licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
477
module Backends # begin submodule PredictMD.Backends import ..AbstractBackend struct ClassImbalance <: AbstractBackend end struct DecisionTree <: AbstractBackend end struct Documenter <: AbstractBackend end struct Flux <: AbstractBackend end struct GLM <: AbstractBackend end struct Knet <: AbstractBackend end struct LIBSVM <: AbstractBackend end struct PGFPlots <: AbstractBackend end struct PGFPlotsX <: AbstractBackend end end # end submodule PredictMD.Backends
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
5865
import StatsModels struct FeatureContrastsNotYetGenerated <: AbstractNonExistentFeatureContrasts end struct FitNotYetRunUnderlyingObject <: AbstractNonExistentUnderlyingObject end struct FitFailedUnderlyingObject <: AbstractNonExistentUnderlyingObject end """ """ mutable struct GLMModel <: AbstractEstimator name::T1 where T1 <: AbstractString isclassificationmodel::T2 where T2 <: Bool isregressionmodel::T3 where T3 <: Bool formula::T4 where T4 <: Any family::T5 where T5 <: Any link::T6 where T6 <: Any # parameters (learned from data): underlyingglm::T7 where T7 <: Any end """ """ mutable struct KnetModel <: AbstractEstimator name::T1 where T1 <: AbstractString isclassificationmodel::T2 where T2 <: Bool isregressionmodel::T3 where T3 <: Bool # hyperparameters (not learned from data): predict_function_source::T4 where T4 <: AbstractString loss_function_source::T5 where T5 <: AbstractString predict_function::T6 where T6 <: Any loss_function::T7 where T7 <: Any losshyperparameters::T8 where T8 <: AbstractDict optimizationalgorithm::T9 where T9 <: Symbol optimizerhyperparameters::T10 where T10 <: AbstractDict minibatchsize::T11 where T11 <: Integer maxepochs::T12 where T12 <: Integer printlosseverynepochs::T13 where T13 <: Integer # parameters (learned from data): modelweights::T14 where T14 <: AbstractArray modelweightoptimizers::T15 where T15 <: Any # learning state history::T16 where T16 <: Any end """ """ mutable struct SimplePipeline{S<:AbstractString, T<:AbstractVector} <: AbstractPipeline name::S objectsvector::T end struct PGFPlotsXPlot <: AbstractPlot underlying_object::T where T <: Any end """ """ struct ImmutablePackageMultiLabelPredictionTransformer <: AbstractEstimator label_names::T1 where T1 <: AbstractVector{Symbol} end """ """ struct ImmutablePackageSingleLabelPredictionTransformer <: AbstractEstimator single_label_name::T1 where T1 <: Symbol end """ """ struct ImmutablePackageSingleLabelPredictProbaTransformer <: AbstractEstimator single_label_name::T1 where T1 <: Symbol end """ """ struct ImmutablePredictionsSingleLabelInt2StringTransformer <: AbstractEstimator index::T1 where T1 <: Integer levels::T2 where T2 <: AbstractVector end """ """ struct ImmutablePredictProbaSingleLabelInt2StringTransformer <: AbstractEstimator index::T1 where T1 <: Integer levels::T2 where T2 <: AbstractVector end """ """ struct DataFrameFeatureContrasts <: AbstractFeatureContrasts columns::T1 where T1 <: AbstractVector{Symbol} num_df_columns::T2 where T2 <: Integer schema_without_intercept::T3 where T3 <: StatsModels.Schema formula_without_intercept::T4 where T4 <: StatsModels.AbstractTerm num_array_columns_without_intercept::T5 where T5 <: Integer schema_with_intercept::T6 where T6 <: StatsModels.Schema formula_with_intercept::T7 where T7 <: StatsModels.AbstractTerm num_array_columns_with_intercept::T8 where T8 <: Integer end """ """ mutable struct MutableDataFrame2DecisionTreeTransformer <: AbstractEstimator feature_names::T1 where T1 <: AbstractVector single_label_name::T2 where T2 <: Symbol levels::T3 where T3 <: AbstractVector dffeaturecontrasts::T4 where T4 <: AbstractFeatureContrasts end """ """ struct ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer <: AbstractEstimator label::T1 where T1 <: Symbol positive_class::T2 where T2 <: AbstractString end """ """ mutable struct MutableDataFrame2ClassificationKnetTransformer <: AbstractEstimator feature_names::T1 where T1 <: AbstractVector label_names::T2 where T2 <: AbstractVector{Symbol} label_levels::T3 where T3 <: AbstractDict index::T4 where T4 <: Integer transposefeatures::T5 where T5 <: Bool transposelabels::T6 where T6 <: Bool dffeaturecontrasts::T7 where T7 <: AbstractFeatureContrasts end """ """ mutable struct MutableDataFrame2RegressionKnetTransformer <: AbstractEstimator feature_names::T1 where T1 <: AbstractVector label_names::T2 where T2 <: AbstractVector{Symbol} transposefeatures::T3 where T3 <: Bool transposelabels::T4 where T4 <: Bool dffeaturecontrasts::T5 where T5 <: AbstractFeatureContrasts function MutableDataFrame2RegressionKnetTransformer( feature_names::AbstractVector, label_names::AbstractVector{Symbol}; transposefeatures::Bool = true, transposelabels::Bool = false, ) result = new( feature_names, label_names, transposefeatures, transposelabels, ) return result end end """ """ struct ImmutableFeatureArrayTransposerTransformer <: AbstractEstimator end """ """ mutable struct LIBSVMModel <: AbstractEstimator name::T1 where T1 <: AbstractString isclassificationmodel::T2 where T2 <: Bool isregressionmodel::T3 where T3 <: Bool levels::T4 where T4 <: AbstractVector # hyperparameters (not learned from data): hyperparameters::T5 where T5 <: AbstractDict # parameters (learned from data): underlyingsvm::T6 where T6 <: Any end """ """ mutable struct DecisionTreeModel <: AbstractEstimator name::T1 where T1 <: AbstractString isclassificationmodel::T2 where T2 <: Bool isregressionmodel::T3 where T3 <: Bool single_label_name::T4 where T4 <: Symbol levels::T5 where T5 <: AbstractVector # hyperparameters (not learned from data): hyperparameters::T6 where T6 <: AbstractDict # parameters (learned from data): underlyingrandomforest::T7 where T7 <: Any end """ """ struct CrossValidation{T} leavein::Vector{CrossValidation{T}} leaveout::Vector{Vector{T}} end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
464
import PredictMDAPI PredictMDAPI.get_history(::AbstractFittable; kwargs...)::Nothing = nothing PredictMDAPI.get_underlying(::AbstractFittable; kwargs...)::Nothing = nothing PredictMDAPI.parse_functions!(::AbstractFittable)::Nothing = nothing PredictMDAPI.set_feature_contrasts!(::AbstractFittable, ::AbstractFeatureContrasts)::Nothing = nothing PredictMDAPI.set_max_epochs!(::AbstractFittable,::Integer)::Nothing = nothing
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
391
""" """ module Cleaning # begin submodule PredictMD.Cleaning ############################################################################ # PredictMD.Cleaning source files ############################################# ############################################################################ # submodules/Cleaning/hcup/ include("hcup/hcup.jl") end # begin submodule PredictMD.Cleaning
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
14660
# import CSV import CSVFiles import DataFrames import FileIO # import selected names from PredictMD import ..convert_value_to_missing! import ..filename_extension import ..fix_type import ..is_nothing """ """ function x_contains_y( x::AbstractString, y::AbstractVector{<:AbstractString}, ) if length(y) == 0 return false end for i = 1:length(y) if occursin(y[i], x) return true end end return false end """ """ function symbol_begins_with( x::Symbol, y::AbstractString ) if length(y) <= length(string(x)) && string(x)[1:length(y)] == y return true else return false end return nothing end """ Given a dataframe, return the column names corresponding to CCS "one-hot" columns. # Examples ```julia import CSVFiles import FileIO import PredictMD df = DataFrames.DataFrame( FileIO.load( MY_CSV_FILE_NAME; type_detect_rows = 30_000, ) ) @info(PredictMD.Cleaning.ccs_onehot_names(df)) @info(PredictMD.Cleaning.ccs_onehot_names(df, "ccs_onehot_")) ``` """ function ccs_onehot_names( df::DataFrames.AbstractDataFrame, ccs_onehot_prefix::AbstractString = "ccs_onehot_", ) result = column_names_with_prefix( df, ccs_onehot_prefix, ) return result end """ """ function column_names_with_prefix( df::DataFrames.AbstractDataFrame, prefix::AbstractString, ) all_names = DataFrames.names(df) name_begins_with_prefix = Vector{Bool}(length(all_names)) for j = 1:length(all_names) name_begins_with_prefix[j] = symbol_begins_with( all_names[j], prefix, ) end vector_of_matching_names = all_names[name_begins_with_prefix] return vector_of_matching_names end """ Given a single ICD 9 code, import the relevant patients from the Health Care Utilization Project (HCUP) National Inpatient Sample (NIS) database. # Examples: ```julia import CSVFiles import FileIO import PredictMD icd_code_list = ["8841"] icd_code_type=:procedure input_file_name_list = [ "./data/nis_2012_core.csv", "./data/nis_2013_core.csv", "./data/nis_2014_core.csv", ] output_file_name = "./output/hcup_nis_pr_8841.csv" PredictMD.Cleaning.clean_hcup_nis_csv_icd9( icd_code_list, input_file_name_list, output_file_name; icd_code_type=icd_code_type, rows_for_type_detect = 30_000, ) df = DataFrames.DataFrame( FileIO.load( output_file_name; type_detect_rows = 30_000, ) ) @info(PredictMD.Cleaning.ccs_onehot_names(df)) ``` """ function clean_hcup_nis_csv_icd9( icd_code_list::AbstractVector{<:AbstractString}, input_file_name_list::AbstractVector{<:AbstractString}, output_file_name::AbstractString; header_row::Bool = true, print_every_n_lines::Integer = 1_000_000, icd_code_type::Union{Nothing, Symbol} = nothing, num_dx_columns::Integer = 25, num_pr_columns::Integer = 15, ccs_onehot_prefix::AbstractString = "ccs_onehot_", rows_for_type_detect::Union{Nothing, Integer} = nothing, ) if is_nothing(rows_for_type_detect) error("you need to specify rows_for_type_detect") end if rows_for_type_detect <= 0 error("rows_for_type_detect must be > 0") end if is_nothing(icd_code_type) error("you need to specify icd_code_type") end if icd_code_type==:diagnosis elseif icd_code_type==:procedure else error("\"icd_code_type\" must be one of: :diagnosis, :procedure") end if length(input_file_name_list) == 0 error("length(input_file_name_list) == 0") end input_file_name_list = strip.(input_file_name_list) for i = 1:length(input_file_name_list) if filename_extension(input_file_name_list[i]) != ".csv" error("all input files must be .csv") end end output_file_name = strip.(output_file_name) if filename_extension(output_file_name) != ".csv" error("output file must be .csv") end if ispath(output_file_name) error( string( "Output file already exists. ", "Rename, move, or delete the file, and then try again.", ) ) end temp_file_name_vector = Vector{String}(length(input_file_name_list)) for i = 1:length(input_file_name_list) temp_file_name_vector[i] = string(tempname(), "_", i, ".csv") end icd_code_list = strip.(icd_code_list) for i = 1:length(input_file_name_list) if ispath(temp_file_name_vector[i]) error("ispath(temp_file_name_vector[i])") end @info( string( "Starting to read input file ", i, " of ", length(input_file_name_list), ".", ) ) open(input_file_name_list[i], "r") do f_input open(temp_file_name_vector[i], "w") do f_temp_output line_number = 1 for line in eachline(f_input) if line_number == 1 && header_row write(f_temp_output, line) write(f_temp_output, "\n") else if x_contains_y(line, icd_code_list) write(f_temp_output, line) write(f_temp_output, "\n") end end line_number += 1 if (print_every_n_lines >= 0) && (line_number % print_every_n_lines == 0) @info( string( "Input file ", i, " of ", length(input_file_name_list), ". Current line number: ", line_number, ) ) end end end end @info( string( "Finished reading input file ", i, " of ", length(input_file_name_list), ".", ) ) end df_vector = Vector{DataFrames.DataFrame}(length(input_file_name_list)) for i = 1:length(temp_file_name_vector) @info( string( "Starting to read temporary file ", i, " of ", length(input_file_name_list), ".", ) ) # df_i = DataFrames.readtable(temp_file_name_vector[i]) # We can't use DataFrames.readtable because it is deprecated. df_i = DataFrames.DataFrame( FileIO.load( temp_file_name_vector[i]; type_detect_rows = rows_for_type_detect, ) ) df_vector[i] = df_i @info( string( "Finished reading temporary file ", i, " of ", length(input_file_name_list), ".", ) ) end for i = 1:length(temp_file_name_vector) Base.Filesystem.rm( temp_file_name_vector[i]; force = true, recursive = true, ) end all_column_names_vectors = [ DataFrames.names(df) for df in df_vector ] shared_column_names = intersect(all_column_names_vectors...) for i = 1:length(df_vector) extra_column_names = setdiff( names(df_vector[i]), shared_column_names, ) DataFrames.deletecols!(df_vector[i], extra_column_names,) end combined_df = vcat(df_vector...) for i = 1:length(df_vector) df_vector[i] = DataFrames.DataFrame() end if icd_code_type==:diagnosis icd_code_column_names = Symbol[ Symbol( string("DX", j) ) for j = 1:num_dx_columns ] elseif icd_code_type==:procedure icd_code_column_names = Symbol[ Symbol( string("PR", j) ) for j = 1:num_pr_columns ] else error("\"icd_code_type\" must be one of: :diagnosis, :procedure") end row_i_has_kth_icd_code_matrix = Matrix{Bool}( size(combined_df, 1), length(icd_code_list), ) for k = 1:length(icd_code_list) current_icd_code = icd_code_list[k] row_i_has_current_icd_code_in_col_j_matrix = Matrix{Bool}( size(combined_df, 1), length(icd_code_column_names), ) for j = 1:length(icd_code_column_names) @info( string( "icd9 code ", k, " of ", length(icd_code_list), ". DX column ", j, " of ", length(icd_code_column_names), ".", ) ) for i = 1:size(combined_df, 1) cell_value = combined_df[i, icd_code_column_names[j]] if DataFrames.ismissing(cell_value) row_i_has_current_icd_code_in_col_j_matrix[i, j] = false else cell_value = strip(string(cell_value)) row_i_has_current_icd_code_in_col_j_matrix[i, j] = cell_value == current_icd_code end end end row_i_has_current_icd_code_in_any_icdcode_column = vec( sum(row_i_has_current_icd_code_in_col_j_matrix, 2) .> 0 ) row_i_has_kth_icd_code_matrix[:, k] = row_i_has_current_icd_code_in_any_icdcode_column end matching_rows = findall(Bool.(vec(sum(row_i_has_kth_icd_code_matrix, 2).>0))) num_rows_before = size(combined_df, 1) combined_df = combined_df[matching_rows, :] num_rows_after = size(combined_df, 1) @info( string( "I initially identified ", num_rows_before, " rows that could possibly have matched your ICD code(s).", " I checked each row, and ", num_rows_after, " of those rows actually matched your ICD code(s).", "I removed the ", num_rows_before - num_rows_after, " rows that did not match.", ) ) dx_column_names = [Symbol(string("DX", i)) for i = 1:num_dx_columns] dx_ccs_column_names = [Symbol(string("DXCCS", i)) for i = 1:num_dx_columns] index_to_ccs = strip.( string.( unique( DataFrames.skipmissing( vcat( [combined_df[:, col] for col in dx_ccs_column_names]... ) ) ) ) ) index_to_ccs = index_to_ccs[findall(index_to_ccs .!= "")] index_to_ccs = unique(index_to_ccs) index_to_ccs = parse.(Int, index_to_ccs) sort!(index_to_ccs) index_to_ccs = string.(index_to_ccs) ccs_to_index = Dict() for k = 1:length(index_to_ccs) ccs_to_index[ index_to_ccs[ k ] ] = k end ccs_to_index = fix_type(ccs_to_index) row_i_has_vcode_dx_in_kth_ccs = Matrix{Bool}( size(combined_df, 1), length(index_to_ccs), ) for j = 1:length(dx_column_names) @info( string( "Processing DXCCS column ", j, " of ", length(dx_column_names), ".", ) ) jth_dx_col_name = dx_column_names[j] jth_dx_ccs_col_name = dx_ccs_column_names[j] for i = 1:size(combined_df, 1) dx_value = combined_df[i, jth_dx_col_name] if DataFrames.ismissing(dx_value) else dx_value = strip(string(dx_value)) if length(dx_value) == 0 elseif dx_value[1] == 'V' || dx_value[1] == "V" ccs_value = combined_df[i, jth_dx_ccs_col_name] if DataFrames.ismissing(ccs_value) error( error( "dx value was not missing but", "ccs value was missing" ) ) else ccs_value = strip(string(ccs_value)) row_i_has_vcode_dx_in_kth_ccs[ i, ccs_to_index[ccs_value] ] = true end end end end end for k = 1:length(index_to_ccs) kth_ccs = index_to_ccs[k] kth_ccs_onehot_column_name = Symbol( string( ccs_onehot_prefix, kth_ccs, ) ) temporary_column_ints = Int.(row_i_has_vcode_dx_in_kth_ccs[:, k]) if sum(temporary_column_ints) > 0 temporary_column_strings = Vector{String}(size(combined_df, 1)) for i = 1:size(combined_df, 1) if temporary_column_ints[i] > 0 temporary_column_strings[i] = "Yes" else temporary_column_strings[i] = "No" end end combined_df[kth_ccs_onehot_column_name] = temporary_column_strings else end end convert_value_to_missing!( combined_df, "A", DataFrames.names(combined_df), ) convert_value_to_missing!( combined_df, "C", DataFrames.names(combined_df), ) convert_value_to_missing!( combined_df, -99, DataFrames.names(combined_df), ) try mkpath(dirname(output_file_name)) catch end @info(string("Attempting to write output file...")) FileIO.save(output_file_name, combined_df) @info( string( "Wrote ", size(combined_df, 1), " rows to output file: \"", output_file_name, "\"", ) ) return output_file_name end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
510
""" """ module Compilation # begin submodule PredictMD.Compilation ############################################################################ # PredictMD.Compilation source files ####################################### ############################################################################ # submodules/Server/buildexecutable/ include("buildexecutable/buildexecutable.jl") # submodules/Server/packagecompiler/ include("packagecompiler/packagecompiler.jl") end # end submodule PredictMD.Compilation
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
26
# import BuildExecutable
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
48
# import PackageCompiler # import SnoopCompile
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
319
""" """ module GPU # begin submodule PredictMD.GPU ############################################################################ # PredictMD.GPU source files ############################################### ############################################################################ end # end submodule PredictMD.GPU
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
675
""" """ module Server # begin submodule PredictMD.Server ############################################################################ # PredictMD.Server source files ############################################ ############################################################################ # submodules/Server/cryptography/ # include("cryptography/mbedtls.jl") # include("cryptography/transportlayersecurity.jl") # submodules/Server/web/ # include("web/genie.jl") include("web/http.jl") # include("web/httpclient.jl") # include("web/httpserver.jl") # include("web/juliawebapi.jl") # include("web/mux.jl") # include("web/websockets.jl") end # end submodule PredictMD.Server
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
33
# import TransportLayerSecurity
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
51
# import Flax # import Genie # import SearchLight
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3487
import ClassImbalance import DataFrames import Random """ """ function calculate_smote_pct_under( ; pct_over::Real = 0, minority_to_majority_ratio::Real = 0, ) if pct_over < 0 error("pct_over must be >=0") end if minority_to_majority_ratio <= 0 error("minority_to_majority_ratio must be >0") end result = 100*minority_to_majority_ratio*(100+pct_over)/pct_over return result end """ """ function smote( features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, feature_names::AbstractVector{Symbol}, label_name::Symbol; majorityclass::AbstractString = "", minorityclass::AbstractString = "", pct_over::Real = 0, minority_to_majority_ratio::Real = 0, k::Integer = 5, ) result = smote( Random.GLOBAL_RNG, features_df, labels_df, feature_names, label_name, majorityclass = majorityclass, minorityclass = minorityclass, pct_over = pct_over, minority_to_majority_ratio = minority_to_majority_ratio, k = k, ) return result end """ """ function smote( rng::Random.AbstractRNG, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, feature_names::AbstractVector{Symbol}, label_name::Symbol; majorityclass::AbstractString = "", minorityclass::AbstractString = "", pct_over::Real = 0, minority_to_majority_ratio::Real = 0, k::Integer = 5, ) if majorityclass == "" error("you need to specify majorityclass") end if minorityclass == "" error("you need to specify minorityclass") end pct_under = calculate_smote_pct_under( ; pct_over = pct_over, minority_to_majority_ratio = minority_to_majority_ratio, ) if size(features_df, 1) != size(labels_df, 1) error("size(features_df, 1) != size(labels_df, 1)") end if !(size(features_df, 1) > 0) error("!(size(features_df, 1) > 0)") end labelsstringarray = labels_df[label_name] labelsbinaryarray = fill(Int(0), length(labelsstringarray)) for i = 1:length(labelsstringarray) # Paul's smote code assumes 1 = minority, 0 = majority if labelsstringarray[i] == minorityclass labelsbinaryarray[i] = 1 elseif labelsstringarray[i] == majorityclass labelsbinaryarray[i] = 0 else error("value in labels column is neither majority nor minority") end end smotedfeatures_df, smotedlabelsbinaryarray = ClassImbalance.smote( features_df[feature_names], labelsbinaryarray; k = k, pct_over = pct_over, pct_under = pct_under, ) smotedlabelsstringarray = Array{String}( undef, length(smotedlabelsbinaryarray), ) for i = 1:length(smotedlabelsbinaryarray) if smotedlabelsbinaryarray[i] == 1 smotedlabelsstringarray[i] = minorityclass elseif smotedlabelsbinaryarray[i] == 0 smotedlabelsstringarray[i] = majorityclass else error("if you see this error, you will be very sad.") end end smotedlabels_df = DataFrames.DataFrame() smotedlabels_df[label_name] = smotedlabelsstringarray return smotedfeatures_df, smotedlabels_df end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3586
# function require_julia_version(varargs...)::VersionNumber # current_julia_version = convert(VersionNumber, Base.VERSION) # version_meets_requirements = does_given_version_meet_requirements( # current_julia_version, # collect(varargs), # ) # if !version_meets_requirements # error( # string( # "Current Julia version (", # current_julia_version, # ") does not match any of the ", # "user-specified version intervals.", # ) # ) # end # return current_julia_version # end # function require_predictmd_version(varargs...)::VersionNumber # current_predictmd_version = convert(VersionNumber, version()) # version_meets_requirements = does_given_version_meet_requirements( # current_predictmd_version, # collect(varargs), # ) # if !version_meets_requirements # error( # string( # "Current PredictMD version (", # current_predictmd_version, # ") does not match any of the ", # "user-specified version intervals.", # ) # ) # end # return current_predictmd_version # end # function does_given_version_meet_requirements( # given_version::VersionNumber, # version_requirements::AbstractVector, # )::Bool # num_version_requirements = length(version_requirements) # if num_version_requirements == 0 # answer = true # else # if iseven(num_version_requirements) # num_intervals = Int((num_version_requirements)/(2)) # answer_for_each_interval = Vector{Bool}(undef, num_intervals) # for interval = (1):(num_intervals) # answer_for_each_interval[interval] = # does_given_version_meet_requirements( # given_version, # version_requirements[2*interval - 1], # version_requirements[2*interval], # ) # end # else # num_intervals = Int((num_version_requirements+1)/(2)) # answer_for_each_interval = Vector{Bool}(undef, num_intervals) # for interval = (1):(num_intervals - 1) # answer_for_each_interval[interval] = # does_given_version_meet_requirements( # given_version, # version_requirements[2*interval - 1], # version_requirements[2*interval], # ) # end # answer_for_each_interval[num_intervals] = # does_given_version_meet_requirements( # given_version, # version_requirements[2*num_intervals - 1], # ) # end # answer = any(answer_for_each_interval) # end # return answer # end # function does_given_version_meet_requirements( # given_version::VersionNumber, # min_version, # )::Bool # min_version = VersionNumber(min_version) # answer = min_version <= given_version # return answer # end # function does_given_version_meet_requirements( # given_version::VersionNumber, # min_version, # max_version, # )::Bool # min_version = VersionNumber(min_version) # max_version = VersionNumber(max_version) # answer = min_version <= given_version < max_version # return answer # end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
27
# import CSV import FileIO
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
52
import CSVFiles import FileIO import IterableTables
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
31
import RData import RDatasets
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2073
function cp_files_and_directories( src::AbstractString, dst::AbstractString; overwrite::Bool, )::Nothing if isdir(src) # @debug("src is dir", src, isdir(src)) mkpath(dst) for item in readdir(src) # @debug("item: ", item) item_src_path = joinpath(src, item) item_dst_path = joinpath(dst, item) cp_files_and_directories( item_src_path, item_dst_path; overwrite = overwrite, ) end elseif isfile(src) # @debug("src is file", src, isfile(src)) # @debug("dst: ", dst, isfile(dst), ispath(dst)) if overwrite || !ispath(dst) rm(dst; force = true, recursive = true,) cp(src, dst) # @debug("copied file", src, dst) end else # @error("weird src", src) end return nothing end function cache_to_path!( ; from::AbstractVector{<:AbstractString}, to::AbstractVector{<:AbstractString}, cache = joinpath(homedir(), "predictmd_cache_travis"), )::Nothing cache_path_src::String = joinpath(cache, from...) path_dst::String = joinpath(to...) mkpath(cache_path_src) mkpath(path_dst) @debug("cache_path_src: ", cache_path_src,) @debug("path_dst: ", path_dst,) cp_files_and_directories( cache_path_src, path_dst; overwrite = false, ) return nothing end function path_to_cache!( ; from::AbstractVector{<:AbstractString}, to::AbstractVector{<:AbstractString}, cache = joinpath(homedir(), "predictmd_cache_travis"), )::Nothing path_src::String = joinpath(from...) cache_path_dst::String = joinpath(cache, to...) mkpath(path_src) mkpath(cache_path_dst) @debug("path_src: ", path_src,) @debug("cache_path_dst: ", cache_path_dst,) cp_files_and_directories( path_src, cache_path_dst; overwrite = true, ) return nothing end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9701
import Literate function preprocess_example_shared( content::AbstractString; output_directory::AbstractString, )::String content = replace(content, "## %PREDICTMD_GENERATED_BY%\n" => string("## This file was generated by PredictMD ", "version $(version())", "\n", "## For help, please visit ", "https://predictmd.net", "\n",)) return content end function get_if_include_test_statements_regex()::Regex test_statements_regex::Regex = r"# PREDICTMD IF INCLUDE TEST STATEMENTS\n([\S\s]*?)# PREDICTMD ELSE\n([\S\s]*?)# PREDICTMD ENDIF INCLUDE TEST STATEMENTS\n{0,5}" return test_statements_regex end function preprocess_example_do_not_include_test_statements( content::AbstractString; output_directory::AbstractString, )::String content::String = preprocess_example_shared( content; output_directory = output_directory, ) test_statements_regex::Regex = get_if_include_test_statements_regex() for m in eachmatch(test_statements_regex, content) original_text::String = String(m.match) replacement_text = string(strip(String(m[2])), "\n\n",) content = replace(content, original_text => replacement_text) end content = replace(content, r"logger_stream, " => "") return content end function preprocess_example_include_test_statements( content::AbstractString; output_directory::AbstractString, )::String content::String = preprocess_example_shared( content; output_directory = output_directory, ) test_statements_regex::Regex = get_if_include_test_statements_regex() for m in eachmatch(test_statements_regex, content) content = replace(content, String(m.match) => string(strip(String(m[1])), "\n\n",)) end return content end function fix_example_blocks(filename::AbstractString)::Nothing if filename_extension(filename) == ".md" content = read(filename, String) rm(filename; force = true, recursive = true,) content = replace(content, r"```@example \w*\n" => "```julia\n") write(filename, content) end return nothing end function generate_examples( output_directory::AbstractString; execute_notebooks = false, markdown = false, notebooks = false, scripts = false, include_test_statements::Bool = false, )::String _abspath_output_directory::String = abspath(output_directory) if Sys.iswindows() execute_notebooks = false end ENV["PREDICTMD_IS_MAKE_EXAMPLES"] = "true" if !markdown && !notebooks && !scripts error( string( "At least one of markdown, notebooks, scripts must be true.", ) ) end if ispath(output_directory) error( string( "The output directory already exists. ", "Delete the output directory and then ", "re-run generate_examples." ) ) end if include_test_statements preprocess_example = (x) -> preprocess_example_include_test_statements( x; output_directory = _abspath_output_directory, ) else preprocess_example = (x) -> preprocess_example_do_not_include_test_statements( x; output_directory = _abspath_output_directory, ) end @debug("Starting to generate examples...") temp_examples_dir = joinpath( maketempdir(), "generate_examples", "PredictMDTemp", "docs", "src", "examples", ) try mkpath(temp_examples_dir) catch end examples_input_parent_directory = PredictMD.package_directory("templates", "examples") cpu_examples_input_parent_directory = joinpath( examples_input_parent_directory, "cpu_examples", ) cpu_examples_output_parent_directory = joinpath( temp_examples_dir, "cpu_examples", ) try mkpath(cpu_examples_output_parent_directory) catch end boston_housing_input_directory = joinpath( cpu_examples_input_parent_directory, "boston_housing", ) boston_housing_output_directory = joinpath( cpu_examples_output_parent_directory, "boston_housing", ) boston_housing_input_src_directory = joinpath( boston_housing_input_directory, "src", ) boston_housing_output_src_directory = joinpath( boston_housing_output_directory, "src", ) try mkpath(boston_housing_output_directory) mkpath(boston_housing_output_src_directory) catch end for x in [".gitignore", "Project.toml", "README.md"] cp(joinpath(boston_housing_input_directory, x), joinpath(boston_housing_output_directory, x); force=true) end boston_housing_input_file_list = readdir(boston_housing_input_src_directory) boston_housing_input_file_list = boston_housing_input_file_list[ [endswith(x, ".jl") for x in boston_housing_input_file_list] ] sort!(boston_housing_input_file_list) for input_file in boston_housing_input_file_list input_file_full_path = joinpath( boston_housing_input_src_directory, input_file, ) if markdown Literate.markdown( input_file_full_path, boston_housing_output_src_directory; codefence = "```@example boston_housing" => "```", documenter = true, preprocess = preprocess_example, ) end if notebooks Literate.notebook( input_file_full_path, boston_housing_output_src_directory; documenter = true, execute = execute_notebooks, preprocess = preprocess_example, ) end if scripts Literate.script( input_file_full_path, boston_housing_output_src_directory; documenter = true, keep_comments = true, preprocess = preprocess_example, ) end end breast_cancer_biopsy_input_directory = joinpath( cpu_examples_input_parent_directory, "breast_cancer_biopsy", ) breast_cancer_biopsy_output_directory = joinpath( cpu_examples_output_parent_directory, "breast_cancer_biopsy", ) breast_cancer_biopsy_input_src_directory = joinpath( breast_cancer_biopsy_input_directory, "src", ) breast_cancer_biopsy_output_src_directory = joinpath( breast_cancer_biopsy_output_directory, "src", ) try mkpath(breast_cancer_biopsy_output_directory) mkpath(breast_cancer_biopsy_output_src_directory) catch end for x in [".gitignore", "Project.toml", "README.md"] cp(joinpath(breast_cancer_biopsy_input_directory, x), joinpath(breast_cancer_biopsy_output_directory, x); force=true) end breast_cancer_biopsy_input_file_list = readdir(breast_cancer_biopsy_input_src_directory) breast_cancer_biopsy_input_file_list = breast_cancer_biopsy_input_file_list[ [endswith(x, ".jl") for x in breast_cancer_biopsy_input_file_list] ] sort!(breast_cancer_biopsy_input_file_list) for input_file in breast_cancer_biopsy_input_file_list input_file_full_path = joinpath( breast_cancer_biopsy_input_src_directory, input_file, ) if markdown Literate.markdown( input_file_full_path, breast_cancer_biopsy_output_src_directory; codefence = "```@example breast_cancer_biopsy" => "```", documenter = true, preprocess = preprocess_example, ) end if notebooks Literate.notebook( input_file_full_path, breast_cancer_biopsy_output_src_directory; documenter = true, execute = execute_notebooks, preprocess = preprocess_example, ) end if scripts Literate.script( input_file_full_path, breast_cancer_biopsy_output_src_directory; documenter = true, keep_comments = true, preprocess = preprocess_example, ) end end for (root, dirs, files) in walkdir(temp_examples_dir) for f in files filename = joinpath(root, f) fix_example_blocks(filename) end end try mkpath(dirname(output_directory)) catch end cp( temp_examples_dir, output_directory; force = true, ) @debug( string( "Finished generating examples. ", "Files were written to: \"", output_directory, "\".", ) ) ENV["PREDICTMD_IS_MAKE_EXAMPLES"] = "false" return output_directory end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3624
import BSON # import CSV import CSVFiles import DataFrames import FileIO import JLD2 import ProgressMeter """ """ function save_model( filename::AbstractString, fittable_object_to_save::AbstractFittable, ) if filename_extension(filename) == ".jld2" save_result = save_model_jld2(filename,fittable_object_to_save) elseif filename_extension(filename) == ".bson" save_result = save_model_bson(filename,fittable_object_to_save) else error("extension must be one of: .jld2, .bson") end return filename end function save_model_jld2( filename::AbstractString, fittable_object_to_save::AbstractFittable, ) if filename_extension(filename) != ".jld2" error( string( "Filename \"", filename, "\" does not end in \".jld2\"") ) end dict_of_objects_to_save = Dict( "jld2_saved_model" => fittable_object_to_save, ) @debug("Attempting to save model...") # make sure the parent directory exists parent_directory = Base.Filesystem.dirname(filename) try Base.Filesystem.mkpath(parent_directory) catch end # save the .jld2 file FileIO.save(filename, dict_of_objects_to_save) @debug(string("Saved model to file \"", filename, "\"")) return filename end function save_model_bson( filename::AbstractString, fittable_object_to_save::AbstractFittable, ) if filename_extension(filename) != ".bson" error( string( "Filename \"", filename, "\" does not end in \".bson\"") ) end dict_of_objects_to_save = Dict( :bson_saved_model => fittable_object_to_save, ) @debug("Attempting to save model...") # make sure the parent directory exists parent_directory = Base.Filesystem.dirname(filename) try Base.Filesystem.mkpath(parent_directory) catch end # save the .bson file BSON.bson(filename, dict_of_objects_to_save) @debug(string("Saved model to file \"", filename, "\"")) return filename end """ """ function load_model(filename::AbstractString) if filename_extension(filename) == ".jld2" load_result = load_model_jld2(filename) return load_result elseif filename_extension(filename) == ".bson" load_result = load_model_bson(filename) return load_result else error("extension must be one of: .jld2, .bson") end end function load_model_jld2(filename::AbstractString) if filename_extension(filename) != ".jld2" error( string( "Filename \"", filename, "\" does not end in \".jld2\"") ) end @debug("Attempting to load model...") dict_of_loaded_objects = FileIO.load(filename) loaded_fittable_object = dict_of_loaded_objects["jld2_saved_model"] @debug(string("Loaded model from file \"", filename, "\"")) return loaded_fittable_object end function load_model_bson(filename::AbstractString) if filename_extension(filename) != ".bson" error( string( "Filename \"", filename, "\" does not end in \".bson\"") ) end @debug("Attempting to load model...") dict_of_loaded_objects = BSON.load(filename) loaded_fittable_object = dict_of_loaded_objects[:bson_saved_model] @debug(string("Loaded model from file \"", filename, "\"")) return loaded_fittable_object end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
10536
import DataFrames import GLM import StatsModels function GLMModel( formula::StatsModels.AbstractTerm, family::GLM.Distribution, link::GLM.Link; name::AbstractString = "", isclassificationmodel::Bool = false, isregressionmodel::Bool = false, ) underlyingglm = FitNotYetRunUnderlyingObject() result = GLMModel( name, isclassificationmodel, isregressionmodel, formula, family, link, underlyingglm, ) return result end """ """ function get_underlying(x::GLMModel; saving::Bool = false, loading::Bool = false) return x.underlyingglm end """ """ function fit!( estimator::GLMModel, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, ) labelsandfeatures_df = hcat(labels_df, features_df) @info(string("Starting to train GLM model.")) glm = try GLM.glm( estimator.formula, labelsandfeatures_df, estimator.family, estimator.link, ) catch e @warn( string( "while training GLM model, ignored error: ", e, ) ) FitFailedUnderlyingObject() end # glm = @info(string("Finished training GLM model.")) estimator.underlyingglm = glm return estimator end """ """ function predict( estimator::GLMModel, features_df::DataFrames.AbstractDataFrame, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, features_df, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc ) result = DataFrames.DataFrame() label_name = estimator.formula.lhs.sym result[label_name] = predictionsvector return result elseif !estimator.isclassificationmodel && estimator.isregressionmodel if isa(estimator.underlyingglm, AbstractNonExistentUnderlyingObject) glmpredictoutput = fill(Float64(0), size(features_df,1)) else glmpredictoutput = GLM.predict( estimator.underlyingglm, features_df, ) end result = DataFrames.DataFrame() label_name = estimator.formula.lhs.sym result[label_name] = glmpredictoutput return result else error( "Could not figure out if model is classification or regression" ) end end """ """ function predict( estimator::GLMModel, features_df::DataFrames.AbstractDataFrame, positive_class::Integer, threshold::AbstractFloat, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, features_df, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc, positive_class, threshold, ) result = DataFrames.DataFrame() label_name = estimator.formula.lhs.sym result[label_name] = predictionsvector return result else error( "Can only use the `threshold` argument with classification models" ) end end """ """ function predict_proba( estimator::GLMModel, features_df::DataFrames.AbstractDataFrame, ) if estimator.isclassificationmodel && !estimator.isregressionmodel if isa(estimator.underlyingglm, AbstractNonExistentUnderlyingObject) glmpredictoutput = fill(Float64(0), size(features_df, 1)) else glmpredictoutput = GLM.predict( estimator.underlyingglm, features_df, ) end result = Dict() result[1] = glmpredictoutput result[0] = 1 .- glmpredictoutput result = fix_type(result) return result elseif !estimator.isclassificationmodel && estimator.isregressionmodel error("predict_proba is not defined for regression models") else error( "Could not figure out if model is classification or regression" ) end end """ """ function singlelabelbinaryclassdataframelogisticclassifier_GLM( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; intercept::Bool = true, interactions::Integer = 1, name::AbstractString = "", ) negative_class = single_label_levels[1] positive_class = single_label_levels[2] formula = generate_formula( [single_label_name], feature_names; intercept = intercept, interactions = interactions, ) dftransformer = ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer( single_label_name, positive_class, ) glmestimator = GLMModel( formula, GLM.Binomial(), GLM.LogitLink(); isclassificationmodel = true, isregressionmodel = false, ) predictlabelfixer = ImmutablePredictionsSingleLabelInt2StringTransformer( 0, single_label_levels, ) predprobalabelfixer = ImmutablePredictProbaSingleLabelInt2StringTransformer( 0, single_label_levels, ) probapackager = ImmutablePackageSingleLabelPredictProbaTransformer( single_label_name, ) finalpipeline = dftransformer |> glmestimator |> predictlabelfixer |> predprobalabelfixer |> probapackager finalpipeline.name = name return finalpipeline end """ """ function singlelabelbinaryclassdataframelogisticclassifier( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; package::Symbol = :none, intercept::Bool = true, interactions::Integer = 1, name::AbstractString = "", ) if package == :GLM result = singlelabelbinaryclassdataframelogisticclassifier_GLM( feature_names, single_label_name, single_label_levels; intercept = intercept, interactions = interactions, name = name, ) return result else error("$(package) is not a valid value for package") end end """ """ # function singlelabelbinaryclassdataframeprobitclassifier_GLM( # feature_names::AbstractVector, # single_label_name::Symbol, # single_label_levels::AbstractVector; # intercept::Bool = true, # interactions::Integer = 1, # name::AbstractString = "", # ) # negative_class = single_label_levels[1] # positive_class = single_label_levels[2] # formula = generate_formula( # [single_label_name], # feature_names; # intercept = intercept, # interactions = interactions, # ) # dftransformer = # ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer( # single_label_name, # positive_class, # ) # glmestimator = GLMModel( # formula, # GLM.Binomial(), # GLM.ProbitLink(); # isclassificationmodel = true, # isregressionmodel = false, # ) # predictlabelfixer = # ImmutablePredictionsSingleLabelInt2StringTransformer( # 0, # single_label_levels, # ) # predprobalabelfixer = # ImmutablePredictProbaSingleLabelInt2StringTransformer( # 0, # single_label_levels, # ) # probapackager = ImmutablePackageSingleLabelPredictProbaTransformer( # single_label_name, # ) # finalpipeline = dftransformer |> # glmestimator |> # predictlabelfixer |> # predprobalabelfixer |> # probapackager # finalpipeline.name = name # return finalpipeline # end """ """ # function singlelabelbinaryclassdataframeprobitclassifier( # feature_names::AbstractVector, # single_label_name::Symbol, # single_label_levels::AbstractVector; # package::Symbol = :none, # intercept::Bool = true, # interactions::Integer = 1, # name::AbstractString = "", # ) # if package == :GLM # result = singlelabelbinaryclassdataframeprobitclassifier_GLM( # feature_names, # single_label_name, # single_label_levels; # intercept = intercept, # interactions = interactions, # name = name, # ) # return result # else # error("$(package) is not a valid value for package") # end # end """ """ function single_labeldataframelinearregression_GLM( feature_names::AbstractVector, single_label_name::Symbol; intercept::Bool = true, interactions::Integer = 1, name::AbstractString = "", ) formula = generate_formula( [single_label_name], feature_names; intercept = intercept, interactions = interactions, ) glmestimator = GLMModel( formula, GLM.Normal(), GLM.IdentityLink(); isclassificationmodel = false, isregressionmodel = true, ) finalpipeline = SimplePipeline( AbstractFittable[ glmestimator, ]; name = name, ) return finalpipeline end """ """ function single_labeldataframelinearregression( feature_names::AbstractVector, single_label_name::Symbol; package::Symbol = :none, intercept::Bool = true, interactions::Integer = 1, name::AbstractString = "", ) if package == :GLM result = single_labeldataframelinearregression_GLM( feature_names, single_label_name; intercept = intercept, interactions = interactions, name = name, ) return result else error("$(package) is not a valid value for package") end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1402
import Statistics """ simple_linear_regression(x::AbstractVector, y::AbstractVector) Simple linear regression - given a set of two-dimensional points (x, y), use the ordinary least squares method to find the best fit line of the form y = a + b*x (where a and b are real numbers) and return the tuple (a, b). """ function simple_linear_regression( x::AbstractVector, y::AbstractVector, )::Tuple if length(x) != length(y) error("length(x) != length(y)") end if length(x) == 0 error("length(x) == 0") end x_bar = Statistics.mean(x) y_bar = Statistics.mean(y) var_x = Statistics.var(x) cov_x_y = Statistics.cov(x,y) @assert(isfinite(x_bar)) @assert(isfinite(y_bar)) @assert(isfinite(var_x)) @assert(isfinite(cov_x_y)) coefficient = cov_x_y/var_x if isfinite(coefficient) intercept = y_bar - coefficient*x_bar @debug( string("Found best fit line: "), intercept, coefficient, ) else @warn( string( "The best fit line does not have a finite slope. ", "I will ignore this result and will instead return ", "intercept = 0 and coefficient = 0", ) ) intercept = 0 coefficient = 0 end return intercept, coefficient end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
581
import MLBase import NumericalIntegration import StatsBase """ """ function auprc( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) allprecisions, allrecalls, allthresholds = prcurve( ytrue, yscore, ) # permutation = sortperm(allthresholds; rev=true) allprecisions = allprecisions[permutation] allrecalls = allrecalls[permutation] allthresholds = allthresholds[permutation] # x = allrecalls y = allprecisions areaunderprcurve = trapz(x, y) return areaunderprcurve end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1456
import MLBase import ROCAnalysis import StatsBase function _aurocc_trapz( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) allfpr, alltpr, allthresholds = roccurve( ytrue, yscore, ) # permutation = sortperm(allthresholds; rev=true) allfpr = allfpr[permutation] alltpr = alltpr[permutation] allthresholds = allthresholds[permutation] # x = allfpr y = alltpr aurocc_trapz_result = trapz(x, y) return aurocc_trapz_result end function _aurocc_verify( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) targetlevel = 1 nontargetlevel = 0 targetscores = yscore[ytrue .== targetlevel] nontargetscores = yscore[ytrue .== nontargetlevel] r = ROCAnalysis.roc(targetscores, nontargetscores) complement_of_aurocc = ROCAnalysis.auc(r) aurocc_verify_result = 1 - complement_of_aurocc return aurocc_verify_result end """ """ function aurocc( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) aurocc_trapz_value = _aurocc_trapz( ytrue, yscore, ) aurocc_verify_value = _aurocc_verify( ytrue, yscore, ) if !( isapprox(aurocc_trapz_value, aurocc_verify_value; atol=0.00000001) ) error("Was not able to accurately compute the AUROCC.") end return aurocc_trapz_value end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1142
import MLBase import StatsBase """ """ function avg_precision( allprecisions::AbstractVector{<:Real}, allrecalls::AbstractVector{<:Real}, allthresholds::AbstractVector{<:Real}, ) if length(allprecisions) != length(allrecalls) error("length(allprecisions) != length(allrecalls)") end if length(allprecisions) < 2 error("length(allprecisions) < 2") end # permutation = sortperm(allthresholds; rev = true) allprecisions = allprecisions[permutation] allrecalls = allrecalls[permutation] # N = length(allprecisions) result = 0 for k = 2:N result += (allrecalls[k] - allrecalls[k-1]) * allprecisions[k] end return result end """ """ function averageprecisionscore( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) allprecisions, allrecalls, allthresholds = prcurve( ytrue, yscore, ) x = allrecalls y = allprecisions avgprecision = avg_precision( allprecisions, allrecalls, allthresholds, ) return avgprecision end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
587
""" binary_brier_score(ytrue, yscore) Computes the binary formulation of the Brier score, defined as: ```math \\frac{1}{N}\\sum\\limits _{t=1}^{N}(f_t-o_t)^2 \\,\\! ``` Lower values are better. Best value is 0. """ function binary_brier_score( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:AbstractFloat}, ) if length(ytrue) != length(yscore) error("length(ytrue) != length(yscore)") end if length(ytrue) == 0 error("length(ytrue) == 0") end result = mean_square_error(ytrue, yscore) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
720
import Statistics import StatsBase """ r2_score(ytrue, ypred) Computes coefficient of determination. Higher values are better. Best value is 1. """ function r2_score( ytrue::AbstractVector{<:Real}, ypred::AbstractVector{<:Real}, ) if length(ytrue) != length(ypred) error("length(ytrue) != length(ypred)") end if length(ytrue) == 0 error("length(ytrue) == 0") end # ybar = mean of the true y values ybar = Statistics.mean(ytrue) # SStot = total sum of squares SStot = sum( (ytrue .- ybar).^2 ) # SSres = sum of squares of residuals residuals = ytrue .- ypred SSres = sum( residuals.^2 ) R2 = 1 - SSres/SStot return R2 end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1922
import LinearAlgebra import MLBase """ """ is_square(m::AbstractMatrix) = size(m, 1) == size(m, 2) """ """ function cohen_kappa(contingency_table::AbstractMatrix) if !is_square(contingency_table) error("contingency_table must be a square matrix") end numclasses = size(contingency_table, 1) if numclasses < 2 error("number of classes must be >= 2") end totalnumcases = sum(contingency_table) # p_o = "relative observed agreement among raters (identical to accuracy)" p_o = sum(LinearAlgebra.diag(contingency_table))/totalnumcases # n_k1 = number of times rater 1 predicted class k # n_k2 = number of times rater 2 predicted class k # rater 1 = rows # rater 2 = columns n_k1 = [sum( contingency_table[k,:] ) for k = 1:numclasses] n_k2 = [sum( contingency_table[:,k] ) for k = 1:numclasses] # p_e = "hypothetical probability of chance agreement" p_e = sum(n_k1 .* n_k2)/(totalnumcases^2) kappa = (p_o - p_e)/(1 - p_e) return kappa end """ """ function compute_contingency_table(y1::AbstractVector, y2::AbstractVector) classes = sort(unique(vcat(y1, y2)); rev = false,) numclasses = length(classes) if numclasses < 2 error("number of classes must be >= 2") end return contingency_table end """ """ function cohen_kappa(y1::AbstractVector, y2::AbstractVector) contingency_table = compute_contingency_table(y1, y2) result = cohen_kappa(contingency_table) return result end """ """ function compute_contingency_table(rocnums::MLBase.ROCNums) # we will arbitrarily set rows = predicted, columns = true/gold contingency_table = [rocnums.tp rocnums.fp; rocnums.fn rocnums.tp] return contingency_table end """ """ function cohen_kappa(rocnums::MLBase.ROCNums) contingency_table = compute_contingency_table(rocnums) result = cohen_kappa(contingency_table) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
598
import StatsBase """ """ function get_binary_thresholds( yscore::AbstractVector{<:Real}; additionalthreshold::AbstractFloat = 0.5, ) if !all(0 .<= yscore .<= 1) error("not all scores are in [0,1]") end result = sort( unique( vcat( 0 - eps(), 0, 0 + eps(), 1 - eps(), 1, 1 + eps(), additionalthreshold, unique(yscore), ) ); rev = false, ) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
911
import Statistics """ mean_square_error(ytrue, ypred) """ function mean_square_error( ytrue::AbstractVector{<:Real}, ypred::AbstractVector{<:Real}, ) result = Statistics.mean(abs2, ytrue .- ypred) return result end """ root_mean_square_error(ytrue, ypred) """ root_mean_square_error(ytrue,ypred) = sqrt(mean_square_error(ytrue,ypred)) # convenience aliases for mean squared error: mean_squared_error(ytrue,ypred) = mean_square_error(ytrue,ypred) mean_square_deviation(ytrue,ypred) = mean_square_error(ytrue,ypred) mean_squared_deviation(ytrue,ypred) = mean_square_error(ytrue,ypred) # convenience aliases for root mean squared error: root_mean_squared_error(ytrue,ypred) = root_mean_square_error(ytrue,ypred) root_mean_square_deviation(ytrue,ypred) = root_mean_square_error(ytrue,ypred) root_mean_squared_deviation(ytrue,ypred) = root_mean_square_error(ytrue,ypred)
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
812
import MLBase import StatsBase """ """ function prcurve( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) allrocnums, allthresholds = getallrocnums( ytrue, yscore, ) result = prcurve( allrocnums, allthresholds, ) return result end """ """ function prcurve( allrocnums::AbstractVector{<:MLBase.ROCNums}, allthresholds::AbstractVector{<:Real}, ) allprecisions = [precision(x) for x in allrocnums] allrecalls = [recall(x) for x in allrocnums] permutation = sortperm(allthresholds; rev = false) allprecisions = allprecisions[permutation] allrecalls = allrecalls[permutation] allthresholds = allthresholds[permutation] return allprecisions, allrecalls, allthresholds end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3269
import DataFrames import Statistics """ """ function risk_score_cutoff_values( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; multiply_by::Real = 1.0, average_function = Statistics.mean, ) # ytrue = Int.( singlelabelbinaryytrue( labels_df[single_label_name], positive_class, ) ) # predictedprobabilitiesalllabels = predict_proba(estimator, features_df) yscore = Float64.( singlelabelbinaryyscore( predictedprobabilitiesalllabels[single_label_name], positive_class, ) ) # cutoffs, risk_group_prevalences = risk_score_cutoff_values( ytrue, yscore; multiply_by = multiply_by, average_function = average_function, ) return cutoffs, risk_group_prevalences end """ """ function risk_score_cutoff_values( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:AbstractFloat}; multiply_by::Real = 1.0, average_function = Statistics.mean, ) true_negative_rows = findall( ytrue .== 0 ) true_positive_rows = findall( ytrue .== 1 ) # average_score_true_negatives = average_function( yscore[true_negative_rows] ) average_score_true_positives = average_function( yscore[true_positive_rows] ) # lower_cutoff = multiply_by * average_score_true_negatives higher_cutoff = multiply_by * average_score_true_positives # cutoffs = (lower_cutoff, higher_cutoff,) # low_risk_group_rows = findall( yscore .<= average_score_true_negatives ) medium_risk_group_rows = findall( average_score_true_negatives .<= yscore .<= average_score_true_positives ) high_risk_group_rows = findall( average_score_true_positives .<= yscore ) # risk_group_prevalences = DataFrames.DataFrame() risk_group_prevalences[:Risk_group] = [ "Low risk", "Medium risk", "High risk", ] risk_group_prevalences[:User_supplied_average_function] = [ average_function( ytrue[low_risk_group_rows] ), average_function( ytrue[medium_risk_group_rows] ), average_function( ytrue[high_risk_group_rows] ), ] risk_group_prevalences[:Arithmetic_mean] = [ Statistics.mean( ytrue[low_risk_group_rows] ), Statistics.mean( ytrue[medium_risk_group_rows] ), Statistics.mean( ytrue[high_risk_group_rows] ), ] risk_group_prevalences[:Median] = [ Statistics.median( ytrue[low_risk_group_rows] ), Statistics.median( ytrue[medium_risk_group_rows] ), Statistics.median( ytrue[high_risk_group_rows] ), ] if average_function==Statistics.mean || average_function==Statistics.median DataFrames.deletecols!( risk_group_prevalences, [:User_supplied_average_function], ) end return cutoffs, risk_group_prevalences end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
811
import MLBase import StatsBase """ """ function roccurve( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}, ) allrocnums, allthresholds = getallrocnums( ytrue, yscore, ) result = roccurve( allrocnums, allthresholds, ) return result end """ """ function roccurve( allrocnums::AbstractVector{<:MLBase.ROCNums}, allthresholds::AbstractVector{<:Real}, ) allfpr = [false_positive_rate(x) for x in allrocnums] alltpr = [true_positive_rate(x) for x in allrocnums] # permutation = sortperm(allthresholds; rev = false) allfpr = allfpr[permutation] alltpr = alltpr[permutation] allthresholds = allthresholds[permutation] return allfpr, alltpr, allthresholds end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1892
import MLBase import StatsBase """ """ function getallrocnums( ytrue::AbstractVector{<:Integer}, yscore::AbstractVector{<:Real}; additionalthreshold::AbstractFloat = 0.5, ) allthresholds = get_binary_thresholds( yscore; additionalthreshold = additionalthreshold, ) allrocnums = MLBase.roc( ytrue, yscore, allthresholds, ) return allrocnums, allthresholds end """ """ accuracy(x::MLBase.ROCNums) = (x.tp + x.tn)/(x.p + x.n) """ """ true_positive_rate(x::MLBase.ROCNums) = (x.tp)/(x.p) """ """ true_negative_rate(x::MLBase.ROCNums) = (x.tn)/(x.n) """ """ false_positive_rate(x::MLBase.ROCNums) = (x.fp)/(x.n) """ """ false_negative_rate(x::MLBase.ROCNums) = (x.fn)/(x.p) """ """ function positive_predictive_value(x::MLBase.ROCNums) if (x.tp == 0) && (x.tp + x.fp == 0) result = 1 elseif (x.tp != 0) && (x.tp + x.fp == 0) error("x.tp != 0) && (x.tp + x.fp == 0)") else result = (x.tp) / (x.tp + x.fp) end return result end """ """ function negative_predictive_value(x::MLBase.ROCNums) if (x.tn == 0) && (x.tn + x.fn ==0) result = 1 elseif (x.tn != 0) && (x.tn + x.fn == 0) error("(x.tn != 0) && (x.tn + x.fn == 0)") else result = (x.tn) / (x.tn + x.fn) end return result end """ """ sensitivity(x::MLBase.ROCNums) = true_positive_rate(x) """ """ specificity(x::MLBase.ROCNums) = true_negative_rate(x) """ """ precision(x::MLBase.ROCNums) = positive_predictive_value(x) """ """ recall(x::MLBase.ROCNums) = true_positive_rate(x) """ """ function fbetascore( x::MLBase.ROCNums, beta::Real, ) p = precision(x) r = recall(x) result = ( 1 + beta^2 ) * ( p*r ) / ( ((beta^2) * p) + r ) return result end """ """ f1score(x::MLBase.ROCNums) = fbetascore(x, 1)
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9893
import DataFrames import MLBase import StatsBase """ """ function singlelabelbinaryytrue( labels::AbstractVector, positive_class::AbstractString; inttype::Type=Int, ) if !(inttype<:Integer) error("!(inttype<:Integer)") end result = inttype.(labels .== positive_class) return result end """ """ function singlelabelbinaryyscore( single_labelprobabilities::AbstractDict, positive_class::AbstractString; float_type::Type{<:AbstractFloat} = Float64, ) result = float_type.(single_labelprobabilities[positive_class]) return result end """ """ function singlelabelbinaryclassificationmetrics_tunableparam( kwargsassoc::AbstractDict, ) tunableparams = [ :threshold, :sensitivity, :specificity, :maximize, ] maximizableparams = [ :f1score, :cohen_kappa, ] kwargshastunableparam = [ haskey(kwargsassoc, x) for x in tunableparams ] if sum(kwargshastunableparam) != 1 msg = "you must specify one (and only one) of the following: " * join(tunableparams, ", ") error(msg) end if length(tunableparams[kwargshastunableparam]) != 1 error("oh boy you definitely should never see this error message") end selectedtunableparam = tunableparams[kwargshastunableparam][1] if selectedtunableparam == :maximize selectedparamtomax = kwargsassoc[:maximize] if !in(selectedparamtomax, maximizableparams) msg = "Cannot max $(selectedparamtomax). Select one " * "of the following: " * join(maximizableparams, ", ") error(msg) end else selectedparamtomax = :notapplicable end # metricdisplaynames = Dict() metricdisplaynames[:AUPRC] = string("AUPRC") metricdisplaynames[:AUROCC] = string("AUROCC") metricdisplaynames[:AveragePrecision] = string("Average precision") if selectedtunableparam == :threshold metricdisplaynames[:threshold] = string("[fix] * Threshold") else metricdisplaynames[:threshold] = string("* Threshold") end metricdisplaynames[:accuracy] = string("* Accuracy") if selectedtunableparam == :maximize && selectedparamtomax == :cohen_kappa metricdisplaynames[:cohen_kappa] = string("[max] * Cohen's Kappa statistic") else metricdisplaynames[:cohen_kappa] = string("* Cohen's Kappa statistic") end if selectedtunableparam == :maximize && selectedparamtomax == :f1score metricdisplaynames[:f1score] = string("[max] * F1 score") else metricdisplaynames[:f1score] = string("* F1 Score") end metricdisplaynames[:precision] = string("* Precision (positive predictive value)") metricdisplaynames[:negative_predictive_value] = string("* Negative predictive value") metricdisplaynames[:recall] = string("* Recall (sensitivity, true positive rate)") if selectedtunableparam == :sensitivity metricdisplaynames[:sensitivity] = string("[fix] * Sensitivity (recall, true positive rate)") else metricdisplaynames[:sensitivity] = string("* Sensitivity (recall, true positive rate)") end if selectedtunableparam == :specificity metricdisplaynames[:specificity] = string("[fix] * Specificity (true negative rate)") else metricdisplaynames[:specificity] = string("* Specificity (true negative rate)") end metricdisplaynames = fix_type(metricdisplaynames) return selectedtunableparam, selectedparamtomax, metricdisplaynames end """ """ function singlelabelbinaryclassificationmetrics_resultdict( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; kwargs... ) # kwargsdict = Dict(kwargs) kwargsdict = fix_type(kwargsdict) selectedtunableparam, selectedparamtomax, metricdisplaynames = singlelabelbinaryclassificationmetrics_tunableparam(kwargsdict) # predictedprobabilitiesalllabels = predict_proba(estimator, features_df) yscore = Float64.( singlelabelbinaryyscore( predictedprobabilitiesalllabels[single_label_name], positive_class, ) ) ytrue = Int.( singlelabelbinaryytrue( labels_df[single_label_name], positive_class, ) ) results = Dict() results[:ytrue] = ytrue results[:yscore] = yscore results[:AUROCC] = aurocc(ytrue, yscore) results[:AUPRC] = auprc(ytrue, yscore) results[:AveragePrecision] = averageprecisionscore(ytrue, yscore) if selectedtunableparam == :threshold additionalthreshold = kwargsdict[:threshold] else additionalthreshold = 0.5 end allrocnums, allthresholds = getallrocnums( ytrue, yscore; additionalthreshold = additionalthreshold, ) if selectedtunableparam == :threshold selectedthreshold = kwargsdict[:threshold] bestindex = argmin(abs.(allthresholds .- selectedthreshold)) elseif selectedtunableparam == :sensitivity selectedsensitivity = kwargsdict[:sensitivity] allsensitivity = [sensitivity(x) for x in allrocnums] bestindex = argmin(abs.(allsensitivity .- selectedsensitivity)) elseif selectedtunableparam == :specificity selectedspecificity = kwargsdict[:specificity] allspecificity = [specificity(x) for x in allrocnums] bestindex = argmin(abs.(allspecificity .- selectedspecificity)) elseif selectedtunableparam == :maximize selectedparamtomax = kwargsdict[:maximize] if selectedparamtomax == :f1score allf1score = [fbetascore(x, 1) for x in allrocnums] bestindex = argmin(allf1score) elseif selectedparamtomax == :cohen_kappa allcohen_kappa = [cohen_kappa(x) for x in allrocnums] bestindex = argmin(allcohen_kappa) else error("this is an error that should never happen") end else error("this is another error that should never happen") end results[:allrocnums] = allrocnums results[:allthresholds] = allthresholds results[:bestindex] = bestindex bestrocnums = allrocnums[bestindex] bestthreshold = allthresholds[bestindex] results[:threshold] = bestthreshold results[:accuracy] = accuracy(bestrocnums) results[:sensitivity] = sensitivity(bestrocnums) results[:specificity] = specificity(bestrocnums) results[:precision] = precision(bestrocnums) results[:negative_predictive_value] = negative_predictive_value(bestrocnums) results[:recall] = recall(bestrocnums) results[:f1score] = f1score(bestrocnums) results[:cohen_kappa] = cohen_kappa(bestrocnums) results = fix_type(results) return results end """ """ function singlelabelbinaryclassificationmetrics( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; kwargs... ) vectorofestimators = AbstractFittable[estimator] result = singlelabelbinaryclassificationmetrics( vectorofestimators, features_df, labels_df, single_label_name, positive_class; kwargs... ) return result end """ """ function singlelabelbinaryclassificationmetrics( vectorofestimators::AbstractVector{AbstractFittable}, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; kwargs... ) kwargsdict = Dict(kwargs) kwargsdict = fix_type(kwargsdict) selectedtunableparam, selectedparamtomax, metricdisplaynames = singlelabelbinaryclassificationmetrics_tunableparam(kwargsdict) metricsforeachestimator = [ singlelabelbinaryclassificationmetrics_resultdict( est, features_df, labels_df, single_label_name, positive_class; kwargs... ) for est in vectorofestimators ] result = DataFrames.DataFrame() result[:metric] = [ metricdisplaynames[:AUPRC], metricdisplaynames[:AUROCC], metricdisplaynames[:AveragePrecision], metricdisplaynames[:threshold], metricdisplaynames[:accuracy], metricdisplaynames[:cohen_kappa], metricdisplaynames[:f1score], metricdisplaynames[:precision], metricdisplaynames[:negative_predictive_value], metricdisplaynames[:recall], metricdisplaynames[:sensitivity], metricdisplaynames[:specificity], ] for i = 1:length(vectorofestimators) result[Symbol(vectorofestimators[i].name)] = [ metricsforeachestimator[i][:AUPRC], metricsforeachestimator[i][:AUROCC], metricsforeachestimator[i][:AveragePrecision], metricsforeachestimator[i][:threshold], metricsforeachestimator[i][:accuracy], metricsforeachestimator[i][:cohen_kappa], metricsforeachestimator[i][:f1score], metricsforeachestimator[i][:precision], metricsforeachestimator[i][:negative_predictive_value], metricsforeachestimator[i][:recall], metricsforeachestimator[i][:sensitivity], metricsforeachestimator[i][:specificity], ] end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2754
import DataFrames import MLBase import StatsBase """ """ function singlelabelregressionytrue( labels::AbstractVector; float_type::Type{<:AbstractFloat} = Float64, ) result = float_type.(labels) return result end """ """ function singlelabelregressionypred( labels::AbstractVector; float_type::Type{<:AbstractFloat} = Float64, ) result = float_type.(labels) return result end """ """ function singlelabelregressionmetrics_resultdict( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, ) ytrue = singlelabelregressionytrue( labels_df[single_label_name], ) predictionsalllabels = predict(estimator, features_df) ypred = singlelabelregressionypred( predictionsalllabels[single_label_name], ) results = Dict() results[:r2_score] = r2_score( ytrue, ypred, ) results[:mean_square_error] = mean_square_error( ytrue, ypred, ) results[:root_mean_square_error] = root_mean_square_error( ytrue, ypred, ) results = fix_type(results) return results end """ """ function singlelabelregressionmetrics( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, ) vectorofestimators = AbstractFittable[estimator] result = singlelabelregressionmetrics( vectorofestimators, features_df, labels_df, single_label_name, ) return result end """ """ function singlelabelregressionmetrics( vectorofestimators::AbstractVector{AbstractFittable}, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol; kwargs... ) metricsforeachestimator = [ singlelabelregressionmetrics_resultdict( est, features_df, labels_df, single_label_name, ) for est in vectorofestimators ] result = DataFrames.DataFrame() result[:metric] = [ "R^2 (coefficient of determination)", "Mean squared error (MSE)", "Root mean square error (RMSE)", ] for i = 1:length(vectorofestimators) result[Symbol(vectorofestimators[i].name)] = [ metricsforeachestimator[i][:r2_score], metricsforeachestimator[i][:mean_square_error], metricsforeachestimator[i][:root_mean_square_error], ] end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
8124
function get_number_in_each_fold(num_samples::Integer, num_folds::Integer)::Vector{Int} if num_samples < num_folds throw(ArgumentError("`num_samples` must be greater than or equal to `num_folds`")) end result::Vector{Int} = zeros(Int, num_folds) if num_samples % num_folds == 0 result .= Int(num_samples//num_folds) else min_number_per_fold = round(Int, floor(num_samples/num_folds)) remaining_number = num_samples - min_number_per_fold*num_folds result[1:remaining_number] .= min_number_per_fold + 1 result[(remaining_number+1):end] .= min_number_per_fold end @assert sum(result) == num_samples return result end function get_indices_in_each_fold(all_indices::AbstractVector{<:Integer}, num_folds::Integer)::Vector{Vector{Int}} all_indices_deepcopy = deepcopy(all_indices) unique!(all_indices_deepcopy) sort!(all_indices_deepcopy) num_samples = length(all_indices_deepcopy) number_in_each_fold = get_number_in_each_fold(num_samples, num_folds) result::Vector{Vector{Int}} = Vector{Vector{Int}}(undef, num_folds) lower::Int = 1 upper::Int = lower + number_in_each_fold[1] - 1 result[1] = all_indices_deepcopy[lower:upper] @assert length(result[1]) == length(unique(result[1])) @assert length(result[1]) == number_in_each_fold[1] for fold = 2:num_folds lower = upper + 1 upper = lower + number_in_each_fold[fold] - 1 result[fold] = all_indices_deepcopy[lower:upper] # @assert length(result[fold]) == length(unique(result[fold])) # @assert length(result[fold]) == number_in_each_fold[fold] end @assert all(sort(unique(all_indices_deepcopy)) .== sort(unique(vcat(result...)))) return result end function get_leavein_indices(all_indices::AbstractVector{<:Integer}, num_folds::Integer, fold_choice::Integer)::Vector{Int} indices_in_each_fold::Vector{Vector{Int}} = get_indices_in_each_fold(all_indices, num_folds) result::Vector{Int} = reduce(vcat, indices_in_each_fold[(1:num_folds).!=fold_choice]) return result end function get_leaveout_indices(all_indices::AbstractVector{<:Integer}, num_folds::Integer, fold_choice::Integer)::Vector{Int} indices_in_each_fold::Vector{Vector{Int}} = get_indices_in_each_fold(all_indices, num_folds) result::Vector{Int} = indices_in_each_fold[fold_choice] return result end function vector_to_ranges(vector::T1)::Vector{UnitRange{Int}} where T1 <: AbstractVector{T2} where T2 <: Integer result::Vector{UnitRange{Int}} = Vector{UnitRange{Int}}(undef, 0) vector_deepcopy = deepcopy(vector) unique!(vector_deepcopy) sort!(vector_deepcopy) if !isempty(vector_deepcopy) lower::Int = vector_deepcopy[1] upper::Int = vector_deepcopy[1] for x in vector_deepcopy if (x) > (upper + 1) push!(result, lower:upper) lower = x upper = x else upper = x end end push!(result, lower:upper) end unique!(result) sort!(result) return result end function ranges_to_vector(ranges::T1)::Vector{Int} where T1 <: AbstractVector{T2} where T2 <: AbstractRange{T3} where T3 <: Integer ranges_deepcopy = deepcopy(ranges) unique!(ranges_deepcopy) sort!(ranges_deepcopy) result = Vector{Int}(undef, 0) for r in ranges_deepcopy append!(result, collect(r)) end unique!(result) sort!(result) return result end function Base.:(==)(x::CrossValidation{T}, y::CrossValidation{T})::Bool where T result::Bool = (x.leaveout == y.leaveout) && (x.leavein == y.leavein) return result end function CrossValidation{T}( ; num_folds_per_level, all_indices, )::CrossValidation{T} where T all_indices_deepcopy = deepcopy(all_indices) unique!(all_indices_deepcopy) sort!(all_indices_deepcopy) if length(num_folds_per_level) < 1 leaveout = Vector{Vector{T}}(undef, 1) leaveout[1] = all_indices_deepcopy leavein = Vector{CrossValidation{T}}(undef, 0) else num_folds_this_level = num_folds_per_level[1] remaining_num_folds_per_level = num_folds_per_level[2:end] leaveout = Vector{Vector{T}}(undef, num_folds_this_level) leavein = Vector{CrossValidation{T}}(undef, num_folds_this_level) for fold_choice = 1:num_folds_this_level leaveout[fold_choice] = get_leaveout_indices(all_indices, num_folds_this_level, fold_choice) leavein[fold_choice] = CrossValidation{T}( ; num_folds_per_level = remaining_num_folds_per_level, all_indices = get_leavein_indices(all_indices, num_folds_this_level, fold_choice) ) end end result::CrossValidation{T} = CrossValidation{T}(leavein, leaveout) return result end function CrossValidation{T}( cv::CrossValidation{R}, )::CrossValidation{T} where T where R <: AbstractUnitRange{S} where S <: Integer if isleaf(cv) leaveout = Vector{Vector{T}}(undef, 1) leaveout[1] = ranges_to_vector(get_leavein_indices(cv)) leavein = Vector{CrossValidation{T}}(undef, 0) else num_folds = get_top_level_num_folds(cv) leaveout = Vector{Vector{T}}(undef, num_folds) leavein = Vector{CrossValidation{T}}(undef, num_folds) for fold_choice = 1:num_folds leaveout[fold_choice] = ranges_to_vector(get_leaveout_indices(cv, fold_choice)) leavein[fold_choice] = CrossValidation{T}(get_leavein_cv(cv, fold_choice)) end end result::CrossValidation{T} = CrossValidation{T}(leavein, leaveout) return result end function CrossValidation{T}( cv::CrossValidation{<:Integer}, )::CrossValidation{T} where T if isleaf(cv) leaveout = Vector{Vector{T}}(undef, 1) leaveout[1] = vector_to_ranges(get_leavein_indices(cv)) leavein = Vector{CrossValidation{T}}(undef, 0) else num_folds = get_top_level_num_folds(cv) leaveout = Vector{Vector{T}}(undef, num_folds) leavein = Vector{CrossValidation{T}}(undef, num_folds) for fold_choice = 1:num_folds leaveout[fold_choice] = vector_to_ranges(get_leaveout_indices(cv, fold_choice)) leavein[fold_choice] = CrossValidation{T}(get_leavein_cv(cv, fold_choice)) end end result::CrossValidation{T} = CrossValidation{T}(leavein, leaveout) return result end function isleaf(cv::CrossValidation{T})::Bool where T result::Bool = length(cv.leavein) < 1 return result end function get_leavein_cv(cv::CrossValidation{T}, fold_choice)::CrossValidation{T} where T if isleaf(cv) throw(ArgumentError("`cv` is a leaf, so `get_leavein_cv(cv, fold_choice)` is not defined")) end result::CrossValidation{T} = cv.leavein[fold_choice] return result end function get_leavein_indices(cv::CrossValidation{T})::Vector{T} where T if !isleaf(cv) throw(ArgumentError("`cv` is not a leaf, so `get_leavein_indices(cv)` is not defined")) end result::Vector{T} = cv.leaveout[1] return result end function get_leaveout_indices(cv::CrossValidation{T}, fold_choice)::Vector{T} where T if isleaf(cv) throw(ArgumentError("`cv` is a leaf, so `get_leaveout_indices(cv, fold_choice)` is not defined")) end result::Vector{T} = cv.leaveout[fold_choice] return result end function get_all_indices(cv::CrossValidation{T})::Vector{T} where T result::Vector{T} = sort( unique( reduce(vcat, cv.leaveout) ) ) return result end function get_top_level_num_folds(cv::CrossValidation{T})::Int where T if isleaf(cv) result = 0 else if length(cv.leaveout) != length(cv.leavein) throw(DimensionMismatch("length(cv.leaveout) != length(cv.leavein)")) end result = length(cv.leaveout) end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1534
import DataFrames import Random import StatsBase """ """ function split_data( features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, split::Real, ) result = split_data( Random.GLOBAL_RNG, features_df, labels_df, split, ) return result end """ """ function split_data( rng::Random.AbstractRNG, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, split::Real, ) # if !(0 < split < 1) error("split must be >0 and <1") end if size(features_df, 1) != size(labels_df, 1) error("features_df and labels_df do not have the same number of rows") end # num_rows = size(features_df, 1) num_partition_1 = round(Int, split * num_rows) num_partition_2 = num_rows - num_partition_1 # allrows = convert(Array, 1:num_rows) partition_1_rows = StatsBase.sample( rng, allrows, num_partition_1; replace = false, ) partition_2_rows = setdiff(allrows, partition_1_rows) # partition_1_features_df = features_df[partition_1_rows, :] partition_2_features_df = features_df[partition_2_rows, :] # partition_1_labels_df = labels_df[partition_1_rows, :] partition_2_labels_df = labels_df[partition_2_rows, :] # return partition_1_features_df, partition_1_labels_df, partition_2_features_df, partition_2_labels_df end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
107
# import Flux # import GPUArrays # import NNlib import ProgressMeter import ValueHistories # import Zygote
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
19173
# import GPUArrays import Knet import ProgressMeter import ValueHistories function KnetModel( ; name::AbstractString = "", predict_function_source::AbstractString = "", loss_function_source::AbstractString = "", predict_function::Function = identity, loss_function::Function = identity, losshyperparameters::AbstractDict = Dict(), optimizationalgorithm::Symbol = :nothing, optimizerhyperparameters::AbstractDict = Dict(), minibatchsize::Integer = 0, modelweights::AbstractArray = [], isclassificationmodel::Bool = false, isregressionmodel::Bool = false, maxepochs::Integer = 0, printlosseverynepochs::Integer = 0, ) optimizersymbol2type=Dict() optimizersymbol2type[:Sgd] = Knet.Sgd optimizersymbol2type[:Momentum] = Knet.Momentum optimizersymbol2type[:Nesterov] = Knet.Nesterov optimizersymbol2type[:Rmsprop] = Knet.Rmsprop optimizersymbol2type[:Adagrad] = Knet.Adagrad optimizersymbol2type[:Adadelta] = Knet.Adadelta optimizersymbol2type[:Adam] = Knet.Adam optimizersymbol2type=fix_type(optimizersymbol2type) modelweightoptimizers = Knet.optimizers( modelweights, optimizersymbol2type[optimizationalgorithm]; optimizerhyperparameters... ) # lastepoch = 0 # lastiteration = 0 history = ValueHistories.MVHistory() ValueHistories.push!( history, :epoch_at_iteration, 0, 0, ) losshyperparameters = fix_type(losshyperparameters) optimizerhyperparameters = fix_type(optimizerhyperparameters) result = KnetModel( name, isclassificationmodel, isregressionmodel, predict_function_source, loss_function_source, predict_function, loss_function, losshyperparameters, optimizationalgorithm, optimizerhyperparameters, minibatchsize, maxepochs, printlosseverynepochs, modelweights, modelweightoptimizers, history, ) return result end """ """ function set_max_epochs!( x::KnetModel, new_max_epochs::Integer, ) x.maxepochs = new_max_epochs return nothing end """ """ function get_underlying( x::KnetModel; saving::Bool = false, loading::Bool = false, ) result = (x.modelweights, x.modelweightoptimizers,) return result end """ """ function get_history( x::KnetModel; saving::Bool = false, loading::Bool = false, ) result = x.history return result end function parse_functions!(estimator::KnetModel) estimator.predict_function = eval( Meta.parse( strip( estimator.predict_function_source ) ) ) estimator.loss_function = eval( Meta.parse( strip( estimator.loss_function_source ) ) ) return nothing end """ """ function fit!( estimator::KnetModel, training_features_array::AbstractArray, training_labels_array::AbstractArray, tuning_features_array::Union{Nothing, AbstractArray} = nothing, tuning_labels_array::Union{Nothing, AbstractArray} = nothing, ) has_tuning_data::Bool = !is_nothing(tuning_labels_array) && !is_nothing(tuning_features_array) training_features_array = Float64.(training_features_array) if estimator.isclassificationmodel && !estimator.isregressionmodel training_labels_array = Int.(training_labels_array) elseif !estimator.isclassificationmodel && estimator.isregressionmodel training_labels_array = Float64.(training_labels_array) else error( "Could not figure out if model is classification or regression" ) end training_data = Knet.minibatch( training_features_array, training_labels_array, estimator.minibatchsize, ) loss_function_gradient = Knet.grad( estimator.loss_function, 2, ) all_iterations_so_far, all_epochs_so_far = ValueHistories.get( estimator.history, :epoch_at_iteration, ) last_iteration = all_iterations_so_far[end] last_epoch = all_epochs_so_far[end] @info( string( "Starting to train Knet model. Max epochs: ", estimator.maxepochs, ".", ) ) training_lossbeforetrainingstarts = estimator.loss_function( estimator.predict_function, estimator.modelweights, training_features_array, training_labels_array; estimator.losshyperparameters... ) if has_tuning_data tuning_lossbeforetrainingstarts = estimator.loss_function( estimator.predict_function, estimator.modelweights, tuning_features_array, tuning_labels_array; estimator.losshyperparameters... ) end if (estimator.printlosseverynepochs) > 0 if has_tuning_data @info( string( "Epoch: ", last_epoch, ". Loss (training set): ", training_lossbeforetrainingstarts, ". Loss (tuning set): ", tuning_lossbeforetrainingstarts, ".", ) ) else @info( string( "Epoch: ", lastepoch, ". Loss: ", lossbeforetrainingstarts, "." ) ) end end while last_epoch < estimator.maxepochs for (x_training, y_training) in training_data grads = loss_function_gradient( estimator.predict_function, estimator.modelweights, x_training, y_training; estimator.losshyperparameters... ) Knet.update!( estimator.modelweights, grads, estimator.modelweightoptimizers, ) last_iteration += 1 training_currentiterationloss = estimator.loss_function( estimator.predict_function, estimator.modelweights, x_training, y_training; estimator.losshyperparameters... ) ValueHistories.push!( estimator.history, :training_loss_at_iteration, last_iteration, training_currentiterationloss, ) end # end for last_epoch += 1 ValueHistories.push!( estimator.history, :epoch_at_iteration, last_iteration, last_epoch, ) training_currentepochloss = estimator.loss_function( estimator.predict_function, estimator.modelweights, training_features_array, training_labels_array; estimator.losshyperparameters... ) ValueHistories.push!( estimator.history, :training_loss_at_epoch, last_epoch, training_currentepochloss, ) if has_tuning_data tuning_currentepochloss = estimator.loss_function( estimator.predict_function, estimator.modelweights, tuning_features_array, tuning_labels_array; estimator.losshyperparameters... ) ValueHistories.push!( estimator.history, :tuning_loss_at_epoch, last_epoch, tuning_currentepochloss, ) end printlossthisepoch = (estimator.printlosseverynepochs > 0) && ( (last_epoch == estimator.maxepochs) || ( (last_epoch % estimator.printlosseverynepochs) == 0 ) ) if printlossthisepoch if has_tuning_data @info( string( "Epoch: ", last_epoch, ". Loss (training set): ", training_currentepochloss, ". Loss (tuning set): ", tuning_currentepochloss, ".", ), ) else @info( string( "Epoch: ", last_epoch, ". Loss: ", training_currentepochloss, ".", ), ) end end end # end while @info(string("Finished training Knet model.")) return estimator end """ """ function predict( estimator::KnetModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc ) return predictionsvector elseif estimator.isregressionmodel output = estimator.predict_function( estimator.modelweights, featuresarray; ) outputtransposed = transpose(output) result = convert(Array, outputtransposed) return result else error("unable to predict") end end """ """ function predict( estimator::KnetModel, featuresarray::AbstractArray, positive_class::Integer, threshold::AbstractFloat, ) if estimator.isclassificationmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc, positive_class, threshold, ) return predictionsvector else error("can only use the `threshold` argument with classification models") end end """ """ function predict_proba( estimator::KnetModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel output = estimator.predict_function( estimator.modelweights, featuresarray; probabilities = true, ) outputtransposed = transpose(output) numclasses = size(outputtransposed, 2) result = Dict() for i = 1:numclasses result[i] = outputtransposed[:, i] end return result elseif estimator.isregressionmodel error("predict_proba is not defined for regression models") else error("unable to predict") end end """ """ function single_labelmulticlassdataframeknetclassifier_Knet( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; name::AbstractString = "", predict_function_source::AbstractString = "", loss_function_source::AbstractString = "", losshyperparameters::AbstractDict = Dict(), optimizationalgorithm::Symbol = :nothing, optimizerhyperparameters::AbstractDict = Dict(), minibatchsize::Integer = 0, modelweights::AbstractArray = [], maxepochs::Integer = 0, printlosseverynepochs::Integer = 0, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) label_names = [single_label_name] label_levels = Dict() label_levels[single_label_name] = single_label_levels label_levels = fix_type(label_levels) dftransformer_index = 1 dftransformer_transposefeatures = true dftransformer_transposelabels = true dftransformer = MutableDataFrame2ClassificationKnetTransformer( feature_names, label_names, label_levels, dftransformer_index; transposefeatures = dftransformer_transposefeatures, transposelabels = dftransformer_transposelabels, ) knetestimator = KnetModel( ; name = name, predict_function_source = predict_function_source, loss_function_source = loss_function_source, losshyperparameters = losshyperparameters, optimizationalgorithm = optimizationalgorithm, optimizerhyperparameters = optimizerhyperparameters, minibatchsize = minibatchsize, modelweights = modelweights, isclassificationmodel = true, isregressionmodel = false, maxepochs = maxepochs, printlosseverynepochs = printlosseverynepochs, ) predprobalabelfixer = ImmutablePredictProbaSingleLabelInt2StringTransformer( 1, single_label_levels ) predictlabelfixer = ImmutablePredictionsSingleLabelInt2StringTransformer( 1, single_label_levels ) probapackager = ImmutablePackageSingleLabelPredictProbaTransformer( single_label_name, ) predpackager = ImmutablePackageSingleLabelPredictionTransformer( single_label_name, ) finalpipeline = dftransformer |> knetestimator |> predprobalabelfixer |> predictlabelfixer |> probapackager |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labelmulticlassdataframeknetclassifier( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; package::Symbol = :none, name::AbstractString = "", predict_function_source::AbstractString = "", loss_function_source::AbstractString = "", losshyperparameters::AbstractDict = Dict(), optimizationalgorithm::Symbol = :nothing, optimizerhyperparameters::AbstractDict = Dict(), minibatchsize::Integer = 0, modelweights::AbstractArray = [], maxepochs::Integer = 0, printlosseverynepochs::Integer = 0, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :Knet result = single_labelmulticlassdataframeknetclassifier_Knet( feature_names, single_label_name, single_label_levels; name = name, predict_function_source = predict_function_source, loss_function_source = loss_function_source, losshyperparameters = losshyperparameters, optimizationalgorithm = optimizationalgorithm, optimizerhyperparameters = optimizerhyperparameters, minibatchsize = minibatchsize, modelweights = modelweights, maxepochs = maxepochs, printlosseverynepochs = printlosseverynepochs, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end """ """ function single_labeldataframeknetregression_Knet( feature_names::AbstractVector, single_label_name::Symbol; name::AbstractString = "", predict_function_source::AbstractString = "", loss_function_source::AbstractString = "", losshyperparameters::AbstractDict = Dict(), optimizationalgorithm::Symbol = :nothing, optimizerhyperparameters::AbstractDict = Dict(), minibatchsize::Integer = 0, modelweights::AbstractArray = [], maxepochs::Integer = 0, printlosseverynepochs::Integer = 0, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) label_names = [single_label_name] dftransformer_index = 1 dftransformer_transposefeatures = true dftransformer_transposelabels = true dftransformer = MutableDataFrame2RegressionKnetTransformer( feature_names, label_names; transposefeatures = true, transposelabels = true, ) knetestimator = KnetModel( ; name = name, predict_function_source = predict_function_source, loss_function_source = loss_function_source, losshyperparameters = losshyperparameters, optimizationalgorithm = optimizationalgorithm, optimizerhyperparameters = optimizerhyperparameters, minibatchsize = minibatchsize, modelweights = modelweights, isclassificationmodel = false, isregressionmodel = true, maxepochs = maxepochs, printlosseverynepochs = printlosseverynepochs, ) predpackager = ImmutablePackageMultiLabelPredictionTransformer( [single_label_name,], ) finalpipeline = dftransformer |> knetestimator |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labeldataframeknetregression( feature_names::AbstractVector, single_label_name::Symbol; package::Symbol = :none, name::AbstractString = "", predict_function_source::AbstractString = "", loss_function_source::AbstractString = "", losshyperparameters::AbstractDict = Dict(), optimizationalgorithm::Symbol = :nothing, optimizerhyperparameters::AbstractDict = Dict(), minibatchsize::Integer = 0, modelweights::AbstractArray = [], maxepochs::Integer = 0, printlosseverynepochs::Integer = 0, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :Knet result = single_labeldataframeknetregression_Knet( feature_names, single_label_name; name = name, predict_function_source = predict_function_source, loss_function_source = loss_function_source, losshyperparameters = losshyperparameters, optimizationalgorithm = optimizationalgorithm, optimizerhyperparameters = optimizerhyperparameters, minibatchsize = minibatchsize, modelweights = modelweights, maxepochs = maxepochs, printlosseverynepochs = printlosseverynepochs, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3496
const _ICD_ICD9_CCS_APPENDIXASINGLEDX_FILE_HAS_BEEN_PARSED = Ref(false) const _ICD9_CODE_TO_SINGLE_LEVEL_DX_CCS = Ref(Dict{String, Int}()) const _SINGLE_LEVEL_DX_CCS_NUMBER_TO_NAME = Ref(Dict{Int, String}()) const _SINGLE_LEVEL_DX_CCS_TO_LIST_OF_ICD9_CODES = Ref(Dict{Int, Vector{String}}()) function remove_all_full_stops(x::AbstractString)::String result = replace(x, "." => "") return result end function parse_icd_icd9_ccs_appendixasingledx_file!()::Nothing global _ICD_ICD9_CCS_APPENDIXASINGLEDX_FILE_HAS_BEEN_PARSED global _ICD9_CODE_TO_SINGLE_LEVEL_DX_CCS global _SINGLE_LEVEL_DX_CCS_NUMBER_TO_NAME global _SINGLE_LEVEL_DX_CCS_TO_LIST_OF_ICD9_CODES if _ICD_ICD9_CCS_APPENDIXASINGLEDX_FILE_HAS_BEEN_PARSED[] else filename = package_directory( "assets", "icd", "icd9", "ccs", "AppendixASingleDX.txt" ) file_sections = strip.(split(strip(read(filename, String)), "\n\n")) for section in file_sections if isempty(section) elseif startswith(section, "Appendix") elseif startswith(section, "Revised") else ccs_number::Int = parse( Int, strip.( split(strip(section)) )[1], ) ccs_name::String = strip( join( strip.( split( strip( split(strip(section), "\n")[1] ) )[2:end] ), " " ) ) _SINGLE_LEVEL_DX_CCS_NUMBER_TO_NAME[][ccs_number] = ccs_name icd9_code_list::Vector{String} = strip.( remove_all_full_stops.( split( strip( split(strip(section), "\n")[2] ) ) ) ) _SINGLE_LEVEL_DX_CCS_TO_LIST_OF_ICD9_CODES[][ ccs_number ] = icd9_code_list for icd9_code in icd9_code_list _ICD9_CODE_TO_SINGLE_LEVEL_DX_CCS[][icd9_code] = ccs_number end end end _ICD_ICD9_CCS_APPENDIXASINGLEDX_FILE_HAS_BEEN_PARSED[] = true end return nothing end function single_level_dx_ccs_number_to_name( ccs_number::Int, )::String parse_icd_icd9_ccs_appendixasingledx_file!() global _SINGLE_LEVEL_DX_CCS_NUMBER_TO_NAME result = _SINGLE_LEVEL_DX_CCS_NUMBER_TO_NAME[][ccs_number] return result end function single_level_dx_ccs_to_list_of_icd9_codes( ccs_number::Int, )::Vector{String} parse_icd_icd9_ccs_appendixasingledx_file!() global _SINGLE_LEVEL_DX_CCS_TO_LIST_OF_ICD9_CODES result = _SINGLE_LEVEL_DX_CCS_TO_LIST_OF_ICD9_CODES[][ccs_number] return result end """ """ function icd9_code_to_single_level_dx_ccs( icd9_code::AbstractString, )::Int parse_icd_icd9_ccs_appendixasingledx_file!() global _ICD9_CODE_TO_SINGLE_LEVEL_DX_CCS result = _ICD9_CODE_TO_SINGLE_LEVEL_DX_CCS[][ remove_all_full_stops(string(icd9_code)) ] return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
7479
import MacroTools """ """ function SimplePipeline( objectsvector::T; name::S = "", ) where S <: AbstractString where T <: AbstractVector{F} where F <: AbstractFittable result = SimplePipeline{S,T}(name, objectsvector) return result end SimplePipeline(x::T) where T = SimplePipeline(T[x]) SimplePipeline(p::SimplePipeline) = p Base.IteratorEltype(itertype::Type{SimplePipeline{S, T}}) where S where T = Base.IteratorEltype(T) Base.IteratorSize(itertype::Type{SimplePipeline{S, T}}) where S where T = Base.IteratorSize(T) Base.IndexStyle(itertype::Type{SimplePipeline{S, T}}) where S where T = Base.IndexStyle(T) MacroTools.@forward SimplePipeline.objectsvector Base.axes MacroTools.@forward SimplePipeline.objectsvector Base.eachindex MacroTools.@forward SimplePipeline.objectsvector Base.eltype MacroTools.@forward SimplePipeline.objectsvector Base.empty! MacroTools.@forward SimplePipeline.objectsvector Base.findall MacroTools.@forward SimplePipeline.objectsvector Base.findfirst MacroTools.@forward SimplePipeline.objectsvector Base.findlast MacroTools.@forward SimplePipeline.objectsvector Base.findnext MacroTools.@forward SimplePipeline.objectsvector Base.findprev MacroTools.@forward SimplePipeline.objectsvector Base.firstindex MacroTools.@forward SimplePipeline.objectsvector Base.getindex MacroTools.@forward SimplePipeline.objectsvector Base.isassigned MacroTools.@forward SimplePipeline.objectsvector Base.isempty MacroTools.@forward SimplePipeline.objectsvector Base.iterate MacroTools.@forward SimplePipeline.objectsvector Base.lastindex MacroTools.@forward SimplePipeline.objectsvector Base.length MacroTools.@forward SimplePipeline.objectsvector Base.ndims MacroTools.@forward SimplePipeline.objectsvector Base.setindex! MacroTools.@forward SimplePipeline.objectsvector Base.size MacroTools.@forward SimplePipeline.objectsvector Base.vec MacroTools.@forward SimplePipeline.objectsvector Base.view Base.:|>(x::AbstractFittable, y::AbstractFittable) = SimplePipeline(x) |> SimplePipeline(y) # alternatively, we could replace `Union{F1, F2}` with `typejoin(F1, F2)` function Base.:|>(p1::SimplePipeline{S1, T1}, p2::SimplePipeline{S2, T2}) where S1 where T1 <:AbstractVector{F1} where F1 where S2 where T2 <:AbstractVector{F2} where F2 length_1 = length(p1) length_2 = length(p2) new_objectsvector = Vector{Union{F1, F2}}(undef, length_1 + length_2) for i = 1:length_1 new_objectsvector[i] = p1[i] end for i = 1:length_2 new_objectsvector[length_1 + i] = p2[i] end result = SimplePipeline(new_objectsvector; name = string(p1.name, p2.name)) return result end """ """ function ispipeline end ispipeline(::Any) = false ispipeline(::AbstractPipeline) = true """ """ function isflat end isflat(x::SimplePipeline) = !any(ispipeline.(x.objectsvector)) """ """ function flatten(::Type{SimplePipeline}, p::SimplePipeline) result = _flatten(SimplePipeline, p) return result end flatten(p::SimplePipeline) = flatten(SimplePipeline, p::SimplePipeline) # alternatively, we could replace `Union{typeof.(temp_objects)...}` with # `typejoin(typeof.(temp_objects)...)` function _flatten(::Type{SimplePipeline}, p::SimplePipeline) temp_names = Vector{Any}(undef, 0) temp_objects = Vector{Any}(undef, 0) for i = 1:length(p) object = p[i] push!(temp_names, _flatten_name(SimplePipeline, object)) append!(temp_objects, _flatten_objects(SimplePipeline, object)) end new_F = Union{typeof.(temp_objects)...} new_objects::Vector{new_F} = Vector{new_F}(undef,length(temp_objects)) for j = 1:length(temp_objects) new_objects[j] = temp_objects[j] end new_name::String = string(p.name, join(temp_names, "")) new_pipeline = SimplePipeline(new_objects; name = new_name) return new_pipeline end _flatten_name(::Type{SimplePipeline}, x) = "" _flatten_name(::Type{SimplePipeline}, p::SimplePipeline) = _flatten(SimplePipeline, p).name _flatten_objects(::Type{SimplePipeline}, x) = [x] _flatten_objects(::Type{SimplePipeline}, p::SimplePipeline) = _flatten(SimplePipeline, p).objectsvector """ """ function set_max_epochs!( p::SimplePipeline, new_max_epochs::Integer, ) for i = 1:length(p) set_max_epochs!( p[i], new_max_epochs, ) end return nothing end """ """ function set_feature_contrasts!( p::SimplePipeline, feature_contrasts::AbstractFeatureContrasts, ) for i = 1:length(p) set_feature_contrasts!(p[i], feature_contrasts) end return nothing end """ """ function get_underlying( p::SimplePipeline; saving::Bool = false, loading::Bool = false, ) underlying = [ get_underlying( o; saving=saving, loading=loading, ) for o in p.objectsvector ] if saving || loading else delete_nothings!(underlying) if length(underlying) == 0 underlying = nothing elseif length(underlying) == 1 underlying = underlying[1] end end return underlying end """ """ function get_history( p::SimplePipeline; saving::Bool = false, loading::Bool = false, ) history = [ get_history( o; saving = saving, loading = loading, ) for o in p.objectsvector ] if saving || loading else delete_nothings!(history) if length(history) == 0 history = nothing elseif length(history) == 1 history = history[1] end end return history end """ """ function parse_functions!(simplelinearpipeline::SimplePipeline) for i = 1:length(simplelinearpipeline) parse_functions!(simplelinearpipeline[i]) end return nothing end """ """ function fit!( simplelinearpipeline::SimplePipeline, varargs...; kwargs... ) output = fit!( simplelinearpipeline[1], varargs...; kwargs... ) for i = 2:length(simplelinearpipeline) input = tuplify(output) output = fit!( simplelinearpipeline[i], input...; kwargs... ) end return output end """ """ function predict( simplelinearpipeline::SimplePipeline, varargs...; kwargs... ) output = predict( simplelinearpipeline[1], varargs...; kwargs... ) for i = 2:length(simplelinearpipeline) input = tuplify(output) output = predict( simplelinearpipeline[i], input...; kwargs... ) end return output end """ """ function predict_proba( simplelinearpipeline::SimplePipeline, varargs...; kwargs... ) output = predict_proba( simplelinearpipeline[1], varargs... ) for i = 2:length(simplelinearpipeline) input = tuplify(output) output = predict_proba( simplelinearpipeline[i], input...; kwargs... ) end return output end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
539
function is_force_test_plots(a::AbstractDict = ENV) result = lowercase(strip(get(a, "PREDICTMD_TEST_PLOTS", ""))) == "true" return result end function handle_plotting_error(e::Union{Exception, Any}, a::AbstractDict = ENV)::Nothing if is_force_test_plots(a) @warn( string( "PREDICTMD_TEST_PLOTS is true ,", "so rethrowing the error.", ) ) rethrow(e) else @warn(string("ignoring error:", e)) return nothing end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
27
import DefaultApplication
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1391
import PGFPlotsX function get_underlying(p::PGFPlotsXPlot) result = p.underlying_object return result end function Base.display(p::PGFPlotsXPlot)::Nothing if is_runtests() && !open_plots_during_tests() @debug( string( "PREDICTMD_OPEN_PLOTS_DURING_TESTS is false, therefore ", "the plot will not be opened.", ) ) else @debug(string("Attempting to display plot...")) try Base.display(get_underlying(p)) @debug(string("Displayed plot.")) catch e handle_plotting_error(e) end end return nothing end function PGFPlotsX.save( filename::String, p::PGFPlotsXPlot; kwargs..., )::Nothing underlying_object = get_underlying(p) try @debug(string("Attempting to save plot...")) mkpath(dirname(filename)) PGFPlotsX.save( filename, underlying_object; kwargs..., ) @debug(string("Saved plot to file: \"", filename, "\"",)) catch e handle_plotting_error(e) end return nothing end function save_plot( filename::String, p::PGFPlotsXPlot; kwargs..., )::Nothing PGFPlotsX.save( filename, p; kwargs..., ) return nothing end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9736
import LaTeXStrings import PGFPlotsX import StatsBase import ValueHistories """ """ function plotlearningcurve( inputobject::AbstractFittable, curvetype::Symbol = :loss_vs_iteration; kwargs..., ) history::ValueHistories.MultivalueHistory = get_history(inputobject) result = plotlearningcurve( history, curvetype; kwargs..., ) return result end """ """ function plotlearningcurve( history::ValueHistories.MultivalueHistory, curvetype::Symbol = :loss_vs_iteration; window::Integer = 0, legend_pos::AbstractString = "outer north east", sampleevery::Integer = 1, startat::Union{Integer, Symbol} = :start, endat::Union{Integer, Symbol} = :end, include_tuning::Bool = true, show_raw::Bool = true, show_smoothed::Bool = true, ) legend_pos::String = convert(String, legend_pos) if curvetype==:loss_vs_iteration has_tuning = include_tuning && haskey(history, :tuning_loss_at_iteration) xlabel = "Iteration" ylabel = "Loss" legendentry = "Loss function" training_xvalues, training_yvalues = ValueHistories.get( history, :training_loss_at_iteration, ) if has_tuning tuning_xvalues, tuning_yvalues = ValueHistories.get( history, :tuning_loss_at_iteration, ) end elseif curvetype==:loss_vs_epoch has_tuning = include_tuning && haskey(history, :tuning_loss_at_epoch) xlabel = "Epoch" ylabel = "Loss" legendentry = "Loss function" training_xvalues, training_yvalues = ValueHistories.get( history, :training_loss_at_epoch, ) if has_tuning tuning_xvalues, tuning_yvalues = ValueHistories.get( history, :tuning_loss_at_epoch, ) end else error("\"curvetype\" must be one of: :loss_vs_iteration, :loss_vs_epoch") end if length(training_xvalues) != length(training_yvalues) error("length(training_xvalues) != length(training_yvalues)") end if has_tuning if length(training_xvalues) != length(tuning_yvalues) error("length(training_xvalues) != length(tuning_yvalues)") end if length(training_xvalues) != length(tuning_xvalues) error("length(training_xvalues) != length(tuning_xvalues)") end if !all(training_xvalues .== tuning_xvalues) error("!all(training_xvalues .== tuning_xvalues)") end end if startat == :start startat = 1 elseif typeof(startat) <: Symbol error("$(startat) is not a valid value for startat") end if endat == :end endat = length(training_xvalues) elseif typeof(endat) <: Symbol error("$(endat) is not a valid value for endat") end if startat > endat error("startat > endat") end training_xvalues = training_xvalues[startat:endat] training_yvalues = training_yvalues[startat:endat] if has_tuning tuning_xvalues = tuning_xvalues[startat:endat] tuning_yvalues = tuning_yvalues[startat:endat] end if length(training_xvalues) != length(training_yvalues) error("length(training_xvalues) != length(training_yvalues)") end if has_tuning if length(tuning_xvalues) != length(tuning_yvalues) error("length(tuning_xvalues) != length(tuning_yvalues)") end if length(training_xvalues) != length(tuning_xvalues) error("length(training_xvalues) != length(tuning_xvalues)") end if !all(training_xvalues .== tuning_xvalues) error("!all(training_xvalues .== tuning_xvalues)") end result = plotlearningcurve( training_xvalues, training_yvalues, xlabel, ylabel, legendentry; window = window, legend_pos = legend_pos, sampleevery = sampleevery, tuning_yvalues = tuning_yvalues, show_raw = show_raw, show_smoothed = show_smoothed, ) else result = plotlearningcurve( training_xvalues, training_yvalues, xlabel, ylabel, legendentry; window = window, legend_pos = legend_pos, sampleevery = sampleevery, show_raw = show_raw, show_smoothed = show_smoothed, ) end return result end """ """ function plotlearningcurve( xvalues::AbstractVector{<:Real}, training_yvalues::AbstractVector{<:Real}, xlabel::AbstractString, ylabel::AbstractString, legendentry::AbstractString; window::Integer = 0, legend_pos::AbstractString = "outer north east", sampleevery::Integer = 1, tuning_yvalues::Union{Nothing, AbstractVector{<:Real}} = nothing, show_raw::Bool = true, show_smoothed::Bool = true, ) legend_pos::String = convert(String, legend_pos) if !show_raw && !show_smoothed error("At least one of show_raw, show_smoothed must be true.") end if is_nothing(tuning_yvalues) has_tuning = false else has_tuning = true end if has_tuning training_legendentry = string(strip(legendentry), ", training set") tuning_legendentry = string(strip(legendentry), ", tuning set") else training_legendentry = string(strip(legendentry), ", training set") end if sampleevery < 1 error("sampleevery must be >=1") end if length(xvalues) != length(training_yvalues) error("length(xvalues) != length(training_yvalues)") end if length(xvalues) == 0 error("length(xvalues) == 0") end xvalues = xvalues[1:sampleevery:end] training_yvalues = training_yvalues[1:sampleevery:end] if has_tuning tuning_yvalues = tuning_yvalues[1:sampleevery:end] end all_plots_and_legends = [] if show_raw training_linearplotobject_yraw = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( xvalues, training_yvalues, ) ) ) training_legendentry_yraw = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(training_legendentry) ) ) push!(all_plots_and_legends, training_linearplotobject_yraw) push!(all_plots_and_legends, training_legendentry_yraw) if has_tuning tuning_linearplotobject_yraw = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( xvalues, tuning_yvalues, ) ) ) tuning_legendentry_yraw = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(tuning_legendentry) ) ) push!(all_plots_and_legends, tuning_linearplotobject_yraw) push!(all_plots_and_legends, tuning_legendentry_yraw) end end if show_smoothed && window > 0 training_yvaluessmoothed = simple_moving_average( training_yvalues, window, ) training_legendentry_smoothed = string( strip(training_legendentry), " (smoothed)", ) training_linearplotobject_ysmoothed = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( xvalues, training_yvaluessmoothed, ) ) ) training_legendentry_ysmoothed = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(training_legendentry_smoothed) ) ) push!(all_plots_and_legends, training_linearplotobject_ysmoothed) push!(all_plots_and_legends, training_legendentry_ysmoothed) if has_tuning tuning_yvaluessmoothed = simple_moving_average( tuning_yvalues, window, ) tuning_legendentry_smoothed = string( strip(tuning_legendentry), " (smoothed)", ) tuning_linearplotobject_ysmoothed = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( xvalues, tuning_yvaluessmoothed, ) ) ) tuning_legendentry_ysmoothed = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(tuning_legendentry_smoothed) ) ) push!(all_plots_and_legends, tuning_linearplotobject_ysmoothed) push!(all_plots_and_legends, tuning_legendentry_ysmoothed) end end p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { xlabel = LaTeXStrings.LaTeXString(xlabel), ylabel = LaTeXStrings.LaTeXString(ylabel), no_markers, legend_pos = legend_pos, }, all_plots_and_legends..., ), ) wrapper = PGFPlotsXPlot(p) return wrapper end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2475
import LaTeXStrings import PGFPlotsX """ """ function plotprcurve( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; kwargs..., ) vectorofestimators = [estimator] result = plotprcurve( vectorofestimators, features_df, labels_df, single_label_name, positive_class; kwargs..., ) return result end """ """ function plotprcurve( vectorofestimators::AbstractVector{AbstractFittable}, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; legend_pos::AbstractString = "outer north east", )::PGFPlotsXPlot legend_pos::String = convert(String, legend_pos) if length(vectorofestimators) == 0 error("length(vectorofestimators) == 0") end all_plots_and_legends = [] for i = 1:length(vectorofestimators) estimator_i = vectorofestimators[i] metrics_i = singlelabelbinaryclassificationmetrics_resultdict( estimator_i, features_df, labels_df, single_label_name, positive_class; threshold = 0.5, ) ytrue_i = metrics_i[:ytrue] yscore_i = metrics_i[:yscore] allprecisions, allrecalls, allthresholds = prcurve( ytrue_i, yscore_i, ) plot_i = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( allrecalls, allprecisions, ), ), ) legend_i = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(estimator_i.name) ), ) push!(all_plots_and_legends, plot_i) push!(all_plots_and_legends, legend_i) end all_plots_and_legends = [all_plots_and_legends...] p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { xlabel = "Recall", ylabel = "Precision", no_markers, legend_pos = legend_pos, }, all_plots_and_legends..., ), ) wrapper = PGFPlotsXPlot(p) return wrapper end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2474
import LaTeXStrings import PGFPlotsX """ """ function plotroccurve( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; kwargs..., ) vectorofestimators = [estimator] result = plotroccurve( vectorofestimators, features_df, labels_df, single_label_name, positive_class; kwargs..., ) return result end """ """ function plotroccurve( vectorofestimators::AbstractVector{AbstractFittable}, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; legend_pos::AbstractString = "outer north east", ) legend_pos::String = convert(String, legend_pos) if length(vectorofestimators) == 0 error("length(vectorofestimators) == 0") end all_plots_and_legends = [] for i = 1:length(vectorofestimators) estimator_i = vectorofestimators[i] metrics_i = singlelabelbinaryclassificationmetrics_resultdict( estimator_i, features_df, labels_df, single_label_name, positive_class; threshold = 0.5, ) ytrue_i = metrics_i[:ytrue] yscore_i = metrics_i[:yscore] allfpr_i, alltpr_i, allthresholds_i = roccurve( ytrue_i, yscore_i, ) plot_i = PGFPlotsX.@pgf( PGFPlotsX.Plot( PGFPlotsX.Coordinates( allfpr_i, alltpr_i, ), ), ) legend_i = PGFPlotsX.@pgf( PGFPlotsX.LegendEntry( LaTeXStrings.LaTeXString(estimator_i.name) ), ) push!(all_plots_and_legends, plot_i) push!(all_plots_and_legends, legend_i) end all_plots_and_legends = [all_plots_and_legends...] p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { xlabel = "False positive rate", ylabel = "True positive rate", no_markers, legend_pos = legend_pos, }, all_plots_and_legends..., ), ) wrapper = PGFPlotsXPlot(p) return wrapper end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
6269
import LaTeXStrings import PGFPlotsX import StatsBase function num_histogram_bins( v::AbstractVector; closed::Symbol = :left, )::Integer h = StatsBase.fit( StatsBase.Histogram, v; closed = closed, ) result = length(h.weights) return result end function normalized_histogram_weights( v::AbstractVector, edges::AbstractRange; closed::Symbol = :left, ) h = StatsBase.fit( StatsBase.Histogram, v, edges; closed = closed, ) unnormalized_weights = h.weights normalized_weights = unnormalized_weights/sum(unnormalized_weights) return normalized_weights end """ """ function plotsinglelabelbinaryclassifierhistogram( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, single_label_levels::AbstractVector{<:AbstractString}; num_bins::Integer = 0, closed::Symbol = :left, legend_pos::AbstractString = "outer north east", # style = "blue,opacity = 0.5,fill=blue,fill opacity=0.5", negative_style::AbstractString = "blue, opacity=1.0, fill=blue, fill opacity = 0.5", positive_style::AbstractString = "red, opacity=1.0, fill=red, fill opacity = 0.5", # style = "red,opacity = 0.5,fill=red,fill opacity=0.5", )::PGFPlotsXPlot if length(single_label_levels) != length(unique(single_label_levels)) error("there are duplicate values in single_label_levels") end if length(single_label_levels) != 2 error("length(single_label_levels) != 2") end negative_class = single_label_levels[1] positive_class = single_label_levels[2] predictedprobabilitiesalllabels = predict_proba(estimator, features_df) yscore = Float64.( singlelabelbinaryyscore( predictedprobabilitiesalllabels[single_label_name], positive_class, ) ) ytrue = Int.( singlelabelbinaryytrue( labels_df[single_label_name], positive_class, ) ) if num_bins < 1 num_bins_negative_class = num_histogram_bins(yscore[ytrue .== 0]) num_bins_positive_class = num_histogram_bins(yscore[ytrue .== 1]) num_bins = max(num_bins_negative_class, num_bins_positive_class) end bin_width = 1/num_bins edges_range = 0:bin_width:1 negative_class_histogram = normalized_histogram_weights( yscore[ytrue .== 0], edges_range; closed = closed, ) positive_class_histogram = normalized_histogram_weights( yscore[ytrue .== 1], edges_range; closed = closed, ) x_values = collect(edges_range) negative_class_y_values = vcat(negative_class_histogram..., 0) positive_class_y_values = vcat(positive_class_histogram..., 0) p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { ymin = 0.0, ymax = 1.0, no_markers, legend_pos = legend_pos, xlabel = LaTeXStrings.LaTeXString( "Classifier score" ), ylabel = LaTeXStrings.LaTeXString( "Frequency" ), }, PGFPlotsX.PlotInc( { "ybar interval", style = negative_style, }, PGFPlotsX.Coordinates( x_values, negative_class_y_values, ), ), PGFPlotsX.PlotInc( { "ybar interval", style = positive_style, }, PGFPlotsX.Coordinates( x_values, positive_class_y_values, ), ), ), ) # # "ybar interval", # # "ybar", # # bar_shift = "0pt", # # "xticklabel interval boundaries", # # xmajorgrids = false, # # xtick = [0.0, 0.25, 0.5, 0.75, 1.0,], # # xtick = [0.0, 0.5, 1.0,], # # xticklabel = raw"$[\pgfmathprintnumber\tick,\pgfmathprintnumber\nexttick)$", # # "xticklabel style" = {font = raw"\tiny", }, # }, # axisobject = PGFPlots.Axis( # [ # histogramobjectnegative_class, # PGFPlots.Plots.Command("\\addlegendentry{$(negative_class)}"), # histogramobjectpositive_class, # PGFPlots.Plots.Command("\\addlegendentry{$(positive_class)}"), # ], # style = "reverse legend", # ) wrapper = PGFPlotsXPlot(p) return wrapper end # Examples from https://kristofferc.github.io/PGFPlotsX.jl/latest/examples/juliatypes.html # one_dimensional_example = PGFPlotsX.@pgf( # PGFPlotsX.Axis( # { # "ybar interval", # "xticklabel interval boundaries", # xmajorgrids = false, # xticklabel = raw"$[\pgfmathprintnumber\tick,\pgfmathprintnumber\nexttick)$", # "xticklabel style" = {font = raw"\tiny", }, # }, # PGFPlotsX.Plot( # PGFPlotsX.Table( # StatsBase.fit( # StatsBase.Histogram, # range(0; stop = 1, length = 100).^3; # closed = :left, # ), # ), # ), # ), # ) # w = range(-1; stop = 1, length = 100) .^ 3 # xy = vec(tuple.(w, w')) # h = StatsBase.fit( # StatsBase.Histogram, # (first.(xy), last.(xy)); # closed = :left, # ) # two_dimensional_example = PGFPlotsX.@pgf( # PGFPlotsX.Axis( # { # view = (0, 90), # colorbar, # "colormap/jet", # }, # PGFPlotsX.Plot3( # { # surf, # shader = "flat", # }, # PGFPlotsX.Table(h) # ), # ), # )
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2805
import LaTeXStrings import PGFPlotsX """ """ function plotsinglelabelregressiontrueversuspredicted( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol; includeorigin::Bool = false, legend_pos::AbstractString = "outer north east", )::PGFPlotsXPlot ytrue = singlelabelregressionytrue( labels_df[single_label_name], ) predictionsalllabels = predict(estimator, features_df) ypred = singlelabelregressionypred( predictionsalllabels[single_label_name], ) truevalueversuspredictedvalue_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { only_marks, style = "black, fill = black", }, PGFPlotsX.Coordinates( ypred, ytrue, ), ) ) if includeorigin perfectlinevalues = sort( unique( vcat( 0, ytrue, ), ); rev = false, ) else perfectlinevalues = sort( unique( ytrue, ); rev = false, ) end perfectline_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { no_marks, style = "dotted, red, color=red, fill=red", }, PGFPlotsX.Coordinates( perfectlinevalues, perfectlinevalues, ), ), ) estimated_intercept, estimated_x_coefficient = simple_linear_regression( Float64.(ypred), # X Float64.(ytrue), # Y ) bestfitline_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { no_marks, style = "dashed, blue, color=blue, fill=blue", }, PGFPlotsX.Coordinates( perfectlinevalues, estimated_intercept .+ estimated_x_coefficient*perfectlinevalues, ), ), ) p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { xlabel = LaTeXStrings.LaTeXString( "Predicted value" ), ylabel = LaTeXStrings.LaTeXString( "True value" ), legend_pos = legend_pos, }, truevalueversuspredictedvalue_linearplotobject, perfectline_linearplotobject, bestfitline_linearplotobject, ), ) wrapper = PGFPlotsXPlot(p) return wrapper end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
8023
import LaTeXStrings import PGFPlotsX import Statistics """ """ function probability_calibration_scores_and_fractions( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; window::Real = 0.1, ) ytrue = Int.( singlelabelbinaryytrue( labels_df[single_label_name], positive_class, ) ) predictedprobabilitiesalllabels = predict_proba(estimator, features_df) yscore = Float64.( singlelabelbinaryyscore( predictedprobabilitiesalllabels[single_label_name], positive_class, ) ) scores, fractions = probability_calibration_scores_and_fractions( ytrue, yscore; window = window, ) return scores, fractions end """ """ function probability_calibration_scores_and_fractions( ytrue::AbstractVector{<: Integer}, yscore::AbstractVector{F}; window::Real = 0.1, )::Tuple{Vector{F}, Vector{F}} where F <: AbstractFloat scores = sort( unique( vcat( yscore, zero(eltype(yscore)), one(eltype(yscore)), ) ) ) fractions = fill(F(0), size(scores)) num_rows = fill(Int(0), length(scores)) for k = 1:length(scores) rows_that_have_approximately_the_kth_score = findall( ( scores[k] - window ) .<= ( yscore ) .<= ( scores[k] + window ) ) num_rows[k] = length(rows_that_have_approximately_the_kth_score) if length(rows_that_have_approximately_the_kth_score) == 0 fractions[k] = NaN else fractions[k] = Statistics.mean( ytrue[rows_that_have_approximately_the_kth_score] ) end end nonzero_indices = findall(num_rows .!= 0) scores_nonzero_indices::Vector{F} = scores[nonzero_indices] fractions_nonzero_indices::Vector{F} = fractions[nonzero_indices] return scores_nonzero_indices, fractions_nonzero_indices end """ """ function plot_probability_calibration_curve( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; window::Real = 0.1, multiply_by::Real = 1.0, legend_pos::AbstractString = "outer north east", ) scores, fractions = probability_calibration_scores_and_fractions( estimator, features_df, labels_df, single_label_name, positive_class; window = window, ) result = plot_probability_calibration_curve( scores, fractions; multiply_by = multiply_by, legend_pos = legend_pos, ) return result end """ """ function plot_probability_calibration_curve( scores::AbstractVector{F}, fractions::AbstractVector{F}; multiply_by::Real = 1.0, legend_pos::AbstractString = "outer north east", )::PGFPlotsXPlot where F <: AbstractFloat legend_pos::String = convert(String, legend_pos) scores = convert(Vector{F}, scores * multiply_by) fractions = convert(Vector{F}, fractions * multiply_by) score_versus_fraction_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { only_marks, style = "black, fill = black", }, PGFPlotsX.Coordinates( scores, fractions, ) ) ) zero_coordinate = convert(F, zero(F)) one_coordinate = convert(F, one(F) * multiply_by) perfectline_xs = [ zero_coordinate, one_coordinate, ] perfectline_ys = [ zero_coordinate, one_coordinate, ] perfectline_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { no_marks, style = "dotted, red, color=red, fill=red", }, PGFPlotsX.Coordinates( perfectline_xs, perfectline_ys, ), ) ) estimated_intercept, estimated_x_coefficient = simple_linear_regression( scores, # X fractions, # Y ) bestfitline_xs = [ zero_coordinate, one_coordinate, ] bestfitline_ys = [ estimated_intercept, estimated_intercept + estimated_x_coefficient * one_coordinate, ] bestfitline_linearplotobject = PGFPlotsX.@pgf( PGFPlotsX.Plot( { no_marks, style = "dashed, blue, color=blue, fill=blue", }, PGFPlotsX.Coordinates( bestfitline_xs, bestfitline_ys, ), ) ) p = PGFPlotsX.@pgf( PGFPlotsX.Axis( { xlabel = LaTeXStrings.LaTeXString( "Probability of positive class" ), ylabel = LaTeXStrings.LaTeXString( "Fraction of positive class" ), legend_pos = legend_pos, }, score_versus_fraction_linearplotobject, perfectline_linearplotobject, bestfitline_linearplotobject, ), ) wrapper = PGFPlotsXPlot(p) return wrapper end """ """ function probability_calibration_metrics( estimator::AbstractFittable, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString; window::Real = 0.1, ) vectorofestimators = AbstractFittable[estimator] result = probability_calibration_metrics( vectorofestimators, features_df, labels_df, single_label_name, positive_class, ) return result end """ """ function probability_calibration_metrics( vectorofestimators::AbstractVector{AbstractFittable}, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame, single_label_name::Symbol, positive_class::AbstractString, window::Real = 0.1, ) result = DataFrames.DataFrame() result[:metric] = [ "R^2 (coefficient of determination)", "Brier score (binary formulation)", "Best fit line: estimated intercept", "Best fit line: estimated coefficient", ] for i = 1:length(vectorofestimators) ytrue = Int.( singlelabelbinaryytrue( labels_df[single_label_name], positive_class, ) ) predictedprobabilitiesalllabels = predict_proba( vectorofestimators[i], features_df, ) yscore = Float64.( singlelabelbinaryyscore( predictedprobabilitiesalllabels[single_label_name], positive_class, ) ) binary_brier_score_value = binary_brier_score(ytrue, yscore) scores, fractions = probability_calibration_scores_and_fractions( ytrue, yscore; window = window, ) r2_score_value = r2_score(scores, fractions) estimated_intercept, estimated_x_coefficient = simple_linear_regression( Float64.(scores), # X Float64.(fractions), # Y ) result[Symbol(vectorofestimators[i].name)] = [ r2_score_value, binary_brier_score_value, estimated_intercept, estimated_x_coefficient, ] end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
850
""" """ function fit!( transformer::ImmutablePackageMultiLabelPredictionTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict( transformer::ImmutablePackageMultiLabelPredictionTransformer, single_labelpredictions::AbstractMatrix, varargs... ) result = DataFrames.DataFrame() for i = 1:length(transformer.label_names) result[transformer.label_names[i]] = single_labelpredictions[:, i] end return result end """ """ function predict_proba( transformer::ImmutablePackageMultiLabelPredictionTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
820
""" """ function fit!( transformer::ImmutablePackageSingleLabelPredictionTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict( transformer::ImmutablePackageSingleLabelPredictionTransformer, single_labelpredictions::AbstractVector, varargs... ) result = DataFrames.DataFrame() label_name = transformer.single_label_name result[label_name] = single_labelpredictions return result end """ """ function predict_proba( transformer::ImmutablePackageSingleLabelPredictionTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
813
""" """ function fit!( transformer::ImmutablePackageSingleLabelPredictProbaTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict( transformer::ImmutablePackageSingleLabelPredictProbaTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict_proba( transformer::ImmutablePackageSingleLabelPredictProbaTransformer, single_labelprobabilities::AbstractDict; kwargs... ) result = Dict() result[transformer.single_label_name] = single_labelprobabilities result = fix_type(result) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1646
import DataFrames """ """ function fit!( transformer::ImmutablePredictionsSingleLabelInt2StringTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict( transformer::ImmutablePredictionsSingleLabelInt2StringTransformer, single_labelpredictions::AbstractVector, varargs...; kwargs... ) single_labelpredictions = parse.(Int, single_labelpredictions) labelint2stringmap = getlabelint2stringmap( transformer.levels, transformer.index, ) result = Vector{String}( undef, length(single_labelpredictions), ) for i = 1:length(result) result[i] = labelint2stringmap[single_labelpredictions[i]] end return result end """ """ function predict( transformer::ImmutablePredictionsSingleLabelInt2StringTransformer, single_labelpredictions::DataFrames.AbstractDataFrame, varargs...; kwargs... ) label_names = DataFrames.names(single_labelpredictions) result = DataFrames.DataFrame() for i = 1:length(label_names) result[label_names[i]] = predict( transformer, single_labelpredictions[label_names[i]]; kwargs... ) end return result end """ """ function predict_proba( transformer::ImmutablePredictionsSingleLabelInt2StringTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
993
""" """ function fit!( transformer::ImmutablePredictProbaSingleLabelInt2StringTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict( transformer::ImmutablePredictProbaSingleLabelInt2StringTransformer, varargs...; kwargs... ) if length(varargs) == 1 return varargs[1] else return varargs end end """ """ function predict_proba( transformer::ImmutablePredictProbaSingleLabelInt2StringTransformer, single_labelprobabilities::AbstractDict; kwargs... ) labelint2stringmap = getlabelint2stringmap( transformer.levels, transformer.index, ) result = Dict() for key in keys(single_labelprobabilities) result[labelint2stringmap[key]] = single_labelprobabilities[key] end result = fix_type(result) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2045
import DataFrames """ """ function DataFrameFeatureContrasts( df::DataFrames.AbstractDataFrame, columns::AbstractVector{Symbol}, ) columns_deepcopy = deepcopy(columns) if length(columns_deepcopy) != length(unique(columns_deepcopy)) error("length(columns_deepcopy) != length(unique(columns_deepcopy))") end num_df_columns_deepcopy = length(columns_deepcopy) formula_wo_intercept = generate_formula( columns_deepcopy[1], columns_deepcopy; intercept = false, ) formula_with_intercept = generate_formula( columns_deepcopy[1], columns_deepcopy; intercept = true, ) schema_wo_intercept = StatsModels.schema(formula_wo_intercept, df) schema_with_intercept = StatsModels.schema(formula_with_intercept, df) formula_wo_intercept = StatsModels.apply_schema(formula_wo_intercept, schema_wo_intercept) formula_with_intercept = StatsModels.apply_schema(formula_with_intercept, schema_with_intercept) response_wo_intercept, predictors_wo_intercept = StatsModels.modelcols(formula_wo_intercept, df) response_with_intercept, predictors_with_intercept = StatsModels.modelcols(formula_with_intercept, df) num_array_columns_wo_intercept = size(predictors_wo_intercept, 2) num_array_columns_with_intercept = size(predictors_with_intercept, 2) result = DataFrameFeatureContrasts( columns_deepcopy, num_df_columns_deepcopy, schema_wo_intercept, formula_wo_intercept, num_array_columns_wo_intercept, schema_with_intercept, formula_with_intercept, num_array_columns_with_intercept, ) return result end """ """ function generate_feature_contrasts( df::DataFrames.AbstractDataFrame, columns::AbstractVector{Symbol}, ) result = DataFrameFeatureContrasts(df, columns) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2906
import DataFrames import StatsModels function MutableDataFrame2DecisionTreeTransformer( feature_names::AbstractVector, single_label_name::Symbol; levels::AbstractVector = [], ) dffeaturecontrasts = FeatureContrastsNotYetGenerated() result = MutableDataFrame2DecisionTreeTransformer( feature_names, single_label_name, levels, dffeaturecontrasts, ) return result end """ """ function set_feature_contrasts!( x::MutableDataFrame2DecisionTreeTransformer, feature_contrasts::AbstractFeatureContrasts, ) x.dffeaturecontrasts = feature_contrasts return nothing end """ """ function get_underlying( x::MutableDataFrame2DecisionTreeTransformer; saving::Bool = false, loading::Bool = false, ) result = x.dffeaturecontrasts return result end """ """ function transform( transformer::MutableDataFrame2DecisionTreeTransformer, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame; kwargs... ) single_label_name = transformer.single_label_name labelsarray = convert(Array, labels_df[single_label_name]) my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, featuresarray = StatsModels.modelcols(my_formula, features_df) return featuresarray, labelsarray end """ """ function transform( transformer::MutableDataFrame2DecisionTreeTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, featuresarray = StatsModels.modelcols(my_formula, features_df) return featuresarray end """ """ function fit!( transformer::MutableDataFrame2DecisionTreeTransformer, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df, labels_df) end """ """ function predict( transformer::MutableDataFrame2DecisionTreeTransformer, features_df::DataFrames.AbstractDataFrame, varargs...; kwargs... ) return (transform(transformer, features_df), varargs...) end """ """ function predict_proba( transformer::MutableDataFrame2DecisionTreeTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df) end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2246
import DataFrames """ """ function transform( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame; kwargs... ) transformedlabels_df = DataFrames.DataFrame() label = transformer.label positive_class = transformer.positive_class originallabelcolumn = labels_df[label] transformedlabelcolumn = Int.(originallabelcolumn .== positive_class) transformedlabels_df[label] = transformedlabelcolumn return features_df, transformedlabels_df end """ """ function transform( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return features_df end """ """ function fit!( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame, labels_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df, labels_df) end """ """ function predict( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df) end """ """ function predict( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame, my_class::AbstractString, varargs...; kwargs... ) result = (transform(transformer, features_df), transform(transformer, my_class), varargs...) return result end """ """ function transform( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, my_class::AbstractString; kwargs... ) transformed_my_class = Int(my_class == transformer.positive_class) return transformed_my_class end """ """ function predict_proba( transformer::ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df) end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
12107
import DataFrames import StatsModels function MutableDataFrame2ClassificationKnetTransformer( feature_names::AbstractVector, label_names::AbstractVector{Symbol}, label_levels::AbstractDict, index::Integer; transposefeatures::Bool = true, transposelabels::Bool = false, ) dffeaturecontrasts = FeatureContrastsNotYetGenerated() result = MutableDataFrame2ClassificationKnetTransformer( feature_names, label_names, label_levels, index, transposefeatures, transposelabels, dffeaturecontrasts, ) return result end """ """ function get_underlying( x::MutableDataFrame2ClassificationKnetTransformer; saving::Bool = false, loading::Bool = false, ) result = x.dffeaturecontrasts return result end """ """ function get_underlying( x::MutableDataFrame2RegressionKnetTransformer; saving::Bool = false, loading::Bool = false, ) result = x.dffeaturecontrasts return result end """ """ function set_feature_contrasts!( x::MutableDataFrame2ClassificationKnetTransformer, feature_contrasts::AbstractFeatureContrasts, ) x.dffeaturecontrasts = feature_contrasts return nothing end """ """ function set_feature_contrasts!( x::MutableDataFrame2RegressionKnetTransformer, contrasts::AbstractFeatureContrasts, ) x.dffeaturecontrasts = contrasts return nothing end """ """ function fit!( transformer::MutableDataFrame2ClassificationKnetTransformer, training_features_df::DataFrames.AbstractDataFrame, training_labels_df::DataFrames.AbstractDataFrame, tuning_features_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing, tuning_labels_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing; kwargs... ) result = transform( transformer, training_features_df, training_labels_df, tuning_features_df, tuning_labels_df; kwargs... ) return result end """ """ function fit!( transformer::MutableDataFrame2RegressionKnetTransformer, training_features_df::DataFrames.AbstractDataFrame, training_labels_df::DataFrames.AbstractDataFrame, tuning_features_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing, tuning_labels_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing; kwargs... ) result = transform( transformer, training_features_df, training_labels_df, tuning_features_df, tuning_labels_df; kwargs... ) return result end """ """ function predict( transformer::MutableDataFrame2ClassificationKnetTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df) end """ """ function transform( transformer::MutableDataFrame2ClassificationKnetTransformer, positive_class::AbstractString; kwargs... ) if length(transformer.label_names) == 0 error("length(transformer.label_names) == 0") elseif length(transformer.label_names) == 1 label_1 = transformer.label_names[1] levels_1 = transformer.label_levels[label_1] labelstring2intmap_1 = getlabelstring2intmap( levels_1, transformer.index, ) transformed_positive_class = labelstring2intmap_1[positive_class] else error("unsupported behavior") # training_labels_array = Array{Int}( # size(training_labels_df, 1), # length(transformer.label_names), # ) # for j = 1:length(transformer.label_names) # label_j = transformer.label_names[j] # levels_j = transformer.label_levels[label_j] # labelstring2intmap_j = getlabelstring2intmap( # levels_j, # transformer.index, # ) # training_labels_array[:, j] = # [labelstring2intmap_j[y] for y in labels_df[label_j]] # end end return transformed_positive_class end """ """ function predict( transformer::MutableDataFrame2ClassificationKnetTransformer, features_df::DataFrames.AbstractDataFrame, positive_class::AbstractString, varargs...; kwargs... ) result = (transform(transformer, features_df), transform(transformer, positive_class), varargs...) return result end """ """ function predict_proba( transformer::MutableDataFrame2ClassificationKnetTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) return transform(transformer, features_df) end """ """ function predict( transformer::MutableDataFrame2RegressionKnetTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) result = transform( transformer, features_df; kwargs... ) return result end """ """ function predict_proba( transformer::MutableDataFrame2RegressionKnetTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) result = transform( transformer, features_df; kwargs... ) return result end """ """ function transform( transformer::MutableDataFrame2ClassificationKnetTransformer, training_features_df::DataFrames.AbstractDataFrame, training_labels_df::DataFrames.AbstractDataFrame, tuning_features_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing, tuning_labels_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing; kwargs... ) if is_nothing(tuning_features_df) && is_nothing(tuning_labels_df) has_tuning_data = false elseif !is_nothing(tuning_features_df) && !is_nothing(tuning_labels_df) has_tuning_data = true else error( string( "Either both tuning_features_df ", "and tuning_labels_df ", "must be defined, or neither can be defined." ) ) end if length(transformer.label_names) == 0 error("length(transformer.label_names) == 0") elseif length(transformer.label_names) == 1 label_1 = transformer.label_names[1] levels_1 = transformer.label_levels[label_1] labelstring2intmap_1 = getlabelstring2intmap( levels_1, transformer.index, ) training_labels_array = [labelstring2intmap_1[y] for y in training_labels_df[label_1]] else training_labels_array = Array{Int}( size(training_labels_df, 1), length(transformer.label_names), ) for j = 1:length(transformer.label_names) label_j = transformer.label_names[j] levels_j = transformer.label_levels[label_j] labelstring2intmap_j = getlabelstring2intmap( levels_j, transformer.index, ) training_labels_array[:, j] = [labelstring2intmap_j[y] for y in labels_df[label_j]] end end my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, training_features_array = StatsModels.modelcols(my_formula, training_features_df) if transformer.transposefeatures training_features_array = transpose(training_features_array) end if transformer.transposelabels training_labels_array = transpose(training_labels_array) end training_features_array = convert(Array, training_features_array) training_labels_array = convert(Array, training_labels_array) if has_tuning_data tuning_features_array, tuning_labels_array = transform( transformer, tuning_features_df, tuning_labels_df; kwargs... ) return training_features_array, training_labels_array, tuning_features_array, tuning_labels_array else return training_features_array, training_labels_array end end """ """ function transform( transformer::MutableDataFrame2ClassificationKnetTransformer, features_df::DataFrames.AbstractDataFrame; kwargs... ) my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, featuresarray = StatsModels.modelcols(my_formula, features_df) if transformer.transposefeatures featuresarray = transpose(featuresarray) end return featuresarray end """ """ function transform( transformer::MutableDataFrame2RegressionKnetTransformer, training_features_df::DataFrames.AbstractDataFrame, training_labels_df::DataFrames.AbstractDataFrame, tuning_features_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing, tuning_labels_df::Union{Nothing, DataFrames.AbstractDataFrame} = nothing; kwargs... ) if is_nothing(tuning_features_df) && is_nothing(tuning_labels_df) has_tuning_data = false elseif !is_nothing(tuning_features_df) && !is_nothing(tuning_labels_df) has_tuning_data = true else error( string( "Either both tuning_features_df ", "and tuning_labels_df ", "must be defined, or neither can be defined.", ) ) end training_labels_array = hcat( [ training_labels_df[label] for label in transformer.label_names ]... ) my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, training_features_array = StatsModels.modelcols(my_formula, training_features_df) if transformer.transposefeatures training_features_array = transpose(training_features_array) end if transformer.transposelabels training_labels_array = transpose(training_labels_array) end training_features_array = convert(Array, training_features_array) training_labels_array = convert(Array, training_labels_array) if has_tuning_data tuning_features_array, tuning_labels_array = transform( transformer, tuning_features_df, tuning_labels_df; kwargs... ) return training_features_array, training_labels_array, tuning_features_array, tuning_labels_array else return training_features_array, training_labels_array end end """ """ function transform( transformer::MutableDataFrame2RegressionKnetTransformer, features_df::DataFrames.AbstractDataFrame, kwargs... ) my_formula = transformer.dffeaturecontrasts.formula_without_intercept my_schema = transformer.dffeaturecontrasts.schema_without_intercept my_formula = StatsModels.apply_schema(my_formula, my_schema) response, featuresarray = StatsModels.modelcols(my_formula, features_df) if transformer.transposefeatures featuresarray = transpose(featuresarray) end return featuresarray end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1826
import DataFrames import StatsModels """ """ function transform( transformer::ImmutableFeatureArrayTransposerTransformer, featuresarray::AbstractMatrix, labelsarray::AbstractArray; kwargs... ) featuresarraytransposed = transpose(featuresarray) return featuresarraytransposed, labelsarray end """ """ function transform( transformer::ImmutableFeatureArrayTransposerTransformer, featuresarray::AbstractMatrix; kwargs... ) featuresarraytransposed = transpose(featuresarray) return featuresarraytransposed end """ """ function fit!( transformer::ImmutableFeatureArrayTransposerTransformer, featuresarray::AbstractMatrix, labelsarray::AbstractArray; kwargs... ) return transform(transformer, featuresarray, labelsarray) end """ """ function predict( transformer::ImmutableFeatureArrayTransposerTransformer, featuresarray::AbstractMatrix, varargs...; kwargs... ) return (transform(transformer, featuresarray), varargs...) end """ """ function predict_proba( transformer::ImmutableFeatureArrayTransposerTransformer, featuresarray::AbstractMatrix; kwargs... ) return transform(transformer, featuresarray) end """ """ function DataFrame2LIBSVMTransformer( feature_names::AbstractVector, single_label_name::Symbol; levels::AbstractVector = [], ) df2decisiontreetransformer = MutableDataFrame2DecisionTreeTransformer( feature_names, single_label_name; levels = levels, ) featuretransposetransformer = ImmutableFeatureArrayTransposerTransformer() result = df2decisiontreetransformer |> featuretransposetransformer return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
12738
import LIBSVM function LIBSVMModel( ; single_label_levels::AbstractVector = [], name::AbstractString = "", isclassificationmodel::Bool = false, isregressionmodel::Bool = false, svmtype::Type=LIBSVM.SVC, kernel::LIBSVM.Kernel.KERNEL = LIBSVM.Kernel.RadialBasis, degree::Integer = 3, gamma::AbstractFloat = 0.1, coef0::AbstractFloat = 0.0, cost::AbstractFloat = 1.0, nu::AbstractFloat = 0.5, epsilon::AbstractFloat = 0.1, tolerance::AbstractFloat = 0.001, shrinking::Bool = true, weights::Union{Dict, Nothing} = nothing, cachesize::AbstractFloat = 100.0, verbose::Bool = true, ) hyperparameters = Dict() hyperparameters[:svmtype] = svmtype hyperparameters[:kernel] = kernel hyperparameters[:degree] = degree hyperparameters[:gamma] = gamma hyperparameters[:coef0] = coef0 hyperparameters[:cost] = cost hyperparameters[:nu] = nu hyperparameters[:epsilon] = epsilon hyperparameters[:tolerance] = tolerance hyperparameters[:shrinking] = shrinking weights = fix_type(weights) hyperparameters[:weights] = weights hyperparameters[:cachesize] = cachesize hyperparameters[:verbose] = verbose hyperparameters = fix_type(hyperparameters) underlyingsvm = FitNotYetRunUnderlyingObject() result = LIBSVMModel( name, isclassificationmodel, isregressionmodel, single_label_levels, hyperparameters, underlyingsvm, ) return result end """ """ function get_underlying( x::LIBSVMModel; saving::Bool = false, loading::Bool = false, ) result = x.underlyingsvm return result end """ """ function fit!( estimator::LIBSVMModel, featuresarray::AbstractArray, labelsarray::AbstractArray, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probability = true elseif !estimator.isclassificationmodel && estimator.isregressionmodel probability = false else error( "Could not figure out if model is classification or regression" ) end @info(string("Starting to train LIBSVM model.")) svm = try LIBSVM.svmtrain( featuresarray, labelsarray; probability = probability, estimator.hyperparameters... ) catch e @warn( string( "While training LIBSVM model, ignored error: ", e, ) ) FitFailedUnderlyingObject() end # svm = @info(string("Finished training LIBSVM model.")) estimator.underlyingsvm = svm estimator.levels = estimator.underlyingsvm.labels return estimator end """ """ function predict( estimator::LIBSVMModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc ) return predictionsvector elseif !estimator.isclassificationmodel && estimator.isregressionmodel if is_nothing(estimator.underlyingsvm) predicted_values = fill(Float64(0), size(featuresarray, 2)) else predicted_values, decision_values = LIBSVM.svmpredict( estimator.underlyingsvm, featuresarray, ) if !(typeof(predicted_values) <: AbstractVector) error("!(typeof(predicted_values) <: AbstractVector)") end end return predicted_values else error( "Could not figure out if model is classification or regression" ) end end """ """ function predict( estimator::LIBSVMModel, featuresarray::AbstractArray, positive_class::AbstractString, threshold::AbstractFloat, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc, positive_class, threshold, ) return predictionsvector else error( "Can only use the `threshold argument` with classification models" ) end end """ """ function predict_proba( estimator::LIBSVMModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel && !estimator.isregressionmodel if is_nothing(estimator.underlyingsvm) decision_values = fill( Int(0), size(featuresarray, 2), length(estimator.underlyingsvm.labels), ) decision_values[:, 1] = 1 else predicted_labels, decision_values = LIBSVM.svmpredict(estimator.underlyingsvm,featuresarray,) decision_values = transpose(decision_values) end result = Dict() for i = 1:length(estimator.underlyingsvm.labels) result[estimator.underlyingsvm.labels[i]] = decision_values[:, i] end result = fix_type(result) return result elseif !estimator.isclassificationmodel && estimator.isregressionmodel error("predict_proba is not defined for regression models") else error( "Could not figure out if model is classification or regression" ) end end """ """ function single_labelmulticlassdataframesvmclassifier_LIBSVM( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; name::AbstractString = "", svmtype::Type=LIBSVM.SVC, kernel::LIBSVM.Kernel.KERNEL = LIBSVM.Kernel.RadialBasis, degree::Integer = 3, gamma::AbstractFloat = 0.1, coef0::AbstractFloat = 0.0, cost::AbstractFloat = 1.0, nu::AbstractFloat = 0.5, epsilon::AbstractFloat = 0.1, tolerance::AbstractFloat = 0.001, shrinking::Bool = true, weights::Union{Dict, Nothing} = nothing, cachesize::AbstractFloat = 100.0, verbose::Bool = true, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) dftransformer = DataFrame2LIBSVMTransformer( feature_names, single_label_name; levels = single_label_levels, ) svmestimator = LIBSVMModel( ; name = name, single_label_levels = single_label_levels, isclassificationmodel = true, isregressionmodel = false, svmtype=svmtype, kernel = kernel, degree = degree, gamma = gamma, coef0 = coef0, cost = cost, nu = nu, epsilon = epsilon, tolerance = tolerance, shrinking = shrinking, weights = weights, cachesize = cachesize, verbose = verbose, ) probapackager = ImmutablePackageSingleLabelPredictProbaTransformer( single_label_name, ) predpackager = ImmutablePackageSingleLabelPredictionTransformer( single_label_name, ) finalpipeline = dftransformer |> svmestimator |> probapackager |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labelmulticlassdataframesvmclassifier( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; package::Symbol = :none, name::AbstractString = "", svmtype::Type=LIBSVM.SVC, kernel::LIBSVM.Kernel.KERNEL = LIBSVM.Kernel.RadialBasis, degree::Integer = 3, gamma::AbstractFloat = 0.1, coef0::AbstractFloat = 0.0, cost::AbstractFloat = 1.0, nu::AbstractFloat = 0.5, epsilon::AbstractFloat = 0.1, tolerance::AbstractFloat = 0.001, shrinking::Bool = true, weights::Union{Dict, Nothing} = nothing, cachesize::AbstractFloat = 100.0, verbose::Bool = true, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :LIBSVM result = single_labelmulticlassdataframesvmclassifier_LIBSVM( feature_names, single_label_name, single_label_levels; name = name, svmtype=svmtype, kernel = kernel, degree = degree, gamma = gamma, coef0 = coef0, cost = cost, nu = nu, epsilon = epsilon, tolerance = tolerance, shrinking = shrinking, weights = weights, cachesize = cachesize, verbose = verbose, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end """ """ function single_labeldataframesvmregression_LIBSVM( feature_names::AbstractVector, single_label_name::Symbol; name::AbstractString = "", svmtype::Type=LIBSVM.EpsilonSVR, kernel::LIBSVM.Kernel.KERNEL = LIBSVM.Kernel.RadialBasis, degree::Integer = 3, gamma::AbstractFloat = 0.1, coef0::AbstractFloat = 0.0, cost::AbstractFloat = 1.0, nu::AbstractFloat = 0.5, epsilon::AbstractFloat = 0.1, tolerance::AbstractFloat = 0.001, shrinking::Bool = true, weights::Union{Dict, Nothing} = nothing, cachesize::AbstractFloat = 100.0, verbose::Bool = true, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) dftransformer = DataFrame2LIBSVMTransformer( feature_names, single_label_name, ) svmestimator = LIBSVMModel( ; name = name, isclassificationmodel = false, isregressionmodel = true, svmtype=svmtype, kernel = kernel, degree = degree, gamma = gamma, coef0 = coef0, cost = cost, nu = nu, epsilon = epsilon, tolerance = tolerance, shrinking = shrinking, weights = weights, cachesize = cachesize, verbose = verbose, ) predpackager = ImmutablePackageSingleLabelPredictionTransformer( single_label_name, ) finalpipeline = dftransformer |> svmestimator |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labeldataframesvmregression( feature_names::AbstractVector, single_label_name::Symbol, ; package::Symbol = :none, name::AbstractString = "", svmtype::Type=LIBSVM.EpsilonSVR, kernel::LIBSVM.Kernel.KERNEL = LIBSVM.Kernel.RadialBasis, degree::Integer = 3, gamma::AbstractFloat = 0.1, coef0::AbstractFloat = 0.0, cost::AbstractFloat = 1.0, nu::AbstractFloat = 0.5, epsilon::AbstractFloat = 0.1, tolerance::AbstractFloat = 0.001, shrinking::Bool = true, weights::Union{Dict, Nothing} = nothing, cachesize::AbstractFloat = 100.0, verbose::Bool = true, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :LIBSVM result = single_labeldataframesvmregression_LIBSVM( feature_names, single_label_name; name = name, svmtype=svmtype, kernel = kernel, degree = degree, gamma = gamma, coef0 = coef0, cost = cost, nu = nu, epsilon = epsilon, tolerance = tolerance, shrinking = shrinking, weights = weights, cachesize = cachesize, verbose = verbose, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
8749
import DecisionTree function DecisionTreeModel( single_label_name::Symbol; name::AbstractString = "", nsubfeatures::Integer = 2, ntrees::Integer = 20, isclassificationmodel::Bool = false, isregressionmodel::Bool = false, levels::AbstractVector = [], ) hyperparameters = Dict() hyperparameters[:nsubfeatures] = nsubfeatures hyperparameters[:ntrees] = ntrees hyperparameters = fix_type(hyperparameters) underlyingrandomforest = FitNotYetRunUnderlyingObject() result = DecisionTreeModel( name, isclassificationmodel, isregressionmodel, single_label_name, levels, hyperparameters, underlyingrandomforest, ) return result end """ """ function get_underlying( x::DecisionTreeModel; saving::Bool = false, loading::Bool = false, ) result = x.underlyingrandomforest return result end """ """ function fit!( estimator::DecisionTreeModel, featuresarray::AbstractArray, labelsarray::AbstractArray, ) @info(string("Starting to train DecisionTree model.")) randomforest = try DecisionTree.build_forest( labelsarray, featuresarray, estimator.hyperparameters[:nsubfeatures], estimator.hyperparameters[:ntrees], ) catch e @warn( string( "While training DecisionTree model, ignored error: ", e, ) ) FitFailedUnderlyingObject() end @info(string("Finished training DecisionTree model.")) estimator.underlyingrandomforest = randomforest return estimator end """ """ function predict( estimator::DecisionTreeModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc ) return predictionsvector elseif !estimator.isclassificationmodel && estimator.isregressionmodel if is_nothing(estimator.underlyingrandomforest) predicted_values = fill(Float64(0), size(featuresarray,1)) else predicted_values = DecisionTree.apply_forest( estimator.underlyingrandomforest, featuresarray, ) end return predicted_values else error( "Could not figure out if model is classification or regression" ) end end """ """ function predict( estimator::DecisionTreeModel, featuresarray::AbstractArray, positive_class::AbstractString, threshold::AbstractFloat, ) if estimator.isclassificationmodel && !estimator.isregressionmodel probabilitiesassoc = predict_proba( estimator, featuresarray, ) predictionsvector = single_labelprobabilitiestopredictions( probabilitiesassoc, positive_class, threshold, ) return predictionsvector else error( "Can only use the `threshold` argument with classification models" ) end end """ """ function predict_proba( estimator::DecisionTreeModel, featuresarray::AbstractArray, ) if estimator.isclassificationmodel && !estimator.isregressionmodel if is_nothing(estimator.underlyingrandomforest) predictedprobabilities = fill( Float64(0), size(featuresarray, 1), length(estimator.levels), ) predictedprobabilities[:, 1] = 1 else predictedprobabilities = DecisionTree.apply_forest_proba( estimator.underlyingrandomforest, featuresarray, estimator.levels, ) end result = Dict() for i = 1:length(estimator.levels) result[estimator.levels[i]] = predictedprobabilities[:, i] end result = fix_type(result) return result elseif !estimator.isclassificationmodel && estimator.isregressionmodel error("predict_proba is not defined for regression models") else error( "Could not figure out if model is classification or regression" ) end end """ """ function single_labelmulticlassdfrandomforestclassifier_DecisionTree( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; name::AbstractString = "", nsubfeatures::Integer = 2, ntrees::Integer = 10, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) dftransformer = MutableDataFrame2DecisionTreeTransformer( feature_names, single_label_name; levels = single_label_levels, ) randomforestestimator = DecisionTreeModel( single_label_name; name = name, nsubfeatures = nsubfeatures, ntrees = ntrees, isclassificationmodel = true, isregressionmodel = false, levels = single_label_levels, ) probapackager = ImmutablePackageSingleLabelPredictProbaTransformer( single_label_name, ) predpackager = ImmutablePackageSingleLabelPredictionTransformer( single_label_name, ) finalpipeline = dftransformer |> randomforestestimator |> probapackager |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labelmulticlassdataframerandomforestclassifier( feature_names::AbstractVector, single_label_name::Symbol, single_label_levels::AbstractVector; name::AbstractString = "", package::Symbol = :none, nsubfeatures::Integer = 2, ntrees::Integer = 10, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :DecisionTree result = single_labelmulticlassdfrandomforestclassifier_DecisionTree( feature_names, single_label_name, single_label_levels; name = name, nsubfeatures = nsubfeatures, ntrees = ntrees, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end """ """ function single_labeldataframerandomforestregression_DecisionTree( feature_names::AbstractVector, single_label_name::Symbol; name::AbstractString = "", nsubfeatures::Integer = 2, ntrees::Integer = 10, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) dftransformer = MutableDataFrame2DecisionTreeTransformer( feature_names, single_label_name, ) randomforestestimator = DecisionTreeModel( single_label_name; name = name, nsubfeatures = nsubfeatures, ntrees = ntrees, isclassificationmodel = false, isregressionmodel = true, ) predpackager = ImmutablePackageSingleLabelPredictionTransformer( single_label_name, ) finalpipeline = dftransformer |> randomforestestimator |> predpackager finalpipeline.name = name if !is_nothing(feature_contrasts) set_feature_contrasts!(finalpipeline, feature_contrasts) end return finalpipeline end """ """ function single_labeldataframerandomforestregression( feature_names::AbstractVector, single_label_name::Symbol; name::AbstractString = "", package::Symbol = :none, nsubfeatures::Integer = 2, ntrees::Integer = 10, feature_contrasts::Union{Nothing, AbstractFeatureContrasts} = nothing, ) if package == :DecisionTree result = single_labeldataframerandomforestregression_DecisionTree( feature_names, single_label_name; name = name, nsubfeatures = nsubfeatures, ntrees = ntrees, feature_contrasts = feature_contrasts ) return result else error("$(package) is not a valid value for package") end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1802
import DataFrames function get_unique_values(itr; skip_missings::Bool = true) if skip_missings result = get_unique_values_skip_missings(itr) else result = get_unique_values_include_missings(itr) end return result end function get_unique_values_skip_missings(itr) return unique(skipmissing(collect(itr))) end function get_unique_values_include_missings(itr) return unique(collect(itr)) end function get_number_of_unique_values(itr; skip_missings::Bool = true)::Int if skip_missings result = get_number_of_unique_values_skip_missings(itr) else result = get_number_of_unique_values_include_missings(itr) end return result end function get_number_of_unique_values_skip_missings(itr)::Int result::Int = length(get_unique_values_skip_missings(itr)) return result end function get_number_of_unique_values_include_missings(itr)::Int result::Int = length(get_unique_values_include_missings(itr)) return result end function find_constant_columns( df::DataFrames.AbstractDataFrame, )::Vector{Symbol} list_of_constant_column_names = Symbol[] for x in DataFrames.names(df) if get_number_of_unique_values(df[x]) < 2 push!(list_of_constant_column_names, x) end end return list_of_constant_column_names end function check_no_constant_columns( df::DataFrames.AbstractDataFrame, )::Bool list_of_constant_column_names = find_constant_columns(df) if length(list_of_constant_column_names) > 0 error( string( "Data frame contains the following constant columns: ", list_of_constant_column_names, "\"", ) ) else return true end end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
5559
import DataFrames """ """ function fix_column_types!( df::DataFrames.AbstractDataFrame; categorical_feature_names::AbstractVector{Symbol} = Symbol[], continuous_feature_names::AbstractVector{Symbol} = Symbol[], categorical_label_names::AbstractVector{Symbol} = Symbol[], continuous_label_names::AbstractVector{Symbol} = Symbol[], float_type::Type{<:AbstractFloat} = Float64, )::Nothing function make_categorical_column( old_vector::AbstractVector, )::Vector{Any} new_vector = Vector{Any}(undef, length(old_vector)) for i = 1:length(old_vector) old_vector_ith_element = old_vector[i] if DataFrames.ismissing(old_vector_ith_element) new_vector[i] = DataFrames.missing else new_vector[i] = string(old_vector_ith_element) end end return new_vector end function make_continuous_column( old_vector::AbstractVector, )::Vector{Any} new_vector = Vector{Any}(undef, length(old_vector)) for i = 1:length(old_vector) old_vector_ith_element = old_vector[i] if DataFrames.ismissing(old_vector_ith_element) new_vector[i] = DataFrames.missing else new_vector[i] = float_type(old_vector_ith_element) end end return new_vector end for x in categorical_feature_names transform_columns!(df, make_categorical_column, x) end for x in continuous_feature_names transform_columns!(df, make_continuous_column, x) end for x in categorical_label_names transform_columns!(df, make_categorical_column, x) end for x in continuous_label_names transform_columns!(df, make_continuous_column, x) end for x in DataFrames.names(df) transform_columns!(df, fix_type, x) end return nothing end """ """ function check_column_types( df::DataFrames.AbstractDataFrame; categorical_feature_names::AbstractVector{Symbol} = Symbol[], continuous_feature_names::AbstractVector{Symbol} = Symbol[], categorical_label_names::AbstractVector{Symbol} = Symbol[], continuous_label_names::AbstractVector{Symbol} = Symbol[], )::Nothing for column_name in DataFrames.names(df) column_eltype=eltype( collect( DataFrames.skipmissing( df[column_name] ) ) ) if column_name in categorical_feature_names if column_eltype<:AbstractString else error( string( "Column \"", column_name, "\" has eltype() \"", column_eltype, "\". However, this column is categorical,", "and therefore its eltype() must be <: ", "AbstractString.", ) ) end elseif column_name in categorical_label_names if column_eltype<:AbstractString else error( string( "Column \"", column_name, "\" has eltype() \"", column_eltype, "\". However, this column is categorical,", "and therefore its eltype() must be <: ", "AbstractString.", ) ) end elseif column_name in continuous_feature_names if column_eltype<:AbstractFloat else error( string( "Column \"", column_name, "\" has eltype() \"", column_eltype, "\". However, this column is continuous,", "and therefore its eltype() must be <:", "AbstractFloat.", ) ) end elseif column_name in continuous_label_names if column_eltype<:AbstractFloat else error( string( "Column \"", column_name, "\" has eltype() \"", column_eltype, "\". However, this column is continuous,", "and therefore its eltype() must be <:", "AbstractFloat.", ) ) end else if column_eltype<:AbstractString elseif column_eltype<:AbstractFloat error( string( "Column \"", column_name, "\" has eltype() \"", column_eltype, "\". However, we only allow AbstractStrings and ", "AbstractFloats. Use T <: AbstractString if", "it is a categorical column. Use T <: ", "AbstractFloat if it is a continuous column." ) ) else end end end return nothing end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
145
""" """ function filename_extension(filename::AbstractString) result = lowercase(strip(splitext(strip(filename))[2])) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
769
""" """ function fix_type end fix_type(x::Any, T) = convert(T, fix_type(x)) fix_type(x::Any) = x function fix_type(x::AbstractArray)::Array result = reshape( [[fix_type(element) for element in x]...], size(x), ) return result end function fix_type( x::AbstractDict; default_key_type::Type=Any, default_value_type::Type=Any, )::Dict if length(x) == 0 result = Dict{default_key_type, default_value_type}() else keys_eltype=eltype( fix_type( collect( keys(x) ) ) ) values_eltype=eltype( fix_type( collect( values(x) ) ) ) result = Dict{keys_eltype, values_eltype}() for k in keys(x) result[k] = x[k] end end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3018
import Combinatorics import StatsModels """ """ function generate_formula(lhs::AbstractVector{<:StatsModels.AbstractTerm}, rhs::AbstractVector{<:StatsModels.AbstractTerm}) lhs_deepcopy = deepcopy(lhs) rhs_deepcopy = deepcopy(rhs) lhs_sum = sum(lhs_deepcopy) rhs_sum = sum(rhs_deepcopy) result = lhs_sum ~ rhs_sum return result end """ """ function generate_formula( dependent_variable::Symbol, independent_variables::AbstractVector{<:Symbol}; intercept::Bool = true, interactions::Integer = 1, ) result = generate_formula( [dependent_variable], independent_variables; intercept = intercept, interactions = interactions, ) return result end """ """ function generate_formula( dependent_variables::AbstractVector{<:Symbol}, independent_variables::AbstractVector{<:Symbol}; intercept::Bool = true, interactions::Integer = 1, ) if length(dependent_variables) < 1 error("length(dependent_variables) must be >= 1") end if length(independent_variables) < 1 error("length(independent_variables) must be >= 1") end if interactions < 1 error("interactions must be >= 1") end if interactions > length(independent_variables) error("interactions must be <= the number of independent variable") end if intercept intercept_term = StatsModels.term(1) else intercept_term = StatsModels.term(0) end lhs_terms = Vector{StatsModels.AbstractTerm}(undef, 0) for dep_var in deepcopy(dependent_variables) push!(lhs_terms, StatsModels.term(dep_var)) end rhs_terms = Vector{StatsModels.AbstractTerm}(undef, 0) push!(rhs_terms, intercept_term) for interaction_term in generate_interaction_terms_up_to_level( deepcopy(independent_variables), interactions) push!(rhs_terms, interaction_term) end result = generate_formula(lhs_terms, rhs_terms) return result end function generate_interaction_terms_up_to_level( xs::AbstractVector{<:Symbol}, interactions::Integer, ) all_interaction_terms = Vector{StatsModels.AbstractTerm}(undef, 0) for level = 1:interactions append!(all_interaction_terms, generate_interaction_terms_at_level(xs,level)) end unique!(all_interaction_terms) return all_interaction_terms end function generate_interaction_terms_at_level( xs::AbstractVector{<:Symbol}, level::Integer, ) interaction_sets = collect( Combinatorics.combinations( xs, level, ) ) interaction_terms = Vector{StatsModels.AbstractTerm}(undef, 0) for interaction_set in interaction_sets push!(interaction_terms, reduce(&, StatsModels.term.(interaction_set))) end unique!(interaction_terms) return interaction_terms end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
835
""" """ function is_one_to_one(x::AbstractDict)::Bool if (length(keys(x)) == length(unique(keys(x)))) && (length(values(x)) == length(unique(values(x)))) return true else return false end end """ """ function inverse(x::AbstractDict)::Dict if !is_one_to_one(x) error( string( "Input directory is not one-to-one." ) ) end keys_array = fix_type(collect(keys(x))) values_array = fix_type(collect(values(x))) key_type=eltype(keys_array) value_type=eltype(values_array) result = Dict{value_type, key_type}() for i = 1:length(keys_array) k = keys_array[i] v = values_array[i[]] result[v] = k end result_typefixed = fix_type(result) return result_typefixed end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
660
""" """ function getlabelstring2intmap( levels::AbstractVector, index::Integer, ) result = Dict() if length(levels) == 0 error("length(levels) == 0") end for i = 1:length(levels) result[levels[i]] = i - 1 + index end result = fix_type(result) return result end """ """ function getlabelint2stringmap( levels::AbstractVector, index::Integer, ) result = Dict() if length(levels) == 0 error("length(levels) == 0") end for i = 1:length(levels) result[i - 1 + index] = levels[i] end result = fix_type(result) return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2466
import DataFrames import GLM import StatsModels function get_unique_symbol_name( v::AbstractVector{<:Symbol}, new_symbol::Symbol = :x; append_string::String = "1" )::Symbol old_strings_set::Set{String} = Set(strip.(string.(v))) new_string::String = strip.(string.(new_symbol)) _append_string::String = strip(append_string) while new_string in old_strings_set new_string = string(new_string, _append_string) end new_symbol::Symbol = Symbol(new_string) return new_symbol end function columns_are_linearly_independent( df::DataFrames.DataFrame, columns::AbstractVector{<:Symbol} = Symbol[], )::Bool df_copy = deepcopy(df) if length(columns) == 0 columns_copy = deepcopy(DataFrames.names(df_copy)) else columns_copy = deepcopy(columns) end temporary_dependent_variable::Symbol = get_unique_symbol_name( columns_copy, :y, ) formula = generate_formula( temporary_dependent_variable, columns_copy; intercept = false, interactions = 1, ) df_copy[temporary_dependent_variable] = randn(size(df_copy, 1)) try_lm_result::Bool = try lm = GLM.lm(formula, df_copy, false) true catch ex @debug("caught exception: ", exception=ex,) false end cols_result = length(linearly_dependent_columns(df, columns)) == 0 final_result::Bool = try_lm_result && cols_result return final_result end function linearly_dependent_columns( df::DataFrames.DataFrame, columns::AbstractVector{<:Symbol} = Symbol[])::Vector{Symbol} df_copy = deepcopy(df) if length(columns) == 0 columns_copy = deepcopy(DataFrames.names(df_copy)) else columns_copy = deepcopy(columns) end temporary_dependent_variable::Symbol = get_unique_symbol_name( columns_copy, :y, ) formula = generate_formula( temporary_dependent_variable, columns_copy; intercept = false, interactions = 1, ) df_copy[temporary_dependent_variable] = randn(size(df_copy, 1)) lm = GLM.lm(formula, df_copy, true) coeftable = StatsModels.coeftable(lm) result_strings::Vector{String} = sort( unique(strip.(coeftable.rownms[isnan.(coeftable.cols[4])])) ) result_symbols::Vector{Symbol} = Symbol.(result_strings) return result_symbols end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
142
function maketempdir()::String path::String = mktempdir() atexit(() -> rm(path; force = true, recursive = true,)) return path end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1229
import DataFrames function disallowmissing(x::AbstractArray{Union{Missing, T}, N})::Array{T, N} where T where N result::Array{T, N} = convert(Array{T, N}, x) return result end """ """ function convert_value_to_missing! end function convert_value_to_missing!( df::DataFrames.AbstractDataFrame, value, column_names::AbstractArray{Symbol}, )::Nothing function f(old_vector::AbstractVector)::Vector{Any} new_vector = Vector{Any}(length(old_vector)) for i = 1:length(old_vector) old_vector_ith_element = old_vector[i] if DataFrames.ismissing(old_vector_ith_element) new_vector[i] = DataFrames.missing elseif old_vector_ith_element == value new_vector[i] = DataFrames.missing else new_vector[i] = old_vector_ith_element end end return new_vector end transform_columns!(df, f, column_names) return nothing end function convert_value_to_missing!( df::DataFrames.AbstractDataFrame, value, column_name::Symbol, )::Nothing convert_value_to_missing!(df, value, Symbol[column_name]) return nothing end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
205
""" """ function delete_nothings!(x::AbstractVector)::Nothing filter!(e->e≠nothing, x) return nothing end is_nothing(x::Nothing)::Bool = true is_nothing(x::Any)::Bool = false """ """ is_nothing
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
2536
# Parts of this file are based on: # 1. https://github.com/JuliaPlots/Plots.jl/blob/master/src/backends/web.jl # 2. https://github.com/JuliaGraphics/Luxor.jl/blob/master/src/Luxor.jl # 3. https://github.com/tpapp/DefaultApplication.jl/blob/master/src/DefaultApplication.jl import FileIO # """ # """ # function open_browser_window(filename::Nothing, a::AbstractDict = ENV) # @warn("no filename to open") # return filename # end # """ # """ # function open_browser_window(filename::AbstractString, a::AbstractDict = ENV) # extension = filename_extension(filename) # is_svg_file = extension == ".svg" # is_png_file = extension == ".png" # is_svg_or_png_file = is_svg_file || is_png_file # is_ijulia = isdefined(Main, :IJulia) && Main.IJulia.inited # if is_ijulia && is_svg_or_png_file # Main.IJulia.clear_output(true) # if is_svg_file # open(filename) do f # display( # "image/svg+xml", # readstring(f), # ) # end # elseif is_png_file # # We use Base.invokelatest to avoid world age errors # Base.invokelatest( # display, # "image/png", # FileIO.load(filename), # ) # end # elseif (is_make_examples(a)) || # (is_make_docs(a)) || # (is_runtests(a) && !open_plots_during_tests(a)) # @debug( # string( # "Skipping opening file: ", # filename, # ) # ) # else # @debug(string("Opening file ",filename,)) # if Sys.isapple() # try # run(`open $(filename)`) # catch e # @warn(string("ignoring error: "), e) # end # elseif Sys.islinux() || Sys.isbsd() # try # run(`xdg-open $(filename)`) # catch e # @warn(string("ignoring error: "), e) # end # elseif Sys.iswindows() # try # run(`$(ENV["COMSPEC"]) /c start "" "$(filename)"`) # catch e # @warn(string("ignoring error: "), e) # end # else # @warn( # string( # "unknown operating system; could not open file ", # filename, # ) # ) # end # end # return filename # end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
220
""" """ function open_plots_during_tests(a::AbstractDict = ENV) result = lowercase( strip( get(a, "PREDICTMD_OPEN_PLOTS_DURING_TESTS", "") ) ) == "true" return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
438
import DataFrames """ """ function predictionsassoctodataframe( probabilitiesassoc::AbstractDict, label_names::AbstractVector = [], ) if length(label_names) == 0 label_names = sort(unique(collect(keys(probabilitiesassoc)))) end result = DataFrames.DataFrame() for j = 1:length(label_names) result[label_names[j]] = probabilitiesassoc[label_names[j]] end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
3911
""" """ function multilabelprobabilitiestopredictions( probabilitiesassoc::AbstractDict; float_type::Type{<:AbstractFloat} = Float64, ) result = Dict() label_names = sort(unique(collect(keys(probabilitiesassoc)))) for j = 1:length(label_names) result[label_names[j]] = single_labelprobabilitiestopredictions( probabilitiesassoc[label_names[j]]; float_type=float_type, ) end result = Dict() return result end """ """ function multilabelprobabilitiestopredictions( probabilitiesassoc::AbstractDict, thresholds::AbstractDict; float_type::Type{<:AbstractFloat} = Float64, ) result = Dict() label_names = sort(unique(collect(keys(probabilitiesassoc)))) for j = 1:length(label_names) if haskey(thresholds, label_names[j]) (positive_class, threshold) = thresholds[label_names[j]] result[label_names[j]] = single_labelprobabilitiestopredictions( probabilitiesassoc[label_names[j]], positive_class, threshold; float_type=float_type, ) else result[label_names[j]] = single_labelprobabilitiestopredictions( probabilitiesassoc[label_names[j]]; float_type=float_type, ) end end result = Dict() return result end const probabilitiestopredictions = multilabelprobabilitiestopredictions """ """ function single_labelprobabilitiestopredictions( probabilitiesassoc::AbstractDict; float_type::Type{<:AbstractFloat} = Float64, ) classes = sort(unique(collect(keys(probabilitiesassoc)))) numclasses = length(classes) numrows = size(probabilitiesassoc[classes[1]], 1) probabilitiesmatrix = Matrix{float_type}( undef, numrows, numclasses, ) for j = 1:numclasses probabilitiesmatrix[:, j] = float_type.(probabilitiesassoc[classes[j]]) end predictionsvector = Vector{String}(undef, numrows,) for i = 1:numrows predictionsvector[i] = string(classes[argmax(probabilitiesmatrix[i, :])]) end return predictionsvector end function single_labelprobabilitiestopredictions( probabilitiesassoc::AbstractDict, positive_class, threshold::AbstractFloat; float_type::Type{<:AbstractFloat} = Float64, ) classes = sort(unique(collect(keys(probabilitiesassoc)))) numclasses = length(classes) numrows = size(probabilitiesassoc[classes[1]], 1) probabilitiesmatrix = Matrix{float_type}( undef, numrows, numclasses, ) for j = 1:numclasses probabilitiesmatrix[:, j] = float_type.(probabilitiesassoc[classes[j]]) end predictionsvector = Vector{String}(undef, numrows,) if numclasses == 2 if positive_class in classes use_threshold = true else @error("", positive_class, classes) error("positive_class is not in the list of classes, so ignoring threshold") use_threshold = false end else error("numclasses is not 2, so ignoring threshold") use_threshold = false end if use_threshold positive_class_column::Int = findfirst(classes .== positive_class) negative_class = first(setdiff(classes, [positive_class])) for i = 1:numrows if probabilitiesmatrix[i, positive_class_column] > threshold predictionsvector[i] = string(positive_class) else predictionsvector[i] = string(negative_class) end end else for i = 1:numrows predictionsvector[i] = string(classes[argmax(probabilitiesmatrix[i, :])]) end end return predictionsvector end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
778
""" """ function is_runtests(a::AbstractDict = ENV) result = lowercase(strip(get(a, "PREDICTMD_IS_RUNTESTS", ""))) == "true" return result end """ """ function is_make_examples(a::AbstractDict = ENV) result = lowercase(strip(get(a, "PREDICTMD_IS_MAKE_EXAMPLES", ""))) == "true" return result end """ """ function is_make_docs(a::AbstractDict = ENV) result = lowercase(strip(get(a, "PREDICTMD_IS_MAKE_DOCS", ""))) == "true" return result end """ """ function is_deploy_docs(a::AbstractDict = ENV) result = lowercase(strip(get(a, "PREDICTMD_IS_DEPLOY_DOCS", ""))) == "true" return result end """ """ is_docs_or_examples(a::AbstractDict = ENV) = is_make_examples(a) || is_make_docs(a) || is_deploy_docs(a)
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
616
import DataFrames import Random import StatsBase """ """ function shuffle_rows!( dataframe::DataFrames.AbstractDataFrame, ) result = shuffle_rows!(Random.GLOBAL_RNG, dataframe) return result end """ """ function shuffle_rows!( rng::Random.AbstractRNG, dataframe::DataFrames.AbstractDataFrame, ) numrows = size(dataframe,1) allrows = convert(Array,1:numrows) rowpermutation = Random.shuffle!(rng, allrows) numcolumns = size(dataframe,2) for j = 1:numcolumns dataframe[:, j] = dataframe[rowpermutation, j] end return dataframe end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
426
import Statistics """ """ function simple_moving_average( x::AbstractVector, window::Integer, ) where T if window < 0 error("window must be >=0") end n = length(x) result = similar(x) for i = 1:n lower_bound = max(1, i - window) upper_bound = min(n, i + window) result[i] = Statistics.mean(x[lower_bound:upper_bound]) end return result end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
4086
# import TikzPictures # """ # """ # function save_plot(filename::AbstractString, tp::TikzPictures.TikzPicture) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # extension = filename_extension(filename) # if extension == ".pdf" # save_result = save_plot_pdf(filename, tp) # elseif extension == ".tex" # save_result = save_plot_tex(filename, tp) # elseif extension == ".tikz" # save_result = save_plot_tikz(filename, tp) # elseif extension == ".svg" # save_result = save_plot_svg(filename, tp) # else # error("File extension must be one of: .pdf, .tex, .tikz, .svg") # end # return filename # end # """ # """ # function save_plot_pdf( # filename::AbstractString, # tp::TikzPictures.TikzPicture, # ) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # extension = filename_extension(filename) # if extension != ".pdf" # error("filename must end in .pdf") # end # parent_directory = Base.Filesystem.dirname(filename) # try # Base.Filesystem.mkpath(parent_directory) # catch # end # save_result = try # TikzPictures.save(TikzPictures.PDF(filename), tp) # catch e # handle_plotting_error(e) # end # return filename # end # """ # """ # function save_plot_tex( # filename::AbstractString, # tp::TikzPictures.TikzPicture, # ) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # extension = filename_extension(filename) # if extension != ".tex" # error("filename must end in .tex") # end # parent_directory = Base.Filesystem.dirname(filename) # try # Base.Filesystem.mkpath(parent_directory) # catch # end # save_result = try # TikzPictures.save(TikzPictures.TEX(filename), tp) # catch e # handle_plotting_error(e) # end # return filename # end # """ # """ # function save_plot_tikz( # filename::AbstractString, # tp::TikzPictures.TikzPicture, # ) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # if extension != ".tikz" # error("filename must end in .tikz") # end # extension = filename_extension(filename) # parent_directory = Base.Filesystem.dirname(filename) # try # Base.Filesystem.mkpath(parent_directory) # catch # end # save_result = try # TikzPictures.save(TikzPictures.TIKZ(filename), tp) # catch e # handle_plotting_error(e) # end # return filename # end # """ # """ # function save_plot_svg( # filename::AbstractString, # tp::TikzPictures.TikzPicture, # ) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # extension = filename_extension(filename) # if extension != ".svg" # error("filename must end in .svg") # end # parent_directory = Base.Filesystem.dirname(filename) # try # Base.Filesystem.mkpath(parent_directory) # catch # end # save_result = try # TikzPictures.save(TikzPictures.SVG(filename), tp) # catch e # handle_plotting_error(e) # end # return filename # end # """ # """ # function open_plot(tp::TikzPictures.TikzPicture) # temp_svg_filename = string(tempname(), ".svg") # save_result = open_plot(temp_svg_filename, tp) # return temp_svg_filename # end # """ # """ # function open_plot( # filename::AbstractString, # tp::TikzPictures.TikzPicture, # ) # filename = strip(filename) # if length(filename) == 0 # error("filename is an empty string") # end # saveresult = save_plot(filename, tp) # open_result = open_browser_window(filename) # return filename # end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
646
import DataFrames """ """ function transform_columns! end function transform_columns!( df::DataFrames.AbstractDataFrame, f::Function, column_name::Symbol, )::Nothing old_column = df[column_name] DataFrames.deletecols!(df, column_name,) new_column = fix_type(f(old_column)) df[column_name] = new_column return nothing end function transform_columns!( df::DataFrames.AbstractDataFrame, f::Function, column_names::AbstractArray{Symbol}, )::Nothing for column_name in column_names transform_columns!(df, f, column_name) end return nothing end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
863
import NumericalIntegration """ trapz(x, y) Compute the area under the curve of 2-dimensional points (x, y) using the trapezoidal method. """ function trapz end trapz(x, y) = trapz(promote(x, y)...) function trapz( x::AbstractVector{T}, y::AbstractVector{T}, )::T where T if length(x) != length(y) error("length(x) != length(y)") end if length(x) == 0 error("length(x) == 0") end if !all(x .== sort(x; rev = false)) error("x needs to be sorted in ascending order") end twoI::T = zero(T) for k = 2:length(x) twoI += ( y[k] + y[k-1] ) * ( x[k] - x[k-1] ) end I_verify::T = NumericalIntegration.integrate( x, y, NumericalIntegration.Trapezoidal(), ) @assert isapprox(twoI/2, I_verify; atol=0.00000001) return I_verify end
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
1095
""" """ function is_travis_ci(a::AbstractDict = ENV) result = ( lowercase(strip(get(a, "CI", ""))) == "true" ) && ( lowercase(strip(get(a, "TRAVIS", ""))) == "true" ) && ( lowercase(strip(get(a, "CONTINUOUS_INTEGRATION", "")) ) == "true") return result end """ """ function is_travis_ci_on_linux(a::AbstractDict = ENV) result = is_travis_ci(a) && Sys.islinux() return result end """ """ # function is_travis_ci_on_apple(a::AbstractDict = ENV) # result = is_travis_ci(a) && Sys.isapple() # return result # end """ """ # function is_appveyor_ci(a::AbstractDict = ENV) # result = ( lowercase(strip(get(a, "CI", ""))) == "true" ) && # ( lowercase(strip(get(a, "APPVEYOR", ""))) == "true" ) # return result # end """ """ is_ci(a::AbstractDict = ENV) = is_travis_ci(a) # is_ci(a::AbstractDict = ENV) = is_travis_ci(a) || is_appveyor_ci(a) """ """ is_ci_or_runtests(a::AbstractDict = ENV) = is_ci(a) || is_runtests(a) """ """ is_ci_or_runtests_or_docs_or_examples(a::AbstractDict = ENV) = is_ci_or_runtests(a) || is_docs_or_examples(a)
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
91
""" """ function tuplify end tuplify(x::Any)::Tuple = (x,) tuplify(x::Tuple)::Tuple = x
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
140
""" """ module PredictMD_MLJ # begin module PredictMD_MLJ import ..MLJ import ..MLJBase import ..MLJModels end # end module PredictMD_MLJ
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9314
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin data preprocessing code Random.seed!(999) df = RDatasets.dataset("MASS", "Boston") ## PredictMD requires that you provide your data in a DataFrame. ## If your data are in a CSV file (e.g. "data.csv"), load them into ## a DataFrame named `df` with: ## df = DataFrames.DataFrame(CSVFiles.load("data.csv"; type_detect_rows = 10_000)) ## If your data are in a gzipped CSV file (e.g. "data.csv.gz"), load them into ## a DataFrame named `df` with: ## df = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", "data.csv.gz"); type_detect_rows = 10_000)) ## If your data are in some other format, use the appropriate Julia package to ## load your data into a DataFrame named `df`. # PREDICTMD IF INCLUDE TEST STATEMENTS df1 = DataFrames.DataFrame() df1[:x] = randn(5) df1_filename = joinpath(PredictMD.maketempdir(), "df1.csv") CSVFiles.save(df1_filename, df1) df2 = DataFrames.DataFrame(CSVFiles.load(df1_filename; type_detect_rows = 10_000)) Test.@test( all(df1[:x] .== df2[:x]) ) df3 = DataFrames.DataFrame() df3[:y] = randn(5) df3_filename = joinpath(PredictMD.maketempdir(), "df3.csv.gz") CSVFiles.save(CSVFiles.File(CSVFiles.format"CSV", df3_filename), df3) df4 = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", df3_filename); type_detect_rows = 10_000)) Test.@test( all(df3[:y] .== df4[:y]) ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS categorical_feature_names = Symbol[] continuous_feature_names = Symbol[ :Crim, :Zn, :Indus, :Chas, :NOx, :Rm, :Age, :Dis, :Rad, :Tax, :PTRatio, :Black, :LStat, ] categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("", categorical_feature_names_filename) @debug("", isfile(categorical_feature_names_filename)) @debug("", dirname(categorical_feature_names_filename)) @debug("", isdir(dirname(categorical_feature_names_filename))) @debug("", joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) @debug("", isdir(joinpath(PROJECT_OUTPUT_DIRECTORY, "data"))) @debug("", PROJECT_OUTPUT_DIRECTORY) @debug("", isdir(PROJECT_OUTPUT_DIRECTORY)) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS FileIO.save( categorical_feature_names_filename, "categorical_feature_names", categorical_feature_names, ) FileIO.save( continuous_feature_names_filename, "continuous_feature_names", continuous_feature_names, ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :MedV continuous_label_names = Symbol[single_label_name] categorical_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) df = df[:, vcat(feature_names, label_names)] DataFrames.dropmissing!(df; disallowmissing=true,) PredictMD.shuffle_rows!(df) PredictMD.fix_column_types!( df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) PredictMD.check_column_types( df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test PredictMD.check_no_constant_columns(df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS features_df = df[feature_names] labels_df = df[label_names] DataFrames.describe(logger_stream, labels_df[single_label_name]) (trainingandtuning_features_df, trainingandtuning_labels_df, testing_features_df, testing_labels_df,) = PredictMD.split_data( features_df, labels_df, 0.75, ) (training_features_df, training_labels_df, tuning_features_df, tuning_labels_df,) = PredictMD.split_data( trainingandtuning_features_df, trainingandtuning_labels_df, 2/3, ) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) FileIO.save(trainingandtuning_features_df_filename, trainingandtuning_features_df) FileIO.save(trainingandtuning_labels_df_filename, trainingandtuning_labels_df) FileIO.save(testing_features_df_filename, testing_features_df) FileIO.save(testing_labels_df_filename, testing_labels_df) FileIO.save(training_features_df_filename, training_features_df) FileIO.save(training_labels_df_filename, training_labels_df) FileIO.save(tuning_features_df_filename, tuning_features_df) FileIO.save(tuning_labels_df_filename, tuning_labels_df) # PREDICTMD IF INCLUDE TEST STATEMENTS temp_dir = mktempdir() atexit(() -> rm(temp_dir; force = true, recursive = true)) temp_gz_filename_testing_features_df = joinpath(temp_dir, "temp_filename_testing_features_df.csv.gz") temp_gz_filename_testing_labels_df = joinpath(temp_dir, "temp_filename_testing_labels_df.csv.gz") original_testing_features_df = deepcopy(testing_features_df) original_testing_labels_df = deepcopy(testing_labels_df) CSVFiles.save(CSVFiles.File(CSVFiles.format"CSV", temp_gz_filename_testing_features_df), original_testing_features_df) CSVFiles.save(CSVFiles.File(CSVFiles.format"CSV", temp_gz_filename_testing_labels_df), original_testing_labels_df) roundtrip_testing_features_df = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", temp_gz_filename_testing_features_df); type_detect_rows = 10_000)) roundtrip_testing_labels_df = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", temp_gz_filename_testing_labels_df); type_detect_rows = 10_000)) for column in names(roundtrip_testing_features_df) for i = 1:size(roundtrip_testing_features_df, 1) if ismissing(roundtrip_testing_features_df[i, column]) Test.@test ismissing(original_testing_features_df[i, column]) else Test.@test roundtrip_testing_features_df[i, column] == original_testing_features_df[i, column] end end end for column in names(roundtrip_testing_labels_df) for i = 1:size(roundtrip_testing_labels_df, 1) if ismissing(roundtrip_testing_labels_df[i, column]) Test.@test ismissing(original_testing_labels_df[i, column]) else Test.@test roundtrip_testing_labels_df[i, column] == original_testing_labels_df[i, column] end end end rm(temp_dir; force = true, recursive = true) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End data preprocessing code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
10942
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin linear regression code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :MedV continuous_label_names = Symbol[single_label_name] categorical_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test( PredictMD.columns_are_linearly_independent(training_features_df) ) Test.@test( PredictMD.columns_are_linearly_independent( training_features_df, feature_names, ) ) Test.@test( length( PredictMD.linearly_dependent_columns( training_features_df, feature_names, ), ) == 0 ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS show( logger_stream, PredictMD.linearly_dependent_columns( training_features_df, feature_names, ) ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test_throws ErrorException PredictMD.single_labeldataframelinearregression( feature_names, single_label_name; package = :thispackagedoesnotexist, intercept = true, interactions = 1, name = "Linear regression", ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS linear_regression = PredictMD.single_labeldataframelinearregression( feature_names, single_label_name; package = :GLM, intercept = true, interactions = 1, name = "Linear regression", ) # PREDICTMD IF INCLUDE TEST STATEMENTS DEEPCOPY_training_features_df = deepcopy(training_features_df) DEEPCOPY_linear_regression = deepcopy(linear_regression) DEEPCOPY_training_labels_df = deepcopy(training_labels_df) double_DEEPCOPY_training_features_df = hcat(DEEPCOPY_training_features_df, DEEPCOPY_training_features_df; makeunique=true) PredictMD.fit!(DEEPCOPY_linear_regression,double_DEEPCOPY_training_features_df,training_labels_df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS # PREDICTMD IF INCLUDE TEST STATEMENTS PredictMD.predict(linear_regression, training_features_df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS PredictMD.fit!(linear_regression,training_features_df,training_labels_df) PredictMD.get_underlying(linear_regression) # TODO: fix this error linear_regression_plot_training = PredictMD.plotsinglelabelregressiontrueversuspredicted( linear_regression, training_features_df, training_labels_df, single_label_name, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "linear_regression_plot_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, linear_regression_plot_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(linear_regression_plot_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "linear_regression_plot_training.pdf", ), linear_regression_plot_training, ) linear_regression_plot_testing = PredictMD.plotsinglelabelregressiontrueversuspredicted( linear_regression, testing_features_df, testing_labels_df, single_label_name ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "linear_regression_plot_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, linear_regression_plot_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(linear_regression_plot_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "linear_regression_plot_testing.pdf", ), linear_regression_plot_testing, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( linear_regression, training_features_df, training_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( linear_regression, testing_features_df, testing_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) linear_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "linear_regression.jld2", ) PredictMD.save_model(linear_regression_filename, linear_regression) # PREDICTMD IF INCLUDE TEST STATEMENTS PredictMD.predict(linear_regression, training_features_df) Test.@test_throws ErrorException PredictMD.predict_proba(linear_regression, training_features_df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS # PREDICTMD IF INCLUDE TEST STATEMENTS linear_regression_filename_bson = joinpath( PredictMD.maketempdir(), "linear_regression.bson", ) PredictMD.save_model( linear_regression_filename_bson, linear_regression, ) test_load_bson = PredictMD.load_model( linear_regression_filename_bson, ) Test.@test_throws( ErrorException, PredictMD.save_model("test.nonexistentextension", linear_regression) ) Test.@test_throws( ErrorException, PredictMD.save_model_jld2("test.nonexistentextension", linear_regression) ) Test.@test_throws( ErrorException, PredictMD.save_model_bson("test.nonexistentextension", linear_regression) ) Test.@test_throws( ErrorException, PredictMD.load_model("test.nonexistentextension") ) Test.@test_throws( ErrorException, PredictMD.load_model_jld2("test.nonexistentextension") ) Test.@test_throws( ErrorException, PredictMD.load_model_bson("test.nonexistentextension") ) linear_regression = nothing Test.@test isnothing(linear_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End linear regression code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
8474
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin random forest regression code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :MedV continuous_label_names = Symbol[single_label_name] categorical_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) feature_contrasts = PredictMD.generate_feature_contrasts( training_features_df, feature_names, ) random_forest_regression = PredictMD.single_labeldataframerandomforestregression( feature_names, single_label_name; nsubfeatures = 2, ntrees = 20, package = :DecisionTree, name = "Random forest", feature_contrasts = feature_contrasts, ) PredictMD.fit!(random_forest_regression, training_features_df, training_labels_df) random_forest_regression_plot_training = PredictMD.plotsinglelabelregressiontrueversuspredicted( random_forest_regression, training_features_df, training_labels_df, single_label_name, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "random_forest_regression_plot_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, random_forest_regression_plot_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(random_forest_regression_plot_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "random_forest_regression_plot_training.pdf", ), random_forest_regression_plot_training, ) random_forest_regression_plot_testing = PredictMD.plotsinglelabelregressiontrueversuspredicted( random_forest_regression, testing_features_df, testing_labels_df, single_label_name, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "random_forest_regression_plot_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, random_forest_regression_plot_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(random_forest_regression_plot_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "random_forest_regression_plot_testing.pdf", ), random_forest_regression_plot_testing, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( random_forest_regression, training_features_df, training_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( random_forest_regression, testing_features_df, testing_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) random_forest_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "random_forest_regression.jld2", ) PredictMD.save_model( random_forest_regression_filename, random_forest_regression ) # PREDICTMD IF INCLUDE TEST STATEMENTS random_forest_regression = nothing Test.@test isnothing(random_forest_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End random forest regression code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
17339
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin Knet neural network regression code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :MedV continuous_label_names = Symbol[single_label_name] categorical_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) knet_mlp_predict_function_source = """ function knetmlp_predict( w, x0::AbstractArray, ) x1 = Knet.relu.( w[1]*x0 .+ w[2] ) x2 = w[3]*x1 .+ w[4] return x2 end """ knet_mlp_loss_function_source = """ function knetmlp_loss( predict_function::Function, modelweights, x::AbstractArray, ytrue::AbstractArray; L1::Real = Float64(0), L2::Real = Float64(0), ) loss = Statistics.mean( abs2, ytrue - predict_function( modelweights, x, ), ) if L1 != 0 loss += L1 * sum(sum(abs, w_i) for w_i in modelweights[1:2:end]) end if L2 != 0 loss += L2 * sum(sum(abs2, w_i) for w_i in modelweights[1:2:end]) end return loss end """ feature_contrasts = PredictMD.generate_feature_contrasts(training_features_df, feature_names) knetmlp_modelweights = Any[ Float64.( 0.1f0*randn(Float64,10,feature_contrasts.num_array_columns_without_intercept) ), Float64.( fill(Float64(0),10,1) ), Float64.( 0.1f0*randn(Float64,1,10) ), Float64.( fill(Float64(0),1,1), ), ] knetmlp_losshyperparameters = Dict() knetmlp_losshyperparameters[:L1] = Float64(0.0) knetmlp_losshyperparameters[:L2] = Float64(0.0) knetmlp_optimizationalgorithm = :Adam knetmlp_optimizerhyperparameters = Dict() knetmlp_minibatchsize = 48 knet_mlp_regression = PredictMD.single_labeldataframeknetregression( feature_names, single_label_name; package = :Knet, name = "Knet MLP", predict_function_source = knet_mlp_predict_function_source, loss_function_source = knet_mlp_loss_function_source, losshyperparameters = knetmlp_losshyperparameters, optimizationalgorithm = knetmlp_optimizationalgorithm, optimizerhyperparameters = knetmlp_optimizerhyperparameters, minibatchsize = knetmlp_minibatchsize, modelweights = knetmlp_modelweights, maxepochs = 100, printlosseverynepochs = 10, feature_contrasts = feature_contrasts, ) PredictMD.parse_functions!(knet_mlp_regression) PredictMD.fit!( knet_mlp_regression, training_features_df, training_labels_df, tuning_features_df, tuning_labels_df, ) PredictMD.set_max_epochs!(knet_mlp_regression, 200) PredictMD.fit!( knet_mlp_regression, training_features_df, training_labels_df, tuning_features_df, tuning_labels_df, ) # PREDICTMD IF INCLUDE TEST STATEMENTS test_knet_mlp_regression = PredictMD.single_labeldataframeknetregression( feature_names, single_label_name; package = :Knet, name = "Knet MLP", predict_function_source = knet_mlp_predict_function_source, loss_function_source = knet_mlp_loss_function_source, losshyperparameters = knetmlp_losshyperparameters, optimizationalgorithm = knetmlp_optimizationalgorithm, optimizerhyperparameters = knetmlp_optimizerhyperparameters, minibatchsize = knetmlp_minibatchsize, modelweights = knetmlp_modelweights, maxepochs = 5, printlosseverynepochs = 1, feature_contrasts = feature_contrasts, ) # PredictMD.fit!( # knet_mlp_regression, # training_features_df, # training_labels_df, # nothing, # nothing, # ) test_knet_mlp_regression = PredictMD.single_labeldataframeknetregression( feature_names, single_label_name; package = :Knet, name = "Knet MLP", predict_function_source = knet_mlp_predict_function_source, loss_function_source = knet_mlp_loss_function_source, losshyperparameters = knetmlp_losshyperparameters, optimizationalgorithm = knetmlp_optimizationalgorithm, optimizerhyperparameters = knetmlp_optimizerhyperparameters, minibatchsize = knetmlp_minibatchsize, modelweights = knetmlp_modelweights, maxepochs = 5, printlosseverynepochs = 1, feature_contrasts = feature_contrasts, ) # PredictMD.fit!( # knet_mlp_regression, # training_features_df, # training_labels_df, # nothing, # tuning_labels_df, # ) test_knet_mlp_regression = PredictMD.single_labeldataframeknetregression( feature_names, single_label_name; package = :Knet, name = "Knet MLP", predict_function_source = knet_mlp_predict_function_source, loss_function_source = knet_mlp_loss_function_source, losshyperparameters = knetmlp_losshyperparameters, optimizationalgorithm = knetmlp_optimizationalgorithm, optimizerhyperparameters = knetmlp_optimizerhyperparameters, minibatchsize = knetmlp_minibatchsize, modelweights = knetmlp_modelweights, maxepochs = 5, printlosseverynepochs = 1, feature_contrasts = feature_contrasts, ) # PredictMD.fit!( # knet_mlp_regression, # training_features_df, # training_labels_df, # tuning_features_df, # nothing, # ) PredictMD.get_underlying(test_knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS knet_learningcurve_lossvsepoch = PredictMD.plotlearningcurve( knet_mlp_regression, :loss_vs_epoch; ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsepoch", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsepoch) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsepoch) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsepoch.pdf", ), knet_learningcurve_lossvsepoch, ) knet_learningcurve_lossvsepoch_skip10epochs = PredictMD.plotlearningcurve( knet_mlp_regression, :loss_vs_epoch; startat = 10, endat = :end, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsepoch_skip10epochs", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsepoch_skip10epochs) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsepoch_skip10epochs) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsepoch_skip10epochs.pdf", ), knet_learningcurve_lossvsepoch_skip10epochs, ) knet_learningcurve_lossvsiteration = PredictMD.plotlearningcurve( knet_mlp_regression, :loss_vs_iteration; window = 50, sampleevery = 10, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsiteration", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsiteration) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsiteration) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsiteration.pdf", ), knet_learningcurve_lossvsiteration, ) knet_learningcurve_lossvsiteration_skip100iterations = PredictMD.plotlearningcurve( knet_mlp_regression, :loss_vs_iteration; window = 50, sampleevery = 10, startat = 100, endat = :end, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsiteration_skip100iterations", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsiteration_skip100iterations) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsiteration_skip100iterations) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsiteration_skip100iterations.pdf", ), knet_learningcurve_lossvsiteration_skip100iterations, ) knet_mlp_regression_plot_training = PredictMD.plotsinglelabelregressiontrueversuspredicted( knet_mlp_regression, training_features_df, training_labels_df, single_label_name, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_mlp_regression_plot_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_mlp_regression_plot_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_mlp_regression_plot_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_mlp_regression_plot_training.pdf", ), knet_mlp_regression_plot_training, ) knet_mlp_regression_plot_testing = PredictMD.plotsinglelabelregressiontrueversuspredicted( knet_mlp_regression, testing_features_df, testing_labels_df, single_label_name, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_mlp_regression_plot_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_mlp_regression_plot_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_mlp_regression_plot_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_mlp_regression_plot_testing.pdf", ), knet_mlp_regression_plot_testing, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( knet_mlp_regression, training_features_df, training_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelregressionmetrics( knet_mlp_regression, testing_features_df, testing_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) knet_mlp_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "knet_mlp_regression.jld2", ) PredictMD.save_model(knet_mlp_regression_filename, knet_mlp_regression) # PREDICTMD IF INCLUDE TEST STATEMENTS knet_mlp_regression = nothing Test.@test isnothing(knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End Knet neural network regression code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
8441
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() using CSVFiles using CategoricalArrays using DataFrames using DecisionTree using Distributions using FileIO using GLM using IterTools using Knet using LIBSVM using LinearAlgebra using PredictMD using PredictMDAPI using PredictMDExtra using RDatasets using Random using StatsModels using Test using Unitful const Schema = StatsModels.Schema # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin model comparison code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) linear_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "linear_regression.jld2", ) random_forest_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "random_forest_regression.jld2", ) knet_mlp_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "knet_mlp_regression.jld2", ) # PREDICTMD IF INCLUDE TEST STATEMENTS linear_regression = nothing Test.@test isnothing(linear_regression) random_forest_regression = nothing Test.@test isnothing(random_forest_regression) knet_mlp_regression = nothing Test.@test isnothing(knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS linear_regression = PredictMD.load_model(linear_regression_filename) random_forest_regression = PredictMD.load_model(random_forest_regression_filename) knet_mlp_regression = PredictMD.load_model(knet_mlp_regression_filename) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) # PREDICTMD IF INCLUDE TEST STATEMENTS PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS all_models = PredictMD.AbstractFittable[ linear_regression, random_forest_regression, knet_mlp_regression, ] single_label_name = :MedV continuous_label_names = Symbol[single_label_name] categorical_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) println(logger_stream, "Single label regression metrics, training set: ") show( logger_stream, PredictMD.singlelabelregressionmetrics( all_models, training_features_df, training_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) println(logger_stream, "Single label regression metrics, testing set: ") show( logger_stream, PredictMD.singlelabelregressionmetrics( all_models, testing_features_df, testing_labels_df, single_label_name, ); allrows = true, allcols = true, splitcols = false, ) ### End model comparison code # PREDICTMD IF INCLUDE TEST STATEMENTS metrics = PredictMD.singlelabelregressionmetrics(all_models, testing_features_df, testing_labels_df, single_label_name) r2_row = first( findall( strip.(metrics[:metric]) .== "R^2 (coefficient of determination)" ) ) Test.@test( strip(metrics[r2_row, :metric]) == "R^2 (coefficient of determination)" ) Test.@test( metrics[r2_row, Symbol("Linear regression")] > 0.550 ) Test.@test( metrics[r2_row, Symbol("Random forest")] > 0.550 ) Test.@test( metrics[r2_row, Symbol("Knet MLP")] > 0.300 ) mse_row = first( findall( strip.(metrics[:metric]) .== "Mean squared error (MSE)" ) ) Test.@test( strip(metrics[mse_row, :metric]) == "Mean squared error (MSE)" ) Test.@test( metrics[mse_row, Symbol("Linear regression")] < 40.000 ) Test.@test( metrics[mse_row, Symbol("Random forest")] < 40.000 ) Test.@test( metrics[mse_row, Symbol("Knet MLP")] < 65.000 ) rmse_row = first( findall( strip.(metrics[:metric]) .== "Root mean square error (RMSE)" ) ) Test.@test( strip(metrics[rmse_row, :metric]) == "Root mean square error (RMSE)" ) Test.@test( metrics[rmse_row, Symbol("Linear regression")] < 6.500 ) Test.@test( metrics[rmse_row, Symbol("Random forest")] < 6.500 ) Test.@test( metrics[rmse_row, Symbol("Knet MLP")] < 8.000 ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
6220
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() using CSVFiles using CategoricalArrays using DataFrames using DecisionTree using Distributions using FileIO using GLM using IterTools using Knet using LIBSVM using LinearAlgebra using PredictMD using PredictMDAPI using PredictMDExtra using RDatasets using Random using StatsModels using Test using Unitful const Schema = StatsModels.Schema # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "boston_housing", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin model output code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) linear_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "linear_regression.jld2", ) random_forest_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "random_forest_regression.jld2", ) knet_mlp_regression_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "knet_mlp_regression.jld2", ) # PREDICTMD IF INCLUDE TEST STATEMENTS linear_regression = nothing Test.@test isnothing(linear_regression) random_forest_regression = nothing Test.@test isnothing(random_forest_regression) knet_mlp_regression = nothing Test.@test isnothing(knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS linear_regression = PredictMD.load_model(linear_regression_filename) random_forest_regression = PredictMD.load_model(random_forest_regression_filename) knet_mlp_regression = PredictMD.load_model(knet_mlp_regression_filename) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) # PREDICTMD IF INCLUDE TEST STATEMENTS PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) PredictMD.parse_functions!(linear_regression) PredictMD.parse_functions!(random_forest_regression) PredictMD.parse_functions!(knet_mlp_regression) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS PredictMD.predict(linear_regression,training_features_df,) PredictMD.predict(random_forest_regression,training_features_df,) PredictMD.predict(knet_mlp_regression,training_features_df,) PredictMD.predict(linear_regression,testing_features_df,) PredictMD.predict(random_forest_regression,testing_features_df,) PredictMD.predict(knet_mlp_regression,testing_features_df,) ### End model output code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "boston_housing", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
6914
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin data preprocessing code Random.seed!(999) df = RDatasets.dataset("MASS", "biopsy") ## PredictMD requires that you provide your data in a DataFrame. ## If your data are in a CSV file (e.g. "data.csv"), load them into ## a DataFrame named `df` with: ## df = DataFrames.DataFrame(CSVFiles.load("data.csv"; type_detect_rows = 10_000)) ## If your data are in a gzipped CSV file (e.g. "data.csv.gz"), load them into ## a DataFrame named `df` with: ## df = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", "data.csv.gz"); type_detect_rows = 10_000)) ## If your data are in some other format, use the appropriate Julia package to ## load your data into a DataFrame named `df`. # PREDICTMD IF INCLUDE TEST STATEMENTS df1 = DataFrames.DataFrame() df1[:x] = randn(5) df1_filename = joinpath(PredictMD.maketempdir(), "df1.csv") CSVFiles.save(df1_filename, df1) df2 = DataFrames.DataFrame(CSVFiles.load(df1_filename; type_detect_rows = 10_000)) Test.@test( all(df1[:x] .== df2[:x]) ) df3 = DataFrames.DataFrame() df3[:y] = randn(5) df3_filename = joinpath(PredictMD.maketempdir(), "df3.csv.gz") CSVFiles.save(CSVFiles.File(CSVFiles.format"CSV", df3_filename), df3) df4 = DataFrames.DataFrame(CSVFiles.load(CSVFiles.File(CSVFiles.format"CSV", df3_filename); type_detect_rows = 10_000)) Test.@test( all(df3[:y] .== df4[:y]) ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS categorical_feature_names = Symbol[] continuous_feature_names = Symbol[ :V1, :V2, :V3, :V4, :V5, :V6, :V7, :V8, :V9, ] categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) FileIO.save( categorical_feature_names_filename, "categorical_feature_names", categorical_feature_names, ) FileIO.save( continuous_feature_names_filename, "continuous_feature_names", continuous_feature_names, ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) df = df[:, vcat(feature_names, label_names)] DataFrames.dropmissing!(df; disallowmissing=true,) PredictMD.shuffle_rows!(df) PredictMD.fix_column_types!( df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) PredictMD.check_column_types( df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test PredictMD.check_no_constant_columns(df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS features_df = df[feature_names] labels_df = df[label_names] (trainingandtuning_features_df, trainingandtuning_labels_df, testing_features_df, testing_labels_df,) = PredictMD.split_data( features_df, labels_df, 0.75, ) (training_features_df, training_labels_df, tuning_features_df, tuning_labels_df,) = PredictMD.split_data( trainingandtuning_features_df, trainingandtuning_labels_df, 2/3, ) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) FileIO.save(trainingandtuning_features_df_filename, trainingandtuning_features_df) FileIO.save(trainingandtuning_labels_df_filename, trainingandtuning_labels_df) FileIO.save(testing_features_df_filename, testing_features_df) FileIO.save(testing_labels_df_filename, testing_labels_df) FileIO.save(training_features_df_filename, training_features_df) FileIO.save(training_labels_df_filename, training_labels_df) FileIO.save(tuning_features_df_filename, tuning_features_df) FileIO.save(tuning_labels_df_filename, tuning_labels_df) ### End data preprocessing code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
6727
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin SMOTE class-balancing code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) DataFrames.describe(logger_stream, training_labels_df[single_label_name]) show(logger_stream, StatsBase.countmap(training_labels_df[single_label_name])) majorityclass = "benign" minorityclass = "malignant" (smoted_training_features_df, smoted_training_labels_df,) = PredictMD.smote( training_features_df, training_labels_df, feature_names, single_label_name; majorityclass = majorityclass, minorityclass = minorityclass, pct_over = 100, minority_to_majority_ratio = 1.0, k = 5, ) PredictMD.check_column_types( smoted_training_features_df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) PredictMD.check_column_types( smoted_training_labels_df; categorical_feature_names = categorical_feature_names, continuous_feature_names = continuous_feature_names, categorical_label_names = categorical_label_names, continuous_label_names = continuous_label_names, ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test PredictMD.check_no_constant_columns(smoted_training_features_df) Test.@test PredictMD.check_no_constant_columns(smoted_training_labels_df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS DataFrames.describe(logger_stream, smoted_training_labels_df[single_label_name]) show(logger_stream, StatsBase.countmap(smoted_training_labels_df[single_label_name])) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) FileIO.save(smoted_training_features_df_filename, smoted_training_features_df) FileIO.save(smoted_training_labels_df_filename, smoted_training_labels_df) ### End SMOTE class-balancing code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
13132
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin logistic classifier code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) smoted_training_features_df = DataFrames.DataFrame( FileIO.load( smoted_training_features_df_filename; type_detect_rows = 100, ) ) smoted_training_labels_df = DataFrames.DataFrame( FileIO.load( smoted_training_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) feature_contrasts = PredictMD.generate_feature_contrasts( smoted_training_features_df, feature_names, ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test( PredictMD.columns_are_linearly_independent(training_features_df) ) Test.@test( PredictMD.columns_are_linearly_independent( training_features_df, feature_names, ) ) Test.@test( length( PredictMD.linearly_dependent_columns( training_features_df, feature_names, ), ) == 0 ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS show( logger_stream, PredictMD.linearly_dependent_columns( training_features_df, feature_names, ) ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test_throws ErrorException PredictMD.singlelabelbinaryclassdataframelogisticclassifier( feature_names, single_label_name, single_label_levels; package = :thispackagedoesnotexist, intercept = true, interactions = 1, name = "Logistic regression", ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS logistic_classifier = PredictMD.singlelabelbinaryclassdataframelogisticclassifier( feature_names, single_label_name, single_label_levels; package = :GLM, intercept = true, interactions = 1, name = "Logistic regression", ) # PREDICTMD IF INCLUDE TEST STATEMENTS PredictMD.predict(logistic_classifier, training_features_df) PredictMD.predict_proba(logistic_classifier, training_features_df) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS PredictMD.fit!(logistic_classifier, smoted_training_features_df, smoted_training_labels_df) # TODO: fix this error PredictMD.get_underlying(logistic_classifier) # TODO: fix this error logistic_hist_training = PredictMD.plotsinglelabelbinaryclassifierhistogram( # TODO: fix this error logistic_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "logistic_hist_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, logistic_hist_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(logistic_hist_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "logistic_hist_training.pdf", ), logistic_hist_training, ) logistic_hist_testing = PredictMD.plotsinglelabelbinaryclassifierhistogram( logistic_classifier, testing_features_df, testing_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "logistic_hist_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, logistic_hist_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(logistic_hist_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "logistic_hist_testing.pdf", ), logistic_hist_testing, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( logistic_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( logistic_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) logistic_calibration_curve = PredictMD.plot_probability_calibration_curve( logistic_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; window = 0.2, ); # PREDICTMD IF INCLUDE TEST STATEMENTS # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(logistic_calibration_curve) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "logistic_calibration_curve.pdf", ), logistic_calibration_curve, ) show( logger_stream, PredictMD.probability_calibration_metrics( logistic_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; window = 0.1, ); allrows = true, allcols = true, splitcols = false, ) logistic_cutoffs, logistic_risk_group_prevalences = PredictMD.risk_score_cutoff_values( logistic_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; average_function = Statistics.mean, ) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug( string( "Low risk: 0 to $(logistic_cutoffs[1]).", " Medium risk: $(logistic_cutoffs[1]) to $(logistic_cutoffs[2]).", " High risk: $(logistic_cutoffs[2]) to 1.", ) ) @debug(logistic_risk_group_prevalences) # PREDICTMD ELSE @info( string( "Low risk: 0 to $(logistic_cutoffs[1]).", " Medium risk: $(logistic_cutoffs[1]) to $(logistic_cutoffs[2]).", " High risk: $(logistic_cutoffs[2]) to 1.", ) ) @info(logistic_risk_group_prevalences) # PREDICTMD ENDIF INCLUDE TEST STATEMENTS logistic_cutoffs, logistic_risk_group_prevalences = PredictMD.risk_score_cutoff_values( logistic_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; average_function = Statistics.median, ) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug( string( "Low risk: 0 to $(logistic_cutoffs[1]).", " Medium risk: $(logistic_cutoffs[1]) to $(logistic_cutoffs[2]).", " High risk: $(logistic_cutoffs[2]) to 1.", ) ) @debug(logistic_risk_group_prevalences) # PREDICTMD ELSE @info( string( "Low risk: 0 to $(logistic_cutoffs[1]).", " Medium risk: $(logistic_cutoffs[1]) to $(logistic_cutoffs[2]).", " High risk: $(logistic_cutoffs[2]) to 1.", ) ) @info(logistic_risk_group_prevalences) # PREDICTMD ENDIF INCLUDE TEST STATEMENTS logistic_classifier_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "logistic_classifier.jld2", ) PredictMD.save_model(logistic_classifier_filename, logistic_classifier) # PREDICTMD IF INCLUDE TEST STATEMENTS logistic_classifier = nothing Test.@test isnothing(logistic_classifier) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End logistic classifier code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9441
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin random forest classifier code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) smoted_training_features_df = DataFrames.DataFrame( FileIO.load( smoted_training_features_df_filename; type_detect_rows = 100, ) ) smoted_training_labels_df = DataFrames.DataFrame( FileIO.load( smoted_training_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) feature_contrasts = PredictMD.generate_feature_contrasts( smoted_training_features_df, feature_names, ) random_forest_classifier = PredictMD.single_labelmulticlassdataframerandomforestclassifier( feature_names, single_label_name, single_label_levels; nsubfeatures = 4, ntrees = 200, package = :DecisionTree, name = "Random forest", feature_contrasts = feature_contrasts, ) PredictMD.fit!( random_forest_classifier, smoted_training_features_df, smoted_training_labels_df, ) random_forest_classifier_hist_training = PredictMD.plotsinglelabelbinaryclassifierhistogram( random_forest_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "random_forest_classifier_hist_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, random_forest_classifier_hist_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(random_forest_classifier_hist_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "random_forest_classifier_hist_training.pdf", ), random_forest_classifier_hist_training, ) random_forest_classifier_hist_testing = PredictMD.plotsinglelabelbinaryclassifierhistogram( random_forest_classifier, testing_features_df, testing_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "random_forest_classifier_hist_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, random_forest_classifier_hist_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(random_forest_classifier_hist_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "random_forest_classifier_hist_testing.pdf", ), random_forest_classifier_hist_testing, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( random_forest_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( random_forest_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) random_forest_classifier_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "random_forest_classifier.jld2", ) PredictMD.save_model( random_forest_classifier_filename, random_forest_classifier, ) # PREDICTMD IF INCLUDE TEST STATEMENTS random_forest_classifier = nothing Test.@test isnothing(random_forest_classifier) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End random forest classifier code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9550
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin C-SVC code Kernel = LIBSVM.Kernel Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) smoted_training_features_df = DataFrames.DataFrame( FileIO.load( smoted_training_features_df_filename; type_detect_rows = 100, ) ) smoted_training_labels_df = DataFrames.DataFrame( FileIO.load( smoted_training_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) feature_contrasts = PredictMD.generate_feature_contrasts( smoted_training_features_df, feature_names, ) # PREDICTMD IF INCLUDE TEST STATEMENTS Test.@test_throws ErrorException PredictMD.single_labelmulticlassdataframesvmclassifier( feature_names, single_label_name, single_label_levels; package = :packagethatdoesnotexist, svmtype = LIBSVM.SVC, name = "SVM (C-SVC)", verbose = false, feature_contrasts = feature_contrasts, ) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS c_svc_svm_classifier = PredictMD.single_labelmulticlassdataframesvmclassifier( feature_names, single_label_name, single_label_levels; package = :LIBSVM, svmtype = LIBSVM.SVC, name = "SVM (C-SVC)", verbose = false, feature_contrasts = feature_contrasts, ) PredictMD.fit!( c_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, ) c_svc_svm_classifier_hist_training = PredictMD.plotsinglelabelbinaryclassifierhistogram( c_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "c_svc_svm_classifier_hist_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, c_svc_svm_classifier_hist_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(c_svc_svm_classifier_hist_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "c_svc_svm_classifier_hist_training.pdf", ), c_svc_svm_classifier_hist_training, ) c_svc_svm_classifier_hist_testing = PredictMD.plotsinglelabelbinaryclassifierhistogram( c_svc_svm_classifier, testing_features_df, testing_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "c_svc_svm_classifier_hist_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, c_svc_svm_classifier_hist_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(c_svc_svm_classifier_hist_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "c_svc_svm_classifier_hist_testing.pdf", ), c_svc_svm_classifier_hist_testing, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( c_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( c_svc_svm_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) c_svc_svm_classifier_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "c_svc_svm_classifier.jld2", ) PredictMD.save_model(c_svc_svm_classifier_filename, c_svc_svm_classifier) ### End C-SVC code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
9350
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin nu-SVC code Kernel = LIBSVM.Kernel Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) smoted_training_features_df = DataFrames.DataFrame( FileIO.load( smoted_training_features_df_filename; type_detect_rows = 100, ) ) smoted_training_labels_df = DataFrames.DataFrame( FileIO.load( smoted_training_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) feature_contrasts = PredictMD.generate_feature_contrasts( smoted_training_features_df, feature_names, ) nu_svc_svm_classifier = PredictMD.single_labelmulticlassdataframesvmclassifier( feature_names, single_label_name, single_label_levels; package = :LIBSVM, svmtype = LIBSVM.NuSVC, name = "SVM (nu-SVC)", verbose = false, feature_contrasts = feature_contrasts, ) PredictMD.fit!( nu_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, ) nu_svc_svm_classifier_hist_training = PredictMD.plotsinglelabelbinaryclassifierhistogram( nu_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "nu_svc_svm_classifier_hist_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, nu_svc_svm_classifier_hist_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(nu_svc_svm_classifier_hist_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "nu_svc_svm_classifier_hist_training.pdf", ), nu_svc_svm_classifier_hist_training, ) nu_svc_svm_classifier_hist_testing = PredictMD.plotsinglelabelbinaryclassifierhistogram( nu_svc_svm_classifier, testing_features_df, testing_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "nu_svc_svm_classifier_hist_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, nu_svc_svm_classifier_hist_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(nu_svc_svm_classifier_hist_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "nu_svc_svm_classifier_hist_testing.pdf", ), nu_svc_svm_classifier_hist_testing, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( nu_svc_svm_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( nu_svc_svm_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) nu_svc_svm_classifier_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "nu_svc_svm_classifier.jld2", ) PredictMD.save_model( nu_svc_svm_classifier_filename, nu_svc_svm_classifier, ) # PREDICTMD IF INCLUDE TEST STATEMENTS nu_svc_svm_classifier = nothing Test.@test isnothing(nu_svc_svm_classifier) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End nu-SVC code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git
[ "MIT" ]
0.34.21
6af1dc255a34ea50e2ea16f11dfe941a2c3965ad
code
16347
## %PREDICTMD_GENERATED_BY% using PredictMDExtra PredictMDExtra.import_all() using PredictMD PredictMD.import_all() # PREDICTMD IF INCLUDE TEST STATEMENTS logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing")) if isnothing(logger) logger_stream = devnull else logger_stream = logger.stream end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### Begin project-specific settings DIRECTORY_CONTAINING_THIS_FILE = @__DIR__ PROJECT_DIRECTORY = dirname( joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...) ) PROJECT_OUTPUT_DIRECTORY = joinpath( PROJECT_DIRECTORY, "output", ) mkpath(PROJECT_OUTPUT_DIRECTORY) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models")) mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots")) # PREDICTMD IF INCLUDE TEST STATEMENTS @debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,) if PredictMD.is_travis_ci() PredictMD.cache_to_path!( ; from = ["cpu_examples", "breast_cancer_biopsy", "output",], to = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End project-specific settings ### Begin Knet neural network classifier code Random.seed!(999) trainingandtuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_features_df.csv", ) trainingandtuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "trainingandtuning_labels_df.csv", ) testing_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_features_df.csv", ) testing_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "testing_labels_df.csv", ) training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_features_df.csv", ) training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "training_labels_df.csv", ) tuning_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_features_df.csv", ) tuning_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "tuning_labels_df.csv", ) trainingandtuning_features_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_features_df_filename; type_detect_rows = 100, ) ) trainingandtuning_labels_df = DataFrames.DataFrame( FileIO.load( trainingandtuning_labels_df_filename; type_detect_rows = 100, ) ) testing_features_df = DataFrames.DataFrame( FileIO.load( testing_features_df_filename; type_detect_rows = 100, ) ) testing_labels_df = DataFrames.DataFrame( FileIO.load( testing_labels_df_filename; type_detect_rows = 100, ) ) training_features_df = DataFrames.DataFrame( FileIO.load( training_features_df_filename; type_detect_rows = 100, ) ) training_labels_df = DataFrames.DataFrame( FileIO.load( training_labels_df_filename; type_detect_rows = 100, ) ) tuning_features_df = DataFrames.DataFrame( FileIO.load( tuning_features_df_filename; type_detect_rows = 100, ) ) tuning_labels_df = DataFrames.DataFrame( FileIO.load( tuning_labels_df_filename; type_detect_rows = 100, ) ) smoted_training_features_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_features_df.csv", ) smoted_training_labels_df_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "smoted_training_labels_df.csv", ) smoted_training_features_df = DataFrames.DataFrame( FileIO.load( smoted_training_features_df_filename; type_detect_rows = 100, ) ) smoted_training_labels_df = DataFrames.DataFrame( FileIO.load( smoted_training_labels_df_filename; type_detect_rows = 100, ) ) categorical_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "categorical_feature_names.jld2", ) continuous_feature_names_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "data", "continuous_feature_names.jld2", ) categorical_feature_names = FileIO.load( categorical_feature_names_filename, "categorical_feature_names", ) continuous_feature_names = FileIO.load( continuous_feature_names_filename, "continuous_feature_names", ) feature_names = vcat(categorical_feature_names, continuous_feature_names) single_label_name = :Class negative_class = "benign" positive_class = "malignant" single_label_levels = [negative_class, positive_class] categorical_label_names = Symbol[single_label_name] continuous_label_names = Symbol[] label_names = vcat(categorical_label_names, continuous_label_names) knet_mlp_predict_function_source = """ function knetmlp_predict( w, x0::AbstractArray; probabilities::Bool = true, ) x1 = Knet.relu.( w[1]*x0 .+ w[2] ) x2 = Knet.relu.( w[3]*x1 .+ w[4] ) x3 = w[5]*x2 .+ w[6] unnormalizedlogprobs = x3 if probabilities normalizedlogprobs = Knet.logp(unnormalizedlogprobs; dims = 1) normalizedprobs = exp.(normalizedlogprobs) return normalizedprobs else return unnormalizedlogprobs end end """ knet_mlp_loss_function_source = """ function knetmlp_loss( predict::Function, modelweights, x::AbstractArray, ytrue::AbstractArray; L1::Real = Float64(0), L2::Real = Float64(0), ) loss = Knet.nll( predict( modelweights, x; probabilities = false, ), ytrue; dims = 1, ) if L1 != 0 loss += L1 * sum(sum(abs, w_i) for w_i in modelweights[1:2:end]) end if L2 != 0 loss += L2 * sum(sum(abs2, w_i) for w_i in modelweights[1:2:end]) end return loss end """ feature_contrasts = PredictMD.generate_feature_contrasts( smoted_training_features_df, feature_names, ) knetmlp_modelweights = Any[ Float64.( 0.1f0*randn(Float64,64,feature_contrasts.num_array_columns_without_intercept) ), Float64.( fill(Float64(0),64,1) ), Float64.( 0.1f0*randn(Float64,32,64) ), Float64.( fill(Float64(0),32,1) ), Float64.( 0.1f0*randn(Float64,2,32) ), Float64.( fill(Float64(0),2,1) ), ] knetmlp_losshyperparameters = Dict() knetmlp_losshyperparameters[:L1] = Float64(0.0) knetmlp_losshyperparameters[:L2] = Float64(0.0) knetmlp_optimizationalgorithm = :Momentum knetmlp_optimizerhyperparameters = Dict() knetmlp_minibatchsize = 48 knet_mlp_classifier = PredictMD.single_labelmulticlassdataframeknetclassifier( feature_names, single_label_name, single_label_levels; package = :Knet, name = "Knet MLP", predict_function_source = knet_mlp_predict_function_source, loss_function_source = knet_mlp_loss_function_source, losshyperparameters = knetmlp_losshyperparameters, optimizationalgorithm = knetmlp_optimizationalgorithm, optimizerhyperparameters = knetmlp_optimizerhyperparameters, minibatchsize = knetmlp_minibatchsize, modelweights = knetmlp_modelweights, printlosseverynepochs = 1, maxepochs = 50, feature_contrasts = feature_contrasts, ) PredictMD.parse_functions!(knet_mlp_classifier) PredictMD.fit!( knet_mlp_classifier, smoted_training_features_df, smoted_training_labels_df, tuning_features_df, tuning_labels_df, ) PredictMD.set_max_epochs!(knet_mlp_classifier, 100) PredictMD.fit!( knet_mlp_classifier, smoted_training_features_df, smoted_training_labels_df, tuning_features_df, tuning_labels_df, ) knet_learningcurve_lossvsepoch = PredictMD.plotlearningcurve( knet_mlp_classifier, :loss_vs_epoch; ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsepoch", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsepoch) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsepoch) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsepoch.pdf", ), knet_learningcurve_lossvsepoch, ) knet_learningcurve_lossvsepoch_skip10epochs = PredictMD.plotlearningcurve( knet_mlp_classifier, :loss_vs_epoch; startat = 10, endat = :end, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsepoch_skip10epochs", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsepoch_skip10epochs) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsepoch_skip10epochs) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsepoch_skip10epochs.pdf", ), knet_learningcurve_lossvsepoch_skip10epochs, ) knet_learningcurve_lossvsiteration = PredictMD.plotlearningcurve( knet_mlp_classifier, :loss_vs_iteration; window = 50, sampleevery = 10, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsiteration", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsiteration) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsiteration) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsiteration.pdf", ), knet_learningcurve_lossvsiteration, ) knet_learningcurve_lossvsiteration_skip100iterations = PredictMD.plotlearningcurve( knet_mlp_classifier, :loss_vs_iteration; window = 50, sampleevery = 10, startat = 100, endat = :end, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_learningcurve_lossvsiteration_skip100iterations", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_learningcurve_lossvsiteration_skip100iterations) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_learningcurve_lossvsiteration_skip100iterations) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_learningcurve_lossvsiteration_skip100iterations.pdf", ), knet_learningcurve_lossvsiteration_skip100iterations, ) knet_mlp_classifier_hist_training = PredictMD.plotsinglelabelbinaryclassifierhistogram( knet_mlp_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_mlp_classifier_hist_training", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_mlp_classifier_hist_training) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_mlp_classifier_hist_training) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_mlp_classifier_hist_training.pdf", ), knet_mlp_classifier_hist_training, ) knet_mlp_classifier_hist_testing = PredictMD.plotsinglelabelbinaryclassifierhistogram( knet_mlp_classifier, testing_features_df, testing_labels_df, single_label_name, single_label_levels, ); # PREDICTMD IF INCLUDE TEST STATEMENTS filename = string( tempname(), "_", "knet_mlp_classifier_hist_testing", ".pdf", ) rm(filename; force = true, recursive = true,) @debug("Attempting to test that the file does not exist...", filename,) Test.@test(!isfile(filename)) @debug("The file does not exist.", filename, isfile(filename),) PredictMD.save_plot(filename, knet_mlp_classifier_hist_testing) if PredictMD.is_force_test_plots() @debug("Attempting to test that the file exists...", filename,) Test.@test(isfile(filename)) @debug("The file does exist.", filename, isfile(filename),) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS display(knet_mlp_classifier_hist_testing) PredictMD.save_plot( joinpath( PROJECT_OUTPUT_DIRECTORY, "plots", "knet_mlp_classifier_hist_testing.pdf", ), knet_mlp_classifier_hist_testing, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( knet_mlp_classifier, smoted_training_features_df, smoted_training_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) show( logger_stream, PredictMD.singlelabelbinaryclassificationmetrics( knet_mlp_classifier, testing_features_df, testing_labels_df, single_label_name, positive_class; sensitivity = 0.95, ); allrows = true, allcols = true, splitcols = false, ) knet_mlp_classifier_filename = joinpath( PROJECT_OUTPUT_DIRECTORY, "models", "knet_mlp_classifier.jld2", ) PredictMD.save_model(knet_mlp_classifier_filename, knet_mlp_classifier) # PREDICTMD IF INCLUDE TEST STATEMENTS knet_mlp_classifier = nothing Test.@test isnothing(knet_mlp_classifier) # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ### End Knet neural network classifier code # PREDICTMD IF INCLUDE TEST STATEMENTS if PredictMD.is_travis_ci() PredictMD.path_to_cache!( ; to = ["cpu_examples", "breast_cancer_biopsy", "output",], from = [PROJECT_OUTPUT_DIRECTORY], ) end # PREDICTMD ELSE # PREDICTMD ENDIF INCLUDE TEST STATEMENTS ## %PREDICTMD_GENERATED_BY%
PredictMD
https://github.com/bcbi/PredictMD.jl.git