licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 9722 | function θ(l, lA, lB, PA, PB, r, g)
θ = cₖ(l, lA, lB, PA, PB)
θ *= factorial(l) * g^(r - l)
θ /= factorial(r) * factorial(l - 2 * r)
return θ
end
function gi(l, lp, r, rp, i, lA, lB, Ai, Bi, Pi, gP, lC, lD, Ci, Di, Qi, gQ)
δ = 1 / (4 * gP) + 1 / (4 * gQ)
gi = (-1.0)^l
gi *= θ(l, lA, lB, Pi - Ai, Pi - Bi, r, gP) * θ(lp, lC, lD, Qi - Ci, Qi - Di, rp, gQ)
gi *= (-1.0)^i * (2 * δ)^(2 * (r + rp))
gi *= factorial(l + lp - 2 * r - 2 * rp) * δ^i
gi *= (Pi - Qi)^(l + lp - 2 * (r + rp + i))
gi /= (4 * δ)^(l + lp) * factorial(i)
gi /= factorial(l + lp - 2 * (r + rp + i))
return gi
end
function Gxyz(lA, mA, nA, lB, mB, nB, lC, mC, nC, lD, mD, nD, a, b, c, d, RA, RB, RC, RD)
gP = a + b
gQ = c + d
δ = 1 / (4 * gP) + 1 / (4 * gQ)
RP = gaussianproduct(a, RA, b, RB, gP)
RQ = gaussianproduct(c, RC, d, RD, gQ)
AB = distance(RA, RB)
CD = distance(RC, RD)
PQ = distance(RP, RQ)
Gxyz = 0.0
for l = 0:(lA+lB)
for r = 0:trunc(Int64, l / 2)
for lp = 0:(lC+lD)
for rp = 0:trunc(Int64, lp / 2)
for i = 0:trunc(Int64, (l + lp - 2 * r - 2 * rp) / 2)
gx = gi(
l,
lp,
r,
rp,
i,
lA,
lB,
RA[1],
RB[1],
RP[1],
gP,
lC,
lD,
RC[1],
RD[1],
RQ[1],
gQ,
)
for m = 0:(mA+mB)
for s = 0:trunc(Int64, m / 2)
for mp = 0:(mC+mD)
for sp = 0:trunc(Int64, mp / 2)
for j =
0:trunc(Int64, (m + mp - 2 * s - 2 * sp) / 2)
gy = gi(
m,
mp,
s,
sp,
j,
mA,
mB,
RA[2],
RB[2],
RP[2],
gP,
mC,
mD,
RC[2],
RD[2],
RQ[2],
gQ,
)
for n = 0:(nA+nB)
for t = 0:trunc(Int64, n / 2)
for np = 0:(nC+nD)
for tp = 0:trunc(Int64, np / 2)
for k =
0:trunc(
Int64,
(n + np - 2 * t - 2 * tp) /
2,
)
gz = gi(
n,
np,
t,
tp,
k,
nA,
nB,
RA[3],
RB[3],
RP[3],
gP,
nC,
nD,
RC[3],
RD[3],
RQ[3],
gQ,
)
ν =
l +
lp +
m +
mp +
n +
np -
2 * (
r +
rp +
s +
sp +
t +
tp
) - (i + j + k)
F = boys(ν, PQ / (4 * δ))
Gxyz += gx * gy * gz * F
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
Gxyz *= (2 * π^2) / (gP * gQ)
Gxyz *= sqrt(π / (gP + gQ))
Gxyz *= exp(-(a * b * AB) / gP)
Gxyz *= exp(-(c * d * CD) / gQ)
Na = normalization(a, lA, mA, nA)
Nb = normalization(b, lB, mB, nB)
Nc = normalization(c, lC, mC, nC)
Nd = normalization(d, lD, mD, nD)
Gxyz *= Na * Nb * Nc * Nd
return Gxyz
end
function repulsion(basis, molecule::Molecule)
K = length(basis)
G = zeros(K, K, K, K)
Ntei = 0
for (A, bA) in enumerate(basis)
for (B, bB) in enumerate(basis)
for (C, bC) in enumerate(basis)
for (D, bD) in enumerate(basis)
Ntei += 1
for (a, dA) in zip(bA.α, bA.d)
for (b, dB) in zip(bB.α, bB.d)
for (c, dC) in zip(bC.α, bC.d)
for (d, dD) in zip(bD.α, bD.d)
RA = bA.R
RB = bB.R
RC = bC.R
RD = bD.R
lA, mA, nA = bA.ℓ, bA.m, bA.n
lB, mB, nB = bB.ℓ, bB.m, bB.n
lC, mC, nC = bC.ℓ, bC.m, bC.n
lD, mD, nD = bD.ℓ, bD.m, bD.n
tei = dA * dB * dC * dD
tei *= Gxyz(
lA,
mA,
nA,
lB,
mB,
nB,
lC,
mC,
nC,
lD,
mD,
nD,
a,
b,
c,
d,
RA,
RB,
RC,
RD,
)
G[A, B, C, D] += tei
end
end
end
end
end
end
end
end
return G
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 1237 | sto3g_α = [
[0.16885540 0.62391373 3.42525091],
[0.31364979 1.15892300 6.36242139],
[
0.79465050 2.93620070 16.1195750
0.04808870 0.14786010 0.63628970
],
[
1.48719270 5.49511530 30.1678710
0.09937070 0.30553890 1.31483310
],
[
2.40526700 8.88736220 48.7911130
0.16906180 0.51982050 2.23695610
],
[
3.53051220 13.0450960 71.6168370
0.22228990 0.68348310 2.94124940
],
[
4.88566020 18.0523120 99.1061690
0.28571440 0.87849660 3.78045590
],
[
6.44360830 23.8088610 130.709320
0.38038900 1.16959610 5.03315130
],
[
8.21682070 30.3608120 166.679130
0.48858850 1.50228120 6.46480320
],
[
10.2052970 37.7081510 207.015610
0.62322930 1.91626620 8.24631510
],
]
sto3g_d = [
0.44463454 0.53532814 0.15432897 # 1s
0.70011547 0.39951283 0.09996723 # 2s
0.39195739 0.60768372 0.15591627 # 2p
0.91667696 0.21754360 0.22776350 # 3s
0.48464037 0.57776647 0.00495151 # 3p
1.13103444 0.01960641 0.30884412 # 4s
0.54989495 0.57152276 0.12154686 # 4p
0.28657326 0.65554736 0.21976795
] # 3d
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 8846 | @time @testset "attraction.jl" begin
methane = molecule("data/methane.xyz")
basis = buildbasis(methane)
@test isapprox(
attraction(basis, methane),
[
-33.65274107343551 -8.128483186582468 -4.302248061220742e-21 0.0 -2.3395627422600606e-21 -3.4425727128838974 -3.4423838127848048 -3.442376404838094 -3.4424634522019817
-8.128483186582468 -7.846737221379609 4.219867102568401e-21 0.0 -1.119237077081978e-21 -4.79382406264269 -4.793670170629788 -4.7936641354365905 -4.793735051582429
-4.302248061220742e-21 4.219867102568401e-21 -5.148220575651905 0.0 2.6630060539633543e-42 0.42467567253014044 -1.6326583088487174 -0.7572395638430469 1.9654157862614763
0.0 0.0 0.0 -5.148220575651905 0.0 -1.8707161038007107 -0.5291502469186976 1.7580585175794305 0.6419347128998832
-2.3395627422600606e-21 -1.119237077081978e-21 2.6630060539633543e-42 0.0 -5.148220575651905 1.3347769187166876 -1.5861870562726248 1.3406644617589194 -1.0893213729460038
-3.4425727128838974 -4.79382406264269 0.42467567253014044 -1.870716103800711 1.3347769187166876 -4.615301624567201 -2.6795202055027674 -2.679474986263546 -2.6796317899448994
-3.4423838127848048 -4.79367017062979 -1.632658308848718 -0.5291502469186975 -1.5861870562726248 -2.679520205502768 -4.615179534172651 -2.6794528751610276 -2.6794685962180727
-3.4423764048380936 -4.7936641354365905 -0.7572395638430469 1.7580585175794308 1.3406644617589194 -2.679474986263546 -2.6794528751610276 -4.615174746193909 -2.6795497777543855
-3.4424634522019817 -4.793735051582428 1.965415786261476 0.6419347128998832 -1.0893213729460038 -2.6796317899448994 -2.679468596218072 -2.6795497777543855 -4.6152310072574805;;;
-0.9107389698526694 -0.3795871839543028 0.010708951446337912 -0.04717342956362168 0.03365877100769186 -0.1992626319340502 -0.16952044433007313 -0.1695194191663955 -0.16952544011072102
-0.37958718395430274 -0.9032122062813566 0.05863419606223139 -0.25828636275189426 0.18429021630811865 -0.8337147753125443 -0.5495603117904125 -0.5495545381128815 -0.5495760942118206
0.010708951446337916 0.05863419606223139 -0.6384475869485977 0.034151804587261234 -0.02436769555946219 0.14209301980379188 -0.169358869599552 -0.06271002385670235 0.26898441827177416
-0.04717342956362169 -0.2582863627518942 0.034151804587261234 -0.7811349940684297 0.10734083312098289 -0.6259263658804498 -0.1945949930362779 0.08404740559235227 -0.05193199698996576
0.033658771007691865 0.18429021630811865 -0.02436769555946219 0.10734083312098289 -0.7072835934612206 0.4466054813426914 -0.10038899970305869 0.25617424897466046 -0.039854863453873984
-0.19926263193405017 -0.8337147753125443 0.14209301980379188 -0.6259263658804497 0.4466054813426913 -1.2266137219491882 -0.4318888250002644 -0.4318765476042394 -0.43191569787886486
-0.16952044433007313 -0.5495603117904125 -0.16935886959955201 -0.1945949930362779 -0.10038899970305869 -0.4318888250002644 -0.5367469302894173 -0.3033106457503562 -0.30331867982304805
-0.16951941916639557 -0.5495545381128816 -0.06271002385670235 0.08404740559235227 0.25617424897466046 -0.4318765476042393 -0.3033106457503562 -0.5367384931715369 -0.3033261028397706
-0.16952544011072102 -0.5495760942118206 0.2689844182717742 -0.05193199698996575 -0.039854863453873984 -0.43191569787886486 -0.3033186798230481 -0.3033261028397706 -0.5367653976154632;;;
-0.9106990014859211 -0.3795707017035383 -0.04116693582330486 -0.013342347347099678 -0.03999517865766886 -0.16952242674506915 -0.19924275184121823 -0.16951345426078793 -0.16951720549577387
-0.37957070170353824 -0.9031910419934925 -0.225414204973128 -0.07305752929075675 -0.21899811631773003 -0.5495643535053908 -0.8336893953594898 -0.5495511215613695 -0.5495552421471761
-0.04116693582330486 -0.22541420497312803 -0.7452693442854489 -0.037138099480749615 -0.11132560748853085 -0.0618381841731841 -0.546271580829469 -0.2058207142440771 0.12586284080675023
-0.013342347347099678 -0.07305752929075675 -0.037138099480749615 -0.642718766662381 -0.03608101730267709 -0.2647062269846173 -0.17704852283783343 0.1773658655497961 0.041393980362606234
-0.03999517865766886 -0.21899811631773003 -0.11132560748853085 -0.03608101730267709 -0.738839064626213 0.05226598036943966 -0.5307227519837265 0.052987827167382796 -0.24304342855010574
-0.16952242674506915 -0.5495643535053907 -0.0618381841731841 -0.2647062269846174 0.05226598036943966 -0.5367469302894173 -0.4318888250002644 -0.30330968752313736 -0.30332647552321096
-0.19924275184121823 -0.8336893953594897 -0.546271580829469 -0.17704852283783346 -0.5307227519837265 -0.4318888250002644 -1.2266137219491882 -0.4318808816900268 -0.4318804369555949
-0.16951345426078795 -0.5495511215613695 -0.2058207142440771 0.17736586554979614 0.052987827167382796 -0.30330968752313736 -0.4318808816900268 -0.5367414715847842 -0.3033196047920976
-0.16951720549577387 -0.5495552421471761 0.12586284080675023 0.041393980362606234 -0.24304342855010577 -0.303326475523211 -0.4318804369555949 -0.3033196047920975 -0.5367411659601181;;;
-0.9106974341057493 -0.37957005534205596 -0.01909348092168746 0.044328714936995174 0.0338042972729354 -0.16952147935209944 -0.16951353200811492 -0.19924197224248894 -0.1695182913895787
-0.3795700553420559 -0.9031902119957118 -0.1045487815638409 0.24272751280723975 0.1850997262365567 -0.5495587383633193 -0.5495512800692732 -0.8336884000295924 -0.5495652479601771
-0.01909348092168746 -0.1045487815638409 -0.6553313996768082 0.05722843559391346 0.04364139705000036 -0.0009403389367754497 -0.2515723624579084 -0.25336494142881977 0.18676052883914027
0.044328714936995174 0.24272751280723975 0.05722843559391346 -0.7635470894273965 -0.10132081505810173 -0.10560024362690602 0.05783024645338575 0.5882291610258157 0.20050290742444832
0.0338042972729354 0.1850997262365567 0.04364139705000036 -0.10132081505810173 -0.7079471570314896 0.2558649180855194 -0.09997718317327248 0.44857319803175755 -0.03944410197497965
-0.16952147935209944 -0.5495587383633191 -0.0009403389367754519 -0.10560024362690602 0.2558649180855195 -0.5367384931715369 -0.30331240193726666 -0.4318765476042393 -0.30332876991772734
-0.16951353200811495 -0.5495512800692733 -0.2515723624579084 0.05783024645338576 -0.09997718317327245 -0.3033124019372667 -0.5367414715847842 -0.4318808816900268 -0.30331447615278273
-0.19924197224248894 -0.8336884000295924 -0.25336494142881977 0.5882291610258157 0.4485731980317575 -0.4318765476042394 -0.4318808816900268 -1.2266137219491882 -0.4319036342283779
-0.16951829138957872 -0.5495652479601772 0.18676052883914024 0.2005029074244483 -0.03944410197497964 -0.30332876991772734 -0.30331447615278273 -0.43190363422837796 -0.5367571073331551;;;
-0.9107158517997539 -0.3795776504852406 0.04955905250252896 0.016186740923820338 -0.027467844458829306 -0.16952658669590845 -0.16951636968852066 -0.16951737785504375 -0.19925113305827521
-0.3795776504852406 -0.9031999648473785 0.27135862361672736 0.08862985703175622 -0.1503990913806498 -0.5495784318852318 -0.5495535381321905 -0.549563385460914 -0.8337000955764959
0.04955905250252896 0.2713586236167274 -0.7967438234046095 -0.054236535892840554 0.0920358668184978 0.18846338657623457 -0.06218103647883193 0.04447021739016323 0.6576103070669037
0.016186740923820338 0.08862985703175622 -0.054236535892840554 -0.6484019384033824 0.030060315051709995 -0.18324457047127696 -0.01980969322988889 0.2588341023478038 0.21478553628083843
-0.02746784445882931 -0.15039909138064983 0.0920358668184978 0.030060315051709995 -0.6816978558186101 0.0868302239931666 -0.26901148111261713 0.0875511940865913 -0.3644770575086145
-0.16952658669590848 -0.5495784318852318 0.1884633865762346 -0.18324457047127696 0.0868302239931666 -0.5367653976154632 -0.3033205343198842 -0.3033201143467384 -0.43191569787886486
-0.16951636968852063 -0.5495535381321905 -0.062181036478831934 -0.01980969322988889 -0.26901148111261713 -0.30332053431988426 -0.5367411659601181 -0.3033145744789922 -0.43188043695559486
-0.16951737785504375 -0.549563385460914 0.044470217390163234 0.2588341023478038 0.08755119408659132 -0.30332011434673845 -0.30331457447899224 -0.5367571073331551 -0.43190363422837796
-0.19925113305827524 -0.8337000955764958 0.6576103070669038 0.2147855362808384 -0.36447705750861453 -0.43191569787886486 -0.4318804369555949 -0.4319036342283779 -1.2266137219491882
],
atol = 1e-4,
)
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 333 | @time @testset "basis.jl" begin
methane = molecule("data/methane.xyz")
sto3gBasis = buildbasis(methane)
@test sto3gBasis[1].R == [0.00001021434087, 0.00001532972083, -0.00001493500137]
@test sto3gBasis[1].α == [3.53051220, 13.0450960, 71.6168370]
@test sto3gBasis[1].d == [0.44463454, 0.53532814, 0.15432897]
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 247 | @time @testset "auxiliary.jl" begin
@test doublefactorial(1) == 1
@test doublefactorial(2) == 2
@test doublefactorial(3) == 3
@test doublefactorial(4) == 8
@test doublefactorial(5) == 15
@test doublefactorial(9) == 945
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 1818 | @time @testset "kinetic.jl" begin
methane = molecule("data/methane.xyz")
basis = buildbasis(methane)
@test isapprox(
kinetic(basis, methane),
[
15.891121686559655 0.9286241920313923 1.367784730397128e-21 0.0 2.395388571832957e-21 0.09394295851111978 0.0939291959311415 0.09392865624610672 0.09393499798489882
0.9286241920313925 0.71960967113485 -9.459524706040978e-22 0.0 7.578163395828373e-22 0.375944046589143 0.3759257153692945 0.3759249964765981 0.3759334437974228
-1.5028089507498071e-21 -2.9264920152842656e-22 1.4777280379047113 0.0 7.118883883942926e-43 -0.1043967714076755 0.4013444534028426 0.18614653493348993 -0.48314741266422623
0.0 0.0 0.0 1.4777280379047113 0.0 0.4598726371435354 0.130077135838251 -0.43217036837968165 -0.15780329933488668
-5.116781801072144e-21 -3.952986845522944e-23 7.118883883942926e-43 0.0 1.4777280379047113 -0.3281242837229337 0.38992076519875674 -0.32956551134010936 0.26778191494015297
0.09394295851111983 0.3759440465891428 -0.10439677140767545 0.4598726371435353 -0.32812428372293356 0.7600318766425666 0.13139233630351171 0.13138510105941034 0.13140817322560117
0.09392919593114145 0.37592571536929414 0.4013444534028424 0.13007713583825095 0.3899207651987568 0.13139233630351171 0.7600318766425666 0.13138765518627363 0.13138739309855152
0.09392865624610672 0.37592499647659794 0.1861465349334899 -0.4321703683796816 -0.32956551134010936 0.13138510105941031 0.13138765518627366 0.7600318766425666 0.13140106372667984
0.09393499798489874 0.3759334437974225 -0.48314741266422606 -0.1578032993348867 0.26778191494015285 0.1314081732256011 0.1313873930985515 0.13140106372667987 0.7600318766425666
],
atol = 1e-4,
)
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 518 | @time @testset "molecule.jl" begin
methane = molecule("data/methane.xyz")
@test methane.atoms == ["C", "H", "H", "H", "H"]
@test methane.coords == [
0.00001021434087 0.00001532972083 -0.00001493500137
-0.19951695340554 0.87894179053067 -0.62713882127936
0.76712229809243 0.24863902907755 0.74526241504934
0.35580334399536 -0.82601803138729 -0.62993342769733
-0.92343260142312 -0.30159515034176 0.51179839372872
]
@test methane.numbers == [6, 1, 1, 1, 1]
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 104 | @time @testset "auxiliary.jl" begin
@test normalization(0.28294, 0, 0, 0) == 0.2764909076098983
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 1806 | @time @testset "overlap.jl" begin
methane = molecule("data/methane.xyz")
basis = buildbasis(methane)
@test isapprox(
overlap(basis, methane),
[
0.999999999881269 0.417217495549548 4.755302191269753e-22 0.0 -2.245487389655587e-23 0.19385525790537905 0.19384502244263016 0.19384462104479344 0.19384933767728355
0.417217495549548 1.2128613399525237 -1.3349160118206168e-21 0.0 1.1349281180613959e-22 0.8591634048050029 0.8591462825287147 0.8591456110342427 0.8591535013433647
4.755302191269753e-22 -1.334916011820617e-21 0.9999999729969503 0.0 -4.146488823526061e-43 -0.09395364954355068 0.3612081113887419 0.16753120813212868 -0.43482462947800954
0.0 0.0 0.0 0.9999999729969503 0.0 0.4138701992624604 0.11706880753583301 -0.388951768344355 -0.142020342787981
-2.245487389655577e-23 1.1349281180613963e-22 -4.146488823526061e-43 0.0 0.9999999729969503 -0.29530102841251776 0.35092684599113616 -0.29660776813932477 0.2409992662543452
0.19385525790537908 0.859163404805003 -0.09395364954355068 0.4138701992624603 -0.2953010284125178 0.9999999908897999 0.5270998376751642 0.5270892307634182 0.5271230537189303
0.19384502244263013 0.8591462825287147 0.36120811138874187 0.11706880753583301 0.35092684599113616 0.5270998376751642 0.9999999908897999 0.5270929751609674 0.5270925909370973
0.1938446210447935 0.8591456110342426 0.1675312081321287 -0.3889517683443551 -0.29660776813932477 0.5270892307634182 0.5270929751609674 0.9999999908897999 0.5271126317567845
0.19384933767728357 0.8591535013433647 -0.4348246294780095 -0.14202034278798098 0.2409992662543452 0.5271230537189303 0.5270925909370973 0.5271126317567845 0.9999999908897999
],
atol = 1e-4,
)
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 626 | @time @testset "repulsion.jl" begin
hydrogen = molecule("data/h2.xyz")
basis = buildbasis(hydrogen)
@test isapprox(
repulsion(basis, hydrogen),
[
0.7746059298062673 0.6482052325853882
0.6482052325853882 0.6994796252934075;;;
0.6482052325853882 0.5707519808185033
0.5707519808185033 0.6482052325853881;;;;
0.6482052325853882 0.5707519808185033
0.5707519808185033 0.6482052325853881;;;
0.6994796252934075 0.6482052325853882
0.6482052325853883 0.7746059298062673
],
atol = 1e-4,
)
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | code | 298 | using OohataHuzinaga
using Test
@testset "OohataHuzinaga.jl" begin
include("molecule.jl")
include("basis.jl")
include("doublefactorial.jl")
include("normalization.jl")
include("overlap.jl")
include("kinetic.jl")
include("attraction.jl")
include("repulsion.jl")
end
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | docs | 2025 | # OohataHuzinaga.jl
[](https://github.com/Leticia-maria/OohataHuzinaga.jl/)
[](https://github.com/Leticia-maria/OohataHuzinaga.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://github.com/Leticia-maria/OohataHuzinaga.jl/)
[](https://zenodo.org/badge/latestdoi/419452183)

## Overview
## Installation
To install the package, you will call the Julia Package Manager on your REPL:
```julia
]add OohataHuzinaga
```
Done! Now it is *ready to use*
## Package Features
- *Calculates overlap integrals*
- *Calculate kinetic integrals*
- *Calculate electron-nuclear attraction integrals*
- *Calculate electron-electron repulsion integrals*
## Quick Example
Consider that you want to calculate the electronic energy of a methane molecule. First, you will need the cartesian coordinates of the molecule of interest. This information is stored in our ```methane.xyz``` file, formatted as follows:
```julia
5
C 0.00001021434087 0.00001532972083 -0.00001493500137
H -0.19951695340554 0.87894179053067 -0.62713882127936
H 0.76712229809243 0.24863902907755 0.74526241504934
H 0.35580334399536 -0.82601803138729 -0.62993342769733
H -0.92343260142312 -0.30159515034176 0.51179839372872
```
```julia
methane = molecule("methane.xyz")
```
For any molecular calculations, you will need a basis set.
```julia
sto3g = buildbasis(methane)
```
With this information, we can build the molecular integrals.
```julia
S = overlap(sto3g, methane)
T = kinetic(sto3g, methane)
V = attraction(sto3g, methane)
G = repulsion(sto3g, methane)
```
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | docs | 95 | ## Gaussian Basis Sets
```@docs
GaussianBasis
```
```@docs
buildbasis(molecule::Molecule)
``` | OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | docs | 1324 | # OohataHuzinaga.jl: An application for Computational Chemists
## Overview
## Installation
To install the package, you will call the Julia Package Manager on your REPL:
```julia
]add OohataHuzinaga
```
Done! Now it is *ready to use*
## Package Features
- *Calculates overlap integrals*
- *Calculate kinetic integrals*
- *Calculate electron-nuclear attraction integrals*
- *Calculate electron-electron repulsion integrals*
## Quick Example
Consider that you want to calculate the electronic energy of a methane molecule. First, you will need the cartesian coordinates of the molecule of interest. This information is stored in our ```methane.xyz``` file, formatted as follows:
```julia
5
C 0.00001021434087 0.00001532972083 -0.00001493500137
H -0.19951695340554 0.87894179053067 -0.62713882127936
H 0.76712229809243 0.24863902907755 0.74526241504934
H 0.35580334399536 -0.82601803138729 -0.62993342769733
H -0.92343260142312 -0.30159515034176 0.51179839372872
```
```julia
methane = molecule("methane.xyz")
```
For any molecular calculations, you will need a basis set.
```julia
sto3g = buildbasis(methane)
```
With this information, we can build the molecular integrals.
```julia
S = overlap(sto3g, methane)
T = kinetic(sto3g, methane)
V = attraction(sto3g, methane)
G = repulsion(sto3g, methane)
```
| OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.1.1 | d192a27769e653b00dfa3d7e49dba341aea8dc50 | docs | 82 | ## The input system
```@docs
Molecule
```
```@docs
molecule(xyzfile::String)
``` | OohataHuzinaga | https://github.com/HartreeFoca/OohataHuzinaga.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 5132 | ### A Pluto.jl notebook ###
# v0.19.36
#> [frontmatter]
#> title = "Home"
using Markdown
using InteractiveUtils
# ╔═╡ 8a70f0c0-c70e-4022-8a06-ea8fec31a7c7
# ╠═╡ show_logs = false
begin
using Pkg
Pkg.activate(joinpath(pwd(), "docs"))
Pkg.instantiate()
using HTMLStrings: to_html, head, link, script, divv, h1, img, p, span, a, figure, hr
using PlutoUI
end
# ╔═╡ 5e70dc3d-85b6-4149-9962-70215d3c7f1e
md"""
## Tutorials
"""
# ╔═╡ 8b5d431a-f91c-422b-86cf-3ace891e742f
md"""
## Python Usage
"""
# ╔═╡ b3349485-1a5f-4da6-be79-965fec5fbc13
md"""
## API
"""
# ╔═╡ d0ec67d4-26bd-4960-b4d9-75d9c0b740b0
to_html(hr())
# ╔═╡ 4195fc74-92a0-4ad4-8c36-9d652ac36fd5
TableOfContents()
# ╔═╡ febd9959-70d6-409d-b216-762ec0b751dc
data_theme = "cupcake";
# ╔═╡ 0af240e8-ccf7-4bf8-b21c-08e2972d2459
function index_title_card(title::String, subtitle::String, image_url::String; data_theme::String = "pastel", border_color::String = "primary")
return to_html(
divv(
head(
link(:href => "https://cdn.jsdelivr.net/npm/[email protected]/dist/full.css", :rel => "stylesheet", :type => "text/css"),
script(:src => "https://cdn.tailwindcss.com")
),
divv(:data_theme => "$data_theme", :class => "card card-bordered flex justify-center items-center border-$border_color text-center w-full dark:text-[#e6e6e6]",
divv(:class => "card-body flex flex-col justify-center items-center",
img(:src => "$image_url", :class => "h-24 w-24 md:h-52 md:w-52 rounded-md", :alt => "$title Logo"),
divv(:class => "text-5xl font-bold bg-gradient-to-r from-accent to-primary inline-block text-transparent bg-clip-text py-10", "$title"),
p(:class => "card-text text-md font-serif", "$subtitle"
)
)
)
)
)
end;
# ╔═╡ 18be66cd-28c4-4137-b16b-428430b7f996
index_title_card(
"DistanceTransforms.jl",
"Fast Distance Transforms in Julia",
"https://img.freepik.com/free-vector/global-communication-background-business-network-vector-design_53876-151122.jpg";
data_theme = data_theme
)
# ╔═╡ 09b3d1e1-b44f-461d-abaf-2e5a1f6f6cc2
struct Article
title::String
path::String
image_url::String
end
# ╔═╡ 0d222d9d-7576-40a7-acb4-b0e27f9a9ef8
article_list_tutorials = Article[
Article("Getting Started", "docs/01_getting_started.jl", "https://img.freepik.com/free-photo/futuristic-spaceship-takes-off-into-purple-galaxy-fueled-by-innovation-generated-by-ai_24640-100023.jpg"),
Article("Advanced Usage", "docs/02_advanced_usage.jl", "https://images.pexels.com/photos/3091200/pexels-photo-3091200.jpeg?auto=compress&cs=tinysrgb&w=800")
];
# ╔═╡ e0ef1b4d-0076-410c-b325-32a7a274f487
article_list_python = Article[
Article("Python", "https://colab.research.google.com/drive/1moYjSiGEA4GoYD_8BeSw69fBPv2MtROZ?authuser=2", "https://img.freepik.com/free-vector/code-typing-concept-illustration_114360-3581.jpg?size=626&ext=jpg&ga=GA1.1.1694943658.1700350224&semt=sph"),
];
# ╔═╡ 8d11bae1-d232-4c03-981a-cd9f1db24e6b
article_list_api = Article[
Article("API", "docs/99_api.jl", "https://img.freepik.com/free-photo/modern-technology-workshop-creativity-innovation-communication-development-generated-by-ai_188544-24548.jpg"),
];
# ╔═╡ 3bcd40f0-e8dd-48bd-8249-51b89f5766de
function article_card(article::Article, color::String; data_theme = "pastel")
a(:href => article.path, :class => "w-1/2 p-2",
divv(:data_theme => "$data_theme", :class => "card card-bordered border-$color text-center dark:text-[#e6e6e6]",
divv(:class => "card-body justify-center items-center",
p(:class => "card-title", article.title),
p("Click to open the notebook")
),
figure(
img(:class =>"w-full h-40", :src => article.image_url, :alt => article.title)
)
)
)
end;
# ╔═╡ ace65d98-fe6b-45b7-990d-df8f59f6a5b3
to_html(
divv(:class => "flex flex-wrap justify-center items-start",
[article_card(article, "secondary"; data_theme = data_theme) for article in article_list_tutorials]...
)
)
# ╔═╡ 75f02433-7ef3-45f4-ad2a-d610923824af
to_html(
divv(:class => "flex flex-wrap justify-center items-start",
[article_card(article, "secondary"; data_theme = data_theme) for article in article_list_python]...
)
)
# ╔═╡ 0c5f21fe-80fc-4810-b4a8-bb1c290c5d81
to_html(
divv(:class => "flex flex-wrap justify-center items-start",
[article_card(article, "secondary"; data_theme = data_theme) for article in article_list_api]...
)
)
# ╔═╡ Cell order:
# ╟─18be66cd-28c4-4137-b16b-428430b7f996
# ╟─5e70dc3d-85b6-4149-9962-70215d3c7f1e
# ╟─ace65d98-fe6b-45b7-990d-df8f59f6a5b3
# ╟─8b5d431a-f91c-422b-86cf-3ace891e742f
# ╟─75f02433-7ef3-45f4-ad2a-d610923824af
# ╟─b3349485-1a5f-4da6-be79-965fec5fbc13
# ╟─0c5f21fe-80fc-4810-b4a8-bb1c290c5d81
# ╟─d0ec67d4-26bd-4960-b4d9-75d9c0b740b0
# ╟─4195fc74-92a0-4ad4-8c36-9d652ac36fd5
# ╟─febd9959-70d6-409d-b216-762ec0b751dc
# ╟─8a70f0c0-c70e-4022-8a06-ea8fec31a7c7
# ╟─0af240e8-ccf7-4bf8-b21c-08e2972d2459
# ╟─09b3d1e1-b44f-461d-abaf-2e5a1f6f6cc2
# ╟─0d222d9d-7576-40a7-acb4-b0e27f9a9ef8
# ╟─e0ef1b4d-0076-410c-b325-32a7a274f487
# ╟─8d11bae1-d232-4c03-981a-cd9f1db24e6b
# ╟─3bcd40f0-e8dd-48bd-8249-51b89f5766de
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 8213 | ### A Pluto.jl notebook ###
# v0.19.36
#> [frontmatter]
#> title = "Getting Started"
#> category = "Quick Start"
using Markdown
using InteractiveUtils
# ╔═╡ 26b9d680-1004-4440-a392-16c178230066
# ╠═╡ show_logs = false
using Pkg; Pkg.activate("."); Pkg.instantiate()
# ╔═╡ 7cfeb5d8-ceb6-499f-982f-e91fa89a2a3c
using PlutoUI: TableOfContents
# ╔═╡ 1a062240-c8a9-4187-b02c-9d1ffdeddf83
using CairoMakie: Figure, Axis, heatmap, heatmap!, hidedecorations!
# ╔═╡ 0ebe93c9-8278-40e7-b51a-6ea8f37431a8
using Images: Gray, load
# ╔═╡ 73978188-b49d-455c-986c-bb149236745d
using ImageMorphology: distance_transform, feature_transform
# ╔═╡ 59fcb1fc-c439-4027-b443-2ddae5a577fd
using DistanceTransforms: boolean_indicator, transform
# ╔═╡ 86243827-7f59-4230-bd3d-3d3edb6b2958
md"""
# DistanceTransforms.jl
## Why This Library?
| | DistanceTransforms.jl | [ImageMorphology.jl](https://github.com/JuliaImages/ImageMorphology.jl/blob/master/src/feature_transform.jl) | [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html) |
|-----------------------|:---------------------:|:---------------:|:---------------:|
| Fast Distance Transform | ✅✅ | ✅ | ✅ |
| CPU Single-Threaded Support | ✅ | ✅ | ✅ |
| CPU Multi-Threaded Support | ✅ | ✅ | ❌ |
| NVIDIA/CUDA Support | ✅ | ❌ | ❌ |
| AMD/ROCM Support | ✅ | ❌ | ❌ |
| Apple/Metal Support | ✅ | ❌ | ❌ |
| Comprehensive Documentation | ✅✅ | ❌ | ✅ |
## Set up
To get started, we first need to set up our Julia environment. This includes activating the current project environment, ensuring all necessary packages are installed and up-to-date. We will then load the essential libraries required for this exploration. These libraries not only include DistanceTransforms.jl but also additional packages for visualization, benchmarking, and handling GPU functionality.
For local use, install the necessary packages as follows:
```julia
begin
using Pkg; Pkg.activate(temp = true)
Pkg.add(["PlutoUI", "CairoMakie", "Images", "ImageMorphology"])
Pkg.add(url = "https://github.com/Dale-Black/DistanceTransforms.jl")
end
```
"""
# ╔═╡ c579c92a-3d1c-4213-82c5-cca54b5c0144
TableOfContents()
# ╔═╡ 903bf2fa-de7b-420f-a6ff-381ea6312287
md"""
# Introduction
Distance transforms play a crucial role in many computer vision tasks. This section will demonstrate how DistanceTransforms.jl facilitates efficient distance transform operations on arrays in Julia.
## Basic Usage
The primary function in DistanceTransforms.jl is `transform`. This function processes an array of 0s and 1s, converting each background element (0) into a value representing its squared Euclidean distance to the nearest foreground element (1).
## Example
Let's begin with a basic example:
"""
# ╔═╡ 862747e5-e88f-47ab-bc97-f5a456738b22
arr = rand([0f0, 1f0], 10, 10)
# ╔═╡ b9ba3bde-8779-4f3c-a3fb-ef157e121632
transform(boolean_indicator(arr))
# ╔═╡ 73cfc148-5af4-4ad7-a8ff-7520c891564b
md"""
## Visualization
Visualization aids in understanding the effects of the distance transform. We use Makie.jl for this purpose:
"""
# ╔═╡ d3498bb0-6f8f-470a-b1de-b1760229cc1c
heatmap(arr, colormap=:grays)
# ╔═╡ ec3a90f1-f2d7-4d5a-8785-476073ee0079
heatmap(transform(boolean_indicator(arr)); colormap=:grays)
# ╔═╡ cd89f08c-44b4-43f6-9313-b4737725b39a
md"""
# Intermediate Usage
We load an example image from the Images.jl library to demonstrate a distance transform applied to a real-world scenario.
"""
# ╔═╡ 158ef85a-28ef-4756-8120-53450f2ef7cd
img = load(Base.download("http://docs.opencv.org/3.1.0/water_coins.jpg"));
# ╔═╡ cf258b9d-e6bf-4128-b669-c8a5b91ecdef
img_bw = Gray.(img) .> 0.5; # theshold image
# ╔═╡ 361835a4-eda2-4eed-a249-4c6cce212662
img_tfm = transform(boolean_indicator(img_bw));
# ╔═╡ 6dbbdb71-5d86-4613-8900-95da2f40143e
md"""
## Visualization
"""
# ╔═╡ 80cbd0a5-5be1-4e7b-b54e-007f4ad0fb7d
let
f = Figure(size = (700, 600))
ax = Axis(
f[1:2, 1],
title = "Original Image",
)
heatmap!(rotr90(img); colormap = :grays)
hidedecorations!(ax)
ax = Axis(
f[3:4, 1],
title = "Segmented Image",
)
heatmap!(rotr90(img_bw); colormap = :grays)
hidedecorations!(ax)
ax = Axis(
f[2:3, 2],
title = "Distance Transformed Image",
)
heatmap!(rotr90(img_tfm); colormap = :grays)
hidedecorations!(ax)
f
end
# ╔═╡ 24ff9beb-81c0-4c5c-865e-4446aa4df435
md"""
# Helpful Information
## About the Algorithm
DistanceTransforms.jl implements sophisticated algorithms for both CPU and GPU environments, ensuring efficient computation regardless of the platform.
**CPU**: On the CPU, DistanceTransforms.jl employs the squared Euclidean distance transform algorithm, a method well-documented and respected in computational geometry. This approach, detailed by [Felzenszwalb and Huttenlocher](https://theoryofcomputing.org/articles/v008a019/), is known for its accuracy and efficiency in distance calculations.
**GPU**: For GPU computations, DistanceTransforms.jl uses a custom algorithm, optimized for performance across various GPU architectures. This is facilitated by KernelAbstractions.jl, a Julia package designed for writing hardware-agnostic Julia code. This ensures that DistanceTransforms.jl can leverage the power of GPUs from different vendors, including NVIDIA (CUDA), AMD (ROCM), and Apple (Metal).
**Simplified Interface via Multiple Dispatch**: One of the key features of DistanceTransforms.jl is its simplicity for the end user. Thanks to Julia's multiple dispatch system, the complexity of choosing between CPU and GPU algorithms is abstracted away. Users need only call `transform(boolean_indicator(...))`, and the library intelligently dispatches the appropriate method based on the input's characteristics. This simplification means users can focus on their tasks without worrying about the underlying computational details.
## Note on Euclidean Distance
The library, by default, returns the squared Euclidean distance, as it is often sufficient for many applications and more computationally efficient. However, for cases where the true Euclidean distance is needed, users can easily obtain it by taking the square root of each element in the transformed array. This flexibility allows for a balance between computational efficiency and the specific needs of the application.
"""
# ╔═╡ 77de39d7-5d30-410f-baa5-460ae2d8a4a3
array2 = [
0 1 1 0 1
0 0 0 1 0
1 1 0 0 0
]
# ╔═╡ 7c557d32-2bb8-47a2-8216-e18755d258c7
array2_bool = boolean_indicator(array2)
# ╔═╡ d6b06775-2ded-4e15-9616-f3e4653d1396
sq_euc_transform = transform(array2_bool)
# ╔═╡ 7597fa37-b406-4fca-8eaa-1627b1eb835d
euc_transform = sqrt.(sq_euc_transform)
# ╔═╡ 239e0053-a16e-4651-b9a0-e163e1bc3892
md"""
## Comparative Example
We will now compare the functionality of DistanceTransforms.jl with ImageMorphology.jl:
"""
# ╔═╡ e49f34f6-2b22-42c4-9c16-e94f8ee2030a
euc_transform2 = distance_transform(feature_transform(Bool.(array2)))
# ╔═╡ 26f4ca31-2e74-4231-9f94-c8bbbbd2fce7
isapprox(euc_transform2, euc_transform; rtol = 1e-2)
# ╔═╡ Cell order:
# ╟─86243827-7f59-4230-bd3d-3d3edb6b2958
# ╠═26b9d680-1004-4440-a392-16c178230066
# ╠═7cfeb5d8-ceb6-499f-982f-e91fa89a2a3c
# ╠═1a062240-c8a9-4187-b02c-9d1ffdeddf83
# ╠═0ebe93c9-8278-40e7-b51a-6ea8f37431a8
# ╠═73978188-b49d-455c-986c-bb149236745d
# ╠═59fcb1fc-c439-4027-b443-2ddae5a577fd
# ╠═c579c92a-3d1c-4213-82c5-cca54b5c0144
# ╟─903bf2fa-de7b-420f-a6ff-381ea6312287
# ╠═862747e5-e88f-47ab-bc97-f5a456738b22
# ╠═b9ba3bde-8779-4f3c-a3fb-ef157e121632
# ╟─73cfc148-5af4-4ad7-a8ff-7520c891564b
# ╟─d3498bb0-6f8f-470a-b1de-b1760229cc1c
# ╟─ec3a90f1-f2d7-4d5a-8785-476073ee0079
# ╟─cd89f08c-44b4-43f6-9313-b4737725b39a
# ╠═158ef85a-28ef-4756-8120-53450f2ef7cd
# ╠═cf258b9d-e6bf-4128-b669-c8a5b91ecdef
# ╠═361835a4-eda2-4eed-a249-4c6cce212662
# ╟─6dbbdb71-5d86-4613-8900-95da2f40143e
# ╟─80cbd0a5-5be1-4e7b-b54e-007f4ad0fb7d
# ╟─24ff9beb-81c0-4c5c-865e-4446aa4df435
# ╠═77de39d7-5d30-410f-baa5-460ae2d8a4a3
# ╠═7c557d32-2bb8-47a2-8216-e18755d258c7
# ╠═d6b06775-2ded-4e15-9616-f3e4653d1396
# ╠═7597fa37-b406-4fca-8eaa-1627b1eb835d
# ╟─239e0053-a16e-4651-b9a0-e163e1bc3892
# ╠═e49f34f6-2b22-42c4-9c16-e94f8ee2030a
# ╠═26f4ca31-2e74-4231-9f94-c8bbbbd2fce7
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 11501 | ### A Pluto.jl notebook ###
# v0.19.36
#> [frontmatter]
#> title = "Advanced Usage"
using Markdown
using InteractiveUtils
# ╔═╡ e7b64851-7108-4c14-9710-c991d5b7021a
# ╠═╡ show_logs = false
using Pkg; Pkg.activate("."); Pkg.instantiate()
# ╔═╡ a3966df9-1107-4f2b-9fb0-704ad7dbe26a
using PlutoUI: TableOfContents
# ╔═╡ ab982cb6-d37c-4d27-a695-d3d8378ab32b
using DistanceTransforms: transform, boolean_indicator
# ╔═╡ c79a8a06-262c-4733-aa31-a0e9a896fafb
using CairoMakie: Figure, Axis, Label, Legend, scatterlines!
# ╔═╡ 1a7c3ed0-7453-4f53-ac5a-99d0b3f84a85
# ╠═╡ show_logs = false
using DistanceTransformsPy: pytransform
# ╔═╡ fe295739-2a9f-46a5-92b9-19e5b5b5dc50
using ImageMorphology: distance_transform, feature_transform
# ╔═╡ b4125c21-43cf-42a5-b685-bc47b8b1f8b8
using BenchmarkTools
# ╔═╡ 53545152-a6ca-4f13-8275-95a8a04017c0
using KernelAbstractions
# ╔═╡ 197c25db-3cc1-4b65-bf49-f0f27694bcc3
# ╠═╡ show_logs = false
using CUDA, AMDGPU, Metal
# ╔═╡ c80da3e8-ff14-4f8c-9a67-b1601395ff40
using FileIO: save, load
# ╔═╡ 481bdd21-744e-424e-992b-b3e19c4c06f7
using ImageShow
# ╔═╡ dec905ec-5ca9-4ef9-b0a6-2a8d31f3f5c7
md"""
# Introduction
Welcome to this advanced exploration of the DistanceTransforms.jl library. In this notebook, we delve into the sophisticated capabilities of DistanceTransforms.jl, focusing on its multi-threading and GPU acceleration features. These advanced functionalities are crucial for enhancing performance in complex Julia applications, particularly in the fields of image processing and computer vision.
We will benchmark these features to demonstrate the significant performance gains they offer. This guide is tailored for users who are already acquainted with the basic aspects of DistanceTransforms.jl and are looking to exploit its full potential in demanding computational tasks.
## Setup
To get started, we first need to set up our Julia environment. This includes activating the current project environment, ensuring all necessary packages are installed and up-to-date. We will then load the essential libraries required for this exploration. These libraries not only include DistanceTransforms.jl but also additional packages for visualization, benchmarking, and handling GPU functionality.
With our environment ready, we can now proceed to explore the advanced features of DistanceTransforms.jl.
"""
# ╔═╡ 0e6b49a2-7590-4800-871e-6a2b0019a9f3
TableOfContents()
# ╔═╡ 9dd1c30d-3472-492f-a06c-84777f1aabf4
md"""
# Multi-threading
DistanceTransforms.jl efficiently utilizes multi-threading, particularly in its Felzenszwalb distance transform algorithm. This parallelization significantly enhances performance, especially for large data sets and high-resolution images.
## Multi-threading Benefits
With Julia's multi-threading support, the library can concurrently process distance transform operations, automatically optimizing performance based on the system's capabilities. This leads to faster execution times and increased efficiency in computations, reducing the complexity for the users.
## Practical Advantages
This feature is highly beneficial in scenarios requiring rapid processing, such as real-time computer vision applications and large-scale image analysis. It allows users to focus more on application development rather than on managing computational workloads.
Next, we will examine benchmarks demonstrating these performance improvements in various use cases.
"""
# ╔═╡ 9ff0aadf-80b1-4cfd-b3a1-33fbcbc3fb1a
x = boolean_indicator(rand([0f0, 1f0], 100, 100));
# ╔═╡ a6a3ce15-251c-4edf-8a85-d80cec6f4b3f
single_threaded = @benchmark transform($x; threaded = false)
# ╔═╡ a0785853-9091-4fb8-a23c-536032edee74
multi_threaded = @benchmark transform($x; threaded = true)
# ╔═╡ b8daf192-a46e-4b49-b09b-04f793c3b8cc
md"""
# GPU Acceleration
DistanceTransforms.jl extends its performance capabilities by embracing GPU acceleration. This section explores how GPU support is integrated into the library, offering substantial performance enhancements, particularly for large-scale computations.
One of the features of DistanceTransforms.jl is its GPU compatibility, achieved through Julia's multiple dispatch. This means that the same `transform` function used for CPU computations automatically adapts to leverage GPU resources when available.
Multiple dispatch in Julia allows the `transform` function to intelligently determine the computing resource to utilize, based on the input array's type. When a GPU-compatible array type (like `CUDA.CuArray`) is passed, DistanceTransforms.jl automatically dispatches a GPU-optimized version of the algorithm.
## GPU Execution Example
Below is an illustrative example of how GPU acceleration can be employed in DistanceTransforms.jl:
```julia
x_gpu = CUDA.CuArray(boolean_indicator(rand([0, 1], 100, 100)))
# The `transform` function recognizes the GPU array and uses GPU for computations
gpu_transformed = transform(x_gpu)
```
In this example, the `transform` function identifies `x_gpu` as a GPU array and thus, invokes the GPU-accelerated version of the distance transform algorithm.
## Advantages of GPU
The use of GPU acceleration in DistanceTransforms.jl is particularly advantageous for handling large data sets where the parallel computing capabilities of GPUs can be fully utilized. This results in significantly reduced computation times and increased efficiency, making DistanceTransforms.jl a suitable choice for high-performance computing tasks.
In the following sections, we'll delve into benchmark comparisons to demonstrate the efficacy of GPU acceleration in DistanceTransforms.jl.
"""
# ╔═╡ 1f1867f0-05a4-4071-8f7d-9e238a8c940f
md"""
# Benchmarks
"""
# ╔═╡ 595dbaea-a238-44e5-b22a-57c423c1f6ac
if CUDA.functional()
@info "Using CUDA"
CUDA.versioninfo()
backend = CUDABackend()
dev = CuArray
elseif AMDGPU.functional()
@info "Using AMD"
AMDGPU.versioninfo()
backend = ROCBackend()
dev = ROCArray
elseif Metal.functional()
@info "Using Metal"
Metal.versioninfo()
backend = MetalBackend()
dev = MtlArray
else
@info "No GPU is available. Using CPU."
backend = CPU()
dev = Array
end
# ╔═╡ be5b4e09-2a6d-472d-9790-623ae3e99bb8
Threads.nthreads()
# ╔═╡ c1e55d37-d0c9-4da2-8841-89a714e50c21
begin
range_size_2D = range(4, 1000, 4)
range_size_3D = range(4, 100, 4)
end
# ╔═╡ 90142aaa-8a1f-4221-aadf-ad858b05f716
md"""
## 2D
"""
# ╔═╡ f0ca70f4-ab9b-48ae-b701-cf4ac47b7bf4
# ╠═╡ disabled = true
#=╠═╡
begin
sizes = Float64[]
dt_scipy = Float64[]
dt_scipy_std = Float64[]
dt_maurer = Float64[]
dt_maurer_std = Float64[]
dt_fenz = Float64[]
dt_fenz_std = Float64[]
dt_proposed = Float64[]
dt_proposed_std = Float64[]
for _n in range_size_2D
n = round(Int, _n)
@info n
push!(sizes, n^2)
f = Float32.(rand([0, 1], n, n))
# Python (Scipy)
dt = @benchmark pytransform($f)
push!(dt_scipy, BenchmarkTools.minimum(dt).time)
push!(dt_scipy_std, BenchmarkTools.std(dt).time)
# Maurer (ImageMorphology.jl)
bool_f = Bool.(f)
dt = @benchmark distance_transform($feature_transform($bool_f))
push!(dt_maurer, BenchmarkTools.minimum(dt).time) # ns
push!(dt_maurer_std, BenchmarkTools.std(dt).time)
# Felzenszwalb (DistanceTransforms.jl)
dt = @benchmark transform($boolean_indicator($f))
push!(dt_fenz, BenchmarkTools.minimum(dt).time)
push!(dt_fenz_std, BenchmarkTools.std(dt).time)
# Proposed-GPU (DistanceTransforms.jl)
if dev != Array
f_gpu = dev(f)
dt = @benchmark transform($boolean_indicator($f_gpu))
push!(dt_proposed, BenchmarkTools.minimum(dt).time)
push!(dt_proposed_std, BenchmarkTools.std(dt).time)
end
end
end
╠═╡ =#
# ╔═╡ 9d94d434-67c7-41fa-b8fc-3c2ce76c22d0
md"""
## 3D
"""
# ╔═╡ cbf39927-96e7-48f0-9812-7a24c3ce5cb4
# ╠═╡ disabled = true
#=╠═╡
begin
sizes_3D = Float64[]
dt_scipy_3D = Float64[]
dt_scipy_std_3D = Float64[]
dt_maurer_3D = Float64[]
dt_maurer_std_3D = Float64[]
dt_fenz_3D = Float64[]
dt_fenz_std_3D = Float64[]
dt_proposed_3D = Float64[]
dt_proposed_std_3D = Float64[]
for _n in range_size_3D
n = round(Int, _n)
@info n
push!(sizes_3D, n^3)
f = Float32.(rand([0, 1], n, n, n))
# Python (Scipy)
dt = @benchmark pytransform($f)
push!(dt_scipy_3D, BenchmarkTools.minimum(dt).time)
push!(dt_scipy_std_3D, BenchmarkTools.std(dt).time)
# Maurer (ImageMorphology.jl)
bool_f = Bool.(f)
dt = @benchmark distance_transform($feature_transform($bool_f))
push!(dt_maurer_3D, BenchmarkTools.minimum(dt).time) # ns
push!(dt_maurer_std_3D, BenchmarkTools.std(dt).time)
# Felzenszwalb (DistanceTransforms.jl)
dt = @benchmark transform($boolean_indicator($f))
push!(dt_fenz_3D, BenchmarkTools.minimum(dt).time)
push!(dt_fenz_std_3D, BenchmarkTools.std(dt).time)
# Proposed-GPU (DistanceTransforms.jl)
if dev != Array
f_gpu = dev(f)
dt = @benchmark transform($boolean_indicator($f_gpu))
push!(dt_proposed_3D, BenchmarkTools.minimum(dt).time)
push!(dt_proposed_std_3D, BenchmarkTools.std(dt).time)
end
end
end
╠═╡ =#
# ╔═╡ 969ddeaa-8ffc-4f7d-8aa6-47b201a8376d
md"""
## Results
"""
# ╔═╡ 104ff068-ad07-4f94-8f3b-18c3660353c1
#=╠═╡
let
f = Figure()
ax = Axis(
f[1, 1],
title="2D"
)
scatterlines!(dt_scipy, label="Python")
scatterlines!(dt_maurer, label="Maurer")
scatterlines!(dt_fenz, label="Felzenszwalb")
scatterlines!(dt_proposed, label="GPU")
ax = Axis(
f[2, 1],
title="3D"
)
scatterlines!(dt_scipy_3D, label="Python")
scatterlines!(dt_maurer_3D, label="Maurer")
scatterlines!(dt_fenz_3D, label="Felzenszwalb")
scatterlines!(dt_proposed_3D, label="GPU")
f[1:2, 2] = Legend(f, ax, "Distance Transforms", framevisible = false)
Label(f[0, 1:2]; text="Distance Transforms", fontsize=30)
# save("gpu_fig.png", f)
f
end
╠═╡ =#
# ╔═╡ 9a5245de-2d04-4d0b-abab-011e2bd5a980
md"""
## GPU Results
Since Glass Notebook does not yet support GPU exports and to save resources, I saved a version of the benchmark results that include the GPU accelerated version (METAL) from my M1 Macbook Air which can be seen below.
If you want to run these benchmarks on your own hardware, just simply run this notebook and enable all of the above cells
"""
# ╔═╡ 29834554-0f91-4542-95e4-afdb085a74b8
load("gpu_fig.png")
# ╔═╡ Cell order:
# ╟─dec905ec-5ca9-4ef9-b0a6-2a8d31f3f5c7
# ╠═e7b64851-7108-4c14-9710-c991d5b7021a
# ╠═a3966df9-1107-4f2b-9fb0-704ad7dbe26a
# ╠═ab982cb6-d37c-4d27-a695-d3d8378ab32b
# ╠═c79a8a06-262c-4733-aa31-a0e9a896fafb
# ╠═1a7c3ed0-7453-4f53-ac5a-99d0b3f84a85
# ╠═fe295739-2a9f-46a5-92b9-19e5b5b5dc50
# ╠═b4125c21-43cf-42a5-b685-bc47b8b1f8b8
# ╠═53545152-a6ca-4f13-8275-95a8a04017c0
# ╠═197c25db-3cc1-4b65-bf49-f0f27694bcc3
# ╠═c80da3e8-ff14-4f8c-9a67-b1601395ff40
# ╠═481bdd21-744e-424e-992b-b3e19c4c06f7
# ╠═0e6b49a2-7590-4800-871e-6a2b0019a9f3
# ╟─9dd1c30d-3472-492f-a06c-84777f1aabf4
# ╠═9ff0aadf-80b1-4cfd-b3a1-33fbcbc3fb1a
# ╠═a6a3ce15-251c-4edf-8a85-d80cec6f4b3f
# ╠═a0785853-9091-4fb8-a23c-536032edee74
# ╟─b8daf192-a46e-4b49-b09b-04f793c3b8cc
# ╟─1f1867f0-05a4-4071-8f7d-9e238a8c940f
# ╠═595dbaea-a238-44e5-b22a-57c423c1f6ac
# ╠═be5b4e09-2a6d-472d-9790-623ae3e99bb8
# ╠═c1e55d37-d0c9-4da2-8841-89a714e50c21
# ╟─90142aaa-8a1f-4221-aadf-ad858b05f716
# ╠═f0ca70f4-ab9b-48ae-b701-cf4ac47b7bf4
# ╟─9d94d434-67c7-41fa-b8fc-3c2ce76c22d0
# ╠═cbf39927-96e7-48f0-9812-7a24c3ce5cb4
# ╟─969ddeaa-8ffc-4f7d-8aa6-47b201a8376d
# ╟─104ff068-ad07-4f94-8f3b-18c3660353c1
# ╟─9a5245de-2d04-4d0b-abab-011e2bd5a980
# ╟─29834554-0f91-4542-95e4-afdb085a74b8
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 1154 | ### A Pluto.jl notebook ###
# v0.19.36
#> [frontmatter]
#> title = "API"
#> category = "API"
using Markdown
using InteractiveUtils
# ╔═╡ 94428604-9725-417c-a3c4-174b32b7cfd6
# ╠═╡ show_logs = false
begin
using Pkg
Pkg.activate(".")
Pkg.instantiate()
using DistanceTransforms
using PlutoUI
end
# ╔═╡ 0e3a840c-aebe-47e6-bdba-be8b54af2e55
TableOfContents()
# ╔═╡ 5cb2767d-7ab0-4fec-ad61-163204d8913a
all_names = [name for name in names(DistanceTransforms)];
# ╔═╡ cbb16a36-41b5-450d-b0ce-6bd2b2601706
exported_functions = filter(x -> x != :DistanceTransforms, all_names);
# ╔═╡ d4b66280-c9e4-4c27-9cd3-6aaf179b8e0d
function generate_docs(exported_functions)
PlutoUI.combine() do Child
md"""
$([md" $(Docs.doc(eval(name)))" for name in exported_functions])
"""
end
end;
# ╔═╡ d7559c62-1c0a-4e86-a642-74171d742c41
generate_docs(exported_functions)
# ╔═╡ Cell order:
# ╟─d7559c62-1c0a-4e86-a642-74171d742c41
# ╟─94428604-9725-417c-a3c4-174b32b7cfd6
# ╟─0e3a840c-aebe-47e6-bdba-be8b54af2e55
# ╟─5cb2767d-7ab0-4fec-ad61-163204d8913a
# ╟─cbb16a36-41b5-450d-b0ce-6bd2b2601706
# ╟─d4b66280-c9e4-4c27-9cd3-6aaf179b8e0d
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 117 | module DistanceTransforms
abstract type DistanceTransform end
include("./transform.jl")
include("./utils.jl")
end
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 9236 | using GPUArraysCore: AbstractGPUVector, AbstractGPUMatrix, AbstractGPUArray
using KernelAbstractions
"""
## `transform!`
```julia
transform!(f::AbstractVector, output, v, z)
transform!(img::AbstractMatrix, output, v, z; threaded=true)
transform!(vol::AbstractArray{<:Real,3}, output, v, z, temp; threaded=true)
transform!(img::AbstractGPUMatrix, output, v, z)
```
In-place squared Euclidean distance transforms. These functions apply the transform to the input data and store the result in the `output` argument.
- The first function operates on vectors.
- The second function operates on matrices with optional threading.
- The third function operates on 3D arrays with optional threading.
- The fourth function is specialized for GPU matrices.
The intermediate arrays `v` and `z` (and `temp` for 3D arrays) are used for computation. The `threaded` parameter enables parallel computation on the CPU.
#### Arguments
- `f`: Input vector, matrix, or 3D array.
- `output`: Preallocated array to store the result.
- `v`: Preallocated array for indices, matching the dimensions of `f`.
- `z`: Preallocated array for intermediate values, one element larger than `f`.
- `temp`: Preallocated array for intermediate values when transforming 3D arrays, matching the dimensions of `output`.
#### Examples
```julia
f = rand([0f0, 1f0], 10)
f_bool = boolean_indicator(f)
output = similar(f)
v = ones(Int32, size(f))
z = ones(eltype(f), size(f) .+ 1)
transform!(f_bool, output, v, z)
```
"""
function transform!(f::AbstractVector, output, v, z)
z[1] = -Inf32
z[2] = Inf32
k = 1
@inbounds for q in 2:length(f)
s = ((f[q] + q^2) - (f[v[k]] + v[k]^2)) / (2 * q - 2 * v[k])
while s ≤ z[k]
k -= 1
s = ((f[q] + q^2) - (f[v[k]] + v[k]^2)) / (2 * q - 2 * v[k])
end
k += 1
v[k] = q
z[k] = s
z[k+1] = Inf32
end
k = 1
@inbounds for q in 1:length(f)
while z[k+1] < q
k += 1
end
output[q] = (q - v[k])^2 + f[v[k]]
end
end
# 2D
function transform!(img::AbstractMatrix, output, v, z; threaded = true)
if threaded
Threads.@threads for i in CartesianIndices(@view(img[:, 1]))
@views transform!(img[i, :], output[i, :], v[i, :], z[i, :])
end
copyto!(img, output)
Threads.@threads for j in CartesianIndices(@view(img[1, :]))
@views transform!(
img[:, j], output[:, j], fill!(v[:, j], 1), fill!(z[:, j], 1),
)
end
else
for i in CartesianIndices(@view(img[:, 1]))
@views transform!(img[i, :], output[i, :], v[i, :], z[i, :])
end
copyto!(img, output)
for j in CartesianIndices(@view(img[1, :]))
@views transform!(
img[:, j], output[:, j], fill!(v[:, j], 1), fill!(z[:, j], 1),
)
end
end
end
# 3D
function transform!(vol::AbstractArray{<:Real, 3}, output, v, z; threaded = true)
if threaded
Threads.@threads for i in CartesianIndices(@view(vol[:, 1, 1]))
@views transform!(vol[i, :, :], output[i, :, :], v[i, :, :], z[i, :, :])
end
copyto!(vol, output)
Threads.@threads for idx in CartesianIndices(@view(vol[1, :, :]))
j, k = Tuple(idx)
@views transform!(
vol[:, j, k], output[:, j, k], fill!(v[:, j, k], 1), fill!(z[:, j, k], 1),
)
end
else
for i in CartesianIndices(@view(vol[:, 1, 1]))
@views transform!(vol[i, :, :], output[i, :, :], v[i, :, :], z[i, :, :])
end
copyto!(vol, output)
for idx in CartesianIndices(@view(vol[1, :, :]))
j, k = Tuple(idx)
@views transform!(
vol[:, j, k], output[:, j, k], fill!(v[:, j, k], 1), fill!(z[:, j, k], 1),
)
end
end
end
# GPU (2D)
@kernel function _first_pass_2D!(f, out, s2)
row, col = @index(Global, NTuple)
if f[row, col] < 0.5f0
ct = 1
curr_l = min(col - 1, s2 - col)
finished = false
while !finished && ct <= curr_l
if f[row, col-ct] > 0.5f0 || f[row, col+ct] > 0.5f0
out[row, col] = ct * ct
finished = true
end
ct += 1
end
while !finished && ct < col
if f[row, col-ct] > 0.5f0
out[row, col] = ct * ct
finished = true
end
ct += 1
end
while !finished && col + ct <= s2
if f[row, col+ct] > 0.5f0
out[row, col] = ct * ct
finished = true
end
ct += 1
end
if !finished
out[row, col] = 1.0f10
end
else
out[row, col] = 0.0f0
end
end
@kernel function _second_pass_2D!(org, out, s1, s2)
row, col = @index(Global, NTuple)
ct = 1
curr_l = sqrt(out[row, col])
while ct < curr_l && row + ct <= s1
temp = muladd(ct, ct, org[row+ct, col])
if temp < out[row, col]
out[row, col] = temp
curr_l = sqrt(temp)
end
ct += 1
end
ct = 1
while ct < curr_l && row > ct
temp = muladd(ct, ct, org[row-ct, col])
if temp < out[row, col]
out[row, col] = temp
curr_l = sqrt(temp)
end
ct += 1
end
end
function transform!(img::AbstractGPUMatrix, output)
s1, s2 = size(img)
backend = get_backend(img)
kernel1! = _first_pass_2D!(backend)
kernel2! = _second_pass_2D!(backend)
kernel1!(img, output, s2, ndrange = (s1, s2))
copyto!(img, output)
kernel2!(img, output, s1, s2, ndrange = (s1, s2))
KernelAbstractions.synchronize(backend)
end
# GPU (3D)
@kernel function _first_pass_3D!(f, out, s2)
dim1, dim2, dim3 = @index(Global, NTuple)
# 1D along dimension 2
if f[dim1, dim2, dim3] < 0.5f0
ct = 1
curr_l = min(dim2 - 1, s2 - dim2)
finished = false
while !finished && ct <= curr_l
if f[dim1, dim2-ct, dim3] > 0.5f0 || f[dim1, dim2+ct, dim3] > 0.5f0
out[dim1, dim2, dim3] = ct * ct
finished = true
end
ct += 1
end
while !finished && ct < dim2
if f[dim1, dim2-ct, dim3] > 0.5f0
out[dim1, dim2, dim3] = ct * ct
finished = true
end
ct += 1
end
while !finished && dim2 + ct <= s2
if f[dim1, dim2+ct, dim3] > 0.5f0
out[dim1, dim2, dim3] = ct * ct
finished = true
end
ct += 1
end
if !finished
out[dim1, dim2, dim3] = 1.0f10
end
else
out[dim1, dim2, dim3] = 0.0f0
end
end
@kernel function _second_pass_3D!(org, out, s1)
dim1, dim2, dim3 = @index(Global, NTuple)
# 2D along dimension 1
ct = 1
curr_l = sqrt(out[dim1, dim2, dim3])
while ct < curr_l && dim1 + ct <= s1
temp = muladd(ct, ct, org[dim1+ct, dim2, dim3])
if temp < out[dim1, dim2, dim3]
out[dim1, dim2, dim3] = temp
curr_l = sqrt(temp)
end
ct += 1
end
ct = 1
while ct < curr_l && dim1 - ct > 0
temp = muladd(ct, ct, org[dim1-ct, dim2, dim3])
if temp < out[dim1, dim2, dim3]
out[dim1, dim2, dim3] = temp
curr_l = sqrt(temp)
end
ct += 1
end
end
@kernel function _third_pass_3D!(org, out, s3)
dim1, dim2, dim3 = @index(Global, NTuple)
# 2D along dimension 3
ct = 1
curr_l = sqrt(out[dim1, dim2, dim3])
while ct < curr_l && dim3 + ct <= s3
temp = muladd(ct, ct, org[dim1, dim2, dim3+ct])
if temp < out[dim1, dim2, dim3]
out[dim1, dim2, dim3] = temp
curr_l = sqrt(temp)
end
ct += 1
end
ct = 1
while ct < curr_l && ct < dim3
temp = muladd(ct, ct, org[dim1, dim2, dim3-ct])
if temp < out[dim1, dim2, dim3]
out[dim1, dim2, dim3] = temp
curr_l = sqrt(temp)
end
ct += 1
end
end
function transform!(img::AbstractGPUArray, output)
backend = get_backend(img)
s1, s2, s3 = size(img)
kernel1! = _first_pass_3D!(backend)
kernel2! = _second_pass_3D!(backend)
kernel3! = _third_pass_3D!(backend)
kernel1!(img, output, s2, ndrange = (s1, s2, s3))
copyto!(img, output)
kernel2!(img, output, s1, ndrange = (s1, s2, s3))
copyto!(img, output)
kernel3!(img, output, s3, ndrange = (s1, s2, s3))
KernelAbstractions.synchronize(backend)
end
export transform!
"""
## `transform`
```julia
transform(f::AbstractVector)
transform(img::AbstractMatrix; threaded=true)
transform(vol::AbstractArray{<:Real,3}; threaded=true)
transform(img::AbstractGPUMatrix)
```
Non-in-place squared Euclidean distance transforms that return a new array with the result. They allocate necessary intermediate arrays internally.
- The first function operates on vectors.
- The second function operates on matrices with optional threading.
- The third function operates on 3D arrays with optional threading.
- The fourth function is specialized for GPU matrices.
The `threaded` parameter can be used to enable or disable parallel computation on the CPU.
#### Arguments
- `f/img/vol`: Input vector, matrix, or 3D array to be transformed.
#### Examples
```julia
f = rand([0f0, 1f0], 10)
f_bool = boolean_indicator(f)
f_tfm = transform(f_bool)
```
"""
function transform(f::AbstractVector)
output = similar(f, eltype(f))
v = ones(Int32, length(f))
z = ones(eltype(f), length(f) + 1)
transform!(f, output, v, z)
return output
end
# 2D
function transform(img::AbstractMatrix; threaded = true)
output = similar(img, eltype(img))
v = ones(Int32, size(img))
z = ones(eltype(img), size(img) .+ 1)
transform!(img, output, v, z; threaded = threaded)
return output
end
# 3D
function transform(vol::AbstractArray{<:Real, 3}; threaded = true)
output = similar(vol, eltype(vol))
v = ones(Int32, size(vol))
z = ones(eltype(vol), size(vol) .+ 1)
transform!(vol, output, v, z; threaded = threaded)
return output
end
# GPU (2D)
function transform(img::AbstractGPUMatrix)
output = similar(img, Float32)
transform!(img, output)
return output
end
# GPU (3D)
function transform(img::AbstractGPUArray)
output = similar(img, Float32)
transform!(img, output)
return output
end
export transform
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 2998 | using KernelAbstractions
using GPUArraysCore: AbstractGPUArray
"""
## `boolean_indicator`
```julia
boolean_indicator(f::AbstractArray)
boolean_indicator(f::AbstractGPUArray)
boolean_indicator(f::BitArray)
```
Create a float representation of a boolean indicator array where `0` represents the background and `1` represents the foreground.
This function converts a logical array into a floating-point array where foreground values (logical `1`) are marked as `0.0f0` (float representation of `0`), and background values (logical `0`) are marked with a large float number `1.0f10`. This representation is useful in distance transform operations to differentiate between the foreground and the background.
#### Arguments
- `f`: An array of boolean values or an `AbstractGPUArray` of boolean values, where `true` indicates the foreground and `false` indicates the background.
#### Returns
- A floating-point array of the same dimensions as `f`, with foreground values set to `0.0f0` and background values set to `1.0f10`.
#### Performance
- If `f` is a `BitArray`, the conversion uses LoopVectorization.jl for a potential speedup. The warning check arguments are disabled for performance reasons.
- If `f` is an `AbstractGPUArray`, the computation is offloaded to the GPU using a custom kernel, `boolean_indicator_kernel`, which is expected to yield a significant speedup on compatible hardware.
#### Examples
```julia
f = BitArray([true, false, true, false])
f_float = boolean_indicator(f)
# f_float will be Float32[0.0f0, 1.0f10, 0.0f0, 1.0f10]
f_gpu = CUDA.zeros(Bool, 10) # assuming CUDA.jl is used for GPU arrays
f_gpu[5] = true
f_float_gpu = boolean_indicator(f_gpu)
# f_float_gpu will be a GPU array with the fifth element as 0.0f0 and others as 1.0f10
```
#### Notes
- The choice of `1.0f10` as the large number is arbitrary and can be adjusted if needed for specific applications.
- The `@turbo` macro from LoopVectorization.jl is used when `f` is a `BitArray` to unroll and vectorize the loop for optimal performance.
- When `f` is an `AbstractGPUArray`, the `boolean_indicator_kernel` kernel function is used to perform the operation in parallel on the GPU.
- The `KernelAbstractions.synchronize(backend)` call ensures that all GPU operations are completed before returning the result.
"""
function boolean_indicator(f)
return @. ifelse(f == 0, 1.0f10, 0.0f0)
end
function boolean_indicator(f::BitArray)
f_new = similar(f, Float32)
for i in CartesianIndices(f_new)
@inbounds f_new[i] = f[i] ? 0.0f0 : 1.0f10
end
return f_new
end
@kernel function boolean_indicator_kernel(f, output)
i = @index(Global)
output[i] = ifelse(f[i] == 0, 1.0f10, 0.0f0)
end
function boolean_indicator(f::AbstractGPUArray)
backend = get_backend(f)
output = similar(f, Float32)
kernel = boolean_indicator_kernel(backend)
kernel(f, output, ndrange=size(f))
KernelAbstractions.synchronize(backend)
return output
end
export boolean_indicator
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 695 | using DistanceTransforms
using Test
using KernelAbstractions
using CUDA, AMDGPU, Metal
using oneAPI
using Random
if CUDA.functional()
@info "Using CUDA"
CUDA.versioninfo()
backend = CUDABackend()
dev = CuArray
elseif AMDGPU.functional()
@info "Using AMD"
AMDGPU.versioninfo()
backend = ROCBackend()
dev = ROCArray
elseif oneAPI.functional() ## not well supported
@info "Using oneAPI"
oneAPI.versioninfo()
backend = oneBackend()
dev = oneArray
elseif Metal.functional()
@info "Using Metal"
Metal.versioninfo()
backend = MetalBackend()
dev = MtlArray
else
@info "No GPU is available. Using CPU."
backend = CPU()
dev = Array
end
include("transform.jl")
include("utils.jl")
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 4883 | using ImageMorphology: distance_transform, feature_transform
test_transform(img) = distance_transform(feature_transform(Bool.(img)))
@testset "transform!" begin
@testset "1D transform!" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0f0, 1f0], n)
img_bool = boolean_indicator(img)
output = similar(img, Float32)
v = ones(Int32, size(img))
z = ones(Float32, size(img) .+ 1)
transform!(img_bool, output, v, z)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "2D transform!" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0f0, 1f0], n, n)
img_bool = boolean_indicator(img)
output = similar(img, Float32)
v = ones(Int32, size(img))
z = ones(Float32, size(img) .+ 1)
transform!(img_bool, output, v, z)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
# non-threaded
for test_idx in 1:20
img = rand([0f0, 1f0], n, n)
img_bool = boolean_indicator(img)
output = similar(img, Float32)
v = ones(Int32, size(img))
z = ones(Float32, size(img) .+ 1)
transform!(img_bool, output, v, z; threaded = false)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "3D transform!" begin
for n in [10, 100]
for test_idx in 1:5
img = rand([0f0, 1f0], n, n, n)
img_bool = boolean_indicator(img)
output = similar(img, Float32)
v = ones(Int32, size(img))
z = ones(Float32, size(img) .+ 1)
transform!(img_bool, output, v, z)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
# non-threaded
for test_idx in 1:5
img = rand([0f0, 1f0], n, n, n)
img_bool = boolean_indicator(img)
output = similar(img, Float32)
v = ones(Int32, size(img))
z = ones(Float32, size(img) .+ 1)
transform!(img_bool, output, v, z; threaded = false)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
if dev != Array
@testset "2D GPU transform!" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0f0, 1f0], n, n)
img_gpu = dev(copy(img))
output = similar(img_gpu)
transform!(img_gpu, output)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "3D GPU transform!" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0f0, 1f0], n, n, n)
img_gpu = dev(copy(img))
output = similar(img_gpu)
transform!(img_gpu, output)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
else
@info "No GPU available, skipping tests"
end
end
@testset "transform" begin
@testset "1D transform" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0.0f0, 1.0f0], n)
img_bool = boolean_indicator(img)
output = transform(img_bool)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "2D transform" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0.0f0, 1.0f0], n, n)
img_bool = boolean_indicator(img)
output = transform(img_bool)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
# non-threaded
for test_idx in 1:20
img = rand([0.0f0, 1.0f0], n, n)
img_bool = boolean_indicator(img)
output = transform(img_bool; threaded = false)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "3D transform" begin
for n in [10, 100]
for test_idx in 1:5
img = rand([0.0f0, 1.0f0], n, n, n)
img_bool = boolean_indicator(img)
output = transform(img_bool)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
# non-threaded
for test_idx in 1:5
img = rand([0.0f0, 1.0f0], n, n, n)
img_bool = boolean_indicator(img)
output = transform(img_bool; threaded = false)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
if dev != Array
@testset "2D GPU transform" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0.0f0, 1.0f0], n, n)
img_gpu = dev(img)
output = transform(img_gpu)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
@testset "3D GPU transform" begin
for n in [10, 50, 100]
for test_idx in 1:20
img = rand([0.0f0, 1.0f0], n, n, n)
img_gpu = dev(img)
output = transform(img_gpu)
img_test = test_transform(img) .^ 2
@test Array(output) ≈ img_test
end
end
end
else
@info "No GPU available, skipping tests"
end
end
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | code | 1006 | @testset "boolean_indicator CPU" begin
ns = [10, 100]
for n in ns
f = rand([0, 1], n)
f_bool = Bool.(f)
@test boolean_indicator(f) == boolean_indicator(f_bool)
end
for n in ns
f = rand([0, 1], n, n)
f_bool = Bool.(f)
@test boolean_indicator(f) == boolean_indicator(f_bool)
end
for n in ns
f = rand([0, 1], n, n, n)
f_bool = Bool.(f)
@test boolean_indicator(f) == boolean_indicator(f_bool)
end
end
@testset "boolean_indicator GPU" begin
ns = [10, 100]
for n in ns
f = rand!(KernelAbstractions.allocate(backend, Float32, n)) .> 0.5f0
f_arr = Array(f)
@test Array(boolean_indicator(f)) == boolean_indicator(f_arr)
end
for n in ns
f = rand!(KernelAbstractions.allocate(backend, Float32, n, n)) .> 0.5f0
f_arr = Array(f)
@test Array(boolean_indicator(f)) == boolean_indicator(f_arr)
end
for n in ns
f = rand!(KernelAbstractions.allocate(backend, Float32, n, n, n)) .> 0.5f0
f_arr = Array(f)
@test Array(boolean_indicator(f)) == boolean_indicator(f_arr)
end
end | DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.2 | 2ef35d0921e6ad1bf04fbe745bde164673cb2deb | docs | 3413 | # DistanceTransforms
[](https://glassnotebook.io/r/DxnIPJnIqpEqiQnJgqiBP/index.jl)
[](https://github.com/Dale-Black/DistanceTransforms.jl/actions/workflows/CI.yml)
[](https://github.com/Dale-Black/DistanceTransforms.jl/actions/workflows/Nightly.yml)
[](https://codecov.io/gh/Dale-Black/DistanceTransforms.jl)
DistanceTransforms.jl is a Julia package that provides efficient distance transform operations on arrays.
## Table of Contents
- [Getting Started](#getting-started)
- [Quick Start](#quick-start)
- [Transforms](#transforms)
- [Advanced Usage](#advanced-usage)
- [Python](#python)
## Getting Started
To get started with DistanceTransforms.jl, you'll first need to import the package:
```julia
using DistanceTransforms
```
The most up-to-date version of DistanceTransforms.jl can be found on the main/master branch of the [GitHub repository](https://github.com/Dale-Black/DistanceTransforms.jl). If you're using an unregistered version, you may need to add the package explicitly.
For detailed documentation and tutorials, you can refer to the [official notebook](https://glassnotebook.io/r/DxnIPJnIqpEqiQnJgqiBP/index.jl).
## Quick Start
Distance transforms are essential for many computer vision-related tasks. With DistanceTransforms.jl, you can easily apply efficient distance transform operations on arrays in Julia.
For example, to use the quintessential distance transform operation:
```julia
using DistanceTransforms
arr = [
0 1 1 0
0 0 0 0
1 1 0 0
]
result = transform(boolean_indicator(arr))
```
## Transforms
The library is built around a common `transform` interface, allowing users to apply various distance transform algorithms to arrays using a unified approach.
## Advanced Usage
DistanceTransforms.jl offers advanced features such as multi-threading and GPU acceleration. These capabilities significantly enhance performance, especially for large data sets and high-resolution images.
### Multi-threading
DistanceTransforms.jl efficiently utilizes multi-threading, particularly in its Felzenszwalb distance transform algorithm. This parallelization improves performance for large data sets and high-resolution images.
```julia
x = boolean_indicator(rand([0f0, 1f0], 100, 100))
single_threaded = @benchmark transform($x; threaded = false)
multi_threaded = @benchmark transform($x; threaded = true)
```
### GPU Acceleration
DistanceTransforms.jl extends its performance capabilities by embracing GPU acceleration. The same `transform` function used for CPU computations automatically adapts to leverage GPU resources when available.
```julia
x_gpu = CUDA.CuArray(boolean_indicator(rand([0, 1], 100, 100)))
gpu_transformed = transform(x_gpu)
```
For benchmarks and more details on advanced usage, refer to the [advanced usage notebook](https://glassnotebook.io/r/DxnIPJnIqpEqiQnJgqiBP/index.jl).
## Python
Check out the corresponding Python (wrapper) package: [py-distance-transforms](https://github.com/MolloiLab/py-distance-transforms)
| DistanceTransforms | https://github.com/MolloiLab/DistanceTransforms.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 2101 | using Revise
using AsymptoticNumericalMethod, Plots
using LinearAlgebra: norm
using BifurcationKit
const BK = BifurcationKit
function LW(x, p)
(;λ) = p
f = similar(x)
s = sum(x)
for i in eachindex(f)
f[i] = x[i] - λ * exp(cos(i * s))
end
return f
end
sol0 = zeros(10)
par = (λ = 0.0, )
prob = BifurcationProblem(LW, sol0, par, (@optic _.λ);
record_from_solution = (x,p) -> (xₙ = x[end], x₁ = x[1], s = sum(x), xinf = norminf(x)))
optcont = ContinuationPar(dsmin = 0.0001, dsmax = 0.05, ds= 0.01, newton_options = NewtonPar(tol = 1e-11, max_iterations = 4, verbose = false), max_steps = 1500, detect_bifurcation = 0, p_max = 1., p_min = 0., detect_fold=false)
alg = PALC(tangent = Bordered())
alg = MoorePenrose()
alg = MoorePenrose(tangent = PALC(tangent = Secant()))
br = continuation(prob, alg, optcont; verbosity = 0)
plot(br, vars=(:param, :xN))
plot(br, vars=(:param, :s))
#################################################################################
using LinearAlgebra
defop = DeflationOperator(2, dot, 0.1, [sol0])
algdc = DefCont(deflation_operator = defop,
alg = PALC(tangent = Bordered()),
perturb_solution = (x, p, id) -> x .+ 0.02 * rand(length(x)),
jacobian = Val(:autodiff)
)
brdc = continuation(prob,
algdc,
ContinuationPar(optcont; ds = 0.00002, dsmin = 1e-6, max_steps = 20000, p_max = 1.2, detect_bifurcation = 0, plot_every_step = 1000, newton_options = NewtonPar(verbose = false, max_iterations = 10));
plot = true, verbosity = 2,
# callback_newton = ((x, f, J, res, iteration, itlinear, options); kwargs...) -> res <1e2,
# normN = norminf
)
plot(brdc)
#################################################################################
optanm = ContinuationPar(optcont, max_steps = 1700, detect_bifurcation = 0)
@reset optanm.newton_options.max_iterations = 10
@reset optanm.newton_options.verbose = true
branm = @time continuation(prob, ANM(17, 1e-7), optanm, normC = norminf, verbosity = 1)
plot(branm; vars=(:param, :xₙ), plotseries = false)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1327 | using Revise
using AsymptoticNumericalMethod, Plots
using BifurcationKit
const BK = BifurcationKit
function TMvf!(dz, z, p, t = 0)
(;J, α, E0, τ, τD, τF, U0) = p
E, x, u = z
SS0 = J * u * x * E + E0
SS1 = α * log(1 + exp(SS0 / α))
dz[1] = (-E + SS1) / τ
dz[2] = (1.0 - x) / τD - u * x * E
dz[3] = (U0 - u) / τF + U0 * (1.0 - u) * E
dz
end
par_tm = (α = 1.5, τ = 0.013, J = 3.07, E0 = -2.0, τD = 0.200, U0 = 0.3, τF = 1.5, τS = 0.007) #2.87
z0 = [0.238616, 0.982747, 0.367876 ]
prob = BK.BifurcationProblem(TMvf!, z0, par_tm, (@optic _.E0); record_from_solution = (x, p) -> (E = x[1], x = x[2], u = x[3]),)
opts_br = ContinuationPar(p_min = -10.0, p_max = -0.9, ds = 0.04, dsmax = 0.125, n_inversion = 8, detect_bifurcation = 3, max_bisection_steps = 25, nev = 3)
br0 = continuation(prob, PALC(tangent=Bordered()), opts_br, normC = norminf)
plot(br0)
#################################################################################
optanm = ContinuationPar(opts_br, ds= 0.01, newton_options = NewtonPar(tol = 1e-9, verbose = false), n_inversion = 6, max_bisection_steps = 15, max_steps = 15, )#p_max = 0.1)
branm = @time continuation(prob, ANM(20, 1e-8), optanm, normC = norminf, verbosity = 2)
plot(branm)
plot(branm.branch)
plot(branm, plotseries = true)
plot!(br0, color = :black)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1092 | using Revise
using AsymptoticNumericalMethod, Plots
using BifurcationKit
const BK = BifurcationKit
Nl(x; a = 0.5, b = 0.01) = 1 + (x + a*x^2)/(1 + b*x^2)
function F_chan(x, p)
(;α, β) = p
f = similar(x)
n = length(x)
f[1] = x[1] - β
f[n] = x[n] - β
for i=2:n-1
f[i] = (x[i-1] - 2 * x[i] + x[i+1]) * (n-1)^2 + α * Nl(x[i], b = β)
end
return f
end
n = 101
sol = [(i-1)*(n-i)/n^2+0.1 for i=1:n]
# set of parameters
par = (α = 3.3, β = 0.01)
optnewton = NewtonPar(tol = 1e-11, verbose = true)
prob = BifurcationProblem(F_chan, sol, par, (@optic _.α))
optcont0 = ContinuationPar(dsmin = 0.01, dsmax = 0.15, ds= 0.01, p_max = 4.1, newton_options = NewtonPar(tol = 1e-9))
br0 = @time continuation(prob, PALC(tangent = Bordered()), optcont0)
plot(br0)
#################################################################################
optcont = ContinuationPar(dsmin = 0.01, dsmax = 0.15, ds = 0.01, p_max = 4.1, newton_options = NewtonPar(tol = 1e-9))
branm = continuation(prob, ANM(15, 1e-4), optcont, normC = norminf)
plot(branm, plotseries = true)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 2938 | using Revise
using DiffEqOperators, ForwardDiff
using BifurcationKit, Plots, SparseArrays, Parameters, AsymptoticNumericalMethod
const BK = BifurcationKit
# define the sup norm and a L2 norm
normbratu(x) = norm(x .* w) / sqrt(length(x)) # the weight w is defined below
# some plotting functions to simplify our life
plotsol!(x, nx = Nx, ny = Ny; kwargs...) = heatmap!(reshape(x, nx, ny); color = :viridis, kwargs...)
plotsol(x, nx = Nx, ny = Ny; kwargs...) = (plot();plotsol!(x, nx, ny; kwargs...))
function Laplacian2D(Nx, Ny, lx, ly, bc = :Neumann)
hx = 2lx/Nx
hy = 2ly/Ny
D2x = CenteredDifference(2, 2, hx, Nx)
D2y = CenteredDifference(2, 2, hy, Ny)
Qx = Neumann0BC(hx)
Qy = Neumann0BC(hy)
D2xsp = sparse(D2x * Qx)[1]
D2ysp = sparse(D2y * Qy)[1]
A = kron(sparse(I, Ny, Ny), D2xsp) + kron(D2ysp, sparse(I, Nx, Nx))
return A
end
ϕ(u, λ) = -10(u-λ*exp(u))
dϕ(u, λ) = -10(1-λ*exp(u))
function NL!(dest, u, p)
@unpack λ = p
dest .= ϕ.(u, λ)
return dest
end
NL(u, p) = NL!(similar(u), u, p)
function Fmit!(f, u, p)
mul!(f, p.Δ, u)
f .= f .+ NL(u, p)
return f
end
Fmit(u, p) = Fmit!(similar(u), u, p)
function JFmit(x,p)
J = p.Δ
dg = dϕ.(x, p.λ)
return J + spdiagm(0 => dg)
end
Nx = 30; Ny = 30
lx = 0.5; ly = 0.5
# weight for the weighted norm
const w = (lx .+ LinRange(-lx,lx,Nx)) * (LinRange(-ly,ly,Ny))' |> vec
Δ = Laplacian2D(Nx, Ny, lx, ly)
par_mit = (λ = .05, Δ = Δ)
# initial guess f for newton
sol0 = zeros(Nx, Ny) |> vec
# Bifurcation Problem
prob = BifurcationProblem(Fmit, sol0, par_mit, (@optic _.λ),; J = JFmit,
record_from_solution = (x, p) -> (x = normbratu(x), n2 = norm(x), n∞ = norminf(x)),
plot_solution = (x, p; k...) -> plotsol!(x ; k...))
# eigensolver
eigls = EigKrylovKit(dim = 70)
# options for Newton solver, we pass the eigensolverr
opt_newton = NewtonPar(tol = 1e-8, eigsolver = eigls, max_iterations = 20)
# options for continuation
opts_br = ContinuationPar(p_max = 3.5, p_min = 0.025,
# for a good looking curve
dsmin = 0.001, dsmax = 0.05, ds = 0.01,
# number of eigenvalues to compute
nev = 30,
plot_every_step = 10, newton_options = (@set opt_newton.verbose = false),
max_steps = 100, tol_stability = 1e-6,
# detect codim 1 bifurcations
detect_bifurcation = 3,
# Optional: bisection options for locating bifurcations
n_inversion = 4, dsmin_bisection = 1e-7, max_bisection_steps = 25)
# optional arguments for continuation
kwargsC = (verbosity = 0, plot = true, normC = norminf)
br = continuation(prob, PALC(), opts_br; kwargsC...)
show(br)
#################################################################################
optanm = ContinuationPar(opts_br, ds= 0.01, n_inversion = 6, max_bisection_steps = 15, max_steps = 15, )#p_max = 0.1)
branm = @time continuation(prob, ANM(20, 1e-8), optanm, normC = norminf, verbosity = 3)
plot(branm; plotseries = true)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1778 | using Revise
using AsymptoticNumericalMethod, LinearAlgebra, Plots
using BifurcationKit
const BK = BifurcationKit
function F_chan(x, p)
(;α) = p
N = length(x)
h = 1/(N)
f = similar(x)
n = length(x)
f[1] = (-2x[1]+x[2])/h^2 + α * exp(x[1])
f[n] = ( x[N-1]-2x[N])/h^2 + α * exp(x[N])
for i=2:n-1
f[i] = (x[i-1] - 2 * x[i] + x[i+1]) / h^2 + α * exp(x[i])
end
return f
end
n = 109
sol = zeros(n)
par = (α = 0.0, )
optnewton = NewtonPar(tol = 1e-11, verbose = true)
prob = BifurcationProblem(F_chan, sol, par, (@optic _.α); record_from_solution = (x,p) -> norminf(x))
optcont0 = ContinuationPar(dsmin = 0.01, dsmax = 0.05, ds= 0.01, p_max = 4.1, newton_options = NewtonPar(tol = 1e-9), max_steps = 550)
br0 = @time continuation(prob, PALC(),optcont0, normC = norminf, verbosity = 0)
plot(br0)
#################################################################################
# optanm = ContinuationPar(dsmin = 0.01, dsmax = 0.15, ds= 0.01, p_max = 4.1, newton_options = NewtonPar(tol = 1e-9))
#
# polU, polp = ANM.anm(F_chan, Jac_mat, out, par, (@lens _.α), 5, 70, 1e-4, optanm, normC = x->norm(x,2), verbosity = 1)
#
# plot()
# for ii in eachindex(polU)
# a = LinRange(0, 4polU[ii].radius, 20)
# plot!([polp[ii].(a)], [norm(polU[ii](_a), Inf) for _a in a], legend = false, marker=:d)
# end
# plot!(br0)
# title!("");
# ylims!(0,2)
#################################################################################
optanm = ContinuationPar(dsmin = 0.01, dsmax = 0.15, ds= 0.01, p_max = 4.1, newton_options = NewtonPar(tol = 1e1, verbose = false), detect_bifurcation = 3, max_steps = 6)
br_anm = @time continuation(prob, ANM(30, 1e-6), optanm, normC = norm, verbosity = 1)
plot(br_anm)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1679 | using Revise
using AsymptoticNumericalMethod, Plots
using LinearAlgebra: norm
using BifurcationKit
const BK = BifurcationKit
function F(x, p)
(;α) = p
f = similar(x)
f[1] = (-2x[1]+x[2]) + α * exp(x[1])
f[2] = ( x[1]-2x[2]) + α * exp(x[2])
return f
end
sol0 = zeros(2)
par = (α = 0.0, )
prob = BifurcationProblem(F, sol0, par, (@optic _.α); record_from_solution = (x,p) -> norminf(x))
optcont = ContinuationPar(dsmin = 0.01, dsmax = 0.15, ds= 0.1, newton_options = NewtonPar(tol = 1e-11), max_steps = 100, detect_bifurcation = 3)
br0 = @time continuation(prob, PALC(), optcont, normC = norminf)
plot(br0)
#################################################################################
br1 = continuation(br0, 2)
plot(br0,br1)
#################################################################################
optanm = ContinuationPar(optcont, ds= 0.01, newton_options = NewtonPar(tol = 1e-9, verbose = false), detect_bifurcation = 3, n_inversion = 6, max_bisection_steps = 15, max_steps = 15, )#p_max = 0.1)
branm = @time continuation(prob, ANM(20, 1e-8), optanm, normC = norminf, verbosity = 2)
plot(branm)
plot(branm, plotseries = true)
plot!(br0, color = :black)
################
# plot the norm of the series
plot()
for ii in eachindex(branm.polU)
s = LinRange(-0*branm.radius[ii], branm.radius[ii], 20)
plot!([branm.polp[ii].(s)], [norminf(F(branm.polU[ii](_s), BK.setparam(prob,branm.polp[ii](_s)))) for _s in s], legend = false, linewidth=5)#, marker=:d)
end
title!("")
#################################################################################
# WIP !!! does not work yet
# branm1 = continuation(branm, 2)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 453 | module AsymptoticNumericalMethod
using BifurcationKit, Parameters
using ForwardDiff, TaylorIntegration
using DocStringExtensions
import BifurcationKit: getparams, setParam, residual, jacobian
import LinearAlgebra: dot, norm
using RecipesBase
const BK = BifurcationKit
include("Taylor.jl")
include("Results.jl")
include("Wrap.jl")
include("plotting/Recipes.jl")
export ANM, continuation
end # module
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1051 | """
$(SIGNATURES)
Continuation result from the ANM method.
## Fields
$(TYPEDFIELDS)
"""
struct ANMResult{Tkind, Tprob, U, P, T, B <: BK.AbstractResult{Tkind, Tprob}} <: BK.AbstractResult{Tkind, Tprob}
"Vector of Taylor series solutions"
polU::U
"Vector of Taylor series parameter"
polp::P
"Radius of validity for each Taylor series"
radius::Vector{T}
"Corresponnding `::ContResult`"
branch::B
end
function Base.getproperty(br::ANMResult, s::Symbol)
if s in (:polU, :polp, :radius, :branch)
return getfield(br, s)
else
return getfield(br.branch, s)
end
end
@inline BK.haseigenvalues(br::ANMResult) = false
@inline BK.kernel_dimension(br::ANMResult, ind) = BK.kernel_dimension(br.branch, ind)
@inline BK.get_contresult(br::ANMResult) = br.branch
function Base.show(io::IO, br::ANMResult; comment = "", prefix = " ")
comment = "\n" * prefix * "├─ $(length(br.polU)) series of degree $(br.alg.order), tol = $(br.alg.tol)"
BK.show(io, BK.get_contresult(br); comment = comment)
end
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 11883 | """
$(SIGNATURES)
Continuation algorithm based on Asymptotic Numerical Method. It can be used from the package https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl
## Fields
$(TYPEDFIELDS)
## References
- Charpentier, Isabelle, Bruno Cochelin, and Komlanvi Lampoh. “Diamanlab - An Interactive Taylor-Based Continuation Tool in MATLAB,” n.d., 12.
- Rubbert, Lennart, Isabelle Charpentier, Simon Henein, and Pierre Renaud. “Higher-Order Continuation Method for the Rigid-Body Kinematic Design of Compliant Mechanisms”, n.d., 18.
"""
struct ANM{T} <: BK.AbstractContinuationAlgorithm
"order of the polynomial approximation"
order::Int
"tolerance which is used to estimate the neighbourhood on which the polynomial approximation is valid"
tol::T
end
"""
$(SIGNATURES)
# Arguments
- `prob::BifurcationProblem`
- `alg::` ANM continuation algorithm. See [`ANM`](@ref).
- `contParams` see [`BK.ContinuationPar`](@ref)
"""
function BK.continuation(prob::BK.AbstractBifurcationProblem,
alg::ANM,
contParams::BK.ContinuationPar{T, L, E};
linear_algo = MatrixBLS(),
plot = false,
normC = norm,
finalise_solution = BK.finalise_default,
callback_newton = BifurcationKit.cb_default,
kind = BK.EquilibriumCont(),
verbosity = 0,
kwargs...) where {T, L <: BK.AbstractLinearSolver, E <: BK.AbstractEigenSolver}
it = BK.ContIterable(prob, alg, contParams; finalise_solution = finalise_solution, callback_newton = callback_newton, normC = normC, verbosity = verbosity, plot = plot)
# the keyword argument is to overwrite verbosity behaviour, like when locating bifurcations
verbose = verbosity > 0
p₀ = BK.getparam(prob)
nmax = contParams.max_steps
# get parameters
@unpack p_min, p_max, max_steps, newton_options, ds = contParams
ϵFD = BK.getdelta(prob)
# apply Newton algo to initial guess
verbose && printstyled(color=:red, bold=true, ""*"─"^20*" ANM Method "*"─"^20*"\n")
verbose && printstyled("━"^18*" INITIAL GUESS "*"━"^18, bold = true, color = :magenta)
# we pass additional kwargs to newton so that it is sent to the newton callback
sol₀ = newton(prob, newton_options; normN = normC, callback = callback_newton, iterationC = 0, p = p₀)
@assert BK.converged(sol₀) "Newton failed to converge initial guess on the branch."
verbose && (print("\n──▶ convergence of the initial guess = ");printstyled("OK\n", color=:green))
verbose && println("──▶ parameter = $(p₀), initial step")
# define continuation state
@unpack η, ds = contParams
states = BK.iterate_from_two_points(it, sol₀.u, p₀, copy(sol₀.u), p₀ + ds / η; _verbosity = verbosity)
# variable to hold the result from continuation, i.e. a branch
contres = ContResult(it, states[1])
########################
# η = T(1)
# u_pred, fval, isconverged, itnewton = newton(F, dF,
# u0, set(par, lens, p0 + ds / η), newton_options; normN = normC, callback = callback_newton, iterationC = 0, p = p0 + ds / η)
# _U1 = BorderedArray(u_pred - u0, ds / η)
# nrm = √(norm(_U1.u,2)^2 + _U1.p^2)
# _U1.u ./= nrm; _U1.p /= nrm
########################
# compute jacobian and derivatives
J = BK.jacobian(prob, sol₀.u, getparams(prob))
dFdp = (residual(prob, sol₀.u, BK.setparam(prob, p₀ + ϵFD)) .- residual(prob, sol₀.u, getparams(prob))) ./ ϵFD
# compute initial tangent
U1 = getTangent(J, dFdp, length(prob.u0), linear_algo)
# initialize the vector of Taylor1 expansions
n = length(prob.u0)
a = Taylor1(T, alg.order)
polu = Array{Taylor1{T}}(undef, n)
polp = Taylor1([p₀, U1.p], alg.order)
tmp = copy(prob.u0)
for i in eachindex(sol₀.u)
@inbounds polu[i] = Taylor1( [sol₀.u[i], U1.u[i]], alg.order )
end
# continuation loop
resu = Array{Taylor1{T}}[]
resp = Taylor1{T}[]
radius = Vector{T}(undef, 0)
for ii = 1:nmax
# J is fixed so we pass it
taylorstep!(prob, J, dFdp, U1, tmp, polu, polp, linear_algo)
# compute radius using that tmp contains Rk
am = (alg.tol / normC(tmp)) ^ (1/alg.order)
verbose && println("\n──▶ $ii, radius = $am, pmax = ", polp(am))
if isfinite(am) == false
println("\n\n")
@error "Radius is infinite"
break
end
# save series
push!(resu, deepcopy(polu)); push!(resp, deepcopy(polp)); push!(radius, am)
# compute last point given by series
_x0 = polu(am); _p0 = polp(am)
# correct solution if needed
verbose && printstyled("─"^70, bold = true)
sol₀ = newton(re_make(prob, u0 = _x0, params = BK.setparam(prob, _p0)), newton_options; normN = normC, callback = callback_newton, iterationC = 0, p = _p0)
if BK.converged(sol₀) == false
println("\n\n")
@error "\nNewton did not converged"
break
end
# update derivatives
J = BK.jacobian(prob, sol₀.u, getparams(sol₀.prob))
dFdp = (residual(prob, sol₀.u, BK.setparam(prob, _p0 + ϵFD)) .- residual(prob, sol₀.u, getparams(sol₀.prob))) ./ ϵFD
# dFdp .= (F(u0, set(par, lens, _p0 + ϵFD)) .- F(u0, set(par, lens, _p0))) ./ ϵFD
# compute tangent
U1 = getTangent(J, dFdp, length(prob.u0), linear_algo)
# update series with new values
polp .*= 0; polu .*= 0
polp[0] = _p0; polp[1] = U1.p
for ii in eachindex(polu)
polu[ii][0] = sol₀.u[ii]
polu[ii][1] = U1.u[ii]
end
if (contParams.p_min <= polp(am) <= contParams.p_max) == false
@warn "Hitting boundary, polp(am) = $(polp(am))"
break
end
end
verbose && println("")
save!(contres, it, states[1], resu, resp, radius)
return ANMResult(resu, resp, radius, contres)
end
function getTangent(J, dFdp, n, linear_algo)
T = eltype(dFdp)
u1, p1, iscv, itlin = linear_algo(J, dFdp,
rand(n), rand(),
zeros(n), T(1))
~iscv && @error "Initial tangent computation failed"
nrm = √(dot(u1,u1) + p1^2)
U1 = BorderedArray(u1./nrm, p1/nrm)
end
function taylorstep!(prob, J, dFdp, U1, tmp, polU, polp::Taylor1{T}, linear_algo) where T
order = polp.order
for ord in 2:order
R = residual(prob, polU, BK.setparam(prob, polp))
# put Rk in tmp
for ii in eachindex(tmp)
tmp[ii] = R[ii][ord]
end
Uk, λk, iscv, itlin = linear_algo(J, dFdp,
U1.u, U1.p,
-tmp, T(0))
~iscv && @warn "Bordered Linear solver did not converge"
polp[ord] = λk
for ii in eachindex(tmp)
polU[ii][ord] = Uk[ii]
end
end
end
function BK.initialize!(state::BK.AbstractContinuationState,
iter::BK.AbstractContinuationIterable,
alg::ANM, nrm = false)
return nothing
end
function _contresult(prob, alg, contParams::ContinuationPar, τ; recordFromSolution, get_eigen_elements )
x0 = prob.u0
par0 = getparams(prob)
pt = recordFromSolution(x0, 0.)
pts = BK.mergefromuser(pt, (param = 0.0, am = 0.0, ip = 1, itnewton = 0, ds = 0., step = 0, n_imag = 0, n_unstable = 0, stable = false))
if BK.compute_eigen_elements(contParams)
eiginfo = get_eigen_elements(0.0, 1)
_, n_unstable, n_imag = BK.isStable(contParams, eiginfo[1])
return BK._contresult(prob, alg, pt, pts, x0, τ, eiginfo, contParams, true, BK.EquilibriumCont())
else
eiginfo = (Complex{eltype(x0)}(0), nothing, false, 0)
return BK._contresult(prob, alg, pt, pts, x0, τ, eiginfo, contParams, false, BK.EquilibriumCont())
end
end
function save!(contres, it, state, resu, resp, radius)
state.converged = true
state.step = 0
state.itnewton = 0
state.itlinear = 0
for ip in eachindex(radius)
Sr = LinRange(0, radius[ip], 20)
for (is, s) in pairs(Sr)
# update state
copyto!(state.z.u, resu[ip](s))
state.z_old.p = state.z.p
state.z.p = resp[ip](s)
if BK.compute_eigenelements(it)
it_eigen = BK.compute_eigenvalues!(it, state)
end
state.step += 1
BK.save!(contres, it, state)
if it.contparams.detect_bifurcation > 1
_isstable, n_unstable, n_imag = BifurcationKit.is_stable(it.contparams, state.eigvals)
if BK.detect_bifurcation(state)
status::Symbol = :guess
interval = BK.getinterval(BK.getpreviousp(state), getp(state))
printstyled(color=:red, "──▶ Bifurcation at p ≈ $(resp[ip](s)), δ = ", n_unstable - contres.n_unstable[end-1] ,"\n")
@debug interval
if it.contparams.detect_bifurcation > 2
sbif, interval = locate_bifurcation(it, Sr[is-1], contres.n_unstable[end-1], s, n_unstable, ip, resu, resp; verbose = it.verbosity == 3)
status = :converged
end
# save the bifurcation point
_, bifpt = BK.get_bifurcation_type(it, state, status, interval)
if bifpt.type != :none; push!(contres.specialpoint, bifpt); end
end
end
end
end
end
function get_eigen_elements(resu, resp, prob, _s::Number, _ip::Int, it)
_J = jacobian(prob, resu[_ip](_s), BK.setparam(prob, resp[_ip](_s)))
return it.contparams.newton_options.eigsolver(_J, it.contparams.nev)
end
function locate_bifurcation(it, _s1, _n1, _s2, _n2, _ip::Int, resu, resp; verbose = false)
getinterval(a,b) = (min(a,b), max(a,b))
contparams = it.contparams
# interval which contains the bifurcation point
interval = getinterval(resp[_ip](_s1), resp[_ip](_s2))
indinterval = 2 # index of active bound in the bisection, allows to track interval
# we compute the number of changes in n_unstable
n_inversion = 0
stepBis = 0
local s = (_s2 + _s1)/2
δs = (_s2 - _s1)/2
n_pred = _n1
n_unstable = _n1
biflocated = true
while stepBis < contparams.max_bisection_steps
eiginfo = get_eigen_elements(resu, resp, it.prob, s, _ip, it)
isstable, n_unstable, n_imag = BifurcationKit.is_stable(contparams, eiginfo[1])
if n_pred == n_unstable
δs /= 2
else
δs /= -2
n_inversion += 1
indinterval = (indinterval == 2) ? 1 : 2
end
stepBis > 0 && (interval = @set interval[indinterval] = resp[_ip](s))
verbose && printstyled(color=:blue,
"────▶ $(stepBis) - [Loc-Bif] (n1, nc, n2) = ",(_n1, n_unstable, _n2),
", p = ", resp[_ip](s), ", s = $s, #reverse = ", n_inversion,
"\n────▶ bifurcation ∈ ", getinterval(interval...),
", precision = ", interval[2] - interval[1],
"\n────▶ 5 Eigenvalues closest to ℜ=0:\n")
verbose && Base.display(BifurcationKit.closesttozero(eiginfo[1])[1:min(5, 2)])
biflocated = abs(real.(BifurcationKit.closesttozero(eiginfo[1]))[1]) < it.contparams.tol_bisection_eigenvalue
if (abs(s) >= contparams.dsmin_bisection &&
stepBis < contparams.max_bisection_steps &&
n_inversion < contparams.n_inversion &&
biflocated == false) == false
break
end
n_pred = n_unstable
s += δs
stepBis += 1
end
verbose && printstyled(color=:red, "────▶ Found at p = ", resp[_ip](s), ", δn = ", abs(2n_unstable-_n1-_n2)," from p = ",resp[_ip](_s2),"\n")
return s, getinterval(interval...)
end
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 127 | BK.get_normal_form1d(br::ANMResult, ind_bif::Int; kwargs...) = BK.get_normal_form1d(BK.get_contresult(br), ind_bif; kwargs...)
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | code | 1787 | RecipesBase.@recipe function Plots(br::ANMResult;
plotfold = false,
putspecialptlegend = true,
filterspecialpoints = false,
vars = nothing,
plotstability = true,
plotspecialpoints = true,
branchlabel = "",
linewidthunstable = 1.0,
linewidthstable = 2linewidthunstable,
plotcirclesbif = false,
applytoY = identity,
applytoX = identity,
plotseries = false)
contres = br.branch
record_from_solution = BK.record_from_solution(contres.prob)
ind1, ind2 = BK.get_plot_vars(contres, vars)
if plotseries
prob = br.branch.prob
for ii in eachindex(br.polU)
s = LinRange(-0 * br.radius[ii], br.radius[ii], 20)
@series begin
label --> ""
linewidth --> 5
markerstrokewidth --> 0
map(applytoX, [br.polp[ii].(s)]), map(applytoY, [getproperty(
BK.namedprintsol(record_from_solution(br.polU[ii](_s), BK.setparam(prob, br.polp[ii].(s)))), ind2) for _s in s])
end
end
end
@series begin
putspecialptlegend --> false
plotfold --> plotfold
plotspecialpoints --> plotspecialpoints
plotstability --> plotstability
branchlabel --> branchlabel
linewidthunstable --> linewidthunstable
linewidthstable --> linewidthstable
applytoX --> applytoX
applytoY --> applytoY
vars --> vars
contres
end
end
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.2.0 | a39578fb466dbe1d6cec89dbc56ab990191cfa40 | docs | 2002 | # AsymptoticNumericalMethod.jl
| **Documentation** | **Build Status** |
|:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
| [](https://bifurcationkit.github.io/BifurcationKitDocs.jl/dev) | [](https://github.com/rveltz/AsymptoticNumericalMethod.jl/actions) [](https://codecov.io/gh/bifurcationkit/AsymptoticNumericalMethod.jl) |
This Julia package provides the numerical continuation algorithm **Asymptotic Numerical Method** (ANM) which is to be used with [BifurcationKit.jl](https://github.com/bifurcationkit/BifurcationKit.jl).
## Support and citation
If you use this package for your work, we ask that you cite the following paper. Open source development as part of academic research strongly depends on this. Please also consider starring this repository if you like our work, this will help us to secure funding in the future. It is referenced on HAL-Inria as follows:
```
@misc{veltz:hal-02902346,
TITLE = {{BifurcationKit.jl}},
AUTHOR = {Veltz, Romain},
URL = {https://hal.archives-ouvertes.fr/hal-02902346},
INSTITUTION = {{Inria Sophia-Antipolis}},
YEAR = {2020},
MONTH = Jul,
KEYWORDS = {pseudo-arclength-continuation ; periodic-orbits ; floquet ; gpu ; bifurcation-diagram ; deflation ; newton-krylov},
PDF = {https://hal.archives-ouvertes.fr/hal-02902346/file/354c9fb0d148262405609eed2cb7927818706f1f.tar.gz},
HAL_ID = {hal-02902346},
HAL_VERSION = {v1},
}
```
## Installation
To install it, please run
`] add AsymptoticNumericalMethod`
| AsymptoticNumericalMethod | https://github.com/bifurcationkit/AsymptoticNumericalMethod.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 2994 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
module GeoStatsProcessesImageQuiltingExt
using Tables
using Random
using Meshes
using GeoTables
using GeoStatsBase: initbuff
using ImageQuilting: iqsim
using GeoStatsProcesses: RandSetup
using GeoStatsProcesses: QuiltingProcess, DefaultRandMethod
import GeoStatsProcesses: randprep, randsingle
function randprep(::AbstractRNG, process::QuiltingProcess, ::DefaultRandMethod, setup::RandSetup)
# retrieve domain info
sdomain = setup.domain
simsize = size(sdomain)
lin2cart = CartesianIndices(simsize)
Dim = embeddim(sdomain)
# retrieve process paramaters
TI = process.trainimg
init = process.init
# default overlap
overlap = isnothing(process.overlap) ? ntuple(i -> 1 / 6, Dim) : process.overlap
# initialize buffers for realization and simulation mask
vars = Dict(zip(setup.varnames, setup.vartypes))
buff, mask = initbuff(sdomain, vars, init, data=setup.geotable)
pairs = map(setup.varnames) do var
# training image as simple array
trainimg = asarray(TI, var)
# create soft data object
soft = if !isnothing(process.soft)
data, dataTI = process.soft
@assert domain(data) == sdomain "incompatible soft data for target domain"
@assert domain(dataTI) == domain(TI) "incompatible soft data for training image"
schema = Tables.schema(values(data))
schemaTI = Tables.schema(values(dataTI))
vars = schema.names |> collect |> sort
varsTI = schemaTI.names |> collect |> sort
@assert vars == varsTI "variables for target domain and training image differ"
[(asarray(data, var), asarray(dataTI, var)) for var in vars]
else
[]
end
# create hard data object
linds = findall(mask[var])
cinds = [lin2cart[ind] for ind in linds]
hvals = view(buff[var], linds)
hard = Dict{CartesianIndex{Dim},Real}()
for (ind, val) in zip(cinds, hvals)
push!(hard, ind => val)
end
# disable inactive voxels
if !isnothing(process.inactive)
for icoords in process.inactive
push!(hard, icoords => NaN)
end
end
var => (trainimg, simsize, overlap, soft, hard)
end
Dict(pairs)
end
function randsingle(rng::AbstractRNG, process::QuiltingProcess, ::DefaultRandMethod, setup::RandSetup, prep)
pairs = map(setup.varnames) do var
# unpack parameters
threads = setup.threads
(; tilesize, path, tol) = process
trainimg, simsize, overlap, soft, hard = prep[var]
# run image quilting core function
reals = iqsim(
trainimg,
tilesize,
simsize;
overlap,
path,
soft,
hard,
tol,
threads,
rng
)
# replace NaN with missing
vals = [isnan(v) ? missing : v for v in reals[1]]
# flatten result
var => vec(vals)
end
Dict(pairs)
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1710 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
module GeoStatsProcessesStratiGraphicsExt
using Random
using Meshes
using StratiGraphics: LandState, Strata, simulate, voxelize
using GeoStatsProcesses: RandSetup
using GeoStatsProcesses: StrataProcess, DefaultRandMethod
import GeoStatsProcesses: randprep, randsingle
function randprep(::AbstractRNG, process::StrataProcess, ::DefaultRandMethod, setup::RandSetup)
# retrieve domain info
domain = setup.domain
@assert embeddim(domain) == 3 "process implemented for 3D domain only"
pairs = map(setup.varnames) do var
# determine initial state
state = if isnothing(process.state)
nx, ny, _ = size(domain)
land = zeros(nx, ny)
LandState(land)
else
process.state
end
# save preprocessed input
var => state
end
Dict(pairs)
end
function randsingle(::AbstractRNG, process::StrataProcess, ::DefaultRandMethod, setup::RandSetup, prep)
# retrieve domain info
domain = setup.domain
_, __, nz = size(domain)
# retrieve process parameters
(; environment, stack, nepochs) = process
pairs = map(setup.varnames) do var
# get parameters for the variable
state = prep[var]
# simulate the environment
record = simulate(environment, state, nepochs)
# build stratigraphy
strata = Strata(record, stack)
# return voxel model
model = voxelize(strata, nz)
# replace NaN with missing
vals = [isnan(v) ? missing : v for v in model]
# flatten result
var => vec(vals)
end
Dict(pairs)
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1952 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
module GeoStatsProcessesTuringPatternsExt
using Random
using Meshes
using TuringPatterns: BoxBlur, Clamp, SimplePattern, Sim
using TuringPatterns: Params, step!, scale01
using GeoStatsProcesses: RandSetup
using GeoStatsProcesses: TuringProcess, DefaultRandMethod
import GeoStatsProcesses: randprep, randsingle
const PARAMS1 =
[Params(2, 4, 0.01), Params(5, 10, 0.02), Params(10, 20, 0.03), Params(20, 40, 0.04), Params(50, 100, 0.05)]
function randprep(::AbstractRNG, process::TuringProcess, ::DefaultRandMethod, setup::RandSetup)
# retrieve domain of simulation
domain = setup.domain
topo = topology(domain)
# assert grid topology
@assert topo isa GridTopology "process only defined over grid topology"
# retrieve simulation size
sz = size(topo)
# retrieve simulation parameters
params = isnothing(process.params) ? PARAMS1 : process.params
pairs = map(setup.varnames) do var
# construct patterns from parameters
patterns = [SimplePattern(param, sz) for param in params]
var => patterns
end
Dict(pairs)
end
function randsingle(::AbstractRNG, process::TuringProcess, ::DefaultRandMethod, setup::RandSetup, prep)
# retrieve domain size
sz = size(topology(setup.domain))
# retrieve process parameters
blur = isnothing(process.blur) ? BoxBlur(sz) : process.blur(sz)
edge = isnothing(process.edge) ? Clamp() : process.edge()
iter = process.iter
pairs = map(setup.vartypes, setup.varnames) do V, var
# unpack preprocessed parameters
patterns = prep[var]
# perform simulation
sim = Sim(rand(V, sz), patterns, edge, blur)
for _ in 1:iter
step!(sim)
end
real = scale01(sim.fluid)
# flatten result
var => vec(real)
end
Dict(pairs)
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1036 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
module GeoStatsProcesses
using Meshes
using Unitful
using GeoTables
using GeoStatsFunctions
using GeoStatsModels
using FFTW
using CpuId
using Tables
using Distances
using Distributions
using ProgressMeter
using Bessels: gamma
using Random
using Statistics
using Distributed
using LinearAlgebra
using GeoStatsBase: Ensemble, integrate
using GeoStatsBase: NearestInit, initbuff
include("units.jl")
include("ioutils.jl")
include("processes.jl")
include("operations.jl")
export
# point processes
BinomialProcess,
ClusterProcess,
InhibitionProcess,
PoissonProcess,
UnionProcess,
ishomogeneous,
# point operations
RandomThinning,
thin,
# field processes
GaussianProcess,
LindgrenProcess,
QuiltingProcess,
TuringProcess,
StrataProcess,
# field methods
LUMethod,
FFTMethod,
SEQMethod
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 928 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
prettyname(obj) = prettyname(typeof(obj))
function prettyname(T::Type)
name = string(T)
name = replace(name, r"{.*" => "")
replace(name, r".*\." => "")
end
printfields(io, obj; kwargs...) = printfields(io, obj, fieldnames(typeof(obj)); kwargs...)
function printfields(io, obj, fnames; singleline=false)
if singleline
vals = map(enumerate(fnames)) do (i, field)
val = getfield(obj, i)
str = repr(val, context=io)
"$field: $str"
end
join(io, vals, ", ")
else
len = length(fnames)
for (i, field) in enumerate(fnames)
div = i == len ? "\n└─ " : "\n├─ "
val = getfield(obj, i)
str = repr(val, context=io)
print(io, "$div$field: $str")
end
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1276 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ThinningMethod
A method for thinning spatial point processes and patterns.
"""
abstract type ThinningMethod end
"""
thin(process, method)
Thin spatial point `process` with thinning `method`.
"""
function thin end
#-----------------
# IMPLEMENTATIONS
#-----------------
include("thinning/random.jl")
#---------------
# PROCESS UNION
#---------------
"""
p₁ ∪ p₂
Return the union of point processes `p₁` and `p₂`.
"""
Base.union(p₁::PointProcess, p₂::PointProcess) = UnionProcess(p₁, p₂)
Base.union(p₁::PoissonProcess{<:Real}, p₂::PoissonProcess{<:Real}) = PoissonProcess(p₁.λ + p₂.λ)
Base.union(p₁::PoissonProcess{<:Function}, p₂::PoissonProcess{<:Function}) = PoissonProcess(x -> p₁.λ(x) + p₂.λ(x))
Base.union(p₁::PoissonProcess{<:Real}, p₂::PoissonProcess{<:Function}) = PoissonProcess(x -> p₁.λ + p₂.λ(x))
Base.union(p₁::PoissonProcess{<:Function}, p₂::PoissonProcess{<:Real}) = PoissonProcess(x -> p₁.λ(x) + p₂.λ)
Base.union(p₁::PoissonProcess{<:AbstractVector}, p₂::PoissonProcess{<:AbstractVector}) =
PoissonProcess(x -> p₁.λ + p₂.λ)
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1332 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
GeoStatsProcess
A geostatistical process that can be simulated with the `rand` function.
"""
abstract type GeoStatsProcess end
"""
RandMethod
A `rand` method for geostatistical processes.
"""
abstract type RandMethod end
"""
DefaultRandMethod()
Default `rand` method used by some geostatistical processes.
"""
struct DefaultRandMethod <: RandMethod end
"""
defaultmethod(process, setup) -> RandMethod
Returns the default method for the `process` and `setup`.
"""
defaultmethod(process, setup) = DefaultRandMethod()
# ----------------
# IMPLEMENTATIONS
# ----------------
include("processes/point.jl")
include("processes/field.jl")
# -----------
# IO METHODS
# -----------
Base.summary(io::IO, process::GeoStatsProcess) = print(io, prettyname(process))
function Base.show(io::IO, process::GeoStatsProcess)
name = prettyname(process)
ioctx = IOContext(io, :compact => true)
print(io, "$name(")
printfields(ioctx, process, singleline=true)
print(io, ")")
end
function Base.show(io::IO, ::MIME"text/plain", process::GeoStatsProcess)
summary(io, process)
printfields(io, process)
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 297 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
const Len{T} = Quantity{T,u"𝐋"}
addunit(x::Number, u) = x * u
addunit(x::Quantity, _) = x
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 4253 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
FieldProcess <: GeoStatsProcess
Parent type of all field processes.
"""
abstract type FieldProcess <: GeoStatsProcess end
"""
rand([rng], process::FieldProcess, domain, data, [nreals], [method]; [parameters])
Generate one or `nreals` realizations of the field `process` with `method`
over the `domain` with `data` and optional `paramaters`. Optionally, specify
the random number generator `rng` and global `parameters`.
The `data` can be a geotable, a pair, or an iterable of pairs of the form `var => T`,
where `var` is a symbol or string with the variable name and `T` is the corresponding
data type.
## Parameters
* `workers` - Worker processes (default to `[myid()]`)
* `threads` - Number of threads (default to `cpucores()`)
* `verbose` - Show progress and other information (default to `true`)
# Examples
```julia
julia> rand(process, domain, geotable, 3)
julia> rand(process, domain, :z => Float64)
julia> rand(process, domain, "z" => Float64)
julia> rand(process, domain, [:a => Float64, :b => Float64])
julia> rand(process, domain, ["a" => Float64, "b" => Float64])
```
"""
Base.rand(process::FieldProcess, domain::Domain, data, method=nothing; kwargs...) =
rand(Random.default_rng(), process, domain, data, method; kwargs...)
Base.rand(process::FieldProcess, domain::Domain, data, nreals::Int, method=nothing; kwargs...) =
rand(Random.default_rng(), process, domain, data, nreals, method; kwargs...)
function Base.rand(
rng::AbstractRNG,
process::FieldProcess,
domain::Domain,
data,
method=nothing;
threads=cpucores()
)
setup = randsetup(domain, data, threads)
rmethod = isnothing(method) ? defaultmethod(process, setup) : method
prep = randprep(rng, process, rmethod, setup)
real = randsingle(rng, process, rmethod, setup, prep)
table = (; (var => real[var] for var in setup.varnames)...)
georef(table, domain)
end
function Base.rand(
rng::AbstractRNG,
process::FieldProcess,
domain::Domain,
data,
nreals::Int,
method=nothing;
workers=[myid()],
threads=cpucores(),
verbose=true
)
# perform preprocessing step
setup = randsetup(domain, data, threads)
rmethod = isnothing(method) ? defaultmethod(process, setup) : method
prep = randprep(rng, process, rmethod, setup)
# pool of worker processes
pool = CachingPool(workers)
# simulation loop
reals = if verbose
pname = prettyname(process)
mname = prettyname(rmethod)
vname = join(setup.varnames, " ,", " and ")
message = "$pname with $mname → $vname"
@showprogress desc = message pmap(pool, 1:nreals) do _
randsingle(rng, process, rmethod, setup, prep)
end
else
pmap(pool, 1:nreals) do _
randsingle(rng, process, rmethod, setup, prep)
end
end
varreals = (; (var => [real[var] for real in reals] for var in setup.varnames)...)
Ensemble(domain, varreals)
end
struct RandSetup{D<:Domain,T}
domain::D
geotable::T
varnames::Vector{Symbol}
vartypes::Vector{DataType}
threads::Int
end
function randsetup(domain::Domain, data, threads)
geotable, names, types = _extract(data)
RandSetup(domain, geotable, collect(names), collect(types), threads)
end
function _extract(geotable::AbstractGeoTable)
schema = Tables.schema(values(geotable))
geotable, schema.names, schema.types
end
_extract(pair::Pair{Symbol,DataType}) = nothing, [first(pair)], [last(pair)]
_extract(pair::Pair{T,DataType}) where {T<:AbstractString} = nothing, [Symbol(first(pair))], [last(pair)]
_extract(pairs) = _extract(eltype(pairs), pairs)
_extract(::Type{Pair{Symbol,DataType}}, pairs) = nothing, first.(pairs), last.(pairs)
_extract(::Type{Pair{T,DataType}}, pairs) where {T<:AbstractString} = nothing, Symbol.(first.(pairs)), last.(pairs)
_extract(::Type, pairs) = throw(ArgumentError("the data argument must be a geotable, a pair, or an iterable of pairs"))
#-----------------
# IMPLEMENTATIONS
#-----------------
include("field/gaussian.jl")
include("field/lindgren.jl")
include("field/quilting.jl")
include("field/turing.jl")
include("field/strata.jl")
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1405 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
PointProcess <: GeoStatsProcess
Parent type of all point processes.
"""
abstract type PointProcess <: GeoStatsProcess end
"""
ishomogeneous(process::PointProcess)
Tells whether or not the spatial point process `process` is homogeneous.
"""
ishomogeneous(process::PointProcess) = false
"""
rand([rng], process::PointProcess, geometry, [nreals])
rand([rng], process::PointProcess, domain, [nreals])
Generate one or `nreals` realizations of the point `process` inside
`geometry` or `domain`. Optionally specify the random number generator
`rng`.
"""
Base.rand(process::PointProcess, geomdom) = rand(Random.default_rng(), process, geomdom)
Base.rand(process::PointProcess, geomdom, nreals::Int) = rand(Random.default_rng(), process, geomdom, nreals)
Base.rand(rng::AbstractRNG, process::PointProcess, geomdom) = randsingle(rng, process, geomdom)
Base.rand(rng::AbstractRNG, process::PointProcess, geomdom, nreals::Int) = [randsingle(rng, process, geomdom) for _ in 1:nreals]
#-----------------
# IMPLEMENTATIONS
#-----------------
include("point/binomial.jl")
include("point/poisson.jl")
include("point/inhibition.jl")
include("point/cluster.jl")
include("point/union.jl")
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 956 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
GaussianProcess(variogram=GaussianVariogram(), mean=0.0)
Gaussian process with given theoretical `variogram` and global `mean`.
"""
struct GaussianProcess{V,T} <: FieldProcess
variogram::V
mean::T
end
GaussianProcess(variogram) = GaussianProcess(variogram, 0.0)
GaussianProcess() = GaussianProcess(GaussianVariogram(), 0.0)
#---------
# METHODS
#---------
include("gaussian/lu.jl")
include("gaussian/fft.jl")
include("gaussian/seq.jl")
function defaultmethod(process::GaussianProcess, setup::RandSetup)
γ = process.variogram
d = setup.domain
p = parent(d)
b = boundingbox(p)
if p isa Grid && range(γ) ≤ minimum(sides(b)) / 3
FFTMethod()
elseif nelements(d) < 100 * 100
LUMethod()
else
SEQMethod()
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 3932 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
LindgrenProcess(range=1.0, sill=1.0; init=NearestInit())
Lindgren process with given `range` (correlation length)
and `sill` (total variance) as described in Lindgren 2011.
Optionally, specify the data initialization method `init`.
The process relies relies on a discretization of the Laplace-Beltrami
operator on meshes and is adequate for highly curved domains (e.g. surfaces).
## References
* Lindgren et al. 2011. [An explicit link between Gaussian fields and
Gaussian Markov random fields: the stochastic partial differential
equation approach](https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00777.x)
"""
struct LindgrenProcess{ℒ<:Len,V,I} <: FieldProcess
range::ℒ
sill::V
init::I
LindgrenProcess(range::ℒ, sill::V, init::I) where {ℒ<:Len,V,I} = new{float(ℒ),float(V),I}(range, sill, init)
end
LindgrenProcess(range=1.0u"m", sill=1.0; init=NearestInit()) = LindgrenProcess(addunit(range, u"m"), sill, init)
function randprep(::AbstractRNG, process::LindgrenProcess, ::DefaultRandMethod, setup::RandSetup)
# retrieve setup paramaters
(; domain, geotable, varnames, vartypes) = setup
# retrieve sill and range
𝓁 = process.range
σ = process.sill
# retrieve initialization method
init = process.init
# sanity checks
@assert domain isa Mesh "domain must be a `Mesh`"
@assert 𝓁 > zero(𝓁) "range must be positive"
@assert σ > zero(σ) "sill must be positive"
# Laplace-Beltrami operator
W = laplacematrix(domain)
M = measurematrix(domain)
Δ = inv(M) * W
# retrieve parametric dimension
d = paramdim(domain)
# LHS of SPDE (κ² - Δ)Z = τW with Δ = M⁻¹W
α = 2
ν = α - d / 2
κ = 1 / 𝓁
A = κ^2 * I - Δ
# Matérn precision matrix
τ² = σ^2 * κ^(2ν) * (4π)^(d / 2) * gamma(α) / gamma(ν)
Q = ustrip.(A'A / τ²)
# factorization
F = cholesky(Array(Q))
L = inv(Array(F.U))
# initialize buffers for realizations and simulation mask
pset = PointSet(vertices(domain))
vars = Dict(zip(varnames, vartypes))
buff, mask = initbuff(pset, vars, init, data=geotable)
# result of preprocessing
pairs = map(varnames) do var
# retrieve buffer and mask for variable
z = buff[var]
m = mask[var]
# retrieve data locations and data values
i₁ = findall(m)
z₁ = view(z, i₁)
# retrieve simulation locations
i₂ = setdiff(1:nvertices(domain), i₁)
# interpolate at simulation locations if necessary
z̄ = if isempty(i₁)
nothing
else
z[i₂] .= -Q[i₂,i₂] \ (Q[i₂,i₁] * z₁)
z
end
# save preprocessed inputs for variable
var => (; Q, L, i₁, i₂, z̄)
end
Dict(pairs)
end
function randsingle(rng::AbstractRNG, ::LindgrenProcess, ::DefaultRandMethod, setup::RandSetup, prep)
# retrieve setup paramaters
(; domain, geotable, varnames, vartypes) = setup
# simulation at vertices
varreal = map(varnames, vartypes) do var, V
# unpack preprocessed parameters
(; Q, L, i₁, i₂, z̄) = prep[var]
# unconditional realization
w = randn(rng, V, nvertices(domain))
zᵤ = L * w
# perform conditioning if necessary
z = if isempty(i₁)
zᵤ # we are all set
else
# view realization at data locations
zᵤ₁ = view(zᵤ, i₁)
# interpolate at simulation locations
z̄ᵤ = similar(zᵤ)
zᵤ₂ = -Q[i₂,i₂] \ (Q[i₂,i₁] * zᵤ₁)
z̄ᵤ[i₁] .= zᵤ₁
z̄ᵤ[i₂] .= zᵤ₂
# add residual field
z̄ .+ (zᵤ .- z̄ᵤ)
end
var => z
end
# vertex table
vtable = (; varreal...)
# change of support
vdata = GeoTable(domain; vtable)
edata = integrate(vdata, varnames...)
# columns of element table
cols = Tables.columns(values(edata))
Dict(var => Tables.getcolumn(cols, var) for var in varnames)
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1658 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
QuiltingProcess(trainimg, tilesize; [paramaters])
Image quilting process with training image `trainimg` and tile size `tilesize`
as described in Hoffimann et al. 2017.
## Parameters
* `overlap` - Overlap size (default to (1/6, 1/6, ..., 1/6))
* `path` - Process path (`:raster` (default), `:dilation`, or `:random`)
* `inactive` - Vector of inactive voxels (i.e. `CartesianIndex`) in the grid
* `soft` - A pair `(data,dataTI)` of geospatial data objects (default to `nothing`)
* `tol` - Initial relaxation tolerance in (0,1] (default to `0.1`)
* `init` - Data initialization method (default to `NearestInit()`)
## References
* Hoffimann et al 2017. [Stochastic simulation by image quilting
of process-based geological models](https://www.sciencedirect.com/science/article/abs/pii/S0098300417301139)
* Hoffimann et al 2015. [Geostatistical modeling of evolving landscapes
by means of image quilting](https://www.researchgate.net/publication/295902985_Geostatistical_Modeling_of_Evolving_Landscapes_by_Means_of_Image_Quilting)
"""
struct QuiltingProcess{TR,TS,O,P,IN,S,T,I} <: FieldProcess
trainimg::TR
tilesize::TS
overlap::O
path::P
inactive::IN
soft::S
tol::T
init::I
end
QuiltingProcess(
trainimg,
tilesize;
overlap=nothing,
path=:raster,
inactive=nothing,
soft=nothing,
tol=0.1,
init=NearestInit()
) = QuiltingProcess(trainimg, tilesize, overlap, path, inactive, soft, tol, init)
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 926 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
StrataProcess(environment; [paramaters])
Strata process with given geological `environment`
as described in Hoffimann 2018.
## Parameters
* `state` - Initial geological state
* `stack` - Stacking scheme (:erosional or :depositional)
* `nepochs` - Number of epochs (default to 10)
## References
* Hoffimann 2018. [Morphodynamic analysis and statistical synthesis of
geormorphic data](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JF005245)
"""
struct StrataProcess{E,S,ST,N} <: FieldProcess
environment::E
state::S
stack::ST
nepochs::N
end
StrataProcess(environment; state=nothing, stack=:erosional, nepochs=10) =
StrataProcess(environment, state, stack, nepochs)
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 854 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
TuringProcess(; [paramaters])
Turing process as described in Turing 1952.
## Parameters
* `params` - basic parameters (default to `nothing`)
* `blur` - blur algorithm (default to `nothing`)
* `edge` - edge condition (default to `nothing`)
* `iter` - number of iterations (default to `100`)
## References
* Turing 1952. [The chemical basis of morphogenesis](https://royalsocietypublishing.org/doi/10.1098/rstb.1952.0012)
"""
struct TuringProcess{P,B,E,I} <: FieldProcess
params::P
blur::B
edge::E
iter::I
end
TuringProcess(; params=nothing, blur=nothing, edge=nothing, iter=100) = TuringProcess(params, blur, edge, iter)
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 4713 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
FFTMethod(; [paramaters])
The FFT Gaussian process method introduced by Gutjahr 1997.
The covariance function is perturbed in the frequency domain
after a fast Fourier transform. White noise is added to the
phase of the spectrum, and a realization is produced by an
inverse Fourier transform.
## Parameters
* `minneighbors` - Minimum number of neighbors (default to `1`)
* `maxneighbors` - Maximum number of neighbors (default to `10`)
* `neighborhood` - Search neighborhood (default to `nothing`)
* `distance` - Distance used to find nearest neighbors (default to `Euclidean()`)
## References
* Gutjahr 1997. [General joint conditional simulations using a fast
Fourier transform method](https://link.springer.com/article/10.1007/BF02769641)
* Gómez-Hernández, J. & Srivastava, R. 2021. [One Step at a Time: The Origins
of Sequential Simulation and Beyond](https://link.springer.com/article/10.1007/s11004-021-09926-0)
### Notes
* The method is limited to simulations on Cartesian grids, and care must be
taken to make sure that the correlation length is small enough compared to
the grid size.
* As a general rule of thumb, avoid correlation lengths greater than 1/3 of
the grid.
* The method is extremely fast, and can be used to generate large 3D realizations.
"""
@kwdef struct FFTMethod{N,D} <: RandMethod
minneighbors::Int = 1
maxneighbors::Int = 10
neighborhood::N = nothing
distance::D = Euclidean()
end
function randprep(::AbstractRNG, process::GaussianProcess, method::FFTMethod, setup::RandSetup)
# retrive variogram model and mean
γ = process.variogram
μ = process.mean
# check stationarity
if !isstationary(γ)
throw(ArgumentError("variogram model must be stationary"))
end
dom = setup.domain
data = setup.geotable
grid = parent(dom)
dims = size(grid)
center = CartesianIndex(dims .÷ 2)
cindex = LinearIndices(dims)[center]
# number of threads in FFTW
FFTW.set_num_threads(setup.threads)
# perform Kriging in case of conditional simulation
pred = if isnothing(data)
nothing
else
(; minneighbors, maxneighbors, neighborhood, distance) = method
pred = GeoStatsModels.fitpredict(Kriging(γ, μ), data, dom; minneighbors, maxneighbors, neighborhood, distance)
end
pairs = map(setup.vartypes, setup.varnames) do V, var
# compute covariances between centroid and all points
𝒟c = [centroid(grid, cindex)]
𝒟p = [centroid(grid, i) for i in 1:nelements(grid)]
cs = sill(γ) .- GeoStatsFunctions.pairwise(γ, 𝒟c, 𝒟p)
C = reshape(cs, dims)
# move to frequency domain
F = sqrt.(abs.(fft(fftshift(C))))
F[1] = zero(V) # set reference level
# get variable prediction and data locations if necessary
z̄, dinds = nothing, nothing
if !isnothing(pred)
z̄ = pred[:, var]
# find data locations in target domain
ddom = domain(data)
searcher = KNearestSearch(dom, 1)
found = [search(centroid(ddom, i), searcher) for i in 1:nelements(ddom)]
dinds = unique(first.(found))
end
# save preprocessed inputs for variable
var => (; F, z̄, dinds)
end
Dict(pairs)
end
function randsingle(rng::AbstractRNG, process::GaussianProcess, method::FFTMethod, setup::RandSetup, prep)
# retrieve domain info
dom = setup.domain
data = setup.geotable
grid = parent(dom)
inds = parentindices(dom)
dims = size(grid)
# retrive variogram model and mean
γ = process.variogram
μ = process.mean
varreal = map(setup.vartypes, setup.varnames) do V, var
# unpack preprocessed parameters
(; F, z̄, dinds) = prep[var]
# perturbation in frequency domain
P = F .* exp.(im .* angle.(fft(rand(rng, V, dims))))
# move back to time domain
Z = real(ifft(P))
# adjust mean and variance
σ² = Statistics.var(Z, mean=zero(V))
Z .= √(sill(γ) / σ²) .* Z .+ μ
# unconditional realization
zᵤ = Z[inds]
# perform conditioning if necessary
z = if isnothing(data)
zᵤ # we are all set
else
# view realization at data locations
ktab = (; var => view(zᵤ, dinds))
kdom = view(dom, dinds)
kdata = georef(ktab, kdom)
# perform Kriging prediction
(; minneighbors, maxneighbors, neighborhood, distance) = method
pred = GeoStatsModels.fitpredict(Kriging(γ, μ), kdata, dom; minneighbors, maxneighbors, neighborhood, distance)
z̄ᵤ = pred[:, var]
# add residual field
z̄ .+ (zᵤ .- z̄ᵤ)
end
var => z
end
Dict(varreal)
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 4716 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
LUMethod(; [paramaters])
The LU Gaussian process method introduced by Alabert 1987.
The full covariance matrix is built to include all locations
of the process domain, and samples from the multivariate
Gaussian are drawn via LU factorization.
## Parameters
* `factorization` - Factorization method (default to `cholesky`)
* `correlation` - Correlation coefficient between two covariates (default to `0`)
* `init` - Data initialization method (default to `NearestInit()`)
## References
* Alabert 1987. [The practice of fast conditional simulations
through the LU decomposition of the covariance matrix]
(https://link.springer.com/article/10.1007/BF00897191)
* Oliver 2003. [Gaussian cosimulation: modeling of the cross-covariance]
(https://link.springer.com/article/10.1023%2FB%3AMATG.0000002984.56637.ef)
### Notes
* The method is only adequate for domains with relatively small
number of elements (e.g. 100x100 grids) where it is feasible to
factorize the full covariance.
* For larger domains (e.g. 3D grids), other methods are preferred
such as [`SEQMethod`](@ref) and [`FFTMethod`](@ref).
"""
@kwdef struct LUMethod{F,C,I} <: FieldProcess
factorization::F = cholesky
correlation::C = 0.0
init::I = NearestInit()
end
function randprep(::AbstractRNG, process::GaussianProcess, method::LUMethod, setup::RandSetup)
# retrieve setup paramaters
(; domain, geotable, varnames, vartypes) = setup
# check the number of variables
nvars = length(varnames)
@assert nvars ∈ (1, 2) "only 1 or 2 variables can be simulated simultaneously"
# check process paramaters
_checkparam(process.variogram, nvars)
_checkparam(process.mean, nvars)
# retrieve method parameters
fact = method.factorization
init = method.init
# initialize buffers for realizations and simulation mask
vars = Dict(zip(varnames, vartypes))
buff, mask = initbuff(domain, vars, init, data=geotable)
# preprocess parameters for individual variables
pairs = map(enumerate(varnames)) do (i, var)
# get variable specific parameters
γ = _getparam(process.variogram, i)
μ = _getparam(process.mean, i)
# check stationarity
@assert isstationary(γ) "variogram model must be stationary"
# retrieve data locations and data values in domain
dlocs = findall(mask[var])
z₁ = view(buff[var], dlocs)
# retrieve simulation locations
slocs = setdiff(1:nelements(domain), dlocs)
# create views of the domain
𝒟d = [centroid(domain, i) for i in dlocs]
𝒟s = [centroid(domain, i) for i in slocs]
# covariance between simulation locations
C₂₂ = sill(γ) .- GeoStatsFunctions.pairwise(γ, 𝒟s)
if isempty(dlocs)
d₂ = zero(eltype(z₁))
L₂₂ = fact(Symmetric(C₂₂)).L
else
# covariance beween data locations
C₁₁ = sill(γ) .- GeoStatsFunctions.pairwise(γ, 𝒟d)
C₁₂ = sill(γ) .- GeoStatsFunctions.pairwise(γ, 𝒟d, 𝒟s)
L₁₁ = fact(Symmetric(C₁₁)).L
B₁₂ = L₁₁ \ C₁₂
A₂₁ = B₁₂'
d₂ = A₂₁ * (L₁₁ \ z₁)
L₂₂ = fact(Symmetric(C₂₂ - A₂₁ * B₁₂)).L
end
# save preprocessed parameters for variable
var => (z₁, d₂, L₂₂, μ, dlocs, slocs)
end
Dict(pairs)
end
function randsingle(rng::AbstractRNG, ::GaussianProcess, method::LUMethod, setup::RandSetup, prep)
# list of variable names
vars = setup.varnames
# simulate first variable
v₁ = first(vars)
Y₁, w₁ = _lusim(rng, prep[v₁])
varreal = Dict(v₁ => Y₁)
# simulate second variable
if length(vars) == 2
ρ = method.correlation
v₂ = last(vars)
Y₂, _ = _lusim(rng, prep[v₂], ρ, w₁)
push!(varreal, v₂ => Y₂)
end
varreal
end
#-----------
# UTILITIES
#-----------
function _checkparam(param, nvars)
if param isa Tuple
@assert length(param) == nvars "the number of parameters must be equal to the number of variables"
end
end
_getparam(param, i) = param
_getparam(params::Tuple, i) = params[i]
function _lusim(rng, params, ρ=nothing, w₁=nothing)
# unpack parameters
z₁, d₂, L₂₂, μ, dlocs, slocs = params
# number of points in domain
npts = length(dlocs) + length(slocs)
# allocate memory for result
y = Vector{eltype(z₁)}(undef, npts)
# conditional simulation
w₂ = randn(rng, size(L₂₂, 2))
if isnothing(ρ)
y₂ = d₂ .+ L₂₂ * w₂
else
y₂ = d₂ .+ L₂₂ * (ρ * w₁ + √(1 - ρ^2) * w₂)
end
# hard data and simulated values
y[dlocs] = z₁
y[slocs] = y₂
# adjust mean in case of unconditional simulation
isempty(dlocs) && (y .+= μ)
y, w₂
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 5686 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
SEQMethod(; [paramaters])
The sequential process method introduced by Gomez-Hernandez 1993.
It traverses all locations of the geospatial domain according to a path,
approximates the conditional Gaussian distribution within a neighborhood
using simple Kriging, and assigns a value to the center of the neighborhood
by sampling from this distribution.
## Parameters
* `path` - Process path (default to `LinearPath()`)
* `minneighbors` - Minimum number of neighbors (default to `1`)
* `maxneighbors` - Maximum number of neighbors (default to `36`)
* `neighborhood` - Search neighborhood (default to `:range`)
* `distance` - Distance used to find nearest neighbors (default to `Euclidean()`)
* `init` - Data initialization method (default to `NearestInit()`)
For each location in the process `path`, a maximum number of
neighbors `maxneighbors` is used to fit the conditional Gaussian
distribution. The neighbors are searched according to a `neighborhood`.
The `neighborhood` can be a `MetricBall`, the symbol `:range` or `nothing`.
The symbol `:range` is converted to `MetricBall(range(γ))` where `γ` is the
variogram of the Gaussian process. If `neighborhood` is `nothing`, the nearest
neighbors are used without additional constraints.
## References
* Gomez-Hernandez & Journel 1993. [Joint Sequential Simulation of
MultiGaussian Fields](https://link.springer.com/chapter/10.1007/978-94-011-1739-5_8)
### Notes
* This method is very sensitive to the various parameters.
Care must be taken to make sure that enough neighbors
are used in the underlying Kriging model.
"""
@kwdef struct SEQMethod{P,N,D,I} <: RandMethod
path::P = LinearPath()
minneighbors::Int = 1
maxneighbors::Int = 36 # 6x6 grid cells
neighborhood::N = :range
distance::D = Euclidean()
init::I = NearestInit()
end
function randprep(::AbstractRNG, process::GaussianProcess, method::SEQMethod, setup::RandSetup)
# retrieve paramaters
(; variogram, mean) = process
(; minneighbors, maxneighbors, neighborhood, distance) = method
# scale domains for numerical stability
finv, dom, data = _scaledomains(setup)
# scale variogram model accordingly
gamma = GeoStatsFunctions.scale(variogram, finv)
# scale neighborhood accordingly
neigh = if neighborhood isa MetricBall
finv * neighborhood
elseif neighborhood == :range
MetricBall(range(gamma))
else
nothing
end
# determine probability model
probmodel = GeoStatsModels.SimpleKriging(gamma, mean)
marginal = Normal(mean, √sill(gamma))
# adjust min/max neighbors
nobs = nelements(dom)
if maxneighbors > nobs || maxneighbors < 1
maxneighbors = nobs
end
if minneighbors > maxneighbors || minneighbors < 1
minneighbors = 1
end
# determine search method
searcher = if isnothing(neigh)
# nearest neighbor search with a metric
KNearestSearch(dom, maxneighbors; metric=distance)
else
# neighbor search with ball neighborhood
KBallSearch(dom, maxneighbors, neigh)
end
(; dom, data, probmodel, marginal, minneighbors, maxneighbors, searcher)
end
function randsingle(rng::AbstractRNG, ::GaussianProcess, method::SEQMethod, setup::RandSetup, prep)
# retrieve parameters
(; path, init) = method
(; varnames, vartypes) = setup
(; dom, data, probmodel, marginal, minneighbors, maxneighbors, searcher) = prep
# initialize buffers for realization and simulation mask
vars = Dict(zip(varnames, vartypes))
buff, mask = initbuff(dom, vars, init, data=data)
# consider point set with centroids for now
pointset = PointSet([centroid(dom, ind) for ind in 1:nelements(dom)])
varreals = map(varnames) do var
# pre-allocate memory for neighbors
neighbors = Vector{Int}(undef, maxneighbors)
# retrieve realization and mask for variable
realization = buff[var]
simulated = mask[var]
# simulation loop
for ind in traverse(dom, path)
if !simulated[ind]
center = pointset[ind]
# search neighbors with simulated data
nneigh = search!(neighbors, center, searcher, mask=simulated)
if nneigh < minneighbors
# draw from marginal
realization[ind] = rand(rng, marginal)
else
# neighborhood with data
neigh = let
ninds = view(neighbors, 1:nneigh)
dom = view(pointset, ninds)
val = view(realization, ninds)
tab = (; var => val)
georef(tab, dom)
end
# fit distribution probmodel
fitted = GeoStatsModels.fit(probmodel, neigh)
# draw from conditional or marginal
distribution = if GeoStatsModels.status(fitted)
GeoStatsModels.predictprob(fitted, var, center)
else
marginal
end
realization[ind] = rand(rng, distribution)
end
# mark location as simulated and continue
simulated[ind] = true
end
end
var => realization
end
Dict(varreals)
end
function _scaledomains(setup)
sdom = setup.domain
sdat = setup.geotable
fdom = _scalefactor(sdom)
fdat = isnothing(sdat) ? 1 : _scalefactor(domain(sdat))
fmax = max(fdom, fdat)
finv = 1 / fmax
func = Scale(finv)
dom = func(sdom)
dat = isnothing(sdat) ? nothing : func(sdat)
finv, dom, dat
end
function _scalefactor(domain)
pmin, pmax = extrema(boundingbox(domain))
cmin = abs.(to(pmin))
cmax = abs.(to(pmax))
ustrip(max(cmin..., cmax...))
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 480 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
BinomialProcess(n)
A Binomial point process with `n` points.
"""
struct BinomialProcess <: PointProcess
n::Int
end
ishomogeneous(p::BinomialProcess) = true
randsingle(rng::AbstractRNG, p::BinomialProcess, g) = PointSet(sample(rng, g, HomogeneousSampling(p.n)))
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1302 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ClusterProcess(proc, ofun)
A cluster process with parent process `proc` and offsprings generated
with `ofun`. It is a function that takes a parent point and returns
a point pattern from another point process.
ClusterProcess(proc, offs, gfun)
Alternatively, specify the parent process `proc`, the offspring process
`offs` and the geometry function `gfun`. It is a function that takes a
parent point and returns a geometry or domain for the offspring process.
"""
struct ClusterProcess{P<:PointProcess,F<:Function} <: PointProcess
proc::P
ofun::F
end
ClusterProcess(p::PointProcess, o::PointProcess, gfun::Function) = ClusterProcess(p, parent -> rand(o, gfun(parent)))
function randsingle(rng::AbstractRNG, p::ClusterProcess, g)
# generate parents
parents = rand(rng, p.proc, g)
# generate offsprings
offsprings = filter(!isnothing, p.ofun.(parents))
# intersect with geometry
intersects = filter(!isnothing, [o ∩ g for o in offsprings])
# combine offsprings into single set
isempty(intersects) ? nothing : PointSet(mapreduce(collect, vcat, intersects))
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 464 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
InhibitionProcess(δ)
An inhibition point process with minimum distance `δ`.
"""
struct InhibitionProcess{D<:Real} <: PointProcess
δ::D
end
randsingle(rng::AbstractRNG, p::InhibitionProcess, g) = PointSet(sample(rng, g, MinDistanceSampling(p.δ)))
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1986 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
PoissonProcess(λ)
A Poisson process with intensity `λ`. For a homogeneous process,
define `λ` as a constant real value, while for an inhomogeneous process,
define `λ` as a function or vector of values. If `λ` is a vector, it is
assumed that the process is associated with a `Domain` with the same
number of elements as `λ`.
"""
struct PoissonProcess{L<:Union{Real,Function,AbstractVector}} <: PointProcess
λ::L
end
ishomogeneous(p::PoissonProcess{<:Real}) = true
ishomogeneous(p::PoissonProcess{<:Function}) = false
ishomogeneous(p::PoissonProcess{<:AbstractVector}) = false
#------------------
# HOMOGENEOUS CASE
#------------------
function randsingle(rng::AbstractRNG, p::PoissonProcess{<:Real}, g)
# simulate number of points
λ = p.λ
V = measure(g)
n = rand(rng, Poisson(ustrip(λ * V)))
# simulate n points
iszero(n) ? nothing : PointSet(sample(rng, g, HomogeneousSampling(n)))
end
#--------------------
# INHOMOGENEOUS CASE
#--------------------
function randsingle(rng::AbstractRNG, p::PoissonProcess{<:Function}, g)
# upper bound for intensity
λmax = _maxintensity(p, g)
# simulate a homogeneous process
pset = randsingle(rng, PoissonProcess(ustrip(λmax)), g)
# thin point pattern
isnothing(pset) ? nothing : thin(pset, RandomThinning(x -> p.λ(x) / λmax))
end
function randsingle(rng::AbstractRNG, p::PoissonProcess{<:AbstractVector}, d::Domain)
# simulate number of points
λ = p.λ .* measure.(d)
n = rand(rng, Poisson(ustrip(sum(λ))))
# simulate point pattern
iszero(n) ? nothing : PointSet(sample(rng, d, HomogeneousSampling(n, λ)))
end
function _maxintensity(p::PoissonProcess{<:Function}, g)
points = sample(g, HomogeneousSampling(10000))
λmin, λmax = extrema(p.λ, points)
λmax + 0.05 * (λmax - λmin)
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 635 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
UnionProcess(p₁, p₂)
Union (or superposition) of spatial point processes `p₁` and `p₂`.
"""
struct UnionProcess{P₁<:PointProcess,P₂<:PointProcess} <: PointProcess
p₁::P₁
p₂::P₂
end
ishomogeneous(p::UnionProcess) = ishomogeneous(p.p₁) && ishomogeneous(p.p₂)
function randsingle(rng::AbstractRNG, p::UnionProcess, g)
pp₁ = rand(rng, p.p₁, g)
pp₂ = rand(rng, p.p₂, g)
PointSet([collect(pp₁); collect(pp₂)])
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 1545 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
RandomThinning(p)
Random thinning with retention probability `p`, which can
be a constant probability value in `[0,1]` or a function
mapping a point to a probability.
## Examples
```julia
RandomThinning(0.5)
RandomThinning(p -> sum(to(p)))
```
"""
struct RandomThinning{P<:Union{Real,Function}} <: ThinningMethod
p::P
end
# -----------------------
# THINNING POINT PROCESS
# -----------------------
thin(p::PoissonProcess{<:Real}, t::RandomThinning{<:Real}) = PoissonProcess(t.p * p.λ)
thin(p::PoissonProcess{<:Function}, t::RandomThinning{<:Function}) = PoissonProcess(x -> t.p(x) * p.λ(x))
thin(p::PoissonProcess{<:Real}, t::RandomThinning{<:Function}) = PoissonProcess(x -> t.p(x) * p.λ)
thin(p::PoissonProcess{<:Function}, t::RandomThinning{<:Real}) = PoissonProcess(x -> t.p * p.λ(x))
# -----------------------
# THINNING POINT PATTERN
# -----------------------
function thin(pp::PointSet, t::RandomThinning{<:Real})
draws = rand(Bernoulli(t.p), nelements(pp))
inds = findall(isequal(1), draws)
points = collect(view(pp, inds))
PointSet(points)
end
function thin(pp::PointSet, t::RandomThinning{<:Function})
inds = Vector{Int}()
for j in 1:nelements(pp)
x = element(pp, j)
if rand(Bernoulli(t.p(x)))
push!(inds, j)
end
end
points = collect(view(pp, inds))
PointSet(points)
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 11222 | @testset "FieldProcess" begin
@testset "data argument" begin
grid = CartesianGrid(10, 10)
gtb = georef((; z=rand(100)), grid)
# geotable
setup = GeoStatsProcesses.randsetup(grid, gtb, 1)
@test setup.geotable == gtb
@test setup.varnames == [:z]
@test setup.vartypes == [Float64]
# pair
setup = GeoStatsProcesses.randsetup(grid, :z => Float64, 1)
@test isnothing(setup.geotable)
@test setup.varnames == [:z]
@test setup.vartypes == [Float64]
setup = GeoStatsProcesses.randsetup(grid, "z" => Float64, 1)
@test isnothing(setup.geotable)
@test setup.varnames == [:z]
@test setup.vartypes == [Float64]
# iterable of pairs
setup = GeoStatsProcesses.randsetup(grid, [:a => Float64, :b => Int], 1)
@test isnothing(setup.geotable)
@test setup.varnames == [:a, :b]
@test setup.vartypes == [Float64, Int]
setup = GeoStatsProcesses.randsetup(grid, ["a" => Float64, "b" => Int], 1)
@test isnothing(setup.geotable)
@test setup.varnames == [:a, :b]
@test setup.vartypes == [Float64, Int]
# error: invalid iterator
@test_throws ArgumentError GeoStatsProcesses.randsetup(grid, [:a, :b], 1)
end
@testset "GaussianProcess" begin
@testset "defaultmethod" begin
grid = CartesianGrid(100, 100)
vgrid = view(grid, 1:1000)
pset1 = PointSet(rand(Point, 1000))
pset2 = PointSet(rand(Point, 10000))
process = GaussianProcess()
setup = GeoStatsProcesses.randsetup(grid, :z => Float64, 1)
@test GeoStatsProcesses.defaultmethod(process, setup) isa FFTMethod
setup = GeoStatsProcesses.randsetup(vgrid, :z => Float64, 1)
@test GeoStatsProcesses.defaultmethod(process, setup) isa FFTMethod
setup = GeoStatsProcesses.randsetup(pset1, :z => Float64, 1)
@test GeoStatsProcesses.defaultmethod(process, setup) isa LUMethod
setup = GeoStatsProcesses.randsetup(pset2, :z => Float64, 1)
@test GeoStatsProcesses.defaultmethod(process, setup) isa SEQMethod
end
@testset "FFTMethod" begin
# isotropic simulation
rng = StableRNG(2019)
dom = CartesianGrid(100, 100)
process = GaussianProcess(GaussianVariogram(range=10.0))
method = FFTMethod()
sims = rand(rng, process, dom, :z => Float64, 3, method)
@test eltype(sims[1].z) <: Float64
# anisotropic simulation
rng = StableRNG(2019)
dom = CartesianGrid(100, 100)
process = GaussianProcess(GaussianVariogram(MetricBall((20.0, 5.0))))
method = FFTMethod()
sims = rand(rng, process, dom, :z => Float64, 3, method)
# simulation on view of grid
rng = StableRNG(2022)
grid = CartesianGrid(100, 100)
vgrid = view(grid, 1:5000)
process = GaussianProcess(GaussianVariogram(range=10.0))
method = FFTMethod()
sim = rand(rng, process, vgrid, :z => Float64, method)
@test domain(sim) == vgrid
@test length(sim.geometry) == 5000
# conditional simulation
rng = StableRNG(2022)
table = (; z=[1.0, -1.0, 1.0])
coords = [(25.0, 25.0), (50.0, 75.0), (75.0, 50.0)]
samples = georef(table, coords)
sdomain = CartesianGrid(100, 100)
process = GaussianProcess(GaussianVariogram(range=10.0))
method = FFTMethod(maxneighbors=3)
sim = rand(rng, process, sdomain, samples, method)
end
@testset "SEQMethod" begin
𝒮 = georef((; z=[1.0, 0.0, 1.0]), [(25.0, 25.0), (50.0, 75.0), (75.0, 50.0)])
𝒟 = CartesianGrid((100, 100), (0.5, 0.5), (1.0, 1.0))
N = 3
process = GaussianProcess(SphericalVariogram(range=35.0))
method = SEQMethod(neighborhood=MetricBall(30.0), maxneighbors=3)
rng = StableRNG(2017)
sims₁ = rand(rng, process, 𝒟, 𝒮, 3)
sims₂ = rand(rng, process, 𝒟, :z => Float64, 3)
@test eltype(sims₁[1].z) <: Float64
@test eltype(sims₂[1].z) <: Float64
# basic checks
reals = sims₁[:z]
inds = LinearIndices(size(𝒟))
@test all(reals[i][inds[25, 25]] == 1.0 for i in 1:N)
@test all(reals[i][inds[50, 75]] == 0.0 for i in 1:N)
@test all(reals[i][inds[75, 50]] == 1.0 for i in 1:N)
end
@testset "LUMethod" begin
𝒮 = georef((; z=[0.0, 1.0, 0.0, 1.0, 0.0]), [(0.0,), (25.0,), (50.0,), (75.0,), (100.0,)])
𝒟 = CartesianGrid(100)
# ----------------------
# conditional simulation
# ----------------------
rng = StableRNG(123)
process = GaussianProcess(SphericalVariogram(range=10.0))
method = LUMethod()
sims = rand(rng, process, 𝒟, 𝒮, 2, method)
@test eltype(sims[1].z) <: Float64
# ------------------------
# unconditional simulation
# ------------------------
rng = StableRNG(123)
process = GaussianProcess(SphericalVariogram(range=10.0))
method = LUMethod()
sims = rand(rng, process, 𝒟, :z => Float64, 2, method)
# -------------
# co-simulation
# -------------
rng = StableRNG(123)
𝒟 = CartesianGrid(500)
process = GaussianProcess((SphericalVariogram(range=10.0), GaussianVariogram(range=10.0)))
method = LUMethod(correlation=0.95)
sim = rand(rng, process, 𝒟, [:a => Float64, :b => Float64], method)
# -----------
# 2D example
# -----------
rng = StableRNG(123)
𝒟 = CartesianGrid(100, 100)
process = GaussianProcess(GaussianVariogram(range=10.0))
method = LUMethod()
sims = rand(rng, process, 𝒟, :z => Float64, 3, method)
# -------------------
# anisotropy example
# -------------------
rng = StableRNG(123)
𝒟 = CartesianGrid(100, 100)
ball = MetricBall((20.0, 5.0))
process = GaussianProcess(GaussianVariogram(ball))
method = LUMethod()
sims = rand(rng, process, 𝒟, :z => Float64, 3, method)
# ---------------------
# custom factorization
# ---------------------
rng = StableRNG(123)
𝒟 = CartesianGrid(100)
process = GaussianProcess(SphericalVariogram(range=10.0))
method1 = LUMethod(factorization=lu)
method2 = LUMethod(factorization=cholesky)
sim1 = rand(rng, process, 𝒟, 𝒮, 2, method1)
sim2 = rand(rng, process, 𝒟, 𝒮, 2, method2)
# throws
𝒟 = CartesianGrid(100, 100)
process = GaussianProcess(GaussianVariogram(range=10.0))
method = LUMethod()
# only 1 or 2 variables can be simulated simultaneously
@test_throws AssertionError rand(process, 𝒟, [:a => Float64, :b => Float64, :c => Float64], method)
process = GaussianProcess((GaussianVariogram(range=10.0),))
# the number of parameters must be equal to the number of variables
@test_throws AssertionError rand(process, 𝒟, [:a => Float64, :b => Float64], method)
end
@testset "show" begin
process = GaussianProcess()
@test sprint(show, process) == "GaussianProcess(variogram: GaussianVariogram(sill: 1.0, nugget: 0.0, range: 1.0 m, distance: Euclidean), mean: 0.0)"
@test sprint(show, MIME("text/plain"), process) == """
GaussianProcess
├─ variogram: GaussianVariogram(sill: 1.0, nugget: 0.0, range: 1.0 m, distance: Euclidean)
└─ mean: 0.0"""
end
end
@testset "LindgrenProcess" begin
process = LindgrenProcess()
@test process.range == 1u"m"
@test process.sill == 1.0
process = LindgrenProcess(2.0)
@test process.range == 2.0u"m"
@test process.sill == 1.0
process = LindgrenProcess(2.0u"km")
@test process.range == 2.0u"km"
@test process.sill == 1.0
process = LindgrenProcess(2.0, 2.0)
@test process.range == 2.0u"m"
@test process.sill == 2.0
process = LindgrenProcess(2.0u"km", 2.0)
@test process.range == 2.0u"km"
@test process.sill == 2.0
process = LindgrenProcess(2, 2)
@test Unitful.numtype(process.range) == Float64
@test process.sill isa Float64
# simulation on sphere
p = LindgrenProcess(0.1)
s = Sphere((0,0,0))
m = simplexify(s)
# unconditional realization
rng = StableRNG(2024)
r = rand(rng, p, m, :z => Float64, 3)
for i in 1:3
@test isapprox(sum(r[i].z) / length(r[i].z), 0.0, atol=1e-3)
end
# conditional realization
rng = StableRNG(2024)
d = georef((z=[0.,1.],), [(0,0,-1), (0,0,1)])
r = rand(rng, p, m, d, 3)
for i in 1:3
@test isapprox(sum(r[i].z) / length(r[i].z), 0.0, atol=1e-3)
end
process = LindgrenProcess()
@test sprint(show, process) == "LindgrenProcess(range: 1.0 m, sill: 1.0, init: NearestInit())"
@test sprint(show, MIME("text/plain"), process) == """
LindgrenProcess
├─ range: 1.0 m
├─ sill: 1.0
└─ init: GeoStatsBase.NearestInit()"""
end
@testset "QuiltingProcess" begin
sdata = georef((; facies=[1.0, 0.0, 1.0]), [(25.0, 25.0), (50.0, 75.0), (75.0, 50.0)])
sdomain = CartesianGrid(100, 100)
rng = StableRNG(2017)
trainimg = geostatsimage("Strebelle")
inactive = [CartesianIndex(i, j) for i in 1:30 for j in 1:30]
process = QuiltingProcess(trainimg, (30, 30); inactive)
sims = rand(rng, process, sdomain, sdata, 3)
@test length(sims) == 3
@test size(domain(sims[1])) == (100, 100)
@test eltype(sims[1].facies) <: Union{Float64,Missing}
@test any(ismissing, sims[1].facies)
@test all(!isnan, skipmissing(sims[1].facies))
process = QuiltingProcess(trainimg, (30, 30))
@test sprint(show, process) == "QuiltingProcess(trainimg: 62500×2 GeoTable over 250×250 CartesianGrid, tilesize: (30, 30), overlap: nothing, path: :raster, inactive: nothing, soft: nothing, tol: 0.1, init: NearestInit())"
@test sprint(show, MIME("text/plain"), process) == """
QuiltingProcess
├─ trainimg: 62500×2 GeoTable over 250×250 CartesianGrid
├─ tilesize: (30, 30)
├─ overlap: nothing
├─ path: :raster
├─ inactive: nothing
├─ soft: nothing
├─ tol: 0.1
└─ init: GeoStatsBase.NearestInit()"""
end
@testset "TuringProcess" begin
rng = StableRNG(2019)
sdomain = CartesianGrid(200, 200)
sims = rand(rng, TuringProcess(), sdomain, :z => Float64, 3)
@test length(sims) == 3
@test size(domain(sims[1])) == (200, 200)
@test eltype(sims[1].z) <: Float64
process = TuringProcess()
@test sprint(show, process) == "TuringProcess(params: nothing, blur: nothing, edge: nothing, iter: 100)"
@test sprint(show, MIME("text/plain"), process) == """
TuringProcess
├─ params: nothing
├─ blur: nothing
├─ edge: nothing
└─ iter: 100"""
end
@testset "StrataProcess" begin
rng = StableRNG(2019)
proc = SmoothingProcess()
env = Environment(rng, [proc, proc], [0.5 0.5; 0.5 0.5], ExponentialDuration(rng, 1.0))
sdomain = CartesianGrid(50, 50, 20)
sims = rand(StrataProcess(env), sdomain, :z => Float64, 3)
@test length(sims) == 3
@test size(domain(sims[1])) == (50, 50, 20)
@test eltype(sims[1].z) <: Union{Float64,Missing}
@test any(ismissing, sims[1].z)
@test all(!isnan, skipmissing(sims[1].z))
rng = StableRNG(2019)
proc = SmoothingProcess()
env = Environment(rng, [proc, proc], [0.5 0.5; 0.5 0.5], ExponentialDuration(rng, 1.0))
process = StrataProcess(env)
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 5000 | @testset "PointProcess" begin
# geometries and domains
seg = Segment((0.0, 0.0), (11.3, 11.3))
tri = Triangle((0.0, 0.0), (5.65, 0.0), (5.65, 5.65))
quad = Quadrangle((0.0, 0.0), (0.0, 4.0), (4.0, 4.0), (4.0, 0.0))
box = Box((0.0, 0.0), (4.0, 4.0))
ball = Ball((1.0, 1.0), 2.25)
outer = [(0.0, -4.0), (4.0, -1.0), (4.0, 1.5), (0.0, 3.0)]
hole1 = [(0.2, 0.6), (1.4, 0.6), (1.4, -0.2), (0.2, -0.2)]
hole2 = [(2.0, 0.4), (3.0, 0.4), (3.0, -0.2), (2.0, -0.2)]
poly = PolyArea([outer, hole1, hole2])
grid = CartesianGrid((0, 0), (4, 4), dims=(10, 10))
points = [(0, 0), (4.5, 0), (0, 4.2), (4, 4.3), (1.5, 1.5)]
connec = connect.([(1, 2, 5), (2, 4, 5), (4, 3, 5), (3, 1, 5)], Triangle)
mesh = SimpleMesh(points, connec)
geoms = [seg, tri, quad, box, ball, poly, grid, mesh]
# point processes
λ(s) = sum(to(s) .^ 2)
binom = BinomialProcess(100)
poisson1 = PoissonProcess(100.0)
poisson2 = PoissonProcess(λ)
inhibit = InhibitionProcess(0.1)
procs = [binom, poisson1, poisson2, inhibit]
@testset "Basic" begin
rng = StableRNG(2024)
for p in procs
pp = rand(rng, p, box)
@test all(∈(box), pp)
end
for g in geoms
pp = rand(rng, binom, g)
@test all(∈(g), pp)
end
end
@testset "Binomial" begin
rng = StableRNG(2024)
p = BinomialProcess(10)
for g in geoms
pp = rand(rng, p, g)
@test nelements(pp) == 10
end
p = BinomialProcess(10)
@test sprint(show, p) == "BinomialProcess(n: 10)"
@test sprint(show, MIME("text/plain"), p) == """
BinomialProcess
└─ n: 10"""
end
@testset "Poisson" begin
rng = StableRNG(2024)
# inhomogeneous with piecewise constant intensity
for g in [grid, mesh]
p = PoissonProcess(λ.(centroid.(g)))
pp = rand(rng, p, g)
@test all(∈(g), pp)
end
# empty pointsets
for g in geoms
@test isnothing(rand(rng, PoissonProcess(0.0), seg))
end
pp = PointSet(rand(rng, Point, 10))
@test isnothing(rand(rng, PoissonProcess(100.0), pp))
p = PoissonProcess(100.0)
@test sprint(show, p) == "PoissonProcess(λ: 100.0)"
@test sprint(show, MIME("text/plain"), p) == """
PoissonProcess
└─ λ: 100.0"""
end
@testset "Inhibition" begin
p = InhibitionProcess(0.1)
@test sprint(show, p) == "InhibitionProcess(δ: 0.1)"
@test sprint(show, MIME("text/plain"), p) == """
InhibitionProcess
└─ δ: 0.1"""
end
@testset "Cluster" begin
rng = StableRNG(2024)
binom = BinomialProcess(100)
poisson = PoissonProcess(100.0)
procs = [binom, poisson]
ofun1 = parent -> rand(rng, BinomialProcess(10), Ball(parent, 0.2))
ofun2 = parent -> rand(rng, PoissonProcess(100), Ball(parent, 0.2))
ofun3 = parent -> rand(rng, PoissonProcess(x -> 100 * sum((x - parent) .^ 2)), Ball(parent, 0.5))
ofun4 = parent -> PointSet(sample(Sphere(parent, 0.1), RegularSampling(10)))
ofuns = [ofun1, ofun2, ofun3, ofun4]
box = Box((0.0, 0.0), (4.0, 4.0))
ball = Ball((1.0, 1.0), 2.25)
tri = Triangle((0.0, 0.0), (5.65, 0.0), (5.65, 5.65))
grid = CartesianGrid((0, 0), (4, 4), dims=(10, 10))
geoms = [box, ball, tri, grid]
for p in procs, ofun in ofuns
cp = ClusterProcess(p, ofun)
pp = rand(rng, cp, box)
if !isnothing(pp)
@test all(∈(box), pp)
end
end
for g in geoms
cp = ClusterProcess(binom, ofun1)
pp = rand(rng, cp, g)
if !isnothing(pp)
@test all(∈(g), pp)
end
end
p = ClusterProcess(binom, identity)
@test sprint(show, p) == "ClusterProcess(proc: BinomialProcess(n: 100), ofun: identity)"
@test sprint(show, MIME("text/plain"), p) == """
ClusterProcess
├─ proc: BinomialProcess(n: 100)
└─ ofun: identity"""
end
@testset "Union" begin
rng = StableRNG(2024)
b = Box((0.0, 0.0), (100.0, 100.0))
p₁ = BinomialProcess(50)
p₂ = BinomialProcess(50)
p = p₁ ∪ p₂ # 100 points
s = rand(rng, p, b, 2)
@test length(s) == 2
@test s[1] isa PointSet
@test s[2] isa PointSet
@test nelements.(s) == [100, 100]
p = BinomialProcess(50) ∪ BinomialProcess(100)
@test sprint(show, p) == "UnionProcess(p₁: BinomialProcess(n: 50), p₂: BinomialProcess(n: 100))"
@test sprint(show, MIME("text/plain"), p) == """
UnionProcess
├─ p₁: BinomialProcess(n: 50)
└─ p₂: BinomialProcess(n: 100)"""
end
@testset "Thinning" begin
rng = StableRNG(2024)
p = PoissonProcess(10)
q = Quadrangle((0.0, 0.0), (4.0, 0.0), (4.0, 4.0), (0.0, 4.0))
pp = rand(rng, p, q)
tp = thin(pp, RandomThinning(0.3))
@test length(tp) ≤ length(pp)
xs = to.(tp)
@test all(0u"m" .≤ first.(xs) .≤ 4.0u"m")
@test all(0u"m" .≤ last.(xs) .≤ 4.0u"m")
tp = thin(pp, RandomThinning(s -> λ(s) / λ(Point(4.0, 4.0))))
@test length(tp) ≤ length(pp)
xs = to.(tp)
@test all(0u"m" .≤ first.(xs) .≤ 4.0u"m")
@test all(0u"m" .≤ last.(xs) .≤ 4.0u"m")
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | code | 425 | using GeoStatsProcesses
using Meshes
using Unitful
using GeoTables
using GeoStatsFunctions
using GeoStatsImages
using LinearAlgebra
using Test, StableRNGs
import ImageQuilting
import TuringPatterns
using StratiGraphics: SmoothingProcess, Environment, ExponentialDuration
# list of tests
testfiles = ["point.jl", "field.jl"]
@testset "GeoStatsProcesses.jl" begin
for testfile in testfiles
include(testfile)
end
end
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 0.7.1 | b678d403be2ebed544f68fc8616ea30f3b606406 | docs | 642 | # GeoStatsProcesses.jl
[](https://github.com/JuliaEarth/GeoStatsProcesses.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/JuliaEarth/GeoStatsProcesses.jl)
Geostatistical processes for the [GeoStats.jl](https://github.com/JuliaEarth/GeoStats.jl) framework.
## Asking for help
If you have any questions, please [contact our community](https://juliaearth.github.io/GeoStats.jl/stable/about/community.html).
| GeoStatsProcesses | https://github.com/JuliaEarth/GeoStatsProcesses.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 373 | using Documenter
using LoweredCodeUtils
makedocs(
sitename = "LoweredCodeUtils",
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
modules = [LoweredCodeUtils],
pages = ["Home" => "index.md", "signatures.md", "edges.md", "api.md"]
)
deploydocs(
repo = "github.com/JuliaDebug/LoweredCodeUtils.jl.git",
push_preview = true
)
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 856 | module LoweredCodeUtils
# We use a code structure where all `using` and `import`
# statements in the package that load anything other than
# a Julia base or stdlib package are located in this file here.
# Nothing else should appear in this file here, apart from
# the `include("packagedef.jl")` statement, which loads what
# we would normally consider the bulk of the package code.
# This somewhat unusual structure is in place to support
# the VS Code extension integration.
using JuliaInterpreter
using JuliaInterpreter: SSAValue, SlotNumber, Frame
using JuliaInterpreter: @lookup, moduleof, pc_expr, step_expr!, is_global_ref, is_quotenode_egal, whichtt,
next_until!, finish_and_return!, get_return, nstatements, codelocation, linetable,
is_return, lookup_return
include("packagedef.jl")
end # module
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 38815 | ## Phase 1: direct links
# There are 3 types of entities to track: ssavalues (line/statement numbers), slots, and named objects.
# Each entity can have a number of "predecessors" (forward edges), which can be any combination of these
# three entity types. Likewise, each entity can have a number of "successors" (backward edges), also any
# combination of these entity types.
struct Links
ssas::Vector{Int}
slots::Vector{Int}
names::Vector{GlobalRef}
end
Links() = Links(Int[], Int[], GlobalRef[])
function Base.show(io::IO, l::Links)
print(io, "ssas: ", showempty(l.ssas),
", slots: ", showempty(l.slots),
", names: ")
print(IOContext(io, :typeinfo=>Vector{GlobalRef}), showempty(l.names))
print(io, ';')
end
struct CodeLinks
thismod::Module
ssapreds::Vector{Links}
ssasuccs::Vector{Links}
slotpreds::Vector{Links}
slotsuccs::Vector{Links}
slotassigns::Vector{Vector{Int}}
namepreds::Dict{GlobalRef,Links}
namesuccs::Dict{GlobalRef,Links}
nameassigns::Dict{GlobalRef,Vector{Int}}
end
function CodeLinks(thismod::Module, nlines::Int, nslots::Int)
makelinks(n) = [Links() for _ = 1:n]
return CodeLinks(thismod,
makelinks(nlines),
makelinks(nlines),
makelinks(nslots),
makelinks(nslots),
[Int[] for _ = 1:nslots],
Dict{GlobalRef,Links}(),
Dict{GlobalRef,Links}(),
Dict{GlobalRef,Vector{Int}}())
end
function CodeLinks(thismod::Module, src::CodeInfo)
cl = CodeLinks(thismod, length(src.code), length(src.slotnames))
direct_links!(cl, src)
end
function Base.show(io::IO, cl::CodeLinks)
print(io, "CodeLinks:")
print_slots(io, cl)
print_names(io, cl)
nstmts = length(cl.ssapreds)
nd = ndigits(nstmts)
print(io, "\nCode:")
for i = 1:nstmts
print(io, '\n', lpad(i, nd), " preds: ")
show(io, cl.ssapreds[i])
print(io, '\n', lpad(i, nd), " succs: ")
show(io, cl.ssasuccs[i])
end
end
function print_slots(io::IO, cl::CodeLinks)
nslots = length(cl.slotpreds)
nd = ndigits(nslots)
for i = 1:nslots
print(io, "\nslot ", lpad(i, nd), ':')
print(io, "\n preds: ")
show(io, cl.slotpreds[i])
print(io, "\n succs: ")
show(io, cl.slotsuccs[i])
print(io, "\n assign @: ")
show(io, cl.slotassigns[i])
end
end
function print_names(io::IO, cl::CodeLinks)
ukeys = namedkeys(cl)
for key in ukeys
print(io, '\n', key, ':')
if haskey(cl.namepreds, key)
print(io, "\n preds: ")
show(io, cl.namepreds[key])
end
if haskey(cl.namesuccs, key)
print(io, "\n succs: ")
show(io, cl.namesuccs[key])
end
if haskey(cl.nameassigns, key)
print(io, "\n assign @: ")
show(io, cl.nameassigns[key])
end
end
end
const preprinter_sentinel = isdefined(Base.IRShow, :statementidx_lineinfo_printer) ? 0 : typemin(Int32)
function print_with_code(preprint, postprint, io::IO, src::CodeInfo)
src = copy(src)
JuliaInterpreter.replace_coretypes!(src; rev=true)
if isdefined(JuliaInterpreter, :reverse_lookup_globalref!)
JuliaInterpreter.reverse_lookup_globalref!(src.code)
end
io = IOContext(io,
:displaysize=>displaysize(io),
:SOURCE_SLOTNAMES => Base.sourceinfo_slotnames(src))
used = BitSet()
cfg = compute_basic_blocks(src.code)
for stmt in src.code
Core.Compiler.scan_ssa_use!(push!, used, stmt)
end
line_info_preprinter = Base.IRShow.lineinfo_disabled
line_info_postprinter = Base.IRShow.default_expr_type_printer
preprint(io)
bb_idx_prev = bb_idx = 1
for idx = 1:length(src.code)
preprint(io, idx)
bb_idx = Base.IRShow.show_ir_stmt(io, src, idx, line_info_preprinter, line_info_postprinter, used, cfg, bb_idx)
postprint(io, idx, bb_idx != bb_idx_prev)
bb_idx_prev = bb_idx
end
max_bb_idx_size = ndigits(length(cfg.blocks))
line_info_preprinter(io, " "^(max_bb_idx_size + 2), preprinter_sentinel)
postprint(io)
return nothing
end
"""
print_with_code(io, src::CodeInfo, cl::CodeLinks)
Interweave display of code and links.
!!! compat "Julia 1.6"
This function produces dummy output if suitable support is missing in your version of Julia.
"""
function print_with_code(io::IO, src::CodeInfo, cl::CodeLinks)
function preprint(io::IO)
print(io, "Slots:")
print_slots(io, cl)
print(io, "\nNames:")
print_names(io, cl)
println(io)
end
preprint(::IO, ::Int) = nothing
postprint(::IO) = nothing
postprint(io::IO, idx::Int, bbchanged::Bool) = postprint_linelinks(io, idx, src, cl, bbchanged)
print_with_code(preprint, postprint, io, src)
end
function postprint_linelinks(io::IO, idx::Int, src::CodeInfo, cl::CodeLinks, bbchanged::Bool)
printstyled(io, bbchanged ? " " : "│", color=:light_black)
printstyled(io, " # ", color=:yellow)
stmt = src.code[idx]
if is_assignment_like(stmt)
lhs = normalize_defsig(stmt.args[1], cl.thismod)
if @issslotnum(lhs)
# id = lhs.id
# preds, succs = cl.slotpreds[id], cl.slotsuccs[id]
printstyled(io, "see slot ", lhs.id, '\n', color=:yellow)
else
# preds, succs = cl.namepreds[lhs], cl.namesuccs[lhs]
printstyled(io, "see name ", lhs, '\n', color=:yellow)
end
else
preds, succs = cl.ssapreds[idx], cl.ssasuccs[idx]
printstyled(io, "preds: ", preds, " succs: ", succs, '\n', color=:yellow)
end
return nothing
end
function namedkeys(cl::CodeLinks)
ukeys = Set{GlobalRef}()
for c in (cl.namepreds, cl.namesuccs, cl.nameassigns)
for k in keys(c)
push!(ukeys, k)
end
end
return ukeys
end
is_assignment_like(stmt::Expr) = isexpr(stmt, :(=)) || (isexpr(stmt, :const) && length(stmt.args) == 2)
is_assignment_like(@nospecialize stmt) = false
function direct_links!(cl::CodeLinks, src::CodeInfo)
# Utility for when a stmt itself contains a CodeInfo
function add_inner!(cl::CodeLinks, icl::CodeLinks, idx)
for (name, _) in icl.nameassigns
assigns = get(cl.nameassigns, name, nothing)
if assigns === nothing
cl.nameassigns[name] = assigns = Int[]
end
push!(assigns, idx)
end
for (name, _) in icl.namesuccs
succs = get(cl.namesuccs, name, nothing)
if succs === nothing
cl.namesuccs[name] = succs = Links()
end
push!(succs.ssas, idx)
end
end
P = Pair{Union{SSAValue,SlotNumber,GlobalRef},Links}
for (i, stmt) in enumerate(src.code)
if isexpr(stmt, :thunk) && isa(stmt.args[1], CodeInfo)
icl = CodeLinks(cl.thismod, stmt.args[1])
add_inner!(cl, icl, i)
continue
elseif isa(stmt, Expr) && stmt.head ∈ trackedheads
if stmt.head === :method && length(stmt.args) === 3 && isa(stmt.args[3], CodeInfo)
icl = CodeLinks(cl.thismod, stmt.args[3])
add_inner!(cl, icl, i)
end
name = stmt.args[1]
if isa(name, GlobalRef) || isa(name, Symbol)
if isa(name, Symbol)
name = GlobalRef(cl.thismod, name)
end
assign = get(cl.nameassigns, name, nothing)
if assign === nothing
cl.nameassigns[name] = assign = Int[]
end
push!(assign, i)
targetstore = get(cl.namepreds, name, nothing)
if targetstore === nothing
cl.namepreds[name] = targetstore = Links()
end
target = P(name, targetstore)
add_links!(target, stmt, cl)
elseif name in (nothing, false)
else
@show stmt
error("name ", typeof(name), " not recognized")
end
rhs = stmt
target = P(SSAValue(i), cl.ssapreds[i])
elseif is_assignment_like(stmt)
# An assignment
stmt = stmt::Expr
lhs, rhs = stmt.args[1], stmt.args[2]
if @issslotnum(lhs)
lhs = lhs::AnySlotNumber
id = lhs.id
target = P(SlotNumber(id), cl.slotpreds[id])
push!(cl.slotassigns[id], i)
elseif isa(lhs, GlobalRef) || isa(lhs, Symbol)
if isa(lhs, Symbol)
lhs = GlobalRef(cl.thismod, lhs)
end
targetstore = get(cl.namepreds, lhs, nothing)
if targetstore === nothing
cl.namepreds[lhs] = targetstore = Links()
end
target = P(lhs, targetstore)
assign = get(cl.nameassigns, lhs, nothing)
if assign === nothing
cl.nameassigns[lhs] = assign = Int[]
end
push!(assign, i)
else
error("lhs ", lhs, " not recognized")
end
else
rhs = stmt
target = P(SSAValue(i), cl.ssapreds[i])
end
add_links!(target, rhs, cl)
end
return cl
end
function add_links!(target::Pair{Union{SSAValue,SlotNumber,GlobalRef},Links}, @nospecialize(stmt), cl::CodeLinks)
_targetid, targetstore = target
targetid = _targetid::Union{SSAValue,SlotNumber,GlobalRef}
# Adds bidirectional edges
if @isssa(stmt)
stmt = stmt::AnySSAValue
push!(targetstore, SSAValue(stmt.id)) # forward edge
push!(cl.ssasuccs[stmt.id], targetid) # backward edge
elseif @issslotnum(stmt)
stmt = stmt::AnySlotNumber
push!(targetstore, SlotNumber(stmt.id))
push!(cl.slotsuccs[stmt.id], targetid)
elseif isa(stmt, GlobalRef) || isa(stmt, Symbol)
if isa(stmt, Symbol)
stmt = GlobalRef(cl.thismod, stmt)
end
push!(targetstore, stmt)
namestore = get(cl.namesuccs, stmt, nothing)
if namestore === nothing
cl.namesuccs[stmt] = namestore = Links()
end
push!(namestore, targetid)
elseif isa(stmt, Expr) && stmt.head !== :copyast
stmt = stmt::Expr
arng = 1:length(stmt.args)
if stmt.head === :call
f = stmt.args[1]
if !@isssa(f) && !@issslotnum(f)
# Avoid putting named callees on the namestore
arng = 2:length(stmt.args)
end
end
for i in arng
add_links!(target, stmt.args[i], cl)
end
elseif stmt isa Core.GotoIfNot
add_links!(target, stmt.cond, cl)
elseif stmt isa Core.ReturnNode
add_links!(target, stmt.val, cl)
end
return nothing
end
function Base.push!(l::Links, id)
if isa(id, SSAValue)
k = id.id
k ∉ l.ssas && push!(l.ssas, k)
elseif isa(id, SlotNumber)
k = id.id
k ∉ l.slots && push!(l.slots, k)
else
id = id::GlobalRef
id ∉ l.names && push!(l.names, id)
end
return id
end
## Phase 2: replacing slot-links with statement-links (and adding name-links to statement-links)
# Now that we know the full set of dependencies, we can safely replace references to names
# by references to the relevant line numbers.
"""
`Variable` holds information about named variables.
Unlike SSAValues, a single Variable can be assigned from multiple code locations.
If `v` is a `Variable`, then
- `v.assigned` is a list of statement numbers on which it is assigned
- `v.preds` is the set of statement numbers upon which this assignment depends
- `v.succs` is the set of statement numbers which make use of this variable
`preds` and `succs` are short for "predecessors" and "successors," respectively.
These are meant in the sense of execution order, not statement number; depending on control-flow,
a variable may have entries in `preds` that are larger than the smallest entry in `assigned`.
"""
struct Variable
assigned::Vector{Int}
preds::Vector{Int}
succs::Vector{Int}
end
Variable() = Variable(Int[], Int[], Int[])
function Base.show(io::IO, v::Variable)
print(io, "assigned on ", showempty(v.assigned))
print(io, ", depends on ", showempty(v.preds))
print(io, ", and used by ", showempty(v.succs))
end
# This will be documented below at the "user-level" constructor.
# preds[i] is the list of predecessors for the `i`th statement in the CodeInfo
# succs[i] is the list of successors for the `i`th statement in the CodeInfo
# byname[name] summarizes this CodeInfo's dependence on Variable `name`.
struct CodeEdges
preds::Vector{Vector{Int}}
succs::Vector{Vector{Int}}
byname::Dict{GlobalRef,Variable}
end
CodeEdges(n::Integer) = CodeEdges([Int[] for i = 1:n], [Int[] for i = 1:n], Dict{GlobalRef,Variable}())
function Base.show(io::IO, edges::CodeEdges)
println(io, "CodeEdges:")
for (name, v) in edges.byname
print(io, " ", name, ": ")
show(io, v)
println(io)
end
n = length(edges.preds)
nd = ndigits(n)
for i = 1:n
println(io, " statement ", lpad(i, nd), " depends on ", showempty(edges.preds[i]), " and is used by ", showempty(edges.succs[i]))
end
return nothing
end
"""
edges = CodeEdges(src::CodeInfo)
Analyze `src` and determine the chain of dependencies.
- `edges.preds[i]` lists the preceding statements that statement `i` depends on.
- `edges.succs[i]` lists the succeeding statements that depend on statement `i`.
- `edges.byname[v]` returns information about the predecessors, successors, and assignment statements
for an object `v::GlobalRef`.
"""
function CodeEdges(mod::Module, src::CodeInfo)
cl = CodeLinks(mod, src)
CodeEdges(src, cl)
end
function CodeEdges(src::CodeInfo, cl::CodeLinks)
# The main task here is to elide the slot-dependencies and convert
# everything to just ssas & names.
# Replace/add named intermediates (slot & named-variable references) with statement numbers
nstmts, nslots = length(src.code), length(src.slotnames)
marked, slothandled = BitSet(), fill(false, nslots) # working storage during resolution
edges = CodeEdges(nstmts)
emptylink = Links()
emptylist = Int[]
for (i, stmt) in enumerate(src.code)
# Identify line predecents for slots and named variables
if is_assignment_like(stmt)
stmt = stmt::Expr
lhs = stmt.args[1]
# Mark predecessors and successors of this line by following ssas & named assignments
if @issslotnum(lhs)
lhs = lhs::AnySlotNumber
# This line assigns a slot. Mark all predecessors.
id = lhs.id
linkpreds, linksuccs, listassigns = cl.slotpreds[id], cl.slotsuccs[id], cl.slotassigns[id]
else
lhs = lhs::Union{GlobalRef,Symbol}
if lhs isa Symbol
lhs = GlobalRef(cl.thismod, lhs)
end
linkpreds = get(cl.namepreds, lhs, emptylink)
linksuccs = get(cl.namesuccs, lhs, emptylink)
listassigns = get(cl.nameassigns, lhs, emptylist)
end
else
linkpreds, linksuccs, listassigns = cl.ssapreds[i], cl.ssasuccs[i], emptylist
end
# Assign the predecessors
# For "named" predecessors, we depend only on their assignments
empty!(marked)
fill!(slothandled, false)
follow_links!(marked, linkpreds, cl.slotpreds, cl.slotassigns, slothandled)
pushall!(marked, listassigns)
for key in linkpreds.names
pushall!(marked, get(cl.nameassigns, key, emptylist))
end
delete!(marked, i)
append!(edges.preds[i], marked)
# Similarly for successors
empty!(marked)
fill!(slothandled, false)
follow_links!(marked, linksuccs, cl.slotsuccs, cl.slotassigns, slothandled)
pushall!(marked, listassigns)
for key in linksuccs.names
pushall!(marked, get(cl.nameassigns, key, emptylist))
end
delete!(marked, i)
append!(edges.succs[i], marked)
end
# Add named variables
ukeys = namedkeys(cl)
for key in ukeys
assigned = get(cl.nameassigns, key, Int[])
empty!(marked)
linkpreds = get(cl.namepreds, key, emptylink)
pushall!(marked, linkpreds.ssas)
for j in linkpreds.slots
pushall!(marked, cl.slotassigns[j])
end
for key in linkpreds.names
pushall!(marked, get(cl.nameassigns, key, emptylist))
end
preds = append!(Int[], marked)
empty!(marked)
linksuccs = get(cl.namesuccs, key, emptylink)
pushall!(marked, linksuccs.ssas)
for j in linksuccs.slots
pushall!(marked, cl.slotassigns[j])
pushall!(marked, cl.slotsuccs[j].ssas)
end
for key in linksuccs.names
pushall!(marked, get(cl.nameassigns, key, emptylist))
end
succs = append!(Int[], marked)
edges.byname[key] = Variable(assigned, preds, succs)
end
return edges
end
# Follow slot links to their non-slot leaves
function follow_links!(marked, l::Links, slotlinks, slotassigns, slothandled)
pushall!(marked, l.ssas)
for id in l.slots
slothandled[id] && continue
slothandled[id] = true
pushall!(marked, slotassigns[id])
follow_links!(marked, slotlinks[id], slotlinks, slotassigns, slothandled)
end
return marked
end
"""
print_with_code(io, src::CodeInfo, edges::CodeEdges)
Interweave display of code and edges.
!!! compat "Julia 1.6"
This function produces dummy output if suitable support is missing in your version of Julia.
"""
function print_with_code(io::IO, src::CodeInfo, edges::CodeEdges)
function preprint(io::IO)
printstyled(io, "Names:", color=:yellow)
for (name, var) in edges.byname
print(io, '\n', name, ": ")
show(io, var)
end
printstyled(io, "\nCode:\n", color=:yellow)
end
@static if isdefined(Base.IRShow, :show_ir_stmt)
preprint(::IO, ::Int) = nothing
else
nd = ndigits(length(src.code))
preprint(io::IO, i::Int) = print(io, lpad(i, nd), " ")
end
postprint(::IO) = nothing
postprint(io::IO, idx::Int, bbchanged::Bool) = postprint_lineedges(io, idx, edges, bbchanged)
print_with_code(preprint, postprint, io, src)
end
function postprint_lineedges(io::IO, idx::Int, edges::CodeEdges, bbchanged::Bool)
printstyled(io, bbchanged ? " " : "│", color=:light_black)
printstyled(io, " # ", color=:yellow)
preds, succs = edges.preds[idx], edges.succs[idx]
printstyled(io, "preds: ", showempty(preds), ", succs: ", showempty(succs), '\n', color=:yellow)
return nothing
end
function terminal_preds(i::Int, edges::CodeEdges)
s, covered = BitSet(), BitSet()
push!(covered, i)
for p in edges.preds[i]
terminal_preds!(s, p, edges, covered)
end
return s
end
function terminal_preds!(s, j, edges, covered) # can't be an inner function because it calls itself (Core.Box)
j ∈ covered && return s
push!(covered, j)
preds = edges.preds[j]
if isempty(preds)
push!(s, j)
else
for p in preds
terminal_preds!(s, p, edges, covered)
end
end
return s
end
"""
isrequired = lines_required(obj::GlobalRef, src::CodeInfo, edges::CodeEdges)
isrequired = lines_required(idx::Int, src::CodeInfo, edges::CodeEdges)
Determine which lines might need to be executed to evaluate `obj` or the statement indexed by `idx`.
If `isrequired[i]` is `false`, the `i`th statement is *not* required.
In some circumstances all statements marked `true` may be needed, in others control-flow
will end up skipping a subset of such statements, perhaps while repeating others multiple times.
See also [`lines_required!`](@ref) and [`selective_eval!`](@ref).
"""
function lines_required(obj::GlobalRef, src::CodeInfo, edges::CodeEdges; kwargs...)
isrequired = falses(length(edges.preds))
objs = Set{GlobalRef}([obj])
return lines_required!(isrequired, objs, src, edges; kwargs...)
end
function lines_required(idx::Int, src::CodeInfo, edges::CodeEdges; kwargs...)
isrequired = falses(length(edges.preds))
isrequired[idx] = true
objs = Set{GlobalRef}()
return lines_required!(isrequired, objs, src, edges; kwargs...)
end
"""
lines_required!(isrequired::AbstractVector{Bool}, src::CodeInfo, edges::CodeEdges;
norequire = ())
Like `lines_required`, but where `isrequired[idx]` has already been set to `true` for all statements
that you know you need to evaluate. All other statements should be marked `false` at entry.
On return, the complete set of required statements will be marked `true`.
`norequire` keyword argument specifies statements (represented as iterator of `Int`s) that
should _not_ be marked as a requirement.
For example, use `norequire = LoweredCodeUtils.exclude_named_typedefs(src, edges)` if you're
extracting method signatures and not evaluating new definitions.
"""
function lines_required!(isrequired::AbstractVector{Bool}, src::CodeInfo, edges::CodeEdges; kwargs...)
objs = Set{GlobalRef}()
return lines_required!(isrequired, objs, src, edges; kwargs...)
end
function exclude_named_typedefs(src::CodeInfo, edges::CodeEdges)
norequire = BitSet()
i = 1
nstmts = length(src.code)
while i <= nstmts
stmt = rhs(src.code[i])
if istypedef(stmt) && !isanonymous_typedef(stmt::Expr)
r = typedef_range(src, i)
pushall!(norequire, r)
i = last(r)+1
else
i += 1
end
end
return norequire
end
function lines_required!(isrequired::AbstractVector{Bool}, objs, src::CodeInfo, edges::CodeEdges; norequire = ())
# Mark any requested objects (their lines of assignment)
objs = add_requests!(isrequired, objs, edges, norequire)
# Compute basic blocks, which we'll use to make sure we mark necessary control-flow
cfg = compute_basic_blocks(src.code) # needed for control-flow analysis
postdomtree = construct_postdomtree(cfg.blocks)
# We'll mostly use generic graph traversal to discover all the lines we need,
# but structs are in a bit of a different category (especially on Julia 1.5+).
# It's easiest to discover these at the beginning.
typedefs = find_typedefs(src)
changed = true
iter = 0
while changed
changed = false
# Handle ssa predecessors
changed |= add_ssa_preds!(isrequired, src, edges, norequire)
# Handle named dependencies
changed |= add_named_dependencies!(isrequired, edges, objs, norequire)
# Add control-flow
changed |= add_control_flow!(isrequired, src, cfg, postdomtree)
# So far, everything is generic graph traversal. Now we add some domain-specific information
changed |= add_typedefs!(isrequired, src, edges, typedefs, norequire)
changed |= add_inplace!(isrequired, src, edges, norequire)
iter += 1 # just for diagnostics
end
# now mark the active goto nodes
add_active_gotos!(isrequired, src, cfg, postdomtree)
return isrequired
end
function add_requests!(isrequired, objs, edges::CodeEdges, norequire)
objsnew = Set{GlobalRef}()
for obj in objs
add_obj!(isrequired, objsnew, obj, edges, norequire)
end
return objsnew
end
function add_ssa_preds!(isrequired, src::CodeInfo, edges::CodeEdges, norequire)
changed = false
for idx = 1:length(src.code)
if isrequired[idx]
changed |= add_preds!(isrequired, idx, edges, norequire)
end
end
return changed
end
function add_named_dependencies!(isrequired, edges::CodeEdges, objs, norequire)
changed = false
for (obj, uses) in edges.byname
obj ∈ objs && continue
if any(view(isrequired, uses.succs))
changed |= add_obj!(isrequired, objs, obj, edges, norequire)
end
end
return changed
end
function add_preds!(isrequired, idx, edges::CodeEdges, norequire)
chngd = false
preds = edges.preds[idx]
for p in preds
isrequired[p] && continue
p ∈ norequire && continue
isrequired[p] = true
chngd = true
add_preds!(isrequired, p, edges, norequire)
end
return chngd
end
function add_succs!(isrequired, idx, edges::CodeEdges, succs, norequire)
chngd = false
for p in succs
isrequired[p] && continue
p ∈ norequire && continue
isrequired[p] = true
chngd = true
add_succs!(isrequired, p, edges, edges.succs[p], norequire)
end
return chngd
end
function add_obj!(isrequired, objs, obj, edges::CodeEdges, norequire)
chngd = false
for d in edges.byname[obj].assigned
d ∈ norequire && continue
isrequired[d] || add_preds!(isrequired, d, edges, norequire)
isrequired[d] = true
chngd = true
end
push!(objs, obj)
return chngd
end
## Add control-flow
using Core: CodeInfo
using Core.Compiler: CFG, BasicBlock, compute_basic_blocks
# The goal of this function is to request concretization of the minimal necessary control
# flow to evaluate statements whose concretization have already been requested.
# The basic algorithm is based on what was proposed in [^Wei84]. If there is even one active
# block in the blocks reachable from a conditional branch up to its successors' nearest
# common post-dominator (referred to as 𝑰𝑵𝑭𝑳 in the paper), it is necessary to follow
# that conditional branch and execute the code. Otherwise, execution can be short-circuited
# from the conditional branch to the nearest common post-dominator.
#
# COMBAK: It is important to note that in Julia's intermediate code representation (`CodeInfo`),
# "short-circuiting" a specific code region is not a simple task. Simply ignoring the path
# to the post-dominator does not guarantee fall-through to the post-dominator. Therefore,
# a more careful implementation is required for this aspect.
#
# [Wei84]: M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering, 10, pages 352-357, July 1984.
function add_control_flow!(isrequired, src::CodeInfo, cfg::CFG, postdomtree)
local changed::Bool = false
function mark_isrequired!(idx::Int)
if !isrequired[idx]
changed |= isrequired[idx] = true
return true
end
return false
end
for bbidx = 1:length(cfg.blocks) # forward traversal
bb = cfg.blocks[bbidx]
nsuccs = length(bb.succs)
if nsuccs == 0
continue
elseif nsuccs == 1
continue # leave a fall-through terminator unmarked: `GotoNode`s are marked later
elseif nsuccs == 2
termidx = bb.stmts[end]
@assert is_conditional_terminator(src.code[termidx]) "invalid IR"
if is_conditional_block_active(isrequired, bb, cfg, postdomtree)
mark_isrequired!(termidx)
else
# fall-through to the post dominator block (by short-circuiting all statements between)
end
end
end
return changed
end
is_conditional_terminator(@nospecialize stmt) = stmt isa GotoIfNot ||
(@static @isdefined(EnterNode) ? stmt isa EnterNode : isexpr(stmt, :enter))
function is_conditional_block_active(isrequired, bb::BasicBlock, cfg::CFG, postdomtree)
return visit_𝑰𝑵𝑭𝑳_blocks(bb, cfg, postdomtree) do postdominator::Int, 𝑰𝑵𝑭𝑳::BitSet
for blk in 𝑰𝑵𝑭𝑳
if blk == postdominator
continue # skip the post-dominator block and continue to a next infl block
end
if any(@view isrequired[cfg.blocks[blk].stmts])
return true
end
end
return false
end
end
function visit_𝑰𝑵𝑭𝑳_blocks(func, bb::BasicBlock, cfg::CFG, postdomtree)
succ1, succ2 = bb.succs
postdominator = nearest_common_dominator(postdomtree, succ1, succ2)
𝑰𝑵𝑭𝑳 = reachable_blocks(cfg, succ1, postdominator) ∪ reachable_blocks(cfg, succ2, postdominator)
return func(postdominator, 𝑰𝑵𝑭𝑳)
end
function reachable_blocks(cfg, from_bb::Int, to_bb::Int)
worklist = Int[from_bb]
visited = BitSet(from_bb)
if to_bb == from_bb
return visited
end
push!(visited, to_bb)
function visit!(bb::Int)
if bb ∉ visited
push!(visited, bb)
push!(worklist, bb)
end
end
while !isempty(worklist)
foreach(visit!, cfg.blocks[pop!(worklist)].succs)
end
return visited
end
function add_active_gotos!(isrequired, src::CodeInfo, cfg::CFG, postdomtree)
dead_blocks = compute_dead_blocks(isrequired, src, cfg, postdomtree)
changed = false
for bbidx = 1:length(cfg.blocks)
if bbidx ∉ dead_blocks
bb = cfg.blocks[bbidx]
nsuccs = length(bb.succs)
if nsuccs == 1
termidx = bb.stmts[end]
if src.code[termidx] isa GotoNode
changed |= isrequired[termidx] = true
end
end
end
end
return changed
end
# find dead blocks using the same approach as `add_control_flow!`, for the converged `isrequired`
function compute_dead_blocks(isrequired, src::CodeInfo, cfg::CFG, postdomtree)
dead_blocks = BitSet()
for bbidx = 1:length(cfg.blocks)
bb = cfg.blocks[bbidx]
nsuccs = length(bb.succs)
if nsuccs == 2
termidx = bb.stmts[end]
@assert is_conditional_terminator(src.code[termidx]) "invalid IR"
visit_𝑰𝑵𝑭𝑳_blocks(bb, cfg, postdomtree) do postdominator::Int, 𝑰𝑵𝑭𝑳::BitSet
is_𝑰𝑵𝑭𝑳_active = false
for blk in 𝑰𝑵𝑭𝑳
if blk == postdominator
continue # skip the post-dominator block and continue to a next infl block
end
if any(@view isrequired[cfg.blocks[blk].stmts])
is_𝑰𝑵𝑭𝑳_active |= true
break
end
end
if !is_𝑰𝑵𝑭𝑳_active
union!(dead_blocks, delete!(𝑰𝑵𝑭𝑳, postdominator))
end
end
end
end
return dead_blocks
end
# Do a traveral of "numbered" predecessors and find statement ranges and names of type definitions
function find_typedefs(src::CodeInfo)
typedef_blocks, typedef_names = UnitRange{Int}[], Symbol[]
i = 1
nstmts = length(src.code)
while i <= nstmts
stmt = rhs(src.code[i])
if istypedef(stmt) && !isanonymous_typedef(stmt::Expr)
stmt = stmt::Expr
r = typedef_range(src, i)
push!(typedef_blocks, r)
name = stmt.head === :call ? stmt.args[3] : stmt.args[1]
if isa(name, QuoteNode)
name = name.value
end
isa(name, Symbol) || @show src i r stmt
push!(typedef_names, name::Symbol)
i = last(r)+1
else
i += 1
end
end
return typedef_blocks, typedef_names
end
# New struct definitions, including their constructors, get spread out over many
# statements. If we're evaluating any of them, it's important to evaluate *all* of them.
function add_typedefs!(isrequired, src::CodeInfo, edges::CodeEdges, (typedef_blocks, typedef_names), norequire)
changed = false
stmts = src.code
idx = 1
while idx < length(stmts)
stmt = stmts[idx]
isrequired[idx] || (idx += 1; continue)
for (typedefr, typedefn) in zip(typedef_blocks, typedef_names)
if idx ∈ typedefr
ireq = view(isrequired, typedefr)
if !all(ireq)
changed = true
ireq .= true
# Also mark any by-type constructor(s) associated with this typedef
var = get(edges.byname, typedefn, nothing)
if var !== nothing
for s in var.succs
s ∈ norequire && continue
stmt2 = stmts[s]
if isexpr(stmt2, :method) && (fname = (stmt2::Expr).args[1]; fname === false || fname === nothing)
isrequired[s] = true
end
end
end
end
idx = last(typedefr) + 1
continue
end
end
# Anonymous functions may not yet include the method definition
if isanonymous_typedef(stmt)
i = idx + 1
while i <= length(stmts) && !ismethod3(stmts[i])
i += 1
end
if i <= length(stmts) && (stmts[i]::Expr).args[1] == false
tpreds = terminal_preds(i, edges)
if minimum(tpreds) == idx && i ∉ norequire
changed |= !isrequired[i]
isrequired[i] = true
end
end
end
idx += 1
end
return changed
end
# For arrays, add any `push!`, `pop!`, `empty!` or `setindex!` statements
# This is needed for the "Modify @enum" test in Revise
function add_inplace!(isrequired, src, edges, norequire)
function mark_if_inplace(stmt, j)
_changed = false
fname = stmt.args[1]
if (callee_matches(fname, Base, :push!) ||
callee_matches(fname, Base, :pop!) ||
callee_matches(fname, Base, :empty!) ||
callee_matches(fname, Base, :setindex!))
_changed = !isrequired[j]
isrequired[j] = true
end
return _changed
end
changed = false
for (i, isreq) in pairs(isrequired)
isreq || continue
for j in edges.succs[i]
j ∈ norequire && continue
stmt = src.code[j]
if isexpr(stmt, :call) && length(stmt.args) >= 2
arg = stmt.args[2]
if @isssa(arg) && arg.id == i
changed |= mark_if_inplace(stmt, j)
elseif @issslotnum(arg)
id = arg.id
# Check to see if we use this slot
for k in edges.preds[j]
isrequired[k] || continue
predstmt = src.code[k]
if is_assignment_like(predstmt)
lhs = predstmt.args[1]
if @issslotnum(lhs) && lhs.id == id
changed |= mark_if_inplace(stmt, j)
break
end
end
end
end
end
end
end
return changed
end
"""
selective_eval!([recurse], frame::Frame, isrequired::AbstractVector{Bool}, istoplevel=false)
Execute the code in `frame` in the manner of `JuliaInterpreter.finish_and_return!`,
but skipping all statements that are marked `false` in `isrequired`.
See [`lines_required`](@ref). Upon entry, if needed the caller must ensure that `frame.pc` is
set to the correct statement, typically `findfirst(isrequired)`.
See [`selective_eval_fromstart!`](@ref) to have that performed automatically.
The default value for `recurse` is `JuliaInterpreter.finish_and_return!`.
`isrequired` pertains only to `frame` itself, not any of its callees.
This will return either a `BreakpointRef`, the value obtained from the last executed statement
(if stored to `frame.framedata.ssavlues`), or `nothing`.
Typically, assignment to a variable binding does not result in an ssa store by JuliaInterpreter.
"""
function selective_eval!(@nospecialize(recurse), frame::Frame, isrequired::AbstractVector{Bool}, istoplevel::Bool=false)
pc = pcexec = pclast = frame.pc
while isa(pc, Int)
frame.pc = pc
te = isrequired[pc]
pclast = pcexec::Int
if te
pcexec = pc = step_expr!(recurse, frame, istoplevel)
else
pc = next_or_nothing!(recurse, frame)
end
end
isa(pc, BreakpointRef) && return pc
pcexec = (pcexec === nothing ? pclast : pcexec)::Int
frame.pc = pcexec
node = pc_expr(frame)
is_return(node) && return isrequired[pcexec] ? lookup_return(frame, node) : nothing
isassigned(frame.framedata.ssavalues, pcexec) && return frame.framedata.ssavalues[pcexec]
return nothing
end
function selective_eval!(frame::Frame, isrequired::AbstractVector{Bool}, istoplevel::Bool=false)
selective_eval!(finish_and_return!, frame, isrequired, istoplevel)
end
"""
selective_eval_fromstart!([recurse], frame, isrequired, istoplevel=false)
Like [`selective_eval!`](@ref), except it sets `frame.pc` to the first `true` statement in `isrequired`.
"""
function selective_eval_fromstart!(@nospecialize(recurse), frame, isrequired, istoplevel::Bool=false)
pc = findfirst(isrequired)
pc === nothing && return nothing
frame.pc = pc
return selective_eval!(recurse, frame, isrequired, istoplevel)
end
function selective_eval_fromstart!(frame::Frame, isrequired::AbstractVector{Bool}, istoplevel::Bool=false)
selective_eval_fromstart!(finish_and_return!, frame, isrequired, istoplevel)
end
"""
print_with_code(io, src::CodeInfo, isrequired::AbstractVector{Bool})
Mark each line of code with its requirement status.
!!! compat "Julia 1.6"
This function produces dummy output if suitable support is missing in your version of Julia.
"""
function print_with_code(io::IO, src::CodeInfo, isrequired::AbstractVector{Bool})
nd = ndigits(length(isrequired))
preprint(::IO) = nothing
preprint(io::IO, idx::Int) = (c = isrequired[idx]; printstyled(io, lpad(idx, nd), ' ', c ? "t " : "f "; color = c ? :cyan : :plain))
postprint(::IO) = nothing
postprint(io::IO, idx::Int, bbchanged::Bool) = nothing
print_with_code(preprint, postprint, io, src)
end
function print_with_code(io::IO, frame::Frame, obj)
src = frame.framecode.src
if isdefined(JuliaInterpreter, :reverse_lookup_globalref!)
src = copy(src)
JuliaInterpreter.reverse_lookup_globalref!(src.code)
end
print_with_code(io, src, obj)
end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 15639 | # This was copied from Julia's source code (base/compiler/ssair/domtree.jl) and
# unnecessary parts were removed. The original license statement is:
# # This file is a part of Julia. License is MIT: https://julialang.org/license
# A few items needed to be added:
using Core.Compiler: BasicBlock
import Base: length, copy, copy!
# END additions
const BBNumber = Int
const PreNumber = Int
const PostNumber = Int
struct DFSTree
# These map between BB number and pre- or postorder numbers
to_pre::Vector{PreNumber}
from_pre::Vector{BBNumber}
to_post::Vector{PostNumber}
from_post::Vector{BBNumber}
# Records parent relationships in the DFS tree
# (preorder number -> preorder number)
# Storing it this way saves a few lookups in the snca_compress! algorithm
to_parent_pre::Vector{PreNumber}
end
function DFSTree(n_blocks::Int)
return DFSTree(zeros(PreNumber, n_blocks),
Vector{BBNumber}(undef, n_blocks),
zeros(PostNumber, n_blocks),
Vector{BBNumber}(undef, n_blocks),
zeros(PreNumber, n_blocks))
end
copy(D::DFSTree) = DFSTree(copy(D.to_pre),
copy(D.from_pre),
copy(D.to_post),
copy(D.from_post),
copy(D.to_parent_pre))
function copy!(dst::DFSTree, src::DFSTree)
copy!(dst.to_pre, src.to_pre)
copy!(dst.from_pre, src.from_pre)
copy!(dst.to_post, src.to_post)
copy!(dst.from_post, src.from_post)
copy!(dst.to_parent_pre, src.to_parent_pre)
return dst
end
length(D::DFSTree) = length(D.from_pre)
function DFS!(D::DFSTree, blocks::Vector{BasicBlock}, is_post_dominator::Bool)
copy!(D, DFSTree(length(blocks)))
if is_post_dominator
# TODO: We're using -1 as the virtual exit node here. Would it make
# sense to actually have a real BB for the exit always?
to_visit = Tuple{BBNumber, PreNumber, Bool}[(-1, 0, false)]
else
to_visit = Tuple{BBNumber, PreNumber, Bool}[(1, 0, false)]
end
pre_num = is_post_dominator ? 0 : 1
post_num = 1
while !isempty(to_visit)
# Because we want the postorder number as well as the preorder number,
# we don't pop the current node from the stack until we're moving up
# the tree
(current_node_bb, parent_pre, pushed_children) = to_visit[end]
if pushed_children
# Going up the DFS tree, so all we need to do is record the
# postorder number, then move on
if current_node_bb != -1
D.to_post[current_node_bb] = post_num
D.from_post[post_num] = current_node_bb
end
post_num += 1
pop!(to_visit)
elseif current_node_bb != -1 && D.to_pre[current_node_bb] != 0
# Node has already been visited, move on
pop!(to_visit)
continue
else
# Going down the DFS tree
# Record preorder number
if current_node_bb != -1
D.to_pre[current_node_bb] = pre_num
D.from_pre[pre_num] = current_node_bb
D.to_parent_pre[pre_num] = parent_pre
end
# Record that children (will) have been pushed
to_visit[end] = (current_node_bb, parent_pre, true)
if is_post_dominator && current_node_bb == -1
edges = Int[bb for bb in 1:length(blocks) if isempty(blocks[bb].succs)]
else
edges = is_post_dominator ? blocks[current_node_bb].preds :
blocks[current_node_bb].succs
end
# Push children to the stack
for succ_bb in edges
if succ_bb == 0
# Edge 0 indicates an error entry, but shouldn't affect
# the post-dominator tree.
@assert is_post_dominator
continue
end
push!(to_visit, (succ_bb, pre_num, false))
end
pre_num += 1
end
end
# If all blocks are reachable, this is a no-op, otherwise, we shrink these
# arrays.
resize!(D.from_pre, pre_num - 1)
resize!(D.from_post, post_num - 1) # should be same size as pre_num - 1
resize!(D.to_parent_pre, pre_num - 1)
return D
end
DFS(blocks::Vector{BasicBlock}, is_post_dominator::Bool=false) = DFS!(DFSTree(0), blocks, is_post_dominator)
"""
Keeps the per-BB state of the Semi NCA algorithm. In the original formulation,
there are three separate length `n` arrays, `label`, `semi` and `ancestor`.
Instead, for efficiency, we use one array in a array-of-structs style setup.
"""
struct SNCAData
semi::PreNumber
label::PreNumber
end
"Represents a Basic Block, in the DomTree"
struct DomTreeNode
# How deep we are in the DomTree
level::Int
# The BB indices in the CFG for all Basic Blocks we immediately dominate
children::Vector{BBNumber}
end
DomTreeNode() = DomTreeNode(1, Vector{BBNumber}())
"Data structure that encodes which basic block dominates which."
struct GenericDomTree{IsPostDom}
# These can be reused when updating domtree dynamically
dfs_tree::DFSTree
snca_state::Vector{SNCAData}
# Which basic block immediately dominates each basic block, using BB indices
idoms_bb::Vector{BBNumber}
# The nodes in the tree (ordered by BB indices)
nodes::Vector{DomTreeNode}
end
const DomTree = GenericDomTree{false}
const PostDomTree = GenericDomTree{true}
function (T::Type{<:GenericDomTree})()
return T(DFSTree(0), SNCAData[], BBNumber[], DomTreeNode[])
end
function construct_domtree(blocks::Vector{BasicBlock})
return update_domtree!(blocks, DomTree(), true, 0)
end
function construct_postdomtree(blocks::Vector{BasicBlock})
return update_domtree!(blocks, PostDomTree(), true, 0)
end
function update_domtree!(blocks::Vector{BasicBlock}, domtree::GenericDomTree{IsPostDom},
recompute_dfs::Bool, max_pre::PreNumber) where {IsPostDom}
if recompute_dfs
DFS!(domtree.dfs_tree, blocks, IsPostDom)
end
if max_pre == 0
max_pre = length(domtree.dfs_tree)
end
SNCA!(domtree, blocks, max_pre)
compute_domtree_nodes!(domtree)
return domtree
end
function compute_domtree_nodes!(domtree::GenericDomTree{IsPostDom}) where {IsPostDom}
# Compute children
copy!(domtree.nodes,
DomTreeNode[DomTreeNode() for _ in 1:length(domtree.idoms_bb)])
for (idx, idom) in Iterators.enumerate(domtree.idoms_bb)
((!IsPostDom && idx == 1) || idom == 0) && continue
push!(domtree.nodes[idom].children, idx)
end
# n.b. now issorted(domtree.nodes[*].children) since idx is sorted above
# Recursively set level
if IsPostDom
for (node, idom) in enumerate(domtree.idoms_bb)
idom == 0 || continue
update_level!(domtree.nodes, node, 1)
end
else
update_level!(domtree.nodes, 1, 1)
end
return domtree.nodes
end
function update_level!(nodes::Vector{DomTreeNode}, node::BBNumber, level::Int)
worklist = Tuple{BBNumber, Int}[(node, level)]
while !isempty(worklist)
(node, level) = pop!(worklist)
nodes[node] = DomTreeNode(level, nodes[node].children)
foreach(nodes[node].children) do child
push!(worklist, (child, level+1))
end
end
end
dom_edges(domtree::DomTree, blocks::Vector{BasicBlock}, idx::BBNumber) =
blocks[idx].preds
dom_edges(domtree::PostDomTree, blocks::Vector{BasicBlock}, idx::BBNumber) =
blocks[idx].succs
"""
The main Semi-NCA algorithm. Matches Figure 2.8 in [LG05]. Note that the
pseudocode in [LG05] is not entirely accurate. The best way to understand
what's happening is to read [LT79], then the description of SLT in [LG05]
(warning: inconsistent notation), then the description of Semi-NCA.
"""
function SNCA!(domtree::GenericDomTree{IsPostDom}, blocks::Vector{BasicBlock}, max_pre::PreNumber) where {IsPostDom}
D = domtree.dfs_tree
state = domtree.snca_state
# There may be more blocks than are reachable in the DFS / dominator tree
n_blocks = length(blocks)
n_nodes = length(D)
# `label` is initialized to the identity mapping (though the paper doesn't
# make that clear). The rationale for this is Lemma 2.4 in [LG05] (i.e.
# Theorem 4 in [LT79]). Note however, that we don't ever look at `semi`
# until it is fully initialized, so we could leave it uninitialized here if
# we wanted to.
resize!(state, n_nodes)
for w in 1:max_pre
# Only reset semidominators for nodes we want to recompute
state[w] = SNCAData(typemax(PreNumber), w)
end
# If we are only recomputing some of the semidominators, the remaining
# labels should be reset, because they may have become inapplicable to the
# node/semidominator we are currently processing/recomputing. They can
# become inapplicable because of path compressions that were triggered by
# nodes that should only be processed after the current one (but were
# processed the last time `SNCA!` was run).
#
# So, for every node that is not being reprocessed, we reset its label to
# its semidominator, which is the value that its label assumes once its
# semidominator is computed. If this was too conservative, i.e. if the
# label would have been updated before we process the current node in a
# situation where all semidominators were recomputed, then path compression
# will produce the correct label.
for w in max_pre+1:n_nodes
semi = state[w].semi
state[w] = SNCAData(semi, semi)
end
# Calculate semidominators, but only for blocks with preorder number up to
# max_pre
ancestors = copy(D.to_parent_pre)
relevant_blocks = IsPostDom ? (1:max_pre) : (2:max_pre)
for w::PreNumber in reverse(relevant_blocks)
# LLVM initializes this to the parent, the paper initializes this to
# `w`, but it doesn't really matter (the parent is a predecessor, so at
# worst we'll discover it below). Save a memory reference here.
semi_w = typemax(PreNumber)
last_linked = PreNumber(w + 1)
for v ∈ dom_edges(domtree, blocks, D.from_pre[w])
# For the purpose of the domtree, ignore virtual predecessors into
# catch blocks.
v == 0 && continue
v_pre = D.to_pre[v]
# Ignore unreachable predecessors
v_pre == 0 && continue
# N.B.: This conditional is missing from the pseudocode in figure
# 2.8 of [LG05]. It corresponds to the `ancestor[v] != 0` check in
# the `eval` implementation in figure 2.6
if v_pre >= last_linked
# `v` has already been processed, so perform path compression
# For performance, if the number of ancestors is small avoid
# the extra allocation of the worklist.
if length(ancestors) <= 32
snca_compress!(state, ancestors, v_pre, last_linked)
else
snca_compress_worklist!(state, ancestors, v_pre, last_linked)
end
end
# The (preorder number of the) semidominator of a block is the
# minimum over the labels of its predecessors
semi_w = min(semi_w, state[v_pre].label)
end
state[w] = SNCAData(semi_w, semi_w)
end
# Compute immediate dominators, which for a node must be the nearest common
# ancestor in the (immediate) dominator tree between its semidominator and
# its parent (see Lemma 2.6 in [LG05]).
idoms_pre = copy(D.to_parent_pre)
for v in (IsPostDom ? (1:n_nodes) : (2:n_nodes))
idom = idoms_pre[v]
vsemi = state[v].semi
while idom > vsemi
idom = idoms_pre[idom]
end
idoms_pre[v] = idom
end
# Express idoms in BB indexing
resize!(domtree.idoms_bb, n_blocks)
for i::BBNumber in 1:n_blocks
if (!IsPostDom && i == 1) || D.to_pre[i] == 0
domtree.idoms_bb[i] = 0
else
ip = idoms_pre[D.to_pre[i]]
domtree.idoms_bb[i] = ip == 0 ? 0 : D.from_pre[ip]
end
end
end
"""
Matches the snca_compress algorithm in Figure 2.8 of [LG05], with the
modification suggested in the paper to use `last_linked` to determine whether
an ancestor has been processed rather than storing `0` in the ancestor array.
"""
function snca_compress!(state::Vector{SNCAData}, ancestors::Vector{PreNumber},
v::PreNumber, last_linked::PreNumber)
u = ancestors[v]
@assert u < v
if u >= last_linked
snca_compress!(state, ancestors, u, last_linked)
if state[u].label < state[v].label
state[v] = SNCAData(state[v].semi, state[u].label)
end
ancestors[v] = ancestors[u]
end
nothing
end
function snca_compress_worklist!(
state::Vector{SNCAData}, ancestors::Vector{PreNumber},
v::PreNumber, last_linked::PreNumber)
# TODO: There is a smarter way to do this
u = ancestors[v]
worklist = Tuple{PreNumber, PreNumber}[(u,v)]
@assert u < v
while !isempty(worklist)
u, v = last(worklist)
if u >= last_linked
if ancestors[u] >= last_linked
push!(worklist, (ancestors[u], u))
continue
end
if state[u].label < state[v].label
state[v] = SNCAData(state[v].semi, state[u].label)
end
ancestors[v] = ancestors[u]
end
pop!(worklist)
end
end
"""
dominates(domtree::DomTree, bb1::Int, bb2::Int) -> Bool
Checks if `bb1` dominates `bb2`.
`bb1` and `bb2` are indexes into the `CFG` blocks.
`bb1` dominates `bb2` if the only way to enter `bb2` is via `bb1`.
(Other blocks may be in between, e.g `bb1->bbx->bb2`).
"""
dominates(domtree::DomTree, bb1::BBNumber, bb2::BBNumber) =
_dominates(domtree, bb1, bb2)
"""
postdominates(domtree::PostDomTree, bb1::Int, bb2::Int) -> Bool
Checks if `bb1` post-dominates `bb2`.
`bb1` and `bb2` are indexes into the `CFG` blocks.
`bb1` post-dominates `bb2` if every pass from `bb2` to the exit is via `bb1`.
(Other blocks may be in between, e.g `bb2->bbx->bb1->exit`).
"""
postdominates(domtree::PostDomTree, bb1::BBNumber, bb2::BBNumber) =
_dominates(domtree, bb1, bb2)
function _dominates(domtree::GenericDomTree, bb1::BBNumber, bb2::BBNumber)
bb1 == bb2 && return true
target_level = domtree.nodes[bb1].level
source_level = domtree.nodes[bb2].level
source_level < target_level && return false
for _ in (source_level - 1):-1:target_level
bb2 = domtree.idoms_bb[bb2]
end
return bb1 == bb2
end
"""
nearest_common_dominator(domtree::GenericDomTree, a::BBNumber, b::BBNumber)
Compute the nearest common (post-)dominator of `a` and `b`.
"""
function nearest_common_dominator(domtree::GenericDomTree, a::BBNumber, b::BBNumber)
a == 0 && return a
b == 0 && return b
alevel = domtree.nodes[a].level
blevel = domtree.nodes[b].level
# W.l.g. assume blevel <= alevel
if alevel < blevel
a, b = b, a
alevel, blevel = blevel, alevel
end
while alevel > blevel
a = domtree.idoms_bb[a]
alevel -= 1
end
while a != b && a != 0
a = domtree.idoms_bb[a]
b = domtree.idoms_bb[b]
end
@assert a == b
return a
end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 2242 | if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel"))
@eval Base.Experimental.@optlevel 1
end
using Core: SimpleVector
using Core.IR
using Base.Meta: isexpr
const SSAValues = Union{Core.Compiler.SSAValue, JuliaInterpreter.SSAValue}
const trackedheads = (:method,)
const structdecls = (:_structtype, :_abstracttype, :_primitivetype)
export signature, rename_framemethods!, methoddef!, methoddefs!, bodymethod
export CodeEdges, lines_required, lines_required!, selective_eval!, selective_eval_fromstart!
include("utils.jl")
include("signatures.jl")
include("codeedges.jl")
if Base.VERSION < v"1.10"
include("domtree.jl")
else
const construct_domtree = Core.Compiler.construct_domtree
const construct_postdomtree = Core.Compiler.construct_postdomtree
const postdominates = Core.Compiler.postdominates
const nearest_common_dominator = Core.Compiler.nearest_common_dominator
end
# precompilation
if ccall(:jl_generating_output, Cint, ()) == 1
ex = :(f(x; color::Symbol=:green) = 2x)
lwr = Meta.lower(@__MODULE__, ex)
frame = Frame(@__MODULE__, lwr.args[1])
rename_framemethods!(frame)
ex = quote
s = 0
k = 5
for i = 1:3
global s, k
s += rand(1:5)
k += i
end
end
lwr = Meta.lower(@__MODULE__, ex)
src = lwr.args[1]
edges = CodeEdges(@__MODULE__, src)
isrequired = lines_required(GlobalRef(@__MODULE__, :s), src, edges)
lines_required(GlobalRef(@__MODULE__, :s), src, edges; norequire=())
lines_required(GlobalRef(@__MODULE__, :s), src, edges; norequire=exclude_named_typedefs(src, edges))
for isreq in (isrequired, convert(Vector{Bool}, isrequired))
lines_required!(isreq, src, edges; norequire=())
lines_required!(isreq, src, edges; norequire=exclude_named_typedefs(src, edges))
end
frame = Frame(@__MODULE__, src)
# selective_eval_fromstart!(frame, isrequired, true)
precompile(selective_eval_fromstart!, (typeof(frame), typeof(isrequired), Bool)) # can't @eval during precompilation
print_with_code(Base.inferencebarrier(devnull)::IO, src, edges)
print_with_code(Base.inferencebarrier(devnull)::IO, src, isrequired)
end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 29231 | """
sig = signature(sigsv::SimpleVector)
Compute a method signature from a suitable `SimpleVector`: `sigsv[1]` holds the signature
and `sigsv[2]` the `TypeVar`s.
# Example:
For `f(x::AbstractArray{T}) where T`, the corresponding `sigsv` is constructed as
T = TypeVar(:T)
sig1 = Core.svec(typeof(f), AbstractArray{T})
sig2 = Core.svec(T)
sigsv = Core.svec(sig1, sig2)
sig = signature(sigsv)
"""
function signature(sigsv::SimpleVector)
sigp::SimpleVector, sigtv::SimpleVector = sigsv
sig = Tuple{sigp...}
for i = length(sigtv):-1:1
sig = UnionAll(sigtv[i], sig)
end
return sig::Union{DataType,UnionAll}
end
"""
sigt, lastpc = signature(recurse, frame, pc)
sigt, lastpc = signature(frame, pc)
Compute the signature-type `sigt` of a method whose definition in `frame` starts at `pc`.
Generally, `pc` should point to the `Expr(:method, methname)` statement, in which case
`lastpc` is the final statement number in `frame` that is part of the signature
(i.e, the line above the 3-argument `:method` expression).
Alternatively, `pc` can point to the 3-argument `:method` expression,
as long as all the relevant SSAValues have been assigned.
In this case, `lastpc == pc`.
If no 3-argument `:method` expression is found, `sigt` will be `nothing`.
"""
function signature(@nospecialize(recurse), frame::Frame, @nospecialize(stmt), pc)
mod = moduleof(frame)
lastpc = frame.pc = pc
while !isexpr(stmt, :method, 3) # wait for the 3-arg version
if isanonymous_typedef(stmt)
lastpc = pc = step_through_methoddef(recurse, frame, stmt) # define an anonymous function
elseif is_Typeof_for_anonymous_methoddef(stmt, frame.framecode.src.code, mod)
return nothing, pc
else
lastpc = pc
pc = step_expr!(recurse, frame, stmt, true)
pc === nothing && return nothing, lastpc
end
stmt = pc_expr(frame, pc)
end
isa(stmt, Expr) || return nothing, pc
sigsv = @lookup(frame, stmt.args[2])::SimpleVector
sigt = signature(sigsv)
return sigt, lastpc
end
signature(@nospecialize(recurse), frame::Frame, pc) = signature(recurse, frame, pc_expr(frame, pc), pc)
signature(frame::Frame, pc) = signature(finish_and_return!, frame, pc)
function is_Typeof_for_anonymous_methoddef(@nospecialize(stmt), code::Vector{Any}, mod::Module)
isexpr(stmt, :call) || return false
f = stmt.args[1]
isa(f, QuoteNode) || return false
f.value === Core.Typeof || return false
arg1 = stmt.args[2]
if isa(arg1, SSAValue)
arg1 = code[arg1.id]
end
arg1 isa Symbol || return false
return !isdefined(mod, arg1)
end
function minid(@nospecialize(node), stmts, id)
if isa(node, SSAValue)
id = min(id, node.id)
stmt = stmts[node.id]
return minid(stmt, stmts, id)
elseif isa(node, Expr)
for a in node.args
id = minid(a, stmts, id)
end
end
return id
end
function signature_top(frame, stmt::Expr, pc)
@assert ismethod3(stmt)
return minid(stmt.args[2], frame.framecode.src.code, pc)
end
function step_through_methoddef(@nospecialize(recurse), frame, @nospecialize(stmt))
while !isexpr(stmt, :method)
pc = step_expr!(recurse, frame, stmt, true)
stmt = pc_expr(frame, pc)
end
return step_expr!(recurse, frame, stmt, true) # also define the method
end
"""
MethodInfo(start, stop, refs)
Given a frame and its CodeInfo, `start` is the line of the first `Expr(:method, name)`,
whereas `stop` is the line of the last `Expr(:method, name, sig, src)` expression for `name`.
`refs` is a vector of line numbers of other references.
Some of these will be the location of the "declaration" of a method,
the `:thunk` expression containing a CodeInfo that just returns a 1-argument `:method` expression.
Others may be `:global` declarations.
In some cases there may be more than one method with the same name in the `start:stop` range.
"""
mutable struct MethodInfo
start::Int
stop::Int
refs::Vector{Int}
end
MethodInfo(start) = MethodInfo(start, -1, Int[])
struct SelfCall
linetop::Int
linebody::Int
callee::GlobalRef
caller::Union{GlobalRef,Bool,Nothing}
end
"""
methodinfos, selfcalls = identify_framemethod_calls(frame)
Analyze the code in `frame` to locate method definitions and "self-calls," i.e., calls
to methods defined in `frame` that occur within `frame`.
`methodinfos` is a Dict of `name=>info` pairs, where `info` is a [`MethodInfo`](@ref).
`selfcalls` is a list of `SelfCall(linetop, linebody, callee, caller)` that holds the location of
calls the methods defined in `frame`. `linetop` is the line in `frame` (top meaning "top level"),
which will correspond to a 3-argument `:method` expression containing a `CodeInfo` body.
`linebody` is the line within the `CodeInfo` body from which the call is made.
`callee` is the Symbol of the called method.
"""
function identify_framemethod_calls(frame)
refs = Pair{GlobalRef,Int}[]
methodinfos = Dict{GlobalRef,MethodInfo}()
selfcalls = SelfCall[]
for (i, stmt) in enumerate(frame.framecode.src.code)
isa(stmt, Expr) || continue
if stmt.head === :global && length(stmt.args) == 1
key = normalize_defsig(stmt.args[1], frame)
if isa(key, GlobalRef)
# We don't know for sure if this is a reference to a method, but let's
# tentatively cue it
push!(refs, key=>i)
end
elseif stmt.head === :thunk && stmt.args[1] isa CodeInfo
tsrc = stmt.args[1]::CodeInfo
if length(tsrc.code) == 1
tstmt = tsrc.code[1]
if is_return(tstmt)
tex = tstmt.val
if isa(tex, Expr)
if tex.head === :method && (methname = tex.args[1]; isa(methname, Union{Symbol, GlobalRef}))
push!(refs, normalize_defsig(methname, frame)=>i)
end
end
end
end
elseif ismethod1(stmt)
key = stmt.args[1]
key = normalize_defsig(key, frame)
key = key::GlobalRef
mi = get(methodinfos, key, nothing)
if mi === nothing
methodinfos[key] = MethodInfo(i)
else
mi.stop == -1 && (mi.start = i) # advance the statement # unless we've seen the method3
end
elseif ismethod3(stmt)
key = stmt.args[1]
key = normalize_defsig(key, frame)
if key isa GlobalRef
# XXX A temporary hack to fix https://github.com/JuliaDebug/LoweredCodeUtils.jl/issues/80
# We should revisit it.
mi = get(methodinfos, key, MethodInfo(1))
mi.stop = i
elseif key isa Expr # this is a module-scoped call. We don't have to worry about these because they are named
continue
end
msrc = stmt.args[3]
if msrc isa CodeInfo
key = key::Union{GlobalRef,Bool,Nothing}
for (j, mstmt) in enumerate(msrc.code)
isa(mstmt, Expr) || continue
jj = j
if mstmt.head === :call
mkey = normalize_defsig(mstmt.args[1], frame)
if isa(mkey, SSAValue) || isa(mkey, Core.SSAValue)
refstmt = msrc.code[mkey.id]
if isa(refstmt, Union{Symbol, GlobalRef})
jj = mkey.id
mkey = normalize_defsig(refstmt, frame)
end
end
if is_global_ref(mkey, Core, isdefined(Core, :_apply_iterate) ? :_apply_iterate : :_apply)
ssaref = mstmt.args[end-1]
if isa(ssaref, JuliaInterpreter.SSAValue)
id = ssaref.id
has_self_call(msrc, msrc.code[id]) || continue
end
mkey = normalize_defsig(mstmt.args[end-2], frame)
if isa(mkey, GlobalRef)
haskey(methodinfos, mkey) && push!(selfcalls, SelfCall(i, jj, mkey, key))
end
elseif isa(mkey, GlobalRef)
haskey(methodinfos, mkey) && push!(selfcalls, SelfCall(i, jj, mkey, key))
end
elseif mstmt.head === :meta && mstmt.args[1] === :generated
newex = mstmt.args[2]
if isa(newex, Expr)
if newex.head === :new && length(newex.args) >= 2 && is_global_ref(newex.args[1], Core, :GeneratedFunctionStub)
mkey = newex.args[2]
if isa(mkey, Symbol)
mkey = GlobalRef(moduleof(frame), mkey)
end
haskey(methodinfos, mkey) && push!(selfcalls, SelfCall(i, jj, mkey, key))
end
end
end
end
end
end
end
for r in refs
mi = get(methodinfos, r.first, nothing)
mi === nothing || push!(mi.refs, r.second)
end
return methodinfos, selfcalls
end
# try to normalize `def` to `GlobalRef` representation
function normalize_defsig(@nospecialize(def), mod::Module)
if def isa QuoteNode
def = nameof(def.value)
end
if def isa Symbol
def = GlobalRef(mod, def)
end
return def
end
normalize_defsig(@nospecialize(def), frame::Frame) = normalize_defsig(def, moduleof(frame))
function callchain(selfcalls)
calledby = Dict{GlobalRef,Union{GlobalRef,Bool,Nothing}}()
for sc in selfcalls
startswith(String(sc.callee.name), '#') || continue
caller = get(calledby, sc.callee, nothing)
if caller === nothing
calledby[sc.callee] = sc.caller
elseif caller == sc.caller
else
error("unexpected multiple callers, ", caller, " and ", sc.caller)
end
end
return calledby
end
function set_to_running_name!(@nospecialize(recurse), replacements, frame, methodinfos, selfcall, calledby, callee, caller)
if isa(caller, GlobalRef) && startswith(String(caller.name), '#')
rep = get(replacements, caller, nothing)
if rep === nothing
parentcaller = get(calledby, caller, nothing)
if parentcaller !== nothing
set_to_running_name!(recurse, replacements, frame, methodinfos, selfcall, calledby, caller, parentcaller)
end
else
caller = rep
end
end
# Back up to the beginning of the signature
pc = selfcall.linetop
stmt = pc_expr(frame, pc)
while pc > 1 && !ismethod1(stmt)
pc -= 1
stmt = pc_expr(frame, pc)
end
@assert ismethod1(stmt)
cname, _pc, _ = try
get_running_name(recurse, frame, pc+1, callee, get(replacements, caller, caller))
catch err
if isa(err, UndefVarError)
# The function may not be defined, in which case there is nothing to replace
return replacements
end
throw(err)
end
replacements[callee] = cname
mi = methodinfos[cname] = methodinfos[callee]
src = frame.framecode.src
replacename!(@view(src.code[mi.start:mi.stop]), callee=>cname) # the method itself
for r in mi.refs # the references
replacename!((src.code[r])::Expr, callee=>cname)
end
return replacements
end
"""
methranges = rename_framemethods!(frame)
methranges = rename_framemethods!(recurse, frame)
Rename the gensymmed methods in `frame` to match those that are currently active.
The issues are described in https://github.com/JuliaLang/julia/issues/30908.
`frame` will be modified in-place as needed.
Returns a vector of `name=>start:stop` pairs specifying the range of lines in `frame`
at which method definitions occur. In some cases there may be more than one method with
the same name in the `start:stop` range.
"""
function rename_framemethods!(@nospecialize(recurse), frame::Frame, methodinfos, selfcalls, calledby)
src = frame.framecode.src
replacements = Dict{GlobalRef,GlobalRef}()
for (callee, caller) in calledby
(!startswith(String(callee.name), '#') || haskey(replacements, callee)) && continue
idx = findfirst(sc->sc.callee === callee && sc.caller === caller, selfcalls)
idx === nothing && continue
try
set_to_running_name!(recurse, replacements, frame, methodinfos, selfcalls[idx], calledby, callee, caller)
catch err
@warn "skipping callee $callee (called by $caller) due to $err"
end
end
for sc in selfcalls
linetop, linebody, callee, caller = sc.linetop, sc.linebody, sc.callee, sc.caller
cname = get(replacements, callee, nothing)
if cname !== nothing && cname !== callee
replacename!((src.code[linetop].args[3])::CodeInfo, callee=>cname)
end
end
return methodinfos
end
function rename_framemethods!(@nospecialize(recurse), frame::Frame)
pc0 = frame.pc
methodinfos, selfcalls = identify_framemethod_calls(frame)
calledby = callchain(selfcalls)
rename_framemethods!(recurse, frame, methodinfos, selfcalls, calledby)
frame.pc = pc0
return methodinfos
end
rename_framemethods!(frame::Frame) = rename_framemethods!(finish_and_return!, frame)
"""
pctop, isgen = find_name_caller_sig(recurse, frame, pc, name, parentname)
Scans forward from `pc` in `frame` until a method is found that calls `name`.
`pctop` points to the beginning of that method's signature.
`isgen` is true if `name` corresponds to sa GeneratedFunctionStub.
Alternatively, this returns `nothing` if `pc` does not appear to point to either
a keyword or generated method.
"""
function find_name_caller_sig(@nospecialize(recurse), frame, pc, name, parentname)
stmt = pc_expr(frame, pc)
while true
pc0 = pc
while !ismethod3(stmt)
pc = next_or_nothing(recurse, frame, pc)
pc === nothing && return nothing
stmt = pc_expr(frame, pc)
end
body = stmt.args[3]
if normalize_defsig(stmt.args[1], frame) !== name && isa(body, CodeInfo)
# This might be the GeneratedFunctionStub for a @generated method
for (i, bodystmt) in enumerate(body.code)
if isexpr(bodystmt, :meta) && (bodystmt::Expr).args[1] === :generated
return signature_top(frame, stmt, pc), true
end
i >= 5 && break # we should find this early
end
if length(body.code) > 1
bodystmt = body.code[end-1] # the line before the final return
iscallto(bodystmt, moduleof(frame), name, body) && return signature_top(frame, stmt, pc), false
end
end
pc = next_or_nothing(recurse, frame, pc)
pc === nothing && return nothing
stmt = pc_expr(frame, pc)
end
end
"""
replacename!(stmts, oldname=>newname)
Replace a Symbol `oldname` with `newname` in `stmts`.
"""
function replacename!(ex::Expr, pr)
replacename!(ex.args, pr)
return ex
end
replacename!(src::CodeInfo, pr) = replacename!(src.code, pr)
function replacename!(args::AbstractVector, pr)
oldname, newname = pr
for i = 1:length(args)
a = args[i]
if isa(a, Expr)
replacename!(a, pr)
elseif isa(a, CodeInfo)
replacename!(a.code, pr)
elseif isa(a, QuoteNode) && a.value === oldname
args[i] = QuoteNode(newname)
elseif isa(a, Vector{Any})
replacename!(a, pr)
elseif isa(a, Core.ReturnNode) && isdefined(a, :val) && a.val isa Expr
# there is something like `ReturnNode(Expr(:method, Symbol(...)))`
replacename!(a.val::Expr, pr)
elseif a === oldname
args[i] = newname
elseif isa(a, Symbol) && a == oldname.name
args[i] = newname.name
end
end
return args
end
function get_running_name(@nospecialize(recurse), frame, pc, name, parentname)
nameinfo = find_name_caller_sig(recurse, frame, pc, name, parentname)
if nameinfo === nothing
pc = skip_until(@nospecialize(stmt)->isexpr(stmt, :method, 3), frame, pc)
pc = next_or_nothing(recurse, frame, pc)
return name, pc, nothing
end
pctop, isgen = nameinfo
# Sometimes signature_top---which follows SSAValue links backwards to find the first
# line needed to define the signature---misses out on a SlotNumber assignment.
# Fix https://github.com/timholy/Revise.jl/issues/422
stmt = pc_expr(frame, pctop)
while pctop > 1 && isa(stmt, SlotNumber) && !isassigned(frame.framedata.locals, pctop)
pctop -= 1
stmt = pc_expr(frame, pctop)
end # end fix
sigtparent, lastpcparent = signature(recurse, frame, pctop)
sigtparent === nothing && return name, pc, lastpcparent
methparent = whichtt(sigtparent)
methparent === nothing && return name, pc, lastpcparent # caller isn't defined, no correction is needed
if isgen
cname = GlobalRef(moduleof(frame), nameof(methparent.generator.gen))
else
bodyparent = Base.uncompressed_ast(methparent)
bodystmt = bodyparent.code[end-1]
@assert isexpr(bodystmt, :call)
ref = getcallee(bodystmt)
if isa(ref, SSAValue) || isa(ref, Core.SSAValue)
ref = bodyparent.code[ref.id]
end
isa(ref, GlobalRef) || @show ref typeof(ref)
@assert isa(ref, GlobalRef)
@assert ref.mod == moduleof(frame)
cname = ref
end
return cname, pc, lastpcparent
end
"""
nextpc = next_or_nothing([recurse], frame, pc)
nextpc = next_or_nothing!([recurse], frame)
Advance the program counter without executing the corresponding line.
If `frame` is finished, `nextpc` will be `nothing`.
"""
next_or_nothing(frame, pc) = next_or_nothing(finish_and_return!, frame, pc)
next_or_nothing(@nospecialize(recurse), frame, pc) = pc < nstatements(frame.framecode) ? pc+1 : nothing
next_or_nothing!(frame) = next_or_nothing!(finish_and_return!, frame)
function next_or_nothing!(@nospecialize(recurse), frame)
pc = frame.pc
if pc < nstatements(frame.framecode)
return frame.pc = pc + 1
end
return nothing
end
"""
nextpc = skip_until(predicate, [recurse], frame, pc)
nextpc = skip_until!(predicate, [recurse], frame)
Advance the program counter until `predicate(stmt)` return `true`.
"""
skip_until(predicate, frame, pc) = skip_until(predicate, finish_and_return!, frame, pc)
function skip_until(predicate, @nospecialize(recurse), frame, pc)
stmt = pc_expr(frame, pc)
while !predicate(stmt)
pc = next_or_nothing(recurse, frame, pc)
pc === nothing && return nothing
stmt = pc_expr(frame, pc)
end
return pc
end
skip_until!(predicate, frame) = skip_until!(predicate, finish_and_return!, frame)
function skip_until!(predicate, @nospecialize(recurse), frame)
pc = frame.pc
stmt = pc_expr(frame, pc)
while !predicate(stmt)
pc = next_or_nothing!(recurse, frame)
pc === nothing && return nothing
stmt = pc_expr(frame, pc)
end
return pc
end
"""
ret = methoddef!(recurse, signatures, frame; define=true)
ret = methoddef!(signatures, frame; define=true)
Compute the signature of a method definition. `frame.pc` should point to a
`:method` expression. Upon exit, the new signature will be added to `signatures`.
There are several possible return values:
pc, pc3 = ret
is the typical return. `pc` will point to the next statement to be executed, or be `nothing`
if there are no further statements in `frame`. `pc3` will point to the 3-argument `:method`
expression.
Alternatively,
pc = ret
occurs for "empty method" expressions, e.g., `:(function foo end)`. `pc` will be `nothing`.
By default the method will be defined (evaluated). You can prevent this by setting `define=false`.
This is recommended if you are simply extracting signatures from code that has already been evaluated.
"""
function methoddef!(@nospecialize(recurse), signatures, frame::Frame, @nospecialize(stmt), pc::Int; define::Bool=true)
framecode, pcin = frame.framecode, pc
if ismethod3(stmt)
pc3 = pc
arg1 = stmt.args[1]
sigt, pc = signature(recurse, frame, stmt, pc)
meth = whichtt(sigt)
if isa(meth, Method) && (meth.sig <: sigt && sigt <: meth.sig)
pc = define ? step_expr!(recurse, frame, stmt, true) : next_or_nothing!(recurse, frame)
elseif define
pc = step_expr!(recurse, frame, stmt, true)
meth = whichtt(sigt)
end
if isa(meth, Method) && (meth.sig <: sigt && sigt <: meth.sig)
push!(signatures, meth.sig)
else
if arg1 === false || arg1 === nothing
# If it's anonymous and not defined, define it
pc = step_expr!(recurse, frame, stmt, true)
meth = whichtt(sigt)
isa(meth, Method) && push!(signatures, meth.sig)
return pc, pc3
else
# guard against busted lookup, e.g., https://github.com/JuliaLang/julia/issues/31112
code = framecode.src
codeloc = codelocation(code, pc)
loc = linetable(code, codeloc)
ft = Base.unwrap_unionall((Base.unwrap_unionall(sigt)::DataType).parameters[1])
if !startswith(String((ft.name::Core.TypeName).name), "##")
@warn "file $(loc.file), line $(loc.line): no method found for $sigt"
end
if pc == pc3
pc = next_or_nothing!(recurse, frame)
end
end
end
frame.pc = pc
return pc, pc3
end
ismethod1(stmt) || Base.invokelatest(error, "expected method opening, got ", stmt)
name = normalize_defsig(stmt.args[1], frame)
if isa(name, Bool)
error("not valid for anonymous methods")
elseif name === missing
Base.invokelatest(error, "given invalid definition: ", stmt)
end
name = name::GlobalRef
# Is there any 3-arg method definition with the same name? If not, avoid risk of executing code that
# we shouldn't (fixes https://github.com/timholy/Revise.jl/issues/758)
found = false
for i = pc+1:length(framecode.src.code)
newstmt = framecode.src.code[i]
if ismethod3(newstmt)
if ismethod_with_name(framecode.src, newstmt, string(name.name))
found = true
break
end
end
end
found || return nothing
while true # methods containing inner methods may need multiple trips through this loop
sigt, pc = signature(recurse, frame, stmt, pc)
stmt = pc_expr(frame, pc)
while !isexpr(stmt, :method, 3)
pc = next_or_nothing(recurse, frame, pc) # this should not check define, we've probably already done this once
pc === nothing && return nothing # this was just `function foo end`, signal "no def"
stmt = pc_expr(frame, pc)
end
pc3 = pc
stmt = stmt::Expr
name3 = normalize_defsig(stmt.args[1], frame)
sigt === nothing && (error("expected a signature"); return next_or_nothing(recurse, frame, pc)), pc3
# Methods like f(x::Ref{<:Real}) that use gensymmed typevars will not have the *exact*
# signature of the active method. So let's get the active signature.
frame.pc = pc
pc = define ? step_expr!(recurse, frame, stmt, true) : next_or_nothing!(recurse, frame)
meth = whichtt(sigt)
isa(meth, Method) && push!(signatures, meth.sig) # inner methods are not visible
name === name3 && return pc, pc3 # if this was an inner method we should keep going
stmt = pc_expr(frame, pc) # there *should* be more statements in this frame
end
end
methoddef!(@nospecialize(recurse), signatures, frame::Frame, pc::Int; define=true) =
methoddef!(recurse, signatures, frame, pc_expr(frame, pc), pc; define=define)
function methoddef!(@nospecialize(recurse), signatures, frame::Frame; define=true)
pc = frame.pc
stmt = pc_expr(frame, pc)
if !ismethod(stmt)
pc = next_until!(ismethod, recurse, frame, true)
end
pc === nothing && error("pc at end of frame without finding a method")
methoddef!(recurse, signatures, frame, pc; define=define)
end
methoddef!(signatures, frame::Frame; define=true) =
methoddef!(finish_and_return!, signatures, frame; define=define)
function methoddefs!(@nospecialize(recurse), signatures, frame::Frame, pc; define=true)
ret = methoddef!(recurse, signatures, frame, pc; define=define)
pc = ret === nothing ? ret : ret[1]
return _methoddefs!(recurse, signatures, frame, pc; define=define)
end
function methoddefs!(@nospecialize(recurse), signatures, frame::Frame; define=true)
ret = methoddef!(recurse, signatures, frame; define=define)
pc = ret === nothing ? ret : ret[1]
return _methoddefs!(recurse, signatures, frame, pc; define=define)
end
methoddefs!(signatures, frame::Frame; define=true) =
methoddefs!(finish_and_return!, signatures, frame; define=define)
function _methoddefs!(@nospecialize(recurse), signatures, frame::Frame, pc; define=define)
while pc !== nothing
stmt = pc_expr(frame, pc)
if !ismethod(stmt)
pc = next_until!(ismethod, recurse, frame, true)
end
pc === nothing && break
ret = methoddef!(recurse, signatures, frame, pc; define=define)
pc = ret === nothing ? ret : ret[1]
end
return pc
end
function is_self_call(@nospecialize(stmt), slotnames, argno::Integer=1)
if isa(stmt, Expr)
if stmt.head == :call
a = stmt.args[argno]
if isa(a, SlotNumber) || isa(a, Core.SlotNumber)
sn = slotnames[a.id]
if sn == Symbol("#self#") || sn == Symbol("") # allow empty to fix https://github.com/timholy/CodeTracking.jl/pull/48
return true
end
end
end
end
return false
end
function has_self_call(src, stmt::Expr)
# Check that it has a #self# call
hasself = false
for i = 2:length(stmt.args)
hasself |= is_self_call(stmt, src.slotnames, i)
end
return hasself
end
"""
mbody = bodymethod(m::Method)
Return the "body method" for a method `m`. `mbody` contains the code of the function body
when `m` was defined.
"""
function bodymethod(mkw::Method)
@static if isdefined(Core, :kwcall)
Base.unwrap_unionall(mkw.sig).parameters[1] !== typeof(Core.kwcall) && isempty(Base.kwarg_decl(mkw)) && return mkw
mths = methods(Base.bodyfunction(mkw))
if length(mths) != 1
@show mkw
display(mths)
end
return only(mths)
else
m = mkw
local src
while true
framecode = JuliaInterpreter.get_framecode(m)
fakeargs = Any[nothing for i = 1:(framecode.scope::Method).nargs]
frame = JuliaInterpreter.prepare_frame(framecode, fakeargs, isa(m.sig, UnionAll) ? sparam_ub(m) : Core.svec())
src = framecode.src
(length(src.code) > 1 && is_self_call(src.code[end-1], src.slotnames)) || break
# Build the optional arg, so we can get its type
pc = frame.pc
while pc < length(src.code) - 1
pc = step_expr!(frame)
end
val = pc > 1 ? frame.framedata.ssavalues[pc-1] : (src.code[1]::Expr).args[end]
sig = Tuple{(Base.unwrap_unionall(m.sig)::DataType).parameters..., typeof(val)}
m = whichtt(sig)
end
length(src.code) > 1 || return m
stmt = src.code[end-1]
if isexpr(stmt, :call) && (f = (stmt::Expr).args[1]; isa(f, QuoteNode))
if f.value === (isdefined(Core, :_apply_iterate) ? Core._apply_iterate : Core._apply)
ssaref = stmt.args[end-1]
if isa(ssaref, JuliaInterpreter.SSAValue)
id = ssaref.id
has_self_call(src, src.code[id]) || return m
end
f = stmt.args[end-2]
if isa(f, JuliaInterpreter.SSAValue)
f = src.code[f.id]
end
else
has_self_call(src, stmt) || return m
end
f = f.value
mths = methods(f)
if length(mths) == 1
return first(mths)
end
end
return m
end
end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 12917 | const AnySSAValue = Union{Core.Compiler.SSAValue,JuliaInterpreter.SSAValue}
const AnySlotNumber = Union{Core.Compiler.SlotNumber,JuliaInterpreter.SlotNumber}
# to circumvent https://github.com/JuliaLang/julia/issues/37342, we inline these `isa`
# condition checks at surface AST level
# https://github.com/JuliaLang/julia/pull/38905 will get rid of the need of these hacks
macro isssa(stmt)
:($(GlobalRef(Core, :isa))($(esc(stmt)), $(GlobalRef(Core.Compiler, :SSAValue))) ||
$(GlobalRef(Core, :isa))($(esc(stmt)), $(GlobalRef(JuliaInterpreter, :SSAValue))))
end
macro issslotnum(stmt)
:($(GlobalRef(Core, :isa))($(esc(stmt)), $(GlobalRef(Core.Compiler, :SlotNumber))) ||
$(GlobalRef(Core, :isa))($(esc(stmt)), $(GlobalRef(JuliaInterpreter, :SlotNumber))))
end
"""
iscallto(stmt, name, src)
Returns `true` is `stmt` is a call expression to `name`.
"""
function iscallto(@nospecialize(stmt), mod::Module, name::GlobalRef, src)
if isa(stmt, Expr)
if stmt.head === :call
a = stmt.args[1]
if isa(a, SSAValue) || isa(a, Core.SSAValue)
a = src.code[a.id]
end
normalize_defsig(a, mod) === name && return true
is_global_ref(a, Core, :_apply) && normalize_defsig(stmt.args[2], mod) === name && return true
is_global_ref(a, Core, :_apply_iterate) && normalize_defsig(stmt.args[3], mod) === name && return true
end
end
return false
end
"""
getcallee(stmt)
Returns the function (or Symbol) being called in a :call expression.
"""
function getcallee(@nospecialize(stmt))
if isa(stmt, Expr)
if stmt.head === :call
a = stmt.args[1]
is_global_ref(a, Core, :_apply) && return stmt.args[2]
is_global_ref(a, Core, :_apply_iterate) && return stmt.args[3]
return a
end
end
error(stmt, " is not a call expression")
end
function callee_matches(f, mod, sym)
is_global_ref(f, mod, sym) && return true
if isdefined(mod, sym) && isa(f, QuoteNode)
f.value === getfield(mod, sym) && return true # a consequence of JuliaInterpreter.optimize!
end
return false
end
function rhs(stmt)
is_assignment_like(stmt) && return (stmt::Expr).args[2]
return stmt
end
ismethod(frame::Frame) = ismethod(pc_expr(frame))
ismethod3(frame::Frame) = ismethod3(pc_expr(frame))
ismethod(stmt) = isexpr(stmt, :method)
ismethod1(stmt) = isexpr(stmt, :method, 1)
ismethod3(stmt) = isexpr(stmt, :method, 3)
function ismethod_with_name(src, stmt, target::AbstractString; reentrant::Bool=false)
if reentrant
name = stmt
else
ismethod3(stmt) || return false
name = stmt.args[1]
if name === nothing
name = stmt.args[2]
end
end
isdone = false
while !isdone
if name isa AnySSAValue || name isa AnySlotNumber
name = src.code[name.id]
elseif isexpr(name, :call) && is_quotenode_egal(name.args[1], Core.svec)
name = name.args[2]
elseif isexpr(name, :call) && is_quotenode_egal(name.args[1], Core.Typeof)
name = name.args[2]
elseif isexpr(name, :call) && is_quotenode_egal(name.args[1], Core.apply_type)
for arg in name.args[2:end]
ismethod_with_name(src, arg, target; reentrant=true) && return true
end
isdone = true
elseif isexpr(name, :call) && is_quotenode_egal(name.args[1], UnionAll)
for arg in name.args[2:end]
ismethod_with_name(src, arg, target; reentrant=true) && return true
end
isdone = true
else
isdone = true
end
end
# On Julia 1.6 we have to add escaping (CBinding makes function names like "(S)")
target = escape_string(target, "()")
return match(Regex("(^|#)$target(\$|#)"), isa(name, GlobalRef) ? string(name.name) : string(name)) !== nothing
end
# anonymous function types are defined in a :thunk expr with a characteristic CodeInfo
function isanonymous_typedef(stmt)
if isa(stmt, Expr)
stmt.head === :thunk || return false
stmt = stmt.args[1]
end
if isa(stmt, CodeInfo)
src = stmt # just for naming consistency
length(src.code) >= 4 || return false
stmt = src.code[end-1]
isexpr(stmt, :call) || return false
is_global_ref(stmt.args[1], Core, :_typebody!) || return false
@static if VERSION ≥ v"1.9.0-DEV.391"
stmt = isa(stmt.args[3], Core.SSAValue) ? src.code[end-3] : src.code[end-2]
is_assignment_like(stmt) || return false
name = stmt.args[1]
if isa(name, GlobalRef)
name = name.name
else
isa(name, Symbol) || return false
end
else
name = stmt.args[2]::Symbol
end
return startswith(String(name), "#")
end
return false
end
function istypedef(stmt)
isa(stmt, Expr) || return false
stmt = rhs(stmt)
isa(stmt, Expr) || return false
@static if all(s->isdefined(Core,s), structdecls)
if stmt.head === :call
f = stmt.args[1]
if isa(f, GlobalRef)
f.mod === Core && f.name ∈ structdecls && return true
end
if isa(f, QuoteNode)
(f.value === Core._structtype || f.value === Core._abstracttype ||
f.value === Core._primitivetype) && return true
end
end
end
isanonymous_typedef(stmt) && return true
return false
end
# Given a typedef at `src.code[idx]`, return the range of statement indices that encompass the typedef.
# The range does not include any constructor methods.
function typedef_range(src::CodeInfo, idx)
stmt = src.code[idx]
istypedef(stmt) || error(stmt, " is not a typedef")
stmt = stmt::Expr
isanonymous_typedef(stmt) && return idx:idx
# Search backwards to the previous :global
istart = idx
while istart >= 1
isexpr(src.code[istart], :global) && break
istart -= 1
end
istart >= 1 || error("no initial :global found")
iend, n = idx, length(src.code)
have_typebody = have_equivtypedef = false
while iend <= n
stmt = src.code[iend]
if isa(stmt, Expr)
stmt.head === :global && break
if stmt.head === :call
if (is_global_ref(stmt.args[1], Core, :_typebody!) ||
isdefined(Core, :_typebody!) && is_quotenode_egal(stmt.args[1], Core._typebody!))
have_typebody = true
elseif (is_global_ref(stmt.args[1], Core, :_equiv_typedef) ||
isdefined(Core, :_equiv_typedef) && is_quotenode_egal(stmt.args[1], Core._equiv_typedef))
have_equivtypedef = true
# Advance to the type-assignment
while iend <= n
stmt = src.code[iend]
is_assignment_like(stmt) && break
iend += 1
end
end
if have_typebody && have_equivtypedef
iend += 1 # compensate for the `iend-1` in the return
break
end
end
end
is_return(stmt) && break
iend += 1
end
iend <= n || (@show src; error("no final :global found"))
return istart:iend-1
end
function sparam_ub(meth::Method)
typs = []
sig = meth.sig
while sig isa UnionAll
push!(typs, Symbol(sig.var.ub))
sig = sig.body
end
return Core.svec(typs...)
end
showempty(list) = isempty(list) ? '∅' : list
# Smooth the transition between Core.Compiler and Base
rng(bb::Core.Compiler.BasicBlock) = (r = bb.stmts; return Core.Compiler.first(r):Core.Compiler.last(r))
function pushall!(dest, src)
for item in src
push!(dest, item)
end
return dest
end
# computes strongly connected components of a control flow graph `cfg`
# NOTE adapted from https://github.com/JuliaGraphs/Graphs.jl/blob/5878e7be4d68b2a1c179d1367aea670db115ebb5/src/connectivity.jl#L265-L357
# since to load an entire Graphs.jl is a bit cost-ineffective in terms of a trade-off of latency vs. maintainability
function strongly_connected_components(g::Core.Compiler.CFG)
T = Int
zero_t = zero(T)
one_t = one(T)
nvg = nv(g)
count = one_t
index = zeros(T, nvg) # first time in which vertex is discovered
stack = Vector{T}() # stores vertices which have been discovered and not yet assigned to any component
onstack = zeros(Bool, nvg) # false if a vertex is waiting in the stack to receive a component assignment
lowlink = zeros(T, nvg) # lowest index vertex that it can reach through back edge (index array not vertex id number)
parents = zeros(T, nvg) # parent of every vertex in dfs
components = Vector{Vector{T}}() # maintains a list of scc (order is not guaranteed in API)
dfs_stack = Vector{T}()
@inbounds for s in vertices(g)
if index[s] == zero_t
index[s] = count
lowlink[s] = count
onstack[s] = true
parents[s] = s
push!(stack, s)
count = count + one_t
# start dfs from 's'
push!(dfs_stack, s)
while !isempty(dfs_stack)
v = dfs_stack[end] # end is the most recently added item
u = zero_t
@inbounds for v_neighbor in outneighbors(g, v)
if index[v_neighbor] == zero_t
# unvisited neighbor found
u = v_neighbor
break
# GOTO A push u onto DFS stack and continue DFS
elseif onstack[v_neighbor]
# we have already seen n, but can update the lowlink of v
# which has the effect of possibly keeping v on the stack until n is ready to pop.
# update lowest index 'v' can reach through out neighbors
lowlink[v] = min(lowlink[v], index[v_neighbor])
end
end
if u == zero_t
# All out neighbors already visited or no out neighbors
# we have fully explored the DFS tree from v.
# time to start popping.
popped = pop!(dfs_stack)
lowlink[parents[popped]] = min(
lowlink[parents[popped]], lowlink[popped]
)
if index[v] == lowlink[v]
# found a cycle in a completed dfs tree.
component = Vector{T}()
while !isempty(stack) # break when popped == v
# drain stack until we see v.
# everything on the stack until we see v is in the SCC rooted at v.
popped = pop!(stack)
push!(component, popped)
onstack[popped] = false
# popped has been assigned a component, so we will never see it again.
if popped == v
# we have drained the stack of an entire component.
break
end
end
reverse!(component)
push!(components, component)
end
else # LABEL A
# add unvisited neighbor to dfs
index[u] = count
lowlink[u] = count
onstack[u] = true
parents[u] = v
count = count + one_t
push!(stack, u)
push!(dfs_stack, u)
# next iteration of while loop will expand the DFS tree from u.
end
end
end
end
# # assert with the original implementation
# oracle_components = oracle_scc(cfg_to_sdg(g))
# @assert Set(Set.(components)) == Set(Set.(oracle_components))
return components
end
# compatibility with Graphs.jl interfaces
@inline nv(cfg::Core.Compiler.CFG) = length(cfg.blocks)
@inline vertices(cfg::Core.Compiler.CFG) = 1:nv(cfg)
@inline outneighbors(cfg::Core.Compiler.CFG, v) = cfg.blocks[v].succs
# using Graphs: SimpleDiGraph, add_edge!, strongly_connected_components as oracle_scc
# function cfg_to_sdg(cfg::Core.Compiler.CFG)
# g = SimpleDiGraph(length(cfg.blocks))
# for (v, block) in enumerate(cfg.blocks)
# for succ in block.succs
# add_edge!(g, v, succ)
# end
# end
# return g
# end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 21516 | module codeedges
using LoweredCodeUtils
using LoweredCodeUtils.JuliaInterpreter
using LoweredCodeUtils: callee_matches, istypedef, exclude_named_typedefs
using JuliaInterpreter: is_global_ref, is_quotenode
using Test
function hastrackedexpr(@nospecialize(stmt); heads=LoweredCodeUtils.trackedheads)
haseval = false
if isa(stmt, Expr)
if stmt.head === :call
f = stmt.args[1]
haseval = f === :eval || (callee_matches(f, Base, :getproperty) && is_quotenode(stmt.args[2], :eval))
callee_matches(f, Core, :_typebody!) && return true, haseval
callee_matches(f, Core, :_setsuper!) && return true, haseval
f === :include && return true, haseval
elseif stmt.head === :thunk
any(s->any(hastrackedexpr(s; heads=heads)), stmt.args[1].code) && return true, haseval
elseif stmt.head ∈ heads
return true, haseval
end
end
return false, haseval
end
function minimal_evaluation(predicate, src::Core.CodeInfo, edges::CodeEdges; kwargs...)
isrequired = fill(false, length(src.code))
for (i, stmt) in enumerate(src.code)
if !isrequired[i]
isrequired[i], haseval = predicate(stmt)
if haseval
isrequired[edges.succs[i]] .= true
end
end
end
# All tracked expressions are marked. Now add their dependencies.
lines_required!(isrequired, src, edges; kwargs...)
return isrequired
end
function allmissing(mod::Module, names)
for name in names
isdefined(mod, name) && return false
end
return true
end
module ModEval end
module ModSelective end
@testset "CodeEdges" begin
ex = quote
x = 1
y = x+1
a = sin(0.3)
z = x^2 + y
k = rand()
b = 2*a + 5
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
# Check that the result of direct evaluation agrees with selective evaluation
Core.eval(ModEval, ex)
isrequired = lines_required(GlobalRef(ModSelective, :x), src, edges)
# theere is too much diversity in lowering across Julia versions to make it useful to test `sum(isrequired)`
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.x === ModEval.x
@test allmissing(ModSelective, (:y, :z, :a, :b, :k))
@test !allmissing(ModSelective, (:x, :y)) # add :y here to test the `all` part of the test itself
# To evaluate z we need to do all the computations for y
isrequired = lines_required(GlobalRef(ModSelective, :z), src, edges)
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.y === ModEval.y
@test ModSelective.z === ModEval.z
@test allmissing(ModSelective, (:a, :b, :k)) # ... but not a and b
isrequired = lines_required(length(src.code)-1, src, edges) # this should be the assignment of b
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.a === ModEval.a
@test ModSelective.b === ModEval.b
# Test that we get two separate evaluations of k
@test allmissing(ModSelective, (:k,))
isrequired = lines_required(GlobalRef(ModSelective, :k), src, edges)
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.k != ModEval.k
# Control-flow
ex = quote
flag2 = true
z2 = 15
if flag2
x2 = 5
a2 = 1
else
y2 = 7
a2 = 2
end
a2
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = lines_required(GlobalRef(ModSelective, :a2), src, edges)
selective_eval_fromstart!(frame, isrequired, #=istoplevel=#true)
Core.eval(ModEval, ex)
@test ModSelective.a2 === ModEval.a2 == 1
@test allmissing(ModSelective, (:z2, :x2, :y2))
# Now do it for the other branch, to make sure it's really sound.
# Also switch up the order of the assignments inside each branch.
ex = quote
flag3 = false
z3 = 15
if flag3
a3 = 1
x3 = 5
else
a3 = 2
y3 = 7
end
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = lines_required(GlobalRef(ModSelective, :a3), src, edges)
selective_eval_fromstart!(frame, isrequired)
Core.eval(ModEval, ex)
@test ModSelective.a3 === ModEval.a3 == 2
@test allmissing(ModSelective, (:z3, :x3, :y3))
# ensure we mark all needed control-flow for loops and conditionals,
# and don't fall-through incorrectly
ex = quote
valcf = 0
for i = 1:5
global valcf
if valcf < 4
valcf += 1
end
end
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = lines_required(GlobalRef(ModSelective, :valcf), src, edges)
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.valcf == 4
ex = quote
if Sys.iswindows()
const ONLY_ON_WINDOWS = true
end
c_os = if Sys.iswindows()
ONLY_ON_WINDOWS
else
false
end
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = lines_required(GlobalRef(ModSelective, :c_os), src, edges)
@test sum(isrequired) >= length(isrequired) - 3
selective_eval_fromstart!(frame, isrequired)
Core.eval(ModEval, ex)
@test ModSelective.c_os === ModEval.c_os == Sys.iswindows()
# Capturing dependencies of an `@eval` statement
interpT = Expr(:$, :T) # $T that won't get parsed during file-loading
ex = quote
foo() = 0
for T in (Float32, Float64)
@eval feval1(::$interpT) = 1
end
bar() = 1
end
Core.eval(ModEval, ex)
@test ModEval.foo() == 0
@test ModEval.bar() == 1
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
# Mark just the load of Core.eval
haseval(stmt) = (isa(stmt, Expr) && JuliaInterpreter.hasarg(isequal(:eval), stmt.args)) ||
(isa(stmt, Expr) && stmt.head === :call && is_quotenode(stmt.args[1], Core.eval))
isrequired = map(haseval, src.code)
@test sum(isrequired) == 1
isrequired[edges.succs[findfirst(isrequired)]] .= true # add lines that use Core.eval
lines_required!(isrequired, src, edges)
selective_eval_fromstart!(frame, isrequired)
@test ModSelective.feval1(1.0f0) == 1
@test ModSelective.feval1(1.0) == 1
@test_throws MethodError ModSelective.feval1(1)
@test_throws UndefVarError ModSelective.foo()
@test_throws UndefVarError ModSelective.bar()
# Run test from the docs
# Lowered code isn't very suitable to jldoctest (it can vary with each Julia version),
# so better to run it here
ex = quote
s11 = 0
k11 = 5
for i = 1:3
global s11, k11
s11 += rand(1:5)
k11 += i
end
end
frame = Frame(ModSelective, ex)
JuliaInterpreter.finish_and_return!(frame, true)
@test ModSelective.k11 == 11
@test 3 <= ModSelective.s11 <= 15
Core.eval(ModSelective, :(k11 = 0; s11 = -1))
edges = CodeEdges(ModSelective, frame.framecode.src)
isrequired = lines_required(GlobalRef(ModSelective, :s11), frame.framecode.src, edges)
selective_eval_fromstart!(frame, isrequired, true)
@test ModSelective.k11 == 0
@test 3 <= ModSelective.s11 <= 15
# Control-flow in an abstract type definition
ex = :(abstract type StructParent{T, N} <: AbstractArray{T, N} end)
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
# Check that the StructParent name is discovered everywhere it is used
var = edges.byname[GlobalRef(ModSelective, :StructParent)]
isrequired = minimal_evaluation(hastrackedexpr, src, edges)
selective_eval_fromstart!(frame, isrequired, true)
@test supertype(ModSelective.StructParent) === AbstractArray
# Also check redefinition (it's OK when the definition doesn't change)
Core.eval(ModEval, ex)
frame = Frame(ModEval, ex)
src = frame.framecode.src
edges = CodeEdges(ModEval, src)
isrequired = minimal_evaluation(hastrackedexpr, src, edges)
selective_eval_fromstart!(frame, isrequired, true)
@test supertype(ModEval.StructParent) === AbstractArray
# Finding all dependencies in a struct definition
# Nonparametric
ex = :(struct NoParam end)
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = minimal_evaluation(@nospecialize(stmt)->(LoweredCodeUtils.ismethod_with_name(src, stmt, "NoParam"),false), src, edges) # initially mark only the constructor
selective_eval_fromstart!(frame, isrequired, true)
@test isa(ModSelective.NoParam(), ModSelective.NoParam)
# Parametric
ex = quote
struct Struct{T} <: StructParent{T,1}
x::Vector{T}
end
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = minimal_evaluation(@nospecialize(stmt)->(LoweredCodeUtils.ismethod_with_name(src, stmt, "Struct"),false), src, edges) # initially mark only the constructor
selective_eval_fromstart!(frame, isrequired, true)
@test isa(ModSelective.Struct([1,2,3]), ModSelective.Struct{Int})
# Keyword constructor (this generates :copyast expressions)
ex = quote
struct KWStruct
x::Int
y::Float32
z::String
function KWStruct(; x::Int=1, y::Float32=1.0f0, z::String="hello")
return new(x, y, z)
end
end
end
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = minimal_evaluation(@nospecialize(stmt)->(LoweredCodeUtils.ismethod3(stmt),false), src, edges) # initially mark only the constructor
selective_eval_fromstart!(frame, isrequired, true)
kws = ModSelective.KWStruct(y=5.0f0)
@test kws.y === 5.0f0
# Anonymous functions
ex = :(max_values(T::Union{map(X -> Type{X}, Base.BitIntegerSmall_types)...}) = 1 << (8*sizeof(T)))
frame = Frame(ModSelective, ex)
src = frame.framecode.src
edges = CodeEdges(ModSelective, src)
isrequired = fill(false, length(src.code))
j = length(src.code) - 1
if !Meta.isexpr(src.code[end-1], :method, 3)
j -= 1
end
@assert Meta.isexpr(src.code[j], :method, 3)
isrequired[j] = true
lines_required!(isrequired, src, edges)
selective_eval_fromstart!(frame, isrequired, true)
@test ModSelective.max_values(Int16) === 65536
# Avoid redefining types
ex = quote
struct MyNewType
x::Int
MyNewType(y::Int) = new(y)
end
end
Core.eval(ModEval, ex)
frame = Frame(ModEval, ex)
src = frame.framecode.src
edges = CodeEdges(ModEval, src)
isrequired = minimal_evaluation(@nospecialize(stmt)->(LoweredCodeUtils.ismethod3(stmt),false), src, edges; norequire=exclude_named_typedefs(src, edges)) # initially mark only the constructor
bbs = Core.Compiler.compute_basic_blocks(src.code)
for (iblock, block) in enumerate(bbs.blocks)
r = LoweredCodeUtils.rng(block)
if iblock == length(bbs.blocks)
@test any(idx->isrequired[idx], r)
else
@test !any(idx->isrequired[idx], r)
end
end
# https://github.com/timholy/Revise.jl/issues/538
thk = Meta.lower(ModEval, quote
try
global function revise538(x::Float32)
println("F32")
end
catch e
println("caught error")
end
end)
src = thk.args[1]
edges = CodeEdges(ModEval, src)
lr = lines_required(GlobalRef(ModEval, :revise538), src, edges)
selective_eval_fromstart!(Frame(ModEval, src), lr, #=istoplevel=#true)
@test isdefined(ModEval, :revise538) && length(methods(ModEval.revise538, (Float32,))) == 1
# https://github.com/timholy/Revise.jl/issues/599
thk = Meta.lower(Main, quote
mutable struct A
x::Int
A(x) = new(f(x))
f(x) = x^2
end
end)
src = thk.args[1]
edges = CodeEdges(Main, src)
idx = findfirst(@nospecialize(stmt)->Meta.isexpr(stmt, :method), src.code)
lr = lines_required(idx, src, edges; norequire=exclude_named_typedefs(src, edges))
idx = findfirst(@nospecialize(stmt)->Meta.isexpr(stmt, :(=)) && Meta.isexpr(stmt.args[2], :call) && is_global_ref(stmt.args[2].args[1], Core, :Box), src.code)
@test lr[idx]
# but make sure we don't break primitivetype & abstracttype (https://github.com/timholy/Revise.jl/pull/611)
if isdefined(Core, :_primitivetype)
thk = Meta.lower(Main, quote
primitive type WindowsRawSocket sizeof(Ptr) * 8 end
end)
src = thk.args[1]
edges = CodeEdges(Main, src)
idx = findfirst(istypedef, src.code)
r = LoweredCodeUtils.typedef_range(src, idx)
@test last(r) == length(src.code) - 1
end
@testset "Display" begin
# worth testing because this has proven quite crucial for debugging and
# ensuring that these structures are as "self-documenting" as possible.
io = IOBuffer()
l = LoweredCodeUtils.Links(Int[], [3, 5], LoweredCodeUtils.GlobalRef[GlobalRef(Main, :hello)])
show(io, l)
str = String(take!(io))
@test occursin('∅', str)
@test !occursin("GlobalRef", str)
# CodeLinks
ex = quote
s = 0.0
for i = 1:5
global s
s += rand()
end
return s
end
lwr = Meta.lower(Main, ex)
src = lwr.args[1]
cl = LoweredCodeUtils.CodeLinks(Main, src)
show(io, cl)
str = String(take!(io))
@test occursin(r"slot 1:\n preds: ssas: \[\d+, \d+\], slots: ∅, names: ∅;\n succs: ssas: \[\d+, \d+, \d+\], slots: ∅, names: ∅;\n assign @: \[\d+, \d+\]", str)
@test occursin(r"succs: ssas: ∅, slots: \[\d+\], names: ∅;", str)
# Some of these differ due to changes by Julia version in global var inference
if Base.VERSION < v"1.10"
@test occursin(r"s:\n preds: ssas: \[\d+\], slots: ∅, names: ∅;\n succs: ssas: \[\d+, \d+, \d+\], slots: ∅, names: ∅;\n assign @: \[\d, \d+\]", str) ||
occursin(r"s:\n preds: ssas: \[\d+, \d+\], slots: ∅, names: ∅;\n succs: ssas: \[\d+, \d+, \d+\], slots: ∅, names: ∅;\n assign @: \[\d, \d+\]", str) # with global var inference
end
if Base.VERSION < v"1.8"
@test occursin(r"\d+ preds: ssas: \[\d+\], slots: ∅, names: \[\:\(Main\.s\)\];\n\d+ succs: ssas: ∅, slots: ∅, names: \[\:\(Main\.s\)\];", str)
end
LoweredCodeUtils.print_with_code(io, src, cl)
str = String(take!(io))
if isdefined(Base.IRShow, :show_ir_stmt)
@test occursin(r"slot 1:\n preds: ssas: \[\d+, \d+\], slots: ∅, names: ∅;\n succs: ssas: \[\d+, \d+, \d+\], slots: ∅, names: ∅;\n assign @: \[\d+, \d+\]", str)
@test occursin("# see name Main.s", str)
@test occursin("# see slot 1", str)
if Base.VERSION < v"1.8" # changed by global var inference
@test occursin(r"# preds: ssas: \[\d+\], slots: ∅, names: \[\:\(Main\.s\)\]; succs: ssas: ∅, slots: ∅, names: \[\:\(Main\.s\)\];", str)
end
else
@test occursin("No IR statement printer", str)
end
# CodeEdges
edges = CodeEdges(Main, src)
show(io, edges)
str = String(take!(io))
if Base.VERSION < v"1.10"
@test occursin(r"s: assigned on \[\d, \d+\], depends on \[\d+\], and used by \[\d+, \d+, \d+\]", str) ||
occursin(r"s: assigned on \[\d, \d+\], depends on \[\d+, \d+\], and used by \[\d+, \d+, \d+\]", str) # global var inference
end
if Base.VERSION < v"1.9"
@test (count(occursin("statement $i depends on [1, $(i-1), $(i+1)] and is used by [1, $(i+1)]", str) for i = 1:length(src.code)) == 1) ||
(count(occursin("statement $i depends on [4, $(i-1), $(i+4)] and is used by [$(i+2)]", str) for i = 1:length(src.code)) == 1)
end
LoweredCodeUtils.print_with_code(io, src, edges)
str = String(take!(io))
if isdefined(Base.IRShow, :show_ir_stmt)
if Base.VERSION < v"1.10"
@test occursin(r"s: assigned on \[\d, \d+\], depends on \[\d+\], and used by \[\d+, \d+, \d+\]", str) ||
occursin(r"s: assigned on \[\d, \d+\], depends on \[\d+, \d+\], and used by \[\d+, \d+, \d+\]", str)
end
if Base.VERSION < v"1.9"
@test (count(occursin("preds: [1, $(i-1), $(i+1)], succs: [1, $(i+1)]", str) for i = 1:length(src.code)) == 1) ||
(count(occursin("preds: [4, $(i-1), $(i+4)], succs: [$(i+2)]", str) for i = 1:length(src.code)) == 1) # global var inference
end
else
@test occursin("No IR statement printer", str)
end
# Works with Frames too
frame = Frame(ModSelective, ex)
edges = CodeEdges(ModSelective, frame.framecode.src)
LoweredCodeUtils.print_with_code(io, frame, edges)
str = String(take!(io))
if isdefined(Base.IRShow, :show_ir_stmt)
if Base.VERSION < v"1.10"
@test occursin(r"s: assigned on \[\d, \d+\], depends on \[\d+\], and used by \[\d+, \d+, \d+\]", str) ||
occursin(r"s: assigned on \[\d, \d+\], depends on \[\d, \d+\], and used by \[\d+, \d+, \d+\]", str) # global var inference
end
if Base.VERSION < v"1.9"
@test (count(occursin("preds: [1, $(i-1), $(i+1)], succs: [1, $(i+1)]", str) for i = 1:length(src.code)) == 1) ||
(count(occursin("preds: [4, $(i-1), $(i+4)], succs: [$(i+2)]", str) for i = 1:length(src.code)) == 1) # global var inference
end
else
@test occursin("No IR statement printer", str)
end
# display slot names
ex = :(let
s = 0.0
for i = 1:5
s += rand()
end
return s
end)
lwr = Meta.lower(Main, ex)
src = lwr.args[1]
LoweredCodeUtils.print_with_code(io, src, trues(length(src.code)))
str = String(take!(io))
@test count("s = ", str) == 2
@test count("i = ", str) == 1
end
end
@testset "selective interpretation of toplevel definitions" begin
gen_mock_module() = Core.eval(@__MODULE__, :(module $(gensym(:LoweredCodeUtilsTestMock)) end))
function check_toplevel_definition_interprete(ex, defs, undefs)
m = gen_mock_module()
lwr = Meta.lower(m, ex)
src = first(lwr.args)
stmts = src.code
edges = CodeEdges(m, src)
isrq = lines_required!(istypedef.(stmts), src, edges)
frame = Frame(m, src)
selective_eval_fromstart!(frame, isrq, #=toplevel=#true)
for def in defs; @test isdefined(m, def); end
for undef in undefs; @test !isdefined(m, undef); end
end
@testset "case: $(i), interpret: $(defs), ignore $(undefs)" for (i, ex, defs, undefs) in (
(1, :(abstract type Foo end), (:Foo,), ()),
(2, :(struct Foo end), (:Foo,), ()),
(3, quote
struct Foo
val
end
end, (:Foo,), ()),
(4, quote
struct Foo{T}
val::T
Foo(v::T) where {T} = new{T}(v)
end
end, (:Foo,), ()),
(5, :(primitive type Foo 32 end), (:Foo,), ()),
(6, quote
abstract type Foo end
struct Foo1 <: Foo end
struct Foo2 <: Foo end
end, (:Foo, :Foo1, :Foo2), ()),
(7, quote
struct Foo
v
Foo(f) = new(f())
end
foo = Foo(()->throw("don't interpret me"))
end, (:Foo,), (:foo,)),
# https://github.com/JuliaDebug/LoweredCodeUtils.jl/issues/47
(8, quote
struct Foo
b::Bool
Foo(b) = new(b)
end
foo = Foo(false)
end, (:Foo,), (:foo,)),
# https://github.com/JuliaDebug/LoweredCodeUtils.jl/pull/48
# we shouldn't make `add_links!` recur into `QuoteNode`, otherwise the variable
# `bar` will be selected as a requirement for `Bar1` (, which has "bar" field)
(9, quote
abstract type Bar end
struct Bar1 <: Bar
bar
end
r = (throw("don't interpret me"); rand(10000000000000000))
bar = Bar1(r)
show(bar)
end, (:Bar, :Bar1), (:r, :bar))
)
check_toplevel_definition_interprete(ex, defs, undefs)
end
end
end # module codeedges
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 447 | using Test
# using LoweredCodeUtils
# @testset "Ambiguity" begin
# @test isempty(detect_ambiguities(LoweredCodeUtils, LoweredCodeUtils.JuliaInterpreter, Base, Core))
# end
@testset "LoweredCodeUtils.jl" begin
@static if VERSION ≥ v"1.8"
@testset "signatures.jl" include("signatures.jl")
@testset "codeedges.jl" include("codeedges.jl")
else
include("signatures.jl")
include("codeedges.jl")
end
end
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | code | 17556 | module Signatures
using LoweredCodeUtils
using InteractiveUtils
using JuliaInterpreter
using JuliaInterpreter: finish_and_return!
using Core: CodeInfo
using Base.Meta: isexpr
using Test
module Lowering
using Parameters
struct Caller end
struct Gen{T} end
end
# Stuff for https://github.com/timholy/Revise.jl/issues/422
module Lowering422
const LVec{N, T} = NTuple{N, Base.VecElement{T}}
const LT{T} = Union{LVec{<:Any, T}, T}
const FloatingTypes = Union{Float32, Float64}
end
bodymethtest0(x) = 0
function bodymethtest0(x)
y = 2x
y + x
end
bodymethtest1(x, y=1; z="hello") = 1
bodymethtest2(x, y=Dict(1=>2); z="hello") = 2
bodymethtest3(x::T, y=Dict(1=>2); z="hello") where T<:AbstractFloat = 3
# No kw but has optional args
bodymethtest4(x, y=1) = 4
bodymethtest5(x, y=Dict(1=>2)) = 5
@testset "Signatures" begin
signatures = Set{Any}()
newcode = CodeInfo[]
for ex in (:(f(x::Int8; y=0) = y),
:(f(x::Int16; y::Int=0) = 2),
:(f(x::Int32; y="hello", z::Int=0) = 3),
:(f(x::Int64;) = 4),
:(f(x::Array{Float64,K}; y::Int=0) where K = K),
# Keyword-arg functions that have an anonymous function inside
:(fanon(list; sorted::Bool=true,) = sorted ? sort!(list, by=x->abs(x)) : list),
# Keyword & default positional args
:(g(x, y="hello"; z::Int=0) = 1),
# Return type annotations
:(annot(x, y; z::Bool=false,)::Nothing = nothing),
# Generated methods
quote
@generated function h(x)
if x <: Integer
return :(x ^ 2)
else
return :(x)
end
end
end,
quote
function h(x::Int, y)
if @generated
return y <: Integer ? :(x*y) : :(x+y)
else
return 2x+3y
end
end
end,
:(@generated genkw(; b=2) = nothing), # https://github.com/timholy/Revise.jl/issues/290
# Generated constructors
quote
function Gen{T}(x) where T
if @generated
return T <: Integer ? :(x^2) : :(2x)
else
return 7x
end
end
end,
# Conditional methods
quote
if 0.8 > 0.2
fctrue(x) = 1
else
fcfalse(x) = 1
end
end,
# Call methods
:((::Caller)(x::String) = length(x)),
)
Core.eval(Lowering, ex)
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
pc = methoddefs!(signatures, frame; define=false)
push!(newcode, frame.framecode.src)
end
# Manually add the signature for the Caller constructor, since that was defined
# outside of manual lowering
push!(signatures, Tuple{Type{Lowering.Caller}})
nms = names(Lowering; all=true)
modeval, modinclude = getfield(Lowering, :eval), getfield(Lowering, :include)
failed = []
for fsym in nms
f = getfield(Lowering, fsym)
isa(f, Base.Callable) || continue
(f === modeval || f === modinclude) && continue
for m in methods(f)
if m.sig ∉ signatures
push!(failed, m.sig)
end
end
end
@test isempty(failed)
# Ensure that all names are properly resolved
for code in newcode
Core.eval(Lowering, code)
end
nms2 = names(Lowering; all=true)
@test nms2 == nms
@test Lowering.f(Int8(0)) == 0
@test Lowering.f(Int8(0); y="LCU") == "LCU"
@test Lowering.f(Int16(0)) == Lowering.f(Int16(0), y=7) == 2
@test Lowering.f(Int32(0)) == Lowering.f(Int32(0); y=22) == Lowering.f(Int32(0); y=:cat, z=5) == 3
@test Lowering.f(Int64(0)) == 4
@test Lowering.f(rand(3,3)) == Lowering.f(rand(3,3); y=5) == 2
@test Lowering.fanon([1,3,-2]) == [1,-2,3]
@test Lowering.g(0) == Lowering.g(0,"LCU") == Lowering.g(0; z=5) == Lowering.g(0,"LCU"; z=5) == 1
@test Lowering.annot(0,0) === nothing
@test Lowering.h(2) == 4
@test Lowering.h(2.0) == 2.0
@test Lowering.h(2, 3) == 6
@test Lowering.h(2, 3.0) == 5.0
@test Lowering.fctrue(0) == 1
@test_throws UndefVarError Lowering.fcfalse(0)
@test (Lowering.Caller())("Hello, world") == 12
g = Lowering.Gen{Float64}
@test g(3) == 6
# Don't be deceived by inner methods
signatures = []
ex = quote
function fouter(x)
finner(::Float16) = 2x
return finner(Float16(1))
end
end
Core.eval(Lowering, ex)
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
methoddefs!(signatures, frame; define=false)
@test length(signatures) == 1
@test LoweredCodeUtils.whichtt(signatures[1]) == first(methods(Lowering.fouter))
# Check output of methoddef!
frame = Frame(Lowering, :(function nomethod end))
ret = methoddef!(empty!(signatures), frame; define=true)
@test isempty(signatures)
@test ret === nothing
frame = Frame(Lowering, :(function amethod() nothing end))
ret = methoddef!(empty!(signatures), frame; define=true)
@test !isempty(signatures)
@test isa(ret, NTuple{2,Int})
# Anonymous functions in method signatures
ex = :(max_values(T::Union{map(X -> Type{X}, Base.BitIntegerSmall_types)...}) = 1 << (8*sizeof(T))) # base/abstractset.jl
frame = Frame(Base, ex)
rename_framemethods!(frame)
signatures = Set{Any}()
methoddef!(signatures, frame; define=false)
@test length(signatures) == 1
@test first(signatures) == which(Base.max_values, Tuple{Type{Int16}}).sig
# define
ex = :(fdefine(x) = 1)
frame = Frame(Lowering, ex)
empty!(signatures)
methoddefs!(signatures, frame; define=false)
@test_throws MethodError Lowering.fdefine(0)
frame = Frame(Lowering, ex)
empty!(signatures)
methoddefs!(signatures, frame; define=true)
@test Lowering.fdefine(0) == 1
# define with correct_name!
ex = quote
@generated function generated1(A::AbstractArray{T,N}, val) where {T,N}
ex = Expr(:tuple)
for i = 1:N
push!(ex.args, :val)
end
return ex
end
end
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=true)
@test length(signatures) == 2
@test Lowering.generated1(rand(2,2), 3.2) == (3.2, 3.2)
ex = quote
another_kwdef(x, y=1; z="hello") = 333
end
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=true)
@test length(signatures) == 5
@test Lowering.another_kwdef(0) == 333
ex = :(@generated genkw2(; b=2) = nothing) # https://github.com/timholy/Revise.jl/issues/290
frame = Frame(Lowering, ex)
# rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=true)
@test length(signatures) == 4
@test Lowering.genkw2() === nothing
# Test for correct exit (example from base/namedtuples.jl)
ex = quote
function merge(a::NamedTuple{an}, b::NamedTuple{bn}) where {an, bn}
if @generated
names = merge_names(an, bn)
types = merge_types(names, a, b)
vals = Any[ :(getfield($(sym_in(n, bn) ? :b : :a), $(QuoteNode(n)))) for n in names ]
:( NamedTuple{$names,$types}(($(vals...),)) )
else
names = merge_names(an, bn)
types = merge_types(names, typeof(a), typeof(b))
NamedTuple{names,types}(map(n->getfield(sym_in(n, bn) ? b : a, n), names))
end
end
end
frame = Frame(Base, ex)
rename_framemethods!(frame)
empty!(signatures)
stmt = JuliaInterpreter.pc_expr(frame)
if !LoweredCodeUtils.ismethod(stmt)
pc = JuliaInterpreter.next_until!(LoweredCodeUtils.ismethod, frame, true)
end
pc, pc3 = methoddef!(signatures, frame; define=false) # this tests that the return isn't `nothing`
pc, pc3 = methoddef!(signatures, frame; define=false)
@test length(signatures) == 2 # both the GeneratedFunctionStub and the main method
# With anonymous functions in signatures
ex = :(const BitIntegerType = Union{map(T->Type{T}, Base.BitInteger_types)...})
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=false)
@test !isempty(signatures)
for m in methods(bodymethtest0)
@test bodymethod(m) === m
end
@test startswith(String(bodymethod(first(methods(bodymethtest1))).name), "#")
@test startswith(String(bodymethod(first(methods(bodymethtest2))).name), "#")
@test startswith(String(bodymethod(first(methods(bodymethtest3))).name), "#")
@test bodymethod(first(methods(bodymethtest4))).nargs == 3 # one extra for #self#
@test bodymethod(first(methods(bodymethtest5))).nargs == 3
m = @which sum([1]; dims=1)
# Issue in https://github.com/timholy/CodeTracking.jl/pull/48
mbody = bodymethod(m)
@test mbody != m && mbody.file != :none
# varargs keyword methods
m = which(Base.print_shell_escaped, (IO, AbstractString))
mbody = bodymethod(m)
@test isa(mbody, Method) && mbody != m
ex = quote
function print_shell_escaped(io::IO, cmd::AbstractString, args::AbstractString...;
special::AbstractString="")
print_shell_word(io, cmd, special)
for arg in args
print(io, ' ')
print_shell_word(io, arg, special)
end
end
end
frame = Frame(Base, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=false)
@test length(signatures) >= 3 - isdefined(Core, :kwcall)
ex = :(typedsig(x) = 1)
frame = Frame(Lowering, ex)
methoddefs!(signatures, frame; define=true)
ex = :(typedsig(x::Int) = 2)
frame = Frame(Lowering, ex)
JuliaInterpreter.next_until!(LoweredCodeUtils.ismethod3, frame, true)
empty!(signatures)
methoddefs!(signatures, frame; define=true)
@test first(signatures).parameters[end] == Int
# Multiple keyword arg methods per frame
# (Revise issue #363)
ex = quote
keywrd1(x; kwarg=false) = 1
keywrd2(x; kwarg="hello") = 2
keywrd3(x; kwarg=:stuff) = 3
end
Core.eval(Lowering, ex)
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
empty!(signatures)
pc, pc3 = methoddef!(signatures, frame; define=false)
@test pc < length(frame.framecode.src.code)
kw2sig = Tuple{typeof(Lowering.keywrd2), Any}
@test kw2sig ∉ signatures
pc = methoddefs!(signatures, frame; define=false)
@test pc === nothing
@test kw2sig ∈ signatures
# Module-scoping
ex = :(Base.@irrational π 3.14159265358979323846 pi)
frame = Frame(Base.MathConstants, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=false)
@test !isempty(signatures)
# Inner methods in structs. Comes up in, e.g., Core.Compiler.Params.
# The body of CustomMS is an SSAValue.
ex = quote
struct MyStructWithMeth
x::Int
global function CustomMS(;x=1)
return new(x)
end
MyStructWithMeth(x) = new(x)
end
end
Core.eval(Lowering, ex)
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
empty!(signatures)
methoddefs!(signatures, frame; define=false)
@test Tuple{typeof(Lowering.CustomMS)} ∈ signatures
# https://github.com/timholy/Revise.jl/issues/398
ex = quote
@with_kw struct Items
n::Int
items::Vector{Int} = [i for i=1:n]
end
end
Core.eval(Lowering, ex)
frame = Frame(Lowering, ex)
dct = rename_framemethods!(frame)
ks = collect(filter(k->startswith(String(k.name), "#Items#"), keys(dct)))
@test length(ks) == 2
@test dct[ks[1]] == dct[ks[2]]
@test ks[1].mod === ks[2].mod === Lowering
@test isdefined(Lowering, ks[1].name) || isdefined(Lowering, ks[2].name)
if !isdefined(Core, :kwcall)
nms = filter(sym->occursin(r"#Items#\d+#\d+", String(sym)), names(Lowering; all=true))
@test length(nms) == 1
end
# https://github.com/timholy/Revise.jl/issues/422
ex = :(@generated function fneg(x::T) where T<:LT{<:FloatingTypes}
s = """
%2 = fneg $(llvm_type(T)) %0
ret $(llvm_type(T)) %2
"""
return :(
$(Expr(:meta, :inline));
Base.llvmcall($s, T, Tuple{T}, x)
)
end)
empty!(signatures)
Core.eval(Lowering422, ex)
frame = Frame(Lowering422, ex)
rename_framemethods!(frame)
pc = methoddefs!(signatures, frame; define=false)
@test typeof(Lowering422.fneg) ∈ Set(Base.unwrap_unionall(sig).parameters[1] for sig in signatures)
# Scoped names (https://github.com/timholy/Revise.jl/issues/568)
ex = :(f568() = -1)
Core.eval(Lowering, ex)
@test Lowering.f568() == -1
empty!(signatures)
ex = :(f568() = -2)
frame = Frame(Lowering, ex)
pcstop = findfirst(LoweredCodeUtils.ismethod3, frame.framecode.src.code)
pc = 1
while pc < pcstop
pc = JuliaInterpreter.step_expr!(finish_and_return!, frame, true)
end
pc = methoddef!(finish_and_return!, signatures, frame, pc; define=true)
@test Tuple{typeof(Lowering.f568)} ∈ signatures
@test Lowering.f568() == -2
# Undefined names
# This comes from FileWatching; WindowsRawSocket is only defined on Windows
ex = quote
if Sys.iswindows()
using Base: WindowsRawSocket
function wait(socket::WindowsRawSocket; readable=false, writable=false)
fdw = _FDWatcher(socket, readable, writable)
try
return wait(fdw, readable=readable, writable=writable)
finally
close(fdw, readable, writable)
end
end
end
end
frame = Frame(Lowering, ex)
rename_framemethods!(frame)
# https://github.com/timholy/Revise.jl/issues/550
using Pkg
oldenv = Pkg.project().path
try
# we test with the old version of CBinding, let's do it in an isolated environment
Pkg.activate(; temp=true, io=devnull)
@info "Adding CBinding to the environment for test purposes"
Pkg.add(; name="CBinding", version="0.9.4", io=devnull) # `@cstruct` isn't defined for v1.0 and above
m = Module()
Core.eval(m, :(using CBinding))
ex = :(@cstruct S {
val::Int8
})
empty!(signatures)
Core.eval(m, ex)
frame = Frame(m, ex)
rename_framemethods!(frame)
pc = methoddefs!(signatures, frame; define=false)
@test !isempty(signatures) # really we just need to know that `methoddefs!` completed without getting stuck
finally
Pkg.activate(oldenv; io=devnull) # back to the original environment
end
end
# https://github.com/timholy/Revise.jl/issues/643
module Revise643
using LoweredCodeUtils, JuliaInterpreter, Test
# make sure to not define `foogr` before macro expansion,
# otherwise it will be resolved as `QuoteNode`
macro deffoogr()
gr = GlobalRef(__module__, :foogr) # will be lowered to `GlobalRef`
quote
$gr(args...) = length(args)
end
end
let
ex = quote
@deffoogr
@show foogr(1,2,3)
end
methranges = rename_framemethods!(Frame(@__MODULE__, ex))
@test haskey(methranges, GlobalRef(@__MODULE__, :foogr))
end
function fooqn end
macro deffooqn()
sig = :($(GlobalRef(__module__, :fooqn))(args...)) # will be lowered to `QuoteNode`
return Expr(:function, sig, Expr(:block, __source__, :(length(args))))
end
let
ex = quote
@deffooqn
@show fooqn(1,2,3)
end
methranges = rename_framemethods!(Frame(@__MODULE__, ex))
@test haskey(methranges, GlobalRef(@__MODULE__, :fooqn))
end
# define methods in other module
module sandboxgr end
macro deffoogr_sandbox()
gr = GlobalRef(sandboxgr, :foogr_sandbox) # will be lowered to `GlobalRef`
quote
$gr(args...) = length(args)
end
end
let
ex = quote
@deffoogr_sandbox
@show sandboxgr.foogr_sandbox(1,2,3)
end
methranges = rename_framemethods!(Frame(@__MODULE__, ex))
@test haskey(methranges, GlobalRef(sandboxgr, :foogr_sandbox))
end
module sandboxqn; function fooqn_sandbox end; end
macro deffooqn_sandbox()
sig = :($(GlobalRef(sandboxqn, :fooqn_sandbox))(args...)) # will be lowered to `QuoteNode`
return Expr(:function, sig, Expr(:block, __source__, :(length(args))))
end
let
ex = quote
@deffooqn_sandbox
@show sandboxqn.fooqn_sandbox(1,2,3)
end
methranges = rename_framemethods!(Frame(@__MODULE__, ex))
@test haskey(methranges, GlobalRef(sandboxqn, :fooqn_sandbox))
end
end
end # module signatures
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | docs | 289 | # LoweredCodeUtils
[](https://JuliaDebug.github.io/LoweredCodeUtils.jl/stable)
This package performs operations on Julia's [lowered AST](https://docs.julialang.org/en/v1/devdocs/ast/#Lowered-form). See the documentation for details.
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | docs | 545 | # API
## Signatures
```@docs
signature
methoddef!
rename_framemethods!
bodymethod
```
## Edges
```@docs
CodeEdges
lines_required
lines_required!
selective_eval!
selective_eval_fromstart!
```
## Internal utilities
```@docs
LoweredCodeUtils.print_with_code
LoweredCodeUtils.next_or_nothing
LoweredCodeUtils.skip_until
LoweredCodeUtils.MethodInfo
LoweredCodeUtils.identify_framemethod_calls
LoweredCodeUtils.iscallto
LoweredCodeUtils.getcallee
LoweredCodeUtils.find_name_caller_sig
LoweredCodeUtils.replacename!
LoweredCodeUtils.Variable
```
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | docs | 7459 | # Edges
Edges here are a graph-theoretic concept relating the connections between individual statements in the source code.
For example, consider
```julia
julia> ex = quote
s = 0
k = 5
for i = 1:3
global s, k
s += rand(1:5)
k += i
end
end
quote
#= REPL[2]:2 =#
s = 0
#= REPL[2]:3 =#
k = 5
#= REPL[2]:4 =#
for i = 1:3
#= REPL[2]:5 =#
global s, k
#= REPL[2]:6 =#
s += rand(1:5)
#= REPL[2]:7 =#
k += i
end
end
julia> eval(ex)
julia> s
10 # random
julia> k
11 # reproducible
```
We lower it,
```
julia> lwr = Meta.lower(Main, ex)
:($(Expr(:thunk, CodeInfo(
@ REPL[2]:2 within `top-level scope'
1 ─ s = 0
│ @ REPL[2]:3 within `top-level scope'
│ k = 5
│ @ REPL[2]:4 within `top-level scope'
│ %3 = 1:3
│ #s1 = Base.iterate(%3)
│ %5 = #s1 === nothing
│ %6 = Base.not_int(%5)
└── goto #4 if not %6
2 ┄ %8 = #s1
│ i = Core.getfield(%8, 1)
│ %10 = Core.getfield(%8, 2)
│ @ REPL[2]:5 within `top-level scope'
│ global k
│ global s
│ @ REPL[2]:6 within `top-level scope'
│ %13 = 1:5
│ %14 = rand(%13)
│ %15 = s + %14
│ s = %15
│ @ REPL[2]:7 within `top-level scope'
│ %17 = k + i
│ k = %17
│ #s1 = Base.iterate(%3, %10)
│ %20 = #s1 === nothing
│ %21 = Base.not_int(%20)
└── goto #4 if not %21
3 ─ goto #2
4 ┄ return
))))
```
and then extract the edges:
```julia
julia> edges = CodeEdges(lwr.args[1])
CodeEdges:
s: assigned on [1, 16], depends on [15], and used by [12, 15]
k: assigned on [2, 18], depends on [17], and used by [11, 17]
statement 1 depends on [15, 16] and is used by [12, 15, 16]
statement 2 depends on [17, 18] and is used by [11, 17, 18]
statement 3 depends on ∅ and is used by [4, 19]
statement 4 depends on [3, 10, 19] and is used by [5, 8, 19, 20]
statement 5 depends on [4, 19] and is used by [6]
statement 6 depends on [5] and is used by [7]
statement 7 depends on [6] and is used by ∅
statement 8 depends on [4, 19] and is used by [9, 10]
statement 9 depends on [8] and is used by [17]
statement 10 depends on [8] and is used by [4, 19]
statement 11 depends on [2, 18] and is used by ∅
statement 12 depends on [1, 16] and is used by ∅
statement 13 depends on ∅ and is used by [14]
statement 14 depends on [13] and is used by [15]
statement 15 depends on [1, 14, 16] and is used by [1, 16]
statement 16 depends on [1, 15] and is used by [1, 12, 15]
statement 17 depends on [2, 9, 18] and is used by [2, 18]
statement 18 depends on [2, 17] and is used by [2, 11, 17]
statement 19 depends on [3, 4, 10] and is used by [4, 5, 8, 20]
statement 20 depends on [4, 19] and is used by [21]
statement 21 depends on [20] and is used by [22]
statement 22 depends on [21] and is used by ∅
statement 23 depends on ∅ and is used by ∅
statement 24 depends on ∅ and is used by ∅
```
This shows the dependencies of each line as well as the "named
variables" `s` and `k`. It's worth looking specifically to see how the
slot-variable `#s1` gets handled, as you'll notice there is no mention
of this in the "variables" section at the top. You can see that
`#s1` first gets assigned on line 4 (the `iterate` statement),
which you'll notice depends on 3 (via the SSAValue printed as `%3`).
But that line 4 also is shown as depending on 10 and 19.
You can see that line 19 is the 2-argument call to `iterate`,
and that this line depends on SSAValue `%10` (the state variable).
Consequently all the line-dependencies of this slot variable have
been aggregated into a single list by determining the "global"
influences on that slot variable.
An even more useful output can be obtained from the following:
```
julia> LoweredCodeUtils.print_with_code(stdout, lwr.args[1], edges)
Names:
s: assigned on [1, 16], depends on [15], and used by [12, 15]
k: assigned on [2, 18], depends on [17], and used by [11, 17]
Code:
1 ─ s = 0
│ # preds: [15, 16], succs: [12, 15, 16]
│ k = 5
│ # preds: [17, 18], succs: [11, 17, 18]
│ %3 = 1:3
│ # preds: ∅, succs: [4, 19]
│ _1 = Base.iterate(%3)
│ # preds: [3, 10, 19], succs: [5, 8, 19, 20]
│ %5 = _1 === nothing
│ # preds: [4, 19], succs: [6]
│ %6 = Base.not_int(%5)
│ # preds: [5], succs: [7]
└── goto #4 if not %6
# preds: [6], succs: ∅
2 ┄ %8 = _1
│ # preds: [4, 19], succs: [9, 10]
│ _2 = Core.getfield(%8, 1)
│ # preds: [8], succs: [17]
│ %10 = Core.getfield(%8, 2)
│ # preds: [8], succs: [4, 19]
│ global k
│ # preds: [2, 18], succs: ∅
│ global s
│ # preds: [1, 16], succs: ∅
│ %13 = 1:5
│ # preds: ∅, succs: [14]
│ %14 = rand(%13)
│ # preds: [13], succs: [15]
│ %15 = s + %14
│ # preds: [1, 14, 16], succs: [1, 16]
│ s = %15
│ # preds: [1, 15], succs: [1, 12, 15]
│ %17 = k + _2
│ # preds: [2, 9, 18], succs: [2, 18]
│ k = %17
│ # preds: [2, 17], succs: [2, 11, 17]
│ _1 = Base.iterate(%3, %10)
│ # preds: [3, 4, 10], succs: [4, 5, 8, 20]
│ %20 = _1 === nothing
│ # preds: [4, 19], succs: [21]
│ %21 = Base.not_int(%20)
│ # preds: [20], succs: [22]
└── goto #4 if not %21
# preds: [21], succs: ∅
3 ─ goto #2
# preds: ∅, succs: ∅
4 ┄ return
# preds: ∅, succs: ∅
```
Here the edges are printed right after each line.
!!! note
"Nice" output from `print_with_code` requires at least version 1.6.0-DEV.95 of Julia.
Suppose we want to evaluate just the lines needed to compute `s`.
We can find out which lines these are with
```julia
julia> isrequired = lines_required(:s, lwr.args[1], edges)
24-element BitArray{1}:
1
0
1
1
1
1
1
1
0
1
0
0
1
1
1
1
0
0
1
1
1
1
1
0
```
and display them with
```
julia> LoweredCodeUtils.print_with_code(stdout, lwr.args[1], isrequired)
1 t 1 ─ s = 0
2 f │ k = 5
3 t │ %3 = 1:3
4 t │ _1 = Base.iterate(%3)
5 t │ %5 = _1 === nothing
6 t │ %6 = Base.not_int(%5)
7 t └── goto #4 if not %6
8 t 2 ┄ %8 = _1
9 f │ _2 = Core.getfield(%8, 1)
10 t │ %10 = Core.getfield(%8, 2)
11 f │ global k
12 f │ global s
13 t │ %13 = 1:5
14 t │ %14 = rand(%13)
15 t │ %15 = s + %14
16 t │ s = %15
17 f │ %17 = k + _2
18 f │ k = %17
19 t │ _1 = Base.iterate(%3, %10)
20 t │ %20 = _1 === nothing
21 t │ %21 = Base.not_int(%20)
22 t └── goto #4 if not %21
23 t 3 ─ goto #2
24 f 4 ┄ return
```
We can test this with the following:
```julia
julia> using JuliaInterpreter
julia> frame = Frame(Main, lwr.args[1])
Frame for Main
1 2 1 ─ s = 0
2 3 │ k = 5
3 4 │ %3 = 1:3
⋮
julia> k
11
julia> k = 0
0
julia> selective_eval_fromstart!(frame, isrequired, true)
julia> k
0
julia> s
12 # random
julia> selective_eval_fromstart!(frame, isrequired, true)
julia> k
0
julia> s
9 # random
```
You can see that `k` was not reset to its value of 11 when we ran this code selectively,
but that `s` was updated (to a random value) each time.
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | docs | 2461 | # LoweredCodeUtils.jl
This package performs operations on Julia's [lowered AST](https://docs.julialang.org/en/latest/devdocs/ast/).
An introduction to this representation can be found at [JuliaInterpreter](https://juliadebug.github.io/JuliaInterpreter.jl/stable/).
Lowered AST (like other ASTs, type-inferred AST and SSA IR form) is generally more amenable to analysis than "surface" Julia expressions.
However, sophisticated analyses can nevertheless require a fair bit of infrastructure.
The purpose of this package is to standardize a few operations that are important in some applications.
Currently there are two major domains of this package: the "signatures" domain and the "edges" domain.
## Signatures
A major role of this package is to support extraction of method signatures, in particular to provide strong support for relating keyword-method "bodies" to their parent methods.
The central challenge this addresses is the lowering of keyword-argument functions and the fact that the "gensymmed" names are different each time you lower the code, and therefore you don't recover the actual (running) keyword-body method.
The technical details are described in [this Julia issue](https://github.com/JuliaLang/julia/issues/30908) and on the next page.
This package provides a workaround to rename gensymmed variables in newly-lowered code to match the name of the running keyword-body method, and provides a convenience function, `bodymethod`, to
obtain that otherwise difficult-to-discover method.
## Edges
Sometimes you want to run only a selected subset of code. For instance, Revise tracks methods
by their signatures, and therefore needs to compute signatures from the lowered representation of code.
Doing this robustly (including for `@eval`ed methods, etc.) requires running module top-level
code through the interpreter.
For reasons of performance and safety, it is important to minimize the amount of code that gets executed when extracting the signature.
This package provides a general framework for computing dependencies in code, through the `CodeEdges` constructor. It allows you to determine the lines on which any given statement depends, the lines which "consume" the result of the current line, and any "named" dependencies (`Symbol` and `GlobalRef` dependencies).
In particular, this resolves the line-dependencies of all `SlotNumber` variables so that their own dependencies will be handled via the code-line dependencies.
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 3.0.2 | c2b5e92eaf5101404a58ce9c6083d595472361d6 | docs | 6959 | # Signatures and renaming
We can demonstrate some of this package's functionality with the following simple example:
```julia
julia> ex = :(f(x; color::Symbol=:green) = 2x)
:(f(x; color::Symbol = :green) = begin
#= REPL[1]:1 =#
2x
end)
julia> eval(ex)
f (generic function with 1 method)
julia> f(3)
6
```
Things get more interesting (and complicated) when we examine the lowered code:
```julia
julia> lwr = Meta.lower(Main, ex)
:($(Expr(:thunk, CodeInfo(
@ none within `top-level scope'
1 ─ $(Expr(:thunk, CodeInfo(
@ none within `top-level scope'
1 ─ return $(Expr(:method, :f))
)))
│ $(Expr(:thunk, CodeInfo(
@ none within `top-level scope'
1 ─ return $(Expr(:method, Symbol("#f#2")))
)))
│ $(Expr(:method, :f))
│ $(Expr(:method, Symbol("#f#2")))
│ %5 = Core.typeof(var"#f#2")
│ %6 = Core.Typeof(f)
│ %7 = Core.svec(%5, Symbol, %6, Core.Any)
│ %8 = Core.svec()
│ %9 = Core.svec(%7, %8, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, Symbol("#f#2"), :(%9), CodeInfo(quote
$(Expr(:meta, :nkw, 1))
2 * x
return %2
end)))
│ $(Expr(:method, :f))
│ %12 = Core.Typeof(f)
│ %13 = Core.svec(%12, Core.Any)
│ %14 = Core.svec()
│ %15 = Core.svec(%13, %14, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, :f, :(%15), CodeInfo(quote
var"#f#2"(:green, #self#, x)
return %1
end)))
│ $(Expr(:method, :f))
│ %18 = Core.Typeof(f)
│ %19 = Core.kwftype(%18)
│ %20 = Core.Typeof(f)
│ %21 = Core.svec(%19, Core.Any, %20, Core.Any)
│ %22 = Core.svec()
│ %23 = Core.svec(%21, %22, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, :f, :(%23), CodeInfo(quote
Base.haskey(@_2, :color)
unless %1 goto %11
Base.getindex(@_2, :color)
%3 isa Symbol
unless %4 goto %7
goto %9
%new(Core.TypeError, Symbol("keyword argument"), :color, Symbol, %3)
Core.throw(%7)
@_6 = %3
goto %12
@_6 = :green
color = @_6
Core.tuple(:color)
Core.apply_type(Core.NamedTuple, %13)
Base.structdiff(@_2, %14)
Base.pairs(%15)
Base.isempty(%16)
unless %17 goto %20
goto %21
Base.kwerr(@_2, @_3, x)
var"#f#2"(color, @_3, x)
return %21
end)))
│ %25 = f
│ %26 = Core.ifelse(false, false, %25)
└── return %26
))))
```
This reveals the *three* methods actually got defined:
- one method of `f` with a single positional argument (this is the second 3-argument `:method` expression)
- a keyword-handling method that checks the names of supplied keyword arguments and fills in defaults (this is the third 3-argument `:method` expression). This method can be obtained from `Core.kwfunc(f)`, which returns a function named `f##kw`.
- a "keyword-body" method that actually does the work specifies by our function definition. This method gets called by the other two. (This is the first 3-argument `:method` expression.)
From examining the lowered code we might guess that this function is called `#f#2`.
What happens if we try to get it?
```julia
julia> fbody = var"#f#2"
ERROR: UndefVarError: #f#2 not defined
Stacktrace:
[1] top-level scope at REPL[6]:1
```
Curiously, however, there is a closely-related function, and looking at its body code we see it is the one we wanted:
```julia
julia> fbody = var"#f#1"
#f#1 (generic function with 1 method)
julia> mbody = first(methods(fbody))
#f#1(color::Symbol, ::typeof(f), x) in Main at REPL[1]:1
julia> Base.uncompressed_ast(mbody)
CodeInfo(
@ REPL[1]:1 within `#f#1'
1 ─ nothing
│ %2 = 2 * x
└── return %2
)
```
It's named `#f#1`, rather than `#f#2`, because it was actually defined by that `eval(ex)` command at the top of this page. That `eval` caused it to be lowered once, and calling `Meta.lower` causes it to be lowered a second time, with different generated names.
We can obtain the running version more directly (without having to guess) via the following:
```julia
julia> m = first(methods(f))
f(x; color) in Main at REPL[1]:1
julia> using LoweredCodeUtils
julia> bodymethod(m)
#f#1(color::Symbol, ::typeof(f), x) in Main at REPL[1]:1
```
We can also rename these methods, if we first turn it into a `frame`:
```julia
julia> using JuliaInterpreter
julia> frame = Frame(Main, lwr.args[1])
Frame for Main
1 0 1 ─ $(Expr(:thunk, CodeInfo(
2 0 1 ─ return $(Expr(:method, :f))
3 0 )))
⋮
julia> rename_framemethods!(frame)
Dict{Symbol,LoweredCodeUtils.MethodInfo} with 3 entries:
:f => MethodInfo(11, 24, [1])
Symbol("#f#2") => MethodInfo(4, 10, [2])
Symbol("#f#1") => MethodInfo(4, 10, [2])
julia> frame.framecode.src
CodeInfo(
@ none within `top-level scope'
1 ─ $(Expr(:thunk, CodeInfo(
@ none within `top-level scope'
1 ─ return $(Expr(:method, :f))
)))
│ $(Expr(:thunk, CodeInfo(
@ none within `top-level scope'
1 ─ return $(Expr(:method, Symbol("#f#1")))
)))
│ $(Expr(:method, :f))
│ $(Expr(:method, Symbol("#f#1")))
│ ($(QuoteNode(typeof)))(var"#f#1")
│ ($(QuoteNode(Core.Typeof)))(f)
│ ($(QuoteNode(Core.svec)))(%J5, Symbol, %J6, $(QuoteNode(Any)))
│ ($(QuoteNode(Core.svec)))()
│ ($(QuoteNode(Core.svec)))(%J7, %J8, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, Symbol("#f#1"), %J9, CodeInfo(quote
$(Expr(:meta, :nkw, 1))
2 * x
return %2
end)))
│ $(Expr(:method, :f))
│ ($(QuoteNode(Core.Typeof)))(f)
│ ($(QuoteNode(Core.svec)))(%J12, $(QuoteNode(Any)))
│ ($(QuoteNode(Core.svec)))()
│ ($(QuoteNode(Core.svec)))(%J13, %J14, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, :f, %J15, CodeInfo(quote
var"#f#1"(:green, #self#, x)
return %1
end)))
│ $(Expr(:method, :f))
│ ($(QuoteNode(Core.Typeof)))(f)
│ ($(QuoteNode(Core.kwftype)))(%J18)
│ ($(QuoteNode(Core.Typeof)))(f)
│ ($(QuoteNode(Core.svec)))(%J19, $(QuoteNode(Any)), %J20, $(QuoteNode(Any)))
│ ($(QuoteNode(Core.svec)))()
│ ($(QuoteNode(Core.svec)))(%J21, %J22, $(QuoteNode(:(#= REPL[1]:1 =#))))
│ $(Expr(:method, :f, %J23, CodeInfo(quote
Base.haskey(@_2, :color)
unless %1 goto %11
Base.getindex(@_2, :color)
%3 isa Symbol
unless %4 goto %7
goto %9
%new(Core.TypeError, Symbol("keyword argument"), :color, Symbol, %3)
Core.throw(%7)
@_6 = %3
goto %12
@_6 = :green
color = @_6
Core.tuple(:color)
Core.apply_type(Core.NamedTuple, %13)
Base.structdiff(@_2, %14)
Base.pairs(%15)
Base.isempty(%16)
unless %17 goto %20
goto %21
Base.kwerr(@_2, @_3, x)
var"#f#1"(color, @_3, x)
return %21
end)))
│ f
│ ($(QuoteNode(ifelse)))(false, false, %J25)
└── return %J26
)
```
While there are a few differences in representation stemming from converting it to a frame, you can see that the `#f#2`s have been changed to `#f#1`s to match the currently-running names.
| LoweredCodeUtils | https://github.com/JuliaDebug/LoweredCodeUtils.jl.git |
|
[
"MIT"
] | 1.3.0 | 6842804e7867b115ca9de748a0cf6b364523c16d | code | 2249 | module Pipe
#Reflow piped things replacing the _ in the next section
export @pipe
const PLACEHOLDER = :_
function replace(arg::Any, target)
arg #Normally do nothing
end
function replace(arg::Symbol, target)
if arg==PLACEHOLDER
target
else
arg
end
end
function replace(arg::Expr, target)
rep = copy(arg)
rep.args = map(x->replace(x, target), rep.args)
rep
end
function rewrite(ff::Expr, target)
rep_args = map(x->replace(x, target), ff.args)
if ff.args != rep_args
#_ subsitution
ff.args = rep_args
return ff
end
#No subsitution was done (no _ found)
#Apply to a function that is being returned by ff,
#(ff could be a function call or something more complex)
rewrite_apply(ff,target)
end
function rewrite_broadcasted(ff::Expr, target)
temp_var = gensym()
rep_args = map(x->replace(x, temp_var), ff.args)
if ff.args != rep_args
#_ subsitution
ff.args = rep_args
return :($temp_var->$ff)
end
#No subsitution was done (no _ found)
#Apply to a function that is being returned by ff,
#(ff could be a function call or something more complex)
rewrite_apply_broadcasted(ff,target)
end
function rewrite_apply(ff, target)
:($ff($target)) #function application
end
function rewrite_apply_broadcasted(ff, target)
temp_var = gensym()
:($temp_var->$ff($temp_var))
end
function rewrite(ff::Symbol, target)
if ff==PLACEHOLDER
target
else
rewrite_apply(ff,target)
end
end
function rewrite_broadcasted(ff::Symbol, target)
if ff==PLACEHOLDER
target
else
rewrite_apply_broadcasted(ff,target)
end
end
function funnel(ee::Any) #Could be a Symbol could be a literal
ee #first (left most) input
end
function funnel(ee::Expr)
if (ee.args[1]==:|>)
target = funnel(ee.args[2]) #Recurse
rewrite(ee.args[3],target)
elseif (ee.args[1]==:.|>)
target = funnel(ee.args[2]) #Recurse
rewritten = rewrite_broadcasted(ee.args[3],target)
ee.args[3] = rewritten
ee
else
#Not in a piping situtation
ee #make no change
end
end
macro pipe(ee)
esc(funnel(ee))
end
end
| Pipe | https://github.com/oxinabox/Pipe.jl.git |
|
[
"MIT"
] | 1.3.0 | 6842804e7867b115ca9de748a0cf6b364523c16d | code | 3916 | using Pipe
using Test
_macroexpand(q) = macroexpand(Main, q)
rml! = Base.remove_linenums!
# performs linenum removal and temp variable replacing to avoid different names of temp variables in different julia versions
stringify_expr(e::Expr) = replace(string(rml!(e)), r"##\d{3}"=>"##000")
pipe_equals(e1::Expr, e2::Expr) = stringify_expr(_macroexpand(e1)) == stringify_expr(e2)
#No change to nonpipes functionality
@test _macroexpand( :(@pipe a) ) == :a #doesn't change single inputs
@test _macroexpand( :(@pipe b(a)) ) == :(b(a)) #doesn't change inputs that a function applications
#Compatable with Julia 1.3 piping functionality
@test _macroexpand( :(@pipe a|>b) ) == :(b(a)) #basic
@test _macroexpand( :(@pipe a|>b|>c) ) == :(c(b(a))) #Keeps chaining 3
@test _macroexpand( :(@pipe a|>b|>c|>d) ) == :(d(c(b(a)))) #Keeps chaining 4
@test _macroexpand( :(@pipe a|>b(x)) ) == :((b(x))(a)) #applying to function calls returning functions
@test _macroexpand( :(@pipe a(x)|>b ) ) == :(b(a(x))) #feeding functioncall results on wards
@test _macroexpand(:(@pipe 1|>a)) ==:(a(1)) #Works with literals (int)
@test _macroexpand(:(@pipe "foo"|>a)) == :(a("foo")) #Works with literal (string)
@test _macroexpand( :(@pipe a|>bb[2])) == :((bb[2])(a)) #Should work with RHS that is a array reference
#Marked locations
@test _macroexpand( :(@pipe a |> _)) == :(a) #Identity works
@test _macroexpand( :(@pipe a |> _[b])) == :(a[b]) #Indexing works
@test _macroexpand( :(@pipe a|>b(_) ) ) == :(b(a)) #Marked location only
@test _macroexpand( :(@pipe a|>b(x,_) ) ) == :(b(x,a)) # marked 2nd (and last)
@test _macroexpand( :(@pipe a|>b(_,x) ) ) == :(b(a,x)) # marked first
@test _macroexpand( :(@pipe a|>b(_,_) ) ) == :(b(a,a)) # marked double (Not certain if this is a good idea)
@test _macroexpand( :(@pipe a|>bb[2](x,_))) == :((bb[2])(x,a)) #Should work with RHS that is a array reference
#Macros and blocks
macro testmacro(arg, n)
esc(:($arg + $n))
end
@test _macroexpand( :(@pipe a |> @testmacro _ 3 ) ) == :(a + 3) # Can pipe into macros
@test _macroexpand( :(@pipe a |> begin b = _; c + b + _ end )) == :(
begin b = a; c + b + a end)
#marked Unpacking
@test _macroexpand( :(@pipe a|>b(_...) ) ) == :(b(a...)) # Unpacking
@test _macroexpand( :(@pipe a|>bb[2](_...))) == :((bb[2])(a...)) #Should work with RHS of arry ref and do unpacking
#Mixing modes
@test _macroexpand( :(@pipe a|>b|>c(_) ) ) == :(c(b(a)))
@test _macroexpand( :(@pipe a|>b(x,_)|>c|>d(_,y) ) ) == :(d(c(b(x,a)),y))
@test _macroexpand( :(@pipe a|>b(xb,_)|>c|>d(_,xd)|>e(xe) |>f(xf,_,yf)|>_[i] ) ) == :(f(xf,(e(xe))(d(c(b(xb,a)),xd)),yf)[i]) #Very Complex
# broadcasting
vars = 1:10 .|> y->gensym() # Julia < 1.3 changes how Symbols are stringified so we compute the representation here
@test pipe_equals(:(@pipe 1:10 .|> _*2 ), :(1:10 .|> $(vars[1])->$(vars[1]) * 2))
@test pipe_equals(:(@pipe 1:10 .|> fn ), :(1:10 .|> $(vars[2])->fn($(vars[2]))))
@test pipe_equals(:(@pipe a .|> fn .|> _*2 ), :(a .|> ($(vars[3])->fn($(vars[3]))) .|> ($(vars[4])->$(vars[4])*2)))
@test pipe_equals(:(@pipe a .|> fn |> _*2 ), :((a .|> $(vars[5])->fn($(vars[5]))) * 2))
@test pipe_equals(:(@pipe [1,2,2] |> atan.([10,20,30], _) ), :(atan.([10,20,30], [1,2,2])))
@test pipe_equals(:(@pipe [1,2,2] .|> atan.([10,20,30], _) ), :([1,2,2] .|> $(vars[6])->atan.([10,20,30], $(vars[6]))))
@test pipe_equals(:(@pipe fn |> _.(1:2) ), :(fn.(1:2)))
@test pipe_equals(:(@pipe fn .|> _.(1:2) ), :(fn .|> $(vars[7])->$(vars[7]).(1:2)))
@test pipe_equals(:(@pipe [true,false] .|> ! ), :([true, false] .|> $(vars[8])->!$(vars[8])))
@test pipe_equals(:(@pipe [1, 2] |> .+(_, x) ), :([1, 2] .+ x))
@test pipe_equals(:(@pipe [1, 2] |> _ .+ x ), :([1, 2] .+ x))
@test pipe_equals(:(@pipe [1, 2] .|> .+(_, x) ), :([1, 2] .|> $(vars[9])->$(vars[9]).+x))
@test pipe_equals(:(@pipe [1, 2] .|> _ .+ x ), :([1, 2] .|> $(vars[10])->$(vars[10]).+x))
| Pipe | https://github.com/oxinabox/Pipe.jl.git |
|
[
"MIT"
] | 1.3.0 | 6842804e7867b115ca9de748a0cf6b364523c16d | docs | 2683 | # Pipe
- Julia 1.0: [](https://travis-ci.org/oxinabox/Pipe.jl)
- Julia 1.2: [](https://travis-ci.org/oxinabox/Pipe.jl)
- Julia 1.3: [](https://travis-ci.org/oxinabox/Pipe.jl)
- Julia 1.4: [](https://travis-ci.org/oxinabox/Pipe.jl)
- Julia Nightly: [](https://travis-ci.org/oxinabox/Pipe.jl)
## Usage
To use this place `@pipe` at the start of the line for which you want "advanced piping functionality" to work.
This works the same as Julia Piping,
except if you place a underscore in the right hand of the expressing, it will be replaced with the lefthand side.
So:
```
@pipe a |> b(x,_) # == b(x,a) #Not: (b(x,_))(a)
```
Futher the _ can be unpacked, called, deindexed offetc.
```
@pipe a |> b(_...) # == b(a...)
@pipe a |> b(_(1,2)) # == b(a(1,2))
@pipe a |> b(_[3]) # == b(a[3])
```
This last can be used for interacting with multiple returned values. In general however, this is frowned upon.
Generally a pipeline is good for expressing a logical flow data through Single Input Single Output functions. When you deindex multiple times, that is case of working with Multiple Input Multiple Output functions.
In that case it is likely more clear to create named variables, and call the functions normally in sequence.
There is also a performace cost for doing multiple deindexes (see below).
For example:
```
function get_angle(rise,run)
atan(rise/run)
end
@pipe (2,4) |> get_angle(_[1],_[2]) # == 0.4636476090008061
get_angle(2,4) # == 0.4636476090008061 #Note the ordinary way is much clearer
```
However, for each `_` right hand side of the `|>`, the left hand side will be called.
This can incurr a performance cost.
Eg
```
function ratio(value, lr, rr)
println("slitting on ratio $lr:$rr")
value*lr/(lr+rr), value*rr/(lr+rr)
end
function percent(left, right)
left/right*100
end
@pipe 10 |> ratio(_,4,1) |> percent(_[1],_[2]) # = 400.0, outputs splitting on ratio 4:1 Twice
@pipe 10 |> ratio(_,4,1) |> percent(_...) # = 400.0, outputs splitting on ratio 4:1 Once
```
---------------------
## See Also:
- [List of similar/related works](https://github.com/JuliaLang/julia/issues/5571#issuecomment-205754539)
| Pipe | https://github.com/oxinabox/Pipe.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 84 | using MeasureTheory
dist = For(3) do j Normal(σ=j) end
b = basemeasure_depth(dist) | MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 1078 | using Documenter
using MeasureTheory
DocMeta.setdocmeta!(MeasureBase, :DocTestSetup, :(using MeasureBase); recursive = true)
DocMeta.setdocmeta!(MeasureTheory, :DocTestSetup, :(using MeasureTheory); recursive = true)
pages = [
"Home" => "index.md",
"Tutorials" => [
"Adding a new measure" => "adding.md",
"AffinePushfwd transformations" => "affine.md",
],
"API Reference" => [
"MeasureBase" => "api_measurebase.md",
"MeasureTheory" => "api_measuretheory.md",
"Index" => "api_index.md",
],
]
makedocs(;
modules = [MeasureBase, MeasureTheory],
authors = "Chad Scherrer <[email protected]> and contributors",
repo = "https://github.com/JuliaMath/MeasureTheory.jl/blob/{commit}{path}#L{line}",
sitename = "MeasureTheory.jl",
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", "false") == "true",
canonical = "https://cscherrer.github.io/MeasureTheory.jl",
assets = String[],
),
pages = pages,
)
deploydocs(; repo = "github.com/JuliaMath/MeasureTheory.jl")
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 353 | struct OrderStatistic{n,r,B} <: AbstractMeasure
base::B
end
@inline function basemeasure(d::OrderStatistic{n,r})
WeightedMeasure(logbeta(n + 1, r + 1), d.base)
end
@inline function logdensity_def(d::OrderStatistic{n,r}, x)
logF(x) = logcdf(d.base, x)
logFᶜ(x) = logccdf(d.base, x)
return (r - 1) * logF(x) + (n - r) * logFᶜ(x)
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 3834 | module MeasureTheory
using Compat
using Random
using MeasureBase
using MLStyle
import TransformVariables
const TV = TransformVariables
using TransformVariables: asℝ₊, as𝕀, asℝ, transform
import Base
export TV
export transform
export ≪
export gentype
export For
export AbstractMeasure
export Dirac
export Lebesgue
export ℝ, ℝ₊, 𝕀
export ⊙
export SpikeMixture
export TrivialMeasure
export Likelihood
export testvalue
export basekernel
using Infinities
using KeywordCalls
using ConstructionBase
using Accessors
using StatsFuns
using SpecialFunctions
using ConcreteStructs
import LogExpFunctions
import NamedTupleTools
import InverseFunctions: inverse
export inverse
import MeasureBase: insupport, instance, marginals
import MeasureBase:
testvalue,
logdensity_def,
density_def,
basemeasure,
kernel,
params,
paramnames,
∫,
𝒹,
∫exp,
smf,
invsmf,
massof
import MeasureBase: ≪
using MeasureBase: BoundedInts, BoundedReals, CountingBase, IntegerDomain, IntegerNumbers
using MeasureBase: weightedmeasure, restrict
using MeasureBase: AbstractTransitionKernel
import Statistics: mean, var, std
import MeasureBase: likelihoodof
export likelihoodof
export log_likelihood_ratio
using StaticArraysCore
import PrettyPrinting
const Pretty = PrettyPrinting
import Base: rand
using Reexport
@reexport using MeasureBase
import IfElse
using IfElse
using Tricks: static_hasmethod
using Static
export as
export AffinePushfwd
export AffineTransform
export insupport
export For
using MeasureBase: kernel
using MeasureBase: Returns
import MeasureBase: proxy, @useproxy
import MeasureBase: basemeasure_depth
using MeasureBase: LebesgueBase
import DensityInterface: logdensityof
import DensityInterface: densityof
import DensityInterface: DensityKind
using DensityInterface
using ForwardDiff
using ForwardDiff: Dual
gentype(μ::AbstractMeasure) = typeof(testvalue(μ))
# gentype(μ::AbstractMeasure) = gentype(basemeasure(μ))
xlogx(x::Number) = LogExpFunctions.xlogx(x)
xlogx(x, y) = x * log(x)
xlogy(x::Number, y::Number) = LogExpFunctions.xlogy(x, y)
xlogy(x, y) = x * log(y)
xlog1py(x::Number, y::Number) = LogExpFunctions.xlog1py(x, y)
xlog1py(x, y) = x * log(1 + y)
using MeasureBase: Φ, Φinv
as(args...; kwargs...) = TV.as(args...; kwargs...)
# Type piracy until https://github.com/JuliaMath/MeasureBase.jl/issues/127 is fixed
MeasureBase.rand(::FixedRNG, ::Type{Bool}) = true
include("utils.jl")
include("const.jl")
include("combinators/for.jl")
include("macros.jl")
include("combinators/affine.jl")
include("combinators/weighted.jl")
include("combinators/product.jl")
include("combinators/transforms.jl")
# include("combinators/exponential-families.jl")
include("resettable-rng.jl")
include("realized.jl")
include("combinators/chain.jl")
include("distributions.jl")
include("smart-constructors.jl")
include("parameterized/normal.jl")
include("parameterized/studentt.jl")
include("parameterized/cauchy.jl")
include("parameterized/laplace.jl")
include("parameterized/uniform.jl")
include("parameterized/beta.jl")
include("parameterized/dirichlet.jl")
include("parameterized/gumbel.jl")
include("parameterized/exponential.jl")
include("parameterized/mvnormal.jl")
# include("parameterized/inverse-gamma.jl")
include("parameterized/bernoulli.jl")
include("parameterized/poisson.jl")
include("parameterized/binomial.jl")
include("parameterized/multinomial.jl")
include("parameterized/lkj-cholesky.jl")
include("parameterized/negativebinomial.jl")
include("parameterized/betabinomial.jl")
include("parameterized/gamma.jl")
include("parameterized/snedecorf.jl")
include("parameterized/inverse-gaussian.jl")
include("combinators/ifelse.jl")
include("transforms/corrcholesky.jl")
include("transforms/ordered.jl")
include("parameterized.jl")
include("distproxy.jl")
end # module
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 535 | export asConst
struct AsConst{T} <: TV.VectorTransform
value::T
end
asConst(x) = AsConst(x)
as(d::Dirac) = AsConst(d.x)
TV.dimension(t::AsConst) = 0
function TV.transform_with(flag::TV.NoLogJac, t::AsConst, x, index)
return (t.value, TV.NoLogJac(), index)
end
function TV.transform_with(flag::TV.LogJac, t::AsConst, x, index)
return (t.value, 0.0, index)
end
TV.inverse_eltype(t::AsConst, x::AbstractVector) = Any
function TV.inverse_at!(x::AbstractVector, index, t::AsConst, y::AbstractVector)
return index
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 837 | export proxy
function proxy end
import Statistics
import StatsBase
PROXIES = Dict(
:Statistics => [
:mean
:std
:var
:quantile
],
:StatsBase => [:entropy],
:Distributions => [
:cdf
:ccdf
:logcdf
:logccdf
],
)
for m in keys(PROXIES)
for f in PROXIES[m]
@eval begin
import $m: $f
export $f
end
end
end
entropy(m::AbstractMeasure, b::Real) = entropy(proxy(m), b)
mean(m::AbstractMeasure) = mean(proxy(m))
std(m::AbstractMeasure) = std(proxy(m))
var(m::AbstractMeasure) = var(proxy(m))
quantile(m::AbstractMeasure, q) = quantile(proxy(m), q)
for f in [
:cdf
:ccdf
:logcdf
:logccdf
]
@eval begin
$f(d::AbstractMeasure, args...) = $f(MeasureTheory.proxy(d), args...)
end
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 1064 | import Distributions
export Dists
const Dists = Distributions
@inline function as(d, _data::NamedTuple)
if hasmethod(Dists.support, (typeof(d),))
return asTransform(Dists.support(d))
end
error("Not implemented:\nas($d)")
end
using TransformVariables: ShiftedExp, ScaledShiftedLogistic
function asTransform(supp::Dists.RealInterval)
(lb, ub) = (supp.lb, supp.ub)
(lb, ub) == (-Inf, Inf) && (return asℝ)
isinf(ub) && return ShiftedExp(true, lb)
isinf(lb) && return ShiftedExp(false, lb)
return ScaledShiftedLogistic(ub - lb, lb)
end
as(μ::AbstractMeasure, _data::NamedTuple) = as(μ)
as(d::Dists.AbstractMvNormal, _data::NamedTuple = NamedTuple()) = TV.as(Array, size(d))
function as(d::Dists.Distribution{Dists.Univariate}, _data::NamedTuple = NamedTuple())
sup = Dists.support(d)
lo = isinf(sup.lb) ? -TV.∞ : sup.lb
hi = isinf(sup.ub) ? TV.∞ : sup.ub
as(Real, lo, hi)
end
function as(d::Dists.Product, _data::NamedTuple = NamedTuple())
n = length(d)
v = d.v
as(Vector, as(v[1]), n)
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 4136 |
using MLStyle
using Random: AbstractRNG
using KeywordCalls
using ConstructionBase
export @parameterized, @half
# A fold over ASTs. Example usage in `replace`
function foldast(leaf, branch; kwargs...)
function go(ast)
MLStyle.@match ast begin
Expr(head, args...) => branch(head, map(go, args); kwargs...)
x => leaf(x; kwargs...)
end
end
return go
end
# function replace(p, f, expr)
# leaf(s) = p(s) ? f(s) : s
# branch(head, newargs) = Expr(head, newargs...)
# foldast(leaf, branch)(expr)
# end
# from https://thautwarm.github.io/MLStyle.jl/latest/tutorials/capture.html
function capture(template, ex, action)
let template = Expr(:quote, template)
quote
@match $ex begin
$template => $action
_ => nothing
end
end
end
end
macro capture(template, ex, action)
capture(template, ex, action) |> esc
end
function _parameterized(__module__, expr)
@capture ($op($μ($(p...)), $base)) expr begin
@assert op ∈ [:<<, :≪, :≃]
μbase = Symbol(:__, μ, :_base)
μ = esc(μ)
base = esc(base)
# @gensym basename
q = quote
struct $μ{N,T} <: MeasureBase.ParameterizedMeasure{N}
par::NamedTuple{N,T}
$μ{N,T}(nt::NamedTuple{N,T}) where {N,T<:Tuple} = new{N,T}(nt)
end
const $μbase = $base
MeasureBase.basemeasure(::$μ) = $μbase
end
if !isempty(p)
# e.g. Normal(μ,σ) = Normal((μ=μ, σ=σ))
pnames = QuoteNode.(p)
push!(q.args, :($μ($(p...)) = $μ(NamedTuple{($(pnames...),)}(($(p...),)))))
end
return q
end
@capture $μ($(p...)) expr begin
μ = esc(μ)
q = quote
struct $μ{N,T} <: MeasureBase.ParameterizedMeasure{N}
par::NamedTuple{N,T}
$μ{N,T}(nt::NamedTuple{N,T}) where {N,T<:Tuple} = new{N,T}(nt)
end
end
if !isempty(p)
# e.g. Normal(μ,σ) = Normal((μ=μ, σ=σ))
pnames = QuoteNode.(p)
push!(q.args, :($μ($(p...)) = $μ(NamedTuple{($(pnames...),)}(($(p...),)))))
end
return q
end
@capture $μ($(p...)) expr begin
μ = esc(μ)
q = quote
struct $μ{N,T} <: MeasureBase.ParameterizedMeasure{N}
par::NamedTuple{N,T}
end
$μ{N,T}(nt::NamedTuple{N,T}) where {N,T<:Tuple} = new{N,T}(nt)
end
if !isempty(p)
# e.g. Normal(μ,σ) = Normal((μ=μ, σ=σ))
pnames = QuoteNode.(p)
push!(q.args, :($μ($(p...)) = $μ(NamedTuple{($(pnames...),)}(($(p...),)))))
end
return q
end
end
"""
@parameterized <declaration>
The <declaration> gives a measure and its default parameters, and specifies
its relation to its base measure. For example,
@parameterized Normal(μ,σ)
declares the `Normal` is a measure with default parameters `μ and σ`. The result is equivalent to
```
struct Normal{N,T} <: ParameterizedMeasure{N}
par :: NamedTuple{N,T}
end
KeywordCalls.@kwstruct Normal(μ,σ)
Normal(μ,σ) = Normal((μ=μ, σ=σ))
```
See [KeywordCalls.jl](https://github.com/cscherrer/KeywordCalls.jl) for details on `@kwstruct`.
"""
macro parameterized(expr)
_parameterized(__module__, expr)
end
"""
@half dist([paramnames])
Starting from a symmetric univariate measure `dist ≪ Lebesgue(ℝ)`, create a new
measure `Halfdist ≪ Lebesgue(ℝ₊)`. For example,
@half Normal()
creates `HalfNormal()`, and
@half StudentT(ν)
creates `HalfStudentT(ν)`.
"""
macro half(ex)
_half(__module__, ex)
end
function _half(__module__, ex)
@match ex begin
:($dist) => begin
halfdist = esc(Symbol(:Half, dist))
dist = esc(dist)
quote
$halfdist(arg::NamedTuple) = Half($dist(arg))
$halfdist(args...) = Half($dist(args...))
$halfdist(; kwargs...) = Half($dist(; kwargs...))
end
end
end
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 6485 | export asparams
"""
`asparams` build on `TransformVariables.as` to construct bijections to the
parameter space of a given parameterized measure. Because this is only possible
for continuous parameter spaces, we allow constraints to assign values to any
subset of the parameters.
--------
asparams(::Type{<:ParameterizedMeasure}, ::StaticSymbol)
Return a transformation for a particular parameter of a given parameterized
measure. For example,
```
julia> asparams(Normal, static(:σ))
asℝ₊
```
-----
asparams(::Type{<: ParameterizedMeasure{N}}, constraints::NamedTuple) where {N}
Return a transformation for a given parameterized measure subject to the named tuple
`constraints`. For example,
```
julia> asparams(Binomial{(:p,)}, (n=10,))
TransformVariables.TransformTuple{NamedTuple{(:p,), Tuple{TransformVariables.ScaledShiftedLogistic{Float64}}}}((p = as𝕀,), 1)
```
------------
aspararams(::ParameterizedMeasure)
Return a transformation with no constraints. For example,
```
julia> asparams(Normal{(:μ,:σ)})
TransformVariables.TransformTuple{NamedTuple{(:μ, :σ), Tuple{TransformVariables.Identity, TransformVariables.ShiftedExp{true, Float64}}}}((μ = asℝ, σ = asℝ₊), 2)
```
"""
function asparams end
function asparams(μ::M, v::StaticSymbol) where {M<:ParameterizedMeasure}
asparams(constructorof(M), v)
end
asparams(μ, s::Symbol) = asparams(μ, static(s))
asparams(M::Type{A}) where {A<:AbstractMeasure} = asparams(M, NamedTuple())
function asparams(::Type{M}, constraints::NamedTuple{N}) where {N,M<:ParameterizedMeasure}
# @show M
thekeys = paramnames(M, constraints)
t1 = NamedTuple{thekeys}(asparams(M, StaticSymbol(k)) for k in thekeys)
t2 = NamedTuple{N}(map(asConst, values(constraints)))
C = constructorof(M)
# @show C
# @show constraints
# @show transforms
# Make sure we end up with a consistent ordering
ordered_transforms = params(C(merge(t1, t2)))
return as(ordered_transforms)
end
# TODO: Make this work for AffinePushfwd measures
# function asparams(::Type{M}, constraints::NamedTuple{N}) where {N, M<: AffinePushfwd}
# ...
# end
function asparams(μ::M, nt::NamedTuple = NamedTuple()) where {M<:ParameterizedMeasure}
asparams(constructorof(M), nt)
end
as(::Half) = asℝ₊
asparams(::AffinePushfwd, ::StaticSymbol{:μ}) = asℝ
asparams(::AffinePushfwd, ::StaticSymbol{:σ}) = asℝ₊
asparams(::Type{A}, ::StaticSymbol{:μ}) where {A<:AffinePushfwd} = asℝ
asparams(::Type{A}, ::StaticSymbol{:σ}) where {A<:AffinePushfwd} = asℝ₊
function asparams(d::AffinePushfwd{N,M,T}, ::StaticSymbol{:μ}) where {N,M,T<:AbstractArray}
as(Array, asℝ, size(d.μ))
end
function asparams(d::AffinePushfwd{N,M,T}, ::StaticSymbol{:σ}) where {N,M,T<:AbstractArray}
as(Array, asℝ, size(d.σ))
end
asparams(::Type{<:Bernoulli}, ::StaticSymbol{:p}) = as𝕀
asparams(::Type{<:Bernoulli}, ::StaticSymbol{:logitp}) = asℝ
asparams(::Type{<:Beta}, ::StaticSymbol{:α}) = asℝ₊
asparams(::Type{<:Beta}, ::StaticSymbol{:β}) = asℝ₊
asparams(::Type{<:BetaBinomial}, ::StaticSymbol{:α}) = asℝ₊
asparams(::Type{<:BetaBinomial}, ::StaticSymbol{:β}) = asℝ₊
asparams(::Type{<:Binomial}, ::StaticSymbol{:p}) = as𝕀
asparams(::Type{<:Binomial}, ::StaticSymbol{:logitp}) = asℝ
asparams(::Type{<:Binomial}, ::StaticSymbol{:probitp}) = asℝ
asparams(::Type{<:Exponential}, ::StaticSymbol{:β}) = asℝ₊
asparams(::Type{<:Exponential}, ::StaticSymbol{:logβ}) = asℝ
asparams(::Type{<:Exponential}, ::StaticSymbol{:λ}) = asℝ₊
asparams(::Type{<:Exponential}, ::StaticSymbol{:logλ}) = asℝ
asparams(::Type{<:LKJCholesky}, ::StaticSymbol{:η}) = asℝ₊
asparams(::Type{<:LKJCholesky}, ::StaticSymbol{:logη}) = asℝ
asparams(::Type{<:NegativeBinomial}, ::StaticSymbol{:p}) = as𝕀
asparams(::Type{<:NegativeBinomial}, ::StaticSymbol{:logitp}) = asℝ
asparams(::Type{<:NegativeBinomial}, ::StaticSymbol{:r}) = asℝ₊
asparams(::Type{<:NegativeBinomial}, ::StaticSymbol{:λ}) = asℝ₊
asparams(::Type{<:NegativeBinomial}, ::StaticSymbol{:logλ}) = asℝ
asparams(::Type{<:Normal}, ::StaticSymbol{:μ}) = asℝ
asparams(::Type{<:Normal}, ::StaticSymbol{:σ}) = asℝ₊
asparams(::Type{<:Normal}, ::StaticSymbol{:σ²}) = asℝ₊
asparams(::Type{<:Normal}, ::StaticSymbol{:τ}) = asℝ₊
asparams(::Type{<:Normal}, ::StaticSymbol{:logτ}) = asℝ
asparams(::Type{<:Poisson}, ::StaticSymbol{:λ}) = asℝ₊
asparams(::Type{<:Poisson}, ::StaticSymbol{:logλ}) = asℝ
asparams(::Type{<:SnedecorF}, ::StaticSymbol{:ν1}) = asℝ₊
asparams(::Type{<:SnedecorF}, ::StaticSymbol{:ν2}) = asℝ₊
asparams(::Type{<:StudentT}, ::StaticSymbol{:ν}) = asℝ₊
function as(d::PowerMeasure)
as(Array, as(d.parent), length.(d.axes)...)
end
function as(d::ProductMeasure{<:AbstractArray{<:Dirac}})
return asConst(testvalue.(marginals(d)))
end
function as(d::ProductMeasure{A}) where {A<:AbstractArray}
mar = marginals(d)
ts = map(as, mar)
if allequal(ts)
return as(Array, first(ts), size(ts))
else
error("Not yet implemented")
end
end
function as(d::ProductMeasure{A}) where {A<:MappedArrays.ReadonlyMappedArray}
d1 = marginals(d).f(first(marginals(d).data))
as(Array, as(d1), size(marginals(d))...)
end
function as(d::ProductMeasure{T}) where {T<:Tuple}
as(map(as, d.marginals))
end
function as(d::ProductMeasure{<:Base.Generator})
d1 = marginals(d).f(first(marginals(d).iter))
as(Array, as(d1), size(marginals(d))...)
end
as(::Beta) = as𝕀
as(::Cauchy) = asℝ
as(d::Dirichlet{(:α,)}) = TV.UnitSimplex(length(d.α))
as(::Exponential) = asℝ₊
as(::Gamma) = asℝ₊
as(::Gumbel) = asℝ
as(::InverseGaussian) = asℝ₊
as(::Laplace) = asℝ
as(d::MvNormal{(:μ,)}) = as(Array, length(d.μ))
as(d::MvNormal{(:Σ,),Tuple{C}}) where {C<:Cholesky} = as(Array, size(d.Σ, 1))
as(d::MvNormal{(:Λ,),Tuple{C}}) where {C<:Cholesky} = as(Array, size(d.Λ, 1))
as(d::MvNormal{(:μ, :Σ),<:Tuple{T,C}}) where {T,C<:Cholesky} = as(Array, size(d.Σ, 1))
as(d::MvNormal{(:μ, :Λ),<:Tuple{T,C}}) where {T,C<:Cholesky} = as(Array, size(d.Λ, 1))
function as(d::MvNormal{(:σ,),Tuple{M}}) where {M<:Triangular}
σ = d.σ
if @inbounds all(i -> σ[i] ≠ 0, diagind(σ))
return as(Array, size(σ, 1))
else
@error "Not implemented yet"
end
end
function as(d::MvNormal{(:λ,),Tuple{M}}) where {M<:Triangular}
λ = d.λ
if @inbounds all(i -> λ[i] > 0, diagind(λ))
return as(Array, size(λ, 1))
else
@error "Not implemented yet"
end
end
as(::Normal) = asℝ
as(::SnedecorF) = asℝ₊
as(::StudentT) = asℝ
as(::Uniform{()}) = as𝕀
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 4494 | using DynamicIterators
import DynamicIterators: dub, dyniterate, evolve
struct SamplesTo{M,T}
measure::M
element::T
end
export ↝
↝(m, x) = SamplesTo(m, x)
function Pretty.tile(s::SamplesTo)
Pretty.pair_layout(Pretty.tile(s.measure), Pretty.tile(s.element); sep = " ↝ ")
end
function Base.show(io::IO, s::SamplesTo)
io = IOContext(io, :compact => true)
Pretty.pprint(io, s)
end
###############################################################################
struct Realized{R,S,T} <: DynamicIterators.DynamicIterator
rng::ResettableRNG{R,S}
iter::T
end
Base.copy(r::Realized) = Realized(copy(r.rng), r.iter)
reset!(rv::Realized) = reset!(rv.rng)
Base.show(io::IO, r::Realized) = Pretty.pprint(io, r)
function Pretty.quoteof(r::Realized)
:(Realized($(Pretty.quoteof(r.rng)), $(Pretty.quoteof(r.iter))))
end
Base.IteratorEltype(mc::Realized) = Base.HasEltype()
# function Base.eltype(::Type{Rz}) where {R,S,T,Rz <: Realized{R,S,T}}
# eltype(T)
# end
Base.length(r::Realized) = length(r.iter)
Base.size(r::Realized) = size(r.iter)
Base.IteratorSize(::Type{Rz}) where {R,S,T,Rz<:Realized{R,S,T}} = Base.IteratorSize(T)
Base.IteratorSize(r::Rz) where {R,S,T,Rz<:Realized{R,S,T}} = Base.IteratorSize(r.iter)
Base.iterate(rv::Realized) = iterate(rv, nothing)
function Base.iterate(rv::Realized{R,S,T}, ::Nothing) where {R,S,T}
reset!(rv.rng)
if static_hasmethod(evolve, Tuple{T})
dyniterate(rv, nothing)
else
μs = iterate(rv.iter)
isnothing(μs) && return nothing
(μ, s) = μs
x = rand(rv.rng, μ)
return (μ ↝ x), s
end
end
function Base.iterate(rv::Realized{R,S,T}, s) where {R,S,T}
if static_hasmethod(evolve, Tuple{T})
dyniterate(rv, s)
else
μs = iterate(rv.iter, s)
isnothing(μs) && return nothing
(μ, s) = μs
x = rand(rv.rng, μ)
return (μ ↝ x), s
end
end
function dyniterate(rv::Realized, ::Nothing)
rv = copy(rv)
reset!(rv.rng)
μ = evolve(rv.iter)
x = rand(rv.rng, μ)
(μ ↝ x), Sample(x, rv.rng)
end
function dyniterate(rv::Realized, u::Sample)
dyniterate(rv.iter, u)
end
############################################################
struct RealizedMeasures{R,S,T} <: DynamicIterators.DynamicIterator
rng::ResettableRNG{R,S}
iter::T
end
Base.show(io::IO, r::RealizedMeasures) = Pretty.pprint(io, r)
function Pretty.quoteof(r::RealizedMeasures)
:(RealizedMeasures($(Pretty.quoteof(r.rng)), $(Pretty.quoteof(r.iter))))
end
function Base.iterate(rm::RealizedMeasures, s = nothing)
val, s = iterate(rm, s)
(val.measure, s)
end
function dyniterate(rm::RealizedMeasures, s)
val, s = dyniterate(rm, s)
(val.measure, s)
end
##########################################
struct RealizedSamples{R,S,T} <: DynamicIterators.DynamicIterator
parent::Realized{R,S,T}
end
RealizedSamples(rng::AbstractRNG, iter) = RealizedSamples(Realized(rng, iter))
Base.show(io::IO, r::RealizedSamples) = Pretty.pprint(io, r)
Base.size(r::RealizedSamples) = size(r.parent)
function Pretty.quoteof(r::RealizedSamples)
:(RealizedSamples($(Pretty.quoteof(r.parent.rng)), $(Pretty.quoteof(r.parent.iter))))
end
function iter_helper(x)
isnothing(x) && return x
val, s = x
(val.element, s)
end
function Base.iterate(rm::RealizedSamples)
iter_helper(iterate(rm.parent))
end
function Base.iterate(rm::RealizedSamples, ::Nothing)
iter_helper(iterate(rm.parent))
end
function Base.iterate(rm::RealizedSamples, s)
iter_helper(iterate(rm.parent, s))
end
function dyniterate(rm::RealizedSamples, s)
val, s = dyniterate(rm.parent, s)
(val.element, s)
end
Base.copy(r::RealizedSamples) = RealizedSamples(copy(r.parent))
reset!(rv::RealizedSamples) = RealizedSamples(reset!(rv.parent))
Base.IteratorEltype(mc::RealizedSamples) = Base.HasEltype()
# function Base.eltype(::Type{Rz}) where {R,S,T,Rz <: RealizedSamples{R,S,T}}
# eltype(T)
# end
Base.length(r::RealizedSamples) = length(r.parent)
# Base.size(r::RealizedSamples) = ...
Base.IteratorSize(r::RealizedSamples) = Base.IteratorSize(r.parent)
function Base.rand(
rng::AbstractRNG,
::Type{T},
d::ProductMeasure{G},
) where {T,G<:Base.Generator}
RealizedSamples(ResettableRNG(rng), marginals(d))
end
function Base.rand(
rng::AbstractRNG,
::Type,
d::For{T,F,I},
) where {N,T,F,I<:NTuple{N,<:Base.Generator}}
RealizedSamples(ResettableRNG(rng), marginals(d))
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 3740 | using Random
export ResettableRNG
export reset!
struct ResettableRNG{R,S} <: Random.AbstractRNG
rng::R
seed::S
function ResettableRNG(rng, seed::S) where {S}
rng = copy(rng)
R2 = typeof(rng)
new{R2,S}(rng, seed)
end
function ResettableRNG(rng)
seed = rand(rng, UInt)
S = typeof(seed)
rng = copy(rng)
R2 = typeof(rng)
new{R2,UInt}(copy(rng), seed)
end
end
function Base.copy(r::ResettableRNG)
ResettableRNG(r.rng, copy(r.seed))
end
function Base.show(io::IO, r::ResettableRNG)
io = IOContext(io, :compact => true)
print(io, "ResettableRNG(::", constructorof(typeof(r.rng)), ", ", r.seed, ")")
end
function reset!(r::ResettableRNG)
# @info "Calling reset! on $r"
Random.seed!(r.rng, r.seed)
end
import Random
using Random: randexp
using InteractiveUtils: subtypes
for T in vcat(subtypes(Signed), subtypes(Unsigned), subtypes(AbstractFloat))
isbitstype(T) || continue
@eval begin
function Base.rand(r::ResettableRNG, ::Type{$T})
rand(r.rng, $T)
end
function Base.randn(r::ResettableRNG, ::Type{$T})
randn(r.rng, $T)
end
function Random.randexp(r::ResettableRNG, ::Type{$T})
randexp(r.rng, $T)
end
end
end
function Base.rand(r::ResettableRNG, d::AbstractMeasure)
rand(r.rng, d)
end
function Base.rand(r::ResettableRNG, ::Type{T}, d::AbstractMeasure) where {T}
rand(r.rng, T, d)
end
Base.iterate(r::ResettableRNG) = iterate(r, nothing)
function Base.iterate(r::ResettableRNG, ::Nothing)
@info "Calling `iterate(::ResettableRNG)"
r = copy(r)
reset!(r)
return (rand(r), nothing)
end
Base.iterate(r::ResettableRNG, _) = (rand(r), nothing)
Base.IteratorSize(r::ResettableRNG) = Base.IsInfinite()
function Random.Sampler(
r::Type{R},
s::Random.Sampler,
rep::Random.Repetition,
) where {R<:ResettableRNG}
return Random.Sampler(r.rng, s, r)
end
# UIntBitsTypes = [UInt128, UInt16, UInt32, UInt64, UInt8]
# IntBitsTypes = [Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8]
# FloatBitsTypes = [Float16, Float32, Float64]
# for I in IntBitsTypes
# for T in [
# Random.SamplerTrivial{Random.UInt104Raw{I}}
# Random.SamplerTrivial{Random.UInt10Raw{I}}
# ]
# @eval begin
# function Base.rand(r::ResettableRNG, sp::$T)
# rand(r.rng, sp)
# end
# end
# end
# end
# for U in UIntBitsTypes
# for I in IntBitsTypes
# for T in [
# Random.SamplerRangeInt{T,U} where {T<:Union{IntBitsTypes...}}
# Random.SamplerRangeFast{U,I}
# ]
# @eval begin
# function Base.rand(r::ResettableRNG, sp::$T)
# rand(r.rng, sp)
# end
# end
# end
# end
# end
# for T in [
# Random.Sampler
# Random.SamplerBigInt
# Random.SamplerTag{<:Set,<:Random.Sampler}
# # Random.SamplerTrivial{Random.CloseOpen01{T}} where {T<:FloatBitsTypes}
# # Random.SamplerTrivial{Random.UInt23Raw{UInt32}}
# Random.UniformT
# Random.SamplerSimple{T,S,E} where {E,S,T<:Tuple}
# Random.SamplerType{T} where {T<:AbstractChar}
# Random.SamplerTrivial{Tuple{A}} where {A}
# Random.SamplerSimple{Tuple{A,B,C},S,E} where {E,S,A,B,C}
# Random.SamplerSimple{<:AbstractArray,<:Random.Sampler}
# Random.Masked
# Random.SamplerSimple{BitSet,<:Random.Sampler}
# Random.SamplerTrivial{<:Random.UniformBits{T},E} where {E,T}
# ]
# @eval begin
# function Base.rand(r::ResettableRNG, sp::$T)
# rand(r.rng, sp)
# end
# end
# end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 775 | ###############################################################################
# AffinePushfwd
affine(f::AffineTransform, μ::AbstractMeasure) = AffinePushfwd(f, μ)
affine(nt::NamedTuple, μ::AbstractMeasure) = affine(AffineTransform(nt), μ)
affine(f) = Base.Fix1(affine, f)
function affine(f::AffineTransform, parent::WeightedMeasure)
WeightedMeasure(parent.logweight, affine(f, parent.base))
end
using MeasureBase: RealNumbers
function affine(f::AffineTransform{(:μ, :σ)}, parent::Lebesgue{RealNumbers})
affine(AffineTransform((σ = f.σ,)), parent)
end
function affine(f::AffineTransform{(:μ, :λ)}, parent::Lebesgue{RealNumbers})
affine(AffineTransform((λ = f.λ,)), parent)
end
affine(f::AffineTransform, μ::LebesgueBase) = weightedmeasure(-logjac(f), μ)
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 3670 | using LinearAlgebra
function solve(A::Union{AbstractMatrix,Factorization}, y::AbstractArray)
(m, n) = size(A)
n == 1 && return [dot(A, y) / sum(a -> a^2, A)]
return A \ y
end
@inline function mydot(a::Real, b::Real)
return a * b
end
@inline function mydot(a::Ta, b::Tb) where {Ta<:AbstractArray,Tb<:AbstractArray}
return dot(a, b)
end
@inline function _mydot(a::NTuple{0}, b::NTuple{0}, s)
return s
end
@inline function mydot(a::Tuple, b::Tuple)
z = 0.0
_mydot(a, b, z)
end
@inline function _mydot(a::Tuple, b::Tuple, s)
_mydot(Base.tail(a), Base.tail(b), s + mydot(first(a), first(b)))
end
@generated function mydot(a::SVector{N,Ta}, b::SVector{N,Tb}) where {N,Ta,Tb}
z = zero(float(Base.promote_eltype(Ta, Tb)))
quote
$(Expr(:meta, :inline))
result = $z
@inbounds Base.Cartesian.@nexprs $N i -> begin
result += a[i] * b[i]
end
return result
end
end
in𝕀(x) = static(0.0) ≤ x ≤ static(1.0)
inℝ₊(x) = static(0.0) ≤ x
_eltype(T) = eltype(T)
function _eltype(g::Base.Generator{I}) where {I}
Core.Compiler.return_type(g.f, Tuple{_eltype(I)})
end
function _eltype(
::Type{Base.Generator{I,ComposedFunction{Outer,Inner}}},
) where {Outer,Inner,I}
_eltype(Base.Generator{_eltype(Base.Generator{I,Inner}),Outer})
end
function _eltype(::Type{Base.Generator{I,F}}) where {F<:Function,I}
f = instance(F)
Core.Compiler.return_type(f, Tuple{_eltype(I)})
end
function _eltype(::Type{Z}) where {Z<:Iterators.Zip}
map(_eltype, Z.types[1].types)
end
# Adapted from https://github.com/JuliaArrays/MappedArrays.jl/blob/46bf47f3388d011419fe43404214c1b7a44a49cc/src/MappedArrays.jl#L229
function func_string(f, types)
ft = typeof(f)
mt = ft.name.mt
name = string(mt.name)
if startswith(name, '#')
# This is an anonymous function. See if it can be printed nicely
lwrds = code_lowered(f, types)
if length(lwrds) != 1
return string(f)
end
lwrd = lwrds[1]
c = lwrd.code
if length(c) == 2 && (
(isa(c[2], Expr) && c[2].head === :return) ||
(isdefined(Core, :ReturnNode) && isa(c[2], Core.ReturnNode))
)
# This is a single-line anonymous function, we should handle it
s = lwrd.slotnames[2:end]
result = ""
if length(s) == 1
result *= string(s[1])
result *= "->"
else
result *= "(" * join(string.(tuple(s...)), ", ") * ")"
result *= "->"
end
c1 = string(c[1])
for i in 1:length(s)
c1 = replace(c1, "_" * string(i + 1) => string(s[i]))
end
result *= c1
return result
else
return string(f)
end
else
return string(f)
end
end
function getL(C::Cholesky)
Cfactors = getfield(C, :factors)
Cuplo = getfield(C, :uplo)
LowerTriangular(Cuplo === 'L' ? Cfactors : Cfactors')
end
function getU(C::Cholesky)
Cfactors = getfield(C, :factors)
Cuplo = getfield(C, :uplo)
UpperTriangular(Cuplo === 'U' ? Cfactors : Cfactors')
end
const Triangular = Union{L,U} where {L<:LowerTriangular,U<:UpperTriangular}
# Ideally we could just add one method smf(μ::$M, x::Dual{TAG}) where TAG
# But then we have method ambiguities
macro smfAD(M)
quote
function MeasureBase.smf(μ::$M, x::Dual{TAG}) where {TAG}
val = ForwardDiff.value(x)
Δ = ForwardDiff.partials(x)
Dual{TAG}(smf(μ, val), Δ * densityof(μ, val))
end
end
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 11984 | export AffinePushfwd, AffineTransform
using LinearAlgebra
import Base
const AFFINEPARS = [
(:μ, :σ)
(:μ, :λ)
(:σ,)
(:λ,)
(:μ,)
]
struct AffineTransform{N,T}
par::NamedTuple{N,T}
end
function Pretty.tile(f::AffineTransform)
result = Pretty.literal("AffineTransform")
result *= Pretty.literal(sprint(show, params(f); context = :compact => true))
result
end
Base.show(io::IO, f::AffineTransform) = Pretty.pprint(io, f)
params(f::AffineTransform) = getfield(f, :par)
@inline Base.getproperty(d::AffineTransform, s::Symbol) = getfield(getfield(d, :par), s)
Base.propertynames(d::AffineTransform{N}) where {N} = N
import InverseFunctions: inverse
@inline inverse(f::AffineTransform{(:μ, :σ)}) = AffineTransform((μ = -(f.σ \ f.μ), λ = f.σ))
@inline inverse(f::AffineTransform{(:μ, :λ)}) = AffineTransform((μ = -f.λ * f.μ, σ = f.λ))
@inline inverse(f::AffineTransform{(:σ,)}) = AffineTransform((λ = f.σ,))
@inline inverse(f::AffineTransform{(:λ,)}) = AffineTransform((σ = f.λ,))
@inline inverse(f::AffineTransform{(:μ,)}) = AffineTransform((μ = -f.μ,))
# `size(f) == (m,n)` means `f : ℝⁿ → ℝᵐ`
Base.size(f::AffineTransform{(:μ, :σ)}) = size(f.σ)
Base.size(f::AffineTransform{(:μ, :λ)}) = size(f.λ)
Base.size(f::AffineTransform{(:σ,)}) = size(f.σ)
Base.size(f::AffineTransform{(:λ,)}) = size(f.λ)
LinearAlgebra.rank(f::AffineTransform{(:σ,)}) = rank(f.σ)
LinearAlgebra.rank(f::AffineTransform{(:λ,)}) = rank(f.λ)
LinearAlgebra.rank(f::AffineTransform{(:μ, :σ)}) = rank(f.σ)
LinearAlgebra.rank(f::AffineTransform{(:μ, :λ)}) = rank(f.λ)
function Base.size(f::AffineTransform{(:μ,)})
(n,) = size(f.μ)
return (n, n)
end
Base.size(f::AffineTransform, n::Int) = @inbounds size(f)[n]
(f::AffineTransform{(:μ,)})(x) = x + f.μ
(f::AffineTransform{(:σ,)})(x) = f.σ * x
(f::AffineTransform{(:λ,)})(x) = f.λ \ x
(f::AffineTransform{(:μ, :σ)})(x) = f.σ * x + f.μ
(f::AffineTransform{(:μ, :λ)})(x) = f.λ \ x + f.μ
rowsize(x) = ()
rowsize(x::AbstractArray) = (size(x, 1),)
function rowsize(f::AffineTransform)
size_f = size(f)
size_f isa Tuple{} && return 0
return first(size_f)
end
colsize(x) = ()
colsize(x::AbstractArray) = (size(x, 2),)
function colsize(f::AffineTransform)
size_f = size(f)
size_f isa NTuple{2} && return last(size_f)
return 0
end
@inline function apply!(x, f::AffineTransform{(:μ,)}, z)
x .= z .+ f.μ
return x
end
@inline function apply!(x, f::AffineTransform{(:σ,)}, z)
mul!(x, f.σ, z)
return x
end
@inline function apply!(x, f::AffineTransform{(:λ,),Tuple{F}}, z) where {F<:Factorization}
ldiv!(x, f.λ, z)
return x
end
@inline function apply!(x, f::AffineTransform{(:λ,)}, z)
ldiv!(x, factorize(f.λ), z)
return x
end
@inline function apply!(x, f::AffineTransform{(:μ, :σ)}, z)
apply!(x, AffineTransform((σ = f.σ,)), z)
apply!(x, AffineTransform((μ = f.μ,)), x)
return x
end
@inline function apply!(x, f::AffineTransform{(:μ, :λ)}, z)
apply!(x, AffineTransform((λ = f.λ,)), z)
apply!(x, AffineTransform((μ = f.μ,)), x)
return x
end
@inline function logjac(x::AbstractMatrix)
(m, n) = size(x)
m == n && return first(logabsdet(x))
# Equivalent to sum(log, svdvals(x)), but much faster
m > n && return first(logabsdet(x' * x)) / 2
return first(logabsdet(x * x')) / 2
end
logjac(x::Number) = log(abs(x))
# TODO: `log` doesn't work for the multivariate case, we need the log absolute determinant
logjac(f::AffineTransform{(:μ, :σ)}) = logjac(f.σ)
logjac(f::AffineTransform{(:μ, :λ)}) = -logjac(f.λ)
logjac(f::AffineTransform{(:σ,)}) = logjac(f.σ)
logjac(f::AffineTransform{(:λ,)}) = -logjac(f.λ)
logjac(f::AffineTransform{(:μ,)}) = static(0.0)
###############################################################################
struct OrthoLebesgue{N,T} <: PrimitiveMeasure
par::NamedTuple{N,T}
OrthoLebesgue(nt::NamedTuple{N,T}) where {N,T} = new{N,T}(nt)
end
params(d::OrthoLebesgue) = getfield(d, :par)
Base.getproperty(d::OrthoLebesgue, s::Symbol) = getproperty(params(d), s)
Base.propertynames(d::OrthoLebesgue) = propertynames(params(d))
testvalue(d::OrthoLebesgue{(:μ, :σ)}) = d.μ
testvalue(d::OrthoLebesgue{(:μ, :λ)}) = d.μ
testvalue(d::OrthoLebesgue{(:μ,)}) = d.μ
testvalue(d::OrthoLebesgue{(:σ,)}) = zeros(size(d.σ, 1))
testvalue(d::OrthoLebesgue{(:λ,)}) = zeros(size(d.λ, 2))
function insupport(d::OrthoLebesgue, x)
f = AffineTransform(params(d))
finv = inverse(f)
z = finv(x)
f(z) ≈ x
end
basemeasure(d::OrthoLebesgue) = d
logdensity_def(::OrthoLebesgue, x) = static(0.0)
struct AffinePushfwd{N,M,T} <: MeasureBase.AbstractPushforward
f::AffineTransform{N,T}
parent::M
end
function Pretty.tile(d::AffinePushfwd)
pars = Pretty.literal(sprint(show, params(d.f); context = :compact => true))
Pretty.list_layout([pars, Pretty.tile(d.parent)]; prefix = :AffinePushfwd)
end
@inline MeasureBase.transport_origin(d::AffinePushfwd) = d.parent
@inline MeasureBase.to_origin(d::AffinePushfwd, y) = inverse(getfield(d, :f))(y)
@inline MeasureBase.from_origin(d::AffinePushfwd, x) = getfield(d, :f)(x)
@inline function testvalue(d::AffinePushfwd)
f = getfield(d, :f)
z = testvalue(parent(d))
return f(z)
end
AffinePushfwd(nt::NamedTuple, μ::AbstractMeasure) = affine(nt, μ)
AffinePushfwd(nt::NamedTuple) = affine(nt)
Base.parent(d::AffinePushfwd) = getfield(d, :parent)
function params(μ::AffinePushfwd)
nt1 = getfield(getfield(μ, :f), :par)
nt2 = params(parent(μ))
return merge(nt1, nt2)
end
function paramnames(::Type{A}) where {N,M,A<:AffinePushfwd{N,M}}
tuple(union(N, paramnames(M))...)
end
Base.propertynames(d::AffinePushfwd{N}) where {N} = N ∪ (:parent, :f)
@inline function Base.getproperty(d::AffinePushfwd, s::Symbol)
if s === :parent
return getfield(d, :parent)
elseif s === :f
return getfield(d, :f)
else
return getproperty(getfield(d, :f), s)
end
end
Base.size(d::AffinePushfwd) = size(d.μ)
Base.size(d::AffinePushfwd{(:σ,)}) = (size(d.σ, 1),)
Base.size(d::AffinePushfwd{(:λ,)}) = (size(d.λ, 2),)
@inline function logdensity_def(d::AffinePushfwd{(:σ,)}, x::AbstractArray)
z = solve(d.σ, x)
MeasureBase.unsafe_logdensityof(d.parent, z)
end
@inline function logdensity_def(d::AffinePushfwd{(:λ,)}, x::AbstractArray)
z = d.λ * x
MeasureBase.unsafe_logdensityof(d.parent, z)
end
@inline function logdensity_def(d::AffinePushfwd{(:μ,)}, x::AbstractArray)
z = mappedarray(-, x, d.μ)
MeasureBase.unsafe_logdensityof(d.parent, z)
end
@inline function logdensity_def(d::AffinePushfwd{(:μ, :σ)}, x::AbstractArray)
z = d.σ \ mappedarray(-, x, d.μ)
MeasureBase.unsafe_logdensityof(d.parent, z)
end
@inline function logdensity_def(d::AffinePushfwd{(:μ, :λ)}, x::AbstractArray)
z = d.λ * mappedarray(-, x, d.μ)
MeasureBase.unsafe_logdensityof(d.parent, z)
end
@inline function logdensity_def(d::AffinePushfwd, x)
z = inverse(d.f)(x)
logdensity_def(d.parent, z)
end
# # # logdensity_def(d::AffinePushfwd{(:μ,:λ)}, x) = logdensity_def(d.parent, d.σ \ (x - d.μ))
# # @inline function logdensity_def(d::AffinePushfwd{(:μ,:σ), P, Tuple{V,M}}, x) where {P, V<:AbstractVector, M<:AbstractMatrix}
# # z = x - d.μ
# # σ = d.σ
# # if σ isa Factorization
# # ldiv!(σ, z)
# # else
# # ldiv!(factorize(σ), z)
# # end
# # sum(zⱼ -> logdensity_def(d.parent, zⱼ), z)
# # end
# # # logdensity_def(d::AffinePushfwd{(:μ,:λ)}, x) = logdensity_def(d.parent, d.λ * (x - d.μ))
# # @inline function logdensity_def(d::AffinePushfwd{(:μ,:λ), P,Tuple{V,M}}, x) where {P,V<:AbstractVector, M<:AbstractMatrix}
# # z = x - d.μ
# # lmul!(d.λ, z)
# # logdensity_def(d.parent, z)
# # end
@inline function basemeasure(d::AffinePushfwd{N,M,Tuple{A}}) where {N,M,A<:AbstractArray}
weightedmeasure(-logjac(d), OrthoLebesgue(params(d)))
end
@inline function basemeasure(
d::MeasureTheory.AffinePushfwd{N,L,Tuple{A}},
) where {N,L<:MeasureBase.Lebesgue,A<:AbstractArray}
weightedmeasure(-logjac(d), OrthoLebesgue(params(d)))
end
@inline function basemeasure(
d::AffinePushfwd{N,M,Tuple{A1,A2}},
) where {N,M,A1<:AbstractArray,A2<:AbstractArray}
weightedmeasure(-logjac(d), OrthoLebesgue(params(d)))
end
@inline basemeasure(d::AffinePushfwd) = affine(getfield(d, :f), basemeasure(d.parent))
# We can't do this until we know we're working with Lebesgue measure, since for
# example it wouldn't make sense to apply a log-Jacobian to a point measure
@inline function basemeasure(d::AffinePushfwd{N,L}) where {N,L<:Lebesgue}
weightedmeasure(-logjac(d), d.parent)
end
@inline function basemeasure(d::AffinePushfwd{N,L}) where {N,L<:LebesgueBase}
weightedmeasure(-logjac(d), d.parent)
end
logjac(d::AffinePushfwd) = logjac(getfield(d, :f))
function Random.rand!(
rng::Random.AbstractRNG,
d::AffinePushfwd,
x::AbstractVector{T},
z = Vector{T}(undef, size(getfield(d, :f), 2)),
) where {T}
rand!(rng, parent(d), z)
f = getfield(d, :f)
apply!(x, f, z)
return x
end
# function Base.rand(rng::Random.AbstractRNG, ::Type{T}, d::AffinePushfwd) where {T}
# f = getfield(d, :f)
# z = rand(rng, T, parent(d))
# apply!(x, f, z)
# return z
# end
supportdim(nt::NamedTuple{(:μ, :σ),T}) where {T} = colsize(nt.σ)
supportdim(nt::NamedTuple{(:μ, :λ),T}) where {T} = rowsize(nt.λ)
supportdim(nt::NamedTuple{(:σ,),T}) where {T} = colsize(nt.σ)
supportdim(nt::NamedTuple{(:λ,),T}) where {T} = rowsize(nt.λ)
supportdim(nt::NamedTuple{(:μ,),T}) where {T} = size(nt.μ)
function Base.rand(rng::Random.AbstractRNG, ::Type{T}, d::AffinePushfwd) where {T}
z = rand(rng, T, parent(d))
f = getfield(d, :f)
return f(z)
end
@inline function insupport(d::AffinePushfwd, x)
insupport(d.parent, inverse(d.f)(x))
end
@inline function MeasureBase.smf(d::AffinePushfwd, x)
smf(parent(d), inverse(d.f)(x))
end
@inline function mean(d::AffinePushfwd)
f = getfield(d, :f)
f(mean(parent(d)))
end
@inline function std(d::AffinePushfwd{(:μ,)})
std(parent(d))
end
@inline function std(d::AffinePushfwd{(:μ, :σ)})
d.σ * std(parent(d))
end
@inline function std(d::AffinePushfwd{(:σ,)})
d.σ * std(parent(d))
end
@inline function std(d::AffinePushfwd{(:λ,)})
std(parent(d)) / d.λ
end
@inline function std(d::AffinePushfwd{(:μ, :λ)})
std(parent(d)) / d.λ
end
###############################################################################
# smf
@inline function smf(d::AffinePushfwd{(:μ,)}, x)
f = getfield(d, :f)
smf(parent(d), inverse(f)(x))
end
@inline function smf(d::AffinePushfwd{(:μ, :σ)}, x)
f = getfield(d, :f)
p = smf(parent(d), inverse(f)(x))
d.σ > 0 ? p : one(p) - p
end
@inline function smf(d::AffinePushfwd{(:σ,)}, x)
f = getfield(d, :f)
p = smf(parent(d), inverse(f)(x))
d.σ > 0 ? p : one(p) - p
end
@inline function smf(d::AffinePushfwd{(:λ,)}, x)
f = getfield(d, :f)
p = smf(parent(d), inverse(f)(x))
d.λ > 0 ? p : one(p) - p
end
@inline function smf(d::AffinePushfwd{(:μ, :λ)}, x)
f = getfield(d, :f)
p = smf(parent(d), inverse(f)(x))
d.λ > 0 ? p : one(p) - p
end
###############################################################################
# invsmf
@inline function invsmf(d::AffinePushfwd{(:μ,)}, p)
f = getfield(d, :f)
f(invsmf(parent(d), p))
end
@inline function invsmf(d::AffinePushfwd{(:μ, :σ)}, p)
p = d.σ > 0 ? p : one(p) - p
f = getfield(d, :f)
f(invsmf(parent(d), p))
end
@inline function invsmf(d::AffinePushfwd{(:σ,)}, p)
p = d.σ > 0 ? p : one(p) - p
f = getfield(d, :f)
f(invsmf(parent(d), p))
end
@inline function invsmf(d::AffinePushfwd{(:λ,)}, p)
p = d.λ > 0 ? p : one(p) - p
f = getfield(d, :f)
f(invsmf(parent(d), p))
end
@inline function invsmf(d::AffinePushfwd{(:μ, :λ)}, p)
p = d.λ > 0 ? p : one(p) - p
f = getfield(d, :f)
f(invsmf(parent(d), p))
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 3596 | using DynamicIterators
import DynamicIterators: dub, dyniterate, evolve
using Base.Iterators: SizeUnknown, IsInfinite
export Chain
struct Chain{K,M} <: AbstractMeasure
κ::K
μ::M
end
Pretty.quoteof(c::Chain) = :(Chain($(Pretty.quoteof(c.κ)), $(Pretty.quoteof(c.μ))))
Base.length(::Chain) = ∞
@inline function basemeasure(mc::Chain)
Chain(basemeasure ∘ mc.κ, basemeasure(mc.μ))
end
Base.IteratorEltype(mc::Chain) = Base.HasEltype()
Base.eltype(::Type{C}) where {K,M,C<:Chain{K,M}} = eltype(M)
@inline function logdensity_def(mc::Chain, x)
μ = mc.μ
ℓ = 0.0
for xj in x
ℓ += logdensity_def(μ, xj)
μ = mc.κ(xj)
end
return ℓ
end
DynamicIterators.evolve(mc::Chain, μ) = μ ⋅ mc.κ
DynamicIterators.evolve(mc::Chain) = mc.μ
dyniterate(E::Chain, value) = dub(evolve(E, value))
dyniterate(E::Chain, ::Nothing) = dub(evolve(E))
Base.iterate(E::Chain) = dyniterate(E, nothing)
Base.iterate(E::Chain, value) = dyniterate(E, value)
function DynamicIterators.dyniterate(r::Chain, (x, rng)::Sample)
μ = r.κ(x)
y = rand(rng, μ)
return (μ ↝ y), Sample(y, rng)
end
Base.IteratorSize(::Chain) = IsInfinite()
Base.IteratorSize(::Type{Chain}) = IsInfinite()
function Base.rand(rng::AbstractRNG, T::Type, chain::Chain)
r = ResettableRNG(rng)
return RealizedSamples(r, chain)
end
###############################################################################
# DynamicFor
# A `DynamicFor` is produced when `For` is called on a `DynamicIterator`.
struct DynamicFor{T,K,S} <: AbstractMeasure
κ::K
iter::S
end
function Pretty.quoteof(r::DynamicFor)
:(DynamicFor($(Pretty.quoteof(r.κ)), $(Pretty.quoteof(r.iter))))
end
function DynamicFor(κ::K, iter::S) where {K,S}
T = typeof(κ(first(iter)))
DynamicFor{T,K,S}(κ, iter)
end
function Base.rand(rng::AbstractRNG, T::Type, df::DynamicFor)
r = ResettableRNG(rng)
return RealizedSamples(r, df)
end
@inline function logdensity_def(df::DynamicFor{M}, y::T) where {M,T}
# ℓ = zero(float(Core.Compiler.return_type(logdensity_def, Tuple{M,T})))
ℓ = 0.0
for (xj, yj) in zip(df.iter, y)
ℓ += logdensity_def(df.κ(xj), yj)
end
return ℓ
end
Base.eltype(::Type{D}) where {T,D<:DynamicFor{T}} = eltype(T)
Base.IteratorEltype(d::DynamicFor) = Base.HasEltype()
Base.IteratorSize(d::DynamicFor) = Base.IteratorSize(d.iter)
function Base.iterate(d::DynamicFor)
(x, s) = iterate(d.iter)
(d.κ(x), s)
end
function Base.iterate(d::DynamicFor, s)
(x, s) = iterate(d.iter, s)
(d.κ(x), s)
end
Base.length(d::DynamicFor) = length(d.iter)
For(f, r::Realized) = DynamicFor(f, copy(r))
function Base.rand(rng::AbstractRNG, dfor::DynamicFor)
r = ResettableRNG(rng)
return RealizedSamples(r, dfor)
end
function dyniterate(df::DynamicFor, st, args...)
(val, state) = dyniterate(df.iter, st, args...)
return (df.κ(val), state)
end
For(f, it::DynamicIterator) = DynamicFor(f, it)
For(f, it::DynamicFor) = DynamicFor(f, it)
function dyniterate(df::DynamicFor, state)
ϕ = dyniterate(df.iter, state)
ϕ === nothing && return nothing
u, state = ϕ
df.κ(u), state
end
function Base.collect(r::Realized)
next = iterate(r)
isnothing(next) && return []
(x, s) = next
a = similar(r.iter, typeof(x))
i = 1
@inbounds a[i] = x
while !isnothing(next)
(x, s) = next
@inbounds a[i] = x
i += 1
next = iterate(r, s)
end
return a
end
function testvalue(mc::Chain)
μ = mc.μ
κ = mc.κ
rand(Chain(Dirac ∘ testvalue ∘ κ, (Dirac ∘ testvalue)(μ)))
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
|
[
"MIT"
] | 0.19.0 | 923a7b76a9d4be260d4225db1703cd30472b60cc | code | 8121 |
export For
using Random
import Base
struct For{T,F,I} <: AbstractProductMeasure
f::F
inds::I
@inline function For{T}(f::F, inds::I) where {T,F,I<:Tuple}
new{T,Core.Typeof(f),I}(f, inds)
end
@inline For{T,F,I}(f::F, inds::I) where {T,F,I} = new{T,F,I}(f, inds)
end
@generated function For(f::F, inds::I) where {F,I<:Tuple}
eltypes = Tuple{eltype.(I.types)...}
quote
$(Expr(:meta, :inline))
T = Core.Compiler.return_type(f, $eltypes)
For{T,F,I}(f, inds)
end
end
as(d::For) = as(Array, as(first(marginals(d))), size(first(d.inds))...)
# For(f, gen::Base.Generator) = ProductMeasure(Base.Generator(f ∘ gen.f, gen.iter))
# @inline function tailcall_iter(f, iter)
# iter_result::Tuple = iterate(iter)
# (val, state) = iter_result
# tailcall_iter(f, iter, (val, state))
# end
# @inline function tailcall_iter(f, iter, ::Nothing)
# return unit(f)
# end
# unit(+) = false
# @inline function tailcall_iter(f, iter, (val, state))
# tailcall_iter(f, iter, (val, state), unit(f))
# end
# @inline function tailcall_iter(f, iter, (val, state), acc)
# tailcall_iter(f, iter, iterate(iter, state), f(val, acc))
# end
# @inline function tailcall_iter(f, iter, ::Nothing, acc)
# return acc
# end
# @inline function logdensity_def(d::For{T,F,I}, x::AbstractVector{X}; exec=SequentialEx(simd = true)) where {X,T,F,I<:Tuple{<:AbstractVector}}
# f(j) = @inbounds logdensity_def(d.f(j), x[j])
# f(j, ℓ) = ℓ + @inbounds logdensity_def(d.f(j), x[j])
# tailcall_iter(f, eachindex(x))
# end
@inline function logdensity_def(
d::For{T,F,I},
x::AbstractVector{X};
) where {X,T,F,I<:Tuple{<:AbstractVector}}
ind = only(d.inds)
sum(eachindex(x)) do j
i = getindex(ind, j)
@inbounds logdensity_def(d.f(i), x[j])
end
end
@inline function logdensity_def(
d::For{T,F,I},
x::AbstractVector{X};
) where {X,T,F,I<:Tuple{<:AbstractUnitRange}}
ind = only(d.inds)
Δj = firstindex(x) - first(ind)
sum(ind) do j
@inbounds logdensity_def(d.f(j), x[j+Δj])
end
end
function logdensity_def(d::For, x::AbstractVector)
get_i(j) = map(Base.Fix2(getindex, j), d.inds)
# get_i(j) = (getindex(ind, j) for ind in d.inds)
# get_i(j) = tuple((getindex(ind, j) for ind in d.inds)...)
sum(eachindex(x)) do j
i = get_i(j)
@inbounds logdensity_def(d.f(i...), x[j])
end
end
function marginals(d::For{T,F,Tuple{I}}) where {T,F,I}
f = d.f
data = first(d.inds)
MappedArrays.ReadonlyMappedArray{T,ndims(data),typeof(data),typeof(f)}(f, data)
end
function marginals(d::For{T,F,I}) where {T,F,I}
f = d.f
data = d.inds
MappedArrays.ReadonlyMultiMappedArray{T,ndims(first(data)),typeof(data),typeof(f)}(
f,
data,
)
end
function marginals(d::For{T,F,I}) where {N,T,F,I<:NTuple{N,<:Base.Generator}}
Iterators.map(d.f, d.inds...)
end
function basemeasure(d::For{T,F,I}) where {T,F,I}
B = typeof(basemeasure(d.f(map(first, d.inds)...)))
sing = static(Base.issingletontype(B))
_basemeasure(d, B, sing)
end
@inline function _basemeasure(
d::For{T,F,I},
::Type{<:WeightedMeasure{StaticFloat64{0.0},B}},
::True,
) where {T,F,I,B}
dim = size(first(d.inds))
instance(B)^dim
end
@inline function _basemeasure(
d::For{T,F,I},
::Type{<:WeightedMeasure{StaticFloat64{N},B}},
::True,
) where {T,F,I,N,B}
dim = size(first(d.inds))
weightedmeasure(static(N) * prod(dim), instance(B)^dim)
end
@inline function _basemeasure(
d::For{T,F,I},
::Type{<:WeightedMeasure{StaticFloat64{N},B}},
::False,
) where {T,F,I,N,B}
dim = size(first(d.inds))
f(args...) = basemeasure(d.f(args...)).base
base = For(f, d.inds...)
weightedmeasure(static(N) * prod(dim), base)
end
@inline function _basemeasure(d::For{T,F,I}, ::Type{B}, ::True) where {T,F,I,B}
instance(B)^size(first(d.inds))
end
@inline function _basemeasure(
d::For{T,F,I},
::Type{B},
::False,
) where {T,F,I,B<:AbstractMeasure}
f = basekernel(d.f)
For{B}(f, d.inds)
end
@inline function _basemeasure(d::For{T,F,I}, ::Type{B}, ::False) where {T,F,I,B}
MeasureBase.productmeasure(basemeasure.(marginals(d)))
end
function _basemeasure(
d::For{T,F,I},
::Type{B},
::True,
) where {N,T<:AbstractMeasure,F,I<:NTuple{N,<:Base.Generator},B}
return instance(B)^minimum(length, d.inds)
end
function _basemeasure(
d::For{T,F,I},
::Type{B},
::False,
) where {N,T<:AbstractMeasure,F,I<:NTuple{N,<:Base.Generator},B}
f = basekernel(d.f)
For{B}(f, d.inds)
end
function Pretty.tile(d::For{T}) where {T}
result = Pretty.literal("For{")
result *= Pretty.tile(T)
result *= Pretty.literal("}")
result *= Pretty.list_layout([
Pretty.literal(func_string(d.f, Tuple{_eltype.(d.inds)...})),
Pretty.literal(sprint(show, d.inds; context = :compact => true)),
])
end
"""
For(f, base...)
`For` provides a convenient way to construct a `ProductMeasure`. There are
several options for the `base`. With Julia's `do` notation, this can look very
similar to a standard `for` loop, while maintaining semantics structure that's
easier to work with.
------------
# `For(f, base::Int...)`
When one or several `Int` values are passed for `base`, the result is treated as
depending on `CartesianIndices(base)`.
```
julia> For(3) do λ Exponential(λ) end |> marginals
3-element mappedarray(MeasureBase.var"#17#18"{var"#15#16"}(var"#15#16"()), ::CartesianIndices{1, Tuple{Base.OneTo{Int64}}}) with eltype Exponential{(:λ,), Tuple{Int64}}:
Exponential(λ = 1,)
Exponential(λ = 2,)
Exponential(λ = 3,)
```
```
julia> For(4,3) do μ,σ Normal(μ,σ) end |> marginals
4×3 mappedarray(MeasureBase.var"#17#18"{var"#11#12"}(var"#11#12"()), ::CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}) with eltype Normal{(:μ, :σ), Tuple{Int64, Int64}}:
Normal(μ = 1, σ = 1) Normal(μ = 1, σ = 2) Normal(μ = 1, σ = 3)
Normal(μ = 2, σ = 1) Normal(μ = 2, σ = 2) Normal(μ = 2, σ = 3)
Normal(μ = 3, σ = 1) Normal(μ = 3, σ = 2) Normal(μ = 3, σ = 3)
Normal(μ = 4, σ = 1) Normal(μ = 4, σ = 2) Normal(μ = 4, σ = 3)
```
-------
# `For(f, base::AbstractArray...)``
In this case, `base` behaves as if the arrays are `zip`ped together before
applying the map.
```
julia> For(randn(3)) do x Exponential(x) end |> marginals
3-element mappedarray(x->Main.Exponential(x), ::Vector{Float64}) with eltype Exponential{(:λ,), Tuple{Float64}}:
Exponential(λ = -0.268256,)
Exponential(λ = 1.53044,)
Exponential(λ = -1.08839,)
```
```
julia> For(1:3, 1:3) do μ,σ Normal(μ,σ) end |> marginals
3-element mappedarray((:μ, :σ)->Main.Normal(μ, σ), ::UnitRange{Int64}, ::UnitRange{Int64}) with eltype Normal{(:μ, :σ), Tuple{Int64, Int64}}:
Normal(μ = 1, σ = 1)
Normal(μ = 2, σ = 2)
Normal(μ = 3, σ = 3)
```
----
# `For(f, base::Base.Generator)`
For `Generator`s, the function maps over the values of the generator:
```
julia> For(eachrow(rand(4,2))) do x Normal(x[1], x[2]) end |> marginals |> collect
4-element Vector{Normal{(:μ, :σ), Tuple{Float64, Float64}}}:
Normal(μ = 0.255024, σ = 0.570142)
Normal(μ = 0.970706, σ = 0.0776745)
Normal(μ = 0.731491, σ = 0.505837)
Normal(μ = 0.563112, σ = 0.98307)
```
"""
@inline For{T}(f, inds...) where {T} = For{T}(f, inds)
@inline For{T}(f, n::Integer) where {T} = For{T}(f, static(1):n)
@inline function For{T}(f, inds::Integer...) where {T}
For{T}(i -> f(Tuple(i)...), Base.CartesianIndices(inds))
end
@inline For(f, inds...) = For(f, inds)
@inline For(f, n::Integer) = For(f, static(1):n)
@inline For(f, inds::Integer...) = For(i -> f(Tuple(i)...), Base.CartesianIndices(inds))
# For(f, inds::Base.Generator) = productmeasure(mymap(f, inds))
function Random.rand!(rng::AbstractRNG, d::For{T,F,I}, x) where {T,F,I}
mar = marginals(d)
@inbounds for (j, dⱼ) in enumerate(mar)
x[j] = rand(rng, dⱼ)
end
return x
end
function Base.rand(rng::AbstractRNG, ::Type{T}, d::For{M,F,I}) where {T,M,F,I}
MeasureBase._rand_product(rng, T, marginals(d), M)
end
| MeasureTheory | https://github.com/JuliaMath/MeasureTheory.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.