licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 579 | using Documenter, VarianceComponentModels
ENV["DOCUMENTER_DEBUG"] = "true"
makedocs(
format = Documenter.HTML(),
sitename = "VarianceComponentModels.jl",
modules = [VarianceComponentModels],
pages = Any[
"Home" => "index.md",
"Manual" => Any[
"man/mle_reml.md",
"man/heritability.md"
],
"API" => "man/api.md"
]
)
deploydocs(
repo = "github.com/OpenMendel/VarianceComponentModels.jl.git",
target = "build",
# osname = "linux",
# julia = "1.0",
deps = nothing,
make = nothing)
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 15870 | module VarianceComponentModels
using LinearAlgebra, Statistics, MathProgBase, Ipopt#, KNITRO#, Mosek#, Gurobi
import Base: eltype, length, size, +
export VarianceComponentModel, VarianceComponentVariate,
TwoVarCompModelRotate, TwoVarCompVariateRotate, VarianceComponentAuxData,
residual, residual!, nvarcomps, nmeanparams, nvarparams, nparams,
mean!, mean, cov!, cov
"""
`VarianceComponentModel` stores the model parameters of a variance component
model.
# Fields
- `B`: `p x d` mean parameters
- `Σ`: tuple of `d x d` variance component parameters
- `A`: constraint matrix for `vec(B)`
- `sense`: vector of characters `'='`, `'<'` or `'>'`
- `b`: constraint vector for `vec(B)`
- `lb`: lower bounds for `vec(B)`
- `ub`: upper bounds for `vec(B)`
"""
mutable struct VarianceComponentModel{T <: AbstractFloat, M,
BT <: AbstractVecOrMat, ΣT <: AbstractMatrix}
# model parameters
B::BT
Σ::NTuple{M, ΣT}
# constraints: A * vec(B) sense b, lb ≤ vec(B) ≤ ub
A::Matrix{T}
sense::Union{Char, Vector{Char}}
b::Union{T, Vector{T}}
lb::Union{T, Vector{T}}
ub::Union{T, Vector{T}}
end
"""
VarianceComponentModel(B, Σ)
VarianceComponentModel(B, Σ, A, sense, b, lb, ub)
Default constructor of [`VarianceComponentModel`](@ref) type.
"""
function VarianceComponentModel(
B::AbstractVecOrMat,
Σ::NTuple{M, AbstractMatrix},
A::Matrix = zeros(eltype(B), 0, length(B)),
sense::Union{Char, Vector{Char}} = Array{Char}(undef, 0),
b::Union{Number, Vector} = zeros(eltype(B), 0),
lb::Union{Number, Vector} = convert(eltype(B), -Inf),
ub::Union{Number, Vector} = convert(eltype(B), Inf),
) where {M}
VarianceComponentModel{eltype(B), M, typeof(B), eltype(Σ)}(B, Σ, A, sense, b,
lb, ub)
end
"""
VarianceComponentModel(Σ)
Construct [`VarianceComponentModel`](@ref) from `Σ` alone. `B` is treated empty.
"""
function VarianceComponentModel(Σ::NTuple{M, AbstractMatrix}) where {M}
B = zeros(eltype(Σ[1]), 0, size(Σ[1], 1))
VarianceComponentModel(B, Σ)
end
"""
`TwoVarCompModelRotate` stores the rotated two variance component model.
# Fields
- `Brot`: rotated mean parameters `B * eigvec`
- `eigval`: eigenvalues of `eig(Σ[1], Σ[2])`
- `eigvec`: eigenvectors of `eig(Σ[1], Σ[2])`
- `logdetΣ2`: log-determinant of `Σ[2]`
"""
struct TwoVarCompModelRotate{T <: AbstractFloat, BT <: AbstractVecOrMat}
Brot::BT
eigval::Vector{T}
eigvec::Matrix{T}
logdetΣ2::T
end
"""
TwoVarCompModelRotate(Brot, eigval, eigvec, logdetΣ2)
Default constructor of [`TwoVarCompModelRotate`](@ref) type.
"""
function TwoVarCompModelRotate(
Brot::AbstractVecOrMat,
eigval::Vector,
eigvec::Matrix,
logdetΣ2
)
TwoVarCompModelRotate{eltype(Brot), typeof(Brot)}(Brot, eigval, eigvec, logdetΣ2)
end
"""
TwoVarCompModelRotate(twovarcomp)
Constructor of [`TwoVarCompModelRotate`](@ref) instance from a
[`TwoVarCompModelRotate`](@ref) instance itself.
"""
function TwoVarCompModelRotate(
twovarcomp::TwoVarCompModelRotate{T}) where T <: AbstractFloat
## JK ###
twovarcomp
end
"""
TwoVarCompModelRotate(vcmodel)
Constructor of a [`TwoVarCompModelRotate`](@ref) instance from a
[`VarianceComponentModel`](@ref) instance.
"""
function TwoVarCompModelRotate(vcm::VarianceComponentModel{T, 2, BT, ΣT}) where {T, BT, ΣT}
# generalized eigenvalue decomposition of (Σ1, Σ2)
F = eigen(Symmetric(vcm.Σ[1]), Symmetric(vcm.Σ[2])) # output is of BlasFloat type
λ = convert(Vector{T}, F.values)
Φ = convert(Matrix{T}, F.vectors)
# correct negative eigenvalues due to roundoff
map!(x -> max(x, zero(T)), λ, λ)
Brot = isempty(vcm.B) ? Array{T}(undef, size(vcm.B)) : vcm.B * Φ
logdetΣ2 = convert(T, logdet(vcm.Σ[2]))
TwoVarCompModelRotate{T, BT}(Brot, λ, Φ, logdetΣ2)
#TwoVarCompModelRotate(Brot, λ, Φ, logdetΣ2) where {T, BT}
end
"""
`VarianceComponentVariate` stores the data of a variance component
model.
# Feilds
- `Y`: `n x d` responses
- `X`: `n x p` predictors
- `V`: tuple of `n x n` covariance matrices
"""
mutable struct VarianceComponentVariate{T <: AbstractFloat, M,
YT <: AbstractVecOrMat, XT <: AbstractVecOrMat, VT <: AbstractMatrix}
# data
Y::YT
X::XT
V::NTuple{M, VT}
end
"""
VarianceComponentVariate(Y, X, V)
Default constructor of [`VarianceComponentVariate`](@ref) type.
"""
function VarianceComponentVariate(
Y::AbstractVecOrMat,
X::AbstractVecOrMat,
V::NTuple{M, AbstractMatrix}
) where {M}
VarianceComponentVariate{eltype(Y), M, typeof(Y), typeof(X), eltype(V)}(Y, X, V)
end
"""
VarianceComponentVariate(Y, V)
Constructor of a [`VarianceComponentVariate`](@ref) instance from `Y` and `V`
alone. `X` is created empty.
"""
function VarianceComponentVariate(
Y::AbstractVecOrMat,
V::NTuple{M, AbstractMatrix}
) where {M}
X = zeros(eltype(Y), size(Y, 1), 0)
VarianceComponentVariate{eltype(Y), M, typeof(Y), typeof(X), eltype(V)}(Y, X, V)
end
"""
`TwoVarCompVariateRotate` stores the rotated two variance component data.
# Fields
- `Yrot`: rotated responses `eigvec * Y`
- `Xrot`: rotated covariates `eigvec * X`
- `eigval`: eigenvalues of `eig(V[1], V[2])`
- `eigvec`: eigenvectors of `eig(V[1], V[2])`
- `logdetV2`: log-determinant of `V[2]`
"""
struct TwoVarCompVariateRotate{T <: AbstractFloat, YT <: AbstractVecOrMat,
XT <: AbstractVecOrMat}
# data
Yrot::YT
Xrot::XT
eigval::Vector{T}
eigvec::Matrix{T}
logdetV2::T
end
"""
TwoVarCompVariateRotate(Yrot, Xrot, eigval, eigvec,logdetV2)
Default constructor of a [`TwoVarCompVariateRotate`](@ref) instance.
"""
function TwoVarCompVariateRotate(
Yrot::AbstractVecOrMat,
Xrot::AbstractVecOrMat,
eigval::Vector,
eigvec::Matrix,
logdetV2::Real)
## JZ ###
TwoVarCompVariateRotate{eltype(Yrot), typeof(Yrot), typeof(Xrot)}(Yrot, Xrot,
eigval, eigvec, logdetV2)
end
"""
TwoVarCompVariateRotate(twovarcomp)
Constructor of a [`TwoVarCompVariateRotate`](@ref) instance from a
[`TwoVarCompVariateRotate`](@ref) instance itself.
"""
function TwoVarCompVariateRotate(
twovarcomp::TwoVarCompVariateRotate{T}) where T <: AbstractFloat
## JK ###
twovarcomp
end
"""
TwoVarCompVariateRotate(vcobs)
Constructor of a [`TwoVarCompVariateRotate`](@ref) instance from a
[`VarianceComponentVariate`](@ref) instance.
"""
function TwoVarCompVariateRotate(vcobs::VarianceComponentVariate{T, 2}) where T <: AbstractFloat
zeroT = zero(T)
# (generalized)-eigendecomposition of (V1, V2)
if isa(vcobs.V[2], UniformScaling) ||
(isdiag(vcobs.V[2]) && norm(diag(vcobs.V[2]) .- one(T)) < 1.0e-8)
F = eigen(Symmetric(vcobs.V[1]))
deval = convert(Vector{T}, F.values)
U = convert(Matrix{T}, F.vectors)
logdetV2 = zero(T)
else
F = eigen(Symmetric(vcobs.V[1]), Symmetric(vcobs.V[2]))
deval = convert(Vector{T}, F.values)
U = convert(Matrix{T}, F.vectors)
logdetV2 = convert(T, logdet(vcobs.V[2]))
end
# corect negative eigenvalues due to roundoff error
@inbounds @simd for i in eachindex(deval)
deval[i] = deval[i] > zeroT ? deval[i] : zeroT
end
# rotate responses
Yrot = transpose(U) * vcobs.Y
Xrot = isempty(vcobs.X) ? Array{T}(undef, size(Yrot, 1), 0) : transpose(U) * vcobs.X
# output
TwoVarCompVariateRotate(Yrot, Xrot, deval, U, logdetV2)
end
function TwoVarCompVariateRotate(vcdata::Array{T}) where T <: VarianceComponentVariate
map(x -> TwoVarCompVariateRotate(x), vcdata)
end
"""
VarianceComponentModel(vcobs)
Construct a [`VarianceComponentModel`](@ref) instance from a [`VarianceComponentVariate`](@ref)
instance. `B` is initialized to zero; `Σ` is initialized to a tupe of identity
matrices.
"""
function VarianceComponentModel(vcobs::VarianceComponentVariate{T, M}) where {T, M}
p, d, m = size(vcobs.X, 2), size(vcobs.Y, 2), length(vcobs.V)
B = zeros(T, p, d)
Σ = ntuple(x -> Matrix{T}(I, d, d), m)::NTuple{M, Matrix{T}}
VarianceComponentModel(B, Σ)
end
"""
VarianceComponentModel(vcobsrot)
Construct [`VarianceComponentModel`](@ref) instance from a [`TwoVarCompVariateRotate`](@ref)
instance.
"""
function VarianceComponentModel(vcobsrot::TwoVarCompVariateRotate)
p, d = size(vcobsrot.Xrot, 2), size(vcobsrot.Yrot, 2)
T = eltype(vcobsrot)
B = zeros(T, p, d)
Σ = (Matrix{T}(I, d, d), Matrix{T}(I, d, d))
VarianceComponentModel(B, Σ)
end
"""
Auxillary data for variance component model. This can be used as pre-allocated
intermediate variable in iterative algorithm.
"""
struct VarianceComponentAuxData{
T1 <: AbstractMatrix,
T2 <: AbstractVector
}
res::T1 # same shape as response, p-by-d
Xwork::T1 # nd-by-pd
ywork::T2 # nd
obswt::T2 # nd
end
function VarianceComponentAuxData(vcobs::VarianceComponentVariate)
T = eltype(vcobs)
res = zeros(T, size(vcobs.Y, 1), size(vcobs.Y, 2))
Xwork = zeros(T, length(vcobs.Y), nmeanparams(vcobs))
ywork = zeros(T, length(vcobs.Y))
obswt = zeros(T, length(vcobs.Y))
VarianceComponentAuxData{typeof(Xwork), typeof(ywork)}(res,
Xwork, ywork, obswt)
end
function VarianceComponentAuxData(vcobsrot::TwoVarCompVariateRotate)
T = eltype(vcobsrot)
res = zeros(T, size(vcobsrot.Yrot, 1), size(vcobsrot.Yrot, 2))
Xwork = zeros(T, length(vcobsrot.Yrot), nmeanparams(vcobsrot))
ywork = zeros(T, length(vcobsrot.Yrot))
obswt = zeros(T, length(vcobsrot.Yrot))
VarianceComponentAuxData{typeof(Xwork), typeof(ywork)}(res,
Xwork, ywork, obswt)
end
function VarianceComponentAuxData(vcdata::Array{T}) where
T <: Union{VarianceComponentVariate, TwoVarCompVariateRotate}
map(x -> VarianceComponentAuxData(x), vcdata)
end
"""
eltype(vcm)
eltype(vcobs)
eltype(vcmrot)
eltype(vcobsrot)
Element type of variance component model or data.
"""
Base.eltype(vcm::VarianceComponentModel) = Base.eltype(vcm.B)
Base.eltype(vcobs::VarianceComponentVariate) = Base.eltype(vcobs.Y)
Base.eltype(vcmrot::TwoVarCompModelRotate) = Base.eltype(vcmrot.Brot)
Base.eltype(vcobsrot::TwoVarCompVariateRotate) = Base.eltype(vcobsrot.Yrot)
# Dimension of response, d
"""
length(vcm)
length(vcobs)
length(vcmrot)
length(vcobsrot)
Length `d` of response.
"""
length(vcm::VarianceComponentModel) = size(vcm.Σ[1], 1)
length(vcobs::VarianceComponentVariate) = size(vcobs.Y, 2)
length(vcmrot::TwoVarCompModelRotate) = length(vcmrot.eigval)
length(vcobsrot::TwoVarCompVariateRotate) = size(vcobsrot.Yrot, 2)
# Size of response, (n, d)
"""
size(vcobs)
size(vcobsrot)
Size `(n, d)` of the response matrix of a [`VarianceComponentVariate`](@ref) or
[`TwoVarCompVariateRotate`](@ref).
"""
size(vcobs::VarianceComponentVariate) = size(vcobs.Y)
size(vcobsrot::TwoVarCompVariateRotate) = size(vcobsrot.Yrot)
# Number of variance components, m
"""
nvarcomps(vcm)
nvarcomps(vcobs)
nvarcomps(vcmrot)
nvarcomps(vcobsrot)
Number of varianece components.
"""
nvarcomps(vcm::VarianceComponentModel) = length(vcm.Σ)
nvarcomps(vcobs::VarianceComponentVariate) = length(vcobs.V)
nvarcomps(vcmrot::TwoVarCompModelRotate) = 2
nvarcomps(vcobsrot::TwoVarCompVariateRotate) = 2
# Number of mean parameters, p * d
"""
nmeanparams(vcm)
nmeanparams(vcmrot)
nmeanparams(vcobs)
nmeanparams(vcobsrot)
Number of mean parameters `p * d` of [`VarianceComponentModel`](@ref).
"""
nmeanparams(vcm::VarianceComponentModel) = length(vcm.B)
nmeanparams(vcmrot::TwoVarCompModelRotate) = length(vcmrot.Brot)
nmeanparams(vcobs::VarianceComponentVariate) = size(vcobs.X, 2) * size(vcobs.Y, 2)
nmeanparams(vcobsrot::TwoVarCompVariateRotate) =
size(vcobsrot.Xrot, 2) * size(vcobsrot.Yrot, 2)
# Number of free parameters in Cholesky factors, m * d * (d + 1) / 2
"""
nvarparams(vcm)
Number of free parameters in Cholesky factors `m * d * (d + 1) / 2` of
[`VarianceComponentModel`](@ref).
"""
nvarparams(vcm::Union{VarianceComponentModel, TwoVarCompModelRotate}) =
nvarcomps(vcm) * binomial(length(vcm) + 1, 2)
# Number of model parameters, p * d + m * d * (d + 1) / 2
"""
nparams(vcm)
Total number of model parameters `p * d + m * d * (d + 1) / 2` of
[`VarianceComponentModel`](@ref).
"""
nparams(vcm::Union{VarianceComponentModel, TwoVarCompModelRotate}) =
nmeanparams(vcm) + nvarparams(vcm)
"""
cov!(C, vcm, vcobs)
Calculate the `nd x nd` covariance matrix of a [`VarianceComponentModel`](@ref) at
a [`VarianceComponentVariate`](@ref) observation and over-write `C`.
"""
function cov!(
C::AbstractMatrix,
vcm::VarianceComponentModel,
vcobs::VarianceComponentVariate
)
fill!(C, zero(eltype(vcm)))
for i in 1:length(vcm.Σ)
kronaxpy!(vcm.Σ[i], vcobs.V[i], C)
end
return C
end
"""
cov(vcm, vcobs)
Calculate the `nd x nd` covariance matrix of a [`VarianceComponentModel`](@ref) at
a [`VarianceComponentVariate`](@ref) observation.
"""
function cov(
vcm::VarianceComponentModel,
vcobs::VarianceComponentVariate
)
n, d = size(vcobs)
C = zeros(eltype(vcm), n * d, n * d)
cov!(C, vcm, vcobs)
end
"""
mean!(μ, vcm, vcobs)
Calculate the `n x d` mean matrix of a a [`VarianceComponentModel`](@ref) at
a [`VarianceComponentVariate`](@ref) observation and over-write `μ`.
"""
function mean!(
μ::AbstractMatrix,
vcm::VarianceComponentModel,
vcobs::VarianceComponentVariate
)
mul!(μ, vcobs.X, vcm.B)
end
"""
mean(vcm, vcobs)
Calculate the `n x d` mean matrix of a [`VarianceComponentModel`](@ref) at
a [`VarianceComponentVariate`](@ref) observation.
"""
function mean(vcm::VarianceComponentModel, vcobs::VarianceComponentVariate)
μ = zeros(eltype(vcobs), size(vcobs.Y))
mean!(μ, vcm, vcobs)
end
"""
residual(vcm, vcobs)
Residual of [`VarianceComponentVariate`](@ref) under [`VarianceComponentModel`](@ref).
"""
function residual(vcm::VarianceComponentModel, vcobs::VarianceComponentVariate)
return isempty(vcobs.X) ? vcobs.Y : vcobs.Y - vcobs.X * vcm.B
end
function residual(
vcm::T1,
vcdata::Array{T2}
) where {T1 <: VarianceComponentModel, T2 <: VarianceComponentVariate}
map(x -> residual(vcm, x), vcdata)
end
function residual!(
resid::AbstractVecOrMat,
vcm::VarianceComponentModel,
vcobs::VarianceComponentVariate
)
if isempty(vcobs.X)
copyto!(resid, vcobs.Y)
else
oneT = one(eltype(vcm))
copyto!(resid, vcobs.Y)
LinearAlgebra.BLAS.gemm!('N', 'N', -oneT, vcobs.X, vcm.B, oneT, resid)
end
resid
end
function residual!(
resid::AbstractArray,
vcm::T1,
vcdata::Array{T2}
) where {T1 <: VarianceComponentModel, T2 <: VarianceComponentVariate}
map(x -> residual!(x[1], vcm, x[2]), zip(resid, vcdata))
end
"""
residual(vcmrot, vcobsrot)
Residual of [`TwoVarCompVariateRotate`](@ref) under [`TwoVarCompModelRotate`](@ref).
"""
function residual(vcmrot::TwoVarCompModelRotate, vcobsrot::TwoVarCompVariateRotate)
if isempty(vcmrot.Brot)
return vcobsrot.Yrot * vcmrot.eigvec
else
return vcobsrot.Yrot * vcmrot.eigvec - vcobsrot.Xrot * vcmrot.Brot
end
end
function residual(
vcmrot::T1,
vcdatarot::Array{T2}
) where {T1 <: TwoVarCompModelRotate, T2 <: TwoVarCompVariateRotate}
map(x -> residual(vcmrot, x), vcdatarot)
end
function residual!(
resid::AbstractMatrix,
vcmrot::TwoVarCompModelRotate,
vcobsrot::TwoVarCompVariateRotate
)
if isempty(vcmrot.Brot)
mul!(resid, vcobsrot.Yrot, vcmrot.eigvec)
else
#copy!(resid, vcobsrot.Yrot * vcmrot.eigvec - vcobsrot.Xrot * vcmrot.Brot)
oneT = one(eltype(vcmrot))
mul!(resid, vcobsrot.Yrot, vcmrot.eigvec)
LinearAlgebra.BLAS.gemm!('N', 'N', -oneT, vcobsrot.Xrot, vcmrot.Brot, oneT, resid)
end
resid
end
function residual!(
resid::Array{AbstractMatrix},
vcmrot::T1,
vcdatarot::Array{T2}) where {T1 <: TwoVarCompModelRotate, T2 <: TwoVarCompVariateRotate}
map!(x -> residual(vcmrot, x), resid, vcdatarot)
end
# utilities for multivariate calculus
include("multivariate_calculus.jl")
# source for fitting models with 2 variance components
include("two_variance_component.jl")
end # VarianceComponentModels
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 6199 | # module MultivariateCalculus
using SparseArrays
export vech, trilind, triuind,
commutation, spcommutation,
duplication, spduplication,
chol_gradient, chol_gradient!,
kron_gradient, kron_gradient!, kronaxpy!,
bump_diagonal!, clamp_diagonal!
"""
Vectorize the lower triangular part of a matrix.
"""
function vech(a::Union{Number, AbstractVecOrMat})
m, n = size(a)
out = similar(a, convert(Int, (2m - n + 1) * n / 2))
ooffset, aoffset = 1, 1
for j = 1:n
len = m - j + 1 # no. elements to copy in column j
copyto!(out, ooffset, a, aoffset, len)
ooffset += m - j + 1
aoffset += m + 1
end
out
end
# a is a scalar or (column) vector
vech(a::Union{Number, AbstractVector}) = copy(a)
"""
commutation(type, m[, n])
Create the `mn x mn` commutation matrix `K`, defined by
`K * vec(A) = vec(A')` for any `m x n` matrix A.
"""
function commutation(t::Type, m::Integer, n::Integer)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid Array dimensions"))
mn = m * n
reshape(kron(vec(Matrix{t}(I, m, m)), Matrix{t}(I, n, n)), mn, mn)
end
commutation(m::Integer, n::Integer) = commutation(Float64, m, n)
commutation(t::Type, m::Integer) = commutation(t, m, m)
commutation(m::Integer) = commutation(m, m)
commutation(M::AbstractMatrix) = commutation(eltype(M), size(M, 1), size(M, 2))
"""
spcommutation(type, m[, n])
Create the sparse `mn`-by-`mn` commutation matrix `K`, defined by
`K * vec(A) = vec(A')` for any `m x n` matrix A.
"""
function spcommutation(t::Type, m::Integer, n::Integer)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid Array dimensions"))
mn = m * n
reshape(kron(vec(sparse(t(1)I, m, m)), sparse(t(1)I, n, n)), mn, mn)
end
spcommutation(m::Integer, n::Integer) = spcommutation(Float64, m, n)
spcommutation(t::Type, m::Integer) = spcommutation(t, m, m)
spcommutation(m::Integer) = spcommutation(m, m)
spcommutation(M::AbstractMatrix) = spcommutation(eltype(M), size(M, 1), size(M, 2))
"""
trilind(m, n,[ k])
Linear indices of the lower triangular part of an `m x n` array.
"""
function trilind(m::Integer, n::Integer, k::Integer)
(LinearIndices(tril(trues(m, n), k)))[findall(tril(trues(m, n), k))]
end
function trilind(m::Integer, n::Integer)
(LinearIndices(tril(trues(m, n))))[findall(tril(trues(m, n)))]
end
function trilind(m::Integer)
(LinearIndices(tril(trues(m, m))))[findall(tril(trues(m, m)))]
end
trilind(M::AbstractArray) = trilind(size(M, 1), size(M, 2))
trilind(M::AbstractArray, k::Integer) = trilind(size(M, 1), size(M, 2), k)
"""
triuind(m, n,[ k])
Linear indices of the upper triangular part of an `m x n` array.
"""
function triuind(m::Integer, n::Integer, k::Integer)
(LinearIndices(triu(trues(m, n), k)))[findall(triu(trues(m, n), k))]
end
function triuind(m::Integer, n::Integer)
(LinearIndices(triu(trues(m, n))))[findall(triu(trues(m, n)))]
end
function triuind(m::Integer)
(LinearIndices(triu(trues(m, m))))[findall(triu(trues(m, m)))]
end
triuind(M::AbstractArray) = triuind(size(M, 1), size(M, 2))
triuind(M::AbstractArray, k::Integer) = triuind(size(M, 1), size(M, 2), k)
"""
spduplication(type, n)
Create the sparse `n^2 x n(n+1)/2` duplication matrix, defined by
`D * vech(A) = vec(A)` for any symmetric matrix.
"""
function spduplication(t::Type, n::Integer)
imatrix = zeros(typeof(n), n, n)
imatrix[trilind(n, n)] = 1:binomial(n + 1, 2)
imatrix = imatrix + copy(transpose(tril(imatrix, -1)))
sparse(1:n^2, vec(imatrix), one(t))
end
spduplication(n::Integer) = spduplication(Float64, n)
spduplication(M::AbstractMatrix) = spduplication(eltype(M), size(M, 1))
duplication(t::Type, n::Integer) = Matrix(spduplication(t, n))
duplication(n::Integer) = duplication(Float64, n)
duplication(M::AbstractMatrix) = duplication(eltype(M), size(M, 1))
"""
kron_gradient!(g, dM, Y)
Compute the gradient `d / d vec(X)` from a vector of derivatives `dM` where
`M=X⊗Y`, `n, q = size(X)`, and `p, r = size(Y)`.
"""
function kron_gradient!(g::VecOrMat{T}, dM::VecOrMat{T},
Y::Matrix{T}, n::Integer, q::Integer) where {T <: Real}
p, r = size(Y)
mul!(g, kron(sparse(I, n * q, n * q), vec(Y)'),
(kron(sparse(I, q, q), spcommutation(n, r), sparse(I, p, p)) * dM))
end
function kron_gradient(dM::VecOrMat{T}, Y::Matrix{T},
n::Integer, q::Integer) where {T <: Real}
if ndims(dM) == 1
g = zeros(T, n * q)
else
g = zeros(T, n * q, size(dM, 2))
end
kron_gradient!(g, dM, Y, n, q)
end
"""
chol_gradient!(g, dM, L)
Compute the gradient `d / d vech(L)` from a vector of derivatives `dM` where
`M=L*L'`.
# TODO make it more memory efficient
"""
function chol_gradient!(g::AbstractVecOrMat{T},
dM::AbstractVecOrMat{T}, L::AbstractMatrix{T}) where {T <: Real}
n = size(L, 1)
mul!(g, transpose(spduplication(n)),
kron(L', sparse(1.0I, n, n)) * (dM + spcommutation(n) * dM))
end
function chol_gradient(dM::AbstractVecOrMat{T}, L::AbstractMatrix{T}) where {T <: Real}
n = size(L, 1)
if ndims(dM) == 1 # vector
g = zeros(T, binomial(n + 1, 2))
else # matrix
g = zeros(T, binomial(n + 1, 2), size(dM, 2))
end
chol_gradient!(g, dM, L)
end
"""
kronaxpy!(A, X, Y)
Overwrites `Y` with `A ⊗ X + Y`. Same as `Y += kron(A, X)` but more efficient.
"""
function kronaxpy!(A::AbstractVecOrMat{T},
X::AbstractVecOrMat{T}, Y::AbstractVecOrMat{T}) where {T <: Real}
# retrieve matrix sizes
m, n = size(A, 1), size(A, 2)
p, q = size(X, 1), size(X, 2)
# loop over (i,j) blocks of Y
irange, jrange = 1:p, 1:q
@inbounds for j in 1:n, i in 1:m
a = A[i, j]
irange = ((i - 1) * p + 1):(i * p)
jrange = ((j - 1) * q + 1):(j * q)
Yij = view(Y, irange, jrange) # view of (i, j)-block
@simd for k in eachindex(Yij)
Yij[k] += a * X[k]
end
end
Y
end
"""
Add `ϵ` to the diagonal entries of matrix `A`.
"""
function bump_diagonal!(A::Matrix{T}, ϵ::T) where {T}
@inbounds @simd for i in 1:minimum(size(A))
A[i, i] += ϵ
end
A
end
"""
Clamp the diagonal entries of matrix `A` to `[lo, hi]`.
"""
function clamp_diagonal!(A::Matrix{T}, lo::T, hi::T) where {T}
@inbounds @simd for i in 1:minimum(size(A))
A[i, i] = clamp(A[i, i], lo, hi)
end
A
end
#end # module MultivariateCalculus
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 42087 | import Printf
export heritability,
logpdf,
gradient!, gradient,
fisher_Σ!, fisher_Σ, fisher_B!, fisher_B,
mle_fs!, mle_mm!,
fit_mle!, fit_reml!,
update_meanparam!
#---------------------------------------------------------------------------#
# Evaluate log-pdf
#---------------------------------------------------------------------------#
"""
logpdf(vcmrot, vcobsrot)
Calculate log-pdf of a [`TwoVarCompVariateRotate`](@ref) instance under a
[`TwoVarCompModelRotate`](@ref).
"""
function logpdf(
vcmrot::T1,
vcobsrot::T2,
vcaux::T3 = VarianceComponentAuxData(vcobsrot)
) where {
T1 <: TwoVarCompModelRotate,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
n, d = size(vcobsrot.Yrot, 1), size(vcobsrot.Yrot, 2)
T = eltype(vcmrot)
zeroT, oneT = zero(T), one(T)
residual!(vcaux.res, vcmrot, vcobsrot)
# evaluate 2(log-likehood)
objval = convert(T, - n * d * log(2π) - d * vcobsrot.logdetV2 - n * vcmrot.logdetΣ2)
tmp, λj = zeroT, zeroT
@inbounds for j in 1:d
λj = vcmrot.eigval[j]
@simd for i in 1:n
tmp = oneT / (vcobsrot.eigval[i] * λj + oneT)
objval += log(tmp) - tmp * vcaux.res[i, j]^2
end
end
objval /= 2
end
"""
logpdf(vcm, vcobsrot)
Calculate log-pdf of a [`TwoVarCompVariateRotate`](@ref) instance under a
[`VarianceComponentModel`](@ref).
"""
function logpdf(
vcm::T1,
vcobs::T2,
vcaux::T3 = VarianceComponentAuxData(vcobs)
) where {
T1 <: VarianceComponentModel,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
logpdf(TwoVarCompModelRotate(vcm), vcobs, vcaux)
end
function logpdf(
vcm::T1,
vcobs::T2,
vcaux::T3 = VarianceComponentAuxData(vcobs)
) where {
T1 <: VarianceComponentModel,
T2 <: VarianceComponentVariate,
T3 <: VarianceComponentAuxData}
logpdf(TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobs), vcaux)
end
"""
Calculate log-pdf of an array of variance component instances.
"""
function logpdf(
vcm::T1,
vcdata::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdata)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
mapreduce(x -> logpdf(vcm, x...), +, zip(vcdata, vcaux))
end
#---------------------------------------------------------------------------#
# Evaluate gradient
#---------------------------------------------------------------------------#
"""
gradient!(∇, vcmrot, vcobsrot)
Evaluate gradient of `Σ` at `vcmrot.Σ` and overwrite `∇`.
# Input
- `∇::Vector`: gradient vector.
- `vcmrot`: *rotated* two variance component model [`TwoVarCompModelRotate`](@ref).
- `vcobsrot`: *rotated* two variance component data [`TwoVarCompVariateRotate`](@ref).
# Output
- `∇`: gradient vector at `Σ = (Σ[1], Σ[2])`.
# TODO
- optimize computation
"""
function gradient!(
∇::AbstractVector{T},
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobsrot)
) where {T <: AbstractFloat}
n, d = size(vcobsrot.Yrot, 1), size(vcobsrot.Yrot, 2)
zeroT, oneT = zero(T), one(T)
residual!(vcaux.res, vcmrot, vcobsrot)
# gradient wrt Σ[2]
tmp, λj, dg = zeroT, zeroT, zeros(T, d)
@inbounds for j in 1:d
λj = vcmrot.eigval[j]
@simd for i in 1:n
tmp = oneT / (vcobsrot.eigval[i] * λj + oneT)
vcaux.res[i, j] *= tmp
dg[j] += tmp
end
end
N = transpose(vcaux.res) * vcaux.res
@inbounds for j in 1:d
N[j, j] -= dg[j]
end
#A_mul_Bt!(N, N, vcmrot.eigvec), A_mul_B!(N, vcmrot.eigvec, N)
N = vcmrot.eigvec * N * vcmrot.eigvec'
copyto!(∇, d^2 + 1, N, 1, d^2)
# gradient wrt Σ[1]
@inbounds for j in 1:d
λj = vcmrot.eigval[j]
dg[j] = zeroT
@simd for i in 1:n
tmp = vcobsrot.eigval[i]
vcaux.res[i, j] *= √tmp
dg[j] += tmp / (tmp * λj + oneT)
end
end
mul!(N, transpose(vcaux.res), vcaux.res)
@inbounds for j in 1:d
N[j, j] -= dg[j]
end
#A_mul_Bt!(N, N, vcmrot.eigvec), A_mul_B!(N, vcmrot.eigvec, N)
N = vcmrot.eigvec * N * vcmrot.eigvec'
copyto!(∇, N)
# scale by 0.5
rmul!(∇, 1//2)
end # function gradient!
"""
gradient(vcmrot, vcobsrot)
Evaluate gradient of `Σ` at `vcmrot.Σ` and overwrite `∇`.
# Input
- `vcmrot`: *rotated* two variance component model [`TwoVarCompModelRotate`](@ref).
- `vcobsrot`: *rotated* two variance component data [`TwoVarCompVariateRotate`](@ref).
# Output
- `∇`: gradient vector at `Σ = (Σ[1], Σ[2])`.
# TODO
- optimize computation
"""
function gradient(
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobsrot)
) where {T <: AbstractFloat}
d = length(vcmrot)
∇ = zeros(T, 2d^2)
gradient!(∇, vcmrot, vcobsrot, vcaux)
end
"""
gradient!(∇, vcm, vcobsrot)
Evaluate gradient of `Σ` at `vcmrot.Σ` and overwrite `∇`.
# Input
- `∇::Vector`: gradient vector.
- `vcmrot`: two variance component model [`VarianceComponentModel`](@ref).
- `vcobsrot`: *rotated* two variance component data [`TwoVarCompVariateRotate`](@ref).
# Output
- `∇`: gradient vector at `Σ = (Σ[1], Σ[2])`.
# TODO
- optimize computation
"""
function gradient!(
∇::AbstractVector{T},
vcm::VarianceComponentModel{T, 2},
vcobs::TwoVarCompVariateRotate{T},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobs)
) where {T <: AbstractFloat}
gradient!(∇, TwoVarCompModelRotate(vcm), vcobs, vcaux)
end
function gradient!(
∇::AbstractVector{T},
vcm::VarianceComponentModel{T, 2},
vcobs::VarianceComponentVariate{T, 2},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobs)
) where {T <: AbstractFloat}
gradient!(∇, TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobs), vcaux)
end
"""
gradient(vcm, vcobsrot)
Evaluate gradient of `Σ` at `vcmrot.Σ` and overwrite `∇`.
# Input
- `vcmrot`: two variance component model [`VarianceComponentModel`](@ref).
- `vcobsrot`: *rotated* two variance component data [`TwoVarCompVariateRotate`](@ref).
# Output
- `∇`: gradient vector at `Σ = (Σ[1], Σ[2])`.
# TODO
- optimize computation
"""
function gradient(
vcm::VarianceComponentModel{T, 2},
vcobs::TwoVarCompVariateRotate,
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobs)
) where {T <: AbstractFloat}
gradient(TwoVarCompModelRotate(vcm), vcobs, vcaux)
end
function gradient(
vcm::VarianceComponentModel{T, 2},
vcobs::VarianceComponentVariate{T, 2},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobs)
) where {T <: AbstractFloat}
gradient(TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobs), vcaux)
end
function gradient!(
∇::AbstractVector,
vcm::T1,
vcdata::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdata)# map(x -> VarianceComponentAuxData(x), vcdata)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
copyto!(∇, gradient(vcm, vcdata, vcaux))
end
function gradient(
vcm::T1,
vcdata::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdata)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
mapreduce(x -> gradient(vcm, x...), +, zip(vcdata, vcaux))
end
#---------------------------------------------------------------------------#
# Evaluate Fisher information matrix with respect to Σ
#---------------------------------------------------------------------------#
"""
fisher_Σ!(H, vcmrot, vcobsrot)
Calculate Fisher information matrix at `Σ = (Σ[1], Σ[2])` and overwrite `H`
based on *rotated* two variance component model `vcmrot` and *rotated* two
variance component data `vcobsrot`.
# Input
- `H`: Hessian matrix.
- `vcmrot::TwoVarCompModelRotate`: *rotated* two variance component model.
- `vcobsrot::TwoVarCompVariateRotate`: *rotated* two variance component data.
# Output
- `H`: Fisher information matrix at `Σ = (Σ[1], Σ[2])`.
"""
function fisher_Σ!(
H::AbstractMatrix{T},
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T}
) where {T <: AbstractFloat}
n, d = size(vcobsrot.Yrot, 1), size(vcobsrot.Yrot, 2)
zeroT, oneT = zero(T), one(T)
fill!(H, zeroT)
# evaluate Hessian with respect to Σ[1], Σ[2]
C = zeros(T, d, d)
Φ2 = kron(vcmrot.eigvec, vcmrot.eigvec)
# (1, 1) block
λi, λj, deval = zeroT, zeroT, zeroT
@inbounds for j in 1:d, i in j:d
λi, λj = vcmrot.eigval[i], vcmrot.eigval[j]
@simd for obs in 1:n
deval = vcobsrot.eigval[obs]
C[i, j] += deval * deval / (λi * deval + oneT) / (λj * deval + oneT)
end
end
LinearAlgebra.copytri!(C, 'L')
mul!(view(H, 1:d^2, 1:d^2), Φ2 * Diagonal(vec(C)), transpose(Φ2))
# (2, 1) block
fill!(C, zeroT)
@inbounds for j in 1:d, i in j:d
λi, λj = vcmrot.eigval[i], vcmrot.eigval[j]
@simd for obs in 1:n
deval = vcobsrot.eigval[obs]
C[i, j] += deval / (λi * deval + oneT) / (λj * deval + oneT)
end
end
LinearAlgebra.copytri!(C, 'L')
mul!(view(H, (d^2+1):(2d^2), 1:d^2), Φ2 * Diagonal(vec(C)), transpose(Φ2))
# d-by-d (2, 2) block
fill!(C, zeroT)
@inbounds for j in 1:d, i in j:d
λi, λj = vcmrot.eigval[i], vcmrot.eigval[j]
@simd for obs in 1:n
deval = vcobsrot.eigval[obs]
C[i, j] += oneT / (λi * deval + oneT) / (λj * deval + oneT)
end
end
LinearAlgebra.copytri!(C, 'L')
mul!(view(H, (d^2+1):(2d^2), (d^2+1):(2d^2)), Φ2 * Diagonal(vec(C)), transpose(Φ2))
# copy to upper triangular part
LinearAlgebra.copytri!(H, 'L')
rmul!(H, convert(T, 0.5))
# output
return H
end # function fisher!
function fisher_Σ(
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T}
) where {T <: AbstractFloat}
d = length(vcmrot.eigval)
H = zeros(T, 2d^2, 2d^2)
fisher_Σ!(H, vcmrot, vcobsrot)
end
function fisher_Σ!(
H::AbstractMatrix{T},
vcm::VarianceComponentModel{T, 2},
vcobsrot::TwoVarCompVariateRotate{T}
) where {T <: AbstractFloat}
fisher_Σ!(H, TwoVarCompModelRotate(vcm), vcobsrot)
end
function fisher_Σ!(
H::AbstractMatrix{T},
vcm::VarianceComponentModel{T, 2},
vcobsrot::VarianceComponentVariate{T, 2}
) where {T <: AbstractFloat}
fisher_Σ!(H, TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobsrot))
end
function fisher_Σ(
vcm::VarianceComponentModel{T, 2},
vcobsrot::VarianceComponentVariate{T, 2}
) where {T <: AbstractFloat}
fisher_Σ(TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobsrot))
end
function fisher_Σ(
vcm::VarianceComponentModel{T, 2},
vcobsrot::TwoVarCompVariateRotate{T}
) where {T <: AbstractFloat}
fisher_Σ(TwoVarCompModelRotate(vcm), vcobsrot)
end
function fisher_Σ!(
H::AbstractMatrix,
vcm::T1,
vcobs::Array{T2}
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate}}
copyto!(H, fisher_Σ(vcm, vcobs))
end
function fisher_Σ(
vcm::T1,
vcobs::Array{T2}
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate}}
mapreduce(x -> fisher_Σ(vcm, x), +, vcobs)
end
#---------------------------------------------------------------------------#
# Evaluate Fisher information matrix with respect to B
#---------------------------------------------------------------------------#
"""
fisher_B!(H, vcmrot, vcobsrot)
Calculate Fisher information matrix of `B` and overwrite `H`
based on two variance component model `vcmrot` and *rotated* two
variance component data `vcobsrot`.
# Input
- `H`: Hessian matrix.
- `vcmrot::VarianceComponentModel{T, 2}`: two variance component model.
- `vcobsrot::TwoVarCompVariateRotate`: *rotated* two variance component data.
# Output
- `H`: Fisher information matrix at `B`.
"""
function fisher_B!(
H::AbstractMatrix{T},
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobsrot)
) where {T <: AbstractFloat}
zeroT, oneT = zero(T), one(T)
# working X
fill!(vcaux.Xwork, zeroT)
kronaxpy!(vcmrot.eigvec', vcobsrot.Xrot, vcaux.Xwork)
# working weights
fill!(vcaux.obswt, zeroT)
kronaxpy!(vcobsrot.eigval, vcmrot.eigval, vcaux.obswt)
@inbounds @simd for i in eachindex(vcaux.obswt)
vcaux.obswt[i] = oneT / √(vcaux.obswt[i] + oneT)
end
# weighted least squares
lmul!(Diagonal(vcaux.obswt), vcaux.Xwork)
mul!(H, transpose(vcaux.Xwork), vcaux.Xwork)
end
function fisher_B(
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T}
) where {T <: AbstractFloat}
H = zeros(T, nmeanparams(vcmrot), nmeanparams(vcmrot))
fisher_B!(H, vcmrot, vcobsrot)
end
function fisher_B!(
H::AbstractMatrix{T},
vcm::Union{VarianceComponentModel{T, 2}, TwoVarCompVariateRotate{T}},
vcobs::Union{TwoVarCompVariateRotate{T}, VarianceComponentVariate{T, 2}},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobs)
) where {T <: AbstractFloat}
fisher_B!(H, TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobs), vcaux)
end
function fisher_B(
vcm::T1,
vcobs::T2,
vcaux::T3 = VarianceComponentAuxData(vcobs)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
H = zeros(eltype(vcm), nmeanparams(vcm), nmeanparams(vcm))
fisher_B!(H, TwoVarCompModelRotate(vcm), TwoVarCompVariateRotate(vcobs), vcaux)
end
function fisher_B!(
H::AbstractMatrix,
vcm::T1,
vcdata::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdata)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
copyto!(H, fisher_B(vcm, vcdata, vcaux))
end
function fisher_B(
vcm::T1,
vcdata::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdata)
) where {
T1 <: Union{VarianceComponentModel, TwoVarCompModelRotate},
T2 <: Union{VarianceComponentVariate, TwoVarCompVariateRotate},
T3 <: VarianceComponentAuxData}
mapreduce(x -> fisher_B(vcm, x...), +, zip(vcdata, vcaux))
end
#---------------------------------------------------------------------------#
# Update mean parameters by quadratic programming
#---------------------------------------------------------------------------#
"""
Compute the quadratic and linear parts of weighted least squares criterion.
"""
function suffstats_for_B(
vcmrot::TwoVarCompModelRotate{T},
vcobsrot::TwoVarCompVariateRotate{T},
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobsrot)
) where {T <: AbstractFloat}
zeroT, oneT = zero(T), one(T)
# working weights
fill!(vcaux.obswt, zeroT)
kronaxpy!(vcmrot.eigval, vcobsrot.eigval, vcaux.obswt)
@inbounds @simd for i in eachindex(vcaux.obswt)
vcaux.obswt[i] = oneT / √(vcaux.obswt[i] + oneT)
end
# working X
fill!(vcaux.Xwork, zeroT)
kronaxpy!(vcmrot.eigvec', vcobsrot.Xrot, vcaux.Xwork)
lmul!(Diagonal(vcaux.obswt), vcaux.Xwork)
# working y
mul!(vcaux.res, vcobsrot.Yrot, vcmrot.eigvec)
@inbounds @simd for i in eachindex(vcaux.ywork)
vcaux.ywork[i] = vcaux.res[i] * vcaux.obswt[i]
end
# output
return transpose(vcaux.Xwork) * vcaux.Xwork, transpose(vcaux.Xwork) * vcaux.ywork
end
function suffstats_for_B(
vcmrot::T1,
vcdatarot::Array{T2},
vcaux::Array{T3}
) where {
T1 <: TwoVarCompModelRotate,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
mapreduce(x -> suffstats_for_B(vcmrot, x...), +,
zip(vcdatarot, vcaux))
end
function +(
x::Tuple{AbstractMatrix, AbstractVector},
y::Tuple{AbstractMatrix, AbstractVector}
)
x[1] + y[1], x[2] + y[2]
end
"""
Update mean parameters `vcm.B` by quadratic programming.
## Input
- `vcm::VarianceComponentModel{T, 2}`: two variance component model
- `vcdatarot::TwoVarCompVariateRotate`: *rotated* two variance component data
- `qpsolver`: QP solver
- `Q`: quadratic part in the QP
- `c`: linear part in the QP
## Output
- `vcm.B`: updated mean parameters
"""
function update_meanparam!(
vcm::T1,
vcdatarot::Union{T2, Array{T2}},
qpsolver::MathProgBase.SolverInterface.AbstractMathProgSolver
= MathProgBase.defaultQPsolver,
vcaux::Union{T3, Array{T3}} = VarianceComponentAuxData(vcdatarot)
) where {
T1 <: VarianceComponentModel,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
# quick return if there is no mean parameters
isempty(vcm.B) && return vcm.B
# rotate the model
vcmrot = TwoVarCompModelRotate(vcm)
# accumlate the quadratic and linear parts of QP
Q, c = suffstats_for_B(vcmrot, vcdatarot, vcaux)
# quadratic programming
qpsol = quadprog(-c, Q, vcm.A, vcm.sense, vcm.b, vcm.lb, vcm.ub, qpsolver)
if qpsol.status ≠ :Optimal
println("Error in quadratic programming $(qpsol.status)")
end
copyto!(vcm.B, qpsol.sol)
return vcm.B
end
#---------------------------------------------------------------------------#
# Fisher scoring algorithm
#---------------------------------------------------------------------------#
"""
`TwoVarCompOptProb` holds data and model for solving two variance component
problem
# Fields
- `vcmodel`: [`VarianceComponentModel`](@ref)
- `qcdatarot`: [`TwoVarCompVariateRotate`](@ref)
- `qpsolver`: `MathProgBase.SolverInterface.AbstractMathProgSolver`
- `L`: working variable, a tuple of two Cholesky factors `(L[1], L[2])`
- `∇Σ`: working variable, gradient with respect to `(Σ[1], Σ[2])`
- `HΣ`: working variable, Hessian with respect to `(Σ[1], Σ[2])`
- `HL`: working variable, Hessian with respect to `(L[1], L[2])`
- `Q`: working variable, quadratic part of QP for updating `B`
- `c`: working variable, linear part of QP for updating `B`
"""
mutable struct TwoVarCompOptProb{
T1 <: VarianceComponentModel,
T2 <: Union{TwoVarCompVariateRotate, AbstractArray},
T3 <: AbstractMatrix,
T4 <: AbstractVector,
T5 <: Union{VarianceComponentAuxData, AbstractArray}} <: MathProgBase.AbstractNLPEvaluator
# variance component model and data
vcmodel::T1
vcdatarot::T2
# QP solver for updating B given Σ
qpsolver::MathProgBase.SolverInterface.AbstractMathProgSolver
# intermediate variables
L::NTuple{2, T3} # Cholesky factors
∇Σ::T4 # graident wrt (Σ1, Σ2)
HΣ::T3 # Hessian wrt (Σ1, Σ2)
HL::T3 # Hessian wrt (L1, L2)
vcaux::T5
end
"""
TwoVarCompOptProb(vcm, vcobsrot)
TwoVarCompOptProb(vcm, vcobsrot, qpsolver)
Constructor of [`TwoVarCompOptProb`](@ref) from [`VarianceComponentModel`](@ref) `vcm`,
[`TwoVarCompVariateRotate`](@ref) `vcobsrot`, and input quadratic programming
sovler `qpsolver`.
"""
function TwoVarCompOptProb(
vcm::T1,
vcdatarot::Union{T2, Array{T2}},
qpsolver::MathProgBase.SolverInterface.AbstractMathProgSolver
= MathProgBase.defaultQPsolver
) where {
T1 <: VarianceComponentModel,
T2 <: TwoVarCompVariateRotate}
T = eltype(vcm)
d, pd = length(vcm), nmeanparams(vcm)
# number of optimization parameters in variance
nvar = nvarparams(vcm)
# allocate intermediate variables
L = (zeros(T, d, d), zeros(T, d, d))
∇Σ = zeros(T, 2d^2) # graident wrt (Σ1, Σ2)
HΣ = zeros(T, 2d^2, 2d^2) # Hessian wrt (Σ1, Σ2)
HL = zeros(T, nvar, nvar) # Hessian wrt Ls
vcaux = VarianceComponentAuxData(vcdatarot)
# constructor
TwoVarCompOptProb{typeof(vcm), typeof(vcdatarot), typeof(HΣ),
typeof(∇Σ), typeof(vcaux)}(vcm, vcdatarot, qpsolver, L, ∇Σ, HΣ, HL, vcaux)
end
"""
optimparam_to_vcparam(dd, x)
Translate optimization variables `x` to variance component parmeters
`dd.vcmodel.Σ` in [`TwoVarCompOptProb`](@ref).
"""
function optimparam_to_vcparam!(dd::TwoVarCompOptProb, x::Vector{T}) where {T}
d = size(dd.L[1], 1)
nvar = nvarparams(dd.vcmodel)
nvarhalf = div(nvar, 2)
# variance parameter
dd.L[1][trilind(d)] = x[1:nvarhalf]
dd.L[2][trilind(d)] = x[(nvarhalf+1):end]
# exponentiate diagonal entries
@inbounds @simd for i in 1:d
dd.L[1][i, i] = exp(dd.L[1][i, i])
dd.L[2][i, i] = exp(dd.L[2][i, i])
end
# Σi = Li Li'
mul!(dd.vcmodel.Σ[1], dd.L[1], transpose(dd.L[1]))
mul!(dd.vcmodel.Σ[2], dd.L[2], transpose(dd.L[2]))
# make sure the last variance component is pos. def.
ϵ = convert(T, 1e-8)
clamp_diagonal!(dd.vcmodel.Σ[2], ϵ, T(Inf))
end
function MathProgBase.initialize(dd::TwoVarCompOptProb,
requested_features::Vector{Symbol})
for feat in requested_features
if !(feat in [:Grad, :Jac, :Hess])
error("Unsupported feature $feat")
end
end
end # function MathProgBase.initialize
MathProgBase.features_available(dd::TwoVarCompOptProb) = [:Grad, :Jac, :Hess]
MathProgBase.eval_g(dd::TwoVarCompOptProb, g, x) = nothing
MathProgBase.jac_structure(dd::TwoVarCompOptProb) = Int[], Int[]
MathProgBase.eval_jac_g(dd::TwoVarCompOptProb, J, x) = nothing
function MathProgBase.eval_f(dd::TwoVarCompOptProb, x::Vector{T}) where {T}
# update variance parameter from optim variable x
optimparam_to_vcparam!(dd, x)
# update mean parameters
update_meanparam!(dd.vcmodel, dd.vcdatarot, dd.qpsolver, dd.vcaux)
# evaluate profile log-pdf
logpdf(dd.vcmodel, dd.vcdatarot, dd.vcaux)
end # function MathProgBase.eval_f
function MathProgBase.eval_grad_f(
dd::TwoVarCompOptProb,
grad_f::Vector{T},
x::Vector{T}
) where {T}
d = size(dd.L[1], 1)
nvar = nvarparams(dd.vcmodel)
nvarhalf = div(nvar, 2)
# update variance parameter from optim variable x
optimparam_to_vcparam!(dd, x)
# update mean parameters
update_meanparam!(dd.vcmodel, dd.vcdatarot, dd.qpsolver, dd.vcaux)
# gradient wrt (Σ[1], Σ[2])
gradient!(dd.∇Σ, dd.vcmodel, dd.vcdatarot, dd.vcaux)
# chain rule for gradient wrt Cholesky factor
chol_gradient!(view(grad_f, 1:nvarhalf), dd.∇Σ[1:d^2], dd.L[1])
chol_gradient!(view(grad_f, (nvarhalf+1):nvar), dd.∇Σ[(d^2+1):end], dd.L[2])
# chain rule for exponential of diagonal entries
@inbounds for j in 1:d
# linear index of diagonal entries of L1
idx = 1 + (j - 1) * d - div((j - 1) * (j - 2), 2)
grad_f[idx] *= dd.L[1][j, j]
# linear index of diagonal entries of L2
idx += nvarhalf
grad_f[idx] *= dd.L[2][j, j]
end
return grad_f
end # function MathProgBase.eval_grad_f
function MathProgBase.hesslag_structure(dd::TwoVarCompOptProb)
nvar = nvarparams(dd.vcmodel)
# linear indices for variance parameters
## ind2sub((nvar, nvar), trilind(nvar))
#Tuple(CartesianIndices((nvar, nvar))[trilind(nvar)])
arr1, arr2 = Int64[], Int64[]
for i in 1:nvar
arr1 = vcat(arr1, i:nvar)
arr2 = vcat(arr2, fill(i, nvar-i+1))
end
return (arr1, arr2)
end # function MathProgBase.hesslag_structure
function MathProgBase.eval_hesslag(dd::TwoVarCompOptProb, H::Vector{T},
x::Vector{T}, σ::T, μ::Vector{T}) where {T}
d = size(dd.L[1], 1)
nvar = nvarparams(dd.vcmodel)
nvarhalf = div(nvar, 2)
# update variance parameter from optim variable x
optimparam_to_vcparam!(dd, x)
# update mean parameters
update_meanparam!(dd.vcmodel, dd.vcdatarot, dd.qpsolver, dd.vcaux)
# Hessian wrt (Σ1, Σ2)
fisher_Σ!(dd.HΣ, dd.vcmodel, dd.vcdatarot)
# chain rule for Hessian wrt Cholesky factor
# only the lower left triangle
# (1, 1) block
chol_gradient!(view(dd.HL, 1:nvarhalf, 1:nvarhalf),
chol_gradient(dd.HΣ[1:d^2, 1:d^2], dd.L[1])',
dd.L[1])
# (2, 1) block
chol_gradient!(view(dd.HL, nvarhalf+1:nvar, 1:nvarhalf),
chol_gradient(dd.HΣ[(d^2+1):(2d^2), 1:d^2], dd.L[1])',
dd.L[2])
# (2, 2) block
chol_gradient!(view(dd.HL, nvarhalf+1:nvar, nvarhalf+1:nvar),
chol_gradient(dd.HΣ[(d^2+1):(2d^2), (d^2+1):(2d^2)], dd.L[2])',
dd.L[2])
# chain rule for exponential of diagonal entries
@inbounds for j in 1:d
# linear index of diagonal entries of L1
idx = 1 + (j - 1) * d - div((j - 1) * (j - 2), 2)
for i in 1:nvar
dd.HL[i, idx] *= dd.L[1][j, j]
dd.HL[idx, i] *= dd.L[1][j, j]
end
# linear index of diagonal entries of L2
idx += nvarhalf
for i in 1:nvar
dd.HL[i, idx] *= dd.L[2][j, j]
dd.HL[idx, i] *= dd.L[2][j, j]
end
end
# output
copyto!(H, vech(dd.HL))
rmul!(H, -σ)
end
"""
mle_fs!(vcmodel, vcdatarot; maxiter, solver, qpsolver, verbose)
Find MLE by Fisher scoring algorithm.
# Input
- `vcmodel`: two variane component model [`VarianceComponentModel`](@ref), with
`vcmodel.B` and `vcmodel.Σ` used as starting point
- `vcdatarot`: rotated two varianec component data [`TwoVarCompVariateRotate`](@ref)
# Keyword
- `maxiter::Int`: maximum number of iterations, default is 1000
- `solver::Symbol`: backend nonlinear programming solver, `:Ipopt` (default) or `:Knitro`
- `qpsolver::Symbol`: backend quadratic programming solver, `:Ipopt` (default) or `:Gurobi` or `Mosek`
- `verbose::Bool`: display information
# Output
- `maxlogl`: log-likelihood at solution
- `vcmodel`: [`VarianceComponentModel`](@ref) with updated model parameters
- `Σse=(Σse[1],Σse[2])`: standard errors of estimate `Σ=(Σ[1],Σ[2])`
- `Σcov`: covariance matrix of estimate `Σ=(Σ[1],Σ[2])`
- `Bse`: standard errors of estimate `B`
- `Bcov`: covariance of estimate `B`
"""
function mle_fs!(
vcmodel::T1,
vcdatarot::Union{T2, Array{T2}};
maxiter::Integer = 1000,
solver::Symbol = :Ipopt,
qpsolver::Symbol = :Ipopt,
verbose::Bool = true,
) where {T1<:VarianceComponentModel, T2<:TwoVarCompVariateRotate}
T = eltype(vcmodel)
d = length(vcmodel)
Ltrilind = trilind(d, d)
# number of mean parameters
nmean = nmeanparams(vcmodel)
# number of optimization parameters in Cholesky factors
nvar = nvarparams(vcmodel)
nvarhalf = div(nvar, 2)
# pre-allocate variables for optimization
zeroT = convert(T, 0)
# data for the optimization problem
if qpsolver == :Ipopt
qs = IpoptSolver(print_level = 0)
elseif qpsolver == :Gurobi
qs = GurobiSolver(OutputFlag = 0)
elseif qpsolver == :Mosek
qs = MosekSolver(MSK_IPAR_LOG = 0)
end
dd = TwoVarCompOptProb(vcmodel, vcdatarot, qs)
# set up MathProgBase interface
if solver == :Ipopt
# see http://www.coin-or.org/Ipopt/documentation/documentation.html for IPOPT
solver = IpoptSolver(
hessian_approximation = "exact",
tol = 1.0e-8, # default is 1.0e-8
acceptable_tol = 1.0e-5, # default is 1.0e-6
max_iter = maxiter, # default is 3000
print_frequency_iter = 5, # default is 1
print_level = verbose ? 5 : 0,
print_info_string = "yes",
#nlp_scaling_method = "none",
#derivative_test = "second-order",
#linear_solver = "mumps",
#linear_solver = "pardiso",
mehrotra_algorithm = "yes",
)
elseif solver == :Mosek
# see http://docs.mosek.com/7.0/capi/Parameters.html for Mosek options
solver = MosekSolver(
MSK_IPAR_INTPNT_MAX_ITERATIONS = maxiter,
MSK_DPAR_INTPNT_NL_TOL_REL_GAP = 1.0e-8,
MSK_IPAR_LOG = verbose ? 10 : 0, # deafult value is 10
#MSK_IPAR_OPTIMIZER = MSK_OPTIMIZER_NONCONVEX,
#MSK_IPAR_LOG_NONCONVEX = 20,
#MSK_IPAR_NONCONVEX_MAX_ITERATIONS = 100,
#MSK_DPAR_INTPNT_NL_TOL_NEAR_REL = 1e8,
#MSK_IPAR_LOG_CHECK_CONVEXITY = 1,
#MSK_IPAR_INFEAS_PREFER_PRIMAL = MSK_OFF
)
elseif solver == :Knitro
# see https://www.artelys.com/tools/knitro_doc/3_referenceManual/userOptions.html for Mosek options
solver = KnitroSolver(
KTR_PARAM_ALG = 0,
KTR_PARAM_OUTLEV = verbose ? 2 : 0,
#KTR_PARAM_MAXCGIT = 5,
#KTR_PARAM_SCALE = 0,
#KTR_PARAM_HONORBNDS = 1,
#KTR_PARAM_GRADOPT = 1,
#KTR_PARAM_HESSOPT = 1,
#KTR_PARAM_DERIVCHECK = 3,
#KTR_PARAM_TUNER = 1,
#KTR_PARAM_MAXTIMECPU = 5.0,
#KTR_PARAM_BAR_MURULE = 4,
#KTR_PARAM_BAR_FEASIBLE = 3,
#KTR_PARAM_BAR_FEASMODETOL = 1.0e-8,
#KTR_PARAM_BAR_SWITCHRULE = 3,
#KTR_PARAM_BAR_PENCONS = 2,
#KTR_PARAM_BAR_DIRECTINTERVAL = 0,
#KTR_PARAM_BAR_MAXBACKTRACK = 10,
#KTR_PARAM_BAR_MAXCROSSIT = 5,
#KTR_PARAM_BAR_MAXREFACTOR = 5,
#KTR_PARAM_BAR_REFINEMENT = 1,
#KTR_PARAM_BAR_WATCHDOG = 1,
)
end
m = MathProgBase.NonlinearModel(solver)
# lower and upper bounds for variance parameter
lb = zeros(nvar); fill!(lb, -T(Inf))
ub = zeros(nvar); fill!(ub, T(Inf))
MathProgBase.loadproblem!(m, nvar, 0, lb, ub, T[], T[], :Max, dd)
# start point
copyto!(dd.L[1], cholesky(vcmodel.Σ[1], Val(true)).L.data)
copyto!(dd.L[2], cholesky(vcmodel.Σ[2], Val(true)).L.data)
# reparameterize diagonal entries to exponential
@inbounds @simd for i in 1:d
dd.L[1][i, i] = log(dd.L[1][i, i] + convert(T, 1e-8))
dd.L[2][i, i] = log(dd.L[2][i, i] + convert(T, 1e-8))
end
x0 = [vech(dd.L[1]); vech(dd.L[2])]
MathProgBase.setwarmstart!(m, x0)
# optimize
MathProgBase.optimize!(m)
stat = MathProgBase.status(m)
x = MathProgBase.getsolution(m)
# retrieve variance component parameters
optimparam_to_vcparam!(dd, x)
# update mean parameters
update_meanparam!(dd.vcmodel, dd.vcdatarot, dd.qpsolver, dd.vcaux)
# update final objective value
maxlogl = logpdf(vcmodel, vcdatarot, dd.vcaux)
# standard errors
Bcov = zeros(T, nmean, nmean)
Bcov = pinv(fisher_B(vcmodel, vcdatarot, dd.vcaux))
Bse = similar(vcmodel.B)
copyto!(Bse, sqrt.(diag(Bcov)))
Σcov = pinv(fisher_Σ(vcmodel, vcdatarot))
Σse = (zeros(T, d, d), zeros(T, d, d))
copyto!(Σse[1], sqrt.(diag(view(Σcov, 1:d^2, 1:d^2))))
copyto!(Σse[2], sqrt.(diag(view(Σcov, d^2+1:2d^2, d^2+1:2d^2))))
# output
maxlogl, vcmodel, Σse, Σcov, Bse, Bcov
end # function mle_fs
#---------------------------------------------------------------------------#
# MM algorithm
#---------------------------------------------------------------------------#
function suffstats_for_Σ!(
vcmrot::TwoVarCompModelRotate,
vcobsrot::TwoVarCompVariateRotate,
vcaux::VarianceComponentAuxData = VarianceComponentAuxData(vcobsrot)
)
T = eltype(vcmrot)
n, d = size(vcobsrot.Yrot, 1), size(vcobsrot.Yrot, 2)
A1, b1 = zeros(T, d, d), zeros(T, d)
A2, b2 = zeros(T, d, d), zeros(T, d)
zeroT, oneT = zero(T), one(T)
λj, tmp = zeroT, zeroT
# (rotated) residual
residual!(vcaux.res, vcmrot, vcobsrot)
# sufficient statistics for Σ2
@inbounds for j in 1:d
λj = vcmrot.eigval[j]
for i in 1:n
tmp = oneT / (vcobsrot.eigval[i] * λj + oneT)
vcaux.res[i, j] *= tmp
b2[j] += tmp
end
end
mul!(A2, transpose(vcaux.res), vcaux.res)
# sufficient statistics for Σ1
@inbounds for j in 1:d
λj = vcmrot.eigval[j]
for i in 1:n
tmp = vcobsrot.eigval[i]
vcaux.res[i, j] *= √tmp * λj
b1[j] += tmp / (tmp * λj + oneT)
end
end
mul!(A1, transpose(vcaux.res), vcaux.res)
# output
return A1, b1, A2, b2
end
function suffstats_for_Σ!(
vcmrot::T1,
vcdatarot::Array{T2},
vcaux::Array{T3} = VarianceComponentAuxData(vcdatarot)
) where {
T1 <: TwoVarCompModelRotate,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
mapreduce(x -> suffstats_for_Σ!(vcmrot, x...), +, zip(vcdatarot, vcaux))
end
function +(
x::Tuple{AbstractMatrix, AbstractVector, AbstractMatrix, AbstractVector},
y::Tuple{AbstractMatrix, AbstractVector, AbstractMatrix, AbstractVector}
)
x[1] + y[1], x[2] + y[2], x[3] + y[3], x[4] + y[4]
end
function mm_update_Σ!(
vcm::T1,
vcdatarot::Union{T2, Array{T2}},
vcaux::Union{T3, Array{T3}} = VarianceComponentAuxData(vcdatarot)
) where {
T1 <: VarianceComponentModel,
T2 <: TwoVarCompVariateRotate,
T3 <: VarianceComponentAuxData}
T, d = eltype(vcm), length(vcm)
zeroT, oneT = zero(T), one(T)
# eigen-decomposition of (vcm.Σ[1], vcm.Σ[2])
vcmrot = TwoVarCompModelRotate(vcm)
# sufficient statistics for updating Σ1, Σ2
A1, b1, A2, b2 = suffstats_for_Σ!(vcmrot, vcdatarot, vcaux)
@inbounds for j in 1:d
b1[j] = √b1[j]
b2[j] = √b2[j]
end
Φinv = inv(vcmrot.eigvec)
# update Σ1
lmul!(Diagonal(b1), A1), rmul!(A1, Diagonal(b1))
storage = eigen!(Symmetric(A1))
@inbounds for i in 1:d
storage.values[i] = storage.values[i] > zeroT ? √√storage.values[i] : zeroT
end
rmul!(storage.vectors, Diagonal(storage.values)) #scale!(storage.vectors, storage.values)
lmul!(Diagonal(oneT ./ b1), storage.vectors) #scale!(storage.vectors, storage.values)
mul!(vcm.Σ[1], transpose(Φinv), storage.vectors)
copyto!(vcm.Σ[1], vcm.Σ[1] * transpose(vcm.Σ[1]))
# update Σ2
lmul!(Diagonal(b2), A2), rmul!(A2, Diagonal(b2))
storage = eigen!(Symmetric(A2))
@inbounds for i in 1:d
storage.values[i] = storage.values[i] > zeroT ? √√storage.values[i] : zeroT
end
rmul!(storage.vectors, Diagonal(storage.values)) #scale!(storage.vectors, storage.values)
lmul!(Diagonal(oneT ./ b2), storage.vectors) #scale!(storage.vectors, storage.values)
mul!(vcm.Σ[2], transpose(Φinv), storage.vectors)
copyto!(vcm.Σ[2], vcm.Σ[2] * transpose(vcm.Σ[2]))
end
"""
mle_mm!(vcmodel, vcdatarot; maxiter, qpsolver, verbose)
Find MLE by minorization-maximization (MM) algorithm.
# Input
- `vcmodel`: two variane component model [`VarianceComponentModel`](@ref), with
`vcmodel.B` and `vcmodel.Σ` used as starting point
- `vcdatarot`: rotated two varianec component data [`TwoVarCompVariateRotate`](@ref)
# Keyword
- `maxiter::Int`: maximum number of iterations, default is 1000
- `qpsolver::Symbol`: backend quadratic programming solver, `:Ipopt` (default) or `:Gurobi` or `Mosek`
- `verbose::Bool`: display information
# Output
- `maxlogl`: log-likelihood at solution
- `vcmodel`: [`VarianceComponentModel`](@ref) with updated model parameters
- `Σse=(Σse[1],Σse[2])`: standard errors of estimate `Σ=(Σ[1],Σ[2])`
- `Σcov`: covariance matrix of estimate `Σ=(Σ[1],Σ[2])`
- `Bse`: standard errors of estimate `B`
- `Bcov`: covariance of estimate `B`
# Reference
- H. Zhou, L. Hu, J. Zhou, and K. Lange (2015)
MM algorithms for variance components models.
[http://arxiv.org/abs/1509.07426](http://arxiv.org/abs/1509.07426)
"""
function mle_mm!(
vcm::T1,
vcdatarot::Union{T2, Array{T2}};
maxiter::Integer = 10000,
funtol::Real = convert(eltype(vcm), 1e-8),
qpsolver::Symbol = :Ipopt,
verbose::Bool = true,
) where {T1 <: VarianceComponentModel, T2 <: TwoVarCompVariateRotate}
T, d, pd = eltype(vcm), length(vcm), nmeanparams(vcm)
# set up QP solver
if qpsolver == :Ipopt
qs = IpoptSolver(print_level = 0)
elseif qpsolver == :Gurobi
qs = GurobiSolver(OutputFlag = 0)
elseif qpsolver == :Mosek
qs = MosekSolver(MSK_IPAR_LOG = 0)
end
# allocate intermediate variables
vcaux = VarianceComponentAuxData(vcdatarot)
# initial log-likelihood
logl::T = logpdf(vcm, vcdatarot, vcaux)
if verbose
println()
println(" MM Algorithm")
println(" Iter Objective ")
println("-------- -------------")
Printf.@printf("%8.d %13.e\n", 0, logl)
end
# MM loop
for iter in 1:maxiter
# update Σ
mm_update_Σ!(vcm, vcdatarot, vcaux)
# make sure the last variance component is pos. def.
ϵ = convert(T, 1e-8)
clamp_diagonal!(vcm.Σ[2], ϵ, T(Inf))
# update mean parameters
if pd > 0; update_meanparam!(vcm, vcdatarot, qs, vcaux); end
# check convergence
loglold = logl
logl = logpdf(vcm, vcdatarot, vcaux)
if verbose
if (iter <= 10) || (iter > 10 && iter % 10 == 0)
Printf.@printf("%8.d %13.e\n", iter, logl)
end
end
if abs(logl - loglold) < funtol * (abs(logl) + one(T))
break
end
end
if verbose; println(); end
# standard errors
Bcov = pinv(fisher_B(vcm, vcdatarot, vcaux))
Bse = similar(vcm.B)
copyto!(Bse, sqrt.(diag(Bcov)))
Σcov = pinv(fisher_Σ(vcm, vcdatarot))
Σse = (zeros(T, d, d), zeros(T, d, d))
copyto!(Σse[1], sqrt.(diag(view(Σcov, 1:d^2, 1:d^2))))
copyto!(Σse[2], sqrt.(diag(view(Σcov, d^2+1:2d^2, d^2+1:2d^2))))
# output
logl, vcm, Σse, Σcov, Bse, Bcov
end # function mle_mm
#---------------------------------------------------------------------------#
# Estimation gateway
#---------------------------------------------------------------------------#
"""
fit_mle!(vcmodel, vcdata; algo)
Find MLE of variane component model.
# Input
- `vcmodel`: two variane component model [`VarianceComponentModel`](@ref), with
`vcmodel.B` and `vcmodel.Σ` used as starting point
- `vcdata`: two varianec component data [`VarianceComponentVariate`](@ref)
# Keyword
- `algo::Symbol`: algorithm, `:FS` (Fisher scoring) for `:MM`
(minorization-maximization algorithm)
# Output
- `maxlogl`: log-likelihood at solution
- `vcmodel`: [`VarianceComponentModel`](@ref) with updated model parameters
- `Σse=(Σse[1],Σse[2])`: standard errors of estimate `Σ=(Σ[1],Σ[2])`
- `Σcov`: covariance matrix of estimate `Σ=(Σ[1],Σ[2])`
- `Bse`: standard errors of estimate `B`
- `Bcov`: covariance of estimate `B`
"""
function fit_mle!(
vcmodel::T1,
vcdata::Union{T2, Array{T2}};
algo::Symbol = :FS
) where {T1 <: VarianceComponentModel, T2 <: VarianceComponentVariate}
# generalized-eigendecomposition and rotate data
vcdatarot = TwoVarCompVariateRotate(vcdata)
if algo == :FS
return mle_fs!(vcmodel, vcdatarot)
elseif algo == :MM
return mle_mm!(vcmodel, vcdatarot)
end
end
"""
fit_reml!(vcmodel, vcdata; algo)
Find restricted MLE (REML) of variane component model.
# Input
- `vcmodel`: two variane component model [`VarianceComponentModel`](@ref), with
`vcmodel.B` and `vcmodel.Σ` used as starting point
- `vcdata`: two varianec component data [`VarianceComponentVariate`](@ref)
# Keyword
- `algo::Symbol`: algorithm, `:FS` (Fisher scoring) for `:MM`
(minorization-maximization algorithm)
# Output
- `maxlogl`: log-likelihood at solution
- `vcmodel`: [`VarianceComponentModel`](@ref) with updated model parameters
- `Σse=(Σse[1],Σse[2])`: standard errors of estimate `Σ=(Σ[1],Σ[2])`
- `Σcov`: covariance matrix of estimate `Σ=(Σ[1],Σ[2])`
- `Bse`: standard errors of estimate `B`
- `Bcov`: covariance of estimate `B`
"""
function fit_reml!(
vcmodel::T1,
vcdata::Union{T2, Array{T2}};
algo::Symbol = :FS,
qpsolver::Symbol = :Ipopt
) where {
T1 <: VarianceComponentModel,
T2 <: VarianceComponentVariate}
T, d = eltype(vcmodel), length(vcmodel)
vcaux = VarianceComponentAuxData(vcdata)
# solve regular least squares problem
if qpsolver == :Ipopt
qs = IpoptSolver(print_level = 0)
elseif qpsolver == :Gurobi
qs = GurobiSolver(OutputFlag = 0)
elseif qpsolver == :Mosek
qs = MosekSolver(MSK_IPAR_LOG = 0)
end
if typeof(vcdata) <: AbstractArray
Q = kron(Matrix{T}(I, d, d), mapreduce(x -> transpose(x.X) * x.X, +, vcdata))
c = vec(mapreduce(x -> transpose(x.X) * x.Y, +, vcdata))
else
Q = kron(Matrix{T}(I, d, d), transpose(vcdata.X) * vcdata.X)
c = vec(transpose(vcdata.X) * vcdata.Y)
end
qpsol = quadprog(-c, Q, vcmodel.A, vcmodel.sense, vcmodel.b,
vcmodel.lb, vcmodel.ub, qs)
if qpsol.status ≠ :Optimal
println("Error in quadratic programming $(qpsol.status)")
end
copyto!(vcmodel.B, qpsol.sol)
# use residuals as responses
resdata = deepcopy(vcdata)
if typeof(vcdata) <: AbstractArray
for i in eachindex(resdata)
residual!(resdata[i].Y, vcmodel, vcdata[i])
resdata[i].X = zeros(T, size(resdata[i].Y, 1), 0)
end
else
residual!(resdata.Y, vcmodel, vcdata)
resdata.X = zeros(T, size(resdata.Y, 1), 0)
end
resdatarot = TwoVarCompVariateRotate(resdata)
resmodel = deepcopy(vcmodel)
resmodel.B = zeros(T, 0, d)
if algo == :FS
_, _, Σse, Σcov, = mle_fs!(resmodel, resdatarot)
elseif algo == :MM
_, _, Σse, Σcov, = mle_mm!(resmodel, resdatarot)
end
# estimate mean parameters from covariance estimate
copyto!(vcmodel.Σ[1], resmodel.Σ[1]), copyto!(vcmodel.Σ[2], resmodel.Σ[2])
vcdatarot = TwoVarCompVariateRotate(vcdata)
update_meanparam!(vcmodel, vcdatarot, qs, vcaux)
# standard errors and covariance of mean parameters
Bcov = inv(fisher_B(vcmodel, vcdatarot, vcaux))
Bse = similar(vcmodel.B)
copyto!(Bse, sqrt.(diag(Bcov)))
## output
logpdf(vcmodel, vcdatarot), vcmodel, (Σse[1], Σse[2]), Σcov, Bse, Bcov
end
#---------------------------------------------------------------------------#
# Heritability estimation
#---------------------------------------------------------------------------#
"""
heritability(Σ, Σcov, which=1)
Calcualte the heritability of each trait and its standard error from variance
component estimates and their covariance.
# Input
- `Σ=(Σ[1], ..., Σ[m])`: estimate of `m` `d x d` variance components.
- `Σcov`: `md^2 x md^2` covariance matrix of the variance component estiamte.
- `which`: indicator which is the additive genetic variance component.
# Output
- `h`: estimated heritability of `d` traits.
- `hse`: standard errors of the estiamted heritability.
"""
function heritability(
Σ::NTuple{N, AbstractMatrix{T}},
Σcov::AbstractMatrix{T},
which::Integer = 1
) where {T, N}
d = size(Σ[1], 1) # number of traits
m = length(Σ) # number of variance components
@assert size(Σcov, 1) == m * d^2 "Dimensions don't match"
h, hse = zeros(T, d), zeros(T, d)
hgrad = zeros(T, m)
for trait in 1:d
σ2trait = [Σ[i][trait, trait] for i = 1:m]
totalσ2trait = sum(σ2trait)
# heritability
h[trait] = σ2trait[which] / totalσ2trait
# standard error of heritability by Delta method
for i in 1:m
if i == which
hgrad[i] = (totalσ2trait - σ2trait[i]) / totalσ2trait^2
else
hgrad[i] = - σ2trait[i] / totalσ2trait^2
end
end
dgidx = diagind(Σ[1])[trait]
traitidx = dgidx:d^2:((m - 1) * d^2 + dgidx)
hse[trait] = sqrt(dot(hgrad, view(Σcov, traitidx, traitidx) * hgrad))
end
# output
h, hse
end # function heritability
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 3308 | module MultivariateCalculusTest
using VarianceComponentModels, LinearAlgebra, Random, Test
Random.seed!(123)
# test vech
@testset "vech" begin
a = reshape(1:9, 3, 3)
vecha = vech(a)
@test vecha[1] == a[1, 1]
@test vecha[2] == a[2, 1]
@test vecha[3] == a[3, 1]
@test vecha[4] == a[2, 2]
@test vecha[5] == a[3, 2]
@test vecha[6] == a[3, 3]
a = 1.0
@test vech(a) == a
end
# test trilind
@testset "trilind" begin
n = 3
A = randn(n, n)
@test norm(vech(A) - A[trilind(A)]) ≈ 0.0
@test norm([2, 3, 6] - trilind(A, -1)) ≈ 0.0
end
# test triuind
@testset "triuind" begin
n = 2
idx = triuind(n, n)
@test length(idx) == binomial(n + 1, 2)
@test idx[1] == 1
@test idx[2] == 3
@test idx[3] == 4
idx = triuind(n)
@test length(idx) == binomial(n + 1, 2)
@test idx[1] == 1
@test idx[2] == 3
@test idx[3] == 4
idx = triuind(randn(n, n))
@test length(idx) == binomial(n + 1, 2)
@test idx[1] == 1
@test idx[2] == 3
@test idx[3] == 4
idx = triuind(randn(n, n), 1)
@test length(idx) == binomial(n, 2)
@test idx[1] == 3
end
# test commutation
@testset "commutation" begin
m, n = 3, 2
A = randn(m, n)
@test norm(commutation(m, n) * vec(A) - vec(A')) ≈ 0.0
@test norm(commutation(A) * vec(A) - vec(A')) ≈ 0.0
@test norm(spcommutation(m, n) * vec(A) - vec(A')) ≈ 0.0
@test norm(spcommutation(A) * vec(A) - vec(A')) ≈ 0.0
B = randn(m, m)
@test norm(commutation(m) * vec(B) - vec(B')) ≈ 0.0
@test norm(commutation(eltype(B), m) * vec(B) - vec(B')) ≈ 0.0
@test norm(spcommutation(eltype(B), m) * vec(B) - vec(B')) ≈ 0.0
end
# test duplication
@testset "duplication" begin
n = 3
A = randn(n, n)
A = 0.5(A + A') # symmetrize
@test norm(duplication(n) * vech(A) - vec(A)) ≈ 0.0
@test norm(duplication(A) * vech(A) - vec(A)) ≈ 0.0
@test norm(spduplication(n) * vech(A) - vec(A)) ≈ 0.0
@test norm(spduplication(A) * vech(A) - vec(A)) ≈ 0.0
end
# test chol_gradient
@testset "chol_gradient" begin
n = 3
A = randn(n, n)
A = 0.5(A + A') # symmetrize
L = tril(randn(n, n))
# calculate gradient wrt L using chol_gradient
dL1 = chol_gradient(vec(A), L)
# alternative way to calculate gradient wrt L
dL2 = 2.0vech((A * L) + L' * A' - Matrix(Diagonal(A * L)))
@test norm(dL1 - dL2) ≈ 0.0
end
# test kron_gradient
@testset "kron_gradient" begin
n, q, p, r = 2, 3, 4, 5
X = randn(n, q)
Y = randn(p, r)
M = kron(X, Y)
# calculate gradient wrt X using kron_gradient
dX1 = kron_gradient(vec(M), Y, n, q)
# alternative way to calculate gradient wrt X
dX2 = zero(X)
for j = 1:q
for i = 1:n
dX2[i, j] = dot(Y, M[(i-1)*p+1:i*p, (j-1)*r+1:j*r])
end
end
@test norm(dX1 - vec(dX2)) < 1e-8
end
# test duplication
@testset "kronaxpy" begin
m, n, p, q = 3, 4, 5, 6
A = randn(m, n)
X = randn(p, q)
Y = zeros(m * p, n * q)
kronaxpy!(A, X, Y)
@test norm(Y - kron(A, X)) ≈ 0.0
end
# test bump_diagonal
@testset "bump_diag" begin
A = randn(3, 3)
B = copy(A)
bump_diagonal!(B, 1e-3)
@test B[1, 1] - A[1, 1] ≈ 1e-3
@test B[2, 2] - A[2, 2] ≈ 1e-3
@test B[3, 3] - A[3, 3] ≈ 1e-3
end
# test clamp_diagonal
@testset "clamp_diag" begin
n = 3
A = randn(n, n)
B = copy(A)
clamp_diagonal!(B, 0.0, 1.0)
@test all(0.0 .≤ diag(B) .≤ 1.0)
end
end # module MultivariateCalculusTest
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 200 | module VarianceComponentModelsTest
include("multivariate_calculus_test.jl")
include("variance_component_models_test.jl")
include("two_variance_component_test.jl")
#include("benchmark.jl")
end
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 5902 | module TwoVarianceComponentTest
using VarianceComponentModels, MathProgBase, Ipopt, Random, Test, LinearAlgebra
Random.seed!(123)
# generate data from a d-variate response variane component model
n = 100 # no. observations
d = 2 # no. categories
m = 2 # no. variance components
p = 2 # no. covariates
X = randn(n, p)
B = ones(p, d)
Σ = ntuple(x -> zeros(d, d), m)
for i in 1:m
Σi = randn(d, d)
copyto!(Σ[i], Σi' * Σi)
end
## make the first variance component 0 matrix
#fill!(Σ[1], 0.0)
V = ntuple(x -> zeros(n, n), m)
for i = 1:m-1
Vi = randn(n, 50)
copyto!(V[i], Vi * Vi')
end
copyto!(V[m], Matrix(I, n, n))
# form Ω
Ω = zeros(n*d, n*d)
for i = 1:m
global Ω += kron(Σ[i], V[i])
end
Ωchol = cholesky(Ω)
Y = X * B + reshape(Ωchol.L * randn(n*d), n, d)
@info "Forming VarianceComponentModel from data"
@inferred VarianceComponentVariate(Y, X, V)
vcdata = VarianceComponentVariate(Y, X, V)
vcmodel = VarianceComponentModel(vcdata)
@info "Pre-compute eigen-decomposition and rotate data"
vcdatarot = TwoVarCompVariateRotate(vcdata)
vcmodelrot = TwoVarCompModelRotate(vcmodel)
@info "Evaluate log-pdf"
#@code_warntype logpdf(vcmodelrot, vcdatarot)
@inferred logpdf(vcmodelrot, vcdatarot)
@test logpdf(vcmodel, vcdata) == logpdf(vcmodelrot, vcdatarot)
@test (logpdf(vcmodelrot, [vcdatarot vcdatarot; vcdatarot vcdatarot]) -
logpdf(vcmodel, [vcdata vcdata; vcdata vcdata])) ≈ 0.0
@info "Evaluate gradient"
∇ = zeros(2d^2)
#@code_warntype gradient!(∇, vcmodelrot, vcdatarot)
@inferred VarianceComponentModels.gradient!(∇, vcmodelrot, vcdatarot)
@inferred VarianceComponentModels.gradient!(∇, vcmodel, vcdatarot)
@inferred VarianceComponentModels.gradient!(∇, vcmodel, vcdata)
@test norm(VarianceComponentModels.gradient(vcmodel, vcdata) -
VarianceComponentModels.gradient(vcmodelrot, vcdatarot)) ≈ 0.0
@test norm(VarianceComponentModels.gradient(vcmodel, vcdata) -
VarianceComponentModels.gradient(vcmodel, vcdatarot)) ≈ 0.0
@test norm(VarianceComponentModels.gradient(vcmodel, [vcdata vcdata]) -
2.0VarianceComponentModels.gradient(vcmodel, vcdata)) ≈ 0.0
@test norm(VarianceComponentModels.gradient(vcmodel, [vcdata vcdata]) -
VarianceComponentModels.gradient(vcmodelrot, [vcdatarot vcdatarot])) ≈ 0.0
@info "Evaluate Fisher information matrix of Σ"
H = zeros(2d^2, 2d^2)
#@code_warntype fisher!(H, vcmodelrot, vcdatarot)
@inferred fisher_Σ!(H, vcmodelrot, vcdatarot)
@inferred fisher_Σ!(H, vcmodel, vcdata)
@test norm(fisher_Σ(vcmodel, vcdata) - fisher_Σ(vcmodelrot, vcdatarot)) ≈ 0.0
@test norm(fisher_Σ(vcmodel, vcdata) - fisher_Σ(vcmodel, vcdatarot)) ≈ 0.0
@test norm(fisher_Σ(vcmodel, [vcdata vcdata]) -
2fisher_Σ(vcmodel, vcdata)) ≈ 0.0
@test norm(fisher_Σ(vcmodel, [vcdata vcdata]) -
fisher_Σ(vcmodelrot, [vcdatarot vcdatarot])) ≈ 0.0
@info "Evaluate Fisher information matrix of B"
H = zeros(p * d, p * d)
#@code_warntype fisher_B!(H, vcmodelrot, vcdatarot)
@inferred fisher_B!(H, vcmodelrot, vcdatarot)
@inferred fisher_B!(H, vcmodel, vcdatarot)
@inferred fisher_B!(H, vcmodel, vcdata)
@test norm(fisher_B(vcmodel, vcdata) - fisher_B(vcmodelrot, vcdatarot)) ≈ 0.0
@test norm(fisher_B(vcmodel, vcdata) - fisher_B(vcmodel, vcdatarot)) ≈ 0.0
@test norm(fisher_B(vcmodel, [vcdata vcdata]) -
2.0fisher_B(vcmodel, vcdata)) ≈ 0.0
@test norm(fisher_B(vcmodel, [vcdata vcdata]) -
fisher_B(vcmodelrot, [vcdatarot vcdatarot])) ≈ 0.0
@info "Find MLE using Fisher scoring"
vcmfs = deepcopy(vcmodel)
#@code_warntype mle_fs!(vcmfs, vcdatarot; solver = :Ipopt)
#@inferred mle_fs!(vcmfs, vcdatarot; solver = :Ipopt)
logl_fs, _, _, Σcov_fs, Bse_fs, = mle_fs!(vcmfs, vcdatarot; solver = :Ipopt)
logl_fs_array, = mle_fs!(vcmfs, [vcdatarot vcdatarot]; solver = :Ipopt)
@show vcmfs.B
@show Bse_fs
@show B
@info "Find MLE using MM algorithm"
vcmmm = deepcopy(vcmodel)
#@code_warntype mle_mm!(vcmm, vcdatarot)
#@inferred mle_mm!(vcmmm, vcdatarot)
logl_mm, _, _, _, Bse_mm, = mle_mm!(vcmmm, vcdatarot)
@test abs(logl_fs - logl_mm) / (abs(logl_fs) + 1.0) < 1.0e-4
@show vcmmm.B
@show Bse_mm
@show B
vcmmm = deepcopy(vcmodel)
logl_mm_array, = mle_mm!(vcmmm, [vcdatarot vcdatarot])
@test abs(logl_fs_array - logl_mm_array) / (abs(logl_fs_array) + 1.0) < 1.0e-4
@info "Find MLE using Fisher scoring (linear equality + box constraints)"
vcmfs = deepcopy(vcmodel)
vcmfs.A = [1.0 -1.0 zeros(1, p*d-2)]
vcmfs.sense = '='
vcmfs.b = 0.0
vcmfs.lb = 0.0
vcmfs.ub = 1.0
logl_fs, _, _, Σcov_fs, Bse_fs, = mle_fs!(vcmfs, vcdatarot;
solver = :Ipopt, qpsolver = :Ipopt)
@show vcmfs.B
@test vcmfs.B[1] ≈ vcmfs.B[2]
@test all(vcmfs.B .≥ 0.0)
@test all(vcmfs.B .≤ 1.0)
@info "Find MLE using MM algorithm (linear equality + box constraints)"
vcmm = deepcopy(vcmodel)
vcmm.A = [1.0 -1.0 zeros(1, p*d-2)]
vcmm.sense = '='
vcmm.b = 0.0
vcmm.lb = 0.0
vcmm.ub = 1.0
logl_mm, _, _, Σcov_mm = mle_mm!(vcmm, vcdatarot; qpsolver = :Ipopt)
@show vcmm.B
@test vcmm.B[1] ≈ vcmm.B[2]
@test all(vcmm.B .≥ 0.0)
@test all(vcmm.B .≤ 1.0)
@test abs(logl_fs - logl_mm) / (abs(logl_fs) + 1.0) < 1.0e-4
@info "Heritability estimation"
h, h_se = heritability(vcmfs.Σ, Σcov_fs)
@show h, h_se
@test all(0.0 .≤ h .≤ 1.0)
@info "test fit_mle (FS)"
vcmmle = deepcopy(vcmodel)
logl_mle, _, _, Σcov_mle, Bse_mle, = fit_mle!(vcmmle, vcdata; algo = :FS)
@show vcmmle.B, Bse_mle, B
vcmle = deepcopy(vcmodel)
fit_mle!(vcmmle, [vcdata vcdata]; algo = :FS)
@info "test fit_mle (MM)"
vcmmle = deepcopy(vcmodel)
logl_mle, _, _, Σcov_mle, Bse_mle, = fit_mle!(vcmmle, vcdata; algo = :MM)
@show vcmmle.B, Bse_mle, B
@info "test fit_reml (FS)"
vcmreml = deepcopy(vcmodel)
logl_reml, _, _, Σcov_reml, Bse_reml, = fit_reml!(vcmreml, vcdata; algo = :FS)
@show vcmreml.B, Bse_reml, B
@info "test fit_reml (MM)"
vcmreml = deepcopy(vcmodel)
logl_reml, _, _, Σcov_reml, Bse_reml, = fit_reml!(vcmreml, vcdata; algo = :MM)
@show vcmreml.B, Bse_reml, B
end # module VarianceComponentTypeTest
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | code | 4646 | module VarianceComponentTypeTest
using VarianceComponentModels, MathProgBase, Ipopt, LinearAlgebra, Random, Test
Random.seed!(123)
# generate data from a d-variate response variane component model
n = 100 # no. observations
d = 2 # no. categories
m = 2 # no. variance components
p = 2 # no. covariates
X = randn(n, p)
B = ones(p, d)
Σ = ntuple(x -> zeros(d, d), m)
for i in 1:m
Σi = randn(d, d)
copyto!(Σ[i], Σi' * Σi)
end
## make the first variance component 0 matrix
#fill!(Σ[1], 0.0)
V = ntuple(x -> zeros(n, n), m)
for i = 1:m-1
Vi = randn(n, 50)
copyto!(V[i], Vi * Vi')
end
copyto!(V[m], Matrix(I, n, n))
# form Ω
Ω = zeros(n*d, n*d)
for i = 1:m
global Ω += kron(Σ[i], V[i])
end
Ωchol = cholesky(Ω)
Y = X * B + reshape(Ωchol.L * randn(n*d), n, d)
@info "VarianceComponentModel type"
#@code_warntype VarianceComponentModel(B, Σ)
@inferred VarianceComponentModel(B, Σ)
#@code_warntype VarianceComponentModel(Σ)
@inferred VarianceComponentModel(Σ)
vcmodel = VarianceComponentModel(Σ)
@test isempty(vcmodel.B)
@info "TwoVarCompModelRotate type"
F = eigen(Σ[1], Σ[2])
#@code_warntype TwoVarCompModelRotate(B * F.vectors, F.values, F.vectors, logdet(Σ[2]))
@inferred TwoVarCompModelRotate(B * F.vectors, F.values, F.vectors, logdet(Σ[2]))
@info "VarianceComponentVariate type"
#@code_warntype VarianceComponentVariate(Y, V)
@inferred VarianceComponentVariate(Y, V)
vcdata = VarianceComponentVariate(Y, V)
@test isempty(vcdata.X)
@info "Forming VarianceComponentModel from data"
vcdata = VarianceComponentVariate(Y, X, V)
#@code_warntype VarianceComponentVariate(Y, X, V)
@inferred VarianceComponentVariate(Y, X, V)
vcdata = VarianceComponentVariate(Y, X, V)
#@code_warntype VarianceComponentModel(vcdata)
@inferred VarianceComponentModel(vcdata)
vcmodel = VarianceComponentModel(vcdata)
@test norm(vcmodel.B) ≈ 0.0
@test norm(vcmodel.Σ[1] - Matrix(I, d, d)) ≈ 0.0
@test norm(vcmodel.Σ[2] - Matrix(I, d, d)) ≈ 0.0
@info "Pre-compute eigen-decomposition and rotate data"
#@code_warntype TwoVarCompVariateRotate(vcdata)
@inferred TwoVarCompVariateRotate(vcdata)
vcdatarot = TwoVarCompVariateRotate(vcdata)
#@code_warntype TwoVarCompModelRotate(vcmodel)
@inferred TwoVarCompModelRotate(vcmodel)
vcmodelrot = TwoVarCompModelRotate(vcmodel)
@info "Test generalized eigen-decomposition"
vcdatacopy = deepcopy(vcdata)
rmul!(vcdatacopy.V[2], 2.0) # V[2] = 2I
vcdatacopyrot = TwoVarCompVariateRotate(vcdatacopy)
@test vcdatacopyrot.logdetV2 ≈ n * log(2.0) # det(V[2]) = 2^n
@info "VarianceComponentModel from TwoVarCompVariateRotate"
@inferred VarianceComponentModel(vcdatarot)
vcmodelfromrot = VarianceComponentModel(vcdatarot)
@test size(vcmodelfromrot.B, 1) == p
@test size(vcmodelfromrot.B, 2) == d
@test length(vcmodelfromrot.Σ) == m
@info "VarianceComponentAuxData from VarianceComponentVariate"
vcobsaux1 = VarianceComponentAuxData(vcdata)
vcobsaux2 = VarianceComponentAuxData(vcdatarot)
@test size(vcobsaux1.res) == size(vcobsaux2.res)
@test size(vcobsaux1.Xwork) == size(vcobsaux2.Xwork)
@test size(vcobsaux1.ywork) == size(vcobsaux2.ywork)
@test size(vcobsaux1.obswt) == size(vcobsaux2.obswt)
@info "Query functions"
@test eltype(vcmodel) == eltype(B)
@test eltype(vcdata) == eltype(Y)
@test eltype(vcmodelrot) == eltype(vcmodel)
@test eltype(vcdatarot) == eltype(vcdata)
@test length(vcmodel) == d
@test length(vcdata) == d
@test length(vcmodelrot) == d
@test length(vcdatarot) == d
@test size(vcdata) == (n, d)
@test size(vcdatarot) == (n, d)
@test nvarcomps(vcmodel) == m
@test nvarcomps(vcdata) == m
@test nvarcomps(vcmodelrot) == m
@test nvarcomps(vcdatarot) == m
@test nmeanparams(vcmodel) == p * d
@test nmeanparams(vcmodelrot) == p * d
@test nmeanparams(vcdata) == p * d
@test nmeanparams(vcdatarot) == p * d
@test nvarparams(vcmodel) == m * binomial(d + 1, 2)
@test nvarparams(vcmodelrot) == m * binomial(d + 1, 2)
@test nparams(vcmodel) == p * d + m * binomial(d + 1, 2)
@test nparams(vcmodelrot) == p * d + m * binomial(d + 1, 2)
@info "Mean, covariance, and residual of model"
#@code_warntype mean(vcmodel, vcdata)
@inferred mean(vcmodel, vcdata)
μ = mean(vcmodel, vcdata)
@test size(μ, 1) == n
@test size(μ, 2) == d
#@code_warntype cov(vcmodel, vcdata)
@inferred cov(vcmodel, vcdata)
Ω = cov(vcmodel, vcdata)
@test size(Ω, 1) == n * d
@test size(Ω, 2) == n * d
#@code_warntype residual(vcmodel, vcdata)
@inferred residual(vcmodel, vcdata)
res = residual(vcmodel, vcdata)
@test size(res, 1) == n
@test size(res, 2) == d
@inferred residual(vcmodelrot, vcdatarot)
resrot = residual(vcmodelrot, vcdatarot)
@test size(resrot, 1) == n
@test size(resrot, 2) == d
end # module VarianceComponentTypeTest
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | docs | 2419 | # VarianceComponentModels
| **Documentation** | **Build Status** | **Code Coverage** |
|-------------------|------------------|--------------------|
| [](https://openmendel.github.io/VarianceComponentModels.jl/latest/) | [](https://travis-ci.org/OpenMendel/VarianceComponentModels.jl) [](https://ci.appveyor.com/project/Hua-Zhou/variancecomponentmodels-jl-cw40h/branch/master) | [](https://coveralls.io/github/OpenMendel/VarianceComponentModels.jl?branch=master) [](https://codecov.io/gh/OpenMendel/VarianceComponentModels.jl) |
This [Julia](http://julialang.org/) package provides computational routines for fitting and testing variance component models. VarianceComponentModels is one package of the umbrella [OpenMendel](https://openmendel.github.io) project.
## Installation
This package requires Julia v0.7.0 or later, which can be obtained from
https://julialang.org/downloads/ or by building Julia from the sources in the
https://github.com/JuliaLang/julia repository.
This package is registered in the default Julia package registry, and can be installed through standard package installation procedure: e.g., running the following code in Julia REPL.
```julia
using Pkg
pkg"add VarianceComponentModels"
```
## Citation
If you use [OpenMendel](https://openmendel.github.io) analysis packages in your research, please cite the following reference in the resulting publications:
*Zhou, H., Sinsheimer, J., German, C., Ji, S., Bates, D., Chu, B. B., Keys, K., Kim, J., Ko, S., Mosher, G., Papp, J., Sobel, E., Zhai, J., Zhou, J., and Lange, K. (2020). OPENMENDEL: a cooperative programming project for statistical genetics, Human Genetics, 139(1):61-71.*
<!--- ## Contributing
We welcome contributions to this Open Source project. To contribute, follow this procedure ... --->
## Acknowledgments
This project is supported by the National Institutes of Health under NIGMS awards R01GM053275 and R25GM103774 and NHGRI award R01HG006139.
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | docs | 1818 | # VarianceComponentModels.jl
*Utilities for fitting and testing variance component models*
VarianceComponentModels.jl implements computation routines for fitting and testing variance component model of form
$\text{vec}(Y) \sim \text{Normal}(X B, \Sigma_1 \otimes V_1 + \cdots + \Sigma_m \otimes V_m),$
where $\otimes$ is the [Kronecker product](https://en.wikipedia.org/wiki/Kronecker_product).
In this model, **data** is represented by
* `Y`: `n x d` response matrix
* `X`: `n x p` covariate matrix
* `V=(V1,...,Vm)`: a tuple `m` `n x n` covariance matrices
and **parameters** are
* `B`: `p x d` mean parameter matrix
* `Σ=(Σ1,...,Σm)`: a tuple of `m` `d x d` variance components
## Package Features
- Maximum likelihood estimation (MLE) and restricted maximum likelihood estimation (REML) of mean parameters `B` and variance component parameters `Σ`
- Allow constrains in the mean parameters `B`
- Choice of optimization algorithms: [Fisher scoring](https://books.google.com/books?id=QYqeYTftPNwC&lpg=PP1&pg=PA142#v=onepage&q&f=false) and [minorization-maximization algorithm](http://arxiv.org/abs/1509.07426)
- [Heritability analysis](@ref) in genetics
## Installation
This package requires Julia v0.7.0 or later, which can be obtained from
https://julialang.org/downloads/ or by building Julia from the sources in the
https://github.com/JuliaLang/julia repository.
The package has not yet been registered and must be installed using the repository location.
Start julia and use the `]` key to switch to the package manager REPL
```julia
(v1.2) pkg> add https://github.com/OpenMendel/VarianceComponentModels.jl.git
```
Use the backspace key to return to the Julia REPL.
## Manual Outline
```@contents
Pages = [
"man/mle_reml.md",
"man/heritability.md",
]
Depth = 2
```
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | docs | 301 |
# API
Documentation for `VarianceComponentModels.jl`'s types and methods.
## Index
```@index
Pages = ["api.md"]
```
## Types
```@docs
VarianceComponentModel
VarianceComponentVariate
TwoVarCompModelRotate
TwoVarCompVariateRotate
```
## Functions
```@docs
mle_fs!
mle_mm!
fit_mle!
fit_reml!
```
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | docs | 60625 |
# Heritability Analysis
As an application of the variance component model, this note demonstrates the workflow for heritability analysis in genetics, using a sample data set `cg10k` with **6,670** individuals and **630,860** SNPs. Person IDs and phenotype names are masked for privacy. `cg10k.bed`, `cg10k.bim`, and `cg10k.fam` is a set of Plink files in binary format. `cg10k_traits.txt` contains 13 phenotypes of the 6,670 individuals.
```julia
;ls cg10k.bed cg10k.bim cg10k.fam cg10k_traits.txt
```
cg10k.bed
cg10k.bim
cg10k.fam
cg10k_traits.txt
Machine information:
```julia
versioninfo()
```
Julia Version 1.1.0
Commit 80516ca202 (2019-01-21 21:24 UTC)
Platform Info:
OS: macOS (x86_64-apple-darwin14.5.0)
CPU: Intel(R) Core(TM) i5-6267U CPU @ 2.90GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
## Read in binary SNP data
We will use the [`SnpArrays.jl`](https://github.com/OpenMendel/SnpArrays.jl) package to read in binary SNP data and compute the empirical kinship matrix. The package has not yet been registered and must be installed using the repository location. Start julia and use the `]` key to switch to the package manager REPL
```julia
(v0.7) pkg> add https://github.com/OpenMendel/SnpArrays.jl.git#juliav0.7
```
Use the backspace key to return to the Julia REPL.
```julia
using SnpArrays
```
```julia
# read in genotype data from Plink binary file (~50 secs on my laptop)
@time cg10k = SnpArray("cg10k.bed")
```
0.030779 seconds (54 allocations: 19.467 MiB, 28.08% gc time)
6670×630860 SnpArray:
0x02 0x02 0x03 0x03 0x02 0x03 … 0x02 0x03 0x03 0x03 0x03 0x03
0x03 0x03 0x02 0x03 0x02 0x03 0x03 0x02 0x02 0x03 0x02 0x01
0x03 0x03 0x02 0x03 0x02 0x03 0x03 0x03 0x03 0x03 0x03 0x03
0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x02 0x02 0x02 0x02 0x03
0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x02
0x02 0x02 0x03 0x03 0x02 0x03 … 0x03 0x03 0x03 0x03 0x03 0x03
0x00 0x00 0x03 0x03 0x00 0x03 0x03 0x02 0x03 0x03 0x03 0x03
0x03 0x03 0x03 0x03 0x03 0x02 0x03 0x03 0x03 0x03 0x03 0x02
0x03 0x03 0x02 0x03 0x02 0x03 0x02 0x02 0x03 0x03 0x03 0x03
0x03 0x03 0x03 0x00 0x03 0x03 0x02 0x02 0x03 0x03 0x02 0x03
0x03 0x03 0x02 0x03 0x02 0x02 … 0x02 0x03 0x03 0x03 0x03 0x03
0x02 0x02 0x03 0x03 0x02 0x03 0x02 0x03 0x03 0x03 0x03 0x02
0x03 0x03 0x03 0x00 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x02
⋮ ⋮ ⋱ ⋮
0x02 0x02 0x03 0x03 0x02 0x03 0x03 0x02 0x03 0x03 0x02 0x02
0x02 0x02 0x02 0x03 0x00 0x02 0x02 0x03 0x03 0x03 0x02 0x03
0x03 0x03 0x02 0x02 0x02 0x03 … 0x03 0x02 0x03 0x03 0x02 0x03
0x02 0x02 0x03 0x03 0x02 0x03 0x03 0x02 0x03 0x03 0x03 0x02
0x03 0x03 0x03 0x02 0x03 0x02 0x03 0x03 0x03 0x03 0x02 0x03
0x03 0x03 0x01 0x02 0x02 0x01 0x03 0x00 0x00 0x02 0x00 0x02
0x03 0x03 0x03 0x02 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x02
0x03 0x03 0x02 0x02 0x02 0x03 … 0x00 0x03 0x03 0x03 0x03 0x03
0x03 0x03 0x03 0x02 0x02 0x03 0x02 0x02 0x02 0x02 0x02 0x03
0x03 0x03 0x03 0x02 0x03 0x02 0x02 0x03 0x02 0x03 0x03 0x02
0x02 0x02 0x03 0x03 0x02 0x03 0x03 0x03 0x01 0x03 0x03 0x03
0x03 0x03 0x03 0x03 0x03 0x02 0x03 0x00 0x03 0x03 0x03 0x03
## Summary statistics of SNP data
```julia
people, snps = size(cg10k)
```
(6670, 630860)
The positions of the missing data are evaluated by
```julia
mp = missingpos(cg10k)
```
6670×630860 SparseArrays.SparseMatrixCSC{Bool,Int32} with 5524131 stored entries:
[5688 , 1] = true
[6445 , 1] = true
[109 , 3] = true
[189 , 3] = true
[216 , 3] = true
[254 , 3] = true
[331 , 3] = true
[522 , 3] = true
[525 , 3] = true
[597 , 3] = true
[619 , 3] = true
[672 , 3] = true
⋮
[4929 , 630860] = true
[5594 , 630860] = true
[5650 , 630860] = true
[5780 , 630860] = true
[5854 , 630860] = true
[5867 , 630860] = true
[6084 , 630860] = true
[6175 , 630860] = true
[6178 , 630860] = true
[6239 , 630860] = true
[6478 , 630860] = true
[6511 , 630860] = true
The number of missing data values in each column can be evaluated as
```julia
missings_by_snp = sum(mp, dims=1)
```
1×630860 Array{Int64,2}:
2 0 132 77 0 27 2 2 6 27 2 … 6 4 5 11 0 0 4 29 0 5 43
Minor allele frequencies (MAF) for each SNP.
```julia
maf_cg10k = maf(cg10k)
```
630860-element Array{Float64,1}:
0.1699160167966407
0.17098950524737633
0.11402569593147749
0.2686940694676172
0.21926536731634183
0.23934969140448592
0.19061187762447507
0.20200959808038388
0.027160864345738278
0.2997139846454915
0.24625074985003004
0.05555555555555558
0.3659067046647667
⋮
0.22547254725472543
0.4035864345738295
0.20799579957995795
0.44801200300075017
0.2954647845021775
0.14265367316341826
0.1709145427286357
0.2814281428142814
0.06113537117903933
0.052473763118440764
0.13930982745686427
0.1324128564961521
```julia
# 5 number summary and average MAF (minor allele frequencies)
using Statistics
Statistics.quantile(maf_cg10k, [0.0 .25 .5 .75 1.0]), mean(maf_cg10k)
```
([0.00841726 0.124063 … 0.364253 0.5], 0.24536516625042462)
```julia
#using Pkg
#pkg "add Plots"
#pkg"add PyPlot"
using Plots
gr(size=(600,500), html_output_format=:png)
histogram(maf_cg10k, xlab = "Minor Allele Frequency (MAF)", label = "MAF")
```

```julia
# proportion of missing genotypes
sum(missings_by_snp) / length(cg10k)
```
0.0013128198764010824
```julia
# proportion of rare SNPs with maf < 0.05
count(!iszero, maf_cg10k .< 0.05) / length(maf_cg10k)
```
0.07228069619249913
## Empirical kinship matrix
We estimate empirical kinship based on all SNPs by the genetic relation matrix (GRM). Missing genotypes are imputed on the fly by drawing according to the minor allele frequencies.
```julia
## GRM using SNPs with maf > 0.01 (default) (~10 mins on my laptop)
using Random
Random.seed!(123)
@time Φgrm = grm(cg10k; method = :GRM)
```
568.176660 seconds (2.91 M allocations: 494.981 MiB, 0.40% gc time)
6670×6670 Array{Float64,2}:
0.502735 0.00328112 -6.79435e-5 … -6.09591e-5 -0.00277687
0.00328112 0.49807 -0.00195548 0.000884994 0.00341591
-6.79435e-5 -0.00195548 0.492348 0.000198191 -0.000337529
0.00087876 -0.00322605 -0.00192088 -0.00235314 -0.00124267
-5.03227e-5 -0.00352498 0.00184588 0.00219109 -0.00163189
0.00203199 0.000597697 0.00251237 … 0.00088428 2.21226e-5
0.000560862 0.00244517 -0.00183233 0.00120214 -0.00120686
-0.000656949 0.00322249 -0.00101472 0.00355832 -0.000240444
-0.00103874 -0.00125164 -0.000599731 0.00176492 0.00176928
-0.00137058 0.00209596 0.000146711 -0.0014453 -0.00103066
-0.00209312 0.000140721 -0.000442031 … -0.000214963 -0.00107391
0.000933587 0.00168842 0.00185731 -0.000787908 -0.00311063
0.000334572 -0.000886623 0.00304182 0.000752285 -0.00123334
⋮ ⋱
0.00298109 0.00121739 0.00102822 9.66935e-6 0.00306953
-0.00209728 0.00271452 -0.00182325 -0.00108139 0.00366901
0.000549425 -0.00244419 -0.00301368 … -0.000631961 0.00215641
-0.00423362 -0.00208073 -0.00107904 -0.000619315 -0.000593852
-0.00326697 -0.000769552 0.00310511 0.000520658 -0.000113441
0.000430563 -0.0020236 0.00265425 -0.00635493 -0.00520252
0.00218746 0.000798767 -0.00105684 -0.000918245 -0.00061484
-0.00230525 -0.000101149 0.000117936 … 0.000879829 -0.00233479
-0.00201305 0.00233864 -0.00134496 0.00197044 -0.000486275
-0.000990534 -0.000924159 -9.12302e-5 0.00122311 -0.00298296
-6.09591e-5 0.000884994 0.000198191 0.499289 0.000481492
-0.00277687 0.00341591 -0.000337529 0.000481492 0.499799
## Phenotypes
Read in the phenotype data and compute descriptive statistics.
```julia
#using Pkg
#pkg"add CSV DataFrames"
#using CSV, DataFrames
cg10k_trait = CSV.File("cg10k_traits.txt";
delim = ' ') |> DataFrame
names!(cg10k_trait, [:FID; :IID; :Trait1; :Trait2; :Trait3; :Trait4; :Trait5; :Trait6;
:Trait7; :Trait8; :Trait9; :Trait10; :Trait11; :Trait12; :Trait13])
# do not display FID and IID for privacy
cg10k_trait[:, 3:end]
```
<table class="data-frame"><thead><tr><th></th><th>Trait1</th><th>Trait2</th><th>Trait3</th><th>Trait4</th><th>Trait5</th><th>Trait6</th><th>Trait7</th><th>Trait8</th><th>Trait9</th><th>Trait10</th><th>Trait11</th><th>Trait12</th><th>Trait13</th></tr><tr><th></th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th><th>Float64⍰</th></tr></thead><tbody><p>6,670 rows × 13 columns</p><tr><th>1</th><td>-1.81573</td><td>-0.94615</td><td>1.11363</td><td>-2.09867</td><td>0.744417</td><td>0.00139172</td><td>0.934732</td><td>-1.22677</td><td>1.11608</td><td>-0.443628</td><td>0.824466</td><td>-1.02853</td><td>-0.394049</td></tr><tr><th>2</th><td>-1.2444</td><td>0.10966</td><td>0.467119</td><td>-1.62131</td><td>1.05668</td><td>0.978947</td><td>1.00015</td><td>0.324874</td><td>1.16232</td><td>2.69227</td><td>3.08264</td><td>1.09065</td><td>0.0256616</td></tr><tr><th>3</th><td>1.45567</td><td>1.53867</td><td>1.09403</td><td>0.586655</td><td>-0.327965</td><td>-0.303377</td><td>-0.0334355</td><td>-0.464463</td><td>-0.33194</td><td>-0.486839</td><td>-1.10649</td><td>-1.42016</td><td>-0.687463</td></tr><tr><th>4</th><td>-0.768809</td><td>0.513491</td><td>0.244263</td><td>-1.3174</td><td>1.19394</td><td>1.17344</td><td>1.08737</td><td>0.536023</td><td>0.802759</td><td>0.234159</td><td>0.394175</td><td>-0.767366</td><td>0.0635386</td></tr><tr><th>5</th><td>-0.264415</td><td>-0.34824</td><td>-0.0239065</td><td>0.00473916</td><td>1.25619</td><td>1.20389</td><td>1.29801</td><td>0.310114</td><td>0.62616</td><td>0.899289</td><td>0.549968</td><td>0.540688</td><td>0.179675</td></tr><tr><th>6</th><td>-1.37617</td><td>-1.47192</td><td>0.29118</td><td>-0.803111</td><td>-0.26424</td><td>-0.260573</td><td>-0.165372</td><td>-0.219257</td><td>1.04702</td><td>-0.0985816</td><td>0.947393</td><td>0.594015</td><td>0.245407</td></tr><tr><th>7</th><td>0.100942</td><td>-0.191616</td><td>-0.567421</td><td>0.378571</td><td>-0.246656</td><td>-0.608811</td><td>0.189081</td><td>-1.27078</td><td>-0.452476</td><td>0.702563</td><td>0.332636</td><td>0.00269165</td><td>0.317117</td></tr><tr><th>8</th><td>-0.319818</td><td>1.35774</td><td>0.81869</td><td>-1.15566</td><td>0.634484</td><td>0.291462</td><td>0.933324</td><td>-0.741083</td><td>0.647478</td><td>-0.970878</td><td>0.220861</td><td>0.852512</td><td>-0.225905</td></tr><tr><th>9</th><td>-0.288334</td><td>0.566083</td><td>0.254958</td><td>-0.652578</td><td>0.668922</td><td>0.978309</td><td>0.122863</td><td>1.47909</td><td>0.0672132</td><td>0.0795904</td><td>0.167532</td><td>0.246916</td><td>0.539933</td></tr><tr><th>10</th><td>-1.1576</td><td>-0.781199</td><td>-0.595808</td><td>-1.00555</td><td>0.789829</td><td>0.571058</td><td>0.951304</td><td>-0.295963</td><td>0.99042</td><td>0.561309</td><td>0.7331</td><td>-1.73468</td><td>-1.35278</td></tr><tr><th>11</th><td>0.740569</td><td>1.40874</td><td>0.73469</td><td>0.0208323</td><td>-0.337441</td><td>-0.458304</td><td>-0.142583</td><td>-0.580392</td><td>-0.684685</td><td>-0.00785381</td><td>-0.712244</td><td>-0.313346</td><td>-0.345419</td></tr><tr><th>12</th><td>-0.675892</td><td>0.279893</td><td>0.267916</td><td>-1.04104</td><td>0.910742</td><td>0.866028</td><td>1.07414</td><td>0.0381751</td><td>0.766355</td><td>-0.340118</td><td>-0.809014</td><td>0.548522</td><td>-0.0201829</td></tr><tr><th>13</th><td>-0.79541</td><td>-0.69999</td><td>0.39913</td><td>-0.510476</td><td>1.51552</td><td>1.28743</td><td>1.53772</td><td>0.133989</td><td>1.02026</td><td>0.499019</td><td>-0.369483</td><td>-1.10153</td><td>-0.598132</td></tr><tr><th>14</th><td>-0.193483</td><td>-0.286021</td><td>-0.691494</td><td>0.0131582</td><td>1.52337</td><td>1.40106</td><td>1.53115</td><td>0.333066</td><td>1.04372</td><td>0.163207</td><td>-0.422884</td><td>-0.383528</td><td>-0.489222</td></tr><tr><th>15</th><td>0.151246</td><td>2.09185</td><td>2.038</td><td>-1.12475</td><td>1.66557</td><td>1.62536</td><td>1.58751</td><td>0.635852</td><td>0.842578</td><td>0.450762</td><td>-1.39479</td><td>-0.560984</td><td>0.28935</td></tr><tr><th>16</th><td>-0.464609</td><td>0.361277</td><td>1.23277</td><td>-0.826034</td><td>1.43475</td><td>1.74452</td><td>0.211097</td><td>2.64816</td><td>1.02511</td><td>0.119757</td><td>0.0596832</td><td>-0.631232</td><td>-0.207879</td></tr><tr><th>17</th><td>-0.732977</td><td>-0.526223</td><td>0.616579</td><td>-0.55448</td><td>0.947485</td><td>0.936833</td><td>0.972517</td><td>0.290251</td><td>1.01285</td><td>0.516207</td><td>-0.0300689</td><td>0.878732</td><td>0.450255</td></tr><tr><th>18</th><td>-0.167326</td><td>0.175327</td><td>0.287468</td><td>-0.402653</td><td>0.551182</td><td>0.522205</td><td>0.436838</td><td>0.299565</td><td>0.58311</td><td>-0.704416</td><td>-0.73081</td><td>-1.95141</td><td>-0.933505</td></tr><tr><th>19</th><td>1.41159</td><td>1.78722</td><td>0.843976</td><td>0.481278</td><td>-0.0887674</td><td>-0.499578</td><td>0.304196</td><td>-1.23884</td><td>-0.153476</td><td>-0.870486</td><td>0.0955473</td><td>-0.983708</td><td>-0.356345</td></tr><tr><th>20</th><td>-1.42997</td><td>-0.490147</td><td>0.27273</td><td>-1.6103</td><td>0.990788</td><td>0.711688</td><td>1.18858</td><td>-0.371229</td><td>1.24703</td><td>-0.0389162</td><td>0.883496</td><td>2.58988</td><td>3.3354</td></tr><tr><th>21</th><td>-0.147247</td><td>0.123284</td><td>0.617549</td><td>-0.187131</td><td>0.256438</td><td>0.17795</td><td>0.412612</td><td>-0.244809</td><td>0.0947625</td><td>0.723017</td><td>-0.683948</td><td>0.0873751</td><td>-0.26221</td></tr><tr><th>22</th><td>-0.187113</td><td>-0.270777</td><td>-1.01557</td><td>0.0602851</td><td>0.27242</td><td>0.869133</td><td>-0.657519</td><td>2.32389</td><td>-0.999936</td><td>1.44672</td><td>0.971158</td><td>-0.358748</td><td>-0.439658</td></tr><tr><th>23</th><td>-1.82434</td><td>-0.93348</td><td>1.29474</td><td>-1.94545</td><td>0.335847</td><td>0.359202</td><td>0.513653</td><td>-0.0731977</td><td>1.57139</td><td>1.53329</td><td>1.82077</td><td>2.2274</td><td>1.50063</td></tr><tr><th>24</th><td>-2.29344</td><td>-2.49162</td><td>0.40384</td><td>-2.36488</td><td>1.41053</td><td>1.42244</td><td>1.17024</td><td>0.844767</td><td>1.79027</td><td>0.648182</td><td>-0.0857231</td><td>-1.0279</td><td>0.491288</td></tr><tr><th>25</th><td>-0.434136</td><td>0.740882</td><td>0.699576</td><td>-1.02406</td><td>0.759529</td><td>0.956656</td><td>0.6333</td><td>0.770734</td><td>0.824989</td><td>1.84287</td><td>1.91046</td><td>-0.502317</td><td>0.13267</td></tr><tr><th>26</th><td>-2.1921</td><td>-2.49466</td><td>0.354855</td><td>-1.93156</td><td>0.941979</td><td>0.978917</td><td>0.89486</td><td>0.463239</td><td>1.12537</td><td>1.70528</td><td>0.717793</td><td>0.645888</td><td>0.783968</td></tr><tr><th>27</th><td>-1.46602</td><td>-1.24922</td><td>0.307978</td><td>-1.55097</td><td>0.618908</td><td>0.662508</td><td>0.475957</td><td>0.484719</td><td>0.401565</td><td>0.55988</td><td>-0.376938</td><td>-0.933983</td><td>0.390013</td></tr><tr><th>28</th><td>-1.83318</td><td>-1.53269</td><td>2.55674</td><td>-1.51828</td><td>0.78941</td><td>0.908748</td><td>0.649972</td><td>0.668374</td><td>1.20058</td><td>0.277963</td><td>1.2505</td><td>3.3137</td><td>2.22036</td></tr><tr><th>29</th><td>-0.784547</td><td>0.276583</td><td>3.01105</td><td>-1.11979</td><td>0.920824</td><td>0.750218</td><td>1.26154</td><td>-0.403364</td><td>0.400667</td><td>-0.217598</td><td>-0.72467</td><td>-0.391945</td><td>-0.650024</td></tr><tr><th>30</th><td>0.464456</td><td>1.33264</td><td>-1.2306</td><td>-0.357976</td><td>1.1825</td><td>1.54316</td><td>-0.60339</td><td>3.38309</td><td>0.823741</td><td>-0.129951</td><td>-0.65798</td><td>-0.499535</td><td>-0.414477</td></tr><tr><th>⋮</th><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr></tbody></table>
```julia
describe(cg10k_trait[:, 3:end])
```
<table class="data-frame"><thead><tr><th></th><th>variable</th><th>mean</th><th>min</th><th>median</th><th>max</th><th>nunique</th><th>nmissing</th><th>eltype</th></tr><tr><th></th><th>Symbol</th><th>Float64</th><th>Float64</th><th>Float64</th><th>Float64</th><th>Nothing</th><th>Int64</th><th>DataType</th></tr></thead><tbody><p>13 rows × 8 columns</p><tr><th>1</th><td>Trait1</td><td>0.00221138</td><td>-3.20413</td><td>0.12501</td><td>3.4794</td><td></td><td>0</td><td>Float64</td></tr><tr><th>2</th><td>Trait2</td><td>0.00135253</td><td>-3.51166</td><td>0.0335173</td><td>4.91342</td><td></td><td>0</td><td>Float64</td></tr><tr><th>3</th><td>Trait3</td><td>-0.00129591</td><td>-3.93844</td><td>-0.000782162</td><td>7.9163</td><td></td><td>0</td><td>Float64</td></tr><tr><th>4</th><td>Trait4</td><td>0.00230893</td><td>-3.6084</td><td>0.228165</td><td>3.12769</td><td></td><td>0</td><td>Float64</td></tr><tr><th>5</th><td>Trait5</td><td>-0.00179039</td><td>-4.14875</td><td>0.0310343</td><td>2.71718</td><td></td><td>0</td><td>Float64</td></tr><tr><th>6</th><td>Trait6</td><td>-0.00119598</td><td>-3.82479</td><td>0.036242</td><td>2.58973</td><td></td><td>0</td><td>Float64</td></tr><tr><th>7</th><td>Trait7</td><td>-0.00198906</td><td>-4.27246</td><td>0.069801</td><td>2.65378</td><td></td><td>0</td><td>Float64</td></tr><tr><th>8</th><td>Trait8</td><td>0.000614075</td><td>-5.62549</td><td>-0.0386301</td><td>5.8057</td><td></td><td>0</td><td>Float64</td></tr><tr><th>9</th><td>Trait9</td><td>-0.00180965</td><td>-5.38197</td><td>0.106571</td><td>2.57194</td><td></td><td>0</td><td>Float64</td></tr><tr><th>10</th><td>Trait10</td><td>-0.000437029</td><td>-3.54851</td><td>-0.0966507</td><td>6.53782</td><td></td><td>0</td><td>Float64</td></tr><tr><th>11</th><td>Trait11</td><td>-0.000615918</td><td>-3.26491</td><td>-0.0680437</td><td>4.26241</td><td></td><td>0</td><td>Float64</td></tr><tr><th>12</th><td>Trait12</td><td>-0.000588783</td><td>-8.85191</td><td>-0.141099</td><td>13.2114</td><td></td><td>0</td><td>Float64</td></tr><tr><th>13</th><td>Trait13</td><td>-0.000151238</td><td>-5.5921</td><td>-0.141022</td><td>24.1744</td><td></td><td>0</td><td>Float64</td></tr></tbody></table>
```julia
Y = convert(Matrix{Float64}, cg10k_trait[:, 3:15])
histogram(Y, layout = 13)
```

## Pre-processing data for heritability analysis
To prepare variance component model fitting, we form an instance of `VarianceComponentVariate`. The two variance components are $(2\Phi, I)$.
```julia
using VarianceComponentModels, LinearAlgebra
# form data as VarianceComponentVariate
cg10kdata = VarianceComponentVariate(Y, (2Φgrm, Matrix(1.0I, size(Y, 1), size(Y, 1))))
fieldnames(typeof(cg10kdata))
```
(:Y, :X, :V)
```julia
cg10kdata
```
VarianceComponentVariate{Float64,2,Array{Float64,2},Array{Float64,2},Array{Float64,2}}([-1.81573 -0.94615 … -1.02853 -0.394049; -1.2444 0.10966 … 1.09065 0.0256616; … ; 0.886626 0.487408 … -0.636874 -0.439825; -1.24394 0.213697 … 0.299931 0.392809], Array{Float64}(6670,0), ([1.00547 0.00656224 … -0.000121918 -0.00555374; 0.00656224 0.99614 … 0.00176999 0.00683183; … ; -0.000121918 0.00176999 … 0.998578 0.000962983; -0.00555374 0.00683183 … 0.000962983 0.999599], [1.0 0.0 … 0.0 0.0; 0.0 1.0 … 0.0 0.0; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0]))
Before fitting the variance component model, we pre-compute the eigen-decomposition of $2\Phi_{\text{GRM}}$, the rotated responses, and the constant part in log-likelihood, and store them as a `TwoVarCompVariateRotate` instance, which is re-used in various variane component estimation procedures.
```julia
# pre-compute eigen-decomposition (~50 secs on my laptop)
@time cg10kdata_rotated = TwoVarCompVariateRotate(cg10kdata)
fieldnames(typeof(cg10kdata_rotated))
```
49.812646 seconds (1.74 M allocations: 1.080 GiB, 0.33% gc time)
(:Yrot, :Xrot, :eigval, :eigvec, :logdetV2)
## Save intermediate results
We don't want to re-compute SnpArray and empirical kinship matrices again and again for heritibility analysis.
To load workspace
```julia
#pkg"add FileIO JLD2"
using JLD2
@save "cg10k.jld2"
varinfo()
```
| name | size | summary |
|:----------------- | ------------:|:-------------------------------------------------------------------------------------- |
| Base | | Module |
| Core | | Module |
| Main | | Module |
| Plots | 2.988 MiB | Module |
| PyPlot | 782.799 KiB | Module |
| Y | 677.461 KiB | 6670×13 Array{Float64,2} |
| cg10k | 1022.983 MiB | 6670×630860 SnpArray |
| cg10k_trait | 1.605 MiB | 6670×15 DataFrame |
| cg10kdata | 679.508 MiB | VarianceComponentVariate{Float64,2,Array{Float64,2},Array{Float64,2},Array{Float64,2}} |
| cg10kdata_rotated | 340.136 MiB | TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}} |
| maf_cg10k | 4.813 MiB | 630860-element Array{Float64,1} |
| missings_by_snp | 4.813 MiB | 1×630860 Array{Int64,2} |
| mp | 28.748 MiB | 6670×630860 SparseArrays.SparseMatrixCSC{Bool,Int32} |
| people | 8 bytes | Int64 |
| snps | 8 bytes | Int64 |
| startupfile | 57 bytes | String |
| Φgrm | 339.423 MiB | 6670×6670 Array{Float64,2} |
```julia
using SnpArrays, JLD2, DataFrames, VarianceComponentModels, Plots
pyplot()
@load "cg10k.jld2"
varinfo()
```
┌ Warning: type SparseArrays.SparseMatrixCSC{Bool,Int32} does not exist in workspace; reconstructing
└ @ JLD2 /Users/juhyun-kim/.julia/packages/JLD2/KjBIK/src/data.jl:1153
| name | size | summary |
|:----------------- | ------------:|:------------------------------------------------------------------------------------------- |
| Base | | Module |
| Core | | Module |
| Main | | Module |
| Plots | 2.988 MiB | Module |
| PyPlot | 782.799 KiB | Module |
| Y | 677.461 KiB | 6670×13 Array{Float64,2} |
| cg10k | 1022.983 MiB | 6670×630860 SnpArray |
| cg10k_trait | 1.605 MiB | 6670×15 DataFrame |
| cg10kdata | 679.508 MiB | VarianceComponentVariate{Float64,2,Array{Float64,2},Array{Float64,2},Array{Float64,2}} |
| cg10kdata_rotated | 340.136 MiB | TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}} |
| maf_cg10k | 4.813 MiB | 630860-element Array{Float64,1} |
| missings_by_snp | 4.813 MiB | 1×630860 Array{Int64,2} |
| mp | 28.748 MiB | getfield(JLD2.ReconstructedTypes, Symbol("##SparseArrays.SparseMatrixCSC{Bool,Int32}#386")) |
| people | 8 bytes | Int64 |
| snps | 8 bytes | Int64 |
| startupfile | 57 bytes | String |
| Φgrm | 339.423 MiB | 6670×6670 Array{Float64,2} |
## Heritability of single traits
We use Fisher scoring algorithm to fit variance component model for each single trait.
```julia
# heritability from single trait analysis
hST = zeros(13)
# standard errors of estimated heritability
hST_se = zeros(13)
# additive genetic effects
σ2a = zeros(13)
# enviromental effects
σ2e = zeros(13)
@time for trait in 1:13
println(names(cg10k_trait)[trait + 2])
# form data set for trait j
traitj_data = TwoVarCompVariateRotate(cg10kdata_rotated.Yrot[:, trait], cg10kdata_rotated.Xrot,
cg10kdata_rotated.eigval, cg10kdata_rotated.eigvec, cg10kdata_rotated.logdetV2)
# initialize model parameters
traitj_model = VarianceComponentModel(traitj_data)
# estimate variance components
_, _, _, Σcov, _, _ = mle_fs!(traitj_model, traitj_data; solver=:Ipopt, verbose=false)
σ2a[trait] = traitj_model.Σ[1][1]
σ2e[trait] = traitj_model.Σ[2][1]
@show σ2a[trait], σ2e[trait]
h, hse = heritability(traitj_model.Σ, Σcov)
hST[trait] = h[1]
hST_se[trait] = hse[1]
end
```
Trait1
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
(σ2a[trait], σ2e[trait]) = (0.2594760477653529, 0.7375938878381831)
Trait2
(σ2a[trait], σ2e[trait]) = (0.18588150448760332, 0.8137880281704619)
Trait3
(σ2a[trait], σ2e[trait]) = (0.31960937565352526, 0.6795300238388766)
Trait4
(σ2a[trait], σ2e[trait]) = (0.26578244697498915, 0.7304994606945259)
Trait5
(σ2a[trait], σ2e[trait]) = (0.28143198005767217, 0.7169747061764987)
Trait6
(σ2a[trait], σ2e[trait]) = (0.2830055131241748, 0.7168800753377107)
Trait7
(σ2a[trait], σ2e[trait]) = (0.2156542141311619, 0.7816910320891676)
Trait8
(σ2a[trait], σ2e[trait]) = (0.19408878271207824, 0.8058201577783562)
Trait9
(σ2a[trait], σ2e[trait]) = (0.24746236011763145, 0.7512222977091793)
Trait10
(σ2a[trait], σ2e[trait]) = (0.0992417256213392, 0.9007769787053657)
Trait11
(σ2a[trait], σ2e[trait]) = (0.1645726648140337, 0.8343110221526228)
Trait12
(σ2a[trait], σ2e[trait]) = (0.0822495659186408, 0.9166483378364408)
Trait13
(σ2a[trait], σ2e[trait]) = (0.05687679106195183, 0.9424058676223598)
6.203222 seconds (12.80 M allocations: 621.516 MiB, 7.13% gc time)
```julia
# heritability and standard errors
[hST'; hST_se']
```
2×13 Array{Float64,2}:
0.260239 0.185943 0.319885 … 0.164757 0.0823403 0.0569176
0.0799434 0.08689 0.0739664 0.0887138 0.0944375 0.0953072
## Pairwise traits
Joint analysis of multiple traits is subject to intensive research recently. Following code snippet does joint analysis of all pairs of traits, a total of 78 bivariate variane component models.
```julia
# additive genetic effects (2x2 psd matrices) from bavariate trait analysis;
Σa = Array{Matrix{Float64}}(undef, 13, 13)
# environmental effects (2x2 psd matrices) from bavariate trait analysis;
Σe = Array{Matrix{Float64}}(undef, 13, 13)
@time for i in 1:13
for j in (i+1):13
println(names(cg10k_trait)[i + 2], names(cg10k_trait)[j + 2])
# form data set for (trait1, trait2)
traitij_data = TwoVarCompVariateRotate(cg10kdata_rotated.Yrot[:, [i;j]], cg10kdata_rotated.Xrot,
cg10kdata_rotated.eigval, cg10kdata_rotated.eigvec, cg10kdata_rotated.logdetV2)
# initialize model parameters
traitij_model = VarianceComponentModel(traitij_data)
# estimate variance components
mle_fs!(traitij_model, traitij_data; solver=:Ipopt, verbose=false)
Σa[i, j] = traitij_model.Σ[1]
Σe[i, j] = traitij_model.Σ[2]
@show Σa[i, j], Σe[i, j]
end
end
```
Trait1Trait2
(Σa[i, j], Σe[i, j]) = ([0.258529 0.173943; 0.173943 0.184525], [0.738519 0.58639; 0.58639 0.815122])
Trait1Trait3
(Σa[i, j], Σe[i, j]) = ([0.259934 -0.0139395; -0.0139395 0.320025], [0.737149 -0.120342; -0.120342 0.67913])
Trait1Trait4
(Σa[i, j], Σe[i, j]) = ([0.259307 0.222267; 0.222267 0.265791], [0.737759 0.600077; 0.600077 0.730492])
Trait1Trait5
(Σa[i, j], Σe[i, j]) = ([0.259264 -0.147125; -0.147125 0.282102], [0.737798 -0.254669; -0.254669 0.716327])
Trait1Trait6
(Σa[i, j], Σe[i, j]) = ([0.259171 -0.129519; -0.129519 0.283267], [0.73789 -0.231373; -0.231373 0.716628])
Trait1Trait7
(Σa[i, j], Σe[i, j]) = ([0.258784 -0.140357; -0.140357 0.21535], [0.738269 -0.197894; -0.197894 0.782002])
Trait1Trait8
(Σa[i, j], Σe[i, j]) = ([0.259467 -0.0336174; -0.0336174 0.194107], [0.737603 -0.12623; -0.12623 0.805802])
Trait1Trait9
(Σa[i, j], Σe[i, j]) = ([0.261524 -0.204467; -0.204467 0.246378], [0.735632 -0.308118; -0.308118 0.752288])
Trait1Trait10
(Σa[i, j], Σe[i, j]) = ([0.259326 -0.0987008; -0.0987008 0.0962217], [0.73774 -0.304854; -0.304854 0.90378])
Trait1Trait11
(Σa[i, j], Σe[i, j]) = ([0.259194 -0.137578; -0.137578 0.162813], [0.737868 -0.36076; -0.36076 0.836058])
Trait1Trait12
(Σa[i, j], Σe[i, j]) = ([0.26168 -0.145305; -0.145305 0.0806851], [0.735514 -0.0421192; -0.0421192 0.918294])
Trait1Trait13
(Σa[i, j], Σe[i, j]) = ([0.260776 -0.108277; -0.108277 0.0513909], [0.736359 -0.114756; -0.114756 0.947913])
Trait2Trait3
(Σa[i, j], Σe[i, j]) = ([0.185992 0.14505; 0.14505 0.321413], [0.813678 0.0987898; 0.0987898 0.677805])
Trait2Trait4
(Σa[i, j], Σe[i, j]) = ([0.18554 0.074367; 0.074367 0.26577], [0.814123 0.22144; 0.22144 0.730512])
Trait2Trait5
(Σa[i, j], Σe[i, j]) = ([0.185854 -0.0115021; -0.0115021 0.281443], [0.813815 -0.0368393; -0.0368393 0.716964])
Trait2Trait6
(Σa[i, j], Σe[i, j]) = ([0.185903 -0.00350261; -0.00350261 0.283064], [0.813767 -0.0207933; -0.0207933 0.716823])
Trait2Trait7
(Σa[i, j], Σe[i, j]) = ([0.185498 -0.0301226; -0.0301226 0.215413], [0.814164 -0.00124563; -0.00124563 0.781929])
Trait2Trait8
(Σa[i, j], Σe[i, j]) = ([0.186397 0.032688; 0.032688 0.194625], [0.813285 -0.0321045; -0.0321045 0.805301])
Trait2Trait9
(Σa[i, j], Σe[i, j]) = ([0.184426 -0.084907; -0.084907 0.246288], [0.815228 -0.0814978; -0.0814978 0.752373])
Trait2Trait10
(Σa[i, j], Σe[i, j]) = ([0.18604 -0.123261; -0.123261 0.0992567], [0.813659 -0.273285; -0.273285 0.90084])
Trait2Trait11
(Σa[i, j], Σe[i, j]) = ([0.184894 -0.116422; -0.116422 0.165892], [0.814757 -0.297755; -0.297755 0.833033])
Trait2Trait12
(Σa[i, j], Σe[i, j]) = ([0.185297 -0.0908872; -0.0908872 0.0814927], [0.814404 0.0456529; 0.0456529 0.917465])
Trait2Trait13
(Σa[i, j], Σe[i, j]) = ([0.185348 -0.07104; -0.07104 0.0546791], [0.814367 0.0740412; 0.0740412 0.944638])
Trait3Trait4
(Σa[i, j], Σe[i, j]) = ([0.319575 -0.15468; -0.15468 0.265006], [0.679563 -0.303309; -0.303309 0.731254])
Trait3Trait5
(Σa[i, j], Σe[i, j]) = ([0.320016 0.184736; 0.184736 0.282719], [0.679136 0.336276; 0.336276 0.715725])
Trait3Trait6
(Σa[i, j], Σe[i, j]) = ([0.320608 0.166929; 0.166929 0.285124], [0.678565 0.297633; 0.297633 0.714823])
Trait3Trait7
(Σa[i, j], Σe[i, j]) = ([0.319614 0.167317; 0.167317 0.215458], [0.679526 0.346897; 0.346897 0.781883])
Trait3Trait8
(Σa[i, j], Σe[i, j]) = ([0.321532 0.0573397; 0.0573397 0.197221], [0.677674 0.0445311; 0.0445311 0.802757])
Trait3Trait9
(Σa[i, j], Σe[i, j]) = ([0.319777 0.138268; 0.138268 0.246547], [0.679369 0.266317; 0.266317 0.752112])
Trait3Trait10
(Σa[i, j], Σe[i, j]) = ([0.319905 -0.0779601; -0.0779601 0.100192], [0.679245 -0.141562; -0.141562 0.899839])
Trait3Trait11
(Σa[i, j], Σe[i, j]) = ([0.318882 -0.0177352; -0.0177352 0.164446], [0.680233 -0.114434; -0.114434 0.834435])
Trait3Trait12
(Σa[i, j], Σe[i, j]) = ([0.321958 0.0844644; 0.0844644 0.0863388], [0.67727 0.034186; 0.034186 0.912603])
Trait3Trait13
(Σa[i, j], Σe[i, j]) = ([0.32405 0.109731; 0.109731 0.0613165], [0.675287 -0.00619989; -0.00619989 0.938011])
Trait4Trait5
(Σa[i, j], Σe[i, j]) = ([0.26593 -0.216116; -0.216116 0.283173], [0.730347 -0.376697; -0.376697 0.715289])
Trait4Trait6
(Σa[i, j], Σe[i, j]) = ([0.266395 -0.200793; -0.200793 0.284547], [0.729899 -0.346915; -0.346915 0.715387])
Trait4Trait7
(Σa[i, j], Σe[i, j]) = ([0.264731 -0.182912; -0.182912 0.21441], [0.731526 -0.326257; -0.326257 0.782928])
Trait4Trait8
(Σa[i, j], Σe[i, j]) = ([0.266914 -0.0976281; -0.0976281 0.196119], [0.729401 -0.150498; -0.150498 0.803836])
Trait4Trait9
(Σa[i, j], Σe[i, j]) = ([0.270267 -0.227463; -0.227463 0.247665], [0.726155 -0.415849; -0.415849 0.751008])
Trait4Trait10
(Σa[i, j], Σe[i, j]) = ([0.265756 -0.0339156; -0.0339156 0.0987618], [0.730536 -0.227666; -0.227666 0.901251])
Trait4Trait11
(Σa[i, j], Σe[i, j]) = ([0.265858 -0.0963336; -0.0963336 0.163013], [0.730427 -0.273145; -0.273145 0.835846])
Trait4Trait12
(Σa[i, j], Σe[i, j]) = ([0.268394 -0.141452; -0.141452 0.0796851], [0.72801 -0.0831954; -0.0831954 0.919263])
Trait4Trait13
(Σa[i, j], Σe[i, j]) = ([0.266334 -0.0971798; -0.0971798 0.0541478], [0.729966 -0.226082; -0.226082 0.945138])
Trait5Trait6
(Σa[i, j], Σe[i, j]) = ([0.281794 0.281033; 0.281033 0.282364], [0.716628 0.660607; 0.660607 0.717505])
Trait5Trait7
(Σa[i, j], Σe[i, j]) = ([0.281023 0.232223; 0.232223 0.211943], [0.717383 0.67449; 0.67449 0.785343])
Trait5Trait8
(Σa[i, j], Σe[i, j]) = ([0.281551 0.164011; 0.164011 0.192737], [0.716865 0.221187; 0.221187 0.807144])
Trait5Trait9
(Σa[i, j], Σe[i, j]) = ([0.284085 0.244479; 0.244479 0.240901], [0.714415 0.508795; 0.508795 0.757606])
Trait5Trait10
(Σa[i, j], Σe[i, j]) = ([0.281993 -0.0460624; -0.0460624 0.100628], [0.716433 -0.0574194; -0.0574194 0.899407])
Trait5Trait11
(Σa[i, j], Σe[i, j]) = ([0.280652 0.0199425; 0.0199425 0.163738], [0.717732 -0.0349079; -0.0349079 0.83513])
Trait5Trait12
(Σa[i, j], Σe[i, j]) = ([0.281652 0.0612882; 0.0612882 0.0820476], [0.716765 0.0533362; 0.0533362 0.916851])
Trait5Trait13
(Σa[i, j], Σe[i, j]) = ([0.282494 0.0696137; 0.0696137 0.0570685], [0.715955 0.0537392; 0.0537392 0.942222])
Trait6Trait7
(Σa[i, j], Σe[i, j]) = ([0.283018 0.220794; 0.220794 0.214128], [0.716868 0.58124; 0.58124 0.783191])
Trait6Trait8
(Σa[i, j], Σe[i, j]) = ([0.283018 0.183995; 0.183995 0.192405], [0.716869 0.436926; 0.436926 0.807474])
Trait6Trait9
(Σa[i, j], Σe[i, j]) = ([0.285057 0.234311; 0.234311 0.24283], [0.714902 0.477263; 0.477263 0.755728])
Trait6Trait10
(Σa[i, j], Σe[i, j]) = ([0.283699 -0.0433873; -0.0433873 0.101183], [0.716209 -0.0593852; -0.0593852 0.89886])
Trait6Trait11
(Σa[i, j], Σe[i, j]) = ([0.281626 0.027639; 0.027639 0.163178], [0.718219 -0.0520113; -0.0520113 0.83568])
Trait6Trait12
(Σa[i, j], Σe[i, j]) = ([0.283196 0.0569533; 0.0569533 0.0819944], [0.716699 0.0481832; 0.0481832 0.916905])
Trait6Trait13
(Σa[i, j], Σe[i, j]) = ([0.283862 0.0600111; 0.0600111 0.0571748], [0.716057 0.0544601; 0.0544601 0.942116])
Trait7Trait8
(Σa[i, j], Σe[i, j]) = ([0.214129 0.0883281; 0.0883281 0.192399], [0.78319 -0.0565873; -0.0565873 0.80748])
Trait7Trait9
(Σa[i, j], Σe[i, j]) = ([0.219059 0.217228; 0.217228 0.243722], [0.778422 0.463004; 0.463004 0.754868])
Trait7Trait10
(Σa[i, j], Σe[i, j]) = ([0.216477 -0.042081; -0.042081 0.101258], [0.78089 -0.0859952; -0.0859952 0.898786])
Trait7Trait11
(Σa[i, j], Σe[i, j]) = ([0.214308 0.0205244; 0.0205244 0.163203], [0.783006 -0.0479474; -0.0479474 0.835656])
Trait7Trait12
(Σa[i, j], Σe[i, j]) = ([0.215192 0.0752708; 0.0752708 0.0802075], [0.782157 0.0353123; 0.0353123 0.918686])
Trait7Trait13
(Σa[i, j], Σe[i, j]) = ([0.216198 0.0740251; 0.0740251 0.0547527], [0.781186 0.0399163; 0.0399163 0.944534])
Trait8Trait9
(Σa[i, j], Σe[i, j]) = ([0.194551 0.112282; 0.112282 0.246832], [0.805384 0.185461; 0.185461 0.751837])
Trait8Trait10
(Σa[i, j], Σe[i, j]) = ([0.194399 -0.0154035; -0.0154035 0.0995883], [0.805519 0.0117323; 0.0117323 0.900435])
Trait8Trait11
(Σa[i, j], Σe[i, j]) = ([0.193837 0.022072; 0.022072 0.164393], [0.806067 -0.0267843; -0.0267843 0.834489])
Trait8Trait12
(Σa[i, j], Σe[i, j]) = ([0.193914 -0.00259164; -0.00259164 0.0821237], [0.805992 0.0333257; 0.0333257 0.916773])
Trait8Trait13
(Σa[i, j], Σe[i, j]) = ([0.193913 0.00330925; 0.00330925 0.0569126], [0.805993 0.0386552; 0.0386552 0.94237])
Trait9Trait10
(Σa[i, j], Σe[i, j]) = ([0.246837 -0.00323396; -0.00323396 0.0989732], [0.751834 0.074992; 0.074992 0.901043])
Trait9Trait11
(Σa[i, j], Σe[i, j]) = ([0.247395 0.0305136; 0.0305136 0.164575], [0.751288 0.153633; 0.153633 0.834308])
Trait9Trait12
(Σa[i, j], Σe[i, j]) = ([0.249928 0.0844216; 0.0844216 0.0880992], [0.748829 0.108018; 0.108018 0.910884])
Trait9Trait13
(Σa[i, j], Σe[i, j]) = ([0.248998 0.0925603; 0.0925603 0.0580327], [0.749747 0.0992651; 0.0992651 0.94131])
Trait10Trait11
(Σa[i, j], Σe[i, j]) = ([0.0923059 0.0990858; 0.0990858 0.164638], [0.907657 0.475503; 0.475503 0.834248])
Trait10Trait12
(Σa[i, j], Σe[i, j]) = ([0.0957712 0.0574496; 0.0574496 0.0785646], [0.904228 0.0843534; 0.0843534 0.920326])
Trait10Trait13
(Σa[i, j], Σe[i, j]) = ([0.100109 -0.0266483; -0.0266483 0.0578511], [0.899941 0.164674; 0.164674 0.941451])
Trait11Trait12
(Σa[i, j], Σe[i, j]) = ([0.163544 0.0571549; 0.0571549 0.0784378], [0.835325 0.145549; 0.145549 0.920432])
Trait11Trait13
(Σa[i, j], Σe[i, j]) = ([0.164571 -0.00169939; -0.00169939 0.0575331], [0.834326 0.200725; 0.200725 0.941755])
Trait12Trait13
(Σa[i, j], Σe[i, j]) = ([0.08398 0.0685417; 0.0685417 0.0559416], [0.91494 0.573206; 0.573206 0.943343])
4.430316 seconds (4.62 M allocations: 310.482 MiB, 3.51% gc time)
## 3-trait analysis
Researchers want to jointly analyze traits 5-7. Our strategy is to try both Fisher scoring and MM algorithm with different starting point, and choose the best local optimum. We first form the data set and run Fisher scoring, which yields a final objective value -1.4700991+04.
```julia
traitidx = 5:7
# form data set
trait57_data = TwoVarCompVariateRotate(cg10kdata_rotated.Yrot[:, traitidx], cg10kdata_rotated.Xrot,
cg10kdata_rotated.eigval, cg10kdata_rotated.eigvec, cg10kdata_rotated.logdetV2)
# initialize model parameters
trait57_model = VarianceComponentModel(trait57_data)
# estimate variance components
@time mle_fs!(trait57_model, trait57_data; solver=:Ipopt, verbose=true)
trait57_model
```
This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 78
Total number of variables............................: 12
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 3.0244169e+04 0.00e+00 1.00e+02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
5 1.6834042e+04 0.00e+00 4.07e+02 -11.0 3.66e-01 - 1.00e+00 1.00e+00f 1 MaxS
10 1.4744248e+04 0.00e+00 1.12e+02 -11.0 2.36e-01 - 1.00e+00 1.00e+00f 1 MaxS
15 1.4701415e+04 0.00e+00 1.25e+01 -11.0 1.08e-01 -4.5 1.00e+00 1.00e+00f 1 MaxS
20 1.4700955e+04 0.00e+00 6.34e-01 -11.0 1.66e-04 -6.9 1.00e+00 1.00e+00f 1 MaxS
25 1.4700954e+04 0.00e+00 2.63e-02 -11.0 7.01e-06 -9.2 1.00e+00 1.00e+00f 1 MaxS
30 1.4700954e+04 0.00e+00 1.09e-03 -11.0 2.90e-07 -11.6 1.00e+00 1.00e+00f 1 MaxS
35 1.4700954e+04 0.00e+00 4.49e-05 -11.0 1.20e-08 -14.0 1.00e+00 1.00e+00f 1 MaxS
40 1.4700954e+04 0.00e+00 1.86e-06 -11.0 4.96e-10 -16.4 1.00e+00 1.00e+00f 1 MaxSA
45 1.4700954e+04 0.00e+00 7.67e-08 -11.0 2.05e-11 -18.8 1.00e+00 1.00e+00h 1 MaxSA
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
Number of Iterations....: 49
(scaled) (unscaled)
Objective...............: 4.4662368766169095e+02 1.4700954216526397e+04
Dual infeasibility......: 5.8982229663448267e-09 1.9414444012378635e-07
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 5.8982229663448267e-09 1.9414444012378635e-07
Number of objective function evaluations = 50
Number of objective gradient evaluations = 50
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 49
Total CPU secs in IPOPT (w/o function evaluations) = 0.019
Total CPU secs in NLP function evaluations = 0.054
EXIT: Optimal Solution Found.
0.084479 seconds (46.62 k allocations: 5.057 MiB)
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}(Array{Float64}(0,3), ([0.28137 0.280153 0.232512; 0.280153 0.284916 0.220363; 0.232512 0.220363 0.212921], [0.717042 0.661484 0.674207; 0.661484 0.714964 0.581648; 0.674207 0.581648 0.784373]), Array{Float64}(0,0), Char[], Float64[], -Inf, Inf)
We then run the MM algorithm, starting from the Fisher scoring answer. MM finds an improved solution with objective value 8.955397e+03.
```julia
# trait59_model contains the fitted model by Fisher scoring now
@time mle_mm!(trait57_model, trait57_data; verbose=true)
trait57_model
```
MM Algorithm
Iter Objective
-------- -------------
0 -1.470095e+04
1 -1.470095e+04
0.505115 seconds (1.01 M allocations: 50.370 MiB, 5.09% gc time)
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}(Array{Float64}(0,3), ([0.28137 0.280153 0.232512; 0.280153 0.284916 0.220363; 0.232512 0.220363 0.212921], [0.717042 0.661484 0.674207; 0.661484 0.714964 0.581648; 0.674207 0.581648 0.784373]), Array{Float64}(0,0), Char[], Float64[], -Inf, Inf)
Do another run of MM algorithm from default starting point. It leads to a slightly better local optimum -1.470104e+04, slighly worse than the Fisher scoring result. Follow up anlaysis should use the Fisher scoring result.
```julia
# default starting point
trait57_model = VarianceComponentModel(trait57_data)
@time _, _, _, Σcov, = mle_mm!(trait57_model, trait57_data; verbose=true)
trait57_model
```
MM Algorithm
Iter Objective
-------- -------------
0 -3.024417e+04
1 -2.040172e+04
2 -1.656053e+04
3 -1.528554e+04
4 -1.491023e+04
5 -1.480677e+04
6 -1.477849e+04
7 -1.477005e+04
8 -1.476675e+04
9 -1.476478e+04
10 -1.476318e+04
20 -1.475020e+04
30 -1.474023e+04
40 -1.473255e+04
50 -1.472662e+04
60 -1.472201e+04
70 -1.471839e+04
80 -1.471554e+04
90 -1.471326e+04
100 -1.471142e+04
110 -1.470993e+04
120 -1.470871e+04
130 -1.470770e+04
140 -1.470686e+04
150 -1.470616e+04
160 -1.470557e+04
170 -1.470506e+04
180 -1.470463e+04
190 -1.470426e+04
200 -1.470394e+04
210 -1.470366e+04
220 -1.470342e+04
230 -1.470321e+04
240 -1.470302e+04
250 -1.470285e+04
260 -1.470270e+04
270 -1.470257e+04
280 -1.470245e+04
290 -1.470234e+04
300 -1.470225e+04
310 -1.470216e+04
320 -1.470208e+04
330 -1.470201e+04
340 -1.470195e+04
350 -1.470189e+04
360 -1.470183e+04
370 -1.470178e+04
380 -1.470173e+04
390 -1.470169e+04
400 -1.470165e+04
410 -1.470162e+04
420 -1.470158e+04
430 -1.470155e+04
440 -1.470152e+04
450 -1.470149e+04
460 -1.470147e+04
470 -1.470144e+04
480 -1.470142e+04
490 -1.470140e+04
500 -1.470138e+04
510 -1.470136e+04
520 -1.470134e+04
530 -1.470132e+04
540 -1.470131e+04
550 -1.470129e+04
560 -1.470128e+04
570 -1.470127e+04
580 -1.470125e+04
590 -1.470124e+04
600 -1.470123e+04
610 -1.470122e+04
620 -1.470121e+04
630 -1.470120e+04
640 -1.470119e+04
650 -1.470118e+04
660 -1.470117e+04
670 -1.470116e+04
680 -1.470116e+04
690 -1.470115e+04
700 -1.470114e+04
710 -1.470113e+04
720 -1.470113e+04
730 -1.470112e+04
740 -1.470112e+04
750 -1.470111e+04
760 -1.470110e+04
770 -1.470110e+04
780 -1.470109e+04
790 -1.470109e+04
800 -1.470108e+04
810 -1.470108e+04
820 -1.470108e+04
830 -1.470107e+04
840 -1.470107e+04
850 -1.470106e+04
860 -1.470106e+04
870 -1.470106e+04
880 -1.470105e+04
890 -1.470105e+04
900 -1.470105e+04
910 -1.470104e+04
920 -1.470104e+04
930 -1.470104e+04
940 -1.470103e+04
950 -1.470103e+04
960 -1.470103e+04
970 -1.470103e+04
980 -1.470102e+04
990 -1.470102e+04
1000 -1.470102e+04
1010 -1.470102e+04
1020 -1.470102e+04
1030 -1.470101e+04
1040 -1.470101e+04
1050 -1.470101e+04
1060 -1.470101e+04
1070 -1.470101e+04
1080 -1.470101e+04
1090 -1.470100e+04
1100 -1.470100e+04
1110 -1.470100e+04
0.744170 seconds (134.31 k allocations: 13.430 MiB, 1.57% gc time)
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}(Array{Float64}(0,3), ([0.281394 0.280169 0.232564; 0.280169 0.285001 0.220511; 0.232564 0.220511 0.213147], [0.717018 0.661467 0.674155; 0.661467 0.714877 0.581502; 0.674155 0.581502 0.784149]), Array{Float64}(0,0), Char[], Float64[], -Inf, Inf)
Heritability from 3-variate estimate and their standard errors.
```julia
h, hse = heritability(trait57_model.Σ, Σcov)
[h'; hse']
```
2×3 Array{Float64,2}:
0.281842 0.285036 0.213725
0.0777056 0.0772501 0.0840114
## 13-trait joint analysis
In some situations, such as studying the genetic covariance, we need to jointly analyze 13 traits. We first try the **Fisher scoring algorithm**.
```julia
# initialize model parameters
traitall_model = VarianceComponentModel(cg10kdata_rotated)
# estimate variance components using Fisher scoring algorithm
@time mle_fs!(traitall_model, cg10kdata_rotated; solver=:Ipopt, verbose=true)
```
This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 16653
Total number of variables............................: 182
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.3111983e+05 0.00e+00 1.00e+02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
5 8.2228529e+04 0.00e+00 6.03e+02 -11.0 2.42e+00 - 1.00e+00 1.00e+00f 1 MaxS
10 1.2570490e+05 0.00e+00 9.38e+02 -11.0 6.72e+01 -5.4 1.00e+00 1.00e+00h 1 MaxS
PosDefException: matrix is not positive definite; Cholesky factorization failed.
Stacktrace:
[1] chkposdef at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/lapack.jl:50 [inlined]
[2] sygvd!(::Int64, ::Char, ::Char, ::Array{Float64,2}, ::Array{Float64,2}) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/lapack.jl:5075
[3] eigen! at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/symmetric.jl:646 [inlined]
[4] eigen(::Symmetric{Float64,Array{Float64,2}}, ::Symmetric{Float64,Array{Float64,2}}) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/eigen.jl:383
[5] TwoVarCompModelRotate(::VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}) at /Users/juhyun-kim/.julia/packages/VarianceComponentModels/Mh6LK/src/VarianceComponentModels.jl:119
[6] logpdf at /Users/juhyun-kim/.julia/packages/VarianceComponentModels/Mh6LK/src/two_variance_component.jl:62 [inlined]
[7] eval_f(::VarianceComponentModels.TwoVarCompOptProb{VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}},TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}},Array{Float64,2},Array{Float64,1},VarianceComponentAuxData{Array{Float64,2},Array{Float64,1}}}, ::Array{Float64,1}) at /Users/juhyun-kim/.julia/packages/VarianceComponentModels/Mh6LK/src/two_variance_component.jl:731
[8] (::getfield(Ipopt, Symbol("#eval_f_cb#6")){VarianceComponentModels.TwoVarCompOptProb{VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}},TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}},Array{Float64,2},Array{Float64,1},VarianceComponentAuxData{Array{Float64,2},Array{Float64,1}}}})(::Array{Float64,1}) at /Users/juhyun-kim/.julia/packages/Ipopt/f6QJl/src/MPB_wrapper.jl:64
[9] eval_f_wrapper(::Int32, ::Ptr{Float64}, ::Int32, ::Ptr{Float64}, ::Ptr{Nothing}) at /Users/juhyun-kim/.julia/packages/Ipopt/f6QJl/src/Ipopt.jl:128
[10] solveProblem(::Ipopt.IpoptProblem) at /Users/juhyun-kim/.julia/packages/Ipopt/f6QJl/src/Ipopt.jl:346
[11] optimize!(::Ipopt.IpoptMathProgModel) at /Users/juhyun-kim/.julia/packages/Ipopt/f6QJl/src/MPB_wrapper.jl:141
[12] #mle_fs!#27(::Int64, ::Symbol, ::Symbol, ::Bool, ::Function, ::VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}, ::TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}}) at /Users/juhyun-kim/.julia/packages/VarianceComponentModels/Mh6LK/src/two_variance_component.jl:949
[13] (::getfield(VarianceComponentModels, Symbol("#kw##mle_fs!")))(::NamedTuple{(:solver, :verbose),Tuple{Symbol,Bool}}, ::typeof(mle_fs!), ::VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}, ::TwoVarCompVariateRotate{Float64,Array{Float64,2},Array{Float64,2}}) at ./none:0
[14] top-level scope at util.jl:156
[15] top-level scope at In[54]:3
From the output we can see the Fisher scoring algorithm ran into some numerical issues. Let's try the **MM algorithm**.
```julia
# reset model parameters
traitall_model = VarianceComponentModel(cg10kdata_rotated)
# estimate variance components using Fisher scoring algorithm
@time mle_mm!(traitall_model, cg10kdata_rotated; verbose=true)
```
MM Algorithm
Iter Objective
-------- -------------
0 -1.311198e+05
1 -8.001595e+04
2 -5.806836e+04
3 -4.926167e+04
4 -4.611163e+04
5 -4.511722e+04
6 -4.482795e+04
7 -4.474405e+04
8 -4.471603e+04
9 -4.470277e+04
10 -4.469345e+04
20 -4.462308e+04
30 -4.456930e+04
40 -4.452802e+04
50 -4.449620e+04
60 -4.447148e+04
70 -4.445209e+04
80 -4.443672e+04
90 -4.442442e+04
100 -4.441448e+04
110 -4.440635e+04
120 -4.439966e+04
130 -4.439409e+04
140 -4.438943e+04
150 -4.438549e+04
160 -4.438215e+04
170 -4.437928e+04
180 -4.437682e+04
190 -4.437469e+04
200 -4.437283e+04
210 -4.437121e+04
220 -4.436978e+04
230 -4.436853e+04
240 -4.436742e+04
250 -4.436643e+04
260 -4.436555e+04
270 -4.436476e+04
280 -4.436406e+04
290 -4.436342e+04
300 -4.436285e+04
310 -4.436234e+04
320 -4.436187e+04
330 -4.436144e+04
340 -4.436106e+04
350 -4.436071e+04
360 -4.436039e+04
370 -4.436009e+04
380 -4.435982e+04
390 -4.435957e+04
400 -4.435935e+04
410 -4.435914e+04
420 -4.435895e+04
430 -4.435877e+04
440 -4.435860e+04
450 -4.435845e+04
460 -4.435831e+04
470 -4.435818e+04
480 -4.435806e+04
490 -4.435794e+04
500 -4.435784e+04
510 -4.435774e+04
520 -4.435765e+04
530 -4.435757e+04
540 -4.435749e+04
550 -4.435741e+04
560 -4.435734e+04
570 -4.435728e+04
580 -4.435722e+04
590 -4.435716e+04
600 -4.435711e+04
610 -4.435706e+04
620 -4.435701e+04
630 -4.435696e+04
640 -4.435692e+04
650 -4.435688e+04
660 -4.435685e+04
670 -4.435681e+04
680 -4.435678e+04
690 -4.435675e+04
700 -4.435672e+04
710 -4.435669e+04
720 -4.435666e+04
730 -4.435664e+04
740 -4.435662e+04
750 -4.435659e+04
760 -4.435657e+04
770 -4.435655e+04
780 -4.435653e+04
790 -4.435652e+04
800 -4.435650e+04
810 -4.435648e+04
820 -4.435647e+04
830 -4.435645e+04
840 -4.435644e+04
850 -4.435643e+04
860 -4.435641e+04
870 -4.435640e+04
880 -4.435639e+04
890 -4.435638e+04
900 -4.435637e+04
910 -4.435636e+04
920 -4.435635e+04
930 -4.435634e+04
940 -4.435633e+04
950 -4.435633e+04
960 -4.435632e+04
970 -4.435631e+04
980 -4.435630e+04
990 -4.435630e+04
1000 -4.435629e+04
1010 -4.435628e+04
1020 -4.435628e+04
1030 -4.435627e+04
1040 -4.435627e+04
1050 -4.435626e+04
1060 -4.435626e+04
1070 -4.435625e+04
1080 -4.435625e+04
3.314963 seconds (131.35 k allocations: 65.449 MiB, 0.65% gc time)
(-44356.24416259489, VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}(Array{Float64}(0,13), ([0.272112 0.190023 … -0.128464 -0.0976418; 0.190023 0.216814 … -0.0687833 -0.04341; … ; -0.128464 -0.0687833 … 0.116994 0.0900933; -0.0976418 -0.04341 … 0.0900933 0.105876], [0.725183 0.570497 … -0.0589748 -0.125486; 0.570497 0.783023 … 0.0235685 0.0464638; … ; -0.0589748 0.0235685 … 0.882056 0.551829; -0.125486 0.0464638 … 0.551829 0.893642]), Array{Float64}(0,0), Char[], Float64[], -Inf, Inf), ([0.0111603 0.013107 … 0.0128915 0.0127587; 0.0131027 0.0151631 … 0.017153 0.0171359; … ; 0.0128908 0.017153 … 0.0174176 0.018212; 0.0127586 0.0171361 … 0.0182122 0.0188002], [0.0112235 0.0133041 … 0.0130038 0.0127778; 0.0133005 0.0158053 … 0.0178518 0.0177823; … ; 0.0130043 0.0178518 … 0.0179557 0.0187638; 0.0127775 0.0177823 … 0.0187637 0.0193477]), [0.000124552 7.23469e-5 … -3.6584e-7 -1.40474e-5; 7.23585e-5 0.00017168 … -2.04611e-5 -3.18804e-6; … ; -3.70686e-7 -2.04634e-5 … 0.000352082 -1.46096e-5; -1.4039e-5 -3.1795e-6 … -1.46073e-5 0.000374334], Array{Float64}(0,13), Array{Float64}(0,0))
It converges after ~1000 iterations.
## Save analysis results
```julia
#using JLD2, FileIO
#save("copd.jld2")
#varinfo()
```
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.1.3 | 82d058ac0c22844b80c5bc098f17c7f7d5268f11 | docs | 22621 |
# MLE and REML
Machine information
```julia
versioninfo()
```
Julia Version 1.1.0
Commit 80516ca202 (2019-01-21 21:24 UTC)
Platform Info:
OS: macOS (x86_64-apple-darwin14.5.0)
CPU: Intel(R) Core(TM) i5-6267U CPU @ 2.90GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
## Demo data
For demonstration, we generate a random data set.
```julia
# generate data from a d-variate response variane component model
using Random, LinearAlgebra
Random.seed!(123)
n = 1000 # no. observations
d = 2 # dimension of responses
m = 2 # no. variance components
p = 2 # no. covariates
# n-by-p design matrix
X = randn(n, p)
# p-by-d mean component regression coefficient
B = ones(p, d)
# a tuple of m covariance matrices
V = ntuple(x -> zeros(n, n), m)
for i = 1:m-1
Vi = randn(n, 50)
copyto!(V[i], Vi * Vi')
end
copyto!(V[m], Matrix(I, n, n)) # last covarianec matrix is idendity
# a tuple of m d-by-d variance component parameters
Σ = ntuple(x -> zeros(d, d), m)
for i in 1:m
Σi = randn(d, d)
copyto!(Σ[i], Σi' * Σi)
end
# form overall nd-by-nd covariance matrix Ω
Ω = zeros(n * d, n * d)
for i = 1:m
Ω += kron(Σ[i], V[i])
end
Ωchol = cholesky(Ω)
# n-by-d responses
Y = X * B + reshape(Ωchol.L * randn(n*d), n, d);
```
## Maximum likelihood estimation (MLE)
To find the MLE of parameters $(B,\Sigma_1,\ldots,\Sigma_m)$, we take 3 steps:
**Step 1 (Construct data)**. Construct an instance of `VarianceComponentVariate`, which consists fields
* `Y`: $n$-by-$d$ responses
* `X`: $n$-by-$p$ covariate matrix
* `V=(V[1],...,V[m])`: a tuple of $n$-by-$n$ covariance matrices. The last covariance matrix must be positive definite and usually is the identity matrix.
```julia
using VarianceComponentModels
vcdata = VarianceComponentVariate(Y, X, V)
fieldnames(typeof(vcdata))
```
(:Y, :X, :V)
In the absence of covariates $X$, we can simply initialize by `vcdata = VarianceComponentVariate(Y, V)`.
**Step 2 (Construct a model)**. Construct an instance of `VarianceComponentModel`, which consists of fields
* `B`: $n$-by-$p$ mean regression coefficients
* `Σ=(Σ[1],...,Σ[m])`: variane component parameters respectively.
When constructed from a `VarianceComponentVariate` instance, the mean parameters $B$ are initialized to be zero and the tuple of variance component parameters $\Sigma$ to be `(eye(d),...,eye(d))`.
```julia
vcmodel = VarianceComponentModel(vcdata)
fieldnames(typeof(vcmodel))
```
(:B, :Σ, :A, :sense, :b, :lb, :ub)
```julia
vcmodel
```
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}([0.0 0.0; 0.0 0.0], ([1.0 0.0; 0.0 1.0], [1.0 0.0; 0.0 1.0]), Array{Float64}(0,4), Char[], Float64[], -Inf, Inf)
The remaining fields `A`, `sense`, `b`, `lb`, `ub` specify (optional) constraints on the mean parameters `B`:
$A * \text{vec}(B) \,\, =(\text{or } \ge \text{or } \le) \,\, b$
$lb \le \text{vec}(B) \le ub$
`A` is an constraint matrix with $pd$ columns, `sense` is a vector of charaters taking values `'<'`, `'='` or `'>'`, and `lb` and `ub` are the lower and upper bounds for `vec(B)`. By default, `A`, `sense`, `b` are empty, `lb` is `-Inf`, and `ub` is `Inf`. If any constraits are non-trivial, final estimates of `B` are enforced to satisfy them.
When a better initial guess is available, we can initialize by calling `vcmodel=VarianceComponentModel(B0, Σ0)` directly.
**Step 3 (Fit model)**. Call optmization routine `fit_mle!`. The keywork `algo` dictates the optimization algorithm: `:MM` (minorization-maximization algorithm) or `:FS` (Fisher scoring algorithm).
```julia
vcmodel_mle = deepcopy(vcmodel)
@time logl, vcmodel_mle, Σse, Σcov, Bse, Bcov = fit_mle!(vcmodel_mle, vcdata; algo = :MM);
```
MM Algorithm
Iter Objective
-------- -------------
0 -6.253551e+03
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
1 -3.881454e+03
2 -3.853179e+03
3 -3.846525e+03
4 -3.844906e+03
5 -3.844506e+03
6 -3.844406e+03
7 -3.844381e+03
8 -3.844375e+03
9 -3.844374e+03
10 -3.844373e+03
5.031460 seconds (11.29 M allocations: 568.015 MiB, 4.78% gc time)
The output of `fit_mle!` contains
* final log-likelihood
```julia
logl
```
-3844.3731814180887
* fitted model
```julia
fieldnames(typeof(vcmodel_mle))
```
(:B, :Σ, :A, :sense, :b, :lb, :ub)
```julia
vcmodel_mle
```
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}([1.092 1.04727; 0.955346 1.01632], ([0.380637 -0.305465; -0.305465 4.51938], [1.84009 0.265569; 0.265569 2.17275]), Array{Float64}(0,4), Char[], Float64[], -Inf, Inf)
* standard errors of the estimated varianec component parameters
```julia
Σse
```
([0.0765136 0.263047; 0.263047 0.904332], [0.0844292 0.0917441; 0.0917441 0.0996927])
* covariance matrix of the variance component parameters estimates
```julia
Σcov
```
8×8 Array{Float64,2}:
0.00585433 -0.00467019 -0.00467019 … -1.07903e-6 -1.557e-7
-0.00467019 0.0691937 0.00372555 -1.557e-7 -1.27444e-6
-0.00467019 0.00372555 0.0691937 -8.83212e-6 -1.27444e-6
0.00372555 -0.055198 -0.055198 -1.27444e-6 -1.04316e-5
-7.4779e-6 -1.07903e-6 -1.07903e-6 0.00102878 0.000148477
-1.07903e-6 -8.83212e-6 -1.557e-7 … 0.000148477 0.00121477
-1.07903e-6 -1.557e-7 -8.83212e-6 0.00841698 0.00121477
-1.557e-7 -1.27444e-6 -1.27444e-6 0.00121477 0.00993864
* standard errors of the estimated mean parameters
```julia
Bse
```
2×2 Array{Float64,2}:
0.0425562 0.0483834
0.0430596 0.0492809
* covariance matrix of the mean parameter estimates
```julia
Bcov
```
4×4 Array{Float64,2}:
0.00181103 -1.96485e-5 0.000243441 -4.38252e-6
-1.96485e-5 0.00185413 -4.38252e-6 0.000246407
0.000243441 -4.38252e-6 0.00234096 -5.73331e-6
-4.38252e-6 0.000246407 -5.73331e-6 0.00242861
## Restricted maximum likelihood estimation (REML)
[REML (restricted maximum likelihood estimation)](https://en.wikipedia.org/wiki/Restricted_maximum_likelihood) is a popular alternative to the MLE. To find the REML of a variane component model, we replace the above step 3 by
**Step 3**. Call optmization routine `fit_reml!`.
```julia
vcmodel_reml = deepcopy(vcmodel)
@time logl, vcmodel_reml, Σse, Σcov, Bse, Bcov = fit_reml!(vcmodel_reml, vcdata; algo = :MM);
```
MM Algorithm
Iter Objective
-------- -------------
0 -4.215053e+03
1 -3.925799e+03
2 -3.865114e+03
3 -3.851105e+03
4 -3.847732e+03
5 -3.846903e+03
6 -3.846698e+03
7 -3.846647e+03
8 -3.846634e+03
9 -3.846631e+03
10 -3.846630e+03
0.726373 seconds (388.90 k allocations: 82.673 MiB, 13.22% gc time)
The output of `fit_reml!` contains
* the final log-likelihood at REML estimate
```julia
logl
```
-3844.3777179025055
* REML estimates
```julia
fieldnames(typeof(vcmodel_reml))
```
(:B, :Σ, :A, :sense, :b, :lb, :ub)
```julia
vcmodel_reml
```
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}([1.092 1.04727; 0.955345 1.01632], ([0.380594 -0.305485; -0.305485 4.51994], [1.84285 0.261963; 0.261963 2.17842]), Array{Float64}(0,4), Char[], Float64[], -Inf, Inf)
* standard errors of the estimated variance component parameters
```julia
Σse
```
([0.0765055 0.26305; 0.26305 0.904446], [0.0845559 0.0919325; 0.0919325 0.0999526])
* covariance matrix of the variance component parameters estimates
```julia
Σcov
```
8×8 Array{Float64,2}:
0.0058531 -0.00467005 -0.00467005 … -1.06597e-6 -1.51499e-7
-0.00467005 0.0691951 0.00372613 -1.51499e-7 -1.26041e-6
-0.00467005 0.00372613 0.0691951 -8.86843e-6 -1.26041e-6
0.00372613 -0.0552092 -0.0552092 -1.26041e-6 -1.0486e-5
-7.50035e-6 -1.06597e-6 -1.06597e-6 0.00101633 0.000144472
-1.06597e-6 -8.86843e-6 -1.51499e-7 … 0.000144472 0.0012014
-1.06597e-6 -1.51499e-7 -8.86843e-6 0.00845158 0.0012014
-1.51499e-7 -1.26041e-6 -1.26041e-6 0.0012014 0.00999052
* standard errors of the estimated mean parameters
```julia
Bse
```
2×2 Array{Float64,2}:
0.0425881 0.0484485
0.0430919 0.0493475
* covariance matrix of the mean parameter estimates
```julia
Bcov
```
4×4 Array{Float64,2}:
0.00181375 -1.96783e-5 0.000239868 -4.34611e-6
-1.96783e-5 0.00185691 -4.34611e-6 0.000242745
0.000239868 -4.34611e-6 0.00234726 -5.73082e-6
-4.34611e-6 0.000242745 -5.73082e-6 0.00243518
## Optimization algorithms
Finding the MLE or REML of variance component models is a non-trivial nonlinear optimization problem. The main complications are the non-convexity of objective function and the positive semi-definiteness constraint of variane component parameters $\Sigma_1,\ldots,\Sigma_m$. In specific applications, users should try different algorithms with different starting points in order to find a better solution. Here are some tips for efficient computation.
In general the optimization algorithm needs to invert the $nd$ by $nd$ overall covariance matrix $\Omega = \Sigma_1 \otimes V_1 + \cdots + \Sigma_m \otimes V_m$ in each iteration. Inverting a matrix is an expensive operation with $O(n^3 d^3)$ floating operations. When there are only **two** varianec components ($m=2$), this tedious task can be avoided by taking one (generalized) eigendecomposion of $(V_1, V_2)$ and rotating data $(Y, X)$ by the eigen-vectors.
```julia
vcdatarot = TwoVarCompVariateRotate(vcdata)
fieldnames(typeof(vcdatarot))
```
(:Yrot, :Xrot, :eigval, :eigvec, :logdetV2)
Two optimization algorithms are implemented: [Fisher scoring](https://books.google.com/books?id=QYqeYTftPNwC&lpg=PP1&pg=PA142#v=onepage&q&f=false) (`mle_fs!`) and the [minorization-maximization (MM) algorithm](http://arxiv.org/abs/1509.07426) (`mle_mm!`). Both take the rotated data as input. These two functions give finer control of the optimization algorithms. Generally speaking, MM algorithm is more stable while Fisher scoring (if it converges) yields more accurate answer.
```julia
vcmodel_mm = deepcopy(vcmodel)
@time mle_mm!(vcmodel_mm, vcdatarot; maxiter=10000, funtol=1e-8, verbose = true);
```
MM Algorithm
Iter Objective
-------- -------------
0 -6.253551e+03
1 -3.881454e+03
2 -3.853179e+03
3 -3.846525e+03
4 -3.844906e+03
5 -3.844506e+03
6 -3.844406e+03
7 -3.844381e+03
8 -3.844375e+03
9 -3.844374e+03
10 -3.844373e+03
0.055578 seconds (21.91 k allocations: 1.394 MiB)
```julia
# MM estimates
vcmodel_mm.B
```
2×2 Array{Float64,2}:
1.092 1.04727
0.955346 1.01632
```julia
# MM estimates
vcmodel_mm.Σ
```
([0.380637 -0.305465; -0.305465 4.51938], [1.84009 0.265569; 0.265569 2.17275])
Fisher scoring (`mle_fs!`) uses either [Ipopt.jl](https://github.com/JuliaOpt/Ipopt.jl) (keyword `solver=:Ipopt`) or [KNITRO.jl](https://github.com/JuliaOpt/KNITRO.jl) (keyword `solver=:Knitro`) as the backend solver. Ipopt is open source and installation of [Ipopt.jl](https://github.com/JuliaOpt/Ipopt.jl) package alone is sufficient.
```julia
# Fisher scoring using Ipopt
vcmodel_ipopt = deepcopy(vcmodel)
@time mle_fs!(vcmodel_ipopt, vcdatarot; solver=:Ipopt, maxiter=1000, verbose=true);
```
This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 21
Total number of variables............................: 6
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 4.2109423e+03 0.00e+00 1.00e+02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
5 3.8445586e+03 0.00e+00 7.87e-01 -11.0 4.94e-02 - 1.00e+00 1.00e+00f 1 MaxS
10 3.8443870e+03 0.00e+00 2.25e-01 -11.0 1.38e-02 - 1.00e+00 1.00e+00f 1 MaxS
15 3.8443742e+03 0.00e+00 6.23e-02 -11.0 3.78e-03 - 1.00e+00 1.00e+00f 1 MaxS
20 3.8443733e+03 0.00e+00 1.70e-02 -11.0 1.03e-03 - 1.00e+00 1.00e+00f 1 MaxS
25 3.8443732e+03 0.00e+00 4.61e-03 -11.0 2.79e-04 - 1.00e+00 1.00e+00f 1 MaxS
30 3.8443732e+03 0.00e+00 1.25e-03 -11.0 7.56e-05 - 1.00e+00 1.00e+00f 1 MaxS
35 3.8443732e+03 0.00e+00 3.39e-04 -11.0 2.05e-05 - 1.00e+00 1.00e+00f 1 MaxS
40 3.8443732e+03 0.00e+00 9.19e-05 -11.0 5.55e-06 - 1.00e+00 1.00e+00f 1 MaxS
45 3.8443732e+03 0.00e+00 2.49e-05 -11.0 1.51e-06 - 1.00e+00 1.00e+00f 1 MaxS
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
50 3.8443732e+03 0.00e+00 6.76e-06 -11.0 4.08e-07 - 1.00e+00 1.00e+00f 1 MaxSA
55 3.8443732e+03 0.00e+00 1.83e-06 -11.0 1.11e-07 - 1.00e+00 1.00e+00f 1 MaxSA
60 3.8443732e+03 0.00e+00 4.97e-07 -11.0 3.00e-08 - 1.00e+00 1.00e+00h 1 MaxSA
Number of Iterations....: 63
(scaled) (unscaled)
Objective...............: 3.4496886481728791e+02 3.8443731733053728e+03
Dual infeasibility......: 2.2693631660531264e-07 2.5290047206674095e-06
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 2.2693631660531264e-07 2.5290047206674095e-06
Number of objective function evaluations = 64
Number of objective gradient evaluations = 64
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 63
Total CPU secs in IPOPT (w/o function evaluations) = 1.739
Total CPU secs in NLP function evaluations = 0.293
EXIT: Solved To Acceptable Level.
2.745554 seconds (4.30 M allocations: 210.935 MiB, 2.63% gc time)
```julia
# Ipopt estimates
vcmodel_ipopt.B
```
2×2 Array{Float64,2}:
1.092 1.04727
0.955346 1.01632
```julia
# Ipopt estimates
vcmodel_ipopt.Σ
```
([0.380552 -0.305594; -0.305594 4.52106], [1.84008 0.265385; 0.265385 2.17287])
Knitro is a commercial software and users need to follow instructions at [KNITRO.jl](https://github.com/JuliaOpt/KNITRO.jl) for proper functioning. Following code invokes Knitro as the backend optimization solver.
```julia
using KNITRO
# Fisher scoring using Knitro
vcmodel_knitro = deepcopy(vcmodel)
@time mle_fs!(vcmodel_knitro, vcdatarot; solver=:Knitro, maxiter=1000, verbose=true);
# Knitro estimates
vcmodel_knitro.B
# Knitro estimates
vcmodel_knitro.Σ
```
## Starting point
Here are a few strategies for successful optimization.
* For $d>1$ (multivariate response), initialize $B, \Sigma$ from univariate estimates.
* Use REML estimate as starting point for MLE.
* When there are only $m=2$ variance components, pre-compute `TwoVarCompVariateRotate` and use it for optimization.
## Constrained estimation of `B`
Many applications invoke constraints on the mean parameters `B`. For demonstration, we enforce `B[1,1]=B[1,2]` and all entries of `B` are within [0, 2].
```julia
# set up constraints on B
vcmodel_constr = deepcopy(vcmodel)
vcmodel_constr.A = [1.0 0.0 -1.0 0.0]
vcmodel_constr.sense = '='
vcmodel_constr.b = 0.0
vcmodel_constr.lb = 0.0
vcmodel_constr.ub = 2.0
vcmodel_constr
```
VarianceComponentModel{Float64,2,Array{Float64,2},Array{Float64,2}}([0.0 0.0; 0.0 0.0], ([1.0 0.0; 0.0 1.0], [1.0 0.0; 0.0 1.0]), [1.0 0.0 -1.0 0.0], '=', 0.0, 0.0, 2.0)
We first try the MM algorithm.
```julia
# MM algorithm for constrained estimation of B
@time mle_mm!(vcmodel_constr, vcdatarot; maxiter=10000, funtol=1e-8, verbose = true);
```
MM Algorithm
Iter Objective
-------- -------------
0 -6.253551e+03
1 -3.881820e+03
2 -3.853477e+03
3 -3.846807e+03
4 -3.845184e+03
5 -3.844783e+03
6 -3.844683e+03
7 -3.844658e+03
8 -3.844652e+03
9 -3.844650e+03
10 -3.844650e+03
0.185885 seconds (179.51 k allocations: 9.295 MiB)
```julia
fieldnames(typeof(vcmodel_constr))
```
(:B, :Σ, :A, :sense, :b, :lb, :ub)
```julia
vcmodel_constr.B
```
2×2 Array{Float64,2}:
1.07177 1.07177
0.955683 1.01591
```julia
vcmodel_constr.Σ
```
([0.380624 -0.305498; -0.305498 4.51948], [1.84051 0.265065; 0.265065 2.17336])
Now let's try Fisher scoring.
```julia
# Fisher scoring using Ipopt for constrained estimation of B
vcmodel_constr = deepcopy(vcmodel)
vcmodel_constr.A = [1.0 0.0 -1.0 0.0]
vcmodel_constr.sense = '='
vcmodel_constr.b = 0.0
vcmodel_constr.lb = 0.0
vcmodel_constr.ub = 2.0
vcmodel_constr
@time mle_fs!(vcmodel_constr, vcdatarot; solver=:Ipopt, maxiter=1000, verbose=true);
```
This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 21
Total number of variables............................: 6
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 4.2114270e+03 0.00e+00 1.00e+02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
5 3.8448353e+03 0.00e+00 7.87e-01 -11.0 4.94e-02 - 1.00e+00 1.00e+00f 1 MaxS
10 3.8446636e+03 0.00e+00 2.25e-01 -11.0 1.38e-02 - 1.00e+00 1.00e+00f 1 MaxS
15 3.8446509e+03 0.00e+00 6.23e-02 -11.0 3.78e-03 - 1.00e+00 1.00e+00f 1 MaxS
20 3.8446499e+03 0.00e+00 1.70e-02 -11.0 1.03e-03 - 1.00e+00 1.00e+00f 1 MaxS
25 3.8446498e+03 0.00e+00 4.61e-03 -11.0 2.79e-04 - 1.00e+00 1.00e+00f 1 MaxS
30 3.8446498e+03 0.00e+00 1.25e-03 -11.0 7.56e-05 - 1.00e+00 1.00e+00f 1 MaxS
35 3.8446498e+03 0.00e+00 3.39e-04 -11.0 2.05e-05 - 1.00e+00 1.00e+00f 1 MaxS
40 3.8446498e+03 0.00e+00 9.19e-05 -11.0 5.56e-06 - 1.00e+00 1.00e+00f 1 MaxS
45 3.8446498e+03 0.00e+00 2.49e-05 -11.0 1.51e-06 - 1.00e+00 1.00e+00f 1 MaxS
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
50 3.8446498e+03 0.00e+00 6.76e-06 -11.0 4.08e-07 - 1.00e+00 1.00e+00f 1 MaxSA
55 3.8446498e+03 0.00e+00 1.83e-06 -11.0 1.11e-07 - 1.00e+00 1.00e+00f 1 MaxSA
60 3.8446498e+03 0.00e+00 4.97e-07 -11.0 3.00e-08 - 1.00e+00 1.00e+00f 1 MaxSA
Number of Iterations....: 63
(scaled) (unscaled)
Objective...............: 3.4484507551949685e+02 3.8446498170293398e+03
Dual infeasibility......: 2.2694405475622814e-07 2.5301808856629548e-06
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 2.2694405475622814e-07 2.5301808856629548e-06
Number of objective function evaluations = 64
Number of objective gradient evaluations = 64
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 63
Total CPU secs in IPOPT (w/o function evaluations) = 0.028
Total CPU secs in NLP function evaluations = 0.634
EXIT: Solved To Acceptable Level.
0.760983 seconds (102.63 k allocations: 8.135 MiB)
```julia
vcmodel_constr.B
```
2×2 Array{Float64,2}:
1.07177 1.07177
0.955683 1.01591
```julia
vcmodel_constr.Σ
```
([0.380539 -0.305626; -0.305626 4.52116], [1.8405 0.264881; 0.264881 2.17348])
| VarianceComponentModels | https://github.com/OpenMendel/VarianceComponentModels.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 663 | module ExtensibleUnions
export addtounion!, # extensible_unions.jl
extensiblefunction!, # extensible_functions.jl
extensibleunion!, # extensible_unions.jl
isextensiblefunction, # extensible_functions.jl
isextensibleunion # extensible_unions.jl
const _registry_extensibleunion_to_genericfunctions = Dict{Any, Any}()
const _registry_extensibleunion_to_members = Dict{Any, Any}()
const _registry_genericfunctions_to_extensibleunions = Dict{Any, Any}()
include("code_transformation.jl")
include("extensible_functions.jl")
include("extensible_unions.jl")
include("init.jl")
include("reset.jl")
include("update_methods.jl")
end # module
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 3134 | # All or most of the code in this file is taken from:
# 1. https://github.com/NHDaly/DeepcopyModules.jl (license: MIT)
# 2. https://github.com/perrutquist/CodeTransformation.jl (license: MIT)
"""
jl_method_def(argdata, ci, mod) - C function wrapper
This is a wrapper of the C function with the same name, found in the Julia
source tree at julia/src/method.c
Use `addmethod!` or `codetransform!` instead of calling this function directly.
"""
jl_method_def(argdata::Core.SimpleVector, ci::Core.CodeInfo, mod::Module) =
ccall(:jl_method_def, Cvoid, (Core.SimpleVector, Any, Ptr{Module}), argdata, ci, pointer_from_objref(mod))
# `argdata` is `Core.svec(Core.svec(types...), Core.svec(typevars...))`
"Recursively get the typevars from a `UnionAll` type"
typevars(T::UnionAll) = (T.var, typevars(T.body)...)
typevars(T::DataType) = ()
@nospecialize # the below functions need not specialize on arguments
"Get the module of a function"
getmodule(F::Type{<:Function}) = F.name.mt.module
getmodule(f::Function) = getmodule(typeof(f))
"Create a call singature"
makesig(f::Function, args) = Tuple{typeof(f), args...}
"""
argdata(sig[, f])
Turn a call signature into the 'argdata' `Core.svec` that `jl_method_def` uses
When a function is given in the second argument, it replaces the one in the
call signature.
"""
argdata(sig) = Core.svec(Base.unwrap_unionall(sig).parameters::Core.SimpleVector, Core.svec(typevars(sig)...))
argdata(sig, f::Function) = Core.svec(Core.svec(typeof(f), Base.unwrap_unionall(sig).parameters[2:end]...), Core.svec(typevars(sig)...))
"""
addmethod!(f, argtypes, ci)
Add a method to a function.
The types of the arguments is given as a `Tuple`.
Example:
```
g(x) = x + 13
ci = code_lowered(g)[1]
function f end
addmethod!(f, (Any,), ci)
f(1) # returns 14
```
"""
addmethod!(f::Function, argtypes::Tuple, ci::Core.CodeInfo) = addmethod!(makesig(f, argtypes), ci)
"""
addmethod(sig, ci)
Alternative syntax where the call signature is a `Tuple` type.
Example:
```
addmethod!(Tuple{typeof(f), Any}, ci)
```
"""
function addmethod!(sig::Type{<:Tuple{F, Vararg}}, ci::Core.CodeInfo) where {F<:Function}
jl_method_def(argdata(sig), ci, getmodule(F))
end
@specialize # restore default
"""
codetransform!(tr, dst, src)
Apply a code transformation function `tr` on the methods of a function `src`,
adding the transformed methods to another function `dst`.
Example: Search-and-replace a constant in a function.
```
g(x) = x + 13
function e end
codetransform!(g => e) do ci
for ex in ci.code
if ex isa Expr
map!(x -> x === 13 ? 7 : x, ex.args, ex.args)
end
end
ci
end
e(1) # returns 8
```
"""
function codetransform!(tr::Function, @nospecialize(dst::Function), @nospecialize(src::Function))
mod = getmodule(dst)
for m in methods(src).ms
ci = Base.uncompressed_ast(m)
ci = tr(ci)
jl_method_def(argdata(m.sig, dst), ci, mod)
end
end
"Alternative syntax: codetransform!(tr, src => dst)"
codetransform!(tr::Function, @nospecialize(p::Pair{<:Function, <:Function})) =
codetransform!(tr, p.second, p.first)
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 1153 | function extensiblefunction!(@nospecialize(f::Function), varargs...)
return extensiblefunction!(f, varargs)
end
function extensiblefunction!(@nospecialize(f::Function),
@nospecialize(varargs::Tuple))
global _registry_extensibleunion_to_genericfunctions
global _registry_genericfunctions_to_extensibleunions
if !haskey(_registry_genericfunctions_to_extensibleunions, f)
_registry_genericfunctions_to_extensibleunions[f] = Set{Any}()
end
for i = 1:length(varargs)
if isextensibleunion(varargs[i])
push!(_registry_extensibleunion_to_genericfunctions[varargs[i]],
f)
push!(_registry_genericfunctions_to_extensibleunions[f],
varargs[i])
else
throw(ArgumentError(
"Argument is not a registered extensible union."))
end
end
_update_all_methods_for_extensiblefunction!(f)
return f
end
function isextensiblefunction(@nospecialize(f::Function))
global _registry_genericfunctions_to_extensibleunions
return haskey(_registry_genericfunctions_to_extensibleunions, f)
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 2348 | function extensibleunion!(@nospecialize(u))
global _registry_extensibleunion_to_genericfunctions
global _registry_extensibleunion_to_members
if !isconcretetype(u)
throw(ArgumentError("The provided type must be a concrete type"))
end
if !isstructtype(u)
throw(ArgumentError("The provided type must be a struct type"))
end
if length(fieldnames(u)) > 0
throw(ArgumentError("The provided type must have no fields"))
end
if u.mutable
throw(ArgumentError("The provided type must be an immutable type"))
end
if !(supertype(u) === Any)
throw(ArgumentError(
"The immediate supertype of the provided type must be Any"))
end
if !haskey(_registry_extensibleunion_to_members, u)
_registry_extensibleunion_to_genericfunctions[u] = Set{Any}()
_registry_extensibleunion_to_members[u] = Set{Any}([u])
end
_update_all_methods_for_extensibleunion!(u)
return u
end
function isextensibleunion(@nospecialize(u))
global _registry_extensibleunion_to_members
return haskey(_registry_extensibleunion_to_members, u)
end
function addtounion!(@nospecialize(u), varargs...)
return addtounion!(u, varargs)
end
function addtounion!(@nospecialize(u), @nospecialize(varargs::Tuple))
global _registry_extensibleunion_to_members
if isextensibleunion(u)
old_members_set = deepcopy(_registry_extensibleunion_to_members[u])
for i = 1:length(varargs)
push!(_registry_extensibleunion_to_members[u], varargs[i])
end
new_members_set = deepcopy(_registry_extensibleunion_to_members[u])
old_members_union = _set_to_union(old_members_set)
new_members_union = _set_to_union(new_members_set)
_update_all_methods_for_extensibleunion!(u, old_members_union =>
new_members_union)
else
throw(ArgumentError(
"First argument must be a registered extensible union."))
end
end
function unioncurrentlycontains(@nospecialize(u), @nospecialize(t))
global _registry_extensibleunion_to_members
if isextensibleunion(u)
return t in _registry_extensibleunion_to_members[u]
else
throw(ArgumentError(
"First argument must be a registered extensible union."))
end
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 372 | function __init__()
global _registry_extensibleunion_to_genericfunctions
global _registry_extensibleunion_to_members
global _registry_genericfunctions_to_extensibleunions
empty!(_registry_extensibleunion_to_genericfunctions)
empty!(_registry_extensibleunion_to_members)
empty!(_registry_genericfunctions_to_extensibleunions)
return nothing
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 378 | function _unsafe_reset!()
global _registry_extensibleunion_to_genericfunctions
global _registry_extensibleunion_to_members
global _registry_genericfunctions_to_extensibleunions
empty!(_registry_extensibleunion_to_genericfunctions)
empty!(_registry_extensibleunion_to_members)
empty!(_registry_genericfunctions_to_extensibleunions)
return nothing
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 6531 | function _update_all_methods_for_extensibleunion!(@nospecialize(u))
global _registry_extensibleunion_to_genericfunctions
for f in _registry_extensibleunion_to_genericfunctions[u]
_update_all_methods_for_extensiblefunction!(f)
end
return u
end
function _update_all_methods_for_extensibleunion!(@nospecialize(u), p::Pair)
global _registry_extensibleunion_to_genericfunctions
for f in _registry_extensibleunion_to_genericfunctions[u]
_update_all_methods_for_extensiblefunction!(f, p)
end
return u
end
function _update_all_methods_for_extensiblefunction!(@nospecialize(f))
global _registry_genericfunctions_to_extensibleunions
extensibleunions_for_this_genericfunction =
_registry_genericfunctions_to_extensibleunions[f]
for met in methods(f).ms
_update_single_method!(f,
met.sig,
extensibleunions_for_this_genericfunction)
end
return f
end
function _update_all_methods_for_extensiblefunction!(@nospecialize(f), p::Pair)
global _registry_genericfunctions_to_extensibleunions
extensibleunions_for_this_genericfunction =
_registry_genericfunctions_to_extensibleunions[f]
for met in methods(f).ms
_update_single_method!(f,
met.sig,
extensibleunions_for_this_genericfunction,
p)
end
return f
end
function _update_single_method!(@nospecialize(f::Function),
@nospecialize(oldsig::Type{<:Tuple}),
@nospecialize(unions::Set))
global _registry_extensibleunion_to_members
newsig = _replace_types(oldsig)
for u in unions
newsig = _replace_types(newsig, u =>
_set_to_union(_registry_extensibleunion_to_members[u]))
end
if oldsig == newsig
else
oldsig_tuple = tuple(oldsig.types[2:end]...)
newsig_tuple = tuple(newsig.types[2:end]...)
@assert length(code_lowered(f, oldsig_tuple)) == 1
codeinfo = code_lowered(f, oldsig_tuple)[1]
@assert length(methods(f, oldsig_tuple).ms) == 1
oldmet = methods(f, oldsig_tuple).ms[1]
Base.delete_method(oldmet)
addmethod!(f, newsig_tuple, codeinfo)
end
return f
end
function _update_single_method!(@nospecialize(f::Function),
@nospecialize(oldsig::Type{<:Tuple}),
@nospecialize(unions::Set),
p::Pair)
global _registry_extensibleunion_to_members
newsig = _replace_types(oldsig, p)
for u in unions
newsig = _replace_types(newsig, u =>
_set_to_union(_registry_extensibleunion_to_members[u]))
end
if oldsig == newsig
else
oldsig_tuple = tuple(oldsig.types[2:end]...)
newsig_tuple = tuple(newsig.types[2:end]...)
@assert length(code_lowered(f, oldsig_tuple)) == 1
codeinfo = code_lowered(f, oldsig_tuple)[1]
@assert length(methods(f, oldsig_tuple).ms) == 1
oldmet = methods(f, oldsig_tuple).ms[1]
Base.delete_method(oldmet)
addmethod!(f, newsig_tuple, codeinfo)
end
return f
end
function _update_single_method!(@nospecialize(f::Function),
@nospecialize(oldsig::Type{<:UnionAll}),
@nospecialize(unions::Set))
throw(MethodError("Not yet implemented for when sig is a UnionAll"))
end
function _update_single_method!(@nospecialize(f::Function),
@nospecialize(oldsig::Type{<:UnionAll}),
@nospecialize(unions::Set),
p::Pair)
throw(MethodError("Not yet implemented for when sig is a UnionAll"))
end
function _replace_types(sig::Type{<:UnionAll})
throw(MethodError("Not yet implemented for when sig is a UnionAll"))
end
function _replace_types(sig::Type{<:UnionAll}, p::Pair)
throw(MethodError("Not yet implemented for when sig is a UnionAll"))
end
# function _replace_types(sig::Core.SimpleVector)
# v = Any[sig.types...]
# for i = 2:length(v)
# v[i] = _replace_types(v[i])
# end
# return Core.svec(v...)
# end
# function _replace_types(sig::Core.SimpleVector, p::Pair)
# v = Any[sig.types...]
# for i = 2:length(v)
# v[i] = _replace_types(v[i], p)
# end
# return Core.svec(v...)
# end
_peel_unionall(sig) = sig
function _peel_unionall(sig::UnionAll)
while sig isa UnionAll
sig = sig.body
end
sig
end
@inline _replace_types(sig::TypeVar) = _replace_types(sig.ub)
function _replace_types(sig::Type{<:Tuple})
v = Any[_peel_unionall(sig).types...]
for i = 2:length(v)
v[i] = _replace_types(v[i])
end
return Tuple{v...}
end
@inline _replace_types(sig::UnionAll, p::Pair) = _replace_types(sig.body, p)
@inline _replace_types(sig::TypeVar, p::Pair) = _replace_types(sig.ub, p)
function _replace_types(sig::Type{<:Tuple}, p::Pair)
v = Any[_peel_unionall(sig).types...]
for i = 2:length(v)
v[i] = _replace_types(v[i], p)
end
return Tuple{v...}
end
function _replace_types(::Type{Union{}})
return Union{}
end
function _replace_types(sig::Type{Union{}}, p::Pair)
if sig == p[1]
return p[2]
else
return sig
end
end
function _replace_types(sig::Union)
union_length = Base.unionlen(sig)
old_union_members = Base.uniontypes(sig)
new_union_members = Vector{Any}(undef, union_length)
for i = 1:union_length
new_union_members[i] = _replace_types(old_union_members[i])
end
new_union = Union{new_union_members...}
return new_union
end
function _replace_types(sig::Union, p::Pair)
if sig == p[1]
return p[2]
else
union_length = Base.unionlen(sig)
old_union_members = Base.uniontypes(sig)
new_union_members = Vector{Any}(undef, union_length)
for i = 1:union_length
new_union_members[i] = _replace_types(old_union_members[i], p)
end
new_union = Union{new_union_members...}
return new_union
end
end
function _replace_types(sig::Type)
return sig
end
function _replace_types(sig::Type, p::Pair)
if sig == p[1]
return p[2]
else
return sig
end
end
function _set_to_union(s::Set)
result = Union{}
for member in s
result = Union{result, member}
end
return result
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 1608 | using ExtensibleUnions
using Test
using Traceur
macro genstruct!(list)
x = gensym()
y = quote
struct $(x) end
push!($(list), $(x))
end
return y
end
# macro genfunc!(list)
# x = gensym()
# y = quote
# function $(x) end
# push!($(list), $(x))
# end
# return y
# end
@testset "ExtensibleUnions.jl" begin
@testset "Unit tests" begin
@testset "test_code_transformation.jl" begin
include("test_code_transformation.jl")
end
@testset "test_extensible_functions.jl" begin
include("test_extensible_functions.jl")
end
@testset "test_extensible_unions.jl" begin
include("test_extensible_unions.jl")
end
@testset "test_inferred.jl" begin
include("test_inferred.jl")
end
@testset "test_traceur.jl" begin
include("test_traceur.jl")
end
@testset "test_update_methods.jl" begin
include("test_update_methods.jl")
end
end
@testset "Integration tests" begin
@testset "test_examples.jl" begin
include("test_examples.jl")
end
end
@testset "reset.jl" begin
@testset "ExtensibleUnions._unsafe_reset!()" begin
ExtensibleUnions._unsafe_reset!()
@test isempty(ExtensibleUnions._registry_extensibleunion_to_genericfunctions)
@test isempty(ExtensibleUnions._registry_extensibleunion_to_members)
@test isempty(ExtensibleUnions._registry_genericfunctions_to_extensibleunions)
end
end
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 1316 | using ExtensibleUnions
using Test
# Most of the code in this file is taken from:
# 1. https://github.com/NHDaly/DeepcopyModules.jl (license: MIT)
# 2. https://github.com/perrutquist/CodeTransformation.jl (license: MIT)
@test ExtensibleUnions.getmodule(typeof(sin)) === Base
@test ExtensibleUnions.getmodule(sin) === Base
let
# Test example from docstring to ExtensibleUnions.addmethod!
g(x) = x + 13
ci = code_lowered(g)[1]
function f end
ExtensibleUnions.addmethod!(f, (Any,), ci)
@test f(1) === 14
# Alternative syntax
function f2 end
@test ExtensibleUnions.makesig(f2, (Any,)) === Tuple{typeof(f2), Any}
ExtensibleUnions.addmethod!(Tuple{typeof(f2), Any}, ci)
@test f2(1) === 14
end
let
# Test example from docstring to codetransform!
g(x) = x + 13
function e end
ExtensibleUnions.codetransform!(g => e) do ci
for ex in ci.code
if ex isa Expr
map!(x -> x === 13 ? 7 : x, ex.args, ex.args)
end
end
ci
end
@test e(1) === 8
@test g(1) === 14
end
let
a = Vector{T} where T
b = ExtensibleUnions.typevars(a)
@test b isa Tuple
@test length(b) == 1
@test b[1] isa TypeVar
@test b[1].name == :T
@test b[1].lb === Union{}
@test b[1].ub === Any
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 4320 | using ExtensibleUnions
using Test
using Traceur
abstract type AbstractCar end
abstract type AbstractFireEngine end
struct RedCar <: AbstractCar
end
struct BlueCar <: AbstractCar
x
end
struct LadderTruck{T} <: AbstractFireEngine
x::T
end
mutable struct WaterTender{T} <: AbstractFireEngine
x::T
y::T
end
struct RedColorTrait end
struct BlueColorTrait end
extensibleunion!(RedColorTrait)
extensibleunion!(BlueColorTrait)
describe(x) = "I don't know anything about this object"
methods(describe)
@test length(methods(describe)) == 1
@test @inferred describe(RedCar()) == "I don't know anything about this object"
@test @inferred describe(BlueCar(1)) == "I don't know anything about this object"
@test @inferred describe(LadderTruck{Int}(2)) == "I don't know anything about this object"
@test @inferred describe(WaterTender{Int}(3,4)) == "I don't know anything about this object"
@check describe(RedCar()) nowarn=[describe] maxdepth=typemax(Int)
@check describe(BlueCar(1)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(LadderTruck{Int}(2)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(WaterTender{Int}(3,4)) nowarn=[describe] maxdepth=typemax(Int)
describe(x::RedColorTrait) = "The color of this object is red"
extensiblefunction!(describe, RedColorTrait)
@test length(methods(describe)) == 2
describe(x::BlueColorTrait) = "The color of this object is blue"
extensiblefunction!(describe, BlueColorTrait)
@test length(methods(describe)) == 3
methods(describe)
@test length(methods(describe)) == 3
@test @inferred describe(RedCar()) == "I don't know anything about this object"
@test @inferred describe(BlueCar(1)) == "I don't know anything about this object"
@test @inferred describe(LadderTruck{Int}(2)) == "I don't know anything about this object"
@test @inferred describe(WaterTender{Int}(3,4)) == "I don't know anything about this object"
@check describe(RedCar()) nowarn=[describe] maxdepth=typemax(Int)
@check describe(BlueCar(1)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(LadderTruck{Int}(2)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(WaterTender{Int}(3,4)) nowarn=[describe] maxdepth=typemax(Int)
addtounion!(RedColorTrait, RedCar)
methods(describe)
@test length(methods(describe)) == 3
@test @inferred describe(RedCar()) == "The color of this object is red"
@test @inferred describe(BlueCar(1)) == "I don't know anything about this object"
@test @inferred describe(LadderTruck{Int}(2)) == "I don't know anything about this object"
@test @inferred describe(WaterTender{Int}(3,4)) == "I don't know anything about this object"
@check describe(RedCar()) nowarn=[describe] maxdepth=typemax(Int)
@check describe(BlueCar(1)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(LadderTruck{Int}(2)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(WaterTender{Int}(3,4)) nowarn=[describe] maxdepth=typemax(Int)
addtounion!(BlueColorTrait, BlueCar)
methods(describe)
@test length(methods(describe)) == 3
@test @inferred describe(RedCar()) == "The color of this object is red"
@test @inferred describe(BlueCar(1)) == "The color of this object is blue"
@test @inferred describe(LadderTruck{Int}(2)) == "I don't know anything about this object"
@test @inferred describe(WaterTender{Int}(3,4)) == "I don't know anything about this object"
@check describe(RedCar()) nowarn=[describe] maxdepth=typemax(Int)
@check describe(BlueCar(1)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(LadderTruck{Int}(2)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(WaterTender{Int}(3,4)) nowarn=[describe] maxdepth=typemax(Int)
addtounion!(RedColorTrait, AbstractFireEngine)
methods(describe)
@test length(methods(describe)) == 3
@test @inferred describe(RedCar()) == "The color of this object is red"
@test @inferred describe(BlueCar(1)) == "The color of this object is blue"
@test @inferred describe(LadderTruck{Int}(2)) == "The color of this object is red"
@test @inferred describe(WaterTender{Int}(3,4)) == "The color of this object is red"
@check describe(RedCar()) nowarn=[describe] maxdepth=typemax(Int)
@check describe(BlueCar(1)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(LadderTruck{Int}(2)) nowarn=[describe] maxdepth=typemax(Int)
@check describe(WaterTender{Int}(3,4)) nowarn=[describe] maxdepth=typemax(Int)
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 491 | using ExtensibleUnions
using Test
struct S5 end
function f1 end
@test !isextensibleunion(S5)
@test !isextensiblefunction(f1)
extensiblefunction!(f1)
@test isextensiblefunction(f1)
@test_throws ArgumentError extensiblefunction!(f1, S5)
@test !isextensibleunion(S5)
extensibleunion!(S5)
@test isextensibleunion(S5)
extensiblefunction!(f1, S5)
@test isextensiblefunction(f1)
extensiblefunction!(f1, S5)
@test isextensiblefunction(f1)
extensiblefunction!(f1, S5)
@test isextensiblefunction(f1)
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 1560 | using ExtensibleUnions
using Test
abstract type A1 end
@test_throws ArgumentError extensibleunion!(A1)
@test_throws ArgumentError extensibleunion!(Int)
struct S1
x
end
@test_throws ArgumentError extensibleunion!(S1)
mutable struct S2 end
@test_throws ArgumentError extensibleunion!(S2)
abstract type A2 end
struct S3 <: A2
end
@test_throws ArgumentError extensibleunion!(S3)
struct S4 end
@test !isextensibleunion(S4)
extensibleunion!(S4)
@test isextensibleunion(S4)
extensibleunion!(S4)
@test isextensibleunion(S4)
extensibleunion!(S4)
@test isextensibleunion(S4)
struct S6 end
extensibleunion!(S6)
@test !ExtensibleUnions.unioncurrentlycontains(S6, String)
addtounion!(S6, String)
@test ExtensibleUnions.unioncurrentlycontains(S6, String)
struct S7 end
extensibleunion!(S7)
@test !ExtensibleUnions.unioncurrentlycontains(S7, String)
addtounion!(S7, String)
@test ExtensibleUnions.unioncurrentlycontains(S7, String)
struct S8 end
@test_throws ArgumentError addtounion!(S8)
@test_throws ArgumentError ExtensibleUnions.unioncurrentlycontains(S8, String)
let
struct MyUnion end
extensibleunion!(MyUnion)
struct Foo end
addtounion!(MyUnion, Foo)
foo(x::Tuple{Int, T}) where {T} = x[1]
foo(::MyUnion) = "boo!"
extensiblefunction!(foo, MyUnion)
@test foo(Foo()) == "boo!"
end
let
a = Vector{T} where T
ExtensibleUnions._replace_types(a)
ExtensibleUnions._replace_types(a.var)
ExtensibleUnions._replace_types(a, nothing => nothing)
ExtensibleUnions._replace_types(a.var, nothing => nothing)
end
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 34 | using ExtensibleUnions
using Test
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 48 | using ExtensibleUnions
using Test
using Traceur
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | code | 3879 | using ExtensibleUnions
using Test
function f1 end
ExtensibleUnions._update_all_methods_for_extensiblefunction!(f1)
b = Type{Vector{T} where T}
@test_throws MethodError ExtensibleUnions._update_single_method!(f1, b, Set())
@test_throws MethodError ExtensibleUnions._update_single_method!(f1, b, Set(), nothing => nothing)
@test_throws MethodError ExtensibleUnions._replace_types(b)
@test_throws MethodError ExtensibleUnions._replace_types(b, nothing => nothing)
@test ExtensibleUnions._replace_types(Union{}) == Union{}
@test ExtensibleUnions._replace_types(Union{}, Union{} => Union{Float32, String}) == Union{Float32, String}
@test ExtensibleUnions._replace_types(Union{}, Union{Float32, String} => Union{Float32, Int32, String}) == Union{}
@test ExtensibleUnions._replace_types(Union{Int32}) == Union{Int32}
@test ExtensibleUnions._replace_types(Union{Int32}, Int32 => Float32) == Union{Float32}
@test ExtensibleUnions._replace_types(Union{Int32, Float32}) == Union{Int32, Float32}
@test ExtensibleUnions._replace_types(Union{Int32, Float32}, Union{Int32, Float32} => Union{String, Symbol}) == Union{String, Symbol}
@test ExtensibleUnions._replace_types(Union{Int32, Float32}, Float32 => String) == Union{Int32, String}
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString}) == Union{Int32, Float32, AbstractString}
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString}, Float32 => Symbol) == Union{Int32, Symbol, AbstractString}
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString}, Union{Int32, Float32, AbstractString} => Symbol) == Symbol
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString, Symbol}) == Union{Int32, Float32, AbstractString, Symbol}
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString, Symbol}, Float32 => Char) == Union{Int32, Char, AbstractString, Symbol}
@test ExtensibleUnions._replace_types(Union{Int32, Float32, AbstractString, Symbol}, Union{Int32, Float32, AbstractString, Symbol} => Union{Int32, Float32, AbstractString, Symbol, Char}) == Union{Int32, Float32, AbstractString, Symbol, Char}
structlist = Any[]
@genstruct!(structlist)
@genstruct!(structlist)
@genstruct!(structlist)
@genstruct!(structlist)
@genstruct!(structlist)
@genstruct!(structlist)
@genstruct!(structlist)
# funclist = Any[]
# @genfunc!(funclist)
# @genfunc!(funclist)
FooTrait = structlist[1]
BarTrait = structlist[2]
BazTrait = structlist[3]
extensibleunion!(FooTrait)
extensibleunion!(BarTrait)
ExtensibleUnions._update_all_methods_for_extensibleunion!(FooTrait)
ExtensibleUnions._update_all_methods_for_extensibleunion!(BarTrait, nothing=>nothing)
StructA = structlist[4]
StructB = structlist[5]
StructC = structlist[6]
StructD = structlist[7]
# f = funclist[1]
# g = funclist[2]
function f end
function g end
f(x::FooTrait) = "foo"
f(x::BarTrait) = "bar"
extensiblefunction!(f, FooTrait, BarTrait)
extensiblefunction!(f, (FooTrait, BarTrait,))
ExtensibleUnions._update_all_methods_for_extensibleunion!(FooTrait)
ExtensibleUnions._update_all_methods_for_extensibleunion!(BarTrait, nothing=>nothing)
ExtensibleUnions._update_all_methods_for_extensiblefunction!(f)
addtounion!(FooTrait, StructA)
addtounion!(FooTrait, StructB)
addtounion!(FooTrait, StructC)
addtounion!(FooTrait, StructD)
addtounion!(BarTrait, StructA)
addtounion!(BarTrait, StructB)
addtounion!(BarTrait, StructC)
addtounion!(BarTrait, StructD)
ExtensibleUnions._update_all_methods_for_extensibleunion!(FooTrait)
ExtensibleUnions._update_all_methods_for_extensibleunion!(BarTrait, nothing=>nothing)
ExtensibleUnions._update_all_methods_for_extensiblefunction!(f)
g(x::BazTrait) = "baz"
ExtensibleUnions._registry_extensibleunion_to_members[BazTrait] = Set(Any[StructA, StructB, StructC, StructD])
ExtensibleUnions._update_single_method!(g, Tuple{typeof(g), BazTrait}, Set(Any[BazTrait]))
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"MIT"
] | 0.5.1 | 70638af651f5f32f82bc390c67c25dfe97fe7e3e | docs | 5400 | # ExtensibleUnions
[](https://travis-ci.com/bcbi/ExtensibleUnions.jl/branches)
[](https://codecov.io/gh/bcbi/ExtensibleUnions.jl)
```julia
julia> import Pkg; Pkg.add("ExtensibleUnions")
```
ExtensibleUnions adds abstract multiple inheritance to Julia in the
form of extensible (mutable) type unions.
**Warning: ExtensibleUnions is an experimental package. Do not use ExtensibleUnions in any production code.**
## Usage
Create a new extensible union:
```julia
struct MyUnion end
extensibleunion!(MyUnion)
```
Add methods that dispatch on extensible unions:
```julia
f(x::MyUnion1, y, z, ...) = ...
f(x, y::MyUnion2, z, ...) = ...
extensiblefunction!(f, MyUnion1, MyUnion2, ...)
```
Add types to an extensible union:
```julia
addtounion!(MyUnion, SomeType1, SomeType2, ...)
```
At any later time, you can add more types to an extensible union:
```julia
addtounion!(MyUnion, SomeType3, SomeType4, ...)
```
## Examples
### Example 1
```julia
julia> using ExtensibleUnions
julia> abstract type AbstractCar end
julia> abstract type AbstractFireEngine end
julia> struct RedCar <: AbstractCar
end
julia> struct BlueCar <: AbstractCar
x
end
julia> struct LadderTruck{T} <: AbstractFireEngine
x::T
end
julia> mutable struct WaterTender{T} <: AbstractFireEngine
x::T
y::T
end
julia> struct RedColorTrait end
julia> struct BlueColorTrait end
julia> extensibleunion!(RedColorTrait)
RedColorTrait
julia> extensibleunion!(BlueColorTrait)
BlueColorTrait
julia> describe(x) = "I don't know anything about this object"
describe (generic function with 1 method)
julia> methods(describe)
# 1 method for generic function "describe":
[1] describe(x) in Main at REPL[12]:1
julia> describe(RedCar())
"I don't know anything about this object"
julia> describe(BlueCar(1))
"I don't know anything about this object"
julia> describe(LadderTruck{Int}(2))
"I don't know anything about this object"
julia> describe(WaterTender{Int}(3,4))
"I don't know anything about this object"
julia> describe(x::RedColorTrait) = "The color of this object is red"
describe (generic function with 2 methods)
julia> extensiblefunction!(describe, RedColorTrait)
describe (generic function with 2 methods)
julia> describe(x::BlueColorTrait) = "The color of this object is blue"
describe (generic function with 3 methods)
julia> extensiblefunction!(describe, BlueColorTrait)
describe (generic function with 3 methods)
julia> methods(describe)
# 3 methods for generic function "describe":
[1] describe(x::BlueColorTrait) in Main at REPL[20]:1
[2] describe(x::RedColorTrait) in Main at REPL[18]:1
[3] describe(x) in Main at REPL[12]:1
julia> describe(RedCar())
"I don't know anything about this object"
julia> describe(BlueCar(1))
"I don't know anything about this object"
julia> describe(LadderTruck{Int}(2))
"I don't know anything about this object"
julia> describe(WaterTender{Int}(3,4))
"I don't know anything about this object"
julia> addtounion!(RedColorTrait, RedCar)
RedColorTrait
julia> methods(describe)
# 3 methods for generic function "describe":
[1] describe(x::BlueColorTrait) in Main at REPL[20]:1
[2] describe(x::Union{RedCar, RedColorTrait}) in Main at REPL[18]:1
[3] describe(x) in Main at REPL[12]:1
julia> describe(RedCar())
"The color of this object is red"
julia> describe(BlueCar(1))
"I don't know anything about this object"
julia> describe(LadderTruck{Int}(2))
"I don't know anything about this object"
julia> describe(WaterTender{Int}(3,4))
"I don't know anything about this object"
julia> addtounion!(BlueColorTrait, BlueCar)
BlueColorTrait
julia> methods(describe)
# 3 methods for generic function "describe":
[1] describe(x::Union{RedCar, RedColorTrait}) in Main at REPL[18]:1
[2] describe(x::Union{BlueColorTrait, BlueCar}) in Main at REPL[20]:1
[3] describe(x) in Main at REPL[12]:1
julia> describe(RedCar())
"The color of this object is red"
julia> describe(BlueCar(1))
"The color of this object is blue"
julia> describe(LadderTruck{Int}(2))
"I don't know anything about this object"
julia> describe(WaterTender{Int}(3,4))
"I don't know anything about this object"
julia> addtounion!(RedColorTrait, AbstractFireEngine)
RedColorTrait
julia> methods(describe)
# 3 methods for generic function "describe":
[1] describe(x::Union{BlueColorTrait, BlueCar}) in Main at REPL[20]:1
[2] describe(x::Union{RedCar, RedColorTrait, AbstractFireEngine}) in Main at REPL[18]:1
[3] describe(x) in Main at REPL[12]:1
julia> describe(RedCar())
"The color of this object is red"
julia> describe(BlueCar(1))
"The color of this object is blue"
julia> describe(LadderTruck{Int}(2))
"The color of this object is red"
julia> describe(WaterTender{Int}(3,4))
"The color of this object is red"
```
## Acknowledgements
Some of the code in this package is taken from:
1. [https://github.com/NHDaly/DeepcopyModules.jl](https://github.com/NHDaly/DeepcopyModules.jl) (license: MIT)
2. [https://github.com/perrutquist/CodeTransformation.jl](https://github.com/perrutquist/CodeTransformation.jl) (license: MIT)
## Related Work
1. [https://github.com/rofinn/Interfaces.jl](https://github.com/rofinn/Interfaces.jl): An implementation of interfaces for Julia
| ExtensibleUnions | https://github.com/bcbi/ExtensibleUnions.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 877 | using MParT
using Documenter
DocMeta.setdocmeta!(MParT, :DocTestSetup, :(using MParT); recursive=true)
makedocs(;
modules=[MParT],
authors="MIT UQGroup",
repo="https://github.com/MeasureTransport/MParT.jl/blob/{commit}{path}#{line}",
sitename="MParT.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://MeasureTransport.github.io/MParT.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
"Map Functionality" => "map.md",
"MultiIndices" => "multiindex.md",
"Map Training" => [
"Traditional training" => "trainmap.md",
"Adaptive training" => "adaptivemap.md"
],
"Extras" => "extras.md"
],
)
deploydocs(;
repo="github.com/MeasureTransport/MParT.jl",
devbranch="main",
)
| MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 13115 | # Wrapping code to make the Julia module usable
module MParT
using CxxWrap
using MParT_jll
import Libdl
@wrapmodule ()->libmpartjl :MParT_julia_module
import Base: getindex, lastindex, show, iterate, vec
ConditionalMapBasePtr = CxxWrap.StdLib.SharedPtr{<:ConditionalMapBase}
for op = (:Evaluate, :Gradient, :Inverse, :inputDim, :outputDim,
:LogDeterminant, :LogDeterminantCoeffGrad, :LogDeterminantInputGrad,
:numCoeffs, :CoeffMap, :CoeffGrad, :SetCoeffs, :TestError)
eval(quote
$op(obj::CxxWrap.StdLib.SharedPtr, args...) = $op(obj[], args...)
end)
end
function __init__()
@initcxx
threads = get(ENV, "KOKKOS_NUM_THREADS", nothing)
opts = StdVector{StdString}()
if !isnothing(threads)
push!(opts, StdString("kokkos_num_threads"))
push!(opts, StdString(string(threads)))
end
length(opts) > 0 && @info "Using MParT options: "*join(string.(opts),", ")
Initialize(opts)
end
"""
Concurrency()
See how many threads MParT is using.
"""
Concurrency
function Base.iterate(mset::MultiIndexSet)
Size(mset) < 1 && return nothing
mset[1],2
end
function Base.iterate(mset::MultiIndexSet,state::Int)
state > Size(mset) && return nothing
return mset[state], state+1
end
"""
Size(mset::MultiIndexSet)
Number of MultiIndex objects in a MultiIndexSet `mset`.
"""
Size
"""
MultiIndexSet(A::AbstractVecOrMat{<:Integer})
Create a set of MultiIndices from the rows of `A`.
These indices represent a basis for a multivariate expansion or,
further, monotone expansion. Each element of the set is a MultiIndex
representing one basis function via the degrees in each dimension.
# Example
```jldoctest
julia> # Functions like: c_1xy^2z^3 + c_2xyz + c_3
julia> A = [1 2 3;1 1 1; 0 0 0];
julia> mset = MultiIndexSet(A);
```
See also [`MultiIndex`](@ref), [`FixedMultiIndexSet`](@ref), [`Fix`](@ref)
"""
MultiIndexSet
"""
FixedMultiIndexSet(dim::Int, p::Int)
Creates a FixedMultiIndexSet with dimension `dim` and total order `p`.
A FixedMultiIndexSet is just a compressed, efficient way of representing a MultiIndexSet, but without as many bells and whistles.
See also: [`MultiIndex`](@ref), [`MultiIndexSet`](@ref)
"""
FixedMultiIndexSet
"""
CreateTotalOrder(dim::Int, p::Int)
Creates a total order `p` MultiIndexSet object in dimension `dim`.
See also: [`MultiIndexSet`](@ref)
"""
CreateTotalOrder
"""
Fix(mset::MultiIndexSet, compress::Bool = true)
Take `mset` and turn it into a `FixedMultiIndexSet` that can be `compress`ed.
See also [`MultiIndex`](@ref), [`MultiIndexSet`](@ref), [`FixedMultiIndexSet`](@ref)
"""
Fix(mset::MultiIndexSet) = Fix(mset, true)
MultiIndexSet(A::AbstractMatrix{<:Integer}) = MultiIndexSet(Cint.(collect(A)))
MultiIndexSet(A::AbstractVector{<:Integer}) = MultiIndexSet(Cint.(collect(reshape(A, length(A), 1))))
Base.getindex(A::MultiIndex, i::AbstractVector{<:Integer}) = getindex.((A,), i)
Base.lastindex(A::MultiIndex) = length(A)
Base.vec(A::MultiIndex) = Int.(ToVector(A))
# Not implemented yet
# Base.getindex(A::CxxWrap.reference_type_union(MParT.TriangularMap), s::Base.UnitRange) = Slice(A, first(s), last(s))
"""
Evaluate(map, points)
Evaluates the function `map` at `points`, where each column of `points` is a different sample.
If `map` ``:\\mathbb{R}^m\\to\\mathbb{R}^n``, then `points` ``\\in\\mathbb{R}^m\\times\\mathbb{R}^k``, where ``k`` is the number of points.
"""
Evaluate
"""
Inverse(map, y, x)
If `map` represents function ``T(y,x)``, then this function calculates ``T(y,\\cdot)^{-1}(x)``.
If `map` is square, **you still require `y`**, but it can be a 0 x k matrix.
"""
Inverse
"""
MapOptions(;kwargs...)
Creates options for parameterized map.
All possible keyword arguments are in example, with some important arguments described below. See C++ documentation for an exhaustive description.
# Arguments
- `basisType::String`: Includes "ProbabilistHermite", "PhysicistHermite", "HermiteFunctions"
- `basisLB::Float64`,`basisUB::Float64`: The bounds for where we start linearizing the map. These default to infinities, but often making the data near the origin and setting them to a small finite number (e.g. +-3) works well.
# Example
```jldoctest
julia> MapOptions(basisType="HermiteFunctions", basisLB=-3., basisUB=3.)
basisType = HermiteFunctions
basisLB = -3
basisUB = 3
basisNorm = true
posFuncType = SoftPlus
quadType = AdaptiveSimpson
quadAbsTol = 1e-06
quadRelTol = 1e-06
quadMaxSub = 30
quadMinSub = 0
quadPts = 5
contDeriv = true
nugget = 0
```
See also [`CreateComponent`](@ref), [`TriangularMap`](@ref), [`CreateTriangular`](@ref)
"""
function MapOptions(;kwargs...)
opts = __MapOptions()
for kwarg in kwargs
field = Symbol("__"*string(first(kwarg))*"!")
value = last(kwarg)
if value isa String
value = MParT.eval(Meta.parse("__"*value))
end
getfield(MParT, field)(opts, value)
end
opts
end
"""
`TrainOptions(;kwargs...)`
Creates options for using `TrainMap` to train a transport map.
See example for possible arguments.
# Examples
```jldoctest
julia> TrainOptions(opt_alg="LD_SLSQP", opt_maxeval = 1_000_000)
opt_alg = LD_SLSQP
opt_stopval = -inf
opt_ftol_rel = 0.001
opt_ftol_abs = 0.001
opt_xtol_rel = 0.0001
opt_xtol_abs = 0.0001
opt_maxeval = 1000000
opt_maxtime = inf
verbose = 0
```
See also [`TrainMap`](@ref), [`CreateGaussianKLObjective`](@ref)
"""
function TrainOptions(;kwargs...)
opts = __TrainOptions()
for kwarg in kwargs
field = Symbol("__"*string(first(kwarg))*"!")
value = last(kwarg)
getfield(MParT, field)(opts, value)
end
opts
end
"""
CreateGaussianKLObjective(train)
CreateGaussianKLObjective(train, outputDim)
CreateGaussianKLObjective(train, test)
CreateGaussianKLObjective(train, test, outputDim)
Create an objective for the optimization problem of training a
transport map.
Currently only supports variational simulation-based inference, i.e.
creating a map that uses samples `train` from target distribution and a
Gaussian reference distribution of dimension `outputDim`. If `outputDim`
is zero, this is equivalent to when `outputDim == size(train,1)`.
# Arguments
- `train::Matrix{Float64}`: mandatory training dataset
- `test::Matrix{Float64}`: optional test dataset
- `outputDim::Int = 0`: Dimensions of output of map
# Examples
```jldoctest
julia> using Random; rng = Random.Xoshiro(1);
julia> # Replace RNG type with MersenneTwister for <1.7
julia> N, inDim, outDim = 1000, 4, 2;
julia> samples = 2*randn(rng, inDim, N) .+ 5;
julia> obj1 = CreateGaussianKLObjective(samples);
julia> obj2 = CreateGaussianKLObjective(samples, outDim);
julia> train, test = samples[:,1:500], samples[:,501:end];
julia> obj3 = CreateGaussianKLObjective(train, test);
julia> obj4 = CreateGaussianKLObjective(train, test, outDim);
```
See also [`TrainMap`](@ref), [`TrainOptions`](@ref)
"""
CreateGaussianKLObjective
CreateGaussianKLObjective(train::Matrix{Float64}) = CreateGaussianKLObjective(train,0)
CreateGaussianKLObjective(train::Matrix{Float64},test::Matrix{Float64}) = CreateGaussianKLObjective(train,test,0)
"""
TestError(obj::MapObjective, map)
Uses the test dataset in obj to evaluate the error of `map`.
"""
TestError
"""
`ATMOptions(;kwargs...)`
Options for using the Adaptive Transport Map algorithm from [Baptista, et al.](https://arxiv.org/pdf/2009.10303.pdf)
Inherits all keywords from `MapOptions` and `TrainOptions`, plus the arguments below.
# Arguments
- `maxPatience::Int`: Number of "stationary" algorithm iterations tolerated
- `maxSize::Int`: the _total_ number of multiindices in the _entire map_ that the algorithm is allowed to add. Should be larger than the sum of the sizes of all multiindex sets across all dimensions for the map
- `maxDegrees::MultiIndex`: The maximum degree of any expansion term for each dimension (should be length of dimensions of the map)
# Examples
```jldoctest
julia> maxDegrees = MultiIndex(2,3); # limit both dimensions by order 3
julia> ATMOptions(maxDegrees=maxDegrees);
```
See also [`TrainMapAdaptive`](@ref), [`TrainOptions`](@ref), [`MapOptions`](@ref)
"""
function ATMOptions(;kwargs...)
opts = __ATMOptions()
for kwarg in kwargs
field = Symbol("__"*string(first(kwarg))*"!")
value = last(kwarg)
if value isa String && !startswith(value, "opt") && value != "verbose"
value = MParT.eval(Meta.parse("__"*value))
end
getfield(MParT, field)(opts, value)
end
opts
end
# To print MapOptions, TrainOptions objects
Base.show(io::IO,::MIME"text/plain", opts::__MapOptions) = print(io,string(opts))
Base.show(io::IO,::MIME"text/plain", opts::__TrainOptions) = print(io,string(opts))
Base.show(io::IO,::MIME"text/plain",opts::__ATMOptions) = print(io, string(opts))
"""
DeserializeMap(filename::String)
REQUIRES CEREAL INSTALLATION. Deserializes a map and returns its input dimension, output dimension, and coefficient.
"""
function DeserializeMap(filename::String)
dims = Cint[0,0]
coeffs = __DeserializeMap(filename, dims);
dims[1], dims[2], coeffs
end
"""
Deserialize(obj, filename)
Deserializes `filename` and puts the contents in `obj`. REQUIRES CEREAL INSTALLATION.
The object `obj` can be of type `MapOptions` or `FixedMultiIndexSet`. This will create a new pointer-- other objects with the same pointer will not be modified, but the contents of `obj` will now point to the deserialized object.
"""
Deserialize
"""
Serialize(obj, filename)
Serializes `obj` into file `filename`. REQUIRES CEREAL INSTALLATION.
"""
Serialize
"""
TrainMap(map, obj::MapObjective, opts::TrainOptions)
Trains `map` according to the objective `obj` with training options `opts`.
"""
TrainMap
"""
TrainMapAdaptive(msets, objective, options)
Implements the ATM algorithm [Baptista, et al.](https://arxiv.org/pdf/2009.10303.pdf)
Takes in initial guess of multiindex sets for each output dimension and adapts
those sets to better approximate the probability distribution of interest using monotone transport maps.
# Examples
"""
function TrainMapAdaptive(msets::Vector{<:MultiIndexSet},obj::CxxWrap.StdLib.SharedPtr{<:MapObjective}, opts::__ATMOptions)
msets_vec = [CxxRef(mset) for mset in msets]
TrainMapAdaptive(msets_vec, obj, opts)
end
"""
TriangularMap(maps::Vector, move_coeffs::Bool = true)
Creates a `TriangularMap` from a vector of `ConditionalMapBase` objects.
TODO: The new object takes ownership of the coeffs of the maps in `maps` if
`move_coeffs` is true.
# Examples
```jldoctest
julia> dim, order = 5, 3;
julia> msets = [FixedMultiIndexSet(d, order) for d in 1:dim];
julia> opts = MapOptions();
julia> components = [CreateComponent(mset, opts) for mset in msets];
julia> trimap = TriangularMap(components);
```
"""
function TriangularMap(maps::Vector, move_coeffs::Bool = true)
maps = StdVector([map for map in maps])
TriangularMap(maps, move_coeffs)
end
"""
CreateTriangular(inDim::Int, outDim::Int, p::Int, opts::MapOptions)
Creates a total order `p` map with dimensions `inDim` and `outDim` with specifications `opts`.
"""
CreateTriangular
"""
CreateComponent(mset::FixedMultiIndexSet, opts::MapOptions)
Create a single-output component with approximation order given by `mset` and specified by `opts`
"""
CreateComponent
"""
ComposedMap(maps::Vector)
Creates a `ComposedMap` from a vector of `ConditionalMapBase` objects.
""" # TODO: Example
function ComposedMap(maps::Vector{<:ConditionalMapBasePtr})
maps_std = StdVector([map for map in maps])
ComposedMap(maps_std)
end
"""
MultiIndex(A::AbstractVector{<:Int})
MultiIndex defines the order of one term of a function expansion for each dimensions.
# Example
```jldoctest
julia> degrees = [3,2,1]; # Represents polynomial basis function similar to x^3y^2z^1
julia> midx = MultiIndex(degrees);
julia> midx[3]
0x00000001
```
See also [`MultiIndexSet`](@ref), [`FixedMultiIndexSet`](@ref), [`Fix`](@ref)
"""
MultiIndex(A::AbstractVector{<:Int}) = MultiIndex(StdVector(Cuint.(A)))
# MultiIndex-related exports
export MultiIndex, MultiIndexSet, FixedMultiIndexSet
export Fix, CreateTotalOrder, Size, addto!
# ParameterizedFunctionBase-related exports
export CoeffMap, SetCoeffs, numCoeffs, inputDim, outputDim
export Evaluate, CoeffGrad, Gradient
# ConditionalMapBase-related exports
export ConditionalMapBasePtr, GetBaseFunction, LogDeterminant, LogDeterminantCoeffGrad, Inverse
# TriangularMap-related exports
export TriangularMap, InverseInplace, GetComponent
# AffineMap-related exports
export AffineMap, AffineFunction
# ComposedMap-related exports
export ComposedMap
# MapFactory-related exports
export CreateComponent, CreateTriangular
# MapOptions-related exports
export MapOptions
# Serialization-related exports
export Serialize, Deserialize, DeserializeMap
# Map training related exports
export CreateGaussianKLObjective, TrainOptions, TrainMap, TestError
# ATM-related exports
export TrainMapAdaptive, ATMOptions
# Other important utils
export Concurrency
end
| MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 1316 | using MParT
using Distributions, LinearAlgebra, Statistics
using Optimization, OptimizationOptimJL
## Geometry
num_points = 1000
xmin, xmax = 0,4
x = collect(range(xmin, xmax, length=num_points)')
# Measurements
noisesd = 0.4
# Notes: data might not be monotone bc of the noise
# but we assume the true underlying function is monotone
y_true = 2*(x .> 2)
y_noise = noisesd*randn(1,num_points)
y_measured = y_true + y_noise
# Create MultiIndexSet
multis = collect(reshape(0:5,6,1))
mset = MultiIndexSet(multis)
fixed_mset = Fix(mset, true)
# Set MapOptions and make map
opts = MapOptions()
monotoneMap = CreateComponent(fixed_mset, opts)
## Least Squares objective
function objective(coeffs,p)
monotoneMap, x, y_measured = p
SetCoeffs(monotoneMap, coeffs)
map_of_x = Evaluate(monotoneMap, x)
norm(map_of_x - y_measured)^2/size(x,2)
end
# Before Optimization
map_of_x_before = Evaluate(monotoneMap, x)
u0 = CoeffMap(monotoneMap)
p = (monotoneMap, x, y_measured)
fcn = OptimizationFunction(objective)
prob = OptimizationProblem(fcn, u0, p)
# Optimize
sol = solve(prob, NelderMead())
u_final = sol.u
SetCoeffs(monotoneMap, u_final)
## After Optimization
map_of_x_after = Evaluate(monotoneMap, x)
error_after = objective(u_final, p)
tol = 0.5
@test abs(sqrt(error_after) - noisesd)/noisesd < tol
| MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 1681 | using MParT
using Distributions, LinearAlgebra, Statistics
using Optimization, OptimizationOptimJL
##
num_points = 1000
z = randn(2,num_points)
x1 = z[1,:]
x2 = z[2,:] + z[1,:].^2
x = collect([x1 x2]')
test_n_pts = 10_000
test_z = randn(2,test_n_pts)
test_x1 = test_z[1,:]
test_x2 = test_z[2,:] + test_z[1,:].^2
test_x = collect([test_x1 test_x2]')
# For computing reference density
reference_density = MvNormal(I(2))
## Set up map and initialize coefficients
opts = MapOptions()
tri_map = CreateTriangular(2,2,2,opts)
coeffs = zeros(numCoeffs(tri_map))
function obj(coeffs, p)
tri_map, x, reference_density = p
SetCoeffs(tri_map, coeffs)
map_of_x = Evaluate(tri_map, x)
ref_density_of_map_of_x = logpdf(reference_density, map_of_x)
log_det = LogDeterminant(tri_map, x)
-sum(ref_density_of_map_of_x + log_det)/num_points
end
function grad_obj(g, coeffs, p)
tri_map, x = p
SetCoeffs(tri_map, coeffs)
map_of_x = Evaluate(tri_map, x)
grad_ref_density_of_map_of_x = -CoeffGrad(tri_map, x, map_of_x)
grad_log_det = LogDeterminantCoeffGrad(tri_map, x)
g .= -vec(sum(grad_ref_density_of_map_of_x + grad_log_det, dims=2))/num_points
end
## Plot before Optimization
u0 = CoeffMap(tri_map)
p = (tri_map, x, reference_density)
fcn = OptimizationFunction(obj, grad = grad_obj)
prob = OptimizationProblem(fcn, u0, p, g_tol = 1e-16)
## Optimize
sol = solve(prob, BFGS())
u_final = sol.u
SetCoeffs(tri_map, u_final)
map_of_test_x = Evaluate(tri_map, test_x)
mean_of_map = mean(map_of_test_x, dims=2)
cov_of_map = cov(map_of_test_x, dims=2)
## Test (heuristics)
tol = 0.5
@test norm(mean_of_map) < tol
@test norm(cov_of_map - I(2)) < tol | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 2104 | using MParT
using Distributions, LinearAlgebra, Statistics, CxxWrap
A = Float64[1 2; 4 5]
b = Float64[5, 6]
N_samples = 1000
a_map1 = AffineMap(A, b)
a_map2 = AffineMap(A)
a_map3 = AffineMap(b)
a_fun = AffineFunction(A, b)
c_map = ComposedMap(StdVector(MParT.ConditionalMapBase[a_map2, a_map3]))
## Test the eval
x = randn(size(A, 2), N_samples)
y_true = A * x .+ b
y1 = Evaluate(a_map1, x)
y2 = Evaluate(a_map2, x)
y3 = Evaluate(a_map3, y2)
y_fun = Evaluate(a_fun, x)
y_c = Evaluate(c_map, x)
@test y1 ≈ y_true
@test y3 ≈ y_true
@test y_c ≈ y_true
@test y_fun ≈ y_true
## Test the gradient
sens = randn(size(A, 1), N_samples)
g1 = Gradient(a_map1, x, sens)
g2 = Gradient(a_map2, x, sens)
g3 = Gradient(a_map3, x, sens)
g_fun = Gradient(a_fun, x, sens)
g_c = Gradient(c_map, x, sens)
@test g1 ≈ A'sens
@test g2 ≈ A'sens
@test g3 ≈ sens
@test g_c ≈ A'sens
@test g_fun ≈ A'sens
## Test the log determinant
true_ld = log(abs(det(A[:, end-size(A, 1)+1:end])))
ld1 = LogDeterminant(a_map1, x)
ld2 = LogDeterminant(a_map2, x)
ld3 = LogDeterminant(a_map3, x)
ld_c = LogDeterminant(c_map, x)
@test ld1 ≈ fill(true_ld, size(x,2))
@test ld2 ≈ fill(true_ld, size(x,2))
@test ld3 ≈ zeros(size(x,2))
@test ld_c ≈ fill(true_ld, size(x,2))
## Rectangular A
A = Float64[1 2 3; 4 5 6]
b = Float64[5, 6]
a_rect1 = AffineMap(A, b)
a_rect2 = AffineMap(A)
a_funr = AffineFunction(A, b)
## Test the eval
x = randn(size(A, 2), N_samples)
y_true = A * x .+ b
y1 = Evaluate(a_rect1, x)
y2 = Evaluate(a_rect2, x)
y3 = Evaluate(a_map3, y2)
y_fun = Evaluate(a_funr, x)
@test y1 ≈ y_true
@test y3 ≈ y_true
@test y_fun ≈ y_true
## Test the gradient
sens = randn(size(A, 1), N_samples)
g1 = Gradient(a_rect1, x, sens)
g2 = Gradient(a_rect2, x, sens)
g_fun = Gradient(a_funr, x, sens)
@test g1 ≈ A'sens
@test g2 ≈ A'sens
@test g_fun ≈ A'sens
## Test the log determinant
true_ld = log(abs(det(A[:, end-size(A, 1)+1:end])))
ld1 = LogDeterminant(a_rect1, x)
ld2 = LogDeterminant(a_rect2, x)
ld3 = LogDeterminant(a_map3, x)
@test ld1 ≈ fill(true_ld, size(x,2))
@test ld2 ≈ fill(true_ld, size(x,2))
@test ld3 ≈ zeros(size(x,2)) | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 1649 | # MultiIndex test
multis = [0 1; 2 0]
msetFromArray = MultiIndexSet(multis)
dim = 3
power = 4
msetTotalOrder = CreateTotalOrder(dim, power)
function test_max_degrees()
@test Int.(MParT.MaxOrders(msetFromArray)) == [2, 1]
@test Int.(MParT.MaxOrders(msetTotalOrder)) == [4, 4, 4]
end
function test_reduced_margin()
msetTotalOrder2 = CreateTotalOrder(dim, power+1)
msetTotalOrder_rm = MParT.ReducedMargin(msetTotalOrder)
@test length(msetTotalOrder_rm) == Size(msetTotalOrder2) - Size(msetTotalOrder)
@test all([sum(midx) == power+1 for midx in msetTotalOrder_rm])
msetTotalOrder_rm_dim = MParT.ReducedMarginDim(msetTotalOrder,2)
@test all([sum(midx) == power+1 for midx in msetTotalOrder_rm_dim])
@test length(msetTotalOrder_rm_dim) < length(msetTotalOrder_rm)
# Tests weird memory bug where ReducedDim returns objects that get garbage collected
dims_add = [1, 2]
# Without the additional constructor, the MultiIndex objects get gc'd
msetTotalOrder_rm_dim = reduce(vcat, MultiIndex.(MParT.ReducedMarginDim(msetTotalOrder, d)) for d in dims_add)
mset_strings = string.(string.(msetTotalOrder_rm_dim))
# Just test that things don't crash, i.e. we didn't segfault
@test mset_strings[1] isa AbstractString
end
function test_at()
@test msetFromArray[1] == MultiIndex([0, 1])
@test msetFromArray[2] == MultiIndex([2, 0])
@test msetTotalOrder[1] == MultiIndex([0, 0, 0])
@test msetTotalOrder[2] == MultiIndex([0, 0, 1])
last_idx = Size(msetTotalOrder)
@test msetTotalOrder[last_idx] == MultiIndex([4, 0, 0])
end
test_max_degrees()
test_reduced_margin()
test_at() | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 496 | using Test, MParT
@testset "MParT.jl" begin
# @testset "Affine, Composed Map" begin # This test doesn't work due to weird constructor
# include("mapTypeTest.jl")
# end
@testset "MultiIndex" begin
include("multiindex.jl")
end
@testset "Monotone Least Squares" begin
include("MLS.jl")
end
@testset "2D Banana From Samples" begin
include("banana2D.jl")
end
@testset "TrainMap" begin
include("trainMapTest.jl")
end
end
| MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | code | 1466 | using Distributions
function KS_statistic(map, samples)
pullback_evals = Evaluate(map,samples)
## Perform Kolmogorov-Smirnov test
sorted_samples = sort(pullback_evals[:])
dist = Normal()
samps_cdf = cdf.((dist,),sorted_samples)
samps_ecdf = (1:length(sorted_samples))/length(sorted_samples)
maximum(abs.(samps_cdf - samps_ecdf))
end
## Create data
dim = 2
N=20_000
N_test = N÷5
data = randn(dim+1,N)
target = collect(hcat(data[1,:],data[2,:], data[3,:] + data[2,:].^2)')
test = target[:,1:N_test]
train = target[:,N_test+1:end]
## Create objective and map
obj1 = CreateGaussianKLObjective(train,test,1)
obj2 = CreateGaussianKLObjective(train,test,2)
obj3 = CreateGaussianKLObjective(train,test)
map_options = MapOptions()
max_order = 2
map1 = CreateComponent(FixedMultiIndexSet(dim+1,max_order),map_options)
map2 = CreateTriangular(dim+1,dim,max_order,map_options)
map3 = CreateTriangular(dim+1,dim+1,max_order,map_options)
## Train the map
train_options = TrainOptions()
TrainMap(map1, obj1, train_options)
TrainMap(map2, obj2, train_options)
TrainMap(map3, obj3, train_options)
## Check the testing and training error
@test TestError(obj1, map1) < 5.
@test TestError(obj2, map2) < 5.
@test TestError(obj3, map3) < 5.
## Evaluate test samples after training
KS_stat1 = KS_statistic(map1,test)
KS_stat2 = KS_statistic(map2,test)
KS_stat3 = KS_statistic(map3,test)
##
@test KS_stat1 < 0.1
@test KS_stat2 < 0.1
@test KS_stat3 < 0.1 | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 434 | # MParT
[](https://MeasureTransport.github.io/MParT.jl/stable/)
[](https://MeasureTransport.github.io/MParT.jl/dev/)
[](https://github.com/MeasureTransport/MParT.jl/actions/workflows/CI.yml?query=branch%3Amain)
| MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 112 | ```@meta
CurrentModule = MParT
```
# _Adaptive_ Map Training Routines
```@docs
TrainMapAdaptive
ATMOptions
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 119 | ```@meta
CurrentModule = MParT
```
# Routines not available via Pkg
```@docs
Serialize
Deserialize
DeserializeMap
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 654 | ```@meta
CurrentModule = MParT
```
# MParT
Documentation for [MParT.jl](https://github.com/MeasureTransport/MParT.jl). This documentation is incomplete and only features some basic functionality. For documentation of all functions as well as source installation instructions, other binding information, and many examples, please look at the [C++ documentation](https://measuretransport.github.io/MParT/). If there's a function there unavailable in Julia, please let the developers know via a GitHub issue.
```@contents
Pages = ["multiindex.md", "map.md", "trainmap.md", "adaptivemap.md", "extras.md"]
```
# General Utilities
```@docs
Concurrency
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 157 | ```@meta
CurrentModule = MParT
```
# Basic map Routines
```@docs
Evaluate
Inverse
ComposedMap
MapOptions
TriangularMap
CreateTriangular
CreateComponent
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 149 | ```@meta
CurrentModule = MParT
```
# MultiIndex-related routines
```@docs
MultiIndex
MultiIndexSet
FixedMultiIndexSet
Fix
CreateTotalOrder
Size
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"BSD-3-Clause"
] | 2.2.2 | d83d40d4553ac35482d51360735140b1a5818808 | docs | 131 | ```@meta
CurrentModule = MParT
```
# Map Training Routines
```@docs
CreateGaussianKLObjective
TrainOptions
TrainMap
TestError
``` | MParT | https://github.com/MeasureTransport/MParT.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 733 | using QuantumESPRESSO
using Documenter
DocMeta.setdocmeta!(QuantumESPRESSO, :DocTestSetup, :(using QuantumESPRESSO); recursive=true)
makedocs(;
modules=[QuantumESPRESSO],
authors="singularitti <[email protected]> and contributors",
repo="https://github.com/MineralsCloud/QuantumESPRESSO.jl/blob/{commit}{path}#{line}",
sitename="QuantumESPRESSO.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://MineralsCloud.github.io/QuantumESPRESSO.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/MineralsCloud/QuantumESPRESSO.jl",
devbranch="main",
)
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 89 | module Commands
using Reexport: @reexport
@reexport using QuantumESPRESSOCommands
end
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 135 | module PHonon
using Reexport: @reexport
@reexport using QuantumESPRESSOBase.PHonon
@reexport using QuantumESPRESSOParser.PHonon
end
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 179 | module PWscf
using Reexport: @reexport
@reexport using QuantumESPRESSOBase.PWscf
@reexport using QuantumESPRESSOParser.PWscf
@reexport using QuantumESPRESSOFormatter.PWscf
end
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 290 | module QuantumESPRESSO
using Reexport: @reexport
@reexport using QuantumESPRESSOBase
@reexport using QuantumESPRESSOParser
@reexport using QuantumESPRESSOParser: InvalidInput
@reexport using QuantumESPRESSOFormatter
include("PWscf.jl")
include("PHonon.jl")
# include("Commands.jl")
end
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | code | 74 | using QuantumESPRESSO
using Test
@testset "QuantumESPRESSO.jl" begin
end
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 5226 | # Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
[email protected].
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 4687 | <div align="center">
<img src="https://raw.githubusercontent.com/MineralsCloud/QuantumESPRESSO.jl/master/docs/src/assets/logo.png" height="200"><br>
</div>
# QuantumESPRESSO
| **Documentation** | **Build Status** | **Others** |
| :--------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: |
| [![Stable][docs-stable-img]][docs-stable-url] [![Dev][docs-dev-img]][docs-dev-url] | [![Build Status][gha-img]][gha-url] [![Build Status][appveyor-img]][appveyor-url] [![Build Status][cirrus-img]][cirrus-url] [![pipeline status][gitlab-img]][gitlab-url] [![Coverage][codecov-img]][codecov-url] | [![GitHub license][license-img]][license-url] [![Code Style: Blue][style-img]][style-url] |
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://MineralsCloud.github.io/QuantumESPRESSO.jl/stable
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://MineralsCloud.github.io/QuantumESPRESSO.jl/dev
[gha-img]: https://github.com/MineralsCloud/QuantumESPRESSO.jl/workflows/CI/badge.svg
[gha-url]: https://github.com/MineralsCloud/QuantumESPRESSO.jl/actions
[appveyor-img]: https://ci.appveyor.com/api/projects/status/github/MineralsCloud/QuantumESPRESSO.jl?svg=true
[appveyor-url]: https://ci.appveyor.com/project/singularitti/QuantumESPRESSO-jl
[cirrus-img]: https://api.cirrus-ci.com/github/MineralsCloud/QuantumESPRESSO.jl.svg
[cirrus-url]: https://cirrus-ci.com/github/MineralsCloud/QuantumESPRESSO.jl
[gitlab-img]: https://gitlab.com/singularitti/QuantumESPRESSO.jl/badges/main/pipeline.svg
[gitlab-url]: https://gitlab.com/singularitti/QuantumESPRESSO.jl/-/pipelines
[codecov-img]: https://codecov.io/gh/MineralsCloud/QuantumESPRESSO.jl/branch/main/graph/badge.svg
[codecov-url]: https://codecov.io/gh/MineralsCloud/QuantumESPRESSO.jl
[license-img]: https://img.shields.io/github/license/MineralsCloud/QuantumESPRESSO.jl
[license-url]: https://github.com/MineralsCloud/QuantumESPRESSO.jl/blob/main/LICENSE
[style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg
[style-url]: https://github.com/invenia/BlueStyle
QuantumESPRESSO.jl is simply a wrapper of the types, methods, and commands defined in
[QuantumESPRESSOBase.jl](https://github.com/MineralsCloud/QuantumESPRESSOBase.jl),
[QuantumESPRESSOParser.jl](https://github.com/MineralsCloud/QuantumESPRESSOParser.jl),
[QuantumESPRESSOFormatter.jl](https://github.com/MineralsCloud/QuantumESPRESSOFormatter.jl),
and [QuantumESPRESSOCommands.jl](https://github.com/MineralsCloud/QuantumESPRESSOCommands.jl)
under a common namespace.
The code is [hosted on GitHub](https://github.com/MineralsCloud/QuantumESPRESSO.jl),
with some continuous integration services to test its validity.
This repository is created and maintained by [@singularitti](https://github.com/singularitti).
You are very welcome to contribute.
## Installation
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```
pkg> add QuantumESPRESSO
```
Or, equivalently, via the [`Pkg` API](https://pkgdocs.julialang.org/v1/getting-started/):
```julia
julia> import Pkg; Pkg.add("QuantumESPRESSO")
```
## Documentation
- [**STABLE**][docs-stable-url] — **documentation of the most recently tagged version.**
- [**DEV**][docs-dev-url] — _documentation of the in-development version._
## Project status
The package is tested against, and being developed for, Julia `1.6` and above on Linux,
macOS, and Windows.
## Questions and contributions
You are welcome to post usage questions on [our discussion page][discussions-url].
Contributions are very welcome, as are feature requests and suggestions. Please open an
[issue][issues-url] if you encounter any problems. The [Contributing](@ref) page has
guidelines that should be followed when opening pull requests and contributing code.
[discussions-url]: https://github.com/MineralsCloud/QuantumESPRESSO.jl/discussions
[issues-url]: https://github.com/MineralsCloud/QuantumESPRESSO.jl/issues
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 2475 | ```@meta
CurrentModule = QuantumESPRESSO
```
# QuantumESPRESSO
Documentation for [QuantumESPRESSO](https://github.com/MineralsCloud/QuantumESPRESSO.jl).
QuantumESPRESSO.jl is simply a wrapper of the types, methods, and commands defined in
[QuantumESPRESSOBase.jl](https://github.com/MineralsCloud/QuantumESPRESSOBase.jl),
[QuantumESPRESSOParser.jl](https://github.com/MineralsCloud/QuantumESPRESSOParser.jl),
[QuantumESPRESSOFormatter.jl](https://github.com/MineralsCloud/QuantumESPRESSOFormatter.jl),
and [QuantumESPRESSOCommands.jl](https://github.com/MineralsCloud/QuantumESPRESSOCommands.jl)
under a common namespace.
See the [Index](@ref main-index) for the complete list of documented functions
and types.
The code is [hosted on GitHub](https://github.com/MineralsCloud/QuantumESPRESSO.jl),
with some continuous integration services to test its validity.
This repository is created and maintained by [@singularitti](https://github.com/singularitti).
You are very welcome to contribute.
## Installation
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```julia
pkg> add QuantumESPRESSO
```
Or, equivalently, via the `Pkg` API:
```@repl
import Pkg; Pkg.add("QuantumESPRESSO")
```
## Documentation
- [**STABLE**](https://MineralsCloud.github.io/QuantumESPRESSO.jl/stable) — **documentation of the most recently tagged version.**
- [**DEV**](https://MineralsCloud.github.io/QuantumESPRESSO.jl/dev) — _documentation of the in-development version._
## Project status
The package is tested against, and being developed for, Julia `1.6` and above on Linux,
macOS, and Windows.
## Questions and contributions
Usage questions can be posted on
[our discussion page](https://github.com/MineralsCloud/QuantumESPRESSO.jl/discussions).
Contributions are very welcome, as are feature requests and suggestions. Please open an
[issue](https://github.com/MineralsCloud/QuantumESPRESSO.jl/issues)
if you encounter any problems. The [Contributing](@ref) page has
a few guidelines that should be followed when opening pull requests and contributing code.
## Manual outline
```@contents
Pages = [
"installation.md",
"developers/contributing.md",
"developers/style-guide.md",
"developers/design-principles.md",
"troubleshooting.md",
]
Depth = 3
```
## Library outline
```@contents
Pages = ["public.md"]
```
### [Index](@id main-index)
```@index
Pages = ["public.md"]
```
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 5297 | # [Installation Guide](@id installation)
```@contents
Pages = ["installation.md"]
Depth = 2
```
Here are the installation instructions for package
[QuantumESPRESSO](https://github.com/MineralsCloud/QuantumESPRESSO.jl).
If you have trouble installing it, please refer to our [Troubleshooting](@ref) page
for more information.
## Install Julia
First, you should install [Julia](https://julialang.org/). We recommend downloading it from
[its official website](https://julialang.org/downloads/). Please follow the detailed
instructions on its website if you have to
[build Julia from source](https://docs.julialang.org/en/v1/devdocs/build/build/).
Some computing centers provide preinstalled Julia. Please contact your administrator for
more information in that case.
Here's some additional information on
[how to set up Julia on HPC systems](https://github.com/hlrs-tasc/julia-on-hpc-systems).
If you have [Homebrew](https://brew.sh) installed,
[open `Terminal.app`](https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac)
and type
```bash
brew install julia
```
to install it as a [formula](https://docs.brew.sh/Formula-Cookbook).
If you are also using macOS and want to install it as a prebuilt binary app, type
```bash
brew install --cask julia
```
instead.
If you want to install multiple Julia versions in the same operating system,
a recommended way is to use a version manager such as
[`juliaup`](https://github.com/JuliaLang/juliaup).
First, [install `juliaup`](https://github.com/JuliaLang/juliaup#installation).
Then, run
```bash
juliaup add release
juliaup default release
```
to configure the `julia` command to start the latest stable version of
Julia (this is also the default value).
There is a [short video introduction to `juliaup`](https://youtu.be/14zfdbzq5BM)
made by its authors.
### Which version should I pick?
You can install the "Current stable release" or the "Long-term support (LTS)
release".
- The "Current stable release" is the latest release of Julia. It has access to
newer features, and is likely faster.
- The "Long-term support release" is an older version of Julia that has
continued to receive bug and security fixes. However, it may not have the
latest features or performance improvements.
For most users, you should install the "Current stable release", and whenever
Julia releases a new version of the current stable release, you should update
your version of Julia. Note that any code you write on one version of the
current stable release will continue to work on all subsequent releases.
For users in restricted software environments (e.g., your enterprise IT controls
what software you can install), you may be better off installing the long-term
support release because you will not have to update Julia as frequently.
Versions higher than `v1.3`,
especially `v1.6`, are strongly recommended. This package may not work on `v1.0` and below.
Since the Julia team has set `v1.6` as the LTS release,
we will gradually drop support for versions below `v1.6`.
Julia and Julia packages support multiple operating systems and CPU architectures; check
[this table](https://julialang.org/downloads/#supported_platforms) to see if it can be
installed on your machine. For Mac computers with M-series processors, this package and its
dependencies may not work. Please install the Intel-compatible version of Julia (for macOS
x86-64) if any platform-related error occurs.
## Install QuantumESPRESSO
Now I am using [macOS](https://en.wikipedia.org/wiki/MacOS) as a standard
platform to explain the following steps:
1. Open `Terminal.app`, and type `julia` to start an interactive session (known as the
[REPL](https://docs.julialang.org/en/v1/stdlib/REPL/)).
2. Run the following commands and wait for them to finish:
```julia-repl
julia> using Pkg
julia> Pkg.update()
julia> Pkg.add("QuantumESPRESSO")
```
3. Run
```julia-repl
julia> using QuantumESPRESSO
```
and have fun!
4. While using, please keep this Julia session alive. Restarting might cost some time.
If you want to install the latest in-development (probably buggy)
version of QuantumESPRESSO, type
```@repl
using Pkg
Pkg.update()
pkg"add https://github.com/MineralsCloud/QuantumESPRESSO.jl"
```
in the second step above.
## Update QuantumESPRESSO
Please [watch](https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications#configuring-your-watch-settings-for-an-individual-repository)
our [GitHub repository](https://github.com/MineralsCloud/QuantumESPRESSO.jl)
for new releases.
Once we release a new version, you can update QuantumESPRESSO by typing
```@repl
using Pkg
Pkg.update("QuantumESPRESSO")
Pkg.gc()
```
in the Julia REPL.
## Uninstall and reinstall QuantumESPRESSO
Sometimes errors may occur if the package is not properly installed.
In this case, you may want to uninstall and reinstall the package. Here is how to do that:
1. To uninstall, in a Julia session, run
```julia-repl
julia> using Pkg
julia> Pkg.rm("QuantumESPRESSO")
julia> Pkg.gc()
```
2. Press `ctrl+d` to quit the current session. Start a new Julia session and
reinstall QuantumESPRESSO.
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 2153 | # Troubleshooting
```@contents
Pages = ["troubleshooting.md"]
Depth = 2
```
This page collects some possible errors you may encounter and trick how to fix them.
If you have some questions about how to use this code, you are welcome to
[discuss with us](https://github.com/MineralsCloud/QuantumESPRESSO.jl/discussions).
If you have additional tips, please either
[report an issue](https://github.com/MineralsCloud/QuantumESPRESSO.jl/issues/new) or
[submit a PR](https://github.com/MineralsCloud/QuantumESPRESSO.jl/compare) with suggestions.
## Installation problems
### Cannot find the `julia` executable
Make sure you have Julia installed in your environment. Please download the latest
[stable version](https://julialang.org/downloads/#current_stable_release) for your platform.
If you are using a *nix system, the recommended way is to use
[Juliaup](https://github.com/JuliaLang/juliaup). If you do not want to install Juliaup
or you are using other platforms that Julia supports, download the corresponding binaries.
Then, create a symbolic link to the Julia executable. If the path is not in your `$PATH`
environment variable, export it to your `$PATH`.
Some clusters, like
[Habanero](https://confluence.columbia.edu/confluence/display/rcs/Habanero+HPC+Cluster+User+Documentation),
[Comet](https://www.sdsc.edu/support/user_guides/comet.html),
or [Expanse](https://www.sdsc.edu/services/hpc/expanse/index.html),
already have Julia installed as a module, you may
just `module load julia` to use it. If not, either install by yourself or contact your
administrator.
## Loading QuantumESPRESSO
### Julia compiles/loads slow
First, we recommend you download the latest version of Julia. Usually, the newest version
has the best performance.
If you just want Julia to do a simple task and only once, you could start the Julia REPL with
```bash
julia --compile=min
```
to minimize compilation or
```bash
julia --optimize=0
```
to minimize optimizations, or just use both. Or you could make a system image
and run with
```bash
julia --sysimage custom-image.so
```
See [Fredrik Ekre's talk](https://youtu.be/IuwxE3m0_QQ?t=313) for details.
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 8770 | # Contributing
```@contents
Pages = ["contributing.md"]
Depth = 2
```
Welcome! This document explains some ways you can contribute to QuantumESPRESSO.
## Code of conduct
This project and everyone participating in it is governed by the
[Contributor Covenant Code of Conduct](https://github.com/MineralsCloud/.github/blob/main/CODE_OF_CONDUCT.md).
By participating, you are expected to uphold this code.
## Join the community forum
First up, join the [community forum](https://github.com/MineralsCloud/QuantumESPRESSO.jl/discussions).
The forum is a good place to ask questions about how to use QuantumESPRESSO. You can also
use the forum to discuss possible feature requests and bugs before raising a
GitHub issue (more on this below).
Aside from asking questions, the easiest way you can contribute to QuantumESPRESSO is to
help answer questions on the forum!
## Improve the documentation
Chances are, if you asked (or answered) a question on the community forum, then
it is a sign that the [documentation](https://MineralsCloud.github.io/QuantumESPRESSO.jl/dev/) could be
improved. Moreover, since it is your question, you are probably the best-placed
person to improve it!
The docs are written in Markdown and are built using
[Documenter.jl](https://github.com/JuliaDocs/Documenter.jl).
You can find the source of all the docs
[here](https://github.com/MineralsCloud/QuantumESPRESSO.jl/tree/main/docs).
If your change is small (like fixing typos or one or two sentence corrections),
the easiest way to do this is via GitHub's online editor. (GitHub has
[help](https://help.github.com/articles/editing-files-in-another-user-s-repository/)
on how to do this.)
If your change is larger or touches multiple files, you will need to make the
change locally and then use Git to submit a
[pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests).
(See [Contribute code to QuantumESPRESSO](@ref) below for more on this.)
## File a bug report
Another way to contribute to QuantumESPRESSO is to file
[bug reports](https://github.com/MineralsCloud/QuantumESPRESSO.jl/issues/new?template=bug_report.md).
Make sure you read the info in the box where you write the body of the issue
before posting. You can also find a copy of that info
[here](https://github.com/MineralsCloud/QuantumESPRESSO.jl/blob/main/.github/ISSUE_TEMPLATE/bug_report.md).
!!! tip
If you're unsure whether you have a real bug, post on the
[community forum](https://github.com/MineralsCloud/QuantumESPRESSO.jl/discussions)
first. Someone will either help you fix the problem or let you know the
most appropriate place to open a bug report.
## Contribute code to QuantumESPRESSO
Finally, you can also contribute code to QuantumESPRESSO!
!!! warning
If you do not have experience with Git, GitHub, and Julia development, the
first steps can be a little daunting. However, there are lots of tutorials
available online, including:
- [GitHub](https://guides.github.com/activities/hello-world/)
- [Git and GitHub](https://try.github.io/)
- [Git](https://git-scm.com/book/en/v2)
- [Julia package development](https://docs.julialang.org/en/v1/stdlib/Pkg/#Developing-packages-1)
Once you are familiar with Git and GitHub, the workflow for contributing code to
QuantumESPRESSO is similar to the following:
### Step 1: decide what to work on
The first step is to find an [open issue](https://github.com/MineralsCloud/QuantumESPRESSO.jl/issues)
(or open a new one) for the problem you want to solve. Then, _before_ spending
too much time on it, discuss what you are planning to do in the issue to see if
other contributors are fine with your proposed changes. Getting feedback early can
improve code quality and avoid time spent writing code that does not get merged into
QuantumESPRESSO.
!!! tip
At this point, remember to be patient and polite; you may get a _lot_ of
comments on your issue! However, do not be afraid! Comments mean that people are
willing to help you improve the code that you are contributing to QuantumESPRESSO.
### Step 2: fork QuantumESPRESSO
Go to [https://github.com/MineralsCloud/QuantumESPRESSO.jl](https://github.com/MineralsCloud/QuantumESPRESSO.jl)
and click the "Fork" button in the top-right corner. This will create a copy of
QuantumESPRESSO under your GitHub account.
### Step 3: install QuantumESPRESSO locally
Similar to [Installation](@ref), open the Julia REPL and run:
```@repl
using Pkg
Pkg.update()
Pkg.develop("QuantumESPRESSO")
```
Then the package will be cloned to your local machine. On *nix systems, the default path is
`~/.julia/dev/QuantumESPRESSO` unless you modify the
[`JULIA_DEPOT_PATH`](http://docs.julialang.org/en/v1/manual/environment-variables/#JULIA_DEPOT_PATH-1)
environment variable. If you're on
Windows, this will be `C:\\Users\\<my_name>\\.julia\\dev\\QuantumESPRESSO`.
In the following text, we will call it `PKGROOT`.
Go to `PKGROOT`, start a new Julia session, and run
```@repl
using Pkg
Pkg.instantiate()
```
to instantiate the project.
### Step 4: checkout a new branch
!!! note
In the following, replace any instance of `GITHUB_ACCOUNT` with your GitHub
username.
The next step is to check out a development branch. In a terminal (or command
prompt on Windows), run:
```bash
cd ~/.julia/dev/QuantumESPRESSO
git remote add GITHUB_ACCOUNT https://github.com/GITHUB_ACCOUNT/QuantumESPRESSO.jl.git
git checkout main
git pull
git checkout -b my_new_branch
```
### Step 5: make changes
Now make any changes to the source code inside the `~/.julia/dev/QuantumESPRESSO`
directory.
Make sure you:
- Follow our [Style Guide](@ref style) and [Run JuliaFormatter](@ref).
- Add tests and documentation for any changes or new features.
!!! tip
When you change the source code, you'll need to restart Julia for the
changes to take effect. This is a pain, so install
[Revise.jl](https://github.com/timholy/Revise.jl).
### Step 6a: test your code changes
To test that your changes work, run the QuantumESPRESSO test-suite by opening Julia and
running:
```julia-repl
julia> cd(joinpath(DEPOT_PATH[1], "dev", "QuantumESPRESSO"))
julia> using Pkg
julia> Pkg.activate(".")
Activating new project at `~/.julia/dev/QuantumESPRESSO`
julia> Pkg.test()
```
!!! warning
Running the tests might take a long time.
!!! tip
If you are using Revise.jl, you can also run the tests by calling `include`:
```julia-repl
include("test/runtests.jl")
```
This can be faster if you want to re-run the tests multiple times.
### Step 6b: test your documentation changes
Open Julia, then run:
```julia-repl
julia> cd(joinpath(DEPOT_PATH[1], "dev", "QuantumESPRESSO", "docs"))
julia> using Pkg
julia> Pkg.activate(".")
Activating new project at `~/.julia/dev/QuantumESPRESSO/docs`
julia> include("src/make.jl")
```
After a while, a folder `PKGROOT/docs/build` will appear. Open
`PKGROOT/docs/build/index.html` with your favorite browser, and have fun!
!!! warning
Building the documentation might take a long time.
!!! tip
If there's a problem with the tests that you don't know how to fix, don't
worry. Continue to step 5, and one of the QuantumESPRESSO contributors will comment
on your pull request, telling you how to fix things.
### Step 7: make a pull request
Once you've made changes, you're ready to push the changes to GitHub. Run:
```bash
cd ~/.julia/dev/QuantumESPRESSO
git add .
git commit -m "A descriptive message of the changes"
git push -u GITHUB_ACCOUNT my_new_branch
```
Then go to [https://github.com/MineralsCloud/QuantumESPRESSO.jl/pulls](https://github.com/MineralsCloud/QuantumESPRESSO.jl/pulls)
and follow the instructions that pop up to open a pull request.
### Step 8: respond to comments
At this point, remember to be patient and polite; you may get a _lot_ of
comments on your pull request! However, do not be afraid! A lot of comments
means that people are willing to help you improve the code that you are
contributing to QuantumESPRESSO.
To respond to the comments, go back to step 5, make any changes, test the
changes in step 6, and then make a new commit in step 7. Your PR will
automatically update.
### Step 9: cleaning up
Once the PR is merged, clean-up your Git repository, ready for the
next contribution!
```bash
cd ~/.julia/dev/QuantumESPRESSO
git checkout main
git pull
```
!!! note
If you have suggestions to improve this guide, please make a pull request!
It's particularly helpful if you do this after your first pull request
because you'll know all the parts that could be explained better.
Thanks for contributing to QuantumESPRESSO!
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 15260 | # Design Principles
```@contents
Pages = ["design-principles.md"]
Depth = 2
```
We adopt some [`SciML`](https://sciml.ai/) design [guidelines](https://github.com/SciML/SciMLStyle)
here. Please read it before contributing!
## Consistency vs adherence
According to PEP8:
> A style guide is about consistency. Consistency with this style guide is important.
> Consistency within a project is more important. Consistency within one module or function is the most important.
>
> However, know when to be inconsistent—sometimes style guide recommendations just aren't
> applicable. When in doubt, use your best judgment. Look at other examples and decide what
> looks best. And don’t hesitate to ask!
## Community contribution guidelines
For a comprehensive set of community contribution guidelines, refer to [ColPrac](https://github.com/SciML/ColPrac).
A relevant point to highlight PRs should do one thing. In the context of style, this means that PRs which update
the style of a package's code should not be mixed with fundamental code contributions. This separation makes it
easier to ensure that large style improvement are isolated from substantive (and potentially breaking) code changes.
## Open source contributions are allowed to start small and grow over time
If the standard for code contributions is that every PR needs to support every possible input type that anyone can
think of, the barrier would be too high for newcomers. Instead, the principle is to be as correct as possible to
begin with, and grow the generic support over time. All recommended functionality should be tested, any known
generality issues should be documented in an issue (and with a `@test_broken` test when possible).
## Generic code is preferred unless code is known to be specific
For example, the code:
```@repl
function f(A, B)
for i in 1:length(A)
A[i] = A[i] + B[i]
end
end
```
would not be preferred for two reasons. One is that it assumes `A` uses one-based indexing, which would fail in cases
like [OffsetArrays](https://github.com/JuliaArrays/OffsetArrays.jl) and [FFTViews](https://github.com/JuliaArrays/FFTViews.jl).
Another issue is that it requires indexing, while not all array types support indexing (for example,
[CuArrays](https://github.com/JuliaGPU/CuArrays.jl)). A more generic compatible implementation of this function would be
to use broadcast, for example:
```@repl
function f(A, B)
@. A = A + B
end
```
which would allow support for a wider variety of array types.
## Internal types should match the types used by users when possible
If `f(A)` takes the input of some collections and computes an output from those collections, then it should be
expected that if the user gives `A` as an `Array`, the computation should be done via `Array`s. If `A` was a
`CuArray`, then it should be expected that the computation should be internally done using a `CuArray` (or appropriately
error if not supported). For these reasons, constructing arrays via generic methods, like `similar(A)`, is preferred when
writing `f` instead of using non-generic constructors like `Array(undef,size(A))` unless the function is documented as
being non-generic.
## Trait definition and adherence to generic interface is preferred when possible
Julia provides many interfaces, for example:
- [Iteration](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration)
- [Indexing](https://docs.julialang.org/en/v1/manual/interfaces/#Indexing)
- [Broadcast](https://docs.julialang.org/en/v1/manual/interfaces/#man-interfaces-broadcasting)
Those interfaces should be followed when possible. For example, when defining broadcast overloads,
one should implement a `BroadcastStyle` as suggested by the documentation instead of simply attempting
to bypass the broadcast system via `copyto!` overloads.
When interface functions are missing, these should be added to Base Julia or an interface package,
like [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl). Such traits should be
declared and used when appropriate. For example, if a line of code requires mutation, the trait
`ArrayInterface.ismutable(A)` should be checked before attempting to mutate, and informative error
messages should be written to capture the immutable case (or, an alternative code which does not
mutate should be given).
One example of this principle is demonstrated in the generation of Jacobian matrices. In many scientific
applications, one may wish to generate a Jacobian cache from the user's input `u0`. A naive way to generate
this Jacobian is `J = similar(u0,length(u0),length(u0))`. However, this will generate a Jacobian `J` such
that `J isa Matrix`.
## Macros should be limited and only be used for syntactic sugar
Macros define new syntax, and for this reason they tend to be less composable than other coding styles
and require prior familiarity to be easily understood. One principle to keep in mind is, "can the person
reading the code easily picture what code is being generated?". For example, a user of Soss.jl may not know
what code is being generated by:
```julia
@model (x, α) begin
σ ~ Exponential()
β ~ Normal()
y ~ For(x) do xj
Normal(α + β * xj, σ)
end
return y
end
```
and thus using such a macro as the interface is not preferred when possible. However, a macro like
[`@muladd`](https://github.com/SciML/MuladdMacro.jl) is trivial to picture on a code (it recursively
transforms `a*b + c` to `muladd(a,b,c)` for more
[accuracy and efficiency](https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation)), so using
such a macro for example:
```julia
julia> @macroexpand(@muladd k3 = f(t + c3 * dt, @. uprev + dt * (a031 * k1 + a032 * k2)))
:(k3 = f((muladd)(c3, dt, t), (muladd).(dt, (muladd).(a032, k2, (*).(a031, k1)), uprev)))
```
is recommended. Some macros in this category are:
- `@inbounds`
- [`@muladd`](https://github.com/SciML/MuladdMacro.jl)
- `@view`
- [`@named`](https://github.com/SciML/ModelingToolkit.jl)
- `@.`
- [`@..`](https://github.com/YingboMa/FastBroadcast.jl)
Some performance macros, like `@simd`, `@threads`, or
[`@turbo` from LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl),
make an exception in that their generated code may be foreign to many users. However, they still are
classified as appropriate uses as they are syntactic sugar since they do (or should) not change the behavior
of the program in measurable ways other than performance.
## Errors should be caught as high as possible, and error messages should be contextualized for newcomers
Whenever possible, defensive programming should be used to check for potential errors before they are encountered
deeper within a package. For example, if one knows that `f(u0,p)` will error unless `u0` is the size of `p`, this
should be caught at the start of the function to throw a domain specific error, for example "parameters and initial
condition should be the same size".
## Subpackaging and interface packages is preferred over conditional modules via Requires.jl
Requires.jl should be avoided at all costs. If an interface package exists, such as
[ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl) for defining automatic differentiation
rules without requiring a dependency on the whole ChainRules.jl system, or
[RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl) which allows for defining Plots.jl
plot recipes without a dependency on Plots.jl, a direct dependency on these interface packages is
preferred.
Otherwise, instead of resorting to a conditional dependency using Requires.jl, it is
preferred one creates subpackages, i.e. smaller independent packages kept within the same Github repository
with independent versioning and package management. An example of this is seen in
[Optimization.jl](https://github.com/SciML/Optimization.jl) which has subpackages like
[OptimizationBBO.jl](https://github.com/SciML/Optimization.jl/tree/master/lib/OptimizationBBO) for
BlackBoxOptim.jl support.
Some important interface packages to know about are:
- [ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl)
- [RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl)
- [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl)
- [CommonSolve.jl](https://github.com/SciML/CommonSolve.jl)
- [SciMLBase.jl](https://github.com/SciML/SciMLBase.jl)
## Functions should either attempt to be non-allocating and reuse caches, or treat inputs as immutable
Mutating codes and non-mutating codes fall into different worlds. When a code is fully immutable,
the compiler can better reason about dependencies, optimize the code, and check for correctness.
However, many times a code making the fullest use of mutation can outperform even what the best compilers
of today can generate. That said, the worst of all worlds is when code mixes mutation with non-mutating
code. Not only is this a mishmash of coding styles, it has the potential non-locality and compiler
proof issues of mutating code while not fully benefiting from the mutation.
## Out-of-place and immutability is preferred when sufficient performant
Mutation is used to get more performance by decreasing the amount of heap allocations. However,
if it's not helpful for heap allocations in a given spot, do not use mutation. Mutation is scary
and should be avoided unless it gives an immediate benefit. For example, if
matrices are sufficiently large, then `A*B` is as fast as `mul!(C,A,B)`, and thus writing
`A*B` is preferred (unless the rest of the function is being careful about being fully non-allocating,
in which case this should be `mul!` for consistency).
Similarly, when defining types, using `struct` is preferred to `mutable struct` unless mutating
the struct is a common occurrence. Even if mutating the struct is a common occurrence, see whether
using [Setfield.jl](https://github.com/jw3126/Setfield.jl) is sufficient. The compiler will optimize
the construction of immutable structs, and thus this can be more efficient if it's not too much of a
code hassle.
## Tests should attempt to cover a wide gamut of input types
Code coverage numbers are meaningless if one does not consider the input types. For example, one can
hit all the code with `Array`, but that does not test whether `CuArray` is compatible! Thus, it's
always good to think of coverage not in terms of lines of code but in terms of type coverage. A good
list of number types to think about are:
- `Float64`
- `Float32`
- `Complex`
- [`Dual`](https://github.com/JuliaDiff/ForwardDiff.jl)
- `BigFloat`
Array types to think about testing are:
- `Array`
- [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl)
- [`CuArray`](https://github.com/JuliaGPU/CUDA.jl)
## When in doubt, a submodule should become a subpackage or separate package
Keep packages to one core idea. If there's something separate enough to be a submodule, could it
instead be a separate well-tested and documented package to be used by other packages? Most likely
yes.
## Globals should be avoided whenever possible
Global variables should be avoided whenever possible. When required, global variables should be
constants and have an all uppercase name separated with underscores (e.g. `MY_CONSTANT`). They should be
defined at the top of the file, immediately after imports and exports but before an `__init__` function.
If you truly want mutable global style behavior you may want to look into mutable containers.
## Type-stable and type-grounded code is preferred wherever possible
Type-stable and type-grounded code helps the compiler create not only more optimized code, but also
faster to compile code. Always keep containers well-typed, functions specializing on the appropriate
arguments, and types concrete.
## Closures should be avoided whenever possible
Closures can cause accidental type instabilities that are difficult to track down and debug; in the
long run it saves time to always program defensively and avoid writing closures in the first place,
even when a particular closure would not have been problematic. A similar argument applies to reading
code with closures; if someone is looking for type instabilities, this is faster to do when code does
not contain closures.
See examples [here](https://discourse.julialang.org/t/are-closures-should-be-avoided-whenever-possible-still-valid-in-julia-v1-9/95893/5).
Furthermore, if you want to update variables in an outer scope, do so explicitly with `Ref`s or self
defined structs.
## Numerical functionality should use the appropriate generic numerical interfaces
While you can use `A\b` to do a linear solve inside a package, that does not mean that you should.
This interface is only sufficient for performing factorizations, and so that limits the scaling
choices, the types of `A` that can be supported, etc. Instead, linear solves within packages should
use LinearSolve.jl. Similarly, nonlinear solves should use NonlinearSolve.jl. Optimization should use
Optimization.jl. Etc. This allows the full generic choice to be given to the user without depending
on every solver package (effectively recreating the generic interfaces within each package).
## Functions should capture one underlying principle
Functions mean one thing. Every dispatch of `+` should be "the meaning of addition on these types".
While in theory you could add dispatches to `+` that mean something different, that will fail in
generic code for which `+` means addition. Thus, for generic code to work, code needs to adhere to
one meaning for each function. Every dispatch should be an instantiation of that meaning.
## Internal choices should be exposed as options whenever possible
Whenever possible, numerical values and choices within scripts should be exposed as options
to the user. This promotes code reusability beyond the few cases the author may have expected.
## Prefer code reuse over rewrites whenever possible
If a package has a function you need, use the package. Add a dependency if you need to. If the
function is missing a feature, prefer to add that feature to said package and then add it as a
dependency. If the dependency is potentially troublesome, for example because it has a high
load time, prefer to spend time helping said package fix these issues and add the dependency.
Only when it does not seem possible to make the package "good enough" should using the package
be abandoned. If it is abandoned, consider building a new package for this functionality as you
need it, and then make it a dependency.
## Prefer to not shadow functions
Two functions can have the same name in Julia by having different namespaces. For example,
`X.f` and `Y.f` can be two different functions, with different dispatches, but the same name.
This should be avoided whenever possible. Instead of creating `MyPackage.sort`, consider
adding dispatches to `Base.sort` for your types if these new dispatches match the underlying
principle of the function. If it doesn't, prefer to use a different name. While using `MyPackage.sort`
is not conflicting, it is going to be confusing for most people unfamiliar with your code,
so `MyPackage.special_sort` would be more helpful to newcomers reading the code.
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.11.0 | 0aa4c2634bd49313759411a3c22b3f0338b7739e | docs | 2239 | # [Style Guide](@id style)
This section describes the coding style rules that apply to our code and that
we recommend you to use it also.
In some cases, our style guide diverges from Julia's official
[Style Guide](https://docs.julialang.org/en/v1/manual/style-guide/) (Please read it!).
All such cases will be explicitly noted and justified.
Our style guide adopts many recommendations from the
[BlueStyle](https://github.com/invenia/BlueStyle).
Please read the [BlueStyle](https://github.com/invenia/BlueStyle)
before contributing to this package.
If not following, your pull requests may not be accepted.
!!! info
The style guide is always a work in progress, and not all QuantumESPRESSO code
follows the rules. When modifying QuantumESPRESSO, please fix the style violations
of the surrounding code (i.e., leave the code tidier than when you
started). If large changes are needed, consider separating them into
another pull request.
## Formatting
### Run JuliaFormatter
QuantumESPRESSO uses [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) as
an auto-formatting tool.
We use the options contained in [`.JuliaFormatter.toml`](https://github.com/MineralsCloud/QuantumESPRESSO.jl/blob/main/.JuliaFormatter.toml).
To format your code, `cd` to the QuantumESPRESSO directory, then run:
```@repl
using Pkg
Pkg.add("JuliaFormatter")
using JuliaFormatter: format
format("docs")
format("src")
format("test")
```
!!! info
A continuous integration check verifies that all PRs made to QuantumESPRESSO have
passed the formatter.
The following sections outline extra style guide points that are not fixed
automatically by JuliaFormatter.
### Use the Julia extension for Visual Studio Code
Please use [Visual Studio Code](https://code.visualstudio.com/) with the
[Julia extension](https://marketplace.visualstudio.com/items?itemName=julialang.language-julia)
to edit, format, and test your code.
We do not recommend using other editors to edit your code for the time being.
This extension already has [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl)
integrated. So to format your code, follow the steps listed
[here](https://www.julia-vscode.org/docs/stable/userguide/formatter/).
| QuantumESPRESSO | https://github.com/MineralsCloud/QuantumESPRESSO.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 241 | using Justly
using Documenter: deploydocs, makedocs
makedocs(
sitename = "Justly.jl",
modules = [Justly],
doctest = false,
pages = ["Public interface" => "index.md"],
)
deploydocs(repo = "github.com/bramtayl/Justly.jl.git")
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 2675 | mutable struct Chord
modulation::Modulation
words::String
notes::Vector{Note}
# separate list model for qml
notes_model::ListModel
note_cursor::Int
end
export Chord
function Chord(
instruments;
modulation = Modulation(),
words = "",
notes = Note[],
note_cursor = 0,
)
Chord(modulation, words, notes, make_list_model(notes, instruments), note_cursor)
end
function as_dict(chord::Chord)
Dict(
"modulation" => as_dict(chord.modulation),
"words" => chord.words,
"notes" => map(as_dict, chord.notes),
)
end
function from_dict(::Type{Chord}, dict, instruments)
Chord(
instruments;
modulation = from_dict(Modulation, dict["modulation"]),
words = dict["words"],
notes = map(dict["notes"]) do dict
from_dict(Note, dict, instruments)
end,
)
end
function make_list_model(chords::Vector{Chord}, instruments)
list_model = ListModel(chords, false)
# convert ints back and forth to floats for qml
# direct access to interval fields for qml
addrole(
list_model,
"numerator",
item -> float(item.modulation.interval.numerator),
(list, new_value, index) ->
list[index].modulation.interval.numerator = round(Int, new_value),
)
addrole(
list_model,
"denominator",
item -> float(item.modulation.interval.denominator),
(list, new_value, index) ->
list[index].modulation.interval.denominator = round(Int, new_value),
)
addrole(
list_model,
"octave",
item -> float(item.modulation.interval.octave),
(list, new_value, index) ->
list[index].modulation.interval.octave = round(Int, new_value),
)
addrole(
list_model,
"beats",
item -> float(item.modulation.beats),
(list, new_value, index) -> list[index].modulation.beats = round(Int, new_value),
)
addrole(
list_model,
"note_cursor",
item -> float(item.note_cursor),
(list, new_value, index) -> list[index].note_cursor = round(Int, new_value),
)
addrole(
list_model,
"volume",
item -> item.modulation.volume,
(list, new_value, index) -> list[index].modulation.volume = new_value,
)
addrole(
list_model,
"words",
item -> item.words,
(list, new_value, index) -> list[index].words = new_value,
)
addrole(list_model, "notes_model", item -> item.notes_model)
setconstructor(list_model, let instruments = instruments
() -> Chord(instruments)
end)
list_model
end
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 4633 | """
default_wave(x)
A wave with many overtones, namely,
sin(x) +
0.2sin(2x) +
0.166sin(3x) +
0.133sin(4x) +
0.1sin(5x) +
0.066sin(6x) +
0.033sin(7x)
"""
function default_wave(x)
sin(x) +
0.2sin(2x) +
0.166sin(3x) +
0.133sin(4x) +
0.1sin(5x) +
0.066sin(6x) +
0.033sin(7x)
end
export default_wave
const INSTRUMENT_ARGUMENT_TYPES =
(AudioSchedule, typeof(0.0s), typeof(1.0s), Float64, typeof(440.0Hz))
"""
pulse!(audio_schedule, start_time, duration, volume, frequency;
ramp_duration = 0.07s,
decay_rate = -4/s
)
A function for an [`Instrument`](@ref).
Uses the wave function [`default_wave`](@ref).
Add an envelope with an exponential `decay_rate` and ramps of `ramp_duration` at the beginning and end.
"""
function pulse!(
audio_schedule,
start_time,
duration,
volume,
frequency;
ramp_duration = 0.07s,
decay_rate = -4 / s,
)
sustain_duration = duration - ramp_duration
push!(
audio_schedule,
Map(default_wave, Cycles(frequency)),
start_time,
if duration < ramp_duration
@envelope(0, Line => duration / 2, volume, Line => duration / 2, 0)
else
@envelope(
0,
Line => ramp_duration,
volume,
Grow => sustain_duration,
volume * exp(sustain_duration * decay_rate),
Line => ramp_duration,
0
)
end,
)
end
precompile(pulse!, INSTRUMENT_ARGUMENT_TYPES)
export pulse!
"""
sustain!(audio_schedule, start_time, duration, volume, frequency;
ramp_duration = 0.07s
)
A function for an [`Instrument`](@ref).
Uses the wave function [`default_wave`](@ref).
Add an envelope with ramps of `ramp_duration` at the beginning and end.
"""
function sustain!(
audio_schedule,
start_time,
duration,
volume,
frequency;
ramp_duration = 0.07s,
)
sustain_duration = duration - ramp_duration
push!(
audio_schedule,
Map(default_wave, Cycles(frequency)),
start_time,
if duration < ramp_duration
@envelope(0, Line => duration / 2, volume, Line => duration / 2, 0)
else
@envelope(
0,
Line => ramp_duration,
volume,
Line => sustain_duration,
volume,
Line => ramp_duration,
0
)
end,
)
end
precompile(sustain!, INSTRUMENT_ARGUMENT_TYPES)
"""
Instrument(note_function!, name)
Use an `Instrument` to play a note in the style of an instrument.
`note_function!` will be called as follows:
note_function!(audio_schedule, start_time, duration, volume, frequency)
where
- `audio_schedule` is an `AudioSchedules.AudioSchedule` to add the note to.
- `start_time` is a start time in seconds, like `0.0s`.
- `duration` is a duration in seconds, like `1.0s`
- `volume` is a ratio between 0 and 1.
- `frequency` is the frequency of the note in hertz, like `440.0Hz`.
"""
struct Instrument
note_function!::FunctionWrapper{Nothing, Tuple{INSTRUMENT_ARGUMENT_TYPES...}}
name::String
end
export Instrument
function make_list_model(instruments::Vector{Instrument})
list_model = ListModel(instruments, false)
addrole(list_model, "text", instrument -> instrument.name)
list_model
end
function get_instrument_number(instruments, instrument)
instrument_number = findfirst(
let instrument = instrument
possible_instrument -> possible_instrument === instrument
end,
instruments,
)
if instrument_number === nothing
throw(ArgumentError("Instrument \"$(instrument.instrument_name)\" not found!"))
else
instrument_number
end
end
function get_instrument(instruments, instrument_name)
instrument_number = findfirst(let instrument_name = instrument_name
instrument -> instrument.name == instrument_name
end, instruments)
if instrument_number === nothing
throw(ArgumentError("Instrument \"$instrument_name\" not found!"))
else
instrument_number
end
instruments[instrument_number]
end
"""
DEFAULT_INSTRUMENTS
The default [`Instrument`]s available in [`read_justly`](@ref) and [`edit_justly`](@ref), namely,
```julia
[Instrument(pulse!, "pulse!"), Instrument(sustain!, "sustain!")]
```
See [`pulse!`](@ref) and [`sustain!`](@ref).
"""
const DEFAULT_INSTRUMENTS = [Instrument(pulse!, "pulse!"), Instrument(sustain!, "sustain!")]
export DEFAULT_INSTRUMENTS
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 683 | mutable struct Interval
numerator::Int
denominator::Int
octave::Int
end
function Interval(; numerator = 1, denominator = 1, octave = 0)
Interval(numerator, denominator, octave)
end
function Rational(interval::Interval)
interval.numerator // interval.denominator * (2 // 1)^interval.octave
end
function as_dict(interval::Interval)
Dict(
"numerator" => interval.numerator,
"denominator" => interval.denominator,
"octave" => interval.octave,
)
end
function from_dict(::Type{Interval}, dict)
Interval(
numerator = dict["numerator"],
denominator = dict["denominator"],
octave = dict["octave"],
)
end
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 4941 | module Justly
import AudioSchedules: AudioSchedule
using AudioSchedules:
compile,
Cycles,
@envelope,
Grow,
Line,
make_series,
Map,
Scale,
write_buffer,
write_series!
import Base: parse, print, push!, Rational, show
using Base: catch_backtrace
using Base.Meta: ParseError
using Base.Threads: @spawn
using FunctionWrappers: FunctionWrapper
using Observables: Observable
using PortAudio: Buffer, PortAudioStream
using QML:
addrole,
exec,
JuliaPropertyMap,
ListModel,
loadqml,
# to avoid QML bug
QML,
qmlfunction,
setconstructor
using Qt5QuickControls2_jll: Qt5QuickControls2_jll
using YAML: load_file, write_file
using Unitful: Hz, s
# reexport to avoid a QML bug
export QML
include("Instrument.jl")
include("Interval.jl")
include("Modulation.jl")
include("Note.jl")
include("Chord.jl")
include("Song.jl")
function add_press!(audio_schedule, song, press_type, @nospecialize press_arguments)
if press_type == "play notes"
add_notes!(audio_schedule, song, press_arguments...)
elseif press_type == "play chords"
add_chords!(audio_schedule, song, press_arguments...)
else
throw(ArgumentError("Press type \"$press_type\" not recognized"))
end
end
function consume!(presses, stream, song, audio_schedule)
precompiling_observable = song.precompiling_observable
for (press_type, press_arguments) in presses
audio_schedule.is_on[] = true
add_press!(audio_schedule, song, press_type, press_arguments)
precompiling_observable[] = true
compile(stream, audio_schedule)
precompiling_observable[] = false
GC.enable(false)
write(stream, audio_schedule)
GC.enable(true)
empty!(audio_schedule)
end
end
"""
function edit_justly(song_file, instruments = DEFAULT_INSTRUMENTS;
test = false
)
Use to edit songs interactively.
The interface might be slow at first while Julia is compiling.
- `song_file` is a YAML file. Will be created if it doesn't exist.
- `instruments` are a vector of [`Instrument`](@ref)s, with the default [`DEFAULT_INSTRUMENTS`](@ref).
For more information, see the `README`.
```julia
julia> using Justly
julia> edit_justly(joinpath(pkgdir(Justly), "examples", "simple.yml"))
```
"""
function edit_justly(song_file, instruments = DEFAULT_INSTRUMENTS; test = false)
song = if isfile(song_file)
read_justly(song_file, instruments)
else
dir_name = dirname(song_file)
if !(isempty(dir_name)) && !(isdir(dir_name))
throw(ArgumentError("Folder doesn't exist!"))
end
@info "Creating file $song_file"
Song(instruments)
end
instruments = song.instruments
presses = Channel{Tuple{String, Tuple}}(0)
stream = PortAudioStream(0, 1; latency = 0.2, warn_xruns = false)
try
audio_schedule = AudioSchedule(; sample_rate = (stream.sample_rate)Hz)
# precompile the whole song
push!(audio_schedule, song)
compile(stream, audio_schedule)
empty!(audio_schedule)
consume_task = @spawn consume!($presses, $stream, $song, $audio_schedule)
try
qmlfunction(
"press",
let presses = presses
(action_type, arguments...) -> put!(presses, (action_type, arguments))
end,
)
qmlfunction("release", let is_on = audio_schedule.is_on
() -> is_on[] = false
end)
loadqml(
joinpath(@__DIR__, "Song.qml");
test = test,
chords_model = make_list_model(song.chords, instruments),
instruments_model = make_list_model(instruments),
empty_notes_model = make_list_model(Note[], instruments),
julia_arguments = JuliaPropertyMap(
"volume" => song.volume_observable,
"frequency" => song.frequency_observable,
"tempo" => song.tempo_observable,
"precompiling" => song.precompiling_observable,
),
)
exec()
if test
# precompile before each play
# play the second note of the second chord
put!(presses, ("play notes", (2, 2, 2)))
# play the second chord
put!(presses, ("play chords", (2, 2)))
# play starting with the second chord
put!(presses, ("play chords", (2,)))
end
catch an_error
showerror(stdout, an_error, catch_backtrace())
finally
close(presses)
wait(consume_task)
end
finally
close(stream)
end
write_justly(song_file, song)
end
export edit_justly
precompile(edit_justly, (String,))
end
# TODO:
# undo/redo
# copy/paste
# change tempo?
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 585 | mutable struct Modulation
interval::Interval
beats::Int
volume::Float64
end
function Modulation(; interval = Interval(), beats = 1, volume = 1)
Modulation(interval, beats, volume)
end
function as_dict(modulation::Modulation)
Dict(
"interval" => as_dict(modulation.interval),
"beats" => modulation.beats,
"volume" => modulation.volume,
)
end
function from_dict(::Type{Modulation}, dict)
Modulation(
interval = from_dict(Interval, dict["interval"]),
beats = dict["beats"],
volume = dict["volume"],
)
end
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 2372 | mutable struct Note
instrument::Instrument
interval::Interval
beats::Int
volume::Float64
end
function Note(instrument; interval = Interval(), beats = 1, volume = 1.0)
Note(instrument, interval, beats, volume)
end
function as_dict(note::Note)
Dict(
"instrument_name" => note.instrument.name,
"interval" => as_dict(note.interval),
"beats" => note.beats,
"volume" => note.volume,
)
end
function from_dict(::Type{Note}, dict, instruments)
Note(
get_instrument(instruments, dict["instrument_name"]);
interval = from_dict(Interval, dict["interval"]),
beats = dict["beats"],
volume = dict["volume"],
)
end
function make_list_model(notes::Vector{Note}, instruments)
list_model = ListModel(notes, false)
# convert ints back and forth to floats for qml
# direct access to interval fields for qml
addrole(
list_model,
"numerator",
item -> float(item.interval.numerator),
(list, new_value, index) -> list[index].interval.numerator = round(Int, new_value),
)
addrole(
list_model,
"denominator",
item -> float(item.interval.denominator),
(list, new_value, index) ->
list[index].interval.denominator = round(Int, new_value),
)
addrole(
list_model,
"octave",
item -> float(item.interval.octave),
(list, new_value, index) -> list[index].interval.octave = round(Int, new_value),
)
addrole(
list_model,
"beats",
item -> float(item.beats),
(list, new_value, index) -> list[index].beats = round(Int, new_value),
)
# add and subtract 1 for zero-based indexing
addrole(
list_model,
"instrument_number",
let instruments = instruments
item -> get_instrument_number(instruments, item.instrument) - 1
end,
let instruments = instruments
(list, new_value, index) ->
list[index].instrument = instruments[round(Int, new_value) + 1]
end,
)
addrole(
list_model,
"volume",
item -> item.volume,
(list, new_value, index) -> list[index].volume = new_value,
)
setconstructor(list_model, let instrument = instruments[1]
() -> Note(instrument)
end)
list_model
end
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 4742 |
struct Song
instruments::Vector{Instrument}
chords::Vector{Chord}
# use observables so changes in qml will propagate back
volume_observable::Observable{Float64}
frequency_observable::Observable{Float64}
tempo_observable::Observable{Float64}
precompiling_observable::Observable{Bool}
end
function Song(
instruments;
chords = Chord[],
volume = 0.2,
frequency = 200.0,
tempo = 200.0,
precompiling = false,
)
Song(
instruments,
chords,
Observable(volume),
Observable(frequency),
Observable(tempo),
Observable(precompiling),
)
end
function as_dict(song::Song)
Dict(
"volume" => song.volume_observable[],
"frequency" => song.frequency_observable[],
"tempo" => song.tempo_observable[],
"chords" => map(as_dict, song.chords),
)
end
function from_dict(::Type{Song}, dict, instruments)
Song(
instruments;
volume = dict["volume"],
frequency = dict["frequency"],
tempo = dict["tempo"],
chords = map(dict["chords"]) do dict
from_dict(Chord, dict, instruments)
end,
)
end
"""
read_justly(file, instruments = DEFAULT_INSTRUMENTS)
Create a `Song` from a song file.
`instruments` are a vector of [`Instrument`](@ref)s, with the default [`DEFAULT_INSTRUMENTS`](@ref).
```jldoctest read_justly
julia> using Justly
julia> song = read_justly(joinpath(pkgdir(Justly), "examples", "simple.yml"));
```
You can add a song to an `AudioSchedule` at a start time.
You can use this to overlap multiple songs at differnt times.
```jldoctest read_justly
julia> using AudioSchedules: AudioSchedule, Hz, s
julia> audio_schedule = AudioSchedule(sample_rate = 44100Hz)
0.0 s 44100.0 Hz AudioSchedule
julia> push!(audio_schedule, song, 0.0s)
julia> push!(audio_schedule, song, 1.0s)
julia> audio_schedule
2.27 s 44100.0 Hz AudioSchedule
```
"""
function read_justly(file, instruments = DEFAULT_INSTRUMENTS)
from_dict(Song, load_file(file), instruments)
end
precompile(read_justly, (String, Vector{Instrument}))
function write_justly(file, song)
write_file(file, as_dict(song))
end
export read_justly
mutable struct PlayState
volume::Float64
frequency::typeof(0.0Hz)
beat_duration::typeof(0.0s)
time::typeof(0.0s)
end
function PlayState(song::Song, time)
PlayState(
song.volume_observable[],
(song.frequency_observable[])Hz,
(60 / song.tempo_observable[])s,
time,
)
end
function update_play_state!(play_state, chord)
play_state.frequency = play_state.frequency * Rational(chord.modulation.interval)
play_state.volume = play_state.volume * chord.modulation.volume
nothing
end
function add_notes!(audio_schedule, play_state, notes)
for note in notes
note.instrument.note_function!(
audio_schedule,
play_state.time,
note.beats * play_state.beat_duration,
play_state.volume * note.volume,
play_state.frequency * Rational(note.interval),
)
end
nothing
end
function add_chord!(audio_schedule, play_state, chord)
add_notes!(audio_schedule, play_state, chord.notes)
play_state.time = play_state.time + chord.modulation.beats * play_state.beat_duration
nothing
end
function push!(audio_schedule::AudioSchedule, song::Song, start_time = 0.0s)
play_state = PlayState(song, start_time)
for chord in song.chords
update_play_state!(play_state, chord)
add_chord!(audio_schedule, play_state, chord)
end
nothing
end
precompile(push!, (AudioSchedule, Song, typeof(0.0s)))
@noinline function add_notes!(
audio_schedule,
song,
chord_index,
first_note_index,
last_note_index,
)
chords = song.chords
play_state = PlayState(song, 0.0s)
for chord in chords[1:(chord_index - 1)]
update_play_state!(play_state, chord)
end
chord = chords[chord_index]
update_play_state!(play_state, chord)
add_notes!(audio_schedule, play_state, chord.notes[first_note_index:last_note_index])
nothing
end
precompile(add_notes!, (AudioSchedule, Song, Int, Int, Int))
@noinline function add_chords!(
audio_schedule,
song,
first_chord_index,
last_chord_index = length(song.chords),
)
play_state = PlayState(song, 0.0s)
chords = song.chords
for chord in chords[1:(first_chord_index - 1)]
update_play_state!(play_state, chord)
end
for chord in chords[first_chord_index:last_chord_index]
update_play_state!(play_state, chord)
add_chord!(audio_schedule, play_state, chord)
end
nothing
end
precompile(add_chords!, (AudioSchedule, Song, Int, Int))
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | code | 1233 | using Justly
using Justly: add_press!, DEFAULT_INSTRUMENTS, get_instrument, sustain!, pulse!
using Documenter: doctest
using Test: @test, @test_throws, @testset
using AudioSchedules: AudioSchedule, duration, Hz, s
using Unitful: s
audio_schedule = AudioSchedule()
song = cd(joinpath(pkgdir(Justly))) do
@test_throws ArgumentError("Folder doesn't exist!") edit_justly("not_a_folder/simple.yml")
edit_justly("examples/simple.yml"; test = true)
song = read_justly("examples/simple.yml")
end
@test length(song.chords[1].notes) == 3
push!(audio_schedule, song, 0.0s)
push!(audio_schedule, song, 1.0s)
@test duration(audio_schedule) ≈ 2.27s
empty!(audio_schedule)
@test_throws ArgumentError("Instrument \"not an instrument\" not found!") get_instrument(
DEFAULT_INSTRUMENTS,
"not an instrument",
)
pulse!(audio_schedule, 0s, 0.01s, 1, 440Hz)
@test length(collect(audio_schedule)) == 2
empty!(audio_schedule)
sustain!(audio_schedule, 0s, 0.01s, 1, 440Hz)
@test length(collect(audio_schedule)) == 2
empty!(audio_schedule)
@test_throws ArgumentError("Press type \"not a press\" not recognized") add_press!(
audio_schedule,
song,
"not a press",
(),
)
if v"1.7" <= VERSION < v"1.8"
doctest(Justly)
end
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | docs | 3889 | # Justly
[](https://bramtayl.github.io/Justly.jl/dev)
[](https://codecov.io/gh/bramtayl/Justly.jl)
You can use Justly to both compose and play music using any pitches you want.
Using staff notation, you can only write the notes of the 12-tone scale.
Some intervals in any 12-tone scale are close to harmonic, but other intervals are not.
Johnston [expanded staff notation](http://marsbat.space/pdfs/EJItext.pdf), but relying on staff notation limited him.
To start Justly, start Julia and run
```
using Justly
edit_song("new_song.yml")
```
## How to use Justly
In Justly, you write intervals as a rational fraction (integer / integer) times a power of 2.
A lowercase `o` stands for (`*2^`), similar how `E` stands for (`*10^`).
You can write the same ratio in multiple ways.
For example, you can write a fifth as `3/2`, or `3o-1`.
You will likely only need to know 4 intervals:
- Octave: `2/1`
- Perfect fifth: `3/2`
- Major third: `5/4`
- Harmonic seventh: `7/4`
You can create other intervals by multiplying and dividing these intervals.
For example, a minor third is up a perfect fifth and down a major third: `(3/2) / (5/4)` = `6/5`.
A major second is up two fifths and down an octave: `(3/2) * (3/2) / 2` = `9/8`.
In Justly, each row stands for a chord.
Each row starts with a modulation, and then, has a list of notes.
You can use the modulation to change the current key and volume.
All notes in the chord are in reference to the key.
To interactively run the example Justly file below, run
```julia
using Justly
cd(pkgdir(Justly)) do
edit_justly("examples/simple.yml")
end
```
Here is a schematic of what you will see:
```
Frequency: 220 Hz
Tempo: 200 bpm
Volume: 0.2
# I
1: 1, 5/4 at 2.0 with sustain!, 3/2
# IV
2/3: 3/2, 1o1 at 2.0 with sustain!, 5/4o1
# I
3/2 for 2: 1 for 2, 5/4 for 2 at 2.0 with sustain!, 3/2 for 2
```
You can edit the initial frequency, volume, and tempo, using the sliders on the top.
- `frequency` is the starting frequency, in Hz.
- `volume` is the starting volume of a single voice, between 0 and 1. To avoid peaking, lower the volume for songs with many voices.
- `tempo` is the tempo of the song, in beats per minute. These beats are indivisible, so for songs which subdivide beats, you will need to multiply the tempo accordingly.
This song starts with a key of frequency 220Hz, that is, a A3, at a tempo of 200 beats per minute and a volume of 0.2, that is, a fifth of maximum volume. Note that playing more than 5 notes at once could result in peaking.
The key does not change in the first chord.
The three voices in the first chord play the tonic (≈A3), third (≈C#4), and fifth (≈E45).
All three voices play for `1` beat.
The second voice plays at double volume, and uses the `sustain!` instrument.
All other voices use the `pulse!` instrument.
See the documentation for more information about instruments.
After 1 beat, the key changes: you divide the key by `3/2`, so the key goes down by a fifth.
Now the key is close to D4.
The three voices play the fifth (≈A3), up one octave (≈D4), and up one octave and a third (≈F#4).
The second voice plays at double volume, and uses the `sustain!` instrument.
All other voices use the `pulse!` instrument.
After 1 more beat, you multiply the key by `3/2`, so the key goes up by a fifth. The voices repeat the notes in the first chord, but play for `2` beats. Again, the second voice plays at double volume.
You can play any note by clicking the play button underneath the note.
You can play a song, starting with a certain chord, by clicking the play button underneath the chord.
You can add lyrics, or performance notes, to any chord.
You can set beats to 0 to overlap, or to a negative number to "travel back in time".
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.0 | 5a68b010397628a31464a42666493d2035871e22 | docs | 61 | # Justly
```@index
```
```@autodocs
Modules = [Justly]
```
| Justly | https://github.com/bramtayl/Justly.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 2047 | const CONFIG_DIR = occursin("cache", first(Base.DEPOT_PATH)) ?
abspath(Base.DEPOT_PATH[2], "config", "RemoteHPC") :
abspath(Base.DEPOT_PATH[1], "config", "RemoteHPC")
config_path(path...) = joinpath(CONFIG_DIR, gethostname(), path...)
paths = ["jobs",
"logs/jobs",
"logs/runtimes",
"storage/servers",
"storage/execs",
"storage/environments"]
for p in paths
mkpath(config_path(p))
end
using UUIDs, JSON3
using Pkg
"""
configure_local()
Runs through interactive configuration of the local [`Server`](@ref).
"""
function configure_local()
host = gethostname()
spath = config_path("storage/servers/$host.json")
if !ispath(spath)
scheduler = nothing
if haskey(ENV, "DFC_SCHEDULER")
sched = ENV["DFC_SCHEDULER"]
if occursin("hq", lowercase(sched))
cmd = get(ENV, "DFC_SCHEDULER_CMD", "hq")
scheduler = (type = "hq", server_command = cmd, allocs = String[])
elseif lowercase(sched) == "slurm"
scheduler = (type = "slurm",)
else
error("Scheduler $sched not recognized please set a different DFC_SCHEDULER environment var.")
end
end
for t in ("hq", "sbatch")
if Sys.which(t) !== nothing
scheduler = t == "hq" ?
(type = "hq", server_command = "hq", allocs = String[]) :
(type = "slurm",)
end
end
scheduler = scheduler === nothing ? (type = "bash",) : scheduler
user = get(ENV, "USER", "noname")
JSON3.write(spath,
(name = host, username = user, domain = "localhost",
julia_exec = joinpath(Sys.BINDIR, "julia"), scheduler = scheduler,
jobdir = homedir(),
max_concurrent_jobs = 100, uuid = string(uuid4())))
end
end
configure_local()
Pkg.activate(CONFIG_DIR)
Pkg.add("RemoteHPC")
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 353 | using Documenter
using RemoteHPC
makedocs(; sitename = "RemoteHPC",
format = Documenter.HTML(),
modules = [RemoteHPC])
# Documenter can also automatically deploy documentation to gh-pages.
# See "Hosting Documentation" and deploydocs() in the Documenter manual
# for more information.
#=deploydocs(
repo = "<repository url>"
)=#
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 1915 | module RemoteHPC
using LoggingExtras
using Logging
using Dates
using ThreadPools
using HTTP
using HTTP.URIs: URI
using StructTypes
using Sockets
using JSON3
using UUIDs
using Dates
using ProgressMeter
using SnoopPrecompile
using Base: @kwdef
using Pkg
using InteractiveUtils
using BinaryTraits
using DataStructures
using Oxygen
const CONFIG_DIR = occursin("cache", first(Base.DEPOT_PATH)) ?
abspath(Base.DEPOT_PATH[2], "config", "RemoteHPC") :
abspath(Base.DEPOT_PATH[1], "config", "RemoteHPC")
config_path(path...) = joinpath(CONFIG_DIR, gethostname(), path...)
function getfirst(f, itr)
id = findfirst(f, itr)
id === nothing && return nothing
return itr[id]
end
const DEFAULT_PRIORITY = 5
include("utils.jl")
include("logging.jl")
include("database.jl")
include("types.jl")
include("schedulers.jl")
include("servers.jl")
const LOCAL_SERVER = Ref{Server}()
include("runtime.jl")
include("api.jl")
include("client.jl")
include("io.jl")
@precompile_all_calls begin
s = local_server()
isalive(local_server())
t = "asdfe"
t2 = "edfasdf"
e = Exec(; name = t2, path = "srun")
e1 = Environment(t, Dict("-N" => 3, "partition" => "default", "time" => "00:01:01"),
Dict("OMP_NUM_THREADS" => 1), "", "", e)
save(e1)
save(e)
e1 = load(e1)
e = load(e)
calcs = [Calculation(e, "< scf.in > scf.out", true)]
rm(e1)
rm(e)
end
export Server, start, restart, local_server, isalive, load, save, submit, abort, state, configure, priority!, check_connections
export Calculation, Environment, Exec, HQ, Slurm, Bash
export exec
function __init__()
LOCAL_SERVER[] = local_server()
init_traits(@__MODULE__)
end
using TOML
const PACKAGE_VERSION = let
project = TOML.parsefile(joinpath(pkgdir(@__MODULE__), "Project.toml"))
VersionNumber(project["version"])
end
end# module RemoteHPC
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 8073 | function execute_function(req::HTTP.Request)
funcstr = Meta.parse(queryparams(req)["path"])
func = eval(funcstr)
args = []
for (t, a) in JSON3.read(req.body, Vector)
typ = Symbol(t)
eval(:(arg = JSON3.read($a, $typ)))
push!(args, arg)
end
return func(args...)
end
function get_version()
return PACKAGE_VERSION
end
function server_config!(req, s::ServerData)
splt = splitpath(req.target)
if splt[4] == "sleep_time"
return s.sleep_time = parse(Float64, splt[5])
end
field = Symbol(splt[4])
server = s.server
setfield!(server, field, parse(fieldtype(server, field), splt[5]))
save(server)
return server
end
function server_config(req, s::ServerData)
server = s.server
splt = splitpath(req.target)
if length(splt) == 3
return server
else
return getfield(server, Symbol(splt[4]))
end
end
function setup_core_api!(s::ServerData)
@put "/server/kill" req -> (s.stop = true)
@get "/info/version" req -> get_version()
@get "/isalive/" req -> true
@get "/isalive/*" req -> (n = splitpath(req.target)[end]; haskey(s.connections, n) && s.connections[n])
@get "/api/**" execute_function
@get "/ispath/" req -> (p = queryparams(req)["path"]; ispath(p))
@get "/read/" req -> (p = queryparams(req)["path"]; read(p))
@post "/write/" req -> (p = queryparams(req)["path"]; write(p, req.body))
@post "/rm/" req -> (p = queryparams(req)["path"]; rm(p; recursive = true))
@get "/readdir/" req -> (p = queryparams(req)["path"]; readdir(p))
@get "/mtime/" req -> (p = queryparams(req)["path"]; mtime(p))
@get "/filesize/" req -> (p = queryparams(req)["path"]; filesize(p))
@get "/realpath/" req -> (p = queryparams(req)["path"]; realpath(p))
@post "/mkpath/" req -> (p = queryparams(req)["path"]; mkpath(p))
@post "/symlink/" req -> symlink(JSON3.read(req.body, Vector{String})...)
@post "/cp/" req -> cp(JSON3.read(req.body, Tuple{String, String})...; force=true)
@post "/server/config/*" req -> server_config!(req, s)
@get "/server/config/**" req -> server_config(req, s)
@get "/server/config" req -> local_server()
@put "/server/check_connections" req -> check_connections!(s, get(queryparams(req), "verify_tunnels", false))
@put "/server/check_connections/*" req -> check_connections!(s, get(queryparams(req), "verify_tunnels", true); names=[splitpath(req.target)[end]])
end
function submit_job(req, queue::Queue, channel)
p = queryparams(req)
jdir = p["path"]
lock(queue) do q
if !haskey(q.full_queue, jdir)
error("No Job is present at $jdir.")
else
q.full_queue[jdir].state = Submitted
end
end
priority = haskey(p, "priority") ? parse(Int, p["priority"]) : DEFAULT_PRIORITY
put!(channel, jdir => (priority, -time()))
end
function get_job(req::HTTP.Request, queue::Queue)
p = queryparams(req)
job_dir = p["path"]
info = get(queue.info.current_queue, job_dir, nothing)
if info === nothing
info = get(queue.info.full_queue, job_dir, nothing)
end
info = info === nothing ? Job(-1, Unknown) : info
tquery = HTTP.queryparams(URI(req.target))
if isempty(tquery) || !haskey(tquery, "data")
return [info,
JSON3.read(read(joinpath(job_dir, ".remotehpc_info")),
Tuple{String,Environment,Vector{Calculation}})...]
else
dat = tquery["data"] isa Vector ? tquery["data"] : [tquery["data"]]
out = []
jinfo = any(x -> x in ("name", "environment", "calculations"), dat) ? JSON3.read(read(joinpath(job_dir, ".remotehpc_info")),
Tuple{String,Environment,Vector{Calculation}}) : nothing
for d in dat
if d == "id"
push!(out, info.id)
elseif d == "state"
push!(out, info.state)
elseif d == "name"
if jinfo !== nothing
push!(out, jinfo[1])
end
elseif d == "environment"
if jinfo !== nothing
push!(out, jinfo[2])
end
elseif d == "calculations"
if jinfo !== nothing
push!(out, jinfo[3])
end
end
end
return out
end
end
function get_jobs(state::JobState, queue::Queue)
jobs = String[]
for q in (queue.info.full_queue, queue.info.current_queue)
for (d, j) in q
if j.state == state
push!(jobs, d)
end
end
end
return jobs
end
function get_jobs(dirfuzzy::AbstractString, queue::Queue)
jobs = String[]
for q in (queue.info.full_queue, queue.info.current_queue)
for (d, j) in q
if occursin(dirfuzzy, d)
push!(jobs, d)
end
end
end
return jobs
end
function save_job(req::HTTP.Request, args...)
return save_job(queryparams(req)["path"],
JSON3.read(req.body, Tuple{String,Environment,Vector{Calculation}}),
args...)
end
function save_job(dir::AbstractString, job_info::Tuple, queue::Queue, sched::Scheduler)
# Needs to be done so the inputs `dir` also changes.
mkpath(dir)
open(joinpath(dir, "job.sh"), "w") do f
return write(f, job_info, sched)
end
JSON3.write(joinpath(dir, ".remotehpc_info"), job_info)
lock(queue) do q
return q.full_queue[dir] = Job(-1, Saved)
end
end
function abort(req::HTTP.Request, queue::Queue, sched::Scheduler)
jdir = queryparams(req)["path"]
j = get(queue.info.current_queue, jdir, nothing)
if j === nothing
if haskey(queue.info.submit_queue, jdir)
lock(queue) do q
delete!(q.submit_queue, jdir)
q.full_queue[jdir].state = Cancelled
end
return 0
else
error("No Job is running or submitted at $jdir.")
end
else
abort(sched, j.id)
lock(queue) do q
j = pop!(q.current_queue, jdir)
j.state = Cancelled
q.full_queue[jdir] = j
end
return j.id
end
end
function priority!(req::HTTP.Request, queue::Queue)
p = queryparams(req)
jdir = p["path"]
if haskey(queue.info.submit_queue, jdir)
priority = haskey(p, "priority") ? parse(Int, p["priority"]) : DEFAULT_PRIORITY
lock(queue) do q
q.submit_queue[jdir] = (priority, q.submit_queue[jdir][2])
end
return priority
else
error("Job at $jdir not in submission queue.")
end
end
function setup_job_api!(s::ServerData)
@post "/job/" req -> save_job(req, s.queue, s.server.scheduler)
@put "/job/" req -> submit_job(req, s.queue, s.submit_channel)
@put "/job/priority" req -> priority!(req, s.queue)
@get "/job/" req -> get_job(req, s.queue)
@get "/jobs/state" req -> get_jobs(JSON3.read(req.body, JobState), s.queue)
@get "/jobs/fuzzy" req -> get_jobs(JSON3.read(req.body, String), s.queue)
@post "/abort/" req -> abort(req, s.queue, s.server.scheduler)
end
function load(req::HTTP.Request)
p = config_path("storage", queryparams(req)["path"])
if isdir(p)
return map(x -> splitext(x)[1], readdir(p))
else
p *= ".json"
if ispath(p)
return read(p, String)
end
end
end
function save(req::HTTP.Request)
p = config_path("storage", queryparams(req)["path"])
mkpath(splitdir(p)[1])
write(p * ".json", req.body)
end
function database_rm(req)
p = config_path("storage", queryparams(req)["path"]) * ".json"
ispath(p)
return rm(p)
end
function setup_database_api!()
@get "/storage/" req -> load(req)
@post "/storage/" req -> save(req)
@put "/storage/" req -> database_rm(req)
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 14363 | """
start(s::Server)
Launches the daemon process on the host [`Server`](@ref) `s`.
"""
function start(s::Server; verbosity=0)
title = "Starting Server($(s.name))"
steps = ["Verifying that local server is running",
"Verifying that the server isn't already alive",
"Starting server",
"Waiting for server connection"]
StepSpinner(title, steps) do spinner
if !islocal(s) && !isalive(LOCAL_SERVER[])
push!(spinner, "Starting local server.")
start(LOCAL_SERVER[])
if !isalive(LOCAL_SERVER[])
finish!(spinner, ErrorException("Couldn't start local server."))
end
end
push!(spinner, "local server running")
next!(spinner)
alive = isalive(s) || (!islocal(s) && get(JSON3.read(check_connections(names=[s.name]).body), Symbol(s.name), false))
if alive
push!(spinner, "Server is already up and running.")
finish!(spinner)
return
end
next!(spinner)
hostname = gethostname(s)
conf_path = config_path(s)
t = server_command(s, "ls $(conf_path)")
if t.exitcode != 0
finish!(spinner, ErrorException("RemoteHPC not installed on server. Install it using `RemoteHPC.install(Server(\"$(s.name)\"))`"))
end
if islocal(s)
self_destructed = ispath(config_path("self_destruct"))
else
cmd = "cat $(conf_path)/$hostname/self_destruct"
self_destructed = server_command(s, cmd).exitcode == 0
end
if self_destructed
finish!(spinner,
ErrorException("""Self destruction was previously triggered, signalling issues on the Server.
Please investigate and if safe, remove $(conf_path)/self_destruct"""))
end
if !islocal(s)
t = deepcopy(s)
t.domain = "localhost"
t.name = hostname
tf = tempname()
JSON3.write(tf, t)
push(tf, s, "$(conf_path)/$hostname/storage/servers/$hostname.json")
end
# Here we check what the modify time of the server-side localhost file is.
# The server will rewrite the file with the correct port, which we use to see
# whether the server started succesfully.
function checktime()
curtime = 0
if islocal(s)
return mtime(config_path("storage", "servers", "$(hostname).json"))
else
cmd = "stat -c %Z $(conf_path)/$hostname/storage/servers/$(hostname).json"
return parse(Int, server_command(s.username, s.domain, cmd)[1])
end
return curtime
end
firstime = checktime()
p = "$(conf_path)/$hostname/logs/errors.log"
scrpt = "using RemoteHPC; RemoteHPC.julia_main(verbose=$(verbosity))"
if s.domain != "localhost"
julia_cmd = replace("""$(s.julia_exec) --project=$(conf_path) --startup-file=no -t 10 -e "using RemoteHPC; RemoteHPC.julia_main(verbose=$(verbosity))" &> $p""",
"'" => "")
if Sys.which("ssh") === nothing
OpenSSH_jll.ssh() do ssh_exec
run(Cmd(`$ssh_exec -f $(ssh_string(s)) $julia_cmd`; detach = true))
end
else
run(Cmd(`ssh -f $(ssh_string(s)) $julia_cmd`; detach = true))
end
else
e = s.julia_exec * " --project=$(conf_path)"
julia_cmd = Cmd([string.(split(e))..., "--startup-file=no", "-t", "auto", "-e",
scrpt, "&>", p, "&"])
run(Cmd(julia_cmd; detach = true); wait = false)
end
retries = 0
push!(spinner, "Waiting for server bootup")
while checktime() <= firstime && retries < 60
retries += 1
sleep(1)
end
if retries == 60
finish!(spinner, ErrorException("Something went wrong starting the server."))
end
next!(spinner)
cfg = load_config(s)
s.port = cfg.port
s.uuid = cfg.uuid
save(s)
retries = 0
if islocal(s)
while !isalive(s) && retries < 60
sleep(0.1)
retries += 1
end
LOCAL_SERVER[] = local_server()
else
check_connections(; names=[s.name])
while !isalive(s) && retries < 60
sleep(0.1)
end
end
if retries == 60
finish!(spinner, ErrorException("""Couldn't set up server connection.
This can be because the daemon crashed
or because the local server can't setup a ssh tunnel to it"""))
end
return s
end
end
"""
kill(s::Server)
Kills the daemon process on [`Server`](@ref) `s`.
"""
function Base.kill(s::Server)
HTTP.put(s, URI(path="/server/kill"))
destroy_tunnel(s)
if !islocal(s)
check_connections(names=[s.name])
end
while isalive(s)
sleep(0.1)
end
end
function restart(s::Server)
kill(s)
return start(s)
end
function update_config(s::Server)
alive = isalive(s)
if alive
@debug "Server is alive, killing"
kill(s)
end
save(s)
return start(s)
end
"""
isalive(s::Server)
Will try to fetch some data from `s`. If the server is not running this will fail and
the return is `false`.
"""
function isalive(s::Server)
if islocal(s)
try
return suppress() do
HTTP.get(s, URI(path="/isalive/"); connect_timeout = 2, retries = 2) !== nothing
end
catch
return false
end
else
if !isalive(LOCAL_SERVER[])
error("Local server not running. Use `start(local_server())` first.")
end
return JSON3.read(HTTP.get(LOCAL_SERVER[], URI(path="/isalive/$(s.name)"); connect_timeout = 2, retries = 2).body, Bool)
end
end
function check_connections(; names=[])
if isempty(names)
return HTTP.put(LOCAL_SERVER[], URI(path="/server/check_connections"), timeout = 60)
else
for n in names
return HTTP.put(LOCAL_SERVER[], URI(path="/server/check_connections/$n"), timeout = 60)
end
end
end
function save(s::Server, dir::AbstractString, e::Environment, calcs::Vector{Calculation};
name = "RemoteHPC_job")
adir = abspath(s, dir)
HTTP.post(s, URI(path="/job/", query = Dict("path" => adir)), (name, e, calcs))
return adir
end
function load(s::Server, dir::AbstractString)
adir = abspath(s, dir)
if !ispath(s, joinpath(adir, ".remotehpc_info"))
resp = HTTP.get(s, URI(path="/jobs/fuzzy/"), dir)
return JSON3.read(resp.body, Vector{String})
else
resp = HTTP.get(s, URI(path="/job/", query=Dict("path" => adir)))
info, name, environment, calculations = JSON3.read(resp.body,
Tuple{Job,String,Environment,
Vector{Calculation}})
return (; info, name, environment, calculations)
end
end
function load(s::Server, state::JobState)
resp = HTTP.get(s, URI(path="/jobs/state/"), state)
return JSON3.read(resp.body, Vector{String})
end
function submit(s::Server, dir::AbstractString, priority=DEFAULT_PRIORITY)
adir = abspath(s, dir)
return HTTP.put(s, URI(path="/job/", query = Dict("path" => adir, "priority" => priority)))
end
function submit(s::Server, dir::AbstractString, e::Environment, calcs::Vector{Calculation}, priority=DEFAULT_PRIORITY;
kwargs...)
adir = save(s, dir, e, calcs; kwargs...)
submit(s, adir, priority)
return adir
end
function abort(s::Server, dir::AbstractString)
adir = abspath(s, dir)
resp = HTTP.post(s, URI(path="/abort/", query=Dict("path" => adir)))
if resp.status == 200
id = JSON3.read(resp.body, Int)
@debug "Aborted job with id $id."
else
return resp
end
end
function state(s::Server, dir::AbstractString)
adir = abspath(s, dir)
url = URI(path = "/job/", query = Dict("path" => adir, "data" => ["state"]))
resp = HTTP.get(s, url)
return JSON3.read(resp.body, Tuple{JobState})[1]
end
function priority!(s::Server, dir::AbstractString, priority::Int)
adir = abspath(s, dir)
url = URI(path = "/job/priority", query = Dict("path" => adir, "priority" => priority))
resp = HTTP.put(s, url)
return JSON3.read(resp.body, Int)
end
ask_name(::Type{S}) where {S} = ask_input(String, "Please specify a name for the new $S")
function configure()
if !isalive(local_server())
@info "Local server needs to be running, starting it..."
start(local_server())
end
@debug "Configuring (start with Servers)..."
done = false
while !done
storables = subtypes(Storable)
type = request("Which kind would you like to configure?", RadioMenu(string.(storables)))
type == -1 && return
storable_T = storables[type]
@info "Configuring a $storable_T. Please read carefully the documentation first:"
println()
println()
display(Docs.doc(storable_T))
println()
println()
name = ask_name(storable_T)
if storable_T == Server
server = local_server()
else
servers = load(local_server(), Server(""))
server_id = request("Where would you like to save the $storable_T?", RadioMenu(servers))
server_id == -1 && return
server = Server(servers[server_id])
end
if !isalive(server)
@info "Server(\"$(server.name)\") is not alive, starting it first..."
start(server)
end
storable = storable_T(name=name)
if isalive(server) && exists(server, storable)
id = request("A $storable_T with name $name already exists on $(server.name). Overwrite?", RadioMenu(["no", "yes"]))
id < 2 && return
storable = load(server, storable)
end
try
if storable_T == Server
storable = configure!(storable)
else
storable = configure!(storable, server)
end
yn_id = request("Proceed saving $storable_T with name \"$name\" to Server(\"$(server.name)\")?", RadioMenu(["yes", "no"]))
if yn_id == 1
save(server, storable)
end
yn_id = request("Configure more Storables?", RadioMenu(["yes", "no"]))
done = yn_id == 2
catch err
@error "Try again" exception=err
end
end
end
function ask_input(::Type{T}, message, default = nothing) where {T}
message *= " [$T]"
if default === nothing
t = ""
print(message * ": ")
while isempty(t)
t = readline()
end
else
if !(T == String && isempty(default))
message *= " (default: $default)"
end
print(message * ": ")
t = readline()
if isempty(t)
return default
end
end
if T in (Int, Float64, Float32)
return parse(T, t)
elseif T == String
return String(strip(t))
else
out = T(eval(Meta.parse(t)))
if out isa T
return out
else
error("Can't parse $t as $T")
end
end
end
function configure!(storable::T, s::Server) where {T<:Storable}
tdir = tempname()
mkpath(tdir)
tf = joinpath(tdir, "storable.md")
open(tf, "w") do f
write(f, "Storable configuration. Replace default fields inside the ```julia``` block as desired after reading the documentation below.\nSave and close editor when finished.\n```julia\n")
for field in configurable_fieldnames(T)
value = getfield(storable, field)
ft = typeof(value)
write(f, "$field::$ft = $(repr(value))\n")
end
write(f, "```\n\n\n")
write(f, "########## DOCUMENTATION #########\n")
write(f, string(Docs.doc(T)))
write(f, "\n")
write(f, "########## DOCUMENTATION END #####\n\n\n")
end
parsing_error = true
while parsing_error
parsing_error = false
@info "Opening editor, press any key to continue..."
readline()
InteractiveUtils.edit(tf)
tstr = filter(!isempty, readlines(tf))
i = findfirst(x -> x == "```julia", tstr)
for (ii, f) in enumerate(configurable_fieldnames(T))
field = getfield(storable, f)
ft = typeof(field)
line = tstr[i+ii]
sline = split(line, "=")
try
if length(sline) > 2
v = Main.eval(Meta.parse(join(sline[2:end], "=")))
else
v = Main.eval(Meta.parse(sline[end]))
end
setfield!(storable, f, v)
catch e
@warn "Failed parsing $(split(tstr[i+ii], "=")[end]) as $ft."
showerror(stdout, e, stacktrace(catch_backtrace()))
parsing_error = true
end
end
end
return storable
end
function version(s::Server)
if isalive(s)
try
return JSON3.read(HTTP.get(s, URI(path="/info/version")).body, VersionNumber)
catch
nothing
end
end
p = config_path(s, "Manifest.toml")
t = server_command(s, "cat $p")
if t.exitcode != 0
return error("Manifest.toml not found on Server $(s.name).")
else
tmp = tempname()
write(tmp, t.stdout)
man = Pkg.Types.read_manifest(tmp)
deps = Pkg.Operations.load_manifest_deps(man)
remid = findfirst(x->x.name == "RemoteHPC", deps)
return deps[remid].version
end
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 4236 | # Storable interface
@trait Storable prefix Is, IsNot
@implement Is{Storable} by storage_directory(_)
StructTypes.StructType(::Type{<:Storable}) = StructTypes.DictType()
# Constructors
(::Type{S})(d::Dict) where {S<:Storable} = S(; d...)
(::Type{S})(str::AbstractString; kwargs...) where {S<:Storable} = S(;name=str, kwargs...)
(::Type{S})(s::S) where {S<:Storable} = s
# Directory structure
function storage_name(s::S) where {S<:Storable}
return hasfield(S, :name) ? s.name : error("Please define a name function for type $S.")
end
function storage_path(s::S) where {S<:Storable}
return joinpath(storage_directory(s), storage_name(s))
end
storage_uri(s::Storable) = URI(path="/storage/", query = Dict("path" => storage_path(s)))
# Verification before storing
verify(s::Storable) = nothing
# used in configure()
configurable_fieldnames(::Type{S}) where {S<:Storable} = fieldnames(S)
# Base extensions
Base.:(==)(s1::S, s2::S) where {S<:Storable} = s1.name == s2.name
Base.keys(::S) where {S<:Storable} = fieldnames(S)
Base.getindex(e::S, i::Symbol) where {S<:Storable} = getproperty(e, i)
Base.setindex!(e::S, i::Symbol, v) where {S<:Storable} = setproperty!(e, i)
function Base.iterate(s::S, state=1) where {S<:Storable}
fn = fieldnames(S)
@inbounds if state > length(fn)
return nothing
else
return s[fn[state]], state+1
end
end
function Base.convert(::Type{S}, d::Dict{String, Any}) where {S<:Storable}
td = Dict{Symbol, Any}()
for (k, v) in d
td[Symbol(k)] = v
end
return S(td)
end
# These are the standard functions where things are saved as simple jsons in the
# config_path.
"""
save([server::Server], e::Environment)
save([server::Server], e::Exec)
save([server::Server], s::Server)
Saves an item to the database of `server`. If `server` is not specified the item will be stored in the local database.
"""
function save(s::Storable)
p = config_path("storage", storage_path(s)) * ".json"
mkpath(splitdir(p)[1])
if ispath(p)
@warn "Overwriting previously existing item at $p."
end
verify(s)
return JSON3.write(p, s)
end
function save(server, s::Storable)
uri = storage_uri(s)
return HTTP.post(server, uri, s)
end
"""
load([server::Server], e::Environment)
load([server::Server], e::Exec)
load([server::Server], s::Server)
Loads a previously stored item from the `server`. If `server` is not specified the local item is loaded.
"""
function load(s::S) where {S<:Storable}
p = config_path("storage", storage_path(s)) * ".json"
if !ispath(p)
return map(x->splitext(x)[1], readdir(splitdir(p)[1]))
end
return JSON3.read(read(p, String), S)
end
function load(server, s::S) where {S<:Storable}
uri = storage_uri(s)
if exists(server, s) # asking for a stored item
return JSON3.read(JSON3.read(HTTP.get(server, uri).body, String), S)
else
res = HTTP.get(server, URI(path="/storage/", query= Dict("path"=> splitdir(HTTP.queryparams(uri)["path"])[1])))
if !isempty(res.body)
return JSON3.read(res.body, Vector{String})
else
return String[]
end
end
end
exists(s::Storable) = ispath(config_path("storage", storage_path(s)) * ".json")
function exists(server, s::Storable)
uri = storage_uri(s)
try
res = HTTP.get(server, URI(path="/storage/", query= Dict("path"=> splitdir(HTTP.queryparams(uri)["path"])[1])))
if !isempty(res.body)
possibilities = JSON3.read(res.body, Vector{String})
return storage_name(s) ∈ possibilities
else
return false
end
catch
return false
end
end
"""
Base.rm([server::Server], e::Environment)
Base.rm([server::Server], e::Exec)
Base.rm([server::Server], s::Server)
Removes an item from the database of `server`. If `server` is not specified the item will removed from the local database.
"""
function Base.rm(s::Storable)
p = config_path("storage", storage_path(s)) * ".json"
if !ispath(p)
error("No item found at $p.")
end
return rm(p)
end
function Base.rm(server, s::Storable)
uri = storage_uri(s)
return HTTP.put(server, uri)
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 2287 | function flagstring(f, v)
out = ""
eq_sign = false
if f[1] != '-'
if length(f) == 1
out *= "-$f "
else
out *= "--$f"
eq_sign = true
end
else
if f[1:2] == "--"
out *= "$f"
eq_sign = true
else
out *= "$f "
end
end
if v !== nothing && !isempty(v)
if eq_sign
out *= "="
end
if !(v isa AbstractString) && length(v) > 1
for v_ in v
out *= "$v_ "
end
else
out *= "$v "
end
end
return out
end
function Base.write(io::IO, e::Exec)
write(io, "$(e.path) ")
for (f, v) in e.flags
write(io, flagstring(f, v))
end
write(io, " ")
end
function Base.write(io::IO, c::Calculation)
write(io, c.exec)
return write(io, "$(c.args)")
end
function write_exports_string(io::IO, e::Environment)
for (f, v) in e.exports
write(io, "export $f=$v\n")
end
end
function write_preamble_string(io::IO, e::Environment, sched::Scheduler)
for (f, v) in e.directives
write(io, "$(directive_prefix(sched)) $(flagstring(f, v))\n")
end
return write(io, "$(e.preamble)\n")
end
write_postamble_string(io::IO, e::Environment) = write(io, "$(e.postamble)\n")
function Base.write(io::IO, job_info::Tuple, sched::Scheduler)
name, e, calcs = job_info
write(io, "#!/bin/bash\n")
write(io, "# Generated by RemoteHPC\n")
write(io, "$(name_directive(sched)) $name\n")
write_preamble_string(io, e, sched)
write_exports_string(io, e)
modules = String[]
for c in calcs
for m in c.exec.modules
if !(m ∈ modules)
push!(modules, m)
end
end
end
if !isempty(modules)
write(io, "module load $(join(modules, " "))\n")
end
for c in calcs
#TODO: Put all of this in write(io, c)
write(io, c.run ? "" : "#")
if c.exec.parallel
write(io, e.parallel_exec)
names = "$(e.parallel_exec.name) $(c.exec.name)"
else
names = c.exec.name
end
write(io, c)
write(io, "\n")
end
return write_postamble_string(io, e)
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 3497 | @enum LogType RESTLog RuntimeLog
const LOGGING_DATE_FORMAT = "yyyy-mm-dd HH:MM:SS"
# Logs an error with nice stacktrace
function log_error(e; kwargs...)
s = IOBuffer()
showerror(s, e, catch_backtrace(); backtrace=true)
errormsg = String(resize!(s.data, s.size))
@error errormsg kwargs...
return errormsg
end
# Different simple Loggers
LevelLogger(logger, level) = EarlyFilteredLogger(logger) do log
log.level == level
end
function TimestampLogger(logger)
TransformerLogger(logger) do log
if haskey(log.kwargs, :exception)
s = IOBuffer()
showerror(s, log.kwargs[:exception]...; backtrace=true)
msg = String(resize!(s.data, s.size))
else
msg = log.message
end
merge(log, (;message="[$(Dates.format(now(), LOGGING_DATE_FORMAT))] {tid: $(Threads.threadid())} - $msg"))
end
end
mutable struct TimeBufferedFileLogger <: AbstractLogger
path::String
buffer::IOBuffer
lock::ReentrantLock
interval::Float64
last_write::Float64
end
TimeBufferedFileLogger(p::String; interval = 10.0) = TimeBufferedFileLogger(p, IOBuffer(), ReentrantLock(), interval, 0.0)
function Logging.handle_message(logger::TimeBufferedFileLogger, level::LogLevel, message, _module, group, id,
filepath, line; kwargs...)
@nospecialize
msglines = split(chomp(convert(String, string(message))::String), '\n')
msg1, rest = Iterators.peel(msglines)
curt = time()
dt = curt - logger.last_write
lock(logger.lock)
iob = IOContext(logger.buffer, :compact => true)
println(iob, msg1)
for msg in rest
println(iob, " ", msg)
end
if dt > logger.interval
fsize = filesize(logger.path)
open(logger.path, append = fsize < 100e6, truncate = fsize >= 100e6) do f
write(f, view(logger.buffer.data, 1:logger.buffer.size))
logger.buffer.size = 0
logger.buffer.ptr = 1
end
logger.last_write = curt
end
unlock(logger.lock)
end
LoggingExtras.min_enabled_level(::TimeBufferedFileLogger) = LoggingExtras.BelowMinLevel
LoggingExtras.shouldlog(::TimeBufferedFileLogger, args...) = true
LoggingExtras.catch_exceptions(filelogger::TimeBufferedFileLogger) = false
function RESTLogger(; kwargs...)
test(log) = get(log.kwargs, :logtype, nothing) == RESTLog
tlogger = TransformerLogger(TimeBufferedFileLogger(config_path("logs/restapi.log"); kwargs...)) do log
return merge(log, (;kwargs=()))
end
return ActiveFilteredLogger(test, tlogger)
end
function RuntimeLogger(;kwargs...)
test(log) = get(log.kwargs, :logtype, nothing) == RuntimeLog
tlogger = TransformerLogger(TimeBufferedFileLogger(config_path("logs/runtime.log"); kwargs...)) do log
return merge(log, (;kwargs=()))
end
return ActiveFilteredLogger(test, tlogger)
end
function GenericLogger(; kwargs...)
return ActiveFilteredLogger(TimeBufferedFileLogger(config_path("logs/errors.log"); kwargs...)) do log
return get(log.kwargs, :logtype, nothing) === nothing
end
end
function HTTPLogger(logger = TimeBufferedFileLogger(config_path("logs/HTTP.log")))
return EarlyFilteredLogger(logger) do log
return log._module === HTTP || parentmodule(log._module) === HTTP
end
end
function NotHTTPLogger(logger)
return EarlyFilteredLogger(logger) do log
return log._module !== HTTP && parentmodule(log._module) !== HTTP
end
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 14495 | mutable struct Job
id::Int
state::JobState
end
Base.@kwdef mutable struct QueueInfo
full_queue::Dict{String,Job} = Dict{String,Job}()
current_queue::Dict{String,Job} = Dict{String,Job}()
submit_queue::PriorityQueue{String, Tuple{Int, Float64}} = PriorityQueue{String, Tuple{Int, Float64}}(Base.Order.Reverse)
end
StructTypes.StructType(::Type{QueueInfo}) = StructTypes.Mutable()
struct Queue
lock::ReentrantLock
info::QueueInfo
end
Queue() = Queue(ReentrantLock(), QueueInfo())
function Base.lock(f::Function, q::Queue)
lock(q.lock)
try
f(q.info)
catch e
log_error(e, logtype=RuntimeLog)
finally
unlock(q.lock)
end
end
function Base.fill!(qu::Queue, s::Scheduler, init)
qfile = config_path("jobs", "queue.json")
if init
if ispath(qfile)
t = read(qfile)
if !isempty(t)
# TODO: should be deprecated
tq = JSON3.read(t)
lock(qu) do q
q.full_queue = StructTypes.constructfrom(Dict{String,Job}, tq[:full_queue])
q.current_queue = StructTypes.constructfrom(Dict{String, Job}, tq[:current_queue])
if tq[:submit_queue] isa AbstractArray
for jdir in tq[:submit_queue]
q.submit_queue[jdir] = DEFAULT_PRIORITY
q.full_queue[jdir].state = Submitted
end
else
for (jdir, priority) in tq[:submit_queue]
if length(priority) > 1
q.submit_queue[string(jdir)] = (priority...,)
else
q.submit_queue[string(jdir)] = (priority, -time())
end
end
end
end
end
end
end
lock(qu) do q
for q_ in (q.full_queue, q.current_queue)
for (dir, info) in q_
if !ispath(joinpath(dir, "job.sh"))
delete!(q_, dir)
end
end
end
end
# Here we check whether the scheduler died while the server was running and try to restart and resubmit
if maybe_scheduler_restart(s)
lock(qu) do q
for (d, i) in q.current_queue
if ispath(joinpath(d, "job.sh"))
q.full_queue[d] = Job(-1, Saved)
q.submit_queue[d] = (DEFAULT_PRIORITY, -time())
end
pop!(q.current_queue, d)
end
end
else
squeue = queue(s)
lock(qu) do q
for (d, i) in q.current_queue
if haskey(squeue, d)
state = pop!(squeue, d)[2]
else
state = jobstate(s, i.id)
end
if in_queue(state)
delete!(q.full_queue, d)
q.current_queue[d] = Job(i.id, state)
else
delete!(q.current_queue, d)
q.full_queue[d] = Job(i.id, state)
end
end
for (k, v) in squeue
q.current_queue[k] = Job(v...)
end
end
end
return qu
end
Base.@kwdef mutable struct ServerData
server::Server
total_requests::Int = 0
current_requests::Int = 0
t::Float64 = time()
requests_per_second::Float64 = 0.0
total_job_submissions::Int = 0
submit_channel::Channel{Pair{String, Tuple{Int, Float64}}} = Channel{Pair{String, Tuple{Int, Float64}}}(Inf)
queue::Queue = Queue()
sleep_time::Float64 = 5.0
connections::Dict{String, Bool} = Dict{String, Bool}()
stop::Bool = false
lock::ReentrantLock = ReentrantLock()
end
const SLEEP_TIME = Ref(5.0)
function main_loop(s::ServerData)
fill!(s.queue, s.server.scheduler, true)
# Used to identify if multiple servers are running in order to selfdestruct
# log_mtimes = mtime.(joinpath.((config_path("logs/runtimes/"),), readdir(config_path("logs/runtimes/"))))
t = Threads.@spawn while !s.stop
try
fill!(s.queue, s.server.scheduler, false)
JSON3.write(config_path("jobs", "queue.json"), s.queue.info)
catch e
log_error(e, logtype = RuntimeLog)
end
sleep(s.sleep_time)
end
Threads.@spawn while !s.stop
try
handle_job_submission!(s)
catch e
log_error(e, logtype = RuntimeLog)
end
sleep(s.sleep_time)
end
while !s.stop
# monitor_issues(log_mtimes)
try
log_info(s)
catch e
log_error(e, logtype = RuntimeLog)
end
if ispath(config_path("self_destruct"))
@debug "self_destruct found, self destructing..."
exit()
end
sleep(s.sleep_time)
end
fetch(t)
return JSON3.write(config_path("jobs", "queue.json"), s.queue.info)
end
function log_info(s::ServerData)
dt = time() - s.t
lock(s.lock)
curreq = s.current_requests
s.current_requests = 0
s.t = time()
unlock(s.lock)
s.requests_per_second = curreq / dt
s.total_requests += curreq
@debugv 0 "current_queue: $(length(s.queue.info.current_queue)) - submit_queue: $(length(s.queue.info.submit_queue))" logtype=RuntimeLog
@debugv 0 "total requests: $(s.total_requests) - r/s: $(s.requests_per_second)" logtype=RESTLog
end
function monitor_issues(log_mtimes)
# new_mtimes = mtime.(joinpath.((config_path("logs/runtimes"),),
# readdir(config_path("logs/runtimes"))))
# if length(new_mtimes) != length(log_mtimes)
# @error "More Server logs got created signalling a server was started while a previous was running." logtype=RuntimeLog
# touch(config_path("self_destruct"))
# end
# ndiff = length(filter(x -> log_mtimes[x] != new_mtimes[x], 1:length(log_mtimes)))
# if ndiff > 1
# @error "More Server logs modification times differed than 1." logtype=RuntimeLog
# touch(config_path("self_destruct"))
# end
end
function handle_job_submission!(s::ServerData)
@debugv 2 "Submitting jobs" logtype=RuntimeLog
to_submit = s.queue.info.submit_queue
njobs = length(s.queue.info.current_queue)
while !isempty(s.submit_channel)
jobdir,priority = take!(s.submit_channel)
to_submit[jobdir] = priority
end
n_submit = min(s.server.max_concurrent_jobs - njobs, length(to_submit))
submitted = 0
for i in 1:n_submit
job_dir, priority = dequeue_pair!(to_submit)
if ispath(job_dir)
curtries = 0
while -1 < curtries < 3
try
id = submit(s.server.scheduler, job_dir)
@debugv 2 "Submitting Job: $(id)@$(job_dir)" logtype=RuntimeLog
lock(s.queue) do q
return q.current_queue[job_dir] = Job(id, Pending)
end
curtries = -1
submitted += 1
catch e
curtries += 1
sleep(s.sleep_time)
lock(s.queue) do q
q.full_queue[job_dir] = Job(-1, SubmissionError)
end
with_logger(FileLogger(joinpath(job_dir, "submission.err"), append=true)) do
log_error(e)
end
end
end
if curtries != -1
to_submit[job_dir] = (priority[1] - 1, priority[2])
end
else
@warnv 2 "Submission job at dir: $job_dir is not a directory." logtype=RuntimeLog
end
end
@debugv 2 "Submitted $submitted jobs" logtype=RuntimeLog
end
function requestHandler(handler, s::ServerData)
return function f(req)
start = Dates.now()
@debugv 2 "BEGIN - $(req.method) - $(req.target)" logtype=RESTLog
resp = HTTP.Response(404)
try
obj = handler(req)
if obj === nothing
resp = HTTP.Response(204)
elseif obj isa HTTP.Response
return obj
elseif obj isa Exception
resp = HTTP.Response(500, log_error(obj))
else
resp = HTTP.Response(200, JSON3.write(obj))
end
catch e
resp = HTTP.Response(500, log_error(e))
end
stop = Dates.now()
@debugv 2 "END - $(req.method) - $(req.target) - $(resp.status) - $(Dates.value(stop - start)) - $(length(resp.body))" logtype=RESTLog
lock(s.lock)
s.current_requests += 1
unlock(s.lock)
return resp
end
end
function AuthHandler(handler, user_uuid::UUID)
return function f(req)
if HTTP.hasheader(req, "USER-UUID")
uuid = HTTP.header(req, "USER-UUID")
if UUID(uuid) == user_uuid
t = ThreadPools.spawnbg() do
return handler(req)
end
while !istaskdone(t)
yield()
end
return fetch(t)
end
end
return HTTP.Response(401, "unauthorized")
end
end
function check_connections!(connections, verify_tunnels; names=keys(connections))
@debug "Checking connections..." logtype=RuntimeLog
for n in names
if !exists(Server(name=n))
pop!(connections, n)
continue
end
s = load(Server(n))
s.domain == "localhost" && continue
try
connections[n] = @timeout 30 begin
return HTTP.get(s, URI(path="/isalive")) !== nothing
end false
catch
connections[n] = false
end
end
if verify_tunnels
@debugv 1 "Verifying tunnels" logtype=RuntimeLog
for n in names
connections[n] && continue
s = load(Server(n))
s.domain == "localhost" && continue
@debugv 0 "Connection to $n: $(connections[n])" logtype=RuntimeLog
connections[n] = @timeout 30 begin
destroy_tunnel(s)
try
remote_server = load_config(s.username, s.domain, config_path(s))
remote_server === nothing && return false
s.port = construct_tunnel(s, remote_server.port)
sleep(5)
s.uuid = remote_server.uuid
try
HTTP.get(s, URI(path="/isalive")) !== nothing
save(s)
@debugv 1 "Connected to $n" logtype=RuntimeLog
return true
catch
destroy_tunnel(s)
return false
end
catch err
log_error(err, logtype=RuntimeLog)
destroy_tunnel(s)
return false
end
end false
end
end
return connections
end
function check_connections!(server_data::ServerData, args...; kwargs...)
all_servers = load(Server(""))
for k in filter(x-> !(x in all_servers), keys(server_data.connections))
delete!(server_data.connections, k)
end
for n in all_servers
n == server_data.server.name && continue
server_data.connections[n] = get(server_data.connections, n, false)
end
conn = check_connections!(server_data.connections, args...; kwargs...)
@debugv 1 "Connections: $(server_data.connections)" logtype=RuntimeLog
return conn
end
function julia_main(;verbose=0, kwargs...)::Cint
logger = TimestampLogger(TeeLogger(HTTPLogger(),
NotHTTPLogger(TeeLogger(RESTLogger(),
RuntimeLogger(),
GenericLogger()))))
with_logger(logger) do
LoggingExtras.withlevel(LoggingExtras.Debug; verbosity=verbose) do
try
s = local_server()
port, server = listenany(ip"0.0.0.0", 8080)
s.port = port
server_data = ServerData(server=s; kwargs...)
@debug "Setting up Router" logtype=RuntimeLog
setup_core_api!(server_data)
setup_job_api!(server_data)
setup_database_api!()
connection_task = Threads.@spawn @stoppable server_data.stop begin
@debug "Checking Connections" logtype=RuntimeLog
try
check_connections!(server_data, false)
while true
t = time()
check_connections!(server_data, false)
sleep_t = 5 - (time() - t)
if sleep_t > 0
sleep(sleep_t)
end
end
catch e
log_error(e)
end
end
@debug "Starting main loop" logtype=RuntimeLog
t = Threads.@spawn try
main_loop(server_data)
catch e
log_error(e, logtype=RuntimeLog)
end
@debug "Starting RESTAPI - HOST $(gethostname()) - USER $(get(ENV, "USER", "unknown_user"))" logtype=RuntimeLog
save(s)
@async serve(middleware = [x -> requestHandler(x, server_data), x -> AuthHandler(x, UUID(s.uuid))],
host="0.0.0.0", port=Int(port), server = server, access_log=nothing, serialize=false)
while !server_data.stop
sleep(1)
end
@debug "Shutting down server"
terminate()
fetch(t)
fetch(connection_task)
return 0
catch e
log_error(e)
rethrow(e)
end
end
end
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 9167 | abstract type Scheduler end
@kwdef struct Bash <: Scheduler
type::String = "bash"
end
@kwdef struct Slurm <: Scheduler
type::String = "slurm"
end
@kwdef struct HQ <: Scheduler
type::String = "hq"
server_command::String = "hq"
allocs::Vector{String} = String[]
end
StructTypes.StructType(::Type{Cmd}) = StructTypes.Struct()
StructTypes.StructType(::Type{Scheduler}) = StructTypes.AbstractType()
StructTypes.subtypes(::Type{Scheduler}) = (bash = Bash, slurm = Slurm, hq = HQ)
StructTypes.StructType(::Type{Bash}) = StructTypes.Struct()
StructTypes.StructType(::Type{Slurm}) = StructTypes.Struct()
StructTypes.StructType(::Type{HQ}) = StructTypes.Struct()
StructTypes.subtypekey(::Type{Scheduler}) = :type
function Scheduler(d::Dict{String,Any})
t = d["type"]
if t == "bash"
return Bash(t)
elseif t == "slurm"
return Slurm(t)
else
return HQ(t, d["server_command"], string.(d["allocs"]))
end
end
Base.convert(::Type{Scheduler}, d::Dict) = Scheduler(d)
function submit(::S, ::AbstractString) where {S<:Scheduler}
return error("No submit method defined for $S.")
end
abort(::S, ::Int) where {S<:Scheduler} = error("No abort method defined for $S.")
jobstate(::S, ::Any) where {S<:Scheduler} = error("No jobstate method defined for $S.")
submit_cmd(s::S) where {S<:Scheduler} = error("No submit_cmd method defined for $S.")
submit_cmd(s::Slurm) = "sbatch"
submit_cmd(s::Bash) = "bash"
submit_cmd(s::HQ) = "hq"
function is_reachable(server_command::String)
t = run(string2cmd("which $server_command"); wait = false)
while !process_exited(t)
sleep(0.005)
end
return t.exitcode == 0
end
is_reachable(s::HQ) = is_reachable(s.server_command)
is_reachable(::Slurm) = is_reachable("sbatch")
is_reachable(::Bash) = true
directive_prefix(::Slurm) = "#SBATCH"
directive_prefix(::Bash) = "#"
directive_prefix(::HQ) = "#HQ"
name_directive(::Slurm) = "#SBATCH --job-name"
name_directive(::Bash) = "# job-name"
name_directive(::HQ) = "#HQ --name"
function parse_params(sched::Scheduler, preamble::String)
m = match(r"$(directive_prefix(sched)) (.+)\n", preamble)
params = Dict()
last = 0
while m !== nothing
s = split(replace(replace(m.captures[1], "-" => ""), "=" => " "))
tp = Meta.parse(s[2])
t = tp isa Symbol || tp isa Expr ? s[2] : tp
params[s[1]] = t
last = m.offset + length(m.match)
m = match(r"$(directive_prefix(sched)) (.+)\n", preamble, last)
end
return params, preamble[last:end]
end
maybe_scheduler_restart(::Bash) = false
queue(::Bash) = Dict()
function jobstate(::Bash, id::Int)
out = Pipe()
err = Pipe()
p = run(pipeline(ignorestatus(`ps -p $id`); stderr = err, stdout = out))
close(out.in)
close(err.in)
return p.exitcode == 1 ? Completed : Running
end
function submit(::Bash, j::AbstractString)
return Int(getpid(run(Cmd(`bash job.sh`; detach = true, dir = j); wait = false)))
end
function abort(::Bash, id::Int)
pids = [parse(Int, split(s)[1]) for s in readlines(`ps -s $id`)[2:end]]
for p in pids
run(ignorestatus(`kill $p`))
end
end
function in_queue(s::JobState)
return s in (Submitted, Pending, Running, Configuring, Completing, Suspended)
end
## SLURM ##
function maybe_scheduler_restart(::Slurm)
if occursin("error", read(`squeue -u $(ENV["USER"])`, String))
if occursin("(null)", read(`slurmd`, String))
error("Can not start slurmctld automatically...")
else
return true
end
else
return false
end
end
function queue(sc::Slurm)
qlines = readlines(`squeue -u $(ENV["USER"]) --format="%Z %i %T"`)[2:end]
return Dict([(s = split(x); s[1] => (parse(Int, s[2]), jobstate(sc, s[3])))
for x in qlines])
end
function jobstate(s::Slurm, id::Int)
cmd = `sacct -u $(ENV["USER"]) --format=State -j $id -P`
st = Unknown
try
lines = readlines(cmd)
if length(lines) > 1
st = jobstate(s, lines[2])
end
catch
nothing
end
st != Unknown && return st
cmd = `scontrol show job $id`
try
lines = read(cmd, String)
reg = r"JobState=(\w+)\b"
m = match(reg, lines)
return jobstate(s, m[1])
catch
return Unknown
end
end
function jobstate(::Slurm, state::AbstractString)
if state == "PENDING"
return Pending
elseif state == "RUNNING"
return Running
elseif state == "COMPLETED"
return Completed
elseif state == "CONFIGURING"
return Configuring
elseif state == "COMPLETING"
return Completing
elseif state == "CANCELLED"
return Cancelled
elseif state == "BOOT_FAIL"
return BootFail
elseif state == "DEADLINE"
return Deadline
elseif state == "FAILED"
return Failed
elseif state == "NODE_FAIL"
return NodeFail
elseif state == "OUT_OF_MEMORY"
return OutOfMemory
elseif state == "PREEMTED"
return Preempted
elseif state == "REQUEUED"
return Requeued
elseif state == "RESIZING"
return Resizing
elseif state == "REVOKED"
return Revoked
elseif state == "SUSPENDED"
return Suspended
elseif state == "TIMEOUT"
return Timeout
end
return Unknown
end
function submit(::Slurm, j::AbstractString)
return parse(Int, split(read(Cmd(`sbatch job.sh`; dir = j), String))[end])
end
abort(::Slurm, id::Int) = run(`scancel $id`)
#### HQ
function maybe_scheduler_restart(sc::HQ)
function readinfo()
out = Pipe()
err = Pipe()
run(pipeline(Cmd(Cmd(string.([split(sc.server_command)..., "server", "info"]));
ignorestatus = true); stdout = out, stderr = err))
close(out.in)
close(err.in)
return read(err, String)
end
if occursin("No online", readinfo())
run(Cmd(Cmd(string.([split(sc.server_command)..., "server", "start"]));
detach = true); wait = false)
sleep(0.01)
tries = 0
while occursin("No online", readinfo()) && tries < 10
sleep(0.01)
tries += 1
end
if tries == 10
error("HQ server not reachable")
end
maybe_restart_allocs(sc)
return true
else
maybe_restart_allocs(sc)
return false
end
end
function maybe_restart_allocs(sc::HQ)
alloc_lines = readlines(Cmd(Cmd(string.([split(sc.server_command)..., "alloc", "list"]))))
if length(alloc_lines) == 3 # no allocs -> add all
allocs_to_add = sc.allocs
else
alloc_args = map(a -> replace(strip(split(a, "|")[end-1]), "," => " "),
alloc_lines[4:end-1])
allocs_to_add = filter(a -> !any(x -> x == strip(split(a, "-- ")[end]), alloc_args),
sc.allocs)
end
for ac in allocs_to_add
try
run(Cmd(string.([split(sc.server_command)..., "alloc", "add", split(ac)...])))
catch e
log_error(e)
end
end
end
function queue(sc::HQ)
all_lines = readlines(Cmd(string.([split(sc.server_command)..., "job", "list"])))
start_id = findnext(x -> x[1] == '+', all_lines, 2)
endid = findnext(x -> x[1] == '+', all_lines, start_id + 1)
if endid === nothing
return Dict()
end
qlines = all_lines[start_id+1:endid-1]
jobinfos = [(s = split(x); (parse(Int, s[2]), jobstate(sc, s[6]))) for x in qlines]
workdir_line_id = findfirst(x -> occursin("Working directory", x),
readlines(Cmd(string.([split(sc.server_command)..., "job",
"info", "$(jobinfos[1][1])"]))))
function workdir(id)
return split(readlines(Cmd(string.([split(sc.server_command)..., "job", "info",
"$id"])))[workdir_line_id])[end-1]
end
return Dict([workdir(x[1]) => x for x in jobinfos])
end
function jobstate(s::HQ, id::Int)
lines = readlines(Cmd(string.([split(s.server_command)..., "job", "info", "$id"])))
if length(lines) <= 1
return Unknown
end
return jobstate(s, split(lines[findfirst(x -> occursin("State", x), lines)])[4])
end
function jobstate(::HQ, state::AbstractString)
if state == "WAITING"
return Pending
elseif state == "RUNNING"
return Running
elseif state == "FINISHED"
return Completed
elseif state == "CANCELED"
return Cancelled
elseif state == "FAILED"
return Failed
end
return Unknown
end
function submit(h::HQ, j::AbstractString)
chmod(joinpath(j, "job.sh"), 0o777)
out = read(Cmd(Cmd(string.([split(h.server_command)..., "submit", "./job.sh"]));
dir = j), String)
if !occursin("successfully", out)
error("Submission error for job in dir $j.")
end
return parse(Int, split(out)[end])
end
function abort(h::HQ, id::Int)
return run(Cmd(string.([split(h.server_command)..., "job", "cancel", "$id"])))
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 23415 | using REPL.TerminalMenus
using OpenSSH_jll
const SERVER_DIR = config_path("storage/servers")
"""
Server(name ::String,
username ::String,
domain ::String,
scheduler ::Scheduler,
julia_exec ::String,
jobdir ::String,
max_concurrent_jobs ::Int)
Server(name::String)
A [`Server`](@ref) represents a daemon running either locally or on some remote cluster.
It facilitates all remote operations that are required to save, submit, monitor and retrieve HPC jobs.
As with any [`Storable`](@ref), `name` is used simply as a label.
`username` and `domain` should be those that allow for `ssh` connections between your local machine and the remote host.
Make sure that passwords are not required to execute `ssh` commands, i.e. by having copied your `ssh` keys using `ssh-copy-id`.
`julia_exec` should be the path on the remote host where to find the `julia` executable.
`scheduler` will be automatically deduced but can be overridden if needed.
"""
@kwdef mutable struct Server <: Storable
name::String = ""
username::String = ""
domain::String = ""
scheduler::Scheduler = Bash()
julia_exec::String = "julia"
jobdir::String = ""
port::Int = 8080
max_concurrent_jobs::Int = 100
uuid::String = ""
end
storage_directory(::Server) = "servers"
function configure_scheduler(s::Server; interactive = true)
scheduler = nothing
if haskey(ENV, "REMOTEHPC_SCHEDULER")
sched = ENV["REMOTEHPC_SCHEDULER"]
if occursin("hq", lowercase(sched))
cmd = get(ENV, "REMOTEHPC_SCHEDULER_CMD", "hq")
return HQ(; server_command = cmd)
elseif lowercase(sched) == "slurm"
return Slurm()
else
error("Scheduler $sched not recognized please set a different REMOTEHPC_SCHEDULER environment var.")
end
end
for t in (HQ(), Slurm())
scmd = submit_cmd(t)
if server_command(s, "which $scmd").exitcode == 0
scheduler = t
break
end
end
if scheduler !== nothing
return scheduler
end
if interactive && scheduler === nothing
choice = request("Couldn't identify the scheduler select one: ",
RadioMenu(["SLURM", "HQ", "BASH"]))
if choice == 1
scheduler = Slurm()
elseif choice == 2
scheduler = HQ(; server_command = ask_input(String, "HQ command", "hq"))
elseif choice == 3
scheduler = Bash()
else
return
end
return scheduler
else
return Bash()
end
end
function configure!(s::Server; interactive = true)
if s.domain == "localhost"
s.julia_exec = joinpath(Sys.BINDIR, "julia")
else
if interactive
username = ask_input(String, "Username")
domain = ask_input(String, "Domain")
if server_command(username, domain, "ls").exitcode != 0
error("$username@$domain not reachable")
end
s = Server(name=s.name, username=username, domain=domain)
@debug "Trying to pull existing configuration from $username@$domain..."
try
server = load_config(username, domain, config_path(s))
catch
server = nothing
end
if server !== nothing
server.name = s.name
server.domain = s.domain
change_config = request("Found remote server configuration:\n$server\nIs this correct?",
RadioMenu(["yes", "no"]))
change_config == -1 && return
if change_config == 1
save(server)
return server
else
s = server
end
else
@debug "Couldn't pull server configuration, creating new..."
server = Server(; name = s.name, domain = domain, username = username)
end
julia = ask_input(String, "Julia executable path", s.julia_exec)
if server_command(s.username, s.domain, "which $julia").exitcode != 0
yn_id = request("$julia, no such file or directory. Install julia?", RadioMenu(["yes", "no"]))
yn_id == -1 && return
if yn_id == 1
s.julia_exec = install_julia(s)
install(s)
else
@debug """
You will need to install julia, e.g. by using `RemoteHPC.install_julia` or manually on the cluster.
Afterwards don't forget to update server.julia_exec to the correct one before starting the server.
"""
end
else
s.julia_exec = julia
end
else
s.julia_exec = "julia"
end
end
# Try auto configuring the scheduler
scheduler = configure_scheduler(s; interactive = interactive)
if scheduler === nothing
return
end
s.scheduler = scheduler
hdir = server_command(s, "pwd").stdout[1:end-1]
if interactive
dir = ask_input(String, "Default Jobs directory", hdir)
if dir != hdir
while server_command(s, "ls $dir").exitcode != 0
# @warn "$dir, no such file or directory."
local_choice = request("No such directory, creating one?",
RadioMenu(["yes", "no"]))
if local_choice == 1
result = server_command(s, "mkdir -p $dir")
if result.exitcode != 0
@warn "Couldn't create $dir, try a different one."
end
else
dir = ask_input(String, "Default jobs directory")
end
end
end
s.jobdir = dir
s.max_concurrent_jobs = ask_input(Int, "Max Concurrent Jobs", s.max_concurrent_jobs)
else
s.jobdir = hdir
end
conf_path = config_path(s)
t = server_command(s, "ls $(conf_path)")
if t.exitcode != 0
install(s)
end
s.uuid = string(uuid4())
return s
end
"""
configure_local()
Runs through interactive configuration of the local [`Server`](@ref).
"""
function configure_local(; interactive = true)
host = gethostname()
@assert !exists(Server(; name = host)) "Local server already configured."
user = get(ENV, "USER", "nouser")
s = Server(; name = host, username = user, domain = "localhost")
configure!(s; interactive = interactive)
@debug "saving server configuration...", s
save(s)
if interactive
start_server = request("Start server?", RadioMenu(["yes", "no"]))
start_server == -1 && return
if start_server == 1
start(s)
end
end
return s
end
function Server(s::AbstractString; overwrite=false)
t = Server(; name = s)
return isempty(s) ? t : load(t)
end
islocal(s::Server) = s.domain == "localhost"
function local_server()
s = Server(name=gethostname())
if !exists(s)
error("Local Server wasn't configured. Try running `using Pkg; Pkg.build(\"RemoteHPC\")`")
end
return load(s)
end
# TODO use versions.json from main julia site
function install_julia(s::Server)
julia_tar = "julia-1.8.5-linux-x86_64.tar.gz"
title = "Installing julia on Server $(s.name) ($(s.username)@$(s.domain))..."
steps = ["downloading locally",
"pushing to remote",
"unpacking on remote"]
StepSpinner(title, steps) do spinner
t = tempname()
mkdir(t)
download("https://julialang-s3.julialang.org/bin/linux/x64/1.8/julia-1.8.5-linux-x86_64.tar.gz",
joinpath(t, "julia.tar.gz"))
next!(spinner)
push(joinpath(t, "julia.tar.gz"), s, julia_tar)
rm(t; recursive = true)
next!(spinner)
res = server_command(s, "tar -xf $julia_tar")
if res.exitcode != 0
finish!(spinner, ErrorException("Issue unpacking julia executable on cluster, please install julia manually"))
end
server_command(s, "rm $julia_tar")
s.julia_exec = "~/julia-1.8.5/bin/julia"
save(s)
return s.julia_exec
end
end
function install(s::Server, julia_exec = s.julia_exec)
# We install the latest version of julia in the homedir
title = "Installing RemoteHPC on remote"
steps = ["installing julia",
"installing RemoteHPC"]
StepSpinner(title, steps) do spinner
res = server_command(s, "which $julia_exec")
if res.exitcode != 0
julia_exec = install_julia(s)
else
julia_exec = res.stdout[1:end-1]
end
next!(spinner)
s.julia_exec = julia_exec
res = julia_cmd(s, "using Pkg; Pkg.activate(joinpath(Pkg.depots()[1], \"config/RemoteHPC\")); Pkg.add(\"RemoteHPC\");Pkg.build(\"RemoteHPC\")")
if res.exitcode != 0
finish!(spinner, ErrorException("Something went wrong installing RemoteHPC on server, please install manually"))
end
save(s)
end
@info "RemoteHPC installed on remote cluster, try starting the server with `start(server)`."
end
mutable struct StepSpinner
steps::Vector{String}
step_msgs::Vector{Vector{String}}
curstep::Int
dt::Float64
spinner::String
finished::Bool
prog::ProgressUnknown
t::Union{Task, Nothing}
showvalues::Vector{NTuple{2, String}}
end
function StepSpinner(title::String, steps::Vector{String}; dt=0.1, spinner = "⠋⠙⠹⠸⠼⠴⠦⠧⠇⠏")
step_msgs = [String[] for i = 1:length(steps)]
prog = ProgressUnknown(title, spinner=true, dt=0.0)
out = StepSpinner(steps, step_msgs, 1, dt, spinner, false, prog, nothing, NTuple{2,String}[])
out.showvalues = showvalues(out)
return out
end
Base.length(s::StepSpinner) = length(s.steps)
function ProgressMeter.next!(s::StepSpinner)
s.curstep += 1
s.showvalues = showvalues(s)
end
function ProgressMeter.finish!(s::StepSpinner, msg=nothing)
s.finished = true
if s.t !== nothing && !istaskdone(s.t)
fetch(s.t)
end
if msg isa AbstractString
finish!(s.prog; showvalues = ("SUCCESS", msg))
elseif msg === nothing
finish!(s.prog)
else
finish!(s.prog; spinner = '✗')
throw(msg)
end
end
function showvalues(s::StepSpinner)
nsteps = length(s)
out = NTuple{2, String}[]
for i = 1:s.curstep
t = [("Step [$i/$nsteps]", s.steps[i])]
for (im, msg) in enumerate(s.step_msgs[i])
push!(t, ("$im", msg))
end
append!(out, t)
end
return out
end
function Base.push!(s::StepSpinner, msg::String)
curlen = length(s.step_msgs[s.curstep])
push!(s.step_msgs[s.curstep], msg)
push!(s.showvalues, ("$(curlen+1)", msg))
end
function StepSpinner(f::Function, args...; kwargs...)
s = StepSpinner(args...; kwargs...)
s.t = Threads.@spawn begin
while !s.finished
next!(s.prog, showvalues = s.showvalues, spinner=s.spinner)
sleep(s.dt)
end
end
try
return f(s)
finally
finish!(s)
end
end
function update(s::Server)
title = "Updating RemoteHPC on Server $(s.name) ($(s.username)@$(s.domain))..."
steps = ["Checking server status",
"Updating RemoteHPC",
"Restarting Server if needed"]
StepSpinner(title, steps, spinner= "⠋⠙⠹⠸⠼⠴⠦⠧⠇⠏", dt=0.1) do spinner
v = nothing
try
v = version(s)
push!(spinner, "Current version $v")
catch
push!(spinner, "Current version could not be determined")
end
alive = isalive(s)
if alive
push!(spinner, "Server was alive, killing")
kill(s)
end
next!(spinner)
if islocal(s)
curproj = Pkg.project().path
Pkg.activate(joinpath(depot_path(s), "config/RemoteHPC"))
push!(spinner, "Executing local update command")
Pkg.update()
Pkg.activate(curproj)
else
push!(spinner, "Executing remote update command")
res = julia_cmd(s, "using Pkg; Pkg.activate(joinpath(Pkg.depots()[1], \"config/RemoteHPC\")); Pkg.update(\"RemoteHPC\")")
if res.exitcode != 0
finish!(spinner, ErrorException("Error while updating Server $(s.name):\nstdout: $(res.stdout) stderr: $(res.stderr) exitcode: $(res.exitcode)"))
end
end
next!(spinner)
if alive
push!(spinner, "Restarting server...")
start(s)
end
finish!(spinner)
if v !== nothing
newver = version(s)
if v == newver
@warn "Version did not update, is RemoteHPC installed from a fixed path on the Server?"
else
@info "Version $v -> $newver"
end
else
@info "New version $(version(s))"
end
end
end
Base.joinpath(s::Server, p...) = joinpath(s.jobdir, p...)
function Base.ispath(s::Server, p...)
return islocal(s) ? ispath(p...) :
JSON3.read(HTTP.get(s, URI(path="/ispath/", query=Dict("path"=> joinpath(p...)))).body, Bool)
end
function Base.symlink(s::Server, p, p2)
if islocal(s)
symlink(p, p2)
else
HTTP.post(s, URI(path="/symlink/"), [p, p2])
return nothing
end
end
function Base.rm(s::Server, p::String)
if islocal(s)
isdir(p) ? rm(p; recursive = true) : rm(p)
else
HTTP.post(s, URI(path="/rm/", query=Dict("path" => p)))
return nothing
end
end
function Base.read(s::Server, path::String, type = nothing)
if islocal(s)
return type === nothing ? read(path) : read(path, type)
else
resp = HTTP.get(s, URI(path="/read/", query = Dict("path" =>path)))
t = JSON3.read(resp.body, Vector{UInt8})
return type === nothing ? t : type(t)
end
end
function Base.write(s::Server, path::String, v)
if islocal(s)
write(path, v)
else
resp = HTTP.post(s, URI(path="/write/", query = Dict("path" => path)), Vector{UInt8}(v))
return JSON3.read(resp.body, Int)
end
end
function Base.mkpath(s::Server, dir)
HTTP.post(s, URI(path="/mkpath/", query=Dict("path" => dir)))
return dir
end
function Base.cp(s::Server, src, dst)
HTTP.post(s, URI(path="/cp/"), (src, dst))
return dst
end
parse_config(config) = JSON3.read(config, Server)
read_config(config_file) = parse_config(read(config_file, String))
config_path(s::Server, p...) = joinpath(depot_path(s), "config", "RemoteHPC", p...)
function load_config(username, domain, conf_path)
hostname = gethostname(username, domain)
if domain == "localhost"
return parse_config(read(config_path("storage", "servers", "$hostname.json"),
String))
else
t = server_command(username, domain,
"cat $(conf_path)/$hostname/storage/servers/$hostname.json")
if t.exitcode != 0
return nothing
else
return parse_config(t.stdout)
end
end
end
function load_config(s::Server)
if isalive(s)
return JSON3.read(HTTP.get(s, URI(path="/server/config/")).body, Server)
else
return load_config(s.username, s.domain, config_path(s))
end
end
function Base.gethostname(username::AbstractString, domain::AbstractString)
t = server_command(username, domain, "hostname")
if !isempty(t.stderr)
error(t.stderr)
end
return split(t.stdout)[1]
end
Base.gethostname(s::Server) = gethostname(s.username, s.domain)
function depot_path(s::Server)
if islocal(s)
occursin("cache", Pkg.depots()[1]) ? Pkg.depots()[2] : Pkg.depots()[1]
else
t = julia_cmd(s, "print(realpath(Base.DEPOT_PATH[1]))")
if t.exitcode != 0
error("Server $(s.name) can't be reached:\n$(t.stderr)")
end
if occursin("cache", t.stdout)
return julia_cmd(s, "print(realpath(Base.DEPOT_PATH[2]))").stdout
else
return t.stdout
end
end
end
function julia_cmd(s::Server, cmd::String)
return server_command(s, "$(s.julia_exec) --startup-file=no -e ' $cmd '")
end
ssh_string(s::Server) = s.username * "@" * s.domain
function http_uri(s::Server, uri::URI = URI())
return URI(uri, scheme="http", port=s.port, host = "localhost")
end
function http_uri(s::Server, uri::AbstractString)
return URI(URI(uri), scheme="http", port=s.port, host = "localhost")
end
function Base.rm(s::Server)
return ispath(joinpath(SERVER_DIR, s.name * ".json")) &&
rm(joinpath(SERVER_DIR, s.name * ".json"))
end
function find_tunnel(s)
if haskey(ENV, "USER")
lines = readlines(`ps -o pid,command -u $(ENV["USER"])`)
else
lines = readlines(`ps -eo pid,command`)
end
t = getfirst(x -> occursin("-N -L", x) && occursin(ssh_string(s), x),
lines)
if t !== nothing
return parse(Int, split(t)[1])
end
end
function destroy_tunnel(s)
t = find_tunnel(s)
if t !== nothing
try
run(`kill $t`)
catch
nothing
end
end
end
function construct_tunnel(s, remote_port)
if Sys.which("ssh") === nothing
OpenSSH_jll.ssh() do ssh_exec
port, serv = listenany(Sockets.localhost, 0)
close(serv)
run(Cmd(`$ssh_exec -o ExitOnForwardFailure=yes -o ServerAliveInterval=60 -N -L $port:localhost:$remote_port $(ssh_string(s))`); wait=false)
return port
end
else
port, serv = listenany(Sockets.localhost, 0)
close(serv)
cmd = Cmd(`ssh -o ExitOnForwardFailure=yes -o ServerAliveInterval=60 -N -L $port:localhost:$remote_port $(ssh_string(s))`)
run(cmd; wait=false)
return port
end
end
"""
pull(server::Server, remote::String, loc::String)
Pulls `remote` from the server to `loc`.
"""
function pull(server::Server, remote::String, loc::String)
if !ispath(server, remote)
error("No such file or directory $remote.")
end
path = isdir(loc) ? joinpath(loc, splitpath(remote)[end]) : loc
if islocal(server)
cp(remote, path; force = true)
else
if filesize(server, remote) > 100e6 || isdir(server, remote)
out = Pipe()
err = Pipe()
# OpenSSH_jll.scp() do scp_exec
run(pipeline(`scp -r $(ssh_string(server) * ":" * remote) $path`; stdout = out,
stderr = err))
# end
close(out.in)
close(err.in)
stderr = read(err, String)
if !isempty(stderr)
error("$stderr")
end
else
write(loc, read(server, remote))
end
end
return path
end
"""
push(local_file::String, server::Server, server_file::String)
Pushes the `local_file` to the `server_file` on the server.
"""
function push(filename::String, server::Server, server_file::String)
if islocal(server)
cp(filename, server_file; force = true)
else
out = Pipe()
err = Pipe()
# OpenSSH_jll.scp() do scp_exec
run(pipeline(`scp $filename $(ssh_string(server) * ":" * server_file)`;
stdout = out, stderr=err))
# end
close(out.in)
close(err.in)
end
end
"Executes a command through `ssh`."
function server_command(username, domain, cmd::String)
out = Pipe()
err = Pipe()
if domain == "localhost"
e = ignorestatus(Cmd(string.(split(cmd))))
process = run(pipeline(e; stdout = out,
stderr = err))
else
if Sys.which("ssh") === nothing
OpenSSH_jll.ssh() do ssh_exec
process = run(pipeline(ignorestatus(Cmd(["$ssh_exec", "$(username * "@" * domain)",
string.(split(cmd))...])); stdout = out,
stderr = err))
end
else
process = run(pipeline(ignorestatus(Cmd(["ssh", "$(username * "@" * domain)",
string.(split(cmd))...])); stdout = out,
stderr = err))
end
end
close(out.in)
close(err.in)
stdout = read(out, String)
stderr = read(err, String)
return (stdout = stdout,
stderr = stderr,
exitcode = process.exitcode)
end
server_command(s::Server, cmd) = server_command(s.username, s.domain, cmd)
function has_modules(s::Server)
try
server_command(s, "module avail").code == 0
catch
false
end
end
function available_modules(s::Server)
if has_modules(s)
return server_command(s, "module avail")
else
return String[]
end
end
function HTTP.request(method::String, s::Server, url, body; kwargs...)
header = ["USER-UUID" => s.uuid]
return HTTP.request(method, http_uri(s, url), header, JSON3.write(body);
kwargs...)
end
function HTTP.request(method::String, s::Server, url, body::Vector{UInt8}; kwargs...)
header = ["USER-UUID" => s.uuid]
return HTTP.request(method, http_uri(s, url), header, body; kwargs...)
end
function HTTP.request(method::String, s::Server, url; connect_timeout = 1, retries = 2,
kwargs...)
header = ["USER-UUID" => s.uuid]
return HTTP.request(method, http_uri(s, url), header;
connect_timeout = connect_timeout, retries = retries, kwargs...)
end
for f in (:get, :put, :post, :head, :patch)
str = uppercase(string(f))
@eval function HTTP.$(f)(s::Server, url::AbstractString, args...; kwargs...)
return HTTP.request("$($str)", s, url, args...; kwargs...)
end
end
function Base.readdir(s::Server, dir::AbstractString)
resp = HTTP.get(s, URI(path="/readdir/", query=Dict("path" => abspath(s, dir))))
return JSON3.read(resp.body, Vector{String})
end
Base.abspath(s::Server, p) = isabspath(p) ? p : joinpath(s, p)
function Base.mtime(s::Server, p)
if islocal(s)
return mtime(p)
else
resp = HTTP.get(s, URI(path="/mtime/", query=Dict("path" => p)))
return JSON3.read(resp.body, Float64)
end
end
function Base.filesize(s::Server, p)
if islocal(s)
return filesize(p)
else
resp = HTTP.get(s, URI(path="/filesize/", query = Dict("path" => p)))
return JSON3.read(resp.body, Float64)
end
end
function Base.realpath(s::Server, p)
if islocal(s)
return realpath(p)
else
resp = HTTP.get(s, URI(path="/realpath/", query=Dict("path" => p)))
return JSON3.read(resp.body, String)
end
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 6915 | @enum JobState BootFail Pending Running Completed Cancelled Deadline Failed NodeFail OutOfMemory Preempted Requeued Resizing Revoked Suspended Timeout Submitted Unknown PostProcessing Saved Configuring Completing SubmissionError
"""
Exec(;name::String = "",
path::String = "",
flags::Dict = Dict(),
modules::Vector{String} = String[],
parallel::Bool = true)
Representation of an executable.
As with any [`Storable`](@ref), `name` is used simply as a label to be able to [`load`](@ref) it
from the [`Server`](@ref) where it is stored.
In a job script this will be translated as `<path> <flags>`.
# `configure()` Example
```julia
name::String = "exec_label"
path::String = "/path/to/exec"
flags::Dict{Any, Any} = Dict{Any, Any}("l" => 1, "-np" => 4, "trialname" => "testtrial")
modules::Vector{String} = String["intel","intel-mkl"]
parallel::Bool = false
```
# Example:
```julia
Exec(; path="ls", flags=Dict("l" => ""))
```
translates into `ls -l` in the jobscript.
# Flags
The `flags` `Dict` is expanded into the jobscript as follows:
```julia
Exec(path="foo", flags = Dict("N" => 1,
"-nk" => 10,
"np" => "\$NPOOLS",
"--t" => "",
"--t2" => 24)
# translates into: foo -N1 -nk 10 --np=\$NPOOLS --t --t2=24
```
# Modules
The `modules` vector gets expanded into `module load` commands:
`modules = ["gcc", "QuantumESPRESSO"]` will lead to `module load gcc, QuantumESPRESSO` in the jobscript.
# Parallel
`parallel` communicates whether the executable should be ran with the parallel executable defined in the
[`Environment`](@ref) that represents the execution environment.
For example:
```julia
# If the Environment of the job is defined as:
Environment(parallel_exec=Exec(path="srun"))
# then the follow Exec:
Exec(path="foo", parallel=true)
# wille be translated into: srun foo
```
"""
@kwdef mutable struct Exec <: Storable
name::String = ""
path::String = ""
flags::Dict = Dict()
modules::Vector{String} = String[]
parallel::Bool = true
end
function Exec(d::Dict)
if haskey(d, :dir)
Base.depwarn("Constructor with separate `dir` and `exec` will be deprecated. Use one `path` instead.", :Exec)
return Exec(d[:name], joinpath(d[:dir], d[:exec]), d[:flags], d[:modules], d[:parallel])
else
return Exec(d[:name], d[:path], d[:flags], d[:modules], d[:parallel])
end
end
function Exec(a,b,c,d,e,f)
Base.depwarn("Constructor with separate `dir` and `exec` will be deprecated. Use one `path` instead.", :Exec)
return Exec(a, joinpath(b, c), d, e, f)
end
exec(e::Exec) = splitdir(e.path)[end]
Base.dirname(e::Exec) = splitdir(e.path)[1]
# Backwards compatibility
function Base.getproperty(e::Exec, name::Symbol)
if name == :dir
Base.depwarn("`e.dir` will be deprecated. Use `dirname(e)` instead.", :Exec)
return dirname(e.path)
elseif name == :exec
Base.depwarn("`e.exec` will be deprecated. Use `exec(e)` instead.", :Exec)
return exec(e)
else
return getfield(e, name)
end
end
function Base.setproperty!(e::Exec, name::Symbol, v)
if name == :dir
Base.depwarn("`e.dir` will be deprecated in favor of `e.path`.", :Exec)
return setfield!(e, :path, joinpath(v, exec(e)))
elseif name == :exec
Base.depwarn("`e.exec` will be deprecated in favor of `e.path`.", :Exec)
return setfield!(e, :path, joinpath(dirname(e), v))
else
return setfield!(e, name, v)
end
end
function isrunnable(e::Exec)
# To find the path to then ldd on
fullpath = Sys.which(e.path)
if fullpath !== nothing && ispath(fullpath)
out = Pipe()
err = Pipe()
#by definition by submitting something with modules this means the server has them
if !isempty(e.modules)
cmd = `echo "source /etc/profile && module load $(join(e.modules, " ")) && ldd $fullpath"`
else
cmd = `echo "source /etc/profile && ldd $fullpath"`
end
run(pipeline(pipeline(cmd; stdout = ignorestatus(`bash`)); stdout = out,
stderr = err))
close(out.in)
close(err.in)
stderr = String(read(err))
stdout = String(read(out))
# This basically means that the executable would run
return !occursin("not found", stdout) && !occursin("not found", stderr)
else
return false
end
end
# Database interface
@assign Exec with Is{Storable}
storage_directory(::Exec) = "execs"
@kwdef struct Calculation
exec::Exec
args::String = ""
run::Bool = true
end
"""
Environment(;name::String,
directives::Dict,
exports::Dict,
preamble::String,
postamble::String,
parallel_exec::Exec)
Represents and execution environment, i.e. a job script for `SLURM`, `HQ`, etc.
This forms the skeleton of the scripts with the scheduler directives, exports, pre and postambles,
and which executable to use for parallel execution (think `mpirun`, `srun`, etc).
As with any [`Storable`](@ref), `name` is used simply as a label to be able to [`load`](@ref) it
from the [`Server`](@ref) where it is stored.
# `configure()` Example
```julia
name::String = "default",
directives::Dict{Any, Any} = Dict{Any, Any}("time" => "24:00:00", "partition" => "standard", "account" => "s1073", "N" => 4, "ntasks-per-node" => 36, "cpus-per-task" => 1)
exports::Dict{Any, Any} = Dict{Any, Any}("OMP_NUM_THREADS" => 1)
preamble::String = "echo hello"
postamble::String = "echo goodbye"
parallel_exec::Exec = Exec(name="srun", path="srun", flags=Dict("n" => 36))
```
# Example
```julia
Environment(
name = "default",
directives = Dict("time" => "24:00:00", "partition" => "standard", "account" => "s1073", "N" => 4, "ntasks-per-node" => 36, "cpus-per-task" => 1)
exports = Dict("OMP_NUM_THREADS" => 1)
preamble = "echo hello"
postamble = "echo goodbye"
parallel_exec = Exec(name="srun", path="srun", flags=Dict("n" => 36))
)
```
Will be translated into
```bash
#!/bin/bash
# Generated by RemoteHPC
#SBATCH --job-name <will be filled in upon submission>
#SBATCH --time=24:00:00
#SBATCH --partition=standard
#SBATCH --account=s1073
#SBATCH -N 4
#SBATCH --ntasks-per-node=36
#SBATCH --cpus-per-task=1
export OMP_NUM_THREADS=1
<module load commands specified by Execs will go here>
echo hello
srun -n 36 <parallel Exec 1>
srun -n 36 <parallel Exec 2>
<serial Exec>
echo goodbye
```
"""
@kwdef mutable struct Environment <: Storable
name::String = ""
directives::Dict = Dict()
exports::Dict = Dict()
preamble::String = ""
postamble::String = ""
parallel_exec::Exec = Exec()
end
@assign Environment with Is{Storable}
storage_directory(::Environment) = "environments"
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 1905 | function suppress(f::Function)
with_logger(FileLogger("/dev/null")) do
return f()
end
end
struct StallException <: Exception
e
end
function Base.showerror(io::IO, err::StallException, args...)
print(io, "StallException:")
showerror(io, err.e, args...)
end
macro timeout(seconds, expr, err_expr=:(nothing))
tsk = gensym("tsk")
start_time = gensym("start_time")
curt = gensym("curt")
timer = gensym("timer")
err = gensym("err")
esc(quote
$tsk = @task $expr
schedule($tsk)
$start_time = time()
$curt = time()
Base.Timer(0.001, interval=0.001) do $timer
if $tsk === nothing || istaskdone($tsk)
close($timer)
else
$curt = time()
if $curt - $start_time > $seconds
Base.throwto($tsk, InterruptException())
end
end
end
try
fetch($tsk)
catch $err
if $err.task.exception isa InterruptException
RemoteHPC.log_error(RemoteHPC.StallException($err))
$err_expr
else
rethrow($err)
end
end
end)
end
macro stoppable(stop, expr)
tsk = gensym("tsk")
timer = gensym("timer")
err = gensym("err")
esc(quote
$tsk = @task $expr
schedule($tsk)
Base.Timer(0.001, interval=0.001) do $timer
if $tsk === nothing || istaskdone($tsk)
close($timer)
elseif $stop
Base.throwto($tsk, InterruptException())
end
end
try
fetch($tsk)
catch $err
if !($err.task.exception isa InterruptException)
rethrow($err)
end
end
end)
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | code | 5676 | using Test
using RemoteHPC
using RemoteHPC.BinaryTraits
@testset "Storable interface" begin
@test @check(Exec).result
@test @check(Server).result
@test @check(Environment).result
end
tconfdir = tempname()
# tconfdir = "/tmp/remotehpc"
if ispath(tconfdir)
rm(tconfdir; recursive = true)
end
import RemoteHPC: config_path
config_path(p...) = joinpath(tconfdir, p...)
paths = ["jobs",
"logs/jobs",
"storage/servers",
"storage/execs",
"storage/environments"]
for p in paths
mkpath(config_path(p))
end
redirect_stdin(devnull) do
redirect_stderr(devnull) do
redirect_stdout(devnull) do
RemoteHPC.configure_local(; interactive = false)
t = @async RemoteHPC.julia_main(verbose=2)
end
end
end
while !isalive(local_server())
sleep(0.1)
end
const s = local_server()
t_jobdir = tempname()
if s.scheduler isa HQ
scheds = [s.scheduler, Slurm(), Bash()]
elseif s.scheduler isa Slurm
scheds = [s.scheduler, Bash()]
else
scheds = [Bash()]
end
for sched in scheds
@testset "$sched" begin
@testset "updating config" begin
kill(s)
s.scheduler = sched
save(s)
t = @async RemoteHPC.julia_main(verbose=2)
while !isalive(local_server())
sleep(0.1)
end
st = RemoteHPC.load_config(s)
@test st.scheduler == sched
end
@testset "database" begin
exec = RemoteHPC.Exec("test", "cat",
Dict("f" => 3, "test" => [1, 2, 3],
"test2" => "stringtest", "-nk" => 10),
["intel", "intel-mkl"], true)
save(s, exec)
te = load(s, exec)
for f in fieldnames(Exec)
@test getfield(te, f) == getfield(exec, f)
end
exec = RemoteHPC.Exec("test", "cat", Dict(), [], false)
redirect_stderr(devnull) do
return save(s, exec)
end
e = Environment("test", Dict("N" => 1, "time" => "00:01:01"),
Dict("OMP_NUM_THREADS" => 1), "", "",
RemoteHPC.Exec(; name = "srun", path = "srun"))
partition = get(ENV, "SLURM_PARTITION", nothing)
account = get(ENV, "SLURM_ACCOUNT", nothing)
if partition !== nothing
e.directives["partition"] = partition
end
if account !== nothing
e.directives["account"] = account
end
save(s, e)
te = load(s, e)
for f in fieldnames(Environment)
@test getfield(te, f) == getfield(e, f)
end
es = load(s, Exec("ca"))
@test length(es) == 1
es = load(s, Exec(; path = ""))
@test length(es) == 1
end
@testset "job" begin
@testset "creation and save" begin
exec = load(s, Exec("test"))
c = [Calculation(exec, "< scf.in > scf.out", true),
Calculation(exec, "< nscf.in > nscf.out", true)]
e = load(s, Environment("test"))
save(s, t_jobdir, e, c; name = "testjob")
@test state(s, t_jobdir) == RemoteHPC.Saved
td = load(s, t_jobdir)
@test td.name == "testjob"
for (c1, c2) in zip(c, td.calculations)
for f in fieldnames(Calculation)
@test getfield(c1, f) == getfield(c2, f)
end
end
@test td.environment == e
end
@testset "submission and running" begin
write(s, joinpath(t_jobdir, "scf.in"), "test input")
write(s, joinpath(t_jobdir, "nscf.in"), "test input2")
submit(s, t_jobdir)
while state(s, t_jobdir) != RemoteHPC.Completed
sleep(0.1)
end
@test read(joinpath(t_jobdir, "scf.out"), String) == "test input"
@test read(joinpath(t_jobdir, "nscf.out"), String) == "test input2"
exec = load(s, Exec("test"))
sleep_e = Exec(; name = "sleep", path = "sleep", parallel = false)
c = [Calculation(exec, "< scf.in > scf.out", true),
Calculation(exec, "< nscf.in > nscf.out", true),
Calculation(sleep_e, "10", true)]
e = load(s, Environment("test"))
submit(s, t_jobdir, e, c; name = "testjob")
while state(s, t_jobdir) != RemoteHPC.Running
sleep(0.1)
end
abort(s, t_jobdir)
@test state(s, t_jobdir) == RemoteHPC.Cancelled
rm(s, t_jobdir)
@test !ispath(s, t_jobdir)
end
end
end
end
@testset "files api" begin
@test length(readdir(s, config_path())) == 3
@test filesize(s, config_path("logs/restapi.log")) > 0
@test mtime(s, config_path("logs/restapi.log")) > 0
tname = tempname()
write(s, tname, "test")
tname2 = tempname()
symlink(s, tname, tname2)
@test read(s, tname2, String) == "test"
rm(s, tname2)
rm(s, tname)
@test !ispath(s, tname)
@test !ispath(s, tname2)
end
@testset "spinner" begin
title = "test"
steps = ["test1", "test2"]
RemoteHPC.StepSpinner(title, steps,dt=0.1) do s
RemoteHPC.push!(s, "blabla")
RemoteHPC.next!(s)
RemoteHPC.push!(s, "test")
end
end
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | docs | 1767 | # RemoteHPC.jl
[](https://github.com/louisponet/RemoteHPC.jl/actions?query=workflow%3ACI)
[](https://codecov.io/gh/louisponet/RemoteHPC.jl)
[](https://pkgs.genieframework.com?packages=RemoteHPC)
RemoteHPC attempts to wrap all the usual interactions one might have with a remote HPC cluster in a restAPI webserver that runs on the frontend of the cluster.
## Features
- Store locally connection information to remote servers using `Server`
- Remotely store information for available executables and execution environments using `save(server, Exec(...))` and `save(server, Environment(...))`.
- Load remotely stored info using `load(server, Exec("<label>"))` and `load(server, Environment("<label>"))`.
- Represent a line in a jobscript using `Calculation(exec::Exec, infile::String, outfile::String, run::Bool, parallel::Bool)`.
- Save and submit a job with `save(server, jobdir, jobname, environment, calculations)` and `submit(server, jobdir)` or combine both steps with `submit(server, jobdir, jobname, environment, calculations)`.
- The state of a job can be retrieved by `state(server, jobdir)`.
- A job can be aborted using `abort(server, jobdir)`.
- Support for running jobs with `SLURM`, `HyperQueue`, or `Bash`.
- remote file operations: `read`,`write`, `rm`, `mtime`, `link`, etc.
- Starting a remote server with `start(server)` and automatic creation of ssh tunnels by specifying `server.local_tunnel`, useful when the frontend of a cluster is behind a proxy.
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 0.3.31 | a944797808499cb63982b14c42c7cb198d0deb20 | docs | 47 | # RemoteHPC.jl
Documentation for RemoteHPC.jl
| RemoteHPC | https://github.com/louisponet/RemoteHPC.jl.git |
|
[
"MIT"
] | 1.6.0 | c08db012b41bedc58adf33ca52a3004b55ad5eaa | code | 41470 | module RNGTest
using Random
import Base: convert, getindex, pointer
import Distributed: pmap
import TestU01_jll: libtestu01, libtestu01extractors
swrite = Ref{Ptr{Ptr{Bool}}}()
function __init__()
swrite[] = cglobal(("swrite_Basic", libtestu01), Ptr{Bool})
unsafe_store!(swrite[], 0, 1)
end
# WrappedRNG
# TestU01 expects a standard function as input (created via
# cfunction here). When one wants to test the random stream of
# an AbstractRNG, a little more work has to be done before
# passing it to TestU01. The type WrappedRNG wraps an
# AbstractRNG into an object which knows which type of random
# numbers to produce, and also whether the scalar or array API
# should be used (this is useful when different algorithms are
# used for each case, which results in different streams which
# should be tested separately). Such an object can then be
# passed to the Unif01 constructor.
const TestableNumbers = Union{Int8, UInt8, Int16, UInt16, Int32, UInt32,
Int64, UInt64, Int128, UInt128, Float16, Float32, Float64}
mutable struct WrappedRNG{T<:TestableNumbers, RNG<:AbstractRNG}
rng::RNG
cache::Vector{T}
fillarray::Bool
vals::Vector{UInt32}
idx::Int
end
function WrappedRNG(rng::RNG, ::Type{T}, fillarray = true, cache_size = 3*2^11 ÷ sizeof(T)) where {RNG, T}
if T <: Integer && cache_size*sizeof(T) % sizeof(UInt32) != 0
error("cache_size must be a multiple of $(Int(4/sizeof(T))) (for type $T)")
elseif T === Float16 && cache_size % 6 != 0 || T === Float32 && cache_size % 3 != 0
error("cache_size must be a multiple of 3 (resp. 6) for Float32 (resp. Float16)")
end
cache = Vector{T}(undef, cache_size)
fillcache(WrappedRNG{T, RNG}(rng, cache, fillarray,
unsafe_wrap(Array, convert(Ptr{UInt32}, pointer(cache)), sizeof(cache)÷sizeof(UInt32)),
0)) # 0 is a dummy value, which will be set correctly by fillcache
end
# The ability to play with the cache size and the fillarray option is for advanced uses,
# when one wants to test different code path of the particular RNG implementations, like
# MersenneTwister from Base.
# For now let's document only the type parameter in the wrap function:
wrap(rng::AbstractRNG, ::Type{T}) where {T<:TestableNumbers} = WrappedRNG(rng, T)
function fillcache(g::WrappedRNG{T}) where T
if g.fillarray
rand!(g.rng, g.cache)
else
for i = 1:length(g.cache)
@inbounds g.cache[i] = rand(g.rng, T)
end
end
g.idx = 0
return g
end
function (g::WrappedRNG{T})() where T<:Integer
g.idx+1 > length(g.vals) && fillcache(g)
@inbounds return g.vals[g.idx+=1]
end
function (g::WrappedRNG{Float64})()
g.idx+1 > length(g.cache) && fillcache(g)
@inbounds return g.cache[g.idx+=1]
end
function (g::WrappedRNG{Float32})()
g.idx+3 > length(g.cache) && fillcache(g)
@inbounds begin
f = Float64(g.cache[g.idx+1])
# a Float32 has 24 bits of precision, but only 23 bit of entropy
f += Float64(g.cache[g.idx+2])/exp2(23)
f += Float64(g.cache[g.idx+=3])/exp2(46)
return f % 1.0
end
end
function (g::WrappedRNG{Float16})()
g.idx+6 > length(g.cache) && fillcache(g)
@inbounds begin
f = Float64(g.cache[g.idx+1])
# a Float16 has 10 bits of entropy
f += Float64(g.cache[g.idx+2])/exp2(10)
f += Float64(g.cache[g.idx+3])/exp2(20)
f += Float64(g.cache[g.idx+4])/exp2(30)
f += Float64(g.cache[g.idx+5])/exp2(40)
f += Float64(g.cache[g.idx+=6])/exp2(50)
return f % 1.0
end
end
# RNGGenerator struct
mutable struct Unif01
ptr::Ptr{Cvoid}
gentype::Type
name::String
function Unif01(f::Function, genname)
for i in 1:100
tmp = f()
if typeof(tmp) != Float64 error("Function must return Float64") end
if tmp < 0 || tmp > 1 error("Function must return values on [0,1]") end
end
cf = @cfunction($f, Float64, ())
# TestU01 crashed if two unif01 object are generated. The only safe thing is to explicitly delete the object when used instead of using finalizers
return new(ccall((:unif01_CreateExternGen01, libtestu01), Ptr{Cvoid}, (Ptr{UInt8}, Ptr{Cvoid}), genname, cf), Float64, genname)
end
function Unif01(g::WrappedRNG{T}, genname) where {T<:AbstractFloat}
# we assume that g being created out of an AbstractRNG, it produces Floats in the interval [0,1)
cf = @cfunction($g, Float64, ())
return new(ccall((:unif01_CreateExternGen01, libtestu01), Ptr{Cvoid}, (Ptr{UInt8}, Ptr{Cvoid}), genname, cf), Float64, genname)
end
function Unif01(g::WrappedRNG{T}, genname) where {T<:Integer}
@assert Cuint === UInt32
cf = @cfunction($g, UInt32, ())
return new(ccall((:unif01_CreateExternGenBits, libtestu01), Ptr{Cvoid}, (Ptr{UInt8}, Ptr{Cvoid}), genname, cf), UInt32, genname)
end
end
function delete(obj::Unif01)
if obj.gentype === Float64
ccall((:unif01_DeleteExternGen01, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
else
ccall((:unif01_DeleteExternGenBits, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
end
const RNGGenerator = Union{Function, WrappedRNG}
# Result types
## gofw
struct Gotw_TestArray
data::Vector{Float64}
Gotw_TestArray() = new(Vector{Float64}(undef, 11))
end
function getindex(obj::Gotw_TestArray, i::Symbol)
i == :KSP && return obj.data[1]
i == :KSM && return obj.data[2]
i == :KS && return obj.data[3]
i == :AD && return obj.data[4]
i == :CM && return obj.data[5]
i == :WG && return obj.data[6]
i == :WU && return obj.data[7]
i == :Mean && return obj.data[8]
i == :Var && return obj.data[9]
i == :Cor && return obj.data[10]
i == :Sum && return obj.data[11]
throw(BoundsError())
end
for (t, sCreate, sDelete, sPval) in
((:ResPoisson, :sres_CreatePoisson, :sres_DeletePoisson, :getPValPoisson),
(:MarsaRes, :smarsa_CreateRes, :smarsa_DeleteRes, :getPValSmarsa),
(:KnuthRes2, :sknuth_CreateRes2, :sknuth_DeleteRes2, :getPValRes2))
@eval begin
# The types
mutable struct $t
ptr::Ptr{Cvoid}
function $(t)()
res = new(ccall(($(string(sCreate)), libtestu01), Ptr{Cvoid}, (), ))
finalizer(delete, res)
return res
end
end
# Finalizers
function delete(obj::$t)
ccall(($(string(sDelete)), libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
# pvalue extractors
pvalue(obj::$t) = ccall(($(string(sPval)), libtestu01extractors), Float64, (Ptr{Cvoid},), obj.ptr)
end
end
# Sres
# Basic
## Type
mutable struct ResBasic
ptr::Ptr{Cvoid}
function ResBasic()
res = new(ccall((:sres_CreateBasic, libtestu01), Ptr{Cvoid}, (), ))
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::ResBasic)
ccall((:sres_DeleteBasic, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::ResBasic)
res = Gotw_TestArray()
ccall((:getPValBasic, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return res
end
# Chi2
## Type
mutable struct ResChi2
ptr::Ptr{Cvoid}
N::Int
function ResChi2(N::Integer)
res = new(ccall((:sres_CreateChi2, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::ResChi2)
ccall((:sres_DeleteChi2, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::ResChi2)
res = Gotw_TestArray()
ccall((:getPValChi2, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return res[obj.N == 1 ? :Mean : :Sum]
end
# sknuth
## Type
mutable struct KnuthRes1
ptr::Ptr{Cvoid}
N::Int
function KnuthRes1(N::Integer)
res = new(ccall((:sknuth_CreateRes1, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::KnuthRes1)
ccall((:sknuth_DeleteRes1, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::KnuthRes1)
chi = Gotw_TestArray()
bas = Gotw_TestArray()
ccall((:getPValRes1, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}, Ptr{Float64}), obj.ptr, chi.data, bas.data)
return chi[obj.N == 1 ? :Mean : :Sum], bas[obj.N == 1 ? :Mean : :AD]
end
# smarsa
## Type
mutable struct MarsaRes2
ptr::Ptr{Cvoid}
N::Int
function MarsaRes2(N::Integer)
res = new(ccall((:smarsa_CreateRes2, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::MarsaRes2)
ccall((:smarsa_DeleteRes2, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::MarsaRes2)
res = Gotw_TestArray()
ccall((:getPValSmarsa2, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return obj.N == 1 ? res[:Mean] : res[:Sum]
end
# Walk
## Type
mutable struct WalkRes
ptr::Ptr{Cvoid}
N::Int
function WalkRes(N::Integer)
res = new(ccall((:swalk_CreateRes, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::WalkRes)
ccall((:swalk_DeleteRes, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::WalkRes)
pH = Gotw_TestArray()
pM = Gotw_TestArray()
pJ = Gotw_TestArray()
pR = Gotw_TestArray()
pC = Gotw_TestArray()
ccall((:getPVal_Walk, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), obj.ptr, pH.data, pM.data, pJ.data, pR.data, pC.data)
return obj.N == 1 ? (pH[:Mean], pM[:Mean], pJ[:Mean], pR[:Mean], pC[:Mean]) : (pH[:Sum], pM[:Sum], pJ[:Sum], pR[:Sum], pC[:Sum])
end
# Npairs
struct Snpair_StatArray
data::Vector{Float64}
Snpair_StatArray() = new(Vector{Float64}(undef, 11))
end
function getindex(obj::Snpair_StatArray, i::Symbol)
i == :NP && return obj.data[1]
i == :NPS && return obj.data[2]
i == :NPPR && return obj.data[3]
i == :mNP && return obj.data[4]
i == :mNP1 && return obj.data[5]
i == :mNP1S && return obj.data[6]
i == :mNP2 && return obj.data[7]
i == :mNP2S && return obj.data[8]
i == :NJumps && return obj.data[9]
i == :BB && return obj.data[10]
i == :BM && return obj.data[11]
throw(BoundsError())
end
## Type
mutable struct NpairRes
ptr::Ptr{Cvoid}
N::Int
function NpairRes(N::Integer)
res = new(ccall((:snpair_CreateRes, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::NpairRes)
ccall((:snpair_DeleteRes, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::NpairRes)
res = Snpair_StatArray()
ccall((:getPVal_Npairs, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return obj.N == 1 ? (res[:NP], res[:mNP]) : (res[:NP], res[:mNP1], res[:mNP2], res[:NJumps])
end
# scomp
## Type
mutable struct CompRes
ptr::Ptr{Cvoid}
N::Int
function CompRes(N::Integer)
res = new(ccall((:scomp_CreateRes, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::CompRes)
ccall((:scomp_DeleteRes, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::CompRes)
num = Gotw_TestArray()
size = Gotw_TestArray()
ccall((:getPValScomp, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}, Ptr{Float64}), obj.ptr, num.data, size.data)
return num[obj.N == 1 ? :Mean : :Sum], size[obj.N == 1 ? :Mean : :Sum]
end
# sspectral
## Type
mutable struct SpectralRes
ptr::Ptr{Cvoid}
function SpectralRes()
res = new(ccall((:sspectral_CreateRes, libtestu01), Ptr{Cvoid}, (), ))
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::SpectralRes)
ccall((:sspectral_DeleteRes, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::SpectralRes)
res = Gotw_TestArray()
ccall((:getPValSspectral, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return res[:AD]
end
# sstring
## Type
mutable struct StringRes
ptr::Ptr{Cvoid}
function StringRes()
res = new(ccall((:sstring_CreateRes, libtestu01), Ptr{Cvoid}, (), ))
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::StringRes)
ccall((:sstring_DeleteRes, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::StringRes)
res = Gotw_TestArray()
ccall((:getPValStringRes, libtestu01extractors), Cvoid, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return res
end
## Type
mutable struct StringRes2
ptr::Ptr{Cvoid}
N::Int
function StringRes2(N::Integer)
res = new(ccall((:sstring_CreateRes2, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::StringRes2)
ccall((:sstring_DeleteRes2, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::StringRes2)
res = Gotw_TestArray()
res2 = ccall((:getPValStringRes2, libtestu01extractors), Float64, (Ptr{Cvoid}, Ptr{Float64}), obj.ptr, res.data)
return res[obj.N == 1 ? :Mean : :Sum], res2
end
## Type
mutable struct StringRes3
ptr::Ptr{Cvoid}
N::Int
function StringRes3(N::Integer)
res = new(ccall((:sstring_CreateRes3, libtestu01), Ptr{Cvoid}, (), ), N)
finalizer(delete, res)
return res
end
end
## Finalizers
function delete(obj::StringRes3)
ccall((:sstring_DeleteRes3, libtestu01), Cvoid, (Ptr{Cvoid},), obj.ptr)
end
## pvalue extractors
function pvalue(obj::StringRes3)
res1 = Gotw_TestArray()
res2 = Gotw_TestArray()
ccall((:getPValStringRes3, libtestu01extractors), Float64, (Ptr{Cvoid}, Ptr{Float64}, Ptr{Float64}), obj.ptr, res1.data, res2.data)
return res1[obj.N == 1 ? :Mean : :Sum], res2[obj.N == 1 ? :Mean : :Sum]
end
#########
# Tests #
#########
## smarsa
function smarsa_BirthdaySpacings(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, t::Integer, p::Integer)
unif01 = Unif01(gen, "")
sres = ResPoisson()
try
ccall((:smarsa_BirthdaySpacings, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, t, p)
finally
delete(unif01)
end
return pvalue(sres)
end
function smarsa_GCD(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = MarsaRes2(N)
try
ccall((:smarsa_GCD, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
function smarsa_CollisionOver(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = MarsaRes()
try
ccall((:smarsa_CollisionOver, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function smarsa_Savir2(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, m::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:smarsa_Savir2, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Cint),
unif01.ptr, sres.ptr, N, n,
r, m, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function smarsa_SerialOver(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:smarsa_SerialOver, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function smarsa_MatrixRank(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L::Integer, k::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:smarsa_MatrixRank, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s, L, k)
finally
delete(unif01)
end
return pvalue(sres)
end
## sknuth
function sknuth_Collision(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = KnuthRes2()
try
ccall((:sknuth_Collision, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_CollisionPermut(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = KnuthRes2()
try
ccall((:sknuth_CollisionPermut, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_CouponCollector(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sknuth_CouponCollector, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, d)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_Gap(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, Alpha::Real, Beta::Real)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sknuth_Gap, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Float64, Float64),
unif01.ptr, sres.ptr, N, n,
r, Alpha, Beta)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_MaxOft(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = KnuthRes1(N)
try
ccall((:sknuth_MaxOft, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_Permutation(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sknuth_Permutation, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_Run(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, up::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sknuth_Run, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, up)
finally
delete(unif01)
end
return pvalue(sres)
end
function sknuth_SimpPoker(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, d::Integer, k::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sknuth_SimpPoker, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, d, k)
finally
delete(unif01)
end
return pvalue(sres)
end
## svaria
function svaria_AppearanceSpacings(gen::RNGGenerator, N::Integer, Q::Integer, K::Integer, r::Integer, s::Integer, L::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:svaria_AppearanceSpacings, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Clong, Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, Q,
K, r, s, L)
finally
delete(unif01)
end
return pvalue(sres)
end
function svaria_SampleProd(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, t::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:svaria_SampleProd, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, t)
finally
delete(unif01)
end
return pvalue(sres)
end
function svaria_SampleMean(gen::RNGGenerator, N::Integer, n::Integer, r::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:svaria_SampleMean, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint),
unif01.ptr, sres.ptr, N, n,
r)
finally
delete(unif01)
end
return pvalue(sres)
end
function svaria_SampleCorr(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, k::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:svaria_SampleCorr, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, k)
finally
delete(unif01)
end
return pvalue(sres)
end
function svaria_SumCollector(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, g::Float64)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:svaria_SumCollector, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cdouble),
unif01.ptr, sres.ptr, N, n,
r, g)
finally
delete(unif01)
end
return pvalue(sres)
end
function svaria_WeightDistrib(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, k::Integer, alpha::Real, beta::Real)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:svaria_WeightDistrib, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Clong, Float64, Float64),
unif01.ptr, sres.ptr, N, n,
r, k, alpha, beta)
finally
delete(unif01)
end
return pvalue(sres)
end
## sstring
function sstring_AutoCor(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, d::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:sstring_AutoCor, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s, d)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_HammingCorr(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L::Integer)
unif01 = Unif01(gen, "")
sres = StringRes()
try
ccall((:sstring_HammingCorr, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s, L)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_HammingIndep(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L::Integer, d::Integer)
unif01 = Unif01(gen, "")
sres = StringRes()
try
ccall((:sstring_HammingIndep, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s, L, d)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_HammingWeight2(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:sstring_HammingWeight2, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Clong),
unif01.ptr, sres.ptr, N, n,
r, s, L)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_LongestHeadRun(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L::Integer)
if L ÷ s * s < 1000
throw(ArgumentError("argument L is too small. `L ÷ s * s` must be at least 1000 but was $(L ÷ s * s)"))
end
unif01 = Unif01(gen, "")
sres = StringRes2(N)
try
ccall((:sstring_LongestHeadRun, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Clong),
unif01.ptr, sres.ptr, N, n,
r, s, L)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_PeriodsInStrings(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = ResChi2(N)
try
ccall((:sstring_PeriodsInStrings, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
function sstring_Run(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = StringRes3(N)
try
ccall((:sstring_Run, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
## swalk
function swalk_RandomWalk1(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer, L0::Integer, L1::Integer)
unif01 = Unif01(gen, "")
sres = WalkRes(N)
try
ccall((:swalk_RandomWalk1, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Clong, Clong),
unif01.ptr, sres.ptr, N, n,
r, s, L0, L1)
finally
delete(unif01)
end
return pvalue(sres)
end
## snpair
function snpair_ClosePairs(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, t::Integer, p::Integer, m::Integer)
unif01 = Unif01(gen, "")
sres = NpairRes(N)
try
ccall((:snpair_ClosePairs, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint, Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, t, p, m)
finally
delete(unif01)
end
return pvalue(sres)
end
## scomp
function scomp_LempelZiv(gen::RNGGenerator, N::Integer, k::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = ResBasic()
try
ccall((:scomp_LempelZiv, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Cint,
Cint, Cint),
unif01.ptr, sres.ptr, N, k,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
function scomp_LinearComp(gen::RNGGenerator, N::Integer, n::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = CompRes(N)
try
ccall((:scomp_LinearComp, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Clong,
Cint, Cint),
unif01.ptr, sres.ptr, N, n,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
# sspectral
function sspectral_Fourier3(gen::RNGGenerator, N::Integer, k::Integer, r::Integer, s::Integer)
unif01 = Unif01(gen, "")
sres = SpectralRes()
try
ccall((:sspectral_Fourier3, libtestu01), Cvoid,
(Ptr{Cvoid}, Ptr{Cvoid}, Clong, Cint,
Cint, Cint),
unif01.ptr, sres.ptr, N, k,
r, s)
finally
delete(unif01)
end
return pvalue(sres)
end
##################
# Test Batteries #
##################
for (snm, fnm) in ((:SmallCrush, :smallcrushTestU01), (:Crush, :crushTestU01), (:BigCrush, :bigcrushTestU01), (:pseudoDIEHARD, :diehardTestU01), (:FIPS_140_2, :fips_140_2TestU01))
@eval begin
function $(fnm)(f::RNGGenerator, fname::String)
unif01 = Unif01(f, fname)
try
ccall(($(string("bbattery_", snm)), libtestu01),
Cvoid, (Ptr{Cvoid},), unif01.ptr)
finally
delete(unif01)
end
end
$(fnm)(f::RNGGenerator) = $(fnm)(f::RNGGenerator, "")
end
end
function smallcrushJulia(f::RNGGenerator)
# @everywhere f = ()->g()
testnames = [g->smarsa_BirthdaySpacings(g, 1, 5000000, 0, 1073741824, 2, 1),
g->sknuth_Collision(g, 1, 5000000, 0, 65536, 2),
g->sknuth_Gap(g, 1, 200000, 22, 0.0, .00390625),
g->sknuth_SimpPoker(g, 1, 400000, 24, 64, 64),
g->sknuth_CouponCollector(g, 1, 500000, 26, 16),
g->sknuth_MaxOft(g, 1, 2000000, 0, 100000, 6),
g->svaria_WeightDistrib(g, 1, 200000, 27, 256, 0.0, 0.125),
g->smarsa_MatrixRank(g, 1, 20000, 20, 10, 60, 60),
g->sstring_HammingIndep(g, 1, 500000, 20, 10, 300, 0)[:Mean],
g->swalk_RandomWalk1(g, 1, 1000000, 0, 30, 150, 150)]
return pmap(t->t(f), testnames)
end
function bigcrushJulia(f::RNGGenerator)
testnames = [g->smarsa_SerialOver(g, 1, 10^9, 0, 2^8, 3)[:Mean],
g->smarsa_SerialOver(g, 1, 10^9, 22, 2^8, 3)[:Mean],
g->smarsa_CollisionOver(g, 30, 2*10^7, 0, 2^21, 2),
g->smarsa_CollisionOver(g, 30, 2*10^7, 9, 2^21, 2),
g->smarsa_CollisionOver(g, 30, 2*10^7, 0, 2^14, 3),
g->smarsa_CollisionOver(g, 30, 2*10^7, 16, 2^14, 3),
g->smarsa_CollisionOver(g, 30, 2*10^7, 0, 64, 7),
g->smarsa_CollisionOver(g, 30, 2*10^7, 24, 64, 7),
g->smarsa_CollisionOver(g, 30, 2*10^7, 0, 8, 14),
g->smarsa_CollisionOver(g, 30, 2*10^7, 27, 8, 14),
g->smarsa_CollisionOver(g, 30, 2*10^7, 0, 4, 21),
g->smarsa_CollisionOver(g, 30, 2*10^7, 28, 4, 21),
g->smarsa_BirthdaySpacings(g, 100, 10^7, 0, 2^31, 2, 1),
g->smarsa_BirthdaySpacings(g, 20, 2*10^7, 0, 2^21, 3, 1),
g->smarsa_BirthdaySpacings(g, 20, 3*10^7, 14, 2^16, 4, 1),
g->smarsa_BirthdaySpacings(g, 20, 2*10^7, 0, 2^9, 7, 1),
g->smarsa_BirthdaySpacings(g, 20, 2*10^7, 7, 2^9, 7, 1),
g->smarsa_BirthdaySpacings(g, 20, 3*10^7, 14, 2^8, 8, 1),
g->smarsa_BirthdaySpacings(g, 20, 3*10^7, 22, 2^8, 8, 1),
g->smarsa_BirthdaySpacings(g, 20, 3*10^7, 0, 2^4, 16, 1),
g->smarsa_BirthdaySpacings(g, 20, 3*10^7, 26, 2^4, 16, 1),
g->snpair_ClosePairs(g, 30, 6*10^6, 0, 3, 0, 30),
g->snpair_ClosePairs(g, 20, 4*10^6, 0, 5, 0, 30),
g->snpair_ClosePairs(g, 10, 3*10^6, 0, 9, 0, 30),
g->snpair_ClosePairs(g, 5, 2*10^6, 0, 16, 0, 30),
g->sknuth_SimpPoker(g, 1, 4*10^8, 0, 8, 8),
g->sknuth_SimpPoker(g, 1, 4*10^8, 27, 8, 8),
g->sknuth_SimpPoker(g, 1, 10^8, 0, 32, 32),
g->sknuth_SimpPoker(g, 1, 10^8, 25, 32, 32),
g->sknuth_CouponCollector(g, 1, 2*10^8, 0, 8),
g->sknuth_CouponCollector(g, 1, 2*10^8, 10, 8),
g->sknuth_CouponCollector(g, 1, 2*10^8, 20, 8),
g->sknuth_CouponCollector(g, 1, 2*10^8, 27, 8),
g->sknuth_Gap(g, 1, 5*10^8, 0, 0.0, 1/16),
g->sknuth_Gap(g, 1, 3*10^8, 25, 0.0, 1/32),
g->sknuth_Gap(g, 1, 10^8, 0, 0.0, 1/128),
g->sknuth_Gap(g, 1, 10^7, 20, 0.0, 1/1024),
g->sknuth_Run(g, 5, 10^9, 0, 0),
g->sknuth_Run(g, 5, 10^9, 15, 1),
g->sknuth_Permutation(g, 1, 10^9, 0, 3),
g->sknuth_Permutation(g, 1, 10^9, 0, 5),
g->sknuth_Permutation(g, 1, 5*10^8, 0, 7),
g->sknuth_Permutation(g, 1, 5*10^8, 10, 10),
g->sknuth_CollisionPermut(g, 20, 2*10^7, 0, 14),
g->sknuth_CollisionPermut(g, 20, 2*10^7, 10, 14),
g->sknuth_MaxOft(g, 40, 10^7, 0, 10^5, 8),
g->sknuth_MaxOft(g, 30, 10^7, 0, 10^5, 16),
g->sknuth_MaxOft(g, 20, 10^7, 0, 10^5, 24),
g->sknuth_MaxOft(g, 20, 10^7, 0, 10^5, 32),
g->svaria_SampleProd(g, 40, 10^7, 0, 8)[:AD],
g->svaria_SampleProd(g, 20, 10^7, 0, 16)[:AD],
g->svaria_SampleProd(g, 20, 10^7, 0, 24)[:AD],
g->svaria_SampleMean(g, 2*10^7, 30, 0)[:AD],
g->svaria_SampleMean(g, 2*10^7, 30, 10)[:AD],
g->svaria_SampleCorr(g, 1, 2*10^9, 0, 1)[:Mean],
g->svaria_SampleCorr(g, 1, 2*10^9, 0, 2)[:Mean],
g->svaria_AppearanceSpacings(g, 1, 10^7, 10^9, 0, 3, 15)[:Mean],
g->svaria_AppearanceSpacings(g, 1, 10^7, 10^9, 27, 3, 15)[:Mean],
g->svaria_WeightDistrib(g, 1, 2*10^7, 0, 256, 0.0, 1/4),
g->svaria_WeightDistrib(g, 1, 2*10^7, 20, 256, 0.0, 1/4),
g->svaria_WeightDistrib(g, 1, 2*10^7, 28, 256, 0.0, 1/4),
g->svaria_WeightDistrib(g, 1, 2*10^7, 0, 256, 0.0, 1/16),
g->svaria_WeightDistrib(g, 1, 2*10^7, 10, 256, 0.0, 1/16),
g->svaria_WeightDistrib(g, 1, 2*10^7, 26, 256, 0.0, 1/16),
g->svaria_SumCollector(g, 1, 5*10^8, 0, 10.0),
g->smarsa_MatrixRank(g, 10, 10^6, 0, 5, 30, 30),
g->smarsa_MatrixRank(g, 10, 10^6, 25, 5, 30, 30),
g->smarsa_MatrixRank(g, 1, 5000, 0, 4, 1000, 1000),
g->smarsa_MatrixRank(g, 1, 5000, 26, 4, 1000, 1000),
g->smarsa_MatrixRank(g, 1, 80, 15, 15, 5000, 5000),
g->smarsa_MatrixRank(g, 1, 80, 0, 30, 5000, 5000),
g->smarsa_Savir2(g, 10, 10^7, 10, 2^30, 30),
g->smarsa_GCD(g, 10, 5*10^7, 0, 30),
g->swalk_RandomWalk1(g, 1, 10^8, 0, 5, 50, 50),
g->swalk_RandomWalk1(g, 1, 10^8, 25, 5, 50, 50),
g->swalk_RandomWalk1(g, 1, 10^7, 0, 10, 1000, 1000),
g->swalk_RandomWalk1(g, 1, 10^7, 20, 10, 1000, 1000),
g->swalk_RandomWalk1(g, 1, 10^6, 0, 15, 1000, 1000),
g->swalk_RandomWalk1(g, 1, 10^6, 15, 15, 10000, 10000),
g->scomp_LinearComp(g, 1, 400000, 0, 1),
g->scomp_LinearComp(g, 1, 400000, 29, 1),
g->scomp_LempelZiv(g, 10, 27, 0, 30)[:Sum],
g->scomp_LempelZiv(g, 10, 27, 15, 15)[:Sum],
g->sspectral_Fourier3(g, 100000, 14, 0, 3),
g->sspectral_Fourier3(g, 100000, 14, 27, 3),
g->sstring_LongestHeadRun(g, 1, 1000, 0, 3, 10^7),
g->sstring_LongestHeadRun(g, 1, 1000, 27, 3, 10^7),
g->sstring_PeriodsInStrings(g, 10, 5*10^8, 0, 10),
g->sstring_PeriodsInStrings(g, 10, 5*10^8, 20, 10),
g->sstring_HammingWeight2(g, 10, 10^9, 0, 3, 10^6)[:Sum],
g->sstring_HammingWeight2(g, 10, 10^9, 27, 3, 10^6)[:Sum],
g->sstring_HammingCorr(g, 1, 10^9, 10, 10, 30)[:Mean],
g->sstring_HammingCorr(g, 1, 10^8, 10, 10, 300)[:Mean],
g->sstring_HammingCorr(g, 1, 10^8, 10, 10, 1200)[:Mean],
g->sstring_HammingIndep(g, 10, 3*10^7, 0, 3, 30, 0)[:Sum],
g->sstring_HammingIndep(g, 10, 3*10^7, 27, 3, 30, 0)[:Sum],
g->sstring_HammingIndep(g, 1, 3*10^7, 0, 4, 300, 0)[:Mean],
g->sstring_HammingIndep(g, 1, 3*10^7, 26, 4, 300, 0)[:Mean],
g->sstring_HammingIndep(g, 1, 10^7, 0, 5, 1200, 0)[:Mean],
g->sstring_HammingIndep(g, 1, 10^7, 25, 5, 1200, 0)[:Mean],
g->sstring_Run(g, 1, 2*10^9, 0, 3),
g->sstring_Run(g, 1, 2*10^9, 27, 3),
g->sstring_AutoCor(g, 10, 10^9, 0, 3, 1)[:Sum],
g->sstring_AutoCor(g, 10, 10^9, 0, 3, 3)[:Sum],
g->sstring_AutoCor(g, 10, 10^9, 27, 3, 1)[:Sum],
g->sstring_AutoCor(g, 10, 10^9, 27, 3, 3)[:Sum]]
return pmap(t->t(f), testnames)
end
end
| RNGTest | https://github.com/JuliaRandom/RNGTest.jl.git |
|
[
"MIT"
] | 1.6.0 | c08db012b41bedc58adf33ca52a3004b55ad5eaa | code | 4565 | using Test
using RNGTest
using Random
f = rand
pval = 0.001
@testset "smarsa" begin
@testset "BirthdaySpacings" begin
@test RNGTest.smarsa_BirthdaySpacings(f, 1, 5000000, 0, 1073741824, 2, 1) > pval
end
@testset "MatrixRank" begin
@test RNGTest.smarsa_MatrixRank(f, 1, 20000, 20, 10, 60, 60) > pval
end
@testset "SerialOver" begin
res = RNGTest.smarsa_SerialOver(f, 1, 10, 0, 2^3, 3)
@test res[:Mean] > pval
@test res[:Var] == -1.0
@test res[:Cor] == -1.0
@test res[:Sum] == -1.0
@test_throws BoundsError res[:Nothing]
end
@testset "GCD" begin
@test RNGTest.smarsa_GCD(f, 10, 5*10^2, 0, 30) > pval
end
@testset "CollisionOver" begin
@test RNGTest.smarsa_CollisionOver(f, 30, 2*10^3, 0, 2^11, 2) > pval
end
@testset "Savir2" begin
@test RNGTest.smarsa_Savir2(f, 10, 10^4, 10, 2^10, 10) > pval
end
end
@testset "sknuth" begin
@testset "Collision" begin
@test RNGTest.sknuth_Collision(f, 1, 5000000, 0, 65536, 2) > pval
end
@testset "Gap" begin
@test RNGTest.sknuth_Gap(f, 1, 200000, 22, 0.0, .00390625) > pval
end
@testset "SimpPoker" begin
@test RNGTest.sknuth_SimpPoker(f, 1, 400000, 24, 64, 64) > pval
end
@testset "CouponCollector" begin
@test RNGTest.sknuth_CouponCollector(f, 1, 500000, 26, 16) > pval
end
@testset "MaxOft" begin
@test all(hcat(RNGTest.sknuth_MaxOft(f, 1, 2000000, 0, 100000, 6)...) .> pval)
end
@testset "CollisionPermut" begin
@test RNGTest.sknuth_CollisionPermut(f, 20, 2*10^3, 0, 14) > pval
end
@testset "Permutation" begin
@test RNGTest.sknuth_Permutation(f, 1, 10^4, 0, 3) > pval
end
@testset "Run" begin
@test RNGTest.sknuth_Run(f, 5, 10^4, 0, 0) > pval
end
end
@testset "svaria" begin
@testset "WeightDistrib" begin
@test RNGTest.svaria_WeightDistrib(f, 1, 200000, 27, 256, 0.0, 0.125) > pval
end
@testset "AppearanceSpacings" begin
@test RNGTest.svaria_AppearanceSpacings(f, 1, 10^3, 10^5, 0, 3, 5)[:Mean] > pval
end
@testset "SampleProd" begin
@test RNGTest.svaria_SampleProd(f, 40, 10^4, 0, 8)[:AD] > pval
end
@testset "SampleMean" begin
@test RNGTest.svaria_SampleMean(f, 2*10^3, 30, 0)[:AD] > pval
end
@testset "SampleCorr" begin
@test RNGTest.svaria_SampleCorr(f, 1, 2*10^5, 0, 1)[:Mean] > pval
end
@testset "SumCollector" begin
@test RNGTest.svaria_SumCollector(f, 1, 5*10^4, 0, 10.0) > pval
end
end
@testset "sstring" begin
@testset "HammingIndep" begin
@test RNGTest.sstring_HammingIndep(f, 1, 500000, 20, 10, 300, 0)[:Mean] > pval
end
@testset "LongestHeadRun" begin
@test_throws ArgumentError("argument L is too small. `L ÷ s * s` must be at least 1000 but was 999") RNGTest.sstring_LongestHeadRun(f, 1, 10, 0, 3, 1000)
@test all(t -> t > pval, RNGTest.sstring_LongestHeadRun(f, 1, 100, 0, 3, 10000))
end
@testset "PeriodsInStrings" begin
@test RNGTest.sstring_PeriodsInStrings(f, 10, 5*10^2, 0, 10) > pval
end
@testset "Run" begin
@test all(t -> t > pval, RNGTest.sstring_Run(f, 1, 2*10^4, 0, 3))
end
@testset "AutoCor" begin
@test RNGTest.sstring_AutoCor(f, 10, 10^4, 0, 3, 1)[:Sum] > pval
end
@testset "HammingCorr" begin
@test RNGTest.sstring_HammingCorr(f, 1, 10^4, 10, 10, 30)[:Mean] > pval
end
@testset "" begin
@test RNGTest.sstring_HammingWeight2(f, 10, 10^4, 0, 3, 10^3)[:Sum] > pval
end
end
@testset "swalk" begin
@testset "RandomWalk" begin
@test all(hcat(RNGTest.swalk_RandomWalk1(f, 1, 1000000, 0, 30, 150, 150)...) .> pval)
end
end
@testset "snpair" begin
@testset "ClonsePairs" begin
@test all(t -> t > pval, RNGTest.snpair_ClosePairs(f, 30, 6*10^2, 0, 3, 0, 30))
end
end
@testset "scomp" begin
@testset "LinearComp" begin
@test all(t -> t > pval, RNGTest.scomp_LinearComp(f, 1, 400, 0, 1))
end
@testset "LempelZiv" begin
@test RNGTest.scomp_LempelZiv(f, 5, 7, 0, 10)[:Sum] > pval
end
end
@testset "sspectral" begin
@testset "Fourier3" begin
@test RNGTest.sspectral_Fourier3(f, 100, 14, 0, 3) > pval
end
end
@testset "smallcrush" begin
rng = RNGTest.wrap(MersenneTwister(0), UInt32)
RNGTest.smallcrushTestU01(rng)
@test all(t -> t > pval, mapreduce(s -> [s...], vcat, RNGTest.smallcrushJulia(rng)))
end
| RNGTest | https://github.com/JuliaRandom/RNGTest.jl.git |
|
[
"MIT"
] | 1.6.0 | c08db012b41bedc58adf33ca52a3004b55ad5eaa | docs | 1480 | # The Crush test suite of l'Ecuyer for Julia
[](https://github.com/JuliaRandom/RNGTest.jl/actions/workflows/CI.yml)
[](https://codecov.io/gh/JuliaRandom/RNGTest.jl)
The package is a Julia interface to the test suite TestU01 of Pierre l'Ecuyer. All the tests included in the SmallCrush and BigCrush test batteries can be called as Julia functions.
The first argument to the test function must be either
* a function without arguments, which must return a `Float64` between zero and one, or
* a wrapped `AbstractRNG` obtained via the function `wrap(rng, T)`
where `T` is the type of the variates produced by `rng` that one
wants tested (currently `T` must be one of the standard
finite-precision Julia `Integer` or `FloatingPoint` types).
The output from the test is a p-value.
The package also includes the Small- and the BigCrush batteries. Some examples:
```julia
julia> using RNGTest
julia> RNGTest.smallcrushJulia(rand)
julia> using Distribtions
julia> gf() = cdf(Gamma(), rand(Gamma()));
julia> RNGTest.bigcrushJulia(gf)
julia> rng = RNGTest.wrap(MersenneTwister(), UInt32)
julia> RNGTest.bigcrushTestU01(rng)
```
Note that the BigCrush test battery takes about twelve hours on a normal computer.
## Homepage of the test suite
http://simul.iro.umontreal.ca/testu01/tu01.html
| RNGTest | https://github.com/JuliaRandom/RNGTest.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | code | 469 | module POMDPXFiles
using POMDPs
using POMDPTools
using ProgressMeter
import POMDPs: action, value
# import o avoid naming conflict in POMDPs.jl (value is overloaded in LightXML)
import LightXML: parse_file, root, get_elements_by_tagname, attribute, content
export
AbstractPOMDPXFile,
POMDPXFile,
MOMDPXFile,
Alphas,
POMDPAlphas,
read_pomdp,
action,
value
include("writer.jl")
include("policy.jl")
include("read.jl")
end # module
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | code | 888 | # this is taken from Louis Dressel's POMDPs.jl. Thanks Louis!
# Abstract Type representing alpha vectors
abstract type Alphas end
mutable struct POMDPAlphas <: Alphas
alpha_vectors::Matrix{Float64}
alpha_actions::Vector{Int64}
POMDPAlphas(av::Matrix{Float64}, aa::Vector{Int64}) = new(av, aa)
# Constructor if no action list is given
# Here, we 0-index actions, to match sarsop output
function POMDPAlphas(av::Matrix{Float64})
numActions = size(av, 1)
alist = [0:(numActions-1)]
return new(av, alist)
end
# Constructor reading policy from file
function POMDPAlphas(filename::AbstractString)
alpha_vectors, alpha_actions = read_pomdp(filename)
return new(alpha_vectors, alpha_actions)
end
# Default constructor
function POMDPAlphas()
return new(zeros(0,0), zeros(Int64,0))
end
end
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | code | 4796 | # Parses policy xml file and returns alpha vectors and alpha actions
# Should handle any policy in the .policy format
# Should handle policies written by POMDPs.jl or APPL
#
# alpha_vectors is a matrix containing the alpha vectors
# Each row corresponds to a different alpha vector
#
# alpha_actions is a vector containing the list of action indices
# Each index corresponds to action associated with the alpha vector of this row
# These are 0-indexed... 0 means it is the first action
#
# TODO: Check that the input file exists and handle the case that it doesn't
# TODO: Handle sparse vectors
#
function read_momdp(filename::String)
# Parse the xml file
# TODO: Check that the file exists and handle the case that it doesn't
xdoc = parse_file(filename)
# Get the root of the document (the Policy tag in this case)
policy_tag = root(xdoc)
#println(name(policy_tag)) # print the name of this tag
# Determine expected number of vectors and their length
alphavector_tag = get_elements_by_tagname(policy_tag, "AlphaVector")[1] #length of 1 anyway
num_vectors = int(attribute(alphavector_tag, "numVectors"))
vector_length = int(attribute(alphavector_tag, "vectorLength"))
num_full_obs_states = int(attribute(alphavector_tag, "numObsValue"))
# For debugging purposes...
#println("AlphaVector tag: # vectors, vector length: $(num_vectors), $(vector_length)")
# Arrays with vector and sparse vector tags
vector_tags = get_elements_by_tagname(alphavector_tag, "Vector")
sparsevector_tags = get_elements_by_tagname(alphavector_tag, "SparseVector")
num_vectors_check = length(vector_tags) + length(sparsevector_tags) # should be same as num_vectors
# Initialize the gamma matrix. This is basically a matrix with the alpha
# vectors as rows.
#alpha_vectors = Array(Float64, num_vectors, vector_length)
alpha_vectors = Array{Float64}(vector_length, num_vectors)
alpha_actions = Array{String}(num_vectors)
observable_states = Array{String}(num_vectors)
gammarow = 1
# Fill in gamma
for vector in vector_tags
alpha = float(split(content(vector)))
#alpha_vectors[gammarow, :] = alpha
alpha_vectors[:,gammarow] = alpha
alpha_actions[gammarow] = attribute(vector, "action")
observable_states[gammarow] = attribute(vector, "obsValue")
gammarow += 1
end
# TODO: Handle sparse vectors
for vector in sparsevector_tags
# Turn these into vectors as well
end
# Return alpha vectors and indices of actions
return alpha_vectors, int(alpha_actions), int(observable_states)
end
function read_pomdp(filename::String)
# Parse the xml file
# TODO: Check that the file exists and handle the case that it doesn't
xdoc = parse_file(filename)
# Get the root of the document (the Policy tag in this case)
policy_tag = root(xdoc)
#println(name(policy_tag)) # print the name of this tag
# Determine expected number of vectors and their length
alphavector_tag = get_elements_by_tagname(policy_tag, "AlphaVector")[1] #length of 1 anyway
num_vectors = parse(Int64, attribute(alphavector_tag, "numVectors"))
vector_length = parse(Int64, attribute(alphavector_tag, "vectorLength"))
num_full_obs_states = parse(Int64, attribute(alphavector_tag, "numObsValue"))
# For debugging purposes...
#println("AlphaVector tag: # vectors, vector length: $(num_vectors), $(vector_length)")
# Arrays with vector and sparse vector tags
vector_tags = get_elements_by_tagname(alphavector_tag, "Vector")
sparsevector_tags = get_elements_by_tagname(alphavector_tag, "SparseVector")
num_vectors_check = length(vector_tags) + length(sparsevector_tags) # should be same as num_vectors
# Initialize the gamma matrix. This is basically a matrix with the alpha
# vectors as columns.
#alpha_vectors = Array(Float64, num_vectors, vector_length)
alpha_vectors = Array{Float64}(undef, vector_length, num_vectors)
alpha_actions = Array{String}(undef, num_vectors)
observable_states = Array{String}(undef, num_vectors)
gammarow = 1
# Fill in gamma
for vector in vector_tags
alpha = parse.(Float64, split(content(vector)))
#alpha_vectors[gammarow, :] = alpha
alpha_vectors[:,gammarow] = alpha
alpha_actions[gammarow] = attribute(vector, "action")
observable_states[gammarow] = attribute(vector, "obsValue")
gammarow += 1
end
# TODO: Handle sparse vectors
for vector in sparsevector_tags
# Turn these into vectors as well
end
# Return alpha vectors and indices of actions
return alpha_vectors, [parse(Int64,s) for s in alpha_actions]
end
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | code | 14502 | #################################################################
# This file implements a .pomdpx file generator using the
# POMDPs.jl interface.
#################################################################
abstract type AbstractPOMDPXFile end
mutable struct POMDPXFile <: AbstractPOMDPXFile
file_name::AbstractString
description::AbstractString
state_name::AbstractString
action_name::AbstractString
reward_name::AbstractString
obs_name::AbstractString
initial_belief::Vector{Float64}
#initial_belief::Vector{Float64} # belief over partially observed vars
function POMDPXFile(file_name::AbstractString; description::AbstractString="",
initial_belief::Vector{Float64}=Float64[])
if isempty(description)
description = "This is a pomdpx file for a partially observable MDP"
end
self = new()
self.file_name = file_name
self.description = description
self.state_name = "state"
self.action_name = "action"
self.reward_name = "reward"
self.obs_name = "observation"
self.initial_belief = initial_belief
return self
end
end
function Base.write(pomdp::POMDP, pomdpx::AbstractPOMDPXFile)
file_name = pomdpx.file_name
description = pomdpx.description
discount_factor = discount(pomdp)
# Open file to write to
out_file = open("$file_name", "w")
pomdp_states = ordered_states(pomdp)
pomdp_pstates = ordered_states(pomdp)
acts = ordered_actions(pomdp)
obs = ordered_observations(pomdp)
# x = Number of next statement to track Progress
# Added approximately after every four lines written to file, 14 next statements outside loops
x = 14 + length(pomdp_states) + length(pomdp_states)*length(acts)*length(obs) + length(pomdp_states)*length(acts) + length(acts)*length(pomdp_pstates)
p1 = Progress(x, dt=0.01)
# Header stuff for xml
write(out_file, "<?xml version='1.0' encoding='ISO-8859-1'?>\n\n\n")
write(out_file, "<pomdpx version='0.1' id='test' ")
write(out_file, "xmlns:='http://www.w3.org/2001/XMLSchema-instance' ")
write(out_file, "xsi:noNamespaceSchemaLocation='pomdpx.xsd'>\n\n\n")
sleep(0.01)
next!(p1)
############################################################################
# DESCRIPTION
############################################################################
write(out_file, "\t<Description> $(description)</Description>\n\n\n")
############################################################################
# DISCOUNT
############################################################################
write(out_file, "\t<Discount>$(discount_factor)</Discount>\n\n\n")
############################################################################
# VARIABLES
############################################################################
write(out_file, "\t<Variable>\n")
next!(p1)
# State Variables
str = state_xml(pomdp, pomdpx)
write(out_file, str)
next!(p1)
# Action Variables
str = action_xml(pomdp, pomdpx)
write(out_file, str)
next!(p1)
# Observation Variables
str = obs_var_xml(pomdp, pomdpx)
write(out_file, str)
next!(p1)
# Reward Variable
str = reward_var_xml(pomdp, pomdpx)
write(out_file, str)
write(out_file, "\t</Variable>\n\n\n")
next!(p1)
############################################################################
# INITIAL STATE BELIEF
############################################################################
belief_xml(pomdp, pomdpx, out_file, p1)
############################################################################
# STATE TRANSITION FUNCTION
############################################################################
trans_xml(pomdp, pomdpx, out_file, p1)
############################################################################
# OBS FUNCTION
############################################################################
obs_xml(pomdp, pomdpx, out_file, p1)
############################################################################
# REWARD FUNCTION
############################################################################
reward_xml(pomdp, pomdpx, out_file, p1)
# CLOSE POMDPX TAG AND FILE
write(out_file, "</pomdpx>")
close(out_file)
end
############################################################################
# function: state_xml
# input: pomdp model, pomdpx type
# output: string in xml format the defines the state varaibles
############################################################################
function state_xml(pomdp::POMDP, pomdpx::POMDPXFile)
# defines state vars for a POMDP
n_s = length(states(pomdp))
sname = pomdpx.state_name
str = "\t\t<StateVar vnamePrev=\"$(sname)0\" vnameCurr=\"$(sname)1\" fullyObs=\"false\">\n"
str = "$(str)\t\t\t<NumValues>$(n_s)</NumValues>\n"
str = "$(str)\t\t</StateVar>\n\n"
return str
end
############################################################################
############################################################################
# function: obs_var_xml
# input: pomdp model, pomdpx type
# output: string in xml format the defines the observation varaibles
############################################################################
function obs_var_xml(pomdp::POMDP, pomdpx::AbstractPOMDPXFile)
# defines observation vars for POMDP and MOMDP
n_o = length(observations(pomdp))
oname = pomdpx.obs_name
str = "\t\t<ObsVar vname=\"$(oname)\">\n"
str = "$(str)\t\t\t<NumValues>$(n_o)</NumValues>\n"
str = "$(str)\t\t</ObsVar>\n\n"
return str
end
############################################################################
############################################################################
# function: action_xml
# input: pomdp model, pomdpx type
# output: string in xml format the defines the action varaibles
############################################################################
function action_xml(pomdp::POMDP, pomdpx::AbstractPOMDPXFile)
# defines action vars for MDP, POMDP and MOMDP
n_a = length(actions(pomdp))
aname = pomdpx.action_name
str = "\t\t<ActionVar vname=\"$(aname)\">\n"
str = "$(str)\t\t\t<NumValues>$(n_a)</NumValues>\n"
str = "$(str)\t\t</ActionVar>\n\n"
return str
end
############################################################################
############################################################################
# function: reward_var_xml
# input: pomdp model, pomdpx type
# output: string in xml format the defines the reward varaible
############################################################################
function reward_var_xml(pomdp::POMDP, pomdpx::AbstractPOMDPXFile)
# defines reward var for MDP, POMDP and MOMDP
rname = pomdpx.reward_name
str = "\t\t<RewardVar vname=\"$(rname)\"/>\n\n"
return str
end
############################################################################
############################################################################
# function: belief_xml
# input: pomdp model, pomdpx type, output file
# output: None, writes the initial belief to the output file
############################################################################
function belief_xml(pomdp::POMDP, pomdpx::POMDPXFile, out_file::IOStream, p1)
belief = pomdpx.initial_belief
var = pomdpx.state_name
write(out_file, "\t<InitialStateBelief>\n")
str = "\t\t<CondProb>\n"
str = "$(str)\t\t\t<Var>$(var)0</Var>\n"
str = "$(str)\t\t\t<Parent>null</Parent>\n"
str = "$(str)\t\t\t<Parameter type = \"TBL\">\n"
next!(p1)
d = initialstate(pomdp)
for (i, s) in enumerate(ordered_states(pomdp))
p = pdf(d, s)
str = "$(str)\t\t\t\t<Entry>\n"
str = "$(str)\t\t\t\t\t<Instance>s$(i-1)</Instance>\n"
str = "$(str)\t\t\t\t\t<ProbTable>$(p)</ProbTable>\n"
str = "$(str)\t\t\t\t</Entry>\n"
next!(p1)
end
str = "$(str)\t\t\t</Parameter>\n"
str = "$(str)\t\t</CondProb>\n"
write(out_file, str)
write(out_file, "\t</InitialStateBelief>\n\n\n")
next!(p1)
end
############################################################################
############################################################################
# function: trans_xml
# input: pomdp model, pomdpx type, output file
# output: None, writes the transition probability table to the output file
############################################################################
function trans_xml(pomdp::POMDP, pomdpx::POMDPXFile, out_file::IOStream, p1)
pomdp_states = ordered_states(pomdp)
pomdp_pstates = ordered_states(pomdp)
acts = ordered_actions(pomdp)
aname = pomdpx.action_name
var = pomdpx.state_name
write(out_file, "\t<StateTransitionFunction>\n")
str = "\t\t<CondProb>\n"
str = "$(str)\t\t\t<Var>$(var)1</Var>\n"
str = "$(str)\t\t\t<Parent>$(aname) $(var)0</Parent>\n"
str = "$(str)\t\t\t<Parameter>\n"
write(out_file, str)
next!(p1)
for (i, s) in enumerate(pomdp_states)
if isterminal(pomdp, s) # if terminal, just remain in the same state
str = "\t\t\t\t<Entry>\n"
str = "$(str)\t\t\t\t\t<Instance>* s$(i-1) s$(i-1)</Instance>\n"
str = "$(str)\t\t\t\t\t<ProbTable>1.0</ProbTable>\n"
str = "$(str)\t\t\t\t</Entry>\n"
write(out_file, str)
for i = 1:length(acts)*length(pomdp_pstates)
next!(p1)
end
else
for (ai, a) in enumerate(acts)
d = transition(pomdp, s, a)
for (j, sp) in enumerate(pomdp_pstates)
p = pdf(d, sp)
if p > 0.0
str = "\t\t\t\t<Entry>\n"
str = "$(str)\t\t\t\t\t<Instance>a$(ai-1) s$(i-1) s$(j-1)</Instance>\n"
str = "$(str)\t\t\t\t\t<ProbTable>$(p)</ProbTable>\n"
str = "$(str)\t\t\t\t</Entry>\n"
write(out_file, str)
end
next!(p1)
end
end
end
end
str = "\t\t\t</Parameter>\n"
str = "$(str)\t\t</CondProb>\n"
write(out_file, str)
write(out_file, "\t</StateTransitionFunction>\n\n\n")
next!(p1)
return nothing
end
############################################################################
############################################################################
# function: obs_xml
# input: pomdp model, pomdpx type, output file
# output: None, writes the observation probability table to the output file
############################################################################
function obs_xml(pomdp::POMDP, pomdpx::POMDPXFile, out_file::IOStream, p1)
pomdp_states = ordered_states(pomdp)
acts = ordered_actions(pomdp)
obs = ordered_observations(pomdp)
aname = pomdpx.action_name
oname = pomdpx.obs_name
var = pomdpx.state_name
write(out_file, "\t<ObsFunction>\n")
str = "\t\t<CondProb>\n"
str = "$(str)\t\t\t<Var>$(oname)</Var>\n"
str = "$(str)\t\t\t<Parent>$(aname) $(var)1</Parent>\n"
str = "$(str)\t\t\t<Parameter>\n"
write(out_file, str)
next!(p1)
try observation(pomdp, first(acts), first(pomdp_states))
catch ex
if ex isa MethodError
@warn("""POMDPXFiles only supports observation distributions conditioned on a and sp.
Check that there is an `observation(::M, ::A, ::S)` method available (or an (::A, ::S) method of the observation function for a QuickPOMDP).
This warning is designed to give a helpful hint to fix errors, but may not always be relevant.
""", M=typeof(pomdp), S=typeof(first(pomdp_states)), A=typeof(first(acts)))
end
rethrow(ex)
end
for (i, s) in enumerate(pomdp_states)
for (ai, a) in enumerate(acts)
d = observation(pomdp, a, s)
for (oi, o) in enumerate(obs)
p = pdf(d, o)
if p > 0.0
str = "\t\t\t\t<Entry>\n"
str = "$(str)\t\t\t\t\t<Instance>a$(ai-1) s$(i-1) o$(oi-1)</Instance>\n"
str = "$(str)\t\t\t\t\t<ProbTable>$(p)</ProbTable>\n"
str = "$(str)\t\t\t\t</Entry>\n"
write(out_file, str)
end
next!(p1)
end
end
end
write(out_file, "\t\t\t</Parameter>\n")
write(out_file, "\t\t</CondProb>\n")
write(out_file, "\t</ObsFunction>\n")
next!(p1)
end
############################################################################
############################################################################
# function: reward_xml
# input: pomdp model, pomdpx type, output file
# output: None, writes the reward function to the output file
############################################################################
function reward_xml(pomdp::POMDP, pomdpx::POMDPXFile, out_file::IOStream, p1)
pomdp_states = ordered_states(pomdp)
acts = ordered_actions(pomdp)
rew = StateActionReward(pomdp)
aname = pomdpx.action_name
var = pomdpx.state_name
rname = pomdpx.reward_name
write(out_file, "\t<RewardFunction>\n")
str = "\t\t<Func>\n"
str = "$(str)\t\t\t<Var>$(rname)</Var>\n"
str = "$(str)\t\t\t<Parent>$(aname) $(var)0</Parent>\n"
str = "$(str)\t\t\t<Parameter>\n"
write(out_file, str)
next!(p1)
for (i, s) in enumerate(pomdp_states)
if !isterminal(pomdp, s)
for (ai, a) in enumerate(acts)
r = rew(s, a)
str = "\t\t\t\t<Entry>\n"
str = "$(str)\t\t\t\t\t<Instance>a$(ai-1) s$(i-1)</Instance>\n"
str = "$(str)\t\t\t\t\t<ValueTable>$(r)</ValueTable>\n"
str = "$(str)\t\t\t\t</Entry>\n"
write(out_file, str)
next!(p1)
end
else
for i = 1:length(acts)
next!(p1)
end
end
end
write(out_file, "\t\t\t</Parameter>\n\t\t</Func>\n")
write(out_file, "\t</RewardFunction>\n\n")
next!(p1)
end
############################################################################
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | code | 1335 | using POMDPs
using POMDPTools
using POMDPXFiles
using POMDPModels
using Test
@testset "basic" begin
file_name = "tiger_test.pomdpx"
pomdp = TigerPOMDP()
pomdpx = POMDPXFile(file_name)
write(pomdp, pomdpx)
av, aa = read_pomdp("mypolicy.policy")
@test av ≈ [-81.5975 3.01448 24.6954 28.4025 19.3711; 28.4025 24.6954 3.01452 -81.5975 19.3711]
@test aa == [1,0,0,2,0]
end
@testset "a, sp observation warning" begin
struct BadObsPOMDP <: POMDP{Int,Int,Int} end
POMDPs.states(m::BadObsPOMDP) = 1:2
POMDPs.actions(m::BadObsPOMDP) = 1:2
POMDPs.observations(m::BadObsPOMDP) = 1:2
POMDPs.transition(m::BadObsPOMDP, s, a) = Deterministic(clamp(s+a, 1, 2))
POMDPs.reward(m::BadObsPOMDP, s, a, o) = s
POMDPs.observation(m::BadObsPOMDP, s, a, sp) = Deterministic(sp)
POMDPs.discount(m::BadObsPOMDP) = 0.99
POMDPs.initialstate(m::BadObsPOMDP) = Deterministic(1)
POMDPs.stateindex(m::BadObsPOMDP, s) = s
POMDPs.actionindex(m::BadObsPOMDP, s) = s
POMDPs.obsindex(m::BadObsPOMDP, s) = s
@test_throws MethodError cd(mktempdir()) do
write(BadObsPOMDP(), POMDPXFile("bad_obs_test.pomdpx"))
end
POMDPs.observation(m::BadObsPOMDP, a, sp) = Deterministic(1)
cd(mktempdir()) do
write(BadObsPOMDP(), POMDPXFile("bad_obs_test.pomdpx"))
end
end
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.3.0 | b625976c74a2611182324d76061247fe69f922e6 | docs | 1343 | # POMDPXFiles
[](https://github.com/JuliaPOMDP/POMDPXFiles.jl/actions/workflows/CI.yml/)
[](https://codecov.io/gh/JuliaPOMDP/POMDPXFiles.jl)
This module provides an interface for generating .pomdpx files that can be used with the [SARSOP.jl](https://github.com/JuliaPOMDP/SARSOP.jl). This module leverages the API defined in [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl).
## Installation
```julia
Pkg.add("POMDPXFiles")
```
The module provides an interface for generating files for both POMDPs and MOMDPs.
## Module Types
- `AbstractPOMDPXFile`
- `POMDPXFile`
- `MOMDPXFile`
## Usage
Make sure that your model is defined according to the API in POMDPs.jl.
```julia
pomdp = YourPOMDP() # intialize your pomdp
pomdpx = POMDPX("my_pomdp.pomdpx") # for pomdp
pomdpx = MOMDPX("my_pomdp.pomdpx") # for momdp
write(pomdp, pomdpx) # creates a pomdpx file called my_pomdp.pomdpx
```
## MOMDPs (Deprecated)
While MOMDPs are no longer officially supported, you can look at how they were handled in an older version of POMDPs.jl
in [this branch](https://github.com/altiscope/prototype/blob/develop/scenarios/memos/2/analysis.json)
| POMDPXFiles | https://github.com/JuliaPOMDP/POMDPXFiles.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 4204 | # Retrieve name of example and output directory
if length(ARGS) != 1
error("please specify the name of the output directory")
end
const RELOUTDIR = ARGS[1]
const EXAMPLEDIR = dirname(Base.active_project())
const EXAMPLE = basename(EXAMPLEDIR)
const OUTDIR = joinpath(@__DIR__, "src", RELOUTDIR, EXAMPLE)
mkpath(OUTDIR)
# Load non-example specific packages
using Literate: Literate # from stacked environment
using InteractiveUtils: InteractiveUtils
using Pkg: Pkg
# Save Manifest.toml
cp(
Pkg.Types.manifestfile_path(EXAMPLEDIR; strict=true),
joinpath(OUTDIR, "Manifest.toml");
force=true,
)
# Strip build version from a tag (cf. JuliaDocs/Documenter.jl#1298, Literate.jl#162)
function version_tag_strip_build(tag)
m = match(Base.VERSION_REGEX, tag)
m === nothing && return tag
s0 = startswith(tag, 'v') ? "v" : ""
s1 = m[1] # major
s2 = m[2] === nothing ? "" : ".$(m[2])" # minor
s3 = m[3] === nothing ? "" : ".$(m[3])" # patch
s4 = m[5] === nothing ? "" : m[5] # pre-release (starting with -)
# m[7] is the build, which we want to discard
return "$s0$s1$s2$s3$s4"
end
# Obtain name of deploy folder
function deployfolder(; devurl="dev")
github_ref = get(ENV, "GITHUB_REF", "")
if get(ENV, "GITHUB_EVENT_NAME", nothing) == "push"
if (m = match(r"^refs\/tags\/(.*)$", github_ref)) !== nothing
# new tags: correspond to a new version
return version_tag_strip_build(String(m.captures[1]))
end
elseif (m = match(r"refs\/pull\/(\d+)\/merge", github_ref)) !== nothing
# pull request: build preview
"previews/PR$(m.captures[1])"
end
# fallback: development branch
return devurl
end
# Add link to nbviewer below the first heading of level 1 and add footer
const RELEXAMPLEDIR = relpath(EXAMPLEDIR, joinpath(@__DIR__, ".."))
const DEPLOYFOLDER = deployfolder()
function preprocess(content)
io = IOBuffer()
# Print initial lines, up to and including the first heading of level 1
lines = eachline(IOBuffer(content))
for line in lines
println(io, line)
startswith(line, "# # ") && break
end
# Add header
print(
io,
"""
#
#md # [](@__NBVIEWER_ROOT_URL__/$RELOUTDIR/$EXAMPLE/notebook.ipynb)
#md #
# *You are seeing the
#md # HTML output generated by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl) and
#nb # notebook output generated by
# [Literate.jl](https://github.com/fredrikekre/Literate.jl) from the
# [Julia source file](@__REPO_ROOT_URL__/$RELEXAMPLEDIR/script.jl).
# The corresponding
#md # notebook can be viewed in [nbviewer](@__NBVIEWER_ROOT_URL__/$RELOUTDIR/$EXAMPLE/notebook.ipynb).*
#nb # HTML output can be viewed [here](https://devmotion.github.io/CalibrationErrors.jl/$DEPLOYFOLDER/$RELOUTDIR/$EXAMPLE/).*
#
""",
)
# Print remaining lines
for line in lines
println(io, line)
end
# Add footer
println(io, "# ### Package and system information")
## Add package status
iopkg = IOBuffer()
Pkg.status(; io=iopkg)
seekstart(iopkg)
println(io, "# #### Package version\n# ```julia")
for l in eachline(iopkg)
println(io, "# ", l)
end
println(io, "# ```")
## Add computer info
ioversion = IOBuffer()
InteractiveUtils.versioninfo(ioversion)
seekstart(ioversion)
println(io, "# #### Computer information\n# ```")
for l in eachline(ioversion)
println(io, "# ", l)
end
println(io, "# ```")
## Add link to Manifest file
print(
io,
"""
# #### Manifest
# To reproduce the project environment of this example you can [download the full Manifest.toml](./Manifest.toml).
""",
)
return String(take!(io))
end
# Convert to markdown and notebook
const SCRIPTJL = joinpath(EXAMPLEDIR, "script.jl")
Literate.markdown(SCRIPTJL, OUTDIR; name="index", execute=true, preprocess=preprocess)
Literate.notebook(SCRIPTJL, OUTDIR; name="notebook", execute=true, preprocess=preprocess)
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 4839 | using CalibrationErrors
using Documenter
### Process examples
# Always rerun examples
const EXAMPLES_OUT = joinpath(@__DIR__, "src", "examples")
ispath(EXAMPLES_OUT) && rm(EXAMPLES_OUT; recursive=true)
mkpath(EXAMPLES_OUT)
# The following function returns a script for instantiating the package
# environment of an example
# It ensures that the version of the package in which module `mod` is defined
# (here `mod` will be ApproximateGPs loaded above) is added to the environment.
# Thus the docs and the examples will use the same version of this package.
# There are two special cases:
# - If the script is executed by a GH action triggered by a new tag (i.e., release)
# in the package repo, then this version of the package will be downloaded and installed
# instead of checking out the local path
# - If the script is executed by a GH action triggered by a new commit in the `devbranch`
# (by default `master`) in the package repo, then this revision of the package will be
# downloaded and installed instead of checking out the local path
# This ensures that in these two cases the resulting Manifest.toml files do not fix the
# local path of any package, and hence can be used to reproduce the package environment in
# a clean and reproducible way.
function instantiate_script(mod; org, name=string(nameof(mod)), devbranch="main")
github_repo = get(ENV, "GITHUB_REPOSITORY", "")
github_event_name = get(ENV, "GITHUB_EVENT_NAME", "")
repo = org * "/" * name * ".jl"
if github_repo == repo && github_event_name == "push"
github_ref = get(ENV, "GITHUB_REF", "")
match_tag = match(r"^refs\/tags\/(.*)$", github_ref)
if match_tag !== nothing
# tagged release
tag_nobuild = Documenter.version_tag_strip_build(match_tag.captures[1])
if tag_nobuild !== nothing
@info "Run examples with $name version $tag_nobuild"
return """
using Pkg
Pkg.add(PackageSpec(; name="$name", version="$tag_nobuild"))
Pkg.instantiate()
"""
end
else
# no release tag
match_branch = match(r"^refs\/heads\/(.*)$", github_ref)
if match_branch !== nothing && string(match_branch.captures[1]) == devbranch
sha = get(ENV, "GITHUB_SHA", nothing)
if sha !== nothing
@info "Run examples with $name commit $sha"
return """
using Pkg
Pkg.add(PackageSpec(; name="$name", rev="$sha"))
Pkg.instantiate()
"""
end
end
end
end
# Default: Use local path of provided module
pkgdir_mod = pkgdir(mod)
@info "Run examples with $name, local path $pkgdir_mod"
return """
using Pkg
Pkg.develop(PackageSpec(; path="$pkgdir_mod"))
Pkg.instantiate()
"""
end
let
# Install and precompile all packages
# Workaround for https://github.com/JuliaLang/Pkg.jl/issues/2219
examples = filter!(isdir, readdir(joinpath(@__DIR__, "..", "examples"); join=true))
script = instantiate_script(CalibrationErrors; org="devmotion")
for example in examples
run(`$(Base.julia_cmd()) --project=$example -e $script`)
end
# Run examples asynchronously
literatejl = joinpath(@__DIR__, "literate.jl")
# Add current directory to LOAD_PATH: by stacking environments we can load Literate
# without adding it to each example
cmd = addenv(
Base.julia_cmd(), "JULIA_LOAD_PATH" => (Sys.iswindows() ? ";" : ":") * @__DIR__
)
processes = map(examples) do example
return run(
pipeline(
`$cmd --project=$example $literatejl examples`;
stdin=devnull,
stdout=devnull,
stderr=stderr,
);
wait=false,
)::Base.Process
end
# Check that all examples were run successfully
isempty(processes) ||
success(processes) ||
error("some examples were not run successfully")
end
# Build documentation
makedocs(;
modules=[CalibrationErrors],
authors="David Widmann <[email protected]>",
repo="https://github.com/devmotion/CalibrationErrors.jl/blob/{commit}{path}#L{line}",
sitename="CalibrationErrors.jl",
format=Documenter.HTML(;
prettyurls=true,
canonical="https://devmotion.github.io/CalibrationErrors.jl",
assets=String[],
),
pages=[
"index.md",
"introduction.md",
"ece.md",
"kce.md",
"others.md",
"Examples" => map(filter!(isdir, readdir(EXAMPLES_OUT; join=true))) do x
return joinpath("examples", basename(x), "index.md")
end,
],
strict=true,
checkdocs=:exports,
)
deploydocs(;
repo="github.com/devmotion/CalibrationErrors.jl.git",
push_preview=true,
devbranch="main",
)
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 9412 | # # Classification of penguin species
#
# ## Packages
using AlgebraOfGraphics
using CairoMakie
using CalibrationErrors
using DataFrames
using Distributions
using MLJ
using MLJNaiveBayesInterface
using PalmerPenguins
using Random
## Plotting settings
set_aog_theme!()
CairoMakie.activate!(; type="svg")
# ## Data
#
# In this example we study the calibration of different models that classify three penguin
# species based on measurements of their bill and flipper lengths.
#
# We use the [Palmer penguins dataset](https://allisonhorst.github.io/palmerpenguins/) to
# to train and validate the models.
penguins = dropmissing(DataFrame(PalmerPenguins.load()))
penguins_mapping =
data(penguins) * mapping(
:bill_length_mm => "bill length (mm)", :flipper_length_mm => "flipper length (mm)"
)
draw(penguins_mapping * mapping(; color=:species) * visual(; alpha=0.7))
# We split the data randomly into a training and validation dataset. The training dataset
# contains around 60% of the samples.
Random.seed!(1234)
n = nrow(penguins)
k = floor(Int, 0.7 * n)
Random.seed!(100)
penguins.train = shuffle!(vcat(trues(k), falses(n - k)))
## Plot the training and validation data
dataset = :train => renamer(true => "training", false => "validation") => "Dataset"
plt = penguins_mapping * mapping(; color=:species, col=dataset) * visual(; alpha=0.7)
draw(plt; axis=(height=300,))
# ## Fitting normal distributions
#
# For each species, we fit independent normal distributions to the observations of the bill
# and flipper length in the training data, using maximum likelihood estimation.
y, X = unpack(
penguins,
==(:species),
x -> x === :bill_length_mm || x === :flipper_length_mm;
:species => Multiclass,
:bill_length_mm => MLJ.Continuous,
:flipper_length_mm => MLJ.Continuous,
)
model = fit!(machine(GaussianNBClassifier(), X, y); rows=penguins.train);
# We plot the estimated normal distributions.
## plot datasets
fg = draw(plt; axis=(height=300,))
## plot Gaussian distributions
xgrid = range(extrema(penguins.bill_length_mm)...; length=100)
ygrid = range(extrema(penguins.flipper_length_mm)...; length=100)
let f = (x, y, dist) -> pdf(dist, [x, y])
for (class, color) in zip(classes(y), Makie.wong_colors())
pdfs = f.(xgrid, ygrid', Ref(model.fitresult.gaussians[class]))
contour!(fg.figure[1, 1], xgrid, ygrid, pdfs; color=color)
contour!(fg.figure[1, 2], xgrid, ygrid, pdfs; color=color)
end
end
fg
# ## Naive Bayes classifier
#
# Let us assume that the bill and flipper length are conditionally independent given the
# penguin species. Then Bayes' theorem implies that
# ```math
# \begin{aligned}
# \mathbb{P}(\mathrm{species} \,|\, \mathrm{bill}, \mathrm{flipper})
# &= \frac{\mathbb{P}(\mathrm{species}) \mathbb{P}(\mathrm{bill}, \mathrm{flipper} \,|\, \mathrm{species})}{\mathbb{P}(\mathrm{bill}, \mathrm{flipper})} \\
# &= \frac{\mathbb{P}(\mathrm{species}) \mathbb{P}(\mathrm{bill} \,|\, \mathrm{species}) \mathbb{P}(\mathrm{flipper} \,|\, \mathrm{species})}{\mathbb{P}(\mathrm{bill}, \mathrm{flipper})}.
# \end{aligned}
# ```
# This predictive model is known as
# [naive Bayes classifier](https://en.wikipedia.org/wiki/Naive_Bayes_classifier).
#
# In the section above, we estimated $\mathbb{P}(\mathrm{species})$,
# $\mathbb{P}(\mathrm{bill} \,|\, \mathrm{species})$, and
# $\mathbb{P}(\mathrm{flipper} \,|\, \mathrm{species})$ for each penguin species from
# the training data. For the conditional distributions we used a Gaussian approximation.
predictions = MLJ.predict(model)
train_predict = predictions[penguins.train]
val_predict = predictions[.!penguins.train]
## Plot datasets
fg = draw(plt; axis=(height=300,))
## Plot predictions
predictions_grid = reshape(
MLJ.predict(model, reduce(hcat, vcat.(xgrid, ygrid'))'), length(xgrid), length(ygrid)
)
for (class, color) in zip(classes(y), Makie.wong_colors())
p = pdf.(predictions_grid, class)
contour!(fg.figure[1, 1], xgrid, ygrid, p; color=color)
contour!(fg.figure[1, 2], xgrid, ygrid, p; color=color)
end
fg
# ## Evaluation
#
# We evaluate the probabilistic predictions of the naive Bayes classifier that we just
# trained.
#
# ### Log-likelihood
#
# We compute the average log-likelihood of the validation data. It is equivalent to the
# negative cross-entropy.
val_y = y[.!penguins.train]
-mean(cross_entropy(val_predict, val_y))
# ### Brier score
#
# The average log-likelihood is also equivalent to the
# [logarithmic score](https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf).
# The Brier score is another strictly proper scoring rule that can be used for evaluating
# probabilistic predictions.
mean(brier_score(val_predict, val_y))
# ### Expected calibration error
#
# As all proper scoring rules, the logarithmic and the Brier score can be [decomposed in
# three terms that quantify the sharpness and calibration of the predictive model and the
# irreducible uncertainty of the targets that is inherent to the prediction
# problem](https://doi.org/10.1002/qj.456). The calibration term in this decomposition is
# the expected calibration error (ECE)
# ```math
# \mathbb{E} d\big(P_X, \mathrm{law}(Y \,|\, P_X)\big)
# ```
# with respect to the score divergence $d$.
#
# Scoring rules, however, include also the sharpness and the uncertainty term. Thus models
# can trade off calibration for sharpness and therefore scoring rules are not suitable for
# specifically evaluating calibration of predictive models.
#
# The score divergence to the logarithmic and the Brier score are the Kullback-Leibler (KL)
# divergence
# ```math
# d\big(P_X, \mathrm{law}(Y \,|\, P_X)\big) = \sum_{y} \mathbb{P}(Y = y \,|\, P_X)
# \log\big(\mathbb{P}(Y = y \,|\, P_X) / P_X(\{y\})\big)
# ```
# and the squared Euclidean distance
# ```math
# d\big(P_X, \mathrm{law}(Y \,|\, P_X)\big) = \sum_{y} \big(P_X - \mathrm{law}(Y \,|\, P_X)\big)^2(\{y\}),
# ```
# respectively. The KL divergence is defined only if $\mathrm{law}(Y \,|\, P_X)$ is
# absolutely continuous with respect to $P_X$, i.e., if $P_X(\{y\}) = 0$ implies
# $\mathbb{P}(Y = y \,|\, P_X) = 0$.
# We estimate the ECE by binning the probability simplex of predictions $P_X$ and computing
# the weighted average of the distances between the mean prediction and the distribution of
# targets in each bin.
#
# One approach is to use bins of uniform size.
ece = ECE(UniformBinning(10), (μ, y) -> kl_divergence(y, μ));
# We have to work with a numerical encoding of the true penguin species and a
# corresponding vector of predictions. We use [`RowVecs`](https://juliagaussianprocesses.github.io/KernelFunctions.jl/stable/api/#KernelFunctions.RowVecs)
# to indicate that the rows in the matrix of probabilities returned by `pdf`
# are the predictions. If we would provide predictions as columns of a matrix, we would have
# to use [`ColVecs`](https://juliagaussianprocesses.github.io/KernelFunctions.jl/stable/api/#KernelFunctions.ColVecs).
val_yint = map(MLJ.levelcode, val_y)
val_probs = RowVecs(pdf(val_predict, MLJ.classes(y)));
# We compute the estimate on the validation data:
ece(val_probs, val_yint)
# For the squared Euclidean distance we obtain:
ece = ECE(UniformBinning(10), SqEuclidean())
ece(val_probs, val_yint)
# Alternatively, one can use a data-dependent binning scheme that tries to split the
# predictions in a way that minimizes the variance in each bin.
#
# With the KL divergence we get:
ece = ECE(MedianVarianceBinning(5), (μ, y) -> kl_divergence(y, μ))
ece(val_probs, val_yint)
# For the squared Euclidean distance we obtain:
ece = ECE(MedianVarianceBinning(5), SqEuclidean())
ece(val_probs, val_yint)
# We see that the estimates (of the same theoretical quantity!) are highly dependent on the
# chosen binning scheme.
# ### Kernel calibration error
#
# As an alternative to the ECE, we estimate the kernel calibration error (KCE). We keep it
# simple here, and use the tensor product kernel
# ```math
# k\big((\mu, y), (\mu', y')\big) = \delta_{y,y'} \exp{\bigg(-\frac{{\|\mu - \mu'\|}_2^2}{2\nu^2} \bigg)}
# ```
# with length scale $\nu > 0$ for predictions $\mu,\mu'$ and corresponding targets $y, y'$.
# For simplicity, we estimate length scale $\nu$ with the median heuristic.
distances = pairwise(SqEuclidean(), RowVecs(pdf(train_predict, MLJ.classes(y))))
ν = sqrt(median(distances[i] for i in CartesianIndices(distances) if i[1] < i[2]))
kernel = with_lengthscale(GaussianKernel(), ν) ⊗ WhiteKernel();
# We obtain the following biased estimate of the squared KCE (SKCE):
skce = SKCE(kernel; unbiased=false)
skce(val_probs, val_yint)
# Similar to the biased estimates of the ECE, the biased estimates of the SKCE are always
# non-negative. The unbiased estimates can be negative as well, in particular if the model
# is (close to being) calibrated:
skce = SKCE(kernel)
skce(val_probs, val_yint)
# When the datasets are large, the quadratic sample complexity of the standard biased and
# unbiased estimators of the SKCE can become prohibitive. In these cases, one can resort to
# an estimator that averages estimates of non-overlapping blocks of samples. This estimator
# allows to trade off computational cost for increased variance.
#
# Here we consider the extreme case of blocks with two samples, which yields an estimator
# with linear sample complexity:
skce = SKCE(kernel; blocksize=2)
skce(val_probs, val_yint)
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 8314 | # # Distribution of calibration error estimates
#
# ## Packages
using CairoMakie
using CalibrationErrors
using Distributions
using StatsBase
using LinearAlgebra
using Random
using Statistics
CairoMakie.activate!(; type="svg")
# ## Introduction
#
# This example is taken from the publication
# ["Calibration tests in multi-class classification: A unifying framework"](https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html)
# by Widmann, Lindsten, and Zachariah (2019).
#
# We estimate calibration errors of the model
# ```math
# \begin{aligned}
# g(X) &\sim \mathrm{Dir}(\alpha),\\
# Z &\sim \mathrm{Ber}(\pi),\\
# Y \,|\, g(X) = \gamma, Z = 1 &\sim \mathrm{Categorical}(\beta),\\
# Y \,|\, g(X) = \gamma, Z = 0 &\sim \mathrm{Categorical}(\gamma),
# \end{aligned}
# ```
# where $\alpha \in \mathbb{R}_{>0}^m$ determines the distribution of
# predictions $g(X)$, $\pi > 0$ determines the degree of miscalibration, and
# $\beta$ defines a fixed categorical distribution.
#
# Here we consider only the choices $\alpha = (0.1, \ldots, 0.1)$, mimicking a
# distribution after training that is pushed towards the edges of the
# probability simplex, and $\beta = (1, 0, \ldots, 0)$.
#
# In our experiments we sample 250 predictions from the Dirichlet distribution
# $\textrm{Dir}(\alpha)$, and then we generate corresponding labels according to
# the model stated above, for different choices of $\pi$ and number of classes $m$.
#
# We evaluate the standard estimators of expected calibration error (ECE) based on a
# uniform binning scheme and a data-dependent binning scheme, and the biased estimator of
# the squared kernel calibration error (SKCE), the quadratic unbiased estimator of
# the SKCE, and the linear unbiased estimator of the SKCE for a specific choice of
# matrix-valued kernels.
#
# The sampling procedure and the evaluation are repeated 100 times, to obtain a sample
# of 100 estimates for each considered setting of $\pi$ and $m$.
#
# For our choice of $\alpha$ and $\beta$, the analytical ECE with respect to the
# total variation distance $\|.\|_{\mathrm{TV}}$ is
# ```math
# \mathrm{ECE}_{\mathrm{TV}} = \frac{\pi(m-1)}{m}.
# ```
#
# ## Estimates
#
function estimates(estimator, π::Real, m::Int)
## cache array for predictions, modified predictions, and labels
predictions = [Vector{Float64}(undef, m) for _ in 1:250]
targets = Vector{Int}(undef, 250)
data = (predictions, targets)
## define sampler of predictions
sampler_predictions = sampler(Dirichlet(m, 0.1))
## initialize estimates
estimates = Vector{Float64}(undef, 100)
## for each run
@inbounds for i in eachindex(estimates)
## sample predictions
rand!.((sampler_predictions,), predictions)
## sample targets
for (j, p) in enumerate(predictions)
if rand() < π
targets[j] = 1
else
targets[j] = rand(Categorical(p))
end
end
## evaluate estimator
estimates[i] = estimator(data)(predictions, targets)
end
return estimates
end;
# We use a helper function to run the experiment for all desired parameter settings.
struct EstimatesSet
m::Vector{Int}
π::Vector{Float64}
estimates::Matrix{Vector{Float64}}
end
function estimates(estimator)
## for all combinations of m and π
mvec = [2, 10, 100]
πvec = [0.0, 0.5, 1.0]
estimatesmat = estimates.((estimator,), πvec', mvec)
return EstimatesSet(mvec, πvec, estimatesmat)
end;
# As mentioned above, we can calculate the analytic expected calibration error. For the squared
# kernel calibration error, we take the mean of the estimates of the unbiased quadratic
# estimator as approximation of the true value.
# We provide simple histogram plots of our results. The mean value of the
# estimates is indicated by a solid vertical line and the analytic calibration error for the ECE
# is visualized as a dashed line.
function plot_estimates(set::EstimatesSet; ece=false)
## create figure
f = Figure(; resolution=(1080, 960))
## add subplots
nrows, ncols = size(set.estimates)
for (j, π) in enumerate(set.π), (i, m) in enumerate(set.m)
## obtain data
estimates = set.estimates[i, j]
## create new axis
ax = Axis(f[i, j]; xticks=LinearTicks(4))
i < nrows && hidexdecorations!(ax; grid=false)
j > 1 && hideydecorations!(ax; grid=false)
## plot histogram of estimates
h = fit(Histogram, estimates)
barplot!(ax, h; strokecolor=:black, strokewidth=0.5)
## indicate mean of estimates
vlines!(ax, [mean(estimates)]; linewidth=2)
## indicate analytic calibration error for ECE
if ece
vlines!(ax, [π * (m - 1) / m]; linewidth=2, linestyle=:dash)
end
end
## add labels and link axes
for (j, π) in enumerate(set.π)
Box(f[1, j, Top()]; color=:gray90)
Label(f[1, j, Top()], "π = $π"; padding=(0, 0, 5, 5))
linkxaxes!(contents(f[:, j])...)
end
for (i, m) in enumerate(set.m)
Box(f[i, ncols, Right()]; color=:gray90)
Label(f[i, ncols, Right()], "$m classes"; rotation=-π / 2, padding=(5, 5, 0, 0))
linkyaxes!(contents(f[i, :])...)
end
Label(f[nrows, 1:ncols, Bottom()], "calibration error estimate"; padding=(0, 0, 0, 75))
Label(f[1:nrows, 1, Left()], "# runs"; rotation=π / 2, padding=(0, 75, 0, 0))
return f
end;
# ## Kernel choice
# We use a tensor product kernel consisting of an exponential kernel
# $k(\mu, \mu') = \exp{(- \gamma \|p - p'\|)}$ on the space of predicted categorical
# distributions and a white kernel $k(y, y') = \delta(y - y')$ on the space of targets
# $\{1,\ldots,m\}$. The total variation distance is chosen as the norm on the space of
# predictions, and the inverse lengthscale $\gamma$ is set according to the median
# heuristic.
struct MedianHeuristicKernel
distances::Matrix{Float64}
cache::Vector{Float64}
end
function MedianHeuristicKernel(n::Int)
return MedianHeuristicKernel(
Matrix{Float64}(undef, n, n), Vector{Float64}(undef, (n * (n - 1)) ÷ 2)
)
end
function (f::MedianHeuristicKernel)((predictions, targets))
distances = f.distances
cache = f.cache
## compute lengthscale with median heuristic
pairwise!(distances, TotalVariation(), predictions)
k = 0
@inbounds for j in axes(distances, 2), i in 1:(j - 1)
cache[k += 1] = distances[i, j]
end
λ = median!(cache)
## create tensor product kernel
kernel_predictions = with_lengthscale(ExponentialKernel(; metric=TotalVariation()), λ)
kernel_targets = WhiteKernel()
return kernel_predictions ⊗ kernel_targets
end
#md nothing #hide
# ## Expected calibration error
#
# ### Uniform binning
#
# We start by analyzing the expected calibration error (ECE).
# For our estimation we use 10 bins of uniform width in each dimension.
Random.seed!(1234)
data = estimates(_ -> ECE(UniformBinning(10), TotalVariation()))
plot_estimates(data; ece=true)
# ### Non-uniform binning
#
# We repeat our experiments with a different data-dependent binning scheme. This
# time the bins will be computed dynamically by splitting the predictions at the
# median of the classes with the highest variance, as long as the number of bins
# does not exceed a given threshold and the number of samples per bin is above
# a certain lower bound. In our experiments we do not impose any restriction on
# the number of bins but only stop splitting if the number of samples is less
# than 10.
Random.seed!(1234)
data = estimates(_ -> ECE(MedianVarianceBinning(10), TotalVariation()))
plot_estimates(data; ece=true)
# ## Unbiased estimators of the squared kernel calibration error
#
Random.seed!(1234)
data = estimates(SKCE ∘ MedianHeuristicKernel(250))
plot_estimates(data)
Random.seed!(1234)
data = estimates() do predictions_targets
return SKCE(MedianHeuristicKernel(250)(predictions_targets); blocksize=2)
end
plot_estimates(data)
# ## Biased estimator of the squared kernel calibration error
#
Random.seed!(1234)
data = estimates() do predictions_targets
return SKCE(MedianHeuristicKernel(250)(predictions_targets); unbiased=false)
end
plot_estimates(data)
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 983 | module CalibrationErrors
using Reexport
using DataStructures
@reexport using Distances
@reexport using Distributions
using ExactOptimalTransport: ExactOptimalTransport
@reexport using KernelFunctions
using PDMats: PDMats
using SimpleUnPack: @unpack
using StatsBase: StatsBase
using Tulip: Tulip
using LinearAlgebra
using Statistics
const OT = ExactOptimalTransport
# estimators
export ECE, SKCE, UCME
# binning algorithms
export UniformBinning, MedianVarianceBinning
# Wasserstein distances
export Wasserstein, SqWasserstein, MixtureWasserstein, SqMixtureWasserstein
include("distances/types.jl")
include("distances/wasserstein.jl")
include("generic.jl")
include("binning/generic.jl")
include("binning/uniform.jl")
include("binning/medianvariance.jl")
include("ece.jl")
include("skce.jl")
include("ucme.jl")
include("distributions/normal.jl")
include("distributions/laplace.jl")
include("distributions/mvnormal.jl")
include("distributions/mixturemodel.jl")
end # module
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
|
[
"MIT"
] | 0.6.4 | b87cd13d6d99575da6c0e6ff6727c2fe643d327d | code | 2441 | struct ECE{B<:AbstractBinningAlgorithm,D} <: CalibrationErrorEstimator
"""Binning algorithm."""
binning::B
"""Distance function."""
distance::D
end
"""
ECE(binning[, distance = TotalVariation()])
Estimator of the expected calibration error (ECE) for a classification model with
respect to the given `distance` function using the `binning` algorithm.
For classification models, the predictions ``P_{X_i}`` and targets ``Y_i`` are identified
with vectors in the probability simplex. The estimator of the ECE is defined as
```math
\\frac{1}{B} \\sum_{i=1}^B d\\big(\\overline{P}_i, \\overline{Y}_i\\big),
```
where ``B`` is the number of non-empty bins, ``d`` is the distance function, and
``\\overline{P}_i`` and ``\\overline{Y}_i`` are the average vector of the predictions and
the average vector of targets in the ``i``th bin. By default, the total variation distance
is used.
The `distance` has to be a function of the form
```julia
distance(pbar::Vector{<:Real}, ybar::Vector{<:Real}).
```
In particular, distance measures of the package
[Distances.jl](https://github.com/JuliaStats/Distances.jl) are supported.
"""
ECE(binning::AbstractBinningAlgorithm) = ECE(binning, TotalVariation())
# estimate ECE
function (ece::ECE)(predictions::AbstractVector, targets::AbstractVector)
@unpack binning, distance = ece
# check number of samples
check_nsamples(predictions, targets)
# bin predictions and labels
bins = perform(binning, predictions, targets)
nbins = length(bins)
nbins > 0 || error("there must exist at least one bin")
# compute the weighted mean of the distances in each bin
# use West's algorithm for numerical stability
# evaluate the distance in the first bin
@inbounds begin
bin, state = iterate(bins) # there is always at least one bin
x = distance(bin.mean_predictions, bin.proportions_targets)
# initialize the estimate
estimate = x / 1
# for all other bins
n = bin.nsamples
while true
bin_state = iterate(bins, state)
bin_state === nothing && break
# evaluate the distance
bin, state = bin_state
x = distance(bin.mean_predictions, bin.proportions_targets)
# update the estimate
m = bin.nsamples
n += m
estimate += (m / n) * (x - estimate)
end
end
return estimate
end
| CalibrationErrors | https://github.com/devmotion/CalibrationErrors.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.