licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 3166 |
"""
add_direction_position!(frames, name::Symbol, origin, target, axes)
Add a direction based on the position vector from `origin` to `target` in the specified `axes`.
"""
function add_direction_position!(
frames::FrameSystem{O,T}, name::Symbol, from, to, axes
) where {O,T}
fromid, toid = point_id(frames, from), point_id(frames, to)
axid = axes_id(frames, axes)
for id in (fromid, toid)
!has_point(frames, id) && throw(
ArgumentError(
"no points with id $id registered in the given frame system."
)
)
end
!has_axes(frames, axid) && throw(
ArgumentError(
"no axes with id $axes registered in the given frame system"
)
)
fun = t -> unitvec(vector3(frames, fromid, toid, axid, t))
return add_direction!(frames, name, axid, fun)
end
"""
add_direction_velocity!(frames, name::Symbol, origin, target, axes)
Add a direction based on the velocity vector from `origin` to `target` in the specified `axes`.
"""
function add_direction_velocity!(
frames::FrameSystem{O,T}, name::Symbol, from, to, axes
) where {O,T}
fid, tid = point_id(frames, from), point_id(frames, to)
axid = axes_id(frames, axes)
for id in (fid, tid)
!has_point(frames, id) && throw(
ArgumentError(
"no points with id $id registered in the given frame system."
)
)
end
!has_axes(frames, axid) && throw(
ArgumentError(
"no axes with name $axes registered in the given frame system"
)
)
fun = t -> @views(unitvec(vector6(frames, fid, tid, axid, t)[4:end]))
return add_direction!(frames, name, axid, fun)
end
"""
add_direction_orthogonal!(frames, name::Symbol, dir1, dir2)
Add a direction as the cross product between two existing directions (i.e. `dir1` and `dir2`).
"""
function add_direction_orthogonal!(
frames::FrameSystem{O,T}, name::Symbol, dir1::Symbol, dir2::Symbol, axes
) where {O,T}
for d in (dir1, dir2)
if !(d in keys(directions(frames)))
throw(
ArgumentError(
"no direction with name $d registered in the given frame system"
)
)
end
end
axid = axes_id(frames, axes)
!has_axes(frames, axid) && throw(
ArgumentError(
"no axes with name $axes registered in the given frame system"
)
)
fun = t -> unitvec(cross3(direction3(frames, dir1, axid, t), direction3(frames, dir2, axid, t)))
return add_direction!(frames, name, axid, fun)
end
"""
add_direction_fixed!(frames, name, axes, offset::AbstractVector)
Add a fixed direction to `frames`.
"""
function add_direction_fixed!(
frames::FrameSystem{O,N}, name::Symbol, axes, offset::AbstractVector{T}
) where {O,N,T}
if length(offset) != 3
throw(
DimensionMismatch(
"The offset vector should have length 3, but has $(length(offset))."
),
)
end
voffset = SVector{3,N}(offset)
fun = t -> voffset
return add_direction!(frames, name, axes, fun)
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1902 | """
add_axes_ecl2000!(frames, name::Symbol=:ECL2000, parentid::Int, id::Int = AXESID_ECL2000;
model::IERSModel=iers1996)
Add Ecliptic Equinox of J2000 (ECL2000) axes to `frames`. Custom `id`, `name` and `parentid`
can be assigned by the user. The admissible parent axes are the following:
- *ICRF*: for the International Celestial Reference Frame, with ID = $(AXESID_ICRF)
- *GCRF*: for the Geocentric Celestial Reference Frame, with ID = $(AXESID_GCRF)
- *EME2000*: the Mean Earth/Moon Ephemeris of J2000, with ID = $(AXESID_EME2000)
!!! note
The obliquity of the ecliptic is computed using the IERS convention `model`.
To retrieve the same orientation of the ECLIPJ2000 axes avaialble in the SPICE
Toolkit, the `iers1996` model must be used.
"""
function add_axes_ecl2000!(
frames::FrameSystem, name::Symbol=:ECL2000, parentid::Int=AXESID_ICRF, id::Int=AXESID_ECL2000;
model::IERSModel=iers1996,
)
# Compute the J2000 to ECLIPJ2000 rotation according to the desired IERS model
DCM_EME2000_TO_ECLJ2000 = angle_to_dcm(iers_obliquity(model, 0), :X)
if parentid == AXESID_ICRF || parentid == AXESID_GCRF
dcm = DCM_EME2000_TO_ECLJ2000 * DCM_ICRF_TO_EME2000
elseif parentid == AXESID_EME2000
dcm = DCM_EME2000_TO_ECLJ2000
else
throw(
ArgumentError(
"Ecliptic Equinox of J2000 (ECL2000) axes cannot be defined" *
" w.r.t. $parentid axes. Only the ICRF (ID = $(AXESID_ICRF)), the GCRF" *
" (ID = $(AXESID_GCRF)) or the EME2000 (ID = $(AXESID_EME2000)) are" *
" accepted as parent axes.",
),
)
end
if id != AXESID_ECL2000
@warn "$name is aliasing an ID that is not the standard ECL2000 ID" *
" ($(AXESID_ECL2000))."
end
return add_axes_fixedoffset!(frames, name, id, parentid, dcm)
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 7082 |
"""
add_point_ephemeris!(fr::FrameSystem{O, T}, eph::AbstractEphemerisProvider,
name::Symbol, id::Int) where {O, T}
Add a point coming from an `AbstractEphemerisProvider` subtype.
The point is identifies by the `id` and a have a user defined `name`.
!!! warning
This is an interface only, concrete subtypes of `AbstractEphemerisProvider` requires
an proper implementation.
"""
@interface function add_point_ephemeris!(
::FrameSystem{O,T}, ::AbstractEphemerisProvider, ::Symbol, ::Int
) where {O,T} end
"""
add_axes_ephemeris!(frames::FrameSystem{O, T}, eph::AbstractEphemerisProvider,
name::Symbol, id::Int, seq::Symbol) where {O, T}
Add axes coming from an `AbstractEphemerisProvider` subtype to `frames`.
The axes are identifies by the `id` and a have a user defined `name`. The rotation matrix
is build using the rotation sequence specified in `seq`. The axes type is specified by `class`.
!!! warning
This is an interface only, concrete subtypes of `AbstractEphemerisProvider` requires
an proper implementation.
"""
@interface function add_axes_ephemeris!(
::FrameSystem{O,T}, ::AbstractEphemerisProvider, ::Symbol, ::Int, ::Symbol
) where {O,T} end
"""
add_point_ephemeris!(fr, eph::AbstractEphemerisProvider, book::Dict{Int, Symbol})
Add all points found in the `eph` and using id-names relationships specified in `book`.
"""
function add_point_ephemeris!(
fr::FrameSystem{O,T}, eph::AbstractEphemerisProvider, book::Dict{Int,Symbol}
) where {O,T}
records = ephem_position_records(eph)
for id in sort(ephem_available_points(eph))
!haskey(book, id) && @warn "Cannot find point with ID $id in the names book" continue
if id == 0
if length(points_graph(fr).nodes) == 0
# No point registered in the frame system
add_point!(fr, book[id], id, AXESID_ICRF)
end
else
# Assume that the SSB is registered in the frame system
it = findfirst(rec -> rec.target == id, records)
rec = records[it]
add_point_ephemeris!(fr, eph, book[id], id)
end
end
nothing
end
function check_point_ephemeris(
fr::FrameSystem{O,T}, eph::AbstractEphemerisProvider, id::Int
) where {O,T}
# Check that the kernels contain the ephemeris data for the given naifid
if !(id in ephem_available_points(eph))
throw(
ErrorException(
"Ephemeris data for ID $naifid is not available in the kernels.",
),
)
end
# Retrieve the ephemerides position records (i.e., the segment descriptors)
pos_records = ephem_position_records(eph)
# Retrieve the parent point and the point axes from the ephemeris data
parentid, parent_found = 0, false
axesid, axes_found = 0, false
for pr in pos_records
if pr.target == id
# Update the parent point ID
if !parent_found
parentid = pr.center
parent_found = true
elseif parentid != pr.center
throw(
ErrorException(
"UnambiguityError: at least two set of data with different" *
" centers are available for point with ID $id.",
),
)
end
# Update the reference axes ID
if !axes_found
axesid = pr.axes
axes_found = true
elseif axesid != pr.axes
throw(
ErrorException(
"UnambiguityError: at least two set of data with different axes" *
" are available for point with ID $id.",
),
)
end
end
end
# Check that the default parent is available in the FrameSystem
if !has_point(fr, parentid)
throw(
ErrorException(
"Ephemeris data for point with ID $id is available with respect" *
" to point with ID $parentid, which has not yet been defined" *
" in the input frame system.",
),
)
end
# The parent point is automatically inferred from the ephemeris kernels so it will
# always have available ephemeris data
# Checks if the axes are known to the frame system.
# This check is also performed by add_point!, but it is reported here because
# it provides more specific information for ephemeris points
if !has_axes(fr, axesid)
throw(
ErrorException(
"Ephemeris data for point with ID $naifid is expressed in a set" *
" of axes with ID $axesid, which are yet to be defined in the" *
" input frame system.",
),
)
end
return parentid, axesid
end
function check_axes_ephemeris(
frames::FrameSystem{O,N}, eph::AbstractEphemerisProvider, id::Int
) where {O,N}
# Check that the kernels contain orientation data for the given axes ID
if !(id in ephem_available_axes(eph))
throw(
ArgumentError(
"Orientation data for AXESID $id is not available " *
"in the kernels loaded in the given FrameSystem.",
),
)
end
# Retrieve the parent from the ephemeris data
orient_records = ephem_orient_records(eph)
parentid = nothing
for or in orient_records
if or.target == id
if isnothing(parentid)
parentid = or.axes
elseif parentid != or.axes
throw(
ErrorException(
"UnambiguityError: at least two set of orientation data " *
"with different centers are available for axes with ID $id.",
),
)
end
end
end
# Check that the default parent is available in the FrameSystem!
if !has_axes(frames, parentid)
throw(
ArgumentError(
"Orientation data for axes with ID $id is available " *
"with respect to axes with ID $parentid, which has not yet been defined " *
"in the given FrameSystem.",
),
)
end
return parentid
end
# Functions for an easier definition\handling of ephemeris axes
@inline function angles_to_rot3(θ, seq::Symbol)
@inbounds angle_to_dcm(θ[1], θ[2], θ[3], seq)
end
@inline function angles_to_rot6(θ, seq::Symbol)
return (
angle_to_dcm(θ[1], θ[2], θ[3], seq),
_3angles_to_δdcm(θ, seq)
)
end
@inline function angles_to_rot9(θ, seq::Symbol)
return (
angle_to_dcm(θ[1], θ[2], θ[3], seq),
_3angles_to_δdcm(θ, seq),
_3angles_to_δ²dcm(θ, seq)
)
end
@inline function angles_to_rot12(θ, seq::Symbol)
return (
angle_to_dcm(θ[1], θ[2], θ[3], seq),
_3angles_to_δdcm(θ, seq),
_3angles_to_δ²dcm(θ, seq),
_3angles_to_δ³dcm(θ, seq)
)
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 902 | """
add_axes_frozen!(fr, name, id, frozen, e)
Create a frozen axes version of `frozen` at epoch `e`, with `name` and `id` and add
it to `frames`.
!!! warning
The parent axes are automatically assigned to the `frozen` parent.
"""
function add_axes_frozen!(
fr::FrameSystem{O,T,S}, name::Symbol, id::Int, frozen, epoch::Epoch{S2}
) where {O,T,S,S2}
eS = convert(S(), epoch)
fixid = axes_id(fr, frozen)
if !(has_axes(fr, fixid))
throw(
ErrorException(
"no axes with ID $frozen is registered in the given frame system"
)
)
end
mid = get_mappedid(axes_graph(fr), fixid)
@show node = get_mappednode(axes_graph(fr), mid)
parid = node.parentid
# Compute rotation
dcm = rotation3(fr, parid, fixid, j2000s(eS))[1]
# Create new axes
return add_axes_fixedoffset!(fr, name, id, parid, dcm)
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1421 | """
AXESID_ICRF
NAIF Axes ID for the International Celestial Reference Frame (ICRF).
"""
const AXESID_ICRF = 1
"""
AXESID_GCRF
Axes ID for the Geocentric Celestial Reference Frame (GCRFF)
!!! note
Although the ICRF and GCRF axes are identical, they are based upon a different
timescale. A different ID is here assigned to provide a robust way of distinguishing
between the two. 23 has been chosen because it is one of the unassigned axes ID among
the built-in SPICE frames.
"""
const AXESID_GCRF = 23
"""
AXESID_ECL2000
NAIF Axes ID for the Mean Ecliptic Equinox of J2000 (ECL2000).
"""
const AXESID_ECL2000 = 17
"""
AXESID_EME2000
Axes ID for the Mean Dynamical Equator and Equinox of J2000.0.
!!! note
In SPICE the J2000 (EME2000) and ICRF axes are considered equal, thus there exist no
specific NAIF ID for the EME2000 axes. 22 has been chosen because it is the first
unassigned axes ID among the built-in SPICE frames.
"""
const AXESID_EME2000 = 22
"""
AXESID_MOONPA_DE421
NAIF axes id for the DE421 Moon Principal Axes (PA421).
"""
const AXESID_MOONPA_DE421 = 31006
"""
AXESID_MOONME_DE421
NAIF axes id for the DE421 Moon Mean Earth/Mean Rotation axes (ME421).
"""
const AXESID_MOONME_DE421 = 31007
"""
AXESID_MOONPA_DE440
NAIF Axes id for the DE440 Moon Principal Axes (PA440).
"""
const AXESID_MOONPA_DE440 = 31008 | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 6561 | """
DCM_MOON_PA440_TO_ME421
DCM for the rotation from the Moon Principal Axis 440 (PA440) to the Moon Mean
Earth/Mean Rotation DE421 (ME421) axes.
### References
- Park, S. R. et al. (2021), _The JPL Planetary and Lunar Ephemerides DE440 and DE441_,
[DOI: 10.3847/1538-3881/abd414](https://doi.org/10.3847/1538-3881/abd414)
"""
const DCM_MOON_PA440_TO_ME421 = angle_to_dcm(
arcsec2rad(-67.8526), arcsec2rad(-78.6944), arcsec2rad(-0.2785), :ZYX
)
"""
DCM_MOON_PA430_TO_ME430
DCM for the rotation from the Moon Principal Axis 430 (PA430) to the Moon Mean
Earth/Mean Rotation DE430 (ME430) axes.
### References
- Folkner M. William et al. (2014), _The Planetary and Lunar EphemeridesDE430 and DE431_
- J. G. Williams et al. (2013), _DE430 Lunar Orbit, Physical Librations, and Surface Coordinates_,
[DE430 Lunar Ephemeris and Orientation](https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf)
"""
const DCM_MOON_PA430_TO_ME430 = angle_to_dcm(
arcsec2rad(-67.573), arcsec2rad(-78.58), arcsec2rad(-0.285), :ZYX
)
"""
DCM_MOON_PA430_TO_ME421
DCM for the rotation from the Moon Principal Axis 430 (PA430) to the Moon Mean
Earth/Mean Rotation DE421 (ME421) axes.
### References
- Folkner M. William et al. (2014), _The Planetary and Lunar EphemeridesDE430 and DE431_
- J. G. Williams et al. (2013), _DE430 Lunar Orbit, Physical Librations, and Surface Coordinates_,
[DE430 Lunar Ephemeris and Orientation](https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf)
"""
const DCM_MOON_PA430_TO_ME421 = angle_to_dcm(
arcsec2rad(-67.737), arcsec2rad(-78.627), arcsec2rad(-0.295), :ZYX
)
"""
DCM_MOON_PA421_TO_ME421
DCM for the rotation from the Moon Principal Axis 421 (PA421) to the Moon Mean
Earth/Mean Rotation DE421 (ME421) axes.
### References
- J. G. Williams et al. (2008), _DE421 Lunar Orbit, Physical Librations, and Surface Coordinates_,
[DE421 Lunar Ephemeris and Orientation](https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/de421_lunar_ephemeris_and_orientation.pdf)
"""
const DCM_MOON_PA421_TO_ME421 = angle_to_dcm(
arcsec2rad(-67.92), arcsec2rad(-78.56), arcsec2rad(-0.3), :ZYX
)
"""
add_axes_pa440!(frames, eph::AbstractEphemerisProvider, name::Symbol,
id::Int=AXESID_MOONPA_DE440)
Add DE440 Moon's Principal Axes (PA) axes to `frames`. The libration angles are extracted
from the `eph` ephemeris kernels, an error is thrown if such orientation data is not available.
!!! warning
The parent axes are automatically set to the ICRF (ID = $(AXESID_ICRF)). If such
axes are not registered in the frame system, an error is thrown.
!!! warning
To properly read the ephemeris kernels, the ID associated to the input `axes` must match
NAIF's FRAME ID for the Moon PA DE440 axes ($(AXESID_MOONPA_DE440)).
"""
function add_axes_pa440!(
frames::FrameSystem, eph::AbstractEphemerisProvider, name::Symbol,
id::Int=AXESID_MOONPA_DE440
)
if !(has_axes(frames, AXESID_ICRF))
throw(
ErrorException(
"The DE440 Moon Principal Axes (PA) can only be defined w.r.t. the" *
" ICRF (ID = $(AXESID_ICRF)), which is not defined" *
" in the current frames graph."
)
)
end
# Throw a warning if the ID does not match the standard one.
if id != AXESID_MOONPA_DE440
throw(
ArgumentError(
"$name is aliasing an ID that is not the standard PA440" *
" ID ($(AXESID_MOONPA_DE440))."
)
)
end
return add_axes_ephemeris!(frames, eph, name, id, :ZXZ)
end
"""
add_axes_pa421!(frames, eph::AbstractEphemerisProvider, name::Symbol,
id::Int=AXESID_MOONPA_DE421)
Add DE421 Moon's Principal Axes (PA) axes to `frames`. The libration angles are extracted
from the `eph` ephemeris kernels, an error is thrown if such orientation data is not available.
!!! warning
The parent axes are automatically set to the ICRF (ID = $(AXESID_ICRF)). If such
axes are not registered in the frame system, an error is thrown.
!!! warning
To properly read the ephemeris kernels, the ID associated to the input `axes` must match
NAIF's FRAME ID for the Moon PA DE421 axes ($(AXESID_MOONPA_DE421)).
"""
function add_axes_pa421!(
frames::FrameSystem, eph::AbstractEphemerisProvider, name::Symbol,
id::Int=AXESID_MOONPA_DE421
)
if !(has_axes(frames, AXESID_ICRF))
throw(
ErrorException(
"The DE421 Moon Principal Axes (PA) can only be defined w.r.t. the" *
" ICRF (ID = $(AXESID_ICRF)), which is not defined" *
" in the current frames graph."
)
)
end
# Throw a warning if the ID does not match the standard one.
if id != AXESID_MOONPA_DE421
throw(
ArgumentError(
"$name is aliasing an ID that is not the standard PA421" *
" ID ($(AXESID_MOONPA_DE421))."
)
)
end
return add_axes_ephemeris!(frames, eph, name, id, :ZXZ)
end
"""
add_axes_me421!(frames, name::Symbol, parentid::Int, axesid::Int=AXESID_MOONME_DE421)
Add DE421 Moon's Mean Earth/Mean Rotation (ME) axes to `frames`.
!!! warning
The `parent` set of axes must either the DE440 Principal Axes (PA440, ID =
$(AXESID_MOONPA_DE440)) or the DE421 Principal Axes (PA421, ID =
$(AXESID_MOONPA_DE421)), otherwise an error is thrown. Depending on that, the
relative axes orientation will be automatically selected by this function.
"""
function add_axes_me421!(
frames::FrameSystem, name::Symbol, parent, id::Int=AXESID_MOONME_DE421
)
pid = axes_id(frames, parent)
if pid == AXESID_MOONPA_DE421
dcm = DCM_MOON_PA421_TO_ME421
elseif pid == AXESID_MOONPA_DE440
dcm = DCM_MOON_PA440_TO_ME421
else
throw(
ArgumentError(
"The DE421 Mean Earth/Mean Rotation (ME) axes cannot be defined w.r.t." *
" axes with ID $pid. Only the DE440 (ID = $(AXESID_MOONPA_DE440))" *
" or DE421 (ID = $(AXESID_MOONPA_DE421)) Moon Principal Axes are" *
" accepted as parent axes.",
),
)
end
if id != AXESID_MOONME_DE421
@warn "$(name) is aliasing an ID that is not the standard ME421" *
"ID ($(AXESID_MOONME_DE421))."
end
return add_axes_fixedoffset!(frames, name, id, pid, dcm)
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 4537 |
"""
add_axes_bcrtod!(fr, name, id, center; deriv=true)
Add Body-Centered Rotating (BCR), True-of-Date (TOD) axes with `name` and `id` to `fr`.
The center point (i.e., the reference body) is `center`.
These axes are the equivalent of SPICE's `IAU_<BODY_NAME>` frames.
!!! warning
The parent axes are automatically set to the ICRF (ID = $(AXESID_ICRF)). If the
ICRF is not defined in `fr`, an error is thrown.
### See also
See also [`add_axes_rotating!`](@ref), [`add_axes_bci2000!`](@ref).
"""
function add_axes_bcrtod!(
fr::FrameSystem, name::Symbol, id::Int, center; deriv::Bool=false
)
# create val dispatch
cid = point_id(fr, center)
vid = Val(cid)
if length(methods(body_rotational_elements, [Number, Val{cid}])) != 1
throw(
MethodError(
body_rotational_elements,
"there must be a unique method defined for $cid"
)
)
end
if !(has_axes(fr, AXESID_ICRF))
throw(
ErrorException(
"Body-Centered Inertial (BCI) at J2000 axes can only be defined" *
" w.r.t. the ICRF (ID = $(AXESID_ICRF)), which is not defined in" *
" the current frames graph."
)
)
end
if !deriv
add_axes_rotating!(fr, name, id, AXESID_ICRF, t -> _bcrtod(t, vid))
else
add_axes_rotating!(
fr, name, id, AXESID_ICRF,
t -> _bcrtod(t, vid), t -> _∂bcrtod(t, vid), t -> _∂²bcrtod(t, vid), t -> _∂³bcrtod(t, vid)
)
end
end
"""
add_axes_bci2000!(fr, axes::AbstractFrameAxes, center, data)
Add Body-Centered Inertial (BCI) axes at J2000 with `name` and `id` to `fr`.
The center point (i.e., the reference body) is `center`.
!!! warning
The parent axes are automatically set to the ICRF (ID = $(AXESID_ICRF)). If the
ICRF is not defined in `fr`, an error is thrown.
### See also
See also [`add_axes_fixedoffset!`](@ref), [`add_axes_bcrtod!`](@ref).
"""
function add_axes_bci2000!(fr::FrameSystem, name::Symbol, id::Int, center)
# create val dispatch
cid = point_id(fr, center)
vid = Val(cid)
if length(methods(body_rotational_elements, [Number, Val{cid}])) != 1
throw(
ErrorException(
"there must be a unique method defined for $cid"
)
)
end
if !(has_axes(fr, AXESID_ICRF))
throw(
ErrorException(
"Body-Centered Inertial (BCI) at J2000 axes can only be defined" *
" w.r.t. the ICRF (ID = $(AXESID_ICRF)), which is not defined in" *
" the current frames graph."
)
)
end
# evaluate rotational elements and build the DCM
α2000, δ2000, _ = body_rotational_elements(0, vid)
dcm = angle_to_dcm(π / 2 + α2000, π / 2 - δ2000, :ZX)
# insert the new axes
return add_axes_fixedoffset!(fr, name, id, AXESID_ICRF, dcm)
end
function _bcrtod(seconds, val)
α, δ, w = body_rotational_elements(seconds / CENTURY2SEC, val)
return angle_to_dcm(π / 2 + α, π / 2 - δ, w, :ZXZ)
end
function _∂bcrtod(seconds, val)
T = seconds / Tempo.CENTURY2SEC
α, δ, w = body_rotational_elements(T, val)
dα, dδ, dw = ∂body_rotational_elements(T, val)
R = angle_to_dcm(π / 2 + α, π / 2 - δ, w, :ZXZ)
dR = angle_to_δdcm((π / 2 + α, dα), (π / 2 - δ, -dδ), (w, dw), :ZXZ)
return R, dR
end
function _∂²bcrtod(seconds, val)
T = seconds / Tempo.CENTURY2SEC
α, δ, w = body_rotational_elements(T, val)
dα, dδ, dw = ∂body_rotational_elements(T, val)
d²α, d²δ, d²w = ∂²body_rotational_elements(T, val)
R = angle_to_dcm(π / 2 + α, π / 2 - δ, w, :ZXZ)
dR = angle_to_δdcm((π / 2 + α, dα), (π / 2 - δ, -dδ), (w, dw), :ZXZ)
d²R = angle_to_δ²dcm((π / 2 + α, dα, d²α), (π / 2 - δ, -dδ, -d²δ), (w, dw, d²w), :ZXZ)
return R, dR, d²R
end
function _∂³bcrtod(seconds, val)
T = seconds / Tempo.CENTURY2SEC
α, δ, w = body_rotational_elements(T, val)
dα, dδ, dw = ∂body_rotational_elements(T, val)
d²α, d²δ, d²w = ∂²body_rotational_elements(T, val)
d³α, d³δ, d³w = ∂³body_rotational_elements(T, val)
R = angle_to_dcm(π / 2 + α, π / 2 - δ, w, :ZXZ)
dR = angle_to_δdcm((π / 2 + α, dα), (π / 2 - δ, -dδ), (w, dw), :ZXZ)
d²R = angle_to_δ²dcm((π / 2 + α, dα, d²α), (π / 2 - δ, -dδ, -d²δ), (w, dw, d²w), :ZXZ)
d³R = angle_to_δ³dcm((π / 2 + α, dα, d²α, d³α), (π / 2 - δ, -dδ, -d²δ, -d³δ), (w, dw, d²w, d³w), :ZXZ)
return R, dR, d²R, d³R
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 9222 |
"""
add_axes_itrf!(fr::FrameSystem, name::Symbol, parentid::Int=AXESID_ICRF, id::Int=AXESID_ITRF,
model::IERSModel=iers2010b)
Add International Terrestrial Reference Frame (ITRF) axes to `fr`. Use the `model`
argument to specify which IERS convention should be used for the computations.
!!! warning
If the ID of the parent set of `axes` is neither the ICRF (ID = $(AXESID_ICRF))
nor the GCRF (ID = $(AXESID_GCRF)), an error is thrown.
"""
function add_axes_itrf!(
fr::FrameSystem, name::Symbol, parentid::Int=AXESID_ICRF, id::Int=AXESID_ITRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"International Terrestrial Reference Frame (ITRF) axes cannot be defined" *
"with respect to axes $parentid. Only the `ICRF` (ID = $(AXESID_ICRF)) " *
"or the `GCRF` (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
return add_axes_rotating!(
fr, name, id, parentid,
t -> iers_rot3_gcrf_to_itrf(t, model), t -> iers_rot6_gcrf_to_itrf(t, model),
t -> iers_rot9_gcrf_to_itrf(t, model), t -> iers_rot12_gcrf_to_itrf(t, model)
)
end
# ------------------------------------------------------------------------------------------
# Equinox-based transformations from ICRF/GCRF
# ------------------------------------------------------------------------------------------
"""
add_axes_mod!(fr, name::Symbol, axesid::Int, parentid::Int,
model::IERSConventions.IERSModel=iers2010b)
Add Mean Equator and Equinox of Date (MOD) axes to `fr`. Use the `model` argument to
specify which IERS convention should be used for the computations.
!!! note
The Mean-of-Date axes are obtained by applying the frame bias and precession matrix.
For this reason, if the IERS 1996 conventions are used, the rotation is
actually computed starting from the EME2000 rather than the GCRF.
!!! note
Despite this class of axes has a rotation matrix that depends on time, its derivatives
are assumed null.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_mod!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"Mean-of-Date (MOD) axes cannot be defined with respect to axes $parentid." *
" Only the ICRF (ID = $(AXESID_ICRF)) or the GCRF" *
" (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
return add_axes_projected!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_mod(t, model)
)
end
"""
add_axes_tod!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b)
Add True Equator of Date (TOD) axes to `fr`. Use the `model` argument to specify which
IERS convention should be used for the computations.
!!! note
The True-of-Date axes are obtained by applying the frame bias, precession and
nutation matrix. For this reason, if the IERS 1996 conventions are used, the
rotation is actually computed starting from the EME2000 rather than the GCRF.
!!! note
Despite this class of axes has a rotation matrix that depends on time, its derivatives
are assumed null.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_tod!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"True-of-Date (TOD) axes cannot be defined with respect to axes $parentid." *
" Only the ICRF (ID = $(AXESID_ICRF)) or the GCRF" *
" (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
return add_axes_projected!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_tod(t, model)
)
end
"""
add_axes_gtod!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b)
Add Greenwich True-of-Date (GTOD) axes to `fr`. Use the `model` argument to specify
which IERS convention should be used for the computations.
!!! note
Despite this class of axes has a rotation matrix that depends on time, its derivatives
are assumed null.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_gtod!(
fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"Greenwich True-of-Date (GTOD) axes cannot be defined with respect to axes" *
" $parentid. Only the ICRF (ID = $(AXESID_ICRF)) or the GCRF" *
" (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
# TODO: check if inertial is right
return add_axes_projected!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_gtod(t, model)
)
end
"""
add_axes_pef!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b)
Add Pseudo-Earth Fixed (PEF) axes to `fr`. Use the `model` argument to specify which
IERS convention should be used for the computations.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_pef!(
fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"Pseudo-Earth Fixed (PEF) axes cannot be defined with respect to" *
" axes $parentid. Only the ICRF (ID = $(AXESID_ICRF)) or the GCRF" *
" (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
# TODO: PEF axes use AD for higher-order derivatives
return add_axes_rotating!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_pef(model, t)
)
end
# ------------------------------------------------------------------------------------------
# CIO-based transformations from ICRF/GCRF
# ------------------------------------------------------------------------------------------
"""
add_axes_cirf!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b)
Add Celestial Intermediate Reference Frame (CIRF) axes to `fr`. Use the `model` argument
to specify which IERS convention should be used for the computations.
!!! note
Despite this class of axes has a rotation matrix that depends on time, its derivatives
are assumed null.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_cirf!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"The Celestial Intermediate Reference Frame (CIRF) axes cannot be defined" *
" with respect to axes $parentid. Only the ICRF (ID = $(AXESID_ICRF)) or" *
" the GCRF (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
# TODO: check if inertial is right
return add_axes_projected!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_cirf(t, model)
)
end
"""
add_axes_tirf!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b)
Add Terrestrial Intermediate Reference Frame (TIRF) axes to `fr`. Use the `model` argument
to specify which IERS convention should be used for the computations.
!!! note
Despite this class of axes has a rotation matrix that depends on time, its derivatives
are assumed null.
!!! warning
The ID of the `parent` set of axes must be $(AXESID_ICRF) (ICRF) or $(AXESID_GCRF)
(GCRF) otherwise an error is thrown.
"""
function add_axes_tirf!(fr::FrameSystem, name::Symbol, id::Int, parentid::Int=AXESID_ICRF,
model::IERSModel=iers2010b
)
if !(parentid in (AXESID_ICRF, AXESID_GCRF))
throw(
ArgumentError(
"The Terrestrial Intermediate Reference Frame (TIRF) axes cannot be defined" *
" with respect to axes $parentid. Only the ICRF (ID = $(AXESID_ICRF)) or" *
" the GCRF (ID = $(AXESID_GCRF)) are accepted as parent axes.",
),
)
end
# TODO: check if inertial is right
return add_axes_projected!(
fr, name, id, parentid, t -> iers_rot3_gcrf_to_tirf(t, model)
)
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 2703 |
"""
add_axes_topocentric!(frames, name::Symbol, id::Int, parent, λ, ϕ, mount)
Add topocentric axes to `frames` at a specified location and mounting.
The orientation relative to the parent axes `parent` is defined throuh the longitude `λ`,
the geodetic latitude `ϕ` and the mounting type `mount`, which may be any of the following:
- `:NED` (North, East, Down): the X-axis points North, the Y-axis is directed eastward and
the Z-axis points inwards towards the nadir.
- `:SEZ` (South, East, Zenith): the X-axis points South, the Y-axis is directed East, and
the Z-axis points outwards towards the zenith.
- `:ENU` (East, North, Up): the X-axis points East, the Y-axis is directed North and the
Z-axis points outwards towards the zenith.
!!! warning
The parent axes must be a set of body-fixed reference axes. This is under user
resposibility.
"""
function add_axes_topocentric!(
frames::FrameSystem, name::Symbol, id::Int, parent,
λ::Number, ϕ::Number, mount::Symbol
)
if mount == :NED
dcm = angle_to_dcm(λ, -ϕ - π / 2, :ZY)
elseif mount == :SEZ
dcm = angle_to_dcm(λ, π / 2 - ϕ, :ZY)
elseif mount == :ENU
dcm = angle_to_dcm(λ + π / 2, π / 2 - ϕ, :ZX)
else
throw(ArgumentError("$mount is not a supported topocentric mounting type."))
end
pid = axes_id(frames, parent)
return add_axes_fixedoffset!(frames, name, id, pid, dcm)
end
@fastmath function _geod2pos(h::Number, λ::Number, ϕ::Number, R::Number, f::Number)
# Get eccentricity from flattening
e² = (2 - f) * f
sϕ, cϕ = sincos(ϕ)
sλ, cλ = sincos(λ)
d = R / sqrt(1 - e² * sϕ^2)
c = (d + h) * cϕ
s = (1 - e²) * d
return SA[c*cλ, c*sλ, (s+h)*sϕ]
end
"""
add_point_surface!(frames, name::Symbol, pointid::Int, parent, axes,
λ::Number, ϕ::Number, R::Number, f::Number=0.0, h::Number=0.0)
Add `point` to `frames` as a fixed point on the surface of the `parent` point body.
The relative position is specified by the longitude `λ`, the geodetic latitude `ϕ`,
the reference radius of the ellipsoid `R` and its flattening `f`.
The altitude over the reference surface of the ellipsoid `h` defaults to 0.
!!! warning
Axes used here must be a set of body-fixed reference axes for the body represented by
`parentid`. This is under user resposibility.
"""
function add_point_surface!(
frames::FrameSystem, name::Symbol, id::Int, parent, axes,
λ::Number, ϕ::Number, R::Number, f::Number=0.0, h::Number=0.0,
)
pos = _geod2pos(h, λ, ϕ, R, f)
pid = point_id(frames, parent)
axid = axes_id(frames, axes)
return add_point_fixedoffset!(frames, name, id, pid, axid, pos)
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 241 | const GROUP = get(ENV, "GROUP", "All")
@time begin
if GROUP == "All" || GROUP == "Core"
include("Core/Core.jl")
end
if GROUP == "All" || GROUP == "Definitions/"
include("Definitions/Definitions.jl")
end
end;
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 329 | using Test
using SafeTestsets
@testset "Core" verbose=true begin
@safetestset "Translation" begin include("translation.jl") end
@safetestset "Rotation" begin include("rotation.jl") end
@safetestset "Graph" begin include("graph.jl") end
@safetestset "Transform (generic)" begin include("transform.jl") end
end; | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1479 | using FrameTransformations
using Tempo
using StaticArrays
using Test
@testset "Point node" begin
begin
fps = FrameTransformations.FramePointFunctions{1, Float64}()
fp = FrameTransformations.FramePointNode{1, Float64}(:P0, 1, 0, 1, fps)
@test fp.name == :P0
@test fp.id == 1
@test fp.parentid == 0
@test fp.axesid == 1
@test fp.f === fps
end
begin
f1(t) = Translation{2}(SA[cos(t), sin(t), 1.0])
f2(t) = Translation{2}(SA[cos(t), sin(t), 1.0, -sin(t), cos(t), 0.0])
fps = FrameTransformations.FramePointFunctions{2, Float64}(f1, f2)
@test f1(π/3) == fps[1].fw[1](π/3)
@test f2(π/3) == fps[2].fw[1](π/3)
@test f1(0)[2] == zeros(3)
end
end;
@testset "Axes node" begin
begin
faxs = FrameTransformations.FrameAxesFunctions{1, Float64}()
fax = FrameTransformations.FrameAxesNode{1, Float64}(:Ax0, 1, 1, faxs)
@test fax.name == :Ax0
@test fax.id == 1
@test fax.parentid == 1
@test fax.f === faxs
end
end;
@testset "FrameSystem" begin
g = FrameSystem{2, Float64}()
@test order(g) == 2
@test FrameTransformations.timescale(g) == BarycentricDynamicalTime
@test points_graph(g) === g.points.graph
@test axes_graph(g) === g.axes.graph
@test points_alias(g) === g.points.alias
@test axes_alias(g) === g.axes.alias
@test !has_point(g, 1)
@test !has_axes(g, 1)
end; | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 4191 | using FrameTransformations
using ReferenceFrameRotations
using LinearAlgebra
using StaticArrays
using Test
@test FrameTransformations.dcm_eltype(DCM{Float64}) == Float64
@test FrameTransformations.promote_dcm_eltype(Tuple{DCM{Int64}, DCM{Float64}}) == Float64
dcm = angle_to_dcm(π/3, :Z)
δdcm = DCM(ddcm(dcm, [0, 0, 1]))
δ²dcm = DCM(ddcm(δdcm, [0, 0, 1]))
r1 = Rotation(dcm, δdcm, δ²dcm)
@test order(r1) == 3
@test size(r1) == (3,)
@test length(r1) == 3
@test r1[1] == dcm
@test r1[2] == δdcm
@test r1[3] == δ²dcm
@test r1 == Rotation((dcm, δdcm, δ²dcm))
r2 = Rotation{1}(dcm, δdcm, δ²dcm)
@test length(r2) == 1
@test r2[1] == dcm
r3 = Rotation{1}((dcm, δdcm, δ²dcm))
@test length(r3) == 1
@test r3[1] == dcm
@test r2 == r3
r4 = Rotation{2}(1.0I)
@test length(r4) == 2
@test r4[1] == I
@test r4[2] == 0I
r5 = Rotation{3, Float64}(I)
@test length(r5) == 3
@test r5[1] == I
@test r5[2] == 0I
@test r5[3] == 0I
r6 = Rotation{1}(r1)
@test length(r6) == 1
@test r6[1] == dcm
r7 = Rotation{2}(r6)
@test length(r7) == 2
@test r7[1] == dcm
@test r7[2] == 0I
r8 = Rotation{1, Float32}(r5)
@test length(r8) == 1
@test r8[1] == I
r9 = Rotation{1, Float64}(I)
@test Tuple(r9) == (1, 0, 0, 0, 1, 0, 0, 0, 1)
@test SVector(r9) == [1, 0, 0, 0, 1, 0, 0, 0, 1]
@test inv(r9) == r9
@test inv(r6)[1] == adjoint(dcm)
@test_throws DimensionMismatch r6*r7
r10 = r9*r6
@test r10 == r6
@testset "Constructors" begin
# Default constructor
R = Rotation((DCM(1I), DCM(0.0I)))
@test R[1] == DCM(1I)
@test R.m[2] == DCM(0I)
@test typeof(R) == Rotation{2,Float64}
# dcms constructor
A = angle_to_dcm(π / 3, :Z)
B = DCM(0.0I)
C = DCM(1.0I)
R = Rotation(A, B, C)
@test length(R) == 3
@test typeof(R) == Rotation{3,Float64}
for (i, M) in enumerate([A, B, C])
@test R[i] == M
end
# filter constructor
R = Rotation{2}(A, B, C)
@test typeof(R) == Rotation{2,Float64}
@test R[1] == A
@test R[2] == B
@test length(R) == 2
R = Rotation{5}(A, B, C)
@test typeof(R) == Rotation{5,Float64}
@test length(R) == 5
for (i, M) in enumerate([A, B, C, DCM(0.0I), DCM(0.0I)])
@test R[i] == M
end
# UniformScaling
R = Rotation{1}(1.0I)
@test R[1] == C
@test typeof(R) == Rotation{1,Float64}
R = Rotation{3,Int64}(I)
@test typeof(R) == Rotation{3,Int64}
R[1] == DCM(1I)
R[2] == DCM(0I)
R[3] == DCM(0I)
# Rotation conversion
R = Rotation(A, B, C)
R2 = Rotation{1}(R)
@test R2[1] == A
# DCM + omega
R = Rotation(A, SA[0.0, 0.0, 1.0])
@test DCM(ddcm(A, SA[0.0, 0.0, 1.0])) == R[2]
end
@testset "Operations" begin
θ = rand(0:(π / 100):(2π))
A = angle_to_dcm(θ, :Z)
R = Rotation(A)
Ri = Rotation(A')
R₂ = Rotation(A, DCM(0.0I))
# Compose rotation
@test_throws DimensionMismatch R * R₂
@test (R * Ri)[1] ≈ Rotation{1}(1.0I)[1]
@test FrameTransformations._compose_rotation(R, Ri)[1] ≈ (R * Ri)[1]
# Apply rotation
@testset "apply_rotation" begin
t = Translation(1., 0., 0., 0., 1., 0., -1., 0., 0.)
r1 = Rotation{1, Float64}(I)
@test_throws DimensionMismatch r1 * t
r2 = Rotation{3}(r1)
@test r2 * t == t
v = SA[1., 0., 0., 0., 1., 0., -1., 0., 0.]
@test r2 * v == v
@test_throws DimensionMismatch r2 * (@SVector zeros(12))
dcm = angle_to_dcm(π/3, :Z)
r = Rotation(dcm, dcm, dcm)
rt = r * t
v1 = r[1] * t[1]
v2 = r[2] * t[1] + r[1] * t[2]
v3 = r[3] * t[1] + 2 * r[2] * t[2] + r[1] * t[3]
@test rt[1] == v1
@test rt[2] == v2
@test rt[3] == v3
end
@test FrameTransformations._apply_rotation(R, SA[1.0, 0.0, 0.0]) ≈ R * SA[1.0, 0.0, 0.0]
# 2nd order rotations
A = angle_to_dcm(rand(), :Z)
B = angle_to_dcm(rand(), rand(), rand(), :XYZ)
C = angle_to_dcm(rand(), rand(), :YX)
D = angle_to_dcm(rand(), :X)
RA = Rotation(A, B)
RC = Rotation(C, D)
RO = RA * RC
@test RO[1] ≈ A * C atol = 1e-12
@test RO[2] ≈ A * D + B * C atol = 1e-12
@test typeof(RO) == Rotation{2,Float64}
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1106 | using FrameTransformations
using ReferenceFrameRotations
using StaticArrays
using ForwardDiff
using Test
@testset "FrameSystem" begin
fr = FrameSystem{4, Float64}()
add_axes!(fr, :ICRF, 1)
r(t) = angle_to_dcm(t, :Z)
dr(t) = ForwardDiff.derivative(r, t)
d2r(t) = ForwardDiff.derivative(dr, t)
d3r(t) = ForwardDiff.derivative(d2r, t)
add_axes_rotating!(fr, :Test, 2, 1, r)
f(t) = SVector(cos(t), sin(t), 1.0)
df(t) = ForwardDiff.derivative(f, t)
d2f(t) = ForwardDiff.derivative(df, t)
d3f(t) = ForwardDiff.derivative(d2f, t)
add_point!(fr, :ROOT, 1, 1)
add_point_dynamical!(fr, :Test, 2, 1, 1, f)
x = π/3
@test vector3(fr, 1, 2, 1, x) == f(x)
@test vector6(fr, 1, 2, 1, x) == vcat( f(x), df(x) )
@test vector9(fr, 1, 2, 1, x) == vcat( f(x), df(x), d2f(x) )
@test vector12(fr, 1, 2, 1, x) == vcat( f(x), df(x), d2f(x), d3f(x) )
x = π/3
@test rotation3(fr, 1, 2, x)[1] == r(x)
@test rotation6(fr, 1, 2, x)[2] == dr(x)
@test rotation9(fr, 1, 2, x)[3] == d2r(x)
@test rotation12(fr, 1, 2, x)[4] == d3r(x)
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1765 | using FrameTransformations
using StaticArrays
using Test
# SVector3
@test FrameTransformations.svector3_eltype(FrameTransformations.SVector3{Float64}) == Float64
vft1 = FrameTransformations.SVector3(1.,2.,3.)
vit1 = FrameTransformations.SVector3(4, 5, 6)
@test FrameTransformations.svector3_eltype(vft1) == Float64
@test FrameTransformations.svector3_eltype(vit1) == Int64
@test FrameTransformations.promote_svector3_eltype((vft1, vit1)) == Float64
# Basic ctor
t = Translation((vft1, vit1))
@test t[1] == vft1
@test t[2] == vit1
@test size(t) == (2,)
@test length(t) == 2
@test keys(t) == Base.OneTo(2)
@test order(t) == 2
# Varargs constructor
@test t == Translation(1,2,3,4,5,6.)
@test_throws DimensionMismatch Translation(1,2.)
# Convert to Tuple
@test Tuple(t) == (1,2,3,4,5,6)
# Convert to SVector
@test SVector(t) == SA[1,2,3,4,5,6]
@test_throws DimensionMismatch Translation{1}(SA[1,2])
# Empty constructor
t0 = Translation{3, Float64}()
@test t0[1] == zeros(3)
@test t0[2] == zeros(3)
@test t0[3] == zeros(3)
# Convert to a different order auto-fill of missing SVector3
t2 = Translation{1}(t)
@test length(t2) == 1
@test t2[1] == vft1
t3 = Translation{3}(t2)
@test length(t3) == 3
@test_throws DimensionMismatch t3 == t2
@test t3[2] == zeros(3)
@test t3[3] == zeros(3)
t4 = Translation{1}(SA[1,2,3])
@test length(t4) == 1
@test t4[1] == [1,2,3]
t5 = Translation{2}(SA[1,2,3])
@test length(t5) == 2
@test t5[2] == zeros(3)
t6 = t4 - t4
@test t6[1] == zeros(3)
t7 = t5 - t4
@test length(t7) == 2
@test t7[1] == zeros(3)
@test t7[2] == zeros(3)
@test t4 - t5 == t5 - t4
t8 = t2 + t0
@test length(t8) == 3
@test t8[1] == [1,2,3]
@test t8[2] == zeros(3)
@test t8[3] == zeros(3)
t9 = t0 + t2
@test t8 == t9
t10 = -t2
@test t10[1] == [-1, -2, -3]
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1546 | using RemoteFiles
using Test
using SafeTestsets
@RemoteFileSet KERNELS "Spice Kernels Set" begin
LEAP = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/latest_leapseconds.tls" dir = joinpath(
@__DIR__, "..", "assets"
)
DE432 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" dir = joinpath(
@__DIR__, "..", "assets"
)
PA440 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/moon_pa_de440_200625.bpc" dir = joinpath(
@__DIR__, "..", "assets"
)
PA421 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/moon_pa_de421_1900-2050.bpc" dir = joinpath(
@__DIR__, "..", "assets"
)
FK_DE440 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/moon_de440_220930.tf" dir = joinpath(
@__DIR__, "..", "assets"
)
end;
download(KERNELS; verbose=true, force=false)
@testset "Definitions" verbose = true begin
@safetestset "Celestial" begin
include("celestial.jl")
end
@safetestset "Ecliptic" begin
include("ecliptic.jl")
end
@safetestset "Frozen" begin
include("frozen.jl")
end
@safetestset "Ephemeris" begin
include("ephemeris.jl")
end
@safetestset "Planetary" begin
include("planetary.jl")
end
@safetestset "Lunar" begin
include("lunar.jl")
end
@safetestset "Directions" begin
include("directions.jl")
include("twodir.jl")
end
end; | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 1274 | using Test
using LinearAlgebra
using FrameTransformations
using ReferenceFrameRotations
frames = FrameSystem{3,Float64}()
# Add ICRF axes
@test_nowarn add_axes!(frames, :Root, 12)
# test that GCRF can be defined only as child of ICRF
@test_throws ArgumentError add_axes_gcrf!(frames)
frames = FrameSystem{3,Float64}()
# Add ICRF axes
@test_nowarn add_axes!(frames, :ICRF, 1)
# test that ICRF can only be added as a root axes
@test_throws ArgumentError add_axes_icrf!(frames)
# Test GCRF can be added as child of ICRF
@test_nowarn add_axes_gcrf!(frames)
frames = FrameSystem{3, Float64}()
add_axes_icrf!(frames)
node = axes_graph(frames).nodes[1]
@test node.id == AXESID_ICRF
@test node.name == :ICRF
add_axes_gcrf!(frames)
node = axes_graph(frames).nodes[2]
@test node.id == AXESID_GCRF
@test node.name == :GCRF
# Test they have an identity rotation
R = rotation6(frames, 1, 23, 0.0)
@test R[1] ≈ DCM(1.0I) atol=1e-12 rtol=1e-12
@test R[2] ≈ DCM(0.0I) atol=1e-12 rtol=1e-12
# Test GCRF as root axes
frames = FrameSystem{3, Float64}()
add_axes_gcrf!(frames)
node = axes_graph(frames).nodes[1]
@test node.id == AXESID_GCRF
@test node.name == :GCRF
# Test EME
frames = FrameSystem{3, Float64}()
add_axes_icrf!(frames)
add_axes_eme2000!(frames, :EME, 1, 4) | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 2196 | using FrameTransformations
using Ephemerides
using RemoteFiles
using Test
using LinearAlgebra
@RemoteFileSet KERNELS "Spice Kernels Set" begin
LEAP = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/latest_leapseconds.tls" dir = joinpath(
@__DIR__, "..", "assets"
)
DE432 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" dir = joinpath(
@__DIR__, "..", "assets"
)
end;
download(KERNELS; verbose=true, force=false)
frames = FrameSystem{4,Float64}()
add_axes_icrf!(frames)
eph = EphemerisProvider(path(KERNELS[:DE432]))
add_point!(frames, :SSB, 0, 1)
add_point_alias!(frames, :SSB, :SolarSystemB)
add_point_ephemeris!(frames, eph, :Sun, 10)
add_point_ephemeris!(frames, eph, :EarthB, 3)
add_point_ephemeris!(frames, eph, :Earth, 399)
@testset "Position" verbose = false begin
add_direction_position!(frames, :SunEarth, :Sun, :Earth, :ICRF)
for _ = 1:100
e = rand(0:1e8)
ref = vector3(frames, :Sun, :Earth, :ICRF, e)
ref /= norm(ref)
val = direction3(frames, :SunEarth, :ICRF, e)
@test dot(val, ref) ≈ 1.0
end
end
@testset "Velocity" verbose = false begin
add_direction_velocity!(frames, :SunEarthVel, :Sun, :Earth, :ICRF)
for _ = 1:100
e = rand(0:1e8)
@views ref = vector6(frames, :Sun, :Earth, :ICRF, e)[4:end]
ref /= norm(ref)
val = direction3(frames, :SunEarthVel, :ICRF, e)
@test dot(val, ref) ≈ 1.0
end
end
@testset "Orthogonal" verbose = false begin
add_direction_orthogonal!(frames, :SunEarthMom, :SunEarth, :SunEarthVel, :ICRF)
for _ = 1:100
e = rand(0:1e8)
p, v = Translation(vector6(frames, :Sun, :Earth, :ICRF, e)...)
p /= norm(p)
v /= norm(v)
ref = cross(p, v)
ref /= norm(ref)
val = direction3(frames, :SunEarthMom, :ICRF, e)
@test dot(val, ref) ≈ 1.0
end
end
@testset "Fixed" verbose = false begin
add_direction_fixed!(frames, :Fix, :ICRF, [1.0, 0.0, 0.0])
for _ = 1:100
e = rand(0:1e8)
val = direction3(frames, :Fix, :ICRF, e)
@test val[1] ≈ 1.0
end
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 2073 | using Test
using SPICE
using LinearAlgebra
using FrameTransformations
using ReferenceFrameRotations
v2as = (x, y) -> acosd(max(-1, min(1, dot(x / norm(x), y / norm(y))))) * 3600
ICRF = 1
EME2000 = 22
ECL2000 = 17
ICRF_TEST = 1
EME_TEST = -10000000
@testset "EME 2000" verbose = false begin
frames = FrameSystem{3, Float64}()
add_axes!(frames, :Test, EME_TEST)
# Check that you can't add meme2000 to a random axes
@test_throws ArgumentError add_axes_eme2000!(frames, :EME, EME_TEST)
# Test rotation matrix from ICRF to EME2000
frames = FrameSystem{3,Float64}()
add_axes_icrf!(frames)
add_axes_eme2000!(frames, :EME)
R = rotation9(frames, ICRF, EME2000, rand())
v = rand(BigFloat, 3)
v /= norm(v)
@test v2as(R[1] * v, FrameTransformations.DCM_ICRF_TO_EME2000 * v) ≈ 0.0 atol = 1e-14 rtol = 1e-14
@test maximum(abs.(R[2])) ≈ 0.0 atol = 1e-14 rtol = 1e-14
@test maximum(abs.(R[3])) ≈ 0.0 atol = 1e-14 rtol = 1e-14
end
@testset "ECL 2000" verbose = false begin
frames = FrameSystem{3, Float64}()
add_axes!(frames, :Test, EME_TEST)
# Check that you can't add eclipj2000 to a random axes
@test_throws ArgumentError add_axes_ecl2000!(frames, :ECL, EME_TEST)
f1 = FrameSystem{3,Float64}()
f2 = FrameSystem{3,Float64}()
# Test Rotation from EME2000 to ECL2000
# Note: SPICE defines this rotation using the obliquity of
# the ecliptic taken from the IAU 1976/1980 Theory of Nutation
add_axes_icrf!(f1)
add_axes_eme2000!(f1, :EME)
add_axes_ecl2000!(f1, :ECL)
add_axes!(f2, :EME, EME2000)
add_axes_ecl2000!(f2, :ECL, EME2000, ECL2000)
# Test that ECL2000 is defined correctly with both ICRF and
# EME2000 as parents!
for frames in (f1, f2)
ep = rand(0.0:1e7)
R = sxform("J2000", "ECLIPJ2000", ep)
R_ = rotation6(frames, EME2000, ECL2000, ep)
v = rand(BigFloat, 3)
v /= norm(v)
@test v2as(R[1:3, 1:3] * v, R_[1] * v) ≈ 0.0 atol = 1e-6
@test R_[2] ≈ zeros(3, 3) atol = 1e-14
end
end | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 2746 | using FrameTransformations
using StaticArrays
using LinearAlgebra
using SPICE
using RemoteFiles
using Test
using Tempo
using JSMDInterfaces.Ephemeris
using Ephemerides
@RemoteFileSet KERNELS "Spice Kernels Set" begin
LEAP = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/latest_leapseconds.tls" dir = joinpath(
@__DIR__, "..", "assets"
)
DE432 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" dir = joinpath(
@__DIR__, "..", "assets"
)
end;
download(KERNELS; verbose=true, force=false)
@testset "Interface" verbose = false begin
frames = FrameSystem{2,Float64}()
add_axes_icrf!(frames)
@test_throws Exception add_point_ephemeris!(frames, eph, :Sun, 10)
@test_throws Exception add_axes_ephemeris!(frames, eph, :Sun, 10, :XYZ, 1)
eph = EphemerisProvider(path(KERNELS[:DE432]))
add_point!(frames, :SolarSystemBarycenter, 0, 1)
add_point_ephemeris!(frames, eph, :Sun, 10)
add_point_ephemeris!(frames, eph, :EarthB, 3)
add_point_ephemeris!(frames, eph, :Earth, 399)
frames2 = FrameSystem{2,Float64}()
add_axes_icrf!(frames2)
book = Dict(
0 => :SolarSystemBarycenter, 10 => :Sun, 3 => :EarthB, 399 => :Earth
)
@test_nowarn add_point_ephemeris!(frames2, eph, book)
@test points_alias(frames) == points_alias(frames2)
@test_throws Exception FrameTransformations.check_point_ephemeris(frames, eph, -1)
frames = FrameSystem{2,Float64}()
add_axes_icrf!(frames)
@test_throws Exception FrameTransformations.check_point_ephemeris(frames, eph, 10)
frames = FrameSystem{2,Float64}()
@test_throws Exception FrameTransformations.check_point_ephemeris(frames, eph, 0)
frames = FrameSystem{2,Float64}()
@test_throws Exception FrameTransformations.check_axes_ephemeris(frames, eph, -1)
end;
@testset "EphemeridesExt" verbose = false begin
kclear()
frames = FrameSystem{4,Float64}()
add_axes_icrf!(frames)
eph = EphemerisProvider(path(KERNELS[:DE432]))
add_point!(frames, :SolarSystemBarycenter, 0, 1)
add_point_ephemeris!(frames, eph, :Sun, 10)
add_point_ephemeris!(frames, eph, :EarthB, 3)
add_point_ephemeris!(frames, eph, :Earth, 399)
furnsh(path(KERNELS[:DE432]))
for _ in 1:100
e = rand(0:1e9)
pv_, lt_ = spkezr("EARTH", e, "J2000", "NONE", "SUN")
pv = vector6(frames, 10, 399, 1, e)
@test norm(pv[1:3] - pv_[1:3]) ≈ 0.0 atol = 1e-6
@test norm(pv[4:end] - pv_[4:end]) ≈ 0.0 atol = 1e-9
end
@test_nowarn vector3(frames, 10, 399, 1, 1.0)
@test_nowarn vector9(frames, 10, 399, 1, 1.0)
@test_nowarn vector12(frames, 10, 399, 1, 1.0)
kclear()
end;
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 532 | using FrameTransformations
using ReferenceFrameRotations
using LinearAlgebra
using Tempo
using Test
frames = FrameSystem{4, Float64}()
add_axes_icrf!(frames)
add_axes_ecl2000!(frames)
e = Epoch("2022-01-01T12:00:00.0000 UTC")
@test_nowarn add_axes_frozen!(frames, :FROZEN, -17, 17, e)
eTDB = convert(TDB, e)
R0 = rotation3(frames, :ICRF, :ECL2000, eTDB)
R = rotation3(frames, :ICRF, :FROZEN, eTDB)
@test R == R0
R = rotation12(frames, :ICRF, :FROZEN, eTDB)
@test R[2] ≈ DCM(0.0I)
@test R[3] ≈ DCM(0.0I)
@test R[4] ≈ DCM(0.0I) | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 3140 | using FrameTransformations
using StaticArrays
using LinearAlgebra
using SPICE
using RemoteFiles
using Test
using Tempo
using JSMDInterfaces.Ephemeris
using Ephemerides
@RemoteFileSet KERNELS "Spice Kernels Set" begin
LEAP = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/latest_leapseconds.tls" dir = joinpath(
@__DIR__, "..", "assets"
)
DE432 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" dir = joinpath(
@__DIR__, "..", "assets"
)
PA421 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/moon_pa_de421_1900-2050.bpc" dir = joinpath(
@__DIR__, "..", "assets"
)
PA440 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/moon_pa_de440_200625.bpc" dir = joinpath(
@__DIR__, "..", "assets"
)
FK_DE421 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/moon_080317.tf" dir = joinpath(
@__DIR__, "..", "assets"
)
FK_DE440 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/moon_de440_220930.tf" dir = joinpath(
@__DIR__, "..", "assets"
)
end;
download(KERNELS; verbose=true, force=false)
v2as = (x, y) -> acosd(max(-1, min(1, dot(x / norm(x), y / norm(y))))) * 3600
@testset "DE421" verbose = false begin
for kernel in (:LEAP, :PA421, :FK_DE421)
furnsh(path(KERNELS[kernel]))
end
frames = FrameSystem{2,Float64}()
add_axes_icrf!(frames)
eph = EphemerisProvider(path(KERNELS[:PA421]))
@test_throws ArgumentError add_axes_pa421!(frames, eph, :PA421, -1)
@test_throws ArgumentError add_axes_me421!(frames, :ME421, -1)
@test_throws ArgumentError add_axes_me421!(frames, :ME421, 31006)
add_axes_pa421!(frames, eph, :PA421)
add_axes_me421!(frames, :ME421, :PA421)
for _ in 1:100
et = rand(0.0:1e8)
v = rand(BigFloat, 3)
v /= norm(v)
# Test PA421!
Rb = rotation6(frames, :PA421, :ICRF, et)
Rs = sxform("MOON_PA", "J2000", et)
@test v2as(Rb[1] * v, Rs[1:3, 1:3] * v) ≤ 1e-6
@test v2as(Rb[2] * v, Rs[4:6, 1:3] * v) ≤ 1e-6
# Test ME421!
Rb = rotation6(frames, :ICRF, :ME421, et)
Rs = sxform("J2000", "MOON_ME", et)
@test v2as(Rb[1] * v, Rs[1:3, 1:3] * v) ≤ 1e-6
@test v2as(Rb[2] * v, Rs[4:6, 1:3] * v) ≤ 1e-6
end
end
@testset "DE440" verbose = false begin
for kernel in (:LEAP, :PA440, :FK_DE440)
furnsh(path(KERNELS[kernel]))
end
frames = FrameSystem{2,Float64}()
add_axes_icrf!(frames)
eph = EphemerisProvider(path(KERNELS[:PA440]))
@test_throws ArgumentError add_axes_pa440!(frames, eph, :PA440, -1)
add_axes_pa440!(frames, eph, :PA440)
for _ in 1:100
et = rand(0.0:1e8)
v = rand(BigFloat, 3)
v /= norm(v)
# Test PA421!
Rb = rotation6(frames, :PA440, :ICRF, et)
Rs = sxform("MOON_PA", "J2000", et)
@test v2as(Rb[1] * v, Rs[1:3, 1:3] * v) ≤ 1e-6
@test v2as(Rb[2] * v, Rs[4:6, 1:3] * v) ≤ 1e-6
end
end
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 921 | using FrameTransformations
using ReferenceFrameRotations
using LinearAlgebra
using JSMDInterfaces.Bodies
using Test
function Bodies.body_rotational_elements(::Number, ::Val{-1})
return -pi / 2, pi / 2, 0.0
end
frames = FrameSystem{4,Float64}()
@test_throws Exception add_axes_bci2000!(frames, :BCI, -1, -1)
@test_throws Exception add_axes_bcrtod!(frames, :BCR, -2, -1)
add_axes_icrf!(frames)
@test_nowarn add_axes_bci2000!(frames, :BCI, -1, -1)
R = rotation12(frames, :ICRF, :BCI, 12.345)
@test R[1] ≈ DCM(1.0I)
@test R[2] ≈ DCM(0.0I)
@test R[3] ≈ DCM(0.0I)
@test R[4] ≈ DCM(0.0I)
@test_nowarn add_axes_bcrtod!(frames, :BCR, -2, -1; deriv=false)
R = rotation12(frames, :ICRF, :BCR, 12.345)
@test R[1] ≈ DCM(1.0I)
@test R[2] ≈ DCM(0.0I)
@test R[3] ≈ DCM(0.0I)
@test R[4] ≈ DCM(0.0I)
@test_throws Exception add_axes_bci2000!(frames, :BCR, -2, -10)
@test_throws Exception add_axes_bcrtod!(frames, :BCR, -2, -10) | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | code | 3186 | using FrameTransformations
using Ephemerides
using RemoteFiles
using Test
using LinearAlgebra
using StaticArrays
@RemoteFileSet KERNELS "Spice Kernels Set" begin
LEAP = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/latest_leapseconds.tls" dir = joinpath(
@__DIR__, "..", "assets"
)
DE432 = @RemoteFile "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" dir = joinpath(
@__DIR__, "..", "assets"
)
end;
download(KERNELS; verbose=true, force=false)
atol = 1e-8
# Define two non parallel vectors and their 1st, 2nd and 3rd order time derivatives!
function get_v1(t)
return SA[cos(3t), t*sin(t), t^2*cos(t)]
end
get_v2(t) = SA[t^3, t^2, t]
@testset "Sequence assembly" begin
for _ = 1:100
θ = rand()
a, b = get_v1(θ)[1:3], get_v2(θ)[1:3]
c = cross(a, b)
aᵤ, bᵤ, cᵤ = a / norm(a), b / norm(b), c / norm(c)
# XY
R = FrameTransformations.twodir_to_dcm(a, b, :XY)
@test R' * [1, 0, 0] ≈ aᵤ atol = atol
@test R' * [0, 0, 1] ≈ cᵤ atol = atol
@test dot(R' * [0, 1, 0], aᵤ) ≈ 0 atol = atol
# YX
R = FrameTransformations.twodir_to_dcm(a, b, :YX)
@test R' * [0, 1, 0] ≈ aᵤ atol = atol
@test R' * [0, 0, 1] ≈ -cᵤ atol = atol
@test dot(R' * [1, 0, 0], aᵤ) ≈ 0 atol = atol
# XZ
R = FrameTransformations.twodir_to_dcm(a, b, :XZ)
@test R' * [1, 0, 0] ≈ aᵤ atol = atol
@test R' * [0, 1, 0] ≈ -cᵤ atol = atol
@test dot(R' * [0, 1, 0], aᵤ) ≈ 0 atol = atol
# ZX
R = FrameTransformations.twodir_to_dcm(a, b, :ZX)
@test R' * [0, 0, 1] ≈ aᵤ atol = atol
@test R' * [0, 1, 0] ≈ cᵤ atol = atol
@test dot(R' * [1, 0, 0], aᵤ) ≈ 0 atol = atol
# YZ
R = FrameTransformations.twodir_to_dcm(a, b, :YZ)
@test R' * [0, 1, 0] ≈ aᵤ atol = atol
@test R' * [1, 0, 0] ≈ cᵤ atol = atol
@test dot(R' * [0, 0, 1], aᵤ) ≈ 0 atol = atol
# ZY
R = FrameTransformations.twodir_to_dcm(a, b, :ZY)
@test R' * [0, 0, 1] ≈ aᵤ atol = atol
@test R' * [1, 0, 0] ≈ -cᵤ atol = atol
@test dot(R' * [0, 1, 0], aᵤ) ≈ 0 atol = atol
end
end;
@testset "Frames" begin
frames = FrameSystem{4,Float64}()
add_axes_icrf!(frames)
eph = EphemerisProvider(path(KERNELS[:DE432]))
add_point!(frames, :SSB, 0, 1)
add_point_ephemeris!(frames, eph, :Sun, 10)
add_point_ephemeris!(frames, eph, :EarthB, 3)
add_point_ephemeris!(frames, eph, :Earth, 399)
add_direction_position!(frames, :SunEarthPos, :Sun, :Earth, :ICRF)
add_direction_velocity!(frames, :SunEarthVel, :Sun, :Earth, :ICRF)
add_axes_twodir!(frames, :SunEarthRot, 2, :ICRF, :SunEarthPos, :SunEarthVel, :XY)
@test_throws ArgumentError add_axes_twodir!(frames, :SunEarthRot, 2, :ICRF, :A, :SunEarthVel, :XY)
@test_throws ArgumentError add_axes_twodir!(frames, :SunEarthRot, 2, :ICRF, :SunEarthPos, :B, :XY)
for _ = 1:100
e = rand(0:1e8)
v = vector3(frames, :Sun, :Earth, :SunEarthRot, e)
v /= norm(v)
@test v[1] ≈ 1.0
end
end; | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 2562 |
# FrameTransformations.jl
_A modern high-performance set of tools for transformations between standard and user-defined reference frame._
[](https://juliaspacemissiondesign.github.io/FrameTransformations.jl/stable/)
[](https://juliaspacemissiondesign.github.io/FrameTransformations.jl/dev/)
[](https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl/actions/workflows/ci.yml)
[](https://codecov.io/gh/JuliaSpaceMissionDesign/FrameTransformations.jl)
[](https://github.com/invenia/BlueStyle)
Are you in search of fundamental routines for efficient and extensible frames transformations?
If so, this package is the ideal starting point. FrameTransformations.jl is designed to
provide users with the ability to create a customized, efficient, flexible, and
extensible axes/point graph models for mission analysis and space mission design purposes.
## Features
- Convert between different time scales and representations (via [Tempo.jl](https://github.com/JuliaSpaceMissionDesign/Tempo.jl));
- Read binary ephemeris files (via [Ephemerides.jl](https://github.com/JuliaSpaceMissionDesign/Ephemerides.jl) or [CalcephEphemeris.jl](https://github.com/JuliaSpaceMissionDesign/CalcephEphemeris.jl))
- Create custom reference frame systems with both standard and user-defined points and axes.
- Transform states and their higher-order derivatives between different frames (up to jerk)
All of this seamlessly integrated with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl).
## Installation
This package can be installed using Julia's package manager:
```julia
julia> import Pkg
julia> Pkg.add("FrameTransformations.jl");
```
## Documentation
For further information on this package and its tutorials please refer to the
[stable documentation](https://juliaspacemissiondesign.github.io/FrameTransformations.jl/stable/).
## Support
If you found this package useful, please consider starring the repository. We also encourage
you to take a look at other astrodynamical packages of the [JSMD](https://github.com/JuliaSpaceMissionDesign/) organisation. | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 1339 | # Welcome to FrameTransformations.jl!
_A modern, high-performance and comprehensive set of tools for transformations between any standard and user-defined reference frame._
Are you in search of fundamental routines for efficient and extensible frames transformations?
If so, this package is the ideal starting point. FrameTransformations.jl is designed to
provide users with the ability to create a customized, efficient, flexible, and
extensible axes/point graph models for mission analysis and space mission design purposes.
## Features
- Convert between different time scales and representations (via [Tempo.jl](https://github.com/JuliaSpaceMissionDesign/Tempo.jl)).
- Read binary ephemeris files (via [Ephemerides.jl](https://github.com/JuliaSpaceMissionDesign/Ephemerides.jl) or [CalcephEphemeris.jl](https://github.com/JuliaSpaceMissionDesign/CalcephEphemeris.jl) extensions).
- Create custom reference frame systems with both standard and user-defined points, axes and directions.
- Transform states and their higher-order derivatives between different frames (up to jerk).
All of this integrated with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl).
## Installation
This package can be installed using Julia's package manager:
```julia
julia> import Pkg
julia> Pkg.add("FrameTransformations.jl");
``` | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 1257 | # [Axes](@id axes_api)
## Core
```@docs
add_axes!
add_axes_fixedoffset!
add_axes_projected!
add_axes_rotating!
add_axes_alias!
FrameTransformations.add_axes_ephemeris!
```
## Celestial
```@docs
add_axes_gcrf!
add_axes_icrf!
add_axes_eme2000!
```
## Ecliptic
```@docs
add_axes_ecl2000!
```
## Terrestrial
```@docs
add_axes_itrf!
add_axes_tirf!
add_axes_cirf!
add_axes_mod!
add_axes_tod!
add_axes_gtod!
add_axes_pef!
```
## Planetary
```@docs
add_axes_bci2000!
add_axes_bcrtod!
```
## Lunar
```@docs
add_axes_me421!
add_axes_pa421!
add_axes_pa440!
```
## Topocentric
```@docs
add_axes_topocentric!
```
## Others
```@docs
add_axes_twodir!
add_axes_frozen!
add_axes_fixed_quaternion!
add_axes_fixed_angles!
add_axes_fixed_angleaxis!
```
## Utils
### [IDs](@id frames_axesid)
This is a list of NAIF IDs for standard axes that are used in astrodynamic applications.
```@docs
FrameTransformations.AXESID_ICRF
FrameTransformations.AXESID_MOONME_DE421
FrameTransformations.AXESID_MOONPA_DE421
FrameTransformations.AXESID_MOONPA_DE440
FrameTransformations.AXESID_ECL2000
FrameTransformations.AXESID_EME2000
FrameTransformations.AXESID_GCRF
```
### [Rotation Matrices](@id frames_dcms)
```@docs
FrameTransformations.DCM_ICRF_TO_EME2000
``` | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 153 | # [Directions](@id dir_api)
```@docs
add_direction!
add_direction_fixed!
add_direction_position!
add_direction_velocity!
add_direction_orthogonal!
``` | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 695 | ## [Frame System](@id frames_api)
```@docs
FrameSystem
order
FrameTransformations.timescale
```
### Points
```@docs
has_point
points_graph
points_alias
```
### Axes
```@docs
has_axes
axes_graph
axes_alias
```
### Directions
```@docs
has_direction
directions
```
## [Rotations](@id rotation_api)
```@docs
Rotation
Base.inv
Translation
```
## [Transformations](@id transformations_api)
### [Points](@id points_transform_api)
```@docs
vector3
vector6
vector9
vector12
```
### [Axes](@id axes_transform_api)
```@docs
rotation3
rotation6
rotation9
rotation12
```
### [Directions](@id directions_transform_api)
```@docs
direction3
direction6
direction9
direction12
```
| FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 3.0.0 | cb117510f2ba3d831439f56a5a3c00170cbf7a8d | docs | 176 | # [Points](@id points_api)
```@docs
add_point!
add_point_dynamical!
add_point_fixedoffset!
FrameTransformations.add_point_ephemeris!
add_point_surface!
add_point_alias!
``` | FrameTransformations | https://github.com/JuliaSpaceMissionDesign/FrameTransformations.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 148 | module TileMaps
import Crayons
include("objects.jl")
include("object_indexable_array.jl")
include("tile_map.jl")
include("visualization.jl")
end
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 2778 | """
ObjectIndexableArray{T, N, A, O} <: AbstractArray{T, N}
An instance of `ObjectIndexableArray`, referred to as `object_indexable_array` here, simply wraps an `array` (whose type is captured by the type parameter `A` above) and allows us to index its first dimension using a [singleton](https://docs.julialang.org/en/v1/manual/types/#man-singleton-types) object or an array of singleton objects (in addition to all the other ways of indexing the wrapped `array`). Information about the objects is stored in the type parameter `O` above which is essentially the type of tuple of objects along the `num_objects` dimension. Note that `size(object_indexable_array, 1)` should be equal to the number of elements in the type parameter `O`.
"""
struct ObjectIndexableArray{T, N, A, O} <: AbstractArray{T, N}
array::A
end
get_objects_type(::ObjectIndexableArray{T, N, A, O}) where {T, N, A, O} = O
get_objects(object_indexable_array::ObjectIndexableArray) = Tuple(object_type() for object_type in get_objects_type(object_indexable_array).parameters)
Base.size(object_indexable_array::ObjectIndexableArray, args...; kwargs...) = Base.size(object_indexable_array.array, args..., kwargs...)
# regular indexing (indexing without using objects)
Base.getindex(object_indexable_array::ObjectIndexableArray, args...; kwargs...) = Base.getindex(object_indexable_array.array, args..., kwargs...)
Base.setindex!(object_indexable_array::ObjectIndexableArray, args...; kwargs...) = Base.setindex!(object_indexable_array.array, args..., kwargs...)
# indexing using a single object
@generated function Base.to_index(object_indexable_array::ObjectIndexableArray{T, N, A, O}, object::X) where {T, N, A, O, X <: AbstractObject}
i = findfirst(X .=== O.parameters)
isnothing(i) && error("Object $object is not present in $object_indexable_array")
return :($i)
end
Base.getindex(object_indexable_array::ObjectIndexableArray, object::AbstractObject, args...; kwargs...) = getindex(object_indexable_array.array, Base.to_index(object_indexable_array, object), args..., kwargs...)
Base.setindex!(object_indexable_array::ObjectIndexableArray, value::Bool, object::AbstractObject, args...; kwargs...) = setindex!(object_indexable_array.array, value, Base.to_index(object_indexable_array, object), args..., kwargs...)
# indexing using an array of objects
Base.to_index(object_indexable_array::ObjectIndexableArray, objects::AbstractArray{<:AbstractObject}) = map(object -> Base.to_index(object_indexable_array, object), objects)
Base.getindex(object_indexable_array::ObjectIndexableArray, objects::AbstractArray{<:AbstractObject}, args...; kwargs...) = getindex(object_indexable_array.array, map(object -> Base.to_index(object_indexable_array, object), objects), args..., kwargs...)
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 291 | const ObjectOccupancyArray{O, N} = ObjectIndexableArray{O, BitArray{N}, Bool, N}
function ObjectOccupancyArray(objects::Tuple{Vararg{AbstractObject}}, dims::Integer...)
grid = falses(length(objects), dims...)
return ObjectOccupancyArray{typeof(objects), length(dims) + 1}(grid)
end
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 294 | abstract type AbstractObject end
struct ExampleObject1 <: AbstractObject end
const EXAMPLE_OBJECT_1 = ExampleObject1()
struct ExampleObject2 <: AbstractObject end
const EXAMPLE_OBJECT_2 = ExampleObject2()
struct ExampleObject3 <: AbstractObject end
const EXAMPLE_OBJECT_3 = ExampleObject3()
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 942 | """
const TileMap{O} = ObjectIndexableArray{Bool, 3, BitArray{3}, O}
An instance of `TileMap`, referred to as `tile_map` here, wraps an `array` of type `BitArray{3}` and is of size `(num_objects, height, width)`, which encodes information about the presence or absence of objects across the tiles using Boolean values. Each tile can contain multiple objects, which is captured by a multi-hot encoding along the first dimension (`num_objects` dimension) of the `array`.
"""
const TileMap{O} = ObjectIndexableArray{Bool, 3, BitArray{3}, O}
TileMap(objects::Tuple{Vararg{AbstractObject}}, grid::BitArray{3}) = TileMap{typeof(objects)}(grid)
TileMap(objects::Tuple{Vararg{AbstractObject}}, height::Integer, width::Integer) = TileMap(objects, falses(length(objects), height, width))
get_num_objects(tile_map::TileMap) = size(tile_map, 1)
get_height(tile_map::TileMap) = size(tile_map, 2)
get_width(tile_map::TileMap) = size(tile_map, 3)
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 2790 | get_char(object::Any) = '?'
get_foreground_color(::Any) = :white
get_background_color(::Any) = :nothing
get_char(::Nothing) = '⋅'
get_foreground_color(::Nothing) = :white
get_background_color(::Nothing) = :nothing
# purposefully not defining `get_char(::ExampleObject3)`, `get_foreground_color(::ExampleObject3)`, and `get_background_color(::ExampleObject3)` in order to test fallback to default methods
get_char(::ExampleObject1) = '∘'
get_foreground_color(::ExampleObject1) = :light_green
get_background_color(::ExampleObject1) = :nothing
get_char(::ExampleObject2) = '✖'
get_foreground_color(::ExampleObject2) = :light_red
get_background_color(::ExampleObject2) = :nothing
function Base.show(io::IO, ::MIME"text/plain", object::AbstractObject)
print(io,
typeof(object),
"() displayed as <",
Crayons.Crayon(foreground = get_foreground_color(object), background = get_background_color(object), reset = true),
get_char(object),
Crayons.Crayon(reset = true),
">",
)
return nothing
end
function get_first_object(tile_map::TileMap{O}, height::Integer, width::Integer) where {O}
idx = findfirst(tile_map[:, height, width])
if isnothing(idx)
return nothing
else
return O.parameters[idx]()
end
end
function Base.show(io::IO, ::MIME"text/plain", tile_map::TileMap)
for i in 1:get_height(tile_map)
for j in 1:get_width(tile_map)
object = get_first_object(tile_map, i, j)
print(io,
Crayons.Crayon(foreground = get_foreground_color(object), background = get_background_color(object), reset = true),
get_char(object),
Crayons.Crayon(reset = true),
)
end
if i < get_height(tile_map)
println(io)
else
print(io)
end
end
return nothing
end
function show_layers(io::IO, ::MIME"text/plain", tile_map::TileMap{O}) where {O}
for (layer, object_type) in enumerate(O.parameters)
object = object_type()
println("layer = $layer, object = $object")
for i in 1:get_height(tile_map)
for j in 1:get_width(tile_map)
if tile_map[object, i, j]
displayed_object = object
else
displayed_object = nothing
end
print(io,
Crayons.Crayon(foreground = get_foreground_color(displayed_object), background = get_background_color(displayed_object), reset = true),
get_char(displayed_object),
Crayons.Crayon(reset = true),
)
end
println(io)
end
end
return nothing
end
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | code | 2065 | import TileMaps as TM
import Test
Test.@testset "TileMaps.jl" begin
objects = (TM.EXAMPLE_OBJECT_1, TM.EXAMPLE_OBJECT_2, TM.EXAMPLE_OBJECT_3)
layer_1 = BitArray([0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0])
layer_2 = BitArray([0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 0 0 0])
layer_3 = BitArray([0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
1 1 0 0 0])
grid = BitArray(undef, 3, 4, 5)
grid[1, :, :] .= layer_1
grid[2, :, :] .= layer_2
grid[3, :, :] .= layer_3
tile_map = TM.TileMap(objects, grid)
Test.@test TM.get_objects_type(tile_map) == typeof(objects)
Test.@test TM.get_objects(tile_map) == objects
Test.@test TM.get_num_objects(tile_map) == 3
Test.@test TM.get_height(tile_map) == 4
Test.@test TM.get_width(tile_map) == 5
# regular indexing (indexing without using objects)
Test.@test tile_map[1, 2, 3] == false
Test.@test tile_map[1:3, 2, 2] == BitArray([1, 0, 1])
Test.@test tile_map[[1, 3], 2, 2] == BitArray([1, 1])
# indexing using one object
Test.@test tile_map[TM.EXAMPLE_OBJECT_2, 1, 1] == tile_map[2, 1, 1] == false
Test.@test tile_map[TM.EXAMPLE_OBJECT_2, end, end] == tile_map[2, end, end] == false
Test.@test tile_map[TM.EXAMPLE_OBJECT_2, :, 1] == tile_map[2, :, 1] == BitArray([0, 0, 1, 1])
Test.@test tile_map[TM.EXAMPLE_OBJECT_2, end, :] == tile_map[2, end, :] == BitArray([1, 1, 0, 0, 0])
Test.@test tile_map[TM.EXAMPLE_OBJECT_2, 2:3, 2:4] == tile_map[2, 2:3, 2:4] == BitArray([0 0 0
1 0 0])
# indexing using more than one object
Test.@test tile_map[[TM.EXAMPLE_OBJECT_2], 1, 1] == tile_map[[2], 1, 1] == BitArray([0])
Test.@test tile_map[[TM.EXAMPLE_OBJECT_3, TM.EXAMPLE_OBJECT_1], 2, 1] == tile_map[[3, 1], 2, 1] == BitArray([1, 0])
end
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | 2e3e7ee05b1b2f976079ab6a0bc6f03491ead390 | docs | 6457 | # TileMaps
`TileMaps` is a package that makes it simple to create 2D tile maps (and higher dimensional equivalents) in Julia. It is designed to be lightweight and fast, and have minimal dependencies.
**Note:** This package does not export any names. The examples below that demonstrate the use of this package assume that it has been loaded via `import TileMaps as TM`.
**Acknowledgements:** Big thanks to [Jun Tian](https://github.com/findmyway) (@findmyway) for initially introducing the core ideas of this package in [`GridWorlds`](https://github.com/JuliaReinforcementLearning/GridWorlds.jl).
### Index
1. [ObjectIndexableArray](#objectindexablearray)
1. [Objects](#objects)
1. [TileMap](#tilemap)
1. [Constructing a TileMap](#constructing-a-tilemap)
1. [Indexing a TileMap](#indexing-a-tilemap)
1. [Visualizing a TileMap](#visualizing-a-tilemap)
### `ObjectIndexableArray`
```
struct ObjectIndexableArray{T, N, A, O} <: AbstractArray{T, N}
array::A
end
```
An instance of `ObjectIndexableArray`, referred to as `object_indexable_array` here, simply wraps an `array` (whose type is captured by the type parameter `A` above) and allows us to index its first dimension using a [singleton](https://docs.julialang.org/en/v1/manual/types/#man-singleton-types) object or an array of singleton objects (in addition to all the other ways of indexing the wrapped `array`). Information about the objects is stored in the type parameter `O` above which is essentially the type of tuple of objects along the `num_objects` dimension. Note that `size(object_indexable_array, 1)` should be equal to the number of elements in the type parameter `O`.
`size(object_indexable_array, 1)` should be equal to the number of elements in the type parameter `O`.
### Objects
Object types are [singletons](https://docs.julialang.org/en/v1/manual/types/#man-singleton-types) (structs with no fields). Here are the example objects that are provided in this package:
```
abstract type AbstractObject end
struct ExampleObject1 <: AbstractObject end
const EXAMPLE_OBJECT_1 = ExampleObject1()
struct ExampleObject2 <: AbstractObject end
const EXAMPLE_OBJECT_2 = ExampleObject2()
struct ExampleObject3 <: AbstractObject end
const EXAMPLE_OBJECT_3 = ExampleObject3()
```
You can crate your own objects like this:
```
julia> struct MyObject <: TM.AbstractObject end
julia>
```
For an `object_indexable_array`, you can get the type of tuple of objects in it using `TM.get_objects_type(object_indexable_array)`, or you can get the tuple of objects itself, using `TM.get_objects(object_indexable_array)`.
### `TileMap`
```
const TileMap{O} = ObjectIndexableArray{Bool, 3, BitArray{3}, O}
```
An instance of `TileMap`, referred to as `tile_map` here, wraps an `array` of type `BitArray{3}` and is of size `(num_objects, height, width)`, which encodes information about the presence or absence of objects across the tiles using Boolean values. Each tile can contain multiple objects, which is captured by a multi-hot encoding along the first dimension (`num_objects` dimension) of the `array`.
### Constructing a `TileMap`
You can instantiate a `TileMap` using the following constructor that are provided by this package:
1. Create an empty `tile_map` using a tuple of objects and the desired height (8) and width(16):
```
julia> tile_map = TM.TileMap((TM.EXAMPLE_OBJECT_1, TM.EXAMPLE_OBJECT_2, TM.EXAMPLE_OBJECT_3), 8, 16);
julia>
```
1. Create a `tile_map` using a tuple of objects and an existing `array`:
```
julia> tile_map = TM.TileMap((TM.EXAMPLE_OBJECT_1, TM.EXAMPLE_OBJECT_2, TM.EXAMPLE_OBJECT_3), rand(Bool, 3, 8, 16) |> BitArray);
julia>
```
### Indexing a `TileMap`
Because of `TileMap <: ObjectIndexableArray`, we can index the first dimension of a `tile_map` in a variety of ways. For example, like this:
```
julia> tile_map[TM.EXAMPLE_OBJECT_3, 4, 6]
true
julia> tile_map[TM.EXAMPLE_OBJECT_3, 2:4, 6:7]
3×2 BitMatrix:
1 1
0 1
1 1
julia> tile_map[[TM.EXAMPLE_OBJECT_3, TM.EXAMPLE_OBJECT_1], 5, 8]
2-element BitVector:
0
1
julia>
```
### Visualizing a `TileMap`
Using the [`Crayons`](https://github.com/KristofferC/Crayons.jl) package, each object can be displayed as a colored Unicode character. For example, like this:
<img src="https://github.com/Sid-Bhatia-0/TileMaps.jl/blob/master/assets/example_object_1.png">
When you create your custom object like this, for example,
<img src="https://github.com/Sid-Bhatia-0/TileMaps.jl/blob/master/assets/my_object.png">
you may also want to implement the following methods: `get_char(::MyObject)` (especially this one), `get_foreground_color(::MyObject)`, and `get_backround_color(::MyObject)`. If you don't do so, `MY_OBJECT` will be displayed based on the following default methods as defined in this package:
```
get_char(object::Any) = '?'
get_foreground_color(object::Any) = :white
get_backround_color(object::Any) = :nothing
```
A `tile_map` is displayed as a 2D grid of colored Unicode characters, with one character displayed per tile. Only the first object present (along the first dimension (`num_objects` dimension) of the `array`) at a tile is displayed for that tile, even though there may be multiple objects present at that tile.
If there are no objects present at a tile, then the `⋅` character is displayed for that tile (with white color and no background). This behaviour can be customized by overriding the following methods:
```
get_char(::Nothing) = '⋅'
get_foreground_color(::Nothing) = :white
get_background_color(::Nothing) = :nothing
```
<img src="https://github.com/Sid-Bhatia-0/TileMaps.jl/blob/master/assets/tile_map.png">
Note that the `get_char`, `get_foreground_color`, and `get_background_color` methods have purposefully not been explictly defined for the `TM.ExampleObject3` type in order to demonstrate the fallback to the default character and colors, which is why `TM.EXAMPLE_OBJECT_3` is displayed using a white colored `?` with no background.
We can also inspect each kind of object in the `tile_map` separately using the `show_layers` method. This is very handy for debugging:
<img src="https://github.com/Sid-Bhatia-0/TileMaps.jl/blob/master/assets/show_layers.png">
Here we have utilized only a limited number of features from the `Crayons` package in order to show an an example of how one may want to display a `tile_map`. `Crayons` has other features that you can play with to suit your needs.
| TileMaps | https://github.com/JuliaReinforcementLearning/TileMaps.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | code | 1544 | using SyncSort
using BenchmarkTools
@inbounds function test1(n)
x = rand(n)
y = rand(n)
z = rand(n)
syncsort!(x,y,z)
x,y,z
end
@inbounds function test2(n)
x = rand(n)
y = rand(n)
z = rand(n)
isorted = sortperm(x)
x = x[isorted]
y = y[isorted]
z = z[isorted]
x,y,z
end
function syncsortperm!(v, rest...)
isorted = sortperm(v)
# Permute elements of v and rest in-place following isorted
done = firstindex(v) - 1
i = firstindex(isorted)
@inbounds while i <= lastindex(isorted)
j = i
js = isorted[j]
if js != done
@inbounds while true
isorted[j] = done
isorted[js] == done && break
v[j], v[js] = v[js], v[j]
for r in rest
r[j], r[js] = r[js], r[j]
end
j = js
js = isorted[j]
end
end
i += 1
end
end
@inbounds function test3(n)
x = rand(n)
y = rand(n)
z = rand(n)
syncsortperm!(x,y,z)
x,y,z
end
@inbounds function test4(n)
x = rand(n)
y = rand(n)
z = rand(n)
syncsort!(x,y,z; alg=SyncSort.CPUSort.ScratchQuickSort())
x,y,z
end
println("\nsyncsort:")
display(@benchmark(test1(10_000)))
println("\nsortperm:")
display(@benchmark(test2(10_000)))
println("\nsyncsortperm:")
display(@benchmark(test3(10_000)))
println("\nsyncsort/ScratchQuickSort:")
display(@benchmark(test4(10_000)))
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | code | 321 | # File : SyncSort.jl
# License: MIT
# Author : Dominik Werner <[email protected]>
# Date : 26.01.2023
# Paper : https://drive.google.com/file/d/0B7uLFueU4vLfcjJfZFh3TlIxMFE/view?resourcekey=0-8Ovsx4PtAJn78xLboBEb_g
module SyncSort
export syncsort!
include("cpu_sort.jl")
using .CPUSort
end # module MergeSortGPU
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | code | 53214 | # This file was copied from https://github.com/JuliaLang/julia/blob/v1.9.1/base/sort.jl with some
# modifications to propagate secondary arrays to be sorted and follow swaps. The original license
# is included below. Thank you!
# MIT License
# Copyright (c) 2009-2023: Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors: https://github.com/JuliaLang/julia/contributors
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# end of terms and conditions
# Please see [THIRDPARTY.md](./THIRDPARTY.md) for license information for other software used in this project.
module CPUSort
# Relevant exports
export syncsort!
export RadixSort, ScratchQuickSort, InsertionSort
# Internal imports
using Base.Order
using Base: copymutable, midpoint, require_one_based_indexing, uinttype,
sub_with_overflow, add_with_overflow, OneTo, BitSigned, BitIntegerType,
IteratorSize, HasShape, IsInfinite, tail
top_set_bit(x::Integer) = ceil(Integer, log2(x + oneunit(x)))
## Alternative keyword management
macro getkw(syms...)
getters = (getproperty(CPUSort, Symbol(:_, sym)) for sym in syms)
Expr(:block, (:($(esc(:((kw, $sym) = $getter(v, o, kw))))) for (sym, getter) in zip(syms, getters))...)
end
for (sym, exp, type) in [
(:lo, :(firstindex(v)), Integer),
(:hi, :(lastindex(v)), Integer),
(:mn, :(throw(ArgumentError("mn is needed but has not been computed"))), :(eltype(v))),
(:mx, :(throw(ArgumentError("mx is needed but has not been computed"))), :(eltype(v))),
(:scratch, nothing, :(Union{Nothing, Vector})), # could have different eltype
]
usym = Symbol(:_, sym)
@eval function $usym(v, o, kw)
# using missing instead of nothing because scratch could === nothing.
res = get(kw, $(Expr(:quote, sym)), missing)
res !== missing && return kw, res::$type
$sym = $exp
(;kw..., $sym), $sym::$type
end
end
## Scratch space management
"""
make_scratch(scratch::Union{Nothing, Vector}, T::Type, len::Integer)
Returns `(s, t)` where `t` is an `AbstractVector` of type `T` with length at least `len`
that is backed by the `Vector` `s`. If `scratch !== nothing`, then `s === scratch`.
This function will allocate a new vector if `scratch === nothing`, `resize!` `scratch` if it
is too short, and `reinterpret` `scratch` if its eltype is not `T`.
"""
function make_scratch(scratch::Nothing, T::Type, len::Integer)
s = Vector{T}(undef, len)
s, s
end
function make_scratch(scratch::Vector{T}, ::Type{T}, len::Integer) where T
len > length(scratch) && resize!(scratch, len)
scratch, scratch
end
function make_scratch(scratch::Vector, T::Type, len::Integer)
len_bytes = len * sizeof(T)
len_scratch = div(len_bytes, sizeof(eltype(scratch)))
len_scratch > length(scratch) && resize!(scratch, len_scratch)
scratch, reinterpret(T, scratch)
end
## sorting algorithm components ##
"""
_sort!(v::AbstractVector, a::Algorithm, o::Ordering, kw; t, offset)
An internal function that sorts `v` using the algorithm `a` under the ordering `o`,
subject to specifications provided in `kw` (such as `lo` and `hi` in which case it only
sorts `view(v, lo:hi)`)
Returns a scratch space if provided or constructed during the sort, or `nothing` if
no scratch space is present.
!!! note
`_sort!` modifies but does not return `v`.
A returned scratch space will be a `Vector{T}` where `T` is usually the eltype of `v`. There
are some exceptions, for example if `eltype(v) == Union{Missing, T}` then the scratch space
may be be a `Vector{T}` due to `MissingOptimization` changing the eltype of `v` to `T`.
`t` is an appropriate scratch space for the algorithm at hand, to be accessed as
`t[i + offset]`. `t` is used for an algorithm to pass a scratch space back to itself in
internal or recursive calls.
"""
function _sort! end
abstract type Algorithm end
"""
MissingOptimization(next) <: Algorithm
Filter out missing values.
Missing values are placed after other values according to `DirectOrdering`s. This pass puts
them there and passes on a view into the original vector that excludes the missing values.
This pass is triggered for both `sort([1, missing, 3])` and `sortperm([1, missing, 3])`.
"""
struct MissingOptimization{T <: Algorithm} <: Algorithm
next::T
end
struct WithoutMissingVector{T, U} <: AbstractVector{T}
data::U
function WithoutMissingVector(data; unsafe=false)
if !unsafe && any(ismissing, data)
throw(ArgumentError("data must not contain missing values"))
end
new{nonmissingtype(eltype(data)), typeof(data)}(data)
end
end
Base.@propagate_inbounds function Base.getindex(v::WithoutMissingVector, i)
out = v.data[i]
@assert !(out isa Missing)
out::eltype(v)
end
Base.@propagate_inbounds function Base.setindex!(v::WithoutMissingVector, x, i)
v.data[i] = x
v
end
Base.size(v::WithoutMissingVector) = size(v.data)
Base.axes(v::WithoutMissingVector) = axes(v.data)
"""
send_to_end!(f::Function, v::AbstractVector; [lo, hi])
Send every element of `v` for which `f` returns `true` to the end of the vector and return
the index of the last element for which `f` returns `false`.
`send_to_end!(f, v, lo, hi)` is equivalent to `send_to_end!(f, view(v, lo:hi))+lo-1`
Preserves the order of the elements that are not sent to the end.
"""
function send_to_end!(f::F, v::AbstractVector, rest; lo=firstindex(v), hi=lastindex(v)) where F <: Function
i = lo
@inbounds while i <= hi && !f(v[i])
i += 1
end
j = i + 1
@inbounds while j <= hi
if !f(v[j])
swap_rest!(v, rest, i, j)
i += 1
end
j += 1
end
i - 1
end
"""
send_to_end!(f::Function, v::AbstractVector, o::DirectOrdering[, end_stable]; lo, hi)
Return `(a, b)` where `v[a:b]` are the elements that are not sent to the end.
If `o isa ReverseOrdering` then the "end" of `v` is `v[lo]`.
If `end_stable` is set, the elements that are sent to the end are stable instead of the
elements that are not
"""
@inline send_to_end!(f::F, v::AbstractVector, rest, ::ForwardOrdering, end_stable=false; lo, hi) where F <: Function =
end_stable ? (lo, hi-send_to_end!(!f, view(v, hi:-1:lo), view_rest(rest, hi:-1:lo))) : (lo, send_to_end!(f, v, rest; lo, hi))
@inline send_to_end!(f::F, v::AbstractVector, rest, ::ReverseOrdering, end_stable=false; lo, hi) where F <: Function =
end_stable ? (send_to_end!(!f, v, rest; lo, hi)+1, hi) : (hi-send_to_end!(f, view(v, hi:-1:lo), view_rest(rest, hi:-1:lo))+1, hi)
"""
Swap two elements at indices i and j for the key vector v and secondary vectors in rest.
NEW ADDITION
"""
@inline function swap_rest!(v, rest, i, j)
v[i], v[j] = v[j], v[i]
for r in rest
r[i], r[j] = r[j], r[i]
end
end
"""
Construct views into each of the vectors of within a tuple.
NEW ADDITION
"""
@inline function view_rest(rest::Tuple, inds...)
@inbounds tuple((view(r, inds...) for r in rest)...)
end
"""
Reverse each of the vectors within a tuple.
NEW ADDITION
"""
@inline function reverse_rest!(rest::Tuple, lo, hi)
for r in rest
reverse!(r, lo, hi)
end
end
"""
Create copies of the vectors within a tuple.
NEW ADDITION
"""
@inline function similar_rest(rest::Tuple)
tuple((similar(r) for r in rest)...)
end
@inline function _sort!(v::AbstractVector, rest, a::MissingOptimization, o::Ordering, kw)
@getkw lo hi
if o isa DirectOrdering && eltype(v) >: Missing && nonmissingtype(eltype(v)) != eltype(v)
lo, hi = send_to_end!(ismissing, v, rest, o; lo, hi)
_sort!(WithoutMissingVector(v, unsafe=true), rest, a.next, o, (;kw..., lo, hi))
elseif o isa Perm && o.order isa DirectOrdering && eltype(v) <: Integer &&
eltype(o.data) >: Missing && nonmissingtype(eltype(o.data)) != eltype(o.data) &&
all(i === j for (i,j) in zip(v, eachindex(o.data)))
throw(error("SyncSort not defined for Missing types with Perm ordering yet."))
# TODO make this branch known at compile time
# This uses a custom function because we need to ensure stability of both sides and
# we can assume v is equal to eachindex(o.data) which allows a copying partition
# without allocations.
lo_i, hi_i = lo, hi
for i in eachindex(o.data) # equal to copy(v)
x = o.data[i]
if ismissing(x) == (o.order == Reverse) # should x go at the beginning/end?
v[lo_i] = i
lo_i += 1
else
v[hi_i] = i
hi_i -= 1
end
end
reverse!(v, lo_i, hi)
if o.order == Reverse
lo = lo_i
else
hi = hi_i
end
_sort!(v, a.next, Perm(o.order, WithoutMissingVector(o.data, unsafe=true)), (;kw..., lo, hi), rest)
else
_sort!(v, rest, a.next, o, kw)
end
end
"""
IEEEFloatOptimization(next) <: Algorithm
Move NaN values to the end, partition by sign, and reinterpret the rest as unsigned integers.
IEEE floating point numbers (`Float64`, `Float32`, and `Float16`) compare the same as
unsigned integers with the bits with a few exceptions. This pass
This pass is triggered for both `sort([1.0, NaN, 3.0])` and `sortperm([1.0, NaN, 3.0])`.
"""
struct IEEEFloatOptimization{T <: Algorithm} <: Algorithm
next::T
end
after_zero(::ForwardOrdering, x) = !signbit(x)
after_zero(::ReverseOrdering, x) = signbit(x)
is_concrete_IEEEFloat(T::Type) = T <: Base.IEEEFloat && isconcretetype(T)
@inline function _sort!(v::AbstractVector, rest, a::IEEEFloatOptimization, o::Ordering, kw)
@getkw lo hi
if is_concrete_IEEEFloat(eltype(v)) && o isa DirectOrdering
lo, hi = send_to_end!(isnan, v, rest, o, true; lo, hi)
iv = reinterpret(uinttype(eltype(v)), v)
j = send_to_end!(x -> after_zero(o, x), v, rest; lo, hi)
scratch = _sort!(iv, rest, a.next, Reverse, (;kw..., lo, hi=j))
if scratch === nothing # Union split
_sort!(iv, rest, a.next, Forward, (;kw..., lo=j+1, hi, scratch))
else
_sort!(iv, rest, a.next, Forward, (;kw..., lo=j+1, hi, scratch))
end
elseif eltype(v) <: Integer && o isa Perm && o.order isa DirectOrdering && is_concrete_IEEEFloat(eltype(o.data))
lo, hi = send_to_end!(i -> isnan(@inbounds o.data[i]), v, rest, o.order, true; lo, hi)
ip = reinterpret(uinttype(eltype(o.data)), o.data)
j = send_to_end!(i -> after_zero(o.order, @inbounds o.data[i]), v, rest; lo, hi)
scratch = _sort!(v, rest, a.next, Perm(Reverse, ip), (;kw..., lo, hi=j))
if scratch === nothing # Union split
_sort!(v, rest, a.next, Perm(Forward, ip), (;kw..., lo=j+1, hi, scratch))
else
_sort!(v, rest, a.next, Perm(Forward, ip), (;kw..., lo=j+1, hi, scratch))
end
else
_sort!(v, rest, a.next, o, kw)
end
end
"""
BoolOptimization(next) <: Algorithm
Sort `AbstractVector{Bool}`s using a specialized version of counting sort.
Accesses each element at most twice (one read and one write), and performs at most two
comparisons.
"""
struct BoolOptimization{T <: Algorithm} <: Algorithm
next::T
end
_sort!(v::AbstractVector, rest, a::BoolOptimization, o::Ordering, kw) = _sort!(v, rest, a.next, o, kw)
@inline function _sort!(v::AbstractVector{Bool}, rest, ::BoolOptimization, o::Ordering, kw)
if size(rest,1) != 0
throw(error("SyncSort is not defined for Vector{Bool} yet."))
end
first = lt(o, false, true) ? false : lt(o, true, false) ? true : return v
@getkw lo hi scratch
count = 0
@inbounds for i in lo:hi
if v[i] == first
count += 1
end
end
@inbounds v[lo:lo+count-1] .= first
@inbounds v[lo+count:hi] .= !first
scratch
end
"""
IsUIntMappable(yes, no) <: Algorithm
Determines if the elements of a vector can be mapped to unsigned integers while preserving
their order under the specified ordering.
If they can be, dispatch to the `yes` algorithm and record the unsigned integer type that
the elements may be mapped to. Otherwise dispatch to the `no` algorithm.
"""
struct IsUIntMappable{T <: Algorithm, U <: Algorithm} <: Algorithm
yes::T
no::U
end
@inline function _sort!(v::AbstractVector, rest, a::IsUIntMappable, o::Ordering, kw)
#println("Is uintmappable?")
if UIntMappable(eltype(v), o) !== nothing
_sort!(v, rest, a.yes, o, kw)
else
_sort!(v, rest, a.no, o, kw)
end
end
"""
Small{N}(small=SMALL_ALGORITHM, big) <: Algorithm
Sort inputs with `length(lo:hi) <= N` using the `small` algorithm. Otherwise use the `big`
algorithm.
"""
struct Small{N, T <: Algorithm, U <: Algorithm} <: Algorithm
small::T
big::U
end
Small{N}(small, big) where N = Small{N, typeof(small), typeof(big)}(small, big)
Small{N}(big) where N = Small{N}(SMALL_ALGORITHM, big)
@inline function _sort!(v::AbstractVector, rest, a::Small{N}, o::Ordering, kw) where N
@getkw lo hi
if (hi-lo) < N
_sort!(v, rest, a.small, o, kw)
else
_sort!(v, rest, a.big, o, kw)
end
end
struct InsertionSortAlg <: Algorithm end
"""
InsertionSort
Use the insertion sort algorithm.
Insertion sort traverses the collection one element at a time, inserting
each element into its correct, sorted position in the output vector.
Characteristics:
* *stable*: preserves the ordering of elements which compare equal
(e.g. "a" and "A" in a sort of letters which ignores case).
* *in-place* in memory.
* *quadratic performance* in the number of elements to be sorted:
it is well-suited to small collections but should not be used for large ones.
"""
const InsertionSort = InsertionSortAlg()
const SMALL_ALGORITHM = InsertionSortAlg()
@inline function _sort!(v::AbstractVector, rest, ::InsertionSortAlg, o::Ordering, kw)
@getkw lo hi scratch
lo_plus_1 = (lo + 1)::Integer
@inbounds for i = lo_plus_1:hi
j = i
x = v[i]
x_rest = tuple((r[i] for r in rest)...)
while j > lo
y = v[j-1]
if !(lt(o, x, y)::Bool)
break
end
v[j] = y
for r in rest
r[j] = r[j - 1]
end
j -= 1
end
v[j] = x
for irest in eachindex(rest)
rest[irest][j] = x_rest[irest]
end
end
scratch
end
"""
CheckSorted(next) <: Algorithm
Check if the input is already sorted and for large inputs, also check if it is
reverse-sorted. The reverse-sorted check is unstable.
"""
struct CheckSorted{T <: Algorithm} <: Algorithm
next::T
end
@inline function _sort!(v::AbstractVector, rest, a::CheckSorted, o::Ordering, kw)
@getkw lo hi scratch
# For most arrays, a presorted check is cheap (overhead < 5%) and for most large
# arrays it is essentially free (<1%).
_issorted(v, lo, hi, o) && return scratch
# For most large arrays, a reverse-sorted check is essentially free (overhead < 1%)
if hi-lo >= 500 && _issorted(v, lo, hi, ReverseOrdering(o))
# If reversing is valid, do so. This violates stability.
reverse!(v, lo, hi)
reverse_rest!(rest, lo, hi)
return scratch
end
_sort!(v, rest, a.next, o, kw)
end
"""
ComputeExtrema(next) <: Algorithm
Compute the extrema of the input under the provided order.
If the minimum is no less than the maximum, then the input is already sorted. Otherwise,
dispatch to the `next` algorithm.
"""
struct ComputeExtrema{T <: Algorithm} <: Algorithm
next::T
end
@inline function _sort!(v::AbstractVector, rest, a::ComputeExtrema, o::Ordering, kw)
@getkw lo hi scratch
mn = mx = v[lo]
@inbounds for i in (lo+1):hi
vi = v[i]
lt(o, vi, mn) && (mn = vi)
lt(o, mx, vi) && (mx = vi)
end
lt(o, mn, mx) || return scratch # all same
_sort!(v, rest, a.next, o, (;kw..., mn, mx))
end
"""
ConsiderCountingSort(counting=CountingSort(), next) <: Algorithm
If the input's range is small enough, use the `counting` algorithm. Otherwise, dispatch to
the `next` algorithm.
For most types, the threshold is if the range is shorter than half the length, but for types
larger than Int64, bitshifts are expensive and RadixSort is not viable, so the threshold is
much more generous.
"""
struct ConsiderCountingSort{T <: Algorithm, U <: Algorithm} <: Algorithm
counting::T
next::U
end
ConsiderCountingSort(next) = ConsiderCountingSort(CountingSort(), next)
@inline function _sort!(v::AbstractVector{<:Integer}, a::ConsiderCountingSort, o::DirectOrdering, kw)
@getkw lo hi mn mx
range = maybe_unsigned(o === Reverse ? mn-mx : mx-mn)
if range < (sizeof(eltype(v)) > 8 ? 5(hi-lo)-100 : div(hi-lo, 2))
_sort!(v, a.counting, o, kw)
else
_sort!(v, a.next, o, kw)
end
end
_sort!(v::AbstractVector, a::ConsiderCountingSort, o::Ordering, kw) = _sort!(v, a.next, o, kw)
"""
CountingSort <: Algorithm
Use the counting sort algorithm.
`CountingSort` is an algorithm for sorting integers that runs in Θ(length + range) time and
space. It counts the number of occurrences of each value in the input and then iterates
through those counts repopulating the input with the values in sorted order.
"""
struct CountingSort <: Algorithm end
maybe_reverse(o::ForwardOrdering, x) = x
maybe_reverse(o::ReverseOrdering, x) = reverse(x)
@inline function _sort!(v::AbstractVector{<:Integer}, ::CountingSort, o::DirectOrdering, kw)
@getkw lo hi mn mx scratch
range = maybe_unsigned(o === Reverse ? mn-mx : mx-mn)
offs = 1 - (o === Reverse ? mx : mn)
counts = fill(0, range+1) # TODO use scratch (but be aware of type stability)
@inbounds for i = lo:hi
counts[v[i] + offs] += 1
end
idx = lo
@inbounds for i = maybe_reverse(o, 1:range+1)
lastidx = idx + counts[i] - 1
val = i-offs
for j = idx:lastidx
v[j] = val isa Unsigned && eltype(v) <: Signed ? signed(val) : val
end
idx = lastidx + 1
end
scratch
end
"""
ConsiderRadixSort(radix=RadixSort(), next) <: Algorithm
If the number of bits in the input's range is small enough and the input supports efficient
bitshifts, use the `radix` algorithm. Otherwise, dispatch to the `next` algorithm.
"""
struct ConsiderRadixSort{T <: Algorithm, U <: Algorithm} <: Algorithm
radix::T
next::U
end
ConsiderRadixSort(next) = ConsiderRadixSort(RadixSort(), next)
@inline function _sort!(v::AbstractVector, rest, a::ConsiderRadixSort, o::DirectOrdering, kw)
@getkw lo hi mn mx
urange = uint_map(mx, o)-uint_map(mn, o)
bits = unsigned(top_set_bit(urange))
if sizeof(eltype(v)) <= 8 && bits+70 < 22log(hi-lo)
_sort!(v, rest, a.radix, o, kw)
else
_sort!(v, rest, a.next, o, kw)
end
end
"""
RadixSort <: Algorithm
Use the radix sort algorithm.
`RadixSort` is a stable least significant bit first radix sort algorithm that runs in
`O(length * log(range))` time and linear space.
It first sorts the entire vector by the last `chunk_size` bits, then by the second
to last `chunk_size` bits, and so on. Stability means that it will not reorder two elements
that compare equal. This is essential so that the order introduced by earlier,
less significant passes is preserved by later passes.
Each pass divides the input into `2^chunk_size == mask+1` buckets. To do this, it
* counts the number of entries that fall into each bucket
* uses those counts to compute the indices to move elements of those buckets into
* moves elements into the computed indices in the swap array
* switches the swap and working array
`chunk_size` is larger for larger inputs and determined by an empirical heuristic.
"""
struct RadixSort <: Algorithm end
@inline function _sort!(v::AbstractVector, rest, a::RadixSort, o::DirectOrdering, kw)
@getkw lo hi mn mx scratch
#println("In sort:", a,o,"\n\n\n")
#println("Radixsort: $(eltype(v)), $(typeof(v))")
umn = uint_map(mn, o)
urange = uint_map(mx, o)-umn
bits = unsigned(top_set_bit(urange))
# At this point, we are committed to radix sort.
u = uint_map!(v, lo, hi, o)
# we subtract umn to avoid radixing over unnecessary bits. For example,
# Int32[3, -1, 2] uint_maps to UInt32[0x80000003, 0x7fffffff, 0x80000002]
# which uses all 32 bits, but once we subtract umn = 0x7fffffff, we are left with
# UInt32[0x00000004, 0x00000000, 0x00000003] which uses only 3 bits, and
# Float32[2.012, 400.0, 12.345] uint_maps to UInt32[0x3fff3b63, 0x3c37ffff, 0x414570a4]
# which is reduced to UInt32[0x03c73b64, 0x00000000, 0x050d70a5] using only 26 bits.
# the overhead for this subtraction is small enough that it is worthwhile in many cases.
# this is faster than u[lo:hi] .-= umn as of v1.9.0-DEV.100
@inbounds for i in lo:hi
u[i] -= umn
end
#println("Scratch: $(typeof(scratch))")
rest_scratch = similar_rest(rest)
scratch, t = make_scratch(scratch, eltype(v), hi-lo+1)
tu = reinterpret(eltype(u), t)
#println(size(tu))
#println(typeof((u, lo, hi, bits, tu, 1-lo, rest)))
if radix_sort!(u, lo, hi, bits, tu, 1-lo, rest, rest_scratch)
uint_unmap!(v, u, (), (), lo, hi, o, umn)
else
uint_unmap!(v, tu, rest, rest_scratch, lo, hi, o, umn, 1-lo)
end
scratch
end
"""
ScratchQuickSort(next::Algorithm=SMALL_ALGORITHM) <: Algorithm
ScratchQuickSort(lo::Union{Integer, Missing}, hi::Union{Integer, Missing}=lo, next::Algorithm=SMALL_ALGORITHM) <: Algorithm
Use the `ScratchQuickSort` algorithm with the `next` algorithm as a base case.
`ScratchQuickSort` is like `QuickSort`, but utilizes scratch space to operate faster and allow
for the possibility of maintaining stability.
If `lo` and `hi` are provided, finds and sorts the elements in the range `lo:hi`, reordering
but not necessarily sorting other elements in the process. If `lo` or `hi` is `missing`, it
is treated as the first or last index of the input, respectively.
`lo` and `hi` may be specified together as an `AbstractUnitRange`.
Characteristics:
* *stable*: preserves the ordering of elements which compare equal
(e.g. "a" and "A" in a sort of letters which ignores case).
* *not in-place* in memory.
* *divide-and-conquer*: sort strategy similar to [`QuickSort`](@ref).
* *linear runtime* if `length(lo:hi)` is constant
* *quadratic worst case runtime* in pathological cases
(vanishingly rare for non-malicious input)
"""
struct ScratchQuickSort{L<:Union{Integer,Missing}, H<:Union{Integer,Missing}, T<:Algorithm} <: Algorithm
lo::L
hi::H
next::T
end
ScratchQuickSort(next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(missing, missing, next)
ScratchQuickSort(lo::Union{Integer, Missing}, hi::Union{Integer, Missing}) = ScratchQuickSort(lo, hi, SMALL_ALGORITHM)
ScratchQuickSort(lo::Union{Integer, Missing}, next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(lo, lo, next)
ScratchQuickSort(r::OrdinalRange, next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(first(r), last(r), next)
# select a pivot, partition v[lo:hi] according
# to the pivot, and store the result in t[lo:hi].
#
# sets `pivot_dest[pivot_index+pivot_index_offset] = pivot` and returns that index.
function partition!(t::AbstractVector, lo::Integer, hi::Integer, offset::Integer, o::Ordering,
v::AbstractVector, rev::Bool, pivot_dest::AbstractVector, pivot_index_offset::Integer,
rest_t, rest_v, rest_pivot_dest)
# Ideally we would use `pivot_index = rand(lo:hi)`, but that requires Random.jl
# and would mutate the global RNG in sorting.
pivot_index = typeof(hi-lo)(hash(lo) % (hi-lo+1)) + lo
@inbounds begin
pivot = v[pivot_index]
while lo < pivot_index
x = v[lo]
fx = rev ? !lt(o, x, pivot) : lt(o, pivot, x)
t[(fx ? hi : lo) - offset] = x
for irest in eachindex(rest_t)
rest_t[irest][(fx ? hi : lo) - offset] = rest_v[irest][lo]
end
offset += fx
lo += 1
end
while lo < hi
x = v[lo+1]
fx = rev ? lt(o, pivot, x) : !lt(o, x, pivot)
t[(fx ? hi : lo) - offset] = x
for irest in eachindex(rest_t)
rest_t[irest][(fx ? hi : lo) - offset] = rest_v[irest][lo + 1]
end
offset += fx
lo += 1
end
new_pivot_index = lo-offset + pivot_index_offset
for irest in eachindex(rest_pivot_dest)
rest_pivot_dest[irest][new_pivot_index] = rest_v[irest][pivot_index]
end
pivot_index = new_pivot_index
pivot_dest[pivot_index] = pivot
end
# t_pivot_index = lo-offset (i.e. without pivot_index_offset)
# t[t_pivot_index] is whatever it was before unless t is the pivot_dest
# t[<t_pivot_index] <* pivot, stable
# t[>t_pivot_index] >* pivot, reverse stable
pivot_index
end
@inline function _sort!(v::AbstractVector, rest, a::ScratchQuickSort, o::Ordering, kw;
t=nothing, offset=nothing, swap=false, rev=false, rest_scratch = nothing)
@getkw lo hi scratch
if t === nothing
scratch, t = make_scratch(scratch, eltype(v), hi-lo+1)
offset = 1-lo
kw = (;kw..., scratch)
end
if rest_scratch === nothing
rest_scratch = similar_rest(rest)
end
while lo < hi && hi - lo > SMALL_THRESHOLD
j = if swap
partition!(v, lo+offset, hi+offset, offset, o, t, rev, v, 0, rest, rest_scratch, rest)
else
partition!(t, lo, hi, -offset, o, v, rev, v, -offset, rest_scratch, rest, rest)
end
swap = !swap
# For ScratchQuickSort(), a.lo === a.hi === missing, so the first two branches get skipped
if !ismissing(a.lo) && j <= a.lo # Skip sorting the lower part
if swap
copyto!(v, lo, t, lo+offset, j-lo)
for irest in eachindex(rest)
copyto!(rest[irest], lo, rest_scratch[irest], lo+offset, j-lo)
end
end
if rev
reverse!(v, lo, j-1)
reverse_rest!(rest, lo, j-1)
end
lo = j+1
rev = !rev
elseif !ismissing(a.hi) && a.hi <= j # Skip sorting the upper part
if swap
copyto!(v, j+1, t, j+1+offset, hi-j)
for irest in eachindex(rest)
copyto!(rest[irest], j+1, rest_scratch[irest], j+1+offset, hi-j)
end
end
if rev
reverse!(v, j+1, hi)
reverse_rest!(rest, j+1, hi)
end
hi = j-1
elseif j-lo < hi-j
# Sort the lower part recursively because it is smaller. Recursing on the
# smaller part guarantees O(log(n)) stack space even on pathological inputs.
_sort!(v, rest, a, o, (;kw..., lo, hi=j-1); t, offset, swap, rev, rest_scratch)
lo = j+1
rev = !rev
else # Sort the higher part recursively
_sort!(v, rest, a, o, (;kw..., lo=j+1, hi); t, offset, swap, rev=!rev, rest_scratch)
hi = j-1
end
end
hi < lo && return scratch
if swap
copyto!(v, lo, t, lo + offset, hi-lo+1)
for irest in eachindex(rest)
copyto!(rest[irest], lo, rest_scratch[irest], lo+offset, hi-lo+1)
end
end
if rev
reverse!(v, lo, hi)
reverse_rest!(rest, lo, hi)
end
_sort!(v, rest, a.next, o, (;kw..., lo, hi))
end
"""
StableCheckSorted(next) <: Algorithm
Check if an input is sorted and/or reverse-sorted.
The definition of reverse-sorted is that for every pair of adjacent elements, the latter is
less than the former. This is stricter than `issorted(v, Reverse(o))` to avoid swapping pairs
of elements that compare equal.
"""
struct StableCheckSorted{T<:Algorithm} <: Algorithm
next::T
end
@inline function _sort!(v::AbstractVector, rest, a::StableCheckSorted, o::Ordering, kw)
@getkw lo hi scratch
if _issorted(v, lo, hi, o)
return scratch
elseif _issorted(v, lo, hi, Lt((x, y) -> !lt(o, x, y)))
# Reverse only if necessary. Using issorted(..., Reverse(o)) would violate stability.
reverse!(v, lo, hi)
reverse_rest!(rest, lo, hi)
return scratch
end
_sort!(v, rest, a.next, o, kw)
end
# The return value indicates whether v is sorted (true) or t is sorted (false)
# This is one of the many reasons radix_sort! is not exported.
function radix_sort!(v::AbstractVector{U}, lo::Integer, hi::Integer, bits::Unsigned,
t::AbstractVector{U}, offset::Integer,rest,rest_ts,
chunk_size=radix_chunk_size_heuristic(lo, hi, bits)) where U <: Unsigned
# bits is unsigned for performance reasons.
counts = Vector{Int}(undef, 1 << chunk_size + 1) # TODO use scratch for this
#println("In Radixsort main func")
shift = 0
while true
@noinline radix_sort_pass!(t, lo, hi, offset, counts, v, shift, chunk_size, rest_ts,rest)
# the latest data resides in t
shift += chunk_size
shift < bits || return false
@noinline radix_sort_pass!(v, lo+offset, hi+offset, -offset, counts, t, shift, chunk_size, rest, rest_ts)
# the latest data resides in v
shift += chunk_size
shift < bits || return true
end
end
function radix_sort_pass!(t, lo, hi, offset, counts, v, shift, chunk_size, rest_ts, rest)
mask = UInt(1) << chunk_size - 1 # mask is defined in pass so that the compiler
@inbounds begin # ↳ knows it's shape
# counts[2:mask+2] will store the number of elements that fall into each bucket.
# if chunk_size = 8, counts[2] is bucket 0x00 and counts[257] is bucket 0xff.
counts .= 0
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 2 # compute its bucket's index for this pass
counts[i] += 1 # increment that bucket's count
end
counts[1] = lo + offset # set target index for the first bucket
cumsum!(counts, counts) # set target indices for subsequent buckets
# counts[1:mask+1] now stores indices where the first member of each bucket
# belongs, not the number of elements in each bucket. We will put the first element
# of bucket 0x00 in t[counts[1]], the next element of bucket 0x00 in t[counts[1]+1],
# and the last element of bucket 0x00 in t[counts[2]-1].
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 1 # compute its bucket's index for this pass
j = counts[i] # lookup the target index
t[j] = x # put the element where it belongs
for irest in eachindex(rest)
#println("Type of ID $j, $k")
rest_ts[irest][j] = rest[irest][k]
# t_ = rest_ts[irest]
# v_ = rest[irest]
# t_[j] = v_[k]
end
counts[i] = j + 1 # increment the target index for the next
end # ↳ element in this bucket
end
end
function radix_chunk_size_heuristic(lo::Integer, hi::Integer, bits::Unsigned)
# chunk_size is the number of bits to radix over at once.
# We need to allocate an array of size 2^chunk size, and on the other hand the higher
# the chunk size the fewer passes we need. Theoretically, chunk size should be based on
# the Lambert W function applied to length. Empirically, we use this heuristic:
guess = min(10, log(maybe_unsigned(hi-lo))*3/4+3)
# TODO the maximum chunk size should be based on architecture cache size.
# We need iterations * chunk size ≥ bits, and these cld's
# make an effort to get iterations * chunk size ≈ bits
UInt8(cld(bits, cld(bits, guess)))
end
maybe_unsigned(x::Integer) = x # this is necessary to avoid calling unsigned on BigInt
maybe_unsigned(x::BitSigned) = unsigned(x)
function _issorted(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
@boundscheck checkbounds(v, lo:hi)
@inbounds for i in (lo+1):hi
lt(o, v[i], v[i-1]) && return false
end
true
end
## default sorting policy ##
"""
InitialOptimizations(next) <: Algorithm
Attempt to apply a suite of low-cost optimizations to the input vector before sorting. These
optimizations may be automatically applied by the `sort!` family of functions when
`alg=InsertionSort`, `alg=MergeSort`, or `alg=QuickSort` is passed as an argument.
`InitialOptimizations` is an implementation detail and subject to change or removal in
future versions of Julia.
If `next` is stable, then `InitialOptimizations(next)` is also stable.
The specific optimizations attempted by `InitialOptimizations` are
[`MissingOptimization`](@ref), [`BoolOptimization`](@ref), dispatch to
[`InsertionSort`](@ref) for inputs with `length <= 10`, and [`IEEEFloatOptimization`](@ref).
"""
InitialOptimizations(next) = MissingOptimization(
BoolOptimization(
Small{10}(
IEEEFloatOptimization(
next))))
"""
DEFAULT_STABLE
The default sorting algorithm.
This algorithm is guaranteed to be stable (i.e. it will not reorder elements that compare
equal). It makes an effort to be fast for most inputs.
The algorithms used by `DEFAULT_STABLE` are an implementation detail. See extended help
for the current dispatch system.
# Extended Help
`DEFAULT_STABLE` is composed of two parts: the [`InitialOptimizations`](@ref) and a hybrid
of Radix, Insertion, Counting, Quick sorts.
We begin with MissingOptimization because it has no runtime cost when it is not
triggered and can enable other optimizations to be applied later. For example,
BoolOptimization cannot apply to an `AbstractVector{Union{Missing, Bool}}`, but after
[`MissingOptimization`](@ref) is applied, that input will be converted into am
`AbstractVector{Bool}`.
We next apply [`BoolOptimization`](@ref) because it also has no runtime cost when it is not
triggered and when it is triggered, it is an incredibly efficient algorithm (sorting `Bool`s
is quite easy).
Next, we dispatch to [`InsertionSort`](@ref) for inputs with `length <= 10`. This dispatch
occurs before the [`IEEEFloatOptimization`](@ref) pass because the
[`IEEEFloatOptimization`](@ref)s are not beneficial for very small inputs.
To conclude the [`InitialOptimizations`](@ref), we apply [`IEEEFloatOptimization`](@ref).
After these optimizations, we branch on whether radix sort and related algorithms can be
applied to the input vector and ordering. We conduct this branch by testing if
`UIntMappable(v, order) !== nothing`. That is, we see if we know of a reversible mapping
from `eltype(v)` to `UInt` that preserves the ordering `order`. We perform this check after
the initial optimizations because they can change the input vector's type and ordering to
make them `UIntMappable`.
If the input is not [`UIntMappable`](@ref), then we perform a presorted check and dispatch
to [`ScratchQuickSort`](@ref).
Otherwise, we dispatch to [`InsertionSort`](@ref) for inputs with `length <= 40` and then
perform a presorted check ([`CheckSorted`](@ref)).
We check for short inputs before performing the presorted check to avoid the overhead of the
check for small inputs. Because the alternate dispatch is to [`InsertionSort`](@ref) which
has efficient `O(n)` runtime on presorted inputs, the check is not necessary for small
inputs.
We check if the input is reverse-sorted for long vectors (more than 500 elements) because
the check is essentially free unless the input is almost entirely reverse sorted.
Note that once the input is determined to be [`UIntMappable`](@ref), we know the order forms
a [total order](wikipedia.org/wiki/Total_order) over the inputs and so it is impossible to
perform an unstable sort because no two elements can compare equal unless they _are_ equal,
in which case switching them is undetectable. We utilize this fact to perform a more
aggressive reverse sorted check that will reverse the vector `[3, 2, 2, 1]`.
After these potential fast-paths are tried and failed, we [`ComputeExtrema`](@ref) of the
input. This computation has a fairly fast `O(n)` runtime, but we still try to delay it until
it is necessary.
Next, we [`ConsiderCountingSort`](@ref). If the range the input is small compared to its
length, we apply [`CountingSort`](@ref).
Next, we [`ConsiderRadixSort`](@ref). This is similar to the dispatch to counting sort,
but we conside rthe number of _bits_ in the range, rather than the range itself.
Consequently, we apply [`RadixSort`](@ref) for any reasonably long inputs that reach this
stage.
Finally, if the input has length less than 80, we dispatch to [`InsertionSort`](@ref) and
otherwise we dispatch to [`ScratchQuickSort`](@ref).
"""
const DEFAULT_STABLE = InitialOptimizations(
IsUIntMappable(
Small{40}(
CheckSorted(
ComputeExtrema( # SyncSort: Removed ConsiderCountingSort
ConsiderRadixSort(
Small{80}(
ScratchQuickSort()))))),
StableCheckSorted(
ScratchQuickSort())))
"""
DEFAULT_UNSTABLE
An efficient sorting algorithm.
The algorithms used by `DEFAULT_UNSTABLE` are an implementation detail. They are currently
the same as those used by [`DEFAULT_STABLE`](@ref), but this is subject to change in future.
"""
const DEFAULT_UNSTABLE = DEFAULT_STABLE
const SMALL_THRESHOLD = 20
function Base.show(io::IO, alg::Algorithm)
print_tree(io, alg, 0)
end
function print_tree(io::IO, alg::Algorithm, cols::Int)
print(io, " "^cols)
show_type(io, alg)
print(io, '(')
for (i, name) in enumerate(fieldnames(typeof(alg)))
arg = getproperty(alg, name)
i > 1 && print(io, ',')
if arg isa Algorithm
#println(io)
print_tree(io, arg, cols+1)
else
i > 1 && print(io, ' ')
print(io, arg)
end
end
print(io, ')')
end
show_type(io::IO, alg::Algorithm) = Base.show_type_name(io, typeof(alg).name)
show_type(io::IO, alg::Small{N}) where N = print(io, "Base.Sort.Small{$N}")
defalg(v::AbstractArray) = DEFAULT_STABLE
defalg(v::AbstractArray{<:Union{Number, Missing}}) = DEFAULT_UNSTABLE
defalg(v::AbstractArray{Missing}) = DEFAULT_UNSTABLE # for method disambiguation
defalg(v::AbstractArray{Union{}}) = DEFAULT_UNSTABLE # for method disambiguation
"""
sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)
Sort the vector `v` in place. A stable algorithm is used by default. You can select a
specific algorithm to use via the `alg` keyword (see [Sorting Algorithms](@ref) for
available algorithms). The `by` keyword lets you provide a function that will be applied to
each element before comparison; the `lt` keyword allows providing a custom "less than"
function (note that for every `x` and `y`, only one of `lt(x,y)` and `lt(y,x)` can return
`true`); use `rev=true` to reverse the sorting order. `rev=true` preserves forward stability:
Elements that compare equal are not reversed. These options are independent and can
be used together in all possible combinations: if both `by` and `lt` are specified, the `lt`
function is applied to the result of the `by` function; `rev=true` reverses whatever
ordering specified via the `by` and `lt` keywords.
# Examples
```jldoctest
julia> v = [3, 1, 2]; sort!(v); v
3-element Vector{Int64}:
1
2
3
julia> v = [3, 1, 2]; sort!(v, rev = true); v
3-element Vector{Int64}:
3
2
1
julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v
3-element Vector{Tuple{Int64, String}}:
(1, "c")
(2, "b")
(3, "a")
julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v
3-element Vector{Tuple{Int64, String}}:
(3, "a")
(2, "b")
(1, "c")
```
"""
function syncsort!(v::AbstractVector{T}, rest...;
alg::Algorithm=defalg(v),
lt=isless,
by=identity,
rev::Union{Bool,Nothing}=nothing,
order::Ordering=Forward,
scratch::Union{Vector{T}, Nothing}=nothing) where T
for r in rest
@assert r isa AbstractVector
@assert size(v,1) == size(r,1)
end
_sort!(v, rest, maybe_apply_initial_optimizations(alg), ord(lt,by,rev,order), (;scratch),)
v
end
"""
sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)
Variant of [`sort!`](@ref) that returns a sorted copy of `v` leaving `v` itself unmodified.
Uses `Base.copymutable` to support immutable collections and iterables.
!!! compat "Julia 1.10"
`sort` of arbitrary iterables requires at least Julia 1.10.
# Examples
```jldoctest
julia> v = [3, 1, 2];
julia> sort(v)
3-element Vector{Int64}:
1
2
3
julia> v
3-element Vector{Int64}:
3
1
2
```
"""
function sort(v; kws...)
size = IteratorSize(v)
size == HasShape{0}() && throw(ArgumentError("$v cannot be sorted"))
size == IsInfinite() && throw(ArgumentError("infinite iterator $v cannot be sorted"))
sort!(copymutable(v); kws...)
end
sort(v::AbstractVector; kws...) = sort!(copymutable(v); kws...) # for method disambiguation
sort(::AbstractString; kws...) =
throw(ArgumentError("sort(::AbstractString) is not supported"))
sort(::Tuple; kws...) =
throw(ArgumentError("sort(::Tuple) is only supported for NTuples"))
function sort(x::NTuple{N}; lt::Function=isless, by::Function=identity,
rev::Union{Bool,Nothing}=nothing, order::Ordering=Forward) where N
o = ord(lt,by,rev,order)
if N > 9
v = sort!(copymutable(x), DEFAULT_STABLE, o)
tuple((v[i] for i in 1:N)...)
else
_sort(x, o)
end
end
_sort(x::Union{NTuple{0}, NTuple{1}}, o::Ordering) = x
function _sort(x::NTuple, o::Ordering)
a, b = Base.IteratorsMD.split(x, Val(length(x)>>1))
merge(_sort(a, o), _sort(b, o), o)
end
merge(x::NTuple, y::NTuple{0}, o::Ordering) = x
merge(x::NTuple{0}, y::NTuple, o::Ordering) = y
merge(x::NTuple{0}, y::NTuple{0}, o::Ordering) = x # Method ambiguity
merge(x::NTuple, y::NTuple, o::Ordering) =
(lt(o, y[1], x[1]) ? (y[1], merge(x, tail(y), o)...) : (x[1], merge(tail(x), y, o)...))
## uint mapping to allow radix sorting primitives other than UInts ##
"""
UIntMappable(T::Type, order::Ordering)
Return `typeof(uint_map(x::T, order))` if [`uint_map`](@ref) and
[`uint_unmap`](@ref) are implemented.
If either is not implemented, return `nothing`.
"""
UIntMappable(T::Type, order::Ordering) = nothing
"""
uint_map(x, order::Ordering)::Unsigned
Map `x` to an un unsigned integer, maintaining sort order.
The map should be reversible with [`uint_unmap`](@ref), so `isless(order, a, b)` must be
a linear ordering for `a, b <: typeof(x)`. Satisfies
`isless(order, a, b) === (uint_map(a, order) < uint_map(b, order))`
and `x === uint_unmap(typeof(x), uint_map(x, order), order)`
See also: [`UIntMappable`](@ref) [`uint_unmap`](@ref)
"""
function uint_map end
"""
uint_unmap(T::Type, u::Unsigned, order::Ordering)
Reconstruct the unique value `x::T` that uint_maps to `u`. Satisfies
`x === uint_unmap(T, uint_map(x::T, order), order)` for all `x <: T`.
See also: [`uint_map`](@ref) [`UIntMappable`](@ref)
"""
function uint_unmap end
### Primitive Types
# Integers
uint_map(x::Unsigned, ::ForwardOrdering) = x
uint_unmap(::Type{T}, u::T, ::ForwardOrdering) where T <: Unsigned = u
uint_map(x::Signed, ::ForwardOrdering) =
unsigned(xor(x, typemin(x)))
uint_unmap(::Type{T}, u::Unsigned, ::ForwardOrdering) where T <: Signed =
xor(signed(u), typemin(T))
UIntMappable(T::BitIntegerType, ::ForwardOrdering) = unsigned(T)
# Floats are not UIntMappable under regular orderings because they fail on NaN edge cases.
# uint mappings for floats are defined in Float, where the Left and Right orderings
# guarantee that there are no NaN values
# Chars
uint_map(x::Char, ::ForwardOrdering) = reinterpret(UInt32, x)
uint_unmap(::Type{Char}, u::UInt32, ::ForwardOrdering) = reinterpret(Char, u)
UIntMappable(::Type{Char}, ::ForwardOrdering) = UInt32
### Reverse orderings
uint_map(x, rev::ReverseOrdering) = ~uint_map(x, rev.fwd)
uint_unmap(T::Type, u::Unsigned, rev::ReverseOrdering) = uint_unmap(T, ~u, rev.fwd)
UIntMappable(T::Type, order::ReverseOrdering) = UIntMappable(T, order.fwd)
### Vectors
# Convert v to unsigned integers in place, maintaining sort order.
function uint_map!(v::AbstractVector, lo::Integer, hi::Integer, order::Ordering)
u = reinterpret(UIntMappable(eltype(v), order), v)
@inbounds for i in lo:hi
u[i] = uint_map(v[i], order)
end
u
end
function uint_unmap!(v::AbstractVector, u::AbstractVector{U}, rest_v, rest_u,
lo::Integer, hi::Integer,
order::Ordering, offset::U=zero(U),
index_offset::Integer=0) where U <: Unsigned
@inbounds for i in lo:hi
v[i] = uint_unmap(eltype(v), u[i+index_offset]+offset, order)
for irest in eachindex(rest_v)
rest_v[irest][i] = rest_u[irest][i + index_offset]
end
end
v
end
### Unused constructs for backward compatibility ###
## Old algorithms ##
struct QuickSortAlg <: Algorithm end
struct MergeSortAlg <: Algorithm end
"""
PartialQuickSort{T <: Union{Integer,OrdinalRange}}
Indicate that a sorting function should use the partial quick sort
algorithm. Partial quick sort returns the smallest `k` elements sorted from smallest
to largest, finding them and sorting them using [`QuickSort`](@ref).
Characteristics:
* *not stable*: does not preserve the ordering of elements which
compare equal (e.g. "a" and "A" in a sort of letters which
ignores case).
* *in-place* in memory.
* *divide-and-conquer*: sort strategy similar to [`MergeSort`](@ref).
Note that `PartialQuickSort(k)` does not necessarily sort the whole array. For example,
```jldoctest
julia> x = rand(100);
julia> k = 50:100;
julia> s1 = sort(x; alg=QuickSort);
julia> s2 = sort(x; alg=PartialQuickSort(k));
julia> map(issorted, (s1, s2))
(true, false)
julia> map(x->issorted(x[k]), (s1, s2))
(true, true)
julia> s1[k] == s2[k]
true
```
"""
struct PartialQuickSort{T <: Union{Integer,OrdinalRange}} <: Algorithm
k::T
end
"""
QuickSort
Indicate that a sorting function should use the quick sort
algorithm, which is *not* stable.
Characteristics:
* *not stable*: does not preserve the ordering of elements which
compare equal (e.g. "a" and "A" in a sort of letters which
ignores case).
* *in-place* in memory.
* *divide-and-conquer*: sort strategy similar to [`MergeSort`](@ref).
* *good performance* for large collections.
"""
const QuickSort = QuickSortAlg()
"""
MergeSort
Indicate that a sorting function should use the merge sort
algorithm. Merge sort divides the collection into
subcollections and repeatedly merges them, sorting each
subcollection at each step, until the entire
collection has been recombined in sorted form.
Characteristics:
* *stable*: preserves the ordering of elements which compare
equal (e.g. "a" and "A" in a sort of letters which ignores
case).
* *not in-place* in memory.
* *divide-and-conquer* sort strategy.
* *good performance* for large collections but typically not quite as
fast as [`QuickSort`](@ref).
"""
const MergeSort = MergeSortAlg()
maybe_apply_initial_optimizations(alg::Algorithm) = alg
maybe_apply_initial_optimizations(alg::QuickSortAlg) = InitialOptimizations(alg)
maybe_apply_initial_optimizations(alg::MergeSortAlg) = InitialOptimizations(alg)
maybe_apply_initial_optimizations(alg::InsertionSortAlg) = InitialOptimizations(alg)
# selectpivot!
#
# Given 3 locations in an array (lo, mi, and hi), sort v[lo], v[mi], v[hi] and
# choose the middle value as a pivot
#
# Upon return, the pivot is in v[lo], and v[hi] is guaranteed to be
# greater than the pivot
@inline function selectpivot!(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
@inbounds begin
mi = midpoint(lo, hi)
# sort v[mi] <= v[lo] <= v[hi] such that the pivot is immediately in place
if lt(o, v[lo], v[mi])
v[mi], v[lo] = v[lo], v[mi]
end
if lt(o, v[hi], v[lo])
if lt(o, v[hi], v[mi])
v[hi], v[lo], v[mi] = v[lo], v[mi], v[hi]
else
v[hi], v[lo] = v[lo], v[hi]
end
end
# return the pivot
return v[lo]
end
end
# partition!
#
# select a pivot, and partition v according to the pivot
function partition!(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
pivot = selectpivot!(v, lo, hi, o)
# pivot == v[lo], v[hi] > pivot
i, j = lo, hi
@inbounds while true
i += 1; j -= 1
while lt(o, v[i], pivot); i += 1; end;
while lt(o, pivot, v[j]); j -= 1; end;
i >= j && break
v[i], v[j] = v[j], v[i]
end
v[j], v[lo] = pivot, v[j]
# v[j] == pivot
# v[k] >= pivot for k > j
# v[i] <= pivot for i < j
return j
end
function sort!(v::AbstractVector, lo::Integer, hi::Integer, a::QuickSortAlg, o::Ordering)
@inbounds while lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
j = partition!(v, lo, hi, o)
if j-lo < hi-j
# recurse on the smaller chunk
# this is necessary to preserve O(log(n))
# stack space in the worst case (rather than O(n))
lo < (j-1) && sort!(v, lo, j-1, a, o)
lo = j+1
else
j+1 < hi && sort!(v, j+1, hi, a, o)
hi = j-1
end
end
return v
end
sort!(v::AbstractVector{T}, lo::Integer, hi::Integer, a::MergeSortAlg, o::Ordering, t0::Vector{T}) where T =
invoke(sort!, Tuple{typeof.((v, lo, hi, a, o))..., AbstractVector{T}}, v, lo, hi, a, o, t0) # For disambiguation
function sort!(v::AbstractVector{T}, lo::Integer, hi::Integer, a::MergeSortAlg, o::Ordering,
t0::Union{AbstractVector{T}, Nothing}=nothing) where T
@inbounds if lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
m = midpoint(lo, hi)
t = t0 === nothing ? similar(v, m-lo+1) : t0
length(t) < m-lo+1 && resize!(t, m-lo+1)
Base.require_one_based_indexing(t)
sort!(v, lo, m, a, o, t)
sort!(v, m+1, hi, a, o, t)
i, j = 1, lo
while j <= m
t[i] = v[j]
i += 1
j += 1
end
i, k = 1, lo
while k < j <= hi
if lt(o, v[j], t[i])
v[k] = v[j]
j += 1
else
v[k] = t[i]
i += 1
end
k += 1
end
while k < j
v[k] = t[i]
k += 1
i += 1
end
end
return v
end
function sort!(v::AbstractVector, lo::Integer, hi::Integer, a::PartialQuickSort,
o::Ordering)
@inbounds while lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
j = partition!(v, lo, hi, o)
if j <= first(a.k)
lo = j+1
elseif j >= last(a.k)
hi = j-1
else
# recurse on the smaller chunk
# this is necessary to preserve O(log(n))
# stack space in the worst case (rather than O(n))
if j-lo < hi-j
lo < (j-1) && sort!(v, lo, j-1, a, o)
lo = j+1
else
hi > (j+1) && sort!(v, j+1, hi, a, o)
hi = j-1
end
end
end
return v
end
end # module Sort
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | code | 27559 | # File : SyncSort.jl
# License: MIT
# Author : Dominik Werner <[email protected]>
# Date : 26.01.2023
# Paper : https://drive.google.com/file/d/0B7uLFueU4vLfcjJfZFh3TlIxMFE/view?resourcekey=0-8Ovsx4PtAJn78xLboBEb_g
module SyncSort
using Base.Order
using Base: copymutable, midpoint, require_one_based_indexing, uinttype,
sub_with_overflow, add_with_overflow, OneTo, BitSigned, BitIntegerType,
IteratorSize, HasShape, IsInfinite, tail, midpoint
import Base:
sort,
sort!,
issorted,
sortperm,
to_indices,
midpoint
using KernelAbstractions
using KernelAbstractions.Extras.LoopInfo: @unroll
export merge_sort_gpu!
"""
Sort an array in parallel using a merge sort algorithm.
The array is sorted in place.
# Arguments
- `v`: array to be sorted
- `elements_per_thread`: number of elements to be sorted by each thread
- `v2`: temporary array to be used for swapping
- `global_tile_ranks`: temporary array to be used for storing the ranks of the splitters
"""
function merge_sort_gpu!(
v::AbstractVector,
::Val{elements_per_thread},
v2::AbstractVector=similar(v),
#global_tile_ranks::AbstractVector=CuArray(fill((-1, -1), (div(length(v), elements_per_thread, RoundUp)))),
global_tile_ranks::AbstractVector=similar(v,typeof((-1, -1)), (div(length(v), elements_per_thread, RoundUp))),
) where {elements_per_thread}
# check on which backend we are running and set the device
dev = get_backend(v)
# Keep a pointer to the original array as we'll be swapping
vpointer = v
vlength = length(v)
# Calculate the number of threads based on the number of elements and the length of the input array
num_threads = div(vlength, elements_per_thread, RoundUp)
# sort each block consisting of 'elements_per_thread' elements using insertion_sort
initial_sort_kernel!(dev, 64)(v, elements_per_thread, ndrange=num_threads)
KernelAbstractions.synchronize(dev)
# Step 3: Merging
subblock_size = elements_per_thread
merge_block_size = elements_per_thread * 2
threads_per_merge_block = 2
# Every loop iteration, double the merge block size
generate_ranks_kernel_function! = generate_ranks_kernel!(dev, 64)
merge_two_blocks_kernel_function! = merge_two_blocks_kernel!(dev, 64)
while merge_block_size < vlength * 2
# The number of blocks we need to merge
num_blocks = div(vlength, merge_block_size, RoundUp)
num_subblocks = div(2 * vlength, merge_block_size, RoundUp)
# Calculate the ranks for each thread
generate_ranks_kernel_function!(
v,
global_tile_ranks,
merge_block_size,
threads_per_merge_block,
num_threads,
subblock_size,
num_subblocks,
num_blocks,
ndrange=num_threads)
KernelAbstractions.synchronize(dev)
# Merge phase.
merge_two_blocks_kernel_function!(
v, v2,
global_tile_ranks,
merge_block_size,
threads_per_merge_block,
num_threads,
subblock_size,
num_subblocks,
num_blocks,
ndrange=num_threads)
KernelAbstractions.synchronize(dev)
# Swap arrays
v, v2 = v2, v
# The length of an array subsection that is sorted is now bigger
subblock_size = merge_block_size
merge_block_size *= 2
threads_per_merge_block *= 2
end
# If we ended up with the second array as the result, swap it back
if v2 === vpointer
vpointer .= v
end
nothing
end
@kernel function initial_sort_kernel!(v, elements_per_thread)
# xtract global index and the start and end of this block
index = @index(Global, Linear)
start_array_index = (index - 1) * elements_per_thread + 1
end_array_index = min(start_array_index + elements_per_thread - 1, size(v, 1))
# now simply sort a view of this array
sub_v = @view v[start_array_index:end_array_index]
insertion_sort!(sub_v)
#sort!(sub_v)
nothing
end
function insertion_sort!(
v::AbstractVector,
)
i = firstindex(v) + 1
@inbounds while i <= lastindex(v)
x = v[i]
j = i - 1
while j >= firstindex(v) && v[j] > x
v[j+1] = v[j]
j -= 1
end
v[j+1] = x
i += 1
end
nothing
end
@kernel function generate_ranks_kernel!(v,
ranks,
merge_block_size,
threads_per_merge_block,
num_threads,
subblock_size,
num_subblocks,
num_blocks,
)
index = @index(Global, Linear)
if threads_per_merge_block > num_threads
threads_per_merge_block = num_threads
end
# First we calculate where the merge block starts and which rank
# inside the merge block the current thread is
merge_block_index = div(index - 1, threads_per_merge_block, RoundDown) + 1
merge_block_start_index = (merge_block_index - 1) * merge_block_size + 1
merge_block_end_index = merge_block_start_index + merge_block_size - 1
if merge_block_end_index > size(v, 1)
# we are at the last merge block
merge_block_end_index = size(v, 1)
end
merge_block = @view v[merge_block_start_index:merge_block_end_index]
# calculate the current rank id of the thread within the merge block
rank_id = mod(index - 1, threads_per_merge_block) + 1
if merge_block_index == num_blocks && num_subblocks % 2 == 1
# do nothing because we are copying this chunk later
else
if rank_id == threads_per_merge_block || index == num_threads
#last ranks are always the last elements in subblocks
ranks[index] = (subblock_size, size(merge_block, 1))
else
# Now we find the index for the current rank, search fr it in the
# right rank with binary search and store it in "ranks"
index_splitter_left_subblock = div(
rank_id * subblock_size,
threads_per_merge_block,
RoundDown,
)
splitter_left_subblock = merge_block[index_splitter_left_subblock]
if splitter_left_subblock < merge_block[subblock_size+1]
# if the smallest element of the right subblock, then we dont need to search
ranks[index] = (index_splitter_left_subblock, subblock_size)
else
right_subblock = @view merge_block[subblock_size+1:end]
index_splitter_right_subblock = subblock_size + binary_search(
right_subblock,
splitter_left_subblock,
)
ranks[index] = (index_splitter_left_subblock, index_splitter_right_subblock)
end
end
end
end
# Binary search to find the rank of an element within a block
# array must be ordered (obviously)
function binary_search(array::AbstractVector, target)
low = 1
high = size(array, 1)
@inbounds while low < high
index = low + div(high - low + 1, 2, RoundDown)
if target < array[index]
high = index - 1
else
low = index
end
end
low
end
@kernel function merge_two_blocks_kernel!(
v, v2, tile_ranks,
merge_block_size,
threads_per_merge_block,
num_threads,
subblock_size,
num_subblocks,
num_blocks,
)
index = @index(Global, Linear)
# First we calculate where the merge block starts and which rank
# inside the merge block the current thread is
merge_block_index = div(index - 1, threads_per_merge_block, RoundDown) + 1
merge_block_start_index = (merge_block_index - 1) * merge_block_size + 1
merge_block_end_index = merge_block_start_index + merge_block_size - 1
if merge_block_end_index > size(v, 1)
# we are at the last merge block
merge_block_end_index = size(v, 1)
#threads_per_merge_block = div(merge_block_end_index - merge_block_start_index + 1, elements_per_thread, RoundUp)
end
if threads_per_merge_block > num_threads
threads_per_merge_block = num_threads
end
# calculate the current rank id of the thread within the merge block
rank_id = mod(index - 1, threads_per_merge_block) + 1
merge_block = @view v[merge_block_start_index:merge_block_end_index]
if merge_block_index == num_blocks && num_subblocks % 2 == 1
# copy the last subblock to the output array
if rank_id == 1
for i in merge_block_start_index:merge_block_end_index
v2[i] = v[i]
end
end
else
# Now we find the index for the current rank, search
# for the element in the other block and insert it
left_end, right_end = tile_ranks[index]
# print all data with @print
if rank_id == 1
left_start = firstindex(v)
right_start = firstindex(v) + subblock_size
merge_array_insert_start_index = firstindex(v)
else
left_start = tile_ranks[index-1][1] + 1
right_start = tile_ranks[index-1][2] + 1
merge_array_insert_start_index = (
tile_ranks[index-1][1] +
tile_ranks[index-1][2] - subblock_size +
1
)
end
tile_a = @view merge_block[left_start:left_end]
tile_b = @view merge_block[right_start:right_end]
#println(" right start: $right_start, $right_end, $merge_block_index")
size_a = size(tile_a, 1)
size_b = size(tile_b, 1)
merge_tile_start_index = merge_block_start_index + merge_array_insert_start_index - 1
merge_tile_end_index = merge_block_start_index + merge_array_insert_start_index + size_a + size_b - 2
if merge_tile_end_index > size(v2, 1)
merge_tile_end_index = size(v2, 1)
end
merge_tile = @view v2[merge_tile_start_index:merge_tile_end_index]
merge_subblock!(merge_tile, tile_a, tile_b)
#println("Index: $index\na: $tile_a\nb: $tile_b\nMerged: $merge_tile")
end
end
# Merge two blocks A and B, running on a single thread
# Optimization notes:
# type of those blocks is the same, something like ::view{::AbstractVector{T}}
# with a constant size, it should be always the same
# do i wnat this to be in place or should it return?
function merge_subblock!(merge_tile, tile_a, tile_b)
@assert size(merge_tile,1) == size(tile_a,1) + size(tile_b,1)
tile_a_size = size(tile_a, 1)
tile_b_size = size(tile_b, 1)
# This could be redundant
if tile_a_size == 0
#println("\n\nFUCK YOU DOMINIK\n\n")
@inbounds for i in axes(merge_tile, 1)
merge_tile[i] = tile_b[i]
end
return
end
if tile_b_size == 0
@inbounds for i in axes(merge_tile, 1)
merge_tile[i] = tile_a[i]
end
return
end
a_index = firstindex(tile_a)
b_index = firstindex(tile_b)
# Merge all elements. some might be left over
@inbounds for merge_index in axes(merge_tile, 1)
if tile_a[a_index] <= tile_b[b_index]
merge_tile[merge_index] = tile_a[a_index]
a_index += 1
if a_index > tile_a_size
# Merge the rest of the b-block
# TODO: make this looping more elegant
j = 0
for i in merge_index+1:lastindex(merge_tile)
merge_tile[i] = tile_b[b_index+j]
j += 1
end
break
end
else
merge_tile[merge_index] = tile_b[b_index]
b_index += 1
if b_index > tile_b_size
# Merge the rest of the a-block
j = 0
for i in merge_index+1:lastindex(merge_tile)
merge_tile[i] = tile_a[a_index+j]
j += 1
end
break
end
end
end
end
lt=isless
"""
Quicksort taken from Julia/base
"""
midpoint(lo::T, hi::T) where T<:Integer = lo + ((hi - lo) >>> 0x01)
midpoint(lo::Integer, hi::Integer) = midpoint(promote(lo, hi)...)
function quicksort!(v::AbstractVector, lo::Integer, hi::Integer)
@inbounds while lo < hi
hi-lo <= 20 && return sort!(v, lo, hi, InsertionSort, Base.Order.Forward)
j = partition!(v, lo, hi)
if j-lo < hi-j
# recurse on the smaller chunk
# this is necessary to preserve O(log(n))
# stack space in the worst case (rather than O(n))
lo < (j-1) && quicksort!(v, lo, j-1)
lo = j+1
else
j+1 < hi && quicksort!(v, j+1, hi)
hi = j-1
end
end
return v
end
function partition!(v::AbstractVector, lo::Integer, hi::Integer)
pivot = selectpivot!(v, lo, hi)
# pivot == v[lo], v[hi] > pivot
i, j = lo, hi
@inbounds while true
i += 1; j -= 1
while isless( v[i], pivot); i += 1; end;
while isless( pivot, v[j]); j -= 1; end;
i >= j && break
v[i], v[j] = v[j], v[i]
end
v[j], v[lo] = pivot, v[j]
return j
end
@inline function selectpivot!(v::AbstractVector, lo::Integer, hi::Integer)
@inbounds begin
mi = midpoint(lo, hi)
# sort v[mi] <= v[lo] <= v[hi] such that the pivot is immediately in place
if isless( v[lo], v[mi])
v[mi], v[lo] = v[lo], v[mi]
end
if isless( v[hi], v[lo])
if isless( v[hi], v[mi])
v[hi], v[lo], v[mi] = v[lo], v[mi], v[hi]
else
v[hi], v[lo] = v[lo], v[hi]
end
end
# return the pivot
return v[lo]
end
end
########## Scratch Quick Sort from Julia/base
Algorithm = Base.Sort.Algorithm
SMALL_ALGORITHM = InsertionSort
macro getkw(syms...)
getters = (getproperty(Base.Sort, Symbol(:_, sym)) for sym in syms)
Expr(:block, (:($(esc(:((kw, $sym) = $getter(v, kw))))) for (sym, getter) in zip(syms, getters))...)
end
"""
make_scratch(scratch::Union{Nothing, Vector}, T::Type, len::Integer)
Returns `(s, t)` where `t` is an `AbstractVector` of type `T` with length at least `len`
that is backed by the `Vector` `s`. If `scratch !== nothing`, then `s === scratch`.
This function will allocate a new vector if `scratch === nothing`, `resize!` `scratch` if it
is too short, and `reinterpret` `scratch` if its eltype is not `T`.
"""
function make_scratch(scratch::Nothing, T::Type, len::Integer)
s = Vector{T}(undef, len)
s, s
end
function make_scratch(scratch::Vector{T}, ::Type{T}, len::Integer) where T
len > length(scratch) && resize!(scratch, len)
scratch, scratch
end
function make_scratch(scratch::Vector, T::Type, len::Integer)
len_bytes = len * sizeof(T)
len_scratch = div(len_bytes, sizeof(eltype(scratch)))
len_scratch > length(scratch) && resize!(scratch, len_scratch)
scratch, reinterpret(T, scratch)
end
struct ScratchQuickSort{L<:Union{Integer,Missing}, H<:Union{Integer,Missing}, T<:Algorithm} <: Algorithm
lo::L
hi::H
next::T
end
ScratchQuickSort(next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(missing, missing, next)
ScratchQuickSort(lo::Union{Integer, Missing}, hi::Union{Integer, Missing}) = ScratchQuickSort(lo, hi, SMALL_ALGORITHM)
ScratchQuickSort(lo::Union{Integer, Missing}, next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(lo, lo, next)
ScratchQuickSort(r::OrdinalRange, next::Algorithm=SMALL_ALGORITHM) = ScratchQuickSort(first(r), last(r), next)
function scratchpartition!(t::AbstractVector, lo::Integer, hi::Integer, offset::Integer,
v::AbstractVector, rev::Bool, pivot_dest::AbstractVector, pivot_index_offset::Integer)
# Ideally we would use `pivot_index = rand(lo:hi)`, but that requires Random.jl
# and would mutate the global RNG in sorting.
pivot_index = typeof(hi-lo)(hash(lo) % (hi-lo+1)) + lo
@inbounds begin
pivot = v[pivot_index]
while lo < pivot_index
x = v[lo]
fx = rev ? !isless( x, pivot) : isless( pivot, x)
t[(fx ? hi : lo) - offset] = x
offset += fx
lo += 1
end
while lo < hi
x = v[lo+1]
fx = rev ? isless( pivot, x) : !isless( x, pivot)
t[(fx ? hi : lo) - offset] = x
offset += fx
lo += 1
end
pivot_index = lo-offset + pivot_index_offset
pivot_dest[pivot_index] = pivot
end
# t_pivot_index = lo-offset (i.e. without pivot_index_offset)
# t[t_pivot_index] is whatever it was before unless t is the pivot_dest
# t[<t_pivot_index] <* pivot, stable
# t[>t_pivot_index] >* pivot, reverse stable
pivot_index
end
function scratchquicksort!(v::AbstractVector, a::ScratchQuickSort=ScratchQuickSort(),
t=nothing, offset=nothing, swap=false, rev=false, lo = firstindex(v), hi = size(v,1), scrath = nothing)
if t === nothing
scratch, t = make_scratch(scratch, eltype(v), hi-lo+1)
offset = 1-lo
kw = (;kw..., scratch)
end
while lo < hi && hi - lo > 20
j = if swap
scratchpartition!(v, lo+offset, hi+offset, offset, t, rev, v, 0)
else
scratchpartition!(t, lo, hi, -offset, v, rev, v, -offset)
end
swap = !swap
# For ScratchQuickSort(), a.lo === a.hi === missing, so the first two branches get skipped
if !ismissing(a.lo) && j <= a.lo # Skip sorting the lower part
swap && copyto!(v, lo, t, lo+offset, j-lo)
rev && reverse!(v, lo, j-1)
lo = j+1
rev = !rev
elseif !ismissing(a.hi) && a.hi <= j # Skip sorting the upper part
swap && copyto!(v, j+1, t, j+1+offset, hi-j)
rev || reverse!(v, j+1, hi)
hi = j-1
elseif j-lo < hi-j
# Sort the lower part recursively because it is smaller. Recursing on the
# smaller part guarantees O(log(n)) stack space even on pathological inputs.
scratchquicksort!(v, a, t, offset, swap, rev,lo = lo, hi=j-1, scratch = scratch)
lo = j+1
rev = !rev
else # Sort the higher part recursively
scratchquicksort!(v, a, t, offset, swap, rev=!rev, lo = j+1, hi = hi, scratch = scratch)
hi = j-1
end
end
hi < lo && return scratch
swap && copyto!(v, lo, t, lo+offset, hi-lo+1)
rev && reverse!(v, lo, hi)
#_sort!(v, a.next, o, (;kw..., lo, hi))
v_view = @view v[lo:hi]
insertion_sort!(v_view)
end
################ RADIX SORT
top_set_bit(x::Integer) = ceil(Integer, log2(x + oneunit(x)))
"""
uint_unmap(T::Type, u::Unsigned, order::Ordering)
Reconstruct the unique value `x::T` that uint_maps to `u`. Satisfies
`x === uint_unmap(T, uint_map(x::T, order), order)` for all `x <: T`.
See also: [`uint_map`](@ref) [`UIntMappable`](@ref)
"""
function uint_unmap end
### Primitive Types
# Integers
uint_map(x::Unsigned, ::ForwardOrdering) = x
uint_unmap(::Type{T}, u::T, ::ForwardOrdering) where T <: Unsigned = u
uint_map(x::Signed, ::ForwardOrdering) =
unsigned(xor(x, typemin(x)))
uint_unmap(::Type{T}, u::Unsigned, ::ForwardOrdering) where T <: Signed =
xor(signed(u), typemin(T))
UIntMappable(T::BitIntegerType, ::ForwardOrdering) = unsigned(T)
# Floats are not UIntMappable under regular orderings because they fail on NaN edge cases.
# uint mappings for floats are defined in Float, where the Left and Right orderings
# guarantee that there are no NaN values
# Chars
uint_map(x::Char, ::ForwardOrdering) = reinterpret(UInt32, x)
uint_unmap(::Type{Char}, u::UInt32, ::ForwardOrdering) = reinterpret(Char, u)
UIntMappable(::Type{Char}, ::ForwardOrdering) = UInt32
### Reverse orderings
uint_map(x, rev::ReverseOrdering) = ~uint_map(x, rev.fwd)
uint_unmap(T::Type, u::Unsigned, rev::ReverseOrdering) = uint_unmap(T, ~u, rev.fwd)
UIntMappable(T::Type, order::ReverseOrdering) = UIntMappable(T, order.fwd)
### Vectors
# Convert v to unsigned integers in place, maintaining sort order.
function uint_map!(v::AbstractVector, lo::Integer, hi::Integer, order::Ordering)
u = reinterpret(UIntMappable(eltype(v), order), v)
@inbounds for i in lo:hi
u[i] = uint_map(v[i], order)
end
u
end
function uint_unmap!(v::AbstractVector, u::AbstractVector{U}, lo::Integer, hi::Integer,
order::Ordering, offset::U=zero(U),
index_offset::Integer=0) where U <: Unsigned
@inbounds for i in lo:hi
v[i] = uint_unmap(eltype(v), u[i+index_offset]+offset, order)
end
v
end
"""
send_to_end!(f::Function, v::AbstractVector; [lo, hi])
Send every element of `v` for which `f` returns `true` to the end of the vector and return
the index of the last element for which `f` returns `false`.
`send_to_end!(f, v, lo, hi)` is equivalent to `send_to_end!(f, view(v, lo:hi))+lo-1`
Preserves the order of the elements that are not sent to the end.
"""
function send_to_end!(f::F, v::AbstractVector; lo=firstindex(v), hi=lastindex(v)) where F <: Function
i = lo
@inbounds while i <= hi && !f(v[i])
i += 1
end
j = i + 1
@inbounds while j <= hi
if !f(v[j])
v[i], v[j] = v[j], v[i]
i += 1
end
j += 1
end
i - 1
end
"""
send_to_end!(f::Function, v::AbstractVector, o::DirectOrdering[, end_stable]; lo, hi)
Return `(a, b)` where `v[a:b]` are the elements that are not sent to the end.
If `o isa ReverseOrdering` then the "end" of `v` is `v[lo]`.
If `end_stable` is set, the elements that are sent to the end are stable instead of the
elements that are not
"""
@inline send_to_end!(f::F, v::AbstractVector, ::ForwardOrdering, end_stable=false; lo, hi) where F <: Function =
end_stable ? (lo, hi-send_to_end!(!f, view(v, hi:-1:lo))) : (lo, send_to_end!(f, v; lo, hi))
@inline send_to_end!(f::F, v::AbstractVector, ::ReverseOrdering, end_stable=false; lo, hi) where F <: Function =
end_stable ? (send_to_end!(!f, v; lo, hi)+1, hi) : (hi-send_to_end!(f, view(v, hi:-1:lo))+1, hi)
lt = isless
after_zero(::ForwardOrdering, x) = !signbit(x)
after_zero(::ReverseOrdering, x) = signbit(x)
is_concrete_IEEEFloat(T::Type) = T <: Base.IEEEFloat && isconcretetype(T)
function radixsort!(v::AbstractVector, o::DirectOrdering=Forward)
scratch = nothing
lo = firstindex(v)
hi = size(v,1)
if is_concrete_IEEEFloat(eltype(v)) && o isa DirectOrdering
lo, hi = send_to_end!(isnan, v, o, true; lo, hi)
iv = reinterpret(uinttype(eltype(v)), v)
j = send_to_end!(x -> after_zero(o, x), v; lo, hi)
scratch = _sort!(iv, a.next, Reverse, (;kw..., lo, hi=j))
elseif !(eltype(v) == Int || eltype(v) == UInt)
throw(error("The type of your array is not suitable for radixsort"))
end
mn = mx = v[lo]
@inbounds for i in (lo+1):hi
vi = v[i]
lt(vi, mn) && (mn = vi)
lt( mx, vi) && (mx = vi)
end
lt( mn, mx) || return scratch # all same
umn = uint_map(mn, o)
urange = uint_map(mx, o)-umn
bits = unsigned(top_set_bit(urange))
# At this point, we are committed to radix sort.
u = uint_map!(v, lo, hi, o)
# we subtract umn to avoid radixing over unnecessary bits. For example,
# Int32[3, -1, 2] uint_maps to UInt32[0x80000003, 0x7fffffff, 0x80000002]
# which uses all 32 bits, but once we subtract umn = 0x7fffffff, we are left with
# UInt32[0x00000004, 0x00000000, 0x00000003] which uses only 3 bits, and
# Float32[2.012, 400.0, 12.345] uint_maps to UInt32[0x3fff3b63, 0x3c37ffff, 0x414570a4]
# which is reduced to UInt32[0x03c73b64, 0x00000000, 0x050d70a5] using only 26 bits.
# the overhead for this subtraction is small enough that it is worthwhile in many cases.
# this is faster than u[lo:hi] .-= umn as of v1.9.0-DEV.100
@inbounds for i in lo:hi
u[i] -= umn
end
scratch, t = make_scratch(scratch, eltype(v), hi-lo+1)
tu = reinterpret(eltype(u), t)
if radix_sort!(u, lo, hi, bits, tu, 1-lo)
uint_unmap!(v, u, lo, hi, o, umn)
else
uint_unmap!(v, tu, lo, hi, o, umn, 1-lo)
end
scratch
end
function radix_chunk_size_heuristic(lo::Integer, hi::Integer, bits::Unsigned)
# chunk_size is the number of bits to radix over at once.
# We need to allocate an array of size 2^chunk size, and on the other hand the higher
# the chunk size the fewer passes we need. Theoretically, chunk size should be based on
# the Lambert W function applied to length. Empirically, we use this heuristic:
guess = min(10, log(maybe_unsigned(hi-lo))*3/4+3)
# TODO the maximum chunk size should be based on architecture cache size.
# We need iterations * chunk size ≥ bits, and these cld's
# make an effort to get iterations * chunk size ≈ bits
UInt8(cld(bits, cld(bits, guess)))
end
# The return value indicates whether v is sorted (true) or t is sorted (false)
# This is one of the many reasons radix_sort! is not exported.
function radix_sort!(v::AbstractVector{U}, lo::Integer, hi::Integer, bits::Unsigned,
t::AbstractVector{U}, offset::Integer,
chunk_size=radix_chunk_size_heuristic(lo, hi, bits)) where U <: Unsigned
# bits is unsigned for performance reasons.
counts = Vector{Int}(undef, 1 << chunk_size + 1) # TODO use scratch for this
shift = 0
while true
@noinline radix_sort_pass!(t, lo, hi, offset, counts, v, shift, chunk_size)
# the latest data resides in t
shift += chunk_size
shift < bits || return false
@noinline radix_sort_pass!(v, lo+offset, hi+offset, -offset, counts, t, shift, chunk_size)
# the latest data resides in v
shift += chunk_size
shift < bits || return true
end
end
function radix_sort_pass!(t, lo, hi, offset, counts, v, shift, chunk_size)
mask = UInt(1) << chunk_size - 1 # mask is defined in pass so that the compiler
@inbounds begin # ↳ knows it's shape
# counts[2:mask+2] will store the number of elements that fall into each bucket.
# if chunk_size = 8, counts[2] is bucket 0x00 and counts[257] is bucket 0xff.
counts .= 0
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 2 # compute its bucket's index for this pass
counts[i] += 1 # increment that bucket's count
end
counts[1] = lo + offset # set target index for the first bucket
cumsum!(counts, counts) # set target indices for subsequent buckets
# counts[1:mask+1] now stores indices where the first member of each bucket
# belongs, not the number of elements in each bucket. We will put the first element
# of bucket 0x00 in t[counts[1]], the next element of bucket 0x00 in t[counts[1]+1],
# and the last element of bucket 0x00 in t[counts[2]-1].
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 1 # compute its bucket's index for this pass
j = counts[i] # lookup the target index
t[j] = x # put the element where it belongs
counts[i] = j + 1 # increment the target index for the next
end # ↳ element in this bucket
end
end
end # module MergeSortGPU
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | code | 2058 | using SyncSort
using Test
using Random
@testset "CPU single vectors" begin
x = rand(100)
syncsort!(x)
@test issorted(x)
x = rand(Int, 100)
syncsort!(x)
@test issorted(x)
x = rand(UInt, 100)
syncsort!(x)
@test issorted(x)
x = rand(Int, 100) |> Vector{Integer}
syncsort!(x)
@test issorted(x)
end
@testset "CPU double vectors" begin
Random.seed!(0)
x1 = rand(100)
y1 = rand(100)
x2 = copy(x1)
y2 = copy(y1)
syncsort!(x1, y1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
x1 = rand(Int, 100)
x2 = copy(x1)
y1 = rand(100)
y2 = copy(y1)
syncsort!(x1, y1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
x1 = rand(UInt, 100)
x2 = copy(x1)
y1 = rand(100)
y2 = copy(y1)
syncsort!(x1, y1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
x1 = rand(Int, 100) |> Vector{Integer}
x2 = copy(x1)
y1 = rand(100)
y2 = copy(y1)
syncsort!(x1, y1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
end
@testset "CPU triple vectors" begin
Random.seed!(0)
x1 = rand(100)
y1 = rand(100)
z1 = rand(100)
x2 = copy(x1)
y2 = copy(y1)
z2 = copy(z1)
syncsort!(x1, y1, z1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
@test z1 == z2[sortperm(x2)]
x1 = rand(Int, 100)
y1 = rand(100)
z1 = rand(100)
x2 = copy(x1)
y2 = copy(y1)
z2 = copy(z1)
syncsort!(x1, y1, z1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
@test z1 == z2[sortperm(x2)]
x1 = rand(UInt, 100)
y1 = rand(100)
z1 = rand(100)
x2 = copy(x1)
y2 = copy(y1)
z2 = copy(z1)
syncsort!(x1, y1, z1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
@test z1 == z2[sortperm(x2)]
x1 = rand(Int, 100) |> Vector{Integer}
y1 = rand(100)
z1 = rand(100)
x2 = copy(x1)
y2 = copy(y1)
z2 = copy(z1)
syncsort!(x1, y1, z1)
@test issorted(x1)
@test y1 == y2[sortperm(x2)]
@test z1 == z2[sortperm(x2)]
end
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.0 | d01c0040cebc605d4b1ce929654d8cdd58949ca7 | docs | 2974 | # SyncSort: Cross-Architecture Synchronised Sorting of Multiple Arrays
While key-value pairs are standard in sorting, oftentimes these keys and values are kept in separate arrays (see Explanation below); we can sort multiple secondary vectors following the values of a primary key vector using a new sorting interface:
```julia
syncsort!(v, rest...)
# Example interface usage
num_particles = 100_000
ids = rand(Int64, num_particles)
xcoords = rand(num_particles)
ycoords = rand(num_particles)
# Reordering applied to `ids` will be done in sync with `xcoords` and `ycoords`
syncsort!(ids, xcoords, ycoords)
```
## Explanation
Key-value pair sorting assumes an _Array of Structures_ (AoS) format - e.g., a `Vector{Particle}` where `struct Particle` contains some fields `coord::Float64` and `id::Int64`. However, in many applications, it is more performant to store these fields as a _Structure of Arrays_ (SoA), i.e. separate `coords::Vector{Float64` and `ids::Vector{Int64}`.
If we had an Array of Structures, using standard sorting interfaces - as is the case in virtually all programming languages - we'd do something like:
```julia
# One primary key and two secondary values
struct Particle
id::Int64
xcoord::Float64
ycoord::Float64
end
# Array of structures
particles = [Particle(rand(Int64), rand(Float64)) for i in 1:10_000]
# Sort by the field `id`
sort!(particles; by=p->p.id)
```
In high-performance applications, we'd use a Structure of Arrays, where we have separate arrays for our keys and values; the typical solution would involve creating a mask of indices sorting the primary array, in Julia named `sortperm`:
```julia
# Keys and values held in separate vectors
ids = rand(Int64, 10_000)
xcoords = rand(Float64, 10_000)
ycoords = rand(Float64, 10_000)
# Get indices permutation that sorts the primary array
sorted_indices = sortperm(ids)
# Use indices mask to permute arrays
ids = ids[sorted_indices]
xcoords = xcoords[sorted_indices]
ycoords = ycoords[sorted_indices]
```
An easier and much more performant solution - in terms of time, space, and especially program (re-)design - would be `syncsort`:
```julia
using SyncSort
# Keys and values held in separate vectors
ids = rand(Int64, 10_000)
xcoords = rand(Float64, 10_000)
ycoords = rand(Float64, 10_000)
syncsort!(ids, xcoords, ycoords)
```
## CPU Sorting Credits
The CPU sorting routines in `src/cpu_sort.jl` are copied verbatim from the Julia standard library, with some changes to propagate the secondary arrays and follow the swaps done by the standard sorting routines. All credits go to the Julia contributors, with special thanks to @LilithHafner for writing one of the most performant sorting algorithms of [any programming language](https://github.com/LilithHafner/InterLanguageSortingComparisons) - thank you! The Julia license text is included within the file.
## License
This package is shared under the same license as the Julia standard library, MIT.
| SyncSort | https://github.com/StellaOrg/SyncSort.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1418 | module SyncBarriersBenchmarks
using BenchmarkTools: Benchmark, BenchmarkGroup
include("bench_uniform_loops.jl")
include("bench_fuzzy.jl")
include("bench_cml.jl")
include("bench_gcm.jl")
function setup(; uniform_loops = (), fuzzy = (), cml = (), gcm = ())
suite = BenchmarkGroup()
suite["uniform_loops"] = BenchUniformLoops.setup(; uniform_loops...)
suite["fuzzy"] = BenchFuzzy.setup(; fuzzy...)
suite["cml"] = BenchCML.setup(; cml...)
suite["gcm"] = BenchGCM.setup(; gcm...)
return suite
end
function set_smoke_params!(bench)
bench.params.seconds = 0.001
bench.params.evals = 1
bench.params.samples = 1
bench.params.gctrial = false
bench.params.gcsample = false
return bench
end
foreach_benchmark(f!, bench::Benchmark) = f!(bench)
function foreach_benchmark(f!, group::BenchmarkGroup)
for x in values(group)
foreach_benchmark(f!, x)
end
end
function setup_smoke(; ntasks = Threads.nthreads())
suite = setup(
fuzzy = (ntasks = ntasks, n = ntasks, m = ntasks, niters = 10),
cml = (ntasks = ntasks, nsites = ntasks + 2, nsteps = 10),
gcm = (ntasks = ntasks, nsites = ntasks + 2, nsteps = 10),
)
foreach_benchmark(set_smoke_params!, suite)
return suite
end
function clear()
BenchUniformLoops.clear()
BenchFuzzy.clear()
BenchCML.clear()
BenchGCM.clear()
end
end # module SyncBarriersBenchmarks
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 4743 | module BenchCML
using SyncBarriers
using BenchmarkTools
function unsafe_update!(xs, t, indices, f, ϵ)
for i in indices
@inbounds xs[i, t+1] =
(1 - ϵ) * f(xs[i, t]) + ϵ / 2 * (f(xs[i-1, t]) + f(xs[i+1, t]))
end
end
function sim_seq!(xs, f::F, ϵ) where {F}
for t in firstindex(xs, 2):lastindex(xs, 2)-1
unsafe_update!(xs, t, firstindex(xs, 1)+1:lastindex(xs, 1)-1, f, ϵ)
end
end
function sim_parallel!(xs, f, ϵ, barrier, foreach_parallel, spin)
ntasks = length(barrier)
space = firstindex(xs, 1)+1:lastindex(xs, 1)-1
xchunks = collect(Iterators.partition(space, cld(length(space), ntasks)))
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
for t in firstindex(xs, 2):lastindex(xs, 2)-1
unsafe_update!(xs, t, indices, f, ϵ)
cycle!(barrier[itask], spin)
end
end
end
prepare_barriers(f, ntasks) = [f(2) for _ in 1:ntasks-1]
function sim_parallel_edges!(xs, f, ϵ, barriers, foreach_parallel, spin)
ntasks = length(barriers)+1
space = firstindex(xs, 1)+1:lastindex(xs, 1)-1
xchunks = collect(Iterators.partition(space, cld(length(space), ntasks)))
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
for t in firstindex(xs, 2):lastindex(xs, 2)-1
unsafe_update!(xs, t, indices, f, ϵ)
itask == 1 || cycle!(barriers[itask-1][2], spin)
itask == ntasks || cycle!(barriers[itask][1], spin)
end
end
end
function sim_parallel_nobarrier!(xs, f, ϵ, ntasks, foreach_parallel)
space = firstindex(xs, 1)+1:lastindex(xs, 1)-1
xchunks = collect(Iterators.partition(space, cld(length(space), ntasks)))
for t in firstindex(xs, 2):lastindex(xs, 2)-1
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
unsafe_update!(xs, t, indices, f, ϵ)
end
end
end
function parallel_foreach_static(f, xs)
Threads.@threads :static for x in xs
f(x)
end
end
function parallel_foreach_dynamic(f, xs)
tasks = empty!(Vector{Task}(undef, length(xs)))
for x in xs
t = Threads.@spawn f(x)
push!(tasks, t)
end
foreach(wait, tasks)
end
const CACHE = Ref{Any}(nothing)
function setup(;
spin = nothing,
# spin = 1000,
nbranches = 2,
ntasks = Threads.nthreads(),
nsteps = 2^10,
nsites = 2^13 * ntasks,
a = 1.85,
ϵ = 0.1,
)
@debug "BenchCML.setup: spin=$spin nbranches=$nbranches ntasks=$ntasks nsteps=$nsteps nsites=$nsites a=$a ϵ=$ϵ"
f(x) = 1 - a * x^2
CACHE[] = zeros(nsites, nsteps)
CACHE[][:, 1] .= rand(nsites)
suite = BenchmarkGroup()
suite["seq"] = @benchmarkable sim_seq!(CACHE[], $f, $ϵ)
for (label, barrier) in [
("dissemination", DisseminationBarrier),
("tree", TreeBarrier{nbranches}),
("flat-tree", FlatTreeBarrier{nbranches}),
("centralized", CentralizedBarrier),
# ...
]
s1 = suite[label] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel!(
CACHE[],
$f,
$ϵ,
$barrier($ntasks),
parallel_foreach_static,
$spin,
)
s1["dynamic"] = @benchmarkable sim_parallel!(
CACHE[],
$f,
$ϵ,
$barrier($ntasks),
parallel_foreach_static,
$spin,
)
end
for (label, barrier) in [
# ("dissemination-edges", DisseminationBarrier),
# ("tree-edges", TreeBarrier{nbranches}),
# ("flat-tree"-edges, FlatTreeBarrier{nbranches}),
("centralized-edges", CentralizedBarrier),
# ...
]
s1 = suite[label] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel_edges!(
CACHE[],
$f,
$ϵ,
prepare_barriers($barrier, $ntasks),
parallel_foreach_static,
$spin,
)
s1["dynamic"] = @benchmarkable sim_parallel_edges!(
CACHE[],
$f,
$ϵ,
prepare_barriers($barrier, $ntasks),
parallel_foreach_static,
$spin,
)
end
let s1 = suite["nobarrier"] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel_nobarrier!(
CACHE[],
$f,
$ϵ,
$ntasks,
parallel_foreach_static,
)
s1["dynamic"] = @benchmarkable sim_parallel_nobarrier!(
CACHE[],
$f,
$ϵ,
$ntasks,
parallel_foreach_static,
)
end
return suite
end
function clear()
CACHE[] = nothing
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 7712 | module BenchFuzzy
import LinearAlgebra
using SyncBarriers
using BenchmarkTools
using UnPack: @unpack
function mul_naive!(
y::AbstractVector,
A::AbstractMatrix,
x::AbstractVector,
a = true,
b = false,
)
(axes(y, 1) == axes(A, 1) && axes(A, 2) == axes(x, 1)) || throw(DimensionMismatch())
for i in axes(A, 1)
s = zero(eltype(y))
@simd for j in axes(A, 2)
s += @inbounds A[i, j] * x[j] # A is adjoint or transpose
end
y[i] = s * a + y[i] * b
end
return y
end
function sim_seq(model, niters, mul! = mul_naive!)
@unpack f, g, A, B, C, x0, y0 = model
x1 = copy(x0)
x2 = similar(x0)
y1 = copy(y0)
y2 = similar(y0)
for _ in 1:niters
mul!(x2, A, x1)
mul!(y2, C, x1)
mul!(y2, B, y1, true, true)
x2 .= f.(x2)
y2 .= g.(y2)
x1, x2 = x2, x1
y1, y2 = y2, y1
end
return (x1, y1)
end
function sim_parallel_fuzzy(
model,
niters,
bx,
by,
parallel_foreach,
spin,
mul! = mul_naive!,
)
@assert length(bx) == length(by)
@unpack f, g, A, B, C, x0, y0 = model
x1 = copy(x0)
x2 = similar(x0)
y1 = copy(y0)
y2 = similar(y0)
xs = (x1, x2)
ys = (y1, y2)
ntasks = length(bx)
xchunks = collect(Iterators.partition(eachindex(x0), cld(length(x0), ntasks)))
ychunks = collect(Iterators.partition(eachindex(y0), cld(length(y0), ntasks)))
@assert length(xchunks) == length(ychunks) == ntasks
parallel_foreach(1:ntasks) do i
for t in 1:niters
local x1 , x2 , y1 , y2
if isodd(t)
x1, x2 = xs
y1, y2 = ys
else
x2, x1 = xs
y2, y1 = ys
end
@views begin
xl = x2[xchunks[i]]
yl = y2[ychunks[i]]
Al = A[xchunks[i], :]
Bl = B[ychunks[i], :]
Cl = C[ychunks[i], :]
end
mul!(xl, Al, x1)
t == 1 || depart!(by[i], spin)
mul!(yl, Cl, x1)
xl .= f.(xl)
arrive!(bx[i]) # => x1 writable, x2 readable
mul!(yl, Bl, y1, true, true)
yl .= g.(yl)
arrive!(by[i]) # => y1 writable, y2 readable
depart!(bx[i], spin)
end
end
return (x1, y1)
end
function sim_parallel(model, niters, b, parallel_foreach, spin, mul! = mul_naive!)
@unpack f, g, A, B, C, x0, y0 = model
x1 = copy(x0)
x2 = similar(x0)
y1 = copy(y0)
y2 = similar(y0)
xs = (x1, x2)
ys = (y1, y2)
ntasks = length(b)
xchunks = collect(Iterators.partition(eachindex(x0), cld(length(x0), ntasks)))
ychunks = collect(Iterators.partition(eachindex(y0), cld(length(y0), ntasks)))
@assert length(xchunks) == length(ychunks) == ntasks
parallel_foreach(1:ntasks) do i
for t in 1:niters
local x1 , x2 , y1 , y2
if isodd(t)
x1, x2 = xs
y1, y2 = ys
else
x2, x1 = xs
y2, y1 = ys
end
@views begin
xl = x2[xchunks[i]]
yl = y2[ychunks[i]]
Al = A[xchunks[i], :]
Bl = B[ychunks[i], :]
Cl = C[ychunks[i], :]
end
mul!(xl, Al, x1)
xl .= f.(xl)
mul!(yl, Cl, x1)
mul!(yl, Bl, y1, true, true)
yl .= g.(yl)
cycle!(b[i], spin)
end
end
return (x1, y1)
end
function sim_parallel_nobarrier(model, niters, ntasks, parallel_foreach, mul! = mul_naive!)
@unpack f, g, A, B, C, x0, y0 = model
x1 = copy(x0)
x2 = similar(x0)
y1 = copy(y0)
y2 = similar(y0)
xs = (x1, x2)
ys = (y1, y2)
xchunks = collect(Iterators.partition(eachindex(x0), cld(length(x0), ntasks)))
ychunks = collect(Iterators.partition(eachindex(y0), cld(length(y0), ntasks)))
@assert length(xchunks) == length(ychunks) == ntasks
for t in 1:niters
parallel_foreach(1:ntasks) do i
local x1 , x2 , y1 , y2
if isodd(t)
x1, x2 = xs
y1, y2 = ys
else
x2, x1 = xs
y2, y1 = ys
end
@views begin
xl = x2[xchunks[i]]
yl = y2[ychunks[i]]
Al = A[xchunks[i], :]
Bl = B[ychunks[i], :]
Cl = C[ychunks[i], :]
end
mul!(xl, Al, x1)
xl .= f.(xl)
mul!(yl, Cl, x1)
mul!(yl, Bl, y1, true, true)
yl .= g.(yl)
end
end
return (x1, y1)
end
function parallel_foreach_static(f, xs)
Threads.@threads :static for x in xs
f(x)
end
end
function parallel_foreach_dynamic(f, xs)
tasks = empty!(Vector{Task}(undef, length(xs)))
for x in xs
t = Threads.@spawn f(x)
push!(tasks, t)
end
foreach(wait, tasks)
end
function random_model(n, m, g = 1.5)
At = (g / √n) .* rand(n, n)
Bt = (g / √m) .* rand(m, m)
Ct = (g / √n) .* rand(n, m)
return (
A = At',
B = Bt',
C = Ct',
x0 = randn(n),
y0 = randn(m),
f = tanh,
g = tanh,
# ...
)
end
const CACHE = Ref{Any}(nothing)
function setup(;
n = 2^9,
m = 2^10,
niters = 1000,
ntasks = Threads.nthreads(),
spin = nothing,
nbranches = 2,
)
@debug "BenchFuzzy.setup: n=$n m=$m niters=$niters ntasks=$ntasks spin=$spin nbranches=$nbranches"
CACHE[] = random_model(n, m)
suite = BenchmarkGroup()
suite["seq"] = @benchmarkable sim_seq(CACHE[], $niters)
suite["blas"] = @benchmarkable sim_seq(CACHE[], $niters, LinearAlgebra.mul!)
for (label, barrier) in [
# Fuzzy barriers:
("tree", TreeBarrier{nbranches}),
("flat-tree", FlatTreeBarrier{nbranches}),
("centralized", CentralizedBarrier),
]
s1 = suite[label] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel_fuzzy(
CACHE[],
$niters,
$barrier($ntasks),
$barrier($ntasks),
parallel_foreach_static,
$spin,
)
s1["dynamic"] = @benchmarkable sim_parallel_fuzzy(
CACHE[],
$niters,
$barrier($ntasks),
$barrier($ntasks),
parallel_foreach_dynamic,
$spin,
)
end
for (label, barrier) in [
# Non-fuzzy barriers:
("flat-tree-no-fuzzy", FlatTreeBarrier{nbranches}),
("centralized-no-fuzzy", CentralizedBarrier),
("dissemination", DisseminationBarrier),
]
s1 = suite[label] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel(
CACHE[],
$niters,
$barrier($ntasks),
parallel_foreach_static,
$spin,
)
s1["dynamic"] = @benchmarkable sim_parallel(
CACHE[],
$niters,
$barrier($ntasks),
parallel_foreach_dynamic,
$spin,
)
end
let s1 = suite["nobarrier"] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel_nobarrier(
CACHE[],
$niters,
$ntasks,
parallel_foreach_static,
)
s1["dynamic"] = @benchmarkable sim_parallel_nobarrier(
CACHE[],
$niters,
$ntasks,
parallel_foreach_static,
)
end
return suite
end
function clear()
CACHE[] = nothing
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 4038 | module BenchGCM
using SyncBarriers
using BenchmarkTools
function sim_seq!(xs, f::F, ϵ) where {F}
y = similar(xs, size(xs, 1))
for t in firstindex(xs, 2):lastindex(xs, 2)-1
@views begin
@. y = f(xs[:, t])
m = sum(y) / size(xs, 1)
@. xs[:, t+1] = (1 - ϵ) * y + ϵ * m
end
end
end
function sim_parallel!(xs, f, ϵ, barrier, foreach_parallel, spin)
ntasks = length(barrier)
space = firstindex(xs, 1)+1:lastindex(xs, 1)-1
xchunks = collect(Iterators.partition(space, cld(length(space), ntasks)))
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
y = similar(xs, length(xchunks[itask]))
xl = @view xs[xchunks[itask], :]
for t in firstindex(xs, 2):lastindex(xs, 2)-1
@views begin
@. y = f(xl[:, t])
s = reduce!(barrier[itask], sum(y), spin)
m = s / size(xs, 1)
@. xl[:, t+1] = (1 - ϵ) * y + ϵ * m
end
end
end
end
function sim_parallel_nobarrier!(xs, f, ϵ, ntasks, foreach_parallel)
space = firstindex(xs, 1)+1:lastindex(xs, 1)-1
y = similar(xs, size(xs, 1))
sums = similar(xs, ntasks)
xchunks = collect(Iterators.partition(space, cld(length(space), ntasks)))
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
xl = @view xs[xchunks[itask], :]
yl = @view y[xchunks[itask]]
@. yl = f(xl[:, begin])
sums[itask] = sum(y)
end
for t in firstindex(xs, 2):lastindex(xs, 2)-1
m = sum(sums) / size(xs, 1)
foreach_parallel(1:ntasks) do itask
local indices = xchunks[itask]
xl = @view xs[xchunks[itask], :]
yl = @view y[xchunks[itask]]
@views begin
@. xl[:, t+1] = (1 - ϵ) * yl + ϵ * m
@. yl = f(xl[:, t+1])
sums[itask] = sum(yl)
end
end
end
end
function parallel_foreach_static(f, xs)
Threads.@threads :static for x in xs
f(x)
end
end
function parallel_foreach_dynamic(f, xs)
tasks = empty!(Vector{Task}(undef, length(xs)))
for x in xs
t = Threads.@spawn f(x)
push!(tasks, t)
end
foreach(wait, tasks)
end
const CACHE = Ref{Any}(nothing)
function setup(;
spin = nothing,
# spin = 1000,
ntasks = Threads.nthreads(),
nbranches = max(2, cld(ntasks, 4)),
nsteps = 2^10,
nsites = 2^13 * ntasks,
a = 1.85,
ϵ = 0.1,
)
@debug "BenchGCM.setup: spin=$spin nbranches=$nbranches ntasks=$ntasks nsteps=$nsteps nsites=$nsites a=$a ϵ=$ϵ"
f(x) = 1 - a * x^2
CACHE[] = zeros(nsites, nsteps)
CACHE[][:, 1] .= rand(nsites)
suite = BenchmarkGroup()
suite["seq"] = @benchmarkable sim_seq!(CACHE[], $f, $ϵ)
for (label, barrier) in [
("static-tree", StaticTreeBarrier{nbranches,nbranches,Float64}),
("tree", TreeBarrier{nbranches,Float64}),
("flat-tree", FlatTreeBarrier{nbranches,Float64}),
# ...
]
s1 = suite[label] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel!(
CACHE[],
$f,
$ϵ,
$barrier(+, $ntasks),
parallel_foreach_static,
$spin,
)
s1["dynamic"] = @benchmarkable sim_parallel!(
CACHE[],
$f,
$ϵ,
$barrier(+, $ntasks),
parallel_foreach_static,
$spin,
)
end
let s1 = suite["nobarrier"] = BenchmarkGroup()
s1["static"] = @benchmarkable sim_parallel_nobarrier!(
CACHE[],
$f,
$ϵ,
$ntasks,
parallel_foreach_static,
)
s1["dynamic"] = @benchmarkable sim_parallel_nobarrier!(
CACHE[],
$f,
$ϵ,
$ntasks,
parallel_foreach_static,
)
end
return suite
end
function clear()
CACHE[] = nothing
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 4694 | module BenchUniformLoops
using BenchmarkTools
using SyncBarriers
function work()
t1 = time_ns() + 100
while t1 > time_ns()
end
end
#=
const SINKS = Float64[]
const SINKS_STRIDE = 32
function __init__()
resize!(SINKS, SINKS_STRIDE * (Threads.nthreads() + 1))
fill!(SINKS, -1)
end
function work(n = 10)
i = SINKS_STRIDE * Threads.threadid()
x = SINKS[i]
for _ in 1:n
x = sin(3 * x)
end
SINKS[i] = x
end
=#
function spawn_and_wait(ncycles, ntasks)
tasks = Vector{Task}(undef, ntasks)
for _ in 1:ncycles
empty!(tasks)
for _ in 1:ntasks
t = Threads.@spawn work()
push!(tasks, t)
end
foreach(wait, tasks)
end
end
# bad idea?
function spawn_and_barrier(ncycles, ntasks)
tasks = Vector{Task}(undef, ntasks)
barrier = SyncBarriers.CentralizedBarrier(ntasks + 1)
for k in 1:ncycles
s = mod(k, 2^7) == 0
s && empty!(tasks)
for i in 1:ntasks
t = Threads.@spawn begin
work()
SyncBarriers.cycle!(barrier[i])
end
s && push!(tasks, t)
end
SyncBarriers.cycle!(barrier[ntasks+1])
s && foreach(wait, tasks)
end
end
# => works well with dissemination
function barrier_with_static(factory, ncycles, ntasks, spin)
barrier = factory(ntasks)
Threads.@threads :static for i in 1:ntasks
for k in 1:ncycles
work()
SyncBarriers.cycle!(barrier[i], spin)
end
end
end
# => works well with centralized
function barrier_with_spawn(factory, ncycles, ntasks, spin)
barrier = factory(ntasks)
tasks = empty!(Vector{Task}(undef, ntasks))
for i in 1:ntasks
t = Threads.@spawn begin
for k in 1:ncycles
work()
SyncBarriers.cycle!(barrier[i], spin)
end
end
push!(tasks, t)
end
foreach(wait, tasks)
end
function setup(;
ncycles::Integer = 2^10,
ntasks::Integer = Threads.nthreads(),
spin::Integer = 10_000,
nbranches_list::AbstractVector{<:Integer} = Int[],
)
@debug "BenchUniformLoops: ncycles=$ncycles ntasks=$ntasks spin=$spin"
barrier_list = []
push_barrier!(name, value) = push!(barrier_list, (name = name, value = value))
push_barrier!("dissemination", SyncBarriers.DisseminationBarrier),
push_barrier!("centralized", SyncBarriers.CentralizedBarrier),
if isempty(nbranches_list)
if ntasks > 8
push_barrier!("tree-8", SyncBarriers.TreeBarrier{8})
push_barrier!("flat-tree-8", SyncBarriers.FlatTreeBarrier{8})
push_barrier!("static-tree-8-8", SyncBarriers.StaticTreeBarrier{8,8})
elseif ntasks > 4
push_barrier!("tree-4", SyncBarriers.TreeBarrier{4})
push_barrier!("flat-tree-4", SyncBarriers.FlatTreeBarrier{4})
push_barrier!("static-tree-4-4", SyncBarriers.StaticTreeBarrier{4,4})
elseif ntasks > 2
push_barrier!("tree-2", SyncBarriers.TreeBarrier{2})
push_barrier!("flat-tree-2", SyncBarriers.FlatTreeBarrier{2})
push_barrier!("static-tree-2-2", SyncBarriers.StaticTreeBarrier{2,2})
end
else
for n in nbranches_list
push_barrier!("tree-$n", SyncBarriers.TreeBarrier{n})
push_barrier!("flat-tree-$n", SyncBarriers.FlatTreeBarrier{n})
push_barrier!("static-tree-$n-$n", SyncBarriers.StaticTreeBarrier{n,n})
end
end
spin_list = [
(name = "nospin", value = nothing),
(name = "spin", value = spin),
# ...
]
loop_list = [
(name = "static", value = barrier_with_static),
(name = "spawn", value = barrier_with_spawn),
# ...
]
suite = BenchmarkGroup()
suite["wait"] = @benchmarkable spawn_and_wait($ncycles, $ntasks)
# suite["spawn_and_barrier"] = @benchmarkable spawn_and_barrier($ncycles, $ntasks)
for barrier in barrier_list
s1 = suite[string(barrier.name)] = BenchmarkGroup()
for spinarg in spin_list
s2 = s1[string(spinarg.name)] = BenchmarkGroup()
for loop in loop_list
s2[string(loop.name)] = @benchmarkable(
loop($(barrier.value), $ncycles, $ntasks, $(spinarg.value)),
setup = begin
# Workaround the error " function argument and static parameter
# names must be distinct":
loop = $(loop.value)
end
)
end
end
end
return suite
end
function clear() end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 238 | using Documenter
using SyncBarriers
makedocs(
sitename = "SyncBarriers",
format = Documenter.HTML(),
modules = [SyncBarriers]
)
deploydocs(
repo = "github.com/JuliaConcurrent/SyncBarriers.jl",
push_preview = true,
)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1298 | baremodule SyncBarriers
export
# Types:
Barrier,
CentralizedBarrier,
DisseminationBarrier,
FlatTreeBarrier,
StaticTreeBarrier,
TreeBarrier,
# Functions:
arrive!,
cycle!,
depart!,
fuzzy_barrier,
fuzzy_reduce_barrier,
reduce!,
reduce_arrive!,
reduce_barrier
abstract type Barrier end
# Factories
function fuzzy_barrier end
function fuzzy_reduce_barrier end
function reduce_barrier end
# Synchronizing API
function cycle! end
function arrive! end
function depart! end
function reduce! end
function reduce_arrive! end
abstract type CentralizedBarrier <: Barrier end
abstract type DisseminationBarrier <: Barrier end
abstract type TreeBarrier{N,T} <: Barrier end
abstract type FlatTreeBarrier{N,T} <: Barrier end
abstract type StaticTreeBarrier{NArrive,NDepart,T} <: Barrier end
module Internal
using ArgCheck: ArgCheck, @argcheck, @check
using RecordArrays
using ..SyncBarriers: SyncBarriers
include("utils.jl")
include("oneway.jl")
include("common.jl")
include("centralized_barrier.jl")
include("dissemination_barrier.jl")
include("static_tree_barrier.jl")
include("tree_barrier.jl")
include("flat_tree_barrier.jl")
include("barrier_api.jl")
end # module Internal
Internal.define_docstrings()
end # baremodule SyncBarriers
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 3615 | # Default barriers:
SyncBarriers.Barrier(n::Integer) = _Barrier(n, Threads.nthreads())
SyncBarriers.fuzzy_barrier(n::Integer) = _fuzzy_barrier(n, Threads.nthreads())
SyncBarriers.fuzzy_reduce_barrier(op, ::Type{T}, n::Integer) where {T} =
_fuzzy_reduce_barrier(op, T, n, Threads.nthreads())
SyncBarriers.reduce_barrier(op, ::Type{T}, n::Integer) where {T} =
_reduce_barrier(op, T, n, Threads.nthreads())
# TODO: find the best cutoff
# TODO: make it configurable?
function _Barrier(n::Integer, nthreads::Integer)
nthreads = min(nthreads, n)
if nthreads >= 32
return DisseminationBarrier(n)
else
return CentralizedBarrier(n)
end
end
function _fuzzy_barrier(n::Integer, nthreads::Integer)
nthreads = min(nthreads, n)
if nthreads >= 32
return TreeBarrier{8}(n)
else
return CentralizedBarrier(n)
end
end
function _fuzzy_reduce_barrier(op, ::Type{T}, n::Integer, nthreads::Integer) where {T}
nthreads = min(nthreads, n)
if nthreads >= 32
return TreeBarrier{8,T}(op, n)
elseif nthreads >= 16
return FlatTreeBarrier{4,T}(op, n)
else
return FlatTreeBarrier{2,T}(op, n)
end
end
function _reduce_barrier(op, ::Type{T}, n::Integer, nthreads::Integer) where {T}
nthreads = min(nthreads, n)
if nthreads >= 32
return StaticTreeBarrier{8,8,T}(op, n)
else
return _fuzzy_reduce_barrier(op, T, n, nthreads)
end
end
SyncBarriers.CentralizedBarrier(n) = CentralizedBarrier(n)
SyncBarriers.DisseminationBarrier(n) = DisseminationBarrier(n)
SyncBarriers.StaticTreeBarrier{NArrive,NDepart}(n) where {NArrive,NDepart} =
StaticTreeBarrier{NArrive,NDepart}(n)
SyncBarriers.StaticTreeBarrier{NArrive,NDepart,T}(op, n) where {NArrive,NDepart,T} =
StaticTreeBarrier{NArrive,NDepart,T}(op, n)
SyncBarriers.TreeBarrier{N}(n) where {N} = TreeBarrier{N}(n)
SyncBarriers.TreeBarrier{N,T}(op, n) where {N,T} = TreeBarrier{N,T}(op, n)
SyncBarriers.FlatTreeBarrier{N}(n) where {N} = FlatTreeBarrier{N}(n)
SyncBarriers.FlatTreeBarrier{N,T}(op, n) where {N,T} = FlatTreeBarrier{N,T}(op, n)
const FuzzyReduceBarrier{T,NBranches} =
Union{TreeBarrier{NBranches,T},FlatTreeBarrier{NBranches,T}}
const FuzzyBarrier = Union{CentralizedBarrier,TreeBarrier,FlatTreeBarrier}
# Used only in testing ATM:
const ReduceBarrier{T} =
Union{TreeBarrier{<:Any,T},FlatTreeBarrier{<:Any,T},StaticTreeBarrier{<:Any,<:Any,T}}
acctype(::Type{B}) where {T,B<:ReduceBarrier{T}} = T
acctype(b::SyncBarriers.Barrier) = acctype(typeof(b))
function SyncBarriers.cycle!(
handle::BarrierHandle{<:FuzzyBarrier},
spin::Union{Integer,Nothing} = nothing,
)
islast = SyncBarriers.arrive!(handle)
islast || SyncBarriers.depart!(handle, spin)
return islast
end
SyncBarriers.arrive!(handle::BarrierHandle{<:FuzzyReduceBarrier{Nothing}}) =
SyncBarriers.reduce_arrive!(handle, nothing) === Some(nothing)
Base.summary(io::IO, ::CentralizedBarrier) = show(io, SyncBarriers.CentralizedBarrier)
Base.summary(io::IO, ::DisseminationBarrier) = show(io, SyncBarriers.DisseminationBarrier)
Base.summary(io::IO, ::StaticTreeBarrier{NArrive,NDepart,T}) where {NArrive,NDepart,T} =
show(io, SyncBarriers.StaticTreeBarrier{NArrive,NDepart,T})
Base.summary(io::IO, ::TreeBarrier{T,N}) where {T,N} = show(io, SyncBarriers.TreeBarrier{T,N})
Base.summary(io::IO, ::FlatTreeBarrier{T,N}) where {T,N} =
show(io, SyncBarriers.FlatTreeBarrier{T,N})
function Base.show(io::IO, ::MIME"text/plain", barrier::SyncBarriers.Barrier)
summary(io, barrier)
print(io, " for ", length(barrier), " task(s)")
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1873 | local_sense_states(n) = RecordArrays.fill(true, n; align = 64)
struct CentralizedBarrier <: SyncBarriers.CentralizedBarrier
n::Int
count::Threads.Atomic{Int}
_count_pads::NTuple{ATOMICS_NPADS,Threads.Atomic{Int}}
sense::Threads.Atomic{Bool}
_sense_pads::NTuple{ATOMICS_NPADS,Threads.Atomic{Bool}}
local_sense::typeof(local_sense_states(1))
waiters::Matrix{OneWayCondition}
end
function CentralizedBarrier(n::Integer)
count, _count_pads = cache_aligned_atomic(0)
sense, _sense_pads = cache_aligned_atomic(true)
return CentralizedBarrier(
n,
count,
_count_pads,
sense,
_sense_pads,
local_sense_states(n),
[OneWayCondition() for _ in 1:n, _ in 1:2],
)
end
@inline waiters_for(barrier::CentralizedBarrier, sense::Bool) =
@view barrier.waiters[:, Int(sense) + 1]
@inline function waiter_for(handle::BarrierHandle{CentralizedBarrier})
barrier = handle.barrier
s = barrier.local_sense[handle.i]
return barrier.waiters[handle.i, Int(s) + 1]
end
function SyncBarriers.arrive!(handle::BarrierHandle{CentralizedBarrier})
barrier = handle.barrier
s = !barrier.local_sense[handle.i]
barrier.local_sense[handle.i] = s
if Threads.atomic_add!(barrier.count, 1) == barrier.n - 1
barrier.count[] = 0
barrier.sense[] = s
for (j, waiter) in pairs(waiters_for(barrier, s))
if j != handle.i
notify(waiter)
end
end
return true
else
return false
end
end
function SyncBarriers.depart!(
handle::BarrierHandle{CentralizedBarrier},
spin::Union{Integer,Nothing} = nothing,
)
barrier = handle.barrier
s = barrier.local_sense[handle.i]
waiter = waiter_for(handle)
sense = barrier.sense
waitif(() -> sense[] != s, waiter, spin)
return
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1847 | mutable struct Channel{T}
value::T
isset::Bool
moretakers::Bool
waiters::Vector{OneWayCondition}
lock::ReentrantLock
end
function _tryput!(channel, value)
sender = nothing
receiver = nothing
lock(channel.lock)
try
if channel.isset
@assert !channel.moretakers
todelete = Int[]
for (i, w) in pairs(channel.waiters)
if w.task === current_task()
if Atomic.cas!(w.state, OWC_EMPTY, OWC_WAITING) === OWC_EMPTY
sender = w
break
end
elseif w.state[] === OWC_EMPTY
if Atomic.cas!(w.state, OWC_EMPTY, OWC_CLOSED) === OWC_EMPTY
push!(todelete, i)
end
end
end
deleteat!(channel.waiters, todelete)
if sender === nothing
sender = OneWayCondition()
sender.task = current_task()
push!(channel.waiters, sender)
end
else
if channel.moretakers
todelete = Int[]
for (i, w) in pairs(channel.waiters)
if Atomic.cas!(w.state, OWC_WAITING, OWC_WAITING) === OWC_EMPTY
sender = w
break
end
end
else
channel.isset = true
channel.value = value
end
end
finally
unlock(channel.lock)
end
end
function _trytake!(channel)
lock(channel.lock)
try
if channel.isset
channel.isset = false
return Some(channel.value)
end
for waiter in channel.waiters
end
finally
unlock(channel.lock)
end
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 337 | struct BarrierHandle{Barrier<:SyncBarriers.Barrier}
barrier::Barrier
i::Int
end
Base.length(barrier::SyncBarriers.Barrier) = barrier.n
@inline function Base.getindex(barrier::SyncBarriers.Barrier, i::Integer)
@boundscheck 1 <= i <= length(barrier) || throw(BoundsError(barrier, i))
return BarrierHandle(barrier, i)
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1373 | sense_parity_states(n) = RecordArrays.fill((sense = true, parity = 0), n; align = 64)
struct DisseminationBarrier <: SyncBarriers.DisseminationBarrier
n::Int
flags::Array{OneWayObservable{Bool},3}
locals::typeof(sense_parity_states(1))
end
DisseminationBarrier(n::Integer) = DisseminationBarrier(
n,
[OneWayObservable{Bool}(false) for _ in 1:ceillog2(n), _ in 1:n, _ in 1:2],
sense_parity_states(n),
)
function inc_sense_parity!(state)
parity = state.parity[]
sense = state.sense[]
if parity == 1
state.sense[] = !sense
end
state.parity[] = 1 - parity
return sense, parity
end
function prev_sense_parity(state)
parity = 1 - state.parity[]
sense = state.sense[]
return ((parity == 1 ? !sense : sense), parity)
end
function SyncBarriers.cycle!(
handle::BarrierHandle{DisseminationBarrier},
spin::Union{Nothing,Integer} = nothing,
)
i = handle.i
barrier = handle.barrier
sense, parity = inc_sense_parity!(view(barrier.locals, handle.i))
shift = 1
for flags in eachrow(@view barrier.flags[:, :, parity+1])
@_assert flags[i][] != sense
flags[i][] = sense
j = i - shift
if j <= 0
j += lastindex(flags)
end
shift *= 2
waitif(x -> x != sense, flags[j], spin)
@_assert flags[j][] == sense
end
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 3423 | struct FlatNode{NBranches,T,Values<:Union{Nothing,MutableNTuple{NBranches,T}}}
count::NTuple{2,Threads.Atomic{Int}}
values::NTuple{2,Values}
end
function FlatNode{NBranches,T}() where {NBranches,T}
if Base.issingletontype(T)
Values = Nothing
values = (nothing, nothing)
else
Values = MutableNTuple{NBranches,T}
values = (Values(), Values())
end
count = (Threads.Atomic{Int}(0), Threads.Atomic{Int}(0))
return FlatNode{NBranches,T,Values}(count, values)
end
struct FlatTreeBarrier{NBranches,T,Op,Values} <: SyncBarriers.FlatTreeBarrier{NBranches,T}
n::Int
flags::Matrix{OneWayObservable{Bool}}
locals::typeof(sense_parity_states(1))
nodes::Vector{FlatNode{NBranches,T,Values}}
values::MutableNTuple{2,T}
op::Op
end
# TODO: check if parity is required
FlatTreeBarrier{NBranches}(n) where {NBranches} =
FlatTreeBarrier{NBranches,Nothing}(right, n)
function FlatTreeBarrier{NBranches,T}(op::Op, n::Integer) where {NBranches,T,Op}
@argcheck NBranches isa Integer && NBranches > 1 && T isa Type && n > 0
nnodes = foldl_leaf_to_root((_, x) -> x.stop, nothing, n, Val(NBranches), 1)
nodes = [FlatNode{NBranches,T}() for _ in 1:nnodes]
flags = [OneWayObservable{Bool}(false) for _ in 1:n, _ in 1:2]
values = MutableNTuple{2,T}()
return FlatTreeBarrier(
n,
flags,
sense_parity_states(n),
nodes,
values,
op,
)::FlatTreeBarrier{NBranches,T,Op}
end
function SyncBarriers.reduce!(
handle::BarrierHandle{<:FlatTreeBarrier},
value,
spin::Union{Integer,Nothing} = nothing,
)
acc1 = SyncBarriers.reduce_arrive!(handle, value)
acc2 = SyncBarriers.depart!(handle, spin)
if acc1 isa Some
@_assert acc2 === something(acc1)
return something(acc1)
else
return acc2
end
end
function SyncBarriers.reduce_arrive!(
handle::BarrierHandle{<:FlatTreeBarrier{NBranches,T}},
value,
) where {NBranches,T}
value = convert(T, value)
barrier = handle.barrier
i = handle.i
s, parity = inc_sense_parity!(view(barrier.locals, handle.i))
acc = foldl_leaf_to_root(Some(value), barrier.n, Val(NBranches), i) do acc, x
node = barrier.nodes[x.inode]
cnt = node.count[parity+1]
vals = node.values[parity+1]
if vals !== nothing
vals[x.iself] = something(acc)
end
if Threads.atomic_add!(cnt, 1) == length(x.branches) - 1
cnt[] = 0
if vals === nothing
return acc # continue
else
a = vals[1]
for j in x.branches[2:end]
a = barrier.op(a, vals[j])
end
return Some(a)
end
else
return Break(nothing)
end
end
if acc isa Break
return nothing
else
barrier.values[parity+1] = something(acc)
for (j, flag) in pairs(@view barrier.flags[:, parity+1])
flag[] = s
end
return acc::Some
end
end
function SyncBarriers.depart!(
handle::BarrierHandle{<:FlatTreeBarrier},
spin::Union{Integer,Nothing} = nothing,
)
barrier = handle.barrier
s, parity = prev_sense_parity(view(barrier.locals, handle.i))
flag = barrier.flags[handle.i, parity+1]
waitif(!=(s), flag, spin)
return barrier.values[parity+1]
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 2300 | const OWC_EMPTY = 0
const OWC_WAITING = 1
const OWC_NOTIFYING = 2
const OWC_CLOSED = 3
"""
OneWayCondition()
Single-reader single-writer condition variable.
"""
mutable struct OneWayCondition
state::Threads.Atomic{Int}
_pads::NTuple{ATOMICS_NPADS,Threads.Atomic{Int}}
task::Union{Task,Nothing}
end
function OneWayCondition()
state, _pads = cache_aligned_atomic(OWC_EMPTY)
return OneWayCondition( state, _pads, nothing)
end
function Base.notify(cond::OneWayCondition)
@_assert cond.state[] in (OWC_EMPTY, OWC_WAITING)
state = Threads.atomic_cas!(cond.state, OWC_WAITING, OWC_NOTIFYING)
@_assert state in (OWC_EMPTY, OWC_WAITING)
if state === OWC_WAITING
schedule(cond.task)
end
return
end
function waitif(f, cond::OneWayCondition, spin::Union{Nothing,Integer})
if spin isa Integer
for _ in Base.OneTo(spin)
f() || return
ccall(:jl_cpu_pause, Cvoid, ())
GC.safepoint()
end
end
cond.task = current_task()
@_assert cond.state[] == OWC_EMPTY
cond.state[] = OWC_WAITING
Threads.atomic_fence() # prevent store-load reordering
if f() # load
wait()::Nothing
@_assert !f()
else
state = Threads.atomic_cas!(cond.state, OWC_WAITING, OWC_EMPTY)
if state === OWC_NOTIFYING
# then we must "receive" the `schedule` call
wait()::Nothing
@_assert !f()
else
@_assert !f()
end
@_assert state in (OWC_WAITING, OWC_NOTIFYING)
end
cond.state[] = OWC_EMPTY
cond.task = nothing
return
end
"""
OneWayObservable{T}(x::T)
Single-reader single-writer observable-ish.
"""
struct OneWayObservable{T}
value::Threads.Atomic{T}
_pads::NTuple{ATOMICS_NPADS,Threads.Atomic{T}}
cond::OneWayCondition
end
function OneWayObservable{T}(x::T) where {T}
value, _pads = cache_aligned_atomic(x)
return OneWayObservable{T}(value, _pads, OneWayCondition())
end
@inline Base.getindex(o::OneWayObservable) = o.value[]
@inline function Base.setindex!(o::OneWayObservable{T}, v::T) where {T}
o.value[] = v
notify(o.cond)
end
waitif(f::F, o::OneWayObservable, spin::Union{Nothing,Integer}) where {F} =
waitif(() -> f(o.value[]), o.cond, spin)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 4055 | struct StaticFlagNode{NBranches,T,Value<:Cell{T}}
nchildren::Int
children::NTuple{NBranches,Int}
flag::OneWayObservable{Bool}
value::Value
end
StaticFlagNode{NBranches,T,Value}(
nchildren,
children,
flag,
) where {NBranches,T,Value<:Cell{T}} =
StaticFlagNode{NBranches,T,Value}(nchildren, children, flag, Value())
function concrete(::Type{StaticFlagNode{NBranches,T}}) where {NBranches,T}
if Base.issingletontype(T)
return StaticFlagNode{NBranches,T,SingletonCell{T}}
else
return StaticFlagNode{NBranches,T,MutableCell{T}}
end
end
struct StaticTreeBarrier{NArrive,NDepart,T,Value,Op} <:
SyncBarriers.StaticTreeBarrier{NArrive,NDepart,T}
n::Int
local_sense::Vector{Bool} # TODO: pad
arrives::Vector{StaticFlagNode{NArrive,T,Value}}
departs::Vector{StaticFlagNode{NDepart,Nothing,SingletonCell{Nothing}}}
op::Op
end
StaticTreeBarrier{NArrive,NDepart}(n::Integer) where {NArrive,NDepart} =
StaticTreeBarrier{NArrive,NDepart,Nothing}(right, n)
function StaticTreeBarrier{NArrive,NDepart,T}(op, n::Integer) where {NArrive,NDepart,T}
@argcheck n > 0
arrives = Vector{concrete(StaticFlagNode{NArrive,T})}(undef, n)
departs = Vector{concrete(StaticFlagNode{NDepart,Nothing})}(undef, n)
static_tree!(arrives)
static_tree!(departs)
local_sense = [false for _ in 1:n]
return StaticTreeBarrier(n, local_sense, arrives, departs, op)
end
function static_tree_depth(B, n)
len(d) = (B^d - 1) ÷ (B - 1)
d = ceil(Int, log(B, (B - 1) * n + 1))
@assert len(d - 1) <= n <= len(d)
return d
end
function static_tree!(nodes::AbstractVector{<:StaticFlagNode{NBranches}}) where {NBranches}
i = _static_tree!(nodes, 1, 1, static_tree_depth(NBranches, length(nodes)))
@assert i == length(nodes) + 1
end
# Filling nodes in depth-first order so that the reduction does not require commutativity.
function _static_tree!(
nodes::AbstractVector{<:Node},
i,
depth,
maxdepth,
) where {NBranches,Node<:StaticFlagNode{NBranches}}
children = ntuple(_ -> firstindex(nodes) - 1, Val(NBranches))
nchildren = 0
if depth < maxdepth
for k in 1:NBranches
i <= length(nodes) - depth || break
i = _static_tree!(nodes, i, depth + 1, maxdepth)
nchildren += 1
children = Base.setindex(children, i - 1, k)
end
end
nodes[i] = Node(nchildren, children, OneWayObservable{Bool}(false))
return i + 1
end
function foldr_children(op, acc, nodes::AbstractVector{<:StaticFlagNode}, i)
node = nodes[i]
for k in node.nchildren:-1:1
acc = op(nodes[node.children[k]], acc)
end
return acc
end
# The iteration order of foldr_children and foreach_child_flag are different so
# that the communication is done in FIFO manner. (TODO: check if it matters)
function foreach_child_flag(f::F, nodes, i) where {F}
node = nodes[i]
for k in 1:node.nchildren
f(nodes[node.children[k]].flag)
end
return
end
SyncBarriers.cycle!(
handle::BarrierHandle{<:StaticTreeBarrier{<:Any,<:Any,Nothing}},
spin::Union{Nothing,Integer} = nothing,
) = SyncBarriers.reduce!(handle, nothing, spin)
function SyncBarriers.reduce!(
handle::BarrierHandle{<:StaticTreeBarrier{<:Any,<:Any,T}},
value,
spin::Union{Nothing,Integer} = nothing,
) where {T}
value = convert(T, value)
i = handle.i
barrier = handle.barrier
acc = foldr_children(value, barrier.arrives, i) do node, value
waitif(!=(true), node.flag, spin)
node.flag.value[] = false # for next episode
barrier.op(node.value[], value)
end
barrier.arrives[i].value[] = acc
barrier.arrives[i].flag[] = true
sense = barrier.local_sense[i] = !barrier.local_sense[i]
root_node = length(barrier)
if i != root_node
waitif(!=(sense), barrier.departs[i].flag, spin)
end
foreach_child_flag(barrier.departs, i) do flag
flag[] = sense
end
return barrier.arrives[root_node].value[]
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 7260 | struct Node{NBranches,T,Values<:Union{Nothing,MutableNTuple{NBranches,T}}}
count::Threads.Atomic{Int}
sense::Threads.Atomic{Bool}
winner::NTuple{2,Threads.Atomic{Int}}
values::NTuple{2,Values}
waiters::NTuple{2,NTuple{NBranches,OneWayCondition}}
end
# TODO: Clarify why two sets of `values` are required: different rounds can have
# different sets of tasks involved. If not, remove it.
function Node{NBranches,T}() where {NBranches,T}
if Base.issingletontype(T)
Values = Nothing
values = (nothing, nothing)
else
Values = MutableNTuple{NBranches,T}
values = (Values(), Values())
end
return Node{NBranches,T,Values}(
Threads.Atomic{Int}(0),
Threads.Atomic{Bool}(true),
(Threads.Atomic{Int}(0), Threads.Atomic{Int}(0)),
values,
ntuple(_ -> ntuple(_ -> OneWayCondition(), NBranches), 2),
)
end
struct TreeBarrier{NBranches,T,Op,Values} <: SyncBarriers.TreeBarrier{NBranches,T}
n::Int
local_sense::Vector{Bool} # TODO: pad
nodes::Vector{Node{NBranches,T,Values}}
values::MutableNTuple{2,T}
op::Op
end
TreeBarrier{NBranches}(n) where {NBranches} = TreeBarrier{NBranches,Nothing}(right, n)
function TreeBarrier{NBranches,T}(op::Op, n::Integer) where {NBranches,T,Op}
@argcheck NBranches isa Integer && NBranches > 1 && T isa Type && n > 0
local_sense = [true for _ in 1:n]
nnodes = foldl_leaf_to_root((_, x) -> x.stop, nothing, n, Val(NBranches), 1)
nodes = [Node{NBranches,T}() for _ in 1:nnodes]
values = MutableNTuple{2,T}()
return TreeBarrier(n, local_sense, nodes, values, op)::TreeBarrier{NBranches,T,Op}
end
function foldl_leaf_to_root(
rf,
acc,
n::Integer,
::Val{NBranches},
i::Integer,
) where {NBranches}
offset = 0
width = n # number of nodes for each depth
while true
width, nlast = divrem(width, NBranches)
width += nlast > 0
q, r = divrem(i - 1, NBranches)
i = q + 1
if nlast > 0 && i == width
branches = 1:nlast
else
branches = 1:NBranches
end
acc = rf(
acc,
(
inode = offset + i, # node = nodes[inode]
iself = r + 1, # node.values[_][iself] is my slot
branches = branches, # node.values[_][brancehs] is me + siblings
offset = offset,
stop = offset + width,
width = width,
),
)
acc isa Break && break
width == 1 && break
offset += width
end
return acc
end
function recurse_leaf_to_root(
rf,
acc,
n::Integer,
::Val{NBranches},
i::Integer,
) where {NBranches}
function rec(acc, offset, width)
width, nlast = divrem(width, NBranches)
width += nlast > 0
q, r = divrem(i - 1, NBranches)
i = q + 1
if nlast > 0 && i == width
branches = 1:nlast
else
branches = 1:NBranches
end
isroot = width == 1
x = (
inode = offset + i, # node = nodes[inode]
iself = r + 1, # node.values[_][iself] is my slot
branches = branches, # node.values[_][brancehs] is me + siblings
offset = offset,
stop = offset + width,
isroot = isroot,
)
rf(acc, x) do acc
acc isa Break && return acc
isroot && return acc
rec(acc, offset + width, width)
end
end
return rec(acc, 0, n)
end
function _reduce_arrive!(
handle::BarrierHandle{<:TreeBarrier{NBranches,T}},
value,
::Val{ShouldWait},
spin = nothing,
) where {NBranches,T,ShouldWait}
value = convert(T, value)
barrier = handle.barrier
i = handle.i
s = barrier.local_sense[handle.i] = !barrier.local_sense[handle.i]
return recurse_leaf_to_root(
Some(value),
barrier.n,
Val(NBranches),
i,
) do recurse, acc, x
node = barrier.nodes[x.inode]
vals = node.values[s+1]
if vals !== nothing
vals[x.iself] = something(acc)
end
if Threads.atomic_add!(node.count, 1) == length(x.branches) - 1
if !ShouldWait
node.winner[s+1][] = x.iself
end
if vals !== nothing
a = vals[1]
for j in x.branches[2:end]
a = barrier.op(a, vals[j])
end
if x.isroot
barrier.values[s+1] = a
end
acc = Some(a)
end
acc0 = acc
acc = recurse(acc)
if acc isa Break
return acc
end
if !ShouldWait
if x.isroot
for node in barrier.nodes
node.winner[!s+1][] = 0
end
end
end
node.count[] = 0
node.sense[] = s
for (j, waiter) in pairs(node.waiters[s+1])
if j != x.iself
notify(waiter)
end
end
return acc
else
if ShouldWait
sense = node.sense
waitif(() -> sense[] != s, node.waiters[s+1][x.iself], spin)
return nothing
else
return Break(nothing)
end
end
end
end
function SyncBarriers.reduce!(
handle::BarrierHandle{<:TreeBarrier{NBranches,T}},
value,
spin::Union{Nothing,Integer} = nothing,
) where {NBranches,T}
acc = _reduce_arrive!(handle, value, Val(true), spin)::Union{Nothing,Some}
barrier = handle.barrier
s = barrier.local_sense[handle.i]
if acc isa Some
@_assert barrier.values[s+1] === something(acc)
return something(acc)
else
return barrier.values[s+1]
end
end
function SyncBarriers.reduce_arrive!(
handle::BarrierHandle{<:TreeBarrier{NBranches,T}},
value,
) where {NBranches,T}
acc = _reduce_arrive!(handle, value, Val(false))
if acc isa Break
return nothing
else
return acc::Some
end
end
function SyncBarriers.depart!(
handle::BarrierHandle{<:TreeBarrier{NBranches}},
spin::Union{Integer,Nothing} = nothing,
) where {NBranches}
barrier = handle.barrier
s = barrier.local_sense[handle.i]
recurse_leaf_to_root(nothing, barrier.n, Val(NBranches), handle.i) do recurse, _, x
node = barrier.nodes[x.inode]
if node.winner[s+1][] == x.iself
if x.isroot # already notified during arrive
return Break(nothing)
end
acc = recurse(nothing)
acc isa Break && return acc
node.count[] = 0
node.sense[] = s
for (j, waiter) in pairs(node.waiters[s+1])
if j != x.iself
notify(waiter)
end
end
else
sense = node.sense
waitif(() -> sense[] != s, node.waiters[s+1][x.iself], spin)
end
return nothing
end
return barrier.values[s+1]
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 4323 | function debugging end
enable_debug() = @eval debugging() = true
disable_debug() = @eval debugging() = false
enable_debug()
# disable_debug()
macro _assert(args...)
call = Expr(
:macrocall,
getfield(ArgCheck, Symbol("@check")), # injecting the callable for esc
__source__,
args...,
)
ex = Expr(:block, __source__, call)
quote
if $debugging()
$ex
end
nothing
end |> esc
end
function ceillog2(n::Integer)
n > 0 || throw(DomainError(n))
i = trailing_zeros(n)
j = 8 * sizeof(n) - leading_zeros(n) - 1
if i == j
return i
else
return j + 1
end
end
abstract type Cell{T} end
mutable struct MutableCell{T} <: Cell{T}
value::T
# TODO: pad
MutableCell{T}() where {T} = new{T}()
end
struct SingletonCell{T} <: Cell{T} end
@inline Base.getindex(cell::MutableCell{T}) where {T} = cell.value
@inline Base.getindex(::SingletonCell{T}) where {T} = T.instance
@inline Base.setindex!(cell::MutableCell{T}, value::T) where {T} = cell.value = value
@inline Base.setindex!(::SingletonCell{T}, value::T) where {T} = value
USE_PADDED_ATOMICS = true
# USE_PADDED_ATOMICS = false
if USE_PADDED_ATOMICS
# TODO: use RecordArrays to allocate atomics
# TODO: load cache line size
const ATOMICS_NPADS = 7
# The allocator is very likely to hand over objects allocated at consecutive locations
function cache_aligned_atomic(x::T) where {T}
a1 = Threads.Atomic{T}(x)
a2 = Threads.Atomic{T}(x)
a3 = Threads.Atomic{T}(x)
a4 = Threads.Atomic{T}(x)
a5 = Threads.Atomic{T}(x)
a6 = Threads.Atomic{T}(x)
a7 = Threads.Atomic{T}(x)
a8 = Threads.Atomic{T}(x)
if mod(UInt(pointer_from_objref(a1)), 64) == 0
return (a1, (a2, a3, a4, a5, a6, a7, a8))
elseif mod(UInt(pointer_from_objref(a2)), 64) == 0
return (a2, (a1, a3, a4, a5, a6, a7, a8))
elseif mod(UInt(pointer_from_objref(a3)), 64) == 0
return (a3, (a1, a2, a4, a5, a6, a7, a8))
else
return (a4, (a1, a2, a3, a5, a6, a7, a8))
end
end
else
const ATOMICS_NPADS = 0
cache_aligned_atomic(x::T) where {T} = (Threads.Atomic{T}(x), ())
end
""" Something like Transducers.Reduced """
struct Break{T}
value::T
end
right(_, x) = x
mutable struct ExperimentalMutableNTuple{N,T}
values::NTuple{N,T}
ExperimentalMutableNTuple{N,T}(values::NTuple{N,T}) where {N,T} = new{N,T}(values)
ExperimentalMutableNTuple{N,T}() where {N,T} = new{N,T}()
end
@inline Base.getindex(mut::ExperimentalMutableNTuple, i) = mut.values[i]
# TODO: need to use unsafe_store! to make it data race-free
#=
@inline function Base.setindex!(mut::ExperimentalMutableNTuple{N,T}, v, i) where {T}
@boundscheck 1 <= i <= N || throw(BoundsError(mut, i))
if Base.issingletontype(T)
return
elseif Base.isimmutable(T)
else
end
mut.values = Base.setindex(mut.values, v, i)
end
=#
struct FallbackMutableNTuple{N,T}
values::Vector{T}
FallbackMutableNTuple{N,T}(values::NTuple{N,T}) where {N,T} = new{N,T}(collect(values))
FallbackMutableNTuple{N,T}() where {N,T} = new{N,T}(Vector{T}(undef, N))
end
Base.@propagate_inbounds Base.getindex(mut::FallbackMutableNTuple, i) = mut.values[i]
Base.@propagate_inbounds Base.setindex!(mut::FallbackMutableNTuple, v, i) =
mut.values[i] = v
USE_EXPERIMENTAL_MUTABLE_NTUPLE = false
if USE_EXPERIMENTAL_MUTABLE_NTUPLE
const MutableNTuple = ExperimentalMutableNTuple
else
const MutableNTuple = FallbackMutableNTuple
end
function define_docstrings()
docstrings = [:SyncBarriers => joinpath(dirname(@__DIR__), "README.md")]
docsdir = joinpath(@__DIR__, "docs")
for filename in readdir(docsdir)
stem, ext = splitext(filename)
ext == ".md" || continue
name = Symbol(stem)
name in names(SyncBarriers, all=true) || continue
push!(docstrings, name => joinpath(docsdir, filename))
end
for (name, path) in docstrings
include_dependency(path)
doc = read(path, String)
doc = replace(doc, r"^```julia"m => "```jldoctest $name")
doc = replace(doc, "<kbd>TAB</kbd>" => "_TAB_")
@eval SyncBarriers $Base.@doc $doc $name
end
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 356 | try
using SyncBarriersTests
true
catch
false
end || begin
let path = joinpath(@__DIR__, "SyncBarriersTests")
path in LOAD_PATH || push!(LOAD_PATH, path)
end
let path = joinpath(@__DIR__, "..", "benchmark", "SyncBarriersBenchmarks")
path in LOAD_PATH || push!(LOAD_PATH, path)
end
using SyncBarriersTests
end
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 48 | include("load.jl")
SyncBarriersTests.runtests()
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 1379 | module SyncBarriersTests
using Test
function include_tests(m = @__MODULE__, dir = @__DIR__)
for file in readdir(dir)
if match(r"^test_.*\.jl$", file) !== nothing
Base.include(m, joinpath(dir, file))
end
end
end
include_tests()
function collect_modules(root::Module)
modules = Module[]
for n in names(root, all = true)
m = getproperty(root, n)
m isa Module || continue
m === root && continue
startswith(string(nameof(m)), "Test") || continue
push!(modules, m)
end
return modules
end
collect_modules() = collect_modules(@__MODULE__)
function runtests(modules = collect_modules())
@testset "$(nameof(m))" for m in modules
if m === TestDoctest && VERSION < v"1.6"
@info "Skip doctest in Julia $VERSION"
continue
end
tests = map(names(m, all = true)) do n
n == :test || startswith(string(n), "test_") || return nothing
f = getproperty(m, n)
f !== m || return nothing
parentmodule(f) === m || return nothing
applicable(f) || return nothing # removed by Revise?
return f
end
filter!(!isnothing, tests)
@testset "$f" for f in tests
@debug "Testing $m.$f"
f()
end
end
end
end # module SyncBarriersTests
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 124 | module TestAqua
import Aqua
import SyncBarriers
test() = Aqua.test_all(SyncBarriers; unbound_args = false)
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 3251 | module TestSyncBarriers
using Test
using SyncBarriers
using SyncBarriers: Internal
function test_barrier()
barrier_factories = [
SyncBarriers.CentralizedBarrier,
SyncBarriers.DisseminationBarrier,
SyncBarriers.TreeBarrier{2},
SyncBarriers.TreeBarrier{3},
SyncBarriers.FlatTreeBarrier{2},
SyncBarriers.FlatTreeBarrier{3},
SyncBarriers.StaticTreeBarrier{4,2},
SyncBarriers.StaticTreeBarrier{5,3},
# ...
]
ntasks_list = unique([1, 2, Threads.nthreads(), 2 * Threads.nthreads()])
@testset for f in barrier_factories, ntasks in ntasks_list
test_barrier(f, ntasks)
end
end
function test_barrier(factory, ntasks)
@debug "`test_barrier($factory, $ntasks)`"
states = use_barrier(factory, ntasks)
ncycles = size(states, 1)
desired = repeat((1:ncycles) .* ntasks, 1, ntasks)
@test states[:, 1] == (1:ncycles) .* ntasks
@test all(states[:, 1] .== states)
@test states == desired
end
function use_barrier(factory, ntasks; kwargs...)
barrier = factory(ntasks)
if factory isa Type
@test barrier isa factory
end
return use_barrier(barrier; kwargs...)
end
function use_barrier(barrier::SyncBarriers.Barrier; ncycles = 1000)
ntasks = length(barrier)
states = zeros(Int, ncycles, ntasks)
return use_barrier!(states, barrier)
end
function use_barrier!(states::Matrix, barrier::SyncBarriers.Barrier, spin = nothing)
ncycles, ntasks = size(states)
@assert ntasks == length(barrier)
value = Threads.Atomic{Int}(0)
@sync for i in 1:ntasks
Threads.@spawn try
for k in 1:ncycles
Threads.atomic_add!(value, 1)
SyncBarriers.cycle!(barrier[i], spin)
states[k, i] = value[]
SyncBarriers.cycle!(barrier[i], spin)
end
catch err
@error(
"`use_barrier` failed",
exception = (err, catch_backtrace()),
i,
current_task()
)
# TODO: close(barrier)
rethrow()
end
end
return states
end
function test_default_barriers()
@test SyncBarriers.Barrier(2) isa SyncBarriers.CentralizedBarrier
@test SyncBarriers.fuzzy_barrier(2) isa SyncBarriers.CentralizedBarrier
@test SyncBarriers.fuzzy_reduce_barrier(+, Int, 2) isa SyncBarriers.FlatTreeBarrier{2,Int}
@test SyncBarriers.reduce_barrier(+, Int, 2) isa SyncBarriers.FlatTreeBarrier{2,Int}
@test SyncBarriers.Barrier(32) isa SyncBarriers.Barrier
@test SyncBarriers.fuzzy_barrier(32) isa SyncBarriers.Barrier
@test SyncBarriers.fuzzy_reduce_barrier(+, Int, 32) isa SyncBarriers.Barrier
@test SyncBarriers.reduce_barrier(+, Int, 32) isa SyncBarriers.Barrier
end
function test_default_barriers_internal()
@testset for n in 1:32, nthreads in 1:32
@test Internal._Barrier(n, nthreads) isa SyncBarriers.Barrier
@test Internal._fuzzy_barrier(n, nthreads) isa SyncBarriers.Barrier
@test Internal._fuzzy_reduce_barrier(+, Int, n, nthreads) isa SyncBarriers.Barrier
@test Internal._reduce_barrier(+, Int, n, nthreads) isa SyncBarriers.Barrier
end
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 274 | module TestBenchSmoke
using Test
using SyncBarriersBenchmarks: clear, setup_smoke
function test_bench_smoke()
try
local suite
@test (suite = setup_smoke()) isa Any
@test run(suite) isa Any
finally
clear()
end
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 139 | module TestDoctest
import SyncBarriers
using Documenter: doctest
using Test
function test()
doctest(SyncBarriers)
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 3486 | module TestReduce
using Test
using SyncBarriers
using SyncBarriers.Internal: BarrierHandle, acctype
# An example of non-commutative reduction
function larger((i, a), (j, b))
if a < b
(j, b)
else
(i, a)
end
end
initof(op, T) = Base.reduce_empty(op, T)
initof(::typeof(xor), T::Type{<:Integer}) = zero(T)
initof(::typeof(larger), ::Type{Tuple{I,X}}) where {I,X} = (zero(I), typemin(X))
samples(::Type{T}) where {T<:Real} = T(100):T(999)
samples(::Type{T}) where {I,X,T<:Tuple{I,X}} = collect(zip(samples(I), samples(X)))
function test_reduce()
@testset "+" begin
test_reduce(+, Int)
end
@testset "xor" begin
test_reduce(xor, UInt)
end
@testset "larger" begin
test_reduce(larger, Tuple{Int,Float64})
end
end
struct TreeBarrier′{NBranches,T,B<:SyncBarriers.TreeBarrier{NBranches,T}} <: SyncBarriers.Barrier
barrier::B
end
Base.length(barrier::TreeBarrier′) = length(barrier.barrier)
TreeBarrier′{NBranches,T}(op, n) where {NBranches,T} =
TreeBarrier′(SyncBarriers.TreeBarrier{NBranches,T}(op, n))
SyncBarriers.Internal.acctype(::Type{B}) where {T,B<:TreeBarrier′{<:Any,T}} = T
function SyncBarriers.reduce!(
handle::BarrierHandle{<:TreeBarrier′},
value,
spin::Union{Nothing,Integer} = nothing,
)
handle = BarrierHandle(handle.barrier.barrier, handle.i)
SyncBarriers.reduce_arrive!(handle, value)
SyncBarriers.depart!(handle, spin)
end
function test_reduce(op, T)
barrier_factories = [
SyncBarriers.StaticTreeBarrier{2,2,T},
SyncBarriers.StaticTreeBarrier{3,4,T},
SyncBarriers.TreeBarrier{3,T},
SyncBarriers.FlatTreeBarrier{2,T},
SyncBarriers.FlatTreeBarrier{3,T},
TreeBarrier′{2,T},
TreeBarrier′{3,T},
# ...
]
ntasks_list = unique([1, 2, Threads.nthreads(), 2 * Threads.nthreads()])
@testset for f in barrier_factories, ntasks in ntasks_list
@debug "Testing `test_reduce($op, $f, $ntasks)`"
test_reduce(op, f, ntasks)
end
end
function test_reduce(op, factory, ntasks)
output, input = use_barrier(op, factory, ntasks)
desired =
repeat(reduce(op, input; init = initof(op, eltype(output)), dims = 2), 1, ntasks)
@test output[:, 1] == desired[:, 1]
@test all(output[:, 1] .== output)
@test output == desired
end
function use_barrier(op, factory, ntasks; kwargs...)
barrier = factory(op, ntasks)
if factory isa Type
@test barrier isa factory
end
return use_barrier(barrier; kwargs...)
end
function use_barrier(barrier::SyncBarriers.Barrier; ncycles = 1000)
ntasks = length(barrier)
input = rand(samples(acctype(barrier)), ncycles, ntasks)
output = similar(input)
return use_barrier!(output, input, barrier)
end
function use_barrier!(
output::Matrix,
input::Matrix,
barrier::SyncBarriers.Barrier,
spin = nothing,
)
ncycles, ntasks = size(output)
@assert ntasks == length(barrier)
@sync for i in 1:ntasks
Threads.@spawn try
for k in 1:ncycles
output[k, i] = SyncBarriers.reduce!(barrier[i], input[k, i], spin)
end
catch err
@error(
"`use_barrier` failed",
exception = (err, catch_backtrace()),
i,
current_task()
)
# TODO: close(barrier)
rethrow()
end
end
return output, input
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | code | 177 | module TestUtils
using Test
using SyncBarriers.Internal: ceillog2
function test_ceillog2()
xs = 1:2^10
@test ceillog2.(xs) == ceil.(Int, log2.(xs))
end
end # module
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 2089 | # SyncBarriers
[](https://juliaconcurrent.github.io/SyncBarriers.jl/dev)
SyncBarriers.jl provides various implementations of
[barrier](https://en.wikipedia.org/wiki/Barrier_(computer_science)) for shared
memory synchronization and reductions in concurrent Julia programs. It respects
the cooperative multitasking nature of Julia's task system while allowing the
programmers to express and leverage the structure of the parallelism in their
program.
See the [documentation](https://juliaconcurrent.github.io/SyncBarriers.jl/dev) for more
information.
**Note:** Appropriate insertion of barriers for correct and efficient parallel
program is rather hard. For casual programming, it is recommended to ues
[higher-level data-parallel
approaches](https://juliafolds.github.io/data-parallelism/).
## A toy example
```julia
julia> using SyncBarriers
julia> xs = zeros(Bool, 20);
julia> xs[end÷2] = true;
julia> barrier = Barrier(length(xs) - 2);
julia> @sync for i in 2:length(xs)-1
b = barrier[i-1]
Threads.@spawn begin
if i == 2
println()
join(stdout, (" █"[x + 1] for x in xs))
println()
end
for _ in 1:8
cycle!(b) # wait for print
l, c, r = xs[i-1:i+1] # (loading)
cycle!(b) # wait for load
xs[i] = l ⊻ (c | r) # (storing)
cycle!(b) # wait for store
if i == 2
join(stdout, (" █"[x + 1] for x in xs))
println()
end
end
end
end
█
███
██ █
██ ████
██ █ █
██ ████ ███
██ █ █ █
██ ████ ██████
██ █ ███ █
```
See the
[benchmarks](https://github.com/JuliaConcurrent/SyncBarriers.jl/tree/master/benchmark/SyncBarriersBenchmarks/src)
for examples with actual performance considerations.
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 528 | # SyncBarriers.jl
```@docs
SyncBarriers
```
## Barrier factories
Barrier factories create a barrier with a given property without specifying the
actual implementation. They use simple heuristics to determine an appropriate
implementation.
```@docs
Barrier
reduce_barrier
fuzzy_barrier
fuzzy_reduce_barrier
```
## Barrier constructors
```@docs
CentralizedBarrier
DisseminationBarrier
StaticTreeBarrier
TreeBarrier
FlatTreeBarrier
```
## Synchronizing operations
```@docs
cycle!
arrive!
depart!
reduce!
reduce_arrive!
```
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 413 | Barrier(ntasks::Integer) -> barrier
Create a barrier for `ntasks` tasks. Call [`cycle!(barrier[i])`](@ref
SyncBarriers.cycle!) in the `i`-th task for waiting for other tasks to arrive at the
same phase.
The actual returned concrete type is not the part of API. It is
[`CentralizedBarrier`](@ref) for small `ntasks` and
[`DisseminationBarrier`](@ref) for large `ntasks`.
Supported method: [`cycle!`](@ref)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 281 | CentralizedBarrier(ntasks::Integer)
Create the sense-reversing centralized barrier for `ntasks` tasks. It supports
fuzzy barrier methods. For small `ntasks` (⪅ 32), it provides the best
performance.
Supported methods: [`cycle!`](@ref), [`arrive!`](@ref), [`depart!`](@ref)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 204 | DisseminationBarrier(ntasks::Integer)
Create the dissemination barrier for `ntasks` tasks. It provides the best
performance especially for large `ntasks` (⪆ 32).
Supported method: [`cycle!`](@ref)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 552 | FlatTreeBarrier{NBranches}(ntasks::Integer)
FlatTreeBarrier{NBranches,T}(op, ntasks::Integer)
Create the tree barrier for `ntasks` tasks with the branching factor specified
by the type parameter `NBranches::Integer`. The departure is done serially
(hence "flat").
It support fuzzy reduce barrier methods if the associative operations `op` and
its domain `T` are given. Otherwise, it only supports fuzzy barrier methods.
Supported methods: [`cycle!`](@ref), [`arrive!`](@ref), [`depart!`](@ref)
[`reduce!`](@ref). [`reduce_arrive!`](@ref).
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 592 | StaticTreeBarrier{NArrive,NDepart}(ntasks::Integer)
StaticTreeBarrier{NArrive,NDepart,T}(op, ntasks::Integer)
Create the static tree barrier for `ntasks` tasks with the branching factor for
arrival `NArrive::Integer` and departure `NDepart::Integer` specified by the
type parameters.
It support fuzzy reduce barrier methods if the associative operations `op` and
its domain `T` are given. Otherwise, it only supports fuzzy barrier methods.
It provides the best performance for large `ntasks` (⪆ 32) when reduction is
needed.
Supported methods: [`cycle!`](@ref), [`reduce!`](@ref)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 494 | TreeBarrier{NBranches}(ntasks::Integer)
TreeBarrier{NBranches,T}(op, ntasks::Integer)
Create the tree barrier for `ntasks` tasks with the branching factor specified
by the type parameter `NBranches::Integer`.
It support fuzzy reduce barrier methods if the associative operations `op` and
its domain `T` are given. Otherwise, it only supports fuzzy barrier methods.
Supported methods: [`cycle!`](@ref), [`arrive!`](@ref), [`depart!`](@ref)
[`reduce!`](@ref), [`reduce_arrive!`](@ref)
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 1076 | arrive!(barrier[i])
Signal that the `i::Integer`-th task has reached a certain phase but postpone
the synchronization for the departure.
A call to `cycle!` is equivalent to `arrive!` followed by `depart!`. However,
the task calling `arrive!` can work on some other local computations before
calling `depart!` which waits for other tasks to call `arrive!`.
Note that not all `Barrier` subtypes support `arrive!.`
See [`fuzzy_barrier`](@ref), [`depart!`](@ref).
# Examples
```julia
julia> using SyncBarriers
julia> xs = [1:3;];
julia> ys = similar(xs);
julia> barrier = fuzzy_barrier(3);
julia> @sync for i in 1:3
Threads.@spawn begin
x = i^2
xs[i] = x
arrive!(barrier[i]) # does not `wait`
ys[i] = x - 1 # do some work while waiting for other tasks
depart!(barrier[i]) # ensure all tasks have reached `arrive!`
xs[mod1(i + 1, 3)] -= x
end
end
julia> xs
3-element Vector{Int64}:
-8
3
5
julia> ys
3-element Vector{Int64}:
0
3
8
```
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 539 | cycle!(barrier[i])
Using a `barrier::Barrier`, signal that the `i::Integer`-th task has reached a
certain phase of the program and wait for other tasks to reach the same phase.
# Examples
```julia
julia> using SyncBarriers
julia> xs = [1:3;];
julia> barrier = Barrier(3);
julia> @sync for i in 1:3
Threads.@spawn begin
x = i^2
xs[i] = x
cycle!(barrier[i])
xs[mod1(i + 1, 3)] -= x
end
end
julia> xs
3-element Vector{Int64}:
-8
3
5
```
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 646 | depart!(barrier[i])
depart!(barrier[i]) -> acc::T
Wait for all calls to [`arrive!(barrier[i])`](@ref SyncBarriers.arrive!) or
[`reduce_arrive!(barrier[i], _)`](@ref SyncBarriers.reduce_arrive!) for `i = 1, 2,
..., ntasks`.
If the `barrier` is a fuzzy reduce barrier (created, e.g., by
[`fuzzy_reduce_barrier(op, T, ntasks)`](@ref SyncBarriers.fuzzy_reduce_barrier)), it
returns the result of reduction started by the prior call to
[`reduce_arrive!(barrier[i], xᵢ::T)`](@ref SyncBarriers.reduce_arrive!).
Note that not all `Barrier` subtypes support `depart!.`
See [`fuzzy_barrier`](@ref), [`arrive!`](@ref), [`reduce_arrive!`](@ref).
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 350 | fuzzy_barrier(ntasks::Integer) -> barrier::Barrier
Create a *fuzzy barrier* for `ntasks` tasks. In addition to the methods
supported by "plain" barriers (see [`Barrier`](@ref)), fuzzy barriers support
[`arrive!(barrier[i])`](@ref SyncBarriers.arrive!) and [`depart!(barrier[i])`](@ref
SyncBarriers.depart!) to do [`cycle!`](@ref) in two steps.
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 372 | fuzzy_reduce_barrier(op, T::Type, ntasks::Integer) -> barrier::Barrier
Create a *fuzzy reduce barrier* for `ntasks` tasks. In addition to the methods
supported by reduce barriers (see [`reduce_barrier`](@ref)], fuzzy reduce
barriers support [`reduce_arrive!(barrier[i], xᵢ)`](@ref
SyncBarriers.reduce_arrive!) and [`depart!(barrier[i])`](@ref SyncBarriers.depart!).
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 619 | reduce!(barrier[i], xᵢ::T) -> acc::T
Using a reduce barrier `barrier` (created, e.g., by [`reduce_barrier(⊗, T,
n)`](@ref SyncBarriers.reduce_barrier)), it computes `acc = x₁ ⊗ x₂ ⊗ ⋯ ⊗ xₙ`.
# Examples
```julia
julia> using SyncBarriers
julia> xs = Float64[1:4;];
julia> barrier = reduce_barrier(+, Float64, length(xs));
julia> @sync for i in eachindex(xs)
Threads.@spawn begin
x = i^2
s = reduce!(barrier[i], x)
m = s / length(xs)
xs[i] = x - m
end
end
julia> xs
4-element Vector{Float64}:
-6.5
-3.5
1.5
8.5
```
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 962 | reduce_arrive!(barrier[i], xᵢ::T)
Using a fuzzy reduce barrier `barrier` (created, e.g., by
[`fuzzy_reduce_barrier(op, T, ntasks)`](@ref SyncBarriers.fuzzy_reduce_barrier)), it
initiates the reduction across tasks. The result of the reduction can be
retrieved by a call to [`depart!(barrier[i])`](@ref SyncBarriers.depart!) once all
tasks have called `reduce_arrive!`.
# Examples
```julia
julia> using SyncBarriers
julia> xs = Float64[1:4;];
julia> ys = similar(xs);
julia> barrier = fuzzy_reduce_barrier(+, Float64, length(xs));
julia> @sync for i in eachindex(xs)
Threads.@spawn begin
x = i^2
reduce_arrive!(barrier[i], x)
ys[i] = x - 1
s = depart!(barrier[i])
m = s / length(xs)
xs[i] = x - m
end
end
julia> xs
4-element Vector{Float64}:
-6.5
-3.5
1.5
8.5
julia> ys
4-element Vector{Float64}:
0.0
3.0
8.0
15.0
```
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.1.1 | c68ebdfbb4c9e2a4a5cd7b5e47f4313b71bc1f90 | docs | 292 | reduce_barrier(op, T::Type, ntasks::Integer) -> barrier::Barrier
Create a *reduce barrier* for `ntasks` tasks. A reduce barrier supports
computing a reduction with an associative operator `op(::T, ::T)` across tasks
by calling [`reduce!(barrier[i], xᵢ::T)`](@ref SyncBarriers.reduce!).
| SyncBarriers | https://github.com/JuliaConcurrent/SyncBarriers.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 615 | module ClusteringDifferences
using DifferencesBase
using Distances
import Clustering: FuzzyCMeansResult, KmeansResult, KmedoidsResult
export
# clustering.jl
AbstractClustering,
HierarchicalClustering,
PartitionalClustering,
assignments,
constraints,
features,
parameters,
weights,
# difference.jl
AbstractClusteringDifference,
PartitionalClusteringDifference,
backwarddiff,
forwarddiff,
# kmeans.jl
kmeans
# pckmeans.jl
#pckmeans
include("clustering.jl")
include("difference.jl")
include("kmeans.jl")
#include("pckmeans.jl")
end # module
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 4720 | """
AbstractClustering
Supertype for clusterings.
"""
abstract type AbstractClustering end
"""
PartitionalClustering{Tc<:Integer,Tw<:Real,Ty<:Real,Tm<:Real} <: AbstractClustering
Partitional clustering.
"""
struct PartitionalClustering{Tc<:Integer,Tw<:Real,Ty<:Real} <: AbstractClustering
r::Vector{Int}
c::Vector{Int}
C::Matrix{Tc}
W::Matrix{Tw}
Y::Matrix{Ty}
p::NamedTuple
function PartitionalClustering{Tc,Tw,Ty}(r::Vector{Int}, c::Vector{Int},
C::Matrix{Tc}, W::Matrix{Tw},
Y::Matrix{Ty}, p::NamedTuple) where {Tc<:Integer,Tw<:Real,Ty<:Real}
size(C, 2) == size(W, 2) || throw(DimensionMismatch("dimensions of constraints and weights must match"))
return new(r, c, C, W, Y, p)
end
end
PartitionalClustering(r::Vector{Int}, c::Vector{Int}, C::Matrix{Tc},
W::Matrix{Tw}, Y::Matrix{Ty}, p::NamedTuple) where {Tc,Tw,Ty} =
PartitionalClustering{Tc,Tw,Ty}(r, c, C, W, Y, p)
function PartitionalClustering(clust::KmeansResult)
r = Int[]
c = Int[]
C = Matrix{Int}(undef, 0, 0)
W = Matrix{Float64}(undef, 0, 0)
k = size(clust.centers, 2)
n = length(clust.assignments)
Y = zeros(Int, k, n)
for i = 1:n
Y[clust.assignments[i], i] = 1
end
p = (centers=clust.centers, costs=clust.costs, counts=clust.counts,
wcounts=clust.wcounts, totalcost=clust.totalcost,
iterations=clust.iterations, converged=clust.converged)
return PartitionalClustering(r, c, C, W, Y, p)
end
function PartitionalClustering(clust::KmedoidsResult)
r = Int[]
c = Int[]
C = Matrix{Int}(undef, 0, 0)
W = Matrix{Float64}(undef, 0, 0)
k = length(clust.medoids)
n = length(clust.assignments)
Y = zeros(Int, k, n)
for i = 1:n
Y[clust.assignments[i], i] = 1
end
p = (medoids=clust.medoids, costs=clust.costs, counts=clust.counts,
totalcost=clust.totalcost, iterations=clust.iterations,
converged=clust.converged)
return PartitionalClustering(r, c, C, W, Y, p)
end
function PartitionalClustering(clust::FuzzyCMeansResult)
r = Int[]
c = Int[]
C = Matrix{Int}(undef, 0, 0)
W = Matrix{Float64}(undef, 0, 0)
Y = permutedims(clust.weights)
p = (centers=clust.centers, iterations=clust.iterations,
converged=clust.converged)
return PartitionalClustering(r, c, C, W, Y, p)
end
# Partitional clustering equality operator
Base.:(==)(a::PartitionalClustering, b::PartitionalClustering) =
(a.r == b.r && a.c == b.c && a.C == b.C && a.W == b.W && a.Y == b.Y
&& a.p == b.p)
# Compute hash code
Base.hash(a::PartitionalClustering, h::UInt) =
hash(a.r, hash(a.c, hash(a.C, hash(a.W, hash(a.Y, hash(a.p,
hash(:PartitionalClustering, h)))))))
"""
HierarchicalClustering{Tc<:Integer,Tw<:Real} <: AbstractClustering
Hierarchical clustering.
"""
struct HierarchicalClustering{Tc<:Integer,Tw<:Real} <: AbstractClustering
r::Vector{Int}
c::Vector{Int}
C::Array{Tc,3}
W::Array{Tw,3}
p::NamedTuple
function HierarchicalClustering{Tc,Tw}(r::Vector{Int}, c::Vector{Int},
C::Array{Tc,3}, W::Array{Tw,3},
p::NamedTuple) where {Tc<:Integer,Tw<:Real}
size(C, 2) == size(W, 2) || throw(DimensionMismatch("dimensions of constraints and weights must match"))
return new(r, c, C, W, p)
end
end
HierarchicalClustering(r::Vector{Int}, c::Vector{Int}, C::Array{Tc,3},
W::Array{Tw,3}, p::NamedTuple) where {Tc,Tw} =
HierarchicalClustering{Tc,Tw}(r, c, C, W, p)
"""
axes(a::AbstractClustering[, d])
Access the feature and instance identifiers. Optionally, specify dimension `d`
to get the identifiers of that dimension only.
"""
Base.axes(a::AbstractClustering) = a.r, a.c
Base.axes(a::AbstractClustering, d) = d::Integer <= 2 ? axes(a)[d] : Int[]
"""
features(a::AbstractClustering)
Access the feature identifiers.
"""
features(a::AbstractClustering) = axes(a, 1)
"""
instances(a::AbstractClustering)
Access the instance identifiers.
"""
Base.instances(a::AbstractClustering) = axes(a, 2)
"""
constraints(a::AbstractClustering)
Access the contraints.
"""
constraints(a::AbstractClustering) = a.C
"""
weights(a::AbstractClustering)
Access the weights.
"""
weights(a::AbstractClustering) = a.W
"""
parameters(c::PartitionalClustering)
Access the parameters.
"""
parameters(a::AbstractClustering) = a.p
"""
assignments(a::PartitionalClustering)
Access the assignments.
"""
assignments(a::PartitionalClustering) = a.Y
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 3586 | """
AbstractClusteringDifference
Supertype for clustering differences.
"""
abstract type AbstractClusteringDifference end
"""
PartitionalClusteringDifference <: AbstractClusteringDifference
Difference between two partitional clusterings.
"""
struct PartitionalClusteringDifference <: AbstractClusteringDifference
r::SetDifference{Int}
c::SetDifference{Int}
C::MatrixDifference
W::MatrixDifference
Y::MatrixDifference
p::NamedTupleDifference
function PartitionalClusteringDifference(r::SetDifference{Int},
c::SetDifference{Int},
C::MatrixDifference,
W::MatrixDifference,
Y::MatrixDifference,
p::NamedTupleDifference)
return new(r, c, C, W, Y, p)
end
end
# Partitional clustering difference equality operator
Base.:(==)(a::PartitionalClusteringDifference, b::PartitionalClusteringDifference) =
(a.r == b.r && a.c == b.c && a.C == b.C && a.W == b.W && a.Y == b.Y
&& a.p == b.p)
# Compute hash code
Base.hash(a::PartitionalClusteringDifference, h::UInt) =
hash(a.r, hash(a.c, hash(a.C, hash(a.W, hash(a.Y, hash(a.p,
hash(:PartitionalClusteringDifference, h)))))))
"""
axes(a::AbstractClusteringDifference[, d])
Access the feature and instance identifiers differences. Optionally, specify
dimension `d` to get the identifier difference of that dimension only.
"""
Base.axes(a::AbstractClusteringDifference) = a.r, a.c
Base.axes(a::AbstractClusteringDifference, d) = d::Integer <= 2 ? axes(a)[d] : Int[]
"""
features(a::AbstractClusteringDifference)
Access the feature identifiers difference.
"""
features(a::AbstractClusteringDifference) = axes(a, 1)
"""
instances(a::AbstractClusteringDifference)
Access the instance identifiers difference.
"""
Base.instances(a::AbstractClusteringDifference) = axes(a, 2)
"""
constraints(a::AbstractClusteringDifference)
Access the contraints difference.
"""
constraints(a::AbstractClusteringDifference) = a.C
"""
weights(a::AbstractClusteringDifference)
Access the weights difference.
"""
weights(a::AbstractClusteringDifference) = a.W
"""
parameters(c::AbstractClusteringDifference)
Access the parameters difference.
"""
parameters(a::AbstractClusteringDifference) = a.p
"""
assignments(a::PartitionalClusteringDifference)
Access the assignments difference.
"""
assignments(a::PartitionalClusteringDifference) = a.Y
# Partitional clustering subtraction operator
function Base.:-(a::PartitionalClustering, b::PartitionalClustering)
r = diff(Set(a.r), Set(b.r))
c = diff(Set(a.c), Set(b.c))
C = diff(a.C, b.C, a.c, a.c, b.c, b.c)
W = diff(a.W, b.W, a.c, a.c, b.c, b.c)
ayr = collect(1:size(a.Y, 1))
byr = collect(1:size(b.Y, 1))
Y = diff(a.Y, b.Y, ayr, a.c, byr, b.c)
p = diff(a.p, b.p)
return PartitionalClusteringDifference(r, c, C, W, Y, p)
end
"""
forwarddiff(a::AbstractVector{<:AbstractClustering}, i::Int[, h::Int=1])
Compute the forward difference of the clustering at index `i` with step
size `h`.
"""
forwarddiff(a::AbstractVector{<:AbstractClustering}, i::Int, h::Int=1) =
a[i + h] - a[i]
"""
backwarddiff(a::AbstractVector{<:AbstractClustering}, i::Int[, h::Int=1])
Compute the backward difference of the clustering at index `i` with step
size `h`.
"""
backwarddiff(a::AbstractVector{<:AbstractClustering}, i::Int, h::Int=1) =
a[i] - a[i - h]
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 2612 | """
kmeans(X::AbstractMatrix{<:Real}, r::AbstractVector{Int},
c::AbstractVector{Int}, μ::AbstractMatrix{<:Real}; <keyword arguments>)
Cluster the data `X` with the ``k``-means algorithm.
# Keyword arguments
- `maxiter::Int=256`: the number of maximum iterations.
- `dist::SemiMetric=SqEuclidean()`: the distance function.
- `ϵ::AbstractFloat=1.0e-6`: the absolute tolerance for convergence.
"""
function kmeans(X::AbstractMatrix{<:Real}, r::AbstractVector{Int},
c::AbstractVector{Int}, μ::AbstractMatrix{<:Real};
maxiter::Int=256, dist::SemiMetric=SqEuclidean(),
ϵ::AbstractFloat=1.0e-6)
mx, n = size(X)
mμ, k = size(μ)
mx == mμ || throw(DimensionMismatch("number of data features must match"))
k > 1 || throw(ArgumentError("number of clusters must at least be 2"))
k <= n || throw(ArgumentError("more clusters than data instances are not allowed"))
C = Matrix{Int}(undef, 0, 0)
W = Matrix{Float64}(undef, 0, 0)
Y = zeros(Float64, k, n)
μ2 = convert(Matrix{Float64}, μ)
pcs = Vector{PartitionalClustering}(undef, 0)
distances = pairwise(dist, μ2, X, dims=2)
pre_objcosts = 0
objcosts = 0
for i = 1:maxiter
# Update cluster assignments, objective function costs, and cluster
# centers (part 1/2)
@inbounds for j = 1:n
cost, y = findmin(view(distances, :, j))
Y[y, j] = 1
objcosts += cost
μ2[:, y] += X[:, j]
end
# Update cluster centers (part 2/2)
@inbounds for j = 1:k
sz = sum(Y[j, :])
μ2[:, j] = iszero(sz) ? μ[:, j] : μ2[:, j] / sz
end
pairwise!(distances, dist, μ2, X, dims=2)
pc = PartitionalClustering(copy(r), copy(c), copy(C), copy(W), copy(Y),
(μ=copy(μ2),))
push!(pcs, pc)
# Check for convergence
isapprox(objcosts, pre_objcosts, atol=ϵ) && break
fill!(Y, zero(eltype(Y)))
fill!(μ2, zero(eltype(μ2)))
pre_objcosts = objcosts
objcosts = 0
end
return pcs
end
"""
kmeans(X::AbstractMatrix{<:Real}, μ::AbstractMatrix{<:Real}; <keyword arguments>)
Like [`kmeans`](@ref), but automatically generate `r` and `c` according to the
size of `X`.
"""
function kmeans(X::AbstractMatrix{<:Real}, μ::AbstractMatrix{<:Real};
maxiter::Int=256, dist::SemiMetric=SqEuclidean(),
ϵ::AbstractFloat=1.0e-6)
r = collect(1:size(X, 1))
c = collect(1:size(X, 2))
return kmeans(X, r, c, μ, maxiter=maxiter, dist=dist, ϵ=ϵ)
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 3385 | #=
"""
transitive_closure!(A::AbstractMatrix{Int})
Compute the transitive closure of the matrix `A`.
"""
function transitive_closure!(A::AbstractMatrix{Int})
mustlinkto = findall(val -> val == 1, C)
for instance in mustlinkto
first = instance[1]
second = instance[2]
C[C[first, second] == && C[second, :]] == 1
end
return A
end
"""
"""
function pckmeans(X::AbstractMatrix{<:Real}, C::AbstractMatrix{Int},
W::AbstractMatrix{<:Real}, k::Int;
maxiter::Int=256, dist::SemiMetric=SqEuclidean(),
ϵ::AbstractFloat=1.0e-6)
pckmeans(X, C, W, M, maxiter=maxiter, dist=dist, ϵ=ϵ)
end
"""
pckmeans(X::AbstractMatrix{<:Real}, C::AbstractMatrix{Int}, W::AbstractMatrix{<:Real}, M::AbstractMatrix{<:Real}; <keyword arguments>)
Cluster the data `X` with the pairwise constrained ``k``-means algorithm.
# Keyword arguments
- `maxiter::Int=256`: the number of maximum iterations.
- `dist::SemiMetric=SqEuclidean()`: the distance function.
- `ϵ::AbstractFloat=1.0e-6`: the absolute tolerance for convergence.
"""
function pckmeans(X::AbstractMatrix{<:Real}, C::AbstractMatrix{Int},
W::AbstractMatrix{<:Real}, M::AbstractMatrix{<:Real};
maxiter::Int=256, dist::SemiMetric=SqEuclidean(),
ϵ::AbstractFloat=1.0e-6)
mx, nx = size(X)
nc = size(C, 2)
nw = size(W, 2)
mm, k = size(M)
mx == mm || throw(DimensionMismatch("number of data features must match"))
nc == nx || throw(DimensionMismatch("number of data instances and maximum number of constraints must match"))
nc == nw || throw(DimensionMismatch("dimensions of constraints and weights must match"))
k > 1 || throw(ArgumentError("number of clusters must at least be 2"))
k <= nx || throw(ArgumentError("more clusters than data instances are not allowed"))
n = nx
Y = zeros(Float64, k, n)
M = convert(Matrix{Float64}, M)
pcs = Vector{PartitionalClustering}(undef, 0)
pc = PartitionalClustering(copy(X), copy(C), copy(W), copy(Y), copy(M))
push!(pcs, pc)
# Derive neighborhood sets, and initialize the cluster centers
transitive_closure!(C)
distances = pairwise(dist, M, X, dims=2)
pre_objcosts = 0
i = 1
while i <= maxiter
costs = distances
objcosts = 0
fill!(Y, zero(eltype(Y)))
fill!(M, zero(eltype(M)))
# Update cluster assignments, objective function costs, and center
# coordinates per cluster
@inbounds for j = 1:n
cj = view(C, :, j)
mustlinkto = findall(val -> val == 1, cj)
for instance in mustlinkto
y = argmax(view(Y, :, instance))
costs[, j] += W[, ] * 1
end
cannotlink = findall(val -> val == -1, cj)
cost, y = findmin(view(costs, :, j))
Y[y, j] = 1
objcosts += cost
M[:, y] += X[:, j]
end
# Update cluster centers
@inbounds for j = 1:k
M[:, j] /= sum(Y[j, :])
end
pairwise!(distances, dist, M, X, dims=2)
pc = PartitionalClustering(X, C, W, Y, M)
push!(pcs, pc)
# Check for convergence
isapprox(objcosts, pre_objcosts, atol=ϵ) && break
pre_objcosts = objcosts
i += 1
end
return pcs
end
=#
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 3765 | @testset "clustering" begin
@testset "partitional clustering" begin
r = [10, 20]
c = [2, 3, 5]
C = [0 0 0; 0 0 0; 0 0 0]
W = [0 0 0; 0 0 0; 0 0 0]
Y = [1 0 0.5; 0 1 0.5]
p = (μ=[0 1.0; 1.0 0],)
pc = PartitionalClustering(r, c, C, W, Y, p)
pc2 = PartitionalClustering(r, c, C, W, Y, p)
pc3 = PartitionalClustering(r, c, C, W, Y, p)
@testset "constructors" begin
@test isa(pc, PartitionalClustering)
@test (pc.r == r && pc.c == c && pc.C == C && pc.W == W && pc.Y == Y
&& pc.p == p)
end
@testset "interface constructors" begin
pc4 = PartitionalClustering(KmeansResult(p.μ, [1, 2, 1],
[0.5, 0.25, 0.125], [2, 1], [2, 1], 0.875, 100, true))
@test isa(pc4, PartitionalClustering)
@test (pc4.r == Int[] && pc4.c == Int[]
&& pc4.C == Matrix{Int}(undef, 0, 0)
&& pc4.W == Matrix{Float64}(undef, 0, 0)
&& pc4.Y == [1 0 1; 0 1 0]
&& pc4.p == (centers=p.μ, costs=[0.5, 0.25, 0.125],
counts=[2, 1], wcounts=[2, 1], totalcost=0.875,
iterations=100, converged=true))
pc4 = PartitionalClustering(KmedoidsResult([11, 23], [1, 2, 1],
[0.5, 0.25, 0.125], [2, 1], 0.875, 100, true))
@test isa(pc4, PartitionalClustering)
@test (pc4.r == Int[] && pc4.c == Int[]
&& pc4.C == Matrix{Int}(undef, 0, 0)
&& pc4.W == Matrix{Float64}(undef, 0, 0)
&& pc4.Y == [1 0 1; 0 1 0]
&& pc4.p == (medoids=[11, 23], costs=[0.5, 0.25, 0.125],
counts=[2, 1], totalcost=0.875, iterations=100,
converged=true))
pc4 = PartitionalClustering(FuzzyCMeansResult(p.μ,
[1 0; 0.5 0.5; 1 0], 100, true))
@test isa(pc4, PartitionalClustering)
@test (pc4.r == Int[] && pc4.c == Int[]
&& pc4.C == Matrix{Int}(undef, 0, 0)
&& pc4.W == Matrix{Float64}(undef, 0, 0)
&& pc4.Y == [1 0.5 1; 0 0.5 0]
&& pc4.p == (centers=p.μ, iterations=100, converged=true))
end
@testset "equality operator" begin
@test pc == pc
@test pc == pc2 && pc2 == pc
@test pc == pc2 && pc2 == pc3 && pc == pc3
end
@testset "hash" begin
@test hash(pc) == hash(pc)
@test pc == pc2 && hash(pc) == hash(pc2)
end
@testset "accessors" begin
@test axes(pc) == (r, c)
@test features(pc) == axes(pc, 1) == r
@test instances(pc) == axes(pc, 2) == c
@test constraints(pc) == C
@test weights(pc) == W
@test parameters(pc) == p
@test assignments(pc) == Y
end
end
@testset "hierarchical clustering" begin
r = [10, 20]
c = [2, 3, 5]
C = rand([-1, 0, 1], 3, 3, 3)
W = rand(3, 3, 3) .+ 1
p = NamedTuple()
hc = HierarchicalClustering(r, c, C, W, p)
@testset "constructors" begin
@test isa(hc, HierarchicalClustering)
@test hc.r == r && hc.c == c && hc.C == C && hc.W == W && hc.p == p
end
@testset "accessors" begin
@test axes(hc) == (r, c)
@test features(hc) == axes(hc, 1) == r
@test instances(hc) == axes(hc, 2) == c
@test constraints(hc) == C
@test weights(hc) == W
@test parameters(hc) == p
end
end
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 3888 | @testset "difference" begin
pc = PartitionalClustering([1, 2], [1, 2, 3], [0 0 0; 0 0 0; 0 0 0],
[0 0 0; 0 0 0; 0 0 0], [1 0 0.5; 0 1 0.5], (μ=[0 1; 1 0],))
pc2 = PartitionalClustering([1, 2], [1, 2, 3], [0 0 -1; 0 0 -1; -1 -1 0],
[0 0 1; 0 0 1; 1 1 0], [1 0 0; 0 1 0; 0 0 1], (μ=[0 1 1; 1 0 1],))
# pc - pc2
r = SetDifference(Set([1, 2]), Set(), Set())
c = SetDifference(Set([1, 2, 3]), Set(), Set())
C = MatrixDifference(sparse([0, 0, 1, 0, 0, 1, 1, 1, 0]), [], [])
W = MatrixDifference(sparse([0, 0, -1, 0, 0, -1, -1, -1, 0]), [], [])
Y = MatrixDifference(sparse([0, 0, 0, 0, 0.5, 0.5]), [0, 0, 1], [])
p = NamedTupleDifference((μ=MatrixDifference(sparse([0, 0, 0, 0]), [1, 1], []),), NamedTuple(), NamedTuple())
cd = PartitionalClusteringDifference(r, c, C, W, Y, p)
cd2 = PartitionalClusteringDifference(r, c, C, W, Y, p)
cd3 = PartitionalClusteringDifference(r, c, C, W, Y, p)
# pc2 - pc
r2 = SetDifference(Set([1, 2]), Set(), Set())
c2 = SetDifference(Set([1, 2, 3]), Set(), Set())
C2 = MatrixDifference(sparse([0, 0, -1, 0, 0, -1, -1, -1, 0]), [], [])
W2 = MatrixDifference(sparse([0, 0, 1, 0, 0, 1, 1, 1, 0]), [], [])
Y2 = MatrixDifference(sparse([0, 0, 0, 0, -0.5, -0.5]), [], [0, 0, 1])
p2 = NamedTupleDifference((μ=MatrixDifference(sparse([0, 0, 0, 0]), [], [1, 1]),), NamedTuple(), NamedTuple())
@testset "constructors" begin
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == r && cd.c == c && cd.C == C && cd.W == W && cd.Y == Y
&& cd.p == p)
end
@testset "equality operator" begin
@test cd == cd
@test cd == cd2 && cd2 == cd
@test cd == cd2 && cd2 == cd3 && cd == cd3
end
@testset "hash" begin
@test hash(cd) == hash(cd)
@test cd == cd2 && hash(cd) == hash(cd2)
end
@testset "accessors" begin
@test axes(cd) == (r, c)
@test features(cd) == axes(cd, 1) == r
@test instances(cd) == axes(cd, 2) == c
@test constraints(cd) == C
@test weights(cd) == W
@test assignments(cd) == Y
@test parameters(cd) == p
end
@testset "subtraction operator" begin
pc = PartitionalClustering([1, 2], [1, 2, 3], [0 0 0; 0 0 0; 0 0 0],
[0 0 0; 0 0 0; 0 0 0], [1 0 0.5; 0 1 0.5], (μ=[0 1; 1 0],))
cd = pc - pc
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == SetDifference(Set([1, 2]), Set(), Set())
&& cd.c == SetDifference(Set([1, 2, 3]), Set(), Set())
&& cd.C == MatrixDifference(sparse([0, 0, 0, 0, 0, 0, 0, 0, 0]), [], [])
&& cd.W == MatrixDifference(sparse([0, 0, 0, 0, 0, 0, 0, 0, 0]), [], [])
&& cd.Y == MatrixDifference(sparse([0, 0, 0, 0, 0, 0]), [], [])
&& cd.p == NamedTupleDifference((μ=MatrixDifference(sparse([0, 0, 0, 0]), [], []),), NamedTuple(), NamedTuple()))
cd = pc - pc2
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == r && cd.c == c && cd.C == C && cd.W == W && cd.Y == Y
&& cd.p == p)
cd = pc2 - pc
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == r2 && cd.c == c2 && cd.C == C2 && cd.W == W2
&& cd.Y == Y2 && cd.p == p2)
end
@testset "forward difference" begin
cd = forwarddiff([pc, pc2], 1)
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == r2 && cd.c == c2 && cd.C == C2 && cd.W == W2
&& cd.Y == Y2 && cd.p == p2)
end
@testset "backward difference" begin
cd = backwarddiff([pc, pc2], 2)
@test isa(cd, PartitionalClusteringDifference)
@test (cd.r == r2 && cd.c == c2 && cd.C == C2 && cd.W == W2
&& cd.Y == Y2 && cd.p == p2)
end
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 661 | @testset "kmeans" begin
X = [1 0 -1 0; 0 1 0 -1]
μ = [1 -1; 1 -1]
mx, n = size(X)
mμ, k = size(μ)
r = collect(1:n)
c = collect(1:mx)
pcs = kmeans(X, r, c, μ)
pc = pcs[end]
pcs2 = kmeans(X, μ)
pc2 = pcs2[end]
@test isa(pcs, Vector{PartitionalClustering})
@test size(pc.C) == size(pc2.C) == (0, 0)
@test eltype(pc.C) == eltype(pc2.C) == Int
@test size(pc.W) == size(pc2.W) == (0, 0)
@test eltype(pc.W) == eltype(pc2.W) == Float64
@test size(pc.Y) == size(pc2.Y) == (k, n)
@test all(y -> 0 <= y <= 1, pc.Y) && all(y -> 0 <= y <= 1, pc2.Y)
@test size(pc.p.μ) == size(pc2.p.μ) == (mμ, k)
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 562 | @testset "pckmeans" begin
X = [1 0 -1 0 0; 0 1 0 -1 0]
C = [0 1 0 0 0; 1 0 1 0 0; 0 1 0 1 0; 0 0 1 0 -1; 0 0 0 -1 0]
W = abs.(C)
M = [1 0; -1 0]
mx, nx = size(X)
mm, km = size(M)
pcs = pckmeans(X, C, W, M)
pc = pcs[end]
@test isa(pcs, Vector{PartitionalClustering})
@test pc.X == X
@test size(pc.C) == (nx, nx)
@test eltype(pc.C) == Int
@test size(pc.W) == (nx, nx)
@test eltype(pc.W) == Float64
@test size(pc.Y) == (km, nx)
@test all(y -> 0 <= y <= 1, pc.Y)
@test size(pc.M) == (mm, km)
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | code | 303 | using ClusteringDifferences
using DifferencesBase
using SparseArrays
using Test
import Clustering: FuzzyCMeansResult, KmeansResult, KmedoidsResult
@testset "ClusteringDifferences" begin
include("clustering.jl")
include("difference.jl")
include("kmeans.jl")
#include("pckmeans.jl")
end
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 0.9.1 | cb939e89416c71970cf9957141b614d4f93171a6 | docs | 1084 | # ClusteringDifferences.jl
[](https://github.com/laschuet/ClusteringDifferences.jl/blob/master/LICENSE.txt)
[](https://travis-ci.com/laschuet/ClusteringDifferences.jl)
[](https://ci.appveyor.com/project/laschuet/clusteringdifferences-jl/branch/master)
[](https://coveralls.io/github/laschuet/ClusteringDifferences.jl?branch=master)
[](https://codecov.io/gh/laschuet/ClusteringDifferences.jl)
Clustering and clustering difference models.
## Installation
Open a Julia REPL and enter
```julia
] add ClusteringDifferences
```
## License
ClusteringDifferences.jl is licensed under the [MIT License](./LICENSE.txt).
| ClusteringDifferences | https://github.com/laschuet/ClusteringDifferences.jl.git |
|
[
"MIT"
] | 1.9.1 | 9e2f36d3c96a820c678f2f1f1782582fcf685bae | code | 780 | @static if Base.VERSION >= v"1.6"
using TOML
using Test
else
using Pkg: TOML
using Test
end
# To generate the new UUID, we simply modify the first character of the original UUID
const original_uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
const new_uuid = "9bb1440f-4735-579b-a4ab-409b98df4dab"
# `@__DIR__` is the `.ci/` folder.
# Therefore, `dirname(@__DIR__)` is the repository root.
const project_filename = joinpath(dirname(@__DIR__), "Project.toml")
@testset "Test that the UUID is unchanged" begin
project_dict = TOML.parsefile(project_filename)
@test project_dict["uuid"] == original_uuid
end
write(
project_filename,
replace(
read(project_filename, String),
r"uuid = .*?\n" => "uuid = \"$(new_uuid)\"\n",
),
)
| DelimitedFiles | https://github.com/JuliaData/DelimitedFiles.jl.git |
|
[
"MIT"
] | 1.9.1 | 9e2f36d3c96a820c678f2f1f1782582fcf685bae | code | 428 | using DelimitedFiles
using Documenter: DocMeta, makedocs, deploydocs
DocMeta.setdocmeta!(DelimitedFiles, :DocTestSetup, :(using DelimitedFiles); recursive=true)
makedocs(
modules = [DelimitedFiles],
sitename = "DelimitedFiles",
pages = Any[
"DelimitedFiles" => "index.md"
];
# strict = true,
strict = Symbol[:doctest],
)
deploydocs(repo = "github.com/JuliaData/DelimitedFiles.jl.git")
| DelimitedFiles | https://github.com/JuliaData/DelimitedFiles.jl.git |
|
[
"MIT"
] | 1.9.1 | 9e2f36d3c96a820c678f2f1f1782582fcf685bae | code | 28947 | # This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Utilities for reading and writing delimited files, for example ".csv".
See [`readdlm`](@ref) and [`writedlm`](@ref).
"""
module DelimitedFiles
using Mmap
import Base: tryparse_internal, show
export readdlm, writedlm
invalid_dlm(::Type{Char}) = reinterpret(Char, 0xfffffffe)
invalid_dlm(::Type{UInt8}) = 0xfe
invalid_dlm(::Type{UInt16}) = 0xfffe
invalid_dlm(::Type{UInt32}) = 0xfffffffe
const offs_chunk_size = 5000
"""
readdlm(source, T::Type; options...)
The columns are assumed to be separated by one or more whitespaces. The end of line
delimiter is taken as `\\n`.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = [5; 6; 7; 8];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y])
end;
julia> readdlm("delim_file.txt", Int64)
4×2 Matrix{Int64}:
1 5
2 6
3 7
4 8
julia> readdlm("delim_file.txt", Float64)
4×2 Matrix{Float64}:
1.0 5.0
2.0 6.0
3.0 7.0
4.0 8.0
julia> rm("delim_file.txt")
```
"""
readdlm(input, T::Type; opts...) = readdlm(input, invalid_dlm(Char), T, '\n'; opts...)
"""
readdlm(source, delim::AbstractChar, T::Type; options...)
The end of line delimiter is taken as `\\n`.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = [1.1; 2.2; 3.3; 4.4];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y], ',')
end;
julia> readdlm("delim_file.txt", ',', Float64)
4×2 Matrix{Float64}:
1.0 1.1
2.0 2.2
3.0 3.3
4.0 4.4
julia> rm("delim_file.txt")
```
"""
readdlm(input, dlm::AbstractChar, T::Type; opts...) = readdlm(input, dlm, T, '\n'; opts...)
"""
readdlm(source; options...)
The columns are assumed to be separated by one or more whitespaces. The end of line
delimiter is taken as `\\n`. If all data is numeric, the result will be a numeric array. If
some elements cannot be parsed as numbers, a heterogeneous array of numbers and strings
is returned.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = ["a"; "b"; "c"; "d"];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y])
end;
julia> readdlm("delim_file.txt")
4×2 Matrix{Any}:
1 "a"
2 "b"
3 "c"
4 "d"
julia> rm("delim_file.txt")
```
"""
readdlm(input; opts...) = readdlm(input, invalid_dlm(Char), '\n'; opts...)
"""
readdlm(source, delim::AbstractChar; options...)
The end of line delimiter is taken as `\\n`. If all data is numeric, the result will be a
numeric array. If some elements cannot be parsed as numbers, a heterogeneous array of
numbers and strings is returned.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = [1.1; 2.2; 3.3; 4.4];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y], ',')
end;
julia> readdlm("delim_file.txt", ',')
4×2 Matrix{Float64}:
1.0 1.1
2.0 2.2
3.0 3.3
4.0 4.4
julia> z = ["a"; "b"; "c"; "d"];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x z], ',')
end;
julia> readdlm("delim_file.txt", ',')
4×2 Matrix{Any}:
1 "a"
2 "b"
3 "c"
4 "d"
julia> rm("delim_file.txt")
```
"""
readdlm(input, dlm::AbstractChar; opts...) = readdlm(input, dlm, '\n'; opts...)
"""
readdlm(source, delim::AbstractChar, eol::AbstractChar; options...)
If all data is numeric, the result will be a numeric array. If some elements cannot be
parsed as numbers, a heterogeneous array of numbers and strings is returned.
"""
readdlm(input, dlm::AbstractChar, eol::AbstractChar; opts...) =
readdlm_auto(input, dlm, Float64, eol, true; opts...)
"""
readdlm(source, delim::AbstractChar, T::Type, eol::AbstractChar; header=false, skipstart=0, skipblanks=true, use_mmap, quotes=true, dims, comments=false, comment_char='#')
Read a matrix from the source where each line (separated by `eol`) gives one row, with
elements separated by the given delimiter. The source can be a text file, stream or byte
array. Memory mapped files can be used by passing the byte array representation of the
mapped segment as source.
If `T` is a numeric type, the result is an array of that type, with any non-numeric elements
as `NaN` for floating-point types, or zero. Other useful values of `T` include
`String`, `AbstractString`, and `Any`.
If `header` is `true`, the first row of data will be read as header and the tuple
`(data_cells, header_cells)` is returned instead of only `data_cells`.
Specifying `skipstart` will ignore the corresponding number of initial lines from the input.
If `skipblanks` is `true`, blank lines in the input will be ignored.
If `use_mmap` is `true`, the file specified by `source` is memory mapped for potential
speedups if the file is large. Default is `false`. On a Windows filesystem, `use_mmap` should not be set
to `true` unless the file is only read once and is also not written to.
Some edge cases exist where an OS is Unix-like but the filesystem is Windows-like.
If `quotes` is `true`, columns enclosed within double-quote (\") characters are allowed to
contain new lines and column delimiters. Double-quote characters within a quoted field must
be escaped with another double-quote. Specifying `dims` as a tuple of the expected rows and
columns (including header, if any) may speed up reading of large files. If `comments` is
`true`, lines beginning with `comment_char` and text following `comment_char` in any line
are ignored.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = [5; 6; 7; 8];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y])
end
julia> readdlm("delim_file.txt", '\\t', Int, '\\n')
4×2 Matrix{Int64}:
1 5
2 6
3 7
4 8
julia> rm("delim_file.txt")
```
"""
readdlm(input, dlm::AbstractChar, T::Type, eol::AbstractChar; opts...) =
readdlm_auto(input, dlm, T, eol, false; opts...)
readdlm_auto(input::Vector{UInt8}, dlm::AbstractChar, T::Type, eol::AbstractChar, auto::Bool; opts...) =
readdlm_string(String(copyto!(Base.StringVector(length(input)), input)), dlm, T, eol, auto, val_opts(opts))
readdlm_auto(input::IO, dlm::AbstractChar, T::Type, eol::AbstractChar, auto::Bool; opts...) =
readdlm_string(read(input, String), dlm, T, eol, auto, val_opts(opts))
function readdlm_auto(input::AbstractString, dlm::AbstractChar, T::Type, eol::AbstractChar, auto::Bool; opts...)
isfile(input) || throw(ArgumentError("Cannot open \'$input\': not a file"))
optsd = val_opts(opts)
use_mmap = get(optsd, :use_mmap, false)
fsz = filesize(input)
if use_mmap && fsz > 0 && fsz < typemax(Int)
a = open(input, "r") do f
mmap(f, Vector{UInt8}, (Int(fsz),))
end
# TODO: It would be nicer to use String(a) without making a copy,
# but because the mmap'ed array is not NUL-terminated this causes
# jl_try_substrtod to segfault below.
return readdlm_string(GC.@preserve(a, unsafe_string(pointer(a),length(a))), dlm, T, eol, auto, optsd)
else
return readdlm_string(read(input, String), dlm, T, eol, auto, optsd)
end
end
#
# Handlers act on events generated by the parser.
# Parser calls store_cell on the handler to pass events.
#
# DLMOffsets: Keep offsets (when result dimensions are not known)
# DLMStore: Store values directly into a result store (when result dimensions are known)
abstract type DLMHandler end
mutable struct DLMOffsets <: DLMHandler
oarr::Vector{Vector{Int}}
offidx::Int
thresh::Int
bufflen::Int
function DLMOffsets(sbuff::String)
offsets = Vector{Vector{Int}}(undef, 1)
offsets[1] = Vector{Int}(undef, offs_chunk_size)
thresh = ceil(min(typemax(UInt), Base.Sys.total_memory()) / sizeof(Int) / 5)
new(offsets, 1, thresh, sizeof(sbuff))
end
end
function store_cell(dlmoffsets::DLMOffsets, row::Int, col::Int,
quoted::Bool, startpos::Int, endpos::Int)
offidx = dlmoffsets.offidx
(offidx == 0) && return # offset collection stopped to avoid choking on memory
oarr = dlmoffsets.oarr
offsets = oarr[end]
if length(offsets) < offidx
offlen = offs_chunk_size * length(oarr)
if (offlen + offs_chunk_size) > dlmoffsets.thresh
est_tot = round(Int, offlen * dlmoffsets.bufflen / endpos)
if (est_tot - offlen) > offs_chunk_size # allow another chunk
# abandon offset collection
dlmoffsets.oarr = Vector{Int}[]
dlmoffsets.offidx = 0
return
end
end
offsets = Vector{Int}(undef, offs_chunk_size)
push!(oarr, offsets)
offidx = 1
end
offsets[offidx] = row
offsets[offidx+1] = col
offsets[offidx+2] = Int(quoted)
offsets[offidx+3] = startpos
offsets[offidx+4] = endpos
dlmoffsets.offidx = offidx + 5
nothing
end
function result(dlmoffsets::DLMOffsets)
trimsz = (dlmoffsets.offidx-1) % offs_chunk_size
((trimsz > 0) || (dlmoffsets.offidx == 1)) && resize!(dlmoffsets.oarr[end], trimsz)
dlmoffsets.oarr
end
mutable struct DLMStore{T} <: DLMHandler
hdr::Array{AbstractString, 2}
data::Array{T, 2}
nrows::Int
ncols::Int
lastrow::Int
lastcol::Int
hdr_offset::Int
sbuff::String
auto::Bool
eol::Char
end
function DLMStore(::Type{T}, dims::NTuple{2,Int},
has_header::Bool, sbuff::String, auto::Bool, eol::Char) where T
(nrows,ncols) = dims
nrows <= 0 && throw(ArgumentError("number of rows in dims must be > 0, got $nrows"))
ncols <= 0 && throw(ArgumentError("number of columns in dims must be > 0, got $ncols"))
hdr_offset = has_header ? 1 : 0
DLMStore{T}(fill(SubString(sbuff,1,0), 1, ncols), Matrix{T}(undef, nrows-hdr_offset, ncols),
nrows, ncols, 0, 0, hdr_offset, sbuff, auto, eol)
end
function DLMStore(::Type{T}, dims::NTuple{2,Integer},
has_header::Bool, sbuff::String, auto::Bool, eol::AbstractChar) where T
nrows, ncols = dims
DLMStore(T, (Int(nrows)::Int, Int(ncols)::Int), has_header, sbuff, auto, Char(eol)::Char)
end
_chrinstr(sbuff::String, chr::UInt8, startpos::Int, endpos::Int) =
GC.@preserve sbuff (endpos >= startpos) && (C_NULL != ccall(:memchr, Ptr{UInt8},
(Ptr{UInt8}, Int32, Csize_t), pointer(sbuff)+startpos-1, chr, endpos-startpos+1))
function store_cell(dlmstore::DLMStore{T}, row::Int, col::Int,
quoted::Bool, startpos::Int, endpos::Int) where T
drow = row - dlmstore.hdr_offset
ncols = dlmstore.ncols
lastcol = dlmstore.lastcol
lastrow = dlmstore.lastrow
cells::Matrix{T} = dlmstore.data
sbuff = dlmstore.sbuff
endpos = prevind(sbuff, nextind(sbuff,endpos))
if (endpos > 0) && ('\n' == dlmstore.eol) && ('\r' == Char(sbuff[endpos]))
endpos = prevind(sbuff, endpos)
end
if quoted
startpos += 1
endpos = prevind(sbuff, endpos)
end
if drow > 0
# fill missing elements
while ((drow - lastrow) > 1) || ((drow > lastrow > 0) && (lastcol < ncols))
if (lastcol == ncols) || (lastrow == 0)
lastcol = 0
lastrow += 1
end
for cidx in (lastcol+1):ncols
if (T <: AbstractString) || (T == Any)
cells[lastrow, cidx] = SubString(sbuff, 1, 0)
elseif ((T <: Number) || (T <: AbstractChar)) && dlmstore.auto
throw(TypeError(:store_cell, "", Any, T))
else
error("missing value at row $lastrow column $cidx")
end
end
lastcol = ncols
end
# fill data
if quoted && _chrinstr(sbuff, UInt8('"'), startpos, endpos)
unescaped = replace(SubString(sbuff, startpos, endpos), r"\"\"" => "\"")
fail = colval(unescaped, 1, lastindex(unescaped), cells, drow, col)
else
fail = colval(sbuff, startpos, endpos, cells, drow, col)
end
if fail
sval = SubString(sbuff, startpos, endpos)
if (T <: Number) && dlmstore.auto
throw(TypeError(:store_cell, "", Any, T))
else
error("file entry \"$(sval)\" cannot be converted to $T")
end
end
dlmstore.lastrow = drow
dlmstore.lastcol = col
else
# fill header
if quoted && _chrinstr(sbuff, UInt8('"'), startpos, endpos)
unescaped = replace(SubString(sbuff, startpos, endpos), r"\"\"" => "\"")
colval(unescaped, 1, lastindex(unescaped), dlmstore.hdr, 1, col)
else
colval(sbuff, startpos, endpos, dlmstore.hdr, 1, col)
end
end
nothing
end
function result(dlmstore::DLMStore{T}) where T
nrows = dlmstore.nrows - dlmstore.hdr_offset
ncols = dlmstore.ncols
lastcol = dlmstore.lastcol
lastrow = dlmstore.lastrow
cells = dlmstore.data
sbuff = dlmstore.sbuff
if (nrows > 0) && ((lastcol < ncols) || (lastrow < nrows))
while lastrow <= nrows
(lastcol == ncols) && (lastcol = 0; lastrow += 1)
for cidx in (lastcol+1):ncols
if (T <: AbstractString) || (T == Any)
cells[lastrow, cidx] = SubString(sbuff, 1, 0)
elseif ((T <: Number) || (T <: AbstractChar)) && dlmstore.auto
throw(TypeError(:store_cell, "", Any, T))
else
error("missing value at row $lastrow column $cidx")
end
end
lastcol = ncols
(lastrow == nrows) && break
end
dlmstore.lastrow = lastrow
dlmstore.lastcol = ncols
end
(dlmstore.hdr_offset > 0) ? (dlmstore.data, dlmstore.hdr) : dlmstore.data
end
function readdlm_string(sbuff::String, dlm::AbstractChar, T::Type, eol::AbstractChar, auto::Bool, optsd::Dict)
ign_empty = (dlm == invalid_dlm(Char))
quotes = get(optsd, :quotes, true)
comments = get(optsd, :comments, false)
comment_char = get(optsd, :comment_char, '#')
dims = get(optsd, :dims, nothing)
has_header = get(optsd, :header, get(optsd, :has_header, false))
haskey(optsd, :has_header) && (optsd[:has_header] != has_header) && throw(ArgumentError("conflicting values for header and has_header"))
skipstart = get(optsd, :skipstart, 0)
(skipstart >= 0) || throw(ArgumentError("skipstart must be ≥ 0, got $skipstart"))
skipblanks = get(optsd, :skipblanks, true)
offset_handler = (dims === nothing) ? DLMOffsets(sbuff) : DLMStore(T, dims, has_header, sbuff, auto, eol)
for retry in 1:2
try
dims = dlm_parse(sbuff, eol, dlm, '"', comment_char, ign_empty, quotes, comments, skipstart, skipblanks, offset_handler)
break
catch ex
if isa(ex, TypeError) && (ex.func === :store_cell)
T = ex.expected
else
rethrow()
end
offset_handler = (dims === nothing) ? DLMOffsets(sbuff) : DLMStore(T, dims, has_header, sbuff, auto, eol)
end
end
isa(offset_handler, DLMStore) && (return result(offset_handler))
offsets = result(offset_handler)
!isempty(offsets) && (return dlm_fill(T, offsets, dims, has_header, sbuff, auto, eol))
optsd[:dims] = dims
return readdlm_string(sbuff, dlm, T, eol, auto, optsd)
end
const valid_opts = [:header, :has_header, :use_mmap, :quotes, :comments, :dims, :comment_char, :skipstart, :skipblanks]
const valid_opt_types = [Bool, Bool, Bool, Bool, Bool, NTuple{2,Integer}, Char, Integer, Bool]
function val_opts(opts)
d = Dict{Symbol, Union{Bool, NTuple{2, Integer}, Char, Integer}}()
for (opt_name, opt_val) in opts
in(opt_name, valid_opts) ||
throw(ArgumentError("unknown option $opt_name"))
opt_typ = valid_opt_types[findfirst(isequal(opt_name), valid_opts)::Int]
isa(opt_val, opt_typ) ||
throw(ArgumentError("$opt_name should be of type $opt_typ, got $(typeof(opt_val))"))
d[opt_name] = opt_val
end
return d
end
function dlm_fill(T::DataType, offarr::Vector{Vector{Int}}, dims::NTuple{2,Integer}, has_header::Bool, sbuff::String, auto::Bool, eol::AbstractChar)
idx = 1
offidx = 1
offsets = offarr[1]
row = 0
col = 0
try
dh = DLMStore(T, dims, has_header, sbuff, auto, eol)
while idx <= length(offsets)
row = offsets[idx]
col = offsets[idx+1]
quoted = offsets[idx+2] != 0
startpos = offsets[idx+3]
endpos = offsets[idx+4]
((idx += 5) > offs_chunk_size) && (offidx < length(offarr)) && (idx = 1; offsets = offarr[offidx += 1])
store_cell(dh, row, col, quoted, startpos, endpos)
end
return result(dh)
catch ex
isa(ex, TypeError) && (ex.func === :store_cell) && (return dlm_fill(ex.expected, offarr, dims, has_header, sbuff, auto, eol))
error("at row $row, column $col : $ex")
end
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{Bool,2}, row::Int, col::Int)
n = tryparse_internal(Bool, sbuff, startpos, endpos, 0, false)
n === nothing || (cells[row, col] = n)
n === nothing
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{T,2}, row::Int, col::Int) where T<:Integer
n = tryparse_internal(T, sbuff, startpos, endpos, 0, false)
n === nothing || (cells[row, col] = n)
n === nothing
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{T,2}, row::Int, col::Int) where T<:Union{Real,Complex}
n = tryparse_internal(T, sbuff, startpos, endpos, false)
n === nothing || (cells[row, col] = n)
n === nothing
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{<:AbstractString,2}, row::Int, col::Int)
cells[row, col] = SubString(sbuff, startpos, endpos)
return false
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{Any,2}, row::Int, col::Int)
# if array is of Any type, attempt parsing only the most common types: Int, Bool, Float64 and fallback to SubString
len = endpos-startpos+1
if len > 0
# check Inteter
ni64 = tryparse_internal(Int, sbuff, startpos, endpos, 0, false)
ni64 === nothing || (cells[row, col] = ni64; return false)
# check Bool
nb = tryparse_internal(Bool, sbuff, startpos, endpos, 0, false)
nb === nothing || (cells[row, col] = nb; return false)
# check float64
hasvalue, valf64 = ccall(:jl_try_substrtod, Tuple{Bool, Float64},
(Ptr{UInt8}, Csize_t, Csize_t), sbuff, startpos-1, endpos-startpos+1)
hasvalue && (cells[row, col] = valf64; return false)
end
cells[row, col] = SubString(sbuff, startpos, endpos)
false
end
function colval(sbuff::String, startpos::Int, endpos::Int, cells::Array{<:AbstractChar,2}, row::Int, col::Int)
if startpos == endpos
cells[row, col] = iterate(sbuff, startpos)[1]
return false
else
return true
end
end
colval(sbuff::String, startpos::Int, endpos::Int, cells::Array, row::Int, col::Int) = true
function dlm_parse(dbuff::String, eol::D, dlm::D, qchar::D, cchar::D,
ign_adj_dlm::Bool, allow_quote::Bool, allow_comments::Bool,
skipstart::Int, skipblanks::Bool, dh::DLMHandler) where D
ncols = nrows = col = 0
is_default_dlm = (dlm == invalid_dlm(D))
error_str = ""
# 0: begin field, 1: quoted field, 2: unquoted field,
# 3: second quote (could either be end of field or escape character),
# 4: comment, 5: skipstart
state = (skipstart > 0) ? 5 : 0
is_eol = is_dlm = is_cr = is_quote = is_comment = expct_col = false
idx = 1
try
slen = sizeof(dbuff)
col_start_idx = 1
was_cr = false
while idx <= slen
val,idx = iterate(dbuff, idx)
if (is_eol = (Char(val) == Char(eol)))
is_dlm = is_comment = is_cr = is_quote = false
elseif (is_dlm = (is_default_dlm ? isspace(Char(val)) : (Char(val) == Char(dlm))))
is_comment = is_cr = is_quote = false
elseif (is_quote = (Char(val) == Char(qchar)))
is_comment = is_cr = false
elseif (is_comment = (Char(val) == Char(cchar)))
is_cr = false
else
is_cr = (Char(eol) == '\n') && (Char(val) == '\r')
end
if 2 == state # unquoted field
if is_dlm
state = 0
col += 1
store_cell(dh, nrows+1, col, false, col_start_idx, idx-2)
col_start_idx = idx
!ign_adj_dlm && (expct_col = true)
elseif is_eol
nrows += 1
col += 1
store_cell(dh, nrows, col, false, col_start_idx, idx - (was_cr ? 3 : 2))
col_start_idx = idx
ncols = max(ncols, col)
col = 0
state = 0
elseif (is_comment && allow_comments)
nrows += 1
col += 1
store_cell(dh, nrows, col, false, col_start_idx, idx - 2)
ncols = max(ncols, col)
col = 0
state = 4
end
elseif 1 == state # quoted field
is_quote && (state = 3)
elseif 4 == state # comment line
if is_eol
col_start_idx = idx
state = 0
end
elseif 0 == state # begin field
if is_quote
state = (allow_quote && !was_cr) ? 1 : 2
expct_col = false
elseif is_dlm
if !ign_adj_dlm
expct_col = true
col += 1
store_cell(dh, nrows+1, col, false, col_start_idx, idx-2)
end
col_start_idx = idx
elseif is_eol
if (col > 0) || !skipblanks
nrows += 1
if expct_col
col += 1
store_cell(dh, nrows, col, false, col_start_idx, idx - (was_cr ? 3 : 2))
end
ncols = max(ncols, col)
col = 0
end
col_start_idx = idx
expct_col = false
elseif is_comment && allow_comments
if col > 0
nrows += 1
if expct_col
col += 1
store_cell(dh, nrows, col, false, col_start_idx, idx - 2)
end
ncols = max(ncols, col)
col = 0
end
expct_col = false
state = 4
elseif !is_cr
state = 2
expct_col = false
end
elseif 3 == state # second quote
if is_quote && !was_cr
state = 1
elseif is_dlm && !was_cr
state = 0
col += 1
store_cell(dh, nrows+1, col, true, col_start_idx, idx-2)
col_start_idx = idx
!ign_adj_dlm && (expct_col = true)
elseif is_eol
nrows += 1
col += 1
store_cell(dh, nrows, col, true, col_start_idx, idx - (was_cr ? 3 : 2))
col_start_idx = idx
ncols = max(ncols, col)
col = 0
state = 0
elseif is_comment && allow_comments && !was_cr
nrows += 1
col += 1
store_cell(dh, nrows, col, true, col_start_idx, idx - 2)
ncols = max(ncols, col)
col = 0
state = 4
elseif (is_cr && was_cr) || !is_cr
error_str = escape_string("unexpected character '$(Char(val))' after quoted field at row $(nrows+1) column $(col+1)")
break
end
elseif 5 == state # skip start
if is_eol
col_start_idx = idx
skipstart -= 1
(0 == skipstart) && (state = 0)
end
end
was_cr = is_cr
end
if isempty(error_str)
if 1 == state # quoted field
error_str = "truncated column at row $(nrows+1) column $(col+1)"
elseif (2 == state) || (3 == state) || ((0 == state) && is_dlm) # unquoted field, second quote, or begin field with last character as delimiter
col += 1
nrows += 1
store_cell(dh, nrows, col, (3 == state), col_start_idx, idx-1)
ncols = max(ncols, col)
end
end
catch ex
if isa(ex, TypeError) && (ex.func === :store_cell)
rethrow()
else
error("at row $(nrows+1), column $col : $ex)")
end
end
!isempty(error_str) && error(error_str)
return (nrows, ncols)
end
# todo: keyword argument for # of digits to print
writedlm_cell(io::IO, elt::AbstractFloat, dlm, quotes) = print(io, elt)
function writedlm_cell(io::IO, elt::AbstractString, dlm::T, quotes::Bool) where T
if quotes && !isempty(elt) && (('"' in elt) || ('\n' in elt) || ((T <: AbstractChar) ? (dlm in elt) : occursin(dlm, elt)))
print(io, '"', replace(elt, r"\"" => "\"\""), '"')
else
print(io, elt)
end
end
writedlm_cell(io::IO, elt, dlm, quotes) = print(io, elt)
function writedlm(io::IO, a::AbstractMatrix, dlm; opts...)
optsd = val_opts(opts)
quotes = get(optsd, :quotes, true)
pb = PipeBuffer()
lastc = last(axes(a, 2))
for i = axes(a, 1)
for j = axes(a, 2)
writedlm_cell(pb, a[i, j], dlm, quotes)
j == lastc ? print(pb,'\n') : print(pb,dlm)
end
(bytesavailable(pb) > (16*1024)) && write(io, take!(pb))
end
write(io, take!(pb))
nothing
end
writedlm(io::IO, a::AbstractArray{<:Any,0}, dlm; opts...) = writedlm(io, reshape(a,1), dlm; opts...)
# write an iterable row as dlm-separated items
function writedlm_row(io::IO, row, dlm, quotes)
y = iterate(row)
while y !== nothing
(x, state) = y
y = iterate(row, state)
writedlm_cell(io, x, dlm, quotes)
y === nothing ? print(io,'\n') : print(io,dlm)
end
end
# If the row is a single string, write it as a string rather than
# iterating over characters. Also, include the common case of
# a Number (handled correctly by the generic writedlm_row above)
# purely as an optimization.
function writedlm_row(io::IO, row::Union{Number,AbstractString}, dlm, quotes)
writedlm_cell(io, row, dlm, quotes)
print(io, '\n')
end
# write an iterable collection of iterable rows
function writedlm(io::IO, itr, dlm; opts...)
optsd = val_opts(opts)
quotes = get(optsd, :quotes, true)
pb = PipeBuffer()
for row in itr
writedlm_row(pb, row, dlm, quotes)
(bytesavailable(pb) > (16*1024)) && write(io, take!(pb))
end
write(io, take!(pb))
nothing
end
function writedlm(fname::AbstractString, a, dlm; opts...)
open(fname, "w") do io
writedlm(io, a, dlm; opts...)
end
end
"""
writedlm(f, A, delim='\\t'; opts)
Write `A` (a vector, matrix, or an iterable collection of iterable rows) as text to `f`
(either a filename string or an `IO` stream) using the given delimiter
`delim` (which defaults to tab, but can be any printable Julia object, typically a `Char` or
`AbstractString`).
For example, two vectors `x` and `y` of the same length can be written as two columns of
tab-delimited text to `f` by either `writedlm(f, [x y])` or by `writedlm(f, zip(x, y))`.
# Examples
```jldoctest
julia> using DelimitedFiles
julia> x = [1; 2; 3; 4];
julia> y = [5; 6; 7; 8];
julia> open("delim_file.txt", "w") do io
writedlm(io, [x y])
end
julia> readdlm("delim_file.txt", '\\t', Int, '\\n')
4×2 Matrix{Int64}:
1 5
2 6
3 7
4 8
julia> rm("delim_file.txt")
```
"""
writedlm(io, a; opts...) = writedlm(io, a, '\t'; opts...)
show(io::IO, ::MIME"text/csv", a) = writedlm(io, a, ',')
show(io::IO, ::MIME"text/tab-separated-values", a) = writedlm(io, a, '\t')
end # module DelimitedFiles
| DelimitedFiles | https://github.com/JuliaData/DelimitedFiles.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.