licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1168
using IncrementalInference using Test ## @testset "Only do UPWARD_COMMON message likelihoods if hasPriors" begin ## fg = generateGraph_LineStep(4; poseEvery=1, landmarkEvery=5, posePriorsAt=[], landmarkPriorsAt=[], sightDistance=5, solverParams=SolverParams(algorithms=[:default, :parametric])) deleteFactor!.(fg, [Symbol("x$(i)lm0f1") for i=1:3]) #force wrong init prpo = Prior(Normal(5, 0.01)) addFactor!(fg, [:x0], prpo) initAll!(fg) deleteFactor!(fg, :x0f1) # now the correct prior prpo = Prior(Normal(0, 0.01)) addFactor!(fg, [:x0], prpo) fg.solverParams.useMsgLikelihoods = true smtasks = Task[] tree = solveTree!(fg; smtasks=smtasks, verbose=true, timeout=30); @warn("hasPriors test needs multiple solves") tree = solveTree!(fg); tree = solveTree!(fg); # tree = solveTree!(fg; smtasks, verbose=true, timeout=20, recordcliqs=ls(fg)); for i = 0:4 ppe = getPPE(getVariable(fg, Symbol("x$i"))).suggested[1] @show i ppe @test isapprox(ppe, i; atol=0.7) end ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
998
using Test using Interpolations using IncrementalInference using Distributions using TensorCast using Distributions ## @testset "Test HeatmapGridDensity" begin ## x = -10:0.1:10; y = -10:0.1:10; img = zeros(length(x),length(y)) # lambda dispatch in this scope was REALLY slow mv = MvNormal(Diagonal([1.0;1.0])) g(x,y) = pdf(mv,[x;y]) for (i,x_) in enumerate(x), (j,y_) in enumerate(y) img[i,j] = g(x_,y_) end ## println("build a HeatmapGridDensity") hgd = IIF.HeatmapGridDensity(img, (x,y), nothing, 0.07; N=1000) @show hgd println("test packing converters") # check conversions to packed types phgd = convert(PackedSamplableBelief, hgd) hgd_ = convert(SamplableBelief, phgd) @test isapprox( hgd, hgd_ ) # use in graph ## Check that sampling of the HMD is correct pts_ = sample(hgd,1000)[1] @cast pts_x[i] := pts_[i][1] @cast pts_y[i] := pts_[i][2] f = fit(MvNormal, hcat(pts_x,pts_y)') @test isapprox([0;0], f.μ; atol=0.15) @test isapprox([1 0; 0 1], f.Σ.mat; atol=0.4) ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2145
using Test using IncrementalInference @testset "Testing getCliqVarInitOrderUp" begin fg = generateGraph_LineStep(3; poseEvery=1, landmarkEvery=5, posePriorsAt=[0], landmarkPriorsAt=[0,2], sightDistance=3) fg.solverParams.useMsgLikelihoods = true # addVariable!(subfg, :x0, Con) cliqInitOrder = getCliqVarInitOrderUp(fg) #TODO variable order can change, but should be more stable using OrderedDict. Testing for both. # maybe remove cliqInitOrder == [:x0, :lm0, :x3, :x2, :x1] test in v0.31 @test cliqInitOrder == [:x0, :lm0, :x3, :x2, :x1] || cliqInitOrder == [:x0, :lm0, :x3, :x1, :x2] solveTree!(fg) # construct a message on :x3 msg = LikelihoodMessage(status=IIF.UPSOLVED) seps = [:x3] for vid in seps var = DFG.getVariable(fg, vid) if isInitialized(var) msg.belief[var.label] = TreeBelief(var) end end addMsgFactors!(fg, msg, IIF.UpwardPass) # less sensitive to order given msgjoint message updates @test intersect(getCliqVarInitOrderUp(fg), [:x3, :x0, :lm0, :x2, :x1]) |> length == 5 # construct a message on :lm0,:x2 msg = LikelihoodMessage(status=IIF.UPSOLVED, hasPriors=false) seps = [:lm0, :x2] for vid in seps var = DFG.getVariable(fg, vid) if isInitialized(var) msg.belief[var.label] = TreeBelief(var) end end addMsgFactors!(fg, msg, IIF.UpwardPass) @warn("disabled getCliqVarInitOrderUp test until #1010 is closed") # @test getCliqVarInitOrderUp(fg) == [:x3, :x0, :lm0, :x1, :x2] # test order with mixture prior #998 cv = 3.0 doorPrior = Mixture(Prior, [Normal(-100,cv);Normal(0,cv);Normal(100,cv);Normal(300,cv)], [1/4;1/4;1/4;1/4] ) fg = initfg() fg.solverParams.graphinit = false addVariable!(fg, :x0, ContinuousScalar) addFactor!(fg, [:x0], doorPrior) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg,[:x0; :x1], LinearRelative( Normal(0.0,1.0))) @test lsfPriors(fg) == [:x0f1] @test getCliqVarInitOrderUp(fg) == [:x0, :x1] end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
4790
# test case to enforce consistency in joint gibbs using Test using IncrementalInference ## @testset "test disjoint up clique message joint subgraph" begin ## test case with disjoint clique joint subgraph fg = initfg() addVariable!(fg, :x0, ContinuousEuclid{2}) addVariable!(fg, :x1, ContinuousEuclid{2}) addVariable!(fg, :x2, ContinuousEuclid{2}) initVariable!(fg, :x0, [randn(2) for _ in 1:100]) initVariable!(fg, :x1, [randn(2) .+ 10 for _ in 1:100]) initVariable!(fg, :x2, [randn(2) .+ 20 for _ in 1:100]) addFactor!(fg , [:x0; :x1], LinearRelative(MvNormal([10.0;10], diagm([1.0;1])))) addFactor!(fg , [:x1; :x2], LinearRelative(MvNormal([10.0;10], diagm([1.0;1])))) addVariable!(fg, :x3, ContinuousEuclid{2}) addFactor!( fg, [:x2; :x3], EuclidDistance(Normal(10, 1)) ) addFactor!( fg, [:x0; :x3], EuclidDistance(Normal(30, 1)), graphinit=false ) ## initAll!(fg) # drawGraph(fg, show=true) ## test shortest path # first path tp1_ = [ :x0;:x0x1f1;:x1;:x1x2f1;:x2] tp2_ = [ :x0;:x0x3f1;:x3;:x2x3f1;:x2] pth = findShortestPathDijkstra(fg, :x0, :x2) @test pth == tp1_ || pth == tp2_ pth = findShortestPathDijkstra(fg, :x0, :x2, typeFactors=[LinearRelative;]) @test pth == tp1_ # different path pth = findShortestPathDijkstra(fg, :x0, :x2, typeFactors=[EuclidDistance;]) @test pth == tp2_ ## isHom, typeName = isPathFactorsHomogeneous(fg, :x0, :x2) @test isHom @test length(typeName) == 1 @test typeName[1].name == :LinearRelative ## use a specific solve order vo = [:x3; :x1; :x2; :x0] # getEliminationOrder(fg) tree = buildTreeReset!(fg, vo) ## # drawTree(tree, show=true) ## Child clique subgraph cliq2 = getClique(tree,:x3) # drawGraph(cfg2, show=true) ## cfg2 = buildCliqSubgraph(fg, cliq2) jointmsg = IIF._generateMsgJointRelativesPriors(cfg2, :default, cliq2) @info "update these jointmsg test after #1010" @test intersect( keys(jointmsg.priors) , [:x0; :x2] ) |> length == 2 @test length(jointmsg.relatives) == 0 ## # retlist = addLikelihoodsDifferentialCHILD!([:x2; :x0], cfg2) ## getSolverParams(fg).useMsgLikelihoods = true tree = solveTree!(fg, eliminationOrder=vo); ## get up message from child clique msgBuf = IIF.getMessageBuffer(getClique(tree, :x3)) msg = msgBuf.upTx # only priors for these mixed factors, before TAF @test msg.jointmsg.priors |> length == 2 @test msg.jointmsg.relatives |> length == 0 ## end @testset "test homogeneous up clique message joint subgraph" begin ## test case with disjoint clique joint subgraph fg = initfg() addVariable!(fg, :x0, ContinuousEuclid{2}) addVariable!(fg, :x1, ContinuousEuclid{2}) addVariable!(fg, :x2, ContinuousEuclid{2}) initVariable!(fg, :x0, [randn(2) for _ in 1:100]) initVariable!(fg, :x1, [randn(2) .+ 10 for _ in 1:100]) initVariable!(fg, :x2, [randn(2) .+ 20 for _ in 1:100]) addFactor!(fg , [:x0; :x1], LinearRelative(MvNormal([10.0;10], diagm([1.0;1])))) addFactor!(fg , [:x1; :x2], LinearRelative(MvNormal([10.0;10], diagm([1.0;1])))) addVariable!(fg, :x3, ContinuousEuclid{2}) addFactor!( fg, [:x2; :x3], LinearRelative(MvNormal([10.0;10], diagm([1.0;1]))) ) addFactor!( fg, [:x0; :x3], LinearRelative(MvNormal([10.0;10], diagm([1.0;1]))) ) ## initAll!(fg) # drawGraph(fg, show=true) ## test shortest path # first path tp1_ = [ :x0;:x0x1f1;:x1;:x1x2f1;:x2] tp2_ = [ :x0;:x0x3f1;:x3;:x2x3f1;:x2] pth = findShortestPathDijkstra(fg, :x0, :x2) @test pth == tp1_ || pth == tp2_ pth = findShortestPathDijkstra(fg, :x0, :x2, typeFactors=[LinearRelative;]) @test pth == tp1_ || pth == tp2_ # different path pth = findShortestPathDijkstra(fg, :x0, :x2, typeFactors=[EuclidDistance;]) @test pth == Symbol[] ## vo = [:x3; :x1; :x2; :x0] # getEliminationOrder(fg) tree = buildTreeReset!(fg, vo) cliq2 = getClique(tree,:x3) cfg2 = buildCliqSubgraph(fg, cliq2) # drawGraph(cfg2, show=true) ## separators = getCliqSeparatorVarIds(cliq2) jointrelatives = addLikelihoodsDifferentialCHILD!( cfg2, separators ) allClasses = IIF._findSubgraphsFactorType( cfg2, jointrelatives, separators ) @test length(allClasses) == 1 @test intersect(allClasses[1], separators) |> length == 2 ## jointmsg = IIF._generateMsgJointRelativesPriors(cfg2, :default, cliq2) ## @info "update these jointmsg test after #1010" @test intersect( jointmsg.relatives[1].variables , [:x0; :x2] ) |> length == 2 @test length(keys(jointmsg.priors)) == 0 ## similar during solving getSolverParams(fg).useMsgLikelihoods = true tree = solveTree!(fg, eliminationOrder=vo); ## get up message from child clique msgBuf = IIF.getMessageBuffer(getClique(tree, :x3)) msg = msgBuf.upTx ## only priors for these mixed factors, before TAF @test intersect( msg.jointmsg.relatives[1].variables , [:x0; :x2] ) |> length == 2 @test length(keys(msg.jointmsg.priors)) == 0 ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2190
# another tree test using IncrementalInference using Test @testset "Variable ordering Bayes tree member check." begin fg = generateGraph_Kaess() # Choose specific variable ordering and perform check. vo = [:l1, :l2, :x1, :x2, :x3] tree = buildTreeReset!(fg, vo) @test vo == tree.eliminationOrder @test vo == getEliminationOrder(tree) end @testset "Test Caesar Ring 1D symbolic tree construction" begin fg = generateGraph_CaesarRing1D() # drawGraph(fg, show=true) eo = [:x0;:x2;:x4;:x6;:x1;:l1;:x5;:x3;] tree = buildTreeReset!(fg,eo) # drawTree(tree, show=true) @test length(tree.cliques) == 6 C0 = getClique(tree, :x3) @test intersect( C0 |> getFrontals, [:x3; :x5; :l1]) |> length == 3 @test C0 |> getCliqSeparatorVarIds |> length == 0 cC0 = getChildren(tree, C0) @test cC0 |> length == 3 C1 = getClique(tree, :x1) @test C1 in cC0 @test C1 |> getFrontals == [:x1;] @test intersect(C1 |> getCliqSeparatorVarIds, [:x3;:l1]) |> length == 2 cC1 = getChildren(tree, C1) @test cC1 |> length == 2 C4 = getClique(tree, :x2) @test C4 in cC1 @test C4 |> getFrontals == [:x2;] @test intersect(C4 |> getCliqSeparatorVarIds, [:x3;:x1]) |> length == 2 C5 = getClique(tree, :x0) @test C5 in cC1 @test C5 |> getFrontals == [:x0;] @test intersect(C5 |> getCliqSeparatorVarIds, [:l1;:x1]) |> length == 2 C2 = getClique(tree, :x6) @test C2 in cC0 @test C2 |> getFrontals == [:x6;] @test intersect(C2 |> getCliqSeparatorVarIds, [:l1;:x5]) |> length == 2 C3 = getClique(tree, :x4) @test C3 in cC0 @test C3 |> getFrontals == [:x4;] @test intersect(C3 |> getCliqSeparatorVarIds, [:x3;:x5]) |> length == 2 end @testset "Test tree formation and consistent APIs" begin fg = generateGraph_TestSymbolic() #writeGraphPdf(fg, show=true) eo = [:x1; :l3; :l1; :x5; :x2; :l2; :x4; :x3] tree = buildTreeReset!(fg,eo) # drawTree(tree, show=true) @warn "TODO, complete further testing on tree formation" ## test variable order APIs consistent, see issue 499 vo = getEliminationOrder(fg) tree1 = buildTreeReset!(fg, vo) # drawTree(tree1, show=true) tree2 = buildTreeReset!(fg) # drawTree(tree2, show=true) @test getEliminationOrder(tree1) == getEliminationOrder(tree1) end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
501
using Test using IncrementalInference @testset "test Manual Init - distribution" begin fg = initfg() addVariable!(fg, :x0, ContinuousScalar) belief = Normal(1.,0.1) initVariable!(fg, :x0, belief) pts = getPoints(fg, :x0) M = getManifold(fg, :x0) @test isapprox(mean(M, pts),[1],atol=0.1) @test isapprox(std(M, pts),0.1,atol=0.1) # test var api v = getVariable(fg, :x0) initVariable!(v, belief) pts = getVal(v) @test isapprox(mean(M, pts),[1],atol=0.1) @test isapprox(std(M, pts),0.1,atol=0.1) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
4347
## using IncrementalInference using Test using TensorCast # using Statistics # using Manifolds # should be done within regular exports # using Pkg # Pkg.resolve() ## @testset "test Mixture sampling" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) mp = Mixture(Prior, (Normal(), Normal(10,1)),(1/2,1/2) ) addFactor!(fg, [:x0], mp) ## pts_ = approxConv(fg, :x0f1, :x0) @cast pts[i,j] := pts_[j][i] N = size(pts,2) @test 0.2*N < sum( -5 .< pts .< 5 ) @test 0.2*N < sum( 5 .< pts .< 15 ) @test sum( 15 .< pts ) < 0.1*N @test sum( pts .< -5 ) < 0.1*N @test sum( 3 .< pts .< 7 ) < 0.1*N # using KernelDensityEstimatePlotting, Gadfly # Gadfly.set_default_plot_size(25cm,20cm) # plotKDE(kde!(pts)) ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0], Prior(Normal()), graphinit=false) initVariable!(fg, :x0, [zeros(1) for _ in 1:100]) mlr = Mixture(LinearRelative, (Normal(), Normal(10,1)),(1/2,1/2) ) addFactor!(fg, [:x0;:x1], mlr, graphinit=false) ## pts_ = approxConv(fg, :x0x1f1, :x1) @cast pts[i,j] := pts_[j][i] # plotKDE(kde!(pts)) ## N = size(pts,2) @test 0.2*N < sum( -5 .< pts .< 5 ) @test 0.2*N < sum( 5 .< pts .< 15 ) @test sum( 15 .< pts ) < 0.1*N @test sum( pts .< -5 ) < 0.1*N @test sum( 3 .< pts .< 7 ) < 0.1*N ## end @testset "test packing of Mixture" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) mp = Mixture(Prior, [Normal(); Normal(10,1)], [0.5;0.5]) f0 = addFactor!(fg, [:x0;], mp) mr = Mixture(LinearRelative, (fancy=manikde!(ContinuousEuclid(1), [randn(1) for _ in 1:75]), naive=Normal(0,10)), [0.4;0.6]) f1 = addFactor!(fg, [:x0;:x1], mr) ## pf0 = DFG.packFactor(f0) pf1 = DFG.packFactor(f1) # now test unpacking fg_ = initfg(); addVariable!(fg_, :x0, ContinuousScalar) addVariable!(fg_, :x1, ContinuousScalar) ## f0_ = DFG.unpackFactor(fg_, pf0) f1_ = DFG.unpackFactor(fg_, pf1) ## # ENV["JULIA_DEBUG"] = "DistributedFactorGraphs" @warn("Skipping pack/unpack compareFactor test for `timezone` and `zone`") @show typeof(f1) @show typeof(f1_) @show typeof(getSolverData(f1).fnc.varValsAll[]); @show typeof(getSolverData(f1_).fnc.varValsAll[]); @test DFG.compareFactor(f1, f1_, skip=[:components;:labels;:timezone;:zone;:vartypes;:fullvariables;:particleidx;:varidx]) @test IIF._getCCW(f1).usrfnc!.components.naive == IIF._getCCW(f1).usrfnc!.components.naive # already ManifoldKernelDensity A = IIF._getCCW(f1).usrfnc!.components.fancy B = IIF._getCCW(f1_).usrfnc!.components.fancy # A = ManifoldBelief(Euclid, IIF._getCCW(f1).usrfnc!.components.fancy ) # B = ManifoldBelief(Euclid, IIF._getCCW(f1_).usrfnc!.components.fancy ) @test mmd(A,B) < 1e-6 ## end @testset "test simple Mixture" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0], Prior(Normal(0.0,0.1))) ## # require default ::UnitScaling constructor from all factors mlr = Mixture(LinearRelative(I), [Normal(-1.0, 0.1), Normal(1.0, 0.1)], Categorical([0.5; 0.5])) # test serialization while we are here pmlr = convert(PackedMixture, mlr) umlr = convert(Mixture, pmlr) @test mlr.mechanics == umlr.mechanics @test mlr.components == umlr.components @test mlr.diversity == umlr.diversity mlr = Mixture(LinearRelative, [Normal(-1.0, 0.1), Normal(1.0, 0.1)], Categorical([0.5; 0.5])) addFactor!(fg, [:x0,:x1], mlr) # To look at your factor graph # if false # using GraphPlot # using DistributedFactorGraphs # plotDFG(fg) # end tree = solveTree!(fg) ## btd = getBelief(getVariable(fg, :x0)) @test isapprox(mean(getKDEfit(btd,distribution=Normal)), 0.0; atol=0.1) @test isapprox(std(getKDEfit(btd,distribution=Normal)), 0.1; atol=0.05) btd = getBelief(getVariable(fg, :x1)) pts_ = getPoints(btd) @cast pts[i,j] := pts_[j][i] pts_p = pts[pts .>= 0] pts_n = pts[pts .< 0] nfit_p = fit(Normal, pts_p) @test isapprox(mean(nfit_p), 1.0; atol=0.1) @test isapprox(std(nfit_p), 0.14; atol=0.05) #TODO confirm the correct value and tolerance nfit_n = fit(Normal, pts_n) @test isapprox(mean(nfit_n), -1.0; atol=0.1) @test isapprox(std(nfit_n), 0.14; atol=0.05) #TODO confirm the correct value and tolerance # To look at your results # if false # using RoMEPlotting # plotKDE(fg, ls(fg)) # end ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
6223
using IncrementalInference using IncrementalInference.Optim using Test ## @testset "test parametric mixture" begin ## Test simple mixture prior fg = LocalDFG(;solverParams=SolverParams(algorithms=[:default, :parametric])) addVariable!(fg, :x0, ContinuousScalar) p = Mixture(Prior(I), [Normal(0.8, 0.4), Normal(1.0, 0.1)], Categorical([0.1; 0.9])) f = addFactor!(fg, [:x0], p) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0,:x1], LinearRelative(Normal(1.0,0.1))) options = Optim.Options(time_limit = 100, iterations = 10000, show_trace = true, show_every = 10, allow_f_increases=true, g_tol = 1e-6, ) algorithm = Optim.NelderMead vardict, result, varIds, Σ = IIF.solveGraphParametric(fg; options, algorithm) @test isapprox(vardict[:x0].val[1], 1, atol = 0.05) @test isapprox(vardict[:x0].cov[1], 0.01, atol = 0.001) ## fg = LocalDFG(;solverParams=SolverParams(algorithms=[:default, :parametric])) addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0], Prior(Normal(0.0,0.1))) mlr = Mixture(LinearRelative(I), [Normal(-1.0, 0.2), Normal(1.0, 0.1)], Categorical([0.5; 0.5])) addFactor!(fg, [:x0,:x1], mlr) addVariable!(fg, :l1, ContinuousScalar) p = Mixture(Prior(I), [Normal(-1.5, 0.1), Normal(0.9, 0.2)], Categorical([0.5; 0.5])) # p = Prior(Normal(0.9, 0.1)) addFactor!(fg, [:l1], p) addFactor!(fg, [:x1,:l1], LinearRelative(Normal(0.0,0.1))) vardict, result, varIds, Σ = IIF.solveGraphParametric(fg) @test isapprox(vardict[:x0].val[1], 0, atol = 0.1) @test isapprox(vardict[:x1].val[1], 1, atol = 0.1) @test isapprox(vardict[:l1].val[1], 1, atol = 0.1) ## ContinuousEuclid(2) prior fg = LocalDFG(;solverParams=SolverParams(algorithms=[:default, :parametric])) addVariable!(fg, :x0, ContinuousEuclid(2)) p = Mixture(Prior(MvNormal(2,1.0)), [MvNormal([0.8, 0.5], [0.4, 0.4]), MvNormal([1.0, 0.5], [0.1, 0.1])], Categorical([0.1; 0.9])) f = addFactor!(fg, [:x0], p) vardict, result, varIds, Σ = IIF.solveGraphParametric(fg) vardict @test isapprox(vardict[:x0].val[1], 1.0, atol = 0.01) @test isapprox(vardict[:x0].val[2], 0.5, atol = 0.01) @test isapprox(vardict[:x0].cov[1,1], 0.01, atol = 0.001) @test isapprox(vardict[:x0].cov[2,2], 0.01, atol = 0.001) # x = collect(0.5:0.01:1.5) # y = collect(0.0:0.01:1.0) # cfm = IIF.CalcFactorMahalanobis(f) # xy = Vector{Float64}[] # x = 0.5:0.01:1.5 # y = 0:0.01:1 # for x=x,y=y # push!(xy, [x,y]) # end # r = cfm.(xy) # surface(x,y,r) ## end if false fg = LocalDFG(;solverParams=SolverParams(algorithms=[:default, :parametric])) addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0], Prior(Normal(0.0,0.1))) mlr = Mixture(LinearRelative(I), [Normal(-1.0, 0.2), Normal(1.0, 0.1)], Categorical([0.5; 0.5])) # mlr = Mixture(LinearRelative(I), [Normal(-0.2, 0.05), Normal(0.2, 0.1)], Categorical([0.5; 0.5])) # mlr = Mixture(LinearRelative(I), [Normal(0.0, 0.9), Normal(0.0, 0.1)], Categorical([0.5; 0.5])) # mlr = Mixture(LinearRelative(I), [Normal(-0.2, 0.1), Normal(0.2, 0.1)], Categorical([0.9; 0.1])) # mlr = Mixture(LinearRelative(I), [Normal(-0.2, 0.15), Normal(0.2, 0.1)], Categorical([0.5; 0.5])) # mlr = Mixture(LinearRelative(I), [Normal(-1.0, 0.2), Normal(1.0, 0.1)], Categorical([0.5; 0.5])) addFactor!(fg, [:x0,:x1], mlr) f = fg[:x0x1f1] cfm = IIF.CalcFactorMahalanobis(f) x1 = collect(-2:0.01:2) # x1 = reverse(collect(-2:0.01:2)) # x1 = collect(-0.5:0.01:0.5) r1 = cfm.(Ref([0.0]), x1) # plot!(x1,r) plot(x1,r1) ## addVariable!(fg, :l1, ContinuousScalar) p = Mixture(Prior(I), [Normal(-1.5, 0.1), Normal(0.9, 0.2)], Categorical([0.5; 0.5])) # p = Prior(Normal(0.9, 0.1)) addFactor!(fg, [:l1], p) addFactor!(fg, [:x1,:l1], LinearRelative(Normal(0.0,0.1))) f = fg[:l1f1] cfm = IIF.CalcFactorMahalanobis(f) x1 = collect(-2:0.01:2) r2 = cfm.(x1) plot!(x1,r2) # plot!(x1,r1+r2) ## initAll!(fg) solveTree!(fg) plotKDE(fg, :x1) plotKDE(fg, :l1) ## using IncrementalInference.Optim options = Optim.Options(time_limit = 100, iterations = 1000, show_trace = true, show_every = 1, allow_f_increases=true, g_tol = 1e-6, ) algorithm = Optim.NelderMead algorithm = Optim.BFGS algorithmkwargs=(linesearch = Optim.LineSearches.HagerZhang(),) # algorithmkwargs=(linesearch = Optim.LineSearches.Static(),) vardict, result, varIds, Σ = IIF.solveGraphParametric(fg; algorithm, options, algorithmkwargs) vardict ## IIF.updateParametricSolution!(fg, vardict) ## end ## if false using RoME fg = LocalDFG(;solverParams=SolverParams(algorithms=[:default, :parametric])) pr_noise = [0.01, 0.01, 0.001] od_noise_1 = [0.5; 0.5; 0.2] od_noise_2 = [0.05; 0.05; 0.02] #x0 prior addVariable!(fg, :x0, Pose2) prpo = MvNormal([0,0,-pi], pr_noise) addFactor!(fg, [:x0], PriorPose2(prpo)) # addFactor!(fg, [:x0], PriorPose2(MvNormal(rand(prpo), pr_noise))) #x0 to x1 addVariable!(fg, :x1, Pose2) pp1 = MvNormal([1.0,0,0], od_noise_1) pp2 = MvNormal([1.0,0,0], od_noise_2) mpp = Mixture(Pose2Pose2(I), [pp1, pp2], Categorical([0.5; 0.5])) f = addFactor!(fg, [:x0,:x1], mpp) cfm = IIF.CalcFactorMahalanobis(f) ## xyθ = Vector{Float64}[] for x = 0.5:0.01:1.5, y = 0, θ = 0 push!(xyθ, [x,y,θ]) end x = 0.5:0.01:1.5 r = cfm.(Ref([0.0; 0.0; 0.0]), xyθ) plot(x,r) ## #x1 to x2 # addVariable!(fg, :x2, Pose2) # pp1 = MvNormal([1.0,0,0], od_noise_1) # pp2 = MvNormal([1.0,0,0], od_noise_2) # mpp = Mixture(Pose2Pose2(I), [pp1, pp2], Categorical([0.5; 0.5])) # addFactor!(fg, [:x1,:x2], mpp) # vardict, result, varIds, Σ = solveFactorGraphParametric(fg) # vardict ## using IncrementalInference.Optim options = Optim.Options(time_limit = 100, iterations = 10000, show_trace = true, show_every = 1, allow_f_increases=true, g_tol = 1e-6, ) algorithm = Optim.NelderMead vardict, result, varIds, Σ = IIF.solveGraphParametric(fg; algorithm, autodiff=:finite) vardict end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2095
# from #605 # using Revise using IncrementalInference using Test using TensorCast ## @testset "test mixture prior" begin ## # init graph fg = initfg() N = 100 getSolverParams(fg).N = N; # add first variable addVariable!(fg, :x0, ContinuousScalar) # also test AliasingScalingSampler v = rand(50) v[20:29] .+= 5*rand(10) v ./= sum(v) bss = AliasingScalarSampler(collect(1:50), v) # add bi-modal mixture prior Prior0 = Mixture(Prior,(a=Normal(-5.0,1.0), b=Uniform(0.0,1.0)), (0.5,0.5)) Prior0 = Mixture(Prior,(Normal(-5.0,1.0), Normal(0.0,1.0)), (0.5,0.5)) Prior0 = Mixture(Prior,[Normal(-5.0,1.0), Normal(0.0,1.0)], (0.5,0.5)) Prior0 = Mixture(Prior,(Normal(-5.0,1.0), Normal(0.0,1.0)), [0.5;0.5]) Prior0 = Mixture(Prior,[Normal(-5.0,1.0), Normal(0.0,1.0)], [0.5;0.5]) Prior0 = Mixture(Prior,(Normal(-5.0,1.0), bss), Categorical([0.5;0.5])) f1 = addFactor!(fg, [:x0], Prior0) # also test serialization of AliasingScalarSampler saveDFG("/tmp/test_fg_bss", fg) # check numerics -- replaced by CalcFactor{<:Mixture}, smpls_ = approxConv(fg, :x0f1, :x0) # smpls, = getSample(Prior0, N) # ,lb= # lazy @cast smpls[i,j] := smpls_[j][i] # should be a balance of particles # @test sum(lb .== 1) - sum(lb .== 2) |> abs < 0.3*N @test sum(smpls .< -2.5) - sum(-2.5 .< smpls) |> abs < 0.35*N # solve solveTree!(fg); marginalPts_ = getBelief(fg, :x0) |> getPoints # lazy @cast marginalPts[i,j] := marginalPts_[j][i] # check solver solution consistent too @test sum(marginalPts .< -2.5) - sum(-2.5 .< marginalPts) |> abs < 0.35*N ## end @testset "Serialization of Mixture(Prior,..) including a AliasingScalarSampler" begin ## fg_ = loadDFG("/tmp/test_fg_bss") N = getSolverParams(fg_).N solveTree!(fg_); marginalPts_ = getBelief(fg_, :x0) |> getPoints # lazy @cast marginalPts[i,j] := marginalPts_[j][i] # check solver solution consistent too @test sum(marginalPts .< -2.5) - sum(-2.5 .< marginalPts) |> abs < 0.35*N # cleanup Base.rm("/tmp/test_fg_bss.tar.gz") ## end # using RoMEPlotting # Gadfly.set_default_plot_size(35cm,20cm) # # plot the results # plotKDE(fg, :x0) #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
5947
# load requried packages # using Revise using IncrementalInference using Test ## during dev its clear functionality is working with 8/10 quality (Test API makes it difficult to write deterministic only tests for 8/10 quality.) ## parameters lm_prior_noise = 0.01 meas_noise = 0.25 odom_noise = 0.1 n_samples = 200 # initialize mean landmark locations l0 = 0.0 l1 = 10.0 l2 = 20.0 l3 = 40.0 # "Ground-truth" robot poses x0 = 0.0 x1 = 10.0 x2 = 20.0 x3 = 40.0 ## @testset "Basic 3 door, trinary multihypothesis tests..." begin ## Initialize empty factor graph fg = initfg() getSolverParams(fg).N = n_samples getSolverParams(fg).gibbsIters = 5 # forcefully work with ccw.varValsAll to check the pointers are pointing to getVal.(variables) getSolverParams(fg).graphinit = false # Place strong prior on locations of three "doors" addVariable!(fg, :l0, ContinuousScalar, N=n_samples) addFactor!(fg, [:l0], Prior(Normal(l0, lm_prior_noise))) addVariable!(fg, :l1, ContinuousScalar, N=n_samples) addFactor!(fg, [:l1], Prior(Normal(l1, lm_prior_noise))) addVariable!(fg, :l2, ContinuousScalar, N=n_samples) addFactor!(fg, [:l2], Prior(Normal(l2, lm_prior_noise))) addVariable!(fg, :l3, ContinuousScalar, N=n_samples) addFactor!(fg, [:l3], Prior(Normal(l3, lm_prior_noise))) # Add first pose addVariable!(fg, :x0, ContinuousScalar, N=n_samples) # Make first "door" measurement f1 = addFactor!(fg, [:x0; :l0; :l1; :l2; :l3], LinearRelative(Normal(0, meas_noise)), multihypo=[1.0; (1/4 for _=1:4)...]) # check pointers before init a,b = IIF._checkVarValPointers(fg, getLabel(f1)) for i in 1:length(a) @test a[i] == b[i] end # do init (and check that the var pointers did not change) doautoinit!(fg ,:l0) doautoinit!(fg ,:l1) doautoinit!(fg ,:l2) doautoinit!(fg ,:l3) # make sure approxConv is as expected @test isInitialized.(fg, [:l0;:l1;:l2;:l3]) |> all x0_beforeConv = getVal(fg, :x0) |> deepcopy # do the computation X0 = approxConvBelief(fg, getLabel(f1), :x0) # smpls = sampleFactor(fg, f1.label,10) # check that the x0 variable memory has not be changed @test all(norm.(x0_beforeConv - getVal(fg, :x0)) .< 1e-10) # specifically after approxConv to :x0 a_,b_ = IIF._checkVarValPointers(fg, getLabel(f1)) # deep copy on destination memory for x0, given just did approxConv to x0s @test a_[1] != b_[1] @test a_[2] == b_[2] @test a_[3] == b_[3] @test a_[4] == b_[4] @test a_[5] == b_[5] ## # should have four equal sized peaks at landmark locations @test 0.1 < X0([l0])[1] @test 0.1 < X0([l1])[1] @test 0.1 < X0([l2])[1] @test 0.1 < X0([l3])[1] # Add second pose addVariable!(fg, :x1, ContinuousScalar, N=n_samples) # Gaussian transition model addFactor!(fg, [:x0; :x1], LinearRelative(Normal(x1-x0, odom_noise))) # Make second "door" measurement addFactor!(fg, [:x1; :l0; :l1; :l2; :l3], LinearRelative(Normal(0, meas_noise)), multihypo=[1.0; (1/4 for _=1:4)...]) ## solveGraph!(fg) ## # check there is enough likelihood in the right places @test 0.1 < getBelief(fg, :x0)([l0])[1] @test 0.1 < getBelief(fg, :x0)([l1])[1] @test getBelief(fg, :x0)([l2])[1] < 0.3 @test getBelief(fg, :x1)([l0])[1] < 0.3 @test 0.1 < getBelief(fg, :x1)([l1])[1] @test 0.1 < getBelief(fg, :x1)([l2])[1] ## for i in 1:2 solveGraph!(fg); end ## # check there is enough likelihood in the right places @test 0.1 < getBelief(fg, :x0)([l0])[1] @test 0.1 < getBelief(fg, :x0)([l1])[1] @test getBelief(fg, :x0)([l2])[1] < 0.03 # @test getBelief(fg, :x1)([l0])[1] < 0.03 # why add this? @test 0.1 < getBelief(fg, :x1)([l1])[1] @test 0.1 < getBelief(fg, :x1)([l2])[1] ## Add one more pose/odometry to invoke issue #236 # Add third pose addVariable!(fg, :x2, ContinuousScalar, N=n_samples) addFactor!(fg, [:x1; :x2], LinearRelative(Normal(x2-x1, odom_noise))) ## Solve graph tree = solveTree!(fg) # drawGraph(fg) # drawTree(tree, show=true) ## # check there is enough likelihood in the right places @test 0.05 < getBelief(fg, :x0)([l0])[1] @test 0.05 < getBelief(fg, :x0)([l1])[1] @test 0.05 < getBelief(fg, :x1)([l1])[1] @test 0.05 < getBelief(fg, :x1)([l2])[1] dx = x2-x1 @test 0.05 < getBelief(fg, :x2)([l1 + dx])[1] @test 0.05 < getBelief(fg, :x2)([l2 + dx])[1] if false @test getBelief(fg, :x0)([l2])[1] < 0.03 @test getBelief(fg, :x1)([l0])[1] < 0.03 @test getBelief(fg, :x2)([l0 + dx])[1] < 0.03 else @error("Suppressing parts of multihypo tests (stochastic pass or fail results in poor test quality") end ## # Add third pose addVariable!(fg, :x3, ContinuousScalar, N=n_samples) addFactor!(fg, [:x2; :x3], LinearRelative(Normal(x3-x2, odom_noise))) # Make third "door" measurement addFactor!(fg, [:x3; :l0; :l1; :l2; :l3], LinearRelative(Normal(0, meas_noise)), multihypo=[1.0; (1/4 for _=1:4)...]) ## solveGraph!(fg) ## @error "must restore a few multimodal tests" if false @test isapprox(mean(getBelief(fg, :x0))[1], x0; atol = 3.0) @test isapprox(mean(getBelief(fg, :x1))[1], x1; atol = 3.0) # @test isapprox(mean(getBelief(fg, :x2))[1], x2; atol = 3.0) @test isapprox(mean(getBelief(fg, :x3))[1], x3; atol = 3.0) @test isapprox(mean(getBelief(fg, :l0))[1], l0; atol = 3.0) @test isapprox(mean(getBelief(fg, :l1))[1], l1; atol = 3.0) @test isapprox(mean(getBelief(fg, :l2))[1], l2; atol = 3.0) @test isapprox(mean(getBelief(fg, :l3))[1], l3; atol = 3.0) ## # check the PPEs are the same @test isapprox(getPPE(fg, :x0).suggested[1], x0; atol = 3.0) @test isapprox(getPPE(fg, :x1).suggested[1], x1; atol = 3.0) @test isapprox(getPPE(fg, :x2).suggested[1], x2; atol = 3.0) @test isapprox(getPPE(fg, :x3).suggested[1], x3; atol = 3.0) @test isapprox(getPPE(fg, :l0).suggested[1], l0; atol = 3.0) @test isapprox(getPPE(fg, :l1).suggested[1], l1; atol = 3.0) @test isapprox(getPPE(fg, :l2).suggested[1], l2; atol = 3.0) @test isapprox(getPPE(fg, :l3).suggested[1], l3; atol = 3.0) end ## end # using RoMEPlotting # Gadfly.set_default_plot_size(35cm,25cm) # # plotBelief(fg, sortDFG(ls(fg, r"x"))) #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
3733
using Test using IncrementalInference using Random ## @testset "test basic multihypo" begin ## A simple multihypo example Random.seed!(42) # The answer to reproducable noise fg = LocalDFG(solverParams=SolverParams(graphinit=false, gibbsIters=5, spreadNH=5.0)) pRight = 0.99 pWrong = 0.01 pr_noise = 0.01 od_noise = 0.1 lm_noise = 0.01 # true positions # x0 at 0 # x1 at 1 # l1 at 1 # l2 at 2 #x0 prior addVariable!(fg, :x0, ContinuousScalar) prpo = Normal(0.0, pr_noise) addFactor!(fg, [:x0], Prior(Normal(rand(prpo), pr_noise))) #l1 and l2 addVariable!(fg, :l1, ContinuousScalar, tags=[:LANDMARK]) addVariable!(fg, :l2, ContinuousScalar, tags=[:LANDMARK]) #x0 to l1 or l2 p2ln = Normal(1.0, lm_noise) p2p = LinearRelative(Normal(rand(p2ln), lm_noise)) addFactor!(fg, [:x0; :l1; :l2], p2p, multihypo = [1, pRight, pWrong]) # addFactor!(fg, [:x0; :l1], p2p) #this one used for sanity check #x0 to x1 addVariable!(fg, :x1, ContinuousScalar) pp = Normal(1.0, od_noise) addFactor!(fg, [:x0,:x1], LinearRelative(Normal(rand(pp), od_noise))) #x1 to l1 or l2 p2ln = Normal(0.0, lm_noise) p2p = LinearRelative(Normal(rand(p2ln), lm_noise)) addFactor!(fg, [:x1; :l1; :l2], p2p, multihypo = [1, pRight, pWrong]) # addFactor!(fg, [:x1; :l1], p2p) #this one used for sanity check #x1 to l2 or l1 p2ln = Normal(1.0, lm_noise) p2p = LinearRelative(Normal(rand(p2ln), lm_noise)) addFactor!(fg, [:x1; :l2; :l1], p2p, multihypo = [1, pRight, pWrong]) # addFactor!(fg, [:x1; :l2], p2p) #this one used for sanity check ## # prescribe an elimination order to get a single clique eo = [:l2,:x1,:x0,:l1] # fg.solverParams.graphinit=true smtasks = Task[] tree = solveTree!(fg, eliminationOrder=eo) #, smtasks=smtasks, recordcliqs=ls(fg)); # hists = fetchCliqHistoryAll!(smtasks) # plotKDE(fg, ls(fg)) ## @test isapprox(DFG.getPPESuggested(fg, :x0)[], 0, atol = 0.2) @test isapprox(DFG.getPPESuggested(fg, :x1)[], 1, atol = 0.2) @test isapprox(DFG.getPPESuggested(fg, :l1)[], 1, atol = 0.2) L2 = getBelief(fg, :l2) npts = length(getPoints(L2)) pts = [2.0.+0.1*randn(1) for _ in 1:npts] L2_ = manikde!(ContinuousScalar, pts) # test that there is at least a mode present @test mmd(L2_, L2, ContinuousScalar) < 1e-3 # @test isapprox(DFG.getPPESuggested(fg, :l2)[], 2, atol = 0.2) ## end @testset "test multihypo chain example (see #462)..." begin ## l1 = -10.0 l2 = +10.0 lnoise = 1.0 x1 = 0 x2 = 0 Onoise = 0.1 fg = initfg() addVariable!(fg, :x1, ContinuousScalar) addVariable!(fg, :x2, ContinuousScalar) addVariable!(fg, :l1, ContinuousScalar) addVariable!(fg, :l1_0, ContinuousScalar) addVariable!(fg, :l2, ContinuousScalar) addVariable!(fg, :l2_0, ContinuousScalar) # priors on two landmarks only addFactor!(fg, [:l1], Prior(Normal(l1, lnoise))) addFactor!(fg, [:l2], Prior(Normal(l2, lnoise))) # relative constraints addFactor!(fg, [:x1;:l1;:l1_0], LinearRelative(Normal(l1-x1, lnoise)), multihypo=[1;1/2;1/2]) addFactor!(fg, [:x2;:l2;:l2_0], LinearRelative(Normal(l2-x2, lnoise)), multihypo=[1;1/2;1/2]) addFactor!(fg, [:x1;:x2], LinearRelative(Normal(0, Onoise))) tree = solveTree!(fg) # drawTree(tree, show=true) # expect x1 x2 to have at least one mode at 0 @test getPPE(fg, :x1).suggested[1] - x1 |> abs < 1.2 @test getPPE(fg, :x2).suggested[1] - x2 |> abs < 1.2 @test getPPE(fg, :l1).suggested[1] - l1 |> abs < 1.2 @test getPPE(fg, :l2).suggested[1] - l2 |> abs < 1.2 # l1_0, l2_0 should be nearby around l1 and l2, but cannot confirm 100% @test getPPE(fg, :l1_0).suggested[1] - l1 |> abs < 10 @test getPPE(fg, :l2_0).suggested[1] - l2 |> abs < 10 ## end # using RoMEPlotting # Gadfly.set_default_plot_size(35cm,25cm) # # plotKDE(fg, [:l1;:l2]) # plotKDE(fg, [:l1_0;:l2_0]) # plotKDE(fg, [:x1;:x2]) #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
5733
## Continue with loading packages using DistributedFactorGraphs using IncrementalInference using TensorCast using Test ##============================================================================== ## Setup ##============================================================================== n_samples = 100 graphinit = false # noises lm_prior_noise = 1.0 meas_noise = 1.0 odom_noise = 1.0 # initialize mean landmark locations l1 = -30.0 l2 = 30.0 # l3 = -40.0 p_meas = 0.4 p_map = 1 - p_meas graphinit = false ##============================================================================== # Initialize empty factor graph @testset "test multihypo 1D..." begin ## fg = initfg() # fg.solverParams.graphinit = graphinit fg.solverParams.N = n_samples fg.solverParams.gibbsIters = 6 fg.solverParams.spreadNH = 0.3 # lp landmark prior information # lm landmark measurement addVariable!(fg, :lp1, ContinuousScalar) addFactor!(fg, [:lp1], Prior(Normal(l1, lm_prior_noise)), graphinit=graphinit) addVariable!(fg, :lp2, ContinuousScalar) addFactor!(fg, [:lp2], Prior(Normal(l2, lm_prior_noise)), graphinit=graphinit) addVariable!(fg, :x1, ContinuousScalar) addVariable!(fg, :lm2, ContinuousScalar) addFactor!(fg, [:x1; :lm2; :lp2], LinearRelative(Normal(20., meas_noise)), multihypo=[1.0; p_meas; p_map], graphinit=graphinit) addVariable!(fg, :lm1, ContinuousScalar) addFactor!(fg, [:x1; :lm1; :lp1], LinearRelative(Normal(-20., meas_noise)), multihypo=[1.0; p_meas; p_map], graphinit=graphinit) #weak lp1 lm1 relation to nudge one of two symmetric options # addFactor!(fg, [:lp1; :lm1], LinearRelative(Normal(0., 100.))) # initAll!(fg) # drawGraph(fg, show=true) # getSolverParams(fg).drawtree = false # getSolverParams(fg).showtree = false # getSolverParams(fg).dbg = true # getSolverParams(fg).multiproc = false ## varor = [:x1, :lm1, :lm2, :lp1, :lp2] # tree = buildTreeReset!(fg, varor) tree = solveTree!(fg, eliminationOrder = varor); # tree = solveTree!(fg, eliminationOrder = varor); # plotKDE(fg, ls(fg)) ## # X should be at one of two modes pts_ = getPoints(getBelief(fg, :x1)) @cast pts[i,j] := pts_[j][i] @test 0.7*getSolverParams(fg).N < sum(-20 .< pts[:] .< 0) + sum(0 .< pts[:] .< 20) pts_ = getPoints(getBelief(fg, :lp1)) @cast pts[i,j] := pts_[j][i] @test 0.7*getSolverParams(fg).N < sum(-38 .< pts[:] .< -28) pts_ = getPoints(getBelief(fg, :lp2)) @cast pts[i,j] := pts_[j][i] @test 0.7*getSolverParams(fg).N < sum(28 .< pts[:] .< 38) pts_ = getPoints(getBelief(fg, :lm1)) @cast pts[i,j] := pts_[j][i] @test 0.1*getSolverParams(fg).N < sum(-38 .< pts[:] .< -25) pts_ = getPoints(getBelief(fg, :lm2)) @cast pts[i,j] := pts_[j][i] @test 0.1*getSolverParams(fg).N < sum(25 .< pts[:] .< 38) # @test 0.2*getSolverParams(fg).N < sum(-18 .< getPoints(getBelief(fg, :lm1))[:] .< -5) || # 0.2*getSolverParams(fg).N < sum(5 .< getPoints(getBelief(fg, :lm2))[:] .< 15) ## end ## Debug plotting below # # using RoMEPlotting # Gadfly.set_default_plot_size(35cm, 20cm) # # # # tree = solveTree!(fg) # varIds = [ :x1, :lp1, :lp2, :lm1, :lm2] # pkde = plotKDE(fg, varIds) # # 0 # # # # using Plots # # # # pmm = StatsPlots.plot(pkde.layers[2].mapping[:x],pkde.layers[2].mapping[:y], label = string(varIds[1])) # # for i = 3:6 # # StatsPlots.plot!(pmm, pkde.layers[i].mapping[:x],pkde.layers[i].mapping[:y], label=string(varIds[i-1])) # # end # # plot!(pmm, title = "MM-iSAM", xlims = (-50, 60), xticks = -50:10:50) # # # # # # p1 = plotLocalProduct(fg, :lm2) # p2 = plotLocalProduct(fg, :lm1) # p3 = plotLocalProduct(fg, :lp2) # p4 = plotLocalProduct(fg, :lp1) # p5 = plotLocalProduct(fg, :x1) # h0 = hstack(p1,p2,p3,p4,p5) # # # treeProductUp(fg, tree, :x1, :x1) # # # # stuff = localProduct(fg,:lm2) # initVariable!(fg,:lm2, stuff[1]); p1 = plotKDE(stuff[1], title="lm2") # # stuff = localProduct(fg,:lm1) # initVariable!(fg,:lm1, stuff[1]); p2 = plotKDE(stuff[1], title="lm1") # # stuff = localProduct(fg,:lp2) # initVariable!(fg,:lp2, stuff[1]); p3 = plotKDE(stuff[1], title="lp2") # # stuff = localProduct(fg,:lp1) # initVariable!(fg,:lp1, stuff[1]); p4 = plotKDE(stuff[1], title="lp1") # # stuff = localProduct(fg,:x1) # initVariable!(fg,:x1, stuff[1]); p5 = plotKDE(stuff[1], title="x1") # # h1 = hstack(p1,p2,p3,p4,p5) # # vstack(h0,h1,h2,h3,h4,h5) |> PDF("/tmp/test_new.pdf", 35cm, 40cm) # # # fg1 = initfg() # loadDFG("/tmp/fix/lm2_1.tar.gz", Main, fg1) # # fg2 = initfg() # loadDFG("/tmp/fix/lm1_2.tar.gz", Main, fg2) # # fg3 = initfg() # loadDFG("/tmp/fix/lp2_3.tar.gz", Main, fg3) # # fg4 = initfg() # loadDFG("/tmp/fix/lp1_4.tar.gz", Main, fg4) # # fg5 = initfg() # loadDFG("/tmp/fix/x1_5.tar.gz", Main, fg5) # # # fg6 = initfg() # loadDFG("/tmp/fix/lm2_6.tar.gz", Main, fg6) # # fg7 = initfg() # loadDFG("/tmp/fix/lm1_7.tar.gz", Main, fg7) # # fg8 = initfg() # loadDFG("/tmp/fix/lp2_8.tar.gz", Main, fg8) # # fg9 = initfg() # loadDFG("/tmp/fix/lp1_9.tar.gz", Main, fg9) # # fg10 = initfg() # loadDFG("/tmp/fix/x1_10.tar.gz", Main, fg10) # # fg11 = initfg() # loadDFG("/tmp/fix/lm2_11.tar.gz", Main, fg11) # # fg12 = initfg() # loadDFG("/tmp/fix/lm1_12.tar.gz", Main, fg12) # # fg13 = initfg() # loadDFG("/tmp/fix/lp2_13.tar.gz", Main, fg13) # # fg14 = initfg() # loadDFG("/tmp/fix/lp1_14.tar.gz", Main, fg14) # # fg15 = initfg() # loadDFG("/tmp/fix/x1_15.tar.gz", Main, fg15) # # # h1 = hstack(plotKDE(fg1,:lm2),plotKDE(fg2,:lm1),plotKDE(fg3,:lp2),plotKDE(fg4,:lp1),plotKDE(fg5,:x1)) # # h2 = hstack(plotKDE(fg6,:lm2),plotKDE(fg7,:lm1),plotKDE(fg8,:lp2),plotKDE(fg9,:lp1),plotKDE(fg10,:x1)) # # h3 = hstack(plotKDE(fg11,:lm2),plotKDE(fg12,:lm1),plotKDE(fg13,:lp2),plotKDE(fg14,:lp1),plotKDE(fg15,:x1)) # # # vstack(h1,h2,h3) |> PDF("/tmp/test_new_fail.pdf",35cm,30cm) # # #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
204
using Test using Distributed addprocs(2) using IncrementalInference @everywhere using IncrementalInference @testset "test multiprocess solveTree!" begin fg = generateGraph_Kaess() solveTree!(fg) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
995
# development testing for multithreaded convolution using IncrementalInference using Test using TensorCast ## @testset "Basic ContinuousScalar example to ensure multithreaded convolutions work..." begin ## @show Threads.nthreads() N = 100 # Start with an empty factor graph fg = initfg() # add the first node addVariable!(fg, :x0, ContinuousScalar, N=N) # this is unary (prior) factor and does not immediately trigger autoinit of :x0. addFactor!(fg, [:x0], Prior(Normal(0,1))) addVariable!(fg, :x1, ContinuousScalar, N=N) # P(Z | :x1 - :x0 ) where Z ~ Normal(10,1) @warn "threadmodel=MultiThreaded is obsolete. Look at IIF.CalcFactor alternatives instead" addFactor!(fg, [:x0, :x1], LinearRelative(Normal(10.0,1)) ) #, threadmodel=MultiThreaded) @error "Factor threadmodel=MultiThreaded equivalence restoration TBD" @test begin pts_ = approxConv(fg, :x0x1f1, :x1, N=N) @cast pts[i,j] := pts_[j][i] @test 0.95*N <= sum(abs.(pts .- 10.0) .< 5.0) true end ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
4052
# test serialization of distributions using IncrementalInference using Test ## @testset "Packing Categorical" begin ## ctg = Categorical(5) packed = packDistribution(ctg) @test packed isa PackedSamplableBelief @test packed isa IncrementalInference.PackedCategorical upck = unpackDistribution(packed) @test upck isa Categorical @test isapprox(ctg, upck) ## end @testset "Packing Normal" begin ## nor = Normal() packed = packDistribution(nor) @test packed isa PackedSamplableBelief @test packed isa PackedNormal upck = unpackDistribution(packed) @test upck isa Normal @test isapprox(nor, upck) ## end @testset "Packing for FullNormal" begin ## mv = MvNormal([0.0;1.0], [1 0.1; 0.1 1]) packed = packDistribution(mv) @test packed isa PackedSamplableBelief @test packed isa PackedFullNormal upck = unpackDistribution(packed) @test upck isa FullNormal @test isapprox(mv, upck) ## end @testset "Packing for DiagNormal" begin ## mv = MvNormal([0.0; 1.0], [4.0; 4.0]) packed = packDistribution(mv) @test packed isa PackedSamplableBelief @test packed isa PackedDiagNormal upck = unpackDistribution(packed) @test upck isa DiagNormal @test isapprox(mv, upck) ## end @testset "Packing for ZeroMeanFullNormal" begin ## mv = MvNormal([1 0.1; 0.1 1]) packed = packDistribution(mv) @test packed isa PackedSamplableBelief @test packed isa PackedZeroMeanFullNormal upck = unpackDistribution(packed) @test upck isa ZeroMeanFullNormal @test isapprox(mv, upck) ## end @testset "Packing for ZeroMeanDiagNormal" begin ## mv = MvNormal([4.0;4.0]) packed = packDistribution(mv) @test packed isa PackedSamplableBelief @test packed isa PackedZeroMeanDiagNormal upck = unpackDistribution(packed) @test upck isa ZeroMeanDiagNormal @test isapprox( mv.Σ.diag, upck.Σ.diag ) # @test isapprox(mv, upck) ## end @testset "Packing for AliasingScalarSampler" begin ## bss = AliasingScalarSampler([1.0;2.0], [0.6;0.4]) packed = packDistribution(bss) @test packed isa PackedSamplableBelief @test packed isa IncrementalInference.PackedAliasingScalarSampler upck = unpackDistribution(packed) @test upck isa AliasingScalarSampler @test isapprox( bss.domain, upck.domain ) @test isapprox( bss.weights.values, upck.weights.values ) @test isapprox( bss.weights.sum, upck.weights.sum ) ## end @testset "Packing for ManifoldKernelDensity" begin ## T = ContinuousEuclid{2} pts = [randn(2) for _ in 1:50] mkd = manikde!(T, pts) packed = packDistribution(mkd) @test packed isa PackedSamplableBelief @test packed isa IncrementalInference.PackedManifoldKernelDensity upck = unpackDistribution(packed) @test upck isa ManifoldKernelDensity @test isapprox(mkd, upck) ## end @testset "Packing of Rayleigh" begin ## r = Rayleigh(1.1) r_ = packDistribution(r) @test r_ isa PackedSamplableBelief @test r_ isa PackedRayleigh r__ = unpackDistribution(r_) @test r__ isa Rayleigh @test isapprox(r.σ, r__.σ) ## end ## Legacy tests # @testset "hard-coded test of PackedPrior to Prior" begin # ## # pt = PackedPrior("KDE:100:[1.5015]:[-98.8276 -101.803 -98.1296 -96.1897 -99.3076 -99.1881 -101.721 -101.332 -100.431 -97.7293 -96.7652 -99.3806 -95.5593 -104.237 -94.9318 -101.691 -102.255 -98.9559 -99.3386 -99.2361 -102.483 -102.896 -97.0244 -98.9643 -99.4457 -101.298 -103.263 -2.75251 5.14065 0.327863 3.60042 -0.604114 -0.0564047 -0.804898 3.05469 1.4974 1.34657 2.22745 4.78117 1.89485 -0.48091 6.63068 0.63013 -3.11422 1.73705 5.22904 -1.73223 2.47453 1.10584 -0.0179944 3.65585 4.50016 -1.95042 98.2664 98.9983 103.748 100.789 98.4127 101.397 104.364 102.125 96.3685 103.59 99.0581 100.913 101.461 105.211 103.513 99.3325 101.201 98.05 103.508 99.9785 104.624 100.202 100.258 101.579 96.6931 95.4181 299.02 296.804 301.322 298.127 299.578 298.36 296.339 300.156 299.641 297.731 299.822 296.941 295.857 299.482 302.531 301.875 302.192 301.999 300.634 294.084 300.44]") # tt = convert(BallTreeDensity, pt.Z) # @test isa(tt, BallTreeDensity) # F = Prior # upt = convert(F, pt) # @test isa(upt, Prior) # ## TODO add more tests # end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
668
using IncrementalInference using DistributedFactorGraphs using JSON3 ## @testset "Test packing of mixture of distributions, 1498" begin ## # Start with an empty factor graph fg = initfg() # add the first node addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) mmo = Mixture(LinearRelative, (hypo1=Rayleigh(3), hypo2=Uniform(30,55)), [0.4; 0.6]) addFactor!(fg, [:x0, :x1], mmo) ## pf = packFactor(getFactor(fg, :x0x1f1)) ## pf_ = JSON3.write(pf) ## saveDFG("/tmp/caesar/test_mixture.tar.gz", fg) fg_ = loadDFG("/tmp/caesar/test_mixture.tar.gz") Base.rm("/tmp/caesar/test_mixture.tar.gz") ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
464
# test aspects specific to partial factors using IncrementalInference using Test @testset "testing basic partial factor functions..." begin fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addFactor!(fg, [:x0], Prior(Normal()) ) fc = getFactor(fg, :x0f1) @test !isPartial(fc) fg = initfg() addVariable!(fg, :x1, ContinuousEuclid{2}) addFactor!(fg, [:x1], PartialPrior(ContinuousEuclid{2},Normal(), (1,)) ) @test isPartial(getFactor(fg, :x1f1)) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1909
# test nullhypo with n-dim partial using Test using IncrementalInference ## @testset "test n-dimensional partial" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousEuclid{3}) addFactor!(fg, [:x0;], PartialPrior(ContinuousEuclid{3}, MvNormal(zeros(2), ones(2)), (2,3)) ) addVariable!(fg, :x1, ContinuousEuclid{3}) addFactor!(fg, [:x1;], PartialPrior(ContinuousEuclid{3}, Normal(10,1),(1,))) addFactor!(fg, [:x0; :x1], LinearRelative(MvNormal([10;0;0.0], ones(3))) ) ## initAll!(fg) ## destlbl = :x0 dens = Vector{ManifoldKernelDensity}() factors = getFactor.(fg, ls(fg, destlbl)) inferdim = IIF.proposalbeliefs!(fg, destlbl, factors, dens ) oldBel = getBelief(fg, destlbl) oldpts = getPoints(oldBel) varType = getVariableType(fg, destlbl) pGM = getPoints( AMP.manifoldProduct(dens, getManifold(varType), N=100, oldPoints=oldpts), false ) # pGM = AMP.productbelief(oldpts, getManifold(varType), dens, 100, asPartial=false ) ## densPts, inferdim = propagateBelief(fg, :x0, :, needFreshMeasurements=true ) ## solveTree!(fg); ## @warn "WIP on testPartialNH.jl during transition to Manifolds.jl" @test isapprox( getPPE(fg, :x0).suggested, [0;0;0], atol=1) @test isapprox( getPPE(fg, :x1).suggested, [10;0;0], atol=1) ## end @testset "test n-dimensional partial with nullhypo" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousEuclid{3}) addFactor!(fg, [:x0;], PartialPrior(ContinuousEuclid{3}, MvNormal(zeros(2), ones(2)),(2,3)) , nullhypo=0.2) addVariable!(fg, :x1, ContinuousEuclid{3}) addFactor!(fg, [:x1;], PartialPrior(ContinuousEuclid{3}, Normal(10,1),(1,))) addFactor!(fg, [:x0; :x1], LinearRelative(MvNormal([10;0;0.0], ones(3))) , nullhypo=0.2) ## solveTree!(fg); ## @warn "WIP testPartialNH.jl during transition to Manifolds.jl" @test isapprox( getPPE(fg, :x0).suggested, [0;0;0], atol=1) @test isapprox( getPPE(fg, :x1).suggested, [10;0;0], atol=2) ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1611
using Test using IncrementalInference using Manifolds using DistributedFactorGraphs import IncrementalInference: getSample, getManifold ## mutable struct PartialDim2{T} <: AbstractPrior Z::T partial::Tuple{Int} end PartialDim2(Z::D) where {D <: IIF.SamplableBelief} = PartialDim2(Z, (2,)) getManifold(pd::PartialDim2) = getManifoldPartial(TranslationGroup(2), [pd.partial...])[1] getSample(cfo::CalcFactor{<:PartialDim2}) = [rand(cfo.factor.Z);] ## @testset "Test partial dimensions on prior are correct" begin ## fg = initfg() v0 = addVariable!(fg, :x0, ContinuousEuclid{2}) f0 = addFactor!(fg, [:x0], PartialDim2(Normal())) @test IIF._getDimensionsPartial(f0) == [2] bel, infd = propagateBelief(fg, v0, [f0;]) @test isPartial(bel) ## dens = Vector{ManifoldKernelDensity}() IIF.proposalbeliefs!(fg, :x0, [f0], dens) pts = getPoints(dens[1], false) ## propagateBelief(fg, :x0, [:x0f1;]) @test true ## end @testset "test propagateBelief returning a partial" begin ## fg = initfg() v0 = addVariable!(fg, :x0, ContinuousEuclid{2}) pts = [randn(1) for _ in 1:1000]; mkd = manikde!(TranslationGroup(1), pts, bw=[0.1;]) pp = PartialPrior(ContinuousEuclid{2}, mkd, (2,)) f0 = addFactor!(fg, [:x0;], pp, graphinit=false) ## bel, infd = propagateBelief(fg, v0, [f0;]) @test isPartial(bel) ## doautoinit!(fg, :x0) # check the number of points in the graph value store @show getSolverParams(fg).N @test length(getPoints(getBelief(fg, :x0))) == getSolverParams(fg).N @info "PassThrough factors currently work different and will pass the full N=1000 count through to the graph." ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2623
# test for conv and product repeatability using Test using Statistics using IncrementalInference ## @testset "forward backward convolutions and products sequence" begin fg = initfg() addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addVariable!(fg, :c, ContinuousScalar) addVariable!(fg, :d, ContinuousScalar) addVariable!(fg, :e, ContinuousScalar) addFactor!(fg, [:a], Prior(Normal())) addFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1))) addFactor!(fg, [:b;:c], LinearRelative(Normal(10, 1))) addFactor!(fg, [:c;:d], LinearRelative(Normal(10, 1))) addFactor!(fg, [:d;:e], LinearRelative(Normal(10, 1))) initAll!(fg) tree = solveTree!(fg) @test (Statistics.mean(getPoints(getBelief(fg, :a)))- 0 |> abs) < 3 @test (Statistics.mean(getPoints(getBelief(fg, :b)))-10 |> abs) < 4 @test (Statistics.mean(getPoints(getBelief(fg, :c)))-20 |> abs) < 4 @test (Statistics.mean(getPoints(getBelief(fg, :d)))-30 |> abs) < 5 @test (Statistics.mean(getPoints(getBelief(fg, :e)))-40 |> abs) < 5 @test 0.3 < Statistics.std(getPoints(getBelief(fg, :a))) < 2 @test 0.5 < Statistics.std(getPoints(getBelief(fg, :b))) < 4 @test 0.9 < Statistics.std(getPoints(getBelief(fg, :c))) < 6 @test 1.2 < Statistics.std(getPoints(getBelief(fg, :d))) < 7 @test 1.5 < Statistics.std(getPoints(getBelief(fg, :e))) < 8 # drawTree(tree, show=true) # using RoMEPlotting # plotKDE(fg, ls(fg)) # spyCliqMat(tree, :b) end @testset "Basic back and forth convolution over LinearRelative should spread" begin fg = initfg() addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1)), graphinit=false) initVariable!(fg, :a, randn(1,100)) initVariable!(fg, :b, 10 .+randn(1,100)) A = getBelief(fg, :a) B = getBelief(fg, :b) # plotKDE(fg, [:a; :b]) # repeat many times to ensure the means stay put and covariances spread out for i in 1:10 pts = approxConv(fg, :abf1, :b) B_ = manikde!(ContinuousScalar, pts) # plotKDE([B_; B]) initVariable!(fg, :b, B_) pts = approxConv(fg, :abf1, :a) A_ = manikde!(ContinuousScalar, pts) # plotKDE([A_; A]) initVariable!(fg, :a, A_) end A_ = getBelief(fg, :a) B_ = getBelief(fg, :b) # plotKDE([A_; B_; A; B]) @test (Statistics.mean(getPoints(A)) |> abs) < 1 @test (Statistics.mean(getPoints(A_))|> abs) < 2 @test (Statistics.mean(getPoints(B)) -10 |> abs) < 1 @test (Statistics.mean(getPoints(B_))-10 |> abs) < 2 @test Statistics.std(getPoints(A)) < 2 @test 3 < Statistics.std(getPoints(A_)) @test Statistics.std(getPoints(B)) < 2 @test 3 < Statistics.std(getPoints(B_)) ## end ##
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2155
using IncrementalInference using Test ## @testset "saving to and loading from FileDFG" begin ## fg = generateGraph_Kaess() addVariable!(fg, :x4, ContinuousScalar) addFactor!(fg, [:x2;:x3;:x4], LinearRelative(Normal()), multihypo=[1.0;0.6;0.4]) saveFolder = "/tmp/dfg_test" saveDFG(fg, saveFolder) retDFG = initfg() retDFG = loadDFG!(retDFG, saveFolder) Base.rm(saveFolder*".tar.gz") @test symdiff(ls(fg), ls(retDFG)) == [] @test symdiff(lsf(fg), lsf(retDFG)) == [] @show getFactor(fg, :x2x3x4f1).solverData.multihypo @show getFactor(retDFG, :x2x3x4f1).solverData.multihypo # check for match @test getFactor(fg, :x2x3x4f1).solverData.multihypo - getFactor(retDFG, :x2x3x4f1).solverData.multihypo |> norm < 1e-10 @test getFactor(fg, :x2x3x4f1).solverData.certainhypo - getFactor(retDFG, :x2x3x4f1).solverData.certainhypo |> norm < 1e-10 ## end @testset "saving to and loading from FileDFG with nullhypo, eliminated, solveInProgress" begin ## fg = generateGraph_Kaess() getSolverParams(fg).attemptGradients = true addVariable!(fg, :x4, ContinuousScalar) addFactor!(fg, [:x2;:x3;:x4], LinearRelative(Normal()), multihypo=[1.0;0.6;0.4]) addFactor!(fg, [:x1;], Prior(Normal(10,1)), nullhypo=0.5) solveTree!(fg) #manually change a few fields to test if they are preserved fa = getFactor(fg, :x2x3x4f1) fa.solverData.eliminated = true fa.solverData.solveInProgress = 1 fa.solverData.nullhypo = 0.5 saveFolder = "/tmp/dfg_test" saveDFG(fg, saveFolder) retDFG = initfg() getSolverParams(retDFG).attemptGradients = true loadDFG!(retDFG, saveFolder) Base.rm(saveFolder*".tar.gz") @test issetequal(ls(fg), ls(retDFG)) @test issetequal(lsf(fg), lsf(retDFG)) @show getFactor(fg, :x2x3x4f1).solverData.multihypo @show getFactor(retDFG, :x2x3x4f1).solverData.multihypo # check for match @test isapprox(getFactor(fg, :x2x3x4f1).solverData.multihypo, getFactor(retDFG, :x2x3x4f1).solverData.multihypo) @test isapprox(getFactor(fg, :x2x3x4f1).solverData.certainhypo, getFactor(retDFG, :x2x3x4f1).solverData.certainhypo) fb = getFactor(retDFG, :x2x3x4f1) @test fa == fb fa = getFactor(fg, :x1f2) fb = getFactor(retDFG, :x1f2) @test fa == fb ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1588
using Test using IncrementalInference @testset "Skip downsolve" begin N=6 fg = generateGraph_LineStep(N; graphinit=false, poseEvery=1, landmarkEvery=N+1, posePriorsAt=[0], landmarkPriorsAt=[], sightDistance=N+1) deleteFactor!.(fg, [Symbol("x$(i)lm0f1") for i=1:(N-1)]) getSolverParams(fg).useMsgLikelihoods = true getSolverParams(fg).downsolve = false smtasks = Task[] tree = solveTree!(fg; smtasks=smtasks, recordcliqs=[:x4]); hists = fetchCliqHistoryAll!(smtasks) # See if downsolve was called @test !(IIF.solveDown_StateMachine in getindex.(hists[2], 3)) #test if values are still correct for var in sortDFG(ls(fg)) sppe = getVariable(fg,var) |> getPPE |> IIF.getPPESuggested @test isapprox(sppe[1], parse(Int,string(var)[end]), atol=0.2) end #now downsolve only getSolverParams(fg).upsolve = false getSolverParams(fg).downsolve = true smtasks = Task[] tree = solveTree!(fg; smtasks=smtasks, recordcliqs=[:x4]); hists = fetchCliqHistoryAll!(smtasks); # See if upsolved was called @test !(IIF.solveUp_StateMachine in getindex.(hists[2], 3)) #test if values are still correct for var in sortDFG(ls(fg)) sppe = getVariable(fg,var) |> getPPE |> IIF.getPPESuggested @test isapprox(sppe[1], parse(Int,string(var)[end]), atol=0.2) end # recycled downsolve only tree = solveTree!(fg, tree; smtasks=smtasks, recordcliqs=[:x4]); @test !(IIF.solveUp_StateMachine in getindex.(hists[2], 3)) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2883
using Test using IncrementalInference ## @testset "Basic test of belief prediction on alternate solveKey" begin ## fg = initfg() addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addFactor!(fg, [:a], Prior(Normal(10,1)), graphinit=false) addFactor!(fg, [:a;:b], LinearRelative(Normal(10,1)), graphinit=false) deleteVariableSolverData!(fg, :a, :default) deleteVariableSolverData!(fg, :b, :default) ## pts = sampleFactor(fg, :af1, 100) IIF.setDefaultNodeData!(getVariable(fg, :a), 0, 100, 1, solveKey=:testSolveKey, initialized=false, varType=ContinuousScalar(), dontmargin=false) # initVariable!(fg, :a, pts, :testSolveKey) @test !isInitialized(fg, :a) @test isInitialized(fg, :a, :testSolveKey) ## IIF.setDefaultNodeData!(getVariable(fg, :b), 0, 100, 1, solveKey=:testSolveKey, initialized=false, varType=ContinuousScalar(), dontmargin=false) # @test !(:default in listSolveKeys(getVariable(fg, :a))) @test !(:default in listSolveKeys(getVariable(fg, :b))) @test (:testSolveKey in listSolveKeys(getVariable(fg, :a))) @test (:testSolveKey in listSolveKeys(getVariable(fg, :b))) ## doautoinit!(fg, :b, solveKey=:testSolveKey) ## @test !(:default in listSolveKeys(getVariable(fg, :a))) @test !(:default in listSolveKeys(getVariable(fg, :b))) @test (:testSolveKey in listSolveKeys(getVariable(fg, :a))) @test (:testSolveKey in listSolveKeys(getVariable(fg, :b))) ## @test isapprox( calcPPE(fg, :a, solveKey=:testSolveKey).suggested[1], 10, atol=1) @test isapprox( calcPPE(fg, :b, solveKey=:testSolveKey).suggested[1], 20, atol=1) ## end @testset "test solve with unique solveKey, see #1219" begin ## fg = initfg() getSolverParams(fg).graphinit=false addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addVariable!(fg, :c, ContinuousScalar) addVariable!(fg, :d, ContinuousScalar) addVariable!(fg, :e, ContinuousScalar) addFactor!(fg, [:a], Prior(Normal())) addFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1))) addFactor!(fg, [:b;:c], LinearRelative(Normal(10, 1))) addFactor!(fg, [:c;:d], LinearRelative(Normal(10, 1))) addFactor!(fg, [:d;:e], LinearRelative(Normal(10, 1))) getSolverParams(fg).graphinit=true ## # getSolverParams(fg).limititers=30 solveTree!(fg, solveKey=:testSolveKey ) ## @test isapprox( calcPPE(fg, :a, solveKey=:testSolveKey).suggested[1], 0, atol=2) @test isapprox( calcPPE(fg, :b, solveKey=:testSolveKey).suggested[1], 10, atol=2) @test isapprox( calcPPE(fg, :c, solveKey=:testSolveKey).suggested[1], 20, atol=2) @test isapprox( calcPPE(fg, :d, solveKey=:testSolveKey).suggested[1], 30, atol=2) @test isapprox( calcPPE(fg, :e, solveKey=:testSolveKey).suggested[1], 40, atol=2) ## # using RoMEPlotting # Gadfly.set_default_plot_size(35cm,25cm) # ## # plotKDE(fg, ls(fg), solveKey=:testSolveKey) ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2226
# test forest of graphs can solve with CSM, specifically #518 using IncrementalInference using Statistics using Test using TensorCast @testset "Test forest of orphaned graphs" begin fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addFactor!(fg, [:x0;], Prior(Normal(0,0.1))) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0;:x1], LinearRelative(Normal(10,0.1))) addVariable!(fg, :x2, ContinuousScalar) addFactor!(fg, [:x1;:x2], LinearRelative(Normal(10,0.1))) addVariable!(fg, :x10, ContinuousScalar) addFactor!(fg, [:x10;], Prior(Normal())) addVariable!(fg, :x11, ContinuousScalar) addFactor!(fg, [:x10;:x11], LinearRelative(Normal(-10,1.0))) addVariable!(fg, :x12, ContinuousScalar) addFactor!(fg, [:x11;:x12], LinearRelative(Normal(-10,1.0))) # plotDFG(fg) # getSolverParams(fg).drawtree = true # getSolverParams(fg).showtree = true # solve factor graph with two orphaned components vo = Symbol[:x12, :x2, :x0, :x11, :x1, :x10] tree = solveTree!(fg, eliminationOrder=vo) # test tree will have two different root nodes @test getEliminationOrder(tree) == vo @test getParent(tree, getClique(tree, :x1)) |> length == 0 @test getParent(tree, getClique(tree, :x10)) |> length == 0 @test getChildren(tree, getClique(tree, :x1)) |> length == 1 @test getChildren(tree, getClique(tree, :x10)) |> length == 1 @test getChildren(tree, getClique(tree, :x2)) |> length == 0 @test getChildren(tree, getClique(tree, :x12)) |> length == 0 ## Test the numerical values are correct pts_ = getBelief(fg, :x0) |> getPoints @cast pts[i,j] := pts_[j][i] @test pts |> mean |> abs < 1.0 pts_ = getBelief(fg, :x1) |> getPoints @cast pts[i,j] := pts_[j][i] @test (pts |> mean) - 10 |> abs < 2.0 pts_ = getBelief(fg, :x2) |> getPoints @cast pts[i,j] := pts_[j][i] @test (pts |> mean) - 20 |> abs < 3.0 pts_ = getBelief(fg, :x10) |> getPoints @cast pts[i,j] := pts_[j][i] @test pts |> mean |> abs < 2.0 pts_ = getBelief(fg, :x11) |> getPoints @cast pts[i,j] := pts_[j][i] @test (pts |> mean) + 10 |> abs < 4.0 pts_ = getBelief(fg, :x12) |> getPoints @cast pts[i,j] := pts_[j][i] @test (pts |> mean) + 20 |> abs < 5.0 # using RoMEPlotting # Gadfly.set_default_plot_size(35cm, 25cm) # # plotKDE(fg, ls(fg)) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1330
# test that PPE values are update with solve, see issue #548 using Test using IncrementalInference using DistributedFactorGraphs @testset "test PPE update during solve" begin fg = generateGraph_Kaess(graphinit=true) initAll!(fg) # list of variables to check vars = listVariables(fg) # fetch values before solve before = Dict() for vs in vars before[vs] = getVariablePPE(getVariable(fg, vs)) |> getPPESuggested end # do the solve # getSolverParams(fg).dbg = true # tree = buildTreeReset!(fg) # drawTree(tree, show=true) # solveCliqUp!(fg, tree, :l2) # solveCliqUp!(fg, tree, :x3) # solveCliqUp!(fg, tree, :x2) solveTree!(fg) after = Dict() for vs in vars after[vs] = getVariablePPE(getVariable(fg, vs)) |> getPPESuggested end # before and after should be noticably different, because first inferred values have been found for vs in vars errd = norm(before[vs] - after[vs]) # @show vs, errd @test 1e-5 < errd end # force recalc and update each PPE force = Dict() for vs in vars setVariablePosteriorEstimates!(fg, vs) force[vs] = getVariablePPE(getVariable(fg, vs)) |> getPPESuggested # these need to be close to the same as after errd = norm(force[vs] - after[vs]) # @show vs, errd @test errd < 0.1 end ## suspect cliqSubFg updated, but not back to main dfg object... test via load graph end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
19305
using DistributedFactorGraphs using IncrementalInference using Interpolations using Manifolds using StaticArrays using Test import IncrementalInference: LevelSetGridNormal import Rotations as _Rot ## define new local variable types for testing @defVariable TranslationGroup2 TranslationGroup(2) @SVector[0.0, 0.0] @defVariable SpecialEuclidean2 SpecialEuclidean(2) ArrayPartition(@SVector([0.0,0.0]), @SMatrix([1.0 0.0; 0.0 1.0])) # @defVariable SpecialEuclidean2 SpecialEuclidean(2) ArrayPartition([0.0,0.0], [1.0 0.0; 0.0 1.0]) ## @testset "Test SpecialEuclidean(2)" begin ## M = getManifold(SpecialEuclidean2) @test M == SpecialEuclidean(2) pT = getPointType(SpecialEuclidean2) # @test pT == ArrayPartition{Float64,Tuple{Vector{Float64}, Matrix{Float64}}} # @test pT == ArrayPartition{Tuple{MVector{2, Float64}, MMatrix{2, 2, Float64, 4}}} @test pT == ArrayPartition{Float64, Tuple{SVector{2, Float64}, SMatrix{2, 2, Float64, 4}}} pϵ = getPointIdentity(SpecialEuclidean2) # @test_broken pϵ == ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])) @test all(isapprox.(pϵ,ArrayPartition(SA[0.0,0.0], SA[1.0 0.0; 0.0 1.0]))) @test is_point(getManifold(SpecialEuclidean2), getPointIdentity(SpecialEuclidean2)) ## fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal(Diagonal(abs2.([0.01, 0.01, 0.01])))) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition([0.0,0.0], [1.0 0.0; 0.0 1.]), MvNormal(Diagonal(abs2.([0.01, 0.01, 0.01])))) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(SA[0.0,0.0], SA[1.0 0.0; 0.0 1.]), MvNormal(Diagonal(abs2.(SA[0.01, 0.01, 0.01])))) p = addFactor!(fg, [:x0], mp) ## doautoinit!(fg, :x0) ## vnd = getVariableSolverData(fg, :x0) @test all(isapprox.(mean(vnd.val), ArrayPartition(SA[0.0,0.0], SA[1.0 0.0; 0.0 1.0]), atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) ## v1 = addVariable!(fg, :x1, SpecialEuclidean2) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal(SA[1,2,pi/4], SA[0.01,0.01,0.01])) f = addFactor!(fg, [:x0, :x1], mf) doautoinit!(fg, :x1) vnd = getVariableSolverData(fg, :x1) @test all(isapprox(M, mean(M,vnd.val), ArrayPartition(SA[1.0,2.0], SA[0.7071 -0.7071; 0.7071 0.7071]), atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) ## smtasks = Task[] solveTree!(fg; smtasks, verbose=true) #, recordcliqs=ls(fg)) # hists = fetchCliqHistoryAll!(smtasks); vnd = getVariableSolverData(fg, :x0) @test all(isapprox.(mean(vnd.val), ArrayPartition(SA[0.0,0.0], SA[1.0 0.0; 0.0 1.0]), atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) vnd = getVariableSolverData(fg, :x1) @test all(isapprox.(mean(vnd.val), ArrayPartition(SA[1.0,2.0], SA[0.7071 -0.7071; 0.7071 0.7071]), atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) v1 = addVariable!(fg, :x2, SpecialEuclidean2) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal(SA[1,2,pi/4], SA[0.01,0.01,0.01])) f = addFactor!(fg, [:x1, :x2], mf) ## #test new error from solvetree smtasks = Task[] result = solveTree!(fg; smtasks, verbose=true) @test result isa AbstractBayesTree ## test partial prior issue fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) mp = PartialPrior(SpecialEuclidean2,MvNormal([0.01, 0.01]), (1,2)) p = addFactor!(fg, [:x0], mp, graphinit=false) ## pbel_ = approxConvBelief(fg, :x0f1, :x0) @test isPartial(pbel_) @test pbel_._partial == [1;2] @test length(pbel_.infoPerCoord) == 3 ## end @testset "test initVariableManual! with Vector of Tuple inputs" begin ## fg = initfg() pts = [(randn(2), Matrix(_Rot.RotMatrix2(randn()))) for _ in 1:50] addVariable!(fg, :x0, SpecialEuclidean2) initVariable!(getVariable(fg, :x0), pts) @test isapprox( pts[1][1], getPoints(fg, :x0)[1].x[1]) @test isapprox( pts[1][2], getPoints(fg, :x0)[1].x[2]) # can delete upon deprecation of initVariable! and favor initVariable! initVariable!(getVariable(fg, :x0), reverse(pts)) @test isapprox( pts[end][1], getPoints(fg, :x0)[1].x[1]) @test isapprox( pts[end][2], getPoints(fg, :x0)[1].x[2]) ## end ## struct ManifoldFactorSE2{T <: SamplableBelief} <: IIF.AbstractManifoldMinimize Z::T end ManifoldFactorSE2() = ManifoldFactorSE2(MvNormal(Diagonal([1,1,1]))) DFG.getManifold(::ManifoldFactorSE2) = SpecialEuclidean(2) IIF.selectFactorType(::Type{<:SpecialEuclidean2}, ::Type{<:SpecialEuclidean2}) = ManifoldFactorSE2 function IIF.getSample(cf::CalcFactor{<:ManifoldFactorSE2}) M = cf.manifold # SpecialEuclidean(2) ϵ = getPointIdentity(M) X = sampleTangent(M, cf.factor.Z, ϵ) return X end function (cf::CalcFactor{<:ManifoldFactorSE2})(X, p, q) M = cf.manifold # SpecialEuclidean(2) q̂ = Manifolds.compose(M, p, exp(M, identity_element(M, p), X)) #for groups Xc = zeros(3) vee!(M, Xc, q, log(M, q, q̂)) return Xc end ## @testset "Test Pose2 like hex as SpecialEuclidean2" begin ## M = getManifold(SpecialEuclidean2) fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([10.0,10.0]), Matrix([-1.0 0.0; 0.0 -1.0])), MvNormal([0.1, 0.1, 0.01])) p = addFactor!(fg, [:x0], mp) ## for i in 0:5 psym = Symbol("x$i") nsym = Symbol("x$(i+1)") addVariable!(fg, nsym, SpecialEuclidean2) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([10.0,0,pi/3], [0.5,0.5,0.05])) f = addFactor!(fg, [psym;nsym], mf) end addVariable!(fg, :l1, SpecialEuclidean2, tags=[:LANDMARK;]) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([10.0,0,0], [0.1,0.1,0.01])) addFactor!(fg, [:x0; :l1], mf) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([10.0,0,0], [0.1,0.1,0.01])) addFactor!(fg, [:x6; :l1], mf) ## smtasks = Task[] solveTree!(fg; smtasks); vnd = getVariableSolverData(fg, :x0) @test isapprox(M, mean(M, vnd.val), ArrayPartition([10.0,10.0], [-1.0 0.0; 0.0 -1.0]), atol=0.2) vnd = getVariableSolverData(fg, :x1) @test isapprox(M, mean(M, vnd.val), ArrayPartition([0.0,10.0], [-0.5 0.866; -0.866 -0.5]), atol=0.4) vnd = getVariableSolverData(fg, :x6) @test isapprox(M, mean(M, vnd.val), ArrayPartition([10.0,10.0], [-1.0 0.0; 0.0 -1.0]), atol=0.5) ## Special test for manifold based messages #FIXME this may show some bug in propagateBelief caused by empty factors fg.solverParams.useMsgLikelihoods = true smtasks = Task[] result = solveTree!(fg; smtasks); #, recordcliqs=ls(fg)) @test result isa AbstractBayesTree ## end @testset "test deconv on <:AbstractManifoldMinimize" begin ## fg = initfg() getSolverParams(fg).useMsgLikelihoods = true addVariable!(fg, :x0, SpecialEuclidean2) addVariable!(fg, :x1, SpecialEuclidean2) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([10.0,10.0]), Matrix([-1.0 0.0; 0.0 -1.0])), MvNormal(diagm([0.1, 0.1, 0.01].^2))) p = addFactor!(fg, [:x0], mp) doautoinit!(fg,:x0) addFactor!(fg, [:x0;:x1], ManifoldFactorSE2(MvNormal([10.0,0,0.1], diagm([0.5,0.5,0.05].^2)))) initAll!(fg) # now check deconv pred, meas = approxDeconv(fg, :x0x1f1) @test mmd(SpecialEuclidean(2), pred, meas) < 1e-1 p_t = map(x->x.x[1], pred) m_t = map(x->x.x[1], meas) p_θ = map(x->x.x[2][2], pred) m_θ = map(x->x.x[2][2], meas) @test isapprox(mean(p_θ), 0.1, atol=0.02) @test isapprox(std(p_θ), 0.05, atol=0.02) @test isapprox(mean(p_t), [10,0], atol=0.3) @test isapprox(std(p_t), [0.5,0.5], atol=0.3) @test isapprox(mean(p_θ), mean(m_θ), atol=0.03) @test isapprox(std(p_θ), std(m_θ), atol=0.03) @test isapprox(mean(p_t), mean(m_t), atol=0.3) @test isapprox(std(p_t), std(m_t), atol=0.3) end ## ====================================================================================== ## ## ====================================================================================== struct ManiPose2Point2{T <: SamplableBelief} <: IIF.AbstractManifoldMinimize Z::T partial::Vector{Int} end function IIF.getSample(cf::CalcFactor{<:ManiPose2Point2}) return rand(cf.factor.Z) end DFG.getManifold(::ManiPose2Point2) = TranslationGroup(2) # define the conditional probability constraint function (cfo::CalcFactor{<:ManiPose2Point2})(measX, p, q) # M = SpecialEuclidean(2) q_SE = ArrayPartition(q, identity_element(SpecialOrthogonal(2), p.x[2])) X_se2 = log(M, identity_element(M, p), Manifolds.compose(M, inv(M, p), q_SE)) X = X_se2.x[1] # NOTE wrong for what we want X̂ = log(M, p, q_SE) return measX - X end ## @testset "Test SpecialEuclidean(2)" begin ## # Base.convert(::Type{<:Tuple}, M::TranslationGroup{Tuple{2},ℝ}) = (:Euclid, :Euclid) # Base.convert(::Type{<:Tuple}, ::IIF.InstanceType{TranslationGroup{Tuple{2},ℝ}}) = (:Euclid, :Euclid) ## fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) p = addFactor!(fg, [:x0], mp) ## v1 = addVariable!(fg, :x1, TranslationGroup2) mf = ManiPose2Point2(MvNormal([1,2], [0.01,0.01]), [1;2]) f = addFactor!(fg, [:x0, :x1], mf) doautoinit!(fg, :x1) vnd = getVariableSolverData(fg, :x1) @test all(isapprox.(mean(vnd.val), [1.0,2.0], atol=0.1)) ## smtasks = Task[] solveTree!(fg; smtasks, verbose=true, recordcliqs=ls(fg)) # # hists = fetchCliqHistoryAll!(smtasks); vnd = getVariableSolverData(fg, :x0) @test isapprox(mean(getManifold(fg,:x0),vnd.val), ArrayPartition([0.0,0.0], [1.0 0.0; 0.0 1.0]), atol=0.1) vnd = getVariableSolverData(fg, :x1) @test all(isapprox.(mean(vnd.val), [1.0,2.0], atol=0.1)) ## end @testset "test propagateBelief w HeatmapSampler and init for PartialPriorPassThrough w Priors" begin ## fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) img_ = rand(10,10).+5.0 x_,y_ = ([-9:2.0:9;],[-9:2.0:9;]) hmd = LevelSetGridNormal(img_, (x_,y_), 5.5, 0.1, N=120) pthru = PartialPriorPassThrough(hmd, (1,2)) @show hmd ## quick pf = convert( AbstractPackedFactor, pthru ) upf = convert( AbstractFactor, pf ) @test pthru.partial == upf.partial @test isapprox( pthru.Z.heatmap.data, upf.Z.heatmap.data ) @test isapprox( pthru.Z.heatmap.domain[1], upf.Z.heatmap.domain[1] ) @test isapprox( pthru.Z.heatmap.domain[2], upf.Z.heatmap.domain[2] ) @test isapprox( pthru.Z.level, upf.Z.level ) @test isapprox( pthru.Z.sigma, upf.Z.sigma ) @test isapprox( pthru.Z.sigma_scale, upf.Z.sigma_scale ) ## test without nullhyp f0 = addFactor!(fg, [:x0], pthru, graphinit=false) ## test the inference functions bel, infd = propagateBelief(fg, v0, [f0]) @test isPartial(bel) @test length(getPoints(bel)) == 120 ## repeat test with nullhypo fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) # test with nullhypo f0 = addFactor!(fg, [:x0], pthru, graphinit=false, nullhypo=0.2) ## test the inference functions bel, infd = propagateBelief(fg, v0, [f0]) @test isPartial(bel) ## doautoinit!(fg, :x0) @test length(getPoints(getBelief(fg, :x0))) == getSolverParams(fg).N # 120 # @info "PassThrough transfers the full point count to the graph, unless a product is calculated during the propagateBelief step." ## # @test_broken begin ## check the partials magic dens, ipc = propagateBelief(fg,:x0,:) testv = deepcopy(getVariable(fg, :x0)) setBelief!(testv, dens, true, ipc) ## smtasks = Task[] solveGraph!(fg; smtasks); # hists = fetchCliqHistoryAll!(smtasks) # printCSMHistoryLogical(hists) # hists_ = deepcopy(hists) # repeatCSMStep!(hists, 1, 6) @test_broken 120 == length(getPoints(fg, :x0)) @warn "must still check if bandwidths are recalculated on many points (not necessary), or lifted from this case single prior" ## mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01],[1 0 0;0 1 0;0 0 1.])) f1 = addFactor!(fg, [:x0], mp, graphinit=false) @test length(ls(fg, :x0)) == 2 ## prp, infd = propagateBelief(fg, v0, [f0;f1]) @test length(getPoints(prp)) == getSolverParams(fg).N ## check that solve corrects the point count on graph variable @test_broken 120 == length(getPoints(fg, :x0)) solveGraph!(fg); # this number should drop down to usual, 100 at time of writing @test getSolverParams(fg).N == length(getPoints(fg, :x0)) ## check saveDFG (check consistency of packing converters above) @error "Whats going on in PackedManifoldPrior, skipping tests" @test_broken begin saveDFG(joinpath(tempdir(),"passthru"), fg) fg_ = loadDFG(joinpath(tempdir(),"passthru.tar.gz")) Base.rm(joinpath(tempdir(),"passthru.tar.gz")) end # @error "#FIXME test propagateBelief w HeatmapSampler ... broken on ci but not local" # return true # end ## end @testset "test point count on propagate, solve, init for PartialPriorPassThrough w Relative" begin ## fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) img_ = rand(10,10).+5.0 x_,y_ = ([-9:2.0:9;],[-9:2.0:9;]) hmd = LevelSetGridNormal(img_, (x_,y_), 5.5, 0.1, N=120) pthru = PartialPriorPassThrough(hmd, (1,2)) # test without nullhyp f0 = addFactor!(fg, [:x0], pthru, graphinit=false) ## test the inference functions addVariable!(fg, :x1, SpecialEuclidean2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) f1 = addFactor!(fg, [:x1], mp, graphinit=false) doautoinit!(fg, :x1) ## connect with relative and check calculation size on x0 mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([1,2,pi/4], [0.01,0.01,0.01])) f2 = addFactor!(fg, [:x0, :x1], mf, graphinit=false) ## bel, infd = propagateBelief(fg, v0, [f0;f2]) @test !isPartial(bel) @test getSolverParams(fg).N == length(getPoints(bel)) ## check other functions solveTree!(fg); @test getSolverParams(fg).N == length(getPoints(fg, :x0)) @test getSolverParams(fg).N == length(getPoints(fg, :x1)) ## and check that initAll! works the same (different init sequences may change code execution path) fg = initfg() v0 = addVariable!(fg, :x0, SpecialEuclidean2) img_ = rand(10,10).+5.0 x_,y_ = ([-9:2.0:9;],[-9:2.0:9;]) hmd = LevelSetGridNormal(img_, (x_,y_), 5.5, 0.1, N=120) pthru = PartialPriorPassThrough(hmd, (1,2)) f0 = addFactor!(fg, [:x0], pthru, graphinit=false) addVariable!(fg, :x1, SpecialEuclidean2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) f1 = addFactor!(fg, [:x1], mp, graphinit=false) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([1,2,pi/4], [0.01,0.01,0.01])) f2 = addFactor!(fg, [:x0, :x1], mf, graphinit=false) ## bel, infd = propagateBelief(fg, v0, [f0;f2]) @test !isPartial(bel) @test getSolverParams(fg).N == length(getPoints(bel)) ## initAll!(fg) @test getSolverParams(fg).N == length(getPoints(fg, :x0)) @test getSolverParams(fg).N == length(getPoints(fg, :x1)) ## end @testset "Test SpecialEuclidean(2) to TranslationGroup(2) multihypo" begin ## fg = initfg() # fg.solverParams.attemptGradients=false v0 = addVariable!(fg, :x0, SpecialEuclidean2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) p = addFactor!(fg, [:x0], mp) ## addVariable!(fg, :x1a, TranslationGroup2) addVariable!(fg, :x1b, TranslationGroup2) mf = ManiPose2Point2(MvNormal([1,2], [0.01,0.01]), [1;2]) f = addFactor!(fg, [:x0, :x1a, :x1b], mf; multihypo=[1,0.5,0.5]) solveTree!(fg) vnd = getVariableSolverData(fg, :x0) @test isapprox(SpecialEuclidean(2), mean(SpecialEuclidean(2), vnd.val), ArrayPartition([0.0,0.0], [1.0 0; 0 1]), atol=0.1) #FIXME I would expect close to 50% of particles to land on the correct place # Currently software works so that 33% should land there so testing 20 for now pnt = getPoints(fg, :x1a) @test sum(isapprox.(pnt, Ref([1.0,2.0]), atol=0.1)) > 15 #FIXME I would expect close to 50% of particles to land on the correct place pnt = getPoints(fg, :x1b) @test sum(isapprox.(pnt, Ref([1.0,2.0]), atol=0.1)) > 15 ## other way around fg = initfg() fg.solverParams.attemptGradients=false addVariable!(fg, :x0, SpecialEuclidean2) addVariable!(fg, :x1a, TranslationGroup2) addVariable!(fg, :x1b, TranslationGroup2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([10, 10, 0.01])) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal(zeros(3),diagm([10, 10, 0.01]))) p = addFactor!(fg, [:x0], mp) mp = ManifoldPrior(TranslationGroup(2), [1.,0], MvNormal([0.01, 0.01])) p = addFactor!(fg, [:x1a], mp) mp = ManifoldPrior(TranslationGroup(2), [-1.,0], MvNormal([0.01, 0.01])) p = addFactor!(fg, [:x1b], mp) mf = ManiPose2Point2(MvNormal([0., 1], [0.01,0.01]), [1;2]) f = addFactor!(fg, [:x0, :x1a, :x1b], mf; multihypo=[1,0.5,0.5]) solveTree!(fg) pnts = getPoints(fg, :x0) # c = getCoordinates.(SpecialEuclidean2, pnts) # @cast p[i,j] := c[i][j] # scatter(p[:,1], p[:,2]) #FIXME @error "Invalid multihypo test" if false # FIXME ManiPose2Point2 factor mean [1.,0] cannot go "backwards" from [0,0] to [-1,0] with covariance 0.01 -- wholly inconsistent test design @test 10 < sum(isapprox.(Ref(SpecialEuclidean(2)), pnts, Ref(ArrayPartition([-1.0,0.0], [1.0 0; 0 1])), atol=0.5)) @test 10 < sum(isapprox.(Ref(SpecialEuclidean(2)), pnts, Ref(ArrayPartition([1.0,0.0], [1.0 0; 0 1])), atol=0.5)) end ## end @testset "Test SpecialEuclidean(2) to SpecialEuclidean(2) multihypo" begin ## fg = initfg() # fg.solverParams.attemptGradients=false v0 = addVariable!(fg, :x0, SpecialEuclidean2) # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(Vector([0.0,0.0]), Matrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01])) p = addFactor!(fg, [:x0], mp) ## addVariable!(fg, :x1a, SpecialEuclidean2) addVariable!(fg, :x1b, SpecialEuclidean2) mf = ManifoldFactor(SpecialEuclidean(2), MvNormal([1,2,pi/4], [0.01,0.01,0.01])) f = addFactor!(fg, [:x0, :x1a, :x1b], mf; multihypo=[1,0.5,0.5]) solveTree!(fg) vnd = getVariableSolverData(fg, :x0) @test isapprox(SpecialEuclidean(2), mean(SpecialEuclidean(2), vnd.val), ArrayPartition([0.0,0.0], [1.0 0; 0 1]), atol=0.1) #FIXME I would expect close to 50% of particles to land on the correct place # Currently software works so that 33% should land there so testing 20 for now pnt = getPoints(fg, :x1a) @test sum(isapprox.(Ref(SpecialEuclidean(2)), pnt, Ref(ArrayPartition([1.0,2.0], [0.7071 -0.7071; 0.7071 0.7071])), atol=0.1)) > 20 #FIXME I would expect close to 50% of particles to land on the correct place pnt = getPoints(fg, :x1b) @test sum(isapprox.(Ref(SpecialEuclidean(2)), pnt, Ref(ArrayPartition([1.0,2.0], [0.7071 -0.7071; 0.7071 0.7071])), atol=0.1)) > 20 ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
4181
using DistributedFactorGraphs using IncrementalInference using LineSearches using Manifolds using StaticArrays using Test ## @testset "Test SpecialOrthogonal(2) prior" begin ## # see AMP v0.7.1+ # Base.convert(::Type{<:Tuple}, M::SpecialOrthogonal{2}) = (:Circular,) # Base.convert(::Type{<:Tuple}, ::IIF.InstanceType{SpecialOrthogonal{2}}) = (:Circular,) # Base.convert(::Type{<:Tuple}, ::Type{SpecialOrthogonal{2}}) = (:Circular,) # @defVariable SpecialOrthogonal2 SpecialOrthogonal(2) @MMatrix([1.0 0.0; 0.0 1.0]) @defVariable SpecialOrthogonal2 SpecialOrthogonal(2) SMatrix{2,2}(1.0, 0.0, 0.0, 1.0) M = getManifold(SpecialOrthogonal2) @test M == SpecialOrthogonal(2) pT = getPointType(SpecialOrthogonal2) # @test pT == MMatrix{2, 2, Float64, 4} @test pT == SMatrix{2,2,Float64,4} pϵ = getPointIdentity(SpecialOrthogonal2) @test pϵ == [1.0 0.0; 0.0 1.0] @test is_point(getManifold(SpecialOrthogonal2), getPointIdentity(SpecialOrthogonal2)) fg = initfg() v0 = addVariable!(fg, :x0, SpecialOrthogonal2) mp = ManifoldPrior(SpecialOrthogonal(2), SA[1.0 0.0; 0.0 1.0], MvNormal([0.01])) p = addFactor!(fg, [:x0], mp) ## doautoinit!(fg, :x0) vnd = getVariableSolverData(fg, :x0) @test all(isapprox.(mean(vnd.val), [1 0; 0 1], atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) ## v1 = addVariable!(fg, :x1, SpecialOrthogonal2) mf = ManifoldFactor(SpecialOrthogonal(2), MvNormal([pi], [0.01])) f = addFactor!(fg, [:x0, :x1], mf) doautoinit!(fg, :x1) ## # smtasks = Task[] solveTree!(fg) #; smtasks, verbose=true, recordcliqs=ls(fg)) # hists = fetchCliqHistoryAll!(smtasks); # SArray 0.763317 seconds (2.36 M allocations: 160.488 MiB, 4.16% gc time) # Vector 0.786390 seconds (2.41 M allocations: 174.334 MiB, 3.97% gc time) # Vector 0.858993 seconds (2.42 M allocations: 176.613 MiB, 3.43% gc time) sample not tuple ## end @testset "Test SpecialOrthogonal(3) prior" begin ## # Base.convert(::Type{<:Tuple}, M::SpecialOrthogonal{3}) = (:Euclid, :Euclid, :Euclid) # Base.convert(::Type{<:Tuple}, ::IIF.InstanceType{SpecialOrthogonal{3}}) = (:Euclid, :Euclid, :Euclid) # @defVariable SO3 SpecialOrthogonal(3) @MMatrix([1.0 0.0; 0.0 1.0]) @defVariable SO3 SpecialOrthogonal(3) SMatrix{3,3}(1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0) M = getManifold(SO3) @test M == SpecialOrthogonal(3) pT = getPointType(SO3) # @test pT == MMatrix{2, 2, Float64, 4} @test pT == SMatrix{3,3,Float64,9} pϵ = getPointIdentity(SO3) @test pϵ == [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0] @test is_point(getManifold(SO3), getPointIdentity(SO3)) fg = initfg() v0 = addVariable!(fg, :x0, SO3) mp = ManifoldPrior(SpecialOrthogonal(3), SA[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0], MvNormal([0.01, 0.01, 0.01])) p = addFactor!(fg, [:x0], mp) doautoinit!(fg, :x0) vnd = getVariableSolverData(fg, :x0) @test all(isapprox.( mean(SpecialOrthogonal(3),vnd.val), [1 0 0; 0 1 0; 0 0 1], atol=0.01)) @test all(is_point.(Ref(M), vnd.val)) points = sampleFactor(fg, :x0f1, 100) std(SpecialOrthogonal(3), points) ## v1 = addVariable!(fg, :x1, SO3) mf = ManifoldFactor(SpecialOrthogonal(3), MvNormal([0.01,0.01,0.01], [0.01,0.01,0.01])) f = addFactor!(fg, [:x0, :x1], mf) doautoinit!(fg, :x1) vnd = getVariableSolverData(fg, :x1) @test all(isapprox.( mean(SpecialOrthogonal(3),vnd.val), [0.9999 -0.00995 0.01005; 0.01005 0.9999 -0.00995; -0.00995 0.01005 0.9999], atol=0.01)) @test all(is_point.(Ref(M), vnd.val)) # smtasks = Task[] solveTree!(fg) # ; smtasks, verbose=true, recordcliqs=ls(fg)) # test them again after solve vnd = getVariableSolverData(fg, :x0) @test all(isapprox.( mean(SpecialOrthogonal(3),vnd.val), [1 0 0; 0 1 0; 0 0 1], atol=0.01)) @test all(is_point.(Ref(M), vnd.val)) vnd = getVariableSolverData(fg, :x1) @test all(isapprox.( mean(SpecialOrthogonal(3),vnd.val), [0.9999 -0.00995 0.01005; 0.01005 0.9999 -0.00995; -0.00995 0.01005 0.9999], atol=0.01)) @test all(is_point.(Ref(M), vnd.val)) # 23Q2 default HagerZhang fails with `AssertionError: isfinite(phi_c) && isfinite(dphi_c)`, using alternate LineSearch IIF.solveGraphParametric!( fg; # algorithmkwargs=(;alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.MoreThuente()), verbose=true ) ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2185
# test new sampling API # TODO, this test might be obsolete given later changes and requirements added to getSample interface. # TAC is to figure out if this functionality is still required and to remove of explain the code and related test like this file. using Test using IncrementalInference using DistributedFactorGraphs import IncrementalInference: getSample, getManifold ## struct SpecialPrior{T <: SamplableBelief} <: AbstractPrior z::T end getManifold(::SpecialPrior) = TranslationGroup(1) getSample(s::CalcFactor{<:SpecialPrior}) = rand(s.factor.z,1) struct SpecialLinearOffset{T <: SamplableBelief} <: AbstractManifoldMinimize z::T end getManifold(::SpecialLinearOffset) = TranslationGroup(1) function getSample(s::CalcFactor{<:SpecialLinearOffset}) return rand(s.factor.z,1) end function (s::CalcFactor{<:SpecialLinearOffset})(meas, x1, x2 ) # meas .- (x2 .- x1) end ## @testset "test specialSampler functionality..." begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addFactor!(fg, [:x0], SpecialPrior(Normal())) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0;:x1], SpecialLinearOffset(Normal(10,1))) tree = solveTree!(fg) @test getPPE(fg, :x0).suggested[1] |> abs < 1.0 @test getPPE(fg, :x1).suggested[1] - 10 |> abs < 3.0 ## special test for IIF #568 ## Singleton (Prior) fcm = map(x->x[1], IIF._getCCW(fg, :x0f1).measurement |> deepcopy) pts = approxConv(fg, :x0f1, :x1) fcm2 = map(x->x[1], IIF._getCCW(fg, :x0f1).measurement) fcm3 = map(x->x[1], IIF._getCCW(fg, :x0f1).measurement |> deepcopy) @test 0.1 < norm(fcm - fcm2) @test norm(fcm2 - fcm3) < 1e-5 ## Pairwise # forward direction fcm = map(x->x[1], IIF._getCCW(fg, :x0x1f1).measurement |> deepcopy) pts = approxConv(fg, :x0x1f1, :x1) fcm2 = map(x->x[1], IIF._getCCW(fg, :x0x1f1).measurement) @test 0.1 < norm(fcm - fcm2) # reverse direction fcm, = map(x->x[1], IIF._getCCW(fg, :x0x1f1).measurement |> deepcopy) pts = approxConv(fg, :x0x1f1, :x0) fcm2, = map(x->x[1], IIF._getCCW(fg, :x0x1f1).measurement) @test 0.04 < norm(fcm - fcm2) ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1974
using DistributedFactorGraphs using IncrementalInference using Manifolds using StaticArrays using Test import Manifolds: identity_element ## @testset "Test Sphere(2) prior and relative" begin ## # NOTE Sphere{2} is not a lie group so the identity element does not exits. # this is for testing only and will be removed once upgraded to support any Riemannian Manifold. DFG.getPointIdentity(::typeof(Sphere(2))) = SVector(1.0, 0.0, 0.0) #FIXME REMOVE! this is type piracy and not a good idea, for testing only!!! Manifolds.identity_element(::typeof(Sphere(2))) = SVector(1.0, 0.0, 0.0) Manifolds.identity_element(::typeof(Sphere(2)), p::AbstractVector) = SVector(1.0, 0.0, 0.0) # Float64[1,0,0] Base.convert(::Type{<:Tuple}, M::typeof(Sphere(2))) = (:Euclid, :Euclid) Base.convert(::Type{<:Tuple}, ::IIF.InstanceType{typeof(Sphere(2))}) = (:Euclid, :Euclid) @defVariable Sphere2 Sphere(2) SVector(1.0, 0.0, 0.0) M = getManifold(Sphere2) @test M == Sphere(2) pT = getPointType(Sphere2) @test pT == SVector{3,Float64} pϵ = getPointIdentity(Sphere2) @test pϵ == [1.0, 0.0, 0.0] @test is_point(getManifold(Sphere2), getPointIdentity(Sphere2)) fg = initfg() v0 = addVariable!(fg, :x0, Sphere2) mp = ManifoldPrior(Sphere(2), SA[1., 0, 0], MvNormal(Diagonal(map(abs2, [0.01, 0.01]))), DefaultOrthonormalBasis(), ExponentialRetraction()) p = addFactor!(fg, [:x0], mp) doautoinit!(fg, :x0) vnd = getVariableSolverData(fg, :x0) @test all(isapprox.(mean(M, vnd.val), [1,0,0], atol=0.1)) @test all(is_point.(Ref(M), vnd.val)) v1 = addVariable!(fg, :x1, Sphere2) mf = ManifoldFactor(Sphere(2), MvNormal([0.1, 0.2], [0.05,0.05])) f = addFactor!(fg, [:x0, :x1], mf) ## smtasks = Task[] solveTree!(fg; smtasks) # p = SA[1.,0,0] X = get_vector(M, p, SA[0.1,0.2], DefaultOrthonormalBasis()) q = exp(M, p, X) vnd = getVariableSolverData(fg, :x1) mn_ = mean(M, vnd.val) @info "isapprox" q mn_ @test all(isapprox.(mn_, q, atol=0.05)) @test all(is_point.(Ref(M), vnd.val)) ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
999
using IncrementalInference import IncrementalInference: emptyState using Test ## User state functions function bar!(usrdata) println("do bar!") return IncrementalInference.exitStateMachine end function foo!(usrdata) println("do foo!") return bar! end @testset "Test IIF's generic state machine..." begin statemachine = StateMachine{Nothing}(next=foo!) while statemachine(nothing, verbose=true); end @test statemachine.next == emptyState statemachine = StateMachine{Nothing}(next=foo!) while statemachine(nothing, verbose=false); end @test statemachine.next == emptyState statemachine = StateMachine{Nothing}(next=foo!) while statemachine(nothing, breakafter=foo!); end @test statemachine.next == bar! statemachine = StateMachine{Nothing}(next=foo!) while statemachine(nothing, iterlimit=1); end @test statemachine.next == bar! statemachine = StateMachine{Nothing}(next=bar!) while statemachine(nothing, verbose=true); end @test statemachine.next == emptyState end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1912
# Simple examples to illustrate how to obtain a Bayes (junction) tree using # with beautiful Tex labels in `.dot` and `.tex` format. using Test using IncrementalInference # EXPERIMENTAL FEATURE, 4Q19: need `sudo apt install dot2tex` import IncrementalInference: generateTexTree @testset "testing generateTexTree" begin # Create a dummy factor graph, with variables and constraints. fg = initfg() # Add four pose variables, with 'x' symbol. addVariable!(fg, :x1, ContinuousScalar) addVariable!(fg, :x2, ContinuousScalar) addVariable!(fg, :x3, ContinuousScalar) addVariable!(fg, :x4, ContinuousScalar) # Add two landmark variables, with 'l' symbol. addVariable!(fg, :l1, ContinuousScalar) addVariable!(fg, :l2, ContinuousScalar) # Add the pose chain constraints (odometry and priors). addFactor!(fg, [:x1], Prior(Normal())) addFactor!(fg, [:x1;:x2], LinearRelative(Normal())) addFactor!(fg, [:x2;:x3], LinearRelative(Normal())) addFactor!(fg, [:x3;:x4], LinearRelative(Normal())) # Add the pose-landmark constraints (range measurements) addFactor!(fg, [:x1;:l1], LinearRelative(Normal())) addFactor!(fg, [:x2;:l1], LinearRelative(Normal())) addFactor!(fg, [:x3;:l1], LinearRelative(Normal())) addFactor!(fg, [:x2;:l2], LinearRelative(Normal())) addFactor!(fg, [:x3;:l2], LinearRelative(Normal())) addFactor!(fg, [:x4;:l2], LinearRelative(Normal())) # Let's take a peek to see how our factor graph looks like. # drawGraph(fg, show=true) # As well as our tree (AMD ordering) tree = buildTreeReset!(fg) # drawTree(tree, show=true, imgs=false) # Now, let's generate the corresponding `.dot` and `.tex`. texTree = generateTexTree(tree, filepath=joinpath(@__DIR__,"tmp","bt")) # All you have to do now is compile your newly created `.tex` file, probably # include the `bm` package (`\usepackage{bm}`), and enjoy! # fake a count of 1, since we are actually testing generateTexTree @test true end # testset
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1063
using DistributedFactorGraphs using IncrementalInference using Manifolds using StaticArrays using Test @testset "Test TranslationGroup(2)" begin ## ====================================================================================== ## ## ====================================================================================== Base.convert(::Type{<:Tuple}, M::TranslationGroup{Tuple{2},ℝ}) = (:Euclid, :Euclid) Base.convert(::Type{<:Tuple}, ::IIF.InstanceType{TranslationGroup{Tuple{2},ℝ}}) = (:Euclid, :Euclid) @defVariable TranslationGroup2 TranslationGroup(2) [0.0, 0.0] getManifold(TranslationGroup2) getPointType(TranslationGroup2) getPointIdentity(TranslationGroup2) fg = initfg() v0 = addVariable!(fg, :x0, TranslationGroup2) v1 = addVariable!(fg, :x1, TranslationGroup2) mp = ManifoldPrior(TranslationGroup(2), SA[10., 20], MvNormal([1.0,1.0])) p = addFactor!(fg, [:x0], mp; graphinit=true) doautoinit!(fg, :x0) mf = ManifoldFactor(TranslationGroup(2), MvNormal([1.0, 2.0], [0.1,0.1])) f = addFactor!(fg, [:x0, :x1], mf) solveGraph!(fg) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2912
using IncrementalInference using Test @testset "Test delete tree clique" begin fg = generateGraph_LineStep(3; poseEvery=1, landmarkEvery=3, posePriorsAt=[], landmarkPriorsAt=[0], sightDistance=2, solverParams=SolverParams(algorithms=[:default, :parametric])) # getSolverParams(fg).graphinit = false # getSolverParams(fg).treeinit = true # getSolverParams(fg).dbg = true # getSolverParams(fg).useMsgLikelihoods = true # getSolverParams(fg).dbg = true # getSolverParams(fg).drawtree = true # getSolverParams(fg).showtree = true smtasks = Task[] oldtree = solveTree!(fg; smtasks=smtasks, verbose=false, recordcliqs=ls(fg)); @test IIF.isRoot(oldtree, IIF.CliqueId(1)) @test IIF.isRoot(oldtree, IIF.getClique(oldtree,1)) @test !IIF.isRoot(oldtree, IIF.CliqueId(2)) @test !IIF.isRoot(oldtree, IIF.CliqueId(3)) IIF.deleteClique!(oldtree, IIF.CliqueId(1)) @test IIF.isRoot(oldtree, IIF.CliqueId(2)) @test IIF.isRoot(oldtree, IIF.CliqueId(3)) @test IIF.getClique(oldtree, :x0) == IIF.getClique(oldtree, IIF.CliqueId(3)) == IIF.getClique(oldtree, 1) @test IIF.getClique(oldtree, :x3) == IIF.getClique(oldtree, IIF.CliqueId(2)) == IIF.getClique(oldtree, 2) # drawTree(oldtree, show=true) tree = solveTree!(fg, oldtree; smtasks=smtasks, verbose=false, recordcliqs=ls(fg)); # csmAnimate(tree, hists, frames=1) end @testset "test tree show and list functions" begin ## fg = generateGraph_Kaess(graphinit=false) eo = [:l2; :l1; :x1; :x2; :x3] tree = buildTreeReset!(fg, eo) show(tree) show(tree[:x3]) show(tree[:x1]) show(tree[:l2]) rtl = ls(tree) # test the return is same structure and relatively sorted @test 3 == length(rtl) @test rtl[1][1] == 1 @test intersect(rtl[1][2], [:x3; :x2]) |> length == 2 @test rtl[2][1] == 2 @test intersect(rtl[2][2], [:x1; :l1]) |> length == 2 @test rtl[3][1] == 3 @test intersect(rtl[3][2], [:l2;]) |> length == 1 # test individual tree list # the root clique with two children rtl1 = ls(tree, 1) rtl1 = ls(tree, :x3) @test rtl1.parent |> length == 0 @test rtl1.children |> length == 2 @test intersect( (x->x[1]).(rtl1.children), [2,3]) |> length == 2 @test intersect(rtl1.children[1][2], [:x1; :l1]) |> length == 2 @test intersect(rtl1.children[2][2], [:l2]) |> length == 1 # first leaf clique with a parent rtl2 = ls(tree, 2) rtl2 = ls(tree, :x1) rtl2 = ls(tree, :l1) @test rtl2.parent |> length == 1 @test rtl2.children |> length == 0 @test intersect( (x->x[1]).(rtl2.parent), [1]) |> length == 1 @test length(rtl2.children) == 0 # second leaf clique with a parent rtl3 = ls(tree, 3) rtl3 = ls(tree, :l2) @test rtl3.parent |> length == 1 @test rtl3.children |> length == 0 @test intersect( (x->x[1]).(rtl3.parent), [1]) |> length == 1 @test length(rtl3.children) == 0 ## end ##
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1452
using Test using IncrementalInference @testset "Testing tree message utils" begin N=8 fg = generateGraph_LineStep(N; graphinit=false, poseEvery=1, landmarkEvery=N+1, posePriorsAt=[0], landmarkPriorsAt=[], sightDistance=N+1) deleteFactor!.(fg, [Symbol("x$(i)lm0f1") for i=1:(N-1)]) # fixed eliminationOrder for repeatability eliminationOrder = [:x3, :x8, :x5, :x1, :x6, :lm0, :x7, :x4, :x2, :x0] smtasks = Task[] tree = solveTree!(fg; smtasks=smtasks, eliminationOrder=eliminationOrder) allmsgs = getTreeCliqUpMsgsAll(tree) #TODO better test but for now spot check a few keys @test issetequal(collect(2:8), keys(allmsgs)) belief2 = allmsgs[2].belief @test issetequal([:x0, :x4], keys(belief2)) stackedmsgs = stackCliqUpMsgsByVariable(tree, allmsgs) #everything except leave frontals allvars = [:lm0, :x0, :x2, :x4, :x6, :x7] @test issetequal(allvars, keys(stackedmsgs)) @test length(stackedmsgs[:x0]) == 3 x4stack = stackedmsgs[:x4] cliq_depths = map(v->v.cliqId[]=>v.depth, x4stack) @test issetequal(cliq_depths, [4 => 2, 6 => 3, 2 => 1, 8 => 1]) c3 = getClique(tree, IIF.CliqueId(3)) c7 = getClique(tree, IIF.CliqueId(7)) @test IIF.compare(IIF.getMessageUpRx(c3)[7], IIF.getMessageUpTx(c7)) @test IIF.compare(IIF.getMessageDownTx(c3), IIF.getMessageDownRx(c7)) end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1421
# test saving and loading of trees using Test using IncrementalInference using MetaGraphs using Graphs ## @testset "Test loading and saving of Bayes (Junction) tree" begin ## fg = generateGraph_Kaess(graphinit=false) tree = buildTreeReset!(fg) # save and load tree saveTree(tree) tree2 = loadTree() # perform a few spot checks to see that the trees are similar @test length(tree.cliques) == length(tree2.cliques) @test getEliminationOrder(tree) == getEliminationOrder(tree2) for (clid,cl) in tree.cliques fsyms = getFrontals(cl) cl2 = getClique(tree2, fsyms[1]) fsyms2 = getFrontals(cl2) @test fsyms == fsyms2 @test getCliqSeparatorVarIds(cl) == getCliqSeparatorVarIds(cl2) @test typeof(cl) == typeof(cl2) end ## end @testset "Test loading and saving of Bayes (Junction) tree" begin ## fg = generateGraph_Kaess(graphinit=false) tree = buildTreeReset!(fg) # save and load tree as array filepath = saveTree([tree;deepcopy(tree)]) trees = loadTree(filepath) # perform a few spot checks to see that the trees are similar @test length(tree.cliques) == length(trees[1].cliques) @test getEliminationOrder(tree) == getEliminationOrder(trees[1]) for (clid,cl) in tree.cliques fsyms = getFrontals(cl) cl2 = getClique(trees[1], fsyms[1]) fsyms2 = getFrontals(cl2) @test fsyms == fsyms2 @test getCliqSeparatorVarIds(cl) == getCliqSeparatorVarIds(cl2) @test typeof(cl) == typeof(cl2) end ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2098
## # using Revise using Test using IncrementalInference ## @testset "Test differential factors for MKD sampling types (useMsgLikelihoods" begin ## fg = generateGraph_CaesarRing1D() getSolverParams(fg).useMsgLikelihoods = true ## test getSample fct = fg[:x0x1f1] fT = getFactorType(fct) @test fT isa LinearRelative @test fT.Z isa Normal ## M = getManifold(fT) X = sampleTangent(M, fT.Z) @test X isa AbstractVector{<:Real} z = sampleFactor(fct)[1] @test z isa AbstractVector{<:Real} ## initAll!(fg) ## # fl = lsf(fg) |> sortDFG X_ = approxDeconvBelief(fg,:x0f1) X_ = approxDeconvBelief(fg,:x0x1f1) ## eliminationOrder = [:x3,:x5,:l1,:x1,:x6,:x4,:x2,:x0] tree = buildTreeReset!(fg, eliminationOrder) ## # cfg = buildCliqSubgraph(fg, tree[6]) # st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[6]) cfg = buildCliqSubgraph(fg, tree[5]) st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[5]) beliefMsg5 = IIF.prepCliqueMsgUp(cfg, tree[5], :default, IIF.UPSOLVED) cfg = buildCliqSubgraph(fg, tree[4]) st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[4]) beliefMsg4 = IIF.prepCliqueMsgUp(cfg, tree[4], :default, IIF.UPSOLVED) # cfg = buildCliqSubgraph(fg, tree[3]) # st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[3]) cfg = buildCliqSubgraph(fg, tree[2]) @test 3 === length(ls(cfg)) @test 0 === length(lsf(cfg)) IIF.addMsgFactors!(cfg, beliefMsg4, IIF.UpwardPass) IIF.addMsgFactors!(cfg, beliefMsg5, IIF.UpwardPass) @test 2 === length(lsf(cfg)) ## fct = cfg[:x0x6f1] fT = getFactorType(fct) @test fT isa LinearRelative @test fT.Z isa MKD ## M = getManifold(fT.Z) X = sampleTangent(M, fT.Z) @test X isa Vector{<:Real} z = sampleFactor(fct)[1] @test z isa Vector{<:Real} ## childmsgs = LikelihoodMessage[] retdict = IIF.upGibbsCliqueDensity(cfg, tree[2], :default, childmsgs) # st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[2]) # cfg = buildCliqSubgraph(fg, tree[1]) # st = IIF._generateMsgJointRelativesPriors(cfg, :default, tree[1]) ## getSolverParams(fg).downsolve = false solveGraph!(fg) ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1410
# test for variations in DOF solving, #227 #316 #430 # using Revise using IncrementalInference using Test ## @testset "Test for variations in N while solving" begin ## fg = generateGraph_CaesarRing1D(graphinit=true) ## try pts_ = approxConv(fg, :x0x1f1, :x1, N=101) @test length(pts_) == 101 catch # allow one retry, vary rarely has consecutive optimization failure pts_ = approxConv(fg, :x0x1f1, :x1, N=101) @test length(pts_) == 101 end ## @error "MUST RESTORE SOLVE WITH DIFFERENT SIZE N, see #1722" if false # Change to N=150 AFTER constructing the graph, so solver must update the belief sample values during inference getSolverParams(fg).N = 150 # getSolverParams(fg).multiproc = false # getSolverParams(fg).async = false smtasks = Task[] tree = solveTree!(fg; smtasks, recordcliqs=ls(fg)); ## pts_ = getBelief(fg, :x1) |> getPoints @test length(pts_) == 150 @test length(pts_[1]) == 1 ## # test with change for second solve getSolverParams(fg).N = 200 tree = solveTree!(fg) pts_ = getBelief(fg, :x1) |> getPoints @test length(pts_) == 200 @test length(pts_[1]) == 1 println("test making N smaller than current") getSolverParams(fg).N = 99 tree = solveTree!(fg) pts_ = getBelief(fg, :x1) |> getPoints @warn "removing older solve N size test, likely to be reviewed and updated to new workflow in the future" @test length(pts_) == 99 @test length(pts_[1]) == 1 end ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
2393
# packing and unpacking of Graph related types using IncrementalInference using DistributedFactorGraphs using Manifolds using Test ## @testset "Serialization of SamplableBelief types" begin ## td = Uniform() ptd = convert(String, td) # TODO, PackedSamplableBelief utd = convert(SamplableBelief, td) @test td.a - utd.a |> abs < 1e-10 @test td.b - utd.b |> abs < 1e-10 ## end ## fg = initfg() N=100 # doors = zeros(1,4) T = ContinuousScalar doors = [[-100.0;],[0.0;],[100.0;],[300.0;]] pd = manikde!(T, doors; bw=[3.0;]) pd = resample(pd,N); bws = getBW(pd)[:,1] doors2 = getPoints(pd); v1 = addVariable!(fg,:x1, ContinuousScalar,N=N) f1 = addFactor!(fg,[:x1], Prior(manikde!(T, doors2; bw=bws))) v2 = addVariable!(fg,:x2, ContinuousScalar, N=N) lc = LinearRelative( Normal(50.0, 2.0) ) f2 = addFactor!(fg, [:x1; :x2], lc) ## @testset "Testing conversion to packed function node data structure and back" begin ## topack = getSolverData(f1) dd = convert(PackedFunctionNodeData{PackedPrior},topack) upd = reconstFactorData(fg, [:x1;], FunctionNodeData{CommonConvWrapper{Prior}}, dd) @test compare(topack, upd) topack = getSolverData(f2) dd = convert(IncrementalInference.PackedFunctionNodeData{PackedLinearRelative},topack) upd = reconstFactorData(fg, [:x1;:x2], IncrementalInference.FunctionNodeData{CommonConvWrapper{LinearRelative}}, dd) @test compare(topack, upd) ## end @testset "Testing conversion to packed variable node data structure and back" begin ## dat = getSolverData(getVariable(fg,:x1)) # dat.BayesNetVertID pd = packVariableNodeData(dat) unpckd = unpackVariableNodeData(pd) @test compareFields(dat, unpckd, skip=[:variableType]) @test compareFields(getVariableType(dat), getVariableType(unpckd)) @test isa(getVariableType(dat), ContinuousScalar) @test isa(getVariableType(unpckd), ContinuousScalar) ## end @testset "test serialization of ManifoldKernelDensity" begin ## # create a basic manifoldkerneldensity mkd = manikde!(TranslationGroup(2), [randn(2) for _ in 1:100]) # convert up and down st = convert(String, mkd) # TODO, PackedSamplableBelief upk = convert(SamplableBelief, st) # and check the basics @test isapprox( getPoints(mkd)[1], getPoints(upk)[1]) @test isapprox( getPoints(mkd)[end], getPoints(upk)[end]) @test mkd.manifold == upk.manifold @test mkd._partial == upk._partial @test mkd.infoPerCoord == upk.infoPerCoord ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1093
using IncrementalInference using Statistics using Test using TensorCast ## N=100 fg = initfg() doors = [[0.0;],] pd = manikde!(ContinuousScalar, doors; bw=[3.0;]) pd = resample(pd, N); bws = getBW(pd)[:,1] doors2 = getPoints(pd); ## @testset "test evaluation of pose pose constraint" begin ## v1 = addVariable!(fg,:x1, ContinuousScalar,N=N) f1 = addFactor!(fg,[v1], Prior( pd )) #, samplefnc=getSample # tem = 2.0*randn(1,N)+getVal(v1)+50.0 v2 = addVariable!(fg,:x2, ContinuousScalar, N=N) odoc = LinearRelative(Normal(50.0,2.0)) # Odo(50.0*ones(1,1),2.0*ones(1,1),[1.0]) f2 = addFactor!(fg, [:x1; :x2], odoc ) #, samplefnc=getSample # @test isInitialized(fg, :x1) pts_ = approxConv(fg, :x1x2f1, :x2) @cast pts[i,j] := pts_[j][i] # pts = evalFactor(fg, f2, v2.label) @show Statistics.mean(pts,dims=2) @test norm(Statistics.mean(pts,dims=2)-[50.0]) < 15.0 tree = solveTree!(fg) pts_ = getVal(fg, :x2) @cast pts[i,j] := pts_[j][i] @test norm(Statistics.mean(pts,dims=2)-[50.0]) < 15.0 ## end # using RoMEPlotting # # plotKDE( getBelief(fg,:x2) ) # plotKDE(kde!(pts)) #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
7279
# using Revise using Test using IncrementalInference, Distributions using DistributedFactorGraphs using Statistics using TensorCast # going to introduce two new constraint types import Base: convert import IncrementalInference: getSample, getManifold ## mutable struct DevelopPrior{T <: SamplableBelief} <: AbstractPrior # keeping to test user case using `.x` rather than default `.Z` x::T end getManifold(dp::DevelopPrior) = TranslationGroup(getDimension(dp.x)) getSample(cf::CalcFactor{<:DevelopPrior}) = rand(cf.factor.x, 1) mutable struct DevelopLikelihood{T <: SamplableBelief} <: AbstractManifoldMinimize x::T end getManifold(dp::DevelopLikelihood) = TranslationGroup(getDimension(dp.x)) getSample(cf::CalcFactor{<:DevelopLikelihood}) = rand(cf.factor.x, 1) (cf::CalcFactor{<:DevelopLikelihood})(meas, wXi, wXj) = meas - (wXj - wXi) ## N = 100 fg = initfg() ## @testset "test populate factor graph with a multi-hypothesis factor..." begin ## v1 = addVariable!(fg, :x1, ContinuousScalar, N=N) pr = DevelopPrior(Normal(10.0,1.0)) f1 = addFactor!(fg,[:x1],pr) initAll!(fg) pts_, _ = evalFactor(fg, f1, v1.label, N=N) @cast pts[i,j] := pts_[j][i] @test sum(abs.(pts .- 1.0) .< 5) < 30 @test sum(abs.(pts .- 10.0) .< 5) > 30 v2 = addVariable!(fg, :x2, ContinuousScalar, N=N) pp = DevelopLikelihood(Normal(100.0,1.0)) f2 = addFactor!(fg, [:x1;:x2], pp) initAll!(fg) pts_ = getVal(fg, :x2) @cast pts[i,j] := pts_[j][i] @test abs(Statistics.mean(pts)-110.0) < 10.0 v3 = addVariable!(fg, :x3, ContinuousScalar, N=N) v4 = addVariable!(fg, :x4, ContinuousScalar, N=N) ppMH = DevelopLikelihood(Normal(90.0,1.0)) f3 = addFactor!(fg, [:x2;:x3;:x4], ppMH, multihypo=[1.0;0.5;0.5]) # @test IIIF._getCCW(f3).hypoverts == [:x3, :x4] @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[1] .- 0.0)) < 0.1 # 1.0 becomes 0.0 for computational convenience @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[2:3] .- 0.5)) < 0.1 initVariable!(fg, :x2, [1*ones(1) for _ in 1:N]) initVariable!(fg, :x3, [2*ones(1) for _ in 1:N]) initVariable!(fg, :x4, [3*ones(1) for _ in 1:N]) ## end @testset "Test multi-hypothesis factor convolution exploration" begin ## pts_ = approxConv(fg, :x2x3x4f1, :x2, N=N) @cast pts[i,j] := pts_[j][i] @test 99 < sum(pts .<= -70.0) pts_ = approxConv(fg, :x2x3x4f1, :x3, N=N) @cast pts[i,j] := pts_[j][i] 15 < sum(70 .< pts .< 110) < 75 pts_ = approxConv(fg, :x2x3x4f1, :x4, N=N) @cast pts[i,j] := pts_[j][i] 15 < sum(70 .< pts .< 110) < 75 ## end ## println("Packing converters") Base.@kwdef mutable struct PackedDevelopPrior <: AbstractPackedFactor x::PackedSamplableBelief end function convert(::Type{PackedDevelopPrior}, d::DevelopPrior) PackedDevelopPrior(convert(PackedSamplableBelief, d.x)) end function convert(::Type{DevelopPrior}, d::PackedDevelopPrior) DevelopPrior(convert(SamplableBelief, d.x)) end mutable struct PackedDevelopLikelihood <: AbstractPackedFactor x::PackedSamplableBelief end function convert(::Type{PackedDevelopLikelihood}, d::DevelopLikelihood) PackedDevelopLikelihood(convert(PackedSamplableBelief, d.x)) end function convert(::Type{<:DevelopLikelihood}, d::PackedDevelopLikelihood) DevelopLikelihood(convert(SamplableBelief, d.x)) end ## @testset "test packing and unpacking the data structure" begin ## topack = getSolverData(getFactor(fg,:x1f1)) dd = convert(PackedFunctionNodeData{PackedDevelopPrior},topack) unpacked = reconstFactorData(fg, [:x1;], FunctionNodeData{CommonConvWrapper{DevelopPrior}},dd) @test abs(IIF._getCCW(unpacked).usrfnc!.x.μ - 10.0) < 1e-10 @test abs(IIF._getCCW(unpacked).usrfnc!.x.σ - 1.0) < 1e-10 fct = getFactor(fg, :x2x3x4f1) # @show typeof(fct) topack = getSolverData(fct) # f3 dd = convert(PackedFunctionNodeData{PackedDevelopLikelihood},topack) unpacked = reconstFactorData(fg, [:x2;:x3;:x4], FunctionNodeData{CommonConvWrapper{DevelopLikelihood}},dd) # @test IIF._getCCW(unpacked).hypoverts == Symbol[:x3; :x4] @test sum(abs.(IIF._getCCW(unpacked).hyporecipe.hypotheses.p[1] .- 0.0)) < 0.1 @test sum(abs.(IIF._getCCW(unpacked).hyporecipe.hypotheses.p[2:3] .- 0.5)) < 0.1 ## end ## # start a new factor graph N = 200 fg = initfg() getSolverParams(fg).N = N ## @testset "test tri-modal factor..." begin ## v1 = addVariable!(fg, :x1, ContinuousScalar, N=N) pr = DevelopPrior(Normal(10.0,1.0)) f1 = addFactor!(fg,[:x1],pr) initAll!(fg) @test length(getVal(fg, :x1)) == N pts_ = approxConv(fg, Symbol(f1.label), :x1, N=N) @cast pts[i,j] := pts_[j][i] @test sum(abs.(pts .- 1.0) .< 5) < 30 @test sum(abs.(pts .- 10.0) .< 5) > 30 v2 = addVariable!(fg, :x2, ContinuousScalar, N=N) pp = DevelopLikelihood(Normal(100.0,1.0)) f2 = addFactor!(fg, [:x1;:x2], pp) initAll!(fg) pts_ = getVal(fg, :x2) @cast pts[i,j] := pts_[j][i] @test abs(Statistics.mean(pts)-110.0) < 10.0 v3 = addVariable!(fg, :x3, ContinuousScalar, N=N) v4 = addVariable!(fg, :x4, ContinuousScalar, N=N) v5 = addVariable!(fg, :x5, ContinuousScalar, N=N) ppMH = DevelopLikelihood(Normal(90.0,1.0)) f3 = addFactor!(fg, [:x2;:x3;:x4;:x5], ppMH, multihypo=[1.0,0.333,0.333,0.334]) # @test IIF._getCCW(f3).hypoverts == [:x3, :x4] @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[1] .- 0.0)) < 0.1 # 1.0 becomes 0.0 for computational convenience @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[2] .- 0.333)) < 0.001 @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[3] .- 0.333)) < 0.001 @test sum(abs.(IIF._getCCW(f3).hyporecipe.hypotheses.p[4] .- 0.334)) < 0.001 initVariable!(fg, :x2 ,[1*ones(1) for _ in 1:N]) initVariable!(fg, :x3 ,[2*ones(1) for _ in 1:N]) initVariable!(fg, :x4 ,[3*ones(1) for _ in 1:N]) initVariable!(fg, :x5 ,[4*ones(1) for _ in 1:N]) # solve for certain idx pts_ = approxConv(fg, :x2x3x4x5f1, :x2, N=N) @cast pts[i,j] := pts_[j][i] @test 0.95*N < sum(pts .<= -70.0) # solve for one of uncertain variables pts_ = approxConv(fg, :x2x3x4x5f1, :x3, N=N) @cast pts[i,j] := pts_[j][i] @test 0.1*N < sum(80 .< pts .< 100.0) < 0.5*N # @test 0.1*N < sum(pts .== 3.0) < 0.5*N # @test 0.1*N < sum(pts .== 4.0) < 0.5*N # 0.7 to accomodate bad-init null hypo # @test 0.5*N <= sum(70 .< pts .< 110.0) + sum(pts .== 3.0) + sum(pts .== 4.0) # solve for one of uncertain variables pts_ = approxConv(fg, :x2x3x4x5f1, :x4, N=N) @cast pts[i,j] := pts_[j][i] @test 0.1*N < sum(80 .< pts .< 100.0) < 0.5*N # @test 0.1*N < sum(pts .== 2.0) < 0.5*N # @test 0.1*N < sum(pts .== 4.0) < 0.5*N # @test 0.5*N <= sum(80 .< pts .< 100.0) + sum(pts .== 2.0) + sum(pts .== 4.0) # solve for one of uncertain variables pts_ = approxConv(fg, :x2x3x4x5f1, :x5, N=N) @cast pts[i,j] := pts_[j][i] @test 0.1*N < sum(80 .< pts .< 100.0) < 0.5*N # @test 0.1*N < sum(pts .== 2.0) < 0.5*N # @test 0.1*N < sum(pts .== 3.0) < 0.5*N # @test 0.5*N <= sum(80 .< pts .< 100.0) + sum(pts .== 2.0) + sum(pts .== 3.0) ## end @testset "test multihypo api numerical tolerance, #1086" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousEuclid{1}) addVariable!(fg, :x1a, ContinuousEuclid{1}) addVariable!(fg, :x1b, ContinuousEuclid{1}) addFactor!(fg, [:x0;:x1a;:x1b], LinearRelative(Normal()), multihypo=[1; 0.5;0.4999999999999]) addFactor!(fg, [:x0;:x1a;:x1b], LinearRelative(Normal()), multihypo=[1; 0.5;0.5000000000001]) ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
1429
# test null hypothesis cases using Test using IncrementalInference using TensorCast # going to introduce two new constraint types ## @testset "Post 237 without nullhypo" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0;], Prior(Normal())) addFactor!(fg, [:x0;:x1], LinearRelative(Normal(10,1))) solveTree!(fg) pts_ = getBelief(fg, :x1) |> getPoints @cast pts[i,j] := pts_[j][i] @test 80 < sum(2 .< pts .< 18) ## end @testset "Post 237 nullhypo on prior" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addFactor!(fg, [:x0;], Prior(Normal(10,1)), nullhypo=0.5) solveTree!(fg) pts_ = getBelief(fg, :x0) |> getPoints @cast pts[i,j] := pts_[j][i] @test 10 < sum(-15 .< pts .< 4) < 60 @test 30 < sum(4 .< pts .< 16) < 85 # @test 10 < sum(16 .< pts .< 60) < 60 ## end @testset "Post 237 with nullhypo test" begin ## fg = initfg() addVariable!(fg, :x0, ContinuousScalar) addVariable!(fg, :x1, ContinuousScalar) addFactor!(fg, [:x0;], Prior(Normal())) addFactor!(fg, [:x0;:x1], LinearRelative(Normal(10,1)), nullhypo=0.5) pts_ = approxConv(fg, :x0x1f1, :x1) @cast pts[i,j] := pts_[j][i] @test 20 < sum(pts .< 5) @test 20 < sum(5 .< pts .< 15) solveTree!(fg) pts2_ = getBelief(fg, :x1) |> getPoints @cast pts2[i,j] := pts2_[j][i] @test 30 < sum(8 .< pts2 .< 12) <= 80 @test 80 < sum(-10 .< pts2 .< 30) ## end #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
8864
# partial constraint development using Test using IncrementalInference # going to introduce two new constraint mutable structs using Statistics using TensorCast using Manifolds import IncrementalInference: getManifold, getSample ## mutable struct DevelopPartial{P <: Tuple} <: AbstractPrior x::Distribution partial::P end getSample(cf::CalcFactor{<:DevelopPartial}) = rand(cf.factor.x, 1) getManifold(dp::DevelopPartial) = TranslationGroup(length(dp.partial)) # mutable struct DevelopDim2 <: AbstractPrior x::Distribution end getSample(cf::CalcFactor{<:DevelopDim2}) = rand(cf.factor.x, 1) getManifold(dp::DevelopDim2) = TranslationGroup(getDimension(dp.x)) mutable struct DevelopPartialPairwise <: AbstractRelativeMinimize x::Distribution partial::Tuple DevelopPartialPairwise(x::Distribution) = new(x, (2,)) end getManifold(dp::IIF.InstanceType{DevelopPartialPairwise}) = TranslationGroup(length(dp.partial)) # getManifold(::IIF.InstanceType{DevelopPartialPairwise}) = TranslationGroup(1) getSample(cf::CalcFactor{<:DevelopPartialPairwise}) = rand(cf.factor.x, 1) function (dp::CalcFactor{<:DevelopPartialPairwise})(meas, x1, x2 ) # return meas[1] - (x2[2]-x1[2]) end ## prep N=100 pr = DevelopDim2(MvNormal([0.0;0.0], diagm([0.01;0.01]))) dp = DevelopPartial(Normal(2.0, 1.0),(1,)) ## build graph fg = initfg() v1 = addVariable!(fg,:x1,ContinuousEuclid{2}(),N=N) f1 = addFactor!(fg,[:x1],pr) f2 = addFactor!(fg,[:x1],dp, graphinit=false) doautoinit!(fg, :x1) ## @testset "test evaluation of full constraint prior" begin ## pts_, _ = evalFactor(fg, f1, v1.label; N) @cast pts[i,j] := pts_[j][i] @test size(pts,1) == 2 @test size(pts,2) == N @test norm(Statistics.mean(pts,dims=2)[1] .- [0.0]) < 0.3 ## end @testset "test evaluation of partial constraint prior" begin ## memcheck_ = getVal(v1) @cast memcheck[i,j] := memcheck_[j][i] X1pts_ = getVal(v1) @cast X1pts[i,j] := X1pts_[j][i] pts_ = approxConv(fg, getLabel(f2), :x1; N) @cast pts[i,j] := pts_[j][i] @test size(pts, 1) == 2 @test size(pts, 2) == N @test norm(Statistics.mean(pts,dims=2)[1] .- [2.0]) < 0.75 # ensure the correct response from @test norm(X1pts[1,:] - pts[1,:]) > 2.0 @test norm(X1pts[2,:] - pts[2,:]) < 1e-10 @test norm(X1pts - memcheck) < 1e-10 ## end @testset "check that partials are received through convolutions of prior" begin ## # check that a partial belief is obtained X1_ = approxConvBelief(fg, :x1f2, :x1) @test isPartial(X1_) ## end @testset "test solving of factor graph" begin ## getSolverParams(fg).N = N tree = solveTree!(fg) pts_ = getVal(fg, :x1) @cast pts[i,j] := pts_[j][i] @test norm(Statistics.mean(pts,dims=2)[1] .- [0.0]) < 0.4 @test norm(Statistics.mean(pts,dims=2)[2] .- [0.0]) < 0.4 ## end # plotKDE(getBelief(fg, :x1),levels=3) ## partial relative gradient and graph v2 = addVariable!(fg,:x2,ContinuousEuclid{2},N=N) dpp = DevelopPartialPairwise(Normal(10.0, 1.0)) f3 = addFactor!(fg,[:x1;:x2],dpp) dp2 = DevelopPartial( Normal(-20.0, 1.0), (1,) ) f4 = addFactor!(fg,[:x2;], dp2, graphinit=false) doautoinit!(fg, :x2) ## @testset "test partial info per coord through relative convolution (conditional)" begin ## one_meas = [10.0;] pts = ([0;0.0], [0;10.0]) gradients = FactorGradientsCached!(dpp, (ContinuousEuclid{2}, ContinuousEuclid{2}), one_meas, pts); ## # check that the gradients can be calculated J = gradients(one_meas, pts...) @test size(J) == (4,4) @test_broken norm(J - [0 0 0 0; 0 0 0 1; 0 0 0 0; 0 1 0 0] ) < 1e-4 ## check perturbation logic prtb = calcPerturbationFromVariable(gradients, [1=>[1;1]]) # self variation is taken as 0 at this time @test isapprox( prtb[1], [0;0] ) # variable 1 influences 2 only through partial dimension 2 (as per DevelopPartialPairwise) @test_broken isapprox( prtb[2], [0;1] ) ## test evaluation through the convolution operation withing a factor graph # add relative IPC calculation inside evalFactor bel = approxConvBelief(fg, getLabel(f3), :x2) @test isPartial(bel) ## end ## @testset "test evaluation of multiple simultaneous partial constraints" begin global fg ## initAll!(fg) pts_ = approxConv(fg, :x1x2f1, :x2; N) @cast pts[i,j] := pts_[j][i] @test size(pts,1) == 2 @test_broken norm(Statistics.mean(pts,dims=2)[2] .- [10.0]) < 3.0 # not the same memory, ccw.varValsAll[][sfidx] is now a deepcopy as alternate destination memory valx2_ = IIF._getCCW(fg[:x1x2f1]).varValsAll[][2] # getVal(fg, :x2) @cast valx2[i,j] := valx2_[j][i] @test norm(valx2[1,:] - pts[1,:]) < 1e-5 pts_ = approxConv(fg, :x2f1, :x2; N) @cast pts[i,j] := pts_[j][i] @test size(pts,1) == 2 @test norm(Statistics.mean(pts,dims=2)[1] .- [-20.0]) < 0.75 @test (Statistics.std(pts,dims=2)[1] .- 1.0) < 0.4 ## end ## # keep previous values to ensure function evaluation is modifying correct data fields @warn "restore calcProposalBelief as testset!" # @testset "test calcProposalBelief..." begin # global v2, fg, f3, f4, N thefac = getFactor(fg, :x1x2f1) X2lpts_ = getVal(getVariable(fg, :x2)) @cast X2lpts[i,j] := X2lpts_[j][i] keepaside, = (calcProposalBelief(fg, thefac, :x2; N),) @test Ndim(keepaside) == 2 lpts_ = getPoints(keepaside, false) @cast lpts[i,j] := lpts_[j][i] @test length(lpts_) == N @show X2lpts[2,95:100] @show lpts[2,95:100] @show getPoints(keepaside) ## # DevelopPartialPairwise must only modify the second dimension of proposal distribution on X2 @test norm(X2lpts[1,:] - lpts[1,:]) < 1e-10 # @test norm(X2lpts[2,:] - lpts[2,:]) > 1e-10 # 10*N*0.5 # why so big? memcheck_ = getVal(v2) @cast memcheck[i,j] := memcheck_[j][i] @test norm(X2lpts - memcheck) < 1e-10 X2lpts_ = getVal(v2) @cast X2lpts[i,j] := X2lpts_[j][i] p4 = calcProposalBelief(fg, f4, v2.label; N) @test Ndim(p4) == 2 lpts_ = getPoints(keepaside, false) @cast lpts[i,j] := lpts_[j][i] @test length(lpts_) == N # DevelopPartialPairwise must only modify the second dimension of proposal distribution on X2 @test norm(X2lpts[1,:] - lpts[1,:]) < 1e-10 @test norm(X2lpts[2,:] - lpts[2,:]) > 1e-10 # 10*N*0.5 # why so big? memcheck_ = getVal(v2) @cast memcheck[i,j] := memcheck_[j][i] @test norm(X2lpts - memcheck) < 1e-10 # end ## @testset "test belief prediction with partials..." begin ## global v2, fg # partial prior X2pts_ = getVal(v2) @cast X2pts[i,j] := X2pts_[j][i] # NOTE, SUPER IMPORTANT, predictbelief returns full dimension points (even if only partials are sent in for proposals) valB, = propagateBelief(fg, v2, [f4]; N) val_ = getPoints(valB, false) @cast val[i,j] := val_[j][i] @show X2pts_[1]'; @show val_[1]'; @test norm(X2pts[2,:] - val[2,:]) < 1e-10 @test 0.0 < norm(X2pts[1,:] - val[1,:]) @test norm(Statistics.mean(val[1,:]) .+ 20.0) < 0.75 # partial pairwise X2pts_ = getVal(v2) @cast X2pts[i,j] := X2pts_[j][i] valB, = propagateBelief(fg, v2, [f3]; N) val_ = getPoints(valB, false) @cast val[i,j] := val_[j][i] @test norm(X2pts[1,:] - val[1,:]) < 1e-10 @test 0.0 < norm(X2pts[2,:] - val[2,:]) val2_ = getVal(v1) @cast val2[i,j] := val2_[j][i] @test_broken abs(Statistics.mean(val[2,:] - val2[2,:]) .- 10.0) < 0.75 ## # combination of partials valB, = propagateBelief(fg, v2, [f3;f4]; N) val_ = getPoints(valB, false) @cast val[i,j] := val_[j][i] # plotKDE(kde!(val),levels=3) @test norm(Statistics.mean(val,dims=2)[1] .- [-20.0]) < 1 @error "restore inconsistent test result (not always broken)" if false @test_broken norm(Statistics.mean(val,dims=2)[2] .- [10.0]) < 0.01 end @test (Statistics.std(val,dims=2)[1] .- 1.0) < 3.0 @test_broken (Statistics.std(val,dims=2)[2] .- 1.0) < 3.0 ## getSolverParams(fg).N = N tree = solveTree!(fg) pts_ = getVal(fg, :x1) @cast pts[i,j] := pts_[j][i] @test norm(Statistics.mean(pts,dims=2)[1] .- [0.0]) < 0.5 @test norm(Statistics.mean(pts,dims=2)[2] .- [0.0]) < 0.5 pts_ = getVal(fg, :x2) ppe = getPPE(fg, :x2).mean X2 = getBelief(fg, :x2) # check mean is close @test_broken isapprox(mean(X2), [-20;10], atol=0.01) # check covariance is close too @test 0 < var(getManifold(X2), getPoints(X2)) @cast pts[i,j] := pts_[j][i] @test (Statistics.std(pts,dims=2)[1]-1.0) < 3.0 @test_broken (Statistics.std(pts,dims=2)[2]-1.0) < 3.0 ## end @testset "Test number of samples returned, N=75" begin ## pr = DevelopDim2(MvNormal([0.0;0.0], diagm([0.01;0.01]))) dp = DevelopPartial(Normal(2.0, 1.0),(1,)) # fg = initfg() v1 = addVariable!(fg,:x1,Position{2}(),N=N) f1 = addFactor!(fg,[:x1], pr, graphinit=false) # force particular initialization u0 = getPointIdentity(Position{2}) arr = push!(Vector{typeof(u0)}(), u0) setVal!(fg, :x1, arr) ##----------- sanity check that predictbelief plumbing is doing the right thing nbel, = propagateBelief(fg, :x1, ls(fg, :x1), N=75) @test_broken 75 == Npts(nbel) ## end # plotKDE(getBelief(fg, :x2),levels=3) # spyCliqMat(tree, :x2) #
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
376
using Test mutable struct MyType arr::Array{Float64,1} var::Int str::String MyType(x...) = new(x[1],x[2],x[3]) MyType() = new() end function f(M::MyType) mm = MyType() mm.arr = M.arr return mm end @testset "Ensure memory return is working properly..." begin m = MyType(rand(3),2,"hello") mmm = f(m) mmm.arr[1] = 1.0 @test m.arr[1] == 1.0 end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
3676
# dev test script for factor gradients using ForwardDiff and ManifoldDiff using ManifoldDiff using Manifolds using IncrementalInference using StaticArrays using Zygote using Test ## @testset "test factorJacobian" begin ## # manual EuclidDistance z = 10.0 f_eucliddist(x1,x2; z) = z - norm(x2 - x1) x0, x1 = [0.0; 0.0], [10.0, 0.0] J_ = Zygote.jacobian(()->f_eucliddist(x0, x1; z), Zygote.Params([x0, x1])) Jx0 = J_[x0] Jx1 = J_[x1] ## fg = LocalDFG(; solverParams = SolverParams(; graphinit=false ) ) addVariable!.(fg, [:x0; :x1], Position2) f = addFactor!(fg, [:x0; :x1], EuclidDistance(Normal(z,1.0))) p1 = [SA[x1[1];x1[2]] for _ in 1:1] setVal!(fg, :x1, p1, solveKey=:parametric) J = IIF.factorJacobian(fg, :x0x1f1) @test isapprox( Jx0, J[1:1,1:2]; atol=1e-8) @test isapprox( Jx1, J[1:1,3:4]; atol=1e-8) ## end ## # ## # @testset "using RoME; FiniteDiff.jacobian of SpecialEuclidean(2) factor" begin # ## # fg = LocalDFG(; # solverParams = SolverParams(; # graphinit=false # ) # ) # addVariable!.(fg, [:x0; :x1], Pose2) # f = addFactor!(fg, [:x0; :x1], Pose2Pose2(MvNormal([10;0;pi/2],[1 0 0; 0 1 0; 0 0 1.0]))) # p1 = [ArrayPartition([10; 0.0], [0 1; -1 0.0]) for _ in 1:1] # setVal!(fg, :x1, p1, solveKey=:parametric) # J = IIF.factorJacobian(fg, :x0x1f1) # @test isapprox( Jx0, J[1:1,1:2]; atol=1e-8) # @test_broken isapprox( Jx1, J[1:1,3:4]; atol=1e-8) # ## # end # ## ## @testset "ManifoldDiff.jacobian of SpecialEuclidean(2) factor" begin ## M = SpecialEuclidean(2) z = ArrayPartition(SA[10.0; 0.0], SMatrix{2,2}(0.0, -1.0, 1.0, 0.0)) p1 = ArrayPartition(SA[0.0; 0.0], SMatrix{2,2}(1, 0, 0, 1.)) e0 = identity_element(M, p1) p2 = exp(M, e0, hat(M, e0, [10,0,pi/2])) function resid_SE2(X, p, q) q̂ = Manifolds.compose(M, p, exp(M, identity_element(M, p), X)) #for groups return vee(M, q, log(M, q, q̂)) end # finitediff setup r_backend = ManifoldDiff.TangentDiffBackend( ManifoldDiff.FiniteDifferencesBackend() ) Me = Euclidean(3) function _factorJac!(J, z, p1, p2) g1(p_) = resid_SE2(z, p_, p2) g2(p_) = resid_SE2(z, p1, p_) J[1:3,1:3] = ManifoldDiff.jacobian(M, Me, g1, p1, r_backend) J[1:3,4:6] = ManifoldDiff.jacobian(M, Me, g2, p2, r_backend) J end # f_SE2_z(z_) = resid_SE2(z_, e0, p2) # f_SE2_x0(p_) = resid_SE2(z, e0, p_) # f_SE2_x0(p_) = resid_SE2(z, e0, p_) J = zeros(3,6) J_ = _factorJac!(J, z, p1, p2) # @profview _factorJac!(J, z, p1, p2) if false z_backend = ManifoldDiff.TangentDiffBackend( ManifoldDiff.ZygoteDiffBackend() ) g = ManifoldDiff.jacobian(M, Euclidean(3), f_SE2_x0, p1, z_backend) else @info "ManifoldDiff.ZygoteDiffBackend usage still under development (23Q3)" end ## end # cost(p_) = distance(M, e0, p_) # ManifoldDiff.gradient(M, cost, p, r_backend) # cost(p) # ManifoldDiff.gradient(M, cost, p, r_backend) # ## # @testset "CODE STILL UNDER DEV:::Zygote on SpecialEuclidean(2)" begin # ## # # manual PosePose # M = SpecialEuclidean(2) # z = ArrayPartition(SA[10.0; 0.0], SMatrix{2,2}(0.0, -1.0, 1.0, 0.0)) # e0 = identity_element(M, z) # # modified from IIF/test/testSpecialEuclidean2Mani.jl # function f_SE2(X, p, q) # q̂ = Manifolds.compose(M, p, exp(M, identity_element(M, p), X)) #for groups # Xc = zeros(3) # vee!(M, Xc, q, log(M, q, q̂)) # return Xc # # return (Xc'*Xc)[1] # end # Xc_0 = [0.0; 0.0; 0.0] # deepcopy(e0) # Xc_1 = [10.0; 0.0; pi/2] # deepcopy(z) # J_ = Zygote.jacobian( # ()->begin # f_SE2( # log(M, e0, z), # exp(M, e0, hat(M, e0, Xc_0)), # exp(M, e0, hat(M, e0, Xc_1)) # ) # end, # Zygote.Params([Xc_0, Xc_1]) # ) # Jx0 = J_[x0] # Jx1 = J_[x1] # ## # end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
code
5222
# using Revise using Test using LinearAlgebra using IncrementalInference using ManifoldsBase using Manifolds, Manopt import Optim using FiniteDifferences, ManifoldDiff import Rotations as _Rot ## # finitediff setup r_backend = ManifoldDiff.TangentDiffBackend( ManifoldDiff.FiniteDifferencesBackend() ) ## @testset "ManifoldDiff, Basic test" begin ## # problem setup n = 100 σ = π / 8 M = Manifolds.Sphere(2) p = 1 / sqrt(2) * [1.0, 0.0, 1.0] data = [exp(M, p, σ * rand(M; vector_at=p)) for i in 1:n]; # objective function f(M, p) = sum(1 / (2 * n) * distance.(Ref(M), Ref(p), data) .^ 2) # f_(p) = f(M,p) # non-manual: intrinsic finite differences gradient function grad_f_FD(M,p) f_(p_) = f(M,p_) ManifoldDiff.gradient(M, f_, p, r_backend) end # manual gradient # grad_f(M, p) = sum(1 / n * grad_distance.(Ref(M), data, Ref(p))); # and solve @time m1 = gradient_descent(M, f, grad_f_FD, data[1]) @info "Basic Manopt test" string(m1') @test isapprox(p, m1; atol=0.15) ## end ## """ ManifoldWrapper{TM<:AbstractManifold} <: Optim.Manifold Adapts Manifolds.jl manifolds for use in Optim.jl """ struct ManifoldWrapper{TM<:AbstractManifold} <: Optim.Manifold M::TM end function Optim.retract!(M::ManifoldWrapper, x) ManifoldsBase.embed_project!(M.M, x, x) return x end function Optim.project_tangent!(M::ManifoldWrapper, g, x) ManifoldsBase.embed_project!(M.M, g, x, g) return g end ## @testset "Optim.jl ManifoldWrapper example from mateuszbaran (copied to catch issues on future changes)" begin ## # Example modified from: https://gist.github.com/mateuszbaran/0354c0edfb9cdf25e084a2b915816a09 # example usage of Manifolds.jl manifolds in Optim.jl M = Manifolds.Sphere(2) x0 = [1.0, 0.0, 0.0] q = [0.0, 1.0, 0.0] f(p) = 0.5 * distance(M, p, q)^2 # manual gradient function g!(X, p) log!(M, X, p, q) X .*= -1 println(p, X) end ## sol = Optim.optimize(f, g!, x0, Optim.ConjugateGradient(; manifold=ManifoldWrapper(M))) @test isapprox([0,1,0.], sol.minimizer; atol=1e-6) ## finitediff gradient (non-manual) function g_FD!(X,p) X .= ManifoldDiff.gradient(M, f, p, r_backend) X end # x0 = [1.0, 0.0, 0.0] sol = Optim.optimize(f, g_FD!, x0, Optim.ConjugateGradient(; manifold=ManifoldWrapper(M))) @test isapprox([0,1,0.], sol.minimizer; atol=1e-6) ## # x0 = [1.0, 0.0, 0.0] # # internal ForwardDfif doesnt work out the box on Manifolds # sol = Optim.optimize(f, x0, Optim.ConjugateGradient(; manifold=ManifoldWrapper(M)); autodiff=:forward ) # @test isapprox([0,1,0.], sol.minimizer; atol=1e-8) ## end @testset "Modified Manifolds.jl ManifoldWrapper <: Optim.Manifold for SpecialEuclidean(2)" begin ## M = Manifolds.SpecialEuclidean(2) e0 = ArrayPartition([0,0.], [1 0; 0 1.]) x0 = deepcopy(e0) Cq = 9*ones(3) while 1.5 < abs(Cq[3]) @show Cq .= randn(3) # Cq[3] = 1.5 # breaks ConjugateGradient end q = exp(M,e0,hat(M,e0,Cq)) f(p) = distance(M, p, q)^2 ## finitediff gradient (non-manual) function g_FD!(X,p) X .= ManifoldDiff.gradient(M, f, p, r_backend) X end ## sanity check gradients X = hat(M, e0, zeros(3)) g_FD!(X, q) # gradient at the optimal point should be zero @show X_ = [X.x[1][:]; X.x[2][:]] @test isapprox(0, sum(abs.(X_)); atol=1e-8 ) # gradient not the optimal point should be non-zero g_FD!(X, e0) @show X_ = [X.x[1][:]; X.x[2][:]] @test 0.01 < sum(abs.(X_)) ## do optimization x0 = deepcopy(e0) sol = Optim.optimize(f, g_FD!, x0, Optim.ConjugateGradient(; manifold=ManifoldWrapper(M))) Cq .= randn(3) # Cq[ @show sol.minimizer @test isapprox( f(sol.minimizer), 0; atol=1e-3 ) @test isapprox( 0, sum(abs.(log(M, e0, compose(M, inv(M,q), sol.minimizer)))); atol=1e-3) ## end @testset "Modified ManifoldsWrapper for Optim.Manifolds, SpecialEuclidean(3)" begin ## M = Manifolds.SpecialEuclidean(3) e0 = ArrayPartition([0,0,0.], Matrix(_Rot.RotXYZ(0,0,0.))) x0 = deepcopy(e0) Cq = 0.25*randn(6) q = exp(M,e0,hat(M,e0,Cq)) f(p) = distance(M, p, q)^2 ## finitediff gradient (non-manual) function g_FD!(X,p) X .= ManifoldDiff.gradient(M, f, p, r_backend) X end ## sanity check gradients X = hat(M, e0, zeros(6)) g_FD!(X, q) @show X_ = [X.x[1][:]; X.x[2][:]] # gradient at the optimal point should be zero @test isapprox(0, sum(abs.(X_)); atol=1e-6 ) # gradient not the optimal point should be non-zero g_FD!(X, e0) @show X_ = [X.x[1][:]; X.x[2][:]] @test 0.01 < sum(abs.(X_)) ## do optimization x0 = deepcopy(e0) sol = Optim.optimize(f, g_FD!, x0, Optim.ConjugateGradient(; manifold=ManifoldWrapper(M))) # Cq .= 0.5*randn(6) # Cq[ @show sol.minimizer @test isapprox( f(sol.minimizer), 0; atol=1e-3 ) @test isapprox( 0, sum(abs.(log(M, e0, compose(M, inv(M,q), sol.minimizer)))); atol=1e-3) ## end @testset "Optim.Manifolds, SpecialEuclidean(3), using IIF.optimizeManifold_FD" begin ## M = Manifolds.SpecialEuclidean(3) e0 = ArrayPartition([0,0,0.], Matrix(_Rot.RotXYZ(0,0,0.))) x0 = deepcopy(e0) Cq = 0.5*randn(6) q = exp(M,e0,hat(M,e0,Cq)) f(p) = distance(M, p, q)^2 sol = IncrementalInference.optimizeManifold_FD(M,f,x0) @show sol.minimizer @test isapprox( f(sol.minimizer), 0; atol=5e-3 ) @test isapprox( 0, sum(abs.(log(M, e0, compose(M, inv(M,q), sol.minimizer)))); atol=1e-3) ## end
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
docs
9192
# NEWS on IncrementalInference.jl Releases Currently general maintenance and bug fix changes are mostly tracked via Github Integrations. E.g. see Milestones along with Label filters to quickly find specific issues. - https://github.com/JuliaRobotics/IncrementalInference.jl/milestones?state=closed Also see automated TagBot Release note, e.g.: - https://github.com/JuliaRobotics/IncrementalInference.jl/releases Alternatively, either use the Github Blame, or the Github `/compare/v0.18.0...v0.19.0` API, e.g.: - https://github.com/JuliaRobotics/IncrementalInference.jl/compare/v0.18.0...v0.19.0 The list below highlights breaking changes according to normal semver workflow -- i.e. breaking changes go through at least one deprecatation (via warnings) on the dominant number in the version number. E.g. v0.18 -> v0.19 (warnings) -> v0.20 (breaking). Note that ongoing efforts are made to properly deprecate old code/APIs # Changes in v0.35 - Standardize toward Manopt.jl (currently Riemannian Levenberg-Marquart), still have Optim.jl legacy support (#1784, #1778). - Much faster solves, both parametric and nonparametric (#1783, #1782, #1793). - Better standardize relative factors to use of tangent vectors (#1790). - Now abstract type `CalcFactor` with dedicated dispatches in various cases, e.g. `CalcFactorNormSq`, etc. (#1786). - Bug fixes and inference improvements (#1781, #1785, #1789) - Support for Julia 1.10. - Extension usage of AMD.jl for `ccolamd` variable ordering features, dropped internal SuiteSparse calls. JL 1.10 removal of `SuiteSparse_long` (#1763). - Further bug fixes for transition to `StaticArrays` value stores and computes, including `Position{N}` (#1779, #1776). - Restore `DifferentialEquation.jl` factor `DERelative` functionality and tests that were suppressed in a previous upgrade (#1774, #1777). - Restore previously suppressed tests (#1781, #1721, #1780) - Improve DERelative factor on-manifold operations (#1775, #1802, #1803). - Fixed a typo via deprecation, `solveFactorParametric` replaces `solveFactorParameteric`. # Changes in v0.34 - Start transition to Manopt.jl via Riemannian Levenberg-Marquart. - Deprecate `AbstractRelativeRoots`. - Standardization improvements surrounding weakdeps code extensions. - Code quality improvements along wiht refactoring and reorganizing of file names and locations. - Restoring `DERelative` factors, through v0.34.1 and v0.34.2. - Switching to weakdep AMD.jl for `ccolmod` dependency, part of Julia 1.10 upgrade. Dropping `SuiteSparse_long` dependency. Further fixes necessary to restore full user constrained tree variable order functionality. # Changes in v0.33 - Upgrades for DFG using StructTypes.jl (serialization). # Changes in v0.32 - Major internal refactoring of `CommonConvWrapper` to avoid abstract field types, and better standardization; towards cleanup of internal multihypo handling and naming conventions. - Internal refactoring removing several legacy fields from `CalcFactor`. - All factors now require a `getManifold` definition. - Now have `CalcFactor.manifold` to reduce new allocation load inside hot-loop for solving. - Fixed tesing issues in `testSpecialEuclidean2Mani.jl`. - Refactored, consolidated, and added more in-place operations in surrounding `ccw.measurement`. - Refactor `CommonConvWrapper` to a not non-mutable struct, with several cleanups and some updated compat requirements. - Refactor interal hard type `HypoRecipe`. - Add `MetaPrior` for adding meta data but not influencing the numerical solution. # Changes in v0.31 - `FactorMetaData` is deprecated and replaced by `CalcFactor`. - Updated `Base.deepcopy_internal` fix for use with Julia 1.8.1, see #1629. - Added a few missing exports incl. `getTags`, `_update!, see #1626 #1628. - Refactoring to remove `FactorMetadata` (#1611) and `ConvPerThread` (#1615, #1625) objects, which is consolidated into `CalcFactor` and `CommonConvWrapper`. - Added JuliaFormatter, see #1620. - Add `SnoopPrecompile.jl` on a few basic solve features to start, see #1631. - Support n-ary parametric solving such as OAS factors. # Changes in v0.30 - `ArrayPartition` should be used instead of `ProductRepr`, see issue #1537. - Remove old deprecated option keywords in `addVariable` and `addFactor`. - Improve `IIF.solveGraphParametric`. - Introduce `IIF.autoinitParametric!`. - Upgrade `initAll!(dfg, :parametric)`. - Refactor many files to subfolders `src/services` or `src/entities`. # Changes in v0.29 - Upgrade to Manifolds.jl v0.8 - Deprecate `initManual!`, instead use `initVariable!`. # Changes in v0.28 - `HeatmapGridDensity` now only supports `ManifoldKernelDensity` functions. - `PackedHeatmapGridDensity` has an expanded fields to support future stash and cache serialization strategies. - Internal `parchDistribution` functions have been added towards future stashed serialization strategies. - Internal `_update!` function supports updating of the `HeatmapGridDensity` distribution. - Unpacking of `PackedManifoldKernelDensity` is more versatile with improved `.partial` and `.bw` options. - Bugfix on `multihypo=` which now includes `nullSurplus` on sibling relative factors to a variable with a `multihypo` factor, #1518. # Changes in v0.27 - InMemDFGType is deprecated in favor of LocalDFG (exported from DistributedFactorGraphs). - Factor serialization is now top level JSON only #1476. - Serialization of distributions are now JSON only #1468, #1472, #1473 (removed custom string legacy). - Fix chicken and egg problem on unpackFactor, change `convert` to `reconstFactorData`, #1424. - Add factor `preambleCache(dfg, vecVars, usrfnc)`, #1462, #1466. Doesn't work for parametric yet (#1480). - Add `CalcFactor.cache` using preamble, #1481. Not thread safe yet. - Standardize local graph naming to `LocalDFG`, #1479. - Refactor getDimension and sampling, #1463. - Language upgrades on `qr` for Julia 1.7, #1464. - Various other fixes and upgrades, https://github.com/JuliaRobotics/IncrementalInference.jl/milestone/111?closed=1 - Add distribution serialization for Rayleigh. - Add `Position{N}` and `Position1`..`Position4` as new standard and aliases for `ContinuousScalar`, `ContinuousEuclid{N}`. # Changes in v0.26 - Standarding (non-binding) easy factor dipatch cases so measurement field is under `.Z` (#1441). - `CalcFactor._allowThreads` can now be used as workaround for `Threads` yield blocking issue during first run (#1451). - Canonical graph generator API change to `generateGraph_ABC` (#1454). # Changes in v0.25 - Changed API to `testFactorResidualBinary(fct, meas::Tuple, (T_i, param_i),...)` to grow beyond binary. - PPE methods used keyword `method::AbstractPointParametricType` which is now replaced with the keyword `ppeType`. - Belief points are now stored as a `Vector{P}` (rather than legacy `Matrix`), and currently still under the restriction `P <: AbstractVector{<:Real}`. Objective is moving to `P` any user desired point that fits with the JuliaManifolds/Manifolds.jl patterns. - Deprecating use of `ensureAllInitialized!`, use `initAll!` instead. - Upstream `calcHelix_T` canonical generator utility from RoME.jl. - Deserialization of factors with DFG needs new API and change of solverData and CCW type in factor. - Deprecate use of `getParametricMeasurement` and use `getMeasurementParametric` instead, and add `<:AbstractManifold` to API. - Deprecate use of `solveBinaryFactorParameteric`, instead use `solveFactorParametric`. - Deprecating `approxConvBinary`, use `approxConvBelief` instead. - Removing obsolete `approxConvCircular`, use `approxConvBelief` instead. - `getSample` should return a single sample and no longer takes the N(number of samples) parameter. - `solveTree!` / `solveGraph!` now returns just one value `tree<:AbstractBayesTree`. Previous version returned three values, `tree, smt, hist` (#1379). - **Note for v0.25.5** Serialization of newly introduced type `PackedHeatmapGridDensity` changed from v0.25.4, unlikely have yet been used publically, therefore emphasizing fastest possible standardization in this case (even though this particular event does not strictly follow semver). General usage and operation is effectively unchanged,see #1435. # Changes in v0.24 - Update compat for ManifoldsBase.jl v0.11 with `AbstractManifold`. - Transition to only `getManifold` (instead of `getManifolds`), thereby moving towards exclusively using Manifolds.jl, see #1234. - Deprecate use of `getFactorMean`, use `IIF.getParametricMeasurement` instead. - Upstreamed `is/set Marginalized` to DFG (#1269). # Changes in v0.23 - New `@defVariable` only uses `ManifoldsBase.Manifold` as base abstraction for variable types. # Changes in v0.22 - Work in progress toward `ManifoldsBase.Manifold` as base abstraction for variable types. # Changes in v0.21 - `CalcResidual` no longer takes a `residual` as input parameter and should return `residual`, see #467 . # Changes in v0.20 - The user factor API call strategy has been simplified via `CalcResidual`, see #467 for details. - User factor API for `getSample` and `.specialsampler` has been standardized via `CalcResidual` (#927) -- for ongoing work please follow #1099 and #1094 and #1069.
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
0.35.4
2b7fa2c68128e0e5a086f997cff205410812509c
docs
6102
# IncrementalInference.jl > Click on badges to follow links: | Stable Release | Dev branch | Coverage | Documentation | |----------------|------------|----------|---------------| | [![iif-ci-stb][iif-ci-stb-img]][iif-ci-stb-url] <br> [![version][iif-ver-img]][iif-rel-url] | [![iif-ci-dev-img]][iif-ci-dev-url] <br> [![iif-commits-url]][contributors-url] <br> [![issues-time]][issues-url] | [![doi-img]][doi-url] <br> [![iif-cov-img]][iif-cov-url] <br> [![issues-open]][issues-url] | [![cjl-slack-badge]][cjl-slack] <br> [![caesar-docs]][cjl-docs-url] <br> [![dfg-docs]][dfg-docs-url] | Optimization routines for incremental non-parametric and parametric solutions based on factor graphs and the Bayes (Junction) tree implemented in the [Julia language][jlorg-url]. # Introduction This package implements a few different non-Gaussian factor graph inference algorithms, primarily - Multi-Modal iSAM (MM-iSAM) ([see references][cjl-docs-refs]) which does hybrid non-parametric and parametric inference/state-estimation over large factor graphs. - Batch Parametric (akin to conventional "non-linear least squares"), - Max-mixtures parametric, - Other multiparametric and non-Gaussian algorithms are in the works and will be announced in due course. Fundamentally, inference is performed via the Bayes (junction) tree where Chapman-Kolmogorov transit integral solutions are based on marginal-joint belief estimation (a sum-product / belief-propagation approximation algorithm). Many benefits such as clique recycling are also available. See the common Caesar.jl documenation for more details. [![caesar-docs]][cjl-docs-url] This package forms a cardinal piece of the [Caesar.jl][cjl-url] robotics toolkit, including 3D visualization and database interaction, which can serve as a base station for a robotic platform. A standalone Robot Motion Estimate ([RoME.jl][rjl-url]) package extends the available variables, factors, and utilities for use in robotic navigation. [![iif-deps-img]][iif-deps-jlh] Note, that IncrementalInference.jl **does not** have to be used with RoME.jl / Caesar.jl -- IncrementalInference.jl only implements the algebraic inference operations against mathematical abstractions such as Manifolds.jl. Furthermore, please contact [email protected] for more formal support on this package, [NavAbility(TM) by WhereWhen.ai Technologies Inc.][wwai-url]. # Examples See the common Caesar.jl documenation for more details [![caesar-docs]][cjl-docs-url]. Further examples can be found in the examples and test folders. ## Installation Install the package from inside Julia ```julia pkg> add IncrementalInference ``` # Cite and Contributors We are grateful for many, many contributions within the Julia package ecosystem -- see the [`Project.toml`](https://github.com/JuliaRobotics/Caesar.jl/blob/master/Project.toml) files for a far reaching list of upstream packages and contributions. Consider citing our work using the common reference at [Caesar.jl Citation with IncrementalInference.jl DOI](https://github.com/JuliaRobotics/Caesar.jl#contributors) ## Get Involved, and Code of Conduct This project adheres to the [JuliaRobotics code of conduct](https://github.com/JuliaRobotics/administration/blob/master/code_of_conduct.md), and we invite contributions or comments from the community. Use the slack channel, Julia Discourse, or Github issues to get in touch. # References See [references of interest here][cjl-docs-refs] ## Legacy Pre-install the following packages system wide packages[, and easily draw factor graph and Bayes tree]: ```bash sudo apt-get install hdf5-tools sudo apt-get install graphviz xdot # optional ``` [iif-deps-img]: https://juliahub.com/docs/IncrementalInference/deps.svg [iif-deps-jlh]: https://juliahub.com/ui/Packages/IncrementalInference/NrVw2??page=2 [doi-img]: https://zenodo.org/badge/DOI/10.5281/zenodo.5146221.svg [doi-url]: https://doi.org/10.5281/zenodo.5146221 [dfg-docs]: https://img.shields.io/badge/DFGDocs-latest-blue.svg [dfg-docs-url]: https://juliarobotics.org/DistributedFactorGraphs.jl/latest/ <!-- replicated in Caesar.jl README --> [iif-ci-dev-img]: https://github.com/JuliaRobotics/IncrementalInference.jl/actions/workflows/ci.yml/badge.svg [iif-ci-dev-url]: https://github.com/JuliaRobotics/IncrementalInference.jl/actions/workflows/ci.yml [iif-ci-stb-img]: https://github.com/JuliaRobotics/IncrementalInference.jl/actions/workflows/ci.yml/badge.svg?branch=release%2Fv0.26 [iif-ci-stb-url]: https://github.com/JuliaRobotics/IncrementalInference.jl/actions/workflows/ci.yml [iif-ver-img]: https://juliahub.com/docs/IncrementalInference/version.svg [iif-rel-url]: https://github.com/JuliaRobotics/IncrementalInference.jl/releases [iif-milestones]: https://github.com/JuliaRobotics/IncrementalInference.jl/milestones [iif-cov-img]: https://codecov.io/github/JuliaRobotics/IncrementalInference.jl/coverage.svg?branch=master [iif-cov-url]: https://codecov.io/github/JuliaRobotics/IncrementalInference.jl?branch=master [iif-commits-url]: https://img.shields.io/github/commit-activity/y/JuliaRobotics/IncrementalInference.jl.svg?color=dark-green [contributors-url]: https://github.com/JuliaRobotics/IncrementalInference.jl/graphs/contributors [issues-time]: https://isitmaintained.com/badge/resolution/JuliaRobotics/IncrementalInference.jl.svg [issues-open]: https://isitmaintained.com/badge/open/JuliaRobotics/IncrementalInference.jl.svg [issues-url]: https://github.com/JuliaRobotics/IncrementalInference.jl/issues [rjl-url]: https://github.com/JuliaRobotics/RoME.jl [cjl-url]: https://github.com/JuliaRobotics/Caesar.jl [caesar-docs]: https://img.shields.io/badge/CaesarDocs-latest-blue.svg [cjl-docs-url]: http://juliarobotics.github.io/Caesar.jl/latest/ [cjl-docs-refs]: http://www.juliarobotics.org/Caesar.jl/latest/refs/literature/ [cjl-slack-badge]: https://img.shields.io/badge/Caesarjl-Slack-green.svg?style=popout [cjl-slack]: https://join.slack.com/t/caesarjl/shared_invite/zt-ucs06bwg-y2tEbddwX1vR18MASnOLsw [jlorg-url]: http://www.julialang.org/ [wwai-url]: https://www.wherewhen.ai
IncrementalInference
https://github.com/JuliaRobotics/IncrementalInference.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
259
module DiffEqBaseCUDAExt using DiffEqBase, CUDA function DiffEqBase.ODE_DEFAULT_NORM( u::CuArray{T}, t) where {T <: Union{AbstractFloat, Complex}} sqrt(sum(DiffEqBase.sse, u; init = DiffEqBase.sse(zero(T))) / DiffEqBase.totallength(u)) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1007
module DiffEqBaseChainRulesCoreExt using DiffEqBase using DiffEqBase.SciMLBase import DiffEqBase: numargs, AbstractSensitivityAlgorithm, AbstractDEProblem import ChainRulesCore import ChainRulesCore: NoTangent ChainRulesCore.rrule(::typeof(numargs), f) = (numargs(f), df -> (NoTangent(), NoTangent())) ChainRulesCore.@non_differentiable DiffEqBase.checkkwargs(kwargshandle) function ChainRulesCore.frule(::typeof(DiffEqBase.solve_up), prob, sensealg::Union{Nothing, AbstractSensitivityAlgorithm}, u0, p, args...; kwargs...) DiffEqBase._solve_forward( prob, sensealg, u0, p, SciMLBase.ChainRulesOriginator(), args...; kwargs...) end function ChainRulesCore.rrule(::typeof(DiffEqBase.solve_up), prob::AbstractDEProblem, sensealg::Union{Nothing, AbstractSensitivityAlgorithm}, u0, p, args...; kwargs...) DiffEqBase._solve_adjoint( prob, sensealg, u0, p, SciMLBase.ChainRulesOriginator(), args...; kwargs...) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
214
module DiffEqBaseDistributionsExt using Distributions, DiffEqBase DiffEqBase.handle_distribution_u0(_u0::Distributions.Sampleable) = rand(_u0) DiffEqBase.isdistribution(_u0::Distributions.Sampleable) = true end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1942
module DiffEqBaseEnzymeExt using DiffEqBase import DiffEqBase: value, fastpow using Enzyme import Enzyme: Const using ChainRulesCore function Enzyme.EnzymeRules.augmented_primal(config::Enzyme.EnzymeRules.RevConfigWidth{1}, func::Const{typeof(DiffEqBase.solve_up)}, ::Type{Duplicated{RT}}, prob, sensealg::Union{Const{Nothing}, Const{<:DiffEqBase.AbstractSensitivityAlgorithm}}, u0, p, args...; kwargs...) where {RT} @inline function copy_or_reuse(val, idx) if Enzyme.EnzymeRules.overwritten(config)[idx] && ismutable(val) return deepcopy(val) else return val end end @inline function arg_copy(i) copy_or_reuse(args[i].val, i + 5) end res = DiffEqBase._solve_adjoint( copy_or_reuse(prob.val, 2), copy_or_reuse(sensealg.val, 3), copy_or_reuse(u0.val, 4), copy_or_reuse(p.val, 5), SciMLBase.EnzymeOriginator(), ntuple(arg_copy, Val(length(args)))...; kwargs...) dres = Enzyme.make_zero(res[1])::RT tup = (dres, res[2]) return Enzyme.EnzymeRules.AugmentedReturn{RT, RT, Any}(res[1], dres, tup::Any) end function Enzyme.EnzymeRules.reverse(config::Enzyme.EnzymeRules.RevConfigWidth{1}, func::Const{typeof(DiffEqBase.solve_up)}, ::Type{Duplicated{RT}}, tape, prob, sensealg::Union{Const{Nothing}, Const{<:DiffEqBase.AbstractSensitivityAlgorithm}}, u0, p, args...; kwargs...) where {RT} dres, clos = tape dres = dres::RT dargs = clos(dres) for (darg, ptr) in zip(dargs, (func, prob, sensealg, u0, p, args...)) if ptr isa Enzyme.Const continue end if darg == ChainRulesCore.NoTangent() continue end ptr.dval .+= darg end Enzyme.make_zero!(dres.u) return ntuple(_ -> nothing, Val(length(args) + 4)) end Enzyme.Compiler.known_ops[typeof(DiffEqBase.fastpow)] = (:pow, 2, nothing) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
335
module DiffEqBaseGeneralizedGeneratedExt if isdefined(Base, :get_extension) using DiffEqBase using GeneralizedGenerated else using ..DiffEqBase using ..GeneralizedGenerated end function SciMLBase.numargs(::GeneralizedGenerated.RuntimeFn{Args}) where {Args} GeneralizedGenerated.from_type(Args) |> length end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
328
module DiffEqBaseMPIExt if isdefined(Base, :get_extension) using DiffEqBase import MPI else using ..DiffEqBase import ..MPI end if isdefined(MPI, :AbstractMultiRequest) function DiffEqBase.anyeltypedual(::Type{T}, counter = 0) where {T <: MPI.AbstractMultiRequest} Any end end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1379
module DiffEqBaseMeasurementsExt if isdefined(Base, :get_extension) using DiffEqBase import DiffEqBase: value using Measurements else using ..DiffEqBase import ..DiffEqBase: value using ..Measurements end function DiffEqBase.promote_u0(u0::AbstractArray{<:Measurements.Measurement}, p::AbstractArray{<:Measurements.Measurement}, t0) u0 end DiffEqBase.promote_u0(u0, p::AbstractArray{<:Measurements.Measurement}, t0) = eltype(p).(u0) value(x::Type{Measurements.Measurement{T}}) where {T} = T value(x::Measurements.Measurement) = Measurements.value(x) @inline DiffEqBase.fastpow(x::Measurements.Measurement, y::Measurements.Measurement) = x^y # Support adaptive steps should be errorless @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{ <:Measurements.Measurement, N }, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Measurements.Measurement, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Measurements.Measurement, t) abs(Measurements.value(u)) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1772
module DiffEqBaseMonteCarloMeasurementsExt if isdefined(Base, :get_extension) using DiffEqBase import DiffEqBase: value using MonteCarloMeasurements else using ..DiffEqBase import ..DiffEqBase: value using ..MonteCarloMeasurements end function DiffEqBase.promote_u0( u0::AbstractArray{ <:MonteCarloMeasurements.AbstractParticles, }, p::AbstractArray{<:MonteCarloMeasurements.AbstractParticles}, t0) u0 end function DiffEqBase.promote_u0(u0, p::AbstractArray{<:MonteCarloMeasurements.AbstractParticles}, t0) eltype(p).(u0) end DiffEqBase.value(x::Type{MonteCarloMeasurements.AbstractParticles{T, N}}) where {T, N} = T DiffEqBase.value(x::MonteCarloMeasurements.AbstractParticles) = mean(x.particles) @inline function DiffEqBase.fastpow(x::MonteCarloMeasurements.AbstractParticles, y::MonteCarloMeasurements.AbstractParticles) x^y end # Support adaptive steps should be errorless @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{ <:MonteCarloMeasurements.AbstractParticles, N}, t) where {N} sqrt(mean(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(t)))) end @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{ <:MonteCarloMeasurements.AbstractParticles, N}, t::AbstractArray{ <:MonteCarloMeasurements.AbstractParticles, N}) where {N} sqrt(mean(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(value.(t))))) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::MonteCarloMeasurements.AbstractParticles, t) abs(value(u)) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
7054
module DiffEqBaseReverseDiffExt using DiffEqBase import DiffEqBase: value import ReverseDiff import DiffEqBase.ArrayInterface import DiffEqBase.ForwardDiff function DiffEqBase.anyeltypedual(::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where { V, D, N, VA, DA, T <: ReverseDiff.TrackedArray{V, D, N, VA, DA}} DiffEqBase.anyeltypedual(V, Val{counter}) end DiffEqBase.value(x::Type{ReverseDiff.TrackedReal{V, D, O}}) where {V, D, O} = V function DiffEqBase.value(x::Type{ ReverseDiff.TrackedArray{V, D, N, VA, DA}, }) where {V, D, N, VA, DA} Array{V, N} end DiffEqBase.value(x::ReverseDiff.TrackedReal) = x.value DiffEqBase.value(x::ReverseDiff.TrackedArray) = x.value # Force TrackedArray from TrackedReal when reshaping W\b DiffEqBase._reshape(v::AbstractVector{<:ReverseDiff.TrackedReal}, siz) = reduce(vcat, v) DiffEqBase.promote_u0(u0::ReverseDiff.TrackedArray, p::ReverseDiff.TrackedArray, t0) = u0 function DiffEqBase.promote_u0(u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::ReverseDiff.TrackedArray, t0) u0 end function DiffEqBase.promote_u0(u0::ReverseDiff.TrackedArray, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) u0 end function DiffEqBase.promote_u0(u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) u0 end DiffEqBase.promote_u0(u0, p::ReverseDiff.TrackedArray, t0) = ReverseDiff.track(u0) function DiffEqBase.promote_u0( u0, p::ReverseDiff.TrackedArray{T}, t0) where {T <: ForwardDiff.Dual} ReverseDiff.track(T.(u0)) end DiffEqBase.promote_u0(u0, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) = eltype(p).(u0) # Support adaptive with non-tracked time @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedArray, t) sqrt(sum(abs2, DiffEqBase.value(u)) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{<:ReverseDiff.TrackedReal, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:ReverseDiff.TrackedReal, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedReal, t) abs(DiffEqBase.value(u)) end # Support TrackedReal time, don't drop tracking on the adaptivity there @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedArray, t::ReverseDiff.TrackedReal) sqrt(sum(abs2, u) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{<:ReverseDiff.TrackedReal, N}, t::ReverseDiff.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:ReverseDiff.TrackedReal, N}, t::ReverseDiff.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedReal, t::ReverseDiff.TrackedReal) abs(u) end # `ReverseDiff.TrackedArray` function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::ReverseDiff.TrackedArray, p::ReverseDiff.TrackedArray, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0, p::ReverseDiff.TrackedArray, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::ReverseDiff.TrackedArray, p, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end # `AbstractArray{<:ReverseDiff.TrackedReal}` function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::AbstractArray{<:ReverseDiff.TrackedReal}, args...; kwargs...) DiffEqBase.solve_up(prob, sensealg, ArrayInterface.aos_to_soa(u0), ArrayInterface.aos_to_soa(p), args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0, p::AbstractArray{<:ReverseDiff.TrackedReal}, args...; kwargs...) DiffEqBase.solve_up( prob, sensealg, u0, ArrayInterface.aos_to_soa(p), args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::ReverseDiff.TrackedArray, p::AbstractArray{<:ReverseDiff.TrackedReal}, args...; kwargs...) DiffEqBase.solve_up( prob, sensealg, u0, ArrayInterface.aos_to_soa(p), args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::AbstractArray{<:ReverseDiff.TrackedReal}, p, args...; kwargs...) DiffEqBase.solve_up( prob, sensealg, ArrayInterface.aos_to_soa(u0), p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::ReverseDiff.TrackedArray, args...; kwargs...) DiffEqBase.solve_up( prob, sensealg, ArrayInterface.aos_to_soa(u0), p, args...; kwargs...) end # Required becase ReverseDiff.@grad function DiffEqBase.solve_up is not supported! import DiffEqBase: solve_up ReverseDiff.@grad function solve_up(prob, sensealg, u0, p, args...; kwargs...) out = DiffEqBase._solve_adjoint(prob, sensealg, ReverseDiff.value(u0), ReverseDiff.value(p), SciMLBase.ReverseDiffOriginator(), args...; kwargs...) function actual_adjoint(_args...) original_adjoint = out[2](_args...) if isempty(args) # alg is missing tuple(original_adjoint[1:4]..., original_adjoint[6:end]...) else original_adjoint end end Array(out[1]), actual_adjoint end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
342
module DiffEqBaseSparseArraysExt import SparseArrays import DiffEqBase: NAN_CHECK, INFINITE_OR_GIANT function NAN_CHECK(x::SparseArrays.AbstractSparseMatrixCSC) any(NAN_CHECK, SparseArrays.nonzeros(x)) end function INFINITE_OR_GIANT(x::SparseArrays.AbstractSparseMatrixCSC) any(INFINITE_OR_GIANT, SparseArrays.nonzeros(x)) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4391
module DiffEqBaseTrackerExt if isdefined(Base, :get_extension) using DiffEqBase import DiffEqBase: value import Tracker else using ..DiffEqBase import ..DiffEqBase: value import ..Tracker end DiffEqBase.value(x::Type{Tracker.TrackedReal{T}}) where {T} = T DiffEqBase.value(x::Type{Tracker.TrackedArray{T, N, A}}) where {T, N, A} = Array{T, N} DiffEqBase.value(x::Tracker.TrackedReal) = x.data DiffEqBase.value(x::Tracker.TrackedArray) = x.data DiffEqBase.promote_u0(u0::Tracker.TrackedArray, p::Tracker.TrackedArray, t0) = u0 function DiffEqBase.promote_u0(u0::AbstractArray{<:Tracker.TrackedReal}, p::Tracker.TrackedArray, t0) u0 end function DiffEqBase.promote_u0(u0::Tracker.TrackedArray, p::AbstractArray{<:Tracker.TrackedReal}, t0) u0 end function DiffEqBase.promote_u0(u0::AbstractArray{<:Tracker.TrackedReal}, p::AbstractArray{<:Tracker.TrackedReal}, t0) u0 end DiffEqBase.promote_u0(u0, p::Tracker.TrackedArray, t0) = Tracker.track(u0) DiffEqBase.promote_u0(u0, p::AbstractArray{<:Tracker.TrackedReal}, t0) = eltype(p).(u0) @inline DiffEqBase.fastpow(x::Tracker.TrackedReal, y::Tracker.TrackedReal) = x^y @inline Base.any(f::Function, x::Tracker.TrackedArray) = any(f, Tracker.data(x)) # Support adaptive with non-tracked time @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedArray, t) sqrt(sum(abs2, DiffEqBase.value(u)) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:Tracker.TrackedReal, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Tracker.TrackedReal, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedReal, t) = abs(DiffEqBase.value(u)) # Support TrackedReal time, don't drop tracking on the adaptivity there @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedArray, t::Tracker.TrackedReal) sqrt(sum(abs2, u) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:Tracker.TrackedReal, N}, t::Tracker.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Tracker.TrackedReal, N}, t::Tracker.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedReal, t::Tracker.TrackedReal) = abs(u) function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::Tracker.TrackedArray, p::Tracker.TrackedArray, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0::Tracker.TrackedArray, p, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.AbstractDEProblem, sensealg::Union{ SciMLBase.AbstractOverloadingSensitivityAlgorithm, Nothing}, u0, p::Tracker.TrackedArray, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end Tracker.@grad function DiffEqBase.solve_up(prob, sensealg::Union{Nothing, SciMLBase.AbstractOverloadingSensitivityAlgorithm }, u0, p, args...; kwargs...) sol, pb_f = DiffEqBase._solve_adjoint( prob, sensealg, Tracker.data(u0), Tracker.data(p), SciMLBase.TrackerOriginator(), args...; kwargs...) if sol isa AbstractArray !hasfield(typeof(sol), :u) && return sol, pb_f # being safe here return sol.u, pb_f # AbstractNoTimeSolution isa AbstractArray end return convert(AbstractArray, sol), pb_f end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1189
module DiffEqBaseUnitfulExt if isdefined(Base, :get_extension) using DiffEqBase import DiffEqBase: value using Unitful else using ..DiffEqBase import ..DiffEqBase: value using ..Unitful end # Support adaptive errors should be errorless for exponentiation value(x::Type{Unitful.AbstractQuantity{T, D, U}}) where {T, D, U} = T value(x::Unitful.AbstractQuantity) = x.val @inline function DiffEqBase.ODE_DEFAULT_NORM( u::AbstractArray{ <:Unitful.AbstractQuantity, N }, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Unitful.AbstractQuantity, N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::Unitful.AbstractQuantity, t) = abs(value(u)) @inline function DiffEqBase.UNITLESS_ABS2(x::Unitful.AbstractQuantity) real(abs2(x) / oneunit(x) * oneunit(x)) end DiffEqBase._rate_prototype(u, t, onet) = u / unit(t) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
6187
module DiffEqBase if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@max_methods")) @eval Base.Experimental.@max_methods 1 end import PrecompileTools using ArrayInterface using StaticArraysCore # data arrays using LinearAlgebra, Printf using DocStringExtensions using FunctionWrappers: FunctionWrapper using MuladdMacro, Parameters using Statistics using FastBroadcast: @.., True, False using Static: reduce_tup import RecursiveArrayTools import TruncatedStacktraces using Setfield using ForwardDiff using EnumX using Markdown using ConcreteStructs: @concrete using FastClosures: @closure # Could be made optional/glue import PreallocationTools import FunctionWrappersWrappers using SciMLBase using SciMLOperators: AbstractSciMLOperator, AbstractSciMLScalarOperator using SciMLBase: @def, DEIntegrator, AbstractDEProblem, AbstractDiffEqInterpolation, DECallback, AbstractDEOptions, DECache, AbstractContinuousCallback, AbstractDiscreteCallback, AbstractLinearProblem, AbstractNonlinearProblem, AbstractOptimizationProblem, AbstractSteadyStateProblem, AbstractJumpProblem, AbstractNoiseProblem, AbstractEnsembleProblem, AbstractDynamicalODEProblem, AbstractDEAlgorithm, StandardODEProblem, AbstractIntegralProblem, AbstractSensitivityAlgorithm, AbstractODEAlgorithm, AbstractSDEAlgorithm, AbstractDDEAlgorithm, AbstractDAEAlgorithm, AbstractSDDEAlgorithm, AbstractRODEAlgorithm, DAEInitializationAlgorithm, AbstractSteadyStateAlgorithm, AbstractODEProblem, AbstractDiscreteProblem, AbstractNonlinearAlgorithm, AbstractSDEProblem, AbstractRODEProblem, AbstractDDEProblem, AbstractDAEProblem, AbstractSDDEProblem, AbstractBVProblem, AbstractTimeseriesSolution, AbstractNoTimeSolution, numargs, AbstractODEFunction, AbstractSDEFunction, AbstractRODEFunction, AbstractDDEFunction, AbstractSDDEFunction, AbstractDAEFunction, AbstractNonlinearFunction, AbstractEnsembleSolution, AbstractODESolution, AbstractRODESolution, AbstractDAESolution, AbstractDDESolution, EnsembleAlgorithm, EnsembleSolution, EnsembleSummary, NonlinearSolution, TimeGradientWrapper, TimeDerivativeWrapper, UDerivativeWrapper, UJacobianWrapper, ParamJacobianWrapper, JacobianWrapper, check_error!, has_jac, has_tgrad, has_Wfact, has_Wfact_t, has_paramjac, AbstractODEIntegrator, AbstractSDEIntegrator, AbstractRODEIntegrator, AbstractDDEIntegrator, AbstractSDDEIntegrator, AbstractDAEIntegrator, unwrap_cache, has_reinit, reinit!, postamble!, last_step_failed, islinear, has_stats, initialize_dae!, build_solution, solution_new_retcode, solution_new_tslocation, plot_indices, NullParameters, isinplace, AbstractADType, AbstractDiscretization, DISCRETE_OUTOFPLACE_DEFAULT, DISCRETE_INPLACE_DEFAULT, has_analytic, calculate_solution_errors!, AbstractNoiseProcess, has_colorvec, parameterless_type, undefined_exports, is_diagonal_noise, AbstractDiffEqFunction, sensitivity_solution, interp_summary, AbstractHistoryFunction, LinearInterpolation, ConstantInterpolation, HermiteInterpolation, SensitivityInterpolation, NoAD, @add_kwonly, calculate_ensemble_errors, DEFAULT_UPDATE_FUNC, isconstant, DEFAULT_REDUCTION, isautodifferentiable, isadaptive, isdiscrete, has_syms, AbstractAnalyticalSolution, RECOMPILE_BY_DEFAULT, wrap_sol, has_destats import SciMLBase: solve, init, step!, solve!, __init, __solve, update_coefficients!, update_coefficients, isadaptive, wrapfun_oop, wrapfun_iip, unwrap_fw, promote_tspan, set_u!, set_t!, set_ut! import SciMLBase: AbstractDiffEqLinearOperator # deprecation path import SciMLStructures import Tricks using Reexport Reexport.@reexport using SciMLBase SciMLBase.isfunctionwrapper(x::FunctionWrapper) = true """ $(TYPEDEF) """ abstract type Tableau end """ $(TYPEDEF) """ abstract type ODERKTableau <: Tableau end """ $(TYPEDEF) """ abstract type DECostFunction end import SciMLBase: Void, unwrapped_f include("utils.jl") include("fastpow.jl") include("stats.jl") include("calculate_residuals.jl") include("tableaus.jl") include("internal_falsi.jl") include("internal_itp.jl") include("callbacks.jl") include("common_defaults.jl") include("solve.jl") include("internal_euler.jl") include("forwarddiff.jl") include("termination_conditions_deprecated.jl") # TODO: remove in the next major release include("termination_conditions.jl") include("norecompile.jl") include("integrator_accessors.jl") # This is only used for oop stiff solvers default_factorize(A) = lu(A; check = false) if isdefined(SciMLBase, :AbstractParameterizedFunction) import SciMLBase: AbstractParameterizedFunction else """ $(TYPEDEF) """ abstract type AbstractParameterizedFunction{iip} <: AbstractODEFunction{iip} end end """ $(TYPEDEF) """ struct ConvergenceSetup{P, C} probs::P convergence_axis::C end export initialize!, finalize! export SensitivityADPassThrough export SteadyStateDiffEqTerminationMode, SimpleNonlinearSolveTerminationMode, NormTerminationMode, RelTerminationMode, RelNormTerminationMode, AbsTerminationMode, AbsNormTerminationMode, RelSafeTerminationMode, AbsSafeTerminationMode, RelSafeBestTerminationMode, AbsSafeBestTerminationMode # Deprecated API export NLSolveTerminationMode, NLSolveSafeTerminationOptions, NLSolveTerminationCondition, NLSolveSafeTerminationResult export KeywordArgError, KeywordArgWarn, KeywordArgSilent end # module
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4617
""" calculate_residuals(ũ, u₀, u₁, α, ρ, internalnorm, t) Calculate element-wise residuals ```math \\frac{ũ}{α+\\max{|u₀|,|u₁|}*ρ} ``` """ @inline @muladd function calculate_residuals(ũ::Number, u₀::Number, u₁::Number, α, ρ, internalnorm, t) @fastmath ũ / (α + max(internalnorm(u₀, t), internalnorm(u₁, t)) * ρ) end @inline function calculate_residuals(ũ::Array{T}, u₀::Array{T}, u₁::Array{T}, α::T2, ρ::Real, internalnorm, t) where {T <: Number, T2 <: Number} out = similar(ũ) calculate_residuals!(out, ũ, u₀, u₁, α, ρ, internalnorm, t) out end @inline function calculate_residuals(ũ, u₀, u₁, α, ρ, internalnorm, t) @.. broadcast=false calculate_residuals(ũ, u₀, u₁, α, ρ, internalnorm, t) end """ calculate_residuals(u₀, u₁, α, ρ, internalnorm, t) Calculate element-wise residuals ```math \\frac{u₁ - u₀}{α+\\max{|u₀|,|u₁|}*ρ} ``` """ @inline @muladd function calculate_residuals(u₀::Number, u₁::Number, α, ρ, internalnorm, t) @fastmath (u₁ - u₀) / (α + max(internalnorm(u₀, t), internalnorm(u₁, t)) * ρ) end @inline function calculate_residuals(u₀::Array{T}, u₁::Array{T}, α::T2, ρ::Real, internalnorm, t) where {T <: Number, T2 <: Number} out = similar(u₀) calculate_residuals!(out, u₀, u₁, α, ρ, internalnorm, t) out end @inline function calculate_residuals(u₀, u₁, α, ρ, internalnorm, t) @.. broadcast=false calculate_residuals(u₀, u₁, α, ρ, internalnorm, t) end """ calculate_residuals(E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t) Return element-wise residuals ```math \\frac{δ E₁ + E₂}{α+\\max{scalarnorm(u₀),scalarnorm(u₁)}*ρ}. ``` """ @inline @muladd function calculate_residuals( E₁::Number, E₂::Number, u₀::Number, u₁::Number, α::Real, ρ::Real, δ::Number, scalarnorm, t) @fastmath (δ * E₁ + E₂) / (α + max(scalarnorm(u₀, t), scalarnorm(u₁, t)) * ρ) end @inline function calculate_residuals(E₁::Array{<:Number}, E₂::Array{<:Number}, u₀::Array{<:Number}, u₁::Array{<:Number}, α::Real, ρ::Real, δ::Number, scalarnorm, t) out = similar(u₀) calculate_residuals!(out, E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t) out end @inline function calculate_residuals(E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t) @.. broadcast=false calculate_residuals(E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t) end # Inplace Versions """ DiffEqBase.calculate_residuals!(out, ũ, u₀, u₁, α, ρ, thread=False()) Save element-wise residuals ```math \\frac{ũ}{α+\\max{|u₀|,|u₁|}*ρ} ``` in `out`. The argument `thread` determines whether internal broadcasting on appropriate CPU arrays should be serial (`thread = False()`, default) or use multiple threads (`thread = True()`) when Julia is started with multiple threads. """ @inline function calculate_residuals!(out, ũ, u₀, u₁, α, ρ, internalnorm, t, thread::Union{False, True} = False()) @.. broadcast=false thread=thread out=calculate_residuals( ũ, u₀, u₁, α, ρ, internalnorm, t) nothing end @inline function calculate_residuals!( out::Array, ũ::Array, u₀::Array, u₁::Array, α::Number, ρ::Number, internalnorm::F, t, ::False) where {F} @inbounds @simd ivdep for i in eachindex(out, ũ, u₀, u₁) out[i] = calculate_residuals(ũ[i], u₀[i], u₁[i], α, ρ, internalnorm, t) end nothing end """ calculate_residuals!(out, u₀, u₁, α, ρ, thread=False()) Save element-wise residuals ```math \\frac{u₁ - u₀}{α+\\max{|u₀|,|u₁|}*ρ} ``` in `out`. The argument `thread` determines whether internal broadcasting on appropriate CPU arrays should be serial (`thread = False()`, default) or use multiple threads (`thread = True()`) when Julia is started with multiple threads. """ @inline function calculate_residuals!(out, u₀, u₁, α, ρ, internalnorm, t, thread::Union{False, True} = False()) @.. broadcast=false thread=thread out=calculate_residuals(u₀, u₁, α, ρ, internalnorm, t) end """ calculate_residuals!(out, E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, thread=False()) Calculate element-wise residuals ```math \\frac{δ E₁ + E₂}{α+\\max{scalarnorm(u₀),scalarnorm(u₁)}*ρ}. ``` The argument `thread` determines whether internal broadcasting on appropriate CPU arrays should be serial (`thread = False()`, default) or use multiple threads (`thread = True()`) when Julia is started with multiple threads. """ @inline function calculate_residuals!(out, E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t, thread::Union{False, True} = False()) @.. broadcast=false thread=thread out=calculate_residuals(E₁, E₂, u₀, u₁, α, ρ, δ, scalarnorm, t) out end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
27500
""" initialize!(cb::CallbackSet,u,t,integrator::DEIntegrator) Recursively apply `initialize!` and return whether any modified u """ function initialize!(cb::CallbackSet, u, t, integrator::DEIntegrator) initialize!(u, t, integrator, false, cb.continuous_callbacks..., cb.discrete_callbacks...) end initialize!(cb::CallbackSet{Tuple{}, Tuple{}}, u, t, integrator::DEIntegrator) = false function initialize!(u, t, integrator::DEIntegrator, any_modified::Bool, c::DECallback, cs::DECallback...) c.initialize(c, u, t, integrator) initialize!(u, t, integrator, any_modified || integrator.u_modified, cs...) end function initialize!(u, t, integrator::DEIntegrator, any_modified::Bool, c::DECallback) c.initialize(c, u, t, integrator) any_modified || integrator.u_modified end """ finalize!(cb::CallbackSet,u,t,integrator::DEIntegrator) Recursively apply `finalize!` and return whether any modified u """ function finalize!(cb::CallbackSet, u, t, integrator::DEIntegrator) finalize!(u, t, integrator, false, cb.continuous_callbacks..., cb.discrete_callbacks...) end finalize!(cb::CallbackSet{Tuple{}, Tuple{}}, u, t, integrator::DEIntegrator) = false function finalize!(u, t, integrator::DEIntegrator, any_modified::Bool, c::DECallback, cs::DECallback...) c.finalize(c, u, t, integrator) finalize!(u, t, integrator, any_modified || integrator.u_modified, cs...) end function finalize!(u, t, integrator::DEIntegrator, any_modified::Bool, c::DECallback) c.finalize(c, u, t, integrator) any_modified || integrator.u_modified end # Helpers function Base.isempty(cb::CallbackSet) isempty(cb.continuous_callbacks) && isempty(cb.discrete_callbacks) end Base.isempty(cb::AbstractContinuousCallback) = false Base.isempty(cb::AbstractDiscreteCallback) = false has_continuous_callback(cb::DiscreteCallback) = false has_continuous_callback(cb::ContinuousCallback) = true has_continuous_callback(cb::VectorContinuousCallback) = true has_continuous_callback(cb::CallbackSet) = !isempty(cb.continuous_callbacks) has_continuous_callback(cb::Nothing) = false #======================================================# # Callback handling #======================================================# function get_tmp(integrator::DEIntegrator, callback) _tmp = get_tmp_cache(integrator) _tmp === nothing && return nothing _cache = first(_tmp) if callback.idxs === nothing tmp = _cache elseif !(callback.idxs isa Number) tmp = @view _cache[callback.idxs] else tmp = nothing end return tmp end function get_condition(integrator::DEIntegrator, callback, abst) tmp = get_tmp(integrator, callback) ismutable = !(tmp === nothing) if abst == integrator.t if callback.idxs === nothing tmp = integrator.u elseif callback.idxs isa Number tmp = integrator.u[callback.idxs] else tmp = @view integrator.u[callback.idxs] end elseif abst == integrator.tprev if callback.idxs === nothing tmp = integrator.uprev elseif callback.idxs isa Number tmp = integrator.uprev[callback.idxs] else tmp = @view integrator.uprev[callback.idxs] end else if ismutable if callback.idxs === nothing integrator(tmp, abst, Val{0}) else integrator(tmp, abst, Val{0}, idxs = callback.idxs) end else if callback.idxs === nothing tmp = integrator(abst, Val{0}) else tmp = integrator(abst, Val{0}, idxs = callback.idxs) end end # ismutable && !(callback.idxs isa Number) ? integrator(tmp,abst,Val{0},idxs=callback.idxs) : # tmp = integrator(abst,Val{0},idxs=callback.idxs) end integrator.sol.stats.ncondition += 1 if callback isa VectorContinuousCallback callback.condition( @view(integrator.callback_cache.tmp_condition[1:(callback.len)]), tmp, abst, integrator) return @view(integrator.callback_cache.tmp_condition[1:(callback.len)]) else return callback.condition(tmp, abst, integrator) end end # Use a generated function for type stability even when many callbacks are given @inline function find_first_continuous_callback(integrator, callbacks::Vararg{ AbstractContinuousCallback, N}) where {N} find_first_continuous_callback(integrator, tuple(callbacks...)) end @generated function find_first_continuous_callback(integrator, callbacks::NTuple{N, AbstractContinuousCallback }) where {N} ex = quote tmin, upcrossing, event_occurred, event_idx = find_callback_time(integrator, callbacks[1], 1) identified_idx = 1 end for i in 2:N ex = quote $ex tmin2, upcrossing2, event_occurred2, event_idx2 = find_callback_time( integrator, callbacks[$i], $i) if event_occurred2 && (tmin2 < tmin || !event_occurred) tmin = tmin2 upcrossing = upcrossing2 event_occurred = true event_idx = event_idx2 identified_idx = $i end end end ex = quote $ex return tmin, upcrossing, event_occurred, event_idx, identified_idx, $N end ex end @inline function determine_event_occurance(integrator, callback::VectorContinuousCallback, counter) event_occurred = false if callback.interp_points != 0 addsteps!(integrator) end ts = range(integrator.tprev, stop = integrator.t, length = callback.interp_points) #= # Faster but can be inaccurate if callback.interp_points > 1 dt = (integrator.t - integrator.tprev) / (callback.interp_points-1) else dt = integrator.dt end ts = integrator.tprev:dt:integrator.t =# interp_index = 0 # Check if the event occurred previous_condition = @views(integrator.callback_cache.previous_condition[1:(callback.len)]) if callback.idxs === nothing callback.condition(previous_condition, integrator.uprev, integrator.tprev, integrator) else callback.condition(previous_condition, integrator.uprev[callback.idxs], integrator.tprev, integrator) end integrator.sol.stats.ncondition += 1 ivec = integrator.vector_event_last_time prev_sign = @view(integrator.callback_cache.prev_sign[1:(callback.len)]) next_sign = @view(integrator.callback_cache.next_sign[1:(callback.len)]) if integrator.event_last_time == counter && minimum(ODE_DEFAULT_NORM( ArrayInterface.allowed_getindex(previous_condition, ivec), integrator.t)) <= 100ODE_DEFAULT_NORM(integrator.last_event_error, integrator.t) # If there was a previous event, utilize the derivative at the start to # chose the previous sign. If the derivative is positive at tprev, then # we treat `prev_sign` as negative, and if the derivative is negative then we # treat `prev_sign` as positive, regardless of the positivity/negativity # of the true value due to it being =0 sans floating point issues. # Only due this if the discontinuity did not move it far away from an event # Since near even we use direction instead of location to reset if callback.interp_points == 0 addsteps!(integrator) end # Evaluate condition slightly in future abst = integrator.tprev + integrator.dt * callback.repeat_nudge tmp_condition = get_condition(integrator, callback, abst) @. prev_sign = sign(previous_condition) prev_sign[ivec] = sign(tmp_condition[ivec]) else @. prev_sign = sign(previous_condition) end prev_sign_index = 1 abst = integrator.t next_condition = get_condition(integrator, callback, abst) @. next_sign = sign(next_condition) event_idx = findall_events!(next_sign, callback.affect!, callback.affect_neg!, prev_sign) if sum(event_idx) != 0 event_occurred = true interp_index = callback.interp_points end if callback.interp_points != 0 && !isdiscrete(integrator.alg) && sum(event_idx) != length(event_idx) # Use the interpolants for safety checking fallback = true for i in 2:length(ts) abst = ts[i] copyto!(next_sign, get_condition(integrator, callback, abst)) _event_idx = findall_events!(next_sign, callback.affect!, callback.affect_neg!, prev_sign) if sum(_event_idx) != 0 event_occurred = true event_idx = _event_idx interp_index = i fallback = false break else prev_sign_index = i end end if fallback # If you get here, then you need to reset the event_idx to the # non-interpolated version abst = integrator.t next_condition = get_condition(integrator, callback, abst) @. next_sign = sign(next_condition) event_idx = findall_events!(next_sign, callback.affect!, callback.affect_neg!, prev_sign) interp_index = callback.interp_points end end event_occurred, interp_index, ts, prev_sign, prev_sign_index, event_idx end @inline function determine_event_occurance(integrator, callback::ContinuousCallback, counter) event_occurred = false if callback.interp_points != 0 addsteps!(integrator) end ts = range(integrator.tprev, stop = integrator.t, length = callback.interp_points) #= # Faster but can be inaccurate if callback.interp_points > 1 dt = (integrator.t - integrator.tprev) / (callback.interp_points-1) else dt = integrator.dt end ts = integrator.tprev:dt:integrator.t =# interp_index = 0 # Check if the event occurred if callback.idxs === nothing previous_condition = callback.condition(integrator.uprev, integrator.tprev, integrator) else @views previous_condition = callback.condition(integrator.uprev[callback.idxs], integrator.tprev, integrator) end integrator.sol.stats.ncondition += 1 prev_sign = 0.0 next_sign = 0.0 if integrator.event_last_time == counter && minimum(ODE_DEFAULT_NORM(previous_condition, integrator.t)) <= 100ODE_DEFAULT_NORM(integrator.last_event_error, integrator.t) # If there was a previous event, utilize the derivative at the start to # chose the previous sign. If the derivative is positive at tprev, then # we treat `prev_sign` as negative, and if the derivative is negative then we # treat `prev_sign` as positive, regardless of the positivity/negativity # of the true value due to it being =0 sans floating point issues. # Only due this if the discontinuity did not move it far away from an event # Since near even we use direction instead of location to reset if callback.interp_points == 0 addsteps!(integrator) end # Evaluate condition slightly in future abst = integrator.tprev + integrator.dt * callback.repeat_nudge tmp_condition = get_condition(integrator, callback, abst) prev_sign = sign(tmp_condition) else prev_sign = sign(previous_condition) end prev_sign_index = 1 abst = integrator.t next_condition = get_condition(integrator, callback, abst) next_sign = sign(next_condition) if ((prev_sign < 0 && callback.affect! !== nothing) || (prev_sign > 0 && callback.affect_neg! !== nothing)) && prev_sign * next_sign <= 0 event_occurred = true interp_index = callback.interp_points elseif callback.interp_points != 0 && !isdiscrete(integrator.alg) # Use the interpolants for safety checking for i in 2:length(ts) abst = ts[i] new_sign = get_condition(integrator, callback, abst) if ((prev_sign < 0 && callback.affect! !== nothing) || (prev_sign > 0 && callback.affect_neg! !== nothing)) && prev_sign * new_sign < 0 event_occurred = true interp_index = i break else prev_sign_index = i end end end event_idx = 1 event_occurred, interp_index, ts, prev_sign, prev_sign_index, event_idx end # rough implementation, needs multiple type handling # always ensures that if r = bisection(f, (x0, x1)) # then either f(nextfloat(r)) == 0 or f(nextfloat(r)) * f(r) < 0 # note: not really using bisection - uses the ITP method function bisection( f, tup, t_forward::Bool, rootfind::SciMLBase.RootfindOpt, abstol, reltol; maxiters = 1000) if rootfind == SciMLBase.LeftRootFind solve(IntervalNonlinearProblem{false}(f, tup), InternalITP(), abstol = abstol, reltol = reltol).left else solve(IntervalNonlinearProblem{false}(f, tup), InternalITP(), abstol = abstol, reltol = reltol).right end end """ findall_events!(next_sign,affect!,affect_neg!,prev_sign) Modifies `next_sign` to be an array of booleans for if there is a sign change in the interval between prev_sign and next_sign """ function findall_events!(next_sign::Union{Array, SubArray}, affect!::F1, affect_neg!::F2, prev_sign::Union{Array, SubArray}) where {F1, F2} @inbounds for i in 1:length(prev_sign) next_sign[i] = ((prev_sign[i] < 0 && affect! !== nothing) || (prev_sign[i] > 0 && affect_neg! !== nothing)) && prev_sign[i] * next_sign[i] <= 0 end next_sign end function findall_events!(next_sign, affect!::F1, affect_neg!::F2, prev_sign) where {F1, F2} hasaffect::Bool = affect! !== nothing hasaffectneg::Bool = affect_neg! !== nothing f = (n, p) -> ((p < 0 && hasaffect) || (p > 0 && hasaffectneg)) && p * n <= 0 A = map!(f, next_sign, next_sign, prev_sign) next_sign end function find_callback_time(integrator, callback::ContinuousCallback, counter) event_occurred, interp_index, ts, prev_sign, prev_sign_index, event_idx = determine_event_occurance( integrator, callback, counter) if event_occurred if callback.condition === nothing new_t = zero(typeof(integrator.t)) else if callback.interp_points != 0 top_t = ts[interp_index] # Top at the smallest bottom_t = ts[prev_sign_index] else top_t = integrator.t bottom_t = integrator.tprev end if callback.rootfind != SciMLBase.NoRootFind && !isdiscrete(integrator.alg) zero_func(abst, p = nothing) = get_condition(integrator, callback, abst) if zero_func(top_t) == 0 Θ = top_t else if integrator.event_last_time == counter && abs(zero_func(bottom_t)) <= 100abs(integrator.last_event_error) && prev_sign_index == 1 # Determined that there is an event by derivative # But floating point error may make the end point negative bottom_t += integrator.dt * callback.repeat_nudge sign_top = sign(zero_func(top_t)) sign(zero_func(bottom_t)) * sign_top >= zero(sign_top) && error("Double callback crossing floating pointer reducer errored. Report this issue.") end Θ = bisection(zero_func, (bottom_t, top_t), isone(integrator.tdir), callback.rootfind, callback.abstol, callback.reltol) integrator.last_event_error = ODE_DEFAULT_NORM(zero_func(Θ), Θ) end #Θ = prevfloat(...) # prevfloat guerentees that the new time is either 1 floating point # numbers just before the event or directly at zero, but not after. # If there's a barrier which is never supposed to be crossed, # then this will ensure that # The item never leaves the domain. Otherwise Roots.jl can return # a float which is slightly after, making it out of the domain, causing # havoc. new_t = Θ - integrator.tprev elseif interp_index != callback.interp_points && !isdiscrete(integrator.alg) new_t = ts[interp_index] - integrator.tprev else # If no solve and no interpolants, just use endpoint new_t = integrator.dt end end else new_t = zero(typeof(integrator.t)) end new_t, prev_sign, event_occurred, event_idx end function find_callback_time(integrator, callback::VectorContinuousCallback, counter) event_occurred, interp_index, ts, prev_sign, prev_sign_index, event_idx = determine_event_occurance( integrator, callback, counter) if event_occurred if callback.condition === nothing new_t = zero(typeof(integrator.t)) min_event_idx = findfirst(isequal(1), event_idx) else if callback.interp_points != 0 top_t = ts[interp_index] # Top at the smallest bottom_t = ts[prev_sign_index] else top_t = integrator.t bottom_t = integrator.tprev end if callback.rootfind != SciMLBase.NoRootFind && !isdiscrete(integrator.alg) min_t = nextfloat(top_t) min_event_idx = -1 for idx in 1:length(event_idx) if ArrayInterface.allowed_getindex(event_idx, idx) != 0 function zero_func(abst, p = nothing) ArrayInterface.allowed_getindex( get_condition(integrator, callback, abst), idx) end if zero_func(top_t) == 0 Θ = top_t else if integrator.event_last_time == counter && integrator.vector_event_last_time == idx && abs(zero_func(bottom_t)) <= 100abs(integrator.last_event_error) && prev_sign_index == 1 # Determined that there is an event by derivative # But floating point error may make the end point negative bottom_t += integrator.dt * callback.repeat_nudge sign_top = sign(zero_func(top_t)) sign(zero_func(bottom_t)) * sign_top >= zero(sign_top) && error("Double callback crossing floating pointer reducer errored. Report this issue.") end Θ = bisection(zero_func, (bottom_t, top_t), isone(integrator.tdir), callback.rootfind, callback.abstol, callback.reltol) if integrator.tdir * Θ < integrator.tdir * min_t integrator.last_event_error = ODE_DEFAULT_NORM( zero_func(Θ), Θ) end end if integrator.tdir * Θ < integrator.tdir * min_t min_event_idx = idx min_t = Θ end end end #Θ = prevfloat(...) # prevfloat guerentees that the new time is either 1 floating point # numbers just before the event or directly at zero, but not after. # If there's a barrier which is never supposed to be crossed, # then this will ensure that # The item never leaves the domain. Otherwise Roots.jl can return # a float which is slightly after, making it out of the domain, causing # havoc. new_t = min_t - integrator.tprev elseif interp_index != callback.interp_points && !isdiscrete(integrator.alg) new_t = ts[interp_index] - integrator.tprev min_event_idx = findfirst(isequal(1), event_idx) else # If no solve and no interpolants, just use endpoint new_t = integrator.dt min_event_idx = findfirst(isequal(1), event_idx) end end else new_t = zero(typeof(integrator.t)) min_event_idx = 1 end if event_occurred && min_event_idx < 0 error("Callback handling failed. Please file an issue with code to reproduce.") end new_t, ArrayInterface.allowed_getindex(prev_sign, min_event_idx), event_occurred::Bool, min_event_idx::Int end function apply_callback!(integrator, callback::Union{ContinuousCallback, VectorContinuousCallback}, cb_time, prev_sign, event_idx) if isadaptive(integrator) set_proposed_dt!(integrator, integrator.tdir * max(nextfloat(integrator.opts.dtmin), integrator.tdir * callback.dtrelax * integrator.dt)) end change_t_via_interpolation!(integrator, integrator.tprev + cb_time) # handle saveat _, savedexactly = savevalues!(integrator) saved_in_cb = true @inbounds if callback.save_positions[1] # if already saved then skip saving savedexactly || savevalues!(integrator, true) end integrator.u_modified = true if prev_sign < 0 if callback.affect! === nothing integrator.u_modified = false else callback isa VectorContinuousCallback ? callback.affect!(integrator, event_idx) : callback.affect!(integrator) end elseif prev_sign > 0 if callback.affect_neg! === nothing integrator.u_modified = false else callback isa VectorContinuousCallback ? callback.affect_neg!(integrator, event_idx) : callback.affect_neg!(integrator) end end if integrator.u_modified if hasmethod(reeval_internals_due_to_modification!, Tuple{typeof(integrator)}, (:callback_initializealg,)) reeval_internals_due_to_modification!( integrator, callback_initializealg = callback.initializealg) else # handle legacy dispatch without kwarg reeval_internals_due_to_modification!(integrator) end @inbounds if callback.save_positions[2] savevalues!(integrator, true) saved_in_cb = true end return true, saved_in_cb end false, saved_in_cb end #Base Case: Just one @inline function apply_discrete_callback!(integrator, callback::DiscreteCallback) saved_in_cb = false if callback.condition(integrator.u, integrator.t, integrator) # handle saveat _, savedexactly = savevalues!(integrator) saved_in_cb = true @inbounds if callback.save_positions[1] # if already saved then skip saving savedexactly || savevalues!(integrator, true) end integrator.u_modified = true callback.affect!(integrator) if integrator.u_modified if hasmethod(reeval_internals_due_to_modification!, Tuple{typeof(integrator), Bool}, (:callback_initializealg,)) reeval_internals_due_to_modification!( integrator, false, callback_initializealg = callback.initializealg) else # handle legacy dispatch without kwarg reeval_internals_due_to_modification!(integrator, false) end end @inbounds if callback.save_positions[2] savevalues!(integrator, true) saved_in_cb = true end end integrator.sol.stats.ncondition += 1 integrator.u_modified, saved_in_cb end #Starting: Get bool from first and do next @inline function apply_discrete_callback!(integrator, callback::DiscreteCallback, args...) apply_discrete_callback!(integrator, apply_discrete_callback!(integrator, callback)..., args...) end @inline function apply_discrete_callback!(integrator, discrete_modified::Bool, saved_in_cb::Bool, callback::DiscreteCallback, args...) bool, saved_in_cb2 = apply_discrete_callback!(integrator, apply_discrete_callback!(integrator, callback)..., args...) discrete_modified || bool, saved_in_cb || saved_in_cb2 end @inline function apply_discrete_callback!(integrator, discrete_modified::Bool, saved_in_cb::Bool, callback::DiscreteCallback) bool, saved_in_cb2 = apply_discrete_callback!(integrator, callback) discrete_modified || bool, saved_in_cb || saved_in_cb2 end function max_vector_callback_length_int(cs::CallbackSet) max_vector_callback_length_int(cs.continuous_callbacks...) end max_vector_callback_length_int() = nothing function max_vector_callback_length_int(continuous_callbacks...) all(cb -> cb isa ContinuousCallback, continuous_callbacks) && return nothing maxlen = -1 for cb in continuous_callbacks if cb isa VectorContinuousCallback && cb.len > maxlen maxlen = cb.len end end maxlen end function max_vector_callback_length(cs::CallbackSet) continuous_callbacks = cs.continuous_callbacks maxlen_cb = nothing maxlen = -1 for cb in continuous_callbacks if cb isa VectorContinuousCallback && cb.len > maxlen maxlen = cb.len maxlen_cb = cb end end maxlen_cb end """ $(TYPEDEF) """ mutable struct CallbackCache{conditionType, signType} tmp_condition::conditionType previous_condition::conditionType next_sign::signType prev_sign::signType end function CallbackCache(u, max_len, ::Type{conditionType}, ::Type{signType}) where {conditionType, signType} tmp_condition = similar(u, conditionType, max_len) previous_condition = similar(u, conditionType, max_len) next_sign = similar(u, signType, max_len) prev_sign = similar(u, signType, max_len) CallbackCache(tmp_condition, previous_condition, next_sign, prev_sign) end function CallbackCache(max_len, ::Type{conditionType}, ::Type{signType}) where {conditionType, signType} tmp_condition = zeros(conditionType, max_len) previous_condition = zeros(conditionType, max_len) next_sign = zeros(signType, max_len) prev_sign = zeros(signType, max_len) CallbackCache(tmp_condition, previous_condition, next_sign, prev_sign) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
5759
function abs2_and_sum(x, y) reduce(+, x, init = zero(real(value(eltype(x))))) + reduce(+, y, init = zero(real(value(eltype(y))))) end UNITLESS_ABS2(x::Number) = abs2(x) function UNITLESS_ABS2(x::AbstractArray) mapreduce(UNITLESS_ABS2, abs2_and_sum, x, init = zero(real(value(eltype(x))))) end function UNITLESS_ABS2(x::RecursiveArrayTools.AbstractVectorOfArray) mapreduce(UNITLESS_ABS2, abs2_and_sum, x.u, init = zero(real(value(eltype(x))))) end function UNITLESS_ABS2(x::RecursiveArrayTools.ArrayPartition) mapreduce(UNITLESS_ABS2, abs2_and_sum, x.x, init = zero(real(value(eltype(x))))) end UNITLESS_ABS2(f::F, x::Number) where {F} = abs2(f(x)) function UNITLESS_ABS2(f::F, x::AbstractArray) where {F} return mapreduce(UNITLESS_ABS2 ∘ f, abs2_and_sum, x; init = zero(real(value(eltype(x))))) end function UNITLESS_ABS2(f::F, x::RecursiveArrayTools.ArrayPartition) where {F} return mapreduce(UNITLESS_ABS2 ∘ f, abs2_and_sum, x.x; init = zero(real(value(eltype(x))))) end recursive_length(u::AbstractArray{<:Number}) = length(u) recursive_length(u::Number) = length(u) recursive_length(u::AbstractArray{<:AbstractArray}) = sum(recursive_length, u) recursive_length(u::RecursiveArrayTools.ArrayPartition) = sum(recursive_length, u.x) recursive_length(u::RecursiveArrayTools.VectorOfArray) = sum(recursive_length, u.u) function recursive_length(u::AbstractArray{ <:StaticArraysCore.StaticArray{S, <:Number}}) where {S} prod(Size(eltype(u))) * length(u) end ODE_DEFAULT_NORM(u::Union{AbstractFloat, Complex}, t) = @fastmath abs(u) function ODE_DEFAULT_NORM(f::F, u::Union{AbstractFloat, Complex}, t) where {F} return @fastmath abs(f(u)) end function ODE_DEFAULT_NORM(u::Array{T}, t) where {T <: Union{AbstractFloat, Complex}} x = zero(T) @inbounds @fastmath for ui in u x += abs2(ui) end Base.FastMath.sqrt_fast(real(x) / max(length(u), 1)) end function ODE_DEFAULT_NORM(f::F, u::Union{Array{T}, Iterators.Zip{<:Tuple{Vararg{Array{T}}}}}, t) where {F, T <: Union{AbstractFloat, Complex}} x = zero(T) @inbounds @fastmath for ui in u x += abs2(f(ui)) end Base.FastMath.sqrt_fast(real(x) / max(length(u), 1)) end function ODE_DEFAULT_NORM(u::StaticArraysCore.StaticArray{<:Tuple, T}, t) where {T <: Union{AbstractFloat, Complex}} Base.FastMath.sqrt_fast(real(sum(abs2, u)) / max(length(u), 1)) end function ODE_DEFAULT_NORM(f::F, u::StaticArraysCore.StaticArray{<:Tuple, T}, t) where {F, T <: Union{AbstractFloat, Complex}} Base.FastMath.sqrt_fast(real(sum(abs2 ∘ f, u)) / max(length(u), 1)) end function ODE_DEFAULT_NORM( u::Union{ AbstractArray, RecursiveArrayTools.AbstractVectorOfArray }, t) Base.FastMath.sqrt_fast(UNITLESS_ABS2(u) / max(recursive_length(u), 1)) end function ODE_DEFAULT_NORM(f::F, u::AbstractArray, t) where {F} Base.FastMath.sqrt_fast(UNITLESS_ABS2(f, u) / max(recursive_length(u), 1)) end ODE_DEFAULT_NORM(u, t) = norm(u) ODE_DEFAULT_NORM(f::F, u, t) where {F} = norm(f.(u)) ODE_DEFAULT_ISOUTOFDOMAIN(u, p, t) = false function ODE_DEFAULT_PROG_MESSAGE(dt, u::Array, p, t) tmp = u[1] for i in eachindex(u) tmp = ifelse(abs(u[i]) > abs(tmp), u[i], tmp) end "dt=" * string(dt) * "\nt=" * string(t) * "\nmax u=" * string(tmp) end function ODE_DEFAULT_PROG_MESSAGE(dt, u, p, t) "dt=" * string(dt) * "\nt=" * string(t) * "\nmax u=" * string(maximum(abs.(u))) end NAN_CHECK(x::Number) = isnan(x) NAN_CHECK(x::Enum) = false function NAN_CHECK(x::Union{AbstractArray, RecursiveArrayTools.AbstractVectorOfArray}) any( NAN_CHECK, x) end NAN_CHECK(x::RecursiveArrayTools.ArrayPartition) = any(NAN_CHECK, x.x) INFINITE_OR_GIANT(x::Number) = !isfinite(x) function INFINITE_OR_GIANT(x::Union{ AbstractArray, RecursiveArrayTools.AbstractVectorOfArray}) any( INFINITE_OR_GIANT, x) end INFINITE_OR_GIANT(x::RecursiveArrayTools.ArrayPartition) = any(INFINITE_OR_GIANT, x.x) ODE_DEFAULT_UNSTABLE_CHECK(dt, u, p, t) = false function ODE_DEFAULT_UNSTABLE_CHECK(dt, u::Union{Number, AbstractArray{<:Number}}, p, t) INFINITE_OR_GIANT(u) end # Nonlinear Solve Norm (norm(_, 2)) NONLINEARSOLVE_DEFAULT_NORM(u::Union{AbstractFloat, Complex}) = @fastmath abs(u) function NONLINEARSOLVE_DEFAULT_NORM(f::F, u::Union{AbstractFloat, Complex}) where {F} return @fastmath abs(f(u)) end function NONLINEARSOLVE_DEFAULT_NORM(u::Array{ T}) where {T <: Union{AbstractFloat, Complex}} x = zero(T) @inbounds @fastmath for ui in u x += abs2(ui) end return Base.FastMath.sqrt_fast(real(x)) end function NONLINEARSOLVE_DEFAULT_NORM(f::F, u::Union{Array{T}, Iterators.Zip{<:Tuple{Vararg{Array{T}}}}}) where { F, T <: Union{AbstractFloat, Complex}} x = zero(T) @inbounds @fastmath for ui in u x += abs2(f(ui)) end return Base.FastMath.sqrt_fast(real(x)) end function NONLINEARSOLVE_DEFAULT_NORM(u::StaticArraysCore.StaticArray{ <:Tuple, T}) where {T <: Union{AbstractFloat, Complex}} return Base.FastMath.sqrt_fast(real(sum(abs2, u))) end function NONLINEARSOLVE_DEFAULT_NORM(f::F, u::StaticArraysCore.StaticArray{<:Tuple, T}) where { F, T <: Union{AbstractFloat, Complex}} return Base.FastMath.sqrt_fast(real(sum(abs2 ∘ f, u))) end function NONLINEARSOLVE_DEFAULT_NORM(u::AbstractArray) return Base.FastMath.sqrt_fast(UNITLESS_ABS2(u)) end function NONLINEARSOLVE_DEFAULT_NORM(f::F, u::AbstractArray) where {F} return Base.FastMath.sqrt_fast(UNITLESS_ABS2(f, u)) end NONLINEARSOLVE_DEFAULT_NORM(u) = norm(u) NONLINEARSOLVE_DEFAULT_NORM(f::F, u) where {F} = norm(f.(u))
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2359
# From David Goldberg's blog post # https://tech.ebayinc.com/engineering/fast-approximate-logarithms-part-iii-the-formulas/ @inline function fastlog2(x::Float32)::Float32 # (x-1)*(a*(x-1) + b)/((x-1) + c) (line 8 of table 2) a = 0.338953f0 b = 2.198599f0 c = 1.523692f0 # # Assume IEEE representation, which is sgn(1):exp(8):frac(23) # representing (1+frac)*2^(exp-127) Call 1+frac the significand # # get exponent ux1i = reinterpret(UInt32, x) exp = (ux1i & 0x7F800000) >> 23 # actual exponent is exp-127, will subtract 127 later greater = ux1i & 0x00400000 # true if signif > 1.5 if greater !== 0x00000000 ux2i = (ux1i & 0x007FFFFF) | 0x3f000000 signif = reinterpret(Float32, ux2i) fexp = exp - 126.0f0 # 126 instead of 127 compensates for division by 2 signif = signif - 1.0f0 else ux2i = (ux1i & 0x007FFFFF) | 0x3f800000 signif = reinterpret(Float32, ux2i) fexp = exp - 127.0f0 signif = signif - 1.0f0 end lg2 = fexp + signif * (a * signif + b) / (signif + c) return lg2 end # Translated from OpenLibm but less accurate because I forced the tableau to be # Float32, whereas OpenLibm uses Float64 # # https://github.com/JuliaMath/openlibm/blob/cca41bc1abd01804afa4862bbd2c79cc9803171a/src/s_exp2f.c const EXP2FT = (Float32(0x1.6a09e667f3bcdp-1), Float32(0x1.7a11473eb0187p-1), Float32(0x1.8ace5422aa0dbp-1), Float32(0x1.9c49182a3f090p-1), Float32(0x1.ae89f995ad3adp-1), Float32(0x1.c199bdd85529cp-1), Float32(0x1.d5818dcfba487p-1), Float32(0x1.ea4afa2a490dap-1), Float32(0x1.0000000000000p+0), Float32(0x1.0b5586cf9890fp+0), Float32(0x1.172b83c7d517bp+0), Float32(0x1.2387a6e756238p+0), Float32(0x1.306fe0a31b715p+0), Float32(0x1.3dea64c123422p+0), Float32(0x1.4bfdad5362a27p+0), Float32(0x1.5ab07dd485429p+0)) """ fastpow(x::T, y::T) where {T} -> float(T) Trips through Float32 for performance. """ @inline function fastpow(x::T, y::T) where {T<:Real} outT = float(T) if iszero(x) return zero(outT) elseif isinf(x) && isinf(y) return convert(outT, Inf) else return convert( outT, @fastmath exp2(convert(Float32, y) * fastlog2(convert(Float32, x)))) end end @inline fastpow(x, y) = x^y
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
18072
const DUALCHECK_RECURSION_MAX = 10 """ promote_dual(::Type{T},::Type{T2}) Is like the number promotion system, but always prefers a dual number type above anything else. For higher order differentiation, it returns the most dualiest of them all. This is then used to promote `u0` into the suspected highest differentiation space for solving the equation. """ promote_dual(::Type{T}, ::Type{T2}) where {T, T2} = T promote_dual(::Type{T}, ::Type{T2}) where {T <: ForwardDiff.Dual, T2} = T function promote_dual(::Type{T}, ::Type{T2}) where {T <: ForwardDiff.Dual, T2 <: ForwardDiff.Dual} T end promote_dual(::Type{T}, ::Type{T2}) where {T, T2 <: ForwardDiff.Dual} = T2 function promote_dual(::Type{T}, ::Type{T2}) where {T3, T4, V, V2 <: ForwardDiff.Dual, N, N2, T <: ForwardDiff.Dual{T3, V, N}, T2 <: ForwardDiff.Dual{T4, V2, N2}} T2 end function promote_dual(::Type{T}, ::Type{T2}) where {T3, T4, V <: ForwardDiff.Dual, V2, N, N2, T <: ForwardDiff.Dual{T3, V, N}, T2 <: ForwardDiff.Dual{T4, V2, N2}} T end function promote_dual(::Type{T}, ::Type{T2}) where { T3, V <: ForwardDiff.Dual, V2 <: ForwardDiff.Dual, N, T <: ForwardDiff.Dual{T3, V, N}, T2 <: ForwardDiff.Dual{T3, V2, N}} ForwardDiff.Dual{T3, promote_dual(V, V2), N} end # `reduce` and `map` are specialized on tuples to be unrolled (via recursion) # Therefore, they can be type stable even with heterogeneous input types. # We also don't care about allocating any temporaries with them, as it should # all be unrolled and optimized away. # Being unrolled also means const prop can work for things like # `mapreduce(f, op, propertynames(x))` # where `f` may call `getproperty` and thus have return type dependent # on the particular symbol. # `mapreduce` hasn't received any such specialization. @inline diffeqmapreduce(f::F, op::OP, x::Tuple) where {F, OP} = reduce_tup(op, map(f, x)) @inline function diffeqmapreduce(f::F, op::OP, x::NamedTuple) where {F, OP} reduce_tup(op, map(f, x)) end # For other container types, we probably just want to call `mapreduce` @inline diffeqmapreduce(f::F, op::OP, x) where {F, OP} = mapreduce(f, op, x, init = Any) struct DualEltypeChecker{T, T2} x::T counter::T2 end getval(::Val{I}) where {I} = I getval(::Type{Val{I}}) where {I} = I getval(I::Int) = I function (dec::DualEltypeChecker)(::Val{Y}) where {Y} isdefined(dec.x, Y) || return Any getval(dec.counter) >= DUALCHECK_RECURSION_MAX && return Any anyeltypedual(getfield(dec.x, Y), Val{getval(dec.counter)}) end # Untyped dispatch: catch composite types, check all of their fields """ anyeltypedual(x) Searches through a type to see if any of its values are parameters. This is used to then promote other values to match the dual type. For example, if a user passes a parameter which is a `Dual` and a `u0` which is a `Float64`, after the first time step, `f(u,p,t) = p*u` will change `u0` from `Float64` to `Dual`. Thus the state variable always needs to be converted to a dual number before the solve. Worse still, this needs to be done in the case of `f(du,u,p,t) = du[1] = p*u[1]`, and thus running `f` and taking the return value is not a valid way to calculate the required state type. But given the properties of automatic differentiation requiring that differentiation of parameters implies differentiation of state, we assume any dual parameters implies differentiation of state and then attempt to upconvert `u0` to match that dual-ness. Because this changes types, this needs to be specified at compiled time and thus cannot have a Bool-based opt out, so in the future this may be extended to use a preference system to opt-out with a `UPCONVERT_DUALS`. In the case where upconversion is not done automatically, the user is required to upconvert all initial conditions themselves, for an example of how this can be confusing to a user see https://discourse.julialang.org/t/typeerror-in-julia-turing-when-sampling-for-a-forced-differential-equation/82937 """ @generated function anyeltypedual(x, ::Type{Val{counter}} = Val{0}) where {counter} x = x.name === Core.Compiler.typename(Type) ? x.parameters[1] : x if x <: ForwardDiff.Dual :($x) elseif fieldnames(x) === () :(Any) elseif counter < DUALCHECK_RECURSION_MAX T = diffeqmapreduce(x -> anyeltypedual(x, Val{counter + 1}), promote_dual, x.parameters) if T === Any || isconcretetype(T) :($T) else :(diffeqmapreduce(DualEltypeChecker($x, $counter + 1), promote_dual, map(Val, fieldnames($(typeof(x)))))) end else :(Any) end end const FORWARDDIFF_AUTODETECTION_FAILURE_MESSAGE = """ Failed to automatically detect ForwardDiff compatability of the parameter object. In order for ForwardDiff.jl automatic differentiation to work on a solution object, the state of the differential equation or nonlinear solve (`u0`) needs to be converted to a Dual type which matches the values being differentiated. For example, for a loss function loss(p) where `p`` is a `Vector{Float64}`, this conversion is equivalent to: ```julia # Convert u0 to match the new Dual element type of `p` _prob = remake(prob, u0 = eltype(p).(prob.u0)) ``` In most cases, SciML tools are able to do this conversion automatically. However, it seems you have provided a parameter type for which this automatic conversion has failed. To fix this, you can do the conversion yourself. For example, if you have a parameter vector being optimized `p` which is then put into an odd struct, you can manually convert `u0` to match `p`: ```julia function loss(p) _prob = remake(prob, u0 = eltype(p).(prob.u0), p = MyStruct(p)) sol = solve(_prob, ...) # do stuff on sol end ``` Or you can define a dispatch on `DiffEqBase.anyeltypedual` which tells the system what fields to interpret as the differentiable parts. For example, to support ODESolutions as parameters we tell it the data is `sol.u` and `sol.t` via: ```julia function DiffEqBase.anyeltypedual(sol::ODESolution, counter = 0) DiffEqBase.anyeltypedual((sol.u, sol.t)) end ``` To opt a type out of the dual checking, define an overload that returns Any. For example: ```julia function DiffEqBase.anyeltypedual(::YourType, ::Type{Val{counter}}) where {counter} Any end ``` If you have defined this on a common type which should be more generally supported, please open a pull request adding this dispatch. If you need help defining this dispatch, feel free to open an issue. """ struct ForwardDiffAutomaticDetectionFailure <: Exception end function Base.showerror(io::IO, e::ForwardDiffAutomaticDetectionFailure) print(io, FORWARDDIFF_AUTODETECTION_FAILURE_MESSAGE) end function anyeltypedual(::Type{Union{}}) throw(ForwardDiffAutomaticDetectionFailure()) end # Opt out since these are using for preallocation, not differentiation function anyeltypedual(x::Union{ForwardDiff.AbstractConfig, Module}, ::Type{Val{counter}} = Val{0}) where {counter} Any end function anyeltypedual(x::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T <: ForwardDiff.AbstractConfig} Any end function anyeltypedual(::Type{<:AbstractTimeseriesSolution{T, N}}, ::Type{Val{counter}} = Val{0}) where {T, N, counter} anyeltypedual(T) end function anyeltypedual(x::ForwardDiff.DiffResults.DiffResult, ::Type{Val{counter}} = Val{0}) where {counter} Any end function anyeltypedual(x::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T <: ForwardDiff.DiffResults.DiffResult} Any end function anyeltypedual(x::SciMLBase.RecipesBase.AbstractPlot, ::Type{Val{counter}} = Val{0}) where {counter} Any end function anyeltypedual(x::Returns, ::Type{Val{counter}} = Val{0}) where {counter} anyeltypedual(x.value, Val{counter}) end if isdefined(PreallocationTools, :FixedSizeDiffCache) function anyeltypedual(x::PreallocationTools.FixedSizeDiffCache, ::Type{Val{counter}} = Val{0}) where {counter} Any end end Base.@assume_effects :foldable function __anyeltypedual(::Type{T}) where {T} if T isa Union promote_dual(anyeltypedual(T.a), anyeltypedual(T.b)) elseif hasproperty(T, :parameters) mapreduce(anyeltypedual, promote_dual, T.parameters; init = Any) else T end end function anyeltypedual(::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T} __anyeltypedual(T) end function anyeltypedual(::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T <: ForwardDiff.Dual} T end function anyeltypedual(::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T <: Union{AbstractArray, Set}} anyeltypedual(eltype(T)) end Base.@pure function __anyeltypedual_ntuple(::Type{T}) where {T <: NTuple} if isconcretetype(eltype(T)) return eltype(T) end if isempty(T.parameters) Any else mapreduce(anyeltypedual, promote_dual, T.parameters; init = Any) end end function anyeltypedual( ::Type{T}, ::Type{Val{counter}} = Val{0}) where {counter} where {T <: NTuple} __anyeltypedual_ntuple(T) end # Any in this context just means not Dual function anyeltypedual( x::SciMLBase.NullParameters, ::Type{Val{counter}} = Val{0}) where {counter} Any end function anyeltypedual(sol::RecursiveArrayTools.AbstractDiffEqArray, counter = 0) diffeqmapreduce(anyeltypedual, promote_dual, (sol.u, sol.t)) end function anyeltypedual(prob::Union{ODEProblem, SDEProblem, RODEProblem, DDEProblem}, ::Type{Val{counter}} = Val{0}) where {counter} anyeltypedual((prob.u0, prob.p, prob.tspan)) end function anyeltypedual( prob::Union{NonlinearProblem, NonlinearLeastSquaresProblem, OptimizationProblem}, ::Type{Val{counter}} = Val{0}) where {counter} anyeltypedual((prob.u0, prob.p)) end function anyeltypedual(x::Number, ::Type{Val{counter}} = Val{0}) where {counter} anyeltypedual(typeof(x)) end function anyeltypedual( x::Union{String, Symbol}, ::Type{Val{counter}} = Val{0}) where {counter} typeof(x) end function anyeltypedual(x::Union{AbstractArray{T}, Set{T}}, ::Type{Val{counter}} = Val{0}) where {counter} where { T <: Union{Number, Symbol, String}} anyeltypedual(T) end function anyeltypedual(x::Union{AbstractArray{T}, Set{T}}, ::Type{Val{counter}} = Val{0}) where {counter} where { T <: Union{ AbstractArray{ <:Number, }, Set{ <:Number, }}} anyeltypedual(eltype(x)) end function anyeltypedual(x::Union{AbstractArray{T}, Set{T}}, ::Type{Val{counter}} = Val{0}) where {counter} where {N, T <: NTuple{N, <:Number}} anyeltypedual(eltype(x)) end # Try to avoid this dispatch because it can lead to type inference issues when !isconcrete(eltype(x)) function anyeltypedual(x::AbstractArray, ::Type{Val{counter}} = Val{0}) where {counter} if isconcretetype(eltype(x)) anyeltypedual(eltype(x)) elseif !isempty(x) && all(i -> isassigned(x, i), 1:length(x)) && counter < DUALCHECK_RECURSION_MAX _counter = Val{counter + 1} mapreduce(y -> anyeltypedual(y, _counter), promote_dual, x) else # This fallback to Any is required since otherwise we cannot handle `undef` in all cases # misses cases of Any end end function anyeltypedual(x::Set, ::Type{Val{counter}} = Val{0}) where {counter} if isconcretetype(eltype(x)) anyeltypedual(eltype(x)) else # This fallback to Any is required since otherwise we cannot handle `undef` in all cases Any end end function anyeltypedual(x::Tuple, ::Type{Val{counter}} = Val{0}) where {counter} # Handle the empty tuple case separately for inference and to avoid mapreduce error if x === () Any else diffeqmapreduce(anyeltypedual, promote_dual, x) end end function anyeltypedual(x::Dict, ::Type{Val{counter}} = Val{0}) where {counter} isempty(x) ? eltype(values(x)) : mapreduce(anyeltypedual, promote_dual, values(x)) end function anyeltypedual(x::NamedTuple, ::Type{Val{counter}} = Val{0}) where {counter} anyeltypedual(values(x)) end function DiffEqBase.anyeltypedual( f::SciMLBase.AbstractSciMLFunction, ::Type{Val{counter}}) where {counter} Any end @inline promote_u0(::Nothing, p, t0) = nothing @inline function promote_u0(u0, p, t0) if SciMLStructures.isscimlstructure(p) _p = SciMLStructures.canonicalize(SciMLStructures.Tunable(), p)[1] if !isequal(_p, p) return promote_u0(u0, _p, t0) end end Tu = eltype(u0) if Tu <: ForwardDiff.Dual return u0 end Tp = anyeltypedual(p) if Tp == Any Tp = Tu end Tt = anyeltypedual(t0) if Tt == Any Tt = Tu end Tcommon = promote_type(Tu, Tp, Tt) return if Tcommon <: ForwardDiff.Dual Tcommon.(u0) else u0 end end @inline function promote_u0(u0::AbstractArray{<:Complex}, p, t0) if SciMLStructures.isscimlstructure(p) _p = SciMLStructures.canonicalize(SciMLStructures.Tunable(), p)[1] if !isequal(_p, p) return promote_u0(u0, _p, t0) end end Tu = real(eltype(u0)) if Tu <: ForwardDiff.Dual return u0 end Tp = anyeltypedual(p) if Tp == Any Tp = Tu end Tt = anyeltypedual(t0) if Tt == Any Tt = Tu end Tcommon = promote_type(eltype(u0), Tp, Tt) return if real(Tcommon) <: ForwardDiff.Dual Tcommon.(u0) else u0 end end function promote_tspan(u0::AbstractArray{<:ForwardDiff.Dual}, p, tspan::Tuple{<:ForwardDiff.Dual, <:ForwardDiff.Dual}, prob, kwargs) return _promote_tspan(tspan, kwargs) end function promote_tspan(u0::AbstractArray{<:ForwardDiff.Dual}, p, tspan, prob, kwargs) if (haskey(kwargs, :callback) && has_continuous_callback(kwargs[:callback])) || (haskey(prob.kwargs, :callback) && has_continuous_callback(prob.kwargs[:callback])) return _promote_tspan(eltype(u0).(tspan), kwargs) else return _promote_tspan(tspan, kwargs) end end function promote_tspan(u0::AbstractArray{<:Complex{<:ForwardDiff.Dual}}, p, tspan, prob, kwargs) return _promote_tspan(real(eltype(u0)).(tspan), kwargs) end value(x::Type{ForwardDiff.Dual{T, V, N}}) where {T, V, N} = V value(x::ForwardDiff.Dual) = value(ForwardDiff.value(x)) @inline fastpow(x::ForwardDiff.Dual, y::ForwardDiff.Dual) = x^y sse(x::Number) = abs2(x) sse(x::ForwardDiff.Dual) = sse(ForwardDiff.value(x)) + sum(sse, ForwardDiff.partials(x)) totallength(x::Number) = 1 function totallength(x::ForwardDiff.Dual) totallength(ForwardDiff.value(x)) + sum(totallength, ForwardDiff.partials(x)) end totallength(x::AbstractArray) = __sum(totallength, x; init = 0) @inline ODE_DEFAULT_NORM(u::ForwardDiff.Dual, ::Any) = sqrt(sse(u)) @inline function ODE_DEFAULT_NORM(u::AbstractArray{<:ForwardDiff.Dual{Tag, T}}, t::Any) where {Tag, T} sqrt(__sum(sse, u; init = sse(zero(T))) / totallength(u)) end @inline ODE_DEFAULT_NORM(u::ForwardDiff.Dual, ::ForwardDiff.Dual) = sqrt(sse(u)) @inline function ODE_DEFAULT_NORM(u::AbstractArray{<:ForwardDiff.Dual{Tag, T}}, ::ForwardDiff.Dual) where {Tag, T} sqrt(__sum(sse, u; init = sse(zero(T))) / totallength(u)) end if !hasmethod(nextfloat, Tuple{ForwardDiff.Dual}) # Type piracy. Should upstream function Base.nextfloat(d::ForwardDiff.Dual{T, V, N}) where {T, V, N} ForwardDiff.Dual{T}(nextfloat(d.value), d.partials) end function Base.prevfloat(d::ForwardDiff.Dual{T, V, N}) where {T, V, N} ForwardDiff.Dual{T}(prevfloat(d.value), d.partials) end end # bisection(f, tup::Tuple{T,T}, t_forward::Bool) where {T<:ForwardDiff.Dual} = find_zero(f, tup, Roots.AlefeldPotraShi()) # Static Arrays don't support the `init` keyword argument for `sum` @inline __sum(f::F, args...; init, kwargs...) where {F} = sum(f, args...; init, kwargs...) @inline function __sum(f::F, a::StaticArraysCore.StaticArray...; init, kwargs...) where {F} return mapreduce(f, +, a...; init, kwargs...) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
593
# the following are setup per how integrators are implemented in OrdinaryDiffEq and # StochasticDiffEq and provide dispatch points that JumpProcesses and others can use. function get_tstops(integ::DEIntegrator) error("get_tstops not implemented for integrators of type $(nameof(typeof(integ)))") end function get_tstops_array(integ::DEIntegrator) error("get_tstops_array not implemented for integrators of type $(nameof(typeof(integ)))") end function get_tstops_max(integ::DEIntegrator) error("get_tstops_max not implemented for integrators of type $(nameof(typeof(integ)))") end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2499
# This is a simple example showing how forward and backward Euler # could be wrapped module InternalEuler using DiffEqBase, LinearAlgebra # make a algorithm type abstract type EulerAlgs <: DiffEqBase.AbstractODEAlgorithm end struct FwdEulerAlg <: EulerAlgs end struct BwdEulerAlg <: EulerAlgs end function DiffEqBase.solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, isinplace}, Alg::FwdEulerAlg; dt = (prob.tspan[2] - prob.tspan[1]) / 100, tstops = tType[], kwargs...) where {uType, tType, isinplace} u0 = prob.u0 f = prob.f tspan = prob.tspan p = prob.p if isempty(tstops) tstops = tspan[1]:dt:tspan[2] end @assert tstops[1] == tspan[1] nt = length(tstops) out = Vector{uType}(undef, nt) out[1] = copy(u0) tmp = copy(u0) for i in 2:nt t = tstops[i] dt = t - tstops[i - 1] if isinplace f(tmp, out[i - 1], p, t) out[i] = out[i - 1] + dt * tmp else out[i] = out[i - 1] + dt * f(out[i - 1], p, t) end end # make solution type DiffEqBase.build_solution(prob, Alg, tstops, out) end function DiffEqBase.solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, isinplace}, Alg::BwdEulerAlg; dt = (prob.tspan[2] - prob.tspan[1]) / 100, tstops = tType[], tol = 1e-5, maxiter = 100, kwargs...) where {uType, tType, isinplace} u0 = prob.u0 f = prob.f tspan = prob.tspan p = prob.p # TODO: fix numparameters as it picks up the Jacobian # @assert !isinplace "Only out of place functions supported" @assert DiffEqBase.has_jac(f) "Provide Jacobian as f(::Val{:jac}, ...)" if isempty(tstops) tstops = tspan[1]:dt:tspan[2] end @assert tstops[1] == tspan[1] nt = length(tstops) out = Vector{uType}(undef, nt) out[1] = copy(u0) for i in 2:nt t = tstops[i] dt = t - tstops[i - 1] out[i] = newton(t, dt, out[i - 1], p, f, f.jac, tol, maxiter) end # make solution type DiffEqBase.build_solution(prob, Alg, tstops, out) end function newton(t, dt, u_last, p, f, jac, tol, maxiter) res = (u) -> u - u_last - dt * f(u, p, t) u = u_last + dt * f(u_last, p, t) # forward Euler step as first guess for i in 1:maxiter du = -(I - dt * jac(u, p, t)) \ res(u) u += du norm(du, Inf) < tol && return u end error("Newton not converged") end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4755
""" prevfloat_tdir(x, x0, x1) Move `x` one floating point towards x0. """ function prevfloat_tdir(x, x0, x1) x1 > x0 ? prevfloat(x) : nextfloat(x) end function nextfloat_tdir(x, x0, x1) x1 > x0 ? nextfloat(x) : prevfloat(x) end function max_tdir(a, b, x0, x1) x1 > x0 ? max(a, b) : min(a, b) end """ `InternalFalsi`: A non-allocating regula falsi method, internal to DiffEqBase for simpler dependencies. """ struct InternalFalsi end function SciMLBase.solve(prob::IntervalNonlinearProblem, alg::InternalFalsi, args...; maxiters = 1000, kwargs...) f = Base.Fix2(prob.f, prob.p) left, right = prob.tspan fl, fr = f(left), f(right) if iszero(fl) return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.ExactSolutionLeft, left = left, right = right) end if iszero(fr) return SciMLBase.build_solution(prob, alg, right, fr; retcode = ReturnCode.ExactSolutionLeft, left = left, right = right) end i = 1 using_falsi_steps = true while i < maxiters # First, perform a regula falsi iteration if using_falsi_steps if nextfloat_tdir(left, prob.tspan...) == right return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.FloatingPointLimit, left = left, right = right) end mid = (fr * left - fl * right) / (fr - fl) for i in 1:10 mid = max_tdir(left, prevfloat_tdir(mid, prob.tspan...), prob.tspan...) end if mid == right || mid == left using_falsi_steps = false continue end fm = f(mid) if iszero(fm) right = mid using_falsi_steps = false continue end if sign(fl) == sign(fm) fl = fm left = mid else fr = fm right = mid end i += 1 end # Then, perform a bisection iteration mid = (left + right) / 2 (mid == left || mid == right) && return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.FloatingPointLimit, left = left, right = right) fm = f(mid) if iszero(fm) right = mid fr = fm elseif sign(fm) == sign(fl) left = mid fl = fm else right = mid fr = fm end i += 1 end return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.MaxIters, left = left, right = right) end function scalar_nlsolve_ad(prob, alg::InternalFalsi, args...; kwargs...) f = prob.f p = value(prob.p) if prob isa IntervalNonlinearProblem tspan = value(prob.tspan) newprob = IntervalNonlinearProblem(f, tspan, p; prob.kwargs...) else u0 = value(prob.u0) newprob = NonlinearProblem(f, u0, p; prob.kwargs...) end sol = solve(newprob, alg, args...; kwargs...) uu = sol.u if p isa Number f_p = ForwardDiff.derivative(Base.Fix1(f, uu), p) else f_p = ForwardDiff.gradient(Base.Fix1(f, uu), p) end f_x = ForwardDiff.derivative(Base.Fix2(f, p), uu) pp = prob.p sumfun = let f_x′ = -f_x ((fp, p),) -> (fp / f_x′) * ForwardDiff.partials(p) end partials = sum(sumfun, zip(f_p, pp)) return sol, partials end function SciMLBase.solve( prob::IntervalNonlinearProblem{uType, iip, <:ForwardDiff.Dual{T, V, P}}, alg::InternalFalsi, args...; kwargs...) where {uType, iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) return SciMLBase.build_solution(prob, alg, ForwardDiff.Dual{T, V, P}(sol.u, partials), sol.resid; retcode = sol.retcode, left = ForwardDiff.Dual{T, V, P}(sol.left, partials), right = ForwardDiff.Dual{T, V, P}(sol.right, partials)) end function SciMLBase.solve( prob::IntervalNonlinearProblem{uType, iip, <:AbstractArray{ <:ForwardDiff.Dual{T, V, P}, }}, alg::InternalFalsi, args...; kwargs...) where {uType, iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) return SciMLBase.build_solution(prob, alg, ForwardDiff.Dual{T, V, P}(sol.u, partials), sol.resid; retcode = sol.retcode, left = ForwardDiff.Dual{T, V, P}(sol.left, partials), right = ForwardDiff.Dual{T, V, P}(sol.right, partials)) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4753
""" `InternalITP`: A non-allocating ITP method, internal to DiffEqBase for simpler dependencies. """ struct InternalITP k1::Float64 k2::Float64 n0::Int end InternalITP() = InternalITP(0.007, 1.5, 10) function SciMLBase.solve(prob::IntervalNonlinearProblem{IP, Tuple{T, T}}, alg::InternalITP, args...; maxiters = 1000, kwargs...) where {IP, T} f = Base.Fix2(prob.f, prob.p) left, right = prob.tspan # a and b fl, fr = f(left), f(right) ϵ = eps(T) if iszero(fl) return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.ExactSolutionLeft, left = left, right = right) elseif iszero(fr) return SciMLBase.build_solution(prob, alg, right, fr; retcode = ReturnCode.ExactSolutionRight, left = left, right = right) end #defining variables/cache k1 = T(alg.k1) k2 = T(alg.k2) n0 = T(alg.n0) n_h = ceil(log2(abs(right - left) / (2 * ϵ))) mid = (left + right) / 2 x_f = (fr * left - fl * right) / (fr - fl) xt = left xp = left r = zero(left) #minmax radius δ = zero(left) # truncation error σ = 1.0 ϵ_s = ϵ * 2^(n_h + n0) i = 0 #iteration while i <= maxiters #mid = (left + right) / 2 span = abs(right - left) r = ϵ_s - (span / 2) δ = k1 * (span^k2) ## Interpolation step ## x_f = left + (right - left) * (fl / (fl - fr)) ## Truncation step ## σ = sign(mid - x_f) if δ <= abs(mid - x_f) xt = x_f + (σ * δ) else xt = mid end ## Projection step ## if abs(xt - mid) <= r xp = xt else xp = mid - (σ * r) end ## Update ## tmin, tmax = minmax(left, right) xp >= tmax && (xp = prevfloat(tmax)) xp <= tmin && (xp = nextfloat(tmin)) yp = f(xp) yps = yp * sign(fr) if yps > 0 right = xp fr = yp elseif yps < 0 left = xp fl = yp else left = prevfloat_tdir(xp, prob.tspan...) right = xp return SciMLBase.build_solution(prob, alg, left, f(left); retcode = ReturnCode.Success, left = left, right = right) end i += 1 mid = (left + right) / 2 ϵ_s /= 2 if nextfloat_tdir(left, prob.tspan...) == right return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.FloatingPointLimit, left = left, right = right) end end return SciMLBase.build_solution(prob, alg, left, fl; retcode = ReturnCode.MaxIters, left = left, right = right) end function scalar_nlsolve_ad(prob, alg::InternalITP, args...; kwargs...) f = prob.f p = value(prob.p) if prob isa IntervalNonlinearProblem tspan = value(prob.tspan) newprob = IntervalNonlinearProblem(f, tspan, p; prob.kwargs...) else u0 = value(prob.u0) newprob = NonlinearProblem(f, u0, p; prob.kwargs...) end sol = solve(newprob, alg, args...; kwargs...) uu = sol.u if p isa Number f_p = ForwardDiff.derivative(Base.Fix1(f, uu), p) else f_p = ForwardDiff.gradient(Base.Fix1(f, uu), p) end f_x = ForwardDiff.derivative(Base.Fix2(f, p), uu) pp = prob.p sumfun = let f_x′ = -f_x ((fp, p),) -> (fp / f_x′) * ForwardDiff.partials(p) end partials = sum(sumfun, zip(f_p, pp)) return sol, partials end function SciMLBase.solve( prob::IntervalNonlinearProblem{uType, iip, <:ForwardDiff.Dual{T, V, P}}, alg::InternalITP, args...; kwargs...) where {uType, iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) return SciMLBase.build_solution(prob, alg, ForwardDiff.Dual{T, V, P}(sol.u, partials), sol.resid; retcode = sol.retcode, left = ForwardDiff.Dual{T, V, P}(sol.left, partials), right = ForwardDiff.Dual{T, V, P}(sol.right, partials)) end function SciMLBase.solve( prob::IntervalNonlinearProblem{uType, iip, <:AbstractArray{ <:ForwardDiff.Dual{T, V, P}, }}, alg::InternalITP, args...; kwargs...) where {uType, iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) return SciMLBase.build_solution(prob, alg, ForwardDiff.Dual{T, V, P}(sol.u, partials), sol.resid; retcode = sol.retcode, left = ForwardDiff.Dual{T, V, P}(sol.left, partials), right = ForwardDiff.Dual{T, V, P}(sol.right, partials)) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
3791
struct OrdinaryDiffEqTag end const dualT = ForwardDiff.Dual{ForwardDiff.Tag{OrdinaryDiffEqTag, Float64}, Float64, 1} dualgen(::Type{T}) where {T} = ForwardDiff.Dual{ForwardDiff.Tag{OrdinaryDiffEqTag, T}, T, 1} const NORECOMPILE_IIP_SUPPORTED_ARGS = ( Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}, Tuple{Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, Float64}) const oop_arglists = (Tuple{Vector{Float64}, Vector{Float64}, Float64}, Tuple{Vector{Float64}, SciMLBase.NullParameters, Float64}, Tuple{Vector{Float64}, Vector{Float64}, dualT}, Tuple{Vector{dualT}, Vector{Float64}, Float64}, Tuple{Vector{dualT}, SciMLBase.NullParameters, Float64}, Tuple{Vector{Float64}, SciMLBase.NullParameters, dualT}) const NORECOMPILE_OOP_SUPPORTED_ARGS = (Tuple{Vector{Float64}, Vector{Float64}, Float64}, Tuple{Vector{Float64}, SciMLBase.NullParameters, Float64}) const oop_returnlists = (Vector{Float64}, Vector{Float64}, ntuple(x -> Vector{dualT}, length(oop_arglists) - 2)...) const NORECOMPILE_ARGUMENT_MESSAGE = """ No-recompile mode is only supported for state arguments of type `Vector{Float64}`, time arguments of `Float64` and parameter arguments of type `Vector{Float64}` or `SciMLBase.NullParameters`. """ struct NoRecompileArgumentError <: Exception args::Any end function Base.showerror(io::IO, e::NoRecompileArgumentError) println(io, NORECOMPILE_ARGUMENT_MESSAGE) print(io, "Attempted arguments: ") print(io, e.args) end function wrapfun_oop(ff, inputs::Tuple = ()) if !isempty(inputs) IT = Tuple{map(typeof, inputs)...} if IT ∉ NORECOMPILE_OOP_SUPPORTED_ARGS throw(NoRecompileArgumentError(IT)) end end FunctionWrappersWrappers.FunctionWrappersWrapper(ff, oop_arglists, oop_returnlists) end function wrapfun_iip(ff, inputs::Tuple{T1, T2, T3, T4}) where {T1, T2, T3, T4} T = eltype(T2) dualT = dualgen(T) dualT1 = ArrayInterface.promote_eltype(T1, dualT) dualT2 = ArrayInterface.promote_eltype(T2, dualT) dualT4 = dualgen(promote_type(T, T4)) iip_arglists = (Tuple{T1, T2, T3, T4}, Tuple{dualT1, dualT2, T3, T4}, Tuple{dualT1, T2, T3, dualT4}, Tuple{dualT1, dualT2, T3, dualT4}) iip_returnlists = ntuple(x -> Nothing, 4) fwt = map(iip_arglists, iip_returnlists) do A, R FunctionWrappersWrappers.FunctionWrappers.FunctionWrapper{R, A}(Void(ff)) end FunctionWrappersWrappers.FunctionWrappersWrapper{typeof(fwt), false}(fwt) end const iip_arglists_default = ( Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}, Tuple{Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, Float64 }, Tuple{Vector{dualT}, Vector{Float64}, Vector{Float64}, dualT}, Tuple{Vector{dualT}, Vector{dualT}, Vector{Float64}, dualT}, Tuple{Vector{dualT}, Vector{dualT}, Vector{Float64}, Float64}, Tuple{Vector{dualT}, Vector{dualT}, SciMLBase.NullParameters, Float64 }, Tuple{Vector{dualT}, Vector{Float64}, SciMLBase.NullParameters, dualT }) const iip_returnlists_default = ntuple(x -> Nothing, length(iip_arglists_default)) function wrapfun_iip(@nospecialize(ff)) fwt = map(iip_arglists_default, iip_returnlists_default) do A, R FunctionWrappersWrappers.FunctionWrappers.FunctionWrapper{R, A}(Void(ff)) end FunctionWrappersWrappers.FunctionWrappersWrapper{typeof(fwt), false}(fwt) end function unwrap_fw(fw::FunctionWrapper) fw.obj[] end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
66718
struct EvalFunc{F} <: Function f::F end (f::EvalFunc)(args...) = f.f(args...) NO_TSPAN_PROBS = Union{AbstractLinearProblem, AbstractNonlinearProblem, AbstractIntegralProblem, AbstractSteadyStateProblem, AbstractJumpProblem} has_kwargs(_prob::AbstractDEProblem) = has_kwargs(typeof(_prob)) Base.@pure __has_kwargs(::Type{T}) where {T} = :kwargs ∈ fieldnames(T) has_kwargs(::Type{T}) where {T} = __has_kwargs(T) const allowedkeywords = (:dense, :saveat, :save_idxs, :tstops, :tspan, :d_discontinuities, :save_everystep, :save_on, :save_start, :save_end, :initialize_save, :adaptive, :abstol, :reltol, :dt, :dtmax, :dtmin, :force_dtmin, :internalnorm, :controller, :gamma, :beta1, :beta2, :qmax, :qmin, :qsteady_min, :qsteady_max, :qoldinit, :failfactor, :calck, :alias_u0, :maxiters, :maxtime, :callback, :isoutofdomain, :unstable_check, :verbose, :merge_callbacks, :progress, :progress_steps, :progress_name, :progress_message, :progress_id, :timeseries_errors, :dense_errors, :weak_timeseries_errors, :weak_dense_errors, :wrap, :calculate_error, :initializealg, :alg, :save_noise, :delta, :seed, :alg_hints, :kwargshandle, :trajectories, :batch_size, :sensealg, :advance_to_tstop, :stop_at_next_tstop, :u0, :p, # These two are from the default algorithm handling :default_set, :second_time, # This is for DiffEqDevTools :prob_choice, # Jump problems :alias_jump, # This is for copying/deepcopying noise in StochasticDiffEq :alias_noise, # This is for SimpleNonlinearSolve handling for batched Nonlinear Solves :batch, # Shooting method in BVP needs to differentiate between these two categories :nlsolve_kwargs, :odesolve_kwargs, # If Solvers which internally use linsolve :linsolve_kwargs, # Solvers internally using EnsembleProblem :ensemblealg, # Fine Grained Control of Tracing (Storing and Logging) during Solve :show_trace, :trace_level, :store_trace, # Termination condition for solvers :termination_condition) const KWARGWARN_MESSAGE = """ Unrecognized keyword arguments found. The only allowed keyword arguments to `solve` are: $allowedkeywords See https://diffeq.sciml.ai/stable/basics/common_solver_opts/ for more details. Set kwargshandle=KeywordArgError for an error message. Set kwargshandle=KeywordArgSilent to ignore this message. """ const KWARGERROR_MESSAGE = """ Unrecognized keyword arguments found. The only allowed keyword arguments to `solve` are: $allowedkeywords See https://diffeq.sciml.ai/stable/basics/common_solver_opts/ for more details. """ struct CommonKwargError <: Exception kwargs::Any end function Base.showerror(io::IO, e::CommonKwargError) println(io, KWARGERROR_MESSAGE) notin = collect(map(x -> x ∉ allowedkeywords, keys(e.kwargs))) unrecognized = collect(keys(e.kwargs))[notin] print(io, "Unrecognized keyword arguments: ") printstyled(io, unrecognized; bold = true, color = :red) print(io, "\n\n") println(io, TruncatedStacktraces.VERBOSE_MSG) end @enum KeywordArgError KeywordArgWarn KeywordArgSilent const INCOMPATIBLE_U0_MESSAGE = """ Initial condition incompatible with functional form. Detected an in-place function with an initial condition of type Number or SArray. This is incompatible because Numbers cannot be mutated, i.e. `x = 2.0; y = 2.0; x .= y` will error. If using a immutable initial condition type, please use the out-of-place form. I.e. define the function `du=f(u,p,t)` instead of attempting to "mutate" the immutable `du`. If your differential equation function was defined with multiple dispatches and one is in-place, then the automatic detection will choose in-place. In this case, override the choice in the problem constructor, i.e. `ODEProblem{false}(f,u0,tspan,p,kwargs...)`. For a longer discussion on mutability vs immutability and in-place vs out-of-place, see: https://diffeq.sciml.ai/stable/tutorials/faster_ode_example/#Example-Accelerating-a-Non-Stiff-Equation:-The-Lorenz-Equation """ struct IncompatibleInitialConditionError <: Exception end function Base.showerror(io::IO, e::IncompatibleInitialConditionError) print(io, INCOMPATIBLE_U0_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NO_DEFAULT_ALGORITHM_MESSAGE = """ Default algorithm choices require DifferentialEquations.jl. Please specify an algorithm (e.g., `solve(prob, Tsit5())` or `init(prob, Tsit5())` for an ODE) or import DifferentialEquations directly. You can find the list of available solvers at https://diffeq.sciml.ai/stable/solvers/ode_solve/ and its associated pages. """ struct NoDefaultAlgorithmError <: Exception end function Base.showerror(io::IO, e::NoDefaultAlgorithmError) print(io, NO_DEFAULT_ALGORITHM_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NO_TSPAN_MESSAGE = """ No tspan is set in the problem or chosen in the init/solve call """ struct NoTspanError <: Exception end function Base.showerror(io::IO, e::NoTspanError) print(io, NO_TSPAN_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NAN_TSPAN_MESSAGE = """ NaN tspan is set in the problem or chosen in the init/solve call. Note that -Inf and Inf values are allowed in the timespan for solves which are terminated via callbacks, however NaN values are not allowed since the direction of time is undetermined. """ struct NaNTspanError <: Exception end function Base.showerror(io::IO, e::NaNTspanError) print(io, NAN_TSPAN_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NON_SOLVER_MESSAGE = """ The arguments to solve are incorrect. The second argument must be a solver choice, `solve(prob,alg)` where `alg` is a `<: AbstractDEAlgorithm`, e.g. `Tsit5()`. Please double check the arguments being sent to the solver. You can find the list of available solvers at https://diffeq.sciml.ai/stable/solvers/ode_solve/ and its associated pages. """ struct NonSolverError <: Exception end function Base.showerror(io::IO, e::NonSolverError) print(io, NON_SOLVER_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NOISE_SIZE_MESSAGE = """ Noise sizes are incompatible. The expected number of noise terms in the defined `noise_rate_prototype` does not match the number of noise terms in the defined `AbstractNoiseProcess`. Please ensure that size(prob.noise_rate_prototype,2) == length(prob.noise.W[1]). Note: Noise process definitions require that users specify `u0`, and this value is directly used in the definition. For example, if `noise = WienerProcess(0.0,0.0)`, then the noise process is a scalar with `u0=0.0`. If `noise = WienerProcess(0.0,[0.0])`, then the noise process is a vector with `u0=0.0`. If `noise_rate_prototype = zeros(2,4)`, then the noise process must be a 4-dimensional process, for example `noise = WienerProcess(0.0,zeros(4))`. This error is a sign that the user definition of `noise_rate_prototype` and `noise` are not aligned in this manner and the definitions should be double checked. """ struct NoiseSizeIncompatabilityError <: Exception prototypesize::Int noisesize::Int end function Base.showerror(io::IO, e::NoiseSizeIncompatabilityError) println(io, NOISE_SIZE_MESSAGE) println(io, "size(prob.noise_rate_prototype,2) = $(e.prototypesize)") println(io, "length(prob.noise.W[1]) = $(e.noisesize)") println(io, TruncatedStacktraces.VERBOSE_MSG) end const PROBSOLVER_PAIRING_MESSAGE = """ Incompatible problem+solver pairing. For example, this can occur if an ODE solver is passed with an SDEProblem. Solvers are only capable of handling specific problem types. Please double check that the chosen pairing is capable for handling the given problems. """ struct ProblemSolverPairingError <: Exception prob::Any alg::Any end function Base.showerror(io::IO, e::ProblemSolverPairingError) println(io, PROBSOLVER_PAIRING_MESSAGE) println(io, "Problem type: $(SciMLBase.__parameterless_type(typeof(e.prob)))") println(io, "Solver type: $(SciMLBase.__parameterless_type(typeof(e.alg)))") println(io, "Problem types compatible with the chosen solver: $(compatible_problem_types(e.prob,e.alg))") println(io, TruncatedStacktraces.VERBOSE_MSG) end function compatible_problem_types(prob, alg) if alg isa AbstractODEAlgorithm ODEProblem elseif alg isa AbstractSDEAlgorithm (SDEProblem, SDDEProblem) elseif alg isa AbstractDDEAlgorithm # StochasticDelayDiffEq.jl just uses the SDE alg DDEProblem elseif alg isa AbstractDAEAlgorithm DAEProblem elseif alg isa AbstractSteadyStateAlgorithm SteadyStateProblem end end const DIRECT_AUTODIFF_INCOMPATABILITY_MESSAGE = """ Incompatible solver + automatic differentiation pairing. The chosen automatic differentiation algorithm requires the ability for compiler transforms on the code which is only possible on pure-Julia solvers such as those from OrdinaryDiffEq.jl. Direct differentiation methods which require this ability include: - Direct use of ForwardDiff.jl on the solver - `ForwardDiffSensitivity`, `ReverseDiffAdjoint`, `TrackerAdjoint`, and `ZygoteAdjoint` sensealg choices for adjoint differentiation. Either switch the choice of solver to a pure Julia method, or change the automatic differentiation method to one that does not require such transformations. For more details on automatic differentiation, adjoint, and sensitivity analysis of differential equations, see the documentation page: https://diffeq.sciml.ai/stable/analysis/sensitivity/ """ struct DirectAutodiffError <: Exception end function Base.showerror(io::IO, e::DirectAutodiffError) println(io, DIRECT_AUTODIFF_INCOMPATABILITY_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NONCONCRETE_ELTYPE_MESSAGE = """ Non-concrete element type inside of an `Array` detected. Arrays with non-concrete element types, such as `Array{Union{Float32,Float64}}`, are not supported by the differential equation solvers. Anyways, this is bad for performance so you don't want to be doing this! If this was a mistake, promote the element types to be all the same. If this was intentional, for example, using Unitful.jl with different unit values, then use an array type which has fast broadcast support for heterogeneous values such as the ArrayPartition from RecursiveArrayTools.jl. For example: ```julia using RecursiveArrayTools x = ArrayPartition([1.0,2.0],[1f0,2f0]) y = ArrayPartition([3.0,4.0],[3f0,4f0]) x .+ y # fast, stable, and usable as u0 into DiffEq! ``` Element type: """ struct NonConcreteEltypeError <: Exception eltype::Any end function Base.showerror(io::IO, e::NonConcreteEltypeError) print(io, NONCONCRETE_ELTYPE_MESSAGE) print(io, e.eltype) println(io, TruncatedStacktraces.VERBOSE_MSG) end const NONNUMBER_ELTYPE_MESSAGE = """ Non-Number element type inside of an `Array` detected. Arrays with non-number element types, such as `Array{Array{Float64}}`, are not supported by the solvers. If you are trying to use an array of arrays structure, look at the tools in RecursiveArrayTools.jl. For example: If this was a mistake, promote the element types to be all the same. If this was intentional, for example, using Unitful.jl with different unit values, then use an array type which has fast broadcast support for heterogeneous values such as the ArrayPartition from RecursiveArrayTools.jl. For example: ```julia using RecursiveArrayTools u0 = ArrayPartition([1.0,2.0],[3.0,4.0]) u0 = VectorOfArray([1.0,2.0],[3.0,4.0]) ``` are both initial conditions which would be compatible with the solvers. Or use ComponentArrays.jl for more complex nested structures. Element type: """ struct NonNumberEltypeError <: Exception eltype::Any end function Base.showerror(io::IO, e::NonNumberEltypeError) print(io, NONNUMBER_ELTYPE_MESSAGE) print(io, e.eltype) println(io, TruncatedStacktraces.VERBOSE_MSG) end const GENERIC_NUMBER_TYPE_ERROR_MESSAGE = """ Non-standard number type (i.e. not Float32, Float64, ComplexF32, or ComplexF64) detected as the element type for the initial condition or time span. These generic number types are only compatible with the pure Julia solvers which support generic programming, such as OrdinaryDiffEq.jl. The chosen solver does not support this functionality. Please double check that the initial condition and time span types are correct, and check that the chosen solver was correct. """ struct GenericNumberTypeError <: Exception alg::Any uType::Any tType::Any end function Base.showerror(io::IO, e::GenericNumberTypeError) println(io, GENERIC_NUMBER_TYPE_ERROR_MESSAGE) println(io, "Solver: $(e.alg)") println(io, "u0 type: $(e.uType)") print(io, "Timespan type: $(e.tType)") println(io, TruncatedStacktraces.VERBOSE_MSG) end const COMPLEX_SUPPORT_ERROR_MESSAGE = """ Complex number type (i.e. ComplexF32, or ComplexF64) detected as the element type for the initial condition with an algorithm that does not support complex numbers. Please check that the initial condition type is correct. If complex number support is needed, try different solvers such as those from OrdinaryDiffEq.jl. """ struct ComplexSupportError <: Exception alg::Any end function Base.showerror(io::IO, e::ComplexSupportError) println(io, COMPLEX_SUPPORT_ERROR_MESSAGE) println(io, "Solver: $(e.alg)") println(io, TruncatedStacktraces.VERBOSE_MSG) end const COMPLEX_TSPAN_ERROR_MESSAGE = """ Complex number type (i.e. ComplexF32, or ComplexF64) detected as the element type for the independent variable (i.e. time span). Please check that the tspan type is correct. No solvers support complex time spans. If this is required, please open an issue. """ struct ComplexTspanError <: Exception end function Base.showerror(io::IO, e::ComplexTspanError) println(io, COMPLEX_TSPAN_ERROR_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const TUPLE_STATE_ERROR_MESSAGE = """ Tuple type used as a state. Since a tuple does not have vector properties, it will not work as a state type in equation solvers. Instead, change your equation from using tuple constructors `()` to static array constructors `SA[]`. For example, change: ```julia function ftup((a,b),p,t) return b,-a end u0 = (1.0,2.0) tspan = (0.0,1.0) ODEProblem(ftup,u0,tspan) ``` to: ```julia using StaticArrays function fsa(u,p,t) SA[u[2],u[1]] end u0 = SA[1.0,2.0] tspan = (0.0,1.0) ODEProblem(ftup,u0,tspan) ``` This will be safer and fast for small ODEs. For more information, see: https://diffeq.sciml.ai/stable/tutorials/faster_ode_example/#Further-Optimizations-of-Small-Non-Stiff-ODEs-with-StaticArrays """ struct TupleStateError <: Exception end function Base.showerror(io::IO, e::TupleStateError) println(io, TUPLE_STATE_ERROR_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end const MASS_MATRIX_ERROR_MESSAGE = """ Mass matrix size is incompatible with initial condition sizing. The mass matrix must represent the `vec` form of the initial condition `u0`, i.e. `size(mm,1) == size(mm,2) == length(u)` """ struct IncompatibleMassMatrixError <: Exception sz::Int len::Int end function Base.showerror(io::IO, e::IncompatibleMassMatrixError) println(io, MASS_MATRIX_ERROR_MESSAGE) print(io, "size(prob.f.mass_matrix,1): ") println(io, e.sz) print(io, "length(u0): ") println(e.len) println(io, TruncatedStacktraces.VERBOSE_MSG) end function init_call(_prob, args...; merge_callbacks = true, kwargshandle = nothing, kwargs...) kwargshandle = kwargshandle === nothing ? KeywordArgError : kwargshandle kwargshandle = has_kwargs(_prob) && haskey(_prob.kwargs, :kwargshandle) ? _prob.kwargs[:kwargshandle] : kwargshandle if has_kwargs(_prob) if merge_callbacks && haskey(_prob.kwargs, :callback) && haskey(kwargs, :callback) kwargs_temp = NamedTuple{ Base.diff_names(Base._nt_names(values(kwargs)), (:callback,))}(values(kwargs)) callbacks = NamedTuple{(:callback,)}((DiffEqBase.CallbackSet( _prob.kwargs[:callback], values(kwargs).callback),)) kwargs = merge(kwargs_temp, callbacks) end kwargs = isempty(_prob.kwargs) ? kwargs : merge(values(_prob.kwargs), kwargs) end checkkwargs(kwargshandle; kwargs...) if _prob isa Union{ODEProblem, DAEProblem} && isnothing(_prob.u0) build_null_integrator(_prob, args...; kwargs...) elseif hasfield(typeof(_prob), :f) && hasfield(typeof(_prob.f), :f) && _prob.f.f isa EvalFunc Base.invokelatest(__init, _prob, args...; kwargs...)#::T else __init(_prob, args...; kwargs...)#::T end end function init( prob::Union{AbstractDEProblem, NonlinearProblem}, args...; sensealg = nothing, u0 = nothing, p = nothing, kwargs...) if sensealg === nothing && has_kwargs(prob) && haskey(prob.kwargs, :sensealg) sensealg = prob.kwargs[:sensealg] end u0 = u0 !== nothing ? u0 : prob.u0 p = p !== nothing ? p : prob.p init_up(prob, sensealg, u0, p, args...; kwargs...) end function init(prob::AbstractJumpProblem, args...; kwargs...) init_call(prob, args...; kwargs...) end function init_up(prob::AbstractDEProblem, sensealg, u0, p, args...; kwargs...) alg = extract_alg(args, kwargs, has_kwargs(prob) ? prob.kwargs : kwargs) if isnothing(alg) || !(alg isa AbstractDEAlgorithm) # Default algorithm handling _prob = get_concrete_problem(prob, !(prob isa DiscreteProblem); u0 = u0, p = p, kwargs...) init_call(_prob, args...; kwargs...) else _prob = get_concrete_problem(prob, isadaptive(alg); u0 = u0, p = p, kwargs...) _alg = prepare_alg(alg, _prob.u0, _prob.p, _prob) check_prob_alg_pairing(_prob, alg) # alg for improved inference if length(args) > 1 init_call(_prob, _alg, Base.tail(args)...; kwargs...) else init_call(_prob, _alg; kwargs...) end end end function solve_call(_prob, args...; merge_callbacks = true, kwargshandle = nothing, kwargs...) kwargshandle = kwargshandle === nothing ? KeywordArgError : kwargshandle kwargshandle = has_kwargs(_prob) && haskey(_prob.kwargs, :kwargshandle) ? _prob.kwargs[:kwargshandle] : kwargshandle if has_kwargs(_prob) if merge_callbacks && haskey(_prob.kwargs, :callback) && haskey(kwargs, :callback) kwargs_temp = NamedTuple{ Base.diff_names(Base._nt_names(values(kwargs)), (:callback,))}(values(kwargs)) callbacks = NamedTuple{(:callback,)}((DiffEqBase.CallbackSet( _prob.kwargs[:callback], values(kwargs).callback),)) kwargs = merge(kwargs_temp, callbacks) end kwargs = isempty(_prob.kwargs) ? kwargs : merge(values(_prob.kwargs), kwargs) end checkkwargs(kwargshandle; kwargs...) if isdefined(_prob, :u0) if _prob.u0 isa Array if !isconcretetype(RecursiveArrayTools.recursive_unitless_eltype(_prob.u0)) throw(NonConcreteEltypeError(RecursiveArrayTools.recursive_unitless_eltype(_prob.u0))) end if !(eltype(_prob.u0) <: Number) && !(eltype(_prob.u0) <: Enum) && !(_prob.u0 isa AbstractVector{<:AbstractArray} && _prob isa BVProblem) # Allow Enums for FunctionMaps, make into a trait in the future # BVPs use Vector of Arrays for initial guesses throw(NonNumberEltypeError(eltype(_prob.u0))) end end if _prob.u0 === nothing return build_null_solution(_prob, args...; kwargs...) end end if hasfield(typeof(_prob), :f) && hasfield(typeof(_prob.f), :f) && _prob.f.f isa EvalFunc Base.invokelatest(__solve, _prob, args...; kwargs...)#::T else __solve(_prob, args...; kwargs...)#::T end end mutable struct NullODEIntegrator{IIP, ProbType, T, SolType, F, P} <: AbstractODEIntegrator{Nothing, IIP, Nothing, T} du::Vector{Float64} u::Vector{Float64} t::T prob::ProbType sol::SolType f::F p::P end function build_null_integrator(prob::AbstractDEProblem, args...; kwargs...) sol = solve(prob, args...; kwargs...) # The DAE initialization in `build_null_solution` may change the parameter # object `prob.p` via `@set!`, hence use the "new" prob instead of the "old" one. prob = sol.prob return NullODEIntegrator{ isinplace(prob), typeof(prob), eltype(prob.tspan), typeof(sol), typeof(prob.f), typeof(prob.p) }(Float64[], Float64[], prob.tspan[1], prob, sol, prob.f, prob.p) end function solve!(integ::NullODEIntegrator) integ.t = integ.sol.t[end] return nothing end function step!(integ::NullODEIntegrator, dt = nothing, stop_at_tdt = false) if !isnothing(dt) integ.t += dt else integ.t = integ.sol[end] end return nothing end function build_null_solution(prob::AbstractDEProblem, args...; saveat = (), save_everystep = true, save_on = true, save_start = save_everystep || isempty(saveat) || saveat isa Number || prob.tspan[1] in saveat, save_end = true, kwargs...) ts = if saveat === () if save_start && save_end [prob.tspan[1], prob.tspan[2]] elseif save_start && !save_end [prob.tspan[1]] elseif !save_start && save_end [prob.tspan[2]] else eltype(prob.tspan)[] end elseif saveat isa Number prob.tspan[1]:saveat:prob.tspan[2] else saveat end timeseries = [Float64[] for i in 1:length(ts)] if SciMLBase.has_initializeprob(prob.f) && SciMLBase.has_initializeprobpmap(prob.f) initializeprob = prob.f.initializeprob nlsol = solve(initializeprob) @set! prob.p = prob.f.initializeprobpmap(prob, nlsol) end build_solution(prob, nothing, ts, timeseries, retcode = ReturnCode.Success) end function build_null_solution( prob::Union{SteadyStateProblem, NonlinearProblem}, args...; saveat = (), save_everystep = true, save_on = true, save_start = save_everystep || isempty(saveat) || saveat isa Number || prob.tspan[1] in saveat, save_end = true, kwargs...) SciMLBase.build_solution(prob, nothing, Float64[], nothing; retcode = ReturnCode.Success) end function build_null_solution( prob::NonlinearLeastSquaresProblem, args...; abstol = 1e-6, kwargs...) if isinplace(prob) resid = isnothing(prob.f.resid_prototype) ? Float64[] : copy(prob.f.resid_prototype) prob.f(resid, prob.u0, prob.p) else resid = prob.f(prob.u0, prob.p) end retcode = norm(resid) < abstol ? ReturnCode.Success : ReturnCode.Failure SciMLBase.build_solution(prob, nothing, Float64[], resid; retcode) end """ ```julia solve(prob::AbstractDEProblem, alg::Union{AbstractDEAlgorithm,Nothing}; kwargs...) ``` ## Arguments The only positional argument is `alg` which is optional. By default, `alg = nothing`. If `alg = nothing`, then `solve` dispatches to the DifferentialEquations.jl automated algorithm selection (if `using DifferentialEquations` was done, otherwise it will error with a `MethodError`). ## Keyword Arguments The DifferentialEquations.jl universe has a large set of common arguments available for the `solve` function. These arguments apply to `solve` on any problem type and are only limited by limitations of the specific implementations. Many of the defaults depend on the algorithm or the package the algorithm derives from. Not all of the interface is provided by every algorithm. For more detailed information on the defaults and the available options for specific algorithms / packages, see the manual pages for the solvers of specific problems. To see whether a specific package is compatible with the use of a given option, see the [Solver Compatibility Chart](https://docs.sciml.ai/DiffEqDocs/stable/basics/compatibility_chart/#Solver-Compatibility-Chart) ### Default Algorithm Hinting To help choose the default algorithm, the keyword argument `alg_hints` is provided to `solve`. `alg_hints` is a `Vector{Symbol}` which describe the problem at a high level to the solver. The options are: * `:auto` vs `:nonstiff` vs `:stiff` - Denotes the equation as nonstiff/stiff. `:auto` allow the default handling algorithm to choose stiffness detection algorithms. The default handling defaults to using `:auto`. Currently unused options include: * `:interpolant` - Denotes that a high-precision interpolation is important. * `:memorybound` - Denotes that the solver will be memory bound. This functionality is derived via the benchmarks in [SciMLBenchmarks.jl](https://github.com/SciML/SciMLBenchmarks.jl) #### SDE Specific Alghints * `:additive` - Denotes that the underlying SDE has additive noise. * `:stratonovich` - Denotes that the solution should adhere to the Stratonovich interpretation. ### Output Control These arguments control the output behavior of the solvers. It defaults to maximum output to give the best interactive user experience, but can be reduced all the way to only saving the solution at the final timepoint. The following options are all related to output control. See the "Examples" section at the end of this page for some example usage. * `dense`: Denotes whether to save the extra pieces required for dense (continuous) output. Default is `save_everystep && isempty(saveat)` for algorithms which have the ability to produce dense output, i.e. by default it's `true` unless the user has turned off saving on steps or has chosen a `saveat` value. If `dense=false`, the solution still acts like a function, and `sol(t)` is a linear interpolation between the saved time points. * `saveat`: Denotes specific times to save the solution at, during the solving phase. The solver will save at each of the timepoints in this array in the most efficient manner available to the solver. If only `saveat` is given, then the arguments `save_everystep` and `dense` are `false` by default. If `saveat` is given a number, then it will automatically expand to `tspan[1]:saveat:tspan[2]`. For methods where interpolation is not possible, `saveat` may be equivalent to `tstops`. The default value is `[]`. * `save_idxs`: Denotes the indices for the components of the equation to save. Defaults to saving all indices. For example, if you are solving a 3-dimensional ODE, and given `save_idxs = [1, 3]`, only the first and third components of the solution will be outputted. Notice that of course in this case the outputted solution will be two-dimensional. * `tstops`: Denotes *extra* times that the timestepping algorithm must step to. This should be used to help the solver deal with discontinuities and singularities, since stepping exactly at the time of the discontinuity will improve accuracy. If a method cannot change timesteps (fixed timestep multistep methods), then `tstops` will use an interpolation, matching the behavior of `saveat`. If a method cannot change timesteps and also cannot interpolate, then `tstops` must be a multiple of `dt` or else an error will be thrown. Default is `[]`. * `d_discontinuities:` Denotes locations of discontinuities in low order derivatives. This will force FSAL algorithms which assume derivative continuity to re-evaluate the derivatives at the point of discontinuity. The default is `[]`. * `save_everystep`: Saves the result at every step. Default is true if `isempty(saveat)`. * `save_on`: Denotes whether intermediate solutions are saved. This overrides the settings of `dense`, `saveat` and `save_everystep` and is used by some applications to manually turn off saving temporarily. Everyday use of the solvers should leave this unchanged. Defaults to `true`. * `save_start`: Denotes whether the initial condition should be included in the solution type as the first timepoint. Defaults to `true`. * `save_end`: Denotes whether the final timepoint is forced to be saved, regardless of the other saving settings. Defaults to `true`. * `initialize_save`: Denotes whether to save after the callback initialization phase (when `u_modified=true`). Defaults to `true`. Note that `dense` requires `save_everystep=true` and `saveat=false`. If you need additional saving while keeping dense output, see [the SavingCallback in the Callback Library](https://docs.sciml.ai/DiffEqCallbacks/stable/output_saving/#DiffEqCallbacks.SavingCallback). ### Stepsize Control These arguments control the timestepping routines. #### Basic Stepsize Control These are the standard options for controlling stepping behavior. Error estimates do the comparison ```math err_{scaled} = err/(abstol + max(uprev,u)*reltol) ``` The scaled error is guaranteed to be `<1` for a given local error estimate (note: error estimates are local unless the method specifies otherwise). `abstol` controls the non-scaling error and thus can be thought of as the error around zero. `reltol` scales with the size of the dependent variables and so one can interpret `reltol=1e-3` as roughly being (locally) correct to 3 digits. Note tolerances can be specified element-wise by passing a vector whose size matches `u0`. * `adaptive`: Turns on adaptive timestepping for appropriate methods. Default is true. * `abstol`: Absolute tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to `1e-6` on deterministic equations (ODEs/DDEs/DAEs) and `1e-2` on stochastic equations (SDEs/RODEs). * `reltol`: Relative tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to `1e-3` on deterministic equations (ODEs/DDEs/DAEs) and `1e-2` on stochastic equations (SDEs/RODEs). * `dt`: Sets the initial stepsize. This is also the stepsize for fixed timestep methods. Defaults to an automatic choice if the method is adaptive. * `dtmax`: Maximum dt for adaptive timestepping. Defaults are package-dependent. * `dtmin`: Minimum dt for adaptive timestepping. Defaults are package-dependent. * `force_dtmin`: Declares whether to continue, forcing the minimum `dt` usage. Default is `false`, which has the solver throw a warning and exit early when encountering the minimum `dt`. Setting this true allows the solver to continue, never letting `dt` go below `dtmin` (and ignoring error tolerances in those cases). Note that `true` is not compatible with most interop packages. #### Fixed Stepsize Usage Note that if a method does not have adaptivity, the following rules apply: * If `dt` is set, then the algorithm will step with size `dt` each iteration. * If `tstops` and `dt` are both set, then the algorithm will step with either a size `dt`, or use a smaller step to hit the `tstops` point. * If `tstops` is set without `dt`, then the algorithm will step directly to each value in `tstops` * If neither `dt` nor `tstops` are set, the solver will throw an error. #### [Advanced Adaptive Stepsize Control](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/) These arguments control more advanced parts of the internals of adaptive timestepping and are mostly used to make it more efficient on specific problems. For detained explanations of the timestepping algorithms, see the [timestepping descriptions](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/#timestepping) * `internalnorm`: The norm function `internalnorm(u,t)` which error estimates are calculated. Required are two dispatches: one dispatch for the state variable and the other on the elements of the state variable (scalar norm). Defaults are package-dependent. * `controller`: Possible examples are [`IController`](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/#OrdinaryDiffEq.IController), [`PIController`](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/#OrdinaryDiffEq.PIController), [`PIDController`](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/#OrdinaryDiffEq.PIDController), [`PredictiveController`](https://docs.sciml.ai/DiffEqDocs/stable/extras/timestepping/#OrdinaryDiffEq.PredictiveController). Default is algorithm-dependent. * `gamma`: The risk-factor γ in the q equation for adaptive timestepping of the controllers using it. Default is algorithm-dependent. * `beta1`: The Lund stabilization α parameter. Default is algorithm-dependent. * `beta2`: The Lund stabilization β parameter. Default is algorithm-dependent. * `qmax`: Defines the maximum value possible for the adaptive q. Default is algorithm-dependent. * `qmin`: Defines the minimum value possible for the adaptive q. Default is algorithm-dependent. * `qsteady_min`: Defines the minimum for the range around 1 where the timestep is held constant. Default is algorithm-dependent. * `qsteady_max`: Defines the maximum for the range around 1 where the timestep is held constant. Default is algorithm-dependent. * `qoldinit`: The initial `qold` in stabilization stepping. Default is algorithm-dependent. * `failfactor`: The amount to decrease the timestep by if the Newton iterations of an implicit method fail. Default is 2. ### Memory Optimizations * `calck`: Turns on and off the internal ability for intermediate interpolations (also known as intermediate density). Not the same as `dense`, which is post-solution interpolation. This defaults to `dense || !isempty(saveat) || "no custom callback is given"`. This can be used to turn off interpolations (to save memory) if one isn't using interpolations when a custom callback is used. Another case where this may be used is to turn on interpolations for usage in the integrator interface even when interpolations are used nowhere else. Note that this is only required if the algorithm doesn't have a free or lazy interpolation (`DP8()`). If `calck = false`, `saveat` cannot be used. The rare keyword `calck` can be useful in event handling. * `alias_u0`: allows the solver to alias the initial condition array that is contained in the problem struct. Defaults to false. ### Miscellaneous * `maxiters`: Maximum number of iterations before stopping. Defaults to 1e5. * `callback`: Specifies a callback. Defaults to a callback function which performs the saving routine. For more information, see the [Event Handling and Callback Functions manual page](https://docs.sciml.ai/DiffEqCallbacks/stable/). * `isoutofdomain`: Specifies a function `isoutofdomain(u,p,t)` where, when it returns true, it will reject the timestep. Disabled by default. * `unstable_check`: Specifies a function `unstable_check(dt,u,p,t)` where, when it returns true, it will cause the solver to exit and throw a warning. Defaults to `any(isnan,u)`, i.e. checking if any value is a NaN. * `verbose`: Toggles whether warnings are thrown when the solver exits early. Defaults to true. * `merge_callbacks`: Toggles whether to merge `prob.callback` with the `solve` keyword argument `callback`. Defaults to `true`. * `wrap`: Toggles whether to wrap the solution if `prob.problem_type` has a preferred alternate wrapper type for the solution. Useful when speed, but not shape of solution is important. Defaults to `Val(true)`. `Val(false)` will cancel wrapping the solution. * `u0`: The initial condition, overrides the one defined in the problem struct. Defaults to `nothing` (no override, use the `u0` defined in `prob`). * `p`: The parameters, overrides the one defined in the problem struct. Defaults to `nothing` (no override, use the `p` defined in `prob`). ### Progress Monitoring These arguments control the usage of the progressbar in ProgressLogging.jl compatible environments. * `progress`: Turns on/off the Juno progressbar. Default is false. * `progress_steps`: Numbers of steps between updates of the progress bar. Default is 1000. * `progress_name`: Controls the name of the progressbar. Default is the name of the problem type. * `progress_message`: Controls the message with the progressbar. Defaults to showing `dt`, `t`, the maximum of `u`. * `progress_id`: Controls the ID of the progress log message to distinguish simultaneous simulations. ### Error Calculations If you are using the test problems (ex: `ODETestProblem`), then the following options control the errors which are calculated: * `timeseries_errors`: Turns on and off the calculation of errors at the steps which were taken, such as the `l2` error. Default is true. * `dense_errors`: Turns on and off the calculation of errors at the steps which require dense output and calculate the error at 100 evenly-spaced points throughout `tspan`. An example is the `L2` error. Default is false. ### Sensitivity Algorithms (`sensealg`) `sensealg` is used for choosing the way the automatic differentiation is performed. For more information, see the documentation for SciMLSensitivity: https://docs.sciml.ai/SciMLSensitivity/stable/ ## Examples The following lines are examples of how one could use the configuration of `solve()`. For these examples a 3-dimensional ODE problem is assumed, however the extension to other types is straightforward. 1. `solve(prob, AlgorithmName())` : The "default" setting, with a user-specified algorithm (given by `AlgorithmName()`). All parameters get their default values. This means that the solution is saved at the steps the Algorithm stops internally and dense output is enabled if the chosen algorithm allows for it. All other integration parameters (e.g. stepsize) are chosen automatically. 2. `solve(prob, saveat = 0.01, abstol = 1e-9, reltol = 1e-9)` : Standard setting for accurate output at specified (and equidistant) time intervals, used for e.g. Fourier Transform. The solution is given every 0.01 time units, starting from `tspan[1]`. The solver used is `Tsit5()` since no keyword `alg_hits` is given. 3. `solve(prob, maxiters = 1e7, progress = true, save_idxs = [1])` : Using longer maximum number of solver iterations can be useful when a given `tspan` is very long. This example only saves the first of the variables of the system, either to save size or because the user does not care about the others. Finally, with `progress = true` you are enabling the progress bar. """ function solve(prob::AbstractDEProblem, args...; sensealg = nothing, u0 = nothing, p = nothing, wrap = Val(true), kwargs...) if sensealg === nothing && haskey(prob.kwargs, :sensealg) sensealg = prob.kwargs[:sensealg] end u0 = u0 !== nothing ? u0 : prob.u0 p = p !== nothing ? p : prob.p if wrap isa Val{true} wrap_sol(solve_up(prob, sensealg, u0, p, args...; kwargs...)) else solve_up(prob, sensealg, u0, p, args...; kwargs...) end end """ ```julia solve(prob::NonlinearProblem, alg::Union{AbstractNonlinearAlgorithm,Nothing}; kwargs...) ``` ## Arguments The only positional argument is `alg` which is optional. By default, `alg = nothing`. If `alg = nothing`, then `solve` dispatches to the NonlinearSolve.jl automated algorithm selection (if `using NonlinearSolve` was done, otherwise it will error with a `MethodError`). ## Keyword Arguments The NonlinearSolve.jl universe has a large set of common arguments available for the `solve` function. These arguments apply to `solve` on any problem type and are only limited by limitations of the specific implementations. Many of the defaults depend on the algorithm or the package the algorithm derives from. Not all of the interface is provided by every algorithm. For more detailed information on the defaults and the available options for specific algorithms / packages, see the manual pages for the solvers of specific problems. #### Error Control * `abstol`: Absolute tolerance. * `reltol`: Relative tolerance. ### Miscellaneous * `maxiters`: Maximum number of iterations before stopping. Defaults to 1e5. * `verbose`: Toggles whether warnings are thrown when the solver exits early. Defaults to true. ### Sensitivity Algorithms (`sensealg`) `sensealg` is used for choosing the way the automatic differentiation is performed. For more information, see the documentation for SciMLSensitivity: https://docs.sciml.ai/SciMLSensitivity/stable/ """ function solve(prob::NonlinearProblem, args...; sensealg = nothing, u0 = nothing, p = nothing, wrap = Val(true), kwargs...) if sensealg === nothing && haskey(prob.kwargs, :sensealg) sensealg = prob.kwargs[:sensealg] end u0 = u0 !== nothing ? u0 : prob.u0 p = p !== nothing ? p : prob.p if wrap isa Val{true} wrap_sol(solve_up(prob, sensealg, u0, p, args...; kwargs...)) else solve_up(prob, sensealg, u0, p, args...; kwargs...) end end function solve_up(prob::Union{AbstractDEProblem, NonlinearProblem}, sensealg, u0, p, args...; kwargs...) alg = extract_alg(args, kwargs, has_kwargs(prob) ? prob.kwargs : kwargs) if isnothing(alg) || !(alg isa AbstractDEAlgorithm) # Default algorithm handling _prob = get_concrete_problem(prob, !(prob isa DiscreteProblem); u0 = u0, p = p, kwargs...) solve_call(_prob, args...; kwargs...) else _prob = get_concrete_problem(prob, isadaptive(alg); u0 = u0, p = p, kwargs...) _alg = prepare_alg(alg, _prob.u0, _prob.p, _prob) check_prob_alg_pairing(_prob, alg) # use alg for improved inference if length(args) > 1 solve_call(_prob, _alg, Base.tail(args)...; kwargs...) else solve_call(_prob, _alg; kwargs...) end end end function solve_call(prob::SteadyStateProblem, alg::SciMLBase.AbstractNonlinearAlgorithm, args...; kwargs...) solve_call(NonlinearProblem(prob), alg, args...; kwargs...) end function solve(prob::EnsembleProblem, args...; kwargs...) alg = extract_alg(args, kwargs, kwargs) if length(args) > 1 __solve(prob, alg, Base.tail(args)...; kwargs...) else __solve(prob, alg; kwargs...) end end function solve(prob::SciMLBase.WeightedEnsembleProblem, args...; kwargs...) SciMLBase.WeightedEnsembleSolution(solve(prob.ensembleprob), prob.weights) end function solve(prob::AbstractNoiseProblem, args...; kwargs...) __solve(prob, args...; kwargs...) end function solve(prob::AbstractJumpProblem, args...; kwargs...) __solve(prob, args...; kwargs...) end function checkkwargs(kwargshandle; kwargs...) if any(x -> x ∉ allowedkeywords, keys(kwargs)) if kwargshandle == KeywordArgError throw(CommonKwargError(kwargs)) elseif kwargshandle == KeywordArgWarn @warn KWARGWARN_MESSAGE unrecognized = setdiff(keys(kwargs), allowedkeywords) print("Unrecognized keyword arguments: ") printstyled(unrecognized; bold = true, color = :red) print("\n\n") else @assert kwargshandle == KeywordArgSilent end end end function get_concrete_problem(prob::AbstractJumpProblem, isadapt; kwargs...) prob end function get_concrete_problem(prob::SteadyStateProblem, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) u0 = get_concrete_u0(prob, isadapt, Inf, kwargs) u0 = promote_u0(u0, p, nothing) remake(prob; u0 = u0, p = p) end function get_concrete_problem(prob::NonlinearProblem, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) u0 = get_concrete_u0(prob, isadapt, nothing, kwargs) u0 = promote_u0(u0, p, nothing) remake(prob; u0 = u0, p = p) end function get_concrete_problem(prob::NonlinearLeastSquaresProblem, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) u0 = get_concrete_u0(prob, isadapt, nothing, kwargs) u0 = promote_u0(u0, p, nothing) remake(prob; u0 = u0, p = p) end function get_concrete_problem(prob::AbstractEnsembleProblem, isadapt; kwargs...) prob end function solve(prob::PDEProblem, alg::AbstractDEAlgorithm, args...; kwargs...) solve(prob.prob, alg, args...; kwargs...) end function init(prob::PDEProblem, alg::AbstractDEAlgorithm, args...; kwargs...) init(prob.prob, alg, args...; kwargs...) end function get_concrete_problem(prob, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) tspan = get_concrete_tspan(prob, isadapt, kwargs, p) u0 = get_concrete_u0(prob, isadapt, tspan[1], kwargs) u0_promote = promote_u0(u0, p, tspan[1]) tspan_promote = promote_tspan(u0_promote, p, tspan, prob, kwargs) f_promote = promote_f(prob.f, Val(SciMLBase.specialization(prob.f)), u0_promote, p, tspan_promote[1]) if isconcreteu0(prob, tspan[1], kwargs) && prob.u0 === u0 && typeof(u0_promote) === typeof(prob.u0) && prob.tspan == tspan && typeof(prob.tspan) === typeof(tspan_promote) && p === prob.p && f_promote === prob.f return prob else return remake(prob; f = f_promote, u0 = u0_promote, p = p, tspan = tspan_promote) end end function get_concrete_problem(prob::DAEProblem, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) tspan = get_concrete_tspan(prob, isadapt, kwargs, p) u0 = get_concrete_u0(prob, isadapt, tspan[1], kwargs) du0 = get_concrete_du0(prob, isadapt, tspan[1], kwargs) u0_promote = promote_u0(u0, p, tspan[1]) du0_promote = promote_u0(du0, p, tspan[1]) tspan_promote = promote_tspan(u0_promote, p, tspan, prob, kwargs) f_promote = promote_f(prob.f, Val(SciMLBase.specialization(prob.f)), u0_promote, p, tspan_promote[1]) if isconcreteu0(prob, tspan[1], kwargs) && typeof(u0_promote) === typeof(prob.u0) && isconcretedu0(prob, tspan[1], kwargs) && typeof(du0_promote) === typeof(prob.du0) && prob.tspan == tspan && typeof(prob.tspan) === typeof(tspan_promote) && p === prob.p && f_promote === prob.f return prob else return remake(prob; f = f_promote, du0 = du0_promote, u0 = u0_promote, p = p, tspan = tspan_promote) end end function get_concrete_problem(prob::DDEProblem, isadapt; kwargs...) p = get_concrete_p(prob, kwargs) tspan = get_concrete_tspan(prob, isadapt, kwargs, p) u0 = get_concrete_u0(prob, isadapt, tspan[1], kwargs) if prob.constant_lags isa Function constant_lags = prob.constant_lags(p) else constant_lags = prob.constant_lags end u0 = promote_u0(u0, p, tspan[1]) tspan = promote_tspan(u0, p, tspan, prob, kwargs) remake(prob; u0 = u0, tspan = tspan, p = p, constant_lags = constant_lags) end # Most are extensions promote_tspan(u0, p, tspan, prob, kwargs) = _promote_tspan(tspan, kwargs) function _promote_tspan(tspan, kwargs) if (dt = get(kwargs, :dt, nothing)) !== nothing tspan1, tspan2, _ = promote(tspan..., dt) return (tspan1, tspan2) else return tspan end end function promote_f(f::F, ::Val{specialize}, u0, p, t) where {F, specialize} # Ensure our jacobian will be of the same type as u0 uElType = u0 === nothing ? Float64 : eltype(u0) if isdefined(f, :jac_prototype) && f.jac_prototype isa AbstractArray f = @set f.jac_prototype = similar(f.jac_prototype, uElType) end @static if VERSION >= v"1.8-" f = if f isa ODEFunction && isinplace(f) && !(f.f isa AbstractSciMLOperator) && # Some reinitialization code still uses NLSolvers stuff which doesn't # properly tag, so opt-out if potentially a mass matrix DAE f.mass_matrix isa UniformScaling && # Jacobians don't wrap, so just ignore those cases f.jac === nothing && ((specialize === SciMLBase.AutoSpecialize && eltype(u0) !== Any && RecursiveArrayTools.recursive_unitless_eltype(u0) === eltype(u0) && one(t) === oneunit(t) && Tricks.static_hasmethod(ArrayInterface.promote_eltype, Tuple{Type{typeof(u0)}, Type{dualgen(eltype(u0))}}) && Tricks.static_hasmethod(promote_rule, Tuple{Type{eltype(u0)}, Type{dualgen(eltype(u0))}}) && Tricks.static_hasmethod(promote_rule, Tuple{Type{eltype(u0)}, Type{typeof(t)}})) || (specialize === SciMLBase.FunctionWrapperSpecialize && !(f.f isa FunctionWrappersWrappers.FunctionWrappersWrapper))) return unwrapped_f(f, wrapfun_iip(f.f, (u0, u0, p, t))) else return f end else return f end end function promote_f(f::SplitFunction, ::Val{specialize}, u0, p, t) where {specialize} typeof(f.cache) === typeof(u0) && isinplace(f) ? f : remake(f, cache = zero(u0)) end prepare_alg(alg, u0, p, f) = alg function get_concrete_tspan(prob, isadapt, kwargs, p) if prob.tspan isa Function tspan = prob.tspan(p) elseif haskey(kwargs, :tspan) tspan = kwargs[:tspan] elseif prob.tspan === (nothing, nothing) throw(NoTspanError()) else tspan = prob.tspan end isadapt && eltype(tspan) <: Integer && (tspan = float.(tspan)) any(isnan, tspan) && throw(NaNTspanError()) tspan end function isconcreteu0(prob, t0, kwargs) !eval_u0(prob.u0) && prob.u0 !== nothing && !isdistribution(prob.u0) end function isconcretedu0(prob, t0, kwargs) !eval_u0(prob.u0) && prob.du0 !== nothing && !isdistribution(prob.du0) end function get_concrete_u0(prob, isadapt, t0, kwargs) if eval_u0(prob.u0) u0 = prob.u0(prob.p, t0) elseif haskey(kwargs, :u0) u0 = kwargs[:u0] else u0 = prob.u0 end isadapt && eltype(u0) <: Integer && (u0 = float.(u0)) _u0 = handle_distribution_u0(u0) if isinplace(prob) && (_u0 isa Number || _u0 isa SArray) throw(IncompatibleInitialConditionError()) end nu0 = length(something(_u0, ())) if isdefined(prob.f, :mass_matrix) && prob.f.mass_matrix !== nothing && prob.f.mass_matrix isa AbstractArray && size(prob.f.mass_matrix, 1) !== nu0 throw(IncompatibleMassMatrixError(size(prob.f.mass_matrix, 1), nu0)) end if _u0 isa Tuple throw(TupleStateError()) end _u0 end function get_concrete_u0(prob::BVProblem, isadapt, t0, kwargs) if haskey(kwargs, :u0) u0 = kwargs[:u0] else u0 = prob.u0 end isadapt && eltype(u0) <: Integer && (u0 = float.(u0)) _u0 = handle_distribution_u0(u0) if isinplace(prob) && (_u0 isa Number || _u0 isa SArray) throw(IncompatibleInitialConditionError()) end if _u0 isa Tuple throw(TupleStateError()) end return _u0 end function get_concrete_du0(prob, isadapt, t0, kwargs) if eval_u0(prob.du0) du0 = prob.du0(prob.p, t0) elseif haskey(kwargs, :du0) du0 = kwargs[:du0] else du0 = prob.du0 end isadapt && eltype(du0) <: Integer && (du0 = float.(du0)) _du0 = handle_distribution_u0(du0) if isinplace(prob) && (_du0 isa Number || _du0 isa SArray) throw(IncompatibleInitialConditionError()) end _du0 end function get_concrete_p(prob, kwargs) if haskey(kwargs, :p) p = kwargs[:p] else p = prob.p end end handle_distribution_u0(_u0) = _u0 eval_u0(u0::Function) = true eval_u0(u0) = false function __solve( prob::AbstractDEProblem, args...; default_set = false, second_time = false, kwargs...) if second_time throw(NoDefaultAlgorithmError()) elseif length(args) > 0 && !(first(args) isa Union{Nothing, AbstractDEAlgorithm, AbstractNonlinearAlgorithm}) throw(NonSolverError()) else __solve(prob, nothing, args...; default_set = false, second_time = true, kwargs...) end end function __init(prob::AbstractDEProblem, args...; default_set = false, second_time = false, kwargs...) if second_time throw(NoDefaultAlgorithmError()) elseif length(args) > 0 && !(first(args) isa Union{Nothing, AbstractDEAlgorithm, AbstractNonlinearAlgorithm}) throw(NonSolverError()) else __init(prob, nothing, args...; default_set = false, second_time = true, kwargs...) end end function check_prob_alg_pairing(prob, alg) if prob isa ODEProblem && !(alg isa AbstractODEAlgorithm) || prob isa SDEProblem && !(alg isa AbstractSDEAlgorithm) || prob isa SDDEProblem && !(alg isa AbstractSDEAlgorithm) || prob isa DDEProblem && !(alg isa AbstractDDEAlgorithm) || prob isa DAEProblem && !(alg isa AbstractDAEAlgorithm) || prob isa SteadyStateProblem && !(alg isa AbstractSteadyStateAlgorithm) throw(ProblemSolverPairingError(prob, alg)) end if isdefined(prob, :u0) && eltype(prob.u0) <: ForwardDiff.Dual && !SciMLBase.isautodifferentiable(alg) throw(DirectAutodiffError()) end if prob isa SDEProblem && prob.noise_rate_prototype !== nothing && prob.noise !== nothing && size(prob.noise_rate_prototype, 2) != length(prob.noise.W[1]) throw(NoiseSizeIncompatabilityError(size(prob.noise_rate_prototype, 2), length(prob.noise.W[1]))) end # Complex number support comes before arbitrary number support for a more direct # error message. if !SciMLBase.allowscomplex(alg) if isdefined(prob, :u0) && RecursiveArrayTools.recursive_unitless_eltype(prob.u0) <: Complex throw(ComplexSupportError(alg)) end end if isdefined(prob, :tspan) && eltype(prob.tspan) <: Complex throw(ComplexTspanError()) end # Check for concrete element type so that the non-concrete case throws a better error if !SciMLBase.allows_arbitrary_number_types(alg) if isdefined(prob, :u0) uType = RecursiveArrayTools.recursive_unitless_eltype(prob.u0) if Base.isconcretetype(uType) && !(uType <: Union{Float32, Float64, ComplexF32, ComplexF64}) throw(GenericNumberTypeError(alg, isdefined(prob, :u0) ? typeof(prob.u0) : nothing, isdefined(prob, :tspan) ? typeof(prob.tspan) : nothing)) end end if isdefined(prob, :tspan) tType = eltype(prob.tspan) if Base.isconcretetype(tType) && !(tType <: Union{Float32, Float64, ComplexF32, ComplexF64}) throw(GenericNumberTypeError(alg, isdefined(prob, :u0) ? typeof(prob.u0) : nothing, isdefined(prob, :tspan) ? typeof(prob.tspan) : nothing)) end end end end @inline function extract_alg(solve_args, solve_kwargs, prob_kwargs) if isempty(solve_args) || isnothing(first(solve_args)) if haskey(solve_kwargs, :alg) solve_kwargs[:alg] elseif haskey(prob_kwargs, :alg) prob_kwargs[:alg] else nothing end elseif first(solve_args) isa SciMLBase.AbstractSciMLAlgorithm && !(first(solve_args) isa SciMLBase.EnsembleAlgorithm) first(solve_args) else nothing end end ################### Differentiation """ Ignores all adjoint definitions (i.e. `sensealg`) and proceeds to do standard AD through the `solve` functions. Generally only used internally for implementing discrete sensitivity algorithms. """ struct SensitivityADPassThrough <: AbstractDEAlgorithm end ### ### Legacy Dispatches to be Non-Breaking ### @deprecate concrete_solve(prob::AbstractDEProblem, alg::Union{AbstractDEAlgorithm, Nothing}, u0 = prob.u0, p = prob.p, args...; kwargs...) solve(prob, alg, args...; u0 = u0, p = p, kwargs...) function _solve_adjoint(prob, sensealg, u0, p, originator, args...; merge_callbacks = true, kwargs...) alg = extract_alg(args, kwargs, prob.kwargs) if isnothing(alg) || !(alg isa AbstractDEAlgorithm) # Default algorithm handling _prob = get_concrete_problem(prob, !(prob isa DiscreteProblem); u0 = u0, p = p, kwargs...) else _prob = get_concrete_problem(prob, isadaptive(alg); u0 = u0, p = p, kwargs...) end if has_kwargs(_prob) if merge_callbacks && haskey(_prob.kwargs, :callback) && haskey(kwargs, :callback) kwargs_temp = NamedTuple{ Base.diff_names(Base._nt_names(values(kwargs)), (:callback,))}(values(kwargs)) callbacks = NamedTuple{(:callback,)}((DiffEqBase.CallbackSet( _prob.kwargs[:callback], values(kwargs).callback),)) kwargs = merge(kwargs_temp, callbacks) end kwargs = isempty(_prob.kwargs) ? kwargs : merge(values(_prob.kwargs), kwargs) end if length(args) > 1 _concrete_solve_adjoint(_prob, alg, sensealg, u0, p, originator, Base.tail(args)...; kwargs...) else _concrete_solve_adjoint(_prob, alg, sensealg, u0, p, originator; kwargs...) end end function _solve_forward(prob, sensealg, u0, p, originator, args...; merge_callbacks = true, kwargs...) alg = extract_alg(args, kwargs, prob.kwargs) if isnothing(alg) || !(alg isa AbstractDEAlgorithm) # Default algorithm handling _prob = get_concrete_problem(prob, !(prob isa DiscreteProblem); u0 = u0, p = p, kwargs...) else _prob = get_concrete_problem(prob, isadaptive(alg); u0 = u0, p = p, kwargs...) end if has_kwargs(_prob) if merge_callbacks && haskey(_prob.kwargs, :callback) && haskey(kwargs, :callback) kwargs_temp = NamedTuple{ Base.diff_names(Base._nt_names(values(kwargs)), (:callback,))}(values(kwargs)) callbacks = NamedTuple{(:callback,)}((DiffEqBase.CallbackSet( _prob.kwargs[:callback], values(kwargs).callback),)) kwargs = merge(kwargs_temp, callbacks) end kwargs = isempty(_prob.kwargs) ? kwargs : merge(values(_prob.kwargs), kwargs) end if length(args) > 1 _concrete_solve_forward(_prob, alg, sensealg, u0, p, originator, Base.tail(args)...; kwargs...) else _concrete_solve_forward(_prob, alg, sensealg, u0, p, originator; kwargs...) end end #### # Catch undefined AD overload cases const ADJOINT_NOT_FOUND_MESSAGE = """ Compatibility with reverse-mode automatic differentiation requires SciMLSensitivity.jl. Please install SciMLSensitivity.jl and do `using SciMLSensitivity`/`import SciMLSensitivity` for this functionality. For more details, see https://sensitivity.sciml.ai/dev/. """ struct AdjointNotFoundError <: Exception end function Base.showerror(io::IO, e::AdjointNotFoundError) print(io, ADJOINT_NOT_FOUND_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end function _concrete_solve_adjoint(args...; kwargs...) throw(AdjointNotFoundError()) end const FORWARD_SENSITIVITY_NOT_FOUND_MESSAGE = """ Compatibility with forward-mode automatic differentiation requires SciMLSensitivity.jl. Please install SciMLSensitivity.jl and do `using SciMLSensitivity`/`import SciMLSensitivity` for this functionality. For more details, see https://sensitivity.sciml.ai/dev/. """ struct ForwardSensitivityNotFoundError <: Exception end function Base.showerror(io::IO, e::ForwardSensitivityNotFoundError) print(io, FORWARD_SENSITIVITY_NOT_FOUND_MESSAGE) println(io, TruncatedStacktraces.VERBOSE_MSG) end function _concrete_solve_forward(args...; kwargs...) throw(ForwardSensitivityNotFoundError()) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2778
@static if isdefined(SciMLBase, :DEStats) const Stats = SciMLBase.DEStats else """ $(TYPEDEF) Statistics from the differential equation solver about the solution process. ## Fields - nf: Number of function evaluations. If the differential equation is a split function, such as a `SplitFunction` for implicit-explicit (IMEX) integration, then `nf` is the number of function evaluations for the first function (the implicit function) - nf2: If the differential equation is a split function, such as a `SplitFunction` for implicit-explicit (IMEX) integration, then `nf2` is the number of function evaluations for the second function, i.e. the function treated explicitly. Otherwise it is zero. - nw: The number of W=I-gamma*J (or W=I/gamma-J) matrices constructed during the solving process. - nsolve: The number of linear solves `W\b` required for the integration. - njacs: Number of Jacobians calculated during the integration. - nnonliniter: Total number of iterations for the nonlinear solvers. - nnonlinconvfail: Number of nonlinear solver convergence failures. - ncondition: Number of calls to the condition function for callbacks. - naccept: Number of accepted steps. - nreject: Number of rejected steps. - maxeig: Maximum eigenvalue over the solution. This is only computed if the method is an auto-switching algorithm. """ mutable struct Stats nf::Int nf2::Int nw::Int nsolve::Int njacs::Int nnonliniter::Int nnonlinconvfail::Int ncondition::Int naccept::Int nreject::Int maxeig::Float64 end Base.@deprecate_binding DEStats Stats false Stats(x::Int = -1) = Stats(x, x, x, x, x, x, x, x, x, x, 0.0) function Base.show(io::IO, s::Stats) println(io, summary(s)) @printf io "%-50s %-d\n" "Number of function 1 evaluations:" s.nf @printf io "%-50s %-d\n" "Number of function 2 evaluations:" s.nf2 @printf io "%-50s %-d\n" "Number of W matrix evaluations:" s.nw @printf io "%-50s %-d\n" "Number of linear solves:" s.nsolve @printf io "%-50s %-d\n" "Number of Jacobians created:" s.njacs @printf io "%-50s %-d\n" "Number of nonlinear solver iterations:" s.nnonliniter @printf io "%-50s %-d\n" "Number of nonlinear solver convergence failures:" s.nnonlinconvfail @printf io "%-50s %-d\n" "Number of rootfind condition calls:" s.ncondition @printf io "%-50s %-d\n" "Number of accepted steps:" s.naccept @printf io "%-50s %-d" "Number of rejected steps:" s.nreject iszero(s.maxeig) || @printf io "\n%-50s %-d" "Maximum eigenvalue recorded:" s.maxeig end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1394
""" $(TYPEDEF) Holds a tableau which defines an explicit Runge-Kutta method. """ mutable struct ExplicitRKTableau{MType <: AbstractMatrix, VType <: AbstractVector, S} <: ODERKTableau A::MType c::VType α::VType αEEst::VType d::VType # dense output coefficients stages::Int order::Int adaptiveorder::Int #The lower order of the pair. Only used for adaptivity. fsal::Bool stability_size::S end function ExplicitRKTableau(A::MType, c::VType, α::VType, order; adaptiveorder = 0, αEEst = similar(α, 0), fsal = false, stability_size = 0.0, d = similar(α, 0)) where {MType, VType} S = typeof(stability_size) ExplicitRKTableau{MType, VType, S}(A, c, α, αEEst, d, length(α), order, adaptiveorder, fsal, stability_size) end """ $(TYPEDEF) Holds a tableau which defines an implicit Runge-Kutta method. """ mutable struct ImplicitRKTableau{MType <: AbstractMatrix, VType <: AbstractVector} <: ODERKTableau A::MType c::VType α::VType αEEst::VType stages::Int order::Int adaptiveorder::Int #The lower order of the pair. Only used for adaptivity. end function ImplicitRKTableau(A::MType, c::VType, α::VType, order; adaptiveorder = 0, αEEst = VType()) where {MType, VType} ImplicitRKTableau{MType, VType}(A, c, α, αEEst, length(α), order, adaptiveorder) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
18223
abstract type AbstractNonlinearTerminationMode end abstract type AbstractSafeNonlinearTerminationMode <: AbstractNonlinearTerminationMode end abstract type AbstractSafeBestNonlinearTerminationMode <: AbstractSafeNonlinearTerminationMode end """ SteadyStateDiffEqTerminationMode <: AbstractNonlinearTerminationMode Check if all values of the derivative is close to zero wrt both relative and absolute tolerance. !!! danger This has been deprecated. """ struct SteadyStateDiffEqTerminationMode <: AbstractNonlinearTerminationMode function SteadyStateDiffEqTerminationMode() Base.depwarn("`SteadyStateDiffEqTerminationMode` is deprecated and isn't used \ in any upstream library. Remove uses of this.", :SteadyStateDiffEqTerminationMode) return new() end end """ SimpleNonlinearSolveTerminationMode <: AbstractNonlinearTerminationMode Check if all values of the derivative is close to zero wrt both relative and absolute tolerance. Or check that the value of the current and previous state is within the specified tolerances. !!! danger This has been deprecated. """ struct SimpleNonlinearSolveTerminationMode <: AbstractNonlinearTerminationMode function SimpleNonlinearSolveTerminationMode() Base.depwarn("`SimpleNonlinearSolveTerminationMode` is deprecated and isn't used \ in any upstream library. Remove uses of this.", :SimpleNonlinearSolveTerminationMode) return new() end end @inline set_termination_mode_internalnorm(mode, ::F) where {F} = mode @inline __norm_type(::typeof(Base.Fix2(norm, Inf))) = :Inf @inline __norm_type(::typeof(Base.Fix1(maximum, abs))) = :Inf @inline __norm_type(::typeof(Base.Fix2(norm, 2))) = :L2 @inline __norm_type(::F) where {F} = F const TERM_DOCS = Dict( :Norm => doc"``\| \Delta u \| \leq reltol \times \| \Delta u + u \|`` or ``\| \Delta u \| \leq abstol``.", :Rel => doc"``all \left(| \Delta u | \leq reltol \times | u | \right)``.", :RelNorm => doc"``\| \Delta u \| \leq reltol \times \| \Delta u + u \|``.", :Abs => doc"``all \left( | \Delta u | \leq abstol \right)``.", :AbsNorm => doc"``\| \Delta u \| \leq abstol``." ) const __TERM_INTERNALNORM_DOCS = """ where `internalnorm` is the norm to use for the termination condition. Special handling is done for `norm(_, 2)`, `norm(_, Inf)`, and `maximum(abs, _)`. Default is left as `nothing`, which allows upstream frameworks to choose the correct norm based on the problem type. If directly using the `init` API, a proper norm must be provided""" for name in (:Rel, :Abs) struct_name = Symbol(name, :TerminationMode) doctring = TERM_DOCS[name] @eval begin """ $($struct_name) <: AbstractNonlinearTerminationMode Terminates if $($doctring). ``\\Delta u`` denotes the increment computed by the nonlinear solver and ``u`` denotes the solution. """ struct $(struct_name) <: AbstractNonlinearTerminationMode end end end for name in (:Norm, :RelNorm, :AbsNorm) struct_name = Symbol(name, :TerminationMode) doctring = TERM_DOCS[name] @eval begin """ $($struct_name) <: AbstractNonlinearTerminationMode Terminates if $($doctring). ``\\Delta u`` denotes the increment computed by the inner nonlinear solver. ## Constructor $($struct_name)(internalnorm = nothing) $($__TERM_INTERNALNORM_DOCS). """ @concrete struct $(struct_name){F} <: AbstractNonlinearTerminationMode internalnorm $(struct_name)(f::F = nothing) where {F} = new{__norm_type(f), F}(f) end @inline function set_termination_mode_internalnorm( ::$(struct_name), internalnorm::F) where {F} return $(struct_name)(internalnorm) end end end for norm_type in (:Rel, :Abs), safety in (:Safe, :SafeBest) struct_name = Symbol(norm_type, safety, :TerminationMode) supertype_name = Symbol(:Abstract, safety, :NonlinearTerminationMode) doctring = safety == :Safe ? "Essentially [`$(norm_type)NormTerminationMode`](@ref) + terminate if there \ has been no improvement for the last `patience_steps` + terminate if the \ solution blows up (diverges)." : "Essentially [`$(norm_type)SafeTerminationMode`](@ref), but caches the best\ solution found so far." @eval begin """ $($struct_name) <: $($supertype_name) $($doctring) ## Constructor $($struct_name)(internalnorm = nothing; protective_threshold = nothing, patience_steps = 100, patience_objective_multiplier = 3, min_max_factor = 1.3, max_stalled_steps = nothing) $($__TERM_INTERNALNORM_DOCS). """ @concrete struct $(struct_name){F, T <: Union{Nothing, Int}} <: $(supertype_name) internalnorm protective_threshold patience_steps::Int patience_objective_multiplier min_max_factor max_stalled_steps::T function $(struct_name)(f::F = nothing; protective_threshold = nothing, patience_steps = 100, patience_objective_multiplier = 3, min_max_factor = 1.3, max_stalled_steps = nothing) where {F} return new{__norm_type(f), typeof(max_stalled_steps), F, typeof(protective_threshold), typeof(patience_objective_multiplier), typeof(min_max_factor)}(f, protective_threshold, patience_steps, patience_objective_multiplier, min_max_factor, max_stalled_steps) end end @inline function set_termination_mode_internalnorm( mode::$(struct_name), internalnorm::F) where {F} return $(struct_name)(internalnorm; mode.protective_threshold, mode.patience_steps, mode.patience_objective_multiplier, mode.min_max_factor, mode.max_stalled_steps) end end end @concrete mutable struct NonlinearTerminationModeCache{dep_retcode, M <: AbstractNonlinearTerminationMode, R <: Union{NonlinearSafeTerminationReturnCode.T, ReturnCode.T}} u retcode::R abstol reltol best_objective_value mode::M initial_objective objectives_trace nsteps::Int saved_values u0_norm step_norm_trace max_stalled_steps u_diff_cache end @inline get_termination_mode(cache::NonlinearTerminationModeCache) = cache.mode @inline get_abstol(cache::NonlinearTerminationModeCache) = cache.abstol @inline get_reltol(cache::NonlinearTerminationModeCache) = cache.reltol @inline get_saved_values(cache::NonlinearTerminationModeCache) = cache.saved_values function __update_u!!(cache::NonlinearTerminationModeCache, u) cache.u === nothing && return if cache.u isa AbstractArray && ArrayInterface.can_setindex(cache.u) copyto!(cache.u, u) else cache.u = u end end @inline __cvt_real(::Type{T}, ::Nothing) where {T} = nothing @inline __cvt_real(::Type{T}, x) where {T} = real(T(x)) @inline _get_tolerance(η, ::Type{T}) where {T} = __cvt_real(T, η) @inline function _get_tolerance(::Nothing, ::Type{T}) where {T} η = real(oneunit(T)) * (eps(real(one(T))))^(4 // 5) return _get_tolerance(η, T) end function SciMLBase.init(du::Union{AbstractArray{T}, T}, u::Union{AbstractArray{T}, T}, mode::AbstractNonlinearTerminationMode, saved_value_prototype...; use_deprecated_retcodes::Val{D} = Val(true), # Remove in v8, warn in v7 abstol = nothing, reltol = nothing, kwargs...) where {D, T <: Number} abstol = _get_tolerance(abstol, T) reltol = _get_tolerance(reltol, T) TT = typeof(abstol) u_ = mode isa AbstractSafeBestNonlinearTerminationMode ? (ArrayInterface.can_setindex(u) ? copy(u) : u) : nothing if mode isa AbstractSafeNonlinearTerminationMode if mode isa AbsSafeTerminationMode || mode isa AbsSafeBestTerminationMode initial_objective = __apply_termination_internalnorm(mode.internalnorm, du) u0_norm = nothing else initial_objective = __apply_termination_internalnorm(mode.internalnorm, du) / (__add_and_norm(mode.internalnorm, du, u) + eps(TT)) u0_norm = mode.max_stalled_steps === nothing ? nothing : norm(u, 2) end objectives_trace = Vector{TT}(undef, mode.patience_steps) step_norm_trace = mode.max_stalled_steps === nothing ? nothing : Vector{TT}(undef, mode.max_stalled_steps) best_value = initial_objective max_stalled_steps = mode.max_stalled_steps if ArrayInterface.can_setindex(u_) && !(u_ isa Number) && step_norm_trace !== nothing u_diff_cache = similar(u_) else u_diff_cache = u_ end else initial_objective = nothing objectives_trace = nothing u0_norm = nothing step_norm_trace = nothing best_value = __cvt_real(T, Inf) max_stalled_steps = nothing u_diff_cache = u_ end length(saved_value_prototype) == 0 && (saved_value_prototype = nothing) retcode = ifelse(D, NonlinearSafeTerminationReturnCode.Default, ReturnCode.Default) return NonlinearTerminationModeCache{D}(u_, retcode, abstol, reltol, best_value, mode, initial_objective, objectives_trace, 0, saved_value_prototype, u0_norm, step_norm_trace, max_stalled_steps, u_diff_cache) end function SciMLBase.reinit!(cache::NonlinearTerminationModeCache{dep_retcode}, du, u, saved_value_prototype...; abstol = nothing, reltol = nothing, kwargs...) where {dep_retcode} T = eltype(cache.abstol) length(saved_value_prototype) != 0 && (cache.saved_values = saved_value_prototype) u_ = cache.mode isa AbstractSafeBestNonlinearTerminationMode ? (ArrayInterface.can_setindex(u) ? copy(u) : u) : nothing cache.u = u_ cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.Default, ReturnCode.Default) cache.abstol = _get_tolerance(abstol, T) cache.reltol = _get_tolerance(reltol, T) cache.nsteps = 0 mode = get_termination_mode(cache) if mode isa AbstractSafeNonlinearTerminationMode if mode isa AbsSafeTerminationMode || mode isa AbsSafeBestTerminationMode initial_objective = __apply_termination_internalnorm( cache.mode.internalnorm, du) else initial_objective = __apply_termination_internalnorm( cache.mode.internalnorm, du) / (__add_and_norm(cache.mode.internalnorm, du, u) + eps(TT)) cache.max_stalled_steps !== nothing && (cache.u0_norm = norm(u_, 2)) end best_value = initial_objective else initial_objective = nothing best_value = __cvt_real(T, Inf) end cache.best_objective_value = best_value cache.initial_objective = initial_objective return cache end # This dispatch is needed based on how Terminating Callback works! # This intentially drops the `abstol` and `reltol` arguments function (cache::NonlinearTerminationModeCache)(integrator::AbstractODEIntegrator, abstol::Number, reltol::Number, min_t) retval = cache(cache.mode, get_du(integrator), integrator.u, integrator.uprev) (min_t === nothing || integrator.t ≥ min_t) && return retval return false end function (cache::NonlinearTerminationModeCache)(du, u, uprev, args...) return cache(cache.mode, du, u, uprev, args...) end function (cache::NonlinearTerminationModeCache)(mode::AbstractNonlinearTerminationMode, du, u, uprev, args...) return check_convergence(mode, du, u, uprev, cache.abstol, cache.reltol) end function (cache::NonlinearTerminationModeCache{dep_retcode})( mode::AbstractSafeNonlinearTerminationMode, du, u, uprev, args...) where {dep_retcode} if mode isa AbsSafeTerminationMode || mode isa AbsSafeBestTerminationMode objective = __apply_termination_internalnorm(mode.internalnorm, du) criteria = cache.abstol else objective = __apply_termination_internalnorm(mode.internalnorm, du) / (__add_and_norm(mode.internalnorm, du, u) + eps(cache.abstol)) criteria = cache.reltol end # Protective Break if isinf(objective) || isnan(objective) cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.ProtectiveTermination, ReturnCode.Unstable) return true end ## By default we turn this off since it has the potential for false positives if cache.mode.protective_threshold !== nothing && (objective > cache.initial_objective * cache.mode.protective_threshold * length(du)) cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.ProtectiveTermination, ReturnCode.Unstable) return true end # Check if best solution if mode isa AbstractSafeBestNonlinearTerminationMode && objective < cache.best_objective_value cache.best_objective_value = objective __update_u!!(cache, u) if cache.saved_values !== nothing && length(args) ≥ 1 cache.saved_values = args end end # Main Termination Condition if objective ≤ criteria cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.Success, ReturnCode.Success) return true end # Terminate if there has been no improvement for the last `patience_steps` cache.nsteps += 1 cache.nsteps == 1 && (cache.initial_objective = objective) cache.objectives_trace[mod1(cache.nsteps, length(cache.objectives_trace))] = objective if objective ≤ cache.mode.patience_objective_multiplier * criteria if cache.nsteps ≥ cache.mode.patience_steps if cache.nsteps < length(cache.objectives_trace) min_obj, max_obj = extrema(@view(cache.objectives_trace[1:(cache.nsteps)])) else min_obj, max_obj = extrema(cache.objectives_trace) end if min_obj < cache.mode.min_max_factor * max_obj cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.PatienceTermination, ReturnCode.Stalled) return true end end end # Test for stalling if that is not disabled if cache.step_norm_trace !== nothing if ArrayInterface.can_setindex(cache.u_diff_cache) && !(u isa Number) @. cache.u_diff_cache = u - uprev else cache.u_diff_cache = u .- uprev end du_norm = norm(cache.u_diff_cache, 2) cache.step_norm_trace[mod1(cache.nsteps, length(cache.step_norm_trace))] = du_norm if cache.nsteps ≥ cache.mode.max_stalled_steps max_step_norm = maximum(cache.step_norm_trace) if cache.mode isa AbsSafeTerminationMode || cache.mode isa AbsSafeBestTerminationMode stalled_step = max_step_norm ≤ cache.abstol else stalled_step = max_step_norm ≤ cache.reltol * (max_step_norm + cache.u0_norm) end if stalled_step cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.PatienceTermination, ReturnCode.Stalled) return true end end end cache.retcode = ifelse(dep_retcode, NonlinearSafeTerminationReturnCode.Failure, ReturnCode.Failure) return false end # Check Convergence function check_convergence(::SteadyStateDiffEqTerminationMode, duₙ, uₙ, uₙ₋₁, abstol, reltol) if __fast_scalar_indexing(duₙ, uₙ) return all(@closure(xy->begin x, y = xy return (abs(x) ≤ abstol) | (abs(x) ≤ reltol * abs(y)) end), zip(duₙ, uₙ)) else return all(@. (abs(duₙ) ≤ abstol) | (abs(duₙ) ≤ reltol * abs(uₙ))) end end function check_convergence( ::SimpleNonlinearSolveTerminationMode, duₙ, uₙ, uₙ₋₁, abstol, reltol) if __fast_scalar_indexing(duₙ, uₙ) return all(@closure(xy->begin x, y = xy return (abs(x) ≤ abstol) | (abs(x) ≤ reltol * abs(y)) end), zip(duₙ, uₙ)) || __nonlinearsolve_is_approx(uₙ, uₙ₋₁; atol = abstol, rtol = reltol) else return all(@. (abs(duₙ) ≤ abstol) | (abs(duₙ) ≤ reltol * abs(uₙ))) || __nonlinearsolve_is_approx(uₙ, uₙ₋₁; atol = abstol, rtol = reltol) end end function check_convergence(::RelTerminationMode, duₙ, uₙ, uₙ₋₁, abstol, reltol) if __fast_scalar_indexing(duₙ, uₙ) return all(@closure(xy->begin x, y = xy return abs(x) ≤ reltol * abs(y) end), zip(duₙ, uₙ)) else return all(@. abs(duₙ) ≤ reltol * abs(uₙ + duₙ)) end end function check_convergence(::AbsTerminationMode, duₙ, uₙ, uₙ₋₁, abstol, reltol) return all(@closure(x->abs(x) ≤ abstol), duₙ) end function check_convergence(mode::NormTerminationMode, duₙ, uₙ, uₙ₋₁, abstol, reltol) du_norm = __apply_termination_internalnorm(mode.internalnorm, duₙ) return (du_norm ≤ abstol) || (du_norm ≤ reltol * __add_and_norm(mode.internalnorm, duₙ, uₙ)) end function check_convergence( mode::Union{ RelNormTerminationMode, RelSafeTerminationMode, RelSafeBestTerminationMode}, duₙ, uₙ, uₙ₋₁, abstol, reltol) return __apply_termination_internalnorm(mode.internalnorm, duₙ) ≤ reltol * __add_and_norm(mode.internalnorm, duₙ, uₙ) end function check_convergence( mode::Union{AbsNormTerminationMode, AbsSafeTerminationMode, AbsSafeBestTerminationMode}, duₙ, uₙ, uₙ₋₁, abstol, reltol) return __apply_termination_internalnorm(mode.internalnorm, duₙ) ≤ abstol end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
13347
""" NonlinearSafeTerminationReturnCode Return Codes for the safe nonlinear termination conditions. These return codes have been deprecated. Termination Conditions will return `SciMLBase.Retcode.T` starting from v7. """ @enumx NonlinearSafeTerminationReturnCode begin """ NonlinearSafeTerminationReturnCode.Success Termination Condition was satisfied! """ Success """ NonlinearSafeTerminationReturnCode.Default Default Return Code. Used for type stability and conveys no additional information! """ Default """ NonlinearSafeTerminationReturnCode.PatienceTermination Terminate if there has been no improvement for the last `patience_steps`. """ PatienceTermination """ NonlinearSafeTerminationReturnCode.ProtectiveTermination Terminate if the objective value increased by this factor wrt initial objective or the value diverged. """ ProtectiveTermination """ NonlinearSafeTerminationReturnCode.Failure Termination Condition was not satisfied! """ Failure end # NOTE: Deprecate the following API eventually. This API leads to quite a bit of type # instability @enumx NLSolveSafeTerminationReturnCode begin Success PatienceTermination ProtectiveTermination Failure end # SteadyStateDefault and NLSolveDefault are needed to be compatible with the existing # termination conditions in NonlinearSolve and SteadyStateDiffEq @enumx NLSolveTerminationMode begin SteadyStateDefault NLSolveDefault Norm Rel RelNorm Abs AbsNorm RelSafe RelSafeBest AbsSafe AbsSafeBest end struct NLSolveSafeTerminationOptions{T1, T2, T3} protective_threshold::T1 patience_steps::Int patience_objective_multiplier::T2 min_max_factor::T3 end TruncatedStacktraces.@truncate_stacktrace NLSolveSafeTerminationOptions mutable struct NLSolveSafeTerminationResult{T, uType} u::uType best_objective_value::T best_objective_value_iteration::Int return_code::NLSolveSafeTerminationReturnCode.T end function NLSolveSafeTerminationResult(u = nothing; best_objective_value = Inf64, best_objective_value_iteration = 0, return_code = NLSolveSafeTerminationReturnCode.Failure) u = u !== nothing ? copy(u) : u Base.depwarn( "NLSolveSafeTerminationResult has been deprecated in favor of the new dispatch based termination conditions. Please use the new termination conditions API!", :NLSolveSafeTerminationResult) return NLSolveSafeTerminationResult{typeof(best_objective_value), typeof(u)}(u, best_objective_value, best_objective_value_iteration, return_code) end const BASIC_TERMINATION_MODES = (NLSolveTerminationMode.SteadyStateDefault, NLSolveTerminationMode.NLSolveDefault, NLSolveTerminationMode.Norm, NLSolveTerminationMode.Rel, NLSolveTerminationMode.RelNorm, NLSolveTerminationMode.Abs, NLSolveTerminationMode.AbsNorm) const SAFE_TERMINATION_MODES = (NLSolveTerminationMode.RelSafe, NLSolveTerminationMode.RelSafeBest, NLSolveTerminationMode.AbsSafe, NLSolveTerminationMode.AbsSafeBest) const SAFE_BEST_TERMINATION_MODES = (NLSolveTerminationMode.RelSafeBest, NLSolveTerminationMode.AbsSafeBest) @doc doc""" NLSolveTerminationCondition(mode; abstol::T = 1e-8, reltol::T = 1e-6, protective_threshold = 1e3, patience_steps::Int = 30, patience_objective_multiplier = 3, min_max_factor = 1.3) Define the termination criteria for the NonlinearProblem or SteadyStateProblem. ## Termination Conditions #### Termination on Absolute Tolerance * `NLSolveTerminationMode.Abs`: Terminates if ``all \left( | \frac{\partial u}{\partial t} | \leq abstol \right)`` * `NLSolveTerminationMode.AbsNorm`: Terminates if ``\| \frac{\partial u}{\partial t} \| \leq abstol`` * `NLSolveTerminationMode.AbsSafe`: Essentially `abs_norm` + terminate if there has been no improvement for the last 30 steps + terminate if the solution blows up (diverges) * `NLSolveTerminationMode.AbsSafeBest`: Same as `NLSolveTerminationMode.AbsSafe` but uses the best solution found so far, i.e. deviates only if the solution has not converged #### Termination on Relative Tolerance * `NLSolveTerminationMode.Rel`: Terminates if ``all \left(| \frac{\partial u}{\partial t} | \leq reltol \times | u | \right)`` * `NLSolveTerminationMode.RelNorm`: Terminates if ``\| \frac{\partial u}{\partial t} \| \leq reltol \times \| \frac{\partial u}{\partial t} + u \|`` * `NLSolveTerminationMode.RelSafe`: Essentially `rel_norm` + terminate if there has been no improvement for the last 30 steps + terminate if the solution blows up (diverges) * `NLSolveTerminationMode.RelSafeBest`: Same as `NLSolveTerminationMode.RelSafe` but uses the best solution found so far, i.e. deviates only if the solution has not converged #### Termination using both Absolute and Relative Tolerances * `NLSolveTerminationMode.Norm`: Terminates if ``\| \frac{\partial u}{\partial t} \| \leq reltol \times \| \frac{\partial u}{\partial t} + u \|`` or ``\| \frac{\partial u}{\partial t} \| \leq abstol`` * `NLSolveTerminationMode.SteadyStateDefault`: Check if all values of the derivative is close to zero wrt both relative and absolute tolerance. This is usable for small problems but doesn't scale well for neural networks. * `NLSolveTerminationMode.NLSolveDefault`: Check if all values of the derivative is close to zero wrt both relative and absolute tolerance. Or check that the value of the current and previous state is within the specified tolerances. This is usable for small problems but doesn't scale well for neural networks. ## General Arguments * `abstol`: Absolute Tolerance * `reltol`: Relative Tolerance ## Arguments specific to `*Safe*` modes * `protective_threshold`: If the objective value increased by this factor wrt initial objective terminate immediately. * `patience_steps`: If objective is within `patience_objective_multiplier` factor of the criteria and no improvement within `min_max_factor` has happened then terminate. !!! warning This has been deprecated and will be removed in the next major release. Please use the new dispatch based termination conditions API. """ struct NLSolveTerminationCondition{mode, T, S <: Union{<:NLSolveSafeTerminationOptions, Nothing}} abstol::T reltol::T safe_termination_options::S end TruncatedStacktraces.@truncate_stacktrace NLSolveTerminationCondition 1 function Base.show(io::IO, s::NLSolveTerminationCondition{mode}) where {mode} print(io, "NLSolveTerminationCondition(mode = $(mode), abstol = $(s.abstol), reltol = $(s.reltol)") if mode ∈ SAFE_TERMINATION_MODES print(io, ", safe_termination_options = ", s.safe_termination_options, ")") else print(io, ")") end end get_termination_mode(::NLSolveTerminationCondition{mode}) where {mode} = mode # Don't specify `mode` since the defaults would depend on the package function NLSolveTerminationCondition(mode; abstol::T = 1e-8, reltol::T = 1e-6, protective_threshold = 1e3, patience_steps::Int = 30, patience_objective_multiplier = 3, min_max_factor = 1.3) where {T} Base.depwarn( "NLSolveTerminationCondition has been deprecated in favor of the new dispatch based termination conditions. Please use the new termination conditions API!", :NLSolveTerminationCondition) @assert mode ∈ instances(NLSolveTerminationMode.T) options = if mode ∈ SAFE_TERMINATION_MODES NLSolveSafeTerminationOptions(protective_threshold, patience_steps, patience_objective_multiplier, min_max_factor) else nothing end return NLSolveTerminationCondition{mode, T, typeof(options)}(abstol, reltol, options) end function (cond::NLSolveTerminationCondition)(storage::Union{ NLSolveSafeTerminationResult, Nothing }) mode = get_termination_mode(cond) # We need both the dispatches to support solvers that don't use the integrator # interface like SimpleNonlinearSolve if mode in BASIC_TERMINATION_MODES function _termination_condition_closure_basic(integrator, abstol, reltol, min_t) return _termination_condition_closure_basic(get_du(integrator), integrator.u, integrator.uprev, abstol, reltol) end function _termination_condition_closure_basic(du, u, uprev, abstol, reltol) return _has_converged(du, u, uprev, cond, abstol, reltol) end return _termination_condition_closure_basic else mode ∈ SAFE_BEST_TERMINATION_MODES && @assert storage !== nothing nstep::Int = 0 function _termination_condition_closure_safe(integrator, abstol, reltol, min_t) return _termination_condition_closure_safe(get_du(integrator), integrator.u, integrator.uprev, abstol, reltol) end @inbounds function _termination_condition_closure_safe(du, u, uprev, abstol, reltol) aType = typeof(abstol) protective_threshold = aType(cond.safe_termination_options.protective_threshold) objective_values = aType[] patience_objective_multiplier = cond.safe_termination_options.patience_objective_multiplier if mode ∈ SAFE_BEST_TERMINATION_MODES storage.best_objective_value = aType(Inf) storage.best_objective_value_iteration = 0 end if mode ∈ SAFE_BEST_TERMINATION_MODES objective = NONLINEARSOLVE_DEFAULT_NORM(du) criteria = abstol else objective = NONLINEARSOLVE_DEFAULT_NORM(du) / (NONLINEARSOLVE_DEFAULT_NORM(du .+ u) + eps(aType)) criteria = reltol end if mode ∈ SAFE_BEST_TERMINATION_MODES if objective < storage.best_objective_value storage.best_objective_value = objective storage.best_objective_value_iteration = nstep + 1 if storage.u !== nothing storage.u .= u end end end # Main Termination Criteria if objective ≤ criteria storage.return_code = NLSolveSafeTerminationReturnCode.Success return true end # Terminate if there has been no improvement for the last `patience_steps` nstep += 1 push!(objective_values, objective) if objective ≤ typeof(criteria)(patience_objective_multiplier) * criteria if nstep ≥ cond.safe_termination_options.patience_steps last_k_values = objective_values[max(1, length(objective_values) - cond.safe_termination_options.patience_steps):end] if maximum(last_k_values) < typeof(criteria)(cond.safe_termination_options.min_max_factor) * minimum(last_k_values) storage.return_code = NLSolveSafeTerminationReturnCode.PatienceTermination return true end end end # Protective break if objective ≥ objective_values[1] * protective_threshold * length(du) storage.return_code = NLSolveSafeTerminationReturnCode.ProtectiveTermination return true end storage.return_code = NLSolveSafeTerminationReturnCode.Failure return false end return _termination_condition_closure_safe end end # Convergence Criteria @inline function _has_converged(du, u, uprev, cond::NLSolveTerminationCondition{mode}, abstol = cond.abstol, reltol = cond.reltol) where {mode} return _has_converged(du, u, uprev, mode, abstol, reltol) end @inline @inbounds function _has_converged(du, u, uprev, mode, abstol, reltol) if mode == NLSolveTerminationMode.Norm du_norm = NONLINEARSOLVE_DEFAULT_NORM(du) return du_norm ≤ abstol || du_norm ≤ reltol * NONLINEARSOLVE_DEFAULT_NORM(du + u) elseif mode == NLSolveTerminationMode.Rel return all(abs.(du) .≤ reltol .* abs.(u)) elseif mode ∈ (NLSolveTerminationMode.RelNorm, NLSolveTerminationMode.RelSafe, NLSolveTerminationMode.RelSafeBest) return NONLINEARSOLVE_DEFAULT_NORM(du) ≤ reltol * NONLINEARSOLVE_DEFAULT_NORM(du .+ u) elseif mode == NLSolveTerminationMode.Abs return all(abs.(du) .≤ abstol) elseif mode ∈ (NLSolveTerminationMode.AbsNorm, NLSolveTerminationMode.AbsSafe, NLSolveTerminationMode.AbsSafeBest) return NONLINEARSOLVE_DEFAULT_NORM(du) ≤ abstol elseif mode == NLSolveTerminationMode.SteadyStateDefault return all((abs.(du) .≤ abstol) .| (abs.(du) .≤ reltol .* abs.(u))) elseif mode == NLSolveTerminationMode.NLSolveDefault atol, rtol = abstol, reltol return all((abs.(du) .≤ abstol) .| (abs.(du) .≤ reltol .* abs.(u))) || isapprox(u, uprev; atol, rtol) else throw(ArgumentError("Unknown termination mode: $mode")) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4603
# Handled in Extensions value(x) = x isdistribution(u0) = false _vec(v) = vec(v) _vec(v::Number) = v _vec(v::AbstractSciMLScalarOperator) = v _vec(v::AbstractVector) = v _reshape(v, siz) = reshape(v, siz) _reshape(v::Number, siz) = v _reshape(v::AbstractSciMLScalarOperator, siz) = v macro tight_loop_macros(ex) :($(esc(ex))) end # TODO: would be good to have dtmin a function of dt function prob2dtmin(prob; use_end_time = true) prob2dtmin(prob.tspan, oneunit(eltype(prob.tspan)), use_end_time) end # This functino requires `eps` to exist, which restricts below `<: Real` # Example of a failure is Rational function prob2dtmin(tspan, ::Union{AbstractFloat, ForwardDiff.Dual}, use_end_time) t1, t2 = tspan isfinite(t1) || throw(ArgumentError("t0 in the tspan `(t0, t1)` must be finite")) if use_end_time && isfinite(t2 - t1) return max(eps(t2), eps(t1)) else return max(eps(typeof(t1)), eps(t1)) end end prob2dtmin(tspan, ::Integer, ::Any) = 0 # Multiplication is for putting the right units on the constant! prob2dtmin(tspan, onet, ::Any) = onet * 1 // Int64(2)^33 # roughly 10^10 but more likely to turn into a multiplication. function timedepentdtmin(integrator::DEIntegrator) timedepentdtmin(integrator.t, integrator.opts.dtmin) end timedepentdtmin(t::AbstractFloat, dtmin) = abs(max(eps(t), dtmin)) timedepentdtmin(::Any, dtmin) = abs(dtmin) maybe_with_logger(f, logger) = logger === nothing ? f() : Logging.with_logger(f, logger) function default_logger(logger) Logging.min_enabled_level(logger) ≤ ProgressLogging.ProgressLevel && return nothing if Sys.iswindows() || (isdefined(Main, :IJulia) && Main.IJulia.inited) progresslogger = ConsoleProgressMonitor.ProgressLogger() else progresslogger = TerminalLoggers.TerminalLogger() end logger1 = LoggingExtras.EarlyFilteredLogger(progresslogger) do log log.level == ProgressLogging.ProgressLevel end logger2 = LoggingExtras.EarlyFilteredLogger(logger) do log log.level != ProgressLogging.ProgressLevel end LoggingExtras.TeeLogger(logger1, logger2) end # for the non-unitful case the correct type is just u _rate_prototype(u, t::T, onet::T) where {T} = u # Nonlinear Solve functionality @inline __fast_scalar_indexing(args...) = all(ArrayInterface.fast_scalar_indexing, args) @inline __maximum_abs(op::F, x, y) where {F} = __maximum(abs ∘ op, x, y) ## Nonallocating version of maximum(op.(x, y)) @inline function __maximum(op::F, x, y) where {F} if __fast_scalar_indexing(x, y) return maximum(@closure((xᵢyᵢ)->begin xᵢ, yᵢ = xᵢyᵢ return op(xᵢ, yᵢ) end), zip(x, y)) else return mapreduce(@closure((xᵢ, yᵢ)->op(xᵢ, yᵢ)), max, x, y) end end @inline function __norm_op(::typeof(Base.Fix2(norm, 2)), op::F, x, y) where {F} if __fast_scalar_indexing(x, y) return sqrt(sum(@closure((xᵢyᵢ)->begin xᵢ, yᵢ = xᵢyᵢ return op(xᵢ, yᵢ)^2 end), zip(x, y))) else return sqrt(mapreduce(@closure((xᵢ, yᵢ)->(op(xᵢ, yᵢ)^2)), +, x, y)) end end @inline __norm_op(norm::N, op::F, x, y) where {N, F} = norm(op.(x, y)) function __nonlinearsolve_is_approx(x::Number, y::Number; atol = false, rtol = atol > 0 ? false : sqrt(eps(promote_type(typeof(x), typeof(y))))) return isapprox(x, y; atol, rtol) end function __nonlinearsolve_is_approx(x, y; atol = false, rtol = atol > 0 ? false : sqrt(eps(promote_type(eltype(x), eltype(y))))) length(x) != length(y) && return false d = __maximum_abs(-, x, y) return d ≤ max(atol, rtol * max(maximum(abs, x), maximum(abs, y))) end @inline function __add_and_norm(::Nothing, x, y) Base.depwarn("Not specifying the internal norm of termination conditions has been \ deprecated. Using inf-norm currently.", :__add_and_norm) return __maximum_abs(+, x, y) end @inline __add_and_norm(::typeof(Base.Fix1(maximum, abs)), x, y) = __maximum_abs(+, x, y) @inline __add_and_norm(::typeof(Base.Fix2(norm, Inf)), x, y) = __maximum_abs(+, x, y) @inline __add_and_norm(f::F, x, y) where {F} = __norm_op(f, +, x, y) @inline function __apply_termination_internalnorm(::Nothing, u) Base.depwarn("Not specifying the internal norm of termination conditions has been \ deprecated. Using inf-norm currently.", :__apply_termination_internalnorm) return __apply_termination_internalnorm(Base.Fix1(maximum, abs), u) end @inline __apply_termination_internalnorm(f::F, u) where {F} = f(u)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
984
using DiffEqBase using SciMLBase using Test using Random mutable struct TestDiffEqOperator{T} <: SciMLBase.AbstractDiffEqLinearOperator{T} m::Int n::Int end TestDiffEqOperator(A::AbstractMatrix{T}) where {T} = TestDiffEqOperator{T}(size(A)...) Base.size(A::TestDiffEqOperator) = (A.m, A.n) A = TestDiffEqOperator([0 0; 0 1]) B = TestDiffEqOperator([0 0 0; 0 1 0; 0 0 2]) @test_throws ErrorException AffineDiffEqOperator{Int64}((A, B), ()) @testset "DiffEq linear operators" begin Random.seed!(0) M = rand(2, 2) A = DiffEqArrayOperator(M) b = rand(2) u = rand(2) p = rand(1) t = rand() As_list = [(A,), (A, A)]#, (A, α)] bs_list = [(), (b,), (2b,), (b, 2b)] @testset "combinations of A's and b's" for As in As_list, bs in bs_list L = AffineDiffEqOperator{Float64}(As, bs, zeros(2)) mysum = sum(A * u for A in As) for b in bs mysum .+= b end @test L(u, p, t) == mysum end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1270
using Test using DiffEqBase using Aqua @testset "Aqua tests (performance)" begin # This tests that we don't accidentally run into # https://github.com/JuliaLang/julia/issues/29393 # Aqua.test_unbound_args(DiffEqBase) # fails ua = Aqua.detect_unbound_args_recursively(DiffEqBase) @test length(ua) == 0 # Uncomment for debugging: # @show ua # See: https://github.com/SciML/OrdinaryDiffEq.jl/issues/1750 # Test that we're not introducing method ambiguities across deps ambs = Aqua.detect_ambiguities(DiffEqBase; recursive = true) pkg_match(pkgname, pkdir::Nothing) = false pkg_match(pkgname, pkdir::AbstractString) = occursin(pkgname, pkdir) filter!(x -> pkg_match("DiffEqBase", pkgdir(last(x).module)), ambs) # Uncomment for debugging: # for method_ambiguity in ambs # @show method_ambiguity # end @warn "Number of method ambiguities: $(length(ambs))" @test length(ambs) ≤ 4 end @testset "Aqua tests (additional)" begin Aqua.test_undefined_exports(DiffEqBase) Aqua.test_stale_deps(DiffEqBase) Aqua.test_deps_compat(DiffEqBase) Aqua.test_project_extras(DiffEqBase) Aqua.test_project_toml_formatting(DiffEqBase) # Aqua.test_piracy(DiffEqBase) # failing end nothing
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1499
using DiffEqBase, Random, LinearAlgebra, Test using DiffEqBase: isconstant, @.. @testset "Identity Operators" begin u = [1.0, 2.0] du = zeros(2) Id = DiffEqIdentity(u) @test Id * u == u mul!(du, Id, u) @test du == u @test size(Id) == (2, 2) end @testset "Scalar Operators" begin u = [1.0, 2.0] u2 = [1.0, 2.0] α = DiffEqScalar(2.0) @test convert(Number, α) == 2.0 @test α * u == 2.0u lmul!(α, u2) @test u2 == 2.0u @test size(α) == () @test isconstant(α) == true end @testset "Array Operators" begin Random.seed!(0) A = rand(2, 2) u = rand(2) du = zeros(2) L = DiffEqArrayOperator(A) @test Matrix(L) == A @test size(L) == size(A) @test L * u == A * u mul!(du, L, u) @test du == A * u @test lu(L) \ u ≈ A \ u @test opnorm(L) == opnorm(A) @test exp(L) == exp(A) @test L[1, 2] == A[1, 2] @test isconstant(L) == true L .= 0 @test all(iszero, L) tmp = rand(size(L)...) @.. L = muladd(1, tmp, 0) @test L.A == tmp rand!(tmp) @.. tmp = muladd(1, L, 0) @test L.A == tmp end @testset "Mutable Array Operators" begin Random.seed!(0) A = rand(2, 2) u = rand(2) du = zeros(2) update_func = (_A, u, p, t) -> _A .= t * A Lt = DiffEqArrayOperator(zeros(2, 2); update_func = update_func) t = 5.0 @test isconstant(Lt) == false @test Lt(u, nothing, t) ≈ (t * A) * u Lt(du, u, nothing, t) @test du ≈ (t * A) * u end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
3699
using DiffEqBase, Test condition = function (u, t, integrator) # Event when event_f(u,t,k) == 0 t - 2.95 end affect! = function (integrator) integrator.u = integrator.u + 2 end rootfind = true save_positions = (true, true) callback = ContinuousCallback(condition, affect!; save_positions = save_positions) cbs = CallbackSet(nothing) @test typeof(cbs.discrete_callbacks) <: Tuple @test typeof(cbs.continuous_callbacks) <: Tuple cbs = CallbackSet(callback, nothing) @test typeof(cbs.discrete_callbacks) <: Tuple @test typeof(cbs.continuous_callbacks) <: Tuple cbs = CallbackSet(callback, CallbackSet()) @test typeof(cbs.discrete_callbacks) <: Tuple @test typeof(cbs.continuous_callbacks) <: Tuple condition = function (integrator) true end affect! = function (integrator) end save_positions = (true, false) saving_callback = DiscreteCallback(condition, affect!; save_positions = save_positions) cbs1 = CallbackSet(callback, saving_callback) @test length(cbs1.discrete_callbacks) == 1 @test length(cbs1.continuous_callbacks) == 1 cbs2 = CallbackSet(callback) @test length(cbs2.continuous_callbacks) == 1 @test length(cbs2.discrete_callbacks) == 0 cbs3 = CallbackSet(saving_callback) @test length(cbs3.discrete_callbacks) == 1 @test length(cbs3.continuous_callbacks) == 0 cbs4 = CallbackSet() @test length(cbs4.discrete_callbacks) == 0 @test length(cbs4.continuous_callbacks) == 0 cbs5 = CallbackSet(cbs1, cbs2) @test length(cbs5.discrete_callbacks) == 1 @test length(cbs5.continuous_callbacks) == 2 # For the purposes of this test, create a empty integrator type and # override find_callback_time, since we don't actually care about testing # the find callback time aspect, just the inference failure struct EmptyIntegrator u::Vector{Float64} end function DiffEqBase.find_callback_time(integrator::EmptyIntegrator, callback::ContinuousCallback, counter) 1.0 + counter, 0.9 + counter, true, counter end function DiffEqBase.find_callback_time(integrator::EmptyIntegrator, callback::VectorContinuousCallback, counter) 1.0 + counter, 0.9 + counter, true, counter end find_first_integrator = EmptyIntegrator([1.0, 2.0]) vector_affect! = function (integrator, idx) integrator.u = integrator.u + idx end cond_1(u, t, integrator) = t - 1.0 cond_2(u, t, integrator) = t - 1.1 cond_3(u, t, integrator) = t - 1.2 cond_4(u, t, integrator) = t - 1.3 cond_5(u, t, integrator) = t - 1.4 cond_6(u, t, integrator) = t - 1.5 cond_7(u, t, integrator) = t - 1.6 cond_8(u, t, integrator) = t - 1.7 cond_9(u, t, integrator) = t - 1.8 cond_10(u, t, integrator) = t - 1.9 # Setup a lot of callbacks so the recursive inference failure happens callbacks = (ContinuousCallback(cond_1, affect!), ContinuousCallback(cond_2, affect!), ContinuousCallback(cond_3, affect!), ContinuousCallback(cond_4, affect!), ContinuousCallback(cond_5, affect!), ContinuousCallback(cond_6, affect!), ContinuousCallback(cond_7, affect!), ContinuousCallback(cond_8, affect!), ContinuousCallback(cond_9, affect!), ContinuousCallback(cond_10, affect!), VectorContinuousCallback(cond_1, vector_affect!, 2), VectorContinuousCallback(cond_2, vector_affect!, 2), VectorContinuousCallback(cond_3, vector_affect!, 2), VectorContinuousCallback(cond_4, vector_affect!, 2), VectorContinuousCallback(cond_5, vector_affect!, 2), VectorContinuousCallback(cond_6, vector_affect!, 2)); function test_find_first_callback(callbacks, int) @timed(DiffEqBase.find_first_continuous_callback(int, callbacks...)) end test_find_first_callback(callbacks, find_first_integrator); @test test_find_first_callback(callbacks, find_first_integrator).bytes == 0
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2683
using DiffEqBase, Test, RecursiveArrayTools macro iop_def(funcdef::Expr) """Define in- and out-of-place functions simultaneously. Call on oop function definition, defines two functions with suffixes _op and _ip. """ @assert funcdef.head ∈ (:function, :(=)) && funcdef.args[1].head == :call fname = funcdef.args[1].args[1] opname = Symbol("$(fname)_op") ipname = Symbol("$(fname)_ip") opdef = deepcopy(funcdef) opdef.args[1].args[1] = opname return quote $(esc(opdef)) $(esc(ipname))(du, args...) = du .= $(esc(opname))(args...) end end function test_inplace(du, expected, f::Function, args...) """Test the in-place version of a function.""" fill!(du, NaN) f(du, args...) @test du == expected end # Allocate du automatically based on type of expected result function test_inplace(expected, f::Function, args...) test_inplace(similar(expected), expected, f, args...) end function test_iop(expected, f_op::Function, f_ip::Function, args...) """Test in- and out-of-place version of function both match expected value.""" @test f_op(args...) == expected test_inplace(expected, f_ip, args...) end @iop_def f(u, p, t) = p[1] .* u u = [1.0, 2.0, 3.0] p = [2.0] t = 0.0 @testset "ODEFunction with default recompile flag" begin odefun = ODEFunction{false}(f_op) odefun_ip = ODEFunction{true}(f_ip) expected = f_op(u, p, t) test_iop(expected, odefun, odefun_ip, u, p, t) end @testset "ODEFunction with recompile flag: $rflag" for rflag in (true, false) odefun = ODEFunction{false, rflag}(f_op) odefun_ip = ODEFunction{true, rflag}(f_ip) expected = f_op(u, p, t) test_iop(expected, odefun, odefun_ip, u, p, t) end # SplitFunction @iop_def f2(u, p, t) = u .^ 2 sfun = SplitFunction{false}(f_op, f2_op) sfun_ip = SplitFunction{true}(f_ip, f2_ip; _func_cache = similar(u)) expected = f_op(u, p, t) + f2_op(u, p, t) test_iop(expected, sfun, sfun_ip, u, p, t) # DynamicalODEFunction @iop_def dode_f1(v, u, p, t) = -u @iop_def dode_f2(v, u, p, t) = p[1] .* v dodefun = DynamicalODEFunction{false}(dode_f1_op, dode_f2_op) dodefun_ip = DynamicalODEFunction{true}(dode_f1_ip, dode_f2_ip) v = [4.0, 5.0, 6.0] expected = ArrayPartition(dode_f1_op(v, u, p, t), dode_f2_op(v, u, p, t)) test_iop(expected, dodefun, dodefun_ip, ArrayPartition(v, u), p, t) # DiscreteFunction dfun = DiscreteFunction{false}(f_op) dfun_ip = DiscreteFunction{true}(f_ip) test_iop(f_op(u, p, t), dfun, dfun_ip, u, p, t) # Type stability f_analytic(u, p, t) = u jac = (u, p, t) -> 1 @inferred ODEFunction{false}(f_op, jac = jac) @inferred DiscreteFunction{false}(f_op, analytic = f_analytic)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
82
using DiffEqBase using Test @test DiffEqBase.undefined_exports(DiffEqBase) == []
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
454
using DiffEqBase: fastlog2, fastpow using Test @testset "Fast log2" begin for x in 0.001:0.001:1.2 # (0, 1+something] is the domain which a controller uses @test log2(x)≈fastlog2(Float32(x)) atol=1e-3 end end @testset "Fast pow" begin @test fastpow(1, 1) isa Float64 @test fastpow(1.0, 1.0) isa Float64 errors = [abs(^(x, y) - fastpow(x, y)) for x in 0.001:0.001:1, y in 0.08:0.001:0.5] @test maximum(errors) < 1e-4 end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
13412
using DiffEqBase, ForwardDiff, Test, InteractiveUtils using ReverseDiff, SciMLStructures using Plots u0 = 2.0 p = 2.0 t0 = 1.0 @test DiffEqBase.promote_u0(u0, p, t0) isa Float64 @test DiffEqBase.promote_u0(u0, p, t0) == 2.0 @test DiffEqBase.promote_u0(cis(u0), p, t0) isa ComplexF64 @test DiffEqBase.promote_u0(cis(u0), p, t0) == cis(2.0) struct MyStruct{T, T2} <: Number x::T y::T2 end struct MyStruct2{T, T2} x::T y::T2 MyStruct2(x) = new{typeof(x), Any}(x) end struct MyStruct3{T, T2} x::T y::T2 MyStruct3(x) = new{typeof(x), Float64}(x) end module Mod end p_possibilities = [ForwardDiff.Dual(2.0), (ForwardDiff.Dual(2.0), 2.0), [ForwardDiff.Dual(2.0)], ([ForwardDiff.Dual(2.0)], 2.0), (2.0, ForwardDiff.Dual(2.0)), (; x = 2.0, y = ForwardDiff.Dual(2.0)), (; x = 2.0, y = [ForwardDiff.Dual(2.0)]), (; x = 2.0, y = [[ForwardDiff.Dual(2.0)]]), Set([2.0, ForwardDiff.Dual(2.0)]), (SciMLBase.NullParameters(), ForwardDiff.Dual(2.0)), ((), ForwardDiff.Dual(2.0)), ForwardDiff.Dual{Nothing}(ForwardDiff.Dual{MyStruct}(2.0)), (plot(), ForwardDiff.Dual(2.0)), [(1.0, ForwardDiff.Dual(1.0, (1.0,)))] ] for p in p_possibilities @show p @test DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual local u0 = 2.0 @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} @inferred DiffEqBase.anyeltypedual(p) end higher_order_p_possibilities = [ForwardDiff.Dual{Nothing}(ForwardDiff.Dual{MyStruct}(2.0)), (ForwardDiff.Dual{Nothing}(ForwardDiff.Dual{MyStruct}(2.0)), SciMLBase.NullParameters()), (ForwardDiff.Dual{Nothing}(ForwardDiff.Dual{MyStruct}(2.0)), ForwardDiff.Dual{Nothing}(2.0)), (ForwardDiff.Dual{Nothing}(2.0), ForwardDiff.Dual{Nothing}(ForwardDiff.Dual{MyStruct}(2.0))) ] for p in higher_order_p_possibilities @show p @test DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual @test DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual{Nothing, ForwardDiff.Dual{MyStruct, Float64, 0}, 0} local u0 = 2.0 @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} @inferred DiffEqBase.anyeltypedual(p) end p_possibilities17 = [ MyStruct(2.0, ForwardDiff.Dual(2.0)), [MyStruct(2.0, ForwardDiff.Dual(2.0))], [MyStruct(2.0, [2.0, ForwardDiff.Dual(2.0)])], [MyStruct(2.0, (2.0, ForwardDiff.Dual(2.0)))], ((;), ForwardDiff.Dual(2.0)), MyStruct3(ForwardDiff.Dual(2.0)), (Mod, ForwardDiff.Dual(2.0)), (() -> 2.0, ForwardDiff.Dual(2.0)), (Base.pointer([2.0]), ForwardDiff.Dual(2.0)) ] push!(p_possibilities17, Returns((a = 2, b = 1.3, c = ForwardDiff.Dual(2.0f0)))) for p in p_possibilities17 @show p @test DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual local u0 = 2.0 @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} if VERSION >= v"1.7" # v1.6 does not infer `getproperty` mapping @inferred DiffEqBase.anyeltypedual(p) ci = InteractiveUtils.@code_typed DiffEqBase.anyeltypedual(p) @show filter(!=(Expr(:code_coverage_effect)), ci.first.code) #@test count(x -> (x != (Expr(:code_coverage_effect))) && # (x != GlobalRef(DiffEqBase, :Any)), ci.first.code) == 1 end end p_possibilities_uninferrred = [ Dict(:x => 2.0, :y => ForwardDiff.Dual(2.0)), Dict(:x => 2.0, :y => [ForwardDiff.Dual(2.0)]), Dict(:x => 2.0, :y => [(; x = (ForwardDiff.Dual(2.0), 2.0), y = 2.0)]), Dict(:x => 2.0, :y => [(; x = [MyStruct(2.0, [2.0, ForwardDiff.Dual(2.0)])], y = 2.0)]), [MyStruct("2", [2.0, ForwardDiff.Dual(2.0)])], Dict(:x => [MyStruct("2", [2.0, MyStruct(ForwardDiff.Dual(2.0), 2.0)])], :y => ForwardDiff.Dual{MyStruct}(2.0)), ((Dict(:x => nothing)), ForwardDiff.Dual(2.0)), MyStruct2(ForwardDiff.Dual(2.0)), [MyStruct2(ForwardDiff.Dual(2.0)), 2.0], # Vectors of non-number types won't infer [MyStruct(2.0, ForwardDiff.Dual(2.0))], (; x = 2.0, y = [[MyStruct3(ForwardDiff.Dual(2.0))]]), (; x = Vector{Float64}(undef, 2), y = [[MyStruct3(ForwardDiff.Dual(2.0))]]), (; x = Matrix{Any}(undef, 2, 2), y = [[MyStruct3(ForwardDiff.Dual(2.0))]]) ] for p in p_possibilities_uninferrred @show p @test DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual local u0 = 2.0 @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} end p_possibilities_missed = [ Set([2.0, "s", ForwardDiff.Dual(2.0)]), Set([2.0, ForwardDiff.Dual(2.0), SciMLBase.NullParameters()]), Set([Matrix{Float64}(undef, 2, 2), ForwardDiff.Dual(2.0)]) ] for p in p_possibilities_missed @show p @test_broken DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual local u0 = 2.0 @test_broken DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test_broken DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} end p_possibilities_notdual = [ (), (;), [2.0], [2.0, 2], [2.0, (2.0)], [2.0, MyStruct(2.0, 2.0f0)] ] for p in p_possibilities_notdual @show p @test !(DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual) local u0 = 2.0 @test !(DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual) @test !(DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}}) u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} @inferred DiffEqBase.anyeltypedual(p) end p_possibilities_notdual_uninferred = [ [], # Undefs cause inference loss [2.0, MyStruct3(2.0)], [2.0, MyStruct2(2.0)], [2.0, MyStruct2(2.0), []], [Dict(:x => 2, "y" => 5), MyStruct2(2.0)], # Dictionaries can have inference issues Dict(:x => 2, :y => 5), Dict(:x => 2, "y" => 5) ] # Also check circular references # https://github.com/SciML/DiffEqBase.jl/issues/784 x = Any[[1.0, 2.0]] push!(x, x) push!(p_possibilities_notdual_uninferred, x) struct X x::Any end x = Any[[1.0, 2.0]] push!(x, X(x)) push!(p_possibilities_notdual_uninferred, x) mutable struct Y x::Any end x = Y(1) x.x = x push!(p_possibilities_notdual_uninferred, x) for p in p_possibilities_notdual_uninferred @test !(DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual) local u0 = 2.0 @test !(DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual) @test !(DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}}) u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} end f(du, u, p, t) = du .= u config = ForwardDiff.JacobianConfig(f, ones(5)) p_possibilities_configs = [ (config, config), (config, 2.0), config, (; x = config, y = 2.0) ] for p in p_possibilities_configs @show p @test !(DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual) local u0 = 2.0 @test !(DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual) @test !(DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}}) u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} @inferred DiffEqBase.anyeltypedual(p) end p_possibilities_configs_not_inferred = [ [2.0, (2.0,), config], [2.0, config, MyStruct(2.0, 2.0f0)] ] for p in p_possibilities_configs_not_inferred @show p @test !(DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual) local u0 = 2.0 @test !(DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual) @test !(DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}}) u0 = ForwardDiff.Dual(2.0) @test DiffEqBase.promote_u0(u0, p, t0) isa ForwardDiff.Dual @test DiffEqBase.promote_u0([cis(u0)], p, t0) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} end # use `getfield` on `Pairs`, see https://github.com/JuliaLang/julia/pull/39448 @test_nowarn DiffEqBase.DualEltypeChecker(pairs((;)), 0)(Val(:data)) # https://discourse.julialang.org/t/type-instability-with-differentialequations-jl-when-using-nested-structs/109764/5 struct Fit m₁::Float64 c₁::Float64 m₂::Float64 c₂::Float64 function Fit() m₁ = 1.595 c₁ = 3.438 m₂ = 1.075 c₂ = 3.484 new(m₁, c₁, m₂, c₂) end end struct EOS fit::Fit function EOS() fit = Fit() new(fit) end end p = EOS() @test !(DiffEqBase.anyeltypedual(p) <: ForwardDiff.Dual) @inferred DiffEqBase.anyeltypedual(p) # Check methods used for prevention of Dual-detection when using # DiffResults.DiffResult in a wrapper. # https://github.com/SciML/DiffEqBase.jl/issues/1009 struct OutsideWrapper{T} a::Float64 b::T end struct InsideWrapper{T, S} du::T dual_du::S end f(x) = 2 * x[1] + 3 * x[2]^2 xdual = ones( ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}, 2) x = [1.0, 1.0] diffresult = ForwardDiff.DiffResults.GradientResult(x) diffresult_dual = ForwardDiff.DiffResults.GradientResult(xdual) iw = InsideWrapper(diffresult, diffresult_dual) ow = OutsideWrapper(1.0, iw) @test !(DiffEqBase.anyeltypedual(iw) <: ForwardDiff.Dual) @test !(DiffEqBase.anyeltypedual(ow) <: ForwardDiff.Dual) @inferred DiffEqBase.anyeltypedual(iw) @inferred DiffEqBase.anyeltypedual(ow) # Issue https://github.com/SciML/ModelingToolkit.jl/issues/2717 u0 = [1.0, 2.0, 3.0] p = [1, 2] t = ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}(1.0) @test DiffEqBase.promote_u0(u0, p, t) isa AbstractArray{<:ForwardDiff.Dual} u0 = [1.0 + 1im, 2.0, 3.0] @test DiffEqBase.promote_u0(u0, p, t) isa AbstractArray{<:Complex{<:ForwardDiff.Dual}} # Issue https://github.com/SciML/NonlinearSolve.jl/issues/440 f(u, p, t) = [u[2], 1.5u[1]^2] ode = ODEProblem(f, [0.0, 0.0], (0, 1)) @inferred DiffEqBase.anyeltypedual(ode) ode = NonlinearProblem(f, [0.0, 0.0], (0, 1)) @inferred DiffEqBase.anyeltypedual(ode) # Issue https://github.com/SciML/DiffEqBase.jl/issues/1021 f(u, p, t) = 1.01 * u struct Foo{T} sol::T end u0 = 1 / 2 tspan = (0.0, 1.0) prob = ODEProblem{false}(f, u0, tspan) foo = SciMLBase.build_solution( prob, DiffEqBase.InternalEuler.FwdEulerAlg(), [u0, u0], [0.0, 1.0]) DiffEqBase.anyeltypedual((; x = foo)) DiffEqBase.anyeltypedual((; x = foo, y = prob.f)) @test DiffEqBase.anyeltypedual(ReverseDiff.track(ones(3))) == Any @test DiffEqBase.anyeltypedual(typeof(ReverseDiff.track(ones(3)))) == Any @test DiffEqBase.anyeltypedual(ReverseDiff.track(ones(ForwardDiff.Dual, 3))) == eltype(ones(ForwardDiff.Dual, 3)) @test DiffEqBase.anyeltypedual(typeof(ReverseDiff.track(ones(ForwardDiff.Dual, 3)))) == eltype(ones(ForwardDiff.Dual, 3)) struct FakeParameterObject{T} tunables::T end SciMLStructures.isscimlstructure(::FakeParameterObject) = true function SciMLStructures.canonicalize(::SciMLStructures.Tunable, f::FakeParameterObject) f.tunables, x -> FakeParameterObject(x), true end @test DiffEqBase.promote_u0( ones(3), FakeParameterObject(ReverseDiff.track(ones(3))), 0.0) isa ReverseDiff.TrackedArray @test DiffEqBase.promote_u0(1.0, FakeParameterObject(ReverseDiff.track(ones(3))), 0.0) isa ReverseDiff.TrackedReal @test DiffEqBase.promote_u0( ones(3), FakeParameterObject(ReverseDiff.track(ones(ForwardDiff.Dual, 3))), 0.0) isa ReverseDiff.TrackedArray{<:ForwardDiff.Dual} @test DiffEqBase.promote_u0( 1.0, FakeParameterObject(ReverseDiff.track(ones(ForwardDiff.Dual, 3))), 0.0) isa ReverseDiff.TrackedReal{<:ForwardDiff.Dual} @test DiffEqBase.promote_u0(NaN, [NaN], 0.0) isa Float64 @test DiffEqBase.promote_u0([1.0], [NaN], 0.0) isa Vector{Float64}
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2063
using DiffEqBase, Test using Distributions @test DiffEqBase.promote_tspan((0.0, 1.0)) == (0.0, 1.0) @test DiffEqBase.promote_tspan((0, 1.0)) == (0.0, 1.0) @test DiffEqBase.promote_tspan(1.0) == (0.0, 1.0) @test DiffEqBase.promote_tspan(nothing) == (nothing, nothing) @test DiffEqBase.promote_tspan(Real[0, 1.0]) == (0.0, 1.0) # https://github.com/SciML/OrdinaryDiffEq.jl/issues/1776 # promote_tspan(u0, p, tspan, prob, kwargs) @test DiffEqBase.promote_tspan((0, 1)) == (0, 1) @test DiffEqBase.promote_tspan(nothing, nothing, (0, 1), nothing, (dt = 1,)) == (0, 1) @test DiffEqBase.promote_tspan(nothing, nothing, (0, 1), nothing, (dt = 1 / 2,)) == (0.0, 1.0) prob = ODEProblem((u, p, t) -> u, (p, t0) -> p[1], (p) -> (0.0, p[2]), (2.0, 1.0)) prob2 = DiffEqBase.get_concrete_problem(prob, true) @test prob2.u0 == 2.0 @test prob2.tspan == (0.0, 1.0) prob = ODEProblem((u, p, t) -> u, (p, t) -> Normal(p, 1), (0.0, 1.0), 1.0) prob2 = DiffEqBase.get_concrete_problem(prob, true) @test typeof(prob2.u0) == Float64 kwargs(; kw...) = kw prob = ODEProblem((u, p, t) -> u, 1.0, nothing) prob2 = DiffEqBase.get_concrete_problem(prob, true, tspan = (1.2, 3.4)) @test prob2.tspan === (1.2, 3.4) prob = ODEProblem((u, p, t) -> u, nothing, nothing) prob2 = DiffEqBase.get_concrete_problem(prob, true, u0 = 1.01, tspan = (1.2, 3.4)) @test prob2.u0 === 1.01 prob = ODEProblem((u, p, t) -> u, 1.0, (0, 1)) prob2 = DiffEqBase.get_concrete_problem(prob, true) @test prob2.tspan == (0.0, 1.0) prob = DDEProblem((u, h, p, t) -> -h(p, t - p[1]), (p, t0) -> p[2], (p, t) -> 0, (p) -> (0.0, p[3]), (1.0, 2.0, 3.0); constant_lags = (p) -> [p[1]]) prob2 = DiffEqBase.get_concrete_problem(prob, true) @test prob2.u0 == 2.0 @test prob2.tspan == (0.0, 3.0) @test prob2.constant_lags == [1.0] prob = SteadyStateProblem((u, p, t) -> u, [1.0, 2.0]) prob2 = DiffEqBase.get_concrete_problem(prob, true; u0 = [2.0, 3.0]) @test prob2.u0 == [2.0, 3.0] prob3 = DiffEqBase.get_concrete_problem(prob, true; u0 = [1.0, 3.0], p = 3.0) @test prob3.u0 == [1.0, 3.0] @test prob3.p == 3.0
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
532
using DiffEqBase, DiffEqBase.InternalEuler # Try it ff = ODEFunction((u, p, t) -> u, jac = (u, p, t) -> 1.0, analytic = (u0, p, t) -> u0 * exp(t)) dt = 0.01 prob = ODEProblem(ff, 1.0, (0.0, 1.0)) sol = solve(prob, InternalEuler.FwdEulerAlg(), tstops = 0:dt:1) sol2 = solve(prob, InternalEuler.BwdEulerAlg(), tstops = 0:dt:1) #using Plots #plot(sol) #plot!(sol2) #plot!(sol2, plot_analytic=true) #using DiffEqDevTools #dts = 1./2.^(8:-1:4) #sim = test_convergence(dts,p2,BwdEulerAlg()) #@show sim.𝒪est[:final] #plot(sim)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1373
using DiffEqBase using DiffEqBase: InternalFalsi, InternalITP, IntervalNonlinearProblem using ForwardDiff for Rootfinder in (InternalFalsi, InternalITP) rf = Rootfinder() # From SimpleNonlinearSolve f = (u, p) -> u * u - p tspan = (1.0, 20.0) g = function (p) probN = IntervalNonlinearProblem{false}(f, typeof(p).(tspan), p) sol = solve(probN, rf) return sol.u end for p in (1.0,) #1.1:0.1:100.0 @test g(p) ≈ sqrt(p) #@test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) end # https://github.com/SciML/DiffEqBase.jl/issues/916 inp = IntervalNonlinearProblem((t, p) -> min(-1.0 + 0.001427344607477125 * t, 1e-9), (699.0079267259368, 700.6176418816023)) @test solve(inp, rf).u ≈ 700.6016590257979 # Flipped signs & reversed tspan test for bracketing algorithms f1(u, p) = u * u - p f2(u, p) = p - u * u for p in 1:4 inp1 = IntervalNonlinearProblem(f1, (1.0, 2.0), p) inp2 = IntervalNonlinearProblem(f2, (1.0, 2.0), p) inp3 = IntervalNonlinearProblem(f1, (2.0, 1.0), p) inp4 = IntervalNonlinearProblem(f2, (2.0, 1.0), p) @test abs.(solve(inp1, rf).u) ≈ sqrt.(p) @test abs.(solve(inp2, rf).u) ≈ sqrt.(p) @test abs.(solve(inp3, rf).u) ≈ sqrt.(p) @test abs.(solve(inp4, rf).u) ≈ sqrt.(p) end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
490
using Test using ForwardDiff: Dual, gradient, partials using DiffEqBase: ODE_DEFAULT_NORM const internalnorm = ODE_DEFAULT_NORM val = rand(10) par = rand(10) u = Dual.(val, par) reference(val, par) = sqrt((sum(abs2, val) + sum(abs2, par)) / (length(val) + length(par))) dual_real = internalnorm(u, 1) dual_dual = internalnorm(u, u[1]) @test reference(val, par) ≈ dual_real @test reference(val, par) ≈ dual_dual @test partials(dual_dual, 1) ≈ gradient(x -> internalnorm(x, x[1]), val)'par
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
1662
using Test, RecursiveArrayTools, StaticArrays, ForwardDiff using DiffEqBase: UNITLESS_ABS2, recursive_length, ODE_DEFAULT_NORM @test recursive_length(1.0) == 1 n = UNITLESS_ABS2(3.0 + 4.0im) @test n == 25.0 @test typeof(n) <: Real @test ODE_DEFAULT_NORM(3.0 + 4.0im, 0.0) == 5.0 u1 = ones(3) @test UNITLESS_ABS2(u1) == 3.0 @test recursive_length(u1) == 3 @test ODE_DEFAULT_NORM(u1, 0.0) == 1.0 u2 = [SA[1.0 1.0; 1.0 1.0] for i in 1:3] @test UNITLESS_ABS2(u2) == 12.0 @test recursive_length(u2) == 12 @test ODE_DEFAULT_NORM(u2, 0.0) == 1.0 u3 = VectorOfArray([ones(5), ones(5)]) @test UNITLESS_ABS2(u3) == 10.0 @test recursive_length(u3) == 10 @test ODE_DEFAULT_NORM(u3, 0.0) == 1.0 u4 = ArrayPartition(u1, u2, u3) @test UNITLESS_ABS2(u4) == 25.0 @test recursive_length(u4) == 25 @test ODE_DEFAULT_NORM(u4, 0.0) == 1.0 u5 = ArrayPartition(u4, u4) @test UNITLESS_ABS2(u5) == 50.0 @test recursive_length(u5) == 50 @test ODE_DEFAULT_NORM(u5, 0.0) == 1.0 u6 = ArrayPartition(1.0, 1.0) @test UNITLESS_ABS2(u6) == 2.0 @test recursive_length(u6) == 2 @test ODE_DEFAULT_NORM(u6, 0.0) == 1.0 u7 = ArrayPartition(u1, ones(0)) @test UNITLESS_ABS2(u7) == 3.0 @test recursive_length(u7) == 3 @test ODE_DEFAULT_NORM(u7, 0.0) == 1.0 @test ODE_DEFAULT_NORM(Float64[], 0.0) == 0.0 # https://github.com/SciML/DiffEqBase.jl/issues/1023 u8 = ForwardDiff.Dual{:b}.(ForwardDiff.Dual{:a}.([1.0, 2.0, 3.0], true), true) u8_ref = 1.2909944487358056 @test ODE_DEFAULT_NORM(u8, 4.0) isa Float64 @test ODE_DEFAULT_NORM(u8, 4.0) ≈ u8_ref @test ODE_DEFAULT_NORM(u8, ForwardDiff.Dual{:b}(4.0, true)) isa Float64 @test ODE_DEFAULT_NORM(u8, ForwardDiff.Dual{:b}(4.0, true)) ≈ u8_ref
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
945
using Test, RecursiveArrayTools, StaticArrays, SparseArrays using DiffEqBase: NAN_CHECK @test !NAN_CHECK(3.0 + 4.0im) @test NAN_CHECK(NaN) u1 = ones(3) @test !NAN_CHECK(u1) u1′ = copy(u1) u1′[2] = NaN @test NAN_CHECK(u1′) u2 = [SA[1.0 1.0; 1.0 1.0] for i in 1:3] @test !NAN_CHECK(u2) u2′ = copy(u2) u2′[2] = SA[1.0 NaN; 1.0 1.0] @test NAN_CHECK(u2′) u3 = VectorOfArray([ones(5), ones(5)]) @test !NAN_CHECK(u3) u3′ = recursivecopy(u3) u3′[3, 2] = NaN @test NAN_CHECK(u3′) u4 = ArrayPartition(u1, u2, u3) @test !NAN_CHECK(u4) u4_1 = ArrayPartition(u1′, u2, u3) @test NAN_CHECK(u4_1) u4_2 = ArrayPartition(u1, u2′, u3) @test NAN_CHECK(u4_2) u4_3 = ArrayPartition(u1, u2, u3′) @test NAN_CHECK(u4_3) @test !NAN_CHECK(ArrayPartition(u4, u4)) @test NAN_CHECK(ArrayPartition(u4, u4_1)) @test NAN_CHECK(ArrayPartition(u4, u4_2)) @test NAN_CHECK(ArrayPartition(u4, u4_3)) u5 = spzeros(1, 1) @test !NAN_CHECK(u5) u5[1, 1] = NaN @test NAN_CHECK(u5)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2063
using DiffEqBase.InternalEuler, SciMLBase, DiffEqBase, Test # Here's the problem to solve struct LorenzFunction <: Function syms::Vector{Symbol} end function (::LorenzFunction)(u, p, t) [10.0(u[2] - u[1]), u[1] * (28.0 - u[3]) - u[2], u[1] * u[2] - (8 / 3) * u[3]] end lorenz = LorenzFunction([:x, :y, :z]) u0 = [1.0, 5.0, 10.0] tspan = (0.0, 100.0) prob = ODEProblem(lorenz, u0, tspan) dt = 0.1 sol = solve(prob, InternalEuler.FwdEulerAlg(), tstops = 0:dt:1) syms = [:x, :y, :z] @test SciMLBase.interpret_vars([(0, 1), (1, 3), (4, 5)], sol) == [ (SciMLBase.DEFAULT_PLOT_FUNC, 0, 1), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 4, 5) ] @test SciMLBase.interpret_vars([1, (1, 3), (4, 5)], sol) == [ (SciMLBase.DEFAULT_PLOT_FUNC, 0, 1), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 4, 5) ] @test SciMLBase.interpret_vars([1, 3, 4], sol) == [ (SciMLBase.DEFAULT_PLOT_FUNC, 0, 1), (SciMLBase.DEFAULT_PLOT_FUNC, 0, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 0, 4) ] @test SciMLBase.interpret_vars(([1, 2, 3], [4, 5, 6]), sol) == [ (SciMLBase.DEFAULT_PLOT_FUNC, 1, 4), (SciMLBase.DEFAULT_PLOT_FUNC, 2, 5), (SciMLBase.DEFAULT_PLOT_FUNC, 3, 6) ] @test SciMLBase.interpret_vars((1, [2, 3, 4]), sol) == [ (SciMLBase.DEFAULT_PLOT_FUNC, 1, 2), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 4) ] f(x, y) = (x + y, y) @test SciMLBase.interpret_vars([(f, 0, 1), (1, 3), (4, 5)], sol) == [(f, 0, 1), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 4, 5)] @test SciMLBase.interpret_vars([1, (f, 1, 3), (4, 5)], sol) == [(SciMLBase.DEFAULT_PLOT_FUNC, 0, 1), (f, 1, 3), (SciMLBase.DEFAULT_PLOT_FUNC, 4, 5)] @test SciMLBase.interpret_vars([1, (f, 0, 1), (1, 2)], sol) == [(SciMLBase.DEFAULT_PLOT_FUNC, 0, 1), (f, 0, 1), (SciMLBase.DEFAULT_PLOT_FUNC, 1, 2)] @test SciMLBase.interpret_vars([(1, 2)], sol) == [(SciMLBase.DEFAULT_PLOT_FUNC, 1, 2)] @test SciMLBase.interpret_vars((f, 1, 2), sol) == [(f, 1, 2)]
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
3897
using DiffEqBase, Test function f_lin(du, u, p, t) du[1] = 0.2u[1] + p[1] * u[2] du[2] = 0.2u[1] - p[2] * u[2] end p = (0.0, 1.0) prob = LinearProblem(f_lin, ones(2)) prob = LinearProblem(rand(2, 2), ones(2)) function f_nonlin(du, u, p) du[1] = 0.2u[1] + p[1] * u[2] du[2] = 0.2u[1] - p[2] * u[2] end p = (0.0, 1.0) prob = NonlinearProblem(f_nonlin, ones(2), p) function f_quad(du, u, p) du[1] = 0.2u[1] + p[1] * u[2] du[2] = 0.2u[1] - p[2] * u[2] end p = (0.0, 1.0) prob = IntegralProblem(f_quad, (zeros(2), ones(2)), p) function f(du, u, p, t) du[1] = 0.2u[1] du[2] = 0.4u[2] end u0 = ones(2) tspan = (0, 1.0) prob = ODEProblem(f, u0, tspan) @test typeof(prob.tspan) == Tuple{Float64, Float64} prob = ODEProblem{true}(f, u0, tspan) @test typeof(prob.tspan) == Tuple{Float64, Float64} prob = ODEProblem(ODEFunction{true}(f), u0, tspan) @test typeof(prob.tspan) == Tuple{Float64, Float64} @test isinplace(prob) == true prob = ODEProblem{false}(f, u0, tspan) @test isinplace(prob) == false @inferred ODEProblem{true}(f, u0, tspan) @test_broken @inferred(ODEProblem(f, u0, tspan)) == ODEProblem(f, u0, tspan) function f(dv, u, v, p, t) dv .= 2.0 .* v end u0 = ones(2) v0 = ones(2) tspan = (0, 1.0) prob = SecondOrderODEProblem(f, u0, v0, tspan) prob = SDEProblem((u, p, t) -> 1.01u, (u, p, t) -> 0.87u, 1 / 2, (0.0, 1.0)) function f(du, u, p, t) du[1] = 0.2u[1] du[2] = 0.4u[2] end function g(du, u, p, t) du[1] = 0.2u[1] du[2] = 0.4u[2] end u0 = ones(2) tspan = (0, 1.0) prob = SDEProblem(f, g, u0, tspan) prob = SDEProblem{true}(f, g, u0, tspan) @test_broken @inferred(SDEProblem(f, g, u0, tspan)) == SDEProblem(f, g, u0, tspan) @inferred SDEProblem{true}(f, g, u0, tspan) f_1delay = function (du, u, h, p, t) du[1] = -h(t - 1)[1] end prob = DDEProblem(f_1delay, ones(1), t -> zeros(1), (0.0, 10.0), constant_lags = ones(1)) prob = DDEProblem{true}(f_1delay, ones(1), t -> zeros(1), (0.0, 10.0), dependent_lags = ones(1)) @test_broken @inferred(DDEProblem(f_1delay, ones(1), t -> zeros(1), (0.0, 10.0), constant_lags = ones(1))) == DDEProblem(f_1delay, ones(1), t -> zeros(1), (0.0, 10.0), constant_lags = ones(1)) @inferred DDEProblem{true}(f_1delay, ones(1), t -> zeros(1), (0.0, 10.0), dependent_lags = ones(1)) function f(r, yp, y, p, tres) r[1] = -0.04 * y[1] + 1.0e4 * y[2] * y[3] r[2] = -r[1] - 3.0e7 * y[2] * y[2] - yp[2] r[1] -= yp[1] r[3] = y[1] + y[2] + y[3] - 1.0 end u0 = [1.0, 0, 0] du0 = [-0.04, 0.04, 0.0] differential_vars = [true, true, false] prob_dae_resrob = DAEProblem(f, du0, u0, (0.0, 100000.0)) prob_dae_resrob = DAEProblem{true}(f, du0, u0, (0.0, 100000.0)) @test_broken @inferred(DAEProblem(f, du0, u0, (0.0, 100000.0))) == DAEProblem(f, du0, u0, (0.0, 100000.0)) @inferred DAEProblem{true}(f, du0, u0, (0.0, 100000.0)) # Ensures uniform dimensionality of u0, du0, and differential_vars @test_throws ArgumentError DAEProblem(f, du0, u0[1:(end - 1)], (0.0, 100000.0)) @test_throws ArgumentError DAEProblem(f, du0, u0, (0.0, 100000.0); differential_vars = differential_vars[1:(end - 1)]) f(u, t, W) = 1.01u .+ 0.87u .* W u0 = 1.00 tspan = (0.0, 1.0) prob = RODEProblem(f, u0, tspan) prob = RODEProblem{false}(f, u0, tspan) @test_broken @inferred(RODEProblem(f, u0, tspan)) == RODEProblem(f, u0, tspan) @inferred RODEProblem{false}(f, u0, tspan) DiscreteProblem(ones(1), tspan) f(t, u) = 0.5 DiscreteProblem{false}(f, ones(1), tspan) @test_broken @inferred(DiscreteProblem(ones(1), tspan)) == DiscreteProblem(ones(1), tspan) @inferred DiscreteProblem{false}(f, ones(1), tspan) function f(du, u, t) du[1] = 2 - 2u[1] du[2] = u[1] - 4u[2] end u0 = zeros(2) prob = SteadyStateProblem(f, u0) @test_broken @inferred(SteadyStateProblem(f, u0)) == SteadyStateProblem(f, u0) @test SteadyStateProblem(ODEProblem(f, u0, tspan, :param)).p == :param
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
3280
using DiffEqBase using SciMLBase: @add_kwonly, add_kwonly using LinearAlgebra, Test @add_kwonly function f(a, b; c = 3, d = 4) (a, b, c, d) end @test f(1, 2) == (1, 2, 3, 4) @test f(a = 1, b = 2) == (1, 2, 3, 4) @test_throws ErrorException f() @add_kwonly g(a, b; c = 3, d = 4) = (a, b, c, d) @test g(1, 2) == (1, 2, 3, 4) @test g(a = 1, b = 2) == (1, 2, 3, 4) @add_kwonly h(; c = 3, d = 4) = (c, d) @test h() == (3, 4) @test_throws ErrorException add_kwonly(:(i(c = 3, d = 4) = (c, d))) dprob = DiscreteProblem((u, p, t) -> 2u, 0.5, (0.0, 1.0)) @test remake(dprob) == dprob @test remake(dprob; u0 = 1.0).u0 == 1.0 oprob = ODEProblem((u, p, t) -> 2u, 0.5, (0.0, 1.0)) @test_broken remake(oprob) == oprob # fails due to change to mutable struct due to === fallback @test remake(oprob; u0 = 1.0).u0 == 1.0 sprob = SDEProblem((u, p, t) -> 2u, (u, p, t) -> 2u, 0.5, (0.0, 1.0)) @test remake(sprob) == sprob @test remake(sprob; u0 = 1.0).u0 == 1.0 daeprob = DAEProblem((du, u, p, t) -> du - 2u, 0.5, 0.5, (0.0, 1.0)) @test remake(daeprob) == daeprob @test remake(daeprob; u0 = 1.0).u0 == 1.0 ddeprob = DDEProblem((du, u, h, p, t) -> -2u, 0.5, (p, t) -> 0.0, (0.0, 1.0)) @test remake(ddeprob) == ddeprob @test remake(daeprob; u0 = 1.0).u0 == 1.0 function f(du, u, p, t) du[1] = 0.2u[1] du[2] = 0.4u[2] end u0 = ones(2) tspan = (0, 1.0) # Create a ODEProblem and test remake: prob1 = SplitODEProblem(f, f, u0, tspan, Dict(), callback = nothing) prob2 = @inferred remake(prob1; u0 = prob1.u0 .+ 1) @test prob1.f === prob2.f @test prob1.p === prob2.p @test prob1.u0 .+ 1 ≈ prob2.u0 @test prob1.tspan == prob2.tspan @test prob1.kwargs[:callback] === prob2.kwargs[:callback] @test prob1.problem_type === prob2.problem_type prob2 = @inferred remake(prob1; u0 = prob1.u0 .+ 1, callback = :test) @test prob2.kwargs[:callback] == :test # Test remake with SplitFunction: prob1 = SplitODEProblem((u, p, t) -> u / 2, (u, p, t) -> 2u, 1.0, (0.0, 1.0)) prob2 = remake(prob1; # prob1 is a ODEProblem f = remake(prob1.f; # prob1.f is a SplitFunction f2 = (u, p, t) -> 3u)) # Test remake with NoiseProblem (a struct w/o isinplace type parameter): struct DummyNoiseProcess <: SciMLBase.AbstractNoiseProcess{Int, 1, Nothing, true} dummy::Any end tspan1 = (0.0, 1.0) tspan2 = (0.0, 2.0) noise1 = NoiseProblem(DummyNoiseProcess(Dict()), tspan1); noise2 = remake(noise1; tspan = tspan2); @test noise1.noise === noise2.noise @test noise1.tspan == tspan1 @test noise2.tspan == tspan2 @test noise1.tspan != noise2.tspan # Test remake with TwoPointBVPFunction (manually defined): f1 = SciMLBase.TwoPointBVPFunction((u, p, t) -> 1, ((u_a, p) -> 2, (u_b, p) -> 2)) @test_broken f2 = remake(f1; bc = ((u_a, p) -> 3, (u_b, p) -> 4)) @test_broken f1.bc() == 1 @test_broken f2.bc() == 2 # Testing remake for no recompile u0 = [0; 2.0] tspan = (0.0, 6.3) prob = ODEProblem{true, SciMLBase.FunctionWrapperSpecialize}((du, u, p, t) -> 2u, u0, tspan) prob2 = remake(prob; u0 = [1; 2]) @test prob2.u0 == [1; 2] @test prob2.f.f isa SciMLBase.FunctionWrappersWrappers.FunctionWrappersWrapper prob2 = remake(prob; p = (1, 2)) @test remake(prob; p = (1, 2)).p == (1, 2) @test prob2.f.f isa SciMLBase.FunctionWrappersWrappers.FunctionWrappersWrapper SciMLBase.unwrapped_f(prob2.f)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
4372
using Pkg using SafeTestsets using Test const GROUP = get(ENV, "GROUP", "All") const is_APPVEYOR = (Sys.iswindows() && haskey(ENV, "APPVEYOR")) function activate_downstream_env() Pkg.activate("downstream") Pkg.develop(PackageSpec(path = dirname(@__DIR__))) Pkg.instantiate() end function activate_gpu_env() Pkg.activate("gpu") Pkg.develop(PackageSpec(path = dirname(@__DIR__))) Pkg.instantiate() end @time begin if GROUP == "All" || GROUP == "Core" @time @safetestset "Fast Power" include("fastpow.jl") @time @safetestset "Callbacks" include("callbacks.jl") @time @safetestset "Internal Rootfinders" include("internal_rootfinder.jl") @time @safetestset "Plot Vars" include("plot_vars.jl") @time @safetestset "Problem Creation Tests" include("problem_creation_tests.jl") @time @safetestset "Affine differential equation operators" include("affine_operators_tests.jl") @time @safetestset "Export tests" include("export_tests.jl") @time @safetestset "Remake tests" include("remake_tests.jl") @time @safetestset "High Level solve Interface" include("high_level_solve.jl") @time @safetestset "DiffEqFunction tests" include("diffeqfunction_tests.jl") @time @safetestset "Internal Euler" include("internal_euler_test.jl") @time @safetestset "Basic Operators Interface" include("basic_operators_interface.jl") @time @safetestset "Norm" include("norm.jl") @time @safetestset "Utils" include("utils.jl") @time @safetestset "ForwardDiff Dual Detection" include("forwarddiff_dual_detection.jl") @time @safetestset "ODE default norm" include("ode_default_norm.jl") @time @safetestset "ODE default unstable check" include("ode_default_unstable_check.jl") @time @safetestset "Termination Conditions" include("termination_conditions.jl") end if !is_APPVEYOR && GROUP == "Downstream" activate_downstream_env() @time @safetestset "Kwarg Warnings" include("downstream/kwarg_warn.jl") @time @safetestset "Solve Error Handling" include("downstream/solve_error_handling.jl") @time @safetestset "Null DE Handling" include("downstream/null_de.jl") @time @safetestset "StaticArrays + AD" include("downstream/static_arrays_ad.jl") @time @safetestset "Unitful" include("downstream/unitful.jl") @time @safetestset "Dual Detection Solution" include("downstream/dual_detection_solution.jl") @time @safetestset "Null Parameters" include("downstream/null_params_test.jl") @time @safetestset "Ensemble Simulations" include("downstream/ensemble.jl") @time @safetestset "Ensemble Analysis" include("downstream/ensemble_analysis.jl") @time @safetestset "Ensemble Thread Safety" include("downstream/ensemble_thread_safety.jl") @time @safetestset "Inference Tests" include("downstream/inference.jl") @time @safetestset "Table Inference Tests" include("downstream/tables.jl") @time @safetestset "Default linsolve with structure" include("downstream/default_linsolve_structure.jl") @time @safetestset "Callback Merging Tests" include("downstream/callback_merging.jl") @time @safetestset "LabelledArrays Tests" include("downstream/labelledarrays.jl") end if !is_APPVEYOR && GROUP == "Downstream2" activate_downstream_env() @time @safetestset "Prob Kwargs" include("downstream/prob_kwargs.jl") @time @safetestset "Unwrapping" include("downstream/unwrapping.jl") @time @safetestset "Callback BigFloats" include("downstream/bigfloat_events.jl") @time @safetestset "DE stats" include("downstream/stats_tests.jl") @time @safetestset "Ensemble AD Tests" include("downstream/ensemble_ad.jl") @time @safetestset "Community Callback Tests" include("downstream/community_callback_tests.jl") @time @safetestset "AD via ode with complex numbers" include("downstream/complex_number_ad.jl") @time @testset "Distributed Ensemble Tests" include("downstream/distributed_ensemble.jl") end if !is_APPVEYOR && GROUP == "GPU" activate_gpu_env() @time @safetestset "Simple GPU" include("gpu/simple_gpu.jl") @time @safetestset "GPU Termination Conditions" include("gpu/termination_conditions.jl") end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
801
using BenchmarkTools, DiffEqBase, LinearAlgebra, Test du = rand(4) u = rand(4) uprev = rand(4) const TERMINATION_CONDITIONS = [ RelTerminationMode(), NormTerminationMode(), RelNormTerminationMode(), AbsTerminationMode(), AbsNormTerminationMode(), RelSafeTerminationMode(), AbsSafeTerminationMode(), RelSafeBestTerminationMode(), AbsSafeBestTerminationMode() ] @testset "Termination Conditions: Allocations" begin @testset "Mode: $(tcond)" for tcond in TERMINATION_CONDITIONS for nfn in (Base.Fix1(maximum, abs), Base.Fix2(norm, 2), Base.Fix2(norm, Inf)) tcond = DiffEqBase.set_termination_mode_internalnorm(tcond, nfn) @test (@ballocated DiffEqBase.check_convergence($tcond, $du, $u, $uprev, 1e-3, 1e-3)) == 0 end end end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2019
using Test using DiffEqBase, ForwardDiff using DiffEqBase: prob2dtmin, timedepentdtmin, _rate_prototype using Unitful using ForwardDiff: Dual, Tag @testset "tspan2dtmin" begin # we only need to test very rough equality since timestepping isn't science. function approxoftype(a, b; rtol = 0.5) return typeof(a) === typeof(b) && isapprox(a, b; rtol = rtol) end function tspan2dtmin(tspan; kwargs...) prob2dtmin(ODEProblem((u, p, t) -> u, 1, tspan); kwargs...) end @test approxoftype(tspan2dtmin((10, 100.0)), eps(100.0)) @test approxoftype(tspan2dtmin((-10000.0, 100.0)), eps(10000.0)) @test tspan2dtmin((1, 2)) === 0 @test approxoftype(tspan2dtmin((1 // 10, 2 // 10)), 1 // 2^33) @test approxoftype(tspan2dtmin((2 // 10, Inf)), eps(1.0)) @test approxoftype(tspan2dtmin((2 // 1, Inf)), eps(2.0)) @test approxoftype(tspan2dtmin((0, Inf)), eps(1.0)) @test approxoftype(tspan2dtmin((0.0, Inf)), eps(1.0)) @test approxoftype(tspan2dtmin((0.0, 1e-6)), eps(1e-6)) @test approxoftype(tspan2dtmin((1e6, 1e6 + 1)), eps(1e6)) @test_throws ArgumentError tspan2dtmin((Inf, 100.0)) @test approxoftype(tspan2dtmin((0.0f0, 1.0f5); use_end_time = false), eps(1.0f0)) @test approxoftype(timedepentdtmin(10.0f0, eps(1.0f0)), eps(10.0f0)) @test approxoftype(timedepentdtmin(10, eps(1.0f0)), eps(1.0f0)) end @testset "prob2dtmin" begin @test prob2dtmin((0.0, 10.0), 1.0, false) == eps(Float64) @test prob2dtmin((0.0f0, 10.0f0), 1.0f0, false) == eps(Float32) @test prob2dtmin((0.0, 10.0), ForwardDiff.Dual(1.0), false) == eps(Float64) end @testset "_rate_prototype" begin @test _rate_prototype([1.0f0], 1.0, 1.0) isa Vector{Float32} td = Dual{Tag{typeof(+), Float64}}(2.0, 1.0) @test _rate_prototype([1.0f0], td, td) isa Vector{Float32} xd = [Dual{Tag{typeof(+), Float32}}(2.0, 1.0)] @test _rate_prototype(xd, 1.0, 1.0) isa typeof(xd) @test _rate_prototype([u"1f0m"], u"1.0s", 1.0) isa typeof([u"1f0m/s"]) end
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
585
using OrdinaryDiffEq function lorenz!(du, u, p, t) du[1] = 10.0 * (u[2] - u[1]) du[2] = u[1] * (28.0 - u[3]) - u[2] du[3] = u[1] * u[2] - (8 / 3) * u[3] end u0 = BigFloat[1.0; 0.0; 0.0] tspan = (big(0.0), big(100.0)) prob = ODEProblem(lorenz!, u0, tspan) sol = solve(prob, Tsit5(), save_everystep = false) x = sol.u[end] import LinearAlgebra.norm function condition(u, t, integrator) norm(u - x) - 0.1 end affect!(integrator) = terminate!(integrator) cb = ContinuousCallback(condition, affect!) sol2 = solve(prob, Tsit5(), save_everystep = false, callback = cb)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
283
using OrdinaryDiffEq # Auto callback merging do_nothing = DiscreteCallback((u, t, integrator) -> true, integrator -> nothing) problem = ODEProblem((u, p, t) -> -u, 1.0, (0.0, 1.0), callback = do_nothing) solve(problem, Euler(), dt = 0.1, callback = do_nothing)
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
6485
using OrdinaryDiffEq, DiffEqCallbacks, LinearAlgebra # https://github.com/SciML/DiffEqBase.jl/issues/564 : Fixed gravity = 9.8 stiffness = 500 equilibrium_length = 1 T = 5.0 f(u, p, t) = begin x1, x2, dx1, dx2 = u length = abs(x2 - x1) spring_force = stiffness * (equilibrium_length - length) ddx1 = -gravity - spring_force ddx2 = -gravity + spring_force if x1 <= 0 ddx1 = max(0, ddx1) end if x2 <= 0 ddx2 = max(0, ddx2) end [dx1, dx2, ddx1, ddx2] end sol = solve(ODEProblem(f, [5.0, 6.0, 0.0, 0.0], (0.0, T)), # Euler(), # dt=0.005, Rosenbrock23(), callback = ContinuousCallback((u, _, _) -> u[1], (integrator) -> (integrator.u[1] = 0; integrator.u[3] = 0)), # callback = ContinuousCallback((u, _, _) -> u[1], (integrator) -> (integrator.u[3] = 0)), reltol = 1e-3, abstol = 1e-3) @show sol.stats # https://github.com/SciML/DiffEqBase.jl/issues/553 : Floating point issue is resolved but some other error occurs function model(du, u, p, t) du[1] = 0.0 for i in 2:(length(du) - 1) du[i] = p[i] * (u[i - 1] - u[i]) end du[end] = p[end] * (p[1] * u[end - 1] - u[end]) return nothing end perror = [ 1.0, 0.02222434508140991, 0.017030281542289794, 0.015917011145559996, 0.1608874463597176, 0.13128016561792297, 0.11056834258380167, 0.5222141958458832, 1.0711942201995688, 0.2672878398678257, 8.900058706990183, 0.010760065201065117, 0.016319181296867765, 2.2693845639611925, 0.2152216345154439, 0.029186712540925457, 0.21419429135100806, 0.029177617589788596, 0.03064986043089549, 0.023280222517122397, 6.931251277770224 ] y_max = 0.002604806609572015 u0 = [1, zeros(length(perror) - 1)...] tspan = (0.0, 5000.0) condition(u, t, i) = (t == 1.0) affect!(i) = (i.u[1] = 0.0) condition2(u, t, i) = u[end] - y_max / 2.0 t_half_1 = 0.0 affect2!(i) = (t_half_1 = i.t) prob = ODEProblem(model, u0, tspan, perror) sol = solve(prob, Rosenbrock23(); callback = CallbackSet(PositiveDomain(), DiscreteCallback(condition, affect!), ContinuousCallback(condition2, affect2!, terminate!)), tstops = [1.0], force_dtmin = true) # https://github.com/SciML/DiffEqBase.jl/issues/515 : Fixed using StaticArrays using MultiScaleArrays t_last = 0.0 function attactor(du, u, p, t) α, β = p n = length(u.nodes) return for k in 1:n du.nodes[k] = zero(du.nodes[k]) for j in 1:n if (k == j) du.nodes[k] .+= [ u.nodes[k][3], u.nodes[k][4], -β * u.nodes[k][3], -β * u.nodes[k][4] ] else du.nodes[k][3:4] .+= α * (u.nodes[j][1:2] - u.nodes[k][1:2]) end end end end struct Thingy{B} <: AbstractMultiScaleArrayLeaf{B} values::Vector{B} end struct PhysicsLaw{T <: AbstractMultiScaleArray, B <: Number} <: AbstractMultiScaleArrayHead{B} nodes::Vector{T} values::Vector{B} end_idxs::Vector{Int} end Newton = construct(PhysicsLaw, [ Thingy([-700.0, -350.0, 0.0, 0.0]), Thingy([-550.0, -150.0, 0.0, 0.0]), Thingy([-600.0, 15.0, 0.0, 10.0]), Thingy([200.0, -200.0, 5.0, -5.0]) ]) parameters = [1e-2, 0.06] function condition(out, u, t, integrator) i = 0 n = length(u.nodes) for k in 1:n for l in (k + 1):n i += 1 out[i] = sum(abs2, u.nodes[k][1:2] .- u.nodes[l][1:2]) - 10000 end end end function affect!(integrator, idx) i = 0 u = integrator.u n = length(u.nodes) return for k in 1:n for l in (k + 1):n i += 1 if idx == i x₁ = u.nodes[k][1:2] v₁ = u.nodes[k][3:4] x₂ = u.nodes[l][1:2] v₂ = u.nodes[l][3:4] # https://stackoverflow.com/a/35212639 v₁ = (v₁ - 2 / (1 + 1) * (dot(v₁ - v₂, x₁ - x₂) / sum(abs2, x₁ - x₂) * (x₁ - x₂))) v₂ = -(v₂ - 2 / (1 + 1) * (dot(v₂ - v₁, x₂ - x₁) / sum(abs2, x₂ - x₁) * (x₂ - x₁))) println("Collision handled.") m = (x₁ + x₂) / 2 u.nodes[k][3:4] .= v₁ u.nodes[l][3:4] .= v₂ set_u!(integrator, u) println(sqrt(sum(abs2, x₁ .- x₂)) - 100, ":", v₁ ./ v₂) println(norm(v₁), ":", norm(v₂), ":", integrator.t, ":", integrator.t - t_last) global t_last = integrator.t break end end end end cback = VectorContinuousCallback(condition, affect!, (x -> Int(((x - 1) * x) / 2))(length(Newton.nodes))) problemp = ODEProblem(attactor, Newton, (0.0, Inf), parameters) world = init(problemp, AutoTsit5(Rosenbrock23()); save_everystep = false, callback = cback) dt = 0.2 for i in 1:1000 step!(world, dt) end ## https://github.com/SciML/OrdinaryDiffEq.jl/issues/1528 function f!(out, u, p, t) out[1] = 0 out[2] = u[3] out[3] = -1.0 * (u[2] - u[1]) end u0 = [0, 0, 1.0] function cond!(out, u, t, i) out[1] = u[3] nothing end function affect!(int, idx) terminate!(int) end cb = VectorContinuousCallback(cond!, affect!, nothing, 1) u0 = [0.0, 0.0, 1.0] prob = ODEProblem(f!, u0, (0.0, 10.0); callback = cb) soln = solve(prob, Tsit5()) @test soln.t[end] ≈ 4.712347213360699 odefun = ODEFunction((u, p, t) -> [u[2], u[2] - p]; mass_matrix = [1 0; 0 0]) callback = PresetTimeCallback(0.5, integ -> (integ.p = -integ.p)) prob = ODEProblem(odefun, [0.0, -1.0], (0.0, 1), 1; callback) #test that reinit happens for both FSAL and non FSAL integrators @testset "dae re-init" for alg in [FBDF(), Rodas5P()] sol = solve(prob, alg) # test that the callback flipping p caused u[2] to get flipped. first_t = findfirst(isequal(0.5), sol.t) @test sol.u[first_t][2] == -sol.u[first_t + 1][2] end daefun = DAEFunction((du, u, p, t) -> [du[1] - u[2], u[2] - p]) prob = DAEProblem(daefun, [0.0, 0.0], [0.0, -1.0], (0.0, 1), 1; differential_vars = [true, false], callback) sol = solve(prob, DFBDF()) # test that the callback flipping p caused u[2] to get flipped. first_t = findfirst(isequal(0.5), sol.t) @test sol.u[first_t][2] == -sol.u[first_t + 1][2]
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git
[ "MIT" ]
6.157.0
8977ef8249b602e4cb46ddbaf3c51e6adc2958c7
code
2248
using LinearAlgebra, OrdinaryDiffEq, Test import ForwardDiff # setup pd = 3 ## ode with complex numbers H0 = rand(ComplexF64, pd, pd) A = rand(ComplexF64, pd, pd) function f!(du, u, p, t) a, b, c = p du .= (A * u) * (a * cos(b * t + c)) du .+= H0 * u return nothing end ## time span tspan = (0.0, 1.0) ## initial state u0 = hcat(normalize(rand(ComplexF64, pd)), normalize(rand(pd))) ## ode problem prob0 = ODEProblem(f!, u0, tspan, rand(3); saveat = range(tspan..., length = 3), reltol = 1e-6, alg = Tsit5()) ## final state cost cost(u) = abs2(tr(first(u)'u[2])) - abs2(tr(first(u)'last(u))) ## real loss function via complex ode function loss(p) prob = remake(prob0; p) sol = solve(prob) cost(sol.u) + sum(p) / 10 end ## same problem via reals ### realify complex ode problem function real_f(du, u, p, t) complex_u = complex.(selectdim(u, 3, 1), selectdim(u, 3, 2)) complex_du = copy(complex_u) prob0.f(complex_du, complex_u, p, t) selectdim(du, 3, 1) .= real(complex_du) selectdim(du, 3, 2) .= imag(complex_du) return nothing end prob0_real = remake(prob0; f = real_f, u0 = cat(real(prob0.u0), imag(prob0.u0); dims = 3)) ### real loss function via real ode function loss_via_real(p) prob = remake(prob0_real; p) sol = solve(prob) u = [complex.(selectdim(u, 3, 1), selectdim(u, 3, 2)) for u in sol.u] cost(u) + sum(p) / 10 end # assert @assert eltype(last(solve(prob0).u)) <: Complex @assert eltype(last(solve(prob0_real).u)) <: Real function assert_fun() p0 = rand(3) isapprox(loss(p0), loss_via_real(p0); rtol = 1e-4) end @assert all([assert_fun() for _ in 1:(2^6)]) # test ad with ForwardDiff function test_ad() p0 = rand(3) grad_real = ForwardDiff.gradient(loss_via_real, p0) grad_complex = ForwardDiff.gradient(loss, p0) any(isnan.(grad_complex)) && @warn "NaN detected in gradient using ode with complex numbers !!" any(isnan.(grad_real)) && @warn "NaN detected in gradient using realified ode !!" rel_err = norm(grad_complex - grad_real) / max(norm(grad_complex), norm(grad_real)) isapprox(grad_complex, grad_real; rtol = 1e-6) ? true : (@show rel_err; false) end @time @test all([test_ad() for _ in 1:(2^6)])
DiffEqBase
https://github.com/SciML/DiffEqBase.jl.git