenchmarkTools.@ballocated(Roots.dfree(sin, 3)) == 0 end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
12767
using Roots using Test using Printf ## testing bracketing methods ## Originally by John Travers # # ## This set of tests is very useful for benchmarking the number of function ## calls, failures, and max errors for the various bracketing methods. ## Table 1 from TOMS748 by Alefeld, Potra, Shi mutable struct Func name::Symbol val::Function bracket::Function params::Vector{Any} end function show(io::IO, f::Func) @printf io "Func(%s)" f.name end ## Construct a function object, and check root brackets macro Func(name) @gensym f p b esc(quote $f = Func($name, val, bracket, params) for $p in params $b = bracket($p) @assert val($p, $b[1]) * $f.val($p, $b[2]) < 0 "Invalid bracket" end push!(known_functions, $f) $f end) end known_functions = Func[] ## This set of tests is very useful for benchmarking the number of function ## calls, failures, and max errors for the various bracketing methods. ## Table 1 from TOMS748 by Alefeld, Potra, Shi func1 = let val = (_, x) -> sin(x) - x / 2 bracket(_) = [0.5pi, pi] params = [()] @Func :func1 end func2 = let val = (n, x) -> -2 * sum([(2i - 5)^2 / (x - i * i)^3 for i in 1:20]) bracket(n) = [n^2 + 1e-9, (n + 1)^2 - 1e-9] params = 1:10 @Func :func2 end func3 = let val = (p, x) -> p[1] * x * exp(p[2] * x) bracket(p) = [-9.0, 31.0] params = [(-40.0, -1.0), (-100.0, -2.0), (-200.0, -3.0)] @Func :func3 end func4 = let val = (p, x) -> x^p[2] - p[1] bracket(p) = p[3] params = Tuple{Float64,Float64,Vector{Float64}}[] for a_ in [0.2, 1.0], n in 4:2:12 push!(params, (a_, n, [0.0, 5.0])) end for n in 8:2:14 push!(params, (1.0, n, [-0.95, 4.05])) end @Func :func4 end func5 = let val = (p, x) -> sin(x) - 0.5 bracket(p) = [0.0, 1.5] params = [()] @Func :func5 end func6 = let val = (n, x) -> 2x * exp(-n) - 2exp(-n * x) + 1.0 bracket(n) = [0.0, 1.0] params = vcat(1:5, 20:20:100) @Func :func6 end func7 = let val = (n, x) -> (1 + (1 - n)^2) * x - (1 - n * x)^2 bracket(n) = [0.0, 1.0] params = [5.0, 10.0, 20.0] @Func :func7 end func8 = let val = (n, x) -> x^2 - (1 - x)^n bracket(n) = [0.0, 1.0] params = [2.0, 5.0, 10.0, 15.0, 20.0] @Func :func8 end func9 = let val = (n, x) -> (1 + (1 - n)^4) * x - (1 - n * x)^4 bracket(n) = [0.0, 1.0] params = [1.0, 2.0, 4.0, 5.0, 8.0, 15.0, 20.0] @Func :func9 end func10 = let val = (n, x) -> exp(-n * x) * (x - 1) + x^n bracket(n) = [0.0, 1.0] params = [1, 5, 10, 15, 20] @Func :func10 end func11 = let val = (n, x) -> (n * x - 1) / ((n - 1) * x) bracket(n) = [0.01, 1.0] params = [2, 5, 15, 20] @Func :func11 end func12 = let val = (n, x) -> x^(1 / n) - n^(1 / n) bracket(n) = [1.0, 100.0] params = vcat(2:6, 7:2:33) @Func :func12 end func13 = let val = (n, x) -> x == 0.0 ? 0.0 : x / exp(1 / (x * x)) bracket(n) = [-1.0, 4.0] params = [()] @Func :func13 end func14 = let val = (n, x) -> x >= 0 ? n / 20 * (x / 1.5 + sin(x) - 1) : -n / 20 bracket(n) = [-1e4, 0.5pi] params = 1:40 @Func :func14 end func15 = let val = (n, x) -> begin if x > 2e-3 / (1 + n) exp(1) - 1.859 elseif x < 0 -0.859 else exp(0.5e3(n + 1)x) - 1.859 end end bracket(n) = [-1e4, 1e-4] params = vcat(20:40, 100:100:1000) @Func :func15 end mutable struct MethodResults name evalcount::Int maxresidual::Float64 failures::Vector{Tuple{Func,Int}} end MethodResults() = MethodResults(nothing, 0, 0.0, Tuple{Func,Int}[]) show(io::IO, results::MethodResults) = print( io, "MethodResults($(results.name), evalcount=$(results.evalcount), numfailures=$(length(results.failures)), maxresidual=$(results.maxresidual))", ) ## Run a method on all known functions. function run_tests(method; verbose=false, trace=false, name=nothing, abandon=false) results = MethodResults() results.name = name for f in known_functions for i in 1:length(f.params) p = f.params[i] evalcount = 0 function feval(x) evalcount += 1 result = f.val(p, x) trace && @printf "%s[%d]: %s ⇒ %s\n" f i x result result end result, residual = nothing, nothing try result = method(feval, f.bracket(p)) isnan(result) && error("NaN") residual = f.val(p, result) verbose && @printf "%s[%d] ⇒ %d / %s, residual %.5e\n" f i evalcount result residual catch ex verbose && @printf "%s[%d] ⇒ FAILED: %s\n" f i ex push!(results.failures, (f, i)) abandon && rethrow(ex) end results.evalcount += evalcount ## Some functions might return non-real values on failures if isa(result, AbstractFloat) && isa(residual, AbstractFloat) && isfinite(residual) results.maxresidual = max(results.maxresidual, abs(residual)) end end end results end ## Run a method on all known functions. function run_test(f, M; verbose=false, trace=false, name=nothing, abandon=false, kwargs...) d = DataFrame( i=Int[], cnt=Int[], steps=Int[], Δ=Float64[], residual=Float64[], result=Float64[], ) for (i, p) in enumerate(f.params) evalcount = 0 function feval(x) evalcount += 1 result = f.val(p, x) result end result, residual = nothing, nothing l = Roots.Tracks() try result = find_zero(feval, f.bracket(p), M; tracks=l, kwargs...) isnan(result) && error("NaN") residual = f.val(p, result) catch ex result = NaN residual = NaN end Δ = isempty(l.abₛ) ? NaN : -(l.abₛ[end]...) push!(d, (i=i, cnt=evalcount, steps=l.steps, Δ=Δ, residual=residual, result=result)) end d end function get_stats(M; kwargs...) d = DataFrame( fn=Int[], i=Int[], cnt=Int[], steps=Int[], Δ=Float64[], residual=Float64[], result=Float64[], ) for (j, fn) in enumerate(known_functions) dⱼ = run_test(fn, M; kwargs...) dⱼ.fn .= j append!(d, dⱼ) end d = transform(d, 5:7 => ByRow((Δ, ϵ, a) -> min(abs(a)^(-1) * abs(Δ), abs(ϵ))) => :min) end # used to test BracketedHalley # function rt(f, M) # for i in 1:length(f.params) # p = f.params[i] # fn = x ->f.val(p,x) # try # x = find_zero((fn, fn', fn''), f.bracket(p), M)#; atol=0.0, rtol=0.0) # @show x, fn(x) # catch err # @show :err # end # end # end @testset "bracketing methods" begin ## Test for failures, ideally all of these would be 0 ## test for residual, ideally small ## test for evaluation counts, ideally not so low for these problems ## exact_bracket Ms = [ Roots.Brent(), Roots.A42(), Roots.AlefeldPotraShi(), Roots.Chandrapatla(), Roots.ITP(), Roots.Ridders(), Roots.Bisection(), ] results = [run_tests((f, b) -> find_zero(f, b, M), name="$M") for M in Ms] maxfailures = maximum(length(result.failures) for result in results) maxresidual = maximum(result.maxresidual for result in results) cnts = [result.evalcount for result in results] @test maxfailures == 0 @test maxresidual <= 5e-13 @test avg(cnts) <= 4700 ## False position has larger residuals ## Fn #13 fails on numbers 2 and 4 until maxsteps is increased; 100 works Ms = [Roots.FalsePosition(i) for i in 1:12] results = [run_tests((f, b) -> find_zero(f, b, M), name="$M") for M in Ms] maxfailures = maximum(length(result.failures) for result in results) maxresidual = maximum(result.maxresidual for result in results) cnts = [result.evalcount for result in results] @test maxfailures <= 1 @test maxresidual <= 1e-5 @test avg(cnts) <= 3000 ## issue 412 check for bracket for M in Ms @test_throws ArgumentError find_zero(x -> x - 1, (-3, 0), M) @test_throws ArgumentError find_zero(x -> 1 + x^2, (10, 20), M) end end ## Some tests for FalsePosition methods @testset "FalsePosition" begin galadino_probs = [ (x -> x^3 - 1, [0.5, 1.5]), (x -> x^2 * (x^2 / 3 + sqrt(2) * sin(x)) - sqrt(3) / 18, [0.1, 1]), (x -> 11x^11 - 1, [0.1, 1]), (x -> x^3 + 1, [-1.8, 0]), (x -> x^3 - 2x - 5, [2.0, 3]), ((x, n=5) -> 2x * exp(-n) + 1 - 2exp(-n * x), [0, 1]), ((x, n=10) -> 2x * exp(-n) + 1 - 2exp(-n * x), [0, 1]), ((x, n=20) -> 2x * exp(-n) + 1 - 2exp(-n * x), [0, 1]), ((x, n=5) -> (1 + (1 - n)^2) * x^2 - (1 - n * x)^2, [0, 1]), ((x, n=10) -> (1 + (1 - n)^2) * x^2 - (1 - n * x)^2, [0, 1]), ((x, n=20) -> (1 + (1 - n)^2) * x^2 - (1 - n * x)^2, [0, 1]), ((x, n=5) -> x^2 - (1 - x)^n, [0, 1]), ((x, n=10) -> x^2 - (1 - x)^n, [0, 1]), ((x, n=20) -> x^2 - (1 - x)^n, [0, 1]), ((x, n=5) -> (1 + (1 - n)^4) * x - (1 - n * x)^4, [0, 1]), ((x, n=10) -> (1 + (1 - n)^4) * x - (1 - n * x)^4, [0, 1]), ((x, n=20) -> (1 + (1 - n)^4) * x - (1 - n * x)^4, [0, 1]), ((x, n=5) -> exp(-n * x) * (x - 1) + x^n, [0, 1]), ((x, n=10) -> exp(-n * x) * (x - 1) + x^n, [0, 1]), ((x, n=20) -> exp(-n * x) * (x - 1) + x^n, [0, 1]), ((x, n=5) -> x^2 + sin(x / n) - 1 / 4, [0, 1]), ((x, n=10) -> x^2 + sin(x / n) - 1 / 4, [0, 1]), ((x, n=20) -> x^2 + sin(x / n) - 1 / 4, [0, 1]), ] for (fn_, ab) in galadino_probs for M in (FalsePosition(i) for i in 1:12) g = Cnt(fn_) x0_ = find_zero(g, ab, M) @test abs(fn_(x0_)) <= 1e-7 @test g.cnt <= 50 end end end @testset "Bracketing edge cases" begin Ms = (Bisection(), Roots.A42(), Roots.AlefeldPotraShi()) # Endpoints can be infinite for M in Ms @test find_zero(sign, (-Inf, Inf), M) ≈ 0 atol = 1e-16 end # Function can be infinite for Bisection and Float64 @test @inferred(find_zero(x -> Inf * sign(x - pi), (-Inf, Inf), Bisection())) ≈ pi # finds discontinuities, not necessarily zeros f = (x, p=0.0) -> 1 / (x - p) #avoid issue with `0` being identified by `_middle` for M in Ms @test find_zero(f, (-1, 1), M, p=eps()) ≈ eps() atol = 2eps() end @test iszero(@inferred(find_zero(f, (-1, 1), Roots.Bisection()))) # XXX changes with relaxed tolerance (adding non-zero xatol) #@test_throws Roots.ConvergenceFailed find_zero(f, (-1, 1), Roots.A42()) #@test_throws Roots.ConvergenceFailed find_zero(f, (-1, 1), Roots.AlefeldPotraShi()) # subnormals should still be okay α = nextfloat(nextfloat(0.0)) f = x -> x - α for M in (Bisection(),) #Ms XXX NOT A42, AlefeldPotraShi with xatol !==0 @test find_zero(f, (-1, 1), M) == α end # with NaN, not Inf f = x -> abs(x) / x for M in Ms @test find_zero(f, (-1, 1), M) ≈ 0 atol = eps() end # points are not evaluated outside boundary; issue #233 a, b = -1, 1 f = x -> abs(x) > 1 ? error("out of bounds") : 1.0 - x for M in Ms @test find_zero(f, (a, b), M) ≈ 1 end f = x -> abs(x) > 1 ? error("out of bounds") : prevfloat(1.0) - x for M in Ms @test find_zero(f, (a, b), M) ≈ 1 end # check if fa*fb ≥ 0 for M in ( Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi(), Roots.Brent(), Roots.Ridders(), Roots.Chandrapatla(), Roots.ITP(), Roots.FalsePosition(), ) x = find_zero(x -> sin(x), (0, 1)) @test iszero(x) @test_throws ArgumentError find_zero(x -> sin(x), (2, 3)) # no bracket end # last bit of accuracy, when close issue #368 @test find_zero(x -> sinpi(-1 / 40 + x / 40) + 1 - x, (0, 2), A42()) == 1.0 # sloppy bug using isfinite (#373) f = x -> 1 - x / (x - 1)^2 xleft = 1 + eps(BigFloat) xright = 3 * xleft x = find_zero(f, (xleft, xright)) @test abs(f(x)) <= 2eps(BigFloat) # simple a42() m = run_tests(Roots.a42) VERSION >= v"1.6" && @test isempty(m.failures) @test m.evalcount <= 3000 # paper says 2884, this has 2877 end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3180
using Roots using ChainRulesTestUtils using Zygote using Test # issue #325 add frule, rrule struct 𝐺 p end (g::𝐺)(x) = cos(x) - g.p * x G₃(p) = find_zero(𝐺(p), (0, pi / 2), Bisection()) F₃(p) = find_zero((x, p) -> cos(x) - p * x, (0, pi / 2), Bisection(), p) @testset "Test frule and rrule" begin # Type inference tests of `test_frule` and `test_rrule` with the default # rule config `ChainRulesTestUtils.TestConfig()` fail due to an issue # with ChainRulesTestUtils: https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/246 # single function f(x, p) = log(x) - p test_frule(solve, ZeroProblem(f, 1), Order1(), 1.0; check_inferred=false) test_rrule(solve, ZeroProblem(f, 1), Order1(), 1.0; check_inferred=false) if isdefined(Zygote, :ZygoteRuleConfig) test_rrule( Zygote.ZygoteRuleConfig(), solve, ZeroProblem(f, 1), Order1(), 1.0; check_inferred=false, ) end F(p) = find_zero(f, 1, Order1(), p) @test first(Zygote.gradient(F, 1)) ≈ exp(1) g(x, p) = x^2 - p[1] * x - p[2] test_frule(solve, ZeroProblem(g, 1), Order1(), [0.0, 4.0]; check_inferred=false) test_rrule(solve, ZeroProblem(g, 1), Order1(), [0.0, 4.0]; check_inferred=false) G(p) = find_zero(g, 1, Order1(), p) @test first(Zygote.gradient(G, [0, 4])) ≈ [1 / 2, 1 / 4] # a tuple of functions fx(x, p) = 1 / x test_frule(solve, ZeroProblem((f, fx), 1), Roots.Newton(), 1.0; check_inferred=false) test_rrule(solve, ZeroProblem((f, fx), 1), Roots.Newton(), 1.0; check_inferred=false) if isdefined(Zygote, :ZygoteRuleConfig) test_rrule( Zygote.ZygoteRuleConfig(), solve, ZeroProblem((f, fx), 1), Roots.Newton(), 1.0; check_inferred=false, ) end F2(p) = find_zero((f, fx), 1, Roots.Newton(), p) @test first(Zygote.gradient(F2, 1)) ≈ exp(1) gx(x, p) = 2x - p[1] test_frule( solve, ZeroProblem((g, gx), 1), Roots.Newton(), [0.0, 4.0]; check_inferred=false, ) test_rrule( solve, ZeroProblem((g, gx), 1), Roots.Newton(), [0.0, 4.0]; check_inferred=false, ) G2(p) = find_zero((g, gx), 1, Roots.Newton(), p) @test first(Zygote.gradient(G2, [0, 4])) ≈ [1 / 2, 1 / 4] # test Functor; issue #408 x = rand() @test first(Zygote.gradient(F₃, x)) ≈ first(Zygote.gradient(G₃, x)) # ForwardDiff extension makes this fail. VERSION >= v"1.9.0" && @test_broken first(Zygote.hessian(F₃, x)) ≈ first(Zygote.hessian(G₃, x)) # test_frule, test_rrule aren't successful #= # DimensionMismatch: arrays could not be broadcast to a common size; got a dimension with lengths 3 and 2 test_frule( solve, ZeroProblem(𝐺(2), (0.0, pi/2)), Roots.Bisection(); check_inferred=false, ) # MethodError: no method matching keys(::NoTangent) test_rrule( solve, ZeroProblem(𝐺(2), (0.0, pi/2)), Roots.Bisection(); check_inferred=false, ) =# end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2538
# Simple tests to make sure Roots works with other # packages. This is not part of runtests, as no expectation # that CI should run these using Roots using Test using Unitful using Polynomials using ForwardDiff @testset "Test composability with other packages" begin orders = [ Order0(), Order1(), Roots.Order1B(), Order2(), Roots.Order2B(), Order5(), Order8(), Order16(), ] # Unitful @testset "find zero(s) with Unitful" begin s = u"s" m = u"m" g = (9 + 8//10) * m / s^2 v0 = 10m / s y0 = 16m y(t) = -g * t^2 + v0 * t + y0 for order in orders @test find_zero(y, 1.8s, order) ≈ 1.886053370668014s @test find_zero(y, 1.8f0s, order) isa typeof(1.88f0s) end for M in [Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi()] @test find_zero(y, (1.8s, 1.9s), M) ≈ 1.886053370668014s @test find_zero(y, (1.8f0s, 1.9f0s), M) isa typeof(1.88f0s) end xrts = find_zeros(y, 0s, 10s) @test length(xrts) == 1 @test xrts[1] ≈ 1.886053370668014s # issue #434 xzs1 = find_zeros(x -> cos(x / 1u"m"), -1.6u"m", 2u"m") @test length(xzs1) == 2 && maximum(xzs1) ≈ 1.5707963267948966 * u"m" FX = ZeroProblem(y, (0f0s, 2f0s)) prob = Roots.init(FX, Roots.AlefeldPotraShi()) @test Roots.is_small_Δx(prob.M, prob.state, prob.options) isa Bool # does not throw end # Polynomials @testset "find zero(s) with Polynomials" begin m = s = 1.0 g = 9.8 * m / s^2 v0 = 10m / s y0 = 16m y(t) = -g * t^2 + v0 * t + y0 x = variable() for order in orders @test find_zero(y(x), 1.8, order) ≈ 1.8860533706680143 end for M in [Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi()] @test find_zero(y(x), (1.8, 1.9), M) ≈ 1.8860533706680143 end xrts = find_zeros(y(x), 0, 10) @test length(xrts) == 1 @test xrts[1] ≈ 1.8860533706680143 end # ForwardDiff # taking a derivative of a function that using find_zero. D(f) = x -> ForwardDiff.derivative(f, x) F(x, y) = (x + 1) * (x^2 + y^2) - 2x^2 # has loop for x ∈ (0,1) h(x) = find_zero(y -> F(x, y), -1 / 4 * one(x)) # one(x) to get proper type for D α = find_zero(D(h), (0, 1)) # find lowest point on loop @test h(α) ≤ h(α + 0.1) @test h(α) ≤ h(α - 0.1) end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
10985
using Roots using Test using JSON using Printf ## testing/benchmarking derivative-free methods mutable struct Func1 name::Symbol val::Function x0::Function alpha # a value or values params::Vector{Any} end function Base.show(io::IO, f::Func1) @printf io "Func(%s)" f.name end #Construct a function object, macro Func1(name) @gensym f p x esc(quote $f = Func1($name, val, x0, alpha, params) push!(known_functions, $f) $f end) end known_functions = Func1[] ## This set of tests is useful for benchmarking the number of function ## calls, failures, and max errors for the various derivative_free methods. # easy ones func1 = let val = (_, x) -> cos(x) - x / 2 a, b, N = 0.0, pi / 2, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 1.0298665293222589 @Func1 :func1 end func2 = let val = (_, x) -> exp(x) - x^4 a, b, N = 5.0, 20.0, 11 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = find_zeros(x -> val(0, x), -5.0, 20.0) @Func1 :func2 end func3 = let val = (_, x) -> x^5 - x - 1 a, b, N = 0.5, 2.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.1673039782614187 @Func1 :func3 end # wider range func4 = let val = (_, x) -> (1 + cos(x)) * (exp(x) - 2) a, b, N = 0.0, 1.7, 15 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.6931471805599453 @Func1 :func4 end func5 = let val = (_, x) -> 2 * x - exp(-x) a, b, N = -5.0, 5.0, 15 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.35173371124919584 @Func1 :func5 end # once over hump, hard to get back to 0 func6 = let val = (_, x) -> x * exp(-x) a, b, N = -5.0, 5.0, 15 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.0 @Func1 :func6 end # once outside of extrema, points away from zero func7 = let val = (_, x) -> 20.0 * x / (100.0 * x^2 + 1.0) a, b, N = -0.2, 0.2, 15 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.0 @Func1 :func7 end # should have some failures here func8 = let val = (_, x) -> cos(x) - x / 2 a, b, N = 0.0, 3pi / 4, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 1.0298665293222589 @Func1 :func8 end func9 = let val = (_, x) -> tanh(x) - tan(x) a, b, N = 5.0, 10.0, 8 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = find_zeros(x -> val(0, x), 5, 12) @Func1 :func9 end func10 = let val = (_, x) -> asin(x^2 - 1) - x / 2 + 1 a, b, N = -0.5, 0.9, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = find_zeros(x -> val(0, x), -0.5, 1.0) @Func1 :func10 end func11 = let val = (_, x) -> exp(-x) - cos(x) a, b, N = -2.0, 2.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = find_zeros(x -> exp(-x) - cos(x), -2, 2) @Func1 :func11 end func12 = let val = (_, x) -> sqrt(x) - 1 / x - 3 a, b, N = 5, 20, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 9.633595562832696 @Func1 :func12 end ## multiplicity: http://ir.igsnrr.ac.cn/bitstream/311030/8840/1/%E4%BE%AF%E9%BA%9F%E7%A7%91(SCI)2.pdf func13 = let val = (_, x) -> (x - sqrt(5))^4 / ((x - 1)^2 + 2) a, b, N = 3.0, 4.5, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 2.236067977499790 @Func1 :func13 end func14 = let val = (_, x) -> (sin(x)^2 - 2x + 1)^5 a, b, N = 3.0, 5.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.71483582544138924 @Func1 :func14 end func15 = let val = (_, x) -> (8x * exp(-x^2) - 2x - 3)^8 a, b, N = -2.0, -1.5, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = -1.7903531791589544 @Func1 :func15 end # this is 1e6 * (x-1)^7, has many "zeros" near 1 func16 = let val = (_, x) -> 1e6 * (x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1) a, b, N = -0.0, 2.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 1.0 @Func1 :func16 end func17 = let val = (_, x) -> (exp(-x^2 + x + 3) - x + 2)^9 a, b, N = 2.4, 2.5, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 2.4905398276083051 @Func1 :func17 end func18 = let val = (_, x) -> (exp(-x) + 2sin(x))^4 a, b, N = 3.0, 3.4, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 3.1627488709263654 @Func1 :func18 end ## hard w/o aggressive bracketing func19 = let val = (_, x) -> cbrt(x) a, b, N = -3.0, 3.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.0 @Func1 :func19 end func20 = let val = (_, x) -> x < -1 / 4 ? 3 / 4 * x - 0.3125 : x < 1 / 4 ? 2x : 3 / 4 * x + 0.3125 a, b, N = -1.0, 1.0, 10 x0(n) = range(a, stop=b, length=N)[n] params = 1:N alpha = 0.0 @Func1 :func20 end mutable struct MethodResults1 name problems::Int evalcount::Int maxresidual::Float64 maxdifference::Float64 failures::Vector{Tuple{Func1,Int}} end MethodResults1() = MethodResults1(nothing, 0, 0, 0.0, Inf, Tuple{Func1,Int}[]) Base.show(io::IO, results::MethodResults1) = print( io, "MethodResults($(results.name), evalcount=$(results.evalcount), numfailures=$(length(results.failures)), maxresidual=$(results.maxresidual))", ) ## Run a method on all known functions. mindiff(a, alpha) = minimum([a - i for i in alpha]) function run_df_tests(method; verbose=false, trace=false, name=nothing, abandon=false) results = MethodResults1() results.name = name results.problems = 0 for f in known_functions for i in 1:length(f.params) p = f.params[i] evalcount = 0 function feval(x) evalcount += 1 result = f.val(p, x) trace && @printf "%s[%d]: %s ⇒ %s\n" f i x result result end result, residual = nothing, nothing try result = method(feval, f.x0(p)) md = abs(mindiff(result, f.alpha)) isnan(result) && error("NaN") (md > 1) && error("ran away") results.problems += 1 results.evalcount += evalcount residual = f.val(p, result) verbose && @printf "%s[%d] ⇒ %d / %s, residual %.5e\n" f.name i evalcount result residual ## Some functions might return non-real values on failures if isa(result, AbstractFloat) && isa(residual, AbstractFloat) && isfinite(residual) results.maxresidual = max(results.maxresidual, abs(residual)) results.maxdifference = max(results.maxdifference, mindiff(result, f.alpha)) end verbose && abs(residual) > 1 / 10 && @printf "Large Residual [%s] %d/%d\n" f.name i p catch ex verbose && @printf "%s[%d] ⇒ FAILED: %s\n" f.name i ex push!(results.failures, (f, i)) abandon && rethrow(ex) end end end results end D(f, h=1e-4) = x -> (f(x + h) - f(x - h)) / (2h) D2(f, h=1e-4) = x -> (f(x + h) - 2f(x) + f(x - h)) / h^2 if !isinteractive() @testset "derivative free methods" begin ## Test for failures, ideally all of these would be 0 ## test for residual, ideally small ## test for evaluation counts, ideally not so low for these problems ## basic methods Ms = [ Roots.Order1(), Roots.Order1B(), Roots.Order2(), Roots.Order2B(), Roots.Order5(), Roots.Order8(), Roots.Order16(), ] results = [run_df_tests((f, b) -> find_zero(f, b, M), name="$M") for M in Ms] failures = [length(result.failures) for result in results] residuals = [result.maxresidual for result in results] cnts = [result.evalcount / result.problems for result in results] @test maximum(failures) <= 60 @test maximum(residuals) <= 5e-5 @test avg(cnts) <= 40 ## methods which fall back to bisection when bracket found Ms = [Roots.Order0()] results = [run_df_tests((f, b) -> find_zero(f, b, M), name="$M") for M in Ms] failures = [length(result.failures) for result in results] residuals = [result.maxresidual for result in results] cnts = [result.evalcount / result.problems for result in results] @test maximum(failures) <= 30 @test maximum(residuals) <= 1e-5 @test avg(cnts) <= 40 ## Newton and Halley Fs = [ (f, b) -> find_zero((f, D(f)), b, Roots.Newton()), (f, b) -> find_zero((f, D(f), D2(f)), b, Roots.Halley()), (f, b) -> find_zero((f, D(f), D2(f)), b, Roots.Schroder()), ] results = [run_df_tests(F) for F in Fs] failures = [length(result.failures) for result in results] residuals = [result.maxresidual for result in results] cnts = [result.evalcount / result.problems for result in results] @test maximum(failures) <= 70 @test maximum(residuals) <= 5e-4 @test avg(cnts) <= 50 end @testset "derivative free, non Float64" begin Ms = [ Roots.Order0(), Roots.Order1(), Roots.Order1B(), Roots.Order2(), Roots.Order2B(), Roots.Order5(), Roots.Order8(), Roots.Order16(), ] Ts = [Float16, Float32, BigFloat] fn = x -> x^3 - 2x - 5 alpha = 2.094551481542326591482386540579302963857306105628239180304128529045312189983499 x0 = 2.0 for T in Ts for M in Ms xstar = find_zero(fn, T(x0), M) @test xstar ≈ T(alpha) atol = max(sqrt(eps(T)), eps()) @test isa(xstar, T) end end for T in Ts xstar = Roots.find_zero((fn, D(fn, sqrt(eps(T)))), T(x0), Roots.Newton()) @test xstar ≈ T(alpha) atol = max(sqrt(eps(T)), eps()) @test isa(xstar, T) xstar = Roots.find_zero( (fn, D(fn, sqrt(eps(T))), D2(fn, sqrt(eps(T)))), T(x0), Roots.Halley(), ) @test xstar ≈ T(alpha) atol = max(sqrt(eps(T)), eps()) @test isa(xstar, T) xstar = Roots.find_zero( (fn, D(fn, sqrt(eps(T))), D2(fn, sqrt(eps(T)))), T(x0), Roots.Schroder(), ) @test xstar ≈ T(alpha) atol = max(sqrt(eps(T)), eps()) @test isa(xstar, T) end end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
16275
## A set of functions for exploring convergence ## in an interactive manner: ### Benchmarking tests ## We have ## ## * visualize_diagonostics(which): to see summaries of the methods ## over the different functions with which in (:summary, :counts, ## :residuals) ## ## * identify_regression(): to identify regressions in counts, ## residuals, failures, or exact answers, as compared with a past ## diagnostic run ## ## * write_out(): to save results of a diagnostic run. Must be run in the Roots/test directory ## ## * compare_convergence(Methods): to generate a table of convergence orders using Roots using Test using JSON using Printf ## This uses functions defined here: include(joinpath(@__DIR__, "test_derivative_free.jl")) mutable struct Wrapper f n end Wrapper(f) = Wrapper(f, 0) (F::Wrapper)(x) = (F.n += 1; F.f(x)) struct TallyCard cnts::Vector{Int} # fn evals res::Vector{Float64} # rts rs::Vector{Float64} # residual exact::Vector{Int} # exact 1, 0, -1 (for fail) ds::Vector{Float64} # difference from alpha(s) rng::Vector{Float64} # range sampled end TallyCard() = TallyCard(Int[], Float64[], Float64[], Int[], Float64[], Float64[]) # test a single function, create tally card function test_function(method, F) tc = TallyCard() m, M = Inf, -Inf for p in F.params f = Wrapper(x -> F.val(p, x)) result, residual = nothing, nothing x0 = F.x0(p) m = x0 < m ? x0 : m M = x0 > M ? x0 : M try result = method(f, x0) cnt = f.n residual = f(result) d = minimum(abs.(result .- F.alpha)) exact = ( iszero(residual) || f(result) * f(nextfloat(result)) < 0 || f(result) * f(prevfloat(result)) < 0 ) ? 1 : 0 push!(tc.cnts, cnt) push!(tc.res, result) push!(tc.ds, d) push!(tc.rs, residual) push!(tc.exact, exact) catch err push!(tc.cnts, -1) push!(tc.res, NaN) push!(tc.ds, NaN) push!(tc.rs, NaN) push!(tc.exact, -1) end end append!(tc.rng, (m, M)) tc end # vector of vectors to an array function vvta(vs, T=eltype(vs[1])) n = length(vs) m = length(vs[1]) A = zeros(T, n, m) for j in 1:n A[j, :] = vs[j] end A end function vvta1(vs, T) n = length(vs) m = length(vs[1]) A = zeros(T, m, n) for j in 1:n A[:, j] = vs[j] end A end ## Return Dict of arrays function create_diagonostics(Ms, Fs, nms) @assert length(nms) == length(Ms) out = Array{Any}(undef, length(Ms), length(Fs)) for (i, M) in enumerate(Ms) for (j, F) in enumerate(Fs) out[i, j] = test_function(M, F) end end m, n = length(Ms), length(Fs) D = Dict( "counts" => Dict(), "rts" => Dict(), "residuals" => Dict(), "exact" => Dict(), "delta" => Dict(), "failed" => Dict(), "nms" => nms, "size" => (m, n), ) # Counts for j in eachindex(Fs) jj = string(j) # for JSON serialization cnts = [out[i, j].cnts for i in eachindex(Ms)] rts = [out[i, j].res for i in eachindex(Ms)] rs = [out[i, j].rs for i in eachindex(Ms)] exact = [out[i, j].exact for i in eachindex(Ms)] ds = [out[i, j].ds for i in eachindex(Ms)] M = length(cnts) N = div(M, m) D["counts"][jj] = vvta(cnts) D["rts"][jj] = vvta(rts) D["residuals"][jj] = vvta(rs) D["exact"][jj] = vvta(exact) D["delta"][jj] = vvta(ds) # failed fc = D["counts"][jj] .< 0 fd = D["delta"][jj] .> 1.0 fr = D["residuals"][jj] .> 1.0 D["failed"][jj] = [fc[i, j] || fd[i, j] || fr[i, j] for i in 1:size(fc)[1], j in 1:size(fc)[2]] end D end function visualize_diagnostics(::Val{:summary}, D) ## Some diagnostics n = length(D["counts"]) # number of functions m = size(D["counts"]["1"])[1] for i in 1:m fs, cnt, exact, maxresidual = 0, 0, 0, 0.0 for j in 1:n jj = string(j) fail = D["failed"][jj][i, :] cnts = D["counts"][jj][i, :] resids = D["residuals"][jj][i, :] exacts = D["exact"][jj][i, :] fs += sum(fail) cnt += sum(cnts[.!fail]) exact += sum(exacts .== 1) rs = resids[.!fail] if !isempty(rs) maxresidual = max(maxresidual, maximum(rs)) end end nm = D["nms"][i] print(rpad(nm, 15)) print(rpad(cnt, 6)) print(rpad(exact, 6)) print(rpad(fs, 5)) println(maxresidual) end end function visualize_diagnostics(::Val{:counts}, D, j) ## Some diagnostics n = length(D["counts"]) # number of functions m = size(D["counts"]["1"])[1] # for j in 1:n jj = string(j) counts = D["counts"][jj] fails = D["failed"][jj] println(" --- Function $jj ---") for i in 1:m nm = D["nms"][i] print(rpad(nm, 15)) tot, ntot = 0, 0 for (fail, cnt) in zip(fails[i, :], counts[i, :]) if fail print(lpad(".", 5)) else tot += cnt ntot += 1 print(lpad(cnt, 5)) end end avg = round(tot / ntot, digits=1) println("\t$avg") end # end end function visualize_diagnostics(::Val{:residuals}, D, j) ## Some diagnostics n = length(D["counts"]) # number of functions m = size(D["counts"]["1"])[1] jj = string(j) resids = D["residuals"][jj] exacts = D["exact"][jj] fails = D["failed"][jj] println(" --- Function $jj ---") for i in 1:m nm = D["nms"][i] print(rpad(nm, 15)) tot, ntot = 0, 0 for (fail, res, exact) in zip(fails[i, :], resids[i, :], exacts) if fail ch = "X" elseif res > 1e-3 ch = "x" elseif res > 1e-12 ch = "~" elseif exact == 1 ch = "∘" else ch = "." end print(lpad(ch, 2)) end println("") end end # which in (:all, :summary, :counts, :residuals) function visualize_diagnostics(D, which=:summary) # :cnts, ... ## Some diagnostics n = length(D["counts"]) # number of functions m = size(D["counts"]["1"])[1] println("Visualize diagnostics: :$which ∈ (:all, :summary, :counts, :residuals)\n") # summary if which in (:all, :summary) println("Method fncnt exact fail maxresidual") # one row summarizing each method visualize_diagnostics(Val(:summary), D) end # Counts if which in (:all, :counts) for j in 1:n visualize_diagnostics(Val(:counts), D, j) end end # residuals if which in (:all, :residuals) println("Residual summary") println( "Key:\t`∘` - exact\n\t`.` - res < 1e-12\n\t`~` - 1e-12 < res < 1e-3`\n\t`x` - 1e-3 < res\n\t`X` - failed", ) for j in 1:n visualize_diagnostics(Val(:residuals), D, j) end end end ## write out/ read in summaries to file function write_out(fname, D) io = open(fname, "w") JSON.Writer.print(io, D) close(io) end # annoyingly need to convert values to proper type after # JSON serializations function read_in(fname) D = JSON.parsefile(fname) E = Dict() E["nms"] = string.(D["nms"]) E["size"] = Tuple(D["size"]) for nm in ("counts", "exact", "failed") E[nm] = Dict() for (k, v) in D[nm] E[nm][k] = vvta1(v, Int) end end E["residuals"] = Dict() for (k, v) in D["residuals"] for vi in v vi[vi .=== nothing] .= NaN end E["residuals"][k] = vvta1(v, Float64) end E end # compare D to E function identify_regressions(Dnew, Dold) out = String[] Dnew["nms"] == Dold["nms"] || return "Names are different" Dnew["size"] == Dold["size"] || return "sizes are different" for (k, v) in Dnew["counts"] A, A1 = v, Dold["counts"][k] sum(A[A .> 0]) <= sum(A1[A1 .> 0]) || push!(out, "counts increased for function $k") sum(A[A .> 0]) < sum(A1[A1 .> 0]) && push!(out, "✓ counts decreased for function $k") end for (k, v) in Dnew["exact"] A, A1 = v, Dold["exact"][k] sum(A .== 1) >= sum(A1 .== 1) || push!(out, "exact decreased for function $k") sum(A .== 1) > sum(A1 .== 1) && push!(out, "✓ exact increased for function $k") end for (k, v) in Dnew["failed"] A, A1 = v, Dold["failed"][k] sum(A) <= sum(A1) || push!(out, "failed increased for function $k") sum(A) < sum(A1) && push!(out, "✓ failed decreased for function $k") end for (k, v) in Dnew["residuals"] A, A1 = v, Dold["residuals"][k] for i in eachindex(A) newi, oldi = A[i], A1[i] if abs(newi) > 1.1 * abs(oldi) push!(out, "residuals increased for function $k") break end if abs(newi) < 0.9 * abs(oldi) push!(out, "✓ residuals decreased for function $k") break end end end return out end ## Main interface for interactive use fname = joinpath(@__DIR__, "derivative_free_diagnostics.json") elide_ascii(x, n=12) = length(x) > n ? x[1:(n - 3)] * "..." * x[(end - 1):end] : x function create_diagonostics() meths = [ Order0(), Order1(), Roots.Order1B(), Roots.King(), Order2(), Roots.Steffensen(), Roots.Order2B(), Roots.Esser(), Order5(), Roots.KumarSinghAkanksha(), Order8(), Roots.Thukral8(), Order16(), Roots.Thukral16(), ] Ms = [(f, b) -> find_zero(f, b, M) for M in meths] # F(f,b), name nms = elide_ascii.([replace(string(M), r"^Roots." => "") for M in meths]) Fs = known_functions create_diagonostics(Ms, Fs, nms) end ## write out current diagnostic test function write_out() println("Creating diagonostics to save") write_out(fname, create_diagonostics()) end ## visualize state """ visualize_diagnostics(which=:summary) Show diagnostics summary `which` is one of `(:all, :summary, :counts, :residuals)` """ visualize_diagnostics(which=:summary) = visualize_diagnostics(create_diagonostics(), which) ## identify regressions from currently saved state """ identify_regressions() Compare current state to saved state. Use `write_out` to save a state. """ function identify_regressions() if !isfile(fname) println("No previous diagnostic to compare with") return String[] # empty end Dnew = create_diagonostics() Dold = read_in(fname) out = identify_regressions(Dnew, Dold) out end ## tests for newton, halley import ForwardDiff: derivative D(f, n=1) = n > 1 ? D(D(f), n - 1) : x -> derivative(f, float(x)) function derivative_based_diagonostics() Ms = ( (f, b) -> Roots.find_zero((f, D(f)), b, Roots.Newton()), (f, b) -> Roots.find_zero((f, D(f), D(f, 2)), b, Roots.Halley()), (f, b) -> Roots.find_zero((f, D(f), D(f, 2)), b, Roots.Schroder()), (f, b) -> Roots.find_zero((f, D(f)), b, Roots.Order5()), ) nms = ("Newton", "Halley", "Schroder", "Order5") Fs = known_functions create_diagonostics(Ms, Fs, nms) end ## Order of convergence ## assuming e_n = x_n - alpha and ## e_{n+1} = C e_n^q this tries to find q by: ## alpha known: e_{n+1}/e_n = (e_n/e_{n-1})^q, ## alpha unknown: f(x_n) - f(alpha) ~ f'(alpha)*(en), so en ~ Cf(x_n) function COC(M, f, x0, alpha=missing) op = precision(BigFloat) setprecision(BigFloat, 8 * 256) tracks = Roots.Tracks(BigFloat[], BigFloat[]) try find_zero(f, big(x0), M, tracks=tracks) catch err setprecision(BigFloat, op) rethrow() end setprecision(BigFloat, op) if ismissing(alpha) fs = tracks.fs [ Float64(log(abs(fs[k + 2] / fs[k + 1])) / log(abs(fs[k + 1] / fs[k]))) for k in 1:(length(fs) - 4) ] else xs = tracks.xs es = xs .- alpha [Float64(log(abs(es[k + 1])) / log(abs(es[k]))) for k in 1:(length(xs) - 3)] end end ### Traditional tests: start nearby and compare convergence """ Compare convergences. For each method and for several test functions, computes * abs(x1-alpha), abs(x2-alpha), abs(x3-alpha); * the computational order of convergence rc = log|f(xk+1)/f(xk)|/log|f(xk)/f(xk-1)| * the computed zero Example ``` compare_convergence((Order1(), Order2(), Order8())) ## ## Example (errors from Sidi, Unified treatment...) ## Let error be En = xn - alpha ## Secant: E_{n+1} = f[x_n, x_{n-1}, alpha] / f[x_n, x_{n-1}] E_n E_{n-1} ## Newton: E_{n+1} = f[xn, xn, alpha]/f'(xn) E_n^2 ## Steffensen: E_{n+1} = f[xn, xn+fxn, alpha] / f[xn, xn + fxn] ⋅ (1 f[xn,alpha] ⋅ En^2 using ForwardDiff; D(f) = x -> ForwardDiff.derivative(f, float(x)) struct MNewton <: Roots.AbstractSecant end function Roots.update_state(M::MNewton, f, o, opts) o.xn0, o.fxn0 = o.xn1, o.fxn1 o.xn1 -= f(o.xn1) / D(f)(o.xn1) o.fxn1 = f(o.xn1) nothing end compare_convergence((Roots.Secant(), MNewton(), Roots.Steffensen())) ``` """ function compare_convergence(Ms; F=identity) fns = ( ( x -> log(x^2 + x + 2) - x + 1, big"4.4", 4.152590736757158274996989004767139785813809448259893154635015805935085336704627, ), ( x -> sin(x)^2 - x^2 + 1, big"1.4", 1.404491648215341226035086817786868077176602575918625035145218238569654850906246, ), (x -> exp(-x^2 + x + 2) - cos(x + 1) + x^3 + 1, -big"0.5", -big"1.0"), ( x -> x^11 + x + 1, -big"1", -8.4439752879202298306029802319765064181966469706324549911391920468474414245176e-01, ), (x -> (x - 2) * (x^10 + x + 1) * exp(-x - 1), big"1.9", big"2"), ( x -> sin(3x) + x * cos(x), big"1", 1.197769535216271165938579472950989827411047786536025790115116815210444571657156, ), ( x -> exp(-x) - 1 + x / 5, big"4.5", 4.96511423174427630369875913132289394405558498679725097281444614478046398795746, ), ( x -> exp(sin(x)) - x + 1, big"2.3", 2.630664147927903633975327052350598568584731954733163386430717083451519883744738, ), (x -> (exp(x^2 + x - 6) - 1) * (x^2 + 1), big"2.2", big"2"), ( x -> x * exp(x^2) - sin(x)^2 + 3cos(x) + 5, -big"1.2", -1.207647827130918927009416758356084097760235818949538815205924601763336168539887, ), (x -> x^8 - x^7 + x^4 - x^3 + x - 1, big"1.2", big"1"), ) # formatting fns Log10 = x -> begin # formatting if iszero(x) return (0, 0) end n = trunc(Int, log10(x)) - 1 x / (10.0^n), -n end elide_ascii(x, n=12) = length(x) > n ? x[1:(n - 2)] * ".." * x[(end - 1):end] : x for (i, u) in enumerate(fns) fn_, x0, xstar = u fn = F(fn_) for M in Ms tracks = Roots.Tracks(BigFloat, BigFloat) a = try find_zero(fn, x0, M, tracks=tracks) catch err NaN * x0 end x1, x2, x3 = tracks.xs[1:3] coc = log(abs(fn_(x3) / fn_(x2))) / log(abs(fn_(x2) / fn_(x1))) X1, X2, X3 = abs.((x1, x2, x3) .- xstar) @printf "%s: %s\t%.3f(-%02i)\t%.3f(-%02i)\t%.3f(-%02i)\t%.2f\t%.8f\n" "f$i" elide_ascii( replace(string(M), "Roots." => ""), 8, ) Log10(X1)... Log10(X2)... Log10(X3)... coc a end println("") end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
3145
#= using SymPy @testset "SymPy" begin SymPy.@syms x @test find_zero(cos(x) ~ 1/2, (0, pi/2)) ≈ find_zero(x -> cos(x) - 1/2, (0, pi/2)) @test find_zero(1/2 ~ cos(x), (0, pi/2)) ≈ find_zero(x -> 1/2 - cos(x), (0, pi/2)) @test find_zero(cos(x) ~ x/2, (0, pi/2)) ≈ find_zero(x -> cos(x) - x/2, (0, pi/2)) @test find_zeros(cos(x) ~ 1/2, (0, pi/2)) ≈ find_zeros(x -> cos(x) - 1/2, (0, pi/2)) @test find_zeros(1/2 ~ cos(x), (0, pi/2)) ≈ find_zeros(x -> 1/2 - cos(x), (0, pi/2)) @test find_zeros(cos(x) ~ x/2, (0, pi/2)) ≈ find_zeros(x -> cos(x) - x/2, (0, pi/2)) @test fzero(cos(x) ~ 1/2, 0, pi/2) ≈ fzero(x -> cos(x) - 1/2, 0, pi/2) @test fzero(1/2 ~ cos(x), 0, pi/2) ≈ fzero(x -> 1/2 - cos(x), 0, pi/2) @test fzero(cos(x) ~ x/2, 0, pi/2) ≈ fzero(x -> cos(x) - x/2, 0, pi/2) @test fzeros(cos(x) ~ 1/2, 0, pi/2) ≈ fzeros(x -> cos(x) - 1/2, 0, pi/2) @test fzeros(1/2 ~ cos(x), 0, pi/2) ≈ fzeros(x -> 1/2 - cos(x), 0, pi/2) @test fzeros(cos(x) ~ x/2, 0, pi/2) ≈ fzeros(x -> cos(x) - x/2, 0, pi/2) end =# #= using SymPyPythonCall @testset "SymPythonCall" begin SymPyPythonCall.@syms x @test find_zero(cos(x) ~ 1/2, (0, pi/2)) ≈ find_zero(x -> cos(x) - 1/2, (0, pi/2)) @test find_zero(1/2 ~ cos(x), (0, pi/2)) ≈ find_zero(x -> 1/2 - cos(x), (0, pi/2)) @test find_zero(cos(x) ~ x/2, (0, pi/2)) ≈ find_zero(x -> cos(x) - x/2, (0, pi/2)) @test find_zeros(cos(x) ~ 1/2, (0, pi/2)) ≈ find_zeros(x -> cos(x) - 1/2, (0, pi/2)) @test find_zeros(1/2 ~ cos(x), (0, pi/2)) ≈ find_zeros(x -> 1/2 - cos(x), (0, pi/2)) @test find_zeros(cos(x) ~ x/2, (0, pi/2)) ≈ find_zeros(x -> cos(x) - x/2, (0, pi/2)) @test fzero(cos(x) ~ 1/2, 0, pi/2) ≈ fzero(x -> cos(x) - 1/2, 0, pi/2) @test fzero(1/2 ~ cos(x), 0, pi/2) ≈ fzero(x -> 1/2 - cos(x), 0, pi/2) @test fzero(cos(x) ~ x/2, 0, pi/2) ≈ fzero(x -> cos(x) - x/2, 0, pi/2) @test fzeros(cos(x) ~ 1/2, 0, pi/2) ≈ fzeros(x -> cos(x) - 1/2, 0, pi/2) @test fzeros(1/2 ~ cos(x), 0, pi/2) ≈ fzeros(x -> 1/2 - cos(x), 0, pi/2) @test fzeros(cos(x) ~ x/2, 0, pi/2) ≈ fzeros(x -> cos(x) - x/2, 0, pi/2) end =# using ForwardDiff @testset "ForwardDiff" begin f = (x, p) -> x^2 - p Z = ZeroProblem(f, (0, 1000)) F = p -> solve(Z, Roots.Bisection(), p) for p in (3, 5, 7, 11) @test F(p) ≈ sqrt(p) @test ForwardDiff.derivative(F, p) ≈ 1 / (2sqrt(p)) end # Hessian is *fixed* for F(p) = find_zero(f, x₀, M, p) f = (x, p) -> x^2 - sum(p .^ 2) Z = ZeroProblem(f, (0, 1000)) F = p -> solve(Z, Roots.Bisection(), p) Z = ZeroProblem(f, (0, 1000)) F = p -> solve(Z, Roots.Bisection(), p) for p in ([1, 2], [1, 3], [1, 4]) @test F(p) ≈ sqrt(sum(p .^ 2)) a, b = p n = sqrt(a^2 + b^2)^3 @test ForwardDiff.hessian(F, p) ≈ [b^2 -a*b; -a*b a^2] / n end end #= using IntervalRootFinding @testset "IntervalRootFinding" begin f(x) = sin(x + sin(x + sin(x))) @test find_zeros(f, (-5, 5)) ≈ [-pi, 0, pi] out = find_zeros(f, -5..5, Roots.Newton()) @test sort(out.zeros) ≈ sort([-pi,0,pi]) @test isempty(out.unknown) end =#
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
18050
## tests of find_zero interface using Roots using Test using ForwardDiff; Base.adjoint(f) = x -> ForwardDiff.derivative(f, float(x)); # for a user-defined method import Roots.Accessors import Roots.Accessors: @reset struct Order3_Test <: Roots.AbstractSecantMethod end ## Test the interface @testset "find_zero interface tests" begin meths = [ Order0(), Order1(), Roots.Order1B(), Roots.King(), Order2(), Roots.Steffensen(), Roots.Order2B(), Roots.Esser(), Order5(), Roots.KumarSinghAkanksha(), Order8(), Roots.Thukral8(), Order16(), Roots.Thukral16(), Roots.LithBoonkkampIJzerman(3, 0), Roots.LithBoonkkampIJzerman(4, 0), ] ## different types of initial values for m in meths @test find_zero(sin, 3, m) ≈ pi @test find_zero(sin, 3.0, m) ≈ pi @test find_zero(sin, big(3), m) ≈ pi @test find_zero(sin, big(3.0), m) ≈ pi @test find_zero(x -> x^2 - 2.0f0, 2.0f0, m) ≈ sqrt(2) # issue 421 @test isnan(solve(ZeroProblem(x -> x^2 + 2, 0.5f0))) end ## defaults for method argument @test find_zero(sin, 3.0) ≈ pi # order0() @test @inferred(find_zero(sin, (3, 4))) ≈ π # Bisection() @test @inferred(find_zero(sin, [3, 4])) ≈ π # Bisection() ## test tolerance arguments ## xatol, xrtol, atol, rtol, maxevals, strict fn, xstar = x -> sin(x) - x + 1, 1.9345632107520243 x0, M = 20.0, Order2() @test find_zero(fn, x0, M) ≈ xstar # needs 16 iterations, 33 fn evaluations, difference is exact # test of maxevals @test_throws Roots.ConvergenceFailed find_zero(fn, x0, M, maxevals=2) # tolerance on f, atol, rtol: f(x) ~ 0 M = Order2() h = 1e-2 rt = find_zero(fn, x0, M, atol=h, rtol=0.0) @test abs(fn(rt)) > h^2 / 100 rt = find_zero(fn, x0, M, atol=0.0, rtol=h) @test abs(fn(rt)) > h^2 / 100 ## test of tolerances xatol, xrtol with bisection a, b = 1.5, 2.0 h = 1e-6 M = Roots.Bisection() tracks = Roots.Tracks(Float64, Float64) if VERSION >= v"1.6.0" @inferred(find_zero(fn, (a, b), M, tracks=tracks, xatol=h, xrtol=0.0)) u, v = tracks.abₛ[end] @test h >= abs(u - v) >= h / 2 end ## test of strict fn, x0 = x -> cos(x) - 1, pi / 4 @test fn(find_zero(fn, x0, Order5())) <= 1e-8 @test_throws Roots.ConvergenceFailed find_zero(fn, x0, Order5(), strict=true) # xn increment needs atol setting for zeros near 0.0 if strict=true M = Order1() fn = x -> x * exp(x) + nextfloat(0.0) @test_throws Roots.ConvergenceFailed find_zero( fn, 1.0, M, atol=0.0, rtol=0.0, strict=true, xatol=0.0, ) @test abs(find_zero(fn, 1.0, M, atol=0.0, rtol=0.0, strict=true)) <= eps() ## test of extreme values for fn, bisection c = pi fn = x -> Inf * sign(x - c) @inferred(find_zero(fn, (-Inf, Inf))) ≈ c fn = x -> Inf * x / abs(x) # stop at NaN values @inferred(find_zero(fn, (-Inf, Inf))) ≈ 0 bracketing_meths = ( Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi(), Roots.Brent(), Roots.Ridders(), Roots.ITP(), Roots.Ridders(), Roots.FalsePosition(), Roots.FalsePosition(2), ) # test flexbility in interval specification for M in bracketing_meths @test @inferred(find_zero(sin, (3, 4))) ≈ pi @test @inferred(find_zero(sin, [3, 4])) ≈ pi @test @inferred(find_zero(sin, 3:4)) ≈ pi @test @inferred(find_zero(sin, SomeInterval(3, 4))) ≈ pi @test @inferred(find_zero(sin, range(3, stop=4, length=20))) ≈ pi end # test issue when non type stalbe h(x) = x < 2000 ? -1000 : -1000 + 0.1 * (x - 2000) a, b, xᵅ = 0, 20_000, 12_000 for M in bracketing_meths @test find_zero(h, (a, b), M) ≈ xᵅ end end @testset "non simple zeros" begin Ms = ( Roots.Order1B(), Roots.Order2B(), Roots.Schroder(), Roots.Thukral2B(), Roots.Thukral3B(), Roots.Thukral4B(), Roots.Thukral5B(), ) g(x) = exp(x) + x - 2 f(x) = g(x)^2 x₀ = 1 / 4 α = find_zero(g, x₀) fs = (f, f', f'', f''', f'''', f''''', f'''''') for M in Ms @test find_zero(fs, x₀, M) ≈ α atol = 1e-6 end end @testset "find_zero internals" begin ## init_state method g1 = x -> x^5 - x - 1 x0_, xstar_ = (1.0, 2.0), 1.1673039782614187 M = Roots.A42() G1 = Roots.Callable_Function(M, g1) state = @inferred(Roots.init_state(M, G1, x0_)) options = Roots.init_options(M, state) for M in (Roots.A42(), Roots.Bisection(), Roots.FalsePosition()) Gₘ = Roots.Callable_Function(M, G1) stateₘ = @inferred(Roots.init_state(M, state, Gₘ)) @test @inferred(solve(M, Gₘ, stateₘ)) ≈ xstar_ end # iterator interface (ZeroProblem, solve; init, solve!) meths = [ Order0(), Order1(), Roots.Order1B(), Roots.King(), Order2(), Roots.Steffensen(), Roots.Order2B(), Roots.Esser(), Order5(), Roots.KumarSinghAkanksha(), Order8(), Roots.Thukral8(), Order16(), Roots.Thukral16(), ] g1(x) = x^5 - x - 1 x0_, xstar_ = 1.16, 1.1673039782614187 fx = ZeroProblem(g1, x0_) for M in meths @test solve(fx, M) ≈ xstar_ P = init(fx, M) @test solve!(P) ≈ xstar_ end # solve and parameters # should be positional, but named supported for now g2 = (x, p) -> cos(x) - x / p fx = ZeroProblem(g2, (0, pi / 2)) @test solve(fx, 2) ≈ @inferred(find_zero(x -> cos(x) - x / 2, (0, pi / 2))) @test solve(fx, p=2) ≈ @inferred(find_zero(x -> cos(x) - x / 2, (0, pi / 2))) @test @inferred(solve(fx, p=3)) ≈ @inferred(find_zero(x -> cos(x) - x / 3, (0, pi / 2))) g3 = (x, p) -> cos(x) + p[1] * x - p[2] fx = ZeroProblem(g3, (0, pi / 2)) @test @inferred(solve(fx, p=[-1 / 10, 1 / 10])) ≈ @inferred(find_zero(x -> cos(x) - x / 10 - 1 / 10, (0, pi / 2))) ### issue 321, solve and broadcasting myfun(x, p) = x * sin(x) - p prob = ZeroProblem(myfun, (0.0, 2.0)) ps = (1 / 4, 1 / 2, 3 / 4, 1) as = (0.5111022402679033, 0.7408409550954906, 0.9333080372907439, 1.1141571408719302) @test all(solve.(prob, Bisection(), ps) .≈ as) ## test with early evaluation of bracket f = x -> sin(x) xs = (3.0, 4.0) fxs = f.(xs) M = Bisection() state = @inferred(Roots.init_state(M, f, xs..., fxs..., m=3.5, fm=f(3.5))) @test @inferred(solve!(init(M, f, state))) ≈ π # ## hybrid g1 = x -> exp(x) - x^4 x0_, xstar_ = (5.0, 20.0), 8.613169456441398 M = Roots.Bisection() G1 = Roots.Callable_Function(M, g1) state = @inferred(Roots.init_state(M, G1, x0_)) options = Roots.init_options(M, state, xatol=1 / 2) ZPI = @inferred(init(M, G1, state, options)) ϕ = iterate(ZPI) while ϕ !== nothing val, st = ϕ state, ctr = st ϕ = iterate(ZPI, st) end N = Roots.Order1() # switch to N G2 = Roots.Callable_Function(N, G1) stateₙ = Roots.init_state(N, state, G2) options = Roots.init_options(N, stateₙ) x = solve(N, G2, stateₙ, options) @test x ≈ xstar_ ## test creation of new methods ## xn - f/f' - f'' * f^2 / 2(f')^3 = xn - r1 - r1^2/r2 is third order, # had to previousely define: function Roots.update_state( M::Order3_Test, f, o::Roots.AbstractUnivariateZeroState{T,S}, options, l=Roots.NullTracks(), ) where {T,S} # xn - f/f' - f'' * f^2 / 2(f')^3 = xn - r1 - r1^2/r2 is third order xn_1, xn = o.xn0, o.xn1 fxn_1, fxn = o.fxn0, o.fxn1 f_10 = (fxn - fxn_1) / (xn - xn_1) xn1::T = xn - fxn / f_10 fxn1::S = f(xn1) f01 = (fxn1 - fxn) / (xn1 - xn) if isnan(f_10) || iszero(f_10) || isnan(f01) || iszero(f01) return (o, true) end r1 = fxn1 / f01 r2 = f01 / ((f01 - f_10) / (xn1 - xn_1)) wn = xn1 - r1 - r1^2 / r2 fwn::S = f(wn) @reset o.xn0 = xn @reset o.xn1 = wn @reset o.fxn0 = fxn @reset o.fxn1 = fwn return (o, false) end g1 = x -> exp(x) - x^4 @test find_zero(g1, 8.3, Order3_Test()) ≈ find_zero(g1, 8.3, Order1()) # test many different calling styles f(x) = (sin(x), sin(x) / cos(x)) # x -> (f(x), f(x)/f′(x)) fs(x) = (sin, cos) # (f, f′) x0 = (3, 4) g(x, p) = begin fx = cos(x) - x / p (fx, fx / (-sin(x) - 1 / p)) end x0a = (0.0, pi / 2) α₂, α₃ = 1.0298665293222589, 1.1701209500026262 @test find_zero(f, x0) ≈ π @test find_zero(f, first(x0)) ≈ π @test find_zero(g, x0a, p=2) ≈ α₂ @test find_zero(g, first(x0a), p=2) ≈ α₂ Z = ZeroProblem(f, x0) Za = ZeroProblem(g, x0a) @test solve(Z) ≈ π @test solve(Za, 3) ≈ α₃ @test solve(Za, p=2) ≈ α₂ @test solve!(init(Z)) ≈ π @test solve!(init(Za, 3)) ≈ α₃ @test solve!(init(Za, p=3)) ≈ α₃ Ms = (Roots.Secant(), Roots.Bisection(), Roots.Newton()) for M in Ms @test find_zero(f, x0, M) ≈ π @test solve(Z, M) ≈ π @test solve!(init(Z, M)) ≈ π @test find_zero(g, x0a, M, p=2) ≈ α₂ @test solve(Za, M, 2) ≈ α₂ @test solve(Za, M, p=2) ≈ α₂ @test solve!(init(Za, M, 2)) ≈ α₂ end ## test broadcasting semantics with ZeroProblem ## This assume parameters can be passed in a positional manner, a ## style which is discouraged, as it is confusing Z = ZeroProblem((x, p) -> cos(x) - x / p, pi / 4) @test all(solve.(Z, (1, 2)) .≈ (solve(Z, 1), solve(Z, 2))) end @testset "find_zero issue tests" begin ## Misc tests Ms = [Order0(), Order1(), Order2(), Order5(), Order8(), Order16()] ## issues with starting near a maxima. Some bounce out of it, but ## one would expect all to have issues fn, xstar = x -> x^3 + 4x^2 - 10, 1.365230013414097 for M in [Order1(), Roots.Order1B(), Order2(), Roots.Order2B(), Order5()] @test_throws Roots.ConvergenceFailed find_zero(fn, -1.0, M) end for M in [Order0(), Roots.Thukral8(), Roots.Thukral16()] @test find_zero(fn, -1.0, M) ≈ xstar end ## non-simple root ## convergence can depend on relaxed convergence checked after an issue fn, xstar, x0 = x -> cos(x) - 1, 0.0, 0.1 for M in Ms xn = find_zero(fn, x0, M) @test abs(fn(xn)) <= 1e-10 end for M in [Roots.Order1B(), Order2(), Roots.Order2B(), Order5(), Order8(), Order16()] @test_throws Roots.ConvergenceFailed find_zero(fn, x0, M, strict=true) end ## issue with large steps fn, x0 = x -> x^20 - 1, 0.5 for M in Ms[2:end] # not 0, as it uses bracket @test_throws Roots.ConvergenceFailed find_zero(fn, x0, M) end ## issue with large f'' fn, x0 = cbrt, 1.0 for M in [Order1(), Order2(), Order5()] @test_throws Roots.ConvergenceFailed find_zero(fn, x0, M) end ### these stop but only because rtol is used for checking f(xn) ~ 0 for M in [Roots.Thukral8(), Roots.Thukral16()] @test abs(find_zero(fn, x0, M) - 0.0) >= 100 end ## similar (http://people.sc.fsu.edu/~jburkardt/cpp_src/test_zero/test_zero.html) function newton_baffler(x) a = 1 / 10 m, b = 1 / 4, 1 / 8 if x < -a m * x - b elseif x > a m * x + b else (m * a + b) / a * (x + a) + (-m * a - b) end end for M in (Order0(), Order1(), Roots.Order1B(), Order2(), Roots.Order2B(), Order5(), Order8()) @test abs(find_zero(newton_baffler, 1.0, M)) <= 1e-15 end for M in (Roots.KumarSinghAkanksha(), Roots.Thukral8(), Roots.Thukral16()) @test_throws Roots.ConvergenceFailed find_zero(newton_baffler, 1.0, M) end ## Closed issues ### ## issue tests: put in tests to ensure closed issues don't reappear. ## issue #94; tolerances not matching documentation function test_94(; kwargs...) g, T = 1.62850, 14.60000 α, t1, tf = 0.00347, 40.91375, 131.86573 y, ya, yf = 0.0, 9000.0, 10000.0 vy = sqrt(2g * (ya - y)) θ0, θ1 = atan(α * tf), atan(α * (tf - t1)) I_sintan(x) = tan(x) / 2cos(x) - atanh(tan(x / 2)) I_sintan(x, y) = I_sintan(y) - I_sintan(x) function lhs(θ) tRem = (vy - T / α * (sec(θ1) - sec(θ))) / g val = -yf + y + vy * tRem - 0.5g * tRem^2 - T / α^2 * I_sintan(θ, θ1) val end M = Roots.FalsePosition() x0 = [atan(α * tf), atan(α * (tf - t1))] F = Roots.Callable_Function(M, lhs, nothing) #Roots.DerivativeFree(lhs) state = Roots.init_state(M, F, x0) options = Roots.init_options(M, state) l = Roots.Tracks(state) solve(ZeroProblem(lhs, x0), M; tracks=l) @test l.steps <= 45 # 15 end test_94() ## Issue with quad_step after truncated M-step PR #140 @test find_zero(x -> tanh(x) - tan(x), 7.36842, Order0()) ≈ 7.068582745628732 ## Use tolerance on f, not x with bisectoin atol = 0.01 if VERSION >= v"1.6.0" u = @inferred(find_zero(sin, (3, 4), atol=atol)) @test atol >= abs(sin(u)) >= atol^2 ## issue #159 bracket with zeros should be found @test @inferred(find_zero(x -> x + 1, (-1, 1))) == -1 end ## issue #178 passinig through method @test fzero(sin, 3, 4, Roots.Brent()) ≈ π ## issue #188 with A42 f = let a = 0.18 x -> x * (1 - x^2) / ((x^2 + a^2) * (1 + a^2 * x^2)) end r = 0.05 xs = (r + 1e-12, 1.0) @test find_zero(x -> f(r) - f(x), xs, Roots.A42()) ≈ 0.4715797678171889 ## issue #336 verbose=true with complex values ## just test that this does not error for M in (Order1(), Roots.Newton()) T = Complex{Float64} tracks = Roots.Tracks(T, T) find_zero((sin, cos), 1.0 + 1.0im, M; tracks=tracks) Roots.show_tracks(IOBuffer(), tracks, M) end ## Issue #343 non-type stable f f(t) = t <= 0 ? -1 : log(t) for M in ( Roots.Order0(), Roots.Order1(), Roots.Order2(), Roots.Order5(), Roots.Order8(), Roots.Order16(), ) @test find_zero(f, 3, M) ≈ 1 end end struct _SampleCallableObject end (::_SampleCallableObject)(x) = x^5 - x - 1 @testset "find_zero with other callable types" begin Ms = [ Order0(), Order1(), Roots.Order1B(), Order2(), Roots.Order2B(), Order5(), Order8(), Order16(), ] for M in Ms @test find_zero(_SampleCallableObject(), 1.1, M) ≈ 1.1673039782614187 end for M in Ms g = Cnt(x -> x^5 - x - 1) @test find_zero(g, 1.1, M) ≈ 1.1673039782614187 @test g.cnt <= 30 end end @testset "function evaluations" begin function wrapper(f) cnt = 0 x -> begin cnt += 1 f(x) end end # as of v"1.3.0", no more maxfnevals for stopping, just maxevals # this is an alternative function fz(f, x0::Number, M; maxfnevals=10, kwargs...) F = wrapper(f) ZPI = init(ZeroProblem(F, x0), M; kwargs...) x = NaN * float(x0) ϕ = iterate(ZPI) while ϕ !== nothing x, st = ϕ F.cnt.contents >= maxfnevals && return NaN * float(x0) ϕ = iterate(ZPI, st) end x end f(x) = x^20 - 1 x0 = 0.9 M = Order1() @test isnan(fz(f, x0, M)) # takes 19 fn evals, not 10 # test that for update state, fnevals are correctly counted for simpler # methods fn = (x) -> sin(x) x0 = (3, 4) M = Order1() state = Roots.init_state(M, Roots.Callable_Function(M, fn), x0) options = Roots.init_options(M, state) for M in ( Order1(), Order2(), Order5(), Order8(), Order16(), Roots.Order1B(), Roots.Order2B(), Roots.Bisection(), Roots.Brent(), Roots.Ridders(), Roots.ITP(), Roots.A42(), Roots.AlefeldPotraShi(), ) # test initial count g = wrapper(fn) G = Roots.Callable_Function(M, g) Roots.init_state(M, G, x0) @test g.cnt.contents ≤ Roots.initial_fncalls(M) # test update state g = wrapper(fn) stateₘ = Roots.init_state(M, state, Roots.Callable_Function(M, fn)) G = Roots.Callable_Function(M, g) l = Roots.Tracks(Float64, Float64) Roots.update_state(M, G, stateₘ, options, l) @test g.cnt.contents == l.fncalls end end @testset "_extrema" begin if VERSION >= v"1.6.0" @test @inferred(Roots._extrema((π, 0))) === (0.0, Float64(π)) @test @inferred(Roots._extrema([π, 0])) === (0.0, Float64(π)) end @test_throws ArgumentError Roots._extrema(π) @test_throws ArgumentError Roots._extrema((π, π)) @test_throws ArgumentError Roots._extrema([π, π]) end @testset "sensitivity" begin # Issue #349 if VERSION >= v"1.9.0-" f(x, p) = cos(x) - first(p) * x x₀ = (0, pi / 2) F(p) = solve(ZeroProblem(f, x₀), Bisection(), p) G(p) = find_zero(f, x₀, Bisection(), p) H(p) = find_zero(f, x₀, Bisection(); p=p) ∂ = -0.4416107917053284 @test ForwardDiff.derivative(F, 1.0) ≈ -0.4416107917053284 @test ForwardDiff.gradient(F, [1.0, 2])[1] ≈ -0.4416107917053284 @test ForwardDiff.derivative(G, 1.0) ≈ -0.4416107917053284 @test ForwardDiff.gradient(G, [1.0, 2])[1] ≈ -0.4416107917053284 @test ForwardDiff.derivative(H, 1.0) ≈ -0.4416107917053284 @test ForwardDiff.gradient(H, [1.0, 2])[1] ≈ -0.4416107917053284 end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
4210
# tests for find_zeros using Roots using Test mutable struct CallableFunction f n end (F::CallableFunction)(x) = (F.n += 1; F.f(x)) @testset "find_zeros" begin function azero(f, x) fx = f(x) iszero(fx) && return true sign(fx) * sign(f(nextfloat(x))) < 0 && return true sign(fx) * sign(f(prevfloat(x))) < 0 && return true abs(fx) <= 8eps(x) && return true false end ## easier ones, counting steps F = CallableFunction(x -> exp(x) - x^4, 0) xrts = find_zeros(F, -5, 20) @test length(xrts) == 3 @test all(azero.((F,), xrts)) @test F.n <= 1500 #3000 F = CallableFunction(x -> cos(x) + cos(2x), 0) xrts = find_zeros(F, 0, 4pi) @test length(xrts) == 6 @test all(azero.((F,), xrts)) @test F.n <= 2000 # 5000 T11(x) = 1024x^11 - 2816x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x U9(x) = 512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x F = CallableFunction(T11, 0) xrts = find_zeros(F, -1, 1) @test length(xrts) == 11 @test all(azero.((F,), xrts)) @test F.n <= 2500 # 10_000 F = CallableFunction(U9, 0) xrts = find_zeros(F, -1, 1) @test length(xrts) == 9 @test all(azero.((F,), xrts)) @test F.n <= 2500 # 10_000 W(n) = x -> prod(x - i for i in 1:n) Wi(n) = x -> prod((x - i)^i for i in 1:n) F = CallableFunction(W(20), 0) xrts = find_zeros(F, -1, 21) @test length(xrts) == 20 @test all(azero.((F,), xrts)) @test F.n <= 4000 #20_000 F = CallableFunction(Wi(6), 0) xrts = find_zeros(F, -1, 7) @test length(xrts) == 6 @test all(azero.((F,), xrts)) @test F.n <= 10_000 ## Harder ones f1(x) = 2 * exp(0.5 * x) * (sin(5 * x) + sin(101 * x)) tiger_tail(x) = f1(x) - round(f1(x)) # (-2,1) then filter f2(x) = (x - 0.5) * (x - 0.5001) * (x - 4) * (x - 4.05) * (x - 9.3) # (0,10) f3(x) = (x - 3)^2 * (x - 4)^2 # (0,5) delta = 0.001 f4(x) = (x - 0.5)^3 * (x - (0.5 + delta)) * (x - 1) f5(x) = (x - 0.5)^3 * (x - (0.5 + delta))^3 * (x - 4) * (x - (4 + delta)) * (x - 4.2)^2 M(n) = x -> prod((x - (0.5 - (1 / 10)^i)) for i in 1:n) f6 = M(4) f7 = M(5) # too much xrts = find_zeros(tiger_tail, -2.0, 1.0) xrts = filter(u -> -1 / 4 < tiger_tail(u) < 1 / 4, xrts) @test 345 <= length(xrts) <= 345 @test all(azero.((tiger_tail,), xrts)) xrts = find_zeros(f2, 0.0, 10.0) @test length(xrts) == 5 @test all(azero.((f2,), xrts)) xrts = find_zeros(f3, 0.0, 5.0) @test length(xrts) == 2 @test all(azero.((f3,), xrts)) xrts = find_zeros(f4, 0.0, 1.5) @test length(xrts) == 3 @test all(azero.((f4,), xrts)) xrts = find_zeros(f5, 0.0, 5.0) @test length(xrts) >= 3 # too hard to get 5 w/o luck, as with no_pts=21/k=4 @test all(azero.((f5,), xrts)) xrts = find_zeros(f6, 0.0, 10.0) @test length(xrts) == 4 @test all(azero.((f6,), xrts)) xrts = find_zeros(f7, 0.0, 10.0) # too sensitive to interval @test length(xrts) >= 3 # should be 5 @test all(azero.((f7,), xrts)) # Issue #141 solve over [a,b], not (a,b) @test length(find_zeros(p -> p * (1 - p), 0, 1)) == 2 @test length(find_zeros(sin, 0, 5pi)) == 5 + 1 # test different ways to specify an interval (just need `extrema` defined) @test find_zeros(sin, (3, 4)) ≈ [float(pi)] @test find_zeros(sin, [3, 4]) ≈ [float(pi)] @test find_zeros(sin, 3:4) ≈ [float(pi)] @test find_zeros(sin, SomeInterval(3, 4)) ≈ [float(pi)] @test find_zeros(sin, range(3, stop=4, length=20)) ≈ [float(pi)] # test with constant function @test isempty(find_zeros(x -> 4, -10, 10)) # test with zero function (Issue #339) @test_throws DomainError find_zeros(x -> 0, -2, 2) # issue #369 g4(x) = sqrt(abs(x^2 - 1)) / (x * sign(x^2 - 1)) @test isempty(find_zeros(g4, 1.1, 2)) # solve interface Z = ZeroProblem(x -> prod(x - i for i in 1:5), (0, 6)) @test solve(Z, AllZeros()) ≈ 1:5 end @testset "find_zeros: not Float64 types" begin for T in [Float16, Float32, BigFloat] rts = find_zeros(x -> cos(x) - x / 10, T(0.0), T(10.0)) @test eltype(rts) == T end end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
2217
using Test import Roots.fzero ## Test `fzero` interface to `find_zero` ## test `fzeros` interface for functions @testset "fzero(s) interface" begin ## test interface @test fzero(sin, 3) ≈ pi # order0 @test fzero(sin, (3, 3.1), order=1) ≈ pi # use order if specified @test fzero(sin, (3, 4)) ≈ pi # bracketing @test fzero(sin, 3, 4) ≈ pi # bracketing @test fzero(sin, [3, 4]) ≈ pi # bracketing @test_throws ArgumentError fzero(sin, (3, 3.1)) # not a bracket @test fzero(sin, cos, 3) ≈ pi # newton ## order keyword: for o in keys(Roots._method_lookup) @test fzero(x -> x^3 - x, 0.9, order=o) ≈ 1.0 end ## bypass order keyword for M in [Roots.Order0(), Roots.Order1(), Roots.Order1B(), Roots.Order2(), Roots.Order2B()] @test fzero(x -> x^3 - x, 0.7, M) ≈ 1.0 end for M in [Roots.Order1(), Roots.Order1B(), Roots.Order2(), Roots.Order2B()] N = Roots.Bisection() @test fzero(x -> x^3 - x, 0.7, M, N) ≈ 1.0 end ### test tolerances fn, xstar, x0, br = x -> x^5 - x - 1, 1.1673039782614187, (1.0, 1.1), [1.0, 2.0] @test fzero(fn, x0, order=1) ≈ xstar @test !(fzero(fn, x0, order=1, xatol=1e-4, atol=1) ≈ xstar) @test_throws Roots.ConvergenceFailed fzero(fn, x0, order=1, maxevals=3) @test !(fzero(fn, x0, order=1, maxevals=3, atol=1e-3) ≈ xstar) ## Infinities ## f(b) = Inf f = x -> x + exp(x) @test fzero(f, -1e6, 1e6) ≈ -0.5671432904097838 ## f(a) = Inf f = x -> 1 / x - 1 @test fzero(f, 0, 2) ≈ 1.0 ## test infinite range @test fzero(x -> x, -Inf, Inf) ≈ 0.0 ################################################## ## fzeros function ## test interface @test fzeros(sin, 3, 4) ≈ [pi] @test fzeros(sin, (3, 4)) ≈ [pi] @test fzeros(sin, [3, 4]) ≈ [pi] @test length(fzeros(x -> exp(x) - x^4, -10, 20)) == 3 rts = 1:5 @test all( (abs.(fzeros(x -> prod([x - r for r in rts]), 0, 10)) .- collect(1:5)) .<= 1e-15, ) fn = x -> cos(10 * pi * x) @test length(fzeros(fn, 0, 1)) == 10 ### issue with fzeros and roots near 'b' @test 0 < maximum(fzeros(x -> sin(x) - 1 / 1000 * x, 0, pi)) < pi end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
6414
using Test import Roots.newton, Roots.halley, Roots.superhalley, Roots.quadratic_inverse, Roots.chebyshev_like @testset "Test Newton, Halley, Schroder methods" begin @test abs(newton(sin, cos, 0.5) - 0.0) <= 100 * eps(1.0) @test newton(cos, x -> -sin(x), 1.0) ≈ pi / 2 @test newton(x -> x^2 - 2x - 1, x -> 2x - 2, 3.0) ≈ 2.414213562373095 @test abs(newton(x -> exp(x) - cos(x), x -> exp(x) + sin(x), 3.0) - 0.0) <= 1e-14 @test halley(x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2, 3.0) ≈ 2.414213562373095 @test quadratic_inverse(x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2, 3.0) ≈ 2.414213562373095 @test superhalley(x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2, 3.0) ≈ 2.414213562373095 @test chebyshev_like(x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2, 3.0) ≈ 2.414213562373095 a = halley(x -> exp(x) - cos(x), x -> exp(x) + sin(x), x -> exp(x) + cos(x), 3.0) @test abs(a - 0.0) <= 1e-14 # find_zero calls @test find_zero((x -> x^2 - 2x - 1, x -> 2x - 2), 3.0, Roots.Newton()) ≈ 2.414213562373095 @test find_zero((x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2), 3.0, Roots.Halley()) ≈ 2.414213562373095 @test find_zero((x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2), 3.0, Roots.SuperHalley()) ≈ 2.414213562373095 @test find_zero((x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2), 3.0, Roots.ChebyshevLike()) ≈ 2.414213562373095 @test find_zero( (x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2), 3.0, Roots.QuadraticInverse(), ) ≈ 2.414213562373095 @test find_zero((x -> x^2 - 2x - 1, x -> 2x - 2, x -> 2), 3.0, Roots.Schroder()) ≈ 2.414213562373095 ## test with Complex input @test real(Roots.newton(x -> x^3 - 1, x -> 3x^2, 1 + im)) ≈ 1.0 @test real(Roots.newton(x -> x^3 - 1, x -> 3x^2, 1 + 10im)) ≈ (-1 / 2) ## Issue #143 test with new interface Roots.newton(sin, cos, 3.0) ≈ π # uses find_zero Roots.newton((sin, cos), 3.0) ≈ π # uses simple fdf = x -> (sin(x), sin(x) / cos(x)) # (f, f/f') @test Roots.find_zero(fdf, 3.0, Roots.Newton()) ≈ π # uses find_zero Roots.newton(fdf, 3.0) ≈ π # uses simple fdfdf = x -> (sin(x), sin(x) / cos(x), -cos(x) / sin(x), sin(x) / cos(x)) # (f, f/f', f'/f'', f''/f''') @test Roots.find_zero(fdfdf, 3.0, Roots.Halley()) ≈ π # check that functions with multiple return values can work with other # methods for M in [ Roots.Schroder(), Roots.Halley(), Roots.Newton(), Roots.Order1(), Roots.Order0(), Roots.QuadraticInverse(), Roots.SuperHalley(), Roots.ChebyshevLike(), ] @test Roots.find_zero(fdfdf, 3.0, M) ≈ π # can pass function to others end for M in [Roots.Bisection(), Roots.A42(), Roots.AlefeldPotraShi()] @test Roots.find_zero(fdfdf, (3.0, 4.0), M) ≈ π # can pass function to others end @test find_zero( x -> (x^2 - 2, (x^2 - 2) / 2x), 1.0, Roots.Newton(), Roots.Bisection(), ) ≈ sqrt(2) @test_throws Roots.ConvergenceFailed Roots.newton((x -> x^2 + 1, x -> 2x), 0) end @testset "bracketed Halley" begin x₀, x̃₀, α = 1.0, 1.1, 1.1673039782614187 f(x) = x^5 - x - 1 fp(x) = 5x^4 - 1 fpp(x) = 20x^3 for M in (Roots.BracketedHalley(), Roots.BracketedChebyshev()) @test find_zero((f, fp, fpp), (1, 2), M) ≈ α end end @testset "Lith Boonkkamp IJzerman methods" begin x₀, x̃₀, α = 1.0, 1.1, 1.1673039782614187 f(x, p=1) = x^5 - x - p fp(x) = 5x^4 - 1 fpp(x) = 20x^3 fppp(x) = 60x fpppp(x) = 60 function fdf1(x, p=1) fx = f(x, p) ∂fx = fp(x) return fx, fx / ∂fx end function fdf2(x, p=1) fx = f(x, p) ∂fx = fp(x) ∂2fx = fpp(x) return fx, fx / ∂fx, ∂fx / ∂2fx end function fdf3(x, p=1) fx = f(x, p) ∂fx = fp(x) ∂2fx = fpp(x) ∂3fx = fppp(x) return fx, fx / ∂fx, ∂fx / ∂2fx, ∂2fx / ∂3fx end function fdf4(x, p=1) fx = f(x, p) ∂fx = fp(x) ∂2fx = fpp(x) ∂3fx = fppp(x) ∂4fx = fpppp(x) return fx, fx / ∂fx, ∂fx / ∂2fx, ∂2fx / ∂3fx, ∂3fx / ∂4fx end @test solve(ZeroProblem((f,), x₀), Roots.LithBoonkkampIJzerman(3, 0)) ≈ α @test solve(ZeroProblem(f, x₀), Roots.LithBoonkkampIJzerman(3, 0)) ≈ α @test solve(ZeroProblem((f,), x₀), Roots.LithBoonkkampIJzerman(4, 0)) ≈ α @test solve(ZeroProblem(f, x₀), Roots.LithBoonkkampIJzerman(4, 0)) ≈ α @test solve(ZeroProblem((f,), x₀), Roots.LithBoonkkampIJzerman(3, 0), 1) ≈ α @test solve(ZeroProblem(f, x₀), Roots.LithBoonkkampIJzerman(3, 0), 1) ≈ α @test solve(ZeroProblem((f, fp), x₀), Roots.LithBoonkkampIJzerman(2, 1)) ≈ α @test solve(ZeroProblem((f, fp), x₀), Roots.LithBoonkkampIJzerman(3, 1)) ≈ α @test solve(ZeroProblem(fdf1, x₀), Roots.LithBoonkkampIJzerman(2, 1)) ≈ α @test solve(ZeroProblem(fdf1, x₀), Roots.LithBoonkkampIJzerman(2, 1), 1) ≈ α @test solve(ZeroProblem((f, fp, fpp), x₀), Roots.LithBoonkkampIJzerman(1, 2)) ≈ α @test solve(ZeroProblem((f, fp, fpp), x₀), Roots.LithBoonkkampIJzerman(2, 2)) ≈ α @test solve(ZeroProblem(fdf2, x₀), Roots.LithBoonkkampIJzerman(1, 2)) ≈ α @test solve(ZeroProblem(fdf2, x₀), Roots.LithBoonkkampIJzerman(1, 2), 1) ≈ α @test solve(ZeroProblem((f, fp, fpp, fppp), x₀), Roots.LithBoonkkampIJzerman(1, 3)) ≈ α @test solve(ZeroProblem((f, fp, fpp, fppp), x₀), Roots.LithBoonkkampIJzerman(2, 3)) ≈ α @test solve(ZeroProblem(fdf3, x₀), Roots.LithBoonkkampIJzerman(1, 3)) ≈ α @test solve(ZeroProblem(fdf3, x₀), Roots.LithBoonkkampIJzerman(1, 3), 1) ≈ α @test solve(ZeroProblem(fdf4, x₀), Roots.LithBoonkkampIJzerman(1, 4)) ≈ α @test solve(ZeroProblem(fdf4, x₀), Roots.LithBoonkkampIJzerman(1, 4), 1) ≈ α @test solve( ZeroProblem((f, fp, fpp, fppp, fpppp), x₀), Roots.LithBoonkkampIJzerman(1, 4), ) ≈ α @test solve( ZeroProblem((f, fp, fpp, fppp, fpppp), x̃₀), Roots.LithBoonkkampIJzerman(2, 4), ) ≈ α # needs closer # bracketing @test solve(ZeroProblem((f, fp), (1, 2)), Roots.LithBoonkkampIJzermanBracket()) ≈ α @test solve(ZeroProblem(fdf1, (1, 2)), Roots.LithBoonkkampIJzermanBracket()) ≈ α @test solve(ZeroProblem(fdf1, (1, 2)), Roots.LithBoonkkampIJzermanBracket(), 1) ≈ α end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
code
1273
using Test using BenchmarkTools @testset "simpler implementations" begin # bisection xrt = Roots.bisection(sin, 3.0, 4.0) @test isapprox(xrt, pi) xrt = Roots.bisection(sin, 3.0, 4.0, xatol=1e-3) @test abs(sin(xrt)) >= 1e-7 # not to0 close xrt = Roots.bisection(sin, big(3.0), big(4.0)) @test isapprox(xrt, pi) # secant_method fpoly = x -> x^5 - x - 1 xrt = Roots.secant_method(fpoly, 1.0) @test abs(fpoly(xrt)) <= 1e-15 xrt = Roots.secant_method(fpoly, (1, 2)) @test abs(fpoly(xrt)) <= 1e-14 # muller fpoly = x -> x^5 - x - 1 xrt = Roots.muller(fpoly, 1.0) @test xrt isa Real @test abs(fpoly(xrt)) <= 1e-15 @test_throws DomainError Roots.muller(fpoly, -1.0) xrt = Roots.muller(fpoly, -1.0 + 0im) @test xrt isa Complex @test abs(fpoly(xrt)) <= 1e-15 @test Roots.muller(cos, 1.0) ≈ π / 2 expoly(z) = log(-z) * asin(z) / tanh(z) @test Roots.muller(expoly, -0.7 - 0.5im) ≈ -1.0 # dfree fpoly = x -> x^5 - x - 1 xrt = Roots.dfree(fpoly, 1.0) @test abs(fpoly(xrt)) <= 1e-14 # newton @test Roots.newton((sin, cos), 3.0) ≈ pi u = Roots.newton(x -> (sin(x), sin(x) / cos(x)), 3.0, xatol=1e-10, xrtol=1e-10) @test abs(u - pi) <= 1e-8 end
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
1451
CHANGES in v0.7.4 * set find_zero(s) to specialize on the function, fzero(s) to not. (#148) * adjust Steffensen method logic to take secant step or steffensen step, rather than modified steffensen step. Seems to improve robustness. (#147) * add Schroder method (order 2 for multiplicity with derivative), King (1B) (superlinear for multiplicity, no derivative), Esser (2B) (order 2 for multipicity, no derivative) (#143, #147) * close issue #143 by allowing fns to Newton, Halley to compute f, f/fp, fp/fpp * add `newton` function to simple.jl * change find_zeros to identify zeros on [a,b], not (a,b). Closes #141. * bug fix: issue with quad step after a truncated M-step in find_zero(M,N,...) * bug fix: verbose argument for Bisection method (#139) * bug fix: unintentional widening of types in initial secant step (#139) CHANGES in v0.7.3 * fix bug with find_zeros and Float32 * speeds up bisection function CHANGES in v0.7.2 * speed up bisection CHANGES in v0.7.1 * refactor Bisection method to reduce conditional checks inside loop * took algorithm from Order0, and made it an alternative for find_zero allowing other non-bracketing methods to be more robust * In FalsePosition there is a parameter to adjust when a bisection step should be used. This was changed in v0.7.0, the old value is restored. (This method is too sensitive to this parameter. It is recommended that either A42 or AlefeldPotraShi be used as alternatives.
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
10362
# Root finding functions for Julia [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaMath.github.io/Roots.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaMath.github.io/Roots.jl/dev) [![Build Status](https://github.com/JuliaMath/Roots.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaMath/Roots.jl/actions/workflows/ci.yml) [![codecov](https://codecov.io/gh/JuliaMath/Roots.jl/graph/badge.svg?token=EbswopIDMU)](https://codecov.io/gh/JuliaMath/Roots.jl) This package contains simple routines for finding roots, or zeros, of scalar functions of a single real variable using floating-point math. The `find_zero` function provides the primary interface. The basic call is `find_zero(f, x0, [M], [p]; kws...)` where, typically, `f` is a function, `x0` a starting point or bracketing interval, `M` is used to adjust the default algorithms used, and `p` can be used to pass in parameters. The various algorithms include: * Bisection-like algorithms. For functions where a bracketing interval is known (one where `f(a)` and `f(b)` have alternate signs), a bracketing method, like `Bisection`, can be specified. The default is `Bisection`, for most floating point number types, employed in a manner exploiting floating point storage conventions. For other number types (e.g. `BigFloat`), an algorithm of Alefeld, Potra, and Shi is used by default. These default methods are guaranteed to converge. Other bracketing methods are available. * Several derivative-free algorithms. These are specified through the methods `Order0`, `Order1` (the secant method), `Order2` (the Steffensen method), `Order5`, `Order8`, and `Order16`. The number indicates, roughly, the order of convergence. The `Order0` method is the default, and the most robust, but may take more function calls to converge, as it employs a bracketing method when possible. The higher order methods promise faster convergence, though don't always yield results with fewer function calls than `Order1` or `Order2`. The methods `Roots.Order1B` and `Roots.Order2B` are superlinear and quadratically converging methods independent of the multiplicity of the zero. * There are historic algorithms that require a derivative or two to be specified: `Roots.Newton` and `Roots.Halley`. `Roots.Schroder` provides a quadratic method, like Newton's method, which is independent of the multiplicity of the zero. This is generalized by `Roots.ThukralXB` (with `X` being 2,3,4, or 5). * There are several non-exported algorithms, such as, `Roots.Brent()`, `Roots.LithBoonkkampIJzermanBracket`, and `Roots.LithBoonkkampIJzerman`. Each method's documentation has additional detail. Some examples: ```julia julia> using Roots julia> f(x) = exp(x) - x^4; julia> α₀, α₁, α₂ = -0.8155534188089607, 1.4296118247255556, 8.6131694564414; julia> find_zero(f, (8,9), Bisection()) ≈ α₂ # a bisection method has the bracket specified true julia> find_zero(f, (-10, 0)) ≈ α₀ # Bisection is default if x in `find_zero(f, x)` is not scalar true julia> find_zero(f, (-10, 0), Roots.A42()) ≈ α₀ # fewer function evaluations than Bisection true ``` For non-bracketing methods, the initial position is passed in as a scalar, or, possibly, for secant-like methods an iterable like `(x_0, x_1)`: ```julia julia> find_zero(f, 3) ≈ α₁ # find_zero(f, x0::Number) will use Order0() true julia> find_zero(f, 3, Order1()) ≈ α₁ # same answer, different method (secant) true julia> find_zero(f, (3, 2), Order1()) ≈ α₁ # start secant method with (3, f(3), (2, f(2)) true julia> find_zero(sin, BigFloat(3.0), Order16()) ≈ π # 2 iterations to 6 using Order1() true ``` The `find_zero` function can be used with callable objects: ```julia julia> using Polynomials; julia> x = variable(); julia> find_zero(x^5 - x - 1, 1.0) ≈ 1.1673039782614187 true ``` The function should respect the units of the `Unitful` package: ```julia julia> using Unitful julia> s, m = u"s", u"m"; julia> g, v₀, y₀ = 9.8*m/s^2, 10m/s, 16m; julia> y(t) = -g*t^2 + v₀*t + y₀ y (generic function with 1 method) julia> find_zero(y, 1s) ≈ 1.886053370668014s true ``` Newton's method can be used without taking derivatives by hand. The following examples use the `ForwardDiff` package: ```julia julia> using ForwardDiff julia> D(f) = x -> ForwardDiff.derivative(f,float(x)) D (generic function with 1 method) ``` Now we have: ```julia julia> f(x) = x^3 - 2x - 5 f (generic function with 1 method) julia> x0 = 2 2 julia> find_zero((f, D(f)), x0, Roots.Newton()) ≈ 2.0945514815423265 true ``` Automatic derivatives allow for easy solutions to finding critical points of a function. ```julia julia> using Statistics: mean, median julia> as = rand(5); julia> M(x) = sum((x-a)^2 for a in as) M (generic function with 1 method) julia> find_zero(D(M), .5) ≈ mean(as) true julia> med(x) = sum(abs(x-a) for a in as) med (generic function with 1 method) julia> find_zero(D(med), (0, 1)) ≈ median(as) true ``` ### The CommonSolve interface The [DifferentialEquations](https://github.com/SciML/DifferentialEquations.jl) interface of setting up a problem; initializing the problem; then solving the problem is also implemented using the types `ZeroProblem` and the methods `init`, `solve!`, and `solve` (from [CommonSolve](https://github.com/SciML/CommonSolve.jl)). For example, we can solve a problem with many different methods, as follows: ```julia julia> f(x) = exp(-x) - x^3 f (generic function with 1 method) julia> x0 = 2.0 2.0 julia> fx = ZeroProblem(f, x0) ZeroProblem{typeof(f), Float64}(f, 2.0) julia> solve(fx) ≈ 0.7728829591492101 true ``` With no default, and a single initial point specified, the default `Order1` method is used. The `solve` method allows other root-solving methods to be passed, along with other options. For example, to use the `Order2` method using a convergence criteria (see below) that `|xₙ - xₙ₋₁| ≤ δ`, we could make this call: ```julia julia> solve(fx, Order2(); atol=0.0, rtol=0.0) ≈ 0.7728829591492101 true ``` Unlike `find_zero`, which errors on non-convergence, `solve` returns `NaN` on non-convergence. This next example has a zero at `0.0`, but for most initial values will escape towards `±∞`, sometimes causing a relative tolerance to return a misleading value. Here we can see the differences: ```julia julia> f(x) = cbrt(x) * exp(-x^2) f (generic function with 1 method) julia> x0 = 0.1147 0.1147 julia> find_zero(f, x0, Roots.Order5()) ≈ 5.936596662527689 # stopped as |f(xₙ)| ≤ |xₙ|ϵ true julia> find_zero(f, x0, Roots.Order1(), atol=0.0, rtol=0.0) # error as no check on `|f(xn)|` ERROR: Roots.ConvergenceFailed("Algorithm failed to converge") [...] julia> fx = ZeroProblem(f, x0); julia> solve(fx, Roots.Order1(), atol=0.0, rtol=0.0) # NaN, not an error NaN julia> fx = ZeroProblem((f, D(f)), x0); # higher order methods can identify zero of this function julia> solve(fx, Roots.LithBoonkkampIJzerman(2,1), atol=0.0, rtol=0.0) 0.0 ``` Functions may be parameterized, as illustrated: ```julia julia> f(x, p=2) = cos(x) - x/p f (generic function with 2 methods) julia> Z = ZeroProblem(f, pi/4) ZeroProblem{typeof(f), Float64}(f, 0.7853981633974483) julia> solve(Z, Order1()) ≈ 1.0298665293222586 # use p=2 default true julia> solve(Z, Order1(), p=3) ≈ 1.170120950002626 # use p=3 true julia> solve(Z, Order1(), 4) ≈ 1.2523532340025887 # by position, uses p=4 true ``` ### Multiple zeros The `find_zeros` function can be used to search for all zeros in a specified interval. The basic algorithm essentially splits the interval into many subintervals. For each, if there is a bracket, a bracketing algorithm is used to identify a zero, otherwise a derivative free method is used to search for zeros. This heuristic algorithm can miss zeros for various reasons, so the results should be confirmed by other means. ```julia julia> f(x) = exp(x) - x^4 f (generic function with 2 methods) julia> find_zeros(f, -10,10) ≈ [α₀, α₁, α₂] # from above true ``` The interval can also be specified using a structure with `extrema` defined, where `extrema` returns two different values: ```julia julia> using IntervalSets julia> find_zeros(f, -10..10) ≈ [α₀, α₁, α₂] true ``` (For tougher problems, the [IntervalRootFinding](https://github.com/JuliaIntervals/IntervalRootFinding.jl) package gives guaranteed results, rather than the heuristically identified values returned by `find_zeros`.) ### Convergence For most algorithms, convergence is decided when * The value `|f(x_n)| <= tol` with `tol = max(atol, abs(x_n)*rtol)`, or * the values `x_n ≈ x_{n-1}` with tolerances `xatol` and `xrtol` *and* `f(x_n) ≈ 0` with a *relaxed* tolerance based on `atol` and `rtol`. The `find_zero` algorithm stops if * it encounters an `NaN` or an `Inf`, or * the number of iterations exceed `maxevals` If the algorithm stops and the relaxed convergence criteria is met, the suspected zero is returned. Otherwise an error is thrown indicating no convergence. To adjust the tolerances, `find_zero` accepts keyword arguments `atol`, `rtol`, `xatol`, and `xrtol`, as seen in some examples above. The `Bisection` and `Roots.A42` methods are guaranteed to converge even if the tolerances are set to zero, so these are the defaults. Non-zero values for `xatol` and `xrtol` can be specified to reduce the number of function calls when lower precision is required. ```julia julia> fx = ZeroProblem(sin, (3,4)); julia> solve(fx, Bisection(); xatol=1/16) 3.125 ``` ## An alternate interface This functionality is provided by the `fzero` function, familiar to MATLAB users. `Roots` also provides this alternative interface: * `fzero(f, x0::Real; order=0)` calls a derivative-free method. with the order specifying one of `Order0`, `Order1`, etc. * `fzero(f, a::Real, b::Real)` calls the `find_zero` algorithm with the `Bisection` method. * `fzeros(f, a::Real, b::Real)` will call `find_zeros`. ### Usage examples ```julia julia> f(x) = exp(x) - x^4 f (generic function with 2 methods) julia> fzero(f, 8, 9) ≈ α₂ # bracketing true julia> fzero(f, -10, 0) ≈ α₀ true julia> fzeros(f, -10, 10) ≈ [α₀, α₁, α₂] true julia> fzero(f, 3) ≈ α₁ # default is Order0() true julia> fzero(sin, big(3), order=16) ≈ π # uses higher order method true ```
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
16186
# Visualizing a step for various zero-finding algorithms We illustrate the geometry behind a single step of several different, non-bracketing, zero-finding algorithms, beginning with, perhaps, the most famous, Newton's method. ## Newton's method In addition to `Roots`, we use the `Plots` and `ForwardDiff` packages: ```@example geometry using Roots using Plots, ForwardDiff Base.adjoint(f::Function) = x -> ForwardDiff.derivative(f, float(x)) # f' will compute derivative ``` A zero-finding algorithm solves ``f(x) = 0`` or possibly ``f(x,p) = 0`` for a value of ``x``. Here we discuss iterative algorithms which take one *or more* past steps to produce the next step. (That is ``x_{n+1} = F(x_n, x_{n-1}, ..., x_1, x_0)``, for some ``F`` representing the algorithm). [Newton's Method](https://en.wikipedia.org/wiki/Newton%27s_method) is a zero-finding *iterative algorithm* easily introduced in an introductory calculus class once the concept of a *tangent line* is presented. The value ``x_{n+1}`` is described as the *intersection point* of the ``x``-axis with the tangent line through ``(x_n, f(x_n))``. To be explicit, we substitute ``(x_{n+1},0)`` into the tangent line equation ``y = f(x_n) + f'(x_n)\cdot(x-x_n)``: ```math 0 = f(x_n) + f'(x_n) \cdot (x_{n+1} - x_n). ``` Solving gives the update formula: ```math x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. ``` The convergence is not guaranteed for all initial guesses, ``x_0``, but for a *simple zero* of a continuously differentiable function ``f(x)`` there is **some** interval about the zero, ``\alpha``, such that *quadratic convergence* will happen. The geometry of Newton's method can be illustrated by graphing the tangent line. The function ``f(x) = x^5 - x - 1`` does not have a readily available closed-form solution for its lone real zero, it being a fifth-degree polynomial. However, a graph, or other means, can show the function has one zero between ``1`` and ``2``, closer to ``1``. Starting with ``x_0=1.4``, we get a visual of ``x_1`` as follows: ```@example geometry f(x) = x^5 - x - 1 x0 = 1.4 α = find_zero((f, f'), x0, Roots.Newton()) tl(x) = f(x0) + f'(x0)*(x-x0) x1 = x0 - f(x0)/f'(x0) p = plot(f, 1.1, 1.5; legend=false, linewidth=3) plot!(zero) plot!(tl; color="red", linewidth=3) scatter!([x0, x1], [0, 0]; markercolor="blue") annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom)]) scatter!([x0], [f(x0)]; markercolor=:blue) scatter!([α], [0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` We used `Roots.Newton()` to identify the zero. ## Secant method The secant method is much older than Newton's method, though similar in that the intersection of a line with the ``x``-axis is used as the next step in the algorithm. The slope of the secant line is (historically) easy to compute, unlike the slope of the tangent line which requires the notion of a derivative. The secant method begins with *two* initial points, ``x_0`` and ``x_1`` and uses the secant line instead of the tangent line. The secant line has slope ``(f(x_1)-f(x_0))/(x_1-x_0)``. This yields the algorithm: ```math x_{n+1} = x_n - \left(\frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}}\right)^{-1} \cdot f(x_n). ``` We can visualize the secant method easily enough. Suppose we start with ``x_0=1.4`` and ``x_1=1.3``: ```@example geometry x0, x1 = 1.4, 1.3 x2 = x1 - (x1-x0)/(f(x1)-f(x0)) * f(x1) sl(x) = f(x1) + (f(x1)-f(x0))/(x1-x0) * (x-x1) p = plot(f, 1.1, 1.5; legend=false, linewidth=3) plot!(zero) plot!(sl, color=:red, linewidth=3) scatter!([x0, x1, x2], [0,0,0]; markercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom), (x2,0,"x2", :bottom)]) scatter!([x0, x1], [f(x0), f(x1)]; markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` The secant method is implemented in `Secant()`. As the tangent line is the best local approximation to the function near a point, it should be expected that the secant method converges a slower rate than Newton's method. Steffensen's method (`Root.Steffensen()`) is related to the secant method, though the points are not ``x_n`` and ``x_{n-1}``, rather ``x_n + f(x_n)`` and ``x_n``. As ``x_n`` gets close to ``\alpha``, ``f(x_n)`` gets close to ``0``, so this method converges at an asymptotic rate like Newton's method. (Though with a tradeoff, as the secant method needs only one new function evaluation per step, Steffensen's require two.) ### An inverse view The secant line is a natural object as presented above, but can be viewed a bit differently. Consider the two points ``(f(x_0), x_0)`` and ``(f(x_1),x_1)``. Two non-equal points determine a line. In this case, we have inverted the ``x`` and ``y`` values, so we invert the coordinates of the line. To find ``x = my + b``, or some other form of the line involves solving two equations with two unknowns. Each equation comes by using the known point: ```math \begin{align*} x_0 &= m \cdot f(x_0) + b\\ x_1 &= m \cdot f(x_1) + b \end{align*} ``` This *linear* set of equations can be solved, some `SymPy` code would look like: ``` using SymPy @syms x0, y0, x1, y1, m ,b u = solve([x0 ~ y0 * m + b, x1 ~ y1 * m + b], (m,b)) ``` Producing ``` Dict{Any, Any} with 2 entries: b => (-x0*y1 + x1*y0)/(y0 - y1) m => (x0 - x1)/(y0 - y1) ``` The value of `m` is the reciprocal of the slope, as we have inverted the perspective. The value of `b` is where the inverse line intersects the ``x`` axis and is the same as the secant method algorithm: ``` sm = x1 - y1 * (x1-x0)/(y1-y0) simplify(sm - u[b]) ``` leading to: ``` 0 ``` ## Inverse quadratic and cubic methods Brent's method (`Roots.Brent()`) is a bracketing method which utilizes an inverse quadratic step to speed up convergence beyond the secant method. The inverse quadratic step uses the fact that three (non-collinear) points determine a quadratic polynomial. As above, this is done with the inverse of the points, ``(x_{n-2}, f(x_{n-2}))``, ``(x_{n-1}, f(x_{n-1}))``, and ``(x_{n}, f(x_{n}))``. Using the same method illustrated above, it can be shown that, with ``\Delta_{i,j} = f(x_i) - f(x_j)``: ```math x_{n+1} = \frac{x_{n-2}f(x_{n-1})f(x_n)}{\Delta_{i-2, i-1}\Delta_{i-2,i}} + \frac{f(x_{n-2})x_{n-1}f(x_n)}{\Delta_{n-1, n-2}\Delta_{n-1,n}} + \frac{f(x_{n-2})f(x_{n-1})x_n}{\Delta_{n,n-2}\Delta_{n,n-1}}. ``` ``` x0, x1, x2 = xs = 1.4, 1.3, 1.2 fx0, fx1, fx2 = ys = f.(xs) @syms x[0:2], y[0:2], a, b, c u = solve([xᵢ ~ a*yᵢ^2 + b * yᵢ + c for (xᵢ, yᵢ) ∈ zip(x, y)], (a, b, c)) x3 = u[c] for (k, v) ∈ u for (xᵢ, yᵢ, x,y) ∈ zip(x, y, xs, ys) v = v(xᵢ => x, yᵢ => y) end u[k] = v end u[a], u[b], u[c] ``` Which returns ``` (-0.00930682152998560, 0.104752944517765, 1.17057129242798) ``` This last value, `c`, is also computed in the `(3,0)` method of the `LithBoonkkampIJzerman` algorithm, which implements this method: ```@example geometry x0, x1, x2 = 1.4, 1.3, 1.2 xs = [x0, x1,x2] x3 = Roots.lmm(Roots.LithBoonkkampIJzerman{3,0}(), xs, f.(xs)) ``` With this, we can visualize: ```@example geometry a, b, c = (-0.00930682152998560, 0.104752944517765, 1.17057129242798) iq(y) = a * y^2 + b * y + c p = plot(f, 1.1, 1.5; legend=false, linewidth=3) plot!(zero) ys′ = range(f(1.1), f(1.5), length=100) plot!(iq.(ys′), ys′; color=:red, linewidth=3) scatter!(xs, f.(xs); markercolor=:blue) scatter!([x3], [f(x3)]; markercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom), (x2,0,"x2", :bottom), (x3,0,"x3", :bottom)]) scatter!(xs, zero.(xs); markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` Inverse cubic is similar to the above, though we have ``4`` past points used to determine the next one. In this example, we solve the resulting linear system of equations numerically (the `Roots.LithBoonkkampIJzerman{4,0}()` method implements the algorithm): ```@example geometry xs = [1.4, 1.35, 1.3, 1.25] ys = f.(xs) A = zeros(Float64, 4, 4) for i ∈ reverse(0:3) A[:,4-i] .= ys.^i end a, b, c, d = A \ xs ic(y) = a * y^3 + b * y^2 + c * y + d p = plot(f, 1.1, 1.5; legend=false, linewidth=3) plot!(zero) plot!(ic.(ys′), ys′; color=:red, linewidth=3) x4 = d scatter!(vcat(xs, x4), zeros(5); markercolor=:blue) for (i,x) ∈ enumerate(xs) annotate!([(x, 0, "x$(i-1)", :bottom)]) end annotate!([(x4, 0, "x4", :bottom)]) scatter!(xs, f.(xs); markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` We can see graphically that for this function and the chosen values, the inverse quadratic and inverse cubic fits are very close to the actual zero, suggesting a rapid convergence. `Roots.Brent()`, `Roots.Chandrapatlu()`, and `Roots.AlefeldPotraShi()` are different bracketing methods which use an inverse quadratic step *when* the algorithm deems it productive, falling back to other estimates when not. Similarly, the inverse cubic step is utilized by `Roots.A42()`, as possible. The `LithBoonkkampIJzerman{S,0}` methods use ``S`` previous points (``S \geq 2``) and the corresponding inverse polynomial step to progress. Since these are not bracketed, the algorithms are only guaranteed to converge for nearby initial guesses. ## Higher derivative variations on Newton's method We can visualize Newton's method differently than as an intersection of the ``x``-axis with a specific tangent line, rather we can think of it as an intersection of the ``x``-axis with *a* line ``ax + by = c`` with *two* constraints: * the point ``(x_n, f(x_n))`` is on the line * the line matches the slope of the tangent line at that point (a tangency condition) Combined, these say that the constrained line has slope ``f'(x_n)`` and goes through the point ``(x_n, f(x_n))``, so is the tangent line; Newton's method follows. When a quadratic approximation to the graph of ``f(x)`` is chosen *at* ``(x_n, f(x_n))`` other algorithms become possible. [Geometric constructions of iterative functions to solve nonlinear equations](https://doi.org/10.1016/S0377-0427(03)00420-5) by Amat, Busquier, and Gutiérrez has a systematic approach we follow. ### Euler method Consider the quadratic expression ``y + ax^2 + bx + c = 0``. Assuming the expression goes through the point ``(x_n, f(x_n))`` and the tangency conditions: ``y'(x) = f'(x)`` **and** ``y''(x) = f''(x)``, we get the second-order Taylor polynomial ``y(x) = f(x_n) + f'(x_n)(x-x_n) + f''(x_n)/2 \cdot(x-x_n)^2`` as the solution. Let ```math L_f(x) = \frac{f(x)/f'(x)}{f'(x)/f''(x)} = \frac{f(x)f''(x)}{f'(x)^2}. ``` Then the intersection of the curve with the ``x``-axis can be represented as: ```math x_{n+1} = x_n - \frac{2}{1 + \sqrt{1 - 2L_f(x_n)}} \cdot \frac{f(x_n)}{f'(x_n)}. ``` This is known as Euler's method or the irrational Halley method and implemented in `Roots.IrrationalHalley()`: ```@example geometry L_f(x) = f(x) * f''(x) / (f'(x))^2 x0 = 1.4 x1 = x0 - 2 / (1 + sqrt(1 - 2L_f(x0))) * f(x0)/f'(x0) t2(x) = f(x0) + f'(x0)*(x-x0) + f''(x0)/2 * (x - x0)^2 a, b = 1.1, 1.5 p = plot(f, a, b; legend=false, linewidth=3) plot!(zero) plot!(t2; color=:red, linewidth=3) scatter!([x0, x1], [0,0]; markercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom)]) scatter!([x0], [f(x0)]; markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` ### Halley's method The general form of a quadratic equation ``Ax^2 + By^2 + Cxy + Dx + Ey + F = 0`` is specialized above by setting ``B=C=0`` and ``E=1`` and then imposing the point ``(x_n, f(x_n))`` as a solution along with tangency conditions. The famous Halley's method can be seen as the specialization to a hyperbola: ``axy + y + bx + c = 0``. This yields the curve ```math y - (f(x_n) + f'(x_n)(x-x_n) + \frac{f''(x_n)}{2f'(x_n)}(x-x_n) \cdot (y-f(x_n))) = 0 ``` and the iterative algorithm: ```math x_{n+1} = x_n - \frac{2}{2 - L_f(x_n)} \cdot \frac{f(x_n)}{f'(x_n)}. ``` We can visualize, as follows, using a contour plot to represent the hyperbola. ```@example geometry x1 = x0 - 2 / (2 - L_f(x0)) * f(x0)/f'(x0) F(x,y) = y - f(x0) - f'(x0)*(x-x0) - f''(x0)/(2f'(x0)) * (x-x0) * (y-f(x0)) a, b = 1.1, 1.5 p = plot(f, a, b; legend=false, linewidth=3) plot!(zero) xs, ys = range(a, b, length=50), range(f(a), f(b), length=50); zs = [F(x,y) for y ∈ ys, x ∈ xs]; contour!(xs, ys, zs; levels = [0], color=:red, linewidth=3) scatter!([x0, x1], [0,0]; markercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom)]) scatter!([x0], [f(x0)]; markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` `Roots.Halley()` provides an implementation. ### Chebyshev's method Chebyshev's method uses an inverse quadratic fit, specialized with ``ay^2 + y + bx + c = 0``, to compute the next iterate. It can be expressed via: ```math \frac{-f''(x_n)}{2f'(x_n)^2}(y - f(x_n))^2 + y - f(x_n) - f'(x_n)(x-x_n) = 0 ``` and the algorithm becomes: ```math x_{n+1} = x_n - (1 + \frac{1}{2} L_f(x_n)) \frac{f(x_n)}{f'(x_n)}. ``` This is visualized in a similar manner as the last example: ```@example geometry x1 = x0 - (1 + 1/2 * L_f(x0)) * f(x0) / f'(x0) F(x, y) = -f''(x0)/(2f'(x0)^2) * (y-f(x0))^2 + y - f(x0) - f'(x0) * (x- x0) a, b = 1.1, 1.5 p = plot(f, a, b; legend=false, linewidth=3) plot!(zero) xs, ys = range(a, b, length=50), range(f(a), f(b), length=50); zs = [F(x,y) for y ∈ ys, x ∈ xs]; contour!(xs, ys, zs; levels = [0], color=:red, linewidth=3) scatter!([x0, x1], [0,0]; markermarkercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom)]) scatter!([x0], [f(x0)]; markermarkercolor=:blue) scatter!([α],[0]; markermarkercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` `Roots.InverseQuadratic()` provides an implementation; `Roots.ChebyshevLike()` an accelerated version. Amat, Busquier, and Gutierrez also consider the hyperbola ```math ay^2 + bxy + y + cx + d = 0 ``` As there are ``4`` unknowns and only ``3`` constraints, the solution will depend on a parameter, they call ``b_n,`` yielding: ```math \begin{align*} c_n &= -f'(x_n)\\ a_n &= -\frac{f''(x_n)}{2f'(x_n)^2} - \frac{b_n}{f'(x_n)}\\ 0 &= x - x_n + (y-f(x_n)) \frac{1 + a_n \cdot (y - f(x_n))}{b_n\cdot (y-f(x_n)) + c_n} \end{align*} ``` This gives the algorithm: ```math x_{n+1} = x_n - \left(1 + \frac{1}{2}\frac{L_f(x_n)}{1 + b_n \cdot (f(x_n)/f'(x_n))}\right) \cdot \frac{f(x_n)}{f'(x_n)}. ``` Newton's method is recovered by letting ``b_n \rightarrow 0``, Chebyshev's method is when ``b_n=0``, Halley's method is when ``b_n = -f''(x_n)/(2f'(x_n))``. The super-Halley method is when ``b_n = -f''(x_n)/f'(x_n)``. We can visualize this: ```@example geometry cn = -f'(x0) bn = -f''(x0)/f'(x0) an = -f''(x0)/(2f'(x0)^2) - bn/f'(x0) x1 = x0 - (1 + 1/2 * (L_f(x0) / (1 + bn * f(x0) / f'(x0)))) * f(x0)/f'(x0) F(x, y) = x - x0 + (y-f(x0)) * (1 + an * (y - f(x0))) / (bn * (y - f(x0)) + cn) a, b= 1.1, 1.5 p = plot(f, a, b; legend=false, linewidth=3) plot!(zero) xs, ys = range(a, b, length=50), range(f(a), f(b), length=50); zs = [F(x,y) for y ∈ ys, x ∈ xs]; contour!(xs, ys, zs; levels = [0], color=:red, linewidth=3) scatter!([x0, x1], [0,0]; markercolor=:blue) annotate!([(x0,0,"x0", :bottom), (x1, 0, "x1", :bottom)]) scatter!([x0], [f(x0)]; markercolor=:blue) scatter!([α],[0]; markercolor=:blue) annotate!([(α, 0, "α", :top)]) p ``` `Roots.SuperHalley()` provides an implementation. The author's discuss using different osculating curves, such as a cubic equation. As they mention, all their methods take the form (using [big O notation](https://en.wikipedia.org/wiki/Big_O_notation)): ```math x_{n+1} = x_n - (1 + \frac{1}{2}L_f(x_n) + \mathcal{O}(L_f(x_n)^2)) \cdot \frac{f(x_n)}{f'(x_n)}. ``` The algorithms implemented in the `Roots.LithBoonkkampIJzerman{S,D}()` methods use a differential equations approach to evaluate the inverse of $f(x)$ at $0$. The methods all find inverse polynomial approximations to $f^{-1}$. The methods for $D=0$, are, as seen, for $S=2$ an inverse secant line, for $S=3$ an inverse quadratic approximation, for $S=4$ an inverse cubic; when $S=1$ and $D=1$ Euler's method turns into Newton's method, for $S=1$ and $D=2$ the inverse quadratic or Chebyshev method is used.
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
2497
# Roots.jl Documentation for [Roots.jl](https://github.com/JuliaMath/Roots.jl) ## About `Roots` is a `Julia` package for finding zeros of continuous scalar functions of a single real variable using floating point numbers. That is solving ``f(x)=0`` for ``x`` adjusting for floating-point idiosyncrasies. The `find_zero` function provides the primary interface. It supports various algorithms through the specification of a method. These include: * Bisection-like methods. For functions where a bracketing interval is known (one where ``f(a)`` and ``f(b)`` have alternate signs), there are several bracketing methods, including `Bisection`. For most floating point number types, bisection occurs in a manner exploiting floating point storage conventions leading to an exact zero or a bracketing interval as small as floating point computations allows. Other methods include `A42`, `AlefeldPotraShi`, `Roots.Brent`, `Roots.Chandrapatlu`, `Roots.ITP`, `Roots.Ridders`, and ``12``-flavors of `FalsePosition`. The default bracketing method for the basic floating-point types is `Bisection` , as it is more robust to some inputs, but `A42` and `AlefeldPotraShi` typically converge in a few iterations and are more performant. * Several derivative-free methods. These are specified through the methods `Order0`, `Order1` (the secant method), `Order2` (the Steffensen method), `Order5`, `Order8`, and `Order16`. The number indicates, roughly, the order of convergence. The `Order0` method is the default, and the most robust, as it finishes off with a bracketing method when a bracket is encountered, The higher order methods promise higher order (faster) convergence, though don't always yield results with fewer function calls than `Order1` or `Order2`. The methods `Roots.Order1B` and `Roots.Order2B` are superlinear and quadratically converging methods independent of the multiplicity of the zero. * Methods requiring one or more derivatives: `Roots.Newton`, `Roots.Halley` are classical ones, `Roots.QuadraticInverse`, `Roots.ChebyshevLike`, `Roots.SuperHalley` are others. `Roots.Schroder` provides a quadratic method, like Newton's method, which is independent of the multiplicity of the zero. The `Roots.ThukralXB`, `X=2`, `3`, `4`, or `5` are also multiplicity free. The `X` denotes the number of derivatives that need specifying. The `Roots.LithBoonkkampIJzerman{S,D}` methods remember `S` steps and use `D` derivatives.
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
17798
# Reference/API The `Roots` package provides several different algorithms to solve `f(x)=0`. ```@index Pages = ["reference.md"] ``` ```@setup reference using Roots ``` ```@meta DocTestSetup = quote using Roots end ``` ```@meta CurrentModule = Roots ``` ```@docs Roots ``` ## The `find_zero` and `find_zeros` functions There are two main functions: `find_zero` to identify a zero of ``f`` given some initial starting value or bracketing interval and `find_zeros` to heuristically identify all zeros in a specified interval. ```@docs find_zero find_zeros ``` ## CommonSolve interface The problem-algorithm-solve interface is a pattern popularized in `Julia` by the `DifferentialEquations.jl` suite of packages. This can be used as an alternative to `find_zero`. Unlike `find_zero`, `solve` will return `NaN` on non-convergence. ```@docs Roots.solve! Roots.solve Roots.ZeroProblem ``` ## Classical methods based on derivatives We begin by describing the classical methods even though they are not necessarily recommended because they require more work of the user, as they give insight into why there are a variety of methods available. The classical methods of [Newton](https://en.wikipedia.org/wiki/Newton%27s_method) and [Halley](https://en.wikipedia.org/wiki/Halley%27s_method) utilize information about the function and its derivative(s) in an iterative manner to converge to a zero of ``f(x)`` given an initial starting value. Newton's method is easily described: From an initial point, the next point in the iterative algorithm is found by identifying the intersection of the ``x`` axis with the tangent line of ``f`` at the initial point. This is repeated until convergence or the realization that convergence won't happen for the initial point. Mathematically, ``x_{n+1} = x_{n} - f(x_n)/f'(x_n).`` Some facts are helpful to understand the different methods available in `Roots`: * For Newton's method there is a formula for the error: Set ``\epsilon_n = \alpha - x_n``, where ``\alpha`` is the zero, then ``\epsilon_{n+1} = -f''(\xi_n)/(2f'(\xi_n) \cdot \epsilon_n^2,`` here ``\xi_n`` is some value between ``\alpha`` and ``x_n``. * The error term, when of the form ``|\epsilon_{n+1}| \leq C\cdot|\epsilon_n|^2``, can be used to identify an interval around ``\alpha`` for which convergence is guaranteed. Such convergence is termed *quadratic* (order 2). For floating point solutions, quadratic convergence and a well chosen initial point can lead to convergence in 4 or 5 iterations. In general, convergence is termed order ``q`` when ``|\epsilon_{n+1}| \approx C\cdot|\epsilon_n|^q`` * The term ``-f''(\xi_n)/(2f'(\xi_n)`` indicates possible issues when ``f''`` is too big near ``\alpha`` or ``f'`` is too small near ``\alpha``. In particular if ``f'(\alpha) = 0``, there need not be quadratic convergence, and convergence can take many iterations. A zero for which ``f(x) = (x-\alpha)^{1+\beta}\cdot g(x)``, with ``g(\alpha) \neq 0`` is called *simple* when ``\beta=0`` and non-simple when ``\beta > 0``. Newton's method is quadratic near *simple zeros* and need not be quadratic near *non-simple* zeros. As well, if ``f''`` is too big near ``\alpha``, or ``f'`` too small near ``\alpha``, or ``x_n`` too far from ``\alpha`` (that is, ``|\epsilon_n|>1``) the error might actually increase and convergence is not guaranteed. * The explicit form of the error function can be used to guarantee convergence for functions with a certain shape (monotonic, convex functions where the sign of ``f''`` and ``f'`` don't change). Quadratic convergence may only occur once the algorithm is near the zero. * The number of function evaluations per step for Newton's method is 2. ---- ```@docs Roots.Newton Roots.Halley Roots.QuadraticInverse Roots.ChebyshevLike Roots.SuperHalley ``` Newton and Halley's method are members of this family of methods: ```@docs Roots.LithBoonkkampIJzerman{S,D} ``` ## Derivative free methods The [secant](https://en.wikipedia.org/wiki/Secant_method) method replaces the derivative term in Newton's method with the slope of a secant line using two prior values: ``x_{n+1} = x_n - (\frac{f(x_n)-f(x_{n-1})}{x_n - x_{n-1}})^{-1}\cdot f(x_n).`` Though the secant method has convergence rate of order ``\approx 1.618`` -- i.e., is not quadratic -- it only requires one new function call per step so can be very effective. Often function evaluations are the slowest part of the computation and, as well, no derivative is needed. Because it can be very efficient, the secant method is used in the default method of `find_zero` when called with a single initial starting point. [Steffensen's](https://en.wikipedia.org/wiki/Steffensen%27s_method) method is a quadratically converging. derivative-free method which uses a secant line based on ``x_n`` and ``x_n + f(x_n)``. Though of higher order, it requires additional function calls per step and depends on a good initial starting value. Other derivative free methods are available, trading off increased function calls for higher-order convergence. They may be of interest when arbitrary precision is needed. A measure of efficiency is ``q^{1/r}`` where ``q`` is the order of convergence and ``r`` the number of function calls per step. With this measure, the secant method would be ``\approx (1.618)^{1/1}`` and Steffensen's would be less (``2^{1/2}``). ---- ```@docs Secant Order1 Steffensen Order2 Order5 Order8 Order16 ``` ## Bracketing methods The [bisection](https://en.wikipedia.org/wiki/Bisection_method) method identifies a zero of a *continuous* function between ``a`` and ``b`` when ``f(a)`` and ``f(b)`` have different signs. (The interval ``[a,b]`` is called a bracketing interval when ``f(a)\cdot f(b) <0``.) The basic algorithm is particularly simple, an interval ``[a_i,b_i]`` is split at ``c = (a_i+b_i)/2``. Either ``f(c)=0``, or one of ``[a_i,c]`` or ``[c,b_i]`` is a bracketing interval, which is called ``[a_{i+1},b_{i+1}]``. From this description, we see that ``[a_i,b_i]`` has length ``2^{-i}`` times the length of ``[a_0,b_0]``, so the intervals will eventually terminate by finding a zero, ``c``, or converge to a zero. This convergence is slow (the efficiency is only ``1``, but guaranteed. For `16`-, `32`-, and `64`-bit floating point values, a reinterpretation of how the midpoint (``c``) is found leads to convergence in no more than ``64`` iterations, unlike the midpoint found above, where some cases can take many more steps to converge. In floating point, by guaranteed convergence we have either an exact zero or a bracketing interval consisting of two adjacent floating point values. When applied to *non*-continuous functions, this algorithm will identify an exact zero or a zero crossing of the function. (E.g., applied to ``f(x)=1/x`` it will find ``0``.) The default selection of midpoint described above includes no information about the function ``f`` beyond its sign. Algorithms exploiting the shape of the function can be significantly more efficient. For example, the bracketing method `Roots.AlefeldPotraShi` due to [Alefeld, Potra, and Shi](https://dl.acm.org/doi/10.1145/210089.210111) has efficiency ``\approx 1.6686``. This method is also used in the default method for `find_zero` when a single initial starting point is given if a bracketing interval is identified. ---- ```@docs Bisection Roots.A42 Roots.AlefeldPotraShi Roots.Brent Roots.Chandrapatla Roots.Ridders Roots.ITP FalsePosition Roots.LithBoonkkampIJzermanBracket Roots.BracketedHalley Roots.BracketedChebyshev Roots.BracketedSchroder ``` ## Non-simple zeros The order of convergence for most methods is for *simple* zeros, values ``\alpha`` where ``f(x) = (x-\alpha) \cdot g(x)``, with ``g(\alpha)`` being non-zero. For methods which are of order ``k`` for non-simple zeros, usually an additional function call is needed per step. For example, this is the case for `Roots.Newton` as compared to `Roots.Schroder`. Derivative-free methods for non-simple zeros have the following implemented: ```@docs Roots.King Roots.Order1B Roots.Esser Roots.Order2B ``` For non-simple zeros, Schroder showed an additional derivative can be used to yield quadratic convergence based on Newton's method: ```@docs Roots.Schroder ``` A family of methods for non-simple zeros which require ``k`` derivatives to be order ``k``, with ``k=2`` yielding Schroder's method, are implemented in: ```@docs Roots.AbstractThukralBMethod ``` ## Hybrid methods A useful strategy is to begin with a non-bracketing method and switch to a bracketing method should a bracket be encountered. This allows for the identification of zeros which are not surrounded by a bracket, and have guaranteed convergence should a bracket be encountered. It is used by default by `find_zero(f,a)`. ```@docs Roots.Order0 ``` ## All zeros The `find_zeros` function heuristically scans an interval for all zeros using a combination of bracketing and non-bracketing methods. The `AllZeros` method may be passed to `solve` to call this. ```@docs Roots.AllZeros ``` ## Rates of convergence The order of a method is ``q``, where ``e_{i+1} \approx e_i^q``. Newton's method is famously quadratic **for** simple roots; the secant method of order ``q \approx \varphi=1.618\dots``. However, ``p=2`` calls are needed for Newton's method, and only ``p=1`` for the secant method. The asymptotic efficiency is ``q^{1/p}``, which penalizes function calls. There are other order ``k`` methods taking ``k`` function calls per step, e.g., Halley's; others take fewer, as seen below. Many use inverse quadratic steps, others inverse cubic--these have order ``q`` solving ``q^{s+1}-2q^s+1`` (``s=3`` for quadratic). For robust methods, generally ``1`` additional function call is needed to achieve the convergence rate, `Schroder` being a good example. | Type | Method | Order | F evals | Asymptotic efficiency | |:--------------- | :--------------------------- | :--------------------- | :------ | :------------------------------------ | | Hybrid | Order0 | | | ``\approx 1.618\dots`` | | Derivative Free | Secant | ``\varphi=1.618\dots`` | ``1`` | ``1.618\dots`` | | Derivative Free | Steffensen | ``2`` | ``2`` | ``1.414\dots`` | | Derivative Free | Order5 | ``5`` | ``4`` | ``1.495\dots`` | | Derivative Free | Order8 | ``8`` | ``4`` | ``1.681\dots`` | | Derivative Free | Order16 | ``16`` | ``5`` | ``1.718\dots`` | | Classical | Newton | ``2`` | ``2`` | ``1.414\dots`` | | Classical | Halley | ``3`` | ``3`` | ``1.442\dots`` | | Classical | QuadraticInverse | ``3`` | ``3`` | ``1.442\dots`` | | Classical | ChebyshevLike | ``3`` | ``3`` | ``1.442\dots`` | | Classical | SuperHalley | ``3`` | ``3`` | ``1.442\dots`` | | MultiStep | LithBoonkkampIJzerman{S,D} | ``p^s=\sum p^k(d+\sigma_k)`` | ``D+1`` | varies, ``1.92\dots`` max | | Bracketing | BisectionExact | ``1`` | ``1`` | ``1`` | | Bracketing | A42 | ``(2 + 7^{1/2})`` | ``3,4`` |``(2 + 7^{1/2})^{1/3} = 1.6686\dots`` | | Bracketing | AlefeldPotraShi | | ``3,4`` | ``1.618\dots`` | | Bracketing | Brent | ``\leq 1.89\dots`` | ``1`` | ``\leq 1.89\dots`` | | Bracketing | ITP | ``\leq \varphi`` | ``1`` | ``\leq \varphi`` | | Bracketing | Ridders | ``1.83\dots`` | ``2`` | ``1.225\dots`` | | Bracketing | FalsePosition | ``1.442\dots`` | ``1`` | ``1.442\dots`` | | Bracketing | LithBoonkkampIJzermanBracket | ``2.91`` | ``3`` | ``1.427\dots`` | | Robust | King | ``\varphi=1.618\dots`` | ``2`` | ``1.272\dots`` | | Robust | Esser | ``2`` | ``3`` | ``1.259\dots`` | | Robust | Schroder | ``2`` | ``3`` | ``1.259\dots`` | | Robust | Thukral3 | ``3`` | ``4`` | ``1.316\dots`` | | Robust | Thukral4 | ``4`` | ``5`` | ``1.319\dots`` | | Robust | Thukral5 | ``5`` | ``6`` | ``1.307\dots`` | ## Convergence Identifying when an algorithm converges or diverges requires specifications of tolerances and convergence criteria. In the case of exact bisection, convergence is mathematically guaranteed. For floating point numbers, either an *exact* zero is found, or the bracketing interval can be subdivided into ``[a_n,b_n]`` with ``a_n`` and ``b_n`` being adjacent floating point values. That is ``b_n-a_n`` is as small as possible in floating point numbers. This can be considered a stopping criteria in ``\Delta x``. For early termination (less precision but fewer function calls) a tolerance can be given so that if ``\Delta_n=b_n-a_n`` is small enough the algorithm stops successfully. In floating point, assessing if ``b_n \approx a_n`` requires two tolerances: a *relative* tolerance, as the minimal differences in floating point values depend on the size of ``b_n`` and ``a_n``, and an absolute tolerance for values near ``0``. The values `xrtol` and `xatol` are passed to the `Base.isapprox` function to determine closeness. Relying on the closeness of two ``x`` values will not be adequate for all problems, as there are examples where the difference ``\Delta_n=|x_n-x_{n-1}|`` can be quite small, ``0`` even, yet ``f(x_n)`` is not near a ``0``. As such, for non-bracketing methods, a check on the size of ``f(x_n)`` is also used. As we find floating point approximations to ``\alpha``, the zero, we must consider values small when ``f(\alpha(1+\epsilon))`` is small. By Taylor's approximation, we can expect this to be around ``\alpha\cdot \epsilon \cdot f'(\alpha)``. That is, small depends on the size of ``\alpha`` and the derivative at ``\alpha``. The former is handled by both relative and absolute tolerances (`rtol` and `atol`). The size of ``f'(\alpha)`` is problem dependent, and can be accommodated by larger relative or absolute tolerances. When an algorithm returns an `NaN` value, it terminates. This can happen near convergence or may indicate some issues. Early termination is checked for convergence in the size of ``f(x_n)`` with a relaxed tolerance when `strict=false` is specified (the default). !!! note "Relative tolerances and assessing `f(x) ≈ 0`" The use of relative tolerances to check if ``f(x) \approx 0`` can lead to spurious answers where ``x`` is very large (and hence the relative tolerance is large). The return of very large solutions should be checked against expectations of the answer. Deciding if an algorithm won't terminate is done through counting the number or iterations performed; the default adjusted through `maxiters`. As most algorithms are superlinear, convergence happens rapidly near the answer, but all the algorithms can take a while to get near an answer, even when progress is made. As such, the maximum must be large enough to consider linear cases, yet small enough to avoid too many steps when an algorithm is non-convergent. Convergence criteria are method dependent and are determined by the `Roots.assess_convergence` methods. ```@docs Roots.assess_convergence ``` Default tolerances are specified through the `Roots.default_tolerances` methods. ```@docs Roots.default_tolerances ``` ## Simplified versions The abstractions and many checks for convergence employed by `find_zero` have a performance cost. When that is a critical concern, there are several "simple" methods provided which can offer improved performance. ```@docs Roots.secant_method Roots.bisection Roots.muller Roots.newton Roots.dfree ``` ## MATLAB interface The initial naming scheme used `fzero` instead of `find_zero`, following the name of the MATLAB function [fzero](https://www.mathworks.com/help/matlab/ref/fzero.html). This interface is not recommended, but, for now, still maintained. ```@docs fzero fzeros ``` ## Tracking iterations It is possible to add the keyword argument `verbose=true` when calling the `find_zero` function to get detailed information about the solution and data from each iteration. To save this data a `Tracks`object may be passed in to `tracks`. ---- ```@docs Roots.Tracks ```
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
2.2.1
3a7c7e5c3f015415637f5debdf8a674aa2c979c4
docs
42266
# An overview of `Roots` The `Roots` package contains simple routines for finding zeros of continuous scalar functions of a single real variable. A zero of $f$ is a value $c$ where $f(c) = 0$. The basic interface is through the function `find_zero`, which through multiple dispatch can handle many different cases. The [NonlinearSolve](https://github.com/JuliaComputing/NonlinearSolve.jl) package provides an alternative. In the following, we will use `ForwardDiff` to take derivatives. ```jldoctest roots julia> using Roots, ForwardDiff ``` ## Basic usage Consider the polynomial function ``f(x) = x^5 - x + 1/2``. As a polynomial, its roots, or zeros, could be identified with the `roots` function of the `Polynomials` package. However, even that function uses a numeric method to identify the values, as no solution with radicals is available. That is, even for polynomials, non-linear root finders are needed to solve ``f(x)=0``. (Though polynomial root-finders can exploit certain properties not available for general non-linear functions.) The `Roots` package provides a variety of algorithms for this task. In this quick overview, only the default ones are illustrated. For the function ``f(x) = x^5 - x + 1/2`` a simple plot over ``[-2,2]``will show a zero somewhere **between** ``-1.5`` and ``-0.5`` and two zeros near ``0.6``. ("Between", as the continuous function has different signs at ``-1.5`` and ``-0.5``.) For the zero between two values at which the function changes sign, a bracketing method is useful, as bracketing methods are guaranteed to converge for continuous functions by the intermediate value theorem. A bracketing algorithm will be used when the initial data is passed as a tuple: ```jldoctest find_zero julia> using Roots julia> f(x) = x^5 - x + 1/2 f (generic function with 1 method) julia> find_zero(f, (-3/2, -1/2)) ≈ -1.0983313019186336 true ``` The default algorithm is guaranteed to have an answer nearly as accurate as is possible given the limitations of floating point computations. For the zeros **near** a point, a non-bracketing method is often used, as generally the algorithms are more efficient and can be used in cases where a zero does not cross the ``x`` axis. Passing just an initial guess will dispatch to such a method: ```jldoctest find_zero julia> find_zero(f, 0.6) ≈ 0.550606579334135 true ``` This finds the answer to the left of the starting point. To get the other nearby zero, a starting point closer to the answer can be used. However, an initial graph might convince one that any of the up-to-``5`` real roots will occur between ``-2`` and ``2``. The `find_zeros` function uses heuristics and a few of the algorithms to identify all zeros between the specified range. Here the method successfully identifies all ``3``: ```jldoctest find_zero julia> find_zeros(f, -2, 2) 3-element Vector{Float64}: -1.0983313019186334 0.5506065793341349 0.7690997031778959 ``` This shows the two main entry points of `Roots`: `find_zero` to locate a zero between or near values using one of many methods and `find_zeros` to heuristically identify all zeros within some interval. ## Bracketing methods For a function $f$ (univariate, real-valued) a *bracket* is a pair $ a < b $ for which $f(a) \cdot f(b) < 0$. That is the function values have different signs at $a$ and $b$. If $f$ is a continuous function this ensures ([Bolzano](https://en.wikipedia.org/wiki/Intermediate_value_theorem)) there will be a zero in the interval $[a,b]$. If $f$ is not continuous, then there must be a point $c$ in $[a,b]$ where the function "jumps" over $0$. Such values can be found, up to floating point round off. That is, given `f(a) * f(b) < 0`, a value `c` with `a < c < b` can be found where either `f(c) == 0.0` or `f(prevfloat(c)) * f(c) < 0` or `f(c) * f(nextfloat(c)) < 0`. To illustrate, consider the function $f(x) = \cos(x) - x$. From trigonometry we can see readily that $[0,\pi/2]$ is a bracket. The `Roots` package includes the bisection algorithm through `find_zero`. We use a structure for which `extrema` returns `(a,b)` with `a < b`, such as a vector or tuple, to specify the initial condition and `Bisection()` to specify the algorithm: ```jldoctest roots julia> f(x) = cos(x) - x; julia> x = find_zero(f, (0, pi/2), Bisection()) 0.7390851332151607 julia> x, f(x) (0.7390851332151607, 0.0) ``` For this function we see that `f(x)` is `0.0`. Functions may be parameterized. The following is a similar function as above, still having ``(0, \pi/2)`` as a bracket when ``p>0``. By passing in values of `p` to `find_zero`, different, related problems may be solved. ```jldoctest roots julia> g(x, p=1) = cos(x) - x/p; julia> x0, M = (0, pi/2), Bisection() ((0, 1.5707963267948966), Bisection()) julia> find_zero(g, x0, M) # as before, solve cos(x) - x = 0 using default p=1 0.7390851332151607 julia> find_zero(g, x0, M; p=2) # solves cos(x) - x/2 = 0 1.0298665293222589 julia> find_zero(g, x0, M, 2) # positional argument; useful with broadcasting 1.0298665293222589 ``` ---- Next consider $f(x) = \sin(x)$. A known zero is $\pi$. Trigonometry tells us that $[\pi/2, 3\pi/2]$ will be a bracket. The calling pattern for `find_zero` is `find_zero(f, x0, M; kwargs...)`, where `kwargs` can specify details about parameters for the problem or tolerances for the solver. In this call `Bisection()` is not specified, as it will be the default (as the initial value is not specified as a number is over `Float64` values: ```jldoctest roots julia> f(x) = sin(x); julia> x = find_zero(f, (pi/2, 3pi/2)) 3.141592653589793 julia> x, f(x) (3.141592653589793, 1.2246467991473532e-16) ``` This value of `x` does not exactly produce a zero, however, it is as close as can be: ```jldoctest roots julia> f(prevfloat(x)) * f(x) < 0.0 || f(x) * f(nextfloat(x)) < 0.0 true ``` That is, at `x` the function is changing sign. From a mathematical perspective, a zero is guaranteed for a *continuous* function. However, the computer algorithm doesn't assume continuity, it just looks for changes of sign. As such, the algorithm will identify discontinuities, not just zeros. For example: ```jldoctest roots julia> find_zero(x -> 1/x, (-1, 1)) 0.0 ``` The endpoints and function values can even be infinite for the default `Bisection` algorithm over the standard floating point types: ```jldoctest roots julia> find_zero(x -> Inf*sign(x), (-Inf, Inf)) # Float64 only 0.0 ``` The basic algorithm used for bracketing when the values are simple floating point values is a modification of the bisection method, where the midpoint is taken over the bit representation of `a` and `b`. For big float values, bisection is the default (with non-zero tolerances), but its use is definitely not suggested. Simple bisection over `BigFloat` values can take *many* more iterations. For the problem of finding a zero of `sin` in the interval `(big(3), big(4))`, the default bisection takes ``252`` iterations, whereas the `A42` method takes ``4``. The algorithms of Alefeld, Potra, and Shi and the well known algorithm of Brent, also start with a bracketing algorithm. For many problems these will take far fewer steps than the bisection algorithm to reach convergence. These may be called directly. For example, ```jldoctest roots julia> find_zero(sin, (3,4), A42()) 3.141592653589793 ``` By default, bisection will converge to machine tolerance. This may provide more accuracy than desired. A tolerance may be specified to terminate early, thereby utilizing fewer resources. For example, the following ``4`` steps to reach accuracy to $1/16$ (without specifying `xatol` it uses ``53`` steps): ```jldoctest roots julia> rt = find_zero(sin, (3.0, 4.0), xatol=1/16) 3.125 julia> rt - pi -0.016592653589793116 ``` ## Non-bracketing methods Bracketing methods have guaranteed convergence, but in general may require many more function calls than are otherwise needed to produce an answer and not all zeros of a function may be bracketed. If a good initial guess is known, then the `find_zero` function provides an interface to some different iterative algorithms that are more efficient. Unlike bracketing methods, these algorithms may not converge to the desired root if the initial guess is not well chosen. The default algorithm is modeled after an algorithm used for [HP-34 calculators](http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1979-12.pdf). This algorithm is designed to be more forgiving of the quality of the initial guess at the cost of possibly performing more steps than other algorithms, as if the algorithm encounters a bracket, a bracketing method will be used (an efficient one, though). For example, the answer to our initial problem is visibly seen from a graph to be near 1. Given this, the zero is found through: ```jldoctest roots julia> f(x) = cos(x) - x; julia> x = find_zero(f , 1) 0.7390851332151607 julia> x, f(x) (0.7390851332151607, 0.0) ``` For the polynomial $f(x) = x^3 - 2x - 5$, an initial guess of $2$ seems reasonable: ```jldoctest roots julia> f(x) = x^3 - 2x - 5; julia> x = find_zero(f, 2) 2.0945514815423265 julia> f(x), sign(f(prevfloat(x)) * f(x)), sign(f(x) * f(nextfloat(x))) (-8.881784197001252e-16, 1.0, -1.0) ``` For even more precision, `BigFloat` numbers can be used ```jldoctest roots julia> x = find_zero(sin, big(3)) 3.141592653589793238462643383279502884197169399375105820974944592307816406286198 julia> x, sin(x), x - pi (3.141592653589793238462643383279502884197169399375105820974944592307816406286198, 1.096917440979352076742130626395698021050758236508687951179005716992142688513354e-77, 0.0) ``` ### Higher-order methods The default call to `find_zero` uses a first order method and then possibly bracketing, which potentially involves more function calls than necessary. There may be times where a more efficient algorithm is sought. For such, a higher-order method might be better suited. There are algorithms `Order1` (secant method), `Order2` ([Steffensen](http://en.wikipedia.org/wiki/Steffensen's_method)), `Order5`, `Order8`, and `Order16`. The order $1$ or $2$ methods are generally quite efficient in terms of steps needed over floating point values. The even-higher-order ones are potentially useful when more precision is used. These algorithms are accessed by specifying the method after the initial starting point: ```jldoctest roots julia> f(x) = 2x - exp(-x); julia> x = find_zero(f, 1, Order1()) 0.3517337112491958 julia> x, f(x) (0.3517337112491958, -1.1102230246251565e-16) ``` Similarly, ```jldoctest roots julia> f(x) = (x + 3) * (x - 1)^2; julia> x = find_zero(f, -2, Order2()) -3.0 julia> x, f(x) (-3.0, 0.0) ``` ```jldoctest roots julia> x = find_zero(f, 2, Order8()) 1.0000000131073141 julia> x, f(x) (1.0000000131073141, 6.87206736323862e-16) ``` Starting at ``2`` the algorithm converges towards ``1``, showing that zeros need not be simple zeros to be found. A simple zero, $c,$ has $f(x) = (x-c) \cdot g(x)$ where $g(c) \neq 0$. Generally speaking, non-simple zeros are expected to take many more function calls, as the methods are no longer super-linear. This is the case here, where `Order2` uses $51$ function calls, `Order8` uses $42$, and `Order0` takes $80$. The `Roots.Order2B` method is useful when a multiplicity is expected; on this problem it takes ``17`` function calls. To investigate an algorithm and its convergence, the argument `verbose=true` may be specified. A `Roots.Tracks` object can be used to store the intermediate values. For some functions, adjusting the default tolerances may be necessary to achieve convergence. The tolerances include `atol` and `rtol`, which are used to check if $f(x_n) \approx 0$; `xatol` and `xrtol`, to check if $x_n \approx x_{n-1}$; and `maxiters` to limit the number of iterations in the algorithm. ## Classical methods The package provides some classical methods for root finding, such as `Roots.Newton`, `Roots.Halley`, and `Roots.Schroder`. (Currently these are not exported, so must be prefixed with the package name to be used.) We can see how each works on a problem studied by Newton. Newton's method uses the function and its derivative: ```jldoctest roots julia> f(x) = x^3 - 2x - 5; julia> fp(x) = 3x^2 - 2; julia> x = Roots.find_zero((f, fp), 2, Roots.Newton()) 2.0945514815423265 julia> x, f(x) (2.0945514815423265, -8.881784197001252e-16) ``` The functions are specified using a tuple, or through a function returning `(f(x), f(x)/f'(x))`. The latter is convenient when `f'` is easily computed when `f` is, but otherwise may be expensive to compute. Halley's method has cubic convergence, as compared to Newton's quadratic convergence. It uses the second derivative as well: ```jldoctest roots julia> fpp(x) = 6x; julia> x = Roots.find_zero((f, fp, fpp), 2, Roots.Halley()) 2.0945514815423265 julia> x, f(x), sign(f(prevfloat(x)) * f(nextfloat(x))) (2.0945514815423265, -8.881784197001252e-16, -1.0) ``` (Halley's method takes 3 steps, Newton's 4, but Newton's uses 5 function calls to Halley's 10.) For many functions, their derivatives can be computed automatically. The `ForwardDiff` package provides a means. Here we define an operator `D` to compute a derivative: ```jldoctest roots julia> function D(f, n::Int=1) n <= 0 && return f n == 1 && return x -> ForwardDiff.derivative(f,float(x)) D(D(f,1),n-1) end D (generic function with 2 methods) julia> dfᵏs(f,k) = ntuple(i->D(f,i-1), Val(k+1)) # (f, f′, f′′, …) dfᵏs (generic function with 1 method) ``` ```jldoctest roots julia> find_zero((f,D(f)), 2, Roots.Newton()) 2.0945514815423265 ``` Or, for Halley's method: ```jldoctest roots julia> find_zero((f, D(f), D(f,2)), 2, Roots.Halley()) 2.0945514815423265 ``` The family of solvers implemented in `Roots.LithBoonkkampIJzerman(S,D)` where `S` is the number of prior points used to generate the next, and `D` is the number of derivatives used, has both the secant method (`S=2, D=0`) and Newton's method (`S=1, D=1`) as members, but also provides others. By adding more memory or adding more derivatives the convergence rate increases, at the expense of more complicated expressions or more function calls per step. ``` julia> find_zero(dfᵏs(f, 0), 2, Roots.LithBoonkkampIJzerman(3,0)) # like secant 2.0945514815423265 julia> find_zero(dfᵏs(f, 1), 2, Roots.LithBoonkkampIJzerman(2,1)) # like Newton 2.0945514815423265 julia> find_zero(dfᵏs(f, 2), 2, Roots.LithBoonkkampIJzerman(2,2)) # like Halley 2.0945514815423265 ``` ## The problem-algorithm-solve interface The problem-algorithm-solve interface is a pattern popularized in `Julia` by the `DifferentialEquations.jl` suite of packages. The pattern consists of setting up a *problem* then *solving* the problem by specifying an *algorithm*. This is very similar to what is specified in the `find_zero(f, x0, M)` interface where `f` and `x0` specify the problem, `M` the algorithm, and `find_zero` calls the solver. To break this up into steps, `Roots` has the type `ZeroProblem` and methods for `init`, `solve`, and `solve!` from the `CommonSolve.jl` package. Consider solving ``\sin(x) = 0`` using the `Secant` method starting with the interval ``[3,4]``. ```jldoctest roots julia> f(x) = sin(x); julia> x0 = (3, 4) (3, 4) julia> M = Secant() Secant() julia> Z = ZeroProblem(f, x0) ZeroProblem{typeof(f), Tuple{Int64, Int64}}(f, (3, 4)) julia> solve(Z, M) 3.141592653589793 ``` Changing the method is easy: ```jldoctest roots julia> solve(Z, Order2()) 3.1415926535897944 ``` The `solve` interface works with parameterized functions, as well: ```jldoctest roots julia> g(x, p=1) = cos(x) - x/p; julia> Z = ZeroProblem(g, (0.0, pi/2)) ZeroProblem{typeof(g), Tuple{Float64, Float64}}(g, (0.0, 1.5707963267948966)) julia> solve(Z, Secant(), 2) # uses p=2 as a positional argument 1.0298665293222589 julia> solve(Z, Bisection(); p=3, xatol=1/16) # p=3; uses keywords for position and tolerances 1.1959535058744393 ``` Positional arguments are useful for broadcasting over several parameter values. ## Examples ### Intersections A [discourse](https://discourse.julialang.org/t/help-to-plot-a-surface-plot-with-infinite-roots/98291) post involved finding the roots of ``\tan(x) = x /(B(\Lambda x^2 - 1)``. As the right hand side decays, we can see that for each positive arm of the periodic tangent function, there will be one intersection point in ``(k\pi, (k+1/2)\pi)`` for each ``k=0,1,\dots``. The standard way to find when $f(x) = g(x)$ with this package is to define an auxiliary function $h(x) = f(x) - g(x)$, as below: ```jldoctest roots julia> k, B, Λ = 3, 1, 1; julia> f(x) = tan(x); g(x) = x/(B*(Λ*x^2 - 1)); julia> h(x) = f(x) - g(x) h (generic function with 1 method) julia> x = find_zero(h, (k*pi, (k + 1/2)*pi)); x, h(x) (9.530477156207574, 8.326672684688674e-16) ``` As of version 1.9 of `Julia`, an extension is provided so that when `SymPy` is loaded, an equation can be used to specify the left and right hand sides, as with: ``` using SymPy @syms x find_zero(tan(x) ~ x/(B*(Λ*x^2 - 1)), (k*pi, (k + 1/2)*pi)) ``` ### Inverse functions The `find_zero` function can be used to identify inverse functions. Suppose ``f`` is a monotonic function on ``[a,b]``. Then an inverse function solves ``y = f(x)`` for ``x`` given a ``y``. This will do that task and return values in a function form: ```@example roots function inverse_function(f, a, b, args...; kwargs...) fa, fb = f(a), f(b) m, M = fa < fb ? (fa, fb) : (fb, fa) y -> begin @assert m ≤ y ≤ M find_zero(x ->f(x) - y, (a,b), args...; kwargs...) end end ``` The fact that ``f`` is monotonic, ensures that a bracket of ``[a,b]`` can be used supposing ``y`` is between ``f(a)`` and ``f(b)``, so no guess is needed. Here we numerically find the inverse function of ``f(x) = x - \sin(x)``: ```@example roots using Plots, Roots; f(x) = x - sin(x) a, b = 0, 5pi plot(inverse_function(f, a, b), f(a), f(b)) savefig("inversefunction.svg"); nothing # hide ``` ![](inversefunction.svg) ### Finding critical points The `D` function, defined above, makes it straightforward to find critical points (typically where the derivative is $0$ but also where it is undefined). For example, the critical point of the function $f(x) = 1/x^2 + x^3, x > 0$ near $1.0$ is where the derivative is $0$ and can be found through: ```jldoctest roots julia> f(x) = 1/x^2 + x^3; julia> find_zero(D(f), 1) 0.9221079114817278 ``` For more complicated expressions, `D` may need some technical adjustments to be employed. In this example, we have a function that models the flight of an arrow on a windy day: ```jldoctest roots julia> function flight(x, theta) k = 1/2 a = 200*cosd(theta) b = 32/k tand(theta)*x + (b/a)*x - b*log(a/(a-x)) end flight (generic function with 1 method) ``` The total distance flown is when `flight(x) == 0.0` for some `x > 0`: This can be solved for different `theta` with `find_zero`. In the following, we note that `log(a/(a-x))` will have an asymptote at `a`, so we start our search at `a-5`: ```jldoctest roots julia> function howfar(theta) a = 200*cosd(theta) find_zero(x -> flight(x, theta), a-5) # starting point has type determined by `theta`. end howfar (generic function with 1 method) ``` To visualize the trajectory if shot at ``45`` degrees, we would have: ```@example roots using Roots, ForwardDiff # hide using Plots; flight(x, theta) = (k = 1/2; a = 200*cosd(theta); b = 32/k; tand(theta)*x + (b/a)*x - b*log(a/(a-x))) howfar(theta) = (a = 200*cosd(theta); find_zero(x -> flight(x, theta), a-5)) howfarp(t) = ForwardDiff.derivative(howfar,t) theta = 45 tstar = find_zero(howfarp, 45) plot(x -> flight(x, theta), 0, howfar(theta)) savefig("flight.svg"); nothing #hide ``` ![](flight.svg) To maximize the range we solve for the lone critical point of `howfar` within reasonable starting points. As of version `v"1.9"` of `Julia`, the automatic differentiation provided by `ForwardDiff` will bypass working through a call to `find_zero`. Prior to this version, automatic differentiation will work *if* the initial point has the proper type (depending on an expression of `theta` in this case). As we use `200*cosd(theta)-5` for a starting point, this is satisfied. ```jldoctest roots julia> (tstar = find_zero(D(howfar), 45)) ≈ 26.2623089 true ``` This graph would show the differences in the trajectories: ```@example roots plot(x -> flight(x, 45), 0, howfar(45)) plot!(x -> flight(x, tstar), 0, howfar(tstar)) #show(current()) # hide savefig("flight-diff.svg"); nothing # hide ``` ![](flight-diff.svg) ## Sensitivity In the last example, the question of how the distance varies with the angle is clearly important. In general, for functions with parameters, ``f(x,p)``, derivatives with respect to the ``p`` variable(s) may be of interest. A first attempt, as shown above, may be to try and auto-differentiate the output of `find_zero`. For example: ```@example roots f(x, p) = x^2 - p # p a scalar p = 2 ``` ```@example roots F(p) = find_zero(f, one(p), Order1(), p) ForwardDiff.derivative(F, p) ``` Prior to version `v"1.9"` of `Julia`, there were issues with this approach, though in this case it finds the correct answer, as will be seen: a) it is not as performant as what we will discuss next, b) the subtle use of `one(p)` for the starting point is needed to ensure the type for the ``x`` values is correct, and c) not all algorithms will work, in particular `Bisection` is not amenable to this approach. ```@example roots F(p) = find_zero(f, (zero(p), one(p)), Roots.Bisection(), p) ForwardDiff.derivative(F, 1/2) ``` This will be `0.0` if the differentiation is propagated through the algorithm. With `v"1.9"` of `Julia` or later, the derivative is calculated correctly through the method described below. Using the implicit function theorem and following these [notes](https://math.mit.edu/~stevenj/18.336/adjoint.pdf), this [paper](https://arxiv.org/pdf/2105.15183.pdf) on the adjoint method, or the methods more generally applied in the [ImplicitDifferentiation](https://github.com/gdalle/ImplicitDifferentiation.jl) package we can auto-differentiate without pushing that machinery through `find_zero`. The solution, ``x^*(p)``, provided by `find_zero` depends on the parameter(s), ``p``. Notationally, ```math f(x^*(p), p) = 0 ``` The implicit function theorem has conditions guaranteeing the existence and differentiability of ``x^*(p)``. Assuming these hold, taking the gradient (derivative) in ``p`` of both sides, gives by the chain rule: ```math \frac{\partial}{\partial_x}f(x^*(p),p) \frac{\partial}{\partial_p}x^*(p) + \frac{\partial}{\partial_p}f(x^*(p),p) I = 0. ``` Since the partial in ``x`` is a scalar quantity, we can divide to solve: ```math \frac{\partial}{\partial_p}x^*(p) = -\frac{ \frac{\partial}{\partial_p}f(x^*(p),p) }{ \frac{\partial}{\partial_x}f(x^*(p),p) } ``` For example, using `ForwardDiff`, we have: ```@example roots xᵅ = find_zero(f, 1, Order1(), p) fₓ = ForwardDiff.derivative(x -> f(x, p), xᵅ) fₚ = ForwardDiff.derivative(p -> f(xᵅ, p), p) - fₚ / fₓ ``` This problem can be solved analytically, of course, to see ``x^\alpha(p) = \sqrt{p}``, so we can easily compare: ```@example roots ForwardDiff.derivative(sqrt, 2) ``` The use with a vector of parameters is similar, only `derivative` is replaced by `gradient` for the `p` variable: ```@example roots f(x, p) = x^2 - p[1]*x + p[2] p = [3.0, 1.0] x₀ = 1.0 xᵅ = find_zero(f, x₀, Order1(), p) fₓ = ForwardDiff.derivative(x -> f(x, p), xᵅ) fₚ = ForwardDiff.gradient(p -> f(xᵅ, p), p) - fₚ / fₓ ``` The package provides a package extension to use `ForwardDiff` directly to find derivatives or gradients, as above, with version `v"1.9"` or later of `Julia`, and a `ChainRulesCore.rrule` and `ChainRulesCore.frule` implementation that should allow automatic differentiation packages relying on `ChainRulesCore` (e.g., `Zygote`) to differentiate in `p` using the same approach. (Thanks to `@devmotion` for much help here.) ## Potential issues The higher-order methods are basically various derivative-free versions of Newton's method (which has update step $x - f(x)/f'(x)$). For example, Steffensen's method (`Order2()`) essentially replaces $f'(x)$ with $(f(x + f(x)) - f(x))/f(x)$. This is a forward-difference approximation to the derivative with "$h$" being $f(x)$, which presumably is close to $0$ already. The methods with higher order combine this with different secant line approaches that minimize the number of function calls. These higher-order methods can be susceptible to some of the usual issues found with Newton's method: poor initial guess, small first derivative, or large second derivative near the zero. When the first derivative is near $0$, the value of the next step can be quite different, as the next step generally tracks the intersection point of the tangent line. We see that starting at a $\pi/2$ causes this search to be problematic: ```jldoctest roots julia> try find_zero(sin, pi/2, Order1()) catch err "Convergence failed" end "Convergence failed" ``` (Whereas, starting at `pi/2 + 0.3`--where the slope of the tangent is sufficiently close to point towards $\pi$--will find convergence at $\pi$.) For a classic example where a large second derivative is the issue, we have $f(x) = x^{1/3}$: ```jldoctest roots julia> f(x) = cbrt(x); julia> x = try find_zero(f, 1, Order2()) catch err "Convergence failed" end # all of 2, 5, 8, and 16 fail or diverge towards infinity "Convergence failed" ``` However, the default finds the root here, as a bracket is identified: ```jldoctest roots julia> x = find_zero(f, 1) 0.0 julia> x, f(x) (0.0, 0.0) ``` Finally, for many functions, all of these methods need a good initial guess. For example, the polynomial function $f(x) = x^5 - x - 1$ has its one real zero near $1.16$. If we start far from the zero, convergence may happen, but it isn't guaranteed: ```jldoctest roots julia> f(x) = x^5 - x - 1; julia> x0 = 0.1 0.1 julia> try find_zero(f, x0) catch err "Convergence failed" end "Convergence failed" ``` A graph shows the issue. Running the following shows ``15`` steps of Newton's method, the other algorithms being somewhat similar: ```@example roots f(x) = x^5 - x - 1; # hide D(f) = x -> ForwardDiff.derivative(f,float(x)) # hide xs = [0.1] # x0 n = 15 for i in 1:(n-1) push!(xs, xs[end] - f(xs[end])/D(f)(xs[end])) end ys = [zeros(Float64,n)';map(f, xs)'][1:2n] xs = xs[repeat(collect(1:n), inner=[2], outer=[1])] plot(f, -1.25, 1.5, linewidth=3, legend=false) plot!(zero, -1.25, 1.5, linewidth=3) plot!(xs, ys) #show(current()) # hide savefig("newton.svg"); nothing # hide ``` ![](newton.svg) Graphically only a few of the steps are discernible, as the function's relative maximum causes a trap for this algorithm. Starting to the right of the relative minimum--nearer the zero--would avoid this trap. The default method employs a trick to bounce out of such traps, though it doesn't always work. ### Tolerances Mathematically solving for a zero of a nonlinear function may be impossible, so numeric methods are utilized. However, using floating point numbers to approximate the real numbers leads to some nuances. For example, consider the polynomial $f(x) = (3x-1)^5$ with one zero at $1/3$ and its equivalent expression $f1(x) = -1 + 15\cdot x - 90\cdot x^2 + 270\cdot x^3 - 405\cdot x^4 + 243\cdot x^5$. Mathematically these are the same, however not so when evaluated in floating point. Here we look at the 21 floating point numbers near $1/3$: ```jldoctest roots julia> f(x) = (3x-1)^5; julia> f1(x) = -1 + 15*x - 90*x^2 + 270*x^3 - 405*x^4 + 243*x^5; julia> above = accumulate((x,y) -> nextfloat(x), 1:10, init=1/3); julia> below = accumulate((x,y) -> prevfloat(x), 1:10, init=1/3); julia> ns = sort([below...,1/3, above...]); # floating point numbers around 1/3 julia> maximum(abs.(f.(ns) - f1.(ns))) < 1e-14 true ``` The exponents are: ``` julia> zs .|> abs .|> log10 .|> x -> floor(Int, x) 21-element Vector{Int64}: -16 -16 -16 -15 -15 -16 -76 -77 ⋮ -15 -16 -75 ``` We see the function values are close for each point, as the maximum difference is like $10^{-15}$. This is roughly as expected, where even one addition may introduce a relative error as big as $2\cdot 10^{-16}$ and here there are several such. !!! note (These values are subject to the vagaries of floating point evaluation, so may differ depending on the underlying computer architecture.) Generally this variation is not even a thought, as the differences are generally negligible, but when we want to identify if a value is zero, these small differences might matter. Here we look at the signs of the function values for a run of the above: ```julia julia> fs = sign.(f.(ns)); julia> f1s = sign.(f1.(ns)); julia> [ns.-1/3 fs f1s] 21×3 Matrix{Float64}: -5.55112e-16 -1.0 -1.0 -4.996e-16 -1.0 -1.0 -4.44089e-16 -1.0 1.0 -3.88578e-16 -1.0 1.0 -3.33067e-16 -1.0 1.0 -2.77556e-16 -1.0 1.0 -2.22045e-16 -1.0 -1.0 -1.66533e-16 -1.0 -1.0 -1.11022e-16 -1.0 1.0 -5.55112e-17 -1.0 1.0 0.0 0.0 -1.0 5.55112e-17 0.0 1.0 1.11022e-16 1.0 1.0 1.66533e-16 1.0 -1.0 2.22045e-16 1.0 -1.0 2.77556e-16 1.0 -1.0 3.33067e-16 1.0 1.0 3.88578e-16 1.0 1.0 4.44089e-16 1.0 1.0 4.996e-16 1.0 -1.0 5.55112e-16 1.0 0.0 ``` Parsing this shows a few surprises. First, there are two zeros of `f(x)` identified--not just one as expected mathematically--the floating point value of `1/3` and the next largest floating point number. ``` julia> findall(iszero, fs) 2-element Vector{Int64}: 11 12 ``` For `f1(x)` there is only one zero, but it isn't the floating point value for `1/3` but rather $10$ floating point numbers away. ``` julia> findall(iszero, f1s) 1-element Vector{Int64}: 21 ``` Further, there are several sign changes of the function values for `f1s`: ``` julia> findall(!iszero, diff(sign.(f1s))) 9-element Vector{Int64}: 2 6 8 10 11 13 16 19 20 ``` There is no guarantee that a zero will be present, but for a mathematical function that changes sign, there will be at least one sign change. With this in mind, an exact zero of `f` would be either where `iszero(f(x))` is true *or* where the function has a sign change (either `f(x)*f(prevfloat(x))<0` or `f(x)*f(nextfloat(x)) < 0`). As mentioned, the default `Bisection()` method of `find_zero` identifies such zeros for `f` provided an initial bracketing interval is specified when `Float64` numbers are used. However, if a mathematical function does not cross the $x$ axis at a zero, then there is no guarantee the floating point values will satisfy either of these conditions. ---- Now consider the function `f(x) = exp(x)-x^4`. The value`x=8.613169456441398` is a zero in this sense, as there is a change of sign: ```jldoctest roots julia> f(x) = exp(x) - x^4; julia> F(x) = sign(f(x)); julia> x=8.613169456441398 8.613169456441398 julia> F(prevfloat(x)), F(x), F(nextfloat(x)) (-1.0, -1.0, 1.0) ``` However, the value of `f(x)` is not as small as one might initially expect for a zero: ``` julia> f(x), abs(f(x)/eps(x)) (-2.7284841053187847e-12, 1536.0) ``` The value `x` is an approximation to the actual mathematical zero, call it $x$. There is a difference between $f(x)$ (the mathematical answer) and `f(x)` (the floating point answer). Roughly speaking we expect `f(x)` to be about $f(x) + f'(x)\cdot \delta$, where $\delta$ is the difference between `x` and $x$. This will be on the scale of `abs(x) * eps()`, so all told we expect an answer to be in the range of $0$ plus or minus this value: ```jldoctest roots julia> fp(x) = exp(x) - 4x^3; # the derivative julia> fp(x) * abs(x) * eps() 5.637565490466956e-12 ``` which is about what we see. ---- Bisection can be a slower method than others. For `Float64` values, `Bisection()` takes no more than 64 steps, but other methods may be able to converge to a zero in 4-5 steps (assuming good starting values are specified). When fewer function calls are desirable, then checking for an *approximate* zero may be preferred over assessing if a sign change occurs, as generally that will take two additional function calls per step. Besides, a sign change isn't guaranteed for all zeros. An approximate zero would be one where $f(x) \approx 0$. By the above, we see that we must consider an appropriate tolerance. The first example shows differences in floating point evaluations from the mathematical ones might introduce errors on the scale of `eps` regardless of the size of `x`. As seen in the second example, the difference between the floating point approximation to the zero and the zero introduces a potential error *proportional* to the size of `x`. So a tolerance might consider both types of errors. An absolute tolerance is used as well as a relative tolerance, so a check might look like: ```verbatim abs(f(x)) < max(atol, abs(x) * rtol) ``` This is different from `Julia`'s `isapprox(f(x), 0.0)`, as that would use `abs(f(x))` as the multiplier, which renders a relative tolerance useless for this question. One issue with relative tolerances is that for functions with sublinear growth, extremely large values will be considered zeros. Returning to an earlier example, with `Thukral8` we have a misidentified zero: ```jldoctest roots julia> find_zero(cbrt, 1, Roots.Thukral8()) 1.725042287244107e23 ``` The algorithm rapidly marches off towards infinity so the relative tolerance $\approx |x| \cdot \epsilon$ used to check if $f(x) \approx 0$ is large compared to the far-from zero $f(x)$. Either the users must be educated about this possibility, or the relative tolerance should be set to $0$. In that case, the absolute tolerance must be relatively generous. A conservative choice of absolute tolerance might be `sqrt(eps())`, or about `1e-8`, essentially the one made in SciPy. Though this tolerance won't be able to work for really large values: ``` julia> find_zero(x -> sqrt(eps()) - eps(x), (0,Inf)) 9.981132799999999e7 ``` This is **not** the choice made in `Roots`. The fact that bisection can produce zeros as exact as possible, and the fact that the error in function evaluation, $f'(x)|x|\epsilon$, is not typically on the scale of `1e-8`, leads to a desire for more precision, if available. In `Roots`, the faster algorithms use a check on both the size of `f(xn)` and the size of the difference between the last two `xn` values. The check on `f(xn)` is done with a tight tolerance, as is the check on $x_n \approx x_{n-1}$. If the function values get close to zero, an approximate zero is declared. Further, if the $x$ values get close to each other *and* the function value is close to zero with a *relaxed* tolerance, then an approximate zero is declared. In practice this seems to work reasonably well. The relaxed tolerance uses the cube root of the absolute and relative tolerances. ## Searching for all zeros in an interval The methods described above are used to identify one of possibly several zeros. The `find_zeros` function searches the interval $(a,b)$ for all zeros of a function $f$. It is straightforward to use: ```jldoctest roots julia> f(x) = exp(x) - x^4; julia> a, b = -10, 10 (-10, 10) julia> zs = find_zeros(f, a, b) 3-element Vector{Float64}: -0.8155534188089606 1.4296118247255556 8.613169456441398 ``` The search interval, $(a,b)$, is specified either through two arguments or through a single argument using a structure, such as a tuple or vector, where `extrema` returns two distinct values in increasing order. It is assumed that neither endpoint is a zero. ---- The algorithm used to search for all zeros in an interval is confounded by a few things: * too many zeros in the interval $(a,b)$ * nearby zeros ("nearby" depends on the size of $(a,b)$, should this be very wide) The algorithm is adaptive, so that it can succeed when there are many zeros, but it may be necessary to increase `no_pts` from the default of 12, at the cost of possibly taking longer for the search. Here the algorithm identifies all the zeros, despite there being several: ```jldoctest roots julia> f(x) = cos(x)^2 + cos(x^2); a,b = 0, 10; julia> rts = find_zeros(f, a, b); julia> length(rts) 32 ``` For nearby zeros, the algorithm does pretty well, though it isn't perfect. Here we see for $f(x) = \sin(1/x)$--with infinitely many zeros around $0$--it finds many: ```jldoctest roots julia> f(x) = iszero(x) ? NaN : sin(1/x); # avoid sin(Inf) error julia> rts = find_zeros(f, -1, 1); julia> length(rts) # 88 zeros identified 88 ``` The function, $f(x) = (x-0.5)^3 \cdot (x-0.499)^3$, looks *too* much like $g(x) = x^6$ to `find_zeros` for success, as the two zeros are very nearby: ```jldoctest roots julia> f(x) = (x-0.5)^3 * (x-0.499)^3; julia> find_zeros(f, 0, 1) 1-element Vector{Float64}: 0.5 ``` The issue here isn't *just* that the algorithm can't identify zeros within $0.001$ of each other, but that the high power makes many nearby values approximately zero. The algorithm will have success when the powers are smaller ```jldoctest roots julia> f(x) = (x-0.5)^2 * (x-0.499)^2; julia> find_zeros(f, 0, 1) 2-element Vector{Float64}: 0.49899999999999994 0.5 ``` It can have success for closer pairs of zeros: ```jldoctest roots julia> f(x) = (x-0.5) * (x - 0.49999); julia> find_zeros(f, 0, 1) 2-element Vector{Float64}: 0.49999 0.5 ``` Combinations of large (even) multiplicity zeros or very nearby zeros, can lead to misidentification. ### IntervalRootFinding The [IntervalRootFinding](https://github.com/JuliaIntervals/IntervalRootFinding.jl) package rigorously identifies isolating intervals for the zeros of a function. This example, from that package's README, is used to illustrate the differences: ```julia julia> using IntervalArithmetic, IntervalRootFinding, Roots julia> f(x) = sin(x) - 0.1*x^2 + 1 f (generic function with 1 method) julia> rts = roots(f, -10..10) 4-element Vector{Root{Interval{Float64}}}: Root([3.14959, 3.1496], :unique) Root([-4.42654, -4.42653], :unique) Root([-3.10682, -3.10681], :unique) Root([-1.08205, -1.08204], :unique) julia> find_zeros(f, -10, 10) 4-element Vector{Float64}: -4.426534982071949 -3.1068165552293254 -1.0820421327607177 3.1495967624505226 ``` Using that in this case, the intervals are bracketing intervals for `f`, we can find the zeros from the `roots` output with the following: ```julia julia> [find_zero(f, (interval(u).lo, interval(u).hi)) for u ∈ rts if u.status == :unique] 4-element Vector{Float64}: 3.1495967624505226 -4.426534982071949 -3.1068165552293254 -1.082042132760718 ``` !!! note "`IntervalRootFinding` extension" As of version `1.9` of `Julia` an extension is provided so that when the `IntervalRootFinding` package is loaded, the `find_zeros` function will call `IntervalRootFinding.roots` to find the isolating brackets and `find_zero` to find the roots, when possible, **if** the interval is specified as an `Interval` object, as created by `-1..1`, say. ## Adding a solver To add a solver the minimum needed is a type to declare the solver and an `update_state` method. In this example, we also define a state object, as the algorithm, as employed, uses more values stored than the default. The [Wikipedia](https://en.wikipedia.org/wiki/Brent%27s_method) page for Brent's method suggest a modern improvement, Chandrapatla's method, described [here](https://www.google.com/books/edition/Computational_Physics/cC-8BAAAQBAJ?hl=en&gbpv=1&pg=PA95&printsec=frontcover). That description is mostly followed below and in the package implementation `Roots.Chandrapatla`. To implement Chandrapatla's algorithm we first define a type to indicate the method and a state object which records the values ``x_n``, ``x_{n-1}``, and ``x_{n-2}``, needed for the inverse quadratic step. ```julia julia> struct Chandrapatla <: Roots.AbstractBracketingMethod end julia> struct ChandrapatlaState{T,S} <: Roots.AbstractUnivariateZeroState{T,S} xn1::T xn0::T c::T fxn1::S fxn0::S fc::S end ``` An `init_state` method can be used by some methods to add more detail to the basic state object. Here it starts the old value, `c`, off as `a` as a means to ensure an initial bisection step. ```julia julia> function init_state(::Chandrapatla, F, x₀, x₁, fx₀, fx₁) a, b, fa, fb = x₁, x₀, fx₁, fx₀ c, fc = a, fa ChandrapatlaState(b, a, c, fb, fa, fc) end ``` The main algorithm is implemented in the `update_state` method. The `@reset` macro from `Accessors.jl` is used to modify a state object, which otherwise is immutable. ```julia julia> import Roots.Accessors: @reset; julia> function Roots.update_state(::Chandrapatla, F, o, options, l=NullTracks()) b, a, c = o.xn1, o.xn0, o.c fb, fa, fc = o.fxn1, o.fxn0, o.fc # encoding: a = xₙ, b = xₙ₋₁, c = xₙ₋₂ ξ = (a - b) / (c - b) ϕ = (fa - fb) / (fc - fb) ϕ² = ϕ^2 Δ = (ϕ² < ξ) && (1 - 2ϕ + ϕ² < 1 - ξ) # Chandrapatla's inequality to determine next step xₜ = Δ ? Roots.inverse_quadratic_step(a, b, c, fa, fb, fc) : a + (b-a)/2 fₜ = F(xₜ) incfn(l) if sign(fₜ) * sign(fa) < 0 a, b, c = xₜ, a, b fa, fb, fc = fₜ, fa, fb else a, c = xₜ, a fa, fc = fₜ, fa end @reset o.xn0 = a @reset o.xn1 = b @reset o.c = c @reset o.fxn0 = fa @reset o.fxn1 = fb @reset o.fc = fc return (o, false) end ``` This algorithm chooses between an inverse quadratic step or a bisection step depending on the relationship between the computed `ξ` and `Φ`. The tolerances are from the default for `AbstractBracketingMethod`. To see that the algorithm works, we have: ```julia julia> find_zero(sin, (3,4), Chandrapatla()) 3.1415926535897927 julia> find_zero(x -> exp(x) - x^4, (8,9), Chandrapatla()) 8.613169456441398 julia> find_zero(x -> x^5 - x - 1, (1,2), Chandrapatla()) 1.1673039782614185 ```
Roots
https://github.com/JuliaMath/Roots.jl.git
[ "MIT" ]
0.1.1
15063c379d8db819a4f77d7c1b5b43172440b4f0
code
7585
""" Vectorized mathematical functions This module exports nothing, its purpose is to specialize mathematical functions in Base and Base.FastMath for SIMD.Vec arguments using vectorized implementations from SLEEFPirates. See: `is_supported`, `is_fast`, `fast_functions`, `vmap`, `tolerance`. """ module SIMDMathFunctions import SLEEFPirates as SP import Base.FastMath as FM import VectorizationBase as VB import SIMD const Floats = Union{Float32, Float64} const Vec{T,N} = SIMD.Vec{N,T} # NB: swapped type parameters const Vec32{N} = SIMD.Vec{N, Float32} const Vec64{N} = SIMD.Vec{N, Float64} """ tol = tolerance(fun) Let `x::SIMD.Vec{N,T}` and `ref` be obtained by applying `fun` on each element of `x`. Now `fun(x)` may differ from `ref` by an amount of `tol(fun)*eps(T)*abs(res)`. `tol==1` except for a few functions, for which `tol==2`. """ tolerance(op) = 1 """ `vmap(fun, x)` applies `fun` to each element of `x::SIMD.Vec` and returns a `SIMD.Vec`. a = vmap(fun, x) If `fun` returns a 2-uple, `vmap` returns a 2-uple of `SIMD.Vec` : a, b = vmap(fun, x) # `fun(x)` returns a 2-uple, e.g. `sincos` `vmap(fun, x, y)` works similarly when `fun` takes two input arguments (e.g. `atan(x,y)`) a = vmap(fun, x, y) a, b = vmap(fun, x, y) # `fun(x,y)` returns a 2-uple Generic implementations are provided, which call `fun` and provide no performance benefit. `vmap` may be specialized for argument `fun`. Such optimized implementations may return a different result than `fun`, within some tolerance bounds (see [`tolerance`](@ref)). Currently optimized implementations are provided by `SLEEFPirates.jl`. """ @inline vmap(op, x) = vmap_unop(op, x) @inline vmap(op, x,y) = vmap_binop(op, x, y) # fallback implementations : calls op on each element of vector @inline vmap_unop(op, x::Vec) = vec(map(op, values(x))) @inline vmap_binop(op, x::V, y::V) where {V<:Vec} = vec(map(op, values(x), values(y))) @inline vmap_binop(op, x::Vec{T}, y::T) where T = vec(map(xx->op(xx,y), values(x))) @inline vmap_binop(op, x::T, y::Vec{T}) where T = vec(map(yy->op(x,yy), values(y))) @inline values(x)=map(d->d.value, x.data) @inline vec(t::NTuple{N, <:SIMD.VecTypes}) where N = SIMD.Vec(t...) @inline vec(t::NTuple{N, T}) where {N, VT<:SIMD.VecTypes, T<:Tuple{Vararg{VT}}} = map(x->SIMD.Vec(x...), tuple(zip(t...)...)) """ funs = fast_functions() unary_ops = fast_functions(1) binary_ops = fast_functions(2) Returns a vector of fast mathematical functions taking `inputs` input arguments. """ fast_functions() = [m.sig.parameters[2].instance for m in methods(vmap) if (m.sig.parameters[2]!=Any)] fast_functions(inputs::Int) = [m.sig.parameters[2].instance for m in methods(vmap) if (m.sig.parameters[2]!=Any && length(m.sig.parameters)==inputs+2)] """ flag = is_supported(fun) Returns `true` if `fun` accepts `SIMD.Vec` arguments. """ @inline function is_supported(::F) where {F<:Function} V = SIMD.Vec{4,Float64} hasmethod(F.instance, Tuple{V}) || hasmethod(F.instance, Tuple{V,V}) end """ flag = is_fast(fun) Returns `true` if there is a specialization of `vmap` for `fun`, `false` otherwise. """ @inline function is_fast(f::F) where {F<:Function} V = SIMD.Vec{4,Float64} any(m.sig.parameters[2]==F for m in methods(vmap, Tuple{F, V})) && return true any(m.sig.parameters[2]==F for m in methods(vmap, Tuple{F, V, V})) end #================ Fast functions from SLEEFPirates =================# @fastmath begin tolerance(::typeof(exp))=2 tolerance(::typeof(exp10))=2 tolerance(::typeof(log))=2 tolerance(::typeof(tanh))=2 tolerance(::typeof(log10))=2 tolerance(::typeof(asin))=2 tolerance(::typeof(^))=2 end tolerance(::typeof(exp))=2 tolerance(::typeof(exp10))=2 tolerance(::typeof(^))=2 tolerance(::typeof(hypot))=2 # Since SLEEFPirates works with VB.Vec but not with SIMD.Vec, # we convert between SIMD.Vec and VB.Vec. # However constructing a VB.Vec of length exceeding the native vector length # returns a VB.VecUnroll => we must handle also this type # Constructors SIMD.Vec and VB.Vec accept x... as arguments where x is iterable # so we make SIMD.Vec and VB.VecUnroll iterable (VB.Vec can be converted to Tuple). # To avoid messing up existing behavior of Base.iterate for SIMD and VB types, we define a wrapper type Iter{V} struct Iter{V} vec::V end @inline Base.iterate(v::Iter, args...) = iter(v.vec, args...) # iterate over SIMD.Vec @inline iter(v::SIMD.Vec) = v[1], 2 @inline iter(v::SIMD.Vec{N}, i) where {N} = (i > N ? nothing : (v[i], i + 1)) # iterate over VB.VecUnroll @inline function iter(v::VB.VecUnroll) data = VB.data(v) return data[1](1), (1, 1) end @inline function iter(v::VB.VecUnroll{N,W}, (i, j)) where {N,W} data = VB.data(v) if j < W return data[i](j + 1), (i, j + 1) elseif i <= N # there are N+1 vectors return data[i+1](1), (i + 1, 1) else return nothing end end @inline SIMDVec(v::VB.Vec) = SIMD.Vec(Tuple(v)...) @inline SIMDVec(vu::VB.VecUnroll) = SIMD.Vec(Iter(vu)...) @inline VBVec(v::Vec) = VB.Vec(Iter(v)...) @inline VBVec(v::Floats) = v # some operators have a fast version in FastMath, but not all # and some operators have a fast version in SP, but not all ! const not_unops = (:eval, :include, :evalpoly, :hypot, :ldexp, :sincos, :sincos_fast, :pow_fast) const broken_unops = (:cospi, :sinpi) is_unop(n) = !occursin("#", string(n)) && !in(n, union(not_unops, broken_unops)) const unops_SP = filter(is_unop, names(SP; all = true)) const unops_FM = filter(is_unop, names(FM; all = true)) # "slow" operators provided by SP const unops_Base_SP = intersect(unops_SP, names(Base)) # FastMath operators provided by SP const unops_FM_SP = intersect(unops_SP, unops_FM) # FastMath operators with only a slow version provided by SP const unops_FM_SP_slow = filter(unops_SP) do op n = Symbol(op, :_fast) in(n, unops_FM) && !in(n, unops_SP) end # one input, one output for (mod, unops, fastop) in ( (Base, unops_Base_SP, identity), (FM, unops_FM_SP, identity), (FM, unops_FM_SP_slow, sym->Symbol(sym, :_fast))) for op in unops op_fast = fastop(op) op_SP = getfield(SP, op) @eval begin @inline $mod.$op_fast(x::Vec32) = vmap($mod.$op_fast, x) @inline $mod.$op_fast(x::Vec64) = vmap($mod.$op_fast, x) @inline vmap(::typeof($mod.$op_fast), x) = SIMDVec($op_SP(VBVec(x))) end end end # one input, two outputs for (mod, op) in ((Base, :sincos), (FM, :sincos_fast)) @eval begin @inline $mod.$op(x::Vec{<:Floats}) = vmap($mod.$op, x) @inline vmap(::typeof($mod.$op), x) = map(SIMDVec, SP.$op(VBVec(x))) end end # two inputs, one output binops = ((Base,:hypot,SP.hypot), (Base,:^,SP.pow), (FM,:pow_fast, SP.pow_fast)) for (mod, op_slow, op_fast) in binops @eval begin @inline $mod.$op_slow(x::Vec{T}, y::Vec{T}) where {T<:Floats} = vmap($mod.$op_slow, x,y) @inline $mod.$op_slow(x::T, y::Vec{T}) where {T<:Floats} = vmap($mod.$op_slow, x,y) @inline $mod.$op_slow(x::Vec{T}, y::T) where {T<:Floats} = vmap($mod.$op_slow, x,y) @inline vmap(::typeof($mod.$op_slow), x, y) = SIMDVec($op_fast(VBVec(x), VBVec(y))) end end # precompilation for op in fast_functions(1), F in (Float32, Float64), N in (4, 8, 16) precompile(op, (Vec{F,N},)) end for op in fast_functions(2), F in (Float32, Float64), N in (4, 8, 16) precompile(op, (Vec{F,N},Vec{F,N})) precompile(op, (Vec{F,N},F)) precompile(op, (F,Vec{F,N})) end end
SIMDMathFunctions
https://github.com/ClimFlows/SIMDMathFunctions.jl.git
[ "MIT" ]
0.1.1
15063c379d8db819a4f77d7c1b5b43172440b4f0
code
1953
using SIMDMathFunctions: SIMD, tolerance, fast_functions, is_supported, is_fast, vmap using Test data(F, N, ::Function) = range(F(0.01), F(0.9), length = N) data(F, N, ::typeof(acosh)) = range(F(1.1), F(1.9), length = N) data(F, N, ::typeof(@fastmath acosh)) = range(F(1.1), F(1.9), length = N) data_binop(F, N, ::Function) = range(F(0.01), F(0.9), length = N), range(F(0.01), F(0.9), length = N) function validate(res::SIMD.Vec, ref, tol) err = relative_error(res, ref) err, any(err > tol) end function validate(res::Tuple, ref, tol) err = map(relative_error, res, ref) err, any(map(err -> any(err > tol), err)) end relative_error(res, ref) = abs(res - ref) / abs(ref) @testset "Two-argument functions" begin for fun in sort(fast_functions(2), by = string) @assert is_supported(fun) "$fun is not supported" @assert is_fast(fun) "$fun has no fast implementation" @info "--- $(string(fun))" tol = tolerance(fun) for F in (Float32, Float64), N in (4, 8, 16, 32) x, y = data_binop(F, N, fun) xv, yv = SIMD.Vec(x...), SIMD.Vec(x...) for (xx, yy) in ((xv, yv), (x[N>>1], yv), (xv, y[N>>1])) res, ref = fun(xx, yy), vmap(fun, xx, yy) err, fail = validate(res, ref, tol * eps(F)) fail && @warn fun (xx, yy) ref res err @test !fail end end end end @testset "One-argument functions" begin for fun in sort(fast_functions(1), by = string) @assert is_supported(fun) @assert is_fast(fun) @info "--- $(string(fun))" tol = tolerance(fun) for F in (Float32, Float64), N in (4, 8, 16, 32) d = SIMD.Vec(data(F, N, fun)...) res, ref = fun(d), vmap(fun, d) err, fail = validate(res, ref, tol * eps(F)) fail && @warn fun arg ref res err @test !fail end end end
SIMDMathFunctions
https://github.com/ClimFlows/SIMDMathFunctions.jl.git
[ "MIT" ]
0.1.1
15063c379d8db819a4f77d7c1b5b43172440b4f0
docs
2875
# SIMDMathFunctions Fast vectorized mathematical functions for SIMD.jl , using SLEEFPirates.jl . [![CI](https://github.com/ClimFlows/SIMDMathFunctions.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/ClimFlows/SIMDMathFunctions.jl/actions/workflows/CI.yml) [![Code Coverage](https://codecov.io/gh/ClimFlows/SIMDMathFunctions.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/ClimFlows/SIMDMathFunctions) ## Installing This package is registered. To install it : ```Julia ] add SIMDMathFunctions ``` ## Overview The primary goal of `SIMDMathFunctions` is to provide efficient methods for mathematical functions with `SIMD.Vec` arguments. Under the hood, optimized implementations provided by `SLEEFPirates.jl` are used. This allows explicitly vectorized code using `SIMD.jl` to benefit from fast vectorized math functions. ```Julia using SIMD: VecRange using SIMDMathFunctions: is_supported, is_fast, fast_functions using BenchmarkTools function exp!(xs::Vector{T}, ys::Vector{T}) where {T} @inbounds for i in eachindex(xs,ys) xs[i] = @fastmath exp(ys[i]) end end function exp!(xs::Vector{T}, ys::Vector{T}, ::Val{N}) where {N, T} @assert length(ys) == length(xs) @assert length(xs) % N == 0 @assert is_supported(@fastmath exp) @inbounds for istart in 1:N:length(xs) i = VecRange{N}(istart) xs[i] = @fastmath exp(ys[i]) end end y=randn(Float32, 1024*1024); x=similar(y); @benchmark exp!($x, $y) @benchmark exp!($x, $y, Val(8)) @benchmark exp!($x, $y, Val(16)) @benchmark exp!($x, $y, Val(32)) is_fast(exp) unary_funs = fast_functions(1) binary_funs = fast_functions(2) ``` `is_supported(fun)` returns `true` if function `fun` supports `SIMD.Vec` arguments. Similarly `is_fast(fun)` returns `true` if `fun` has an optimized implementation. `fast_functions([ninputs])` returns a vector of functions benefitting from a fast implementation, restricted to those accepting `ninputs` input arguments if `ninputs` is provided. `SIMDMathFunctions` also provides a helper function `vmap` to vectorize not-yet-supported mathematical functions. For example : ```Julia using SIMD: Vec import SIMDMathFunctions: vmap import SpecialFunctions: erf erf(x::Vec) = vmap(erf, x) erf(x::Vec, y::Vec) = vmap(erf, x, y) erf(x::Vec{N,T}, y::T) where {N,T} = vmap(erf, x, y) x = Vec(randn(Float32, 16)...) @benchmark erf($x) ``` The default `vmap` method simply calls `erf` on each element of `x`. There is no performance benefit, but it allows generic code to use `erf`. If `erf_SIMD` is optimized for vector inputs, you can provide a specialized method for `vmap`: ```Julia using VectorizationBase: verf # vectorized implementation using SIMDMathFunctions: SIMDVec, VBVec # VectorizationBase <=> SIMD conversion erf_SIMD(x) = SIMDVec(verf(VBVec(x))) vmap(::typeof(erf), x) = erf_SIMD(x) @benchmark erf($x) ```
SIMDMathFunctions
https://github.com/ClimFlows/SIMDMathFunctions.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
137
using LoopManagers using BenchmarkTools SUITE = BenchmarkGroup() SUITE["rand"] = @benchmarkable rand(10) # Write your benchmarks here.
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
529
using LoopManagers using Documenter DocMeta.setdocmeta!(LoopManagers, :DocTestSetup, :(using LoopManagers); recursive=true) makedocs(; modules=[LoopManagers], authors="The ClimFlows contributors", sitename="LoopManagers.jl", format=Documenter.HTML(; canonical="https://ClimFlows.github.io/LoopManagers.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/ClimFlows/LoopManagers.jl", devbranch="main", )
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
1390
module KA_Ext using KernelAbstractions: @kernel, @index, synchronize as KA_sync import KernelAbstractions.Adapt.adapt_storage using LoopManagers: LoopManagers, Range1, Range2 import ManagedLoops: synchronize, offload, DeviceManager struct KA_GPU{A, G} <: DeviceManager gpu::G end LoopManagers.KernelAbstractions_GPU(gpu::G, A) where G = KA_GPU{A,G}(gpu) adapt_storage(mgr::KA_GPU, x) = adapt_storage(mgr.gpu, x) synchronize(mgr::KA_GPU) = KA_sync(mgr.gpu) @inline function offload(fun, backend::KA_GPU, irange::Range1, args...) (; gpu) = backend kernel = kernel_KA_1D(gpu) kernel(fun, first(irange)-1, args ; ndrange=length(irange)) return nothing end @inline function offload(fun::Fun, backend::KA_GPU, (irange, jrange)::Range2, args...) where Fun (; gpu) = backend M, N = length(irange), length(jrange) i0, j0 = first(irange)-1, first(jrange)-1 # kernel = kernel_KA_2D(gpu, (32,32), (32,N)) kernel = kernel_KA_2D(gpu) kernel(fun, i0, j0, last(irange), args; ndrange=map(length, (irange,jrange))) return nothing end @kernel function kernel_KA_1D(fun, i0, args) i = @index(Global, Linear) @inline fun((i+i0,), args...) end @kernel function kernel_KA_2D(fun::Fun, i0, j0, M, args) where Fun i, j = @index(Global, NTuple) # ranges = (i+i0):32:M, (j+j0,) ranges = (i+i0,), (j+j0,) @inline fun(ranges, args...) end end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
2698
""" Module `LoopManagers` provides computing managers to pass to functions using the performance portability module `ManagedLoops`. It implements the API functions defined by `ManagedLoops` for the provided managers. Currently supported are SIMD and/or multithreaded execution on the CPU. Offloading to GPU via CUDA and oneAPI is experimental. Additional iteration/offloading strategies (e.g. cache-friendly iteration) can be implemented by defining new manager types and implementing specialized versions of `ManagedLoops.offload`. """ module LoopManagers using ManagedLoops import ManagedLoops: offload, no_simd, parallel, barrier, master, share export PlainCPU, MultiThreadCPU, VectorizedCPU, MultiThreadSIMD export CUDA_GPU, oneAPI_GPU # Conservative defaults ManagedLoops.default_manager(::Type{HostManager}) = PlainCPU() # force specialization on `args...` const VArgs{N}=Vararg{Any,N} const Range1 = AbstractUnitRange const Range2{I,J} = Tuple{I,J} const Range3{I,J,K} = Tuple{I,J,K} const Range4{I,J,K,L} = Tuple{I,J,K,L} @inline call_single_index(i, fun, args) = fun((i,), args...) @inline call_single_index((i,j)::Range2, fun, args) = fun(((i,),(j,)), args...) @inline call_single_index((i,j,k)::Range3, fun, args) = fun(((i,),(j,),(k,)), args...) @inline call_single_index((i,j,k,l)::Range4, fun, args) = fun(((i,),(j,),(k,),(l,)), args...) import HostCPUFeatures # for single.jl import SIMD # for single.jl import Polyester # for threads.jl # helper functions include("julia/check_closure.jl") # include("julia/strict_float.jl") # CPU managers # include("julia/CPU/simd.jl") include("julia/CPU/single.jl") include("julia/CPU/threads.jl") # composite managers include("julia/GPU/fakeGPU.jl") include("julia/tune.jl") # KernalAbstractions manager, active only if KA is loaded somewhere # we define the types here so that they are available and documented # The implementation is in ext/KA_Ext.jl """ gpu = KernelAbstractions_GPU(gpu::KernelAbstractions.GPU, ArrayType) # examples gpu = KernelAbstractions_GPU(CUDABackend(), CuArray) gpu = KernelAbstractions_GPU(ROCBackend(), ROCArray) gpu = KernelAbstractions_GPU(oneBackend(), oneArray) Returns a manager that offloads computations to a `KernelAbstractions` GPU backend. The returned manager will call `ArrayType(data)` when it needs to transfer `data` to the device. !!! note While `KA_GPU` is always available, implementations of [`offload`] are available only if the module `KernelAbstractions` is loaded by the main program or its dependencies. """ function KernelAbstractions_GPU end using PackageExtensionCompat function __init__() @require_extensions end end # module LoopManagers
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
2259
@generated boxed_variables(::F) where {F} = filter(n -> fieldtype(F,n) <: Core.Box, fieldnames(F)) function check_boxed_variables(fun::Fun) where Fun boxed = boxed_variables(fun) if !isempty(boxed) error(""" Your use of either * the `@offload` macro * the `forall(...) do ... end` construct * the `offload(...) do ... end` construct has produced closure `$fun` (=`do ... end` block) which captures variable(s) `$(boxed...)` in a `Core.Box`. This is a serious performance issue and is forbidden. To avoid this, you may either : * check if the offending variable is redefined outside of the closure ; if so, use another name rather than reusing the same name. * explicitly pass this variable to the closure via `@offload` / `offload` / `forall`. * enclose the whole construct in a `let ... end` block (see 'Performance of captured variables' in the Julia manual). """) end end function check_closure(fun::Fun) where Fun err = false msg="" names = propertynames(fun) if ! isbits(fun) msg*= """ It seems your use of the forall(...) do ... end construct results in closure $fun capturing variables $names, some of which are not isbits. This is discouraged since some backends require that the compute kernels have only isbits arguments. """ for name in names var = getproperty(fun, name) if ! isbits(var) msg*= " Variable $name captured by $fun has type $(typeof(var)) which is not isbits.\n" end end err = true end if sizeof(fun)>0 msg*= """It seems your use of the forall(...) do ... end construct results in closure $fun capturing variables $names, some of which have size>0. This is discouraged since this may severely affect the performance of some backends. """ for name in names s = sizeof(getproperty(fun, name)) if s>0 msg*= " Variable $name captured by $fun has size $s>0.\n" end end err = true end err && error(msg*"Cannot execute forall statement.") end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
2419
# const Managers = Vector{HostManager} # Log-normal distributions struct LogNormal N::Int mean::Float64 var::Float64 end LogNormal()=LogNormal(0,0,0) function draw(law::LogNormal) law.N<2 && return -Inf return randn()*sqrt(law.var)+law.mean end function push(law::LogNormal, t) (;N, var, mean) = law logt = log10(t) mean_new = (N*mean + logt)/(N+1) var_new = (N*var + (logt-mean)*(logt-mean_new))/(N+1) return LogNormal(N+1, mean_new, var_new) end # Statistics of calling a certain function signature struct TunedCall stats::Vector{LogNormal} end TunedCall(n::Int) = TunedCall([LogNormal() for i=1:n]) # Auto-tuning manager struct Tune <: ManagedLoops.HostManager backends::Vector{HostManager} calls::Dict{Any,TunedCall} end function Base.show(io::IO, mgr::Tune) mgrs = join(("$mgr" for mgr in mgr.backends), ",") print(io, "tune([$mgrs])") end tune(backends) = Tune(backends, Dict{Any, TunedCall}()) function tune() avx(vlen) = LoopManagers.VectorizedCPU(vlen) threaded(vlen) = LoopManagers.MultiThread(avx(vlen)) backends = ([threaded(vlen), avx(vlen)] for vlen in (8, 16, 32)) return Tune(vcat(backends...), Dict{Any, TunedCall}()) end # implementation of ManagedLoops API ManagedLoops.parallel(fun, b::Tune) = fun(b) function ManagedLoops.offload(fun::Fun, b::Tune, range, args::Vararg{Any,N}) where {Fun<:Function, N} (; backends, calls) = b sig = (fun, range, signature(args)) if !(sig in keys(calls)) calls[sig] = TunedCall(length(backends)) end call = calls[sig] stats = call.stats picked = pick(stats) stats[picked] = sample(stats[picked], backends[picked], fun, range, args) return nothing end pick(stats) = argmin(draw(law) for law in stats) # signature of function call signature(x) = typeof(x) signature(a::AbstractArray) = eltype(a), axes(a) signature(t::Union{Tuple, NamedTuple}) = map(signature, t) function sample(law, backend, fun::Fun, range, args) where Fun compile_time = Base.cumulative_compile_time_ns() Base.cumulative_compile_timing(true) start = time_ns() ManagedLoops.offload(fun, backend, range, args...) elapsed = (time_ns()-start)*1e-9 Base.cumulative_compile_timing(false) if Base.cumulative_compile_time_ns() == compile_time # no time spent compiling return push(law, elapsed) else return law end end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
6639
""" abstract type SingleCPU<:HostManager end Parent type for manager executing on a single core. Derived types should specialize `distribute`[@ref] or `offload_single`[@ref] and leave `offload` as it is. """ abstract type SingleCPU<:HostManager end @inline function offload(fun::Fun, b::SingleCPU, range, args::VArgs{NA}) where {Fun<:Function, NA} @inline offload_single(fun, b, range, args, 1,1) end @inline function offload_single(fun::Fun, b::SingleCPU, range, args, NT, id) where {Fun<:Function} check_boxed_variables(fun) drange = distribute(range, b, NT, id) @inline fun(drange, args...) end """ manager = PlainCPU() Manager for sequential execution on the CPU. LLVM will try to vectorize loops marked with `@simd`. This works mostly for simple loops and arithmetic computations. For Julia-side vectorization, especially of mathematical functions, see `VectorizedCPU'. """ struct PlainCPU <: SingleCPU end # Divide work among CPU threads. @inline distribute(range, ::PlainCPU, NT, id) = distribute_plain(range, NT, id) @inline function distribute_plain(range::Range1, NT, id) start, len = first(range), length(range) return (start+div(len*(id-1),NT)):(start-1+div(len*id,NT)) end # distribute outer (last) range over threads @inline distribute_plain((ri,rj)::Range2, NT, id) = (ri, distribute_plain(rj,NT,id)) @inline distribute_plain((ri,rj,rk)::Range3, NT, id) = (ri, rj, distribute_plain(rk,NT,id)) @inline distribute_plain((ri,rj,rk,rl)::Range4, NT, id) = (ri, rj, rk, distribute_plain(rl,NT,id)) """ manager = VectorizedCPU() Returns a manager for executing loops with optional explicit SIMD vectorization. Only inner loops marked with `@vec` will use explicit vectorization. If this causes errors, use `@simd` instead of `@vec`. Vectorization of loops marked with `@simd` is left to the Julia/LLVM compiler, as with PlainCPU. !!! note `ManagedLoops.no_simd(::VectorizedCPU)` returns a `PlainCPU`. """ struct VectorizedCPU{VLen} <: SingleCPU end no_simd(::VectorizedCPU) = PlainCPU() const N32 = Int64(HostCPUFeatures.pick_vector_width(Float32)) VectorizedCPU(len=N32) = VectorizedCPU{len}() Base.show(io::IO, ::VectorizedCPU{VLen}) where VLen= print(io, "VectorizedCPU($VLen)") """ Divide work among vectorized CPU threads. """ @inline distribute(range, b::VectorizedCPU, NT, id) = distribute_simd(range, b, NT, id) @inline function _distribute_simd(range::Range1, ::VectorizedCPU{VSize}, NT, id) where VSize # this implementation avoids tails except for the last thread # but it has a non-identified bug start, len = first(range), length(range) nvec = div(len, VSize) # number of vectors that fit entirely in range tail = mod(len, VSize) work = nvec + tail # add tail to estimate and divide work to be done vstop = min(nvec, div(id*work, NT)) stop = (id==NT) ? last(range) : (start+VSize*vstop-1) vstart = min(nvec, div((id-1)*work, NT)) start = start+VSize*vstart return VecRange{VSize}(start, stop) end @inline function distribute_simd(range::Range1, ::VectorizedCPU{VSize}, NT, id) where VSize r = distribute_plain(range, NT, id) return VecRange{VSize}(first(r), last(r)) end # distribute outer (last) range over threads, vectorize inner (first) range @inline distribute_simd((ri,rj)::Range2, b, NT, id) = (distribute_simd(ri,b,1,1), distribute_plain(rj,NT,id)) @inline distribute_simd((ri,rj,rk)::Range3, b, NT, id) = (distribute_simd(ri,b,1,1), rj, distribute_plain(rk,NT,id)) @inline distribute_simd((ri,rj,rk,rl)::Range4, b, NT, id) = (distribute_simd(ri,b,1,1), rj, rk, distribute_plain(rl,NT,id)) #======================= Vectorized range ====================# struct VecRange{N} <: AbstractUnitRange{Int} start::Int vstop::Int # bulk = start:N:vstop (vstop excluded) stop::Int # tail = vstop:stop function VecRange{N}(start,stop) where N vlen = div(stop+1-start, N) vstop = start + N*vlen new{N}(start, vstop, stop) end end # AbstractUnitRange @inline Base.length(range::VecRange{N}) where N = range.stop-range.start+1 @inline Base.first(range::VecRange) = range.start @inline Base.last(range::VecRange) = range.stop # normal / @simd iteration @inline Base.firstindex(::VecRange) = 0 @inline Base.getindex(range::VecRange, i::Integer) = range.start+i @inline Base.iterate(range::VecRange) = next_item(range.stop, range.start) @inline Base.iterate(range::VecRange, prev) = next_item(range.stop, prev+1) @inline next_item(stop, next) = (next <= stop) ? (next, next) : nothing # @vec iteration ManagedLoops.bulk(range::VecRange{N}) where N = VecBulk{N}(range.start, range.vstop) ManagedLoops.tail(range::VecRange) = range.vstop:range.stop struct VecBulk{N} start::Int vstop::Int # bulk = start:N:vstop (vstop excluded) end @inline Base.length(range::VecBulk{N}) where N = div(range.vstop-range.start, N) @inline Base.firstindex(::VecBulk) = 0 @inline Base.getindex(range::VecBulk{N}, i) where N = SIMD.VecRange{N}(range.start+N*i) @inline Base.iterate(range::VecBulk) = next_bulk(range, range.start) @inline Base.iterate(range::VecBulk{N}, prev) where N = next_bulk(range, prev+N) @inline next_bulk(range::VecBulk{N}, next) where N = (next < range.vstop) ? (SIMD.VecRange{N}(next), next) : nothing # support for @vec if ... else @inline function ManagedLoops.choose(m::SIMD.Vec{N,Bool}, iftrue, iffalse) where N all(m) && return iftrue() any(m) || return iffalse() return SIMD.vifelse(m, iftrue(), iffalse()) end # support for managed broadcasting with SIMD # FIXME: Base.@propagate_inbounds would be safer than @inbounds @inline function Base.getindex(bc::Broadcast.Broadcasted, i::SIMD.VecRange, J::Vararg{Union{Int, CartesianIndex},N}) where N broadcast_getindex_vec(bc, i, CartesianIndex(J)) end @inline function broadcast_getindex_vec(bc::Broadcast.Broadcasted{<:Any,<:Any,<:Any,<:Any}, i, J) args = getargs(bc.args, i, J) return bc.f(args...) end # recursively constructs (args[1][i,J], args[2][i,J], ...) @inline getargs(args::Tuple, i, J) = ( getarg(args[1], i, J), getargs(Base.tail(args), i, J)...) @inline getargs(args::Tuple{Any}, i, J) = ( getarg(args[1], i, J), ) @inline getargs(::Tuple{}, i, J) = () # get a single argument at index [i,J] @inline getarg(A::Union{Ref,AbstractArray{<:Any,0},Number}, _, _) = A[] # Scalar-likes can just ignore all indices @inline getarg(A, i, J) = @inbounds A[i, CartesianIndex(new_index(A, J))] @inline getarg(A::AbstractArray, i, J) = @inbounds A[i, new_index(A, J)...] # truncate indices beyond rank @inline new_index(A, J::CartesianIndex) = J.I[1:(ndims(A)-1)]
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
6867
""" manager = MultiThread(b=PlainCPU(), nt=Threads.nthreads()) Returns a multithread manager derived from `cpu_manager`, with a fork-join pattern. When `manager` is passed to `ManagedLoops.offload`, `manager.nthreads` threads are spawn (fork). They each work on a subset of indices. Progress continues only after all threads have finished (join), so that `barrier` is not needed between two uses of `offload` and does nothing. !!! tip It is highly recommended to pin the Julia threads to specific cores. The simplest way is probably to set `JULIA_EXCLUSIVE=1` before launching Julia. See also [Julia Discourse](https://discourse.julialang.org/t/compact-vs-scattered-pinning/69722) """ struct MultiThread{Manager<:SingleCPU} <: HostManager single::Manager nthreads::Int MultiThread(mgr::M = PlainCPU(), nt = Threads.nthreads()) where M = new{M}(mgr, nt) end Base.show(io::IO, mgr::MultiThread) = print(io, "MultiThread($(mgr.single), $(mgr.nthreads))") no_simd(mgr::MultiThread) = MultiThread(no_simd(mgr.single), mgr.nthreads) # Wraps arguments in order to avoid conversion to PtrArray by Polyester struct Args{T} args::T end function offload(fun::Fun, mgr::MultiThread, range, args::VArgs{NA}) where {Fun<:Function,NA} check_boxed_variables(fun) args = Args(args) Polyester.@batch for id = 1:mgr.nthreads offload_single(fun, mgr.single, range, args.args, mgr.nthreads, id) end end mutable struct ConditionBarrier const barrier::Threads.Condition # condition for Barrier() arrived::Tuple{Int,Int,Symbol} # (arrived, id, there) where arrived = number of threads having reached the barrier shared::Any ConditionBarrier() = new(Threads.Condition(), (0, 0, :open)) end """ manager = MainThread(cpu_manager=PlainCPU(), nthreads=Threads.nthreads()) Returns a multithread manager derived from `cpu_manager`, initially in sequential mode. In this mode, `manager` behaves exactly like `cpu_manager`. When `manager` is passed to `ManagedLoops.parallel`, `nthreads` threads are spawn. The `manager` passed to threads works in parallel mode. In this mode, `manager` behaves like `cpu_manager`, except that the outer loop is distributed among threads. Furthermore `ManagedLoops.barrier` and `ManagedLoops.share` allow synchronisation and data-sharing across threads. ```julia main_mgr = MainThread() LoopManagers.parallel(main_mgr) do thread_mgr x = LoopManagers.share(thread_mgr) do master_mgr randn() end println("Thread \$(Threads.threadid()) has drawn \$x.") end ``` """ struct MainThread{Manager} <: HostManager cbarrier::ConditionBarrier manager::Manager nthreads::Int end MainThread(manager = PlainCPU(), nt=Threads.nthreads()) = MainThread(ConditionBarrier(), manager, nt) Base.show(io::IO, main::MainThread) = print(io, "MainThread($(main.manager))") @inline function no_simd(main::MainThread) (; cbarrier, manager) = main return MainThread(cbarrier, no_simd(manager)) end # It is crucial to store the thread id in the WorkThread because # there is no guarantee that Threads.threadid() remains the same over the lifetime # of the thread. When two successive loops have the same loop range, # relying on Threadid() can lead to the same thread computing over different parts # of the range. In the absence of a barrier between the loops # (which should not be necessary), incorrect data may be read in the second loop. struct WorkThread{Manager} <: HostManager cbarrier::ConditionBarrier manager::Manager N::Int id::Int end @inline function no_simd(worker::WorkThread) (; cbarrier, manager, N, id) = worker return WorkThread(cbarrier, no_simd(manager), N, id) end @inline function offload( fun::Fun, main::MainThread, ranges, args::Vararg{Any,N}, ) where {Fun<:Function,N} @inline offload_single(fun, main.manager, ranges, args, 1, 1) end @inline function offload( fun::Fun, worker::WorkThread, ranges, args::Vararg{Any,N}, ) where {Fun<:Function,N} @inline offload_single(fun, worker.manager, ranges, args, worker.N, worker.id) end #============== parallel, barrier, share ==============# parallel(::Any, worker::WorkThread) = error("Nested used of ManagedLoops.parallel is forbidden.") function parallel(action::Fun, main::MainThread, args::Vararg{Any,N}) where {Fun,N} main.cbarrier.arrived = (0, 0, :open) # reset barrier @sync for id=1:main.nthreads worker = WorkThread(main.cbarrier, main.manager, main.nthreads, id) Threads.@spawn action(worker, args...) end return nothing end function master(fun::Fun, worker::WorkThread, args::Vararg{Any,N}) where {Fun,N} barrier(worker) if worker.id == 1 manager = worker.manager fun(manager, args...) end barrier(worker) return nothing end function share(fun, worker::WorkThread, args::Vararg{Any,N}) where {N} b = worker.cbarrier # wait for other worker threads to finish their work before master thread calls fun barrier(worker) id = worker.id # only master thread is allowed to write to barrier.shared id == 1 && (b.shared = fun(worker.manager, args...)) # barrier ensures that other threads read *after* the master has written barrier(worker) shared = b.shared # ::Any => type instability # barrier ensures that master waits until others have read the result barrier(worker) # now all threads have read, do not keep the result alive longer than needed id == 1 && (b.shared = nothing) return shared end function barrier(worker::WorkThread, there::Symbol = :unknown) (; cbarrier, N, id) = worker wait_condition_barrier(cbarrier, N, id, there) end function wait_condition_barrier(cb::ConditionBarrier, size, id, there) # @info "Enter condition_barrier" there id size lock(cb.barrier) try (; barrier, arrived) = cb (arrived_old, id_old, there_old) = arrived arrived_new = arrived_old + 1 if (arrived_new > 1) && (there_old != there) err = """ Race condition detected. Worker $id is waiting at : $there while worker $id_old is waiting at : $there_old """ error(err) end if arrived_new == size # we are the last thread arriving at the barrier cb.arrived = (0, 0, :open) # reset barrier for future use # @info "We are the last thread" id cb.arrived notify(barrier) # release other threads waiting at barrier else cb.arrived = (arrived_new, id, there) # @info "waiting for more threads to arrive at barrier" id cb.arrived wait(barrier) end finally unlock(cb.barrier) end # @info "Leave condition_barrier" there id return nothing end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
2877
struct FakeGPU{Host} <: DeviceManager host::Host end struct DeviceArray{T,N, Data<:AbstractArray{T,N}} <: AbstractArray{T,N} data :: Data end Base.eltype(dev::DeviceArray) = eltype(dev.data) Base.eachindex(dev::DeviceArray) = eachindex(dev.data) Base.size(dev::DeviceArray, args...) = size(dev.data, args...) Base.axes(dev::DeviceArray, args...) = axes(dev.data, args...) Base.view(dev::DeviceArray, args...) = DeviceArray(view(dev.data, args...)) Base.similar(dev::DeviceArray, dims::Union{Integer, AbstractUnitRange}...) = DeviceArray(similar(dev.data, dims...)) Base.similar(dev::DeviceArray, F::Type, dims::Union{Integer, AbstractUnitRange}...) = DeviceArray(similar(dev.data, F, dims...)) function Base.copy!(a::DeviceArray{F, 1, <:AbstractVector{F}}, b::AbstractVector{F}) where F copy!(a.data, b) return a end function Base.getindex(a::DeviceArray, index...) error("""Elements of a device array are accessible only from offloaded code. If this error is triggered from offloaded code, this means that the array has not been properly managed by the device backend. This may be because it is part of a struct, or captured by a closure. A possible fix is to pass this array explicitly as an argument to the offloaded function/closure. This is the role of the extra arguments of `offload` and `@offload`. """) end @inline unwrap(x)=x @inline unwrap(x::Tuple)=Tuple(map(unwrap,x)) @inline unwrap(ddata::DeviceArray)=ddata.data unwrap(x::AbstractArray) = error( "$(typeof(x)) is not on the device. You must use `to_device` to transfer array arguments to the device before calling `offload` with `backend::FakeGPU`") to_host(x::Array)=copy(x) to_host(x::DeviceArray, ::FakeGPU) = copy(x.data) to_device(x::AbstractArray, ::FakeGPU) = DeviceArray(copy(x)) @inline function forall(fun::Fun, backend::FakeGPU, range, args::VArgs{NA}) where {Fun<:Function, NA} check_boxed_variables(fun) @inline forall(fun, backend.host, range, unwrap(args)...) end @inline function offload(fun::Fun, backend::FakeGPU, range, args::VArgs{NA}) where {Fun<:Function, NA} check_boxed_variables(fun) @inline offload(fun, backend.host, range, unwrap(args)...) end function map_closure(f, closure::Function) # replaces by `f(x)` each object `x` captured by `closure` captured = map(n->f(getproperty(closure, n)), propertynames(closure)) return replace_captured(closure, captured) end @generated function replace_captured(closure::Closure, args) where {Closure<:Function} # here closure and args are Types : typeof(f), Tuple{Type1, ...} and # in the returned expression, they are the actual arguments basetype = closure.name.wrapper types = args.parameters N = length(types) if N>0 return Expr(:new, basetype{types...}, ( :(args[$i]) for i=1:N)... ) else return :(closure) end end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
1206
mutable struct Barrier{Lock} const lock::Lock const size::Int left::Int # number of threads not having reached the barrier end function Base.wait(barrier::Barrier) start = time() left = lock(barrier.lock) do barrier.left = barrier.left-1 end if left==0 # we are the last thread arriving at the barrier lock(barrier.lock) do barrier.left = barrier.size end else # wait until barrier.left == barrier.size while left<barrier.size sleep(0.0) left = lock(barrier.lock) do barrier.left end end end return time()-start end function run_thread(id, barrier) @info "run_thread" id barrier.size barrier.left for i=1:20 sleep(0.05*rand()) wait(barrier) end @info "run_thread" id barrier.size barrier.left end function main(N) barrier = Barrier(Threads.ReentrantLock(), N, N) @info "main" barrier.size barrier.left @sync begin for id=1:N Threads.@spawn run_thread(id, barrier) end end @info "main" barrier.size barrier.left println() end # main(4) # main(5) map(main, (1,4,5,10,100))
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
1428
@loops function my_cumsum!(_, a, b, ptop, fac) let (irange, jrange) = (axes(a, 1), axes(a, 2)) nz = size(a,3) for j in jrange @vec for i in irange @inbounds a[i, j, nz] = ptop + (fac/2)*b[i, j, nz] end end for j in jrange for k = nz:-1:2 @vec for i in irange @inbounds a[i, j, k-1] = a[i, j, k] + (b[i, j, k-1] + b[i,j,k])*(fac/2) end end end end end @loops function my_cumsum2!(_, a, b, ptop, fac) let (irange, jrange) = (axes(a, 1), axes(a, 2)) nz = size(a,3) for j in jrange @vec for i in irange @inbounds a[i, j, nz] = ptop + (fac/2)*b[i, j, nz] end for k = nz:-1:2 @vec for i in irange @inbounds a[i, j, k-1] = a[i, j, k] + (b[i, j, k-1] + b[i,j,k])*(fac/2) end end end end end @loops function my_cumsum3!(_, a, b, ptop, fac) let (irange, jrange) = (axes(a, 1), axes(a, 2)) nz = size(a,3) for j in jrange @vec for i in irange @inbounds a[i, j, nz] = ptop + (fac/2)*b[i, j, nz] for k = nz:-1:2 @inbounds a[i, j, k-1] = a[i, j, k] + (b[i, j, k-1] + b[i,j,k])*(fac/2) end end end end end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
code
3467
using LoopManagers using ManagedLoops: @loops, @vec using SIMDMathFunctions using KernelAbstractions using ThreadPinning pinthreads(:cores) threadinfo() using InteractiveUtils: versioninfo, @code_native using Chairmarks: @be using Test include("cumsum.jl") versioninfo() myfun(x) = @vec if x > 0 exp(log(x)) else log(exp(x)) end @loops function loop!(_, fun, a, b) let (irange, jrange) = axes(a) @vec for i in irange, j in jrange @inbounds a[i, j] = fun(b[i, j]) end end end function test(mgr, b) a = similar(b) @info mgr loop!(mgr, exp, a, b) display(@be loop!(mgr, myfun, a, b) seconds = 1) return nothing end function timed(fun, N) fun() times = [(@timed fun()).time for _ = 1:N+10] sort!(times) return Float32(sum(times[1:N]) / N) end function scaling(fun, name, N, simd = VectorizedCPU()) @info "====== Multi-thread scaling: $name ======" single = 1e9 @info "Threads \t elapsed \t speedup \t efficiency" for nt = 1:Threads.nthreads() mgr = LoopManagers.MultiThread(simd, nt) elapsed = timed(() -> fun(mgr), N) nt == 1 && (single = elapsed) percent(x) = round(100x; digits = 0) speedup = single / elapsed @info "$nt \t\t $elapsed \t $(percent(speedup))% \t $(percent(speedup/nt))%" end println() end let b = randn(1023, 1023), a = similar(b) scaling("compute-bound loop", 100) do mgr loop!(mgr, myfun, a, b) end end println() let b = randn(128, 64, 30), a = similar(b) for vlen in (4, 16, 64) scaling_cumsum(msg, fun!) = scaling("$msg vlen=$vlen", 1000, VectorizedCPU(vlen)) do mgr fun!(mgr, a, b, 1.0, 1.234) end scaling_cumsum("reverse cumsum_1", my_cumsum!) scaling_cumsum("reverse cumsum_2", my_cumsum2!) scaling_cumsum("reverse cumsum_3", my_cumsum3!) end end @testset "OpenMP-like manager" begin main = LoopManagers.MainThread(PlainCPU(), 10) @info "Testing MainThread with $(main.nthreads) threads." LoopManagers.parallel(main) do worker @info "Worker $(worker.id)" x = LoopManagers.share(worker) do master randn() end println("Thread $(Threads.threadid()) has drawn $x.") end @test true end println() @testset "SIMD, multithread and auto-tuned managers" begin managers = Any[ LoopManagers.PlainCPU(), LoopManagers.VectorizedCPU(), LoopManagers.MultiThread(), LoopManagers.MultiThread(VectorizedCPU(8)), LoopManagers.MultiThread(VectorizedCPU(16)), LoopManagers.MultiThread(VectorizedCPU(32)), ] openMP = LoopManagers.MainThread(VectorizedCPU()) let b = randn(Float32, 1023, 1023) auto = LoopManagers.tune(managers) for mgr in vcat(managers, openMP, auto) test(mgr, b) @test true end end end test_bc(mgr, a, b, c) = @. mgr[a] = log(exp(b) * exp(c)) println() @testset "Managed broadcasting" begin managers = Any[ LoopManagers.PlainCPU(), LoopManagers.VectorizedCPU(), LoopManagers.MultiThread(), LoopManagers.MultiThread(VectorizedCPU()), ] for dims in (10000, (100, 100), (100, 10, 10), (10, 10, 10, 10)) a, b, c = (randn(Float32, dims) for i = 1:3) for mgr in managers test_bc(mgr, a, b, c) @test true end end end
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
docs
1715
# LoopManagers [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://ClimFlows.github.io/LoopManagers.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://ClimFlows.github.io/LoopManagers.jl/dev/) [![Build Status](https://github.com/ClimFlows/LoopManagers.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/ClimFlows/LoopManagers.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/ClimFlows/LoopManagers.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/ClimFlows/LoopManagers.jl) LoopManagers is the companion package of [MangedLoops](https://github.com/ClimFlows/ManagedLoops.jl). It provides managers to execute loops with SIMD, on multiple threads or on GPUs. There is also a meta-manager that selects among a provided set of managers the one with the shortest execution time, on a per-function basis. ## Example ``` # Would belong to a 'provider' module, depending only on ManagedLoops using ManagedLoops: @loops, @vec @loops function loop!(_, a, b) let (irange, jrange) = axes(a) @vec for i in irange, j in jrange @inbounds a[i, j] = @fastmath exp(b[i, j]) end end end # Belongs to a 'consumer' module/program, that requires LoopManagers to run using LoopManagers: PlainCPU, VectorizedCPU, MultiThread using SIMDMathFunctions # for vectorized exp using BenchmarkTools using InteractiveUtils versioninfo() # check JULIA_EXCLUSIVE and JULIA_NUM_THREADS scalar = PlainCPU() simd = VectorizedCPU(8) threads = MultiThread(simd) b = randn(1024, 1024); a = similar(b); for mgr in (scalar, simd, threads) @info mgr display(@benchmark loop!($mgr, $a, $b)) end ```
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.1.6
b347591e31387d63c84e9ca602b813a6dc67582d
docs
197
```@meta CurrentModule = LoopManagers ``` # LoopManagers Documentation for [LoopManagers](https://github.com/ClimFlows/LoopManagers.jl). ```@index ``` ```@autodocs Modules = [LoopManagers] ```
LoopManagers
https://github.com/ClimFlows/LoopManagers.jl.git
[ "MIT" ]
0.2.6
a03658185b723439c24832cc6dd3f0016966e6df
code
757
module DifferentiableTrajectoryOptimization using ChainRulesCore: ChainRulesCore, NoTangent, ProjectTo, @thunk using Symbolics: Symbolics, @variables, scalarize using Ipopt: Ipopt using OSQP: OSQP using SparseArrays: SparseArrays, findnz, sparse, spzeros using LinearAlgebra: ColumnNorm, qr, I using ForwardDiff: ForwardDiff, Dual using PATHSolver: PATHSolver include("utils.jl") include("parametric_optimization_problem.jl") include("qp_solver.jl") include("nlp_solver.jl") include("mcp_solver.jl") include("autodiff.jl") include("optimizer.jl") # Public API export Optimizer, ParametricTrajectoryOptimizationProblem, parameter_dimension, get_constraints_from_box_bounds, QPSolver, MCPSolver, NLPSolver, is_thread_safe end
DifferentiableTrajectoryOptimization
https://github.com/lassepe/DifferentiableTrajectoryOptimization.jl.git