licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 13680 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# An efficient implementation of the Bernoulli process for sampling from a categorical
# distribution.
#### Bernoulli process
# θ ~ Multin(1; p₁, …, pₖ)
# θ₁ ~ Bin(1, p₁)
# θ₂, …, θₖ₋₁ ~ Bin(1 - ∑ᵢ₌₁ʲ⁻¹θᵢ, pⱼ / ∑ᵢ₌ⱼᵏpᵢ)
# θₖ = 1 - ∑ᵢ₌₁ᵏ⁻¹θᵢ
# Implies
# θⱼ ~ Bin(1 - ∑ᵢ₌₁ʲ⁻¹θᵢ, pⱼ / ∑ᵢ₌ⱼᵏ)
# In essence, the process is defined by repeated Bernoulli trials of
# j ∨ rest
# pⱼ / ∑ᵢ₌ⱼᵏpᵢ 1 - pⱼ / ∑ᵢ₌ⱼᵏpᵢ
# The process ends if j occurs at any point
#### Alternate phrasing
# Consider the remaining probability mass
# ∑ᵢ₌ⱼᵏpᵢ = 1 - ∑ᵢ₌₁ʲ⁻¹pᵢ
# ∑ᵢ₌₁ᵏpᵢ - ∑ᵢ₌₁ʲ⁻¹pᵢ
# ∑ᵢ₌₁ʲ⁻¹pᵢ is the probability mass removed when one is on the jᵗʰ category
# Hence, the process can be viewed as
# j ∨ rest
# pⱼ / (1 - ∑ᵢ₌₁ʲ⁻¹pᵢ) 1 - pⱼ / (1 - ∑ᵢ₌₁ʲ⁻¹pᵢ)
####
# The alternate phrasing of the Bernoulli process enables efficient sampling by
# avoiding the cumulative sums which would otherwise be required. The real
# advantages are only realized during the analogous Binomial process (which samples
# from the Multinomial distribution with n > 1). While the Bernoulli process
# provides a clever general approach to constructing reversible Markov
# transition kernels (involving the categorical distribution),
# there exists a faster sampler for categorical distributions in which all
# pⱼ's are known. In essence, one can utilize the properties of the cumulative
# distribution function, CDF(p, j) = ∑ᵢ₌₁ʲpᵢ, noting that a sample
# u ~ U(0, 1) belongs to the jᵗʰ category where j is the first
# j which satisfies CDF(p, j) > u. (In other words, one notes that the sample
# u could not have fallen into the j-1ᵗʰ category as ∑ᵢ₌₁ʲ⁻¹pᵢ < u).
################################################################
# using BenchmarkTools, Statistics
# As a recursion
# function catrand(p::Vector{T}, j::Int, k::Int, d::Float64=1.0) where {T<:Real}
# if j ≤ k - 1
# u = rand()
# pⱼ = p[j]
# p′ = pⱼ / d
# return u ≤ p′ ? j : catrand(p, j + 1, k, d - pⱼ)
# else
# return j
# end
# end
# catrand(p::Vector{T}) where {T<:Real} = catrand(p, 1, length(p), 1.0)
# catrandmulti₀(p::Vector{T}, N::Int) where {T<:Real} = [catrand(p) for _ = 1:N]
# p = [0.1, 0.25, 0.05, 0.35, 0.25]
# @benchmark catrand($p, 1, 5, 1.0)
# @benchmark catrand($p)
# @benchmark catrandmulti₀($p, 1000000)
# @timev c = catrandmulti₀(p, 1000000);
# t = [count(==(i), c) for i = 1:5]
# function rmass(p::Vector{T}, j::Int, i::Int=1, d::Float64=1.0) where {T<:Real}
# if j == 1
# return d
# elseif i ≤ j - 1
# return rmass(p, j, i + 1, d - p[i])
# else
# return d
# end
# end
# function bernoullimass(p::Vector{T}) where {T<:Real}
# k = length(p)
# d = one(promote_type(T, Float64))
# p̃ = Vector{promote_type(T, Float64)}(undef, k)
# for j ∈ eachindex(p, p̃)
# pⱼ = p[j]
# p̃[j] = pⱼ / d
# d -= pⱼ
# end
# return p̃
# end
# rmass(p, 2)
# r = map(j -> rmass(p, j), 1:5)
# @benchmark bernoullimass(p)
# p̃ = bernoullimass(p)
# p̃ == p ./ r
# If one wanted to repeat the computation several times, one could try:
# function catrandmultiₗ(p::Vector{T}, N::Int) where {T<:Real}
# p̃ = bernoullimass(p)
# k = length(p)
# c = Vector{Int}(undef, N)
# for n ∈ eachindex(c)
# for j ∈ eachindex(p̃)
# rand() ≤ p̃[j] && (c[n] = j; break)
# end
# end
# return c
# end
# @benchmark catrandmultiₗ($p, 1000000)
# c2 = catrandmultiₗ(p, 1000000);
# t2 = [count(==(i), c2) for i = 1:5]
#### Essentially, there is very little difference in cost between rcatrand using
# pre-computed p̃ and dynamically computing it recursively. Correspondingly,
# the looped catrandmulti is faster than the recursive one.
# Particularly in the case of the loop it makes sense -- the resultant
# machine code is just much simpler.
# function rcatrand(p̃::Vector{T}, j::Int, k::Int) where {T<:Real}
# if j ≤ k - 1
# u = rand()
# return u ≤ p̃[j] ? j : rcatrand(p̃, j + 1, k)
# else
# return j
# end
# end
# rcatrand(p̃::Vector{T}) where {T<:Real} = rcatrand(p̃, 1, length(p̃))
# @benchmark rcatrand($p̃)
# @timev cᵣ = [rcatrand(p̃) for _ = 1:1000000];
# tᵣ = [count(==(i), cᵣ) for i = 1:5]
# function catrandmultiᵣ(p::Vector{T}, N::Int) where {T<:Real}
# p̃ = bernoullimass(p)
# k = length(p)
# c = Vector{Int}(undef, N)
# for n ∈ eachindex(c)
# c[n] = rcatrand(p̃, 1, k)
# end
# return c
# end
# @benchmark catrandmultiᵣ($p, 1000000)
#### Attempt using a loop for the catrand itself, rather than recursion.
# For larger k's, the loop really pulls ahead -- at k = 100, it is twice as fast.
# At k = 1000, twice as fast.
# In essence, while the recursion is conceptually elegant, a loop provides a simpler interface
# AND 2x speed.
# function catrandₗ(p::Vector{T}) where {T<:Real}
# k = length(p)
# d = one(promote_type(T, Float64))
# for j ∈ eachindex(p)
# pⱼ = p[j]
# u = rand()
# u ≤ pⱼ / d && return j
# d -= pⱼ
# end
# return k
# end
# @benchmark catrandₗ($p)
# @benchmark catrand($p)
# @timev cₗ = [catrandₗ(p) for _ = 1:1000000];
# tₗ = [count(==(i), cₗ) for i = 1:5]
# function norm1!(w::Vector{T}) where {T<:Real}
# s = zero(T)
# @inbounds @simd for i ∈ eachindex(w)
# s += w[i]
# end
# c = inv(s)
# @inbounds @simd for i ∈ eachindex(w)
# w[i] *= c
# end
# return w
# end
# p2 = norm1!(rand(100));
# @benchmark catrandₗ($p2)
# @benchmark catrand($p2)
# p3 = norm1!(rand(1000));
# @benchmark catrandₗ($p3)
# @benchmark catrand($p3)
# p4 = norm1!(rand(10000));
# @benchmark catrandₗ($p4)
# @benchmark catrand($p4)
# # If one wanted to repeat the computation several times, one could try:
# function catrandₗ(p::Vector{T}, dims::Vararg{Int, N}) where {T<:Real} where {N}
# p̃ = bernoullimass(p)
# c = Array{Int, N}(undef, dims)
# for n ∈ eachindex(c)
# for j ∈ eachindex(p̃)
# rand() ≤ p̃[j] && (c[n] = j; break)
# end
# end
# return c
# end
# @benchmark catrandmultiₗ($p, 10000)
# @benchmark catrandₗ($p, 10000)
# using Distributions
# @benchmark rand(Categorical($p), 10000)
# c = rand(Categorical(p), 1000000);
# t = [count(==(i), c) for i = 1:5]
# #### Attempt using meta-unrolling -- 10x worse! (unless Val(k) is provided directly)
# @generated function catrandₘ(p::Vector{T}, ::Val{k}) where {T<:Real} where {k}
# quote
# d = one(T)
# Base.Cartesian.@nexprs $k j -> rand() ≤ p[j] / d ? (return j) : d -= p[j]
# return $k
# end
# end
# catrandₘ(p::Vector{T}) where {T<:Real} = catrandₘ(p, Val(length(p)))
# @timev cₘ = [catrandₘ(p) for _ = 1:1000000];
# tₘ = [count(==(i), cₘ) for i = 1:5]
# @benchmark catrandₘ($p, Val(5))
# @benchmark catrandₘ($p)
#### A revised sampler using CDF properties -- improves speed by ≈1.3 at small k,
# and at large k, is considerably faster.
"""
categorical(p::Vector{<:Real})
Draw a sample from the categorical distribution, where the number
of categories is equal to the length of `p`. Caller is responsible for ensuring that `∑p = 1`.
See also: [`categorical!`](@ref)
"""
@inline function categorical(p::AbstractVector{T}) where {T<:Real}
k = length(p)
j = 1
s = p[1]
u = rand()
@inbounds while s < u && j < k
s += p[j += 1]
end
return j
end
@inline function rand_invcdf(Σω::AbstractVector{T}) where {T<:Real}
k = length(Σω)
j = 1
s = Σω[1]
u = rand()
@inbounds while s < u && j < k
j += 1
s = Σω[j]
end
j
end
@inline function invcdf(Σω::AbstractVector{T}, u::Real) where {T<:Real}
k = length(Σω)
j = 1
s = Σω[1]
@inbounds while s < u && j < k
s = Σω[j += 1]
end
j
end
@inline function invcdf(Σω::AbstractVector{T}, u::Real, k::Int) where {T<:Real}
j = 1
s = Σω[1]
@inbounds while s < u && j < k
s = Σω[j += 1]
end
j
end
# @inline function categorical(p::AbstractVector{T}, Iₛ::Vector{Int}) where {T<:Real}
# k = length(p)
# j = 1
# s = p[1]
# u = rand()
# @inbounds while s < u && j < k
# s += p[j += 1]
# end
# return Iₛ[j]
# end
"""
categorical!(C::Array{<:Integer, N}, p::Vector{<:Real}) where {N}
Fill `C` with draws from the k-dimensional categorical distribution defined by
the vector of probabilities `p`. The time complexity of this call should be assumed
to be greater than the batch method, as `rng` internal calls are sequential.
This may be useful when the memory overhead of a batch `rng` call exceeds the
time savings.
Caller is responsible for ensuring that `∑p = 1`.
"""
@inline function categorical!(C::AbstractArray{S, N}, p::AbstractVector{T}) where {T<:Real} where {S<:Integer, N}
k = length(p)
Σp = cumsum(p)
s₀ = Σp[1]
@inbounds for i ∈ eachindex(C)
j = 1
s = s₀
u = rand()
while s < u && j < k
s = Σp[j += 1]
end
C[i] = j
end
return C
end
"""
categorical(p::Vector{<:Real}, dims::Int...)
Sample an array of categories from the k-dimensional categorical distribution
defined by the vector of probabilities `p`.
"""
@inline categorical(p::AbstractVector{T}, dims::Vararg{Int, N}) where {T<:Real} where {N} =
categorical!(Array{Int, N}(undef, dims), p)
############################################################################################
#### 2022-04-11: Batch SIMD sampler
"""
categorical!(C::Array{<:Integer, N}, U::Array{T, N}, Σp::Vector{T}) where {T<:Real, N}
Fill `C` with draws from the k-dimensional categorical distribution defined by
the vector of cumulative probabilities `Σp`. This method is optimized
(internal `rng` calls are batched) for repeated calls involving arrays `C`, `U`
of the same size, potentially with different `Σp`'s.
Note: `U` is storage, potentially uninitialized, for the uniform random draws
which will ultimately be used to draw samples from the categorical distribution.
"""
@inline function categorical!(C::AbstractArray{S, N}, U::AbstractArray{T, N}, Σp::AbstractVector{T}) where {T<:AbstractFloat} where {N} where {S<:Integer}
k = length(Σp)
rand!(U)
s₀ = Σp[1]
@inbounds for i ∈ eachindex(C, U)
u = U[i]
j = 1
s = s₀
while s < u && j < k
s = Σp[j += 1]
end
C[i] = j
end
return C
end
"""
categorical!(C::Array{<:Integer, N}, U::Array{T, N}, Σp::Vector{T}, p::Vector{T}) where {T<:AbstractFloat, N}
`Σp` is a vector of any size, potentially uninitialized, which will be
`resize!`'d and filled with the cumulative probabilities required for sampling.
"""
@inline function categorical!(C::AbstractArray{S, N}, U::AbstractArray{T, N}, Σp::AbstractVector{T}, p::AbstractVector{T}) where {T<:AbstractFloat} where {N} where {S<:Integer}
k = length(p)
resize!(Σp, k)
cumsum!(Σp, p)
rand!(U)
s₀ = Σp[1]
@inbounds for i ∈ eachindex(C, U)
u = U[i]
j = 1
s = s₀
while s < u && j < k
s = Σp[j += 1]
end
C[i] = j
end
return C
end
############################################################################################
#### 2022-05-20: Multinomial
# # Demonstrate that the sum of categorical distributions cannot be represented by
# # a multinomial distribution.
# # Test 1
# Is = [[1,2], [1,2,3,4], [1,2,3,4,5,6]];
# A = sample(Int, Is, 6, 10^6);
# ω = A ./ 3;
# mean(ω, dims=2)
# var(ω, dims=2)
# # Property tests
# # We know that the moments and properties will all be correct, as this is the only correct
# # way to simulate the distribution of θ₁ + θ₂ + θ₃
# mean(A, dims=2)
# # Var(θ₁ + θ₂ + θ₃) = 1/4 + 3/16 + 5/36
# var(A, dims=2)
# # Pr(θ₁ = 1 ∩ θ₂ = 1 ∩ θ₃ = 1) = 1/48
# count(==(3), A, dims=2) ./ 10^6
# ws = [fill(1/2, 2), fill(1/4, 4), fill(1/6, 6)];
# function multin(ws::Vector{Vector{T}}) where {T<:Real}
# ω = zeros(promote_type(T, Float64), maximum(length, ws))
# for w ∈ ws
# for i ∈ eachindex(w)
# ω[i] += w[i]
# end
# end
# J⁻¹ = one(promote_type(T, Float64)) / length(ws)
# for i ∈ eachindex(ω)
# ω[i] *= J⁻¹
# end
# ω
# end
# # ws′ = [[w; zeros(6 - length(w))] for w ∈ ws]
# # ws′[1] * ws′[2]' .* reshape(ws′[3], 1,1,6)
# # ws[1] * transpose(ws[2]) .* reshape(ws[3], 1,1,6)
# # # Test 2
# # w = rand(6)
# # ws₂ = [normweights(I, w) for I ∈ Is]
# # A₂ = sample(Int, Is, w, 6, 10^6);
# # ω₂ = A₂ ./ 3;
# # mean(ω₂, dims=2)
# # var(ω₂, dims=2)
# # ω₂′ = multin(ws₂)
# # w′ = normalize1(w)
# # [normweights(I, w′) for I ∈ Is]
# using Distributions, BenchmarkTools
# ω′ = multin(ws)
# d = Multinomial(3, ω′);
# # Multinomial is approximately 10x slower than Bernoulli process, though, this is small N.
# # I would expect the Bernoulli-Binomial process (presumably) used in the Multinomial
# # to become faster at larger N
# # @benchmark rand(d, 100000)
# # @benchmark sample(Int, Is, 6, 100000)
# A₃ = rand(d, 10^6);
# ω₃ = A₃ ./ 3;
# mean(ω₃, dims=2)
# var(ω₃, dims=2)
# 11/36
# # Property tests
# # We know the expectation will match, but the variance will not be correct,
# # nor will other properties such conditional probabilities
# mean(A₃, dims=2)
# # Var(θ₁ + θ₂ + θ₃) = 1/4 + 3/16 + 5/36
# var(A₃, dims=2)
# # Pr(θ₁ = 1 ∩ θ₂ = 1 ∩ θ₃ = 1) = 1/48, but clearly not true, as shown below
# count(==(3), A₃, dims=2) ./ 10^6
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 6601 | #
# Date created: 2022-06-22
# Author: aradclif
#
#
############################################################################################
# Performance tests and variants of Marsaglia alias table generation (square histogram)
function marsaglia4(p::Vector{T}) where {T<:AbstractFloat}
N = length(p)
K = Vector{Int}(undef, N)
V = Vector{promote_type(T, Float64)}(undef, N)
q = similar(p)
a = inv(N)
# initialize
for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:N-1
qᵢ, i = findmin(q)
qⱼ, j = findmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function vmarsaglia4(p::Vector{T}) where {T<:AbstractFloat}
N = length(p)
K = Vector{Int}(undef, N)
V = Vector{promote_type(T, Float64)}(undef, N)
q = similar(p)
a = inv(N)
# initialize
for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:N-1
qᵢ, i = vfindmin(q)
qⱼ, j = vfindmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function vmarsaglia5(p::Vector{T}) where {T<:AbstractFloat}
N = length(p)
K = Vector{Int}(undef, N)
V = Vector{promote_type(T, Float64)}(undef, N)
q = similar(p)
a = inv(N)
# initialize
for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:N-1
((qᵢ, i), (qⱼ, j)) = vfindextrema(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function vmarsaglia6(p::Vector{T}) where {T<:AbstractFloat}
N = length(p)
K = Vector{Int}(undef, N)
V = Vector{promote_type(T, Float64)}(undef, N)
# ix = Vector{Int}(undef, N)
q = similar(p)
a = inv(N)
# initialize
@turbo for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:N-1
((qᵢ, i), (qⱼ, j)) = vfindextrema(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
for i = 1:10
n = (1 << i)
p = normalize1!(rand(n));
println("n = $n, marsaglia")
@btime marsaglia($p)
println("n = $n, marsaglia4")
@btime marsaglia4($p)
println("n = $n, vmarsaglia4")
@btime vmarsaglia4($p)
println("n = $n, vmarsaglia5")
@btime vmarsaglia5($p)
println("n = $n, vmarsaglia6")
@btime vmarsaglia6($p)
end
@benchmark marsaglia($p)
@benchmark marsaglia4($p)
@benchmark vmarsaglia4($p)
@benchmark vmarsaglia5($p)
@benchmark vmarsaglia6($p)
marsaglia(p) == marsaglia4(p)
vmarsaglia4(p) == vmarsaglia5(p)
K1, V1 = marsaglia(p)
K2, V2 = marsaglia4(p)
K2_4, V2_4 = marsaglia4_2(p)
K2_5, V2_5 = marsaglia5(p)
K3, V3 = vmarsaglia4(p)
K4, V4 = vmarsaglia5(p)
K5, V5 = vmarsaglia6(p)
K1 == K2 == K3 == K4 == K5
V1 == V2 == V3 == V4 == V5
K3 == K4 == K5
V3 == V4 == V5
ii23 = findall(K2 .!= K3)
ii34 = findall(K3 .!= K4)
ii35 = findall(K3 .!= K5)
ii45 = findall(K4 .!= K5)
K, V, q = marsaglia4_2(p);
K0, V0, q0 = marsaglia(p);
K2, V2, q2 = marsaglia4(p);
K4, V4, q4 = vmarsaglia4(p);
ii = findall(K2 .!= K4)
[V0[ii] V[ii] V2[ii] V4[ii]]
#### Generation benchmarks
using BenchmarkTools, Random
K, V = marsaglia(p)
@benchmark marsaglia_generate($K, $V)
@benchmark marsaglia_generate2($K, $V)
@benchmark marsaglia_generate3($K, $V)
p = rand(100);
normalize1!(p);
K, V = marsaglia(p);
n_samples = 1024
C = Vector{Int}(undef, n_samples);
@benchmark marsaglia_generate!($C, $K, $V)
@benchmark vmarsaglia_generate!($C, $K, $V)
U = similar(C, Float64);
@benchmark marsaglia_generate!($C, $U, $K, $V)
@benchmark vmarsaglia_generate!($C, $U, $K, $V)
[[count(==(i), C) for i = 1:length(p)] ./ n_samples p]
# Equal probability comparison
p = fill(1/100, 100);
K, V = marsaglia(p);
@benchmark vmarsaglia_generate!($C, $U, $K, $V)
@benchmark vmarsaglia_equiprobable!($C, $U, 100)
ur = 1:100
@benchmark rand!($C, $ur)
# faster than nearly-divisionless? -- in fact, both are.
p = fill(1/10000, 10000);
K, V = marsaglia(p);
r = 1:10000
@benchmark rand!($C, $r)
x = rand(1024);
@benchmark rand!($x)
1024 / 2e-6
Σp = cumsum(p);
U = rand(length(C));
@benchmark categorical!($C, $U, $Σp)
#### Comparison to results from paper itself
using Distributions
l2cache = 1280 * 10^3
l2cache ÷ 2^4 # 80000
#
n_sample = 2^16 # 10^8
A = Vector{Int}(undef, n_sample);
U = similar(A, Float64);
d = Poisson(100.)
p = map(n -> pdf(d, n), 0:200)
K, V = vmarsaglia(p);
@benchmark vmarsaglia_generate!($A, $U, $K, $V)
# 2^16 / (57.096 * 1e-6)
t = MarsagliaSquareHistogram(p)
@benchmark vmarsaglia_generate!($A, $U, $t)
d = Binomial(100, .345)
p = map(n -> pdf(d, n), 0:100)
K, V = vmarsaglia(p);
@benchmark vmarsaglia_generate!($A, $U, $K, $V)
for λ ∈ [1, 10, 25, 100, 250, 1000]
println("λ = ", λ)
d = Poisson(λ)
p = map(n -> pdf(d, n), 0:max(1.5λ, 100))
K, V = vmarsaglia(p)
@btime vmarsaglia_generate!($A, $U, $K, $V)
end
for n ∈ [20, 100, 1000, 10000, 100000]
println("n = ", n)
for ρ ∈ (.1, .4)
println("\t p = ", ρ)
d = Binomial(n, ρ)
p = map(n -> pdf(d, n), 0:n)
K, V = vmarsaglia(p)
@btime vmarsaglia_generate!($A, $U, $K, $V)
end
end
#### Robin Hood (𝒪(N²)) squaring vs. 𝒪(NlogN) squaring
n_cat = 2^20
p = normalize1!(rand(n_cat));
@timev K1, V1 = vmarsaglia(p);
@timev K2, V2 = marsaglia2(p);
n_sample = 2^16
A1 = Vector{Int}(undef, n_sample);
A2 = Vector{Int}(undef, n_sample);
U = similar(A, Float64);
@benchmark vmarsaglia_generate!($A1, $U, $K1, $V1)
@benchmark vmarsaglia_generate!($A2, $U, $K2, $V2)
A1 = vmarsaglia_generate(K1, V1, 10^9);
A2 = vmarsaglia_generate(K2, V2, 10^9);
[countcategory(A1) countcategory(A2)] ./ 10^9
p = fill(1/n_cat, n_cat);
#### Numerical stability tests
n = 10^3
p = normalize1!(rand(n));
p_b = big.(p);
K1, V1 = marsaglia(p);
K2, V2 = marsaglia2(p);
vK1, vV1 = vmarsaglia(p);
bK1, bV1 = marsaglia(p_b);
bK2, bV2 = marsaglia2(p_b);
K1 == K2
V1 == V2
K1 == vK1
V1 == vV1
bV1 == V1
bV1 == bV2
bV1 == V2
bV2 == V2
count(V1 .== V2)
count(bV1 .== V1)
count(bV2 .== V2)
extrema(V1 .- V2)
extrema(bV1 .- V1)
extrema(bV2 .- V2)
sum(abs, bV1 .- V1)
sum(abs, bV2 .- V2)
# a case which is unstable
p₁ = 0.999
# n = 10^4
for i = 1:10
# n = (1 << i)
n = 10^i
p = [p₁; fill((1.0 - p₁) / n, n)];
K1, V1 = marsaglia(p);
K2, V2 = marsaglia2(p);
@test K1 == K2
@test V1 == V2
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 12152 | #
# Date created: 2022-06-21
# Author: aradclif
#
#
############################################################################################
# https://www.jstatsoft.org/article/view/v011i03
#### Marsaglia's Square Histogram (Method II in the above article)
# p ∈ ℝᴺ, ∑ᵢpᵢ = 1, a = 1/N
# K ∈ ℕᴺ, Kᵢ = i
# V ∈ ℝⁿ, Vᵢ = i * a
# Generate: j = ⌊N*U+1⌋; if U < V[j], return j, else return K[j]
# Theoretically, just one U ~ Uniform(0,1) is sufficient. In practice, it is also faster as
# U=rand(); j=floor(Int, N * U + 1)
# is far fewer instructions than
# j=rand(1:N); U=rand()
#### Robin Hood
## Motivation
# The frequency of the `else` statement being required is proportional to the "over-area",
# i.e. the part of the final squared histogram that lies above the division points.
# Or, to quantify it: ∑ᵢ (i * a) - V[i]
# The objective is to minimize the number of times the `else return K[j]` occurs
# by creating V such that each V[j] is as close to j/N as possible -- an NP-hard problem.
# Marsaglia's suggestion of the Robin Hood method is a good solution which is 𝒪(NlogN).
## Thoughts
# The reduction in `else` statements leads to faster sampling -- 𝒪(1) regardless --
# as it would certainly lead to a more predictable instruction pipeline due to minimizing
# the number of times the `else` branch is executed (or used, even if executed).
# Does it justify the 𝒪(NlogN) construction cost for the alias tables? -- given
# that we could pay 𝒪(N) instead to construct an inferior table (but no limit on how terrible).
# - An analysis based on the objective function above would be informative;
# can be verified with Monte Carlo: compute 𝒻(𝐱) = ∑ᵢ (i * a) - V[i]
# using the V produced by each procedure.
# - Number of samples to be drawn is an orthogonal decision variable;
# one surmises that increasing number of samples favor better table.
## Algorithm
# repeat these two steps N - 1 times
# 1. find the smallest probability, pᵢ, and the largest probability, pⱼ
# 2. set K[i] = j; V[i] = (i - 1) * a + pᵢ; replace pⱼ with pⱼ - (a - pᵢ)
## Numerical stability
# Replacing pⱼ is the only point at which stability is a real concern. There are a few
# options for the order of operations and parenthesis. Unsurprisingly, Marsaglia gives
# the most stable form: pⱼ = pⱼ - (a - pᵢ)
# But it is worthwhile to show that this is the most stable form.
# First, consider that it should be the case that pᵢ ≤ a, hence 0 ≤ (a - pᵢ) ≤ 1/n.
# (a - pᵢ) may be a small number, but (a - pᵢ) is always well-defined since it occurs
# at eps(a)≡ulp(a).
# It is worth noting that the (a - pᵢ) operation becomes unstable when pᵢ ≤ eps(a)/4, assuming
# the worst case, a=1. However, this has the opposite relationship to n: increasing n will
# result in a subtraction which takes place at smaller values, hence, the (floating)
# points are more densely packed (i.e. distance to nearest float is smaller).
# It is reassuring to note that eps(.5) = 2⁻⁵³, hence, even for a vector of length 2,
# the (a - pᵢ) is stable for pᵢ > 2⁻⁵⁵.
# The subsequent subtraction, i.e. pⱼ - (a - pᵢ), will occur at eps(pⱼ)≡ulp(pⱼ). Thus,
# the operation will be unstable when pⱼ - c * ulp(pⱼ), c ≤ 1/4 (for pⱼ = 1, the worst case).
# That is, unstable when: (a - pᵢ) ≤ eps(pⱼ)/4
# If pᵢ ≈ 0, (a - pᵢ) ≈ 1/n ⟹ 1/n ≤ eps(pⱼ)/4 is unstable
# As pⱼ is at most 1, the worst case will be eps(pⱼ)/4 = 2⁻⁵⁴, i.e. 1/n ≤ 2⁻⁵⁴.
# ∴ in the worse case, instability begins at n ≥ 2⁵⁴ if pᵢ ≈ 0.
# ∴ in general, expect instability if (a - pᵢ) ≤ 2⁻⁵⁴.
# The above assumed Float64 with 53 bits of precision; the general form in terms of precision
# replaces 2⁻⁵⁴ → 2⁻ᵖ⁻¹.
# These are very permissive bounds; one is likely to run into other issues well before
# the algorithm becomes numerically unstable.
## Numerical stability, revisit
# Oddly, Marsaglia's implementation in TplusSQ.c uses pⱼ + pᵢ - a, which has slightly
# worse numerical stability. (pⱼ + pᵢ) becomes unstable when pᵢ ≤ eps(pⱼ)/2, which
# corresponds to 2⁻ᵖ at pⱼ = 1.
# It is possible to find cases where both suffer roundoff, which is ≤ 2⁻ᵖ⁺¹ for pⱼ + pᵢ - a
# and ≤ 2⁻ᵖ for pⱼ - (a - pᵢ).
# Provided that one is working with Float64, it most likely does not matter.
# However, if p is provided as Float32, it may be preferable to forcibly promote to Float64
# just to ensure stability; naturally, Float16 is largely unsuitable and needs promotion.
# ##
# # Comparison of stability
# # f1 is unstable at n = 10, qⱼ = .999999999999
# # However, f2 and f3 are unstable at n = 10, qⱼ = 5
# f1(qⱼ, qᵢ, a) = qⱼ - (a - qᵢ)
# f2(qⱼ, qᵢ, a) = qⱼ + qᵢ - a
# ff2(qⱼ, qᵢ, a) = @fastmath qⱼ + qᵢ - a
# f3(qⱼ, qᵢ, a) = (qⱼ + qᵢ) - a
# n = 10
# a = 1 / n
# qⱼ = .999999999999
# qᵢ = (1 - qⱼ) / n
# f1(qⱼ, qᵢ, a)
# f2(qⱼ, qᵢ, a)
# ff2(qⱼ, qᵢ, a)
# f3(qⱼ, qᵢ, a)
# f1(big(qⱼ), big(qᵢ), big(a))
# f2(big(qⱼ), big(qᵢ), big(a))
# f3(big(qⱼ), big(qᵢ), big(a))
# # Another example
# f1(1.0, eps()/2, .0003)
# f2(1.0, eps()/2, .0003)
# f2(1.0, big(eps()/2), .0003)
# isfeq(qⱼ, qᵢ, a) = f1(qⱼ, qᵢ, a) == f2(qⱼ, qᵢ, a)
# isfeq_big(qⱼ, qᵢ, a) = f1(qⱼ, qᵢ, a) == Float64(f2(big(qⱼ), big(qᵢ), big(a)))
# count(i -> isfeq(qⱼ, i, a), qᵢ:qᵢ:n*qᵢ)
# isfeq.(qⱼ, qᵢ:qᵢ:n*qᵢ, a)
# isfeq_big.(qⱼ, qᵢ:qᵢ:n*qᵢ, a)
function marsaglia(p::Vector{T}) where {T<:AbstractFloat}
n = length(p)
K = Vector{Int}(undef, n)
V = Vector{promote_type(T, Float64)}(undef, n)
q = similar(p, promote_type(T, Float64))
a = inv(n)
# initialize
@inbounds for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:n-1
qᵢ, i = findmin(q)
qⱼ, j = findmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function vmarsaglia(p::Vector{T}) where {T<:AbstractFloat}
n = length(p)
K = Vector{Int}(undef, n)
V = Vector{promote_type(T, Float64)}(undef, n)
a = inv(n)
q = similar(p, promote_type(T, Float64))
# initialize
@turbo for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:n-1
qᵢ, i = vfindmin(q)
qⱼ, j = vfindmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function marsaglia2(p::Vector{T}) where {T<:AbstractFloat}
n = length(p)
K = Vector{Int}(undef, n)
V = Vector{promote_type(T, Float64)}(undef, n)
q = similar(p, promote_type(T, Float64))
a = inv(n)
larges = Vector{Int}(undef, n)
smalls = Vector{Int}(undef, n)
kl = 0
ks = 0
# initialize
@inbounds for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
if p[i] > a
larges[kl+=1] = i
else
smalls[ks+=1] = i
end
end
while kl > 0 && ks > 0
j = larges[kl]; kl -= 1
i = smalls[ks]; ks -= 1
qᵢ = q[i]
qⱼ = q[j]
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
if q[j] > a
larges[kl+=1] = j
else
smalls[ks+=1] = j
end
end
K, V
end
# p = [0.2, 0.3, 0.1, 0.4]
# p = [.21, .18, .26, .17, .18]
# p = [2/15, 7/15, 6/15]
function marsaglia_generate(K::Vector{Int}, V::Vector{T}) where {T<:AbstractFloat}
n = length(K)
u = rand()
j = trunc(Int, muladd(u, n, 1))
u < V[j] ? j : K[j]
end
function marsaglia_generate!(A::AbstractArray, K::Vector{Int}, V::Vector{T}) where {T<:AbstractFloat}
length(K) == length(V) || throw(ArgumentError("K and V must be of same size"))
n = length(K)
@inbounds for i ∈ eachindex(A) # safe to also use @fastmath, @simd
u = rand()
j = trunc(Int, muladd(u, n, 1)) # muladd is faster than u * n + 1 by ≈5-6%
A[i] = u < V[j] ? j : K[j]
end
A
end
function marsaglia_generate!(A::AbstractArray, u::AbstractArray{Float64}, K::Vector{Int}, V::Vector{T}) where {T<:AbstractFloat}
length(K) == length(V) || throw(ArgumentError("K and V must be of same size"))
n = length(K)
rand!(u)
@inbounds for i ∈ eachindex(A, u) # safe to also use @fastmath, @simd
j = trunc(Int, muladd(u[i], n, 1)) # muladd is faster than u * n + 1 by ≈5-6%
A[i] = u[i] < V[j] ? j : K[j]
end
A
end
function marsaglia_generate(K::Vector{Int}, V::Vector{T}, dims::Vararg{Int, N}) where {T<:AbstractFloat} where {N}
marsaglia_generate!(Array{Int}(undef, dims), K, V)
end
function marsaglia!(K::Vector{Int}, V::Vector{T}, q::Vector{T}, p::Vector{T}) where {T<:AbstractFloat}
n = length(p)
a = inv(n)
@inbounds for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:n-1
qᵢ, i = findmin(q)
qⱼ, j = findmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
function vmarsaglia!(K::Vector{Int}, V::Vector{T}, q::Vector{T}, p::Vector{T}) where {T<:AbstractFloat}
n = length(p)
a = inv(n)
@inbounds for i ∈ eachindex(K, V, p, q)
K[i] = i
V[i] = i * a
q[i] = p[i]
end
for _ = 1:n-1
qᵢ, i = vfindmin(q)
qⱼ, j = vfindmax(q)
K[i] = j
V[i] = (i - 1) * a + qᵢ
q[j] = qⱼ - (a - qᵢ)
q[i] = a
end
K, V
end
# faster, but not necessarily the method to use due to LoopVectorization and Base.Threads
# alas, it is ≈5x faster
function vmarsaglia_generate!(A::AbstractArray, u::AbstractArray{Float64}, K::Vector{Int}, V::Vector{T}) where {T<:AbstractFloat}
length(K) == length(V) || throw(ArgumentError("K and V must be of same size"))
n = length(K)
rand!(u)
@turbo for i ∈ eachindex(A, u)
j = trunc(Int, muladd(u[i], n, 1))
A[i] = ifelse(u[i] < V[j], j, K[j])
end
A
end
vmarsaglia_generate!(A::AbstractArray, K::Vector{Int}, V::Vector{T}) where {T<:AbstractFloat} =
vmarsaglia_generate!(A, similar(A, Float64), K, V)
function vmarsaglia_generate(K::Vector{Int}, V::Vector{T}, dims::Vararg{Int, N}) where {T<:AbstractFloat} where {N}
vmarsaglia_generate!(Array{Int}(undef, dims), K, V)
end
################
# convenience utils
@inline _marsaglia_init(T::Type{<:AbstractFloat}, n::Int) = Vector{Int}(undef, n), Vector{T}(undef, n), Vector{T}(undef, n)
@inline _marsaglia_init(T::Type{<:AbstractFloat}) = _marsaglia_init(T, 0)
@inline _marsaglia_init() = _marsaglia_init(Float64)
@inline _genstorage_init(T::Type{<:AbstractFloat}, n::Int) = Vector{Int}(undef, n), Vector{T}(undef, n)
################
# experimental
mutable struct MarsagliaSquareHistogram{Ti<:Integer, Tv<:AbstractFloat}
K::Vector{Ti}
V::Vector{Tv}
n::Int
end
# MarsagliaSquareHistogram{Ti, Tv}(K, V, n) where {Ti<:Integer, Tv<:AbstractFloat} =
# MarsagliaSquareHistogram(convert(Vector{Ti}, K), convert(Vector{Tv}, V), n)
MarsagliaSquareHistogram(K, V) = MarsagliaSquareHistogram(K, V, length(K))
MarsagliaSquareHistogram((K, V), n) = MarsagliaSquareHistogram(K, V, n)
MarsagliaSquareHistogram(p) = MarsagliaSquareHistogram(marsaglia(p), length(p))
vmarsaglia_generate!(C, t::MarsagliaSquareHistogram) = ((; K, V, n) = t; vmarsaglia_generate!(C, K, V))
vmarsaglia_generate!(C, U, t::MarsagliaSquareHistogram) = ((; K, V, n) = t; vmarsaglia_generate!(C, U, K, V))
vmarsaglia_generate(t::MarsagliaSquareHistogram, dims::Vararg{Int, N}) where {N} =
vmarsaglia_generate!(Array{Int}(undef, dims), t)
################
# Equal probability case admits an optimized form:
# U ~ Uniform(0,1)
# j = ⌊nU + 1⌋; return j
function vfill!(A::AbstractArray, v::Real)
@turbo for i ∈ eachindex(A)
A[i] = v
end
A
end
function vmarsaglia_generate!(A::AbstractArray, u::AbstractArray{Float64}, n::Int)
n > 0 || throw(ArgumentError("n must be > 0"))
n == 1 && return vfill!(A, 1)
rand!(u)
@turbo for i ∈ eachindex(A, u)
A[i] = trunc(Int, muladd(u[i], n, 1))
end
A
end
vmarsaglia_generate!(A::AbstractArray, n::Int) = vmarsaglia_generate!(A, similar(A, Float64), n)
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 16433 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# mirror of sampler.jl; separate file for variants on threading
# The bare minimum for `sample` interface-- covers all 4 other definitions.
tsample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = tsample(S, A, n_sim, n_cat, dims)
tsample(::Type{S}, A, n_sim; dims=:) where {S} = tsample(S, A, n_sim, num_cat(A), dims)
tsample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = tsample(S, A, n_sim, n_cat, (dims,))
function tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
tsample!(B, A)
end
function tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
tsample!(B, A)
end
# for recursive spawning
function tsample!(B, A)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
tsample!(B, A, keep, default, firstindex(B, 2):size(B, 2))
end
# The expected case: vectors of sparse vectors (as their bare components)
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::Tuple{Vector{Int}, Vector{<:AbstractFloat}})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
Iₛ, ω = A
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init()
ω = Vector{Float64}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
resize!(ω, n)
fill!(ω, inv(n))
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init()
ω = Vector{Float64}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
resize!(ω, n)
fill!(ω, inv(n))
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
function tsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
# Trivial parallelism is preferable here, but it's not safe!
# These are questionable methods (though, the function barrier approach is safe).
# @inline function _tsample!(B::AbstractMatrix{S}, A::Vector{Int}, j::Int) where {S<:Real}
# c = rand(A)
# @inbounds B[c, j] += one(S)
# B
# end
# function tsample0!(B::AbstractMatrix{S}, A::Vector{Int}) where {S<:Real}
# _check_reducedims(B, A)
# # @inbounds Threads.@threads for j ∈ axes(B, 2)
# # c = rand(A)
# # B[c, j] += one(S)
# # end
# @inbounds Threads.@threads for j ∈ axes(B, 2)
# _tsample!(B, A, j)
# end
# B
# end
function tsample!(B::AbstractMatrix, A::Vector{Int})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Vector{Int}, 𝒥::UnitRange{Int}) where {S<:Real}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
n = length(A)
K, V = marsaglia(fill(inv(n), n))
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[A[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: dense vectors, the linear index of which indicates the category
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for ω ∈ a
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of dense vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a dense vector
tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::Vector{<:AbstractFloat})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Vector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
ω = A
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[c, j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: sparse vectors, the nzval of which indicates the category
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(Tv)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(Tv)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::SparseVector{<:AbstractFloat})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::SparseVector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
(; n, nzind, nzval) = A
Iₛ, ω = nzind, nzval
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 16520 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# mirror of sampler.jl; separate file for variants on threading
# The bare minimum for `sample` interface-- covers all 4 other definitions.
vtsample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = vtsample(S, A, n_sim, n_cat, dims)
vtsample(::Type{S}, A, n_sim; dims=:) where {S} = vtsample(S, A, n_sim, num_cat(A), dims)
vtsample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = vtsample(S, A, n_sim, n_cat, (dims,))
function vtsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
vtsample!(B, A)
end
function vtsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
vtsample!(B, A)
end
# for recursive spawning
function vtsample!(B, A)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
vtsample!(B, A, keep, default, firstindex(B, 2):size(B, 2))
end
# The expected case: vectors of sparse vectors (as their bare components)
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = vtsample(S, A, n_sim, n_cat, :)
vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = vtsample(S, A, n_sim, n_cat, :)
function vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
vtsample!(B, A)
end
function vtsample!(B::AbstractMatrix, A::Tuple{Vector{Int}, Vector{<:AbstractFloat}})
_check_reducedims(B, A)
vtsample!(B, A, firstindex(B, 2):size(B, 2))
end
function vtsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
Iₛ, ω = A
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, start:h)
vtsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init()
ω = Vector{Float64}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
resize!(ω, n)
fill!(ω, inv(n))
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init()
ω = Vector{Float64}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
resize!(ω, n)
fill!(ω, inv(n))
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
function vtsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N}
B = zeros(S, n_cat, n_sim)
vtsample!(B, A)
end
# Trivial parallelism is preferable here, but it's not safe!
# These are questionable methods (though, the function barrier approach is safe).
# @inline function _vtsample!(B::AbstractMatrix{S}, A::Vector{Int}, j::Int) where {S<:Real}
# c = rand(A)
# @inbounds B[c, j] += one(S)
# B
# end
# function vtsample0!(B::AbstractMatrix{S}, A::Vector{Int}) where {S<:Real}
# _check_reducedims(B, A)
# # @inbounds Threads.@threads for j ∈ axes(B, 2)
# # c = rand(A)
# # B[c, j] += one(S)
# # end
# @inbounds Threads.@threads for j ∈ axes(B, 2)
# _vtsample!(B, A, j)
# end
# B
# end
function vtsample!(B::AbstractMatrix, A::Vector{Int})
_check_reducedims(B, A)
vtsample!(B, A, firstindex(B, 2):size(B, 2))
end
function vtsample!(B::AbstractMatrix{S}, A::Vector{Int}, 𝒥::UnitRange{Int}) where {S<:Real}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
n = length(A)
K, V = marsaglia(fill(inv(n), n))
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[A[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, start:h)
vtsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: dense vectors, the linear index of which indicates the category
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for ω ∈ a
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of dense vectors
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(T)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a dense vector
vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = vtsample(S, A, n_sim, n_cat, :)
vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = vtsample(S, A, n_sim, n_cat, :)
function vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
vtsample!(B, A)
end
function vtsample!(B::AbstractMatrix, A::Vector{<:AbstractFloat})
_check_reducedims(B, A)
vtsample!(B, A, firstindex(B, 2):size(B, 2))
end
function vtsample!(B::AbstractMatrix{S}, A::Vector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
ω = A
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[c, j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, start:h)
vtsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: sparse vectors, the nzval of which indicates the category
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(Tv)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function vtsample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C, U = _genstorage_init(Float64, L)
K, V, ix, q = _marsaglia_init(Tv)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, keep, default, start:h)
vtsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = vtsample(S, A, n_sim, n_cat, :)
vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = vtsample(S, A, n_sim, n_cat, :)
function vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
vtsample!(B, A)
end
function vtsample!(B::AbstractMatrix, A::SparseVector{<:AbstractFloat})
_check_reducedims(B, A)
vtsample!(B, A, firstindex(B, 2):size(B, 2))
end
function vtsample!(B::AbstractMatrix{S}, A::SparseVector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
(; n, nzind, nzval) = A
Iₛ, ω = nzind, nzval
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ 𝒥
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn vtsample!(B, A, start:h)
vtsample!(B, A, (h + 1):stop)
end
return B
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 2975 | #
# Date created: 2022-07-11
# Author: aradclif
#
#
############################################################################################
# Some benchmarks of normalization performance
#### normalize1
for i = 1:15
for j = -1:1
n = (1 << i) + j
p = rand(n)
println("normalize1!, n = ", n)
@btime normalize1!($p)
println("vnormalize1!, n = ", n)
@btime vnormalize1!($p)
end
end
w = [.1, .2, .3, .4, 0.0]
w = zeros(5)
p = similar(w)
algorithm3!(p, w, 0.0)
w = rand(2^6);
w[rand(1:2^6, 10)] .= 0;
p = similar(w);
u = 0.5
@benchmark algorithm3!($p, $w, $u)
@benchmark algorithm3_v2!($p, $w, $u)
@benchmark algorithm3_v3!($p, $w, $u)
#### Algorithm 3
# As one might expect, @turbo handles tails better than base julia
u = 0.5
for i = 1:15
for j = -1:1
n = (1 << i) + j
w = rand(n)
w[rand(1:n, n >> 1)] .= 0
p = similar(w)
println("algorithm3!, n = ", n)
@btime algorithm3!($p, $w, $u)
println("algorithm3_v2!, n = ", n)
@btime algorithm3_v2!($p, $w, $u)
println("algorithm3_v3!, n = ", n)
@btime algorithm3_v3!($p, $w, $u)
println("valgorithm3!, n = ", n)
@btime valgorithm3!($p, $w, $u)
end
end
function algorithm3_v3!(p::Vector{S}, w::Vector{T}, u::S) where {S<:AbstractFloat, T<:Real}
s = zero(T)
z = 0
@inbounds @simd for i ∈ eachindex(p, w)
w̃ = w[i]
s += w̃
p[i] = w̃
z += w̃ == zero(T)
end
c = z == 0 ? inv(s) : (one(S) - u) / s
u′ = z == length(p) ? inv(z) : u / z
@inbounds @simd for i ∈ eachindex(p)
pᵢ = p[i]
p[i] = ifelse(pᵢ == zero(S), u′, pᵢ * c)
end
p
end
function valgorithm3!(p::Vector{S}, w::Vector{T}, u::S) where {S<:AbstractFloat, T<:Real}
s = zero(T)
z = 0
@turbo for i ∈ eachindex(p, w)
w̃ = w[i]
s += w̃
p[i] = w̃
z += w̃ == zero(T)
end
c = z == 0 ? inv(s) : (one(S) - u) / s
u′ = z == length(p) ? inv(z) : u / z
@turbo for i ∈ eachindex(p)
pᵢ = p[i]
p[i] = ifelse(pᵢ == zero(S), u′, pᵢ * c)
end
p
end
#### Algorithm 2.2
algorithm2_2_quote(3)
algorithm2_2_normalize_quote(3)
algorithm2_2_normalize1!(p, Is, ws) = normalize1!(algorithm2_2!(p, Is, ws))
N = 2^10
n = 2^7
m = 3
Is = ntuple(_ -> rand(1:N, n), m);
ws = ntuple(_ -> rand(N), m);
p = zeros(n);
@benchmark algorithm2_2!($p, $Is, $ws)
@benchmark algorithm2_2_normalize1!($p, $Is, $ws)
@benchmark algorithm2_2_normalize!($p, $Is, $ws)
@benchmark valgorithm2_2_normalize!($p, $Is, $ws)
@timev algorithm2_2_normalize!(p, (Is[1],), (ws[1],))
str = """
@inbounds @simd ivdep for j = eachindex(I_1, I_2, I_3)
w′[j] = w_1[I_1[j]] * w_2[I_2[j]] * w_3[I_3[j]]
end
"""
e = Meta.parse(str)
Meta.show_sexpr(e)
eq = :(@inbounds @simd ivdep for j = eachindex(I_1, I_2, I_3)
w′[j] = w_1[I_1[j]] * w_2[I_2[j]] * w_3[I_3[j]]
end)
Meta.show_sexpr(eq)
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 11500 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# A ∈ 𝔻ᴰ¹ˣᴰ²ˣᴰ³ˣ⋯ ; eltype(A) = Vector{Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# (Iₛ, ω) OR (Iₛ, Σω)
# Each sampling routine is identical: unpack the tuple, draw c ~ Categorical(ω) and
# obtain the real category as Iₛ[c].
# This enables an encapsulation of all PVG-induced variability, hence, a consistent
# interface for the sampler.
# Technically, `sample` only needs to know ndims(A), not necessarily the element type.
# The appropriate dispatch on element type is necessary for `sample!`
# `sample` could instead use
# A::AbstractArray{U, N} where {U<:Union{Vector{Tuple{Vector{Int}, Vector{T}}}, Tuple{Vector{Int}, Vector{T}}}} where {T<:AbstractFloat}
# Actually, this should ideally support:
# array of array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:AbstractArray{S, M}} where {M} where {S<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# (sparse) vector
# A::Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# The bare minimum for `sample` interface-- covers all 4 other definitions.
sample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = sample(S, A, n_sim, n_cat, dims)
sample(::Type{S}, A, n_sim; dims=:) where {S} = sample(S, A, n_sim, num_cat(A), dims)
sample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = sample(S, A, n_sim, n_cat, (dims,))
function sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
sample!(B, A)
end
function sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
sample!(B, A)
end
# The expected case: vectors of sparse vectors (as their bare components)
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = sample(S, A, n_sim, n_cat, :)
sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = sample(S, A, n_sim, n_cat, :)
function sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, ω = A
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ axes(B, 2)
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
end
B
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
rand!(C, Iₛ)
for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
function sample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N}
B = zeros(S, n_cat, n_sim)
sample!(B, A)
end
# Oddly, the fastest sampler is non-allocating -- most likely due to
# the elimination of store + access instructions associated with using a temporary array.
function sample!(B::AbstractMatrix{S}, A::Vector{Int}) where {S<:Real}
_check_reducedims(B, A)
@inbounds for j ∈ axes(B, 2)
c = rand(A)
B[c, j] += one(S)
end
B
end
################
# General case: dense vectors, the linear index of which indicates the category
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for ω ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of dense vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
ω = A[IA]
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
B
end
# The simplest case: a dense vector
sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = sample(S, A, n_sim, n_cat, :)
sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = sample(S, A, n_sim, n_cat, :)
function sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::Vector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
ω = A
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ axes(B, 2)
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[c, j] += one(S)
end
B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{Tv}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σω = Vector{Tv}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = sample(S, A, n_sim, n_cat, :)
sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = sample(S, A, n_sim, n_cat, :)
function sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::SparseVector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
(; n, nzind, nzval) = A
Iₛ, ω = nzind, nzval
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ axes(B, 2)
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
end
B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 26414 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# Examples: equal probability mass
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = sample(Int, A, 10, 6, (1,))
B′ = dropdims(B, dims=2)
@code_warntype sample!(B, A, (1,))
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = sample(Int, A, 10, 6, (1,))
B′ = dropdims(B, dims=2)
@code_warntype sample!(B, A, (1,))
C = fill(A, 2,3,4);
B = sample(Int, C, 10, 6, (1,3));
@code_warntype sample!(B, C, (1,3))
################
B_1 = sample(Int, A, 1000, 6, (1,));
B_2 = sample_simd(Int, A, 6, 1000);
@benchmark sample!($B_1, $A, $(1,))
@benchmark sample_simd!($B_2, $A)
# Eventually, at num_categories=10^4, num_samples=10^5, the in-order traversal wins
B_3 = sample(Int, C, 1000, 6, (1,2,3));
B_4 = sample_simd(Int, C, 6, 1000);
@benchmark sample!($B_3, $C, $(1,2,3))
@benchmark sample_simd!($B_4, $C)
using Random
A′ = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
A′ = [[1, 1000], [100, 200, 300, 400], [200, 400, 600, 800, 1000, 900]]
# A′ = [[1, 10], [10, 20, 30, 40], [20, 40, 60, 80, 100, 900]]
D′ = fill(A′, 100,50,50);
n_sim = 10^3
@timev B_5 = sample1(Int, D′, n_sim, num_cat(D′), (1,2,3));
@timev B_6 = sample_simd(Int, D′, num_cat(D′), n_sim);
@timev B_7 = sample2(Int, D′, n_sim, num_cat(D′), (1,));
@timev B_7_3 = sample3(Int, D′, n_sim, num_cat(D′), (1,));
@benchmark sample!($B_5, $D′, $(1,2,3))
@benchmark sample_simd!($B_6, $D′)
@benchmark sample2!($B_7, $D′, $(1,2,3))
n_sim = 10^4
@timev B_8 = tsample1(Int, D′, n_sim, num_cat(D′), (1,2,3));
@timev B_9 = tsample_simd(Int, D′, num_cat(D′), n_sim);
@timev B_10 = tsample2(Int, D′, n_sim, num_cat(D′), (1,2,3));
@timev B_11 = tsample3(Int, D′, n_sim, num_cat(D′), (1,2,3));
@timev B_12 = tsample2(Int, D′, 1000, num_cat(D′), (1,));
sum(B_8) == sum(B_9) == sum(B_10)
################################################################
# Examples: unequal probability mass
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
# A = [([1, 1000], [0.3, 0.7]), ([100,200,300,400], [0.2, 0.3, 0.4, 0.1]), ([200, 400, 600, 800, 1000, 900], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
D = fill(A, 100,50,50);
@timev B = sample(Int, A, 1000, num_cat(A), (1,));
@timev B′ = sample(Int, A′, 1000, num_cat(A), (1,));
@timev sample!(B, A, (1,))
n_sim = 10^4
dims = (1,2,3)
@timev B_1 = sample(Int, D, n_sim, num_cat(D), dims);
@timev sample!(B_1, D);
@code_warntype sample!(B_1, D)
@timev B_2 = sample(Int, D′, n_sim, num_cat(D′), dims);
@timev sample!(B_2, D′);
@code_warntype sample!(B_2, D′)
@timev vsample!(B_2, D′);
@timev sample_orderN!(B_2, D′);
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = sample(Int, A, 10, num_cat(A), (1,))
# @timev B_1_4 = sample4(Int, D, n_sim, num_cat(D), dims);
# @timev B_2_4 = sample4(Int, D′, n_sim, num_cat(D′), dims);
# sum(B_1) == sum(B_2) == sum(B_1_4) == sum(B_2_4)
# @timev sum(B_1, dims=2);
# @timev sum(B_1_4, dims=1);
@timev B_3 = tsample(Int, D, 100000, num_cat(D), (1,2,3));
@timev B_4 = tsample(Int, D′, 100000, num_cat(D), (1,2,3));
function countcategory(A::AbstractArray{T, N}) where {T<:Integer, N}
mx = maximum(A)
v = zeros(Int, mx)
@inbounds @simd for i ∈ eachindex(A)
v[A[i]] += 1
end
v
end
#### actual SparseVector
using SparseArrays
Iₛ, ω = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv = SparseVector(4, Iₛ, ω)
@timev (; n, nzind, nzval) = sv
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
A = [sv1, sv2, sv3]
D = fill(A, 100,50,50);
@timev B = sample(Int, D, 1000, dims=(1,2,3));
@timev sample!(B, D);
# nzval must be in order to be a valid SparseVector
sv1 = SparseVector(1000, [1, 1000], [0.3, 0.7])
sv2 = SparseVector(400, [100,200,300,400], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(1000, [200, 400, 600, 800, 900, 1000], [0.1, 0.1, 0.1, 0.1,0.5, 0.1])
A = [sv1, sv2, sv3]
D = fill(A, 100,50,50);
@timev B = sample(Int, D, 1000, dims=(1,2,3));
@timev sample!(B, D);
@code_warntype sample!(B, D)
################################################################
# Limiting chunksize of U; single sparse vectors.
# Equal probability mass
A = [1,2,3,4,5,6]
n_sim = 10^3
B = sample(Int, A, n_sim, num_cat(A), (1,));
@benchmark sample!($B, $A)
@benchmark sample0!($B, $A)
@benchmark sample2!($B, $A)
@code_warntype sample!(B, A)
@code_warntype sample2!(B, A)
sum(B)
@timev sample!(B, A)
@timev sample2!(B, A)
ω = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
Σω = cumsum(ω)
# Unequal probability mass
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
# A = ([1,2,3,4,5,6], [0.1, 0.25, 0.05, 0.25,0.15, 0.2])
n_sim = 10^3
B = sample(Int, A, n_sim, num_cat(A), (1,));
@benchmark sample!($B, $A)
@benchmark sample0!($B, $A)
@benchmark sample2!($B, $A)
@code_warntype sample!(B, A)
@code_warntype sample2!(B, A)
sum(B)
@timev sample!(B, A)
@timev sample2!(B, A)
################
A = [1,2]
B = tsample(Int, A, 10^8);
@timev tsample!(B, A);
@timev tsample0!(B, A);
@timev sample!(B, A);
#### limiting chunksize, larger arrays
# Z = [[rand(1:1000, 5) for _ = 1:3] for _ = 1:50, _ = 1:50, _ = 1:50, _ = 1:10];
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
Z = fill(A, 100,50,50);
n_sim = 10^4
@timev B = sample(Int, Z, n_sim, dims=(1,2,3));
# The smaller chunksize approach actually performs ≈5-8% worse.
@timev sample!(B, Z);
@timev sample2!(B, Z);
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
Z = fill(A, 100,50,50);
n_sim = 10^4
# The smaller chunksize approach actually performs ≈5-8% worse. -- true again for nonequiprobable
@timev B = sample(Int, Z, n_sim, dims=(1,2,3));
@timev sample!(B, Z);
@timev vsample!(B, Z);
@timev sample_orderN!(B, Z);
################################################################
# Marsaglia square histogram
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
n_sim = 10^3
B = sample(Int, A, n_sim, num_cat(A), (1,));
@benchmark sample!($B, $A)
@benchmark sample_mars!($B, $A)
@benchmark sample_mars2!($B, $A)
@benchmark sample_mars3!($B, $A)
@benchmark vsample!($B, $A)
#### Marsaglia, larger arrays
Z = fill(A, 100,50,50);
W = [Z Z Z Z];
n_sim = 10^4;
B = sample(Int, Z, n_sim, dims=:);
@timev sample!(B, Z);
@timev sample_mars!(B, Z);
@timev sample_mars2!(B, Z);
@timev vsample!(B, Z);
@timev vsample!(B, W);
E = zeros(Int, reverse(size(B)));
@timev sample_mars_dim1!(E, Z);
@timev sample_mars_dim1_4!(E, Z);
a = [1,2,3,4,5,6]
D′ = fill(a, 100,50,50);
B = zeros(6, 10000);
@benchmark sample_orderN!($B, $a)
@benchmark sample!($B, $a)
@benchmark vsample!($B, $a)
@benchmark sample!($B, $D′)
@benchmark vsample!($B, $D′)
@timev vtsample!(B, D′);
@timev tsample!(B, D′);
B′ = zeros(Int, 6, 10^6);
@timev vtsample!(B′, D′);
@timev tsample!(B′, D′);
# Threading with polyester
using Polyester
using VectorizationBase, Static
VectorizationBase.num_cores() = static(48)
B2 = zeros(Int, 6, 10^5);
@timev vtsample!(B2, D′, 10^4);
@timev vtsample!(B2, D′, 2 * 10^4);
@timev vtsample!(B′, D′, 2 * 10^4);
@timev vtsample!(B2, Z, chunksize=5000)
# 1.
using Random
using LoopVectorization
using Polyester
using SparseArrays
# 2. include's
# 3.
using VectorizationBase, Static
VectorizationBase.num_cores() = static(48)
B = zeros(Int, 6, 10^6);
v2 = [[1,2,3,4], [1,2,3,4,5,6]]
B2 = vtsample(Int, v2, 10^4, chunksize=500)
@code_warntype vtsample!(B2, [[.5, .5], [.2, .8]], 500)
@timev vtsample(Int, [.5, .5], 10000, chunksize=500)
@timev vtsample(Int, [1,2], 10000, chunksize=500)
@timev vtsample!(B, D′, chunksize=10000);
@timev vtsample!(B, Z, chunksize=10000);
@timev vtsample!(B, D′, chunksize=1000);
@timev vtsample!(B, Z, chunksize=1000);
@timev vtsample!(B, D′, chunksize=100);
@timev vtsample!(B, Z, chunksize=100);
B .= 0;
sum(B, dims=2)
sum(length, Z) * 6 * size(B, 2)
################################################################
# Experiment with using a view to enable @turbo use everywhere
# Preliminary conclusion: not really much gain/loss in terms of time;
# the axes call on the view invokes some unnecessary allocations which can be
# alleviated by simply using axes(B, 2)
# Ultimately, it is likely not worth it to attempt it, as it is not really SIMD fodder
# due to the random nature of the indices; forcing SIMD will very likely
# make performance worse for any reasonable number of categories.
# Moreover, the random nature of the memory location being written to makes it an unsafe
# operation -- silent problems, but corrupted memory nonetheless.
## Addendum
# Memory would not be corrupted as each `j`-index is unique.
function vsample2!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
Bv = view(B, :, :, IR)
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
@turbo for j ∈ indices((B, C), (2, 1))#axes(B, 2)#indices((Bv, C), (2, 1)) # axes(Bv, 2)
c = C[j]
Bv[Iₛ[c], j] += one(S)
end
end
end
B
end
function vsample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
Bv = view(B, :, :, IR)
n = length(Iₛ)
vgenerate!(C, U, n)
@turbo for j ∈ axes(B, 2)
c = C[j]
Bv[Iₛ[c], j] += one(S)
end
end
B
end
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]];
D = fill(A, 10,10,10);
B = vsample(Int, D, 10000, dims=(1,3));
@benchmark vsample!($B, $D)
@benchmark vsample2!($B, $D)
@benchmark vsample3!($B, $D)
vsample2!(B, D);
@timev vsample!(B, Z);
@timev vsample2!(B, Z);
#
OB = OffsetArray(B, 1:6, 0:9999, 1:1, 1:1, 1:1);
vsample3!(OB, D);
OB2 = OffsetArray(B, 1:6, -5000:4999, 1:1, 1:1, 1:1);
vsample3!(OB2, D)
OB3 = OffsetArray(B, 1:6, 0:9999, 0:0, 0:0, 2:2);
vsample3!(OB3, D)
# much worse with @simd ivdep
function vsample3!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
function vsample3!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
vgenerate!(C, U, n)
@simd ivdep for j ∈ eachindex(axes(B, 2), C)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# Oddly, the fastest vsampler is non-allocating -- most likely due to
# the elimination of store + access instructions associated with using a temporary array.
function vsample2!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
# C = vgenerate(n, size(B, 2))
@inbounds for j ∈ axes(B, 2)
c = generate(n)
B[Iₛ[c], j] += one(S)
end
B
end
function vsample3!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
# C = vgenerate(n, size(B, 2))
@inbounds @simd ivdep for j ∈ axes(B, 2)
c = generate(n)
B[Iₛ[c], j] += one(S)
end
B
end
################
# Dimension experiments
#### Preliminary conclusion
# As expected, when the number of categories is small, i.e. 𝒪(1), simulation index being
# on the first dimension presents considerable advantages: ≈ 4x faster than by it being on
# the second dimension. However, as the number of categories increases to 𝒪(10) (and beyond),
# there is no difference in performance. Intuitively, this makes sense, as in the case of
# 𝒪(1) categories the instruction pipelining would be able to recognize that the same
# few chunks of memory are needed; even if it cannot figure it out, the same couple
# pieces of memory would always be in the cache simply on the basis of demand.
# as the number of categories increases, instruction pipelining would assuredly break down,
# and, regardless, there would be more variability in the memory demand. Consequently,
# this makes it increasingly unlikely that all require memory might be in the cache
# at any given time. This implies a scaling with cache size -- if cache permits it,
# then simulation index on first dimension will be superior. If not, then it's a wash.
# Notably, for most practical applications, number of categories is probably sufficient to
# make it a wash. Nonetheless, it is interesting to verify the theoretical prediction
# of superior performance when placing simulation index on first dimension.
#### A second look -- 1ˢᵗ dimension: simulation index, 2ⁿᵈ dimension: category index
## 1.
# There are advantages to placing simulations on the 1ˢᵗ dimension when considering
# scalar reductions, e.g. `+`, `max`, `min`; `mean`, `var` (variations on `mapreducethen`).
# However, if manipulating a whole simulation, then it is advantageous to place simulations
# on the 2ⁿᵈ dimension. Whole simulation transformations are more rare than scalar
# transformations/reductions. Notably, non-scalar transformations/reductions are almost
# inevitably bespoke affairs due to the difficult nature of a general programming model
# for non-scalar operations (`mapslices` exists, but `mapsubslices` does not).
# Thus, most users would invoke scalar operations, and for non-scalar, write their own.
# It seems important to have the scalar reductions be fast by default, rather than
# have the non-scalar be fast but rarely used.
# ∴ If non-scalar transformations/reductions are desired, the burden is on the user
# to implement them efficiently, either via permuting the dimensions, or some other scheme.
# -- Another option is to provide both methods, as constructing the transpose
# (1ˢᵗ: category, 2ⁿᵈ: simulation) directly may be useful. --
## 2.
# Placing simulation index on the 1ˢᵗ dimension and category index on the 2ⁿᵈ dimension
# also enables performance gains during sampling, if the data permit.
# Fundamentally, the performance gain during sampling with 1ˢᵗ: simulation, 2ⁿᵈ: category
# occurs due to the fact that for a subset of categories, fewer memory blocks are needed
# in the cache to complete 1,…,N simulations. Conversely, 1ˢᵗ: category, 2ⁿᵈ: simulation
# guarantees that at least one block must be loaded for each simulation -- a full
# traversal, with the block loaded on each simulation random by definition.
# What if the number of categories is large? (under 1ˢᵗ: sim, 2ⁿᵈ: cat)
# - In the worse case, all categories are involved, and one is randomly loading
# columns -- an equivalent situation to the default under 1ˢᵗ: cat, 2ⁿᵈ: sim.
# - Even if the number of categories being sampled is large, if it is some subset
# of the total, then less than a full traversal occurs.
# ∴ any time n_cat < N_cat, it is better to have simulation index on the 1ˢᵗ dimension.
##
# Taken together, these two aspects provide strong motivation for 1ˢᵗ: sim, 2ⁿᵈ: cat.
################
function vsample2_dim1!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
@inbounds for i ∈ axes(B, 1)
c = generate(n)
B[i, Iₛ[c]] += one(S)
end
B
end
function vsample3_dim1!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
function vsample3_dim1!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
vtsample_dim1!(B, A; chunksize::Int=5000) = vtsample_dim1!(B, A, chunksize)
function vtsample_dim1!(B, A, chunksize::Int)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk_dim1!(B, A, keep, default, r)
end
return B
end
function _vsample_chunk_dim1!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
n_cat = 10^3
D = [[rand(1:n_cat, 2), rand(1:n_cat, 4), rand(1:n_cat, 6)] for _ = 1:10, _ = 1:10, _ = 1:10];
E = [[(rand(1:n_cat, 2), normalize1!(rand(2))),
(rand(1:n_cat, 4), normalize1!(rand(4))),
(rand(1:n_cat, 6), normalize1!(rand(4)))] for _ = 1:10, _ = 1:10, _ = 1:10];
E2 = [[(rand(1:n_cat, 20), normalize1!(rand(20))),
(rand(1:n_cat, 40), normalize1!(rand(40))),
(rand(1:n_cat, 60), normalize1!(rand(40)))] for _ = 1:10, _ = 1:10, _ = 1:10];
# # Equal sized output.
# B = zeros(Int, n_cat,n_cat,1,1,1);
# @benchmark vsample!($B, $D)
# @benchmark vsample3_dim1!($B, $D)
# @benchmark vsample!($B, $E)
# @benchmark vsample3_dim1!($B, $E)
# @benchmark vsample!($B, $E2)
# @benchmark vsample3_dim1!($B, $E2)
# appropriately sized
n_sim = 10^3
B_dim2 = zeros(Int, n_cat, n_sim);
B_dim1 = zeros(Int, n_sim, n_cat);
@benchmark vsample!($B_dim2, $D)
@benchmark vsample3_dim1!($B_dim1, $D)
@benchmark vsample!($B_dim2, $E)
@benchmark vsample3_dim1!($B_dim1, $E)
@benchmark vsample!($B_dim2, $E2)
@benchmark vsample3_dim1!($B_dim1, $E2)
# larger simulation number
n_sim = 10^4
B_dim2 = zeros(Int, n_cat, n_sim);
B_dim1 = zeros(Int, n_sim, n_cat);
@benchmark vsample!($B_dim2, $D)
@benchmark vsample3_dim1!($B_dim1, $D)
@benchmark vsample!($B_dim2, $E)
@benchmark vsample3_dim1!($B_dim1, $E)
@benchmark vsample!($B_dim2, $E2)
@benchmark vsample3_dim1!($B_dim1, $E2)
# artificially inflated number of categories
n_cat = 10^4
B_dim2 = zeros(Int, n_cat, n_sim);
B_dim1 = zeros(Int, n_sim, n_cat);
@benchmark vsample!($B_dim2, $D)
@benchmark vsample3_dim1!($B_dim1, $D)
@benchmark vsample!($B_dim2, $E)
@benchmark vsample3_dim1!($B_dim1, $E)
@benchmark vsample!($B_dim2, $E2)
@benchmark vsample3_dim1!($B_dim1, $E2)
# large difference in tile size
n_cat, n_sim = 10^3, 10^5
B_dim2 = zeros(Int, n_cat, n_sim);
B_dim1 = zeros(Int, n_sim, n_cat);
@benchmark vsample!($B_dim2, $D)
@benchmark vsample3_dim1!($B_dim1, $D)
@benchmark vsample!($B_dim2, $E)
@benchmark vsample3_dim1!($B_dim1, $E)
@benchmark vsample!($B_dim2, $E2)
@benchmark vsample3_dim1!($B_dim1, $E2)
# no reduction
n_cat, n_sim = 10^3, 10^3
B_dim2 = zeros(Int, n_cat, n_sim, 10, 10, 10);
B_dim1 = zeros(Int, n_sim, n_cat, 10, 10, 10);
@benchmark vsample!($B_dim2, $D)
@benchmark vsample3_dim1!($B_dim1, $D)
@benchmark vsample!($B_dim2, $E)
@benchmark vsample3_dim1!($B_dim1, $E)
@benchmark vsample!($B_dim2, $E2)
@benchmark vsample3_dim1!($B_dim1, $E2)
A₀ = 𝓃𝓂Is
a₀ = A₀[findfirst(!isempty, A₀)]
a = map(Is -> algorithm2_2(Is, (𝐰ₐ′, F)), a₀)
𝑓(Is, ws) = Is[1], algorithm2_2(Is, ws)
𝑓(Is) = 𝑓(Is, (𝐰ₐ′, F))
map(𝑓, a₀)
𝑚𝑓(x) = isempty(x) ? Vector{Tuple{Vector{Int}, Vector{Float64}}}() : map(𝑓, x)
A = map(𝑚𝑓, A₀);
# simulation index on dim2
@timev B = vsample(Int, A, 10^3, dims=:);
@timev vsample!(B, A);
@timev Bt = vtsample(Int, A, 10^5, dims=:);
@timev vtsample!(Bt, A);
# simulation index on dim1
B_dim1 = zeros(Int, 10^3, 13797);
@timev vsample3_dim1!(B_dim1, A);
Bt_dim1 = zeros(Int, 10^5, 13797);
@timev vtsample_dim1!(Bt_dim1, A);
# partial reduction
B = vsample(Int, A, 10^2, dims=(2,3,4,5));
# threading examples
n_cat, n_sim = 10^3, 10^5
B_dim2 = zeros(Int, n_cat, n_sim, 1, 1, 1);
B_dim1 = zeros(Int, n_sim, n_cat, 1, 1, 1);
@benchmark vtsample!($B_dim2, $D, chunksize=10000)
@benchmark vtsample_dim1!($B_dim1, $D, chunksize=10000)
@benchmark vtsample!($B_dim2, $E, chunksize=10000)
@benchmark vtsample_dim1!($B_dim1, $E, chunksize=10000)
@benchmark vtsample!($B_dim2, $E2, chunksize=10000)
@benchmark vtsample_dim1!($B_dim1, $E2, chunksize=10000)
@benchmark vtsample!($B_dim2, $D, chunksize=5000)
@benchmark vtsample_dim1!($B_dim1, $D, chunksize=5000)
@benchmark vtsample!($B_dim2, $E, chunksize=5000)
@benchmark vtsample_dim1!($B_dim1, $E, chunksize=5000)
@benchmark vtsample!($B_dim2, $E2, chunksize=5000)
@benchmark vtsample_dim1!($B_dim1, $E2, chunksize=5000)
n_cat, n_sim = 10^4, 10^5
B_dim2 = zeros(Int, n_cat, n_sim, 1, 1, 1);
B_dim1 = zeros(Int, n_sim, n_cat, 1, 1, 1);
# @benchmark vtsample!($B_dim2, $D, chunksize=10000)
# @benchmark vtsample_dim1!($B_dim1, $D, chunksize=10000)
@benchmark vtsample!($B_dim2, $E, chunksize=10000)
@benchmark vtsample_dim1!($B_dim1, $E, chunksize=10000)
@benchmark vtsample!($B_dim2, $E2, chunksize=10000)
@benchmark vtsample_dim1!($B_dim1, $E2, chunksize=10000)
# @benchmark vtsample!($B_dim2, $D, chunksize=5000)
# @benchmark vtsample_dim1!($B_dim1, $D, chunksize=5000)
@benchmark vtsample!($B_dim2, $E, chunksize=5000)
@benchmark vtsample_dim1!($B_dim1, $E, chunksize=5000)
@benchmark vtsample!($B_dim2, $E2, chunksize=5000)
@benchmark vtsample_dim1!($B_dim1, $E2, chunksize=5000)
# @turbo on the additions: small speed gain, but more temporaries -- probably not worth
# it given the potential problems with non-unit strides when working across multiple
# dimensions.
B = B_dim2;
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
rs = splitranges(firstindex(B, 2):lastindex(B, 2), 10000);
𝒥 = rs[1]
B .= 0;
@benchmark _vsample_chunk!($B_dim2, $E, $keep, $default, $𝒥)
@benchmark _vsample_chunk2!($B_dim2, $E, $keep, $default, $𝒥)
@benchmark _vsample_chunk!($B_dim2, $E2, $keep, $default, $𝒥)
@benchmark _vsample_chunk2!($B_dim2, $E2, $keep, $default, $𝒥)
@benchmark _vsample_chunk_dim1!($B_dim1, $E, $keep, $default, $𝒥)
@benchmark _vsample_chunk_dim1_2!($B_dim1, $E, $keep, $default, $𝒥)
@benchmark _vsample_chunk_dim1!($B_dim1, $E2, $keep, $default, $𝒥)
@benchmark _vsample_chunk_dim1_2!($B_dim1, $E2, $keep, $default, $𝒥)
function _vsample_chunk2!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(𝒥))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
Bv = view(B, :, 𝒥, IR)
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
@turbo for j ∈ indices((Bv, C), (2, 1))
c = C[j]
Bv[Iₛ[c], j] += one(S)
end
end
end
return B
end
function _vsample_chunk_dim1_2!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
Bv = view(B, ℐ, :, IR)
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
@turbo for i ∈ indices((Bv, C), (1, 1))
c = C[i]
Bv[i, Iₛ[c]] += one(S)
end
end
end
return B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 29176 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
function sample1(::Type{S}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T<:AbstractFloat, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))..., n_sim)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample1!(B, A, dims)
end
function sample1!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {T<:AbstractFloat, N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
for j ∈ axes(B, N′)
for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
c = categorical(ω)
B[Iₛ[c], IR, j] += one(S)
end
end
end
B
end
function sample1(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))..., n_sim)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample1!(B, A, dims)
end
function sample1!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
for j ∈ axes(B, N′)
for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
c = rand(Iₛ)
B[c, IR, j] += one(S)
end
end
end
B
end
function tsample1(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))..., n_sim)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
tsample!(B, A, dims)
end
function tsample1!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
Threads.@threads for j ∈ axes(B, N′)
for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
c = rand(Iₛ)
B[c, IR, j] += one(S)
end
end
end
B
end
# As the input array becomes large, SIMD PRNG sampling tends to be better
# due to the fact that each element of A is accessed only once.
# -- There is always the option of sampling across the j-indices of B
# and placing dimensions of A on the 3rd...end positions.
# If annotated with @inbounds and @simd, this is as fast (or faster) than
# the simple `sample_simd` approach.
function sample2(::Type{S}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T<:AbstractFloat, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample2!(B, A, dims)
end
function sample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {T<:AbstractFloat, N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
C = Vector{Int}(undef, size(B, 2))
U = Vector{Float64}(undef, size(B, 2))
Σp = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σp, length(ω))
cumsum!(Σp, ω)
categorical!(C, U, Σp)
@simd for j ∈ axes(B, 2) # ArrayInterface.indices((B, C), (2, 1))
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
function sample2(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample2!(B, A, dims)
end
function sample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
C = Vector{Int}(undef, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
@simd for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
end
B
end
function tsample2(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
tsample2!(B, A, dims)
end
function tsample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
tsample2!(B, A, keep, default, firstindex(B, 2):size(B, 2))
end
function tsample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L) # similar(𝒥, Int)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
@simd for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample2!(B, A, keep, default, start:h)
tsample2!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
function sample3(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))..., n_sim)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample3!(B, A, dims)
end
function sample3!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
C = Vector{Int}(undef, size(B, N′))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
@simd for j ∈ axes(B, N′)
c = C[j]
B[c, IR, j] += one(S)
end
end
end
B
end
function tsample3(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))..., n_sim)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
tsample3!(B, A, dims)
end
function tsample3!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
tsample3!(B, A, keep, default, firstindex(B, N′):size(B, N′))
end
function tsample3!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L) # similar(𝒥, Int)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
@simd for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, IR, j] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample3!(B, A, keep, default, start:h)
tsample3!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
################
# Sampler which has simulation index on first dimension, categories on second dimension
# Follows sample2's convention otherwise
# Alas, this does not make much difference.
# While only a few categories would potentially occur on each rand! + increment
# (the innermost body + loop), these categories are random, hence, the instruction pipeline
# is most likely unable to do useful prediction. Finding the appropriate columns
# myself would not be very useful either, as this would require a view (which costs)
# in addition to other costs.
function sample4(::Type{S}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T<:AbstractFloat, N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample4!(B, A, dims)
end
function sample4!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {T<:AbstractFloat, N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
C = Vector{Int}(undef, size(B, 1))
U = Vector{Float64}(undef, size(B, 1))
Σp = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σp, length(ω))
cumsum!(Σp, ω)
categorical!(C, U, Σp)
@simd for j ∈ axes(B, 1) # ArrayInterface.indices((B, C), (2, 1))
c = C[j]
B[j, Iₛ[c], IR] += one(S)
end
end
end
B
end
function sample4(::Type{S}, A::AbstractArray{Vector{Vector{Int}}, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = similar(A, S, Dᴮ)
fill!(B, zero(S))
sample4!(B, A, dims)
end
function sample4!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}, dims::NTuple{P, Int}) where {S<:Real, N′} where {P} where {N}
keep = ntuple(d -> d ∉ dims, Val(N))
default = ntuple(d -> firstindex(A, d), Val(N))
C = Vector{Int}(undef, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
@simd for j ∈ axes(B, 1)
c = C[j]
B[j, c, IR] += one(S)
end
end
end
B
end
################
# Non-allocating versions
# Oddly, the performance of the non-allocating variants differs on the
# array of vector / array of array of vector cases (compared to the single sparse vector case).
# As the arrays become large, O(10^4), for the Vector{Int} cases,
# the temporary array is faster by 20-25%. For the Tuple{Vector{Int}, Vector{<:AbstractFloat}}
# case, the temporary array is 10% slower.
# This needs more extensive benchmarking to determine which is optimal -- the answer
# very likely depends on the scale of the problem (n_sim and n_cat) and very likely
# the distributions of probability mass (more uniform being worse?).
function sample0!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
for j ∈ axes(B, 2)
c = rand_invcdf(Σω)
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
function sample0!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
resize!(Σω, length(ω))
cumsum!(Σω, ω)
for j ∈ axes(B, 2)
c = rand_invcdf(Σω)
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
function sample0!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
for j ∈ axes(B, 2)
c = rand(Iₛ)
B[c, j, IR] += one(S)
end
end
end
B
end
################
# Limiting chunksize
# The smaller chunksize approach actually performs ≈5-8% worse for both
# the equiprobable and nonequiprobable cases.
function sample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{T}}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
Σω = Vector{T}()
q, r = divrem(size(B, 2), 1024)
if q == 0
C = Vector{Int}(undef, r)
U = Vector{Float64}(undef, r)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
end
else
C = Vector{Int}(undef, 1024)
U = Vector{Float64}(undef, 1024)
ax = axes(B, 2)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(C, 1024)
resize!(U, 1024)
resize!(Σω, length(ω))
cumsum!(Σω, ω)
J = iterate(ax)
for _ = 1:q
categorical!(C, U, Σω)
for c ∈ C
j, js = J
B[Iₛ[c], j, IR] += one(S)
J = iterate(ax, j)
end
end
if r != 0
resize!(C, r)
resize!(U, r)
categorical!(C, U, Σω)
for c ∈ C
j, js = J
B[Iₛ[c], j, IR] += one(S)
J = iterate(ax, j)
end
end
end
end
end
B
end
function sample2!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Vector{Int}}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
q, r = divrem(size(B, 2), 1024)
if q == 0
C = Vector{Int}(undef, r)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
for j ∈ axes(B, 2)
c = C[j]
B[c, j, IR] += one(S)
end
end
end
else
C = Vector{Int}(undef, 1024)
ax = axes(B, 2)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
resize!(C, 1024)
J = iterate(ax)
for _ = 1:q
rand!(C, Iₛ)
for c ∈ C
j, js = J
B[c, j, IR] += one(S)
J = iterate(ax, j)
end
end
if r != 0
resize!(C, r)
rand!(C, Iₛ)
for c ∈ C
j, js = J
B[c, j, IR] += one(S)
J = iterate(ax, j)
end
end
end
end
end
B
end
@inline function _unsafe_sample!(B::AbstractArray{S}, Iₛ, Σω, U, ax, J, k, s₀) where {S<:Real}
@inbounds for i ∈ eachindex(U)
j, js = J
u = U[i]
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
J = iterate(ax, j)
end
J
end
# limiting the chunksize of U
# Other than saving on the memory allocation, this is equivalent speed to the simpler method.
function sample2!(B::AbstractArray{S, N′}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real, N′} where {T<:AbstractFloat}
Iₛ, ω = A
Σω = cumsum(ω)
k = length(ω)
s₀ = Σω[1]
q, r = divrem(size(B, 2), 1024)
if q == 0
U = rand(r)
@inbounds for j ∈ axes(B, 2)
u = U[j]
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
end
else
U = Vector{Float64}(undef, 1024)
ax = axes(B, 2)
J = iterate(ax)
for _ = 1:q
rand!(U)
J = _unsafe_sample!(B, Iₛ, Σω, U, ax, J, k, s₀)
end
if r != 0
resize!(U, r)
rand!(U)
_unsafe_sample!(B, Iₛ, Σω, U, ax, J, k, s₀)
end
end
B
end
################
# Marsaglia square histogram method
# The expected case: vectors of sparse vectors (as their bare components)
function sample_mars!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
K, V = Vector{Int}(), Vector{T}()
ix, q = Vector{Int}(), Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, K, V)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample_mars!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 2))
K, V = Vector{Int}(), Vector{T}()
ix, q = Vector{Int}(), Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate!(C, K, V)
for j ∈ axes(B, 2)
c = C[j]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
function sample_mars_dim1_4!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C = Vector{Int}(undef, size(B, 1))
U = Vector{Float64}(undef, size(B, 1))
K, V = Vector{Int}(), Vector{T}()
ix, q = Vector{Int}(), Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
n = length(ω)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
marsaglia!(K, V, q, ix, ω)
marsaglia_generate5!(C, U, K, V)
for j ∈ axes(B, 1)
c = C[j]
B[j, Iₛ[c], IR] += one(S)
end
# @inbounds for j ∈ axes(B, 1)
# u = rand()
# j′ = floor(Int, muladd(u, n, 1))
# c = u < V[j′] ? j′ : K[j′]
# B[j, Iₛ[c], IR] += one(S)
# end
end
B
end
# The simplest case: a sparse vector
sample_mars(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = sample_mars(S, A, n_sim, n_cat, :)
sample_mars(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = sample_mars(S, A, n_sim, n_cat, :)
function sample_mars(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
sample_mars!(B, A)
end
function sample_mars!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, ω = A
# k = length(ω)
# Σω = cumsum(ω)
# s₀ = Σω[1]
K, V = marsaglia(ω)
n = length(K)
@inbounds for j ∈ axes(B, 2)
u = rand()
j′ = floor(Int, muladd(u, n, 1))
c = u < V[j′] ? j′ : K[j′]
B[Iₛ[c], j] += one(S)
end
# C = Vector{Int}(undef, size(B, 2))
# # marsaglia_generate!(C, K, V)
# marsaglia_generate4!(C, K, V)
# @inbounds for j ∈ eachindex(axes(B, 2), C)
# B[Iₛ[C[j]], j] += one(S)
# end
B
end
#### Threading experiments
"""
splitranges(start, stop, chunksize)
Divide the range `start:stop` into segments, each of size `chunksize`.
The last segment will contain the remainder, `(start - stop + 1) % chunksize`,
if it exists.
"""
function splitranges(start::Int, stop::Int, Lc::Int)
L = stop - start + 1
n, r = divrem(L, Lc)
ranges = Vector{UnitRange{Int}}(undef, r == 0 ? n : n + 1)
l = start
@inbounds for i = 1:n
l′ = l
l += Lc
ranges[i] = l′:(l - 1)
end
if r != 0
@inbounds ranges[n + 1] = (stop - r + 1):stop
end
return ranges
end
"""
splitranges(ur::UnitRange{Int}, chunksize)
Divide the range `ur` into segments, each of size `chunksize`.
"""
splitranges(ur::UnitRange{Int}, Lc::Int) = splitranges(ur.start, ur.stop, Lc)
function _vtsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
L = length(𝒥)
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
K, V = Vector{Int}(), Vector{Float64}()
ix, q = Vector{Int}(), Vector{Float64}()
ω = Vector{Float64}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
resize!(K, n); resize!(V, n); resize!(ix, n); resize!(q, n)
resize!(ω, n)
fill!(ω, inv(n))
marsaglia!(K, V, q, ix, ω)
vmarsaglia_generate!(C, U, K, V)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
end
function vtsample_poly!(B, A, sz::Int)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
rs = splitranges(firstindex(B, 2):size(B, 2), sz)
@batch for r in rs
_vtsample_chunk!(B, A, keep, default, r)
end
B
end
function vtsample!(B, A; tiling=:batch, chunksize=5000)
tiling === :batch || tiling === :recursive || throw(ArgumentError(lazy"tiling must be either :batch or :recursive, got $tiling"))
if tiling !== :batch
vtsample!(B, A)
else
vtsample_poly!(B, A, chunksize)
end
B
end
################
# Reference sampler which is as simple as possible.
function sample_simd!(B::Matrix{T}, A::Vector{Vector{Int}}) where {T<:Real}
c = Vector{Int}(undef, size(B, 2))
@inbounds for m ∈ eachindex(A)
Iₛ = A[m]
if length(Iₛ) == 1
@inbounds i = Iₛ[1]
@inbounds @simd ivdep for j ∈ axes(B, 2)
B[i, j] += one(T)
end
else
rand!(c, Iₛ)
@inbounds @simd for j ∈ axes(B, 2)
i = c[j]
B[i, j] += one(T)
end
end
end
return B
end
sample_simd(::Type{T}, A::Vector{Vector{Int}}, I::Int, J::Int) where {T<:Real} =
sample_simd!(zeros(T, I, J), A)
function sample_simd!(B::Matrix{T}, A::Array{Vector{Vector{Int}}, N}) where {T<:Real} where {N}
c = Vector{Int}(undef, size(B, 2))
@inbounds for n ∈ eachindex(A)
a = A[n]
for m ∈ eachindex(a)
Iₛ = a[m]
if length(Iₛ) == 1
@inbounds i = Iₛ[1]
@inbounds @simd ivdep for j ∈ axes(B, 2)
B[i, j] += one(T)
end
else
rand!(c, Iₛ)
@inbounds @simd for j ∈ axes(B, 2)
i = c[j]
B[i, j] += one(T)
end
end
end
end
return B
end
sample_simd(::Type{T}, A::Array{Vector{Vector{Int}}, N}, I::Int, J::Int) where {T<:Real, N} =
sample_simd!(zeros(T, I, J), A)
function tsample_simd!(B::Matrix{T}, A::Vector{Vector{Int}}, 𝒥::UnitRange{Int}) where {T<:Real}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
c = Vector{Int}(undef, L)
@inbounds for m ∈ eachindex(A)
Iₛ = A[m]
if length(Iₛ) == 1
@inbounds i = Iₛ[1]
@inbounds @simd ivdep for j ∈ 𝒥
B[i, j] += one(T)
end
else
rand!(c, Iₛ)
@inbounds @simd for l ∈ eachindex(𝒥)
i = c[l]
B[i, 𝒥[l]] += one(T)
end
end
end
return B
else
H = (start + stop) >> 1
@sync begin
Threads.@spawn tsample_simd!(B, A, start:H)
tsample_simd!(B, A, (H + 1):stop)
end
return B
end
return B
end
tsample_simd!(B::Matrix{T}, A::Vector{Vector{Int}}) where {T<:Real} = tsample_simd!(B, A, 1:size(B, 2))
tsample_simd(::Type{T}, A::Vector{Vector{Int}}, I::Int, J::Int) where {T<:Real} =
tsample_simd!(zeros(T, I, J), A, 1:J)
function tsample_simd!(B::Matrix{T}, A::Array{Vector{Vector{Int}}, N}, 𝒥::UnitRange{Int}) where {T<:Real} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
c = Vector{Int}(undef, L)
@inbounds for n ∈ eachindex(A)
a = A[n]
for m ∈ eachindex(a)
Iₛ = a[m]
if length(Iₛ) == 1
@inbounds i = Iₛ[1]
@inbounds @simd ivdep for j ∈ 𝒥
B[i, j] += one(T)
end
else
rand!(c, Iₛ)
@inbounds @simd for l ∈ eachindex(𝒥)
i = c[l]
B[i, 𝒥[l]] += one(T)
end
end
end
end
return B
else
H = (start + stop) >> 1
@sync begin
Threads.@spawn tsample_simd!(B, A, start:H)
tsample_simd!(B, A, (H + 1):stop)
end
return B
end
end
tsample_simd!(B::Matrix{T}, A::Array{Vector{Vector{Int}}, N}) where {T<:Real} where {N} =
tsample_simd!(B, A, 1:size(B, 2))
tsample_simd(::Type{T}, A::Array{Vector{Vector{Int}}, N}, I::Int, J::Int) where {T<:Real} where {N} = tsample_simd!(zeros(T, I, J), A, 1:J)
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 15422 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# mirror of sampler.jl; separate file for variants on threading
# The bare minimum for `sample` interface-- covers all 4 other definitions.
tsample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = tsample(S, A, n_sim, n_cat, dims)
tsample(::Type{S}, A, n_sim; dims=:) where {S} = tsample(S, A, n_sim, num_cat(A), dims)
tsample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = tsample(S, A, n_sim, n_cat, (dims,))
function tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
tsample!(B, A)
end
function tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
tsample!(B, A)
end
# for recursive spawning
function tsample!(B, A)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
tsample!(B, A, keep, default, firstindex(B, 2):size(B, 2))
end
# The expected case: vectors of sparse vectors (as their bare components)
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, ω) ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, ω = A[IA]
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::Tuple{Vector{Int}, Vector{<:AbstractFloat}})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
Iₛ, ω = A
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ 𝒥
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
rand!(C, Iₛ)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
rand!(C, Iₛ)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
function tsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
# Trivial parallelism is preferable here, but it's not safe!
# These are questionable methods (though, the function barrier approach is safe).
# @inline function _tsample!(B::AbstractMatrix{S}, A::Vector{Int}, j::Int) where {S<:Real}
# c = rand(A)
# @inbounds B[c, j] += one(S)
# B
# end
# function tsample0!(B::AbstractMatrix{S}, A::Vector{Int}) where {S<:Real}
# _check_reducedims(B, A)
# # @inbounds Threads.@threads for j ∈ axes(B, 2)
# # c = rand(A)
# # B[c, j] += one(S)
# # end
# @inbounds Threads.@threads for j ∈ axes(B, 2)
# _tsample!(B, A, j)
# end
# B
# end
function tsample!(B::AbstractMatrix, A::Vector{Int})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Vector{Int}, 𝒥::UnitRange{Int}) where {S<:Real}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
@inbounds for j ∈ 𝒥
c = rand(A)
B[c, j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: dense vectors, the linear index of which indicates the category
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for ω ∈ a
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of dense vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{T}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
ω = A[IA]
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[c, j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a dense vector
tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::Vector{<:AbstractFloat})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::Vector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
ω = A
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ 𝒥
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[c, j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
################
# General case: sparse vectors, the nzval of which indicates the category
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{Tv}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# A simplification: an array of sparse vectors
function tsample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}, keep, default, 𝒥::UnitRange{Int}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1024
C = Vector{Int}(undef, L)
U = Vector{Float64}(undef, L)
Σω = Vector{Tv}()
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
(; n, nzind, nzval) = sv
Iₛ, ω = nzind, nzval
resize!(Σω, length(ω))
cumsum!(Σω, ω)
categorical!(C, U, Σω)
for l ∈ eachindex(C, 𝒥)
c = C[l]
j = 𝒥[l]
B[Iₛ[c], j, IR] += one(S)
end
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, keep, default, start:h)
tsample!(B, A, keep, default, (h + 1):stop)
end
return B
end
end
# The simplest case: a sparse vector
tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = tsample(S, A, n_sim, n_cat, :)
tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = tsample(S, A, n_sim, n_cat, :)
function tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
tsample!(B, A)
end
function tsample!(B::AbstractMatrix, A::SparseVector{<:AbstractFloat})
_check_reducedims(B, A)
tsample!(B, A, firstindex(B, 2):size(B, 2))
end
function tsample!(B::AbstractMatrix{S}, A::SparseVector{T}, 𝒥::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
(; start, stop) = 𝒥
L = stop - start + 1
if L ≤ 1048576
(; n, nzind, nzval) = A
Iₛ, ω = nzind, nzval
k = length(ω)
Σω = cumsum(ω)
s₀ = Σω[1]
@inbounds for j ∈ 𝒥
u = rand()
c = 1
s = s₀
while s < u && c < k
c += 1
s = Σω[c]
end
B[Iₛ[c], j] += one(S)
end
return B
else
h = (start + stop) >> 1
@sync begin
Threads.@spawn tsample!(B, A, start:h)
tsample!(B, A, (h + 1):stop)
end
return B
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 13473 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# A ∈ 𝔻ᴰ¹ˣᴰ²ˣᴰ³ˣ⋯ ; eltype(A) = Vector{Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# (Iₛ, ω) OR (Iₛ, Σω)
# Each sampling routine is identical: unpack the tuple, draw c ~ Categorical(ω) and
# obtain the real category as Iₛ[c].
# This enables an encapsulation of all PVG-induced variability, hence, a consistent
# interface for the sampler.
# Technically, `sample` only needs to know ndims(A), not necessarily the element type.
# The appropriate dispatch on element type is necessary for `sample!`
# `sample` could instead use
# A::AbstractArray{U, N} where {U<:Union{Vector{Tuple{Vector{Int}, Vector{T}}}, Tuple{Vector{Int}, Vector{T}}}} where {T<:AbstractFloat}
# Actually, this should ideally support:
# array of array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:AbstractArray{S, M}} where {M} where {S<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# (sparse) vector
# A::Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# The bare minimum for `sample` interface-- covers all 4 other definitions.
# vsample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = vsample(S, A, n_sim, n_cat, dims)
# vsample(::Type{S}, A, n_sim; dims=:) where {S} = vsample(S, A, n_sim, num_cat(A), dims)
# vsample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = vsample(S, A, n_sim, n_cat, (dims,))
# function vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
# Dᴬ = size(A)
# Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
# B = fill!(similar(A, S, Dᴮ), zero(S))
# vsample!(B, A)
# end
# function vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
# B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
# vsample!(B, A)
# end
#### A revised public interface
vsample(::Type{S}, A, n_sim; dims=:, n_cat=nothing) where {S<:Real} = _vsample(S, A, n_sim, n_cat, dims)
vsample(A, n_sim; dims=:, n_cat=nothing) = _vsample(Int, A, n_sim, n_cat, dims)
_vsample(::Type{S}, A, n_sim, n_cat::Int, dims::Int) where {S<:Real} = _vsample(S, A, n_sim, n_cat, (dims,))
_vsample(::Type{S}, A, n_sim, ::Nothing, dims) where {S<:Real} = _vsample(S, A, n_sim, num_cat(A), dims)
function _vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_cat, n_sim, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
vsample!(B, A)
end
function _vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_cat, n_sim)), zero(S))
vsample!(B, A)
end
################
# The expected case: vectors of sparse vectors (as their bare components)
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors (as bare components)
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector (as bare components)
_vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_cat, n_sim)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A
K, V = sqhist(p)
C = vgenerate(K, V, size(B, 2))
@inbounds for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j] += one(S)
end
B
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
vgenerate!(C, U, n)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# # The simplest case: a sparse vector
_vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real}
B = zeros(S, n_cat, n_sim)
vsample!(B, A)
end
# Oddly, the fastest vsampler is non-allocating -- most likely due to
# the elimination of store + access instructions associated with using a temporary array.
function vsample!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
C = vgenerate(n, size(B, 2))
@inbounds for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j] += one(S)
end
B
end
################
# General case: dense vectors, the linear index of which indicates the category
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for p ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[c, j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of dense vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[c, j, IR] += one(S)
end
end
B
end
# The simplest case: a dense vector
_vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::Vector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
K, V = sqhist(A)
C = vgenerate(K, V, size(B, 2))
@inbounds for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[c, j] += one(S)
end
B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 2))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j, IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
_vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat} where {N}
B = zeros(S, n_cat, n_sim)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::SparseVector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A.nzind, A.nzval
K, V = sqhist(p)
C = vgenerate(K, V, size(B, 2))
@inbounds for (j′, j) ∈ enumerate(axes(B, 2))
c = C[j′]
B[Iₛ[c], j] += one(S)
end
B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 885 | module CategoricalMonteCarlo
# using Test, BenchmarkTools
using Random
using SparseArrays
using LoopVectorization
using Polyester
using MarsagliaDiscreteSamplers
import MarsagliaDiscreteSamplers: _sqhist_init
export num_cat
export sample, sample!, tsample, tsample!
export vsample, vsample!, vtsample, vtsample!
# Ugly normalization names
export algorithm2_1, algorithm2_1!, algorithm2_2, algorithm2_2!,
algorithm3, algorithm3!, algorithm3_ratio, algorithm3_ratio!,
algorithm2_1_algorithm3, algorithm2_1_algorithm3!,
algorithm2_1_algorithm3_ratio, algorithm2_1_algorithm3_ratio!,
algorithm4!, algorithm4,
normalize1, normalize1!
export pvg, pvg!, tpvg, tpvg!
include("utils.jl")
include("normalizations.jl")
include("sampler.jl")
include("tsampler_batch.jl")
include("vsampler.jl")
include("vtsampler_batch.jl")
include("probabilityvectorgeneration.jl")
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 30674 | #
# Date created: 2022-06-15
# Author: aradclif
#
#
############################################################################################
_typeofinv(x) = typeof(inv(x))
_typeofinv(::Type{T}) where {T} = typeof(inv(one(T)))
"""
normalize1!(A::AbstractArray{<:Real})
Normalize the values in `A` such that `sum(A) ≈ 1` and `0 ≤ A[i] ≤ 1` ∀i.
This is not quite the L¹-norm, which would require that `abs(A[i])` be used.
It is assumed that `0 ≤ A[i] < Inf` ∀i. `Inf` values are not handled and
will result in `NaN`'s.
See also: [`normalize1`](@ref)
```jldoctest
julia> normalize1!([1.0, 2.0, 3.0])
3-element Vector{Float64}:
0.16666666666666666
0.3333333333333333
0.5
julia> normalize1!([1.0, 2.0, Inf])
3-element Vector{Float64}:
0.0
0.0
NaN
julia> normalize1!([1.0, 2.0, NaN]) # NaN propagates, as expected
3-element Vector{Float64}:
NaN
NaN
NaN
julia> normalize1!([1.0, -2.0, 3.0]) # not the L¹-norm
3-element Vector{Float64}:
0.5
-1.0
1.5
```
"""
function normalize1!(A::AbstractArray{T}) where {T<:Real}
s = zero(T)
@inbounds @simd for i ∈ eachindex(A)
s += A[i]
end
c = inv(s)
@inbounds @simd for i ∈ eachindex(A)
A[i] *= c
end
A
end
"""
normalize1!(B::AbstractArray{<:Real}, A::AbstractArray{<:Real})
Normalize the values in `A` such that `sum(B) ≈ 1` and `0 ≤ B[i] ≤ 1` ∀i, storing
the result in `B`. It is assumed that `A[i] ≥ 0` ∀i.
"""
function normalize1!(B::AbstractArray{T}, A::AbstractArray{S}) where {T<:Real, S<:Real}
s = zero(S)
@inbounds @simd for i ∈ eachindex(A)
s += A[i]
end
c = inv(s)
@inbounds @simd for i ∈ eachindex(A, B)
B[i] = A[i] * c
end
B
end
"""
normalize1(A::AbstractArray{<:Real})
Return an array of equal size which satisfies `sum(B) ≈ 1` and `0 ≤ B[i] 1` ∀i.
It is assumed that `A[i] ≥ 0` ∀i.
See also: [`normalize1!`](@ref)
"""
normalize1(A::AbstractArray{T}) where {T<:Real} = normalize1!(similar(A, _typeofinv(T)), A)
function vnormalize1!(A::AbstractArray{T}) where {T<:Base.IEEEFloat}
s = zero(T)
@turbo for i ∈ eachindex(A)
s += A[i]
end
c = inv(s)
@turbo for i ∈ eachindex(A)
A[i] *= c
end
A
end
function normalize1!(B::AbstractArray{T}, A::AbstractArray{T}) where {T<:Base.IEEEFloat}
s = zero(T)
@turbo for i ∈ eachindex(A)
s += A[i]
end
c = inv(s)
@turbo for i ∈ eachindex(A, B)
B[i] = A[i] * c
end
B
end
normalize1(A::AbstractArray{<:Base.IEEEFloat}) = normalize1!(similar(A), A)
################
# @noinline function _check_algorithm2_1(I::Vector{Int}, x)
# mn, mx = extrema(I)
# f, l = firstindex(x), lastindex(x)
# mn ≥ f || throw(BoundsError(x, mn))
# mx ≤ l || throw(BoundsError(x, mx))
# end
#### Algorithm 2.1.
# I ∈ ℕᴺ, 𝐰 ∈ ℝᴰ; I ⊆ 1,…,D
# -> ω ∈ ℝᴺ, ωᵢ = 𝐰ᵢ / ∑ⱼ 𝐰ⱼ; j ∈ I
"""
algorithm2_1!(p::Vector{T}, I::Vector{Int}, w::Vector{<:Real}) where {T<:Real}
Fill `p` with the probabilities that result from normalizing the weights `w[I]`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm2_1`](@ref)
"""
function algorithm2_1!(p::Vector{T}, I::Vector{Int}, w::Vector{S}) where {T<:Real, S<:Real}
checkbounds(w, I)
s = zero(S)
@inbounds @simd ivdep for i ∈ eachindex(I, p)
w̃ = w[I[i]]
s += w̃
p[i] = w̃
end
# c = inv(s)
# Guarantees type stability at negligible expense compared to what is gained
c = one(T) / s
@inbounds @simd for i ∈ eachindex(p)
p[i] *= c
end
p
end
"""
algorithm2_1(I::Vector{Int}, w::Vector{<:Real})
Create a vector of probabilities by normalizing the weights selected by `I` from `w`.
It is assumed that `0 ≤ wᵢ < Inf, i ∈ I`.
Mathematically, given:
I ∈ ℕᴺ, 𝐰 ∈ ℝᴰ; I ⊆ {1,…,D}
The iᵗʰ term will be computed as: pᵢ = 𝐰ᵢ / ∑ⱼ 𝐰ⱼ; j ∈ I
See also: [`algorithm2_1!`](@ref), [`algorithm2_2`](@ref)
# Examples
```jldoctest
julia> I = [1, 5, 2]; w = [5, 4, 3, 2, 1];
julia> algorithm2_1(I, w)
3-element Vector{Float64}:
0.5
0.1
0.4
julia> algorithm2_1([1, 1, 2], Rational.(w))
3-element Vector{Rational{Int64}}:
5//14
5//14
2//7
julia> w[2] = -w[2];
julia> algorithm2_1(I, w) # Nonsense results if `wᵢ` constraints violated
3-element Vector{Float64}:
2.5
0.5
-2.0
julia> algorithm2_1(I, [5, 4, 3, 2, Inf])
3-element Vector{Float64}:
0.0
NaN
0.0
julia> algorithm2_1(I, [5, NaN, 3, 2, 1])
3-element Vector{Float64}:
NaN
NaN
NaN
```
"""
algorithm2_1(I::Vector{Int}, w::Vector{T}) where {T<:Real} = algorithm2_1!(similar(I, _typeofinv(T)), I, w)
#### Algorithm 2.2
# I₁ ∈ ℕᴺ, I₂ ∈ ℕᴺ, …, Iₘ ∈ ℕᴺ; 𝐰₁ ∈ ℝᴰ¹, 𝐰₂ ∈ ℝᴰ², …, 𝐰ₘ ∈ ℝᴰᵐ
# -> ω ∈ ℝᴺ, ωᵢ = ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[i]] / ∑ᵢ₌₁ᴺ ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[i]]
# Mathematically, given:
# I₁ ∈ ℕᴺ , 𝐰₁ ∈ ℝᴰ¹
# I₂ ∈ ℕᴺ , 𝐰₂ ∈ ℝᴰ²
# ⋮ , ⋮
# Iₘ ∈ ℕᴺ , 𝐰ₘ ∈ ℝᴰᵐ
# The iᵗʰ term will be computed as:
# pᵢ = ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[i]] / ∑ⱼ₌₁ᴺ ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[j]]
_typeofprod(ws::NTuple{N, Vector{<:Real}}) where {N} = promote_type(Int, typeof(mapreduce(first, *, ws)))
_typeofprod(ws::NTuple{N, Vector{T}}) where {N} where {T<:Real} = promote_type(Int, T)
function algorithm2_2_quote(M::Int)
Is = Expr(:tuple)
ws = Expr(:tuple)
bc = Expr(:tuple)
for m = 1:M
push!(Is.args, Symbol(:I_, m))
push!(ws.args, Symbol(:w_, m))
push!(bc.args, Expr(:call, :checkbounds, Symbol(:w_, m), Symbol(:I_, m)))
end
block = Expr(:block)
loop = Expr(:for, Expr(:(=), :j, Expr(:call, :eachindex, ntuple(i -> Symbol(:I_, i), M)..., :p)), block)
e = Expr(:call, :*)
for m = 1:M
push!(e.args, Expr(:ref, Symbol(:w_, m), Expr(:ref, Symbol(:I_, m), :j)))
end
push!(block.args, Expr(:(=), :t, e))
push!(block.args, Expr(:(=), :s, Expr(:call, :+, :s, :t)))
push!(block.args, Expr(:(=), Expr(:ref, :p, :j), :t))
return quote
$Is = Is
$ws = ws
$bc
# s = zero(T)
s = zero(_typeofprod(ws))
@inbounds @simd ivdep $loop
c = one(S) / s
@inbounds @simd ivdep for j ∈ eachindex(p)
p[j] *= c
end
return p
end
end
@generated function algorithm2_2!(p::Vector{S}, Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{<:Real}}) where {M} where {S<:Real}
algorithm2_2_quote(M)
end
"""
algorithm2_2!(p::Vector{T}, Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{<:Real}}) where {T<:Real, M}
Fill `p` with the probabilities that result from normalizing the element-wise product
of weights selected by the index set, `Is[m]`, respective to each weight vector, `ws[m]`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm2_2`](@ref)
# Examples
```jldoctest
julia> Is = ([1,2,3], [4,5,6], [7,8,9]); ws = ([1,2,3], fill(1/6, 6), fill(1//10, 9));
julia> algorithm2_2!(zeros(3), Is, ws)
3-element Vector{Float64}:
0.16666666666666666
0.3333333333333333
0.5
julia> algorithm2_2!(zeros(Rational{Int}, 3), Is, (ws[1], fill(1//6, 6), ws[3]))
3-element Vector{Rational{Int64}}:
1//6
1//3
1//2
```
"""
algorithm2_2!(p::Vector{T}, Is::Tuple{Vector{Int}}, ws::Tuple{Vector{<:Real}}) where {T<:Real} = algorithm2_1!(p, (@inbounds Is[1]), (@inbounds ws[1]))
"""
algorithm2_2(Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{<:Real}}) where {M}
Compute the product of weights selected by the respective index sets `Is`,
then normalize the resultant weight vector to probabilities.
Mathematically, given:
I₁ ∈ ℕᴺ , 𝐰₁ ∈ ℝᴰ¹, 0 ≤ 𝐰₁ᵢ < Inf, i ∈ I₁
I₂ ∈ ℕᴺ , 𝐰₂ ∈ ℝᴰ², 0 ≤ 𝐰₂ᵢ < Inf, i ∈ I₂
⋮ , ⋮
Iₘ ∈ ℕᴺ , 𝐰ₘ ∈ ℝᴰᵐ, 0 ≤ 𝐰ₘᵢ < Inf, i ∈ Iₘ
The iᵗʰ term will be computed as:
pᵢ = ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[i]] / ∑ⱼ₌₁ᴺ ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[j]]
See also: [`algorithm2_2!`](@ref), [`algorithm2_1`](@ref)
# Examples
```jldoctest
julia> Is = ([1,2,3], [4,5,6], [7,8,9]); ws = ([1.0, 2.0, 3.0], fill(0.5, 6), fill(0.1, 9));
julia> algorithm2_2(Is, ws)
3-element Vector{Float64}:
0.16666666666666666
0.3333333333333333
0.5
julia> w = ws[1][Is[1]] .* ws[2][Is[2]] .* ws[3][Is[3]] # unnormalized
3-element Vector{Float64}:
0.05
0.1
0.15000000000000002
julia> w ./= sum(w) # normalized
3-element Vector{Float64}:
0.16666666666666666
0.3333333333333333
0.5
```
"""
algorithm2_2(Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{<:Real}}) where {M} =
algorithm2_2!(Vector{_typeofinv(_typeofprod(ws))}(undef, maximum(length, Is)), Is, ws)
# function algorithm2_2_weightonly_quote(M::Int)
# Is = Expr(:tuple)
# ws = Expr(:tuple)
# bc = Expr(:tuple)
# for m = 1:M
# push!(Is.args, Symbol(:I_, m))
# push!(ws.args, Symbol(:w_, m))
# push!(bc.args, Expr(:call, :checkbounds, Symbol(:w_, m), Symbol(:I_, m)))
# end
# block = Expr(:block)
# loop = Expr(:for, Expr(:(=), :j, Expr(:call, :eachindex, ntuple(i -> Symbol(:I_, i), M)..., :w′)), block)
# e = Expr(:call, :*)
# for m = 1:M
# push!(e.args, Expr(:ref, Symbol(:w_, m), Expr(:ref, Symbol(:I_, m), :j)))
# end
# push!(block.args, Expr(:(=), Expr(:ref, :w′, :j), e))
# return quote
# $Is = Is
# $ws = ws
# $bc
# @inbounds @simd ivdep $loop
# return w′
# end
# end
# """
# algorithm2_2_weightonly!(w, Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{T}}) where {M} where {T<:Real}
# Compute the local product of weights, storing the result in `w`.
# See also: [`algorithm2_2_weightonly`](@ref)
# """
# @generated function algorithm2_2_weightonly!(w′, Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{T}}) where {M} where {T<:Real}
# algorithm2_2_weightonly_quote(M)
# end
# """
# algorithm2_2_weightonly(Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{T}}) where {M} where {T<:Real}
# Compute the local product of weights identified by the index sets `Is`, which select
# the desired terms from the global weights `ws`. Mathematically, given:
# I₁ ∈ ℕᴺ , 𝐰₁ ∈ ℝᴰ¹
# I₂ ∈ ℕᴺ , 𝐰₂ ∈ ℝᴰ²
# ⋮ , ⋮
# Iₘ ∈ ℕᴺ , 𝐰ₘ ∈ ℝᴰᵐ
# The iᵗʰ term will be computed as:
# wᵢ′ = ∏ₘ₌₁ᴹ 𝐰ₘ[Iₘ[i]] = ∏ₘ₌₁ᴹ 𝐰ₘ,ⱼ : j = Iₘ[i]
# See also: [`algorithm2_2_weightonly!`](@ref)
# """
# algorithm2_2_weightonly(Is::NTuple{M, Vector{Int}}, ws::NTuple{M, Vector{T}}) where {M} where {T<:Real} =
# algorithm2_2_weightonly!(Vector{T}(undef, maximum(length, Is)), Is, ws)
################
#### Algorithm 3. -- FillMass
# 𝐰 ∈ ℝᴺ, u ∈ ℝ, 0 ≤ u ≤ 1
# -> p ∈ ℝᴺ, J = {i: wᵢ = 0}
# pᵢ =
# Case 1: if J ≠ ∅
# u / |J| if i ∈ J
# (1 - u) * 𝐰ᵢ / ∑ᵢ₌₁ᴺ 𝐰ᵢ otherwise
# Case 2: if J = 1,…,N
# 1 / N
## Mathematically consistent handling of Case 2:
# If 𝐰 = ̲0, then the ratio of masses is infinite, i.e. u / ∑ᵢ𝐰ᵢ = ∞, assuming that u > 0,
# which may not necessarily be the case. If u > 0, then it seems reasonable to
# handle case 2 as above, as one is effectively stating that u′ = u / N will be assigned
# to each pᵢ′ intermediate, then the pᵢ's will be normalized to sum to 1 --
# that is, ∑ᵢ₌₁ᴺ pᵢ′ = ∑ᵢ₌₁ᴺ u′ = N * u′ ⟹ pᵢ = u′ / (N * u′) = 1 / N
# This is the origin Case 2, but if one implements it as simple 1/N assignment,
# behavior for u = 0 is not mathematically correct -- it should be undefined as it is 0/0.
# I find the mathematically correct behavior much easier to reason about.
# Moreover, this approach encourages a sensible treatment of r = ∞ in the alternative
# which uses the ratio. In general, seems better to follow the math and return NaNs than
# add spooky substitutions such as 1/N even when u=0 and 𝐰 = ̲0.
## Alternative using ratio
# r ∈ ℝ
# r = u / (1 - u) ⟹ u = r / (1 + r)
# _r(u::T) where {T<:Real} = u / (one(T) - u)
_u(r::T) where {T<:Real} = isinf(r) && !signbit(r) ? one(T) : r / (one(T) + r)
_check_u01(u::S) where {S<:Real} = (zero(S) ≤ u ≤ one(S) || throw(DomainError(u, "u must be: $(zero(S)) ≤ u ≤ $(one(S))")))
"""
algorithm3!(p::Vector{T}, u::Real) where {T<:Real}
Normalize `p` to probabilities, spreading probability mass `u` across the
0 or more elements of `p` which are equal to zero. If all values of `w` are zero
and `u ≠ 0`, `p` will be filled with uniform probability mass.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm3`](@ref), [`algorithm3_ratio!`](@ref)
# Examples
```jldoctest
julia> algorithm3!(Rational{Int}[0, 10, 5, 0], 0.5)
4-element Vector{Rational{Int64}}:
1//4
1//3
1//6
1//4
```
"""
function algorithm3!(p::Vector{T}, u::T) where {T<:Real}
_check_u01(u)
s = zero(T)
z = 0
@inbounds @simd for i ∈ eachindex(p)
pᵢ = p[i]
s += pᵢ
z += pᵢ == zero(T)
end
c = z == 0 ? inv(s) : (one(T) - u) / s
# u′ = z == length(p) ? one(T) / z : u / z
u′ = z == length(p) ? u / (u * z) : u / z
@inbounds @simd for i ∈ eachindex(p)
pᵢ = p[i]
p[i] = pᵢ == zero(T) ? u′ : pᵢ * c
end
p
end
algorithm3!(p::Vector{T}, u::S) where {T<:Real, S<:Real} = algorithm3!(p, convert(T, u))
"""
algorithm3!(p::Vector{T}, w::Vector{<:Real}, u::Real) where {T<:Real}
Normalize `w` to probabilities, storing the result in `p`, spreading probability
mass `0 ≤ u ≤ 1` across the 0 or more elements of `w` which are equal to zero.
If all values of `w` are zero and `u ≠ 0`, `p` will be filled with uniform probability mass.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
# Examples
```jldoctest
julia> w = [0, 10, 5, 1]; u = 0.5;
julia> algorithm3!(similar(w, Float64), w, u)
4-element Vector{Float64}:
0.5
0.3125
0.15625
0.03125
```
"""
function algorithm3!(p::Vector{S}, w::Vector{T}, u::S) where {S<:Real, T<:Real}
_check_u01(u)
s = zero(T)
z = 0
@inbounds @simd for i ∈ eachindex(p, w)
w̃ = w[i]
s += w̃
p[i] = w̃
z += w̃ == zero(T)
end
c = z == 0 ? one(S) / s : (one(S) - u) / s
# u′ = z == length(p) ? one(S) / z : u / z
u′ = z == length(p) ? u / (u * z) : u / z
@inbounds @simd for i ∈ eachindex(p)
pᵢ = p[i]
p[i] = pᵢ == zero(S) ? u′ : pᵢ * c
end
p
end
algorithm3!(p::Vector{S}, w::Vector{T}, u::U) where {S<:Real, T<:Real, U<:Real} = algorithm3!(p, w, convert(S, u))
"""
algorithm3(w::Vector{<:Real}, u::Real)
Return the vector of probabilities created by normalizing `w` to probabilities, then
spreading the probability mass `0 ≤ u ≤ 1` across the 0 or more elements of `w` which
are equal to zero. If all values of `w` are zero and `u ≠ 0`, a vector of uniform
probability mass is returned.
Mathematically, given:
𝐰 ∈ ℝᴺ, 0 ≤ wᵢ < ∞, u ∈ ℝ, 0 ≤ u ≤ 1, J = {i : 𝐰ᵢ = 0}
```
pᵢ =
Case 1: if J ≠ ∅
u / |J| if i ∈ J
(1 - u) * 𝐰ᵢ / ∑ᵢ₌₁ᴺ 𝐰ᵢ otherwise
Case 2: if J = {1,…,N}
u / (u * N) Equivalent to 1/N if 𝐰 ≠ ̲0
```
See also: [`algorithm3!`](@ref), [`algorithm3_ratio`](@ref)
# Examples
```jldoctest
julia> algorithm3([0, 10, 5, 0], 0.5)
4-element Vector{Float64}:
0.25
0.3333333333333333
0.16666666666666666
0.25
julia> algorithm3(Rational{Int}[0, 0, 0], 0.25) # 𝐰 = ̲0
3-element Vector{Rational{Int64}}:
1//3
1//3
1//3
julia> algorithm3([0, 0], 0.0) # 𝐰 = ̲0 and u = 0
2-element Vector{Float64}:
NaN
NaN
julia> algorithm3([1, 2, 3], 0.9) # in absence of 0's, just normalize
3-element Vector{Float64}:
0.16666666666666666
0.3333333333333333
0.5
```
"""
algorithm3(p::Vector{T}, u::S) where {T<:Real, S<:Real} =
algorithm3!(similar(p, promote_type(_typeofinv(T))), p, u)
# algorithm3!(similar(p, promote_type(_typeofinv(T), _typeofinv(S))), p, u)
#### Algorithm 3, in terms of ratio
"""
algorithm3_ratio!(p::Vector{T}, r::Real) where {T<:Real}
Normalize `p` to probabilities, then spread the probability mass `u = r / (1 + r)`
across the 0 or more elements of `p` such that the ratio of the sum of
(inititally) zero elements to the sum of the non-zero elements is equal to `r`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm3_ratio`](@ref), [`algorithm3!`](@ref)
"""
algorithm3_ratio!(p, r) = algorithm3!(p, _u(r))
"""
algorithm3_ratio!(p::Vector{T}, w::Vector{<:Real}, r::Real) where {T<:Real}
Normalize `w` to probabilities, storing the result in `p`, then spread the probability
mass `u = r / (1 + r)` across the 0 or more elements of `w` such that the ratio of the
sum of (inititally) zero elements to the sum of non-zero elements is equal to `r`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
# Examples
```jldoctest
julia> w = [0, 10, 5, 1]; r = 1.0;
julia> algorithm3_ratio!(similar(w, Float64), w, r)
4-element Vector{Float64}:
0.5
0.3125
0.15625
0.03125
```
"""
algorithm3_ratio!(p, w, r) = algorithm3!(p, w, _u(r))
"""
algorithm3_ratio(w::Vector{<:Real}, r::Real)
Return a vector of probabilities created by normalizing `w` to probabilities, then
spread the probability mass `u = r / (1 + r)` across the 0 or more elements of `w`
which are equal to zero such that the ratio of the sum of (inititally) zero elements
to the sum of non-zero elements is equal to `r`. If all values of `w` are zero
and `r ≠ 0`, a vector of uniform probability mass is returned.
Mathematically, given:
𝐰 ∈ ℝᴺ, 0 ≤ wᵢ < ∞, r ∈ ℝ, 0 ≤ r ≤ Inf, J = {i : 𝐰ᵢ = 0}
```
pᵢ =
Case 1: if J ≠ ∅
(r / (1+r)) / |J| if i ∈ J
(1 / (1+r)) * 𝐰ᵢ / ∑ᵢ₌₁ᴺ 𝐰ᵢ otherwise
Case 2: if J = {1,…,N}
r / (r * N) Equivalent to 1/N if 𝐰 ≠ ̲0
```
See also: [`algorithm3_ratio!`](@ref), [`algorithm3`](@ref)
# Examples
```jldoctest
julia> w = Rational{Int}[1, 0, 3, 0, 5]; r = 3;
julia> p = algorithm3_ratio(w, r)
5-element Vector{Rational{Int64}}:
1//36
3//8
1//12
3//8
5//36
julia> r′ = sum(p[findall(iszero, w)]) / sum(p[findall(!iszero, w)]); (r′, r′ == r)
(3//1, true)
julia> algorithm3(w, r / (1 + r)) # Note equivalence
5-element Vector{Rational{Int64}}:
1//36
3//8
1//12
3//8
5//36
julia> algorithm3_ratio(w, Inf) # r = Inf ⟹ u = 1
5-element Vector{Rational{Int64}}:
0//1
1//2
0//1
1//2
0//1
```
"""
algorithm3_ratio(p, r) = algorithm3(p, _u(r))
################
#### Algorithm 2.1. + Algorithm 3. (fused)
# A weight is assigned to i = 1,…,k components, and there are unknown components k+1,…,N.
# The unknown components are of the same category, and the probability mass of the category is
# known; alternatively, the ratio (between unknown/known) of probability masses may be specified.
# r = unknown/known = (∑ᵢ₌ₖ₊₁ᴺ pᵢ) / ∑ᵢ₌₁ᵏ pᵢ = (∑ᵢ₌ₖ₊₁ᴺ wᵢ) / ∑ᵢ₌₁ᵏ wᵢ ⟹
# r∑ᵢ₌₁ᵏ wᵢ = ∑ᵢ₌ₖ₊₁ᴺ wᵢ ⟹ r∑ᵢ₌₁ᵏ = w′, wᵢ = w′ / (N - k), i=k+1,…,N
# r = u / (1 - u) ⟹ u = r / (1 + r) ⟹
# pᵢ = u / (N - k), i=k+1,…,N
# pᵢ = (1 - u) wᵢ / ∑ᵢ₌₁ᵏ wᵢ, i = 1,…,k
"""
algorithm2_1_algorithm3!(p::Vector{T}, I::Vector{Int}, w::Vector{<:Real}, u::Real) where {T<:Real}
Normalize `w[I]` to probabilities, storing the result in `p`, then spreading probability mass
`0 ≤ u ≤ 1` across the 0 or more elements of `w[I]` which are equal to zero.
If all values of `w[I]` are zero and `u ≠ 0`, `p` will be filled with uniform probability mass.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm2_1_algorithm3`](@ref)
# Examples
```jldoctest
julia> I = [1, 2, 5, 6]; w = [10, 0, 30, 40, 0, 20]; u = 0.5;
julia> algorithm2_1_algorithm3!(similar(I, Rational{Int}), I, w, u)
4-element Vector{Rational{Int64}}:
1//6
1//4
1//4
1//3
```
"""
function algorithm2_1_algorithm3!(p::Vector{S}, I::Vector{Int}, w::Vector{T}, u::S) where {S<:Real, T<:Real}
_check_u01(u)
checkbounds(w, I)
s = zero(T)
z = 0
@inbounds @simd ivdep for i ∈ eachindex(p, I)
w̃ = w[I[i]]
s += w̃
p[i] = w̃
z += w̃ == zero(T)
end
c = z == 0 ? one(S) / s : (one(S) - u) / s
# u′ = z == length(p) ? one(S) / z : u / z
u′ = z == length(p) ? u / (u * z) : u / z
@inbounds @simd for i ∈ eachindex(p)
pᵢ = p[i]
p[i] = pᵢ == zero(S) ? u′ : pᵢ * c
end
p
end
algorithm2_1_algorithm3!(p::Vector{S}, I::Vector{Int}, w::Vector{T}, u::U) where {S<:Real, T<:Real, U<:Real} = algorithm2_1_algorithm3!(p, I, w, convert(S, u))
"""
algorithm2_1_algorithm3(I::Vector{Int}, w::Vector{<:Real}, u::Real)
Return a vector of probabilities, normalizing the components selected from `w` by the
index set `I`, then spreading the probability mass `0 ≤ u ≤ 1` across the 0 or more
elements which are equal to zero. If all values of `w[I]` are zero and `u ≠ 0`,
a vector of uniform probability mass is returned.
Equivalent to `algorithm3!(algorithm2_1(I, w), u)` but more efficient.
See also: [`algorithm2_1_algorithm3!`](@ref), [`algorithm2_1`](@ref), [`algorithm3`](@ref)
# Examples
```jldoctest
julia> I = [1, 2, 5, 6]; w = [10, 0, 30, 40, 0, 20]; u = 0.5;
julia> algorithm2_1_algorithm3(I, w, u)
4-element Vector{Float64}:
0.16666666666666666
0.25
0.25
0.3333333333333333
julia> algorithm3!(algorithm2_1(I, w), u)
4-element Vector{Float64}:
0.16666666666666666
0.25
0.25
0.3333333333333333
```
"""
algorithm2_1_algorithm3(I::Vector{Int}, w::Vector{T}, u::S) where {T<:Real, S<:Real} =
algorithm2_1_algorithm3!(similar(I, _typeofinv(T)), I, w, u)
#### Algorithm 2.1 fused with Algorithm 3 ratio
"""
algorithm2_1_algorithm3!(p::Vector{T}, I::Vector{Int}, w::Vector{<:Real}, u::Real) where {T<:Real}
Normalize `w[I]` to probabilities, storing the result in `p`, then spreading probability mass
`u = r / (1 + r)` across the 0 or more elements of `w[I]` which are equal to zero such that
the ratio of the sum of (inititally) zero elements to the sum of non-zero elements is equal
to `r`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm2_1_algorithm3_ratio`](@ref), [`algorithm2_1!`](@ref),
[`algorithm3_ratio!`](@ref)
# Examples
```jldoctest
julia> I = [1, 2, 5, 6]; w = [10, 0, 30, 40, 0, 20]; r = 1.0;
julia> algorithm2_1_algorithm3_ratio!(similar(I, Rational{Int}), I, w, r)
4-element Vector{Rational{Int64}}:
1//6
1//4
1//4
1//3
```
"""
algorithm2_1_algorithm3_ratio!(p, I, w, r) = algorithm2_1_algorithm3!(p, I, w, _u(r))
"""
algorithm2_1_algorithm3_ratio(I::Vector{Int}, w::Vector{<:Real}, r::Real)
Return a vector of probabilities, normalizing the components selected from `w` by the
index set `I`, then spreading the probability mass `u = r / (1 + r)` across the 0 or more
elements of `w[I]` which are equal to zero such that the ratio of the sum of (inititally)
zero elements to the sum of non-zero elements is equal to `r`. If all values of `w[I]` are
zero and `r ≠ 0`, a vector of uniform probability mass is returned.
Equivalent to `algorithm3_ratio!(algorithm2_1(I, w), u)` but more efficient.
See also: [`algorithm2_1_algorithm3_ratio!`](@ref), [`algorithm2_1`](@ref),
[`algorithm3_ratio`](@ref)
# Examples
```jldoctest
julia> I = [1, 2, 5, 6]; w = [10, 0, 30, 40, 0, 20]; r = 1.0;
julia> algorithm2_1_algorithm3_ratio(I, w, r)
4-element Vector{Float64}:
0.16666666666666666
0.25
0.25
0.3333333333333333
julia> algorithm3_ratio!(algorithm2_1(I, w), r)
4-element Vector{Float64}:
0.16666666666666666
0.25
0.25
0.3333333333333333
```
"""
algorithm2_1_algorithm3_ratio(I, w, r) = algorithm2_1_algorithm3(I, w, _u(r))
################
# Algorithm 4
# A weight is assigned to each i, and the w₁'s are normalized to probabilities.
# Then, a subset of the i's, denoted I′, is selected for re-weighting by a quantity
# which is undefined for I ∖ I′.
# I = {1,…,N}
# J₁ = {i: 𝐰₁ᵢ = 0} I₁′ = {i: 𝐰₁ᵢ ≠ 0} = I ∖ J₁
# J₂ = {i: 𝐰₂ᵢ = 0} I₂′ = {i: 𝐰₂ᵢ ≠ 0} = I ∖ J₂
# 𝐰₁ ∈ ℝᴺ : the initial weights
# 𝐰₂ ∈ ℝᴺ : the quantity which is undefined for J₂ = I ∖ I₂′; undefined shall be encoded
# by a value of zero in 𝐰₂.
# pᵢ = 𝐰₁ᵢ / ∑ₗ₌₁ᴺ 𝐰₁ₗ, i ∈ I ∖ I₂′
# mᵏⁿᵒʷⁿ = ∑ᵢ pᵢ, i ∈ I ∖ I₂′
# mᵘⁿᵈᵉᶠⁱⁿᵉᵈ = 1 - mᵏⁿᵒʷⁿ = (∑ᵢ 𝐰₁ᵢ, i ∈ I₂′) / ∑ₗ₌₁ᴺ 𝐰₁ₗ
# pᵢ = mᵘⁿᵈᵉᶠⁱⁿᵉᵈ * 𝐰₂ᵢ / ∑ₗ₌₁ᴺ 𝐰₂ₗ, i ∈ I₂′
# In other words,
# pᵢ = (𝐰₂ᵢ * ∑ₗ 𝐰₁ₗ, l ∈ I₂′) / (∑ₗ₌₁ᴺ 𝐰₂ₗ * ∑ₗ₌₁ᴺ 𝐰₁ₗ) i ∈ I₂′
## As cases, for clarity
# pᵢ = 𝐰₁ᵢ / ∑ₗ₌₁ᴺ 𝐰₁ₗ i ∈ I ∖ I₂′
# pᵢ = (𝐰₂ᵢ * ∑ₗ 𝐰₁ₗ, l ∈ I₂′) / (∑ₗ₌₁ᴺ 𝐰₂ₗ * ∑ₗ₌₁ᴺ 𝐰₁ₗ) i ∈ I₂′
# general, but must be protected against 𝐰₁ = ̲0 and/or 𝐰₂ = ̲0, which cause /0 error.
# Essentially, if
# s₁ = ∑ₗ₌₁ᴺ 𝐰₁ₗ
# s₂ = ∑ₗ₌₁ᴺ 𝐰₂ₗ
# and if s₁ = 0, then s₁ must be set equal to 1 to keep the terms defined.
# The same argument applies to s₂.
# An alternative line of reasoning suggests that it is preferable to be
# mathematically consistent and let /0 cause the expected behavior (NaNs).
# Mathematical consistency is much easier to reason about, as the definition
# of the algorithm clearly implies that if 𝐰₁ = ̲0, then everything that follows
# involves division by 0.
# _c1c2(::Type{T}, s₁′, s₁, s₂) where {T} = convert(T, inv(s₁)), convert(T, s₁′ / (s₁ * s₂))
"""
algorithm4!(𝐰₁::Vector{T}, 𝐰₂::Vector{<:Real}) where {T<:Real}
Fill `𝐰₁` with the probabilities which result from `algorithm4(𝐰₁, 𝐰₂)`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
See also: [`algorithm4`](@ref)
"""
function algorithm4!(w₁::Vector{T}, w₂::Vector{U}) where {T<:Real, U<:Real}
s₁′ = zero(T)
s₁ = zero(T)
s₂ = zero(U)
@inbounds @simd for i ∈ eachindex(w₁, w₂)
w₁ᵢ = w₁[i]
w₂ᵢ = w₂[i]
s₁′ += w₂ᵢ == zero(U) ? zero(T) : w₁ᵢ
s₁ += w₁ᵢ
s₂ += w₂ᵢ
end
c₁ = inv(s₁)
c₂ = s₁′ / (s₁ * s₂)
# Unlike below, the potential instability is unavoidable here.
# c₁, c₂ = _c1c2(T, s₁′, s₁, s₂)
@inbounds @simd for i ∈ eachindex(w₁, w₂)
w₁ᵢ = w₁[i]
w₂ᵢ = w₂[i]
w₁[i] = w₂ᵢ == zero(U) ? c₁ * w₁ᵢ : c₂ * w₂ᵢ
end
w₁
end
"""
algorithm4!(p::Vector{T}, 𝐰₁::Vector{<:Real}, 𝐰₂::Vector{<:Real}) where {T<:Real}
Fill `p` with the probabilities which result from `algorithm4(𝐰₁, 𝐰₂)`.
Note that `T` must be a type which is able to hold the result of `inv(one(T))`.
"""
function algorithm4!(p::Vector{S}, w₁::Vector{T}, w₂::Vector{U}) where {S<:Real, T<:Real, U<:Real}
s₁′ = zero(T)
s₁ = zero(T)
s₂ = zero(U)
@inbounds @simd for i ∈ eachindex(w₁, w₂)
w₁ᵢ = w₁[i]
w₂ᵢ = w₂[i]
s₁′ += w₂ᵢ == zero(U) ? zero(T) : w₁ᵢ
s₁ += w₁ᵢ
s₂ += w₂ᵢ
end
# c₁ = inv(s₁)
# c₂ = s₁′ / (s₁ * s₂)
# Equivalent, but improves type stability at expensive of inv(::Rational) not being used.
# Note, however, inv(::Rational) occurs at most once, whereas the instability in the loop
# incurs overhead length(p) times.
c₁ = one(S) / s₁
c₂ = s₁′ * c₁ / s₂
@inbounds @simd for i ∈ eachindex(p, w₁, w₂)
w₁ᵢ = w₁[i]
w₂ᵢ = w₂[i]
p[i] = w₂ᵢ == zero(U) ? c₁ * w₁ᵢ : c₂ * w₂ᵢ
end
p
end
"""
algorithm4(𝐰₁::Vector{<:Real}, 𝐰₂::Vector{<:Real})
Return a vector of probabilities constructed according to the following algorithm:
Define:
I = {1,…,N}
J₁ = {i: 𝐰₁ᵢ = 0}, I₁′ = {i: 𝐰₁ᵢ ≠ 0} = I ∖ J₁
J₂ = {i: 𝐰₂ᵢ = 0}, I₂′ = {i: 𝐰₂ᵢ ≠ 0} = I ∖ J₂
𝐰₁ ∈ ℝᴺ : initial weights, 0 ≤ 𝐰₁ᵢ < Inf
𝐰₂ ∈ ℝᴺ : augment weights, 0 ≤ 𝐰₂ᵢ < Inf; a value of zero indicates no re-weight
Then:
pᵢ = 𝐰₁ᵢ / ∑ₗ₌₁ᴺ 𝐰₁ₗ, i ∈ I ∖ I₂′
pᵢ = (𝐰₂ᵢ * ∑ₗ 𝐰₁ₗ, l ∈ I₂′) / (∑ₗ₌₁ᴺ 𝐰₂ₗ * ∑ₗ₌₁ᴺ 𝐰₁ₗ), i ∈ I₂′
This algorithm can produce a wide variety of probability vectors as the result
of the various combinations of intersections which can be formed from J₁, J₂, I₁′, and I₂′.
However, complexity of outputs aside, the motivating concept is quite simple:
take a vector of weights, `𝐰₁` and re-weight some subset (I₂′) of those weights using
a second set of weights, `𝐰₂`, while preserving the proportion of probability mass
derived from `𝐰₁`. That is, given `p = algorithm4(𝐰₁, 𝐰₂)`, the following relationships
are preserved: `sum(p[J₂]) ≈ sum(𝐰₁[J₂]) / sum(𝐰₁[I₁′])`,
`sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(p[J₂]) / sum(p[I₂′])`.
See also: [`algorithm4!`](@ref)
# Examples
```jldoctest
julia> w₁ = [1, 1, 1, 1, 0];
julia> algorithm4(w₁, [2, 1, 3, 4, 0]) # J₁ ∩ I₂′ = ∅
5-element Vector{Float64}:
0.2
0.1
0.30000000000000004
0.4
0.0
julia> algorithm4(w₁, [2, 1, 3, 0, 5]) # J₂ = [4] not re-weighted; I₂′ re-weighted
5-element Vector{Float64}:
0.13636363636363635
0.06818181818181818
0.20454545454545453
0.25
0.3409090909090909
julia> w₁ = [1, 1, 1, 0, 0];
julia> algorithm4(w₁, [2, 1, 3, 4, 0]) # J₂ = [5] not re-weighted; I₂′ re-weighted
5-element Vector{Float64}:
0.2
0.1
0.30000000000000004
0.4
0.0
julia> w₁ = [1, 1, 0, 1, 0];
julia> algorithm4(w₁, [0, 1, 0, 4, 0]) # J₂ = [1,3,5] not re-weighted; I₂′ re-weighted
5-element Vector{Float64}:
0.3333333333333333
0.13333333333333333
0.0
0.5333333333333333
0.0
julia> algorithm4(w₁, [0, 0, 3, 4, 0]) # J₂ = [1,2,5] not re-weighted; I₂′ re-weighted
5-element Vector{Float64}:
0.3333333333333333
0.3333333333333333
0.14285714285714285
0.19047619047619047
0.0
julia> algorithm4(w₁, [2, 0, 3, 0, 0]) # J₂ = [2,4,5] not re-weighted; I₂′ re-weighted
5-element Vector{Float64}:
0.13333333333333333
0.3333333333333333
0.2
0.3333333333333333
0.0
```
"""
algorithm4(w₁::Vector{T}, w₂::Vector{U}) where {T<:Real, U<:Real} = algorithm4!(similar(w₁, promote_type(_typeofinv(T), _typeofinv(U))), w₁, w₂)
################################################################
# A type interface?
# abstract type AbstractNormalizer end
# struct Alg1 <: AbstractNormalizer end
# struct Alg2_1 <: AbstractNormalizer end
# struct Alg2_2 <: AbstractNormalizer end
# struct Alg3 <: AbstractNormalizer end
# struct Alg3Ratio <: AbstractNormalizer end
# struct Alg2_1_Alg3 <: AbstractNormalizer end
# struct Alg2_1_Alg3Ratio <: AbstractNormalizer end
# struct Alg4 <: AbstractNormalizer end
# retalg(A::T) where {T<:AbstractNormalizer} = retalg(T)
# function retalg(::Type{T}) where {T<:AbstractNormalizer}
# if T === Alg1
# return identity
# elseif T === Alg2_1
# return algorithm2_1
# elseif T === Alg2_2
# return algorithm2_2
# elseif T === Alg3
# return algorithm3
# elseif T === Alg3Ratio
# return algorithm3_ratio
# elseif T === Alg2_1_Alg3
# return algorithm2_1_algorithm3
# elseif T === Alg2_1_Alg3Ratio
# return algorithm2_1_algorithm3_ratio
# elseif T === Alg4
# return algorithm4
# end
# end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 8061 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# # A ∈ 𝔻ᴰ¹ˣᴰ²ˣᴰ³ˣ⋯ ; eltype(A) = Vector{T} where {T}
# # T = Vector{Int} if 1. or 2.1.
# # NTuple{M, Vector{Int}} where {M} if 2.2.
# # (I, 𝐰₂)::Tuple{Vector{Int}, Vector{Float64}} if elaborate
# # The abstract PVG algorithm interface may use a composition of types representing
# # simple algorithms, ultimately producing a function from a composed type.
# # composed type -> function -> PVG
# # Alternatively, one can provide an arbitrary function for the PVG; this enables
# # arbitrarily complex algorithms which cannot easily be expressed as some
# # composition of simple algorithms. Simple algorithms necessitate a clear flow
# # from state to state, whereas in practice, one may wish to re-use a partial
# # state from an earlier step, so that a simple composition such as f ∘ g ∘ h
# # would fail.
# # The input to the function applied to each element of each element of A
# # will generally have a signature which accepts a single argument.
# # The result of the function applied to each element of each element of A
# # should always be Tuple{Vector{Int}, Vector{<:AbstractFloat}}
# # The expected case: eltype(A) as above
# function pvg(f::Function, A::AbstractArray{Vector{T}, N}, ws) where {T, N}
# map(a -> map(x -> f(x, ws), a), A)
# end
# function pvg!(f::Function, B::AbstractArray{Vector{Tuple{Vector{Int}, Vector{S}}}, N}, A::AbstractArray{Vector{T}, N}, ws) where {T, N} where {S<:AbstractFloat}
# for i ∈ eachindex(B, A)
# B[i] = map(x -> f(x, ws), A[i])
# end
# B
# end
# function pvg(f::Function, A::AbstractArray{Vector{T}, N}, ws::Tuple{}) where {T, N}
# map(a -> map(f, a), A)
# end
# function pvg!(f::Function, B::AbstractArray{Vector{Tuple{Vector{Int}, Vector{S}}}, N}, A::AbstractArray{Vector{T}, N}, ws::Tuple{}) where {T, N} where {S<:AbstractFloat}
# for i ∈ eachindex(B, A)
# B[i] = map(f, A[i])
# end
# B
# end
# # A simplification: an array of T, rather than Vector{T}
# pvg(f::Function, A::AbstractArray{T, N}, ws) where {T, N} = map(x -> f(x, ws), A)
# function pvg!(f::Function, B::AbstractArray{Tuple{Vector{Int}, Vector{S}}, N}, A::AbstractArray{T, N}, ws) where {T, N} where {S<:AbstractFloat}
# for i ∈ eachindex(B, A)
# B[i] = f(A[i], ws)
# end
# B
# end
# pvg(f::Function, A::AbstractArray{T, N}, ws::Tuple{}) where {T, N} = map(f, A)
# function pvg!(f::Function, B::AbstractArray{Tuple{Vector{Int}, Vector{S}}, N}, A::AbstractArray{T, N}, ws::Tuple{}) where {T, N} where {S<:AbstractFloat}
# for i ∈ eachindex(B, A)
# B[i] = f(A[i])
# end
# B
# end
# # cumulative option: f(I, 𝐰) -> (Iₛ, ω), then g(Iₛ, ω) -> (Iₛ, Σω)
# # g(Iₛ, ω) = Iₛ, cumsum(ω) # or, Iₛ, cumsum!(ω)
# # g(f, I, 𝐰) = g(f(Iₛ, ω)) # g ∘ f
# _g(Iₛ, ω) = Iₛ, cumsum(ω)
# _g((Iₛ, ω)) = _g(Iₛ, ω)
# # an optimized case for Algorithm_1
# function _g(Iₛ::Vector{Int})
# N = length(Iₛ)
# c = inv(N)
# Σω = Vector{Float64}(undef, N)
# @inbounds @simd for i ∈ eachindex(Σω)
# Σω[i] = i * c
# end
# Iₛ, Σω
# end
# pvg_cumulative(f, A, ws) = pvg(_g ∘ f, A, ws)
# pvg_cumulative!(f, B, A, ws) = pvg!(_g ∘ f, B, A, ws)
# # Example: elaborate case (I, 𝐰₂)
# # I ∈ ℕᴺ 𝐰₂ ∈ ℝᴺ
# # | |
# # v v
# # A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{Float64}}}, N} where {N}
# function f(I, 𝐰₂, 𝐰, u)
# Iₛ = I
# 𝐰₁ = Algorithm_2_1(I, 𝐰)
# ω₁ = Algorithm_4(𝐰₁, 𝐰₂)
# ω = Algorithm_3(ω₁, u)
# Iₛ, ω
# end
# f((I, 𝐰₂), 𝐰, u) = f(I, 𝐰₂, 𝐰, u)
# # closure to provide u; u could also just be hard-coded into original function definition
# f((I, 𝐰₂), 𝐰) = f(I, 𝐰₂, 𝐰, 0.5) # This meets the necessary signature for pvg
# # Example: simple Algorithm 2.2.
# # I₁ ∈ ℕᴺ I₂ ∈ ℝᴺ
# # | |
# # v v
# # A::AbstractArray{Vector{Tuple{Vector{Int}, Vector{Int}}}, N} where {N}
# function f(Is, ws)
# Iₛ = Is[1]
# ω = Algorithm_2_2(Is, ws)
# Iₛ, ω
# end
# # Example: Algorithm 1.
# # I₁ ∈ ℕᴺ
# # |
# # v
# # A::AbstractArray{Vector{Vector{Int}}, N} where {N}
# function f(Iₛ)
# N = length(Iₛ)
# ω = fill(inv(N), N)
# Iₛ, ω
# end
# # This is best handled by a special dispatch as it can be an optimized case. It is
# # also a nice opportunity to be able to just sample such cases.
# # However, if one wants to sample using the in-order traversal, it may be most
# # efficient to use pre-computed Σω's. Thus, generating a ::Tuple{Vector{Int}, Vector{Float64}}
# # for each is a good utility for Algorithm 1. If one wants to sample without allocation,
# # the "default" sample algorithm can be made to dispatch on eltype(A)::Vector{Vector{Int}}
# # Benchmarking is needed to determine if pre-computed Σω's are faster than `rand(Iₛ)`
# # Example: Algorithm 2.1. + Algorithm 3.
# # Iₛ ∈ ℕᴺ
# # |
# # v
# # A::AbstractArray{Vector{Vector{Int}}, N} where {N}
# function f(I, 𝐰, u)
# Iₛ = I
# ω₁ = Algorithm_2_1(I, 𝐰)
# ω = Algorithm_3(ω₁, u)
# Iₛ, ω
# end
# f(I, 𝐰) = f(I, 𝐰, 0.5) # closure to provide u; or just hard code u
################################################################
# 2022-08-07: revised pvg; useful approach to dealing with type instability
# of what could otherwise be phrased as map(a -> map(x -> (x, f(x)), a), A)
# Needs to be adapted to handle AbstractArray{<:AbstractArray{T}} and also AbstractArray{T}
# ultimately, if `f` is type-stable, then one can just use `map` to create a homogeneously
# typed output; such an approach is more flexible, and defers the details to the user.
_typeoffirstnonempty(f, A) = typeof(f(first(A[findfirst(!isempty, A)])))
function pvg(f, A::AbstractArray{T, N}) where {T<:AbstractArray{S, M}, N} where {S, M}
Tₒ = _typeoffirstnonempty(f, A)
B = initialize(Array{Tₒ, M}, size(A))
pvg!(f, B, A)
end
function pvg!(f, B, A)
for i ∈ eachindex(B, A)
!isempty(A[i]) && (B[i] = map(f, A[i]))
end
B
end
function tpvg(f, A::AbstractArray{T, N}) where {T<:AbstractArray{S, M}, N} where {S, M}
Tₒ = _typeoffirstnonempty(f, A)
B = tinitialize(Array{Tₒ, M}, size(A))
tpvg!(f, B, A)
end
function tpvg!(f, B, A)
Threads.@threads for i ∈ eachindex(B, A)
# !isempty(A[i]) && (B[i] = map(f, A[i]))
if isempty(A[i])
empty!(B[i])
else
B[i] = map(f, A[i])
end
end
B
end
# Array of array constructors
function initialize!(A::AbstractArray{T, N}) where {T<:AbstractArray, N}
for i ∈ eachindex(A)
A[i] = T()
end
A
end
function initialize!(A::AbstractArray{T, N}) where {T<:Number, N}
for i ∈ eachindex(A)
A[i] = zero(T)
end
A
end
_initialize(::Type{T}, dims::NTuple{N, Int}) where {T<:AbstractArray} where {N} = initialize!(Array{T, N}(undef, dims))
_initialize(::Type{T}, dims::NTuple{N, Int}) where {T<:Number} where {N} = zeros(T, dims)
initialize(::Type{T}, dims::NTuple{N, Int}) where {T} where {N} = _initialize(T, dims)
initialize(::Type{T}, dims::Vararg{Integer, N}) where {T} where {N} = initialize(T, (map(Int, dims)...,))
function tinitialize!(A::AbstractArray{T, N}) where {T, N}
@sync for slc ∈ eachslice(A, dims=N)
Threads.@spawn initialize!(slc)
end
A
end
tinitialize(::Type{T}, dims::NTuple{N, Int}) where {T<:AbstractArray} where {N} = tinitialize!(Array{T, N}(undef, dims))
tinitialize(::Type{T}, dims::Vararg{Integer, N}) where {T} where {N} = tinitialize(T, (map(Int, dims)...,))
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 15084 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# A ∈ 𝔻ᴰ¹ˣᴰ²ˣᴰ³ˣ⋯ ; eltype(A) = Vector{Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# (Iₛ, ω) OR (Iₛ, Σω)
# Each sampling routine is identical: unpack the tuple, draw c ~ Categorical(ω) and
# obtain the real category as Iₛ[c].
# This enables an encapsulation of all PVG-induced variability, hence, a consistent
# interface for the sampler.
# Technically, `sample` only needs to know ndims(A), not necessarily the element type.
# The appropriate dispatch on element type is necessary for `sample!`
# `sample` could instead use
# A::AbstractArray{U, N} where {U<:Union{Vector{Tuple{Vector{Int}, Vector{T}}}, Tuple{Vector{Int}, Vector{T}}}} where {T<:AbstractFloat}
# Actually, this should ideally support:
# array of array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:AbstractArray{S, M}} where {M} where {S<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# (sparse) vector
# A::Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# The bare minimum for `sample` interface-- covers all 4 other definitions.
# sample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = sample(S, A, n_sim, n_cat, dims)
# sample(::Type{S}, A, n_sim; dims=:) where {S} = sample(S, A, n_sim, num_cat(A), dims)
# sample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = sample(S, A, n_sim, n_cat, (dims,))
# function sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
# Dᴬ = size(A)
# Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
# B = fill!(similar(A, S, Dᴮ), zero(S))
# sample!(B, A)
# end
# function sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
# B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
# sample!(B, A)
# end
#### A revised public interface
"""
sample(::Type{T<:Real}=Int, A::AbstractArray, n_sim::Int; [dims=:], [n_cat=nothing])
Draw `n_sim` samples from the distribution which corresponds to the sum of the independent
categorical distributions defined by the probability mass vector(s), `A`, storing the result
in an array of `eltype` `T` of sufficient size and dimension as determined by the input, `A`,
the number of categories, `n_cat`, and the (potential) reduction dimensions, `dims`.
`dims` is an optional keyword argument used to specify an in-place sum on the indices of `A`
(if `A` is an array of arrays). `n_cat` may be optionally specified, or inferred from the
available data; validity indices will be checked regardless.
In the simplest case, `A` may be a single probability mass vector, for which compatible types
are `AbstractVector{<:Real}`, `SparseVector{<:Real, <:Integer}`,
and `AbstractVector{Tuple{<:Integer, <:Real}}`, the last of which is simply another
representation of a sparse vector.
In the second case, `A` may be an `AbstractArray{V, N} where {V, N}` in which `V` is any
of the types specified above for a single probability mass vector. That is, an array
of vectors.
In the third case, `A` may be an `AbstractArray{W, M} where {W<:AbstractArray{V, N}, M} where {V, N}`
in which `W` is any of the types specified in the second case. In other words, an
array of arrays of vectors.
See also: [`tsample`](@ref), [`vsample`](@ref), [`vtsample`](@ref)
"""
sample(::Type{S}, A, n_sim; dims=:, n_cat=nothing) where {S<:Real} = _sample(S, A, n_sim, n_cat, dims)
sample(A, n_sim; dims=:, n_cat=nothing) = _sample(Int, A, n_sim, n_cat, dims)
_sample(::Type{S}, A, n_sim, n_cat::Int, dims::Int) where {S<:Real} = _sample(S, A, n_sim, n_cat, (dims,))
_sample(::Type{S}, A, n_sim, ::Nothing, dims) where {S<:Real} = _sample(S, A, n_sim, num_cat(A), dims)
function _sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
sample!(B, A)
end
function _sample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
sample!(B, A)
end
################
# The expected case: vectors of sparse vectors (as their bare components)
"""
sample!(B::AbstractArray, A::AbstractArray)
Draw samples, summing (and potentially reducing) in-place into `B`. The shape of `B`
determines the extent of reduction performed.
See also: [`tsample!`](@ref), [`vsample!`](@ref), [`vtsample!`](@ref)
"""
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors (as bare components)
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector (as bare components)
_sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _sample(S, A, n_sim, n_cat, :)
_sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _sample(S, A, n_sim, n_cat, :)
function _sample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A
K, V = sqhist(p)
C = generate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
generate!(C, U, n)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
generate!(C, U, n)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# # The simplest case: a sparse vector
_sample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} = _sample(S, A, n_sim, n_cat, :)
_sample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N} = _sample(S, A, n_sim, n_cat, :)
function _sample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real}
B = zeros(S, n_sim, n_cat)
sample!(B, A)
end
# Oddly, the fastest sampler is non-allocating -- most likely due to
# the elimination of store + access instructions associated with using a temporary array.
function sample!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
C = generate(n, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
################
# General case: dense vectors, the linear index of which indicates the category
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for p ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c, IR] += one(S)
end
end
end
B
end
# A simplification: an array of dense vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c, IR] += one(S)
end
end
B
end
# The simplest case: a dense vector
_sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _sample(S, A, n_sim, n_cat, :)
_sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _sample(S, A, n_sim, n_cat, :)
function _sample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::Vector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
K, V = sqhist(A)
C = generate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c] += one(S)
end
B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function sample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
_sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _sample(S, A, n_sim, n_cat, :)
_sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _sample(S, A, n_sim, n_cat, :)
function _sample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
sample!(B, A)
end
function sample!(B::AbstractMatrix{S}, A::SparseVector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A.nzind, A.nzval
K, V = sqhist(p)
C = generate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 14320 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# mirror of sampler.jl; separate file for variants on threading
# The bare minimum for `sample` interface-- covers all 4 other definitions.
"""
tsample(::Type{T<:Real}=Int, A::AbstractArray, n_sim::Int; [dims=:], [n_cat=nothing], [chunksize=5000])
See `sample` for full documentation; identical in behavior except that
thread-based parallelism is used to accelerate the computation.
The optional `chunksize` argument provides a fixed upper bound for the number of
simulations to be passed to each thread. Depending on number of independent categorical
distributions to be sample and number of simulations to be performed, a `chunksize`
of `5000` is likely too conservative. The user is encouraged to try smaller chunk sizes.
See also: [`sample`](@ref), [`vsample`](@ref), [`vtsample`](@ref)
"""
tsample(::Type{S}, A, n_sim; dims=:, n_cat=nothing, chunksize=5000) where {S<:Real} = _tsample(S, A, n_sim, n_cat, dims, chunksize)
tsample(A, n_sim; dims=:, n_cat=nothing, chunksize=5000) = _tsample(Int, A, n_sim, n_cat, dims, chunksize)
_tsample(::Type{S}, A, n_sim, n_cat::Int, dims::Int, chunksize) where {S<:Real} = _tsample(S, A, n_sim, n_cat, (dims,), chunksize)
_tsample(::Type{S}, A, n_sim, ::Nothing, dims, chunksize) where {S<:Real} = _tsample(S, A, n_sim, num_cat(A), dims, chunksize)
function _tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}, chunksize::Int) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
tsample!(B, A, chunksize)
end
function _tsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
tsample!(B, A, chunksize)
end
"""
tsample!(B::AbstractArray, A::AbstractArray; [chunksize=5000])
Identical to `sample!` except that thread-based parallelism is used to accelerate
the computation.
See also: [`sample!`](@ref), [`vsample!`](@ref), [`vtsample!`](@ref)
"""
tsample!(B, A; chunksize::Int=5000) = tsample!(B, A, chunksize)
function tsample!(B, A, chunksize::Int)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_sample_chunk!(B, A, keep, default, r)
end
return B
end
################
# The expected case: vectors of sparse vectors (as their bare components)
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
L = length(ℐ)
C, U = _genstorage_init(Float64, L)
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _tsample(S, A, n_sim, n_cat, :, chunksize)
_tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _tsample(S, A, n_sim, n_cat, :, chunksize)
function _tsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
tsample!(B, A, chunksize)
end
function tsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{<:AbstractFloat}}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_sample_chunk!(B, A, r)
end
return B
end
function _sample_chunk!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A
K, V = sqhist(p)
C = generate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
function _sample_chunk!(B::AbstractMatrix{S}, A::Tuple{AbstractVector{Int}, AbstractVector{T}}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A
n = length(Iₛ)
Iₛp = (copyto!(Vector{Int}(undef, n), Iₛ), copyto!(Vector{T}(undef, n), p))
_sample_chunk!(B, Iₛp, ℐ)
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
C, U = _genstorage_init(Float64, length(ℐ))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
generate!(C, U, n)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {N}
C, U = _genstorage_init(Float64, length(ℐ))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
generate!(C, U, n)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_tsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} = _tsample(S, A, n_sim, n_cat, :, chunksize)
_tsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {N} = _tsample(S, A, n_sim, n_cat, :, chunksize)
function _tsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real}
B = zeros(S, n_sim, n_cat)
tsample!(B, A, chunksize)
end
function tsample!(B::AbstractMatrix{S}, A::Vector{Int}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_sample_chunk!(B, A, r)
end
return B
end
function _sample_chunk!(B::AbstractMatrix{S}, A::AbstractVector{Int}, ℐ::UnitRange{Int}) where {S<:Real}
Iₛ = A
n = length(Iₛ)
C = generate(n, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
################
# General case: dense vectors, the linear index of which indicates the category
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for p ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c, IR] += one(S)
end
end
end
return B
end
# A simplification: an array of dense vectors
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c, IR] += one(S)
end
end
return B
end
# The simplest case: a dense vector
_tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _tsample(S, A, n_sim, n_cat, :, chunksize)
_tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _tsample(S, A, n_sim, n_cat, :, chunksize)
function _tsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
tsample!(B, A, chunksize)
end
function tsample!(B::AbstractMatrix{S}, A::Vector{T}, chunksize::Int) where {S<:Real, T<:AbstractFloat}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_sample_chunk!(B, A, r)
end
return B
end
function _sample_chunk!(B::AbstractMatrix{S}, A::AbstractVector{T}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
p = copyto!(Vector{T}(undef, length(A)), A)
K, V = sqhist(p)
C = generate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c] += one(S)
end
return B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _sample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
generate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _tsample(S, A, n_sim, n_cat, :, chunksize)
_tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _tsample(S, A, n_sim, n_cat, :, chunksize)
function _tsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
tsample!(B, A, chunksize)
end
function tsample!(B::AbstractMatrix{S}, A::SparseVector{<:AbstractFloat}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_sample_chunk!(B, A, r)
end
return B
end
function _sample_chunk!(B::AbstractMatrix{S}, A::SparseVector{T}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A.nzind, A.nzval
K, V = sqhist(p)
C = generate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 7570 | #
# Date created: 2022-06-13
# Author: aradclif
#
#
############################################################################################
# Conveniences
const _mni64 = typemin(Int)
const _mxi64 = typemax(Int)
_maximum_maybe(x::AbstractVector{T}) where {T<:Integer} = isempty(x) ? zero(T) : maximum(x)
_maximum_maybe((x, y)::Tuple{Vector{Int}, Vector{T}}) where {T<:AbstractFloat} = _maximum_maybe(x)
num_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M} =
isempty(A) ? 0 : maximum(num_cat, A, init=_mni64)
num_cat(A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {T<:AbstractFloat, N} =
isempty(A) ? 0 : maximum(_maximum_maybe, A, init=_mni64)
num_cat(A::Tuple{Vector{Int}, Vector{T}}) where {T<:AbstractFloat} = _maximum_maybe(A)
num_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{Int}, M}, N} where {M} =
isempty(A) ? 0 : maximum(num_cat, A, init=_mni64)
num_cat(A::AbstractArray{Vector{Int}, N}) where {N} =
isempty(A) ? 0 : maximum(_maximum_maybe, A, init=_mni64)
num_cat(A::Vector{Int}) = _maximum_maybe(A)
num_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M} =
isempty(A) ? 0 : maximum(num_cat, A, init=_mni64)
num_cat(A::AbstractArray{Vector{T}, N}) where {T<:AbstractFloat, N} =
isempty(A) ? 0 : maximum(length, A, init=_mni64)
num_cat(A::Vector{T}) where {T<:AbstractFloat} = length(A)
num_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M} =
isempty(A) ? 0 : maximum(num_cat, A, init=_mni64)
num_cat(A::AbstractArray{SparseVector{Tv, Ti}, N}) where {Tv<:AbstractFloat, Ti<:Integer, N} =
isempty(A) ? 0 : maximum(length, A, init=_mni64)
num_cat(A::SparseVector{Tv, Ti}) where {Tv<:AbstractFloat, Ti<:Integer} = length(A)
_minimum_maybe(x::AbstractVector{T}) where {T<:Integer} = isempty(x) ? one(T) : minimum(x)
_minimum_maybe((x, y)::Tuple{Vector{Int}, Vector{T}}) where {T<:AbstractFloat} = _minimum_maybe(x)
num_cat_min(A::AbstractArray{R, N}) where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M} =
isempty(A) ? 1 : minimum(num_cat_min, A, init=_mxi64)
num_cat_min(A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {T<:AbstractFloat, N} =
isempty(A) ? 1 : minimum(_minimum_maybe, A, init=_mxi64)
num_cat_min(A::Tuple{Vector{Int}, Vector{T}}) where {T<:AbstractFloat} = _minimum_maybe(A)
num_cat_min(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{Int}, M}, N} where {M} =
isempty(A) ? 1 : minimum(num_cat_min, A, init=_mxi64)
num_cat_min(A::AbstractArray{Vector{Int}, N}) where {N} =
isempty(A) ? 1 : minimum(_minimum_maybe, A, init=_mxi64)
num_cat_min(A::Vector{Int}) = _minimum_maybe(A)
num_cat_min(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M} = 1
num_cat_min(A::AbstractArray{Vector{T}, N}) where {T<:AbstractFloat, N} = 1
num_cat_min(A::Vector{T}) where {T<:AbstractFloat} = 1
num_cat_min(A::AbstractArray{R, N}) where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M} = 1
num_cat_min(A::AbstractArray{SparseVector{Tv, Ti}, N}) where {Tv<:AbstractFloat, Ti<:Integer, N} = 1
num_cat_min(A::SparseVector{Tv, Ti}) where {Tv<:AbstractFloat, Ti<:Integer} = 1
####
# _extrema_maybe(x::AbstractVector{T}) where {T<:Real} = isempty(x) ? (zero(T), zero(T)) : extrema(x)
# bounds_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M} =
# (((lb1, ub1), (lb2, ub2)) = extrema(bounds_cat, A, init=((1,1), (0,0)));
# extrema((lb1, ub1, lb2, ub2)))
# bounds_cat(A::AbstractArray{T, N}) where {T<:Tuple{Vector{Int}, Vector{<:AbstractFloat}}, N} =
# (((lb1, ub1), (lb2, ub2)) = extrema(bounds_cat, A, init=((1,1), (0,0)));
# extrema((lb1, ub1, lb2, ub2)))
# bounds_cat(A::Tuple{Vector{Int}, Vector{T}}) where {T<:AbstractFloat} = _extrema_maybe(A[1])
# bounds_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{Int}, M}, N} where {M} =
# (((lb1, ub1), (lb2, ub2)) = extrema(bounds_cat, A, init=((1,1), (0,0)));
# extrema((lb1, ub1, lb2, ub2)))
# bounds_cat(A::AbstractArray{Vector{Int}, N}) where {N} =
# (((lb1, ub1), (lb2, ub2)) = extrema(_extrema_maybe, A, init=((1,1), (0,0)));
# extrema((lb1, ub1, lb2, ub2)))
# bounds_cat(A::Vector{Int}) = _extrema_maybe(A)
# bounds_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M} = (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
# bounds_cat(A::AbstractArray{Vector{T}, N}) where {T<:AbstractFloat, N} = (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
# bounds_cat(A::Vector{T}) where {T<:AbstractFloat} = (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
# bounds_cat(A::AbstractArray{R, N}) where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M} =
# (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
# bounds_cat(A::AbstractArray{SparseVector{Tv, Ti}, N}) where {Tv<:AbstractFloat, Ti<:Integer, N} =
# (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
# bounds_cat(A::SparseVector{T}) where {T<:AbstractFloat} = (n = num_cat(A); n ≥ 1 ? (1, n) : (0, 0))
#
bounds_cat(x::Int, y::Int) = (x, y)
bounds_cat(A::T) where {T} = bounds_cat(num_cat_min(A), num_cat(A))
################
function _checkindex_reducedims(ax, lb, ub)
(checkindex(Bool, ax, lb) && checkindex(Bool, ax, ub)) || throw(DimensionMismatch("cannot sample from categories on range $(lb:ub) into array with first dimension $(ax)"))
true
end
@noinline function _check_reducedims(B, A)
Rdims = axes(B)[3:end]
lb, ub = bounds_cat(A)
_checkindex_reducedims(axes(B, 2), lb, ub)
length(Rdims) ≤ ndims(A) || throw(DimensionMismatch("cannot reduce $(ndims(A))-dimensional array to $(length(Rdims)) trailing dimensions"))
for i ∈ eachindex(Rdims)
Ri, Ai = Rdims[i], axes(A, i)
length(Ri) == 1 || Ri == Ai || throw(DimensionMismatch("reduction on array with indices $(axes(A)) with output with indices $(Rdims)"))
end
true
end
for Tₐ ∈ (Tuple{Vector{Int}, Vector{<:AbstractFloat}}, Vector{Int}, Vector{<:AbstractFloat}, SparseVector{<:AbstractFloat})
@eval @noinline function _check_reducedims(B, A::$Tₐ)
lb, ub = bounds_cat(A)
_checkindex_reducedims(axes(B, 2), lb, ub)
true
end
end
################################################################
"""
splitranges(start, stop, chunksize)
Divide the range `start:stop` into segments, each of size `chunksize`.
The last segment will contain the remainder, `(start - stop + 1) % chunksize`,
if it exists.
"""
function splitranges(start::Int, stop::Int, Lc::Int)
L = stop - start + 1
n, r = divrem(L, Lc)
ranges = Vector{UnitRange{Int}}(undef, r == 0 ? n : n + 1)
l = start
@inbounds for i = 1:n
l′ = l
l += Lc
ranges[i] = l′:(l - 1)
end
if r != 0
@inbounds ranges[n + 1] = (stop - r + 1):stop
end
return ranges
end
"""
splitranges(ur::UnitRange{Int}, chunksize)
Divide the range `ur` into segments, each of size `chunksize`.
"""
splitranges(ur::UnitRange{Int}, Lc::Int) = splitranges(ur.start, ur.stop, Lc)
################################################################
# sampler accessories
_largesmall_init(n::Int) = Vector{Int}(undef, n), Vector{Int}(undef, n)
@inline _genstorage_init(T::Type{<:AbstractFloat}, n::Int) = Vector{Int}(undef, n), Vector{T}(undef, n)
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 14017 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# A ∈ 𝔻ᴰ¹ˣᴰ²ˣᴰ³ˣ⋯ ; eltype(A) = Vector{Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# (Iₛ, ω) OR (Iₛ, Σω)
# Each sampling routine is identical: unpack the tuple, draw c ~ Categorical(ω) and
# obtain the real category as Iₛ[c].
# This enables an encapsulation of all PVG-induced variability, hence, a consistent
# interface for the sampler.
# Technically, `sample` only needs to know ndims(A), not necessarily the element type.
# The appropriate dispatch on element type is necessary for `sample!`
# `sample` could instead use
# A::AbstractArray{U, N} where {U<:Union{Vector{Tuple{Vector{Int}, Vector{T}}}, Tuple{Vector{Int}, Vector{T}}}} where {T<:AbstractFloat}
# Actually, this should ideally support:
# array of array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:AbstractArray{S, M}} where {M} where {S<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# array of (sparse) vector
# A::AbstractArray{T, N} where {N} where {T<:Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}}
# (sparse) vector
# A::Union{Vector{Int}, Tuple{Vector{Int}, Vector{<:AbstractFloat}}}
# The bare minimum for `sample` interface-- covers all 4 other definitions.
# vsample(::Type{S}, A, n_sim, n_cat; dims=:) where {S} = vsample(S, A, n_sim, n_cat, dims)
# vsample(::Type{S}, A, n_sim; dims=:) where {S} = vsample(S, A, n_sim, num_cat(A), dims)
# vsample(::Type{S}, A, n_sim::Int, n_cat::Int, dims::Int) where {S} = vsample(S, A, n_sim, n_cat, (dims,))
# function vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
# Dᴬ = size(A)
# Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
# B = fill!(similar(A, S, Dᴮ), zero(S))
# vsample!(B, A)
# end
# function vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
# B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
# vsample!(B, A)
# end
#### A revised public interface
"""
vsample(::Type{T<:Real}=Int, A::AbstractArray, n_sim::Int; [dims=:], [n_cat=nothing])
See `sample` for full documentation; identical in behavior except that
the underlying Marsaglia sampler uses `LoopVectorization`. Sometimes, but not
always, confers speedup.
See also: [`vtsample`](@ref), [`sample`](@ref), [`tsample`](@ref)
"""
vsample(::Type{S}, A, n_sim; dims=:, n_cat=nothing) where {S<:Real} = _vsample(S, A, n_sim, n_cat, dims)
vsample(A, n_sim; dims=:, n_cat=nothing) = _vsample(Int, A, n_sim, n_cat, dims)
_vsample(::Type{S}, A, n_sim, n_cat::Int, dims::Int) where {S<:Real} = _vsample(S, A, n_sim, n_cat, (dims,))
_vsample(::Type{S}, A, n_sim, ::Nothing, dims) where {S<:Real} = _vsample(S, A, n_sim, num_cat(A), dims)
function _vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
vsample!(B, A)
end
function _vsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
vsample!(B, A)
end
################
# The expected case: vectors of sparse vectors (as their bare components)
"""
vsample!(B::AbstractArray, A::AbstractArray)
Identical to `sample!` except that except that
the underlying Marsaglia sampler uses `LoopVectorization`.
See also: [`vtsample!`](@ref), [`sample!`](@ref), [`tsample!`](@ref)
"""
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors (as bare components)
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector (as bare components)
_vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A
K, V = sqhist(p)
C = vgenerate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}) where {S<:Real, N′} where {N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
vgenerate!(C, U, n)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# # The simplest case: a sparse vector
_vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real}
B = zeros(S, n_sim, n_cat)
vsample!(B, A)
end
# Oddly, the fastest vsampler is non-allocating -- most likely due to
# the elimination of store + access instructions associated with using a temporary array.
function vsample!(B::AbstractMatrix{S}, Iₛ::Vector{Int}) where {S<:Real}
_check_reducedims(B, Iₛ)
n = length(Iₛ)
C = vgenerate(n, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
################
# General case: dense vectors, the linear index of which indicates the category
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for p ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c, IR] += one(S)
end
end
end
B
end
# A simplification: an array of dense vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}) where {S<:Real, N′} where {T<:AbstractFloat, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c, IR] += one(S)
end
end
B
end
# The simplest case: a dense vector
_vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::Vector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
K, V = sqhist(A)
C = vgenerate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, c] += one(S)
end
B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
end
B
end
# A simplification: an array of sparse vectors
function vsample!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
C, U = _genstorage_init(Float64, size(B, 1))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c], IR] += one(S)
end
end
B
end
# The simplest case: a sparse vector
_vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int) where {S<:Real} where {T<:AbstractFloat} = _vsample(S, A, n_sim, n_cat, :)
_vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}) where {S<:Real} where {T<:AbstractFloat} where {N} = _vsample(S, A, n_sim, n_cat, :)
function _vsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vsample!(B, A)
end
function vsample!(B::AbstractMatrix{S}, A::SparseVector{T}) where {S<:Real} where {T<:AbstractFloat}
_check_reducedims(B, A)
Iₛ, p = A.nzind, A.nzval
K, V = sqhist(p)
C = vgenerate(K, V, size(B, 1))
@inbounds for (i′, i) ∈ enumerate(axes(B, 1))
c = C[i′]
B[i, Iₛ[c]] += one(S)
end
B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 14522 | #
# Date created: 2022-06-12
# Author: aradclif
#
#
############################################################################################
# mirror of sampler.jl; separate file for variants on threading
# The bare minimum for `sample` interface-- covers all 4 other definitions.
"""
tsample(::Type{T<:Real}=Int, A::AbstractArray, n_sim::Int; [dims=:], [n_cat=nothing], [chunksize=5000])
See `sample` for full documentation; identical in behavior except that
thread-based parallelism is used to accelerate the computation; also,
the underlying Marsaglia sampler uses `LoopVectorization`.
The optional `chunksize` argument provides a fixed upper bound for the number of
simulations to be passed to each thread. Depending on number of independent categorical
distributions to be sample and number of simulations to be performed, a `chunksize`
of `5000` is likely too conservative. The user is encouraged to try smaller chunk sizes.
See also: [`vsample`](@ref), [`sample`](@ref), [`tsample`](@ref)
"""
vtsample(::Type{S}, A, n_sim; dims=:, n_cat=nothing, chunksize=5000) where {S<:Real} = _vtsample(S, A, n_sim, n_cat, dims, chunksize)
vtsample(A, n_sim; dims=:, n_cat=nothing, chunksize=5000) = _vtsample(Int, A, n_sim, n_cat, dims, chunksize)
_vtsample(::Type{S}, A, n_sim, n_cat::Int, dims::Int, chunksize) where {S<:Real} = _vtsample(S, A, n_sim, n_cat, (dims,), chunksize)
_vtsample(::Type{S}, A, n_sim, ::Nothing, dims, chunksize) where {S<:Real} = _vtsample(S, A, n_sim, num_cat(A), dims, chunksize)
function _vtsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, dims::NTuple{P, Int}, chunksize::Int) where {S<:Real} where {P} where {T, N}
Dᴬ = size(A)
Dᴮ = tuple(n_sim, n_cat, ntuple(d -> d ∈ dims ? 1 : Dᴬ[d], Val(N))...)
B = fill!(similar(A, S, Dᴮ), zero(S))
vtsample!(B, A, chunksize)
end
function _vtsample(::Type{S}, A::AbstractArray{T, N}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T, N}
B = fill!(similar(A, S, (n_sim, n_cat)), zero(S))
vtsample!(B, A, chunksize)
end
"""
tsample!(B::AbstractArray, A::AbstractArray; [chunksize=5000])
Identical to `sample!` except that thread-based parallelism is used to accelerate
the computation. also, the underlying Marsaglia sampler uses `LoopVectorization`.
See also: [`vsample!`](@ref), [`sample!`](@ref), [`tsample!`](@ref)
"""
vtsample!(B, A; chunksize::Int=5000) = vtsample!(B, A, chunksize)
function vtsample!(B, A, chunksize::Int)
_check_reducedims(B, A)
keep, default = Broadcast.shapeindexer(axes(B)[3:end])
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk!(B, A, keep, default, r)
end
return B
end
################
# The expected case: vectors of sparse vectors (as their bare components)
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Tuple{Vector{Int}, Vector{T}}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for (Iₛ, p) ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Tuple{Vector{Int}, Vector{T}}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
L = length(ℐ)
C, U = _genstorage_init(Float64, L)
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ, p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
_vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
function _vtsample(::Type{S}, A::Tuple{Vector{Int}, Vector{T}}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vtsample!(B, A, chunksize)
end
function vtsample!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{<:AbstractFloat}}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk!(B, A, r)
end
return B
end
function _vsample_chunk!(B::AbstractMatrix{S}, A::Tuple{Vector{Int}, Vector{T}}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A
K, V = sqhist(p)
C = vgenerate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
function _vsample_chunk!(B::AbstractMatrix{S}, A::Tuple{AbstractVector{Int}, AbstractVector{T}}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A
n = length(Iₛ)
Iₛp = (copyto!(Vector{Int}(undef, n), Iₛ), copyto!(Vector{T}(undef, n), p))
_vsample_chunk!(B, Iₛp, ℐ)
end
################
# Specialized method for eltype(A)::Vector{Vector{Int}}
# or, in other words, where the probability mass on each element is 1 / length(Iₛ)
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{Int}, M}, N} where {M}
C, U = _genstorage_init(Float64, length(ℐ))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for Iₛ ∈ a
n = length(Iₛ)
vgenerate!(C, U, n)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{Int}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {N}
C, U = _genstorage_init(Float64, length(ℐ))
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
Iₛ = A[IA]
n = length(Iₛ)
vgenerate!(C, U, n)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_vtsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
_vtsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {N} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
function _vtsample(::Type{S}, A::Vector{Int}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real}
B = zeros(S, n_sim, n_cat)
vtsample!(B, A, chunksize)
end
function vtsample!(B::AbstractMatrix{S}, A::Vector{Int}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk!(B, A, r)
end
return B
end
function _vsample_chunk!(B::AbstractMatrix{S}, A::AbstractVector{Int}, ℐ::UnitRange{Int}) where {S<:Real}
Iₛ = A
n = length(Iₛ)
C = vgenerate(n, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
################
# General case: dense vectors, the linear index of which indicates the category
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{Vector{T}, M}, N} where {T<:AbstractFloat, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for p ∈ a
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c, IR] += one(S)
end
end
end
return B
end
# A simplification: an array of dense vectors
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{Vector{T}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {T<:AbstractFloat, N}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(T, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
p = A[IA]
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c, IR] += one(S)
end
end
return B
end
# The simplest case: a dense vector
_vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
_vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
function _vtsample(::Type{S}, A::Vector{T}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vtsample!(B, A, chunksize)
end
function vtsample!(B::AbstractMatrix{S}, A::Vector{T}, chunksize::Int) where {S<:Real, T<:AbstractFloat}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk!(B, A, r)
end
return B
end
function _vsample_chunk!(B::AbstractMatrix{S}, A::AbstractVector{T}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
p = copyto!(Vector{T}(undef, length(A)), A)
K, V = sqhist(p)
C = vgenerate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, c] += one(S)
end
return B
end
################
# General case: sparse vectors, the nzval of which indicates the category
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{R, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {R<:AbstractArray{SparseVector{Tv, Ti}, M}, N} where {Tv<:AbstractFloat, Ti<:Integer, M}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
a = A[IA]
for sv ∈ a
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
end
return B
end
# A simplification: an array of sparse vectors
function _vsample_chunk!(B::AbstractArray{S, N′}, A::AbstractArray{SparseVector{Tv, Ti}, N}, keep, default, ℐ::UnitRange{Int}) where {S<:Real, N′} where {Tv<:AbstractFloat, Ti<:Integer, N}
C, U = _genstorage_init(Float64, length(ℐ))
K, V, q = _sqhist_init(Tv, 0)
large, small = _largesmall_init(0)
@inbounds for IA ∈ CartesianIndices(A)
IR = Broadcast.newindex(IA, keep, default)
sv = A[IA]
Iₛ, p = sv.nzind, sv.nzval
n = length(p)
resize!(K, n); resize!(V, n); resize!(large, n); resize!(small, n); resize!(q, n)
sqhist!(K, V, large, small, q, p)
vgenerate!(C, U, K, V)
for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c], IR] += one(S)
end
end
return B
end
# The simplest case: a sparse vector
_vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::Int, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
_vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, dims::NTuple{N, Int}, chunksize::Int) where {S<:Real} where {T<:AbstractFloat} where {N} = _vtsample(S, A, n_sim, n_cat, :, chunksize)
function _vtsample(::Type{S}, A::SparseVector{T}, n_sim::Int, n_cat::Int, ::Colon, chunksize::Int) where {S<:Real} where {T<:AbstractFloat}
B = zeros(S, n_sim, n_cat)
vtsample!(B, A, chunksize)
end
function vtsample!(B::AbstractMatrix{S}, A::SparseVector{<:AbstractFloat}, chunksize::Int) where {S<:Real}
_check_reducedims(B, A)
rs = splitranges(firstindex(B, 1):lastindex(B, 1), chunksize)
@batch for r in rs
_vsample_chunk!(B, A, r)
end
return B
end
function _vsample_chunk!(B::AbstractMatrix{S}, A::SparseVector{T}, ℐ::UnitRange{Int}) where {S<:Real} where {T<:AbstractFloat}
Iₛ, p = A.nzind, A.nzval
K, V = sqhist(p)
C = vgenerate(K, V, length(ℐ))
@inbounds for l ∈ eachindex(C, ℐ)
c = C[l]
i = ℐ[l]
B[i, Iₛ[c]] += one(S)
end
return B
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 37343 | # Tests of normalization methods
@testset "misc type inference functions" begin
@test _typeofinv(1) === Float64
@test _typeofinv(Int) === Float64
@test _typeofinv(Rational{Int64}) === Rational{Int64}
#
ws = ([1,2,3], fill(1/6, 6), fill(1//10, 9))
@test _typeofprod(ws) === Float64
ws2 = (ws[1], fill(1//6, 6), ws[3])
@test _typeofprod(ws2) === Rational{Int64}
for T ∈ (Int8, Int16, Int32)
ws3 = (Int8[1,2,3], T[4,5,6], Int8[7,8,9])
@test _typeofprod(ws3) === Int64
end
end
@testset "_u, _checku01" begin
@test _u(1.0) === 0.5
@test _u(1//1) === 1//2
@test _u(0) === 0.0
@test _u(Inf) === 1.0
@test _u(-1) === -Inf
@test _u(-Inf) === -NaN
for T ∈ (Int64, UInt, Float64, BigInt, BigFloat, Rational{Int})
@test_nowarn _check_u01(zero(T))
@test_nowarn _check_u01(one(T))
@test_throws DomainError _check_u01(T(2))
end
@test_nowarn _check_u01(0.5)
@test_nowarn _check_u01(1//2)
@test_nowarn _check_u01(big(0.5))
end
@testset "algorithm 2.1" begin
w = [7.3, 10.2, 5.1, 2.7, 2.89]
p = [1.0]
for i ∈ eachindex(w)
@test algorithm2_1([i], w) ≈ p
end
for I ∈ ([1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5],
[1, 2, 3], [1, 2, 4], [1, 2, 5], [2, 3, 4], [2, 3, 5], [3, 4, 5],
[1, 2, 3, 4], [1, 2, 3, 5], [2, 3, 4, 5],
[1, 2, 3, 4, 5])
@test algorithm2_1(I, w) ≈ w[I] ./ sum(w[I])
end
@test algorithm2_1([1, 1, 1], w) ≈ fill(1/3, 3)
# non-Float64 Type handling
I1 = [1]
I2 = [1, 2]
for T ∈ (Float16, Float32, Rational{Int16}, Rational{Int32}, Rational{Int64}, Rational{Int128})
𝑤 = T.(w)
@test @inferred algorithm2_1(I1, 𝑤) ≈ T[1]
@test @inferred algorithm2_1(I2, 𝑤) ≈ 𝑤[I2] ./ sum(𝑤[I2])
end
# Aberrant behavior
@testset "weight < 0" begin
w = [-5, 4, 3, 2, 1];
I = [1, 5, 2];
@test algorithm2_1(I, w) == [-Inf, Inf, Inf]
I = [2, 3]
@test algorithm2_1(I, w) == [4/7, 3/7]
I = [1, 2, 2]
@test algorithm2_1(I, w) == [-prevfloat(5/3), 4/3, 4/3]
end
# zeros behavior
w = zeros(5)
I = [1, 2, 3]
@test all(algorithm2_1(I, w) .=== [-NaN, -NaN, -NaN])
w[3] = 5
@test algorithm2_1(I, w) == [0.0, 0.0, 1.0]
@testset "NaN handling (lack thereof)" begin
# things which generate NaNs by propagation
w = [2.0, 10.0, 5.0, 1.0, NaN]
I = [1, 3, 5]
@test all(algorithm2_1(I, w) .=== [NaN, NaN, NaN])
I = [1, 5, 5]
@test all(algorithm2_1(I, w) .=== [NaN, NaN, NaN])
I = [5, 5, 5]
@test all(algorithm2_1(I, w) .=== [NaN, NaN, NaN])
# propagating NaNs with signbit set
w = [2.0, 10.0, 5.0, 1.0, -NaN]
I = [1, 3, 5]
@test all(algorithm2_1(I, w) .=== [-NaN, -NaN, -NaN])
I = [1, 5, 5]
@test all(algorithm2_1(I, w) .=== [-NaN, -NaN, -NaN])
I = [5, 5, 5]
@test all(algorithm2_1(I, w) .=== [-NaN, -NaN, -NaN])
end
@testset "±Inf handling (lack thereof)" begin
w = [2.0, 10.0, 5.0, 1.0, Inf]
I = [1, 3, 5]
@test all(algorithm2_1(I, w) .=== [0.0, 0.0, -NaN])
w = [2.0, 10.0, 5.0, 1.0, prevfloat(Inf)]
I = [1, 3, 5]
p = algorithm2_1(I, w)
@test all(!isnan, p)
@test all(!isinf, p)
# integer overflow
w = [5, 4, 3, 1, typemax(Int) - 1]
I = [1, 3, 5]
@test algorithm2_1(I, w) == [-5.421010862427522e-19, -3.2526065174565133e-19, -1.0]
I = [4, 5] # on the cusp of overflow
@test algorithm2_1(I, w) == [1.0842021724855044e-19, 1.0]
end
@testset "sweep precision (SIMD rounding)" begin
rng = Xoshiro(1234)
w = rand(rng, 256)
p = Vector{Float64}(undef, 0)
for m = -10:10
w .*= 10.0^m
for i = 1:8
for j = -1:1
n = (1 << i) + j
I = rand(1:256, n)
resize!(p, n)
algorithm2_1!(p, I, w)
@test all(!iszero, p)
@test sum(p) ≈ 1.0
end
end
end
end
@testset "algorithm 2.1, type handling" begin
w1 = [5/9, 1/9, 3/9, 0, 0]
w2 = [5//9, 1//9, 3//9, 0, 0]
w3 = [5, 1, 3, 0, 0]
p1 = [prevfloat(5/6), prevfloat(1/6), 0.0]
p2 = [5//6, 1//6, 0]
p3 = [prevfloat(5/6), 1/6, 0.0]
I = [1, 2, 5]
@test @inferred algorithm2_1(I, w1) == p1
@test @inferred algorithm2_1(I, w2) == p2
@test @inferred algorithm2_1(I, w3) == p3
p = similar(p1)
@test @inferred algorithm2_1!(p, I, w1) ≈ p3
@test @inferred algorithm2_1!(p, I, w2) ≈ p3
@test @inferred algorithm2_1!(p, I, w3) ≈ p3
#
for T ∈ (Float16, Float32, Float64, BigFloat, Int8, Int16, Int32, Int64, BigInt, Rational{Int8}, Rational{Int16}, Rational{Int32}, Rational{Int64}, Rational{Int128}, Rational{BigInt})
𝑤 = T.(w3)
p′ = @inferred algorithm2_1(I, 𝑤)
@test p′ ≈ p3
end
end
end
# _alg2_2(Is, ws) = (p = (.*)(getindex.(ws, Is)...); p .* inv(sum(p)))
@testset "algorithm 2.2" begin
ws = ([1,2,3], fill(1/6, 6), fill(1//10, 9))
ws2 = (ws[1], fill(1//6, 6), ws[3])
Is = ([1,2,3], [4,5,6], [7,8,9])
p = [1.0]
p2 = [1//1]
for i ∈ 1:3
I = [i]
@test @inferred algorithm2_2((I, I, I), ws) == p
@test @inferred algorithm2_2((I, I, I), ws2) == p2
end
p′ = [1/6, 1/3, 1/2]
p2′ = [1//6, 1//3, 1//2]
@test @inferred algorithm2_2(Is, ws) == p′
@test @inferred algorithm2_2(Is, ws2) == p2′
# Float products
I = [1,2,3]
w = fill(1/2,6)
for n = 1:10
Is = ntuple(_ -> I, n)
ws = ntuple(_ -> w, n)
p = @inferred algorithm2_2(Is, ws)
@test all(p .≈ 1/3)
end
# Rational products
w2 = fill(1//2,6)
for n = 1:10
Is = ntuple(_ -> I, n)
ws = ntuple(_ -> w2, n)
p = @inferred algorithm2_2(Is, ws)
@test all(p .== 1//3)
end
# Mixed products
w3 = fill(1,6)
for n = 2:2:12
Is = ntuple(_ -> I, n)
ws = tuple(ntuple(_ -> w, n >> 1)..., ntuple(_ -> w2, n >> 1)...)
p = @inferred algorithm2_2(Is, ws)
@test all(p .≈ 1/3)
ws = tuple(ntuple(_ -> w, n >> 1)..., ntuple(_ -> w3, n >> 1)...)
p = @inferred algorithm2_2(Is, ws)
@test all(p .≈ 1/3)
Base.setindex(ws, w2, lastindex(ws))
p = @inferred algorithm2_2(Is, ws)
@test all(p .≈ 1/3)
end
# Aberrant behavior
@testset "weight < 0" begin
w = [-5, 4, 3, 2, 1];
I = [1, 5, 2];
Is = (I, [1,2,3], [1,2,3])
ws = (w, fill(1/6, 6), fill(1//10, 9))
@test algorithm2_2(Is, ws) == [-Inf, Inf, Inf]
Is = Base.setindex(Is, [2,3,4], 1)
@test algorithm2_2(Is, ws) == nextfloat.([4/9, 3/9, 2/9])
Is = Base.setindex(Is, [1,2,2], 1)
@test algorithm2_2(Is, ws) == [-prevfloat(5/3), 4/3, 4/3]
end
# zeros behavior
w = zeros(5)
ws = (w, w, w)
I = [1, 2, 3]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [-NaN, -NaN, -NaN])
w[3] = 5
@test algorithm2_2(Is, ws) == [0.0, 0.0, 1.0]
@testset "NaN handling (lack thereof)" begin
# things which generate NaNs by propagation
w = [2.0, 10.0, 5.0, 1.0, NaN]
ws = (w, w, w)
I = [1, 3, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [NaN, NaN, NaN])
I = [1, 5, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [NaN, NaN, NaN])
I = [5, 5, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [NaN, NaN, NaN])
# propagating NaNs with signbit set
w = [2.0, 10.0, 5.0, 1.0, -NaN]
ws = (w, w, w)
I = [1, 3, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [-NaN, -NaN, -NaN])
I = [1, 5, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [-NaN, -NaN, -NaN])
I = [5, 5, 5]
Is = (I, I, I)
@test all(algorithm2_2(Is, ws) .=== [-NaN, -NaN, -NaN])
end
@testset "±Inf handling (lack thereof)" begin
I = [1, 3, 5]
Is = (I, I, I)
w = [2.0, 10.0, 5.0, 1.0, Inf]
ws = (w, w, w)
@test all(algorithm2_2(Is, ws) .=== [0.0, 0.0, -NaN])
w = [2.0, 10.0, 5.0, 1.0, prevfloat(Inf)]
ws = (w, w, w)
p = algorithm2_2(Is, ws)
@test all(p .=== [0.0, 0.0, -NaN])
@test all(!isinf, p)
# integer overflow
w = [5, 4, 3, 1, typemax(Int) - 1]
ws = (w, w, w)
@test algorithm2_2(Is, ws) == [0.8680555555555555, 0.1875, -0.05555555555555555]
end
@testset "sweep precision (SIMD rounding)" begin
rng = Xoshiro(0xd123456789abcdef)
w = rand(rng, 256)
p = Vector{Float64}(undef, 0)
for M = 2:5
for m = -10:10
w .*= 10.0^m
ws = ntuple(_ -> w, M)
for i = 1:8
for j = -1:1
n = (1 << i) + j
Is = ntuple(_ -> rand(rng, 1:256, n), M)
resize!(p, n)
algorithm2_2!(p, Is, ws)
@test all(!iszero, p)
@test sum(p) ≈ 1.0
end
end
end
end
end
end
@testset "algorithm 3" begin
w = [0.0, 10.0, 5.0, 0.0, 2.5]
p = [0.25, 0.2857142857142857, 0.14285714285714285, 0.25, 0.07142857142857142]
p′ = algorithm3(w, 0.5)
@test sum(p′) ≈ 1.0
@test p ≈ p′
@test algorithm3(w, 1.0) == [0.5, 0.0, 0.0, 0.5, 0.0]
# u not 0 ≤ u ≤ 1
p = [0.75, -0.2857142857142857, -0.14285714285714285, 0.75, -0.07142857142857142]
@test_throws DomainError algorithm3(w, 1.5)
@test_throws DomainError algorithm3(w, -0.5)
# @test p ≈ p′
# @test sum(p′) ≈ 1.0
# throws where appropriate
@test_throws DimensionMismatch algorithm3!(p, zeros(6), 0.5)
@test_throws DimensionMismatch algorithm3!(zeros(6), p, 0.5)
# zeros behavior
p = algorithm3(w, 0.0)
@test p == [0.0, 0.5714285714285714, 0.2857142857142857, 0.0, 0.14285714285714285]
algorithm3!(p, 1.0)
@test p == [0.5, 0.0, 0.0, 0.5, 0.0]
algorithm3!(p, 0.0)
@test p == [0.5, 0.0, 0.0, 0.5, 0.0]
p .= 0
algorithm3!(p, 1.0)
@test p == fill(0.2, 5)
p .= 0
algorithm3!(p, 0.0)
@test all(p .=== -NaN)
#
w = zeros(5)
for u ∈ (nextfloat(0.0), eps(), 0.5, prevfloat(1.0), 1.0)
algorithm3!(p, w, u)
@test p == fill(0.2, 5)
end
@testset "NaN handling (lack thereof)" begin
# things which generate NaNs
w = [0.0, 10.0, 5.0, 0.0, NaN]
p = [0.25, NaN, NaN, 0.25, NaN]
p′ = algorithm3(w, 0.5)
@test isequal(p′, p)
@test p′[1] + p′[4] == 0.5
w = [1.0, 2.0, 3.0, NaN]
p′ = algorithm3(w, 0.5)
@test isequal(p′, fill(NaN, 4))
end
@testset "±Inf handling (lack thereof)" begin
w = [0.0, 10.0, 5.0, 0.0, Inf]
p = [0.25, 0.0, 0.0, 0.25, NaN]
p′ = algorithm3(w, 0.5)
@test isequal(p′, p)
@test sum(p′[1:4]) == 0.5
w = [0.0, 10.0, 5.0, 0.0, -Inf]
p = [0.25, -0.0, -0.0, 0.25, -NaN]
p′ = algorithm3(w, 0.5)
@test all(p′ .=== p)
@test sum(p′[1:4]) == 0.5
w = [1.0, 2.0, 3.0, Inf]
p = [0.0, 0.0, 0.0, NaN]
p′ = algorithm3(w, 0.5)
@test isequal(p′, p)
# Inf * inv(Inf) -> NaN
w = [0.0, 0.0, 0.0, Inf]
p′ = algorithm3(w, 0.5)
@test sum(p′[1:3]) ≈ 0.5
@test isnan(p′[4]) # usually === -NaN, but maybe not always
w = [0.0, 0.0, 0.0, -Inf]
p′ = algorithm3(w, 0.5)
@test sum(p′[1:3]) ≈ 0.5
@test isnan(p′[4]) # usually === -NaN, but maybe not always
end
@testset "algorithm 3, sweep precision (SIMD rounding)" begin
rng = Xoshiro(1234)
w = rand(rng, 256)
w[rand(rng, 1:256, 64)] .= 0
x = copyto!(similar(w), w)
p = similar(w)
for u = 0.000001:.000001:0.999999
w .= x .* u
algorithm3!(p, w, u)
@test all(!iszero, p)
@test sum(p) ≈ 1.0
end
# When u = 1.0, all non-zero elements become zero
u = 1.0
w .= x .* u
algorithm3!(p, w, u)
@test count(iszero, p) == 197 # PRNG initialized as above gives 59 non-zeros
@test sum(p) ≈ 1.0
# When u = 0.0, all non-zero elements are normalized but zero elements remain same
u = 0.0
w .= x
algorithm3!(p, w, u)
@test count(iszero, p) == 59
@test sum(p) ≈ 1.0
# Large values -- potentially sensitive to very small u's around 1e-6
for u = 0.0001:0.0001:0.9999
for i = 1:20
n = 1 << i
w .= x .* n
algorithm3!(p, w, u)
@test all(!iszero, p)
@test sum(p) ≈ 1.0
end
end
end
@testset "algorithm 3, type handling" begin
p = [5/9, 1/9, 3/9, 0, 0]
p2 = [5//9, 1//9, 3//9, 0, 0]
# conversions should work and be type stable throughout
@inferred algorithm3!(p, 0.5)
@inferred algorithm3!(p2, 1)
# while Integer <: Real, it clearly cannot be normalized in a meaningful manner
p3 = [5, 1, 3, 0, 0]
@test_throws InexactError algorithm3!(p3, 0)
@test_throws InexactError algorithm3!(p3, 1)
@test_throws DomainError algorithm3!(p3, 999)
#
w = [5/9, 1/9, 3/9, 0, 0]
w2 = [5//9, 1//9, 3//9, 0, 0]
w3 = [5, 1, 3, 0, 0]
p = [5/9, 1/9, 3/9, 0, 0]
p2 = [5//9, 1//9, 3//9, 0, 0]
p3 = [5, 1, 3, 0, 0]
@inferred algorithm3!(p, w, 0.5)
@inferred algorithm3!(p, w3, 0.5)
@inferred algorithm3!(p2, w2, 0.5)
@inferred algorithm3!(p2, w2, 1//2)
@test_throws InexactError algorithm3!(p3, w, 1)
@test_throws InexactError algorithm3!(p3, w3, 1)
@test_throws InexactError algorithm3!(p3, w2, 1)
@test_throws InexactError algorithm3!(p3, w2, 1)
ps = (algorithm3(w3, 1//2), algorithm3(w3, 0.5), algorithm3(w3, 1), algorithm3(w3, 0))
for T ∈ (Float16, Float32, Float64, BigFloat, Int8, Int16, Int32, Int64, BigInt, Rational{Int8}, Rational{Int16}, Rational{Int32}, Rational{Int64}, Rational{Int128}, Rational{BigInt})
𝑤 = T.(w3)
for (i, u) ∈ enumerate((1//2, 0.5, 1, 0))
p = @inferred algorithm3(𝑤, u)
@test p ≈ ps[i]
end
end
end
end
@testset "normalize1" begin
# An aberrant case
w = [-1.0, 1.0, 1.0]
p = normalize1(w)
@test p == w
@test sum(p) ≈ 1.0
w = abs.(w)
p = normalize1(w)
@test p == [1/3, 1/3, 1/3]
@test sum(p) ≈ 1.0
# The usual things
A = [1.0 2.0; 3.0 4.0]
B = normalize1(A)
@test sum(B) ≈ 1.0
normalize1!(B)
@test sum(B) ≈ 1.0
A[1] = -1.0
normalize1!(B, A)
@test sum(B) ≈ 1.0
@test any(≤(0.0), B)
@testset "NaN handling (lack thereof)" begin
# things which generate NaNs
A = zeros(2,2)
@test isequal(normalize1(A), fill(NaN, 2,2))
# preexisting NaN(s)
A = [0.0 NaN; 0.0 1.0]
@test isequal(normalize1(A), fill(NaN, 2,2))
A = fill(NaN, 2,2)
@test isequal(normalize1(A), fill(NaN, 2,2))
A = fill(-NaN, 2,2)
B = normalize1(A)
@test all(A .=== B)
@test all(A .=== -NaN)
end
@testset "±Inf handling (lack thereof)" begin
A = [Inf Inf; Inf Inf]
@test isequal(normalize1(A), fill(NaN, 2,2))
A = [0.0 Inf; 0.0 1.0]
@test isequal(normalize1(A), [0.0 NaN; 0.0 0.0])
A = [0.0 -Inf; 0.0 1.0]
B = normalize1(A)
@test isequal(B, [-0.0 NaN; -0.0 -0.0])
@test isequal(B, [-0.0 -NaN; -0.0 -0.0])
# is the negative bit on the NaN set? (it should be)
@test B[1,2] === -NaN
@test B[1,2] !== NaN
# propagating negative bit
normalize1!(A, B)
@test all(A .=== -NaN)
end
# Sweeps: rounding errors, etc.
rng = Xoshiro(0x434b089281805289)
for i = 1:20
for j = -1:1
n = (1 << i) + j
w = rand(rng, n)
p = normalize1(w)
@test all(!iszero, p)
@test sum(p) ≈ 1.0
@test p ≈ normalize1(p)
# x = copyto!(similar(w), w)
# for u = 0.0001:0.0001:0.9999
# w .= x .* u
# normalize1!(p, w)
# @test all(!iszero, p)
# @test sum(p) ≈ 1.0
# end
end
end
x = rand(rng, 256)
x[rand(rng, 1:256, 64)] .= 0
y = normalize1(x)
@test count(iszero, x) == count(iszero, y)
@test sum(y) ≈ 1.0
w = similar(x)
# Large values
for i = 1:20
n = 1 << i
w .= x .* n
normalize1!(y, w)
@test sum(y) ≈ 1.0
w[129:256] .*= n >> i
normalize1!(y, w)
@test sum(y) ≈ 1.0
end
# Small values
nz = count(iszero, x)
for u = 0.000001:0.000001:0.999999
w .= x .* u
normalize1!(y, w)
@test sum(y) ≈ 1.0
@test count(iszero, y) == nz
# mixed with large
w[129:256] .*= 10^6
@test sum(y) ≈ 1.0
@test count(iszero, y) == nz
end
end
@testset "normalizations, 0 unchanged component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 5]
w₂ = [10, 20, 10, 20, 10]
p = algorithm2_1(I′, w)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/7, 2/7, 1/7, 2/7, 1/7]
end
@testset "normalizations, 1 unchanged component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 5]
w₂ = [10, 20, 0, 20, 10]
p = algorithm2_1(I′, w)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[3] == p[3]
@test q[1] + q[2] + q[4] + q[5] == p[1] + p[2] + p[4] + p[5]
end
@testset "normalizations, 2 unchanged components" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 5]
w₂ = [10, 20, 0, 0, 10]
p = algorithm2_1(I′, w)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[3] == p[3] && q[4] == p[4]
@test q[1] + q[2] + q[5] == p[1] + p[2] + p[5]
end
@testset "normalizations, all unchanged components" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 5]
w₂ = [0, 0, 0, 0, 0]
p = algorithm2_1(I′, w)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test all(q .== p)
end
@testset "normalizations, 0 unchanged component, 0 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 5]
u = 1/2
w₂ = [10, 20, 10, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/7, 2/7, 1/7, 2/7, 1/7]
end
@testset "normalizations, 0 unchanged component, 1 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 0]
u = 1/2
w₂ = [10, 20, 10, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/7, 2/7, 1/7, 2/7, 1/7]
end
@testset "normalizations, 0 unchanged component, 2 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 0, 0]
u = 1/2
w₂ = [10, 20, 10, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/7, 2/7, 1/7, 2/7, 1/7]
end
@testset "normalizations, 0 unchanged component, all unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [0, 0, 0, 0, 0]
u = 1/2
w₂ = [10, 20, 10, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/7, 2/7, 1/7, 2/7, 1/7]
end
@testset "normalizations, 1 unchanged component, 1 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 4, 0]
u = 1/2
w₂ = [10, 20, 0, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [0.14166666666666666, 0.2833333333333333, 0.15000000000000002, 0.2833333333333333, 0.14166666666666666]
w₂ = [10, 20, 10, 20, 0]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[5] == u
end
@testset "normalizations, 1 unchanged component, 2 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 0, 0]
u = 1/2
w₂ = [10, 20, 0, 20, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/8, 1/4, 1/4, 1/4, 1/8]
w₂ = [10, 20, 10, 20, 0]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[5] == u / 2
@test q == [1/8, 1/4, 1/8, 1/4, 1/4]
end
@testset "normalizations, 2 unchanged component, 2 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 0, 0]
u = 1/2
w₂ = [10, 20, 0, 0, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == [1/8, 1/4, 1/4, 1/4, 1/8]
w₂ = [10, 20, 10, 0, 0]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[5] == u / 2
@test q == [1/8, 1/4, 1/8, 1/4, 1/4]
w₂ = [0, 20, 10, 20, 0]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q[5] == u / 2
@test q == [0.16666666666666666, 0.2333333333333333, 0.11666666666666665, 0.2333333333333333, 0.25]
end
@testset "normalizations, all unchanged component, 2 unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [2, 1, 3, 0, 0]
u = 1/2
w₂ = [0, 0, 0, 0, 0]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q == p
end
@testset "normalizations, 2 unchanged component, all unknown component" begin
I′ = [1, 2, 3, 4, 5]
w = [0, 0, 0, 0, 0]
u = 1/2
w₂ = [10, 20, 0, 0, 10]
p = algorithm2_1_algorithm3(I′, w, u)
@test sum(p) ≈ 1
q = algorithm4(p, w₂)
@test sum(q) ≈ 1
@test q ≈ [0.15, 0.3, 0.2, 0.2, 0.15]
end
# @testset "Monte Carlo, re-weighted: 1 unchanged component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [2, 1, 3, 4, 5]
# w₂ = [10, 20, 0, 20, 10]
# A = weightedmcadd1(Int, (I′, w₂), w, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
# @testset "Monte Carlo, re-weighted: all unchanged component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [2, 1, 3, 4, 5]
# w₂ = [0, 0, 0, 0, 0]
# A = weightedmcadd1(Int, (I′, w₂), w, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
# @testset "Monte Carlo, re-weighted: 1 unchanged component, 0 unknown component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [2, 1, 3, 4, 5]
# w₂ = [10, 20, 0, 20, 10]
# u = 1/2
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
# @testset "Monte Carlo, re-weighted: 1 unchanged component, 1 unknown component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [2, 1, 3, 4, 0]
# w₂ = [10, 20, 0, 20, 10]
# u = 1/2
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# w = [2, 1, 0, 4, 5]
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
# @testset "Monte Carlo, re-weighted: 1 unchanged component, 2 unknown component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [2, 1, 3, 0, 0]
# w₂ = [10, 20, 0, 20, 10]
# u = 1/2
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# w = [2, 1, 0, 4, 0]
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
# @testset "Monte Carlo, re-weighted: 1 unchanged component, all unknown component" begin
# I′ = [1, 2, 3, 4, 5]
# w = [0, 0, 0, 0, 0]
# w₂ = [10, 20, 0, 20, 10]
# u = 1/2
# A = weightedmcadd1(Int, (I′, w₂), w, u, 10)
# Σ = sum(A, dims=1)
# @test all(==(1), Σ)
# weightedmcadd1!(A, (I′, w₂), w, u)
# Σ = sum(A, dims=1)
# @test all(==(2), Σ)
# end
@testset "algorithm4 behavior" begin
@test isequal(algorithm4(zeros(3), zeros(3)), [NaN, NaN, NaN])
@test !isequal(algorithm4(rand(3), zeros(3)), [NaN, NaN, NaN])
@test isequal(algorithm4(zeros(3), rand(3)), [NaN, NaN, NaN])
end
@testset "algorithm4, type handling" begin
w₁ = [1, 1, 1, 1, 0]
w₂ = [2, 1, 3, 0, 5]
p = [3/22, 3/44, 9/44, 1/4, 15/44]
pᵣ = [3//22, 3//44, 9//44, 1//4, 15//44]
@test algorithm4(w₁, w₂) ≈ p
for T ∈ (Float32, Float64, BigFloat, Rational{Int16}, Rational{Int32}, Rational{Int64}, Rational{Int128}, Rational{BigInt})
𝑤₁ = T.(w₁)
@test algorithm4(𝑤₁, w₂) ≈ p rtol=√(eps())
𝑤₂ = T.(w₂)
@test algorithm4(w₁, 𝑤₂) ≈ p rtol=√(eps())
𝑝 = @inferred algorithm4(𝑤₁, 𝑤₂)
@test eltype(𝑝) === T
@test 𝑝 ≈ p rtol=∛(eps())
end
################
# Checks and corresponding benchmarks. Use @code_warntype and inspect the type of
# p[i] = w₂ᵢ == zero(U) ? c₁ * w₁ᵢ : c₂ * w₂ᵢ
# _v2! : c₁ = one(S)/ s₁; c₂ = s₁′ * c₁ / s₂
#### 2-arg
# 𝑤₁ = Rational.(w₁)
# 𝑤₂ = Rational.(w₂)
# 𝐰₁ = Float64.(w₁)
# 𝐰₂ = Float64.(w₂)
# @code_warntype algorithm4!(p, w₁)
# @code_warntype algorithm4!(p, 𝑤₁)
# @code_warntype algorithm4!(pᵣ, w₁)
# # c₁::Rational{Int}, c₂::Float64
# @code_warntype algorithm4!(pᵣ, 𝐰₁)
# @code_warntype algorithm4_v2!(p, w₁)
# @code_warntype algorithm4_v2!(p, 𝑤₁)
# @code_warntype algorithm4_v2!(pᵣ, w₁)
# # c₁::Rational{Int}, c₂::Float64
# @code_warntype algorithm4_v2!(pᵣ, 𝐰₁)
# @benchmark algorithm4!(p, w₁)
# @benchmark algorithm4!(p, 𝑤₁)
# @benchmark algorithm4!(pᵣ, w₁)
# @benchmark algorithm4!(pᵣ, 𝐰₁)
# @benchmark algorithm4_v2!(p, w₁)
# @benchmark algorithm4_v2!(p, 𝑤₁)
# @benchmark algorithm4_v2!(pᵣ, w₁)
# @benchmark algorithm4_v2!(pᵣ, 𝐰₁)
# #### 3-arg
# @code_warntype algorithm4!(p, w₁, w₂)
# @code_warntype algorithm4!(p, 𝑤₁, w₂)
# # s₁::Float64, s₂::Rational{Int}
# @code_warntype algorithm4!(p, w₁, 𝑤₂)
# #
# @code_warntype algorithm4!(pᵣ, w₁, w₂)
# @code_warntype algorithm4_v2!(pᵣ, w₁, w₂)
# #
# @code_warntype algorithm4!(pᵣ, 𝑤₁, w₂)
# @code_warntype algorithm4_v2!(pᵣ, 𝑤₁, w₂)
# # c₁::Float64, c₂::Rational{Int}
# @code_warntype algorithm4!(pᵣ, w₁, 𝑤₂)
# @code_warntype algorithm4_v2!(pᵣ, w₁, 𝑤₂)
# #
# @benchmark algorithm4!($pᵣ, $𝑤₁, $w₂)
# @benchmark algorithm4_v2!($pᵣ, $𝑤₁, $w₂)
# #
# @benchmark algorithm4!($pᵣ, $w₁, $𝑤₂)
# @benchmark algorithm4_v2!($pᵣ, $w₁, $𝑤₂)
# #
# @benchmark algorithm4!($pᵣ, $𝑤₁, $𝑤₂)
# @benchmark algorithm4_v2!($pᵣ, $𝑤₁, $𝑤₂)
# #
# @benchmark algorithm4!($p, $𝑤₁, $w₂)
# @benchmark algorithm4_v2!($p, $𝑤₁, $w₂)
# #
# @benchmark algorithm4!($p, $w₁, $𝑤₂)
# @benchmark algorithm4_v2!($p, $w₁, $𝑤₂)
# #
# @benchmark algorithm4!($p, $𝑤₁, $𝑤₂)
# @benchmark algorithm4_v2!($p, $𝑤₁, $𝑤₂)
# ####
# @code_warntype algorithm4!(p, 𝐰₁, 𝑤₂)
# #
# @code_warntype algorithm4!(pᵣ, 𝐰₁, 𝐰₂)
# @code_warntype algorithm4_v2!(pᵣ, 𝐰₁, 𝐰₂)
# #
# @code_warntype algorithm4!(pᵣ, 𝑤₁, 𝐰₂)
# @code_warntype algorithm4_v2!(pᵣ, 𝑤₁, 𝐰₂)
# # s₁::Float64, s₂::Rational{Int}
# @code_warntype algorithm4!(pᵣ, 𝐰₁, 𝑤₂)
# @code_warntype algorithm4_v2!(pᵣ, 𝐰₁, 𝑤₂)
# #
# @benchmark algorithm4!($pᵣ, $𝑤₁, $𝐰₂)
# @benchmark algorithm4_v2!($pᵣ, $𝑤₁, $𝐰₂)
# #
# @benchmark algorithm4!($pᵣ, $𝐰₁, $𝑤₂)
# @benchmark algorithm4_v2!($pᵣ, $𝐰₁, $𝑤₂)
# #
# @benchmark algorithm4!($pᵣ, $𝐰₁, $𝐰₂)
# @benchmark algorithm4_v2!($pᵣ, $𝐰₁, $𝐰₂)
# #
# @benchmark algorithm4!($p, $𝑤₁, $𝐰₂)
# @benchmark algorithm4_v2!($p, $𝑤₁, $𝐰₂)
# #
# @benchmark algorithm4!($p, $𝐰₁, $𝑤₂)
# @benchmark algorithm4_v2!($p, $𝐰₁, $𝑤₂)
# #
# @benchmark algorithm4!($p, $𝐰₁, $𝐰₂)
# @benchmark algorithm4_v2!($p, $𝐰₁, $𝐰₂)
# #
end
@testset "algorithm3, algorithm4, application order effects" begin
# 3 -> 4, w₁ ∌ 0, w₂ ∋ 0
w₁ = [1., 2, 3, 4, 5]
w₂ = [2, 1, 3, 4, 0]
u = 0.5
ω₁ = algorithm3(w₁, u)
@test ω₁ ≈ w₁ ./ sum(w₁)
ω = algorithm4(ω₁, w₂)
@test sum(ω) ≈ 1
@test ω[5] == ω₁[5]
@test ω ≉ algorithm4(rand(5), w₂)
# 3 -> 4, w₁ ∋ 0, w₂ ∌ 0
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 3, 4, 5]
u = 0.5
ω₁ = algorithm3(w₁, u)
@test sum(ω₁) ≈ 1
@test 0 ∉ ω₁
@test ω₁[5] == u
ω = algorithm4(ω₁, w₂)
@test sum(ω) ≈ 1
@test ω ≈ algorithm4(rand(5), w₂)
# 3 -> 4, w₁ ∌ 0, w₂ ∌ 0
w₁ = [1., 2, 3, 4, 5]
w₂ = [2, 1, 3, 4, 1]
u = 0.5
ω₁ = algorithm3(w₁, u)
@test ω₁ ≈ w₁ ./ sum(w₁)
ω = algorithm4(ω₁, w₂)
@test sum(ω) ≈ 1
@test ω[5] ≉ ω₁[5]
# 3 -> 4, w₁ ∋ 0, w₂ ∋ 0
# sub-case 1: J₁ ∩ I₂′ = ∅
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 3, 4, 0]
u = 0.5
ω₁ = algorithm3(w₁, u)
@test sum(ω₁) ≈ 1
@test 0 ∉ ω₁
ω = algorithm4(ω₁, w₂)
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test sum(ω) ≈ 1
@test isdisjoint(J₁, I₂′)
@test ω[5] == ω₁[5]
@test ω ≉ algorithm4(rand(5), w₂)
# sub-case 2: J₁ ∩ I₂′ ≠ ∅
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 0, 0, 5]
u = 0.5
ω₁ = algorithm3(w₁, u)
@test sum(ω₁) ≈ 1
@test 0 ∉ ω₁
ω = algorithm4(ω₁, w₂)
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test sum(ω) ≈ 1
@test !isdisjoint(J₁, I₂′)
@test ω[3] == ω₁[3] && ω[4] == ω₁[4]
####
# 4 -> 3, w₁ ∌ 0, w₂ ∋ 0
# J₁′ = ∅, J₂ ≠ ∅, thus, some elements reweighted (i.e. ∈ I₂′)
w₁ = [1., 2, 3, 4, 5]
w₂ = [2, 1, 3, 4, 0]
u = 0.5
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁[5] == w₁[5] / sum(w₁)
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω == ω₁
# 4 -> 3, w₁ ∋ 0, w₂ ∌ 0
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 3, 4, 1]
u = 0.5
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁[5] ≉ w₁[5] / sum(w₁)
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω == ω₁
# 4 -> 3, w₁ ∌ 0, w₂ ∌ 0
w₁ = [1., 2, 3, 4, 5]
w₂ = [2, 1, 3, 4, 1]
u = 0.5
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁ ≉ w₁ ./ sum(w₁)
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω == ω₁
# 4 -> 3, w₁ ∋ 0, w₂ ∋ 0
# sub-case 1: J₁ ∩ J₂ ≠ ∅, J₁ ∩ I₂′ = ∅
# elements ∈ J₁ ∩ J₂ are remain zero after application of 4,
# no zero elements become non-zero as J₁ ∩ I₂′ = ∅
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 3, 4, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test isdisjoint(J₁, I₂′)
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[5] == 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≈ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[5] == u
# sub-case 2: J₁ ∩ J₂ = ∅, J₁ ∩ I₂′ ≠ ∅
# no zero elements preserved on application of 4.
w₁ = [1., 2, 3, 4, 0]
w₂ = [2, 1, 3, 0, 5]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test isdisjoint(J₁, J₂)
@test !isdisjoint(J₁, I₂′)
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[4] == w₁[4] / sum(w₁)
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≉ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω == ω₁
# sub-case 3: J₁ ∩ J₂ ≠ ∅, |J₁| > |J₁ ∩ J₂|, J₁ ∩ I₂′ ≠ ∅
# elements ∈ J₁ ∩ I₂′ become non-zero
# elements J₁ ∖ I₂′ = J₁ ∩ J₂ remain the same on application of 4
w₁ = [1., 2, 3, 0, 0]
w₂ = [2, 1, 3, 4, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test !isdisjoint(J₁, I₂′)
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[5] == 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≈ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[5] == u
# sub-case 4: J₁ ∩ J₂ ≠ ∅, |J₂| > |J₁ ∩ J₂|, J₂ ⊇ J₁, J₁ ∩ I₂′ = ∅
# J₁ ∩ J₂ remain zero
w₁ = [1., 2, 0, 4, 0]
w₂ = [0, 1, 0, 4, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test isdisjoint(J₁, I₂′)
@test !isdisjoint(J₂, I₁′)
@test J₂ ⊇ J₁
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[3] == ω₁[5] == 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≉ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[3] == ω[5] == u / 2
# sub-case 5: J₁ ∩ J₂ ≠ ∅, |J₂| > |J₁ ∩ J₂|, J₂ ⊉ J₁, J₁ ∩ I₂′ ≠ ∅
# elements ∈ J₁ ∩ I₂′ become non-zero
# J₁ ∩ J₂ remain zero
w₁ = [1., 2, 0, 4, 0]
w₂ = [0, 0, 2, 4, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test !isdisjoint(J₁, I₂′)
@test !isdisjoint(J₂, I₁′)
@test J₂ ⊉ J₁
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[5] == 0.0
@test ω₁[3] != 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≉ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[5] == u
# sub-case 6: J₁ ∩ J₂ ≠ ∅, |J₂| ≯ |J₁ ∩ J₂|, J₂ ⊉ J₁, J₁ ∩ I₂′ ≠ ∅
# elements ∈ J₁ ∩ I₂′ become non-zero
# elements ∈ (J₂ ∩ I₁′) ∪ (J₁ ∩ I₂′) are affected
# J₁ ∩ J₂ remain zero
# elements ∈ J₂ ∩ I₁′ become ωᵢ = w₁ᵢ / sum(w₁)
w₁ = [1., 2, 0, 4, 0]
w₂ = [2, 0, 3, 0, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test !isdisjoint(J₁, I₂′)
@test !isdisjoint(J₂, I₁′)
@test J₂ ⊉ J₁
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[2] == w₁[2] / sum(w₁)
@test ω₁[4] == w₁[4] / sum(w₁)
@test ω₁[3] != 0.0
@test ω₁[5] == 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≉ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[5] == u
# sub-case 7: J₁ ∩ J₂ ≠ ∅, |J₁| > |J₁ ∩ J₂|, J₁ ⊇ J₁, J₁ ∩ I₂′ ≠ ∅, J₂ ∩ I₁′ = ∅
# Essentially, w₂ overwrites w₁, because it re-weights all of the probability mass
# elements ∈ J₁ ∩ I₂′ become non-zero
w₁ = [1., 2, 0, 0, 0]
w₂ = [5, 1, 3, 0, 0]
u = 0.5
J₁ = findall(iszero, w₁)
J₂ = findall(iszero, w₂)
I₁′ = findall(!iszero, w₁)
I₂′ = findall(!iszero, w₂)
@test !isdisjoint(J₁, J₂)
@test !isdisjoint(J₁, I₂′)
@test isdisjoint(J₂, I₁′)
@test J₁ ⊇ J₁
ω₁ = algorithm4(w₁, w₂)
@test sum(ω₁) ≈ 1
@test ω₁[3] != 0.0
@test ω₁[4] == 0.0
@test ω₁[5] == 0.0
@test ω₁ ≉ w₁ ./ sum(w₁)
@test ω₁ ≈ w₂ ./ sum(w₂)
@test sum(ω₁[J₂]) ≈ sum(w₁[J₂]) / sum(w₁[I₁′])
@test sum(w₁[J₂]) / sum(w₁[I₂′]) ≈ sum(ω₁[J₂]) / sum(ω₁[I₂′])
ω = algorithm3(ω₁, u)
@test sum(ω) ≈ 1
@test ω[4] == u / 2
@test ω[5] == u / 2
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 414 | using CategoricalMonteCarlo
using Random
using SparseArrays
using Test
using CategoricalMonteCarlo: _check_reducedims, splitranges,
_typeofinv, _typeofprod, _u, _check_u01, bounds_cat
const tests = [
"utils.jl",
"normalizations.jl",
"sampler.jl",
"tsampler_batch.jl",
"vsampler.jl",
"vtsampler_batch.jl",
]
for t in tests
@testset "Test $t" begin
include(t)
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 23882 | # Tests of sampler functionality
@testset "sampler, equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = [1,2,3,4,5,6]
B = sample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [1,2,3,4,5,6]
B = @inferred sample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError sample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [1,2,3,4,5,6]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test_throws InexactError sample(Bool, A, 1000)
@test_throws MethodError sample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError sample!(B, A)
end
end
@testset "sparse sampler, unequal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = sample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred sample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError sample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred sample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError sample(Bool, A, 1000)
@test_throws MethodError sample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError sample!(B, A)
end
end
@testset "dense sampler, (un)equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{<:AbstractFloat}}
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of dense vectors
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a dense vector
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = sample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred sample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError sample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.5, 0.2, 0.2, 0.05,0.025, 0.025]]] # slight change to increase probability of Inexact throw
@test_throws InexactError sample(Bool, A, 1000)
@test_throws MethodError sample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError sample!(B, A)
end
end
@testset "SparseVector sampler, unequal probability mass" begin
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{SparseVector{<:AbstractFloat}}
A = [[sv1, sv2, sv3]]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of SparseVector
A = [sv1, sv2, sv3]
B = sample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a SparseVector
A = sv3
B = sample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = sv2
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[sv1, sv2, sv3]]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = [sv1, sv2, sv3]
B = @inferred sample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError sample(Complex{T}, A, n_sim)
A = sv3
B = @inferred sample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError sample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[sv1, sv2, sv3]]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [sv1, sv2, sv3]
B = @inferred sample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = sv3
B = @inferred sample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
sample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
sample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[sv1, sv2, SparseVector(6, [1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError sample(Bool, A, 1000)
@test_throws MethodError sample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError sample!(B, A)
end
# extra SparseVector tests
n_sim = 10
sv1 = SparseVector(10, [1, 10], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(10, [2, 4, 6, 8, 9, 10], [0.1, 0.1, 0.1, 0.1,0.5, 0.1])
A = [[sv1, sv2, sv3]]
B = sample(Int, A, n_sim)
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [2 2 1 2 0 1 0 1 1 2])
A = [sv1, sv2, sv3]
B = sample(Int, A, n_sim)
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [2 2 1 2 0 1 0 1 1 2])
B = sample(Int, sv1, n_sim)
@test all(==(1), sum(B, dims=2))
sample!(B, sv2)
@test all(==(2), sum(B, dims=2))
sample!(B, sv3)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
end
@testset "sampler inferface throws" begin
n_sim = 10
A = [1,2,3,4,5,6]
@test_throws MethodError sample(Int, A, n_sim, dims=2:2)
@test_throws MethodError sample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError sample(Int, A, n_sim, dims=[.1 .2 .3 .4])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
@test_throws MethodError sample(Int, A, n_sim, dims=2:2)
@test_throws MethodError sample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError sample(Int, A, n_sim, dims=[.1 .2 .3 .4])
end
@testset "sampler, equal probability mass" begin
n_sim = 100
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
D = fill(A, 10,5,5)
# # Specialized method for eltype(A)::Array{Vector{Int}}
# Admittedly, not very meaningful test as
Pr = 1/2 * 1/4 * 1/6
lPr = length(D) * log(Pr) # necessary to even view as log probability
lPr * log10(ℯ) # or on log10 scale
B = sample(Int, D, n_sim, dims=(1,2,3))
@test all(maximum(B, dims=1) .≤ length(D) .* [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(length(A) * length(D)), sum(B, dims=2))
end
# struct MyReal2{T<:Real} <: Real
# x::T
# end
# Base.zero(x::MyReal2{T}) where {T} = zero(T)
# Base.zero(::Type{MyReal2{T}}) where {T} = zero(T)
# Base.one(x::MyReal2{T}) where {T} = one(T)
# Base.one(::Type{MyReal2{T}}) where {T} = one(T)
# import Base.(+)
# +(x::MyReal2{T}, y::Number) where {T} = x.x + y
# +(x::Number, y::MyReal2{T}) where {T} = x + y.x
# +(x::MyReal2{T}, y::MyReal2{T}) where {T} = x.x + y.x
# 1 + MyReal2(1) + 1
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 21377 | # Tests of tsampler functionality
@testset "tsampler, equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = [1,2,3,4,5,6]
B = tsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [1,2,3,4,5,6]
B = @inferred tsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError tsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [1,2,3,4,5,6]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test_throws InexactError tsample(Bool, A, 1000)
@test_throws MethodError tsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError tsample!(B, A)
end
end
@testset "sparse tsampler, unequal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = tsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred tsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError tsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError tsample(Bool, A, 1000)
@test_throws MethodError tsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError tsample!(B, A)
end
end
@testset "dense tsampler, (un)equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{<:AbstractFloat}}
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of dense vectors
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a dense vector
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = tsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred tsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError tsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.5, 0.2, 0.2, 0.05,0.025, 0.025]]] # slight change to increase probability of Inexact throw
@test_throws InexactError tsample(Bool, A, 1000)
@test_throws MethodError tsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError tsample!(B, A)
end
end
@testset "SparseVector tsampler, unequal probability mass" begin
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{SparseVector{<:AbstractFloat}}
A = [[sv1, sv2, sv3]]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of SparseVector
A = [sv1, sv2, sv3]
B = tsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a SparseVector
A = sv3
B = tsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = sv2
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[sv1, sv2, sv3]]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = [sv1, sv2, sv3]
B = @inferred tsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError tsample(Complex{T}, A, n_sim)
A = sv3
B = @inferred tsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError tsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[sv1, sv2, sv3]]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [sv1, sv2, sv3]
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = sv3
B = @inferred tsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
tsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
tsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[sv1, sv2, SparseVector(6, [1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError tsample(Bool, A, 1000)
@test_throws MethodError tsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError tsample!(B, A)
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 6405 | # Test of utilities
@testset "_check_reducedims" begin
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
D = fill(A, 10,5,5);
@test_throws DimensionMismatch _check_reducedims(Matrix{Int}(undef, 2,0), D)
@test_throws DimensionMismatch _check_reducedims(Matrix{Int}(undef, 2,2), D)
@test_throws DimensionMismatch _check_reducedims(Matrix{Int}(undef, 2,3), D)
@test_throws DimensionMismatch _check_reducedims(Matrix{Int}(undef, 2,4), D)
@test_throws DimensionMismatch _check_reducedims(Matrix{Int}(undef, 2,5), D)
@test _check_reducedims(Matrix{Int}(undef, 2,6), D)
@test _check_reducedims(Matrix{Int}(undef, 2,60), D)
@test _check_reducedims(Matrix{Int}(undef, 1,6), D)
@test _check_reducedims(Matrix{Int}(undef, 1,60), D)
@test_throws DimensionMismatch _check_reducedims(Array{Int}(undef, 1,6,2), D)
@test _check_reducedims(Array{Int}(undef, 1,6,1), D)
@test_throws DimensionMismatch _check_reducedims(Array{Int}(undef, 1,6,10,2), D)
@test _check_reducedims(Array{Int}(undef, 1,6,10), D)
@test_throws DimensionMismatch _check_reducedims(Array{Int}(undef, 1,6,10,2,5), D)
@test _check_reducedims(Array{Int}(undef, 1,6,10,1,5), D)
@test _check_reducedims(Array{Int}(undef, 1,6,10,5,5), D)
#
B0 = Int[]
B1 = zeros(Int, 2,1)
B2 = zeros(Int, 2,2)
for prototype ∈ ([1, 2], ([1, 2], [0.4, 0.6]), [0.4, 0.6], SparseVector([0.0, 1.0]))
@test_throws DimensionMismatch _check_reducedims(B0, prototype)
@test_throws DimensionMismatch _check_reducedims(B0, [prototype])
@test_throws DimensionMismatch _check_reducedims(B0, [[prototype]])
@test_throws DimensionMismatch _check_reducedims(B1, prototype)
@test_throws DimensionMismatch _check_reducedims(B1, [prototype])
@test_throws DimensionMismatch _check_reducedims(B1, [[prototype]])
@test _check_reducedims(B2, prototype)
@test _check_reducedims(B2, [prototype])
@test _check_reducedims(B2, [[prototype]])
end
end
@testset "num_cat" begin
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
@test num_cat(A) == 6
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test num_cat(A) == 6
A = [1,2,3,4,5,6]
@test num_cat(A) == 6
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
@test num_cat(A) == 6
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
@test num_cat(A) == 6
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
@test num_cat(A) == 6
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
@test num_cat(A) == 6
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
@test num_cat(A) == 6
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
@test num_cat(A) == 6
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
A = [[sv1, sv2, sv3]]
@test num_cat(A) == 6
A = [sv1, sv2, sv3]
@test num_cat(A) == 6
@test num_cat(sv3) == 6
# empty cases
@test num_cat(Vector{Vector{Vector{Int}}}()) == 0
@test num_cat(Vector{Vector{Int}}()) == 0
@test num_cat(Vector{Int}()) == 0
@test num_cat(Vector{Vector{Tuple{Vector{Int}, Vector{Float64}}}}()) == 0
@test num_cat(Vector{Tuple{Vector{Int}, Vector{Float64}}}()) == 0
@test num_cat((Vector{Int}(), Vector{Float64}())) == 0
# partially empty
A = [[1, 2], Int[], [1, 2, 3, 4, 5, 6]]
@test num_cat(A) == 6
A = [[[1, 2], [1, 2, 3, 4], Int[]]]
@test num_cat(A) == 4
A = [([1, 2], [0.3, 0.7]), (Int[], Float64[]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
@test num_cat(A) == 6
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), (Int[], Float64[])]]
@test num_cat(A) == 4
end
@testset "splitranges" begin
b = 16
for a = -16:16
ur = a:b
for c = 1:b
rs = splitranges(ur, c)
@test sum(length, rs) == length(ur)
end
end
end
@testset "bounds_cat" begin
A1 = [[-1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
A2 = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 7]]
B = [A1, A2]
@test bounds_cat(A1) == (-1, 6)
@test bounds_cat(A2) == (1, 7)
@test bounds_cat(B) == (-1, 7)
# emptys
A3 = [Int[], Int[]]
@test bounds_cat(A3) == (1, 0)
B3 = [A3, A3]
@test bounds_cat(B3) == (1, 0)
B4 = [A3, A1]
@test bounds_cat(B4) == (-1, 6)
#
A1 = [([-1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
A2 = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,7], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = [A1, A2]
@test bounds_cat(A1) == (-1, 6)
@test bounds_cat(A2) == (1, 7)
@test bounds_cat(B) == (-1, 7)
# emptys
A3 = [(Int[], Float64[]), (Int[], Float64[])]
@test bounds_cat(A3) == (1, 0)
B3 = [A3, A3]
@test bounds_cat(B3) == (1, 0)
B4 = [A3, A1]
@test bounds_cat(B4) == (-1, 6)
#
A1 = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
A2 = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1]]
B = [A1, A2]
@test bounds_cat(A1) == (1, 6)
@test bounds_cat(A2) == (1, 5)
@test bounds_cat(B) == (1, 6)
@test bounds_cat(Float64[]) == (1, 0)
@test bounds_cat([Float64[]]) == (1, 0)
@test bounds_cat([[Float64[]]]) == (1, 0)
A3 = [Float64[], Float64[]]
@test bounds_cat(A3) == (1, 0)
B3 = [A3, A3]
@test bounds_cat(B3) == (1, 0)
B4 = [A3, A1]
@test bounds_cat(B4) == (1, 6)
#
x = SparseVector([0.0, 1.0, 2.0, 0.0, 0.0, 0.0])
@test bounds_cat(x) == (1, 6)
A = [x, SparseVector([0.0, 1.0, 2.0, 0.0]), SparseVector([1.0, 0.0])]
@test bounds_cat(A) == (1, 6)
@test bounds_cat([A, A]) == (1, 6)
####
# An interesting case
a1 = ([9999, 1439], [0.8029133268547554, 0.1970866731452445])
a2 = ([9284, 4370, 2965, 1590], [0.10222319762724291, 0.13054189392858026, 0.43245627176252643, 0.3347786366816504])
a3 = ([6289, 308, 6378, 7212, 5426, 662], [0.03053777422684849, 0.21452879865837565, 0.6835396454000753, 0.0713937817147005])
B = [a1, a2, a3]
A = first.(B)
@test bounds_cat(B) == (308, 9999)
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 23985 | # Tests of vsampler functionality
@testset "vsampler, equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = [1,2,3,4,5,6]
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [1,2,3,4,5,6]
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [1,2,3,4,5,6]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "sparse vsampler, unequal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "dense vsampler, (un)equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{<:AbstractFloat}}
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of dense vectors
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a dense vector
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.5, 0.2, 0.2, 0.05,0.025, 0.025]]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "SparseVector vsampler, unequal probability mass" begin
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{SparseVector{<:AbstractFloat}}
A = [[sv1, sv2, sv3]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of SparseVector
A = [sv1, sv2, sv3]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a SparseVector
A = sv3
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[sv1, sv2, sv3]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [sv1, sv2, sv3]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = sv3
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[sv1, sv2, sv3]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [sv1, sv2, sv3]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = sv3
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[sv1, sv2, SparseVector(6, [1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
# extra SparseVector tests
n_sim = 10
sv1 = SparseVector(10, [1, 10], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(10, [2, 4, 6, 8, 9, 10], [0.1, 0.1, 0.1, 0.1,0.5, 0.1])
A = [[sv1, sv2, sv3]]
B = vsample(Int, A, n_sim)
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [2 2 1 2 0 1 0 1 1 2])
A = [sv1, sv2, sv3]
B = vsample(Int, A, n_sim)
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [2 2 1 2 0 1 0 1 1 2])
B = vsample(Int, sv1, n_sim)
@test all(==(1), sum(B, dims=2))
vsample!(B, sv2)
@test all(==(2), sum(B, dims=2))
vsample!(B, sv3)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 1 2 0 1 0 1 1 2])
@test all(≥(0), minimum(B, dims=1))
end
@testset "vsampler inferface throws" begin
n_sim = 10
A = [1,2,3,4,5,6]
@test_throws MethodError vsample(Int, A, n_sim, dims=2:2)
@test_throws MethodError vsample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError vsample(Int, A, n_sim, dims=[.1 .2 .3 .4])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
@test_throws MethodError vsample(Int, A, n_sim, dims=2:2)
@test_throws MethodError vsample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError vsample(Int, A, n_sim, dims=[.1 .2 .3 .4])
end
@testset "vsampler, equal probability mass" begin
n_sim = 100
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
D = fill(A, 10,5,5)
# # Specialized method for eltype(A)::Array{Vector{Int}}
# Admittedly, not very meaningful test as
Pr = 1/2 * 1/4 * 1/6
lPr = length(D) * log(Pr) # necessary to even view as log probability
lPr * log10(ℯ) # or on log10 scale
B = vsample(Int, D, n_sim, dims=(1,2,3))
@test all(maximum(B, dims=1) .≤ length(D) .* [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(length(A) * length(D)), sum(B, dims=2))
end
# struct MyReal2{T<:Real} <: Real
# x::T
# end
# Base.zero(x::MyReal2{T}) where {T} = zero(T)
# Base.zero(::Type{MyReal2{T}}) where {T} = zero(T)
# Base.one(x::MyReal2{T}) where {T} = one(T)
# Base.one(::Type{MyReal2{T}}) where {T} = one(T)
# import Base.(+)
# +(x::MyReal2{T}, y::Number) where {T} = x.x + y
# +(x::Number, y::MyReal2{T}) where {T} = x + y.x
# +(x::MyReal2{T}, y::MyReal2{T}) where {T} = x.x + y.x
# 1 + MyReal2(1) + 1
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 21466 | # Tests of vtsampler functionality
@testset "vtsampler, equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = [1,2,3,4,5,6]
B = vtsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [1,2,3,4,5,6]
B = @inferred vtsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [1,2,3,4,5,6]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [1,2,3,4]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [1,2]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test_throws InexactError vtsample(Bool, A, 1000)
@test_throws MethodError vtsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vtsample!(B, A)
end
end
@testset "sparse vtsampler, unequal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of sparse vectors
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a sparse vector
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = vtsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vtsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = ([1, 2], [0.3, 0.7])
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vtsample(Bool, A, 1000)
@test_throws MethodError vtsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vtsample!(B, A)
end
end
@testset "dense vtsampler, (un)equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{<:AbstractFloat}}
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of dense vectors
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a dense vector
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = vtsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vtsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = [0.2, 0.3, 0.4, 0.1]
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = [0.3, 0.7]
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.5, 0.2, 0.2, 0.05,0.025, 0.025]]] # slight change to increase probability of Inexact throw
@test_throws InexactError vtsample(Bool, A, 1000)
@test_throws MethodError vtsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vtsample!(B, A)
end
end
@testset "SparseVector vtsampler, unequal probability mass" begin
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{SparseVector{<:AbstractFloat}}
A = [[sv1, sv2, sv3]]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
# # A simplification: an array of SparseVector
A = [sv1, sv2, sv3]
B = vtsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(minimum(B, dims=1) .≥ 0)
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
# # The simplest case: a SparseVector
A = sv3
B = vtsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=2))
A = sv2
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[sv1, sv2, sv3]]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = [sv1, sv2, sv3]
B = @inferred vtsample(T, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
A = sv3
B = @inferred vtsample(T, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test_throws MethodError vtsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[sv1, sv2, sv3]]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=2))
@test all(sum(B, dims=1) .≤ n_sim .* [3 3 2 2 1 1])
A = [sv1, sv2, sv3]
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
@test all(==(3), sum(B, dims=(2,3)))
@test all(sum(B, dims=(1,3)) .≤ n_sim .* [3 3 2 2 1 1])
A = sv3
B = @inferred vtsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=2))
A = sv2
vtsample!(B, A)
@test all(==(2), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [2 2 2 2 1 1])
A = sv1
vtsample!(B, A)
@test all(==(3), sum(B, dims=2))
@test all(maximum(B, dims=1) .≤ [3 3 2 2 1 1])
@test all(≥(0), minimum(B, dims=1))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[sv1, sv2, SparseVector(6, [1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vtsample(Bool, A, 1000)
@test_throws MethodError vtsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vtsample!(B, A)
end
end
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | code | 24398 | # Tests of vsampler functionality
@testset "vsampler, equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # A simplification: an array of sparse vectors
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # The simplest case: a sparse vector
A = [1,2,3,4,5,6]
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=1))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [1,2,3,4,5,6]
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [1,2,3,4,5,6]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = [1,2,3,4]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [1,2]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]]
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "sparse vsampler, unequal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{Int}}
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # A simplification: an array of sparse vectors
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # The simplest case: a sparse vector
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=1))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = ([1,2,3,4], [0.2, 0.3, 0.4, 0.1])
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = ([1, 2], [0.3, 0.7])
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[([1, 2], [0.3, 0.7]), ([1,2,3,4], [0.2, 0.3, 0.4, 0.1]), ([1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "dense vsampler, (un)equal probability mass" begin
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{Vector{<:AbstractFloat}}
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # A simplification: an array of dense vectors
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # The simplest case: a dense vector
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=1))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.1, 0.1, 0.1, 0.1,0.1, 0.5]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [0.1, 0.1, 0.1, 0.1,0.1, 0.5]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = [0.2, 0.3, 0.4, 0.1]
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = [0.3, 0.7]
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[[0.3, 0.7], [0.2, 0.3, 0.4, 0.1], [0.5, 0.2, 0.2, 0.05,0.025, 0.025]]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
end
@testset "SparseVector vsampler, unequal probability mass" begin
sv1 = SparseVector(2, [1,2], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(6, [1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
for region ∈ [1, 2, 3, 4, 5, (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4), :, (), (1, 5), (2, 5), (1,2,5), (5,6,7)]
for i = 1:15
for j = -1:1
n_sim = (1 << i) + j
# # Specialized method for eltype(A)::Array{SparseVector{<:AbstractFloat}}
A = [[sv1, sv2, sv3]]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # A simplification: an array of SparseVector
A = [sv1, sv2, sv3]
B = vsample(Int, A, n_sim, dims=region)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
# # The simplest case: a SparseVector
A = sv3
B = vsample(Int, A, n_sim, dims=region)
@test all(==(1), sum(B, dims=1))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
end
end
@testset "eltypes" begin
n_sim = 10
# Types one would normally expect
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigFloat, BigInt, Rational]
A = [[sv1, sv2, sv3]]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = [sv1, sv2, sv3]
B = @inferred vsample(T, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
@test_throws MethodError vsample(Complex{T}, A, n_sim)
A = sv3
B = @inferred vsample(T, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test_throws MethodError vsample(Complex{T}, A, n_sim)
end
# Composite numeric types
for T ∈ [Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128]
A = [[sv1, sv2, sv3]]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = [sv1, sv2, sv3]
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=(1,3)))
@test all(sum(B, dims=(2,3)) .≤ n_sim .* [3; 3; 2; 2; 1; 1])
A = sv3
B = @inferred vsample(Rational{T}, A, n_sim)
@test all(==(1), sum(B, dims=1))
A = sv2
vsample!(B, A)
@test all(==(2), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2; 2; 2; 2; 1; 1])
A = sv1
vsample!(B, A)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [3; 3; 2; 2; 1; 1])
@test all(≥(0), minimum(B, dims=2))
end
# Real, AbstractFloat, Integer, Signed, Unsigned. work but should be avoided
A = [[sv1, sv2, SparseVector(6, [1,2,3,4,5,6], [0.5, 0.2, 0.2, 0.05,0.025, 0.025])]] # slight change to increase probability of Inexact throw
@test_throws InexactError vsample(Bool, A, 1000)
@test_throws MethodError vsample(Union{Int16, Int32}, A, n_sim)
B = Matrix{Union{Int16,Int32}}(undef, 6, 10)
@test_throws MethodError vsample!(B, A)
end
# extra SparseVector tests
n_sim = 10
sv1 = SparseVector(10, [1, 10], [0.3, 0.7])
sv2 = SparseVector(4, [1,2,3,4], [0.2, 0.3, 0.4, 0.1])
sv3 = SparseVector(10, [2, 4, 6, 8, 9, 10], [0.1, 0.1, 0.1, 0.1,0.5, 0.1])
A = [[sv1, sv2, sv3]]
B = vsample(Int, A, n_sim)
@test all(maximum(B, dims=2) .≤ [2, 2, 1, 2, 0, 1, 0, 1, 1, 2])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [2, 2, 1, 2, 0, 1, 0, 1, 1, 2])
A = [sv1, sv2, sv3]
B = vsample(Int, A, n_sim)
@test all(maximum(B, dims=2) .≤ [2, 2, 1, 2, 0, 1, 0, 1, 1, 2])
@test all(≥(0), minimum(B, dims=2))
@test all(==(3), sum(B, dims=1))
@test all(sum(B, dims=2) .≤ n_sim .* [2, 2, 1, 2, 0, 1, 0, 1, 1, 2])
B = vsample(Int, sv1, n_sim)
@test all(==(1), sum(B, dims=1))
vsample!(B, sv2)
@test all(==(2), sum(B, dims=1))
vsample!(B, sv3)
@test all(==(3), sum(B, dims=1))
@test all(maximum(B, dims=2) .≤ [2, 2, 1, 2, 0, 1, 0, 1, 1, 2])
@test all(≥(0), minimum(B, dims=2))
end
@testset "vsampler inferface throws" begin
n_sim = 10
A = [1,2,3,4,5,6]
@test_throws MethodError vsample(Int, A, n_sim, dims=1:2)
@test_throws MethodError vsample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError vsample(Int, A, n_sim, dims=[.1 .2; .3 .4])
A = ([1,2,3,4,5,6], [0.1, 0.1, 0.1, 0.1,0.1, 0.5])
@test_throws MethodError vsample(Int, A, n_sim, dims=1:2)
@test_throws MethodError vsample(Int, A, n_sim, dims=[1,2,3])
@test_throws MethodError vsample(Int, A, n_sim, dims=[.1 .2; .3 .4])
end
@testset "vsampler, equal probability mass" begin
n_sim = 100
A = [[1, 2], [1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
D = fill(A, 10,5,5);
# # Specialized method for eltype(A)::Array{Vector{Int}}
# Admittedly, not very meaningful test as
Pr = 1/2 * 1/4 * 1/6
lPr = length(D) * log(Pr) # necessary to even view as log probability
lPr * log10(ℯ) # or on log10 scale
B = vsample(Int, D, n_sim, dims=(1,2,3))
@test all(maximum(B, dims=2) .≤ length(D) .* [3; 3; 2; 2; 1; 1])
@test all(minimum(B, dims=2) .≥ 0)
@test all(==(length(A) * length(D)), sum(B, dims=1))
end
# struct MyReal2{T<:Real} <: Real
# x::T
# end
# Base.zero(x::MyReal2{T}) where {T} = zero(T)
# Base.zero(::Type{MyReal2{T}}) where {T} = zero(T)
# Base.one(x::MyReal2{T}) where {T} = one(T)
# Base.one(::Type{MyReal2{T}}) where {T} = one(T)
# import Base.(+)
# +(x::MyReal2{T}, y::Number) where {T} = x.x + y
# +(x::Number, y::MyReal2{T}) where {T} = x + y.x
# +(x::MyReal2{T}, y::MyReal2{T}) where {T} = x.x + y.x
# 1 + MyReal2(1) + 1
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c4d9ab6df609e991ea71111b6d4525f5d2494e1 | docs | 3426 | # CategoricalMonteCarlo
## Installation
```julia
using Pkg
Pkg.add("CategoricalMonteCarlo")
```
## Description
Given `i=1,…,n` independent categorical distributions, each with a
unique probability mass vector, `pᵢ`, what is the distribution of the
sum of the joint distribution formed from the product of the
marginals? Assume that some categories are shared across the
marginals, such that by re-indexing and constructing a sparse
representation based on the original probability mass vectors, we may
unify the categories themselves. However, the sum of the joint
distribution would not be multinomial unless we have the trivial case
of each distribution being identical. While there is no closed-form
expression for the sum of the joint distribution, Monte Carlo
simulation provides a general mechanism for computation.
This package provides the facilities for such Monte Carlo simulation,
based on collections of probability mass vectors, each of which
corresponds to a (possibly, but not necessarily) independent
categorical distribution. Several advanced strategies are utilized to
maximize the performance of such computations, including
fastest-in-Julia categorical sampling (`MarsagliaDiscreteSamplers`) --
in comparison to publicly visible packages -- in addition to
partitioning strategies which favor memory locality and cache
performance despite the random-access nature writes inherent to Monte
Carlo simulation. These same partitioning strategies are utilized to
enable thread-based parallelism across the iteration space of
arbitrary-dimensional input arrays. Furthermore, reduction-in-place is
supported via the interface familiar to Julia users -- the
`dims::Vararg{<:Integer, N} where N` keyword; this enables additional
increases in efficiency, as while the user may wish to simulate a
distribution bearing the indices of the input array, it may be known
that some of these dimensions will always be summed over.
## Usage
It may help to demonstrate with an example. Consider an
equally-weighted coin with sides labeled 1 and 2; an equally-weighted
four-sided die with sides labeled 1, 2, 3 and 4; an equally-weighted
six-sided die with sides labeled 1, 2, 3, 4, 5 and 6. If one were
consider a scenario in which one flips the coin, rolls the four-sided
die, and rolls the six-sided die, what is the distribution of counts
on labels 1,...,6?
```julia
julia> using CategoricalMonteCarlo
julia> coin = [1/2, 1/2];
julia> die4 = [1/4, 1/4, 1/4, 1/4];
julia> die6 = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6];
julia> sample([coin, die4, die6], 10)
10×6 Matrix{Int64}:
0 1 0 1 0 1
1 1 1 0 0 0
1 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 1
0 2 0 0 0 1
1 1 1 0 0 0
1 0 0 1 0 1
3 0 0 0 0 0
1 1 0 1 0 0
julia> using MonteCarloSummary
julia> ["mean" "mcse" "std" "2.5th" "50th" "97.5";
mcsummary(sample([coin, die4, die6], 10^6), (0.025, 0.5, 0.975))]
7×6 Matrix{Any}:
"mean" "mcse" "std" "2.5th" "50th" "97.5"
0.918372 0.000759618 0.759618 0.0 1.0 2.0
0.915886 0.000758815 0.758815 0.0 1.0 2.0
0.41628 0.000571198 0.571198 0.0 0.0 2.0
0.416611 0.000570929 0.570929 0.0 0.0 2.0
0.166285 0.000372336 0.372336 0.0 0.0 1.0
0.166566 0.000372588 0.372588 0.0 0.0 1.0
```
## Future Work
- Description of normalizers (weight vector->probability vector)
| CategoricalMonteCarlo | https://github.com/andrewjradcliffe/CategoricalMonteCarlo.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 79 | using Documenter, TruncatedDistributions
makedocs(sitename="My Documentation") | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 1124 | module TruncatedDistributions
using Distributions
using HCubature
using LinearAlgebra
using PDMats
import Distributions: insupport, pdf, moment
import Base: size, length, show, rand
import Statistics: mean, cov
export
compute_tp,
compute_mean,
compute_cov,
compute_moment,
TruncationRegion,
TruncatedMvDistribution,
BoxTruncatedMvNormalRecursiveMoments,#QQQQ
BoxTruncationRegion,
intruncationregion,
insupport,
BoxTruncatedMvNormal,
moment,
moments,
compute_moments,
alpha,
pdf,
raw_moment,
mean,
cov,
rand,
tp,
TruncatedMvDistributionSecondOrderState,
BasicBoxTruncatedMvNormal,
RecursiveMomentsBoxTruncatedMvNormal,
EllipticalTruncationRegion
include("commonTypes.jl")
include("regions.jl")
include("commonOperations.jl")
include("commonCompute.jl")
include("univariate/distributionsPackageExtensions.jl")
include("multivariate/boxTruncatedMvNormalRecursiveMomentsState.jl")
include("multivariate/normal.jl")
include("multivariate/otherThanNormal.jl")
include("parameterMatching/dynamicUnivariateFit.jl")
end #module | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 2100 | function compute_tp(d::TruncatedMvDistribution{D,R};
tol::Float64 = 10e-4,
tol_step::Int = 10^5,
alg::Symbol = :hc) where {D,R}
if alg == :mc
i, n = 0, 0
err = 1.0
tp = 0.0
while err ≥ tol
candidate = rand(d.untruncated)
i += intruncationregion(d.region,candidate)
n += 1
tp = i/n
if n % tol_step == 0
err = 3*√(tp*(1-tp)/n)
end
end
d.state.tp = tp
elseif alg == :hc
d.state.tp, d.state.tp_err = hcubature((x)->pdf(d.untruncated,x),d.region.a, d.region.b)
else
error("Unknown algorithm $(alg)")
end
nothing
end
function compute_mean(d::TruncatedMvDistribution{D,R};
tol::Float64 = 10e-4,
tol_step::Int = 10^5,
alg::Symbol = :hc) where {D,R}
if alg == :mc
@error("still not implemented")
elseif alg == :hc
d.state.μ, d.state.μ_err = hcubature((x)->pdf(d,x)*x,d.region.a, d.region.b)
else
error("Unknown algorithm $(alg)")
end
nothing
end
function compute_cov(d::TruncatedMvDistribution{D,R};
tol::Float64 = 10e-4,
tol_step::Int = 10^5,
alg::Symbol = :hc) where {D,R}
if alg == :mc
@error("still not implemented")
elseif alg == :hc
μ = mean(d)
d.state.Σ, d.state.Σ_err = hcubature((x)->pdf(d,x)*(x-μ)*(x-μ)',d.region.a, d.region.b)
else
error("Unknown algorithm $(alg)")
end
nothing
end
function compute_moment(d::TruncatedMvDistribution{D,R},k::Vector{Int};
tol::Float64 = 10e-4,
tol_step::Int = 10^5,
alg::Symbol = :hc) where {D,R}
if alg == :mc
@error("still not implemented")
elseif alg == :hc
return hcubature((x)->pdf(d,x)*prod(x.^k),d.region.a, d.region.b)[1]
else
error("Unknown algorithm $(alg)")
end
nothing
end | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 2324 | function insupport(d::TruncatedMvDistribution{D,R,S}, x::AbstractArray) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
insupport(d.untruncated,x) && intruncationregion(d.region,x)
end
function rand(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
rand_naive(d)
end
function rand_naive(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
while true
candidate = rand(d.untruncated)
intruncationregion(d.region,candidate) && return candidate
end
end
function length(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
length(d.untruncated)
end
function size(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
size(d.untruncated)
end
function pdf(d::TruncatedMvDistribution{D,R,S},x::AbstractArray; worst_tol = 1e-3) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
d.state.tp_err < worst_tol || compute_tp(d)
if intruncationregion(d.region,x)
pdf(d.untruncated, x) / d.state.tp
else
zeros(length(d))
end
end
function mean(d::TruncatedMvDistribution{D,R,S}; worst_tol = 1e-3 ) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
d.state.μ_err < worst_tol || compute_mean(d)
return d.state.μ
end
function cov(d::TruncatedMvDistribution{D,R,S}; worst_tol = 1e-3 ) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
d.state.Σ_err < worst_tol || compute_cov(d)
return d.state.Σ
end
function moment(d::TruncatedMvDistribution{D,R,S}, k::Vector{Int} ; worst_tol = 1e-3 ) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
compute_moment(d,k)
end
function tp(d::TruncatedMvDistribution{D,R,S}; worst_tol = 1e-3) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
d.state.tp_err < worst_tol || compute_tp(d)
d.state.tp
end | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 4122 | "
A truncation region defines a subset of space to which the distribution is truncated. The basic operation supported is `intruncationregion()`, which returns true if a vector is inside the truncation region.
"
abstract type TruncationRegion end
"
A state abstract object representing computed quantities of a truncated multivariate distribution.
Every concrete subtype should expose at least the following two fields.
- `n::Int` The length of the distribution
- `tp::Float64` The probability of falling in the truncation region for the non-truncated case.
- `tp_err::Float64` An estimate of the absolute error of the probability `tp`.
Other subtypes may expose.
- `μ::Vector{Float64}` The mean vector.
- `μ_err::Float64` An estimate of the relative error for the mean vector.
- `Σ::PDMat` The covariance matrix.
- `Σ_err::Float64` An estimate of the relative error for the covariance matrix.
Further subtypes may expose.
- `moment_dict::Dict{Vector{Int},Float64}` A dictionary mapping multivariate moment vectors to estimate quantities.
- `prob_dict` A dictionary mapping probability vectors to estimated quantities.
"
abstract type TruncatedMvDistributionState end
"A truncated multi-variate distribution composed of a Multivariate Distribution, Truncation Region and a State object implementing computable state."
struct TruncatedMvDistribution{D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
untruncated::D
region::R
state::S
end
function TruncatedMvDistribution{D,R,S}(d::D,r::R) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
TruncatedMvDistribution(d,r,S(d))
end
mutable struct TruncatedMvDistributionSecondOrderState <: TruncatedMvDistributionState
n::Int # dimension
tp::Float64 # Truncation probability (probability under the truncated region)
μ::Vector{Float64} # Mean vector
Σ::PDMat # Covariance matrix
tp_err::Float64 # Estimate of the error of truncation probability
μ_err::Float64 # Estimate of the error of the mean vector
Σ_err::Float64 # Estimate of the error fo the covariance matrix
TruncatedMvDistributionSecondOrderState(d::MultivariateDistribution) = new( length(d),
NaN,
Vector{Float64}(undef,0),
PDMat(Array{Float64,2}(I,length(d),length(d))),
Inf, Inf, Inf)
end
# function tp(d::TruncatedMvDistribution{D,R,TruncatedMvDistributionSecondOrderState})
# where {D <: MultivariateDistribution, R <: TruncationRegion}
# (d.state.tp, d.state.tp_err)
# end
# function mean(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
# (d.state.μ, d.state.μ_err)
# end
# function cov(d::TruncatedMvDistribution{D,R,S}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
# (d.s)
# end
# function moment(d::TruncatedMvDistribution{D,R,S}, k::Vector{Int}) where {D <: MultivariateDistribution, R <: TruncationRegion, S <: TruncatedMvDistributionState}
# function Base.show(io::IO, d::BoxTruncatedMvNormalRecursiveMomentsState)
# println(io, "Box Truncated MvNormal")
# println(io, "n = $(d.n)")
# println(io, "μₑ = $(d.μₑ)" )
# println(io, "Σₑ = $(d.Σₑ)" )
# println(io, "α = $(alpha(d))")
# println("Limits:")
# for i in 1:d.n
# println(io, "$i:\t ",(d.a[i],d.b[i]))
# end
# if d.momentsComputed
# println("Moments:")
# for k in keys(d.momentDict)
# println(io, k, "\t", moment(d,k))
# end
# println(io,"mean:", mean(d))
# println(io,"cov:", cov(d))
# else
# println("Moments not computed")
# end
# end | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 554 | """
Truncation in a box between a and b.
"""
struct BoxTruncationRegion <: TruncationRegion
a::Vector{Float64}
b::Vector{Float64}
end
intruncationregion(r::BoxTruncationRegion, x::AbstractArray) = all(r.a .<= x) && all(x .<= r.b)
"""
An Elliptical Truncation region.
"""
struct EllipticalTruncationRegion <: TruncationRegion
H::PDMat
h::Vector{Float64}
c::Float64
end
intruncationregion(r::EllipticalTruncationRegion, x::AbstractArray) = (x-r.h)'*r.H*(x-r.h) <= r.c
abstract type PolytopeTruncationRegion <: TruncationRegion end | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 6953 | # const max_moment_levels = 2 #Just for mean and covariance matrix
const Children = Union{Vector{Vector{Int}},Nothing}
mutable struct BoxTruncatedMvNormalRecursiveMomentsState <: TruncatedMvDistributionState
d::MvNormal
r::BoxTruncationRegion
n::Int #dimension
max_moment_levels::Int
# # #Children of type 'a' or 'b' are lower dimensional distributions used to for recursive computation
children_a::Vector{BoxTruncatedMvNormalRecursiveMomentsState}
children_b::Vector{BoxTruncatedMvNormalRecursiveMomentsState}
# # #for each moment vector e.g. [0,1,0,1] or [0,0,2,0] has the tuple which is the computed (non-normalized) moment integral
# # #of that vector and a list of children vectors
rawMomentDict::Dict{Vector{Int},Float64} #note that the values are non-normalized moment integrals
treeDict::Dict{Vector{Int},Children}
rawMomentsComputed::Bool
tp::Float64
μ::Vector{Float64}
Σ::PDMat
tp_err::Float64
μ_err::Float64
Σ_err::Float64
function BoxTruncatedMvNormalRecursiveMomentsState(d::MvNormal, r::BoxTruncationRegion, max_moment_levels::Int)
μₑ, Σₑ = d.μ, d.Σ
a, b = r.a, r.b
n = length(d)
length(a) != n && error("The length of a does not match the length")
length(b) != n && error("The length of b does not match the length")
a > b && error("The a vector must be less than the b vector")
if n ≥ 2
μᵃ = [μₑ[setdiff(1:n,j)] + Σₑ[setdiff(1:n,j),j] * (a[j]-μₑ[j])/Σₑ[j,j]
for j in 1:n]
μᵇ = [μₑ[setdiff(1:n,j)] + Σₑ[setdiff(1:n,j),j] * (b[j]-μₑ[j])/Σₑ[j,j]
for j in 1:n]
Σ̃ = [Σₑ[setdiff(1:n,j),setdiff(1:n,j)] - (1/Σₑ[j,j])*Σₑ[setdiff(1:n,j),j]*Σₑ[j,setdiff(1:n,j)]' for j in 1:n]
children_a = [BoxTruncatedMvNormalRecursiveMomentsState(
MvNormal(μᵃ[j],Σ̃[j]),
BoxTruncationRegion(a[setdiff(1:n,j)],b[setdiff(1:n,j)]),
max_moment_levels) for j in 1:n]
children_b = [BoxTruncatedMvNormalRecursiveMomentsState(
MvNormal(μᵇ[j],Σ̃[j]),
BoxTruncationRegion(a[setdiff(1:n,j)],b[setdiff(1:n,j)]),
max_moment_levels) for j in 1:n]
else #n==1
children_a = Array{BoxTruncatedMvNormalRecursiveMomentsState,1}[] #no children
children_b = Array{BoxTruncatedMvNormalRecursiveMomentsState,1}[] #no children
end
rawMomentDict, treeDict = init_dicts(n,max_moment_levels)
new(d,r,n,max_moment_levels,children_a,children_b,rawMomentDict,treeDict,false,
NaN,
Vector{Float64}(undef,0),
PDMat(Array{Float64,2}(I,n,n)),
Inf, Inf, Inf)
end
end
function init_dicts(n::Int,max_moment_levels::Int)
function addToBaseKey( baseKey::Vector{Int},
n::Int,
md::Dict{Vector{Int},Float64},
td::Dict{Vector{Int},Children})
keys = Vector{Vector{Int}}(undef,n)
for i in 1:n
key = copy(baseKey)
key[i] += 1
md[key] = NaN
td[key] = nothing
keys[i] = key
end
md[baseKey] = NaN
td[baseKey] = keys
keys
end
md = Dict{Vector{Int},Float64}() #rawMomentDict
td = Dict{Vector{Int},Children}() #treeDict
rootKey = zeros(Int,n)
key_vals = [rootKey]
for _ = 1:max_moment_levels
levelKeys = Vector{Int}[]
for key in key_vals
newKeys = addToBaseKey(key,n,md,td)
append!(levelKeys,newKeys)
end
key_vals = levelKeys
end
md,td
end
function compute_moments(d::BoxTruncatedMvNormalRecursiveMomentsState)
function compute_children_moments(d::BoxTruncatedMvNormalRecursiveMomentsState,baseKey::Vector{Int})
d.treeDict[baseKey] == nothing && return #recursion stopping criteria
c = c_vector(d,baseKey)
for k in d.treeDict[baseKey]
i = findfirst((x)->x==1,k-baseKey)
d.rawMomentDict[k] = d.d.μ[i]*d.rawMomentDict[baseKey] + (d.d.Σ*c)[i]
compute_children_moments(d,k)
end
end
function c_vector(d::BoxTruncatedMvNormalRecursiveMomentsState,k::Vector{Int})
c = Vector{Float64}(undef,d.n)
for j in 1:d.n
kMinus = copy(k)
kMinus[j] = kMinus[j]-1
F0 = (sum(kMinus .>= 0) == d.n) ? d.rawMomentDict[kMinus] : 0.0
F1 = length(d.children_a) >= 1 ? raw_moment(d.children_a[j],k[setdiff(1:d.n,j)]) : 0.0
F2 = length(d.children_b) >= 1 ? raw_moment(d.children_b[j],k[setdiff(1:d.n,j)]) : 0.0
ϕ = pdf.(Normal(d.d.μ[j],sqrt(d.d.Σ[j,j])),[d.r.a[j],d.r.b[j]] )
c[j] = k[j]*F0 + d.r.a[j]^k[j]*ϕ[1]*F1 - d.r.b[j]^k[j]*ϕ[2]*F2
end
c
end
if d.n > 1
baseKey = zeros(Int,d.n) #[0,0,....,0]
d.rawMomentDict[baseKey] = LL(d)
compute_children_moments(d,baseKey) #start recursion
else #n==1
@assert d.n == 1
distTruncated = TruncatedNormal(d.d.μ[1],sqrt(d.d.Σ[1]),d.r.a[1],d.r.b[1])
d.rawMomentDict[[0]] = distTruncated.tp
m = moments(distTruncated, d.max_moment_levels)
for i in 1:d.max_moment_levels
d.rawMomentDict[[i]] = m[i]*distTruncated.tp
end
end
d.rawMomentsComputed = true
end
function raw_moment(d::BoxTruncatedMvNormalRecursiveMomentsState,k::Vector{Int})
!d.rawMomentsComputed && compute_moments(d)
return d.rawMomentDict[k]
end
# moment(d::BoxTruncatedMvNormalRecursiveMomentsState,k::Vector{Int}) = raw_moment(d,k) / alpha(d)
# alpha(d::BoxTruncatedMvNormalRecursiveMomentsState) = raw_moment(d,zeros(Int,d.n))
# function mean(d::BoxTruncatedMvNormalRecursiveMomentsState)
# μ = Vector{Float64}(undef,d.n)
# for i in 1:d.n
# ee = zeros(Int,d.n)
# ee[i] = 1
# μ[i] = moment(d,ee)
# end
# μ
# end
# function cov(d::BoxTruncatedMvNormalRecursiveMomentsState)
# Σ = zeros(Float64,d.n,d.n)
# for i in 1:d.n, j in 1:d.n
# ee = zeros(Int,d.n)
# if i == j
# ee[i] = 2
# else
# ee[i], ee[j] = 1, 1
# end
# Σ[i,j] = moment(d,ee)
# end
# μ = mean(d)
# Σ-μ*μ'
# end
# function rand(d::BoxTruncatedMvNormalRecursiveMomentsState)
# rand(MvNormal(d.μₑ,d.Σₑ)) #TODO QQQQ
# end
# function pdf_nontruncated(d::BoxTruncatedMvNormalRecursiveMomentsState,x)
# d_nontruncated = MvNormal(d.μₑ,d.Σₑ)
# pdf(d_nontruncated,x)
# end
function LL(d::BoxTruncatedMvNormalRecursiveMomentsState)
@info "doing base numerical integral on dimension $(d.n)."
hcubature((x)->pdf(d.d,x),d.r.a,d.r.b,maxevals = 10^6)[1]
end | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 1699 | "
A Box Truncated normal distribution with a naive implementation and representation in the state of the mean and covariance. Works well for very low dimensions (e.g. 2,3,4).
"
const BasicBoxTruncatedMvNormal = TruncatedMvDistribution{MvNormal,BoxTruncationRegion,TruncatedMvDistributionSecondOrderState}
function BasicBoxTruncatedMvNormal( μₑ::Vector{Float64},
Σₑ::PDMat,
a::Vector{Float64},
b::Vector{Float64})
d = MvNormal(μₑ,Σₑ)
r = BoxTruncationRegion(a,b)
TruncatedMvDistribution{MvNormal,BoxTruncationRegion,TruncatedMvDistributionSecondOrderState}(d,r)
end
"
A Box Truncated normal distribution with a recursive moment computation implementation.
"
const RecursiveMomentsBoxTruncatedMvNormal = TruncatedMvDistribution{MvNormal,BoxTruncationRegion,BoxTruncatedMvNormalRecursiveMomentsState}
function RecursiveMomentsBoxTruncatedMvNormal( μₑ::Vector{Float64},
Σₑ::PDMat,
a::Vector{Float64},
b::Vector{Float64};
max_moment_levels::Int = 2)
d = MvNormal(μₑ,Σₑ)
r = BoxTruncationRegion(a,b)
s = BoxTruncatedMvNormalRecursiveMomentsState(d,r,max_moment_levels)
TruncatedMvDistribution{MvNormal,BoxTruncationRegion,BoxTruncatedMvNormalRecursiveMomentsState}(d,r,s)
end
# const EllipsoidTruncatedMvNormal = TruncatedMvDistribution{MvNormal,EllipticalTruncationRegion}
# const PolytopeTruncatedMvNormal = TruncatedMvDistribution{MvNormal,PolytopeTruncationRegion} | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 649 | # #MvLogNormal truncations
# const BoxTruncatedMvLogNormal = TruncatedMvDistribution{MvLogNormal,BoxTruncationRegion}
# const EllipsoidTruncatedMvLogNormal = TruncatedMvDistribution{MvLogNormal,EllipticalTruncationRegion}
# const PolytopeTruncatedMvLogNormal = TruncatedMvDistribution{MvLogNormal,PolytopeTruncationRegion}
# #MvTDist (multi-variate T-distribution) truncations
# const BoxTruncatedMvTDist = TruncatedMvDistribution{MvTDist,BoxTruncationRegion}
# const EllipsoidTruncatedMvTDist = TruncatedMvDistribution{MvTDist,EllipticalTruncationRegion}
# const PolytopeTruncatedMvTDist = TruncatedMvDistribution{MvTDist,PolytopeTruncationRegion} | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 1023 | "
Return the k'th moment of a truncated normal distribution.
"
function moment(d::Truncated{Normal{T},Continuous}, k::Int) where T
k == 0 ? one(T) : last(moments(d,k))
end
"
Compute the 1'st to k'th moment of a truncated normal distribution. Uses a recursive formula.
"
function moments(d::Truncated{Normal{T},Continuous}, k::Int) where T
k == 0 && return 1
m = Array{T}(undef,k+2) #Array of moments with index i being the i-2's moment
#(treating the -1's moment as 0 and 0'ths moment as 1)
m[1], m[2] = 0, 1
pars = params(d)
μ, σ, σ² =pars[1], pars[2], pars[2]^2
L, U = pars[3], pars[4]
zL, zU = (L - μ)/σ, (U - μ)/σ
ϕL, ϕU = pdf.(Normal(),(zL, zU))
ΦUL = cdf(Normal(),zU) - cdf(Normal(),zL)
for i in 3:(k+2)
kk = i-2
#recursive formula for kk'th moment as a function of the previous two moments (if kk=-1 it uses 0)
m[i] = (kk-1)*σ²*m[i-2] + μ*m[i-1] - σ*(U^(kk-1)*ϕU - L^(kk-1)*ϕL)/ΦUL
end
return m[3:(k+2)]
end
| TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 3134 | function normal2a()
μₑ = [2.5, 3.5]
Σₑ = [2.0 -0.5;
-0.5 5.0]
a = [-2.3,-20.]
b = [4.,12.3]
properties = Dict{String,Any}()
properties["length"] = 2
properties["tp"] = 0.8551938607791414
properties["mean"] = [2.126229598541412, 3.5930224468784577]
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
function normal2b()
μₑ = [2.5, 3.5]
Σₑ = [ 3.3 0.5;
0.5 5.0]
a = [-5.4,-20.]
b = [2.4,6.3]
properties = Dict{String,Any}()
properties["length"] = 2
properties["tp"] = 0.43660920327458974
properties["mean"] = [0.9734400003512856, 2.886032492774952]
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
function normal2c()
a = [-1.5, -1.4]
b = [1.7, 2.4]
μ₁ = 0.45; μ₂ = -0.2
σ₁ = 1.2; σ₂ = 0.8
ρ = 0.6
μₑ = [μ₁, μ₂]
Σₑ = [σ₁^2 ρ*σ₁*σ₂ ;ρ*σ₁*σ₂ σ₂^2];
properties = Dict{String,Any}()
properties["length"] = 2
properties["tp"] = 0.7517763397386328
properties["mean"] = [0.308275927584875, -0.18541888959459515]
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
function normal3a()
μₑ = [3.5,2,3.5]
Σₑ = [ 7. 1 0 ;
1 3.3 2 ;
0 2 3.8 ]
a = [-2. ,-1 ,2]
b = [4. ,4. , 5]
properties = Dict{String,Any}()
properties["length"] = 3
properties["tp"] = 0.9 #QQQQ
properties["mean"] = [1.0,1.0] #QQQQ
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
function normal4a()
μₑ = [3.5,2,3.5,3.5]
Σₑ = [ 7. 1 0 1 ;
1 3.3 2 0 ;
0 2 3.4 0 ;
1 0 0 4 ]
a = [-20. ,-20, -20 ,-20]
b = [20. ,20. ,20, 20]
properties = Dict{String,Any}()
properties["length"] = 4
properties["tp"] = 0.9 #QQQQ
properties["mean"] = [1.0,1.0] #QQQQ
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
function normal5a()
μₑ = [3.5,2,3.5,3.5,5.3]
Σₑ = [ 7. 1 0 0 1 ;
1 3.3 2 0 0 ;
0 2 3.4 0 0 ;
0 0 0 4 0;
1 0 0 0 2]
a = [-20.,-20,-20,-20,-20]
b = [20.,20.,20,20,20]
properties = Dict{String,Any}()
properties["length"] = 5
properties["tp"] = 0.9 #QQQQ
properties["mean"] = [1.0,1.0] #QQQQ
properties["covariance"] = [1.0 0; 0 1.0] #QQQQ
properties["moment123"] = 2.3 #QQQQ
(MvNormal(μₑ,Σₑ), BoxTruncationRegion(a,b),properties)
end
distribution_generators2 = [normal2a,normal2b,normal2c]
distribution_generators3 = [normal3a]
distribution_generators4 = [normal4a]
distribution_generators5 = [normal5a]
distribution_generators = vcat(distribution_generators2,distribution_generators3,distribution_generators4,distribution_generators5) | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | code | 1810 | cd(@__DIR__)
using Pkg; Pkg.activate("..")
using Revise
# Pkg.precompile()
using TruncatedDistributions
using Test
using Distributions
using HCubature
using PDMats
using Plots
include("exampleDists.jl")
function test_distributions(dist_gen)
for dg in dist_gen
d, r, properties = dg()
d_basic = BasicBoxTruncatedMvNormal(d.μ, d.Σ, r.a, r.b)
@test length(d_basic) == properties["length"]
@test tp(d_basic) ≈ properties["tp"]
@test mean(d_basic) ≈ properties["mean"]
d_recursive = RecursiveMomentsBoxTruncatedMvNormal(d.μ, d.Σ, r.a, r.b)
@test length(d_recursive) == properties["length"]
@test tp(d_recursive) ≈ properties["tp"]
@test mean(d_recursive) ≈ properties["mean"]
end
end
test_distributions(distribution_generators2)
# test_distributions(distribution_generators3)
# test_distributions(distribution_generators4)
# test_distributions(distribution_generators5)
# dg = distribution_generators2[1]
# d, r, _ = dg()
# dt = RecursiveMomentsBoxTruncatedMvNormal(d.μ, d.Σ, r.a, r.b)
# mean(dt)
# H = [1 -0.5;
# -0.5 1.]
# h = [.0,-0.5]
# c = 5.0
# r = EllipticalTruncationRegion(PDMat(H),h,c)
# x = [0.1,0.3]
# intruncationregion(r,x)
# points = [rand(Uniform(-5,5),2) for _ in 1:10^5]
# in_points = filter((x)->intruncationregion(r,x),points)
# dist = TruncatedMvDistribution{MvNormal,EllipticalTruncationRegion,TruncatedMvDistributionSecondOrderState}(
# MvNormal([8.5,0],[1 0; 0 5]),
# EllipticalTruncationRegion(PDMat(H),h,c))
# rand_points = [rand(dist) for _ in 1:10^3]
# scatter(first.(in_points),last.(in_points),legend=false,xlim=(-5,5),ylim=(-5,5))
# scatter!(first.(rand_points),last.(rand_points)) | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | docs | 988 | # TruncatedDistributions
This package provides support for univariate and multivariate distributions in Julia.
The functionality provided here extends the [univariate truncated distributions support](https://juliastats.org/Distributions.jl/latest/truncate/) that is in [Distributions.jl](https://github.com/JuliaStats/Distributions.jl), Julia's main distributions package.
Key functionality is support for box truncated multivariate Normal (Gaussian) distributions. Further functionality both for the univariate distributions and multivariate distributions
Beyond basic distribution functionality, the package provides functions for fitting parameters to desired moments.
At the moment the only supported multivariate distribution is Multivariate Normal with box truncation (truncation over a region). For univariate distributions, essentially any distribution can be truncated using the truncation mechanism from Distributions.jl and the functions of this package can be applied. | TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"MIT"
] | 0.1.0 | 1dd436c8c1725f4820f7ad578491be74a2587597 | docs | 192 | # TruncatedDistributions.jl Documentation
```@contents
```
## Functions
```@docs
TruncatedMvDistribution{D <: MultivariateDistribution, R <: TruncationRegion}
```
## Index
```@index
```
| TruncatedDistributions | https://github.com/yoninazarathy/TruncatedDistributions.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 692 | module AMDocs
using Documenter, AcousticMetrics
using AcousticMetrics: AcousticMetrics
function doit()
IN_CI = get(ENV, "CI", nothing)=="true"
makedocs(sitename="AcousticMetrics.jl", modules=[AcousticMetrics], doctest=false,
format=Documenter.HTML(prettyurls=IN_CI),
pages=["Introduction"=>"index.md",
"API"=>"api.md",
"Theory"=>"theory.md",
"Software Quality Assurance"=>"sqa.md",
"Developer Notes"=>"dev.md"])
if IN_CI
deploydocs(repo="github.com/OpenMDAO/AcousticMetrics.jl.git", devbranch="main")
end
end
if !isinteractive()
doit()
end
end # module
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 1288 | module AcousticMetrics
using Base.Iterators: Iterators
using Base.Order: ord, Forward
using FFTW: r2r!, R2HC, HC2R, rfftfreq
using FLOWMath: abs_cs_safe
using ForwardDiff: ForwardDiff
include("constants.jl")
include("fourier_transforms.jl")
include("narrowband.jl")
export AbstractPressureTimeHistory, PressureTimeHistory
export AbstractNarrowbandSpectrum
export PressureSpectrumAmplitude, PressureSpectrumPhase, MSPSpectrumAmplitude, MSPSpectrumPhase, PowerSpectralDensityAmplitude, PowerSpectralDensityPhase
include("integrated.jl")
export OASPL
include("proportional_bands.jl")
export AbstractProportionalBands
export ExactProportionalBands
export ExactOctaveCenterBands, ExactOctaveLowerBands, ExactOctaveUpperBands
export ExactThirdOctaveCenterBands, ExactThirdOctaveLowerBands, ExactThirdOctaveUpperBands
export ApproximateOctaveBands, ApproximateOctaveCenterBands, ApproximateOctaveLowerBands, ApproximateOctaveUpperBands
export ApproximateThirdOctaveBands, ApproximateThirdOctaveCenterBands, ApproximateThirdOctaveLowerBands, ApproximateThirdOctaveUpperBands
export AbstractProportionalBandSpectrum, LazyNBProportionalBandSpectrum, ProportionalBandSpectrum, ProportionalBandSpectrumWithTime, LazyPBSProportionalBandSpectrum
include("weighting.jl")
export W_A
end # module
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 74 | # Usual reference pressure for SPL, etc., in Pascals.
const p_ref = 20e-6
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 4155 | struct RFFTCache{TVal,TJac}
val::TVal
jac::TJac
end
function RFFTCache(::Type{V}, M, N) where {V}
val = Vector{V}(undef, M)
jac = Matrix{V}(undef, M, N)
return RFFTCache(val, jac)
end
function RFFTCache(d)
M = length(d)
T = eltype(d)
N = ForwardDiff.npartials(T)
V = ForwardDiff.valtype(T)
return RFFTCache(V, M, N)
end
"""
rfft!(y, x, cache=nothing)
Calculate the real-input FFT of `x` and store the result in half-complex format in `y`.
Just a wrapper of `FFTW.r2r!(y, FFTW.R2HC)`. The `cache` argument is
optional and not used, and is included to keep the function signiture the
same as the method that takes `Vector`s of `Dual`s.
"""
function rfft!(y, x, cache=nothing)
y .= x
r2r!(y, R2HC)
return nothing
end
function rfft!(dout::AbstractVector{ForwardDiff.Dual{T,V,N}}, d::AbstractVector{ForwardDiff.Dual{T,V,N}}, cache=RFFTCache(V,length(d),N)) where {T,V,N}
# N is the number of parameters we're taking the derivative wrt.
# M is the number of inputs to (and outputs of) the FFT.
M = length(d)
# I should check that dout and d are the same size.
ldout = length(dout)
M == ldout || throw(DimensionMismatch("dout and d should have the same length, but have $ldout and $M, resp."))
# But now I'd need to be able to pass that to the FFTW library. Will that
# work? No, because it's a dual number. Bummer. So I'll just have to have a
# working array, I guess.
cache.val .= ForwardDiff.value.(d)
r2r!(cache.val, R2HC)
# Now I want to do the Jacobian.
for i in 1:N
for j in 1:M
cache.jac[j, i] = ForwardDiff.partials(d[j], i)
end
end
r2r!(cache.jac, R2HC, 1)
# Now I should be able to set dout.
for j in 1:M
dout[j] = ForwardDiff.Dual{T}(cache.val[j], ForwardDiff.Partials(NTuple{N,V}(cache.jac[j,:])))
end
return nothing
end
function rfft(x)
y = similar(x)
rfft!(y, x)
return y
end
"""
irfft!(y, x, cache=nothing)
Calculate the inverse FFT of `x` and store the result in in `y`, where `x` is in the half-complex format.
Just a wrapper of `FFTW.r2r!(y, FFTW.HC2R)`. The `cache` argument is
optional and not used, and is included to keep the function signiture the
same as the method that takes `Vector`s of `Dual`s.
"""
function irfft!(y, x, cache=nothing)
y .= x
r2r!(y, HC2R)
return nothing
end
function irfft!(dout::AbstractVector{ForwardDiff.Dual{T,V,N}}, d::AbstractVector{ForwardDiff.Dual{T,V,N}}, cache=RFFTCache(V,length(d),N)) where {T,V,N}
# N is the number of parameters we're taking the derivative wrt.
# M is the number of inputs to (and outputs of) the FFT.
M = length(d)
# I should check that dout and d are the same size.
ldout = length(dout)
M == ldout || throw(DimensionMismatch("dout and d should have the same length, but have $ldout and $M, resp."))
# But now I'd need to be able to pass that to the FFTW library. Will that
# work? No, because it's a dual number. Bummer. So I'll just have to have a
# working array, I guess.
cache.val .= ForwardDiff.value.(d)
r2r!(cache.val, HC2R)
# Now I want to do the Jacobian.
for i in 1:N
for j in 1:M
cache.jac[j, i] = ForwardDiff.partials(d[j], i)
end
end
r2r!(cache.jac, HC2R, 1)
# Now I should be able to set dout.
for j in 1:M
dout[j] = ForwardDiff.Dual{T}(cache.val[j], ForwardDiff.Partials(NTuple{N,V}(cache.jac[j,:])))
end
return nothing
end
function irfft(x)
y = similar(x)
irfft!(y, x)
return y
end
# Wish this was implemented in FFTW.jl. Actually, I think it may be. Ah, but
# only for the real-input FFT that returns a complex array, which I don't want.
# Sad. Oh, wait: but are the frequencies at fftfreq? I'll need to look at that
# again. Need to write that up once I figure it out.
function r2rfftfreq(n, d=1.0)
# http://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html
freq = vcat(0:floor(Int, n/2), floor(Int, (n+1)/2)-1:-1:1)
# Get the period.
T = n*d
return freq./T
end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 581 | """
OASPL(ap::AbstractPressureTimeHistory)
Return the overall sound pressure level of a pressure time history.
"""
function OASPL(ap::AbstractPressureTimeHistory)
p = pressure(ap)
n = inputlength(ap)
p_mean = sum(p)/n
msp = sum((p .- p_mean).^2)/n
return 10*log10(msp/p_ref^2)
end
"""
OASPL(ap::AbstractNarrowbandSpectrum)
Return the overall sound pressure level of a narrowband spectrum.
"""
function OASPL(sp::AbstractNarrowbandSpectrum)
amp = MSPSpectrumAmplitude(sp)
msp = sum(@view amp[begin+1:end])
return 10*log10(msp/p_ref^2)
end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 20925 | """
AbstractPressureTimeHistory{IsEven}
Supertype for a pressure time history, i.e., pressure as a function of time defined on evenly-spaced time samples.
The `IsEven` parameter is a `Bool` indicating if the length of the pressure time history is even or not.
"""
abstract type AbstractPressureTimeHistory{IsEven} end
"""
PressureTimeHistory{IsEven} <: AbstractPressureTimeHistory{IsEven}
Pressure as a function of time defined on evenly-spaced time samples.
The `IsEven` parameter is a `Bool` indicating if the length of the pressure time history is even or not.
"""
struct PressureTimeHistory{IsEven,Tp,Tdt,Tt0} <: AbstractPressureTimeHistory{IsEven}
p::Tp
dt::Tdt
t0::Tt0
function PressureTimeHistory{IsEven}(p, dt, t0) where {IsEven}
n = length(p)
iseven(n) == IsEven || throw(ArgumentError("IsEven = $(IsEven) is not consistent with length(p) = $n"))
return new{IsEven, typeof(p), typeof(dt), typeof(t0)}(p, dt, t0)
end
end
"""
PressureTimeHistory(p, dt, t0=zero(dt))
Construct a `PressureTimeHistory` from a vector of pressures `p`, time spacing `dt`, and initial time `t0`.
"""
function PressureTimeHistory(p, dt, t0=zero(dt))
# TODO: it would be nice to have a constructor that allows for a default value of t0 and explicitly set the value of the `IsEven` parameter.
n = length(p)
return PressureTimeHistory{iseven(n)}(p, dt, t0)
end
"""
pressure(pth::AbstractPressureTimeHistory)
Return a vector of pressures associated with a pressure time history.
"""
@inline pressure(pth::AbstractPressureTimeHistory) = pth.p
"""
inputlength(pth::AbstractPressureTimeHistory)
Return a number of pressure samples associated with a pressure time history.
"""
@inline inputlength(pth::AbstractPressureTimeHistory) = length(pressure(pth))
"""
timestep(pth::AbstractPressureTimeHistory)
Return the time step size `dt` associated with a pressure time history.
"""
@inline timestep(pth::AbstractPressureTimeHistory) = pth.dt
"""
starttime(pth::AbstractPressureTimeHistory)
Return the initial time `t0` associated with a pressure time history.
"""
@inline starttime(pth::AbstractPressureTimeHistory) = pth.t0
"""
time(pth::AbstractPressureTimeHistory)
Return a vector of times associated with a pressure time history.
"""
@inline function time(pth::AbstractPressureTimeHistory)
n = inputlength(pth)
return starttime(pth) .+ (0:n-1) .* timestep(pth)
end
"""
AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel} <: AbstractVector{Tel}
Supertype for a generic narrowband acoustic metric which will behave as an immutable `AbstractVector` of element type `Tel`.
The `IsEven` parameter is a `Bool` indicating if the length of the spectrum is even or not, affecting how the Nyquist frequency is calculated.
`IsTonal` indicates how the acoustic energy is distributed through the frequency bands:
* `IsTonal == false` means the acoustic energy is assumed to be evenly distributed thoughout each band
* `IsTonal == true` means the acoustic energy is assumed to be concentrated at each band center
"""
abstract type AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel} <: AbstractVector{Tel} end
"""
halfcomplex(sm::AbstractNarrowbandSpectrum)
Return a vector of the discrete Fourier transform of the pressure time history in half-complex format.
See the FFTW docs for the definition of the [halfcomplex format](https://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html).
"""
@inline halfcomplex(sm::AbstractNarrowbandSpectrum) = sm.hc
"""
timestep(sm::AbstractNarrowbandSpectrum)
Return the time step size `dt` associated with a narrowband spectrum.
"""
@inline timestep(sm::AbstractNarrowbandSpectrum) = sm.dt
"""
starttime(sm::AbstractNarrowbandSpectrum)
Return the initial time `t0` associated with a pressure time history.
"""
@inline starttime(sm::AbstractNarrowbandSpectrum) = sm.t0
"""
inputlength(sm::AbstractNarrowbandSpectrum)
Return a number of pressure time samples associated with a narrowband spectrum.
This is also the length of the discrete Fourier transform associated with the spectrum in [half-complex format](https://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html).
"""
@inline inputlength(sm::AbstractNarrowbandSpectrum) = length(halfcomplex(sm))
"""
samplerate(sm::AbstractNarrowbandSpectrum)
Return the sample rate (aka the inverse of the time step size) associated with a narrowband spectrum.
"""
@inline samplerate(sm::AbstractNarrowbandSpectrum) = 1/timestep(sm)
"""
frequency(sm::AbstractNarrowbandSpectrum)
Return a vector of frequencies associated with the narrowband spectrum.
The frequencies are calculated using the `rfftfreq` function in the FFTW.jl package.
"""
@inline frequency(sm::AbstractNarrowbandSpectrum) = rfftfreq(inputlength(sm), samplerate(sm))
"""
frequencystep(sm::AbstractNarrowbandSpectrum)
Return the frequency step size `Δf` associated with the narrowband spectrum.
"""
@inline function frequencystep(sm::AbstractNarrowbandSpectrum)
m = inputlength(sm)
df = 1/(timestep(sm)*m)
return df
end
"""
istonal(sm::AbstractNarrowbandSpectrum)
Return `true` if the spectrum is tonal, `false` otherwise.
"""
@inline istonal(sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}) where {IsEven,IsTonal} = IsTonal
"""
PressureTimeHistory(sm::AbstractNarrowbandSpectrum, p=similar(halfcomplex(sm)))
Construct a pressure time history from a narrowband spectrum `sm`.
The optional `p` argument will be used to store the pressure vector of the pressure time history, and should have length `inputlength(sm)`.
"""
function PressureTimeHistory(sm::AbstractNarrowbandSpectrum, p=similar(halfcomplex(sm)))
hc = halfcomplex(sm)
# Get the inverse FFT of the pressure spectrum.
irfft!(p, hc)
# Need to divide by the input length since FFTW computes an "unnormalized" FFT.
p ./= inputlength(sm)
return PressureTimeHistory(p, timestep(sm), starttime(sm))
end
@inline function Base.size(sm::AbstractNarrowbandSpectrum)
# So, what's the maximum and minimum index?
# Minimum is 1, aka 0 + 1.
# Max is n/2 (rounded down) + 1
n = inputlength(sm)
return (n>>1 + 1,)
end
"""
PressureSpectrumAmplitude{IsEven,IsTonal,Tel} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
Representation of acoustic pressure amplitude as a function of narrowband frequency.
The `IsEven` parameter is a `Bool` indicating if the length of the spectrum is even or not, affecting how the Nyquist frequency is calculated.
The `IsTonal` `Bool` parameter, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
struct PressureSpectrumAmplitude{IsEven,IsTonal,Tel,Thc,Tdt,Tt0} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
hc::Thc
dt::Tdt
t0::Tt0
function PressureSpectrumAmplitude{IsEven,IsTonal}(hc, dt, t0) where {IsEven,IsTonal}
n = length(hc)
iseven(n) == IsEven || throw(ArgumentError("IsEven = $(IsEven) is not consistent with length(hc) = $n"))
typeof(IsTonal) === Bool || throw(ArgumentError("typeof(IsTonal) should be Bool"))
return new{IsEven, IsTonal, eltype(hc), typeof(hc), typeof(dt), typeof(t0)}(hc, dt, t0)
end
end
"""
PressureSpectrumAmplitude(hc, dt, t0=zero(dt), istonal::Bool=false)
Construct a narrowband spectrum of the pressure amplitude from the discrete Fourier transform in half-complex format `hc`, time step size `dt`, and initial time `t0`.
The `istonal` `Bool` argument, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
function PressureSpectrumAmplitude(hc, dt, t0=zero(dt), istonal::Bool=false)
n = length(hc)
return PressureSpectrumAmplitude{iseven(n),istonal}(hc, dt, t0)
end
"""
PressureSpectrumAmplitude(sm::AbstractNarrowbandSpectrum)
Construct a narrowband spectrum of the pressure amplitude from another narrowband spectrum.
"""
PressureSpectrumAmplitude(sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}) where {IsEven,IsTonal} = PressureSpectrumAmplitude{IsEven,IsTonal}(halfcomplex(sm), timestep(sm), starttime(sm))
"""
PressureSpectrumAmplitude(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
Construct a narrowband spectrum of the pressure amplitude from a pressure time history.
The optional argument `hc` will be used to store the discrete Fourier transform of the pressure time history, and should have length of `inputlength(pth)`.
The `istonal` `Bool` argument, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
function PressureSpectrumAmplitude(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
p = pressure(pth)
# Get the FFT of the acoustic pressure.
rfft!(hc, p)
return PressureSpectrumAmplitude(hc, timestep(pth), starttime(pth), istonal)
end
@inline function Base.getindex(psa::PressureSpectrumAmplitude{false}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
if i == 1
@inbounds hc_real = psa.hc[i]/m
return abs(hc_real)
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*sqrt(hc_real^2 + hc_imag^2)
end
end
@inline function Base.getindex(psa::PressureSpectrumAmplitude{true}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
if i == 1 || i == length(psa)
@inbounds hc_real = psa.hc[i]/m
return abs(hc_real)
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*sqrt(hc_real^2 + hc_imag^2)
end
end
"""
PressureSpectrumPhase{IsEven,IsTonal,Tel} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
Representation of acoustic pressure phase as a function of narrowband frequency.
The `IsEven` parameter is a `Bool` indicating if the length of the spectrum is even or not, affecting how the Nyquist frequency is calculated.
The `IsTonal` `Bool` parameter, if `true`, indicates the phase spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
struct PressureSpectrumPhase{IsEven,IsTonal,Tel,Thc,Tdt,Tt0} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
hc::Thc
dt::Tdt
t0::Tt0
function PressureSpectrumPhase{IsEven,IsTonal}(hc, dt, t0) where {IsEven,IsTonal}
n = length(hc)
iseven(n) == IsEven || throw(ArgumentError("IsEven = $(IsEven) is not consistent with length(hc) = $n"))
typeof(IsTonal) === Bool || throw(ArgumentError("typeof(IsTonal) should be Bool"))
return new{IsEven, IsTonal, eltype(hc), typeof(hc), typeof(dt), typeof(t0)}(hc, dt, t0)
end
end
"""
PressureSpectrumPhase(hc, dt, t0=zero(dt), istonal::Bool=false)
Construct a narrowband spectrum of the pressure phase from the discrete Fourier transform in half-complex format `hc`, time step size `dt`, and initial time `t0`.
"""
function PressureSpectrumPhase(hc, dt, t0=zero(dt), istonal::Bool=false)
n = length(hc)
return PressureSpectrumPhase{iseven(n),istonal}(hc, dt, t0)
end
"""
PressureSpectrumPhase(sm::AbstractNarrowbandSpectrum)
Construct a narrowband spectrum of the pressure phase from another narrowband spectrum.
"""
PressureSpectrumPhase(sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}) where {IsEven,IsTonal} = PressureSpectrumPhase{IsEven,IsTonal}(halfcomplex(sm), timestep(sm), starttime(sm))
"""
PressureSpectrumPhase(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
Construct a narrowband spectrum of the pressure phase from a pressure time history.
The optional argument `hc` will be used to store the discrete Fourier transform of the pressure time history, and should have length of `inputlength(pth)`.
The `istonal` `Bool` argument, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
function PressureSpectrumPhase(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
p = pressure(pth)
# Get the FFT of the acoustic pressure.
rfft!(hc, p)
return PressureSpectrumPhase(hc, timestep(pth), starttime(pth), istonal)
end
@inline function Base.getindex(psp::PressureSpectrumPhase{false}, i::Int)
@boundscheck checkbounds(psp, i)
m = inputlength(psp)
if i == 1
@inbounds hc_real = psp.hc[i]/m
hc_imag = zero(eltype(halfcomplex(psp)))
phase_t0 = atan(hc_imag, hc_real)
else
@inbounds hc_real = psp.hc[i]/m
@inbounds hc_imag = psp.hc[m-i+2]/m
phase_t0 = atan(hc_imag, hc_real)
end
return rem2pi(phase_t0 - 2*pi*frequency(psp)[i]*starttime(psp), RoundNearest)
end
@inline function Base.getindex(psp::PressureSpectrumPhase{true}, i::Int)
@boundscheck checkbounds(psp, i)
m = inputlength(psp)
if i == 1 || i == length(psp)
@inbounds hc_real = psp.hc[i]/m
hc_imag = zero(eltype(halfcomplex(psp)))
phase_t0 = atan(hc_imag, hc_real)
else
@inbounds hc_real = psp.hc[i]/m
@inbounds hc_imag = psp.hc[m-i+2]/m
phase_t0 = atan(hc_imag, hc_real)
end
return rem2pi(phase_t0 - 2*pi*frequency(psp)[i]*starttime(psp), RoundNearest)
end
"""
MSPSpectrumAmplitude{IsEven,IsTonal,Tel} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
Representation of mean-squared pressure amplitude as a function of narrowband frequency.
The `IsEven` parameter is a `Bool` indicating if the length of the spectrum is even or not, affecting how the Nyquist frequency is calculated.
The `IsTonal` `Bool` parameter, if `true`, indicates the mean-squared pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the pressure spectrum is assumed to be constant over each frequency band.
"""
struct MSPSpectrumAmplitude{IsEven,IsTonal,Tel,Thc,Tdt,Tt0} <: AbstractNarrowbandSpectrum{IsEven,IsTonal,Tel}
hc::Thc
dt::Tdt
t0::Tt0
function MSPSpectrumAmplitude{IsEven,IsTonal}(hc, dt, t0) where {IsEven,IsTonal}
n = length(hc)
iseven(n) == IsEven || throw(ArgumentError("IsEven = $(IsEven) is not consistent with length(hc) = $n"))
typeof(IsTonal) === Bool || throw(ArgumentError("typeof(IsTonal) should be Bool"))
return new{IsEven, IsTonal, eltype(hc), typeof(hc), typeof(dt), typeof(t0)}(hc, dt, t0)
end
end
"""
MSPSpectrumAmplitude(hc, dt, t0=zero(dt), istonal::Bool=false)
Construct a narrowband spectrum of the mean-squared pressure amplitude from the discrete Fourier transform in half-complex format `hc`, time step size `dt`, and initial time `t0`.
The `istonal` `Bool` argument, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
function MSPSpectrumAmplitude(hc, dt, t0=zero(dt), istonal::Bool=false)
n = length(hc)
return MSPSpectrumAmplitude{iseven(n),istonal}(hc, dt, t0)
end
"""
MSPSpectrumAmplitude(sm::AbstractNarrowbandSpectrum)
Construct a narrowband spectrum of the mean-squared pressure amplitude from another narrowband spectrum.
"""
MSPSpectrumAmplitude(sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}) where {IsEven,IsTonal} = MSPSpectrumAmplitude{IsEven,IsTonal}(halfcomplex(sm), timestep(sm), starttime(sm))
"""
MSPSpectrumAmplitude(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
Construct a narrowband spectrum of the mean-squared pressure amplitude from a pressure time history.
The optional argument `hc` will be used to store the discrete Fourier transform of the pressure time history, and should have length of `inputlength(pth)`.
The `istonal` `Bool` argument, if `true`, indicates the pressure spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each frequency band.
"""
function MSPSpectrumAmplitude(pth::AbstractPressureTimeHistory, istonal::Bool=false, hc=similar(pressure(pth)))
p = pressure(pth)
# Get the FFT of the acoustic pressure.
rfft!(hc, p)
return MSPSpectrumAmplitude(hc, timestep(pth), starttime(pth), istonal)
end
@inline function Base.getindex(psa::MSPSpectrumAmplitude{false}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
if i == 1
@inbounds hc_real = psa.hc[i]/m
return hc_real^2
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*(hc_real^2 + hc_imag^2)
end
end
@inline function Base.getindex(psa::MSPSpectrumAmplitude{true}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
if i == 1 || i == length(psa)
@inbounds hc_real = psa.hc[i]/m
return hc_real^2
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*(hc_real^2 + hc_imag^2)
end
end
"""
MSPSpectrumPhase
Alias for `PressureSpectrumPhase`.
"""
const MSPSpectrumPhase = PressureSpectrumPhase
"""
PowerSpectralDensityAmplitude{IsEven,Tel} <: AbstractNarrowbandSpectrum{IsEven,false,Tel}
Representation of acoustic power spectral density amplitude as a function of narrowband frequency.
The `IsEven` parameter is a `Bool` indicating if the length of the spectrum is even or not, affecting how the Nyquist frequency is calculated.
As the power spectral density is not well-defined for tones, the `IsTonal` parameter is always `false`.
"""
struct PowerSpectralDensityAmplitude{IsEven,Tel,Thc,Tdt,Tt0} <: AbstractNarrowbandSpectrum{IsEven,false,Tel}
hc::Thc
dt::Tdt
t0::Tt0
function PowerSpectralDensityAmplitude{IsEven}(hc, dt, t0) where {IsEven}
n = length(hc)
iseven(n) == IsEven || throw(ArgumentError("IsEven = $(IsEven) is not consistent with length(hc) = $n"))
return new{IsEven, eltype(hc), typeof(hc), typeof(dt), typeof(t0)}(hc, dt, t0)
end
end
"""
PowerSpectralDensityAmplitude(hc, dt, t0=zero(dt))
Construct a narrowband spectrum of the power spectral density amplitude from the discrete Fourier transform in half-complex format `hc`, time step size `dt`, and initial time `t0`.
"""
function PowerSpectralDensityAmplitude(hc, dt, t0=zero(dt))
n = length(hc)
return PowerSpectralDensityAmplitude{iseven(n)}(hc, dt, t0)
end
"""
PowerSpectralDensityAmplitude(sm::AbstractNarrowbandSpectrum)
Construct a narrowband spectrum of the power spectral density amplitude from another narrowband spectrum.
"""
PowerSpectralDensityAmplitude(sm::AbstractNarrowbandSpectrum{IsEven,false}) where {IsEven} = PowerSpectralDensityAmplitude(halfcomplex(sm), timestep(sm), starttime(sm))
PowerSpectralDensityAmplitude(sm::AbstractNarrowbandSpectrum{IsEven,true}) where {IsEven} = throw(ArgumentError("IsTonal == true parameter cannot be used with PowerSpectralDensityAmplitude type"))
"""
PowerSpectralDensityAmplitude(pth::AbstractPressureTimeHistory, hc=similar(pressure(pth)))
Construct a narrowband spectrum of the power spectral density amplitude from a pressure time history.
The optional argument `hc` will be used to store the discrete Fourier transform of the pressure time history, and should have length of `inputlength(pth)`.
"""
function PowerSpectralDensityAmplitude(pth::AbstractPressureTimeHistory, hc=similar(pressure(pth)))
p = pressure(pth)
# Get the FFT of the acoustic pressure.
rfft!(hc, p)
return PowerSpectralDensityAmplitude(hc, timestep(pth), starttime(pth))
end
@inline function Base.getindex(psa::PowerSpectralDensityAmplitude{false}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
df = frequencystep(psa)
if i == 1
@inbounds hc_real = psa.hc[i]/m
return hc_real^2/df
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*(hc_real^2 + hc_imag^2)/df
end
end
@inline function Base.getindex(psa::PowerSpectralDensityAmplitude{true}, i::Int)
@boundscheck checkbounds(psa, i)
m = inputlength(psa)
df = frequencystep(psa)
if i == 1 || i == length(psa)
@inbounds hc_real = psa.hc[i]/m
return hc_real^2/df
else
@inbounds hc_real = psa.hc[i]/m
@inbounds hc_imag = psa.hc[m-i+2]/m
return 2*(hc_real^2 + hc_imag^2)/df
end
end
"""
PowerSpectralDensityPhase
Alias for `PressureSpectrumPhase`.
"""
const PowerSpectralDensityPhase = PressureSpectrumPhase
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 57028 | """
AbstractProportionalBands{NO,LCU,TF} <: AbstractVector{TF}
Abstract type representing the exact proportional frequency bands with band fraction `NO` and `eltype` `TF`.
The `LCU` parameter can take one of three values:
* `:lower`: The `struct` returns the lower edges of each frequency band.
* `:center`: The `struct` returns the center of each frequency band.
* `:upper`: The `struct` returns the upper edges of each frequency band.
"""
abstract type AbstractProportionalBands{NO,LCU,TF} <: AbstractVector{TF} end
"""
octave_fraction(bands::AbstractProportionalBands{NO}) where {NO}
Return `NO`, the "octave fraction," e.g. `1` for octave bands, `3` for third-octave, `12` for twelfth-octave.
"""
octave_fraction(::AbstractProportionalBands{NO}) where {NO} = NO
octave_fraction(::Type{<:AbstractProportionalBands{NO}}) where {NO} = NO
"""
lower_center_upper(bands::AbstractProportionalBands{NO,LCU,TF}) where {NO,LCU,TF}
Return `LCU`, which can be either `:lower`, `:center`, `:upper`, indicating if `bands` represents the lower edges, centers, or upper edges of proportional bands, respectively.
"""
lower_center_upper(bands::AbstractProportionalBands{NO,LCU,TF}) where {NO,LCU,TF} = lower_center_upper(typeof(bands))
lower_center_upper(::Type{<:AbstractProportionalBands{NO,LCU,TF}}) where {NO,LCU,TF} = LCU
"""
freq_scaler(bands::AbstractProportionalBands)
Return the factor each "standard" frequency band is scaled by.
For example, the approximate octave center bands include 1000 Hz, 2000 Hz, and 4000 Hz.
If `freq_scaler(bands) == 1.0`, then these frequencies would be unchanged.
If `freq_scaler(bands) == 1.5`, then `bands` would include 1500 Hz, 3000 Hz, and 6000 Hz instead.
If `freq_scaler(bands) == 0.5`, then `bands` would include 500 Hz, 1000 Hz, and 2000 Hz in place of 1000 Hz, 2000 Hz, and 4000 Hz.
"""
@inline freq_scaler(bands::AbstractProportionalBands) = bands.scaler
"""
band_start(bands::AbstractProportionalBands)
Return the standard band index number for the first band in `bands`.
For example, it happens that the approximate octave center bands includes 1000 Hz, and that particular band is numbered `10`.
So if the first band contained in `bands` happens to be 1000 Hz (and `freq_scaler(bands) == 1.0`), then `band_start(bands) == 10`.
Not particularly useful to a user.
"""
@inline band_start(bands::AbstractProportionalBands) = bands.bstart
"""
band_end(bands::AbstractProportionalBands)
Return the standard band index number for the last band in `bands`.
For example, it happens that the approximate octave center bands includes 1000 Hz, and that particular band is numbered `10`.
So if the last band contained in `bands` happens to be 1000 Hz (and `freq_scaler(bands) == 1.0`), then `band_end(bands) == 10`.
Not particularly useful to a user.
"""
@inline band_end(bands::AbstractProportionalBands) = bands.bend
@inline function Base.size(bands::AbstractProportionalBands)
return (band_end(bands) - band_start(bands) + 1,)
end
"""
lower_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
Construct and return the lower edges of the proportional bands `TBands`, scaled by `scaler`, that would fully encompass a frequency range beginning with `fstart` and ending with `fend`.
"""
function lower_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
return TBands{:lower}(fstart, fend, scaler)
end
"""
upper_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
Construct and return the upper edges of the proportional bands `TBands`, scaled by `scaler`, that would fully encompass a frequency range beginning with `fstart` and ending with `fend`.
"""
function upper_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
return TBands{:upper}(fstart, fend, scaler)
end
"""
center_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
Construct and return the centers of the proportional bands `TBands`, scaled by `scaler`, that would fully encompass a frequency range beginning with `fstart` and ending with `fend`.
"""
function center_bands(TBands::Type{<:AbstractProportionalBands{NO}}, fstart::TF, fend::TF, scaler=1) where {NO,TF}
return TBands{:center}(fstart, fend, scaler)
end
"""
cband_number(bands::AbstractProportionalBands, fc)
Return the standard band index number of the band with center frequency `fc` for proportional bands `bands`.
For example, if `bands` is a subtype of `ApproximateOctaveBands` and `freq_scaler(bands) == 1.0`, then `cband_number(bands, 1000.0) == 10`.
"""
cband_number(bands::AbstractProportionalBands, fc) = cband_number(typeof(bands), fc, freq_scaler(bands))
const f0_exact = 1000
const fmin_exact = 1
"""
ExactProportionalBands{NO,LCU,TF} <: AbstractProportionalBands{NO,LCU,TF}
Representation of the exact proportional frequency bands with band fraction `NO` and `eltype` `TF`.
The `LCU` parameter can take one of three values:
* `:lower`: The `struct` returns the lower edges of each frequency band.
* `:center`: The `struct` returns the center of each frequency band.
* `:upper`: The `struct` returns the upper edges of each frequency band.
"""
ExactProportionalBands
struct ExactProportionalBands{NO,LCU,TF} <: AbstractProportionalBands{NO,LCU,TF}
bstart::Int
bend::Int
f0::TF
scaler::TF
function ExactProportionalBands{NO,LCU,TF}(bstart::Int, bend::Int, scaler=1) where {NO,LCU,TF}
NO > 0 || throw(ArgumentError("Octave band fraction NO must be greater than 0"))
LCU in (:lower, :center, :upper) || throw(ArgumentError("LCU must be one of :lower, :center, :upper"))
bend >= bstart || throw(ArgumentError("bend should be greater than or equal to bstart"))
scaler > 0 || throw(ArgumentError("non-positive scaler argument not supported"))
return new{NO,LCU,TF}(bstart, bend, TF(f0_exact), TF(scaler))
end
end
"""
ExactProportionalBands{NO,LCU}(TF=Float64, bstart::Int, bend::Int, scaler=1)
Construct an `ExactProportionalBands` with `eltype` `TF` encomposing band index numbers from `bstart` to `bend`.
The "standard" band frequencies will be scaled by `scaler`, e.g. if `scaler = 0.5` then what would normally be the `1000 Hz` frequency will be `500 Hz`, etc..
"""
function ExactProportionalBands{NO,LCU}(TF::Type, bstart::Int, bend::Int, scalar=1) where {NO,LCU}
return ExactProportionalBands{NO,LCU,TF}(bstart, bend, scalar)
end
function ExactProportionalBands{NO,LCU}(bstart::Int, bend::Int, scaler=1) where {NO,LCU}
return ExactProportionalBands{NO,LCU}(Float64, bstart, bend, scaler)
end
@inline band_exact_lower_limit(NO, fl, scaler) = floor(Int, 1/2 + NO*log2(fl/(f0_exact*scaler)) + 10*NO)
@inline band_exact_upper_limit(NO, fu, scaler) = ceil(Int, -1/2 + NO*log2(fu/(f0_exact*scaler)) + 10*NO)
function _cband_exact(NO, fc, scaler)
# f = 2^((b - 10*NO)/NO)*f0
# f/f0 = 2^((b - 10*NO)/NO)
# log2(f/f0) = log2(2^((b - 10*NO)/NO))
# log2(f/f0) = ((b - 10*NO)/NO)
# log2(f/f0)*NO = b - 10*NO
# log2(f/f0)*NO + 10*NO = b
# b = log2(f/f0)*NO + 10*NO
# Get the band number from a center band frequency `fc`.
log2_fc_over_f0_exact_NO = log2(fc/(f0_exact*scaler))*NO
# Check that the result will be very close to an integer.
rounded = round(Int, log2_fc_over_f0_exact_NO)
tol = 10*eps(fc)
abs_cs_safe(log2_fc_over_f0_exact_NO - rounded) < tol || throw(ArgumentError("fc does not correspond to a center-band frequency"))
b = rounded + 10*NO
return b
end
function cband_number(::Type{<:ExactProportionalBands{NO}}, fc, scaler) where {NO}
return _cband_exact(NO, fc, scaler)
end
"""
ExactProportionalBands{NO,LCU}(fstart::TF, fend::TF, scaler)
Construct an `ExactProportionalBands` with `eltype` `TF`, scaled by `scaler`, encomposing the bands needed to completely extend over minimum frequency `fstart` and maximum frequency `fend`.
"""
ExactProportionalBands{NO,LCU}(fstart::TF, fend::TF, scaler=1) where {NO,LCU,TF} = ExactProportionalBands{NO,LCU,TF}(fstart, fend, scaler)
ExactProportionalBands{NO,LCU,TF}(fstart::TF, fend::TF, scaler=1) where {NO,LCU,TF} = ExactProportionalBands{NO,LCU,TF}(band_exact_lower_limit(NO, fstart, scaler), band_exact_upper_limit(NO, fend, scaler), scaler)
@inline function Base.getindex(bands::ExactProportionalBands{NO,:center}, i::Int) where {NO}
@boundscheck checkbounds(bands, i)
# Now, how do I get the band?
# This is the band number:
b = bands.bstart + (i - 1)
# So then the center frequency f_c that I want is defined by the function
#
# b = NO*log2(f_c/f_0) + 10*NO
#
# where f_0 is the reference frequency, 1000 Hz.
# OK, so.
# 2^((b - 10*NO)/NO)*f_c
return 2^((b - 10*NO)/NO)*(bands.f0*freq_scaler(bands))
end
@inline function Base.getindex(bands::ExactProportionalBands{NO,:lower}, i::Int) where {NO}
@boundscheck checkbounds(bands, i)
b = bands.bstart + (i - 1)
# return 2^((b - 10*NO)/NO)*(2^(-1/(2*NO)))*bands.f0
# return 2^(2*(b - 10*NO)/(2*NO))*(2^(-1/(2*NO)))*bands.f0
return 2^((2*(b - 10*NO) - 1)/(2*NO))*(bands.f0*freq_scaler(bands))
end
@inline function Base.getindex(bands::ExactProportionalBands{NO,:upper}, i::Int) where {NO}
@boundscheck checkbounds(bands, i)
b = bands.bstart + (i - 1)
# return 2^((b - 10*NO)/NO)*(2^(1/(2*NO)))*bands.f0
# return 2^(2*(b - 10*NO)/(2*NO))*(2^(1/(2*NO)))*bands.f0
return 2^((2*(b - 10*NO) + 1)/(2*NO))*(bands.f0*freq_scaler(bands))
end
"""
ExactOctaveCenterBands{TF}
Alias for `ExactProportionalBands{1,:center,TF}`
"""
const ExactOctaveCenterBands{TF} = ExactProportionalBands{1,:center,TF}
"""
ExactThirdOctaveCenterBands{TF}
Alias for `ExactProportionalBands{3,:center,TF}`
"""
const ExactThirdOctaveCenterBands{TF} = ExactProportionalBands{3,:center,TF}
"""
ExactOctaveLowerBands{TF}
Alias for `ExactProportionalBands{1,:lower,TF}`
"""
const ExactOctaveLowerBands{TF} = ExactProportionalBands{1,:lower,TF}
"""
ExactThirdOctaveLowerBands{TF}
Alias for `ExactProportionalBands{3,:lower,TF}`
"""
const ExactThirdOctaveLowerBands{TF} = ExactProportionalBands{3,:lower,TF}
"""
ExactOctaveUpperBands{TF}
Alias for `ExactProportionalBands{1,:upper,TF}`
"""
const ExactOctaveUpperBands{TF} = ExactProportionalBands{1,:upper,TF}
"""
ExactThirdOctaveUpperBands{TF}
Alias for `ExactProportionalBands{3,:upper,TF}`
"""
const ExactThirdOctaveUpperBands{TF} = ExactProportionalBands{3,:upper,TF}
"""
lower_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,TF}
Construct and return the lower edges of the proportional bands `bands` scaled by `scaler`.
"""
lower_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,LCU,TF} = ExactProportionalBands{NO,:lower,TF}(band_start(bands), band_end(bands), scaler)
"""
center_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,TF}
Construct and return the centers of the proportional bands `bands` scaled by `scaler`.
"""
center_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,LCU,TF} = ExactProportionalBands{NO,:center,TF}(band_start(bands), band_end(bands), scaler)
"""
upper_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,TF}
Construct and return the upper edges of the proportional bands `bands` scaled by `scaler`.
"""
upper_bands(bands::ExactProportionalBands{NO,LCU,TF}, scaler=freq_scaler(bands)) where {NO,LCU,TF} = ExactProportionalBands{NO,:upper,TF}(band_start(bands), band_end(bands), scaler)
const approx_3rd_octave_cbands_pattern = [1.0, 1.25, 1.6, 2.0, 2.5, 3.15, 4.0, 5.0, 6.3, 8.0]
const approx_3rd_octave_lbands_pattern = [0.9, 1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1]
const approx_3rd_octave_ubands_pattern = [1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1, 9.0]
"""
ApproximateThirdOctaveBands{LCU,TF} <: AbstractProportionalBands{3,LCU,TF}
Representation of the approximate third-octave proportional frequency bands with `eltype` `TF`.
The `LCU` parameter can take one of three values:
* `:lower`: The `struct` returns the lower edges of each frequency band.
* `:center`: The `struct` returns the center of each frequency band.
* `:upper`: The `struct` returns the upper edges of each frequency band.
"""
struct ApproximateThirdOctaveBands{LCU,TF} <: AbstractProportionalBands{3,LCU,TF}
bstart::Int
bend::Int
scaler::TF
function ApproximateThirdOctaveBands{LCU,TF}(bstart::Int, bend::Int, scaler=1) where {LCU, TF}
LCU in (:lower, :center, :upper) || throw(ArgumentError("LCU must be one of :lower, :center, :upper"))
bend >= bstart || throw(ArgumentError("bend should be greater than or equal to bstart"))
scaler > 0 || throw(ArgumentError("non-positive scaler argument not supported"))
return new{LCU,TF}(bstart, bend, TF(scaler))
end
end
"""
ApproximateThirdOctaveBands{LCU}(TF=Float64, bstart::Int, bend::Int, scaler=1)
Construct an `ApproximateThirdOctaveBands` with `eltype` `TF` encomposing band index numbers from `bstart` to `bend`.
The "standard" band frequencies will be scaled by `scaler`, e.g. if `scaler = 0.5` then what would normally be the `1000 Hz` frequency will be `500 Hz`, etc..
"""
function ApproximateThirdOctaveBands{LCU}(TF::Type, bstart::Int, bend::Int, scaler=1) where {LCU}
return ApproximateThirdOctaveBands{LCU,TF}(bstart, bend, scaler)
end
function ApproximateThirdOctaveBands{LCU}(bstart::Int, bend::Int, scaler=1) where {LCU}
return ApproximateThirdOctaveBands{LCU}(Float64, bstart, bend, scaler)
end
@inline function Base.getindex(bands::ApproximateThirdOctaveBands{:center,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor10, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_3rd_octave_cbands_pattern[b]*TF(10)^factor10
end
@inline function Base.getindex(bands::ApproximateThirdOctaveBands{:lower,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor10, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_3rd_octave_lbands_pattern[b]*TF(10)^factor10
end
@inline function Base.getindex(bands::ApproximateThirdOctaveBands{:upper,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor10, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_3rd_octave_ubands_pattern[b]*TF(10)^factor10
end
@inline function band_approx_3rd_octave_lower_limit(fl::TF, scaler) where {TF}
# For the `scaler`, I've been thinking about always leaving the input frequency (here `fl`) alone and modifying the standard bands (here `approx_3rd_octave_lbands_pattern`).
# But then that would involve multiplying all of `approx_3rd_octave_lbands_pattern`...
# Or maybe not.
factor10 = floor(Int, log10(fl/(scaler*approx_3rd_octave_lbands_pattern[1])))
i = searchsortedfirst(approx_3rd_octave_lbands_pattern, fl; lt=(lband, f)->isless(scaler*lband*TF(10)^factor10, f))
# - 2 because
#
# * -1 for searchsortedfirst giving us the first index in approx_3rd_octave_lbands_pattern that is greater than fl, and we want the band before that
# * -1 because the array approx_3rd_octave_lbands_pattern is 1-based, but the third-octave band pattern band numbers are 0-based (centerband 1.0 Hz is band number 0, etc..)
return (i - 2) + factor10*10
end
@inline function band_approx_3rd_octave_upper_limit(fu::TF, scaler) where {TF}
factor10 = floor(Int, log10(fu/(scaler*approx_3rd_octave_lbands_pattern[1])))
i = searchsortedfirst(approx_3rd_octave_ubands_pattern, fu; lt=(uband, f)->isless(scaler*uband*TF(10)^factor10, f))
# - 1 because
#
# * -1 because the array approx_3rd_octave_lbands_pattern is 1-based, but the third-octave band pattern band numbers are 0-based (centerband 1.0 Hz is band number 0, etc..)
return (i - 1) + factor10*10
end
function cband_approx_3rd_octave(fc, scaler)
fc_scaled = fc/scaler
frac, factor10 = modf(log10(fc_scaled))
# if (frac < -eps(frac))
# frac += 1
# factor10 -= 1
# end
adj = ifelse(frac < -eps(frac), 1, 0)
frac += adj
factor10 -= adj
cband_pattern_entry = 10^frac
tol_shift = 0.001
b = searchsortedfirst(approx_3rd_octave_cbands_pattern, cband_pattern_entry-tol_shift)
tol_compare = 100*eps(approx_3rd_octave_cbands_pattern[b])
abs_cs_safe(approx_3rd_octave_cbands_pattern[b] - cband_pattern_entry) < tol_compare || throw(ArgumentError("frequency fc does not correspond to an approximate 3rd-octave center band"))
b0 = b - 1
j = 10*Int(factor10) + b0
return j
end
function cband_number(::Type{<:ApproximateThirdOctaveBands}, fc, scaler)
return cband_approx_3rd_octave(fc, scaler)
end
"""
ApproximateThirdOctaveBands{LCU}(fstart::TF, fend::TF, scaler=1)
Construct an `ApproximateThirdOctaveBands` with `eltype` `TF`, scaled by `scaler`, encomposing the bands needed to completely extend over minimum frequency `fstart` and maximum frequency `fend`.
"""
ApproximateThirdOctaveBands{LCU}(fstart::TF, fend::TF, scaler=1) where {LCU,TF} = ApproximateThirdOctaveBands{LCU,TF}(fstart, fend, scaler)
ApproximateThirdOctaveBands{LCU,TF}(fstart::TF, fend::TF, scaler=1) where {LCU,TF} = ApproximateThirdOctaveBands{LCU,TF}(band_approx_3rd_octave_lower_limit(fstart, scaler), band_approx_3rd_octave_upper_limit(fend, scaler), scaler)
"""
ApproximateThirdOctaveCenterBands{TF}
Alias for `ApproximateThirdOctaveBands{:center,TF}`
"""
const ApproximateThirdOctaveCenterBands{TF} = ApproximateThirdOctaveBands{:center,TF}
"""
ApproximateThirdOctaveLowerBands{TF}
Alias for `ApproximateThirdOctaveBands{:lower,TF}`
"""
const ApproximateThirdOctaveLowerBands{TF} = ApproximateThirdOctaveBands{:lower,TF}
"""
ApproximateThirdOctaveUpperBands{TF}
Alias for `ApproximateThirdOctaveBands{:upper,TF}`
"""
const ApproximateThirdOctaveUpperBands{TF} = ApproximateThirdOctaveBands{:upper,TF}
"""
lower_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF}
Construct and return the lower edges of the proportional bands `bands` scaled by `scaler`.
"""
lower_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateThirdOctaveBands{:lower,TF}(band_start(bands), band_end(bands), scaler)
"""
center_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF}
Construct and return the centers of the proportional bands `bands` scaled by `scaler`.
"""
center_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateThirdOctaveBands{:center,TF}(band_start(bands), band_end(bands), scaler)
"""
upper_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF}
Construct and return the upper edges of the proportional bands `bands` scaled by `scaler`.
"""
upper_bands(bands::ApproximateThirdOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateThirdOctaveBands{:upper,TF}(band_start(bands), band_end(bands), scaler)
const approx_octave_cbands_pattern = [1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63.0, 125.0, 250.0, 500.0]
const approx_octave_lbands_pattern = [0.71, 1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0]
const approx_octave_ubands_pattern = [1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0, 710.0]
"""
ApproximateOctaveBands{LCU,TF} <: AbstractProportionalBands{1,LCU,TF}
Representation of the approximate octave proportional frequency bands with `eltype` `TF`.
The `LCU` parameter can take one of three values:
* `:lower`: The `struct` returns the lower edges of each frequency band.
* `:center`: The `struct` returns the center of each frequency band.
* `:upper`: The `struct` returns the upper edges of each frequency band.
"""
struct ApproximateOctaveBands{LCU,TF} <: AbstractProportionalBands{1,LCU,TF}
bstart::Int
bend::Int
scaler::TF
function ApproximateOctaveBands{LCU,TF}(bstart::Int, bend::Int, scaler=1) where {LCU, TF}
LCU in (:lower, :center, :upper) || throw(ArgumentError("LCU must be one of :lower, :center, :upper"))
bend >= bstart || throw(ArgumentError("bend should be greater than or equal to bstart"))
scaler > 0 || throw(ArgumentError("non-positive scaler argument not supported"))
return new{LCU,TF}(bstart, bend, TF(scaler))
end
end
"""
ApproximateOctaveBands{LCU,TF}(bstart::Int, bend::Int)
Construct an `ApproximateOctaveBands` with `eltype` `TF` encomposing band index numbers from `bstart` to `bend`.
The "standard" band frequencies will be scaled by `scaler`, e.g. if `scaler = 0.5` then what would normally be the `1000 Hz` frequency will be `500 Hz`, etc..
"""
function ApproximateOctaveBands{LCU}(TF::Type, bstart::Int, bend::Int, scaler=1) where {LCU}
return ApproximateOctaveBands{LCU,TF}(bstart, bend, scaler)
end
function ApproximateOctaveBands{LCU}(bstart::Int, bend::Int, scaler=1) where {LCU}
return ApproximateOctaveBands{LCU}(Float64, bstart, bend, scaler)
end
@inline function Base.getindex(bands::ApproximateOctaveBands{:center,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor1000, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_octave_cbands_pattern[b]*TF(1000)^factor1000
end
@inline function Base.getindex(bands::ApproximateOctaveBands{:lower,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor1000, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_octave_lbands_pattern[b]*TF(1000)^factor1000
end
@inline function Base.getindex(bands::ApproximateOctaveBands{:upper,TF}, i::Int) where {TF}
@boundscheck checkbounds(bands, i)
j = bands.bstart + i - 1
factor1000, b0 = divrem(j, 10, RoundDown)
b = b0 + 1
return freq_scaler(bands)*approx_octave_ubands_pattern[b]*TF(1000)^factor1000
end
@inline function band_approx_octave_lower_limit(fl::TF, scaler) where {TF}
factor1000 = floor(Int, log10(fl/(scaler*approx_octave_lbands_pattern[1]))/3)
i = searchsortedfirst(approx_octave_lbands_pattern, fl; lt=(lband, f)->isless(scaler*lband*TF(10)^(3*factor1000), f))
# - 2 because
#
# * -1 for searchsortedfirst giving us the first index in approx_octave_lbands_pattern that is greater than fl, and we want the band before that
# * -1 because the array approx_octave_lbands_pattern is 1-based, but the octave band pattern band numbers are 0-based (centerband 1.0 Hz is band number 0, etc..)
return (i - 2) + factor1000*10
end
@inline function band_approx_octave_upper_limit(fu::TF, scaler) where {TF}
factor1000 = floor(Int, log10(fu/(scaler*approx_octave_lbands_pattern[1]))/3)
i = searchsortedfirst(approx_octave_ubands_pattern, fu; lt=(lband, f)->isless(scaler*lband*TF(10)^(3*factor1000), f))
# - 1 because
#
# * -1 because the array approx_octave_lbands_pattern is 1-based, but the octave band pattern band numbers are 0-based (centerband 1.0 Hz is band number 0, etc..)
return (i - 1) + factor1000*10
end
function cband_approx_octave(fc, scaler)
fc_scaled = fc/scaler
frac, factor1000 = modf(log10(fc_scaled)/log10(1000))
# if (frac < -eps(frac))
# frac += 1
# factor1000 -= 1
# end
adj = ifelse(frac < -eps(frac), 1, 0)
frac += adj
factor1000 -= adj
cband_pattern_entry = 1000^frac
tol_shift = 0.001
b = searchsortedfirst(approx_octave_cbands_pattern, cband_pattern_entry-tol_shift)
tol_compare = 100*eps(approx_octave_cbands_pattern[b])
abs_cs_safe(approx_octave_cbands_pattern[b] - cband_pattern_entry) < tol_compare || throw(ArgumentError("frequency f does not correspond to an approximate octave center band"))
b0 = b - 1
j = 10*Int(factor1000) + b0
return j
end
function cband_number(::Type{<:ApproximateOctaveBands}, fc, scaler)
return cband_approx_octave(fc, scaler)
end
"""
ApproximateOctaveBands{LCU}(fstart::TF, fend::TF, scaler=1)
Construct an `ApproximateOctaveBands` with `eltype` `TF`, scaled by `scaler`, encomposing the bands needed to completely extend over minimum frequency `fstart` and maximum frequency `fend`.
"""
ApproximateOctaveBands{LCU}(fstart::TF, fend::TF, scaler=1) where {LCU,TF} = ApproximateOctaveBands{LCU,TF}(fstart, fend, scaler)
ApproximateOctaveBands{LCU,TF}(fstart::TF, fend::TF, scaler=1) where {LCU,TF} = ApproximateOctaveBands{LCU,TF}(band_approx_octave_lower_limit(fstart, scaler), band_approx_octave_upper_limit(fend, scaler), scaler)
"""
ApproximateOctaveCenterBands{TF}
Alias for `ApproximateOctaveBands{:center,TF}`
"""
const ApproximateOctaveCenterBands{TF} = ApproximateOctaveBands{:center,TF}
"""
ApproximateOctaveLowerBands{TF}
Alias for `ApproximateOctaveBands{:lower,TF}`
"""
const ApproximateOctaveLowerBands{TF} = ApproximateOctaveBands{:lower,TF}
"""
ApproximateOctaveUpperBands{TF}
Alias for `ApproximateOctaveBands{:upper,TF}`
"""
const ApproximateOctaveUpperBands{TF} = ApproximateOctaveBands{:upper,TF}
"""
lower_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands))
Construct and return the lower edges of the proportional bands `bands` scaled by `scaler`.
"""
lower_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateOctaveBands{:lower,TF}(band_start(bands), band_end(bands), scaler)
"""
center_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands))
Construct and return the centers of the proportional bands `bands` scaled by `scaler`.
"""
center_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateOctaveBands{:center,TF}(band_start(bands), band_end(bands), scaler)
"""
upper_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands))
Construct and return the upper edges of the proportional bands `bands` scaled by `scaler`.
"""
upper_bands(bands::ApproximateOctaveBands{LCU,TF}, scaler=freq_scaler(bands)) where {LCU,TF} = ApproximateOctaveBands{:upper,TF}(band_start(bands), band_end(bands), scaler)
"""
AbstractProportionalBandSpectrum{NO,TF} <: AbstractVector{TF}
Abstract type representing a proportional band spectrum with band fraction `NO` and `eltype` `TF`.
"""
abstract type AbstractProportionalBandSpectrum{NO,TF} <: AbstractVector{TF} end
"""
octave_fraction(pbs::AbstractProportionalBandSpectrum{NO}) where {NO}
Return `NO`, the "octave fraction," e.g. `1` for octave bands, `3` for third-octave, `12` for twelfth-octave.
"""
octave_fraction(::AbstractProportionalBandSpectrum{NO}) where {NO} = NO
octave_fraction(::Type{<:AbstractProportionalBandSpectrum{NO}}) where {NO} = NO
"""
lower_bands(pbs::AbstractProportionalBandSpectrum)
Return the lower edges of the proportional bands associated with the proportional band spectrum `pbs`.
"""
@inline lower_bands(pbs::AbstractProportionalBandSpectrum) = lower_bands(pbs.cbands)
"""
center_bands(pbs::AbstractProportionalBandSpectrum)
Return the centers of the proportional bands associated with the proportional band spectrum `pbs`.
"""
@inline center_bands(pbs::AbstractProportionalBandSpectrum) = pbs.cbands
"""
upper_bands(pbs::AbstractProportionalBandSpectrum)
Return the upper edges of the proportional bands associated with the proportional band spectrum `pbs`.
"""
@inline upper_bands(pbs::AbstractProportionalBandSpectrum) = upper_bands(pbs.cbands)
"""
freq_scaler(pbs::AbstractProportionalBandSpectrum)
Return the factor each "standard" frequency band associated with the proportional band spectrum `pbs` is scaled by.
For example, the approximate octave center bands include 1000 Hz, 2000 Hz, and 4000 Hz.
If `freq_scaler(pbs) == 1.0`, then these frequencies would be unchanged.
If `freq_scaler(pbs) == 1.5`, then `bands` would include 1500 Hz, 3000 Hz, and 6000 Hz instead.
If `freq_scaler(pbs) == 0.5`, then `bands` would include 500 Hz, 1000 Hz, and 2000 Hz in place of 1000 Hz, 2000 Hz, and 4000 Hz.
"""
@inline freq_scaler(pbs::AbstractProportionalBandSpectrum) = freq_scaler(center_bands(pbs))
"""
has_observer_time(pbs::AbstractProportionalBandSpectrum)
Return `true` if the proportional band spectrum is defined to exist over a limited time, `false` otherwise.
"""
@inline has_observer_time(pbs::AbstractProportionalBandSpectrum) = false
"""
observer_time(pbs::AbstractProportionalBandSpectrum)
Return the observer time at which the proportional band spectrum is defined to exist.
"""
@inline observer_time(pbs::AbstractProportionalBandSpectrum{NO,TF}) where {NO,TF} = zero(TF)
"""
timestep(pbs::AbstractProportionalBandSpectrum)
Return the time range over which the proportional band spectrum is defined to exist.
"""
@inline timestep(pbs::AbstractProportionalBandSpectrum) = Inf*one(eltype(pbs))
"""
amplitude(pbs::AbstractProportionalBandSpectrum)
Return the underlying `Vector` containing the proportional band spectrum amplitudes contained in `pbs`.
"""
@inline amplitude(pbs::AbstractProportionalBandSpectrum) = pbs.pbs
"""
time_period(pbs::AbstractArray{<:AbstractProportionalBandSpectrum})
Find the period of time over which the collection of proportional band spectrum `pbs` exists.
"""
function time_period(pbs::AbstractArray{<:AbstractProportionalBandSpectrum})
tmin, tmax = extrema(observer_time, Iterators.filter(has_observer_time, pbs); init=(Inf, -Inf))
return tmax - tmin
end
"""
time_scaler(pbs::AbstractProportionalBandSpectrum{NO,TF}, period)
Find the scaling factor appropriate to multiply the proportional band spectrum `pbs` by that accounts for the duration of time the spectrum exists.
This is used when combining multiple proportional band spectra with the [combine](@ref) function.
"""
time_scaler(pbs::AbstractProportionalBandSpectrum{NO,TF}, period) where {NO,TF} = one(TF)
@inline Base.size(pbs::AbstractProportionalBandSpectrum) = size(center_bands(pbs))
@inline function Base.getindex(pbs::AbstractProportionalBandSpectrum, i::Int)
@boundscheck checkbounds(pbs, i)
return @inbounds amplitude(pbs)[i]
end
"""
LazyNBProportionalBandSpectrum{NO,IsTonal,TF,TAmp,TBandsC}
Lazy representation of a proportional band spectrum with octave fraction `NO` and `eltype` `TF` constructed from a narrowband (`NB`) spectrum.
`IsTonal` indicates how the acoustic energy is distributed through the narrow frequency bands:
* `IsTonal == false` means the acoustic energy is assumed to be evenly distributed thoughout each band
* `IsTonal == true` means the acoustic energy is assumed to be concentrated at each band center
"""
struct LazyNBProportionalBandSpectrum{NO,IsTonal,TF,TAmp<:AbstractVector{TF},TBandsC<:AbstractProportionalBands{NO,:center}} <: AbstractProportionalBandSpectrum{NO,TF}
f1_nb::TF
df_nb::TF
msp_amp::TAmp
cbands::TBandsC
function LazyNBProportionalBandSpectrum{NO,IsTonal,TF,TAmp}(f1_nb::TF, df_nb::TF, msp_amp::TAmp, cbands::AbstractProportionalBands{NO,:center}) where {NO,IsTonal,TF,TAmp<:AbstractVector{TF}}
f1_nb > zero(f1_nb) || throw(ArgumentError("f1_nb must be > 0"))
df_nb > zero(df_nb) || throw(ArgumentError("df_nb must be > 0"))
return new{NO,IsTonal,TF,TAmp,typeof(cbands)}(f1_nb, df_nb, msp_amp, cbands)
end
end
"""
LazyNBProportionalBandSpectrum{NO,IsTonal}(f1_nb, df_nb, msp_amp, cbands::AbstractProportionalBands{NO,:center})
Construct a lazy representation of a proportional band spectrum with proportional center bands `cbands` from a narrowband spectrum.
The narrowband frequencies are defined by the first narrowband frequency `f1_nb` and the narrowband frequency spacing `df_nb`.
`msp_amp` is the spectrum of narrowband mean squared pressure amplitude.
`IsTonal` indicates how the acoustic energy is distributed through the narrow frequency bands:
* `IsTonal == false` means the acoustic energy is assumed to be evenly distributed thoughout each band
* `IsTonal == true` means the acoustic energy is assumed to be concentrated at each band center
"""
function LazyNBProportionalBandSpectrum{NO,IsTonal}(f1_nb, df_nb, msp_amp, cbands::AbstractProportionalBands{NO,:center}) where {NO,IsTonal}
TF = eltype(msp_amp)
TAmp = typeof(msp_amp)
return LazyNBProportionalBandSpectrum{NO,IsTonal,TF,TAmp}(TF(f1_nb), TF(df_nb), msp_amp, cbands)
end
"""
LazyNBProportionalBandSpectrum(f1_nb, df_nb, msp_amp, cbands::AbstractProportionalBands{NO,:center}, istonal=false)
Construct a lazy representation of a proportional band spectrum with proportional center bands `cbands` from a narrowband spectrum.
The narrowband frequencies are defined by the first narrowband frequency `f1_nb` and the narrowband frequency spacing `df_nb`.
`msp_amp` is the spectrum of narrowband mean squared pressure amplitude.
`istonal` indicates how the acoustic energy is distributed through the narrow frequency bands:
* `istonal == false` means the acoustic energy is assumed to be evenly distributed thoughout each band
* `istonal == true` means the acoustic energy is assumed to be concentrated at each band center
"""
function LazyNBProportionalBandSpectrum(f1_nb, df_nb, msp_amp, cbands::AbstractProportionalBands{NO,:center}, istonal::Bool=false) where {NO}
return LazyNBProportionalBandSpectrum{NO,istonal}(f1_nb, df_nb, msp_amp, cbands)
end
"""
LazyNBProportionalBandSpectrum{NO,IsTonal}(TBands::Type{<:AbstractProportionalBands{NO}}, f1_nb, df_nb, msp_amp, scaler=1)
Construct a lazy representation of a proportional band spectrum with proportional band type `TBands` from a narrowband spectrum.
The narrowband frequencies are defined by the first narrowband frequency `f1_nb` and the narrowband frequency spacing `df_nb`.
`msp_amp` is the spectrum of narrowband mean squared pressure amplitude.
The proportional band frequencies will be scaled by `scaler`.
`IsTonal` is a `Bool` indicating how the acoustic energy is distributed through the narrow frequency bands:
* `IsTonal == false` means the acoustic energy is assumed to be evenly distributed thoughout each band
* `IsTonal == true` means the acoustic energy is assumed to be concentrated at each band center
"""
function LazyNBProportionalBandSpectrum{NO,false}(TBands::Type{<:AbstractProportionalBands{NO}}, f1_nb, df_nb, msp_amp, scaler=1) where {NO}
TF = eltype(msp_amp)
TAmp = typeof(msp_amp)
# We're thinking of each non-zero freqeuncy as being a bin with center frequency `f` and width `df_nb`.
# So to get the lowest non-zero frequency we'll subtract 0.5*df_nb from the lowest non-zero frequency center:
fstart = max(f1_nb - 0.5*df_nb, TF(fmin_exact))
fend = f1_nb + (length(msp_amp)-1)*df_nb + 0.5*df_nb
cbands = TBands{:center}(fstart, fend, scaler)
return LazyNBProportionalBandSpectrum{NO,false,TF,TAmp}(TF(f1_nb), TF(df_nb), msp_amp, cbands)
end
function LazyNBProportionalBandSpectrum{NO,true}(TBands::Type{<:AbstractProportionalBands{NO}}, f1_nb, df_nb, msp_amp, scaler=1) where {NO}
TF = eltype(msp_amp)
TAmp = typeof(msp_amp)
# We're thinking of each non-zero freqeuncy as being an infinitely thin "bin" with center frequency `f` and spacing `df_nb`.
# So to get the lowest non-zero frequency is f1_nb, and the highest is f1_nb + (length(msp_amp)-1)*df_nb.
fstart = f1_nb
fend = f1_nb + (length(msp_amp)-1)*df_nb
cbands = TBands{:center}(fstart, fend, scaler)
return LazyNBProportionalBandSpectrum{NO,true,TF,TAmp}(TF(f1_nb), TF(df_nb), msp_amp, cbands)
end
"""
LazyNBProportionalBandSpectrum(TBands::Type{<:AbstractProportionalBands}, f1_nb, df_nb, msp_amp, scaler=1, istonal::Bool=false)
Construct a `LazyNBProportionalBandSpectrum` using proportional bands `TBands` and narrowband mean squared pressure amplitude vector `msp_amp` and optional proportional band frequency scaler `scaler`.
`f1_nb` is the first non-zero narrowband frequency, and `df_nb` is the narrowband frequency spacing.
The `istonal` `Bool` argument, if `true`, indicates the narrowband spectrum is tonal and thus concentrated at discrete frequencies.
If `false`, the spectrum is assumed to be constant over each narrow frequency band.
The proportional band frequencies will be scaled by `scaler`.
"""
function LazyNBProportionalBandSpectrum(TBands::Type{<:AbstractProportionalBands{NO}}, f1_nb, df_nb, msp_amp, scaler=1, istonal::Bool=false) where {NO}
return LazyNBProportionalBandSpectrum{NO,istonal}(TBands, f1_nb, df_nb, msp_amp, scaler)
end
"""
LazyNBProportionalBandSpectrum(TBands::Type{<:AbstractProportionalBands}, sm::AbstractNarrowbandSpectrum, scaler=1)
Construct a `LazyNBProportionalBandSpectrum` using a proportional band `TBands` and narrowband spectrum `sm`, and optional frequency scaler `scaler`.
The proportional band frequencies will be scaled by `scaler`.
"""
function LazyNBProportionalBandSpectrum(TBands::Type{<:AbstractProportionalBands{NO}}, sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}, scaler=1) where {NO,IsEven,IsTonal}
msp = MSPSpectrumAmplitude(sm)
freq = frequency(msp)
f1_nb = freq[begin+1]
df_nb = step(freq)
# Skip the zero frequency.
msp_amp = @view msp[begin+1:end]
return LazyNBProportionalBandSpectrum{NO,IsTonal}(TBands, f1_nb, df_nb, msp_amp, scaler)
end
"""
LazyNBProportionalBandSpectrum(sm::AbstractNarrowbandSpectrum, cbands::AbstractProportionalBands{NO,:center})
Construct a `LazyNBProportionalBandSpectrum` using proportional centerbands `cbands` and narrowband spectrum `sm`.
The proportional band frequencies will be scaled by `scaler`.
"""
function LazyNBProportionalBandSpectrum(sm::AbstractNarrowbandSpectrum{IsEven,IsTonal}, cbands::AbstractProportionalBands{NO,:center}) where {NO,IsEven,IsTonal}
msp = MSPSpectrumAmplitude(sm)
TF = eltype(msp)
freq = frequency(msp)
f1_nb = TF(freq[begin+1])
df_nb = TF(step(freq))
# Skip the zero frequency.
msp_amp = @view msp[begin+1:end]
TAmp = typeof(msp_amp)
return LazyNBProportionalBandSpectrum{NO,IsTonal,TF,TAmp}(f1_nb, df_nb, msp_amp, cbands)
end
"""
frequency_nb(pbs::LazyNBProportionalBandSpectrum)
Return the narrowband frequencies associated with the underlying narrowband spectrum contained in `pbs`.
"""
frequency_nb(pbs::LazyNBProportionalBandSpectrum) = pbs.f1_nb .+ (0:length(pbs.msp_amp)-1).*pbs.df_nb
"""
lazy_pbs(pbs, cbands::AbstractProportionalBands{NO,:center})
Construct a lazy proportional band spectrum on proportional center bands `cbands` using the proportional band spectrum `pbs`.
"""
lazy_pbs
function lazy_pbs(pbs::LazyNBProportionalBandSpectrum{NOIn,IsTonal}, cbands::AbstractProportionalBands{NO,:center}) where {NOIn,IsTonal,NO}
return LazyNBProportionalBandSpectrum{NO,IsTonal}(pbs.f1_nb, pbs.df_nb, pbs.msp_amp, cbands)
end
@inline function Base.getindex(pbs::LazyNBProportionalBandSpectrum{NO,false}, i::Int) where {NO}
@boundscheck checkbounds(pbs, i)
# This is where the fun begins.
# So, first I want the lower and upper bands of this band.
fl = lower_bands(pbs)[i]
fu = upper_bands(pbs)[i]
# Now I need to find the starting and ending indices that are included in this frequency band.
# Need the narrowband frequencies.
# This will not include the zero frequency.
f_nb = frequency_nb(pbs)
# This is the narrowband frequency spacing.
Δf = pbs.df_nb
# So, what is the first index we want?
# It's the one that has f_nb[i] + 0.5*Δf >= fl.
# So that means f_nb[i] >= fl - 0.5*Δf
istart = searchsortedfirst(f_nb, fl - 0.5*Δf)
# `searchsortedfirst` will return `length(f_nb)+1` it doesn't find anything.
# What does that mean?
# That means that all the frequencies in the narrowband spectrum are lower
# than the band we're looking at. So return 0.
if istart == length(f_nb) + 1
return zero(eltype(pbs))
end
# What is the last index we want?
# It's the last one that has f_nb[i] - 0.5*Δf <= fu
# Or f_nb[i] <= fu + 0.5*Δf
iend = searchsortedlast(f_nb, fu + 0.5*Δf)
if iend == 0
# All the frequencies are lower than the band we're looking for.
return zero(eltype(pbs))
end
# Need the msp amplitude relavent for this band.
# First, get all of the msp amplitudes.
msp_amp = pbs.msp_amp
# Now get the amplitudes we actually want.
msp_amp_v = @view msp_amp[istart:iend]
f_nb_v = @view f_nb[istart:iend]
# Get the contribution of the first band, which might not be a full band.
# So the band will start at fl, the lower edge of the proportional band, and
# end at the narrowband center frequency + 0.5*Δf.
# This isn't right if the "narrowband" is actually wider than the
# proportional bands. If that's the case, then we need to clip it to the proportional band width.
band_lhs = max(f_nb_v[1] - 0.5*Δf, fl)
band_rhs = min(f_nb_v[1] + 0.5*Δf, fu)
res_first_band = msp_amp_v[1]/Δf*(band_rhs - band_lhs)
# Get the contribution of the last band, which might not be a full band.
if length(msp_amp_v) > 1
band_lhs = max(f_nb_v[end] - 0.5*Δf, fl)
band_rhs = min(f_nb_v[end] + 0.5*Δf, fu)
res_last_band = msp_amp_v[end]/Δf*(band_rhs - band_lhs)
else
res_last_band = zero(eltype(pbs))
end
# Get all the others and return them.
msp_amp_v2 = @view msp_amp_v[2:end-1]
return res_first_band + sum(msp_amp_v2) + res_last_band
end
@inline function Base.getindex(pbs::LazyNBProportionalBandSpectrum{NO,true}, i::Int) where {NO}
@boundscheck checkbounds(pbs, i)
# This is where the fun begins.
# So, first I want the lower and upper bands of this band.
fl = lower_bands(pbs)[i]
# Arg, numerical problems: lower_bands[i+1] should be the same as upper_bands[i].
# But because of floating point inaccuracies, they can be a tiny bit different.
# And that can lead to a "gap" between, say, upper_bands[i] and lower_bands[i+1].
# And then if a tone is right in that gap, we'll miss part of the spectrum.
# So, to fix this, always use the lower band values except for the last proportional band (where it won't matter, since that frequency value is only used once, and hence there can't be any gap).
if i < length(pbs)
fu = lower_bands(pbs)[i+1]
else
fu = upper_bands(pbs)[i]
end
# Now I need to find the starting and ending indices that are included in this frequency band.
# Need the narrowband frequencies.
# This will not include the zero frequency.
f_nb = frequency_nb(pbs)
# This is the narrowband frequency spacing.
Δf = pbs.df_nb
# So, what is the first index we want?
# It's the one that has f_nb[i] >= fl.
istart = searchsortedfirst(f_nb, fl)
# `searchsortedfirst` will return `length(f_nb)+1` it doesn't find anything.
# What does that mean?
# That means that all the frequencies in the narrowband spectrum are lower
# than the band we're looking at. So return 0.
if istart == length(f_nb) + 1
return zero(eltype(pbs))
end
# What is the last index we want?
# It's the last one that has f_nb[i] <= fu
# iend = searchsortedlast(f_nb, fu)
# But we don't want to double-count frequencies, so we actually want f_nb[i] < fu.
# Could just do `searchsortedlast(f_nb, fu; lt=<=)`, but this avoids the possibly-slow keyword arguments.
iend = searchsortedlast(f_nb, fu, ord(<=, identity, nothing, Forward))
if iend == 0
# All the frequencies are lower than the band we're looking for.
return zero(eltype(pbs))
end
# Need the msp amplitude relavent for this band.
# First, get all of the msp amplitudes.
msp_amp = pbs.msp_amp
# Now get the amplitudes we actually want.
msp_amp_v = @view msp_amp[istart:iend]
# Since we're thinking of the narrowband frequency bins as being infinitely thin, they can't partially extend beyond the lower or upper limits of the relevant proportional band.
# So we just need to add them up here:
return sum(msp_amp_v)
end
"""
ProportionalBandSpectrum{NO,TF,TPBS,TBandsL,TBandsC,TBandsU}
Representation of a proportional band spectrum with octave fraction `NO` and `eltype` `TF`.
"""
struct ProportionalBandSpectrum{NO,TF,TPBS<:AbstractVector{TF},TBandsC<:AbstractProportionalBands{NO,:center}} <: AbstractProportionalBandSpectrum{NO,TF}
pbs::TPBS
cbands::TBandsC
function ProportionalBandSpectrum(pbs, cbands::AbstractProportionalBands{NO,:center}) where {NO}
length(pbs) == length(cbands) || throw(ArgumentError("length(pbs) must match length(cbands)"))
return new{NO,eltype(pbs),typeof(pbs),typeof(cbands)}(pbs, cbands)
end
end
function lazy_pbs(pbs::ProportionalBandSpectrum, cbands::AbstractProportionalBands{NO,:center}) where {NO}
return LazyPBSProportionalBandSpectrum(pbs, cbands)
end
"""
ProportionalBandSpectrum(TBandsC, cfreq_start, pbs, scaler=1)
Construct a `ProportionalBandSpectrum` from an array of proportional band amplitudes and proportional band type `TBandsC`.
`cfreq_start` is the centerband frequency corresponding to the first entry of `pbs`.
The proportional band frequencies indicated by `TBandsC` are multiplied by `scaler`.
"""
function ProportionalBandSpectrum(TBandsC::Type{<:AbstractProportionalBands{NO,:center}}, cfreq_start, pbs, scaler=1) where {NO}
bstart = cband_number(TBandsC, cfreq_start, scaler)
bend = bstart + length(pbs) - 1
cbands = TBandsC(bstart, bend, scaler)
return ProportionalBandSpectrum(pbs, cbands)
end
"""
ProportionalBandSpectrumWithTime{NO,TF,TPBS,TBandsC,TTime,TDTime}
Representation of a proportional band spectrum with octave fraction `NO` and `eltype` `TF`, but with an observer time.
"""
struct ProportionalBandSpectrumWithTime{NO,TF,TPBS<:AbstractVector{TF},TBandsC<:AbstractProportionalBands{NO,:center},TDTime,TTime} <: AbstractProportionalBandSpectrum{NO,TF}
pbs::TPBS
cbands::TBandsC
dt::TDTime
t::TTime
@doc """
ProportionalBandSpectrumWithTime(pbs, cbands::AbstractProportionalBands{NO,:center}, dt, t)
Construct a proportional band spectrum from mean-squared pressure amplitudes `pbs` and centerband frequencies `cbands`, defined to exist over time range `dt` and at observer time `t`.
"""
function ProportionalBandSpectrumWithTime(pbs, cbands::AbstractProportionalBands{NO,:center}, dt, t) where {NO}
length(pbs) == length(cbands) || throw(ArgumentError("length(pbs) must match length(cbands)"))
dt > zero(dt) || throw(ArgumentError("dt must be positive"))
return new{NO,eltype(pbs),typeof(pbs),typeof(cbands),typeof(dt),typeof(t)}(pbs, cbands, dt, t)
end
end
@inline has_observer_time(pbs::ProportionalBandSpectrumWithTime) = true
@inline observer_time(pbs::ProportionalBandSpectrumWithTime) = pbs.t
@inline timestep(pbs::ProportionalBandSpectrumWithTime{NO,TF}) where {NO,TF} = pbs.dt
@inline time_scaler(pbs::ProportionalBandSpectrumWithTime, period) = timestep(pbs)/period
function lazy_pbs(pbs::ProportionalBandSpectrumWithTime, cbands::AbstractProportionalBands{NO,:center}) where {NO}
return LazyPBSProportionalBandSpectrum(pbs, cbands)
end
"""
LazyPBSProportionalBandSpectrum{NO,TF} <: AbstractProportionalBandSpectrum{NO,TF}
Lazy representation of a proportional band spectrum with octave fraction `NO` and `eltype` `TF` constructed from a different proportional band spectrum.
"""
struct LazyPBSProportionalBandSpectrum{NO,TF,TPBS<:AbstractProportionalBandSpectrum,TBandsC<:AbstractProportionalBands{NO,:center}} <: AbstractProportionalBandSpectrum{NO,TF}
pbs::TPBS
cbands::TBandsC
function LazyPBSProportionalBandSpectrum(pbs::AbstractProportionalBandSpectrum{NOIn,TF}, cbands::AbstractProportionalBands{NO,:center}) where {NO,TF,NOIn}
return new{NO,TF,typeof(pbs),typeof(cbands)}(pbs, cbands)
end
end
function LazyPBSProportionalBandSpectrum(TBands::Type{<:AbstractProportionalBands{NO}}, pbs::AbstractProportionalBandSpectrum, scaler=1) where {NO}
# First, get the minimum and maximum frequencies associated with the input pbs.
fstart = lower_bands(pbs)[begin]
fend = upper_bands(pbs)[end]
# Now use those frequencies to construct some centerbands.
cbands = TBands{:center}(fstart, fend, scaler)
# Now we can create the object.
return LazyPBSProportionalBandSpectrum(pbs, cbands)
end
@inline has_observer_time(pbs::LazyPBSProportionalBandSpectrum) = has_observer_time(pbs.pbs)
@inline observer_time(pbs::LazyPBSProportionalBandSpectrum) = observer_time(pbs.pbs)
@inline timestep(pbs::LazyPBSProportionalBandSpectrum) = timestep(pbs.pbs)
@inline time_scaler(pbs::LazyPBSProportionalBandSpectrum, period) = time_scaler(pbs.pbs, period)
function lazy_pbs(pbs::LazyPBSProportionalBandSpectrum, cbands::AbstractProportionalBands{NO,:center}) where {NO}
return LazyPBSProportionalBandSpectrum(pbs.pbs, cbands)
end
@inline function Base.getindex(pbs::LazyPBSProportionalBandSpectrum, i::Int)
@boundscheck checkbounds(pbs, i)
# So, first I want the lower and upper bands of this output band.
fol = lower_bands(pbs)[i]
fou = upper_bands(pbs)[i]
# Get the underlying pbs.
pbs_in = pbs.pbs
# Get the lower and upper edges of the input band's spectrum.
inbands_lower = lower_bands(pbs_in)
inbands_upper = upper_bands(pbs_in)
# So now I have the boundaries of the frequencies I'm interested in in `fol` and `fou`.
# What I'm looking for now is:
#
# * the first input band whose upper edge is greater than `fol`
# * the last input band whose lower edge is less than `fou`.
#
# So, for the first input band whose upper edge is greater than `fol`, I should be able to do this:
istart = searchsortedfirst(inbands_upper, fol)
# For that, what if
#
# * All of `inbands_upper` are less than `fol`?
# That would mean all of the `inband` frequencies are lower than and outside the current `outband`.
# Then the docs for `searchsortedfirst` say that it will return `length(inbands_upper)+1`.
# So if I started a view of the data from that index, it would obviously be empty, which is what I'd want.
# * All of the `inbands_upper` are greater than `fol`?
# Not necessarily a problem, unless, I guess, the lowest of `inbands_lower` is *also* greater than `fou`.
# Then the entire input spectrum would be larger than this band.
# But `searchsortedfirst` should just return `1`, and hopefully that would be the right thing.
# Now I want the last input band whose lower edge is less than `fou`.
# I should be able to get that from
iend = searchsortedlast(inbands_lower, fou)
# For that, what if
#
# * All of the `inbands_lower` are greater than `fou`?
# That would mean all of the `inband` frequencies are greater than and outside the current `outband`.
# The docs indicate `searchsortedlast` would return `firstindex(inbands_lower)-1` for that case, i.e. `0`.
# That's what I'd want, I think.
# * All of the `inbands_lower` are lower than `fou`?
# Not necessarily a problem, unless the highest of `inbands_upper` are also lower than `fou`, which would mean the entire input spectrum is lower than this output band.
# Now I have the first and last input bands relevant to this output band, and so I can start adding up the input PBS's contributions to this output band.
pbs_out = zero(eltype(pbs))
# First, we need to check that there's something to do:
if (istart <= lastindex(pbs_in)) && (iend >= firstindex(pbs_in))
# First, get the bandwidth of the first input band associated with this output band.
fil_start = inbands_lower[istart]
fiu_start = inbands_upper[istart]
dfin_start = fiu_start - fil_start
# Next, need to get the frequency overlap of the first input band and this output band.
# For the lower edge of the overlap, it will usually be `fol`, unless there's a gap where `inbands_lower[istart]` is greater than `fol`.
foverlapl_start = max(fol, fil_start)
# For the upper edge of the overlap, it will usually be `fiu_start`, unless there's a gap where `inbands_upper[istart]` is less than `fou`.
foverlapu_start = min(fou, fiu_start)
# Now get the first band's contribution to the PBS.
pbs_out += pbs_in[istart]/dfin_start*(foverlapu_start - foverlapl_start)
# Now, think about the last band's contribution to the PBS.
# First, we need to check if the first and last band are identicial, which would indicate that there's only one input band in this output band.
if iend > istart
# Now need to get the bandwidth associated with this input band.
fil_end = inbands_lower[iend]
fiu_end = inbands_upper[iend]
dfin_end = fiu_end - fil_end
# Next, need to get the frequency overlap of the last input band and this output band.
foverlapl_end = max(fol, fil_end)
foverlapu_end = min(fou, fiu_end)
# Now we can get the last band's contribution to the PBS.
pbs_out += pbs_in[iend]/dfin_end*(foverlapu_end - foverlapl_end)
# Now we need the contribution of the input bands between `istart+1` and `iend-1`, inclusive.
# Don't need to worry about incomplete overlap of the bands since these are "inside" this output band, so we can just directly sum them.
pbs_in_v = @view pbs_in[istart+1:iend-1]
pbs_out += sum(pbs_in_v)
end
end
return pbs_out
end
"""
combine(pbs::AbstractArray{<:AbstractProportionalBandSpectrum}, outcbands::AbstractProportionalBands{NO,:center}, time_axis=1) where {NO}
Combine each input proportional band spectrum of `pbs` into one output proportional band spectrum using the proportional center bands indicated by `outcbands`.
`time_axis` is an integer indicating the axis of the `pbs` array along which time varies.
For example, if `time_axis == 1` and `pbs` is a three-dimensional array, then `apth[:, i, j]` would be proportional band spectrum of source `i`, `j` for all time.
But if `time_axis == 3`, then `pbs[i, j, :]` would be the proportional band spectrum of source `i`, `j` for all time.
"""
function combine(pbs::AbstractArray{<:AbstractProportionalBandSpectrum}, outcbands::AbstractProportionalBands{NO,:center}, time_axis=1) where {NO}
# Create the vector that will contain the new PBS.
# An <:AbstractProportionalBandSpectrum is <:AbstractVector{TF}, so AbstractArray{<:AbstractProportionalBandSpectrum,N} is actually an Array of AbstractVectors.
# So `eltype(eltype(pbs))` should give me the element type of the PBS.
TFOut = promote_type(eltype(eltype(pbs)), eltype(outcbands))
pbs_out = zeros(TFOut, length(outcbands))
dims_in = axes(pbs)
ndims_in = ndims(pbs)
alldims_in = 1:ndims_in
otherdims = setdiff(alldims_in, time_axis)
itershape = tuple(dims_in[otherdims]...)
# Create an array we'll use to index pbs_in, with a `Colon()` for the time_axis position and integers of the first value for all the others.
idx = [ifelse(d==time_axis, Colon(), first(ind)) for (d, ind) in enumerate(axes(pbs))]
nidx = length(otherdims)
indices = CartesianIndices(itershape)
# Loop through the indices.
for I in indices
for i in 1:nidx
idx[otherdims[i]] = I.I[i]
end
# Grab all the elements associated with this time.
pbs_v = @view pbs[idx...]
# Now add this element's contribution to pbs_out.
_combine!(pbs_out, pbs_v, outcbands)
end
return ProportionalBandSpectrum(pbs_out, outcbands)
end
function _combine!(pbs_out::AbstractVector, pbs::AbstractVector{<:AbstractProportionalBandSpectrum}, outcbands::AbstractProportionalBands{NO,:center}) where {NO}
# Get the time period for this collection of PBSs.
period = time_period(pbs)
# Now start looping over each input PBS.
for pbs_in in pbs
# Get the time scaler associated with this particular input PBS.
scaler = time_scaler(pbs_in, period)
# Create a lazy version of the input proportional band spectrum using the output center bands.
pbs_in_lazy = lazy_pbs(pbs_in, outcbands)
# Now add this element's contribution to output pbs.
pbs_out .+= pbs_in_lazy .* scaler
end
return nothing
end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 866 | """
W_A(f::AbstractFloat)
Calculate the A-weighting factor for a frequency `f` in Hertz.
Taken from the ANOPP2 Acoustics Analysis API Reference Manual.
"""
function W_A(f)
f_1 = 20.598997
f_2 = 107.65265
f_3 = 737.86233
f_4 = 12194.217
f_5 = 158.48932
f_6 = 79919.29
f_7 = 1345600.0
f_8 = 1037918.48
f_9 = 9837328.0
K_1 = 2.242881e16
K_2 = 1.025119
K_3 = 1.562339
K_4 = 14500.0
K_5 = 1080768.18
K_6 = 11723776.0
W_C = (K_1*f^4) / ((f^2 + f_1^2)^2*(f^2 + f_4^2)^2)
w_a = (K_3*f^4*W_C) / ((f^2 + f_2^2)*(f^2 + f_3^2))
return w_a
end
# """
# W_A(nbs::AbstractNarrowbandSpectrum)
# A-weight and return the amplitudes of `nbs`.
# """
# function W_A(nbs::AbstractNarrowbandSpectrum)
# freq = frequency(nbs)
# amp = amplitude(nbs)
# amp .*= W_A.(freq)
# return amp
# end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 3308 | using OffsetArrays: OffsetArray
"""
dft_r2hc(x::AbstractVector)
Calculate the real-input discrete Fourier transform, returning the result in the "half-complex" format.
See
http://www.fftw.org/fftw3_doc/The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT
and http://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html for
details.
Only use this for checking the derivatives of the FFT routines (should work fine, just slow).
"""
function dft_r2hc(x::AbstractVector)
# http://www.fftw.org/fftw3_doc/The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT
# http://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html
# So
#
# * we don't need the imaginary part of y_0 (which will be the first element in y, say, i=1)
# * if n is even, we don't need the imaginary part of y_{n/2} (which would be i = n/2+1)
#
# Now, the order is supposed to be like this (r for real, i for imaginary):
#
# * r_0, r_1, r_2, r_{n/2}, i_{(n+1)/2-1}, ..., i_2, i_1
#
# But the docs say that they're still using the same old formula, which is:
#
# Y_k = Σ_{j=0}^{n-1} X_j exp(-2*π*i*j*k/n)
#
# (where i is sqrt(-1)).
n = length(x)
xo = OffsetArray(x, 0:n-1)
y = similar(x)
yo = OffsetArray(y, 0:n-1)
# Let's do k = 0 first.
yo[0] = sum(xo)
# Now go from k = 1 to n/2 for the real parts.
T = eltype(x)
for k in 1:n÷2
yo[k] = zero(T)
for j in 0:n-1
# yo[k] += xo[j]*exp(-2*pi*sqrt(-1)*j*k/n)
yo[k] += xo[j]*cos(-2*pi*j*k/n)
end
end
# Now go from 1 to (n+1)/2-1 for the imaginary parts.
for k in 1:(n+1)÷2-1
yo[n-k] = zero(T)
for j in 0:n-1
yo[n-k] += xo[j]*sin(-2*pi*j*k/n)
end
end
return y
end
"""
dft_hc2r(x::AbstractVector)
Calculate the inverse discrete Fourier transform of a real-input DFT.
This is the inverse of `dft_r2hc`, except for a factor of `N`, where `N` is the length of the input (and output), since FFTW computes an "unnormalized" FFT.
See
http://www.fftw.org/fftw3_doc/The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT
and http://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html for
details.
Only use this for checking the derivatives of the FFT routines (should work fine, just slow).
"""
function dft_hc2r(x::AbstractVector)
n = length(x)
xo = OffsetArray(x, 0:n-1)
y = zero(x)
yo = OffsetArray(y, 0:n-1)
j = 0
for k in 0:n-1
yo[k] += xo[j]
end
# So, I need this loop to get r_1 to r_{n÷2} and i_{(n+1)÷2-1} to i_1.
# Let's say n is even.
# Maybe 8.
# So then n÷2 == 4 and (n+1)÷2-1 == 3.
# So x0 looks like this:
#
# r_0, r_1, r_2, r_3, r_4, i_3, i_2, i_1
#
# If n is odd, say, 9, then n÷2 == 4 and (n+1)÷2-1 == 4, and x0 looks like this:
#
# r_0, r_1, r_2, r_3, r_4, i_4, i_3, i_2, i_1
#
for j in 1:(n-1)÷2
rj = xo[j]
ij = xo[n-j]
for k in 0:n-1
yo[k] += 2*rj*cos(2*pi*j*k/n) - 2*ij*sin(2*pi*j*k/n)
end
end
if iseven(n)
# Handle the Nyquist frequency.
j = n÷2
rj = xo[j]
for k in 0:n-1
yo[k] += rj*cos(2*pi*j*k/n)
end
end
return y
end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 255949 | using AcousticMetrics: p_ref
using AcousticMetrics: r2rfftfreq, rfft, rfft!, irfft, irfft!, RFFTCache
using AcousticMetrics: PressureTimeHistory
using AcousticMetrics: PressureSpectrumAmplitude, PressureSpectrumPhase, MSPSpectrumAmplitude, MSPSpectrumPhase, PowerSpectralDensityAmplitude, PowerSpectralDensityPhase
using AcousticMetrics: starttime, timestep, frequencystep, time, pressure, frequency, halfcomplex, OASPL, istonal
using AcousticMetrics: octave_fraction, band_start, band_end, cband_number
using AcousticMetrics: AbstractProportionalBands
using AcousticMetrics: ExactOctaveCenterBands, ExactOctaveLowerBands, ExactOctaveUpperBands
using AcousticMetrics: ExactThirdOctaveCenterBands, ExactThirdOctaveLowerBands, ExactThirdOctaveUpperBands
using AcousticMetrics: ExactProportionalBands, lower_bands, center_bands, upper_bands
using AcousticMetrics: AbstractProportionalBandSpectrum
using AcousticMetrics: LazyNBProportionalBandSpectrum, ProportionalBandSpectrum
using AcousticMetrics: ApproximateOctaveBands, ApproximateOctaveCenterBands, ApproximateOctaveLowerBands, ApproximateOctaveUpperBands
using AcousticMetrics: ApproximateThirdOctaveBands, ApproximateThirdOctaveCenterBands, ApproximateThirdOctaveLowerBands, ApproximateThirdOctaveUpperBands
using AcousticMetrics: combine
using AcousticMetrics: freq_scaler, time_period, time_scaler, has_observer_time, observer_time
using AcousticMetrics: ProportionalBandSpectrumWithTime
using AcousticMetrics: LazyPBSProportionalBandSpectrum, frequency_nb
using AcousticMetrics: W_A
using ForwardDiff
using JLD2
using Polynomials: Polynomials
using Random
using Test
include("dfts.jl")
include(joinpath(@__DIR__, "gen_anopp2_data", "test_functions.jl"))
@testset "Fourier transforms" begin
@testset "FFTW compared to a function with a known Fourier transform" begin
for T in [1.0, 2.0]
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
p_fft = rfft(p)./n
p_fft_expected = similar(p_fft)
p_fft_expected[1] = 6.0
p_fft_expected[2] = 0.5*8*cos(0.2)
p_fft_expected[end] = 0.5*8*sin(0.2)
p_fft_expected[3] = 0.5*2.5*cos(-3.0)
p_fft_expected[end-1] = 0.5*2.5*sin(-3.0)
p_fft_expected[4] = 0.5*9*cos(3.1)
p_fft_expected[end-2] = 0.5*9*sin(3.1)
p_fft_expected[5] = 0.5*0.5*cos(-1.1)
p_fft_expected[end-3] = 0.5*0.5*sin(-1.1)
if n == 10
p_fft_expected[6] = 3*cos(0.2)
else
p_fft_expected[6] = 0.5*3*cos(0.2)
p_fft_expected[end-4] = 0.5*3*sin(0.2)
end
@test all(isapprox.(p_fft, p_fft_expected, atol=1e-12))
end
end
end
@testset "FFTW vs ad-hoc discrete Fourier transform" begin
# Should check both even- and odd-length inputs, since the definition of the
# discrete Fourier transform output depends slightly on that.
for n in [64, 65]
x = rand(n)
y_fft = similar(x)
rfft!(y_fft, x)
y_dft = dft_r2hc(x)
@test all(y_dft .≈ y_fft)
y_ifft = similar(x)
irfft!(y_ifft, x)
y_idft = dft_hc2r(x)
@test all(y_idft .≈ y_ifft)
end
end
# Now check derivatives.
@testset "FFTW derivatives" begin
@testset "basic" begin
for n in [64, 65]
x = rand(n)
y = similar(x)
dy_dx_fft = ForwardDiff.jacobian(rfft!, y, x)
dy_dx_dft = ForwardDiff.jacobian(dft_r2hc, x)
@test all(isapprox.(dy_dx_fft, dy_dx_dft, atol=1e-13))
dy_dx_ifft = ForwardDiff.jacobian(irfft!, y, x)
dy_dx_idft = ForwardDiff.jacobian(dft_hc2r, x)
@test all(isapprox.(dy_dx_ifft, dy_dx_idft, atol=1e-13))
end
end
@testset "as intermediate function" begin
function f1_fft(t)
x = range(t[begin], t[end], length=8)
x = @. 2*x^2 + 3*x + 5
y = similar(x)
rfft!(y, x)
return y
end
function f1_dft(t)
x = range(t[begin], t[end], length=8)
x = @. 2*x^2 + 3*x + 5
y = dft_r2hc(x)
return y
end
dy_dx_fft = ForwardDiff.jacobian(f1_fft, [1.1, 3.5])
dy_dx_dft = ForwardDiff.jacobian(f1_dft, [1.1, 3.5])
@test all(isapprox.(dy_dx_fft, dy_dx_dft, atol=1e-13))
function f1_ifft(t)
x = range(t[begin], t[end], length=8)
x = @. 2*x^2 + 3*x + 5
y = similar(x)
irfft!(y, x)
return y
end
function f1_idft(t)
x = range(t[begin], t[end], length=8)
x = @. 2*x^2 + 3*x + 5
y = dft_hc2r(x)
return y
end
dy_dx_ifft = ForwardDiff.jacobian(f1_ifft, [1.1, 3.5])
dy_dx_idft = ForwardDiff.jacobian(f1_idft, [1.1, 3.5])
@test all(isapprox.(dy_dx_ifft, dy_dx_idft, atol=1e-13))
end
@testset "with user-supplied cache" begin
nx = 8
nt = 5
cache = RFFTCache(Float64, nx, nt)
function f2_fft(t)
xstart = sum(t)
xend = xstart + 2
x = range(xstart, xend, length=nx)
x = @. 2*x^2 + 3*x + 5
y = similar(x)
rfft!(y, x, cache)
return y
end
function f2_dft(t)
xstart = sum(t)
xend = xstart + 2
x = range(xstart, xend, length=nx)
x = @. 2*x^2 + 3*x + 5
y = dft_r2hc(x)
return y
end
t = rand(nt)
dy_dx_fft = ForwardDiff.jacobian(f2_fft, t)
dy_dx_dft = ForwardDiff.jacobian(f2_dft, t)
@test all(isapprox.(dy_dx_fft, dy_dx_dft, atol=1e-13))
function f2_ifft(t)
xstart = sum(t)
xend = xstart + 2
x = range(xstart, xend, length=nx)
x = @. 2*x^2 + 3*x + 5
y = similar(x)
irfft!(y, x, cache)
return y
end
function f2_idft(t)
xstart = sum(t)
xend = xstart + 2
x = range(xstart, xend, length=nx)
x = @. 2*x^2 + 3*x + 5
y = dft_hc2r(x)
return y
end
t = rand(nt)
dy_dx_ifft = ForwardDiff.jacobian(f2_ifft, t)
dy_dx_idft = ForwardDiff.jacobian(f2_idft, t)
@test all(isapprox.(dy_dx_ifft, dy_dx_idft, atol=1e-13))
end
end
end
@testset "Pressure Spectrum" begin
@testset "t0 == 0" begin
for T in [1.0, 2.0]
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ 0.0
amp = PressureSpectrumAmplitude(ap)
phase = PressureSpectrumPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6
amp_expected[2] = 8
amp_expected[3] = 2.5
amp_expected[4] = 9
amp_expected[5] = 0.5
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
amp_expected[6] = 3*cos(0.2)
phase_expected[6] = 0
else
amp_expected[6] = 3
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase.*amp, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ 0.0
@test starttime(phase) ≈ 0.0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can go from a PressureSpectrum to an PressureTimeHistory.
ap_from_ps = PressureTimeHistory(amp)
@test timestep(ap_from_ps) ≈ timestep(ap)
@test starttime(ap_from_ps) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_ps), pressure(ap)))
# Create a tonal version of the same spectrum.
# Nothing should be any different except the `IsTonal` parameter.
amp_tonal = PressureSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = PressureSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test all(isapprox.(frequency(amp_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(amp_tonal, amp_expected; atol=1e-12))
@test all(isapprox.(phase_tonal.*amp_tonal, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp_tonal) ≈ dt
@test timestep(phase_tonal) ≈ dt
@test starttime(amp_tonal) ≈ 0.0
@test starttime(phase_tonal) ≈ 0.0
@test frequencystep(amp_tonal) ≈ freq_expected[2]
@test frequencystep(phase_tonal) ≈ freq_expected[2]
@test istonal(amp_tonal) == true
@test istonal(phase_tonal) == true
end
end
@testset "negative amplitudes" begin
for T in [1.0, 2.0]
f(t) = -6 - 8*cos(1*2*pi/T*t + 0.2) - 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ 0.0
amp = PressureSpectrumAmplitude(ap)
phase = PressureSpectrumPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6
amp_expected[2] = 8
amp_expected[3] = 2.5
amp_expected[4] = 9
amp_expected[5] = 0.5
phase_expected = similar(phase)
phase_expected[1] = pi
phase_expected[2] = -pi + 0.2
phase_expected[3] = pi - 3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
amp_expected[6] = 3*cos(0.2)
phase_expected[6] = 0
else
amp_expected[6] = 3
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase.*amp, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ 0.0
@test starttime(phase) ≈ 0.0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can go from a PressureSpectrum to an PressureTimeHistory.
ap_from_ps = PressureTimeHistory(amp)
@test timestep(ap_from_ps) ≈ timestep(ap)
@test starttime(ap_from_ps) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_ps), pressure(ap)))
# Create a tonal version of the same spectrum.
# Nothing should be any different except the `IsTonal` parameter.
amp_tonal = PressureSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = PressureSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test all(isapprox.(frequency(amp_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(amp_tonal, amp_expected; atol=1e-12))
@test all(isapprox.(phase_tonal.*amp_tonal, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp_tonal) ≈ dt
@test timestep(phase_tonal) ≈ dt
@test starttime(amp_tonal) ≈ 0.0
@test starttime(phase_tonal) ≈ 0.0
@test frequencystep(amp_tonal) ≈ freq_expected[2]
@test frequencystep(phase_tonal) ≈ freq_expected[2]
@test istonal(amp_tonal) == true
@test istonal(phase_tonal) == true
end
end
end
end
@testset "t0 !== 0" begin
for T in [1.0, 2.0]
t0 = 0.13
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = t0 .+ (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt, t0)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ t0
amp = PressureSpectrumAmplitude(ap)
phase = PressureSpectrumPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6
amp_expected[2] = 8
amp_expected[3] = 2.5
amp_expected[4] = 9
amp_expected[5] = 0.5
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
amp_expected[6] = abs(3*cos(5*2*pi/T*t0 + 0.2))
phase_expected[6] = rem2pi(pi - 5*2*pi/T*t0, RoundNearest)
else
amp_expected[6] = 3
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase, phase_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ t0
@test starttime(phase) ≈ t0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can go from a PressureSpectrum to an PressureTimeHistory.
ap_from_ps = PressureTimeHistory(amp)
@test timestep(ap_from_ps) ≈ timestep(ap)
@test starttime(ap_from_ps) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_ps), pressure(ap)))
# Create a tonal version of the same spectrum.
# Nothing should be any different except the `IsTonal` parameter.
amp_tonal = PressureSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = PressureSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test all(isapprox.(frequency(amp_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(amp_tonal, amp_expected; atol=1e-12))
@test all(isapprox.(phase_tonal.*amp_tonal, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp_tonal) ≈ dt
@test timestep(phase_tonal) ≈ dt
@test starttime(amp_tonal) ≈ t0
@test starttime(phase_tonal) ≈ t0
@test frequencystep(amp_tonal) ≈ freq_expected[2]
@test frequencystep(phase_tonal) ≈ freq_expected[2]
@test istonal(amp_tonal) == true
@test istonal(phase_tonal) == true
end
end
end
end
@testset "Mean-squared Pressure Spectrum" begin
@testset "t0 == 0" begin
for T in [1.0, 2.0]
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ 0.0
amp = MSPSpectrumAmplitude(ap)
phase = MSPSpectrumPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6^2
amp_expected[2] = 0.5*8^2
amp_expected[3] = 0.5*2.5^2
amp_expected[4] = 0.5*9^2
amp_expected[5] = 0.5*0.5^2
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
amp_expected[6] = (3*cos(0.2))^2
phase_expected[6] = 0
else
amp_expected[6] = 0.5*3^2
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase.*amp, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ 0.0
@test starttime(phase) ≈ 0.0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can convert a mean-squared pressure to a pressure spectrum.
psamp = PressureSpectrumAmplitude(amp)
psamp_expected = similar(amp)
psamp_expected[1] = 6
psamp_expected[2] = 8
psamp_expected[3] = 2.5
psamp_expected[4] = 9
psamp_expected[5] = 0.5
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
psamp_expected[6] = 3*cos(0.2)
else
psamp_expected[6] = 3
end
@test all(isapprox.(frequency(psamp), freq_expected; atol=1e-12))
@test all(isapprox.(psamp, psamp_expected; atol=1e-12))
# Make sure I can convert a mean-squared pressure to the acoustic pressure.
ap_from_msp = PressureTimeHistory(amp)
@test timestep(ap_from_msp) ≈ timestep(ap)
@test starttime(ap_from_msp) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_msp), pressure(ap)))
# Create a tonal version of the same spectrum.
# Nothing should be any different except the `IsTonal` parameter.
amp_tonal = MSPSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = MSPSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test all(isapprox.(frequency(amp_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(amp_tonal, amp_expected; atol=1e-12))
@test all(isapprox.(phase_tonal.*amp_tonal, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp_tonal) ≈ dt
@test timestep(phase_tonal) ≈ dt
@test starttime(amp_tonal) ≈ 0.0
@test starttime(phase_tonal) ≈ 0.0
@test frequencystep(amp_tonal) ≈ freq_expected[2]
@test frequencystep(phase_tonal) ≈ freq_expected[2]
@test istonal(amp_tonal) == true
@test istonal(phase_tonal) == true
end
end
end
@testset "t0 !== 0" begin
for T in [1.0, 2.0]
t0 = 0.13
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
t = t0 .+ (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt, t0)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ t0
amp = MSPSpectrumAmplitude(ap)
phase = MSPSpectrumPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6^2
amp_expected[2] = 0.5*8^2
amp_expected[3] = 0.5*2.5^2
amp_expected[4] = 0.5*9^2
amp_expected[5] = 0.5*0.5^2
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
# amp_expected[6] = (3*cos(5*2*pi/T*t0 + 0.2))^2
# phase_expected[6] = rem2pi(-5*2*pi/T*t0, RoundNearest)
amp_expected[6] = (3*cos(5*2*pi/T*t0 + 0.2))^2
phase_expected[6] = rem2pi(pi - 5*2*pi/T*t0, RoundNearest)
else
amp_expected[6] = 0.5*3^2
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase, phase_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ t0
@test starttime(phase) ≈ t0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can convert a mean-squared pressure to a pressure spectrum.
psamp = PressureSpectrumAmplitude(amp)
psamp_expected = similar(psamp)
psamp_expected[1] = 6
psamp_expected[2] = 8
psamp_expected[3] = 2.5
psamp_expected[4] = 9
psamp_expected[5] = 0.5
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
# The `t0` term pushes the cosine below zero, which messes
# up the test. Hmm... what's the right thing to do here?
# Well, what should the phase and amplitude be?
# psamp_expected[6] = 3*cos(5*2*pi/T*t0 + 0.2)
psamp_expected[6] = abs(3*cos(5*2*pi/T*t0 + 0.2))
else
psamp_expected[6] = 3
end
@test all(isapprox.(frequency(psamp), freq_expected; atol=1e-12))
@test all(isapprox.(psamp, psamp_expected; atol=1e-12))
# Make sure I can convert a mean-squared pressure to the acoustic pressure.
ap_from_msp = PressureTimeHistory(amp)
@test timestep(ap_from_msp) ≈ timestep(ap)
@test starttime(ap_from_msp) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_msp), pressure(ap)))
# Create a tonal version of the same spectrum.
# Nothing should be any different except the `IsTonal` parameter.
amp_tonal = MSPSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = MSPSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test all(isapprox.(frequency(amp_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase_tonal), freq_expected; atol=1e-12))
@test all(isapprox.(amp_tonal, amp_expected; atol=1e-12))
@test all(isapprox.(phase_tonal.*amp_tonal, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp_tonal) ≈ dt
@test timestep(phase_tonal) ≈ dt
@test starttime(amp_tonal) ≈ t0
@test starttime(phase_tonal) ≈ t0
@test frequencystep(amp_tonal) ≈ freq_expected[2]
@test frequencystep(phase_tonal) ≈ freq_expected[2]
@test istonal(amp_tonal) == true
@test istonal(phase_tonal) == true
end
end
end
@testset "ANOPP2 comparison" begin
a2_data = load(joinpath(@__DIR__, "gen_anopp2_data", "nbs.jld2"))
freq_a2 = a2_data["a2_nbs_freq"]
nbs_msp_a2 = a2_data["a2_nbs_amp"]
nbs_phase_a2 = a2_data["a2_nbs_phase"]
for T in [1, 2]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = apth_for_nbs.(t)
ap = PressureTimeHistory(p, dt)
amp = MSPSpectrumAmplitude(ap)
phase = MSPSpectrumPhase(ap)
@test all(isapprox.(frequency(amp), freq_a2[(T,n)], atol=1e-12))
@test all(isapprox.(frequency(phase), freq_a2[(T,n)], atol=1e-12))
@test all(isapprox.(amp, nbs_msp_a2[(T,n)], atol=1e-12))
# Checking the phase is tricky, since it involves the ratio of
# the imaginary component to the real component of the MSP
# spectrum (definition is phase = atan(imag(fft(p)),
# real(fft(p)))). For the components of the spectrum that have
# zero amplitude that ratio ends up being very noisy. So scale
# the phase by the amplitude to remove the problematic
# zero-amplitude components.
@test all(isapprox.(phase.*amp, nbs_phase_a2[T, n].*nbs_msp_a2[T, n], atol=1e-12))
end
end
end
end
@testset "Power Spectral Density" begin
@testset "t0 == 0" begin
for T in [1.0, 2.0]
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
df = 1/T
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ 0.0
amp = PowerSpectralDensityAmplitude(ap)
phase = PowerSpectralDensityPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6^2/df
amp_expected[2] = 0.5*8^2/df
amp_expected[3] = 0.5*2.5^2/df
amp_expected[4] = 0.5*9^2/df
amp_expected[5] = 0.5*0.5^2/df
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
amp_expected[6] = (3*cos(0.2))^2/df
phase_expected[6] = 0
else
amp_expected[6] = 0.5*3^2/df
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase.*amp, phase_expected.*amp_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ 0.0
@test starttime(phase) ≈ 0.0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can convert a PSD to a pressure spectrum.
psamp = PressureSpectrumAmplitude(amp)
psamp_expected = similar(psamp)
psamp_expected[1] = 6
psamp_expected[2] = 8
psamp_expected[3] = 2.5
psamp_expected[4] = 9
psamp_expected[5] = 0.5
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
psamp_expected[6] = 3*cos(0.2)
else
psamp_expected[6] = 3
end
@test all(isapprox.(frequency(psamp), freq_expected; atol=1e-12))
@test all(isapprox.(psamp, psamp_expected; atol=1e-12))
# Make sure I can convert a PSD to the acoustic pressure.
ap_from_psd = PressureTimeHistory(amp)
@test timestep(ap_from_psd) ≈ timestep(ap)
@test starttime(ap_from_psd) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_psd), pressure(ap)))
# I shouldn't be able to create a PSD from a tonal spectrum.
amp_tonal = PressureSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = PressureSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test_throws ArgumentError PowerSpectralDensityAmplitude(amp_tonal)
# @test_throws ArgumentError PowerSpectralDensityPhase(phase_tonal)
end
end
end
@testset "t0 !== 0" begin
for T in [1.0, 2.0]
t0 = 0.13
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
for n in [10, 11]
dt = T/n
df = 1/T
t = t0 .+ (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt, t0)
@test all(isapprox.(time(ap), t))
@test timestep(ap) ≈ dt
@test starttime(ap) ≈ t0
amp = PowerSpectralDensityAmplitude(ap)
phase = PowerSpectralDensityPhase(ap)
freq_expected = [0.0, 1/T, 2/T, 3/T, 4/T, 5/T]
amp_expected = similar(amp)
amp_expected[1] = 6^2/df
amp_expected[2] = 0.5*8^2/df
amp_expected[3] = 0.5*2.5^2/df
amp_expected[4] = 0.5*9^2/df
amp_expected[5] = 0.5*0.5^2/df
phase_expected = similar(phase)
phase_expected[1] = 0
phase_expected[2] = 0.2
phase_expected[3] = -3
phase_expected[4] = 3.1
phase_expected[5] = -1.1
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
# amp_expected[6] = (3*cos(5*2*pi/T*t0 + 0.2))^2
# phase_expected[6] = rem2pi(-5*2*pi/T*t0, RoundNearest)
amp_expected[6] = (3*cos(5*2*pi/T*t0 + 0.2))^2/df
phase_expected[6] = rem2pi(pi - 5*2*pi/T*t0, RoundNearest)
else
amp_expected[6] = 0.5*3^2/df
phase_expected[6] = 0.2
end
@test all(isapprox.(frequency(amp), freq_expected; atol=1e-12))
@test all(isapprox.(frequency(phase), freq_expected; atol=1e-12))
@test all(isapprox.(amp, amp_expected; atol=1e-12))
@test all(isapprox.(phase, phase_expected; atol=1e-12))
@test timestep(amp) ≈ dt
@test timestep(phase) ≈ dt
@test starttime(amp) ≈ t0
@test starttime(phase) ≈ t0
@test frequencystep(amp) ≈ freq_expected[2]
@test frequencystep(phase) ≈ freq_expected[2]
@test istonal(amp) == false
@test istonal(phase) == false
# Make sure I can convert a PSD to a pressure spectrum.
psamp = PressureSpectrumAmplitude(amp)
psamp_expected = similar(psamp)
psamp_expected[1] = 6
psamp_expected[2] = 8
psamp_expected[3] = 2.5
psamp_expected[4] = 9
psamp_expected[5] = 0.5
# Handle the Nyquist frequency (kinda tricky). There isn't really a
# Nyquist frequency for the odd input length case.
if n == 10
# The `t0` term pushes the cosine below zero, which messes
# up the test. Hmm... what's the right thing to do here?
# Well, what should the phase and amplitude be?
# amp_expected[6] = 3*cos(5*2*pi/T*t0 + 0.2)
psamp_expected[6] = abs(3*cos(5*2*pi/T*t0 + 0.2))
else
psamp_expected[6] = 3
end
@test all(isapprox.(frequency(psamp), freq_expected; atol=1e-12))
@test all(isapprox.(psamp, psamp_expected; atol=1e-12))
# Make sure I can convert a PSD to the acoustic pressure.
ap_from_psd = PressureTimeHistory(amp)
@test timestep(ap_from_psd) ≈ timestep(ap)
@test starttime(ap_from_psd) ≈ starttime(ap)
@test all(isapprox.(pressure(ap_from_psd), pressure(ap)))
# I shouldn't be able to create a PSD from a tonal spectrum.
# But I actually can creeate a PSD phase, since the PSD phase is the same as the pressure and MSP phase.
amp_tonal = PressureSpectrumAmplitude(halfcomplex(amp), timestep(amp), starttime(amp), true)
phase_tonal = PressureSpectrumPhase(halfcomplex(phase), timestep(phase), starttime(phase), true)
@test_throws ArgumentError PowerSpectralDensityAmplitude(amp_tonal)
# @test_throws ArgumentError PowerSpectralDensityPhase(phase_tonal)
end
end
end
@testset "ANOPP2 comparison" begin
a2_data = load(joinpath(@__DIR__, "gen_anopp2_data", "psd.jld2"))
freq_a2 = a2_data["a2_psd_freq"]
psd_msp_a2 = a2_data["a2_psd_amp"]
psd_phase_a2 = a2_data["a2_psd_phase"]
for T in [1, 2]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = apth_for_nbs.(t)
ap = PressureTimeHistory(p, dt)
amp = PowerSpectralDensityAmplitude(ap)
phase = PowerSpectralDensityPhase(ap)
@test all(isapprox.(frequency(amp), freq_a2[(T,n)], atol=1e-12))
@test all(isapprox.(frequency(phase), freq_a2[(T,n)], atol=1e-12))
@test all(isapprox.(amp, psd_msp_a2[(T,n)], atol=1e-12))
# Checking the phase is tricky, since it involves the ratio of
# the imaginary component to the real component of the MSP
# spectrum (definition is phase = atan(imag(fft(p)),
# real(fft(p)))). For the components of the spectrum that have
# zero amplitude that ratio ends up being very noisy. So scale
# the phase by the amplitude to remove the problematic
# zero-amplitude components.
@test all(isapprox.(phase.*amp, psd_phase_a2[T, n].*psd_msp_a2[T, n], atol=1e-12))
end
end
end
end
@testset "Proportional Band Spectrum" begin
@testset "exact octave" begin
@testset "standard" begin
bands = ExactOctaveCenterBands(6, 16)
@test octave_fraction(bands) == 1
bands_expected = [62.5, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0, 32000.0, 64000.0]
@test all(isapprox.(bands, bands_expected))
@test_throws BoundsError bands[0]
@test_throws BoundsError bands[12]
bands_9_to_11 = ExactOctaveCenterBands(9, 11)
@test all(isapprox.(bands_9_to_11, bands_expected[4:6]))
@test_throws BoundsError bands_9_to_11[0]
@test_throws BoundsError bands_9_to_11[4]
@test_throws ArgumentError ExactOctaveCenterBands(5, 4)
lbands = ExactOctaveLowerBands(6, 16)
@test octave_fraction(lbands) == 1
@test all((log2.(bands) .- log2.(lbands)) .≈ 1/2)
ubands = ExactOctaveUpperBands(6, 16)
@test octave_fraction(ubands) == 1
@test all((log2.(ubands) .- log2.(bands)) .≈ 1/2)
@test all((log2.(ubands) .- log2.(lbands)) .≈ 1)
cbands = ExactOctaveCenterBands(700.0, 22000.0)
@test octave_fraction(cbands) == 1
@test cbands.bstart == 9
@test cbands.bend == 14
lbands = ExactOctaveLowerBands(700.0, 22000.0)
@test lbands.bstart == 9
@test lbands.bend == 14
ubands = ExactOctaveUpperBands(700.0, 22000.0)
@test ubands.bstart == 9
@test ubands.bend == 14
# Test the `_cband_exact` routine, which goes from an exact centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
end
@testset "scaler argument" begin
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
bands = ExactOctaveCenterBands(6, 16, scaler)
bands_expected = scaler .* [62.5, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0, 32000.0, 64000.0]
@test all(isapprox.(bands, bands_expected))
@test_throws BoundsError bands[0]
@test_throws BoundsError bands[12]
bands_9_to_11 = ExactOctaveCenterBands(9, 11, scaler)
@test all(isapprox.(bands_9_to_11, bands_expected[4:6]))
@test_throws BoundsError bands_9_to_11[0]
@test_throws BoundsError bands_9_to_11[4]
@test_throws ArgumentError ExactOctaveCenterBands(5, 4, scaler)
lbands = ExactOctaveLowerBands(6, 16, scaler)
@test all((log2.(bands) .- log2.(lbands)) .≈ 1/2)
ubands = ExactOctaveUpperBands(6, 16, scaler)
@test all((log2.(ubands) .- log2.(bands)) .≈ 1/2)
@test all((log2.(ubands) .- log2.(lbands)) .≈ 1)
cbands = ExactOctaveCenterBands(700.0*scaler, 22000.0*scaler, scaler)
@test cbands.bstart == 9
@test cbands.bend == 14
lbands = ExactOctaveLowerBands(700.0*scaler, 22000.0*scaler, scaler)
@test lbands.bstart == 9
@test lbands.bend == 14
ubands = ExactOctaveUpperBands(700.0*scaler, 22000.0*scaler, scaler)
@test ubands.bstart == 9
@test ubands.bend == 14
# Test the `_cband_exact` routine, which goes from an exact centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
end
end
end
@testset "exact 1/3-octave" begin
@testset "standard" begin
bands = ExactThirdOctaveCenterBands(17, 40)
@test octave_fraction(bands) == 3
# These are just from the ANOPP2 manual.
bands_expected_all = [49.61, 62.50, 78.75, 99.21, 125.00, 157.49, 198.43, 250.00, 314.98, 396.85, 500.00, 629.96, 793.70, 1000.0, 1259.92, 1587.40, 2000.00, 2519.84, 3174.80, 4000.00, 5039.68, 6349.60, 8000.00, 10079.37]
@test all(isapprox.(bands, bands_expected_all; atol=0.005))
@test_throws BoundsError bands[0]
@test_throws BoundsError bands[25]
bands_30_to_38 = ExactThirdOctaveCenterBands(30, 38)
@test all(isapprox.(bands_30_to_38, bands_expected_all[14:end-2]; atol=0.005))
@test_throws BoundsError bands_30_to_38[0]
@test_throws BoundsError bands_30_to_38[10]
@test_throws ArgumentError ExactThirdOctaveCenterBands(5, 4)
lbands = ExactThirdOctaveLowerBands(17, 40)
@test octave_fraction(lbands) == 3
@test all((log2.(bands) .- log2.(lbands)) .≈ 1/(2*3))
ubands = ExactThirdOctaveUpperBands(17, 40)
@test octave_fraction(ubands) == 3
@test all((log2.(ubands) .- log2.(bands)) .≈ 1/(2*3))
@test all((log2.(ubands) .- log2.(lbands)) .≈ 1/3)
cbands = ExactThirdOctaveCenterBands(332.0, 7150.0)
@test octave_fraction(cbands) == 3
@test cbands.bstart == 25
@test cbands.bend == 39
lbands = ExactThirdOctaveLowerBands(332.0, 7150.0)
@test lbands.bstart == 25
@test lbands.bend == 39
ubands = ExactThirdOctaveUpperBands(332.0, 7150.0)
@test ubands.bstart == 25
@test ubands.bend == 39
# Test the `cband_number` routine, which goes from an exact centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
end
@testset "scaler argument" begin
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
bands = ExactThirdOctaveCenterBands(17, 40, scaler)
# These are just from the ANOPP2 manual.
bands_expected_all = scaler .* [49.61, 62.50, 78.75, 99.21, 125.00, 157.49, 198.43, 250.00, 314.98, 396.85, 500.00, 629.96, 793.70, 1000.0, 1259.92, 1587.40, 2000.00, 2519.84, 3174.80, 4000.00, 5039.68, 6349.60, 8000.00, 10079.37]
@test all(isapprox.(bands, bands_expected_all; atol=0.01))
@test_throws BoundsError bands[0]
@test_throws BoundsError bands[25]
bands_30_to_38 = ExactThirdOctaveCenterBands(30, 38, scaler)
@test all(isapprox.(bands_30_to_38, bands_expected_all[14:end-2]; atol=0.01))
@test_throws BoundsError bands_30_to_38[0]
@test_throws BoundsError bands_30_to_38[10]
@test_throws ArgumentError ExactThirdOctaveCenterBands(5, 4, scaler)
lbands = ExactThirdOctaveLowerBands(17, 40, scaler)
@test all((log2.(bands) .- log2.(lbands)) .≈ 1/(2*3))
ubands = ExactThirdOctaveUpperBands(17, 40, scaler)
@test all((log2.(ubands) .- log2.(bands)) .≈ 1/(2*3))
@test all((log2.(ubands) .- log2.(lbands)) .≈ 1/3)
cbands = ExactThirdOctaveCenterBands(332.0*scaler, 7150.0*scaler, scaler)
@test cbands.bstart == 25
@test cbands.bend == 39
lbands = ExactThirdOctaveLowerBands(332.0*scaler, 7150.0*scaler, scaler)
@test lbands.bstart == 25
@test lbands.bend == 39
ubands = ExactThirdOctaveUpperBands(332.0*scaler, 7150.0*scaler, scaler)
@test ubands.bstart == 25
@test ubands.bend == 39
# Test the `cband_number` routine, which goes from an exact centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
end
end
@testset "not-so-narrow narrowband spectrum" begin
T = 1/1000.0
t0 = 0.13
f(t) = 6 + 8*cos(1*2*pi/T*t + 0.2) + 2.5*cos(2*2*pi/T*t - 3.0) + 9*cos(3*2*pi/T*t + 3.1) + 0.5*cos(4*2*pi/T*t - 1.1) + 3*cos(5*2*pi/T*t + 0.2)
n = 10
dt = T/n
df = 1/T
t = t0 .+ (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
psd = PowerSpectralDensityAmplitude(ap)
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, psd)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
# So, this should have non-zero stuff at 1000 Hz, 2000 Hz, 3000 Hz, 4000 Hz, 5000 Hz.
# And that means that, say, the 1000 Hz signal will exend from 500
# Hz to 1500 Hz.
# So then it will show up in a bunch of bands:
#
# * 445 to 561
# * 561 to 707
# * 707 to 890
# * 890 to 1122
# * 1122 to 1414
# * 1414 to 1781
#
# And that means the signal at 2000 will also show up at that last frequency.
# So did I code this up properly?
# I think so.
# Here are all the bands that should be active:
#
# 1: 445.44935907016963, 561.2310241546866
# 2: 561.2310241546866, 707.1067811865476
# 3: 707.1067811865476, 890.8987181403395
# 4: 890.8987181403393, 1122.4620483093731
# 5: 1122.4620483093731, 1414.213562373095
# 6: 1414.2135623730949, 1781.7974362806785
# 7: 1781.7974362806785, 2244.9240966187463
# 8: 2244.9240966187463, 2828.42712474619
# 9: 2828.42712474619, 3563.594872561358
# 10: 3563.594872561357, 4489.8481932374925
# 11: 4489.8481932374925, 5656.85424949238
lbands = lower_bands(pbs)
ubands = upper_bands(pbs)
@test pbs[1] ≈ 0.5*8^2/df*(ubands[1] - 500)
@test pbs[2] ≈ 0.5*8^2/df*(ubands[2] - lbands[2])
@test pbs[3] ≈ 0.5*8^2/df*(ubands[3] - lbands[3])
@test pbs[4] ≈ 0.5*8^2/df*(ubands[4] - lbands[4])
@test pbs[5] ≈ 0.5*8^2/df*(ubands[5] - lbands[5])
@test pbs[6] ≈ 0.5*8^2/df*(1500 - lbands[6]) + 0.5*2.5^2/df*(ubands[6] - 1500)
@test pbs[7] ≈ 0.5*2.5^2/df*(ubands[7] - lbands[7])
@test pbs[8] ≈ 0.5*2.5^2/df*(2500 - lbands[8]) + 0.5*9^2/df*(ubands[8] - 2500)
@test pbs[9] ≈ 0.5*9^2/df*(3500 - lbands[9]) + 0.5*0.5^2/df*(ubands[9] - 3500)
@test pbs[10] ≈ 0.5*0.5^2/df*(ubands[10] - lbands[10])
# Last one is wierd because of the Nyquist frequency.
@test pbs[11] ≈ 0.5*0.5^2/df*(4500 - lbands[11]) + (3*cos(0.2))^2/df*(5500 - 4500)
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(psd, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, what if `istonal==true`?
# Then the narrowband frequencies are thin, and so each narrowband frequency can only show up in one proportional band each.
tonal = true
msp_tonal = MSPSpectrumAmplitude(ap, tonal)
# Using `istonal=true` shouldn't be any different than `istonal=false`.
@test all(msp_tonal .≈ MSPSpectrumAmplitude(psd))
# Now get the PBS and check it.
pbs_tonal = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, msp_tonal)
# Check that we end up with the proportional bands we expect:
cbands_tonal = center_bands(pbs_tonal)
band_start(cbands_tonal) == 30
band_end(cbands_tonal) == 37
# Now check that we have the right answer for the PBS.
@test pbs_tonal[1] ≈ 0.5*8^2 # 1000 Hz
@test pbs_tonal[2] ≈ 0
@test pbs_tonal[3] ≈ 0
@test pbs_tonal[4] ≈ 0.5*2.5^2 # 2000 Hz
@test pbs_tonal[5] ≈ 0
@test pbs_tonal[6] ≈ 0.5*9^2 # 3000 Hz
@test pbs_tonal[7] ≈ 0.5*0.5^2 # 4000 Hz
# Last one is wierd because of the Nyquist frequency.
@test pbs_tonal[8] ≈ (3*cos(0.2))^2 # 5000 Hz
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(msp_tonal, center_bands(pbs_tonal))
@test all(pbs_init_cbands .≈ pbs_tonal)
end
@testset "narrowband spectrum, one narrowband per proportional band" begin
freq0 = 1000.0
T = 20/freq0
t0 = 0.13
f(t) = 6 + 8*cos(1*2*pi*freq0*t + 0.2) + 2.5*cos(2*2*pi*freq0*t - 3.0) + 9*cos(3*2*pi*freq0*t + 3.1)
n = 128
dt = T/n
df = 1/T
t = t0 .+ (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
psd = PowerSpectralDensityAmplitude(ap)
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, psd)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
ubands = upper_bands(pbs)
psd_freq = frequency(psd)
@test psd_freq[21] ≈ freq0
@test pbs[17] ≈ psd[21]*df
@test psd_freq[41] ≈ 2*freq0
@test pbs[20] ≈ psd[41]*df
@test psd_freq[61] ≈ 3*freq0
@test pbs[22] ≈ psd[61]*df
# Make sure all the other PBS entries are zero.
for (i, amp) in enumerate(pbs)
if i ∉ [17, 20, 22]
@test isapprox(amp, 0.0; atol=1e-12)
end
end
a2_data = load(joinpath(@__DIR__, "gen_anopp2_data", "pbs.jld2"))
a2_freq = a2_data["a2_pbs_freq"]
a2_pbs = a2_data["a2_pbs"]
pbs_level = @. 10*log10(pbs/p_ref^2)
# For some reason ANOPP2 doesn't give me the first four proportional
# bands that I'd expect, but they're all zero anyway, so maybe
# that's not important. But it also doesn't give me the last band I
# expect, which is not zero. :-( The rest look good, though.
for i in 1:length(a2_freq)
@test center_bands(pbs)[i + 4] ≈ a2_freq[i]
if a2_pbs[i] > 0
@test pbs_level[i + 4] ≈ a2_pbs[i]
end
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(psd, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# So, for this example, I only have non-zero stuff at 1000 Hz, 2000 Hz, 3000 Hz.
# But the lowest non-zero frequency is 50 Hz, highest is 3200 Hz.
istonal = true
msp_tonal = MSPSpectrumAmplitude(ap, istonal)
pbs_tonal = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, msp_tonal)
cbands_tonal = center_bands(pbs_tonal)
@test band_start(cbands_tonal) == 17
@test band_end(cbands_tonal) == 35
for (i, amp) in enumerate(pbs_tonal)
if i ∉ [14, 17, 19]
@test isapprox(amp, 0; atol=1e-12)
end
end
@test pbs_tonal[14] ≈ 0.5*8^2
@test pbs_tonal[17] ≈ 0.5*2.5^2
@test pbs_tonal[19] ≈ 0.5*9^2
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(msp_tonal, center_bands(pbs_tonal))
@test all(pbs_init_cbands .≈ pbs_tonal)
end
@testset "narrowband spectrum, many narrowbands per proportional band" begin
nfreq_nb = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
cbands = center_bands(pbs)
pbs_level = @. 10*log10(pbs/p_ref^2)
a2_data = load(joinpath(@__DIR__, "gen_anopp2_data", "pbs3.jld2"))
a2_pbs_freq = a2_data["a2_pbs_freq"]
a2_pbs = a2_data["a2_pbs"]
for i in 1:length(a2_pbs)
# I'm not sure why ANOPP2 doesn't include all of the proportional bands I think it should.
j = i + 1
@test cbands[j] ≈ a2_pbs_freq[i]
@test isapprox(pbs_level[j], a2_pbs[i]; atol=1e-2)
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Let's create a tonal MSP.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, msp, scaler, tonal)
# So, the narrowband frequencies go from 55.0 Hz to 1950 Hz.
# Let's check that.
cbands_tonal = center_bands(pbs_tonal)
@test band_start(cbands_tonal) == 17
@test band_end(cbands_tonal) == 33
# Now, this really isn't a tonal spectrum—it's actually very broadband.
# But I should still be able to check it.
# I need to indentify which narrowbands are in which proportional band.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
end
@testset "narrowband spectrum, many narrowbands per proportional band, scaled frequency" begin
# Create a PBS with the standard frequencies.
nfreq_nb = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
# Now create another PBS, but with the scaled frequency bands, same psd.
freq_min_nb_scaled = 55.0*scaler
freq_max_nb_scaled = 1950.0*scaler
df_nb_scaled = (freq_max_nb_scaled - freq_min_nb_scaled)/(nfreq_nb - 1)
f_nb_scaled = freq_min_nb_scaled .+ (0:(nfreq_nb-1)).*df_nb_scaled
# pbs_scaled = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
# msp_scaled = msp ./ df_nb .* df_nb_scaled
# If we want the same psd, we need to adjust for the new narrowband frequency bin width.
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, for the tonal stuff, let's make sure we get the right thing, also.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, msp, scaler, tonal)
# So, the narrowband frequencies go from 55.0 Hz to 1950 Hz.
# Let's check that.
cbands_tonal = center_bands(pbs_tonal)
@test band_start(cbands_tonal) == 17
@test band_end(cbands_tonal) == 33
# Now check that the pbs is what we expect.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Now, what about the scaler stuff?
# Should be able to use the same trick for the istonal == false stuff.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
# Now create another PBS, but with the scaled frequency bands, same psd.
freq_min_nb_scaled = 55.0*scaler
freq_max_nb_scaled = 1950.0*scaler
df_nb_scaled = (freq_max_nb_scaled - freq_min_nb_scaled)/(nfreq_nb - 1)
f_nb_scaled = freq_min_nb_scaled .+ (0:(nfreq_nb-1)).*df_nb_scaled
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
end
# @testset "ANOPP2 docs example" begin
# n_freq = 2232
# psd_freq = 45.0 .+ 5 .* (0:n_freq-1)
# df = psd_freq[2] - psd_freq[1]
# msp_amp = 20 .+ 10 .* (1:n_freq)./n_freq
# psd_amp = msp_amp ./ df
# # pbs = ExactLazyNBProportionalBandSpectrum{3}(first(psd_freq), df, psd_amp)
# pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, first(psd_freq), df, psd_amp)
# cbands = center_bands(pbs)
# lbands = lower_bands(pbs)
# ubands = upper_bands(pbs)
# pbs_level = @. 10*log10(pbs/p_ref^2)
# # @show cbands pbs_level
# # @show length(cbands) length(pbs_level)
# end
@testset "convergence test" begin
@testset "one band" begin
freq_min, freq_max = 50.0, 2000.0
lbands = ExactThirdOctaveLowerBands(freq_min, freq_max)
cbands = ExactThirdOctaveCenterBands(freq_min, freq_max)
ubands = ExactThirdOctaveUpperBands(freq_min, freq_max)
for b in 1:length(cbands)
pbs_b_exact = psd_func_int(lbands[b], ubands[b])
errs = Vector{Float64}()
nfreqs = Vector{Int}()
for nfreq in 200:10:300
# df_nb = (freq_max - freq_min)/(nfreq - 1)
# f = freq_min .+ (0:nfreq-1).*df_nb
df_nb = (ubands[b] - lbands[b])/nfreq
f0 = lbands[b] + 0.5*df_nb
f1 = ubands[b] - 0.5*df_nb
f = f0 .+ (0:nfreq-1).*df_nb
psd = psd_func.(f)
# pbs = LazyNBExactThirdOctaveSpectrum(f0, df_nb, psd)
msp = psd .* df_nb
# pbs = LazyNBExactThirdOctaveSpectrum(f0, df_nb, msp)
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, f0, df_nb, msp)
if length(pbs) > 1
# We tried above to construct the narrowand frequencies
# to only cover the current 1/3-octave proportional
# band, i.e., the one that starts at lbands[b] and ends
# at ubands[b]. But because of floating point errors, we
# might end up with a tiny bit of the narrowband in the
# next proportional band. But only in the next one, so
# check that we only have two:
@test length(pbs) == 2
# And the amount of energy we have in the next band
# should be very small.
@test isapprox(pbs[2], 0; atol=1e-10)
end
@test center_bands(pbs)[1] ≈ cbands[b]
push!(nfreqs, nfreq)
push!(errs, abs(pbs[1] - pbs_b_exact))
end
# So here we're assuming that
#
# err ≈ 1/(nfreq^p)
#
# We want to find `p`.
# If we take the error for two different values of `nfreq` and find their ratio:
#
# err2/err1 = nfreq1^p/nfreq2^p
# log(err2/err1) = p*log(nfreq1/nfreq2)
# p = log(err2/err1)/log(nfreq1/nfreq2)
#
# p = log.(errs[2:end]./errs[1:end-1])./log.(nfreqs[1:end-1]./nfreqs[2:end])
# @show b errs p
#
# But here we'll just use the Polynomials package to fit a line though the error as a function of nfreq on a log-log plot.
l = Polynomials.fit(log.(nfreqs), log.(errs), 1)
# @show l.coeffs[2]
@test isapprox(l.coeffs[2], -2; atol=1e-5)
end
end
@testset "many bands" begin
freq_min, freq_max = 50.0, 2000.0
lbands = ExactThirdOctaveLowerBands(freq_min, freq_max)
cbands = ExactThirdOctaveCenterBands(freq_min, freq_max)
ubands = ExactThirdOctaveUpperBands(freq_min, freq_max)
for b in 1:length(cbands)
pbs_b_exact = psd_func_int(lbands[b], ubands[b])
errs = Vector{Float64}()
nfreqs_b = Vector{Int}()
for nfreq_b in 200:10:300
# OK, I want to decide on a frequency spacing that will
# fit nicely in the current band.
df_nb = (ubands[b] - lbands[b])/nfreq_b
# This is where I want the narrowband frequencies to start in the current band `b`.
f0 = lbands[b] + 0.5*df_nb
f1 = ubands[b] - 0.5*df_nb
# But now I want the actual narrowband frequency to cover freq_min and freq_max.
# So I need to figure out how many bins I need before f0 and after f1.
n_before_f0 = Int(floor((f0 - (lbands[1] + 0.5*df_nb)) / df_nb))
n_after_f1 = Int(floor(((ubands[end] - 0.5*df_nb) - f1) / df_nb))
# So now I should be able to get the narrowband frequencies.
f = f0 .+ (-n_before_f0 : (nfreq_b-1)+n_after_f1).*df_nb
# Now the PSD for the entire narrowband range.
psd = psd_func.(f)
# And the PBS
# pbs = ExactLazyNBProportionalBandSpectrum{3}(f[1], df_nb, psd)
# pbs = LazyNBExactThirdOctaveSpectrum(f[1], df_nb, psd)
msp = psd .* df_nb
# pbs = LazyNBExactThirdOctaveSpectrum(f[1], df_nb, msp)
pbs = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, f[1], df_nb, msp)
# We created a narrowband range that should cover from freq_min to freq_max, so the sizes should be the same.
@test length(pbs) == length(cbands)
@test pbs.cbands.bstart == cbands.bstart
@test pbs.cbands.bend == cbands.bend
push!(nfreqs_b, nfreq_b)
# We only want to check the error for the current band.
push!(errs, abs(pbs[b] - pbs_b_exact))
end
# So here we're assuming that
#
# err ≈ 1/(nfreq^p)
#
# We want to find `p`.
# If we take the error for two different values of `nfreq` and find their ratio:
#
# err2/err1 = nfreq1^p/nfreq2^p
# log(err2/err1) = p*log(nfreq1/nfreq2)
# p = log(err2/err1)/log(nfreq1/nfreq2)
#
# p = log.(errs[2:end]./errs[1:end-1])./log.(nfreqs_b[1:end-1]./nfreqs_b[2:end])
# @show b errs p
#
# But here we'll just use the Polynomials package to fit a line though the error as a function of nfreq on a log-log plot.
l = Polynomials.fit(log.(nfreqs_b), log.(errs), 1)
# @show l.coeffs[2]
@test isapprox(l.coeffs[2], -2; atol=1e-5)
end
end
end
end
@testset "approximate octave" begin
@testset "standard" begin
cbands = ApproximateOctaveCenterBands(0, 20)
cbands_expected = [1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16e3, 31.5e3, 63e3, 125e3, 250e3, 500e3, 1000e3]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateOctaveLowerBands(0, 20)
lbands_expected = [0.71, 1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0, 0.71e3, 1.42e3, 2.84e3, 5.68e3, 11.0e3, 22e3, 44e3, 88e3, 177e3, 355e3, 0.71e6]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateOctaveUpperBands(0, 20)
ubands_expected = [1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0, 0.71e3, 1.42e3, 2.84e3, 5.68e3, 11.0e3, 22e3, 44e3, 88e3, 177e3, 355e3, 0.71e6, 1.42e6]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateOctaveCenterBands(-20, 0)
cbands_expected = [1.0e-6, 2.0e-6, 4.0e-6, 8.0e-6, 16.0e-6, 31.5e-6, 63e-6, 125.0e-6, 250.0e-6, 500.0e-6, 1000.0e-6, 2000.0e-6, 4000.0e-6, 8000.0e-6, 16e-3, 31.5e-3, 63e-3, 125e-3, 250e-3, 500e-3, 1000e-3]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateOctaveLowerBands(-20, 0)
lbands_expected = [0.71e-6, 1.42e-6, 2.84e-6, 5.68e-6, 11.0e-6, 22.0e-6, 44.0e-6, 88.0e-6, 177.0e-6, 355.0e-6, 0.71e-3, 1.42e-3, 2.84e-3, 5.68e-3, 11.0e-3, 22e-3, 44e-3, 88e-3, 177e-3, 355e-3, 0.71]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateOctaveUpperBands(-20, 0)
ubands_expected = [1.42e-6, 2.84e-6, 5.68e-6, 11.0e-6, 22.0e-6, 44.0e-6, 88.0e-6, 177.0e-6, 355.0e-6, 0.71e-3, 1.42e-3, 2.84e-3, 5.68e-3, 11.0e-3, 22e-3, 44e-3, 88e-3, 177e-3, 355e-3, 0.71, 1.42]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateOctaveCenterBands(2.2, 30.5e3)
@test cbands.bstart == 1
@test cbands.bend == 15
lbands = ApproximateOctaveLowerBands(2.2, 30.5e3)
@test lbands.bstart == 1
@test lbands.bend == 15
ubands = ApproximateOctaveUpperBands(2.2, 30.5e3)
@test ubands.bstart == 1
@test ubands.bend == 15
cbands = ApproximateOctaveCenterBands(23.0e-6, 2.8e-3)
@test cbands.bstart == -15
@test cbands.bend == -9
lbands = ApproximateOctaveLowerBands(23.0e-6, 2.8e-3)
@test lbands.bstart == -15
@test lbands.bend == -9
ubands = ApproximateOctaveUpperBands(23.0e-6, 2.8e-3)
@test ubands.bstart == -15
@test ubands.bend == -9
end
@testset "scaler argument" begin
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
cbands = ApproximateOctaveCenterBands(0, 20, scaler)
cbands_expected = scaler .* [1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16e3, 31.5e3, 63e3, 125e3, 250e3, 500e3, 1000e3]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateOctaveLowerBands(0, 20, scaler)
lbands_expected = scaler .* [0.71, 1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0, 0.71e3, 1.42e3, 2.84e3, 5.68e3, 11.0e3, 22e3, 44e3, 88e3, 177e3, 355e3, 0.71e6]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateOctaveUpperBands(0, 20, scaler)
ubands_expected = scaler .* [1.42, 2.84, 5.68, 11.0, 22.0, 44.0, 88.0, 177.0, 355.0, 0.71e3, 1.42e3, 2.84e3, 5.68e3, 11.0e3, 22e3, 44e3, 88e3, 177e3, 355e3, 0.71e6, 1.42e6]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateOctaveCenterBands(-20, 0, scaler)
cbands_expected = scaler .* [1.0e-6, 2.0e-6, 4.0e-6, 8.0e-6, 16.0e-6, 31.5e-6, 63e-6, 125.0e-6, 250.0e-6, 500.0e-6, 1000.0e-6, 2000.0e-6, 4000.0e-6, 8000.0e-6, 16e-3, 31.5e-3, 63e-3, 125e-3, 250e-3, 500e-3, 1000e-3]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateOctaveLowerBands(-20, 0, scaler)
lbands_expected = scaler .* [0.71e-6, 1.42e-6, 2.84e-6, 5.68e-6, 11.0e-6, 22.0e-6, 44.0e-6, 88.0e-6, 177.0e-6, 355.0e-6, 0.71e-3, 1.42e-3, 2.84e-3, 5.68e-3, 11.0e-3, 22e-3, 44e-3, 88e-3, 177e-3, 355e-3, 0.71]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateOctaveUpperBands(-20, 0, scaler)
ubands_expected = scaler .* [1.42e-6, 2.84e-6, 5.68e-6, 11.0e-6, 22.0e-6, 44.0e-6, 88.0e-6, 177.0e-6, 355.0e-6, 0.71e-3, 1.42e-3, 2.84e-3, 5.68e-3, 11.0e-3, 22e-3, 44e-3, 88e-3, 177e-3, 355e-3, 0.71, 1.42]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateOctaveCenterBands(2.2*scaler, 30.5e3*scaler, scaler)
@test cbands.bstart == 1
@test cbands.bend == 15
lbands = ApproximateOctaveLowerBands(2.2*scaler, 30.5e3*scaler, scaler)
@test lbands.bstart == 1
@test lbands.bend == 15
ubands = ApproximateOctaveUpperBands(2.2*scaler, 30.5e3*scaler, scaler)
@test ubands.bstart == 1
@test ubands.bend == 15
cbands = ApproximateOctaveCenterBands(23.0e-6*scaler, 2.8e-3*scaler, scaler)
@test cbands.bstart == -15
@test cbands.bend == -9
lbands = ApproximateOctaveLowerBands(23.0e-6*scaler, 2.8e-3*scaler, scaler)
@test lbands.bstart == -15
@test lbands.bend == -9
ubands = ApproximateOctaveUpperBands(23.0e-6*scaler, 2.8e-3*scaler, scaler)
@test ubands.bstart == -15
@test ubands.bend == -9
end
end
@testset "spectrum, normal case" begin
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 55 - 0.5*2 = 54 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 6 to 11.
@test band_start(cbands) == 6
@test band_end(cbands) == 11
# Now, let's add up what each band's answer should be.
# Do I need to worry about the min and max stuff?
# I know that I've picked bands that fully cover the input PSD frequency.
# But, say, for the first band, it is possible that the lower edge of the first band is much lower than the lower edge of the first proportional band.
# So I do need to do that.
# Similar for the last band.
# But I don't think it's necessary for the inner ones.
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 55 Hz to 1950 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 6
@test band_end(cbands) == 11
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
@testset "spectrum, lowest narrowband on a right edge" begin
freq_min_nb = 87.0
freq_max_nb = 1950.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 87 - 0.5*2 = 86 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 6 to 11.
@test band_start(cbands) == 6
@test band_end(cbands) == 11
@test ubands[1] ≈ freq_min_nb + 0.5*df_nb
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 87 Hz to 1950 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 6
@test band_end(cbands) == 11
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs_tonal))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs_tonal))
end
end
@testset "spectrum, lowest narrowband on a left edge" begin
freq_min_nb = 89.0
freq_max_nb = 1950.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 89 - 0.5*2 = 88 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 7 to 11.
# But because of floating point roundoff, the code actually picks 6 as the starting band.
@test band_start(cbands) == 6
@test band_end(cbands) == 11
@test lbands[2] ≈ freq_min_nb - 0.5*df_nb
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 89 Hz to 1950 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 7
@test band_end(cbands) == 11
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs_tonal))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs_tonal))
end
end
@testset "spectrum, highest narrowband on a left edge" begin
freq_min_nb = 55.0
freq_max_nb = 1421.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 55 - 0.5*2 = 54 to 1421.0 + 0.5*2 = 1422.0
# So we should be using bands 6 to 11.
@test band_start(cbands) == 6
@test band_end(cbands) == 11
@test lbands[end] ≈ freq_max_nb - 0.5*df_nb
# Now, let's add up what each band's answer should be.
# Do I need to worry about the min and max stuff?
# I know that I've picked bands that fully cover the input PSD frequency.
# But, say, for the first band, it is possible that the lower edge of the first band is much lower than the lower edge of the first proportional band.
# So I do need to do that.
# Similar for the last band.
# But I don't think it's necessary for the inner ones.
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 55 Hz to 1421 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 6
@test band_end(cbands) == 11
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs_tonal))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs_tonal))
end
end
@testset "spectrum, highest narrowband on a right edge" begin
freq_min_nb = 55.0
freq_max_nb = 1419.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 55 - 0.5*2 = 54 to 1419.0 + 0.5*2 = 1420.0
# So we should be using bands 6 to 10.
@test band_start(cbands) == 6
@test band_end(cbands) == 10
@test ubands[end] ≈ freq_max_nb + 0.5*df_nb
# Now, let's add up what each band's answer should be.
# Do I need to worry about the min and max stuff?
# I know that I've picked bands that fully cover the input PSD frequency.
# But, say, for the first band, it is possible that the lower edge of the first band is much lower than the lower edge of the first proportional band.
# So I do need to do that.
# Similar for the last band.
# But I don't think it's necessary for the inner ones.
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 55 Hz to 1419 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 6
@test band_end(cbands) == 10
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs_tonal))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs_tonal))
end
end
end
@testset "approximate 1/3rd octave" begin
@testset "standard" begin
cbands = ApproximateThirdOctaveCenterBands(0, 30)
cbands_expected = [1.0, 1.25, 1.6, 2.0, 2.5, 3.15, 4.0, 5.0, 6.3, 8.0, 1.0e1, 1.25e1, 1.6e1, 2.0e1, 2.5e1, 3.15e1, 4.0e1, 5.0e1, 6.3e1, 8.0e1, 1.0e2, 1.25e2, 1.6e2, 2.0e2, 2.5e2, 3.15e2, 4.0e2, 5.0e2, 6.3e2, 8.0e2, 1.0e3]
@test all(cbands .≈ cbands_expected)
# Test the `cband_number` routine, which goes from an approximate 3rd-octave centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateThirdOctaveLowerBands(0, 30)
lbands_expected = [0.9, 1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1, 0.9e1, 1.12e1, 1.4e1, 1.8e1, 2.24e1, 2.8e1, 3.35e1, 4.5e1, 5.6e1, 7.1e1, 0.9e2, 1.12e2, 1.4e2, 1.8e2, 2.24e2, 2.8e2, 3.35e2, 4.5e2, 5.6e2, 7.1e2, 0.9e3]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateThirdOctaveUpperBands(0, 30)
ubands_expected = [1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1, 0.9e1, 1.12e1, 1.4e1, 1.8e1, 2.24e1, 2.8e1, 3.35e1, 4.5e1, 5.6e1, 7.1e1, 0.9e2, 1.12e2, 1.4e2, 1.8e2, 2.24e2, 2.8e2, 3.35e2, 4.5e2, 5.6e2, 7.1e2, 0.9e3, 1.12e3]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateThirdOctaveCenterBands(-30, 0)
cbands_expected = [1.0e-3, 1.25e-3, 1.6e-3, 2.0e-3, 2.5e-3, 3.15e-3, 4.0e-3, 5.0e-3, 6.3e-3, 8.0e-3, 1.0e-2, 1.25e-2, 1.6e-2, 2.0e-2, 2.5e-2, 3.15e-2, 4.0e-2, 5.0e-2, 6.3e-2, 8.0e-2, 1.0e-1, 1.25e-1, 1.6e-1, 2.0e-1, 2.5e-1, 3.15e-1, 4.0e-1, 5.0e-1, 6.3e-1, 8.0e-1, 1.0]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateThirdOctaveLowerBands(-30, 0)
lbands_expected = [0.9e-3, 1.12e-3, 1.4e-3, 1.8e-3, 2.24e-3, 2.8e-3, 3.35e-3, 4.5e-3, 5.6e-3, 7.1e-3, 0.9e-2, 1.12e-2, 1.4e-2, 1.8e-2, 2.24e-2, 2.8e-2, 3.35e-2, 4.5e-2, 5.6e-2, 7.1e-2, 0.9e-1, 1.12e-1, 1.4e-1, 1.8e-1, 2.24e-1, 2.8e-1, 3.35e-1, 4.5e-1, 5.6e-1, 7.1e-1, 0.9]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateThirdOctaveUpperBands(-30, 0)
ubands_expected = [1.12e-3, 1.4e-3, 1.8e-3, 2.24e-3, 2.8e-3, 3.35e-3, 4.5e-3, 5.6e-3, 7.1e-3, 0.9e-2, 1.12e-2, 1.4e-2, 1.8e-2, 2.24e-2, 2.8e-2, 3.35e-2, 4.5e-2, 5.6e-2, 7.1e-2, 0.9e-1, 1.12e-1, 1.4e-1, 1.8e-1, 2.24e-1, 2.8e-1, 3.35e-1, 4.5e-1, 5.6e-1, 7.1e-1, 0.9, 1.12]
@test all(ubands .≈ ubands_expected)
end
@testset "scaler argument" begin
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
cbands = ApproximateThirdOctaveCenterBands(0, 30, scaler)
cbands_expected = scaler .* [1.0, 1.25, 1.6, 2.0, 2.5, 3.15, 4.0, 5.0, 6.3, 8.0, 1.0e1, 1.25e1, 1.6e1, 2.0e1, 2.5e1, 3.15e1, 4.0e1, 5.0e1, 6.3e1, 8.0e1, 1.0e2, 1.25e2, 1.6e2, 2.0e2, 2.5e2, 3.15e2, 4.0e2, 5.0e2, 6.3e2, 8.0e2, 1.0e3]
@test all(cbands .≈ cbands_expected)
# Test the `cband_number` routine, which goes from an approximate 3rd-octave centerband frequency to the band number.
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateThirdOctaveLowerBands(0, 30, scaler)
lbands_expected = scaler .* [0.9, 1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1, 0.9e1, 1.12e1, 1.4e1, 1.8e1, 2.24e1, 2.8e1, 3.35e1, 4.5e1, 5.6e1, 7.1e1, 0.9e2, 1.12e2, 1.4e2, 1.8e2, 2.24e2, 2.8e2, 3.35e2, 4.5e2, 5.6e2, 7.1e2, 0.9e3]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateThirdOctaveUpperBands(0, 30, scaler)
ubands_expected = scaler .* [1.12, 1.4, 1.8, 2.24, 2.8, 3.35, 4.5, 5.6, 7.1, 0.9e1, 1.12e1, 1.4e1, 1.8e1, 2.24e1, 2.8e1, 3.35e1, 4.5e1, 5.6e1, 7.1e1, 0.9e2, 1.12e2, 1.4e2, 1.8e2, 2.24e2, 2.8e2, 3.35e2, 4.5e2, 5.6e2, 7.1e2, 0.9e3, 1.12e3]
@test all(ubands .≈ ubands_expected)
cbands = ApproximateThirdOctaveCenterBands(-30, 0, scaler)
cbands_expected = scaler .* [1.0e-3, 1.25e-3, 1.6e-3, 2.0e-3, 2.5e-3, 3.15e-3, 4.0e-3, 5.0e-3, 6.3e-3, 8.0e-3, 1.0e-2, 1.25e-2, 1.6e-2, 2.0e-2, 2.5e-2, 3.15e-2, 4.0e-2, 5.0e-2, 6.3e-2, 8.0e-2, 1.0e-1, 1.25e-1, 1.6e-1, 2.0e-1, 2.5e-1, 3.15e-1, 4.0e-1, 5.0e-1, 6.3e-1, 8.0e-1, 1.0]
@test all(cbands .≈ cbands_expected)
for (i, cband) in enumerate(cbands)
@test cband_number(cbands, cband) == (band_start(cbands) + i - 1)
end
lbands = ApproximateThirdOctaveLowerBands(-30, 0, scaler)
lbands_expected = scaler .* [0.9e-3, 1.12e-3, 1.4e-3, 1.8e-3, 2.24e-3, 2.8e-3, 3.35e-3, 4.5e-3, 5.6e-3, 7.1e-3, 0.9e-2, 1.12e-2, 1.4e-2, 1.8e-2, 2.24e-2, 2.8e-2, 3.35e-2, 4.5e-2, 5.6e-2, 7.1e-2, 0.9e-1, 1.12e-1, 1.4e-1, 1.8e-1, 2.24e-1, 2.8e-1, 3.35e-1, 4.5e-1, 5.6e-1, 7.1e-1, 0.9]
@test all(lbands .≈ lbands_expected)
ubands = ApproximateThirdOctaveUpperBands(-30, 0, scaler)
ubands_expected = scaler .* [1.12e-3, 1.4e-3, 1.8e-3, 2.24e-3, 2.8e-3, 3.35e-3, 4.5e-3, 5.6e-3, 7.1e-3, 0.9e-2, 1.12e-2, 1.4e-2, 1.8e-2, 2.24e-2, 2.8e-2, 3.35e-2, 4.5e-2, 5.6e-2, 7.1e-2, 0.9e-1, 1.12e-1, 1.4e-1, 1.8e-1, 2.24e-1, 2.8e-1, 3.35e-1, 4.5e-1, 5.6e-1, 7.1e-1, 0.9, 1.12]
@test all(ubands .≈ ubands_expected)
end
end
@testset "spectrum, normal case" begin
freq_min_nb = 50.0
# freq_max_nb = 1950.0
nfreq = 951
df_nb = 2.0
# f_nb = freq_min_nb:df_nb:freq_max_nb
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 50 - 0.5*2 = 49 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 17 to 33.
@test band_start(cbands) == 17
@test band_end(cbands) == 33
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
# Putting the narrowband frequencies on nice round numbers ends up being bad for the tonal case, since the tones can fall into different bands for different values of `scaler`, which leads to very different PBS values.
# So tweak those a bit.
freq_min_nb = 50.1
nfreq = 951
df_nb = 2.0
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 50 Hz to 1950 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 17
@test band_end(cbands) == 33
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
@testset "spectrum, lowest narrowband on a right edge" begin
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 50 - 0.5*2 = 49 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 17 to 33.
@test band_start(cbands) == 17
@test band_end(cbands) == 33
@test ubands[1] ≈ freq_min_nb + 0.5*df_nb
# Now, let's add up what each band's answer should be.
# Do I need to worry about the min and max stuff?
# I know that I've picked bands that fully cover the input PSD frequency.
# But, say, for the first band, it is possible that the lower edge of the first band is much lower than the lower edge of the first proportional band.
# So I do need to do that.
# Similar for the last band.
# But I don't think it's necessary for the inner ones.
#
# Hmm... first PBS band isn't passing.
# The first PBS band goes from 45 Hz to 56 Hz.
# This PSD would have just one band there, centered on 55 Hz, extending from 54 to 56 Hz.
# So, that bin width should be 2 Hz.
# Looks like that's what I'm doing.
# Oh, wait.
# Maybe I'm adding it twice here?
# Let's see...
# `f_nb .+ 0.5*df_nb = [56, 57, 58, 59...]`
# And the upper band edge for the first PBS is 56.
# So is `iend` here 1, or 2?
# `iend == 1`, same as `istart`.
# So I bet that has something to do with it.
# Yeah, looks like I'm adding this band twice, right?
# Yep, so need to deal with that.
# Fixed it.
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
# Putting the narrowband frequencies on nice round numbers ends up being bad for the tonal case, since the tones can fall into different bands for different values of `scaler`, which leads to very different PBS values.
# So tweak those a bit.
freq_min_nb = 55.1
df_nb = 2.0
nfreq = length(f_nb)
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 55.1 Hz to 1949.1 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 17
@test band_end(cbands) == 33
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
@testset "spectrum, lowest narrowband on a left edge" begin
freq_min_nb = 57.0
freq_max_nb = 1950.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 57 - 0.5*2 = 56 to 1950 + 0.5*2 = 1951.0
# So we should be using bands 18 to 33.
# But, actually, because of numerical roundoff stuff, the code picks 17.
@test band_start(cbands) == 17
@test band_end(cbands) == 33
# Because of floating point inaccuracy stuff, the code picks one proportional band lower than I think it should.
@test lbands[2] ≈ freq_min_nb - 0.5*df_nb
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
if length(pbs_scaled) == length(pbs)
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
else
# But because of numerical stuff, the unscaled test above grabbed a lower frequency band that it shouldn't have or whatever, so we have to skip that one.
# And test that the "extra" band at the beginning is essentially zero.
@test pbs[1] ≈ 0
@test all(pbs_scaled./scaler .≈ pbs[2:end])
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs)[2:end])
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs)[2:end])
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs)[2:end])
end
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
# Putting the narrowband frequencies on nice round numbers ends up being bad for the tonal case, since the tones can fall into different bands for different values of `scaler`, which leads to very different PBS values.
# So tweak those a bit.
freq_min_nb = 57.1
df_nb = 2.0
nfreq = 947
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 57.1 Hz to 1949.1 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 18
@test band_end(cbands) == 33
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
@testset "spectrum, highest narrowband on a right edge" begin
freq_min_nb = 50.0
freq_max_nb = 1799.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 50 - 0.5*2 = 49 to 1799 + 0.5*2 = 1800.0
# So we should be using bands 17 to 32.
@test band_start(cbands) == 17
@test band_end(cbands) == 32
@test ubands[end] ≈ freq_max_nb + 0.5*df_nb
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
# Putting the narrowband frequencies on nice round numbers ends up being bad for the tonal case, since the tones can fall into different bands for different values of `scaler`, which leads to very different PBS values.
# So tweak those a bit.
freq_min_nb = 50.1
df_nb = 2.0
nfreq = length(f_nb)
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 50.1 Hz to 1798.1 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 17
@test band_end(cbands) == 32
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
@testset "spectrum, highest narrowband on a left edge" begin
freq_min_nb = 50.0
freq_max_nb = 1801.0
df_nb = 2.0
f_nb = freq_min_nb:df_nb:freq_max_nb
psd = psd_func.(f_nb)
# pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, psd)
msp = psd .* df_nb
pbs = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp)
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs)), center_bands(pbs)[begin], pbs)
@test all(pbs_non_lazy .≈ pbs)
@test lower_bands(pbs_non_lazy) === lower_bands(pbs)
@test center_bands(pbs_non_lazy) === center_bands(pbs)
@test upper_bands(pbs_non_lazy) === upper_bands(pbs)
lbands = lower_bands(pbs)
cbands = center_bands(pbs)
ubands = upper_bands(pbs)
# So, the narrowband frequency range is from 50 - 0.5*2 = 49 to 1801 + 0.5*2 = 1802.0
# So we should be using bands 17 to 33.
@test band_start(cbands) == 17
@test band_end(cbands) == 33
@test lbands[end] ≈ freq_max_nb - 0.5*df_nb
for (lband, uband, pbs_b) in zip(lbands, ubands, pbs)
istart = searchsortedfirst(f_nb .+ 0.5*df_nb, lband)
res_first = psd[istart]*(min(uband, f_nb[istart] + 0.5*df_nb) - max(lband, f_nb[istart] - 0.5*df_nb))
iend = searchsortedfirst(f_nb .+ 0.5*df_nb, uband)
if iend > lastindex(f_nb)
iend = lastindex(f_nb)
end
if iend == istart
res_last = zero(eltype(psd))
else
res_last = psd[iend]*(min(uband, f_nb[iend] + 0.5*df_nb) - max(lband, f_nb[iend] - 0.5*df_nb))
end
res = res_first + sum(psd[istart+1:iend-1].*df_nb) + res_last
@test pbs_b ≈ res
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs))
@test all(pbs_init_cbands .≈ pbs)
# Now, check that the `scaler` argument works.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, psd, scaler)
# pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp, scaler)
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the original PBS multipiled by `scaler`.
@test all(pbs_scaled./scaler .≈ pbs)
# And the band frequencies should all be scaled.
@test all(lower_bands(pbs_scaled)./scaler .≈ lower_bands(pbs))
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs))
@test all(upper_bands(pbs_scaled)./scaler .≈ upper_bands(pbs))
# Creating a non-lazy version of the PBS should give the same stuff as the lazy version.
pbs_scaled_non_lazy = ProportionalBandSpectrum(typeof(center_bands(pbs_scaled)), center_bands(pbs_scaled)[begin], pbs_scaled, freq_scaler(pbs_scaled))
@test all(pbs_scaled_non_lazy .≈ pbs_scaled)
@test lower_bands(pbs_scaled_non_lazy) === lower_bands(pbs_scaled)
@test center_bands(pbs_scaled_non_lazy) === center_bands(pbs_scaled)
@test upper_bands(pbs_scaled_non_lazy) === upper_bands(pbs_scaled)
end
# Now, for the tonal stuff.
# Putting the narrowband frequencies on nice round numbers ends up being bad for the tonal case, since the tones can fall into different bands for different values of `scaler`, which leads to very different PBS values.
# So tweak those a bit.
freq_min_nb = 50.1
df_nb = 2.0
nfreq = length(f_nb)
f_nb = freq_min_nb .+ (0:nfreq-1) .* df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
scaler = 1
tonal = true
pbs_tonal = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb, df_nb, msp, scaler, tonal)
# Narrowband frequencies go from 50.1 Hz to 1800.1 Hz, so check that.
cbands = center_bands(pbs_tonal)
@test band_start(cbands) == 17
@test band_end(cbands) == 33
# Now make sure we get the right answer.
lbands = lower_bands(pbs_tonal)
ubands = upper_bands(pbs_tonal)
for (lband, uband, amp) in zip(lbands, ubands, pbs_tonal)
# First index we want in f_nb is the one that is greater than or equal to lband.
istart = searchsortedfirst(f_nb, lband)
# Last index we want in f_nb is th one that is less than or equal to uband.
iend = searchsortedlast(f_nb, uband; lt=<=)
# Now check that we get the right answer.
@test sum(msp[istart:iend]) ≈ amp
end
# Make sure I get the same thing if I pass in an initialized proportional center band object.
pbs_init_cbands = LazyNBProportionalBandSpectrum(freq_min_nb, df_nb, msp, center_bands(pbs_tonal), tonal)
@test all(pbs_init_cbands .≈ pbs_tonal)
# Now for the scaler stuff, can use the same trick for the non-tonal.
for scaler in [0.1, 0.5, 1.0, 1.5, 2.0]
freq_min_nb_scaled = freq_min_nb*scaler
# freq_max_nb_scaled = freq_max_nb*scaler
df_nb_scaled = df_nb*scaler
msp_scaled = psd .* df_nb_scaled
pbs_scaled = LazyNBProportionalBandSpectrum(ApproximateThirdOctaveBands, freq_min_nb_scaled, df_nb_scaled, msp_scaled, scaler, tonal)
# We've changed the frequencies, but not the PSD, so the scaled PBS should be the same as the original as long as we account for the different frequency bin widths via the `scaler`.
@test all(pbs_scaled./scaler .≈ pbs_tonal)
# And the band frequencies should all be scaled.
@test all(center_bands(pbs_scaled)./scaler .≈ center_bands(pbs_tonal))
end
end
end
@testset "lazy PBS ProportionalBandSpectrum" begin
@testset "same bands" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = TPB{ :center}(10, 16)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
@test all(pbs2 .≈ pbs1)
end
end
@testset "shift bands by whole indices" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = TPB{:center}(9, 17)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
@test pbs2[begin] ≈ 0
@test all(pbs2[begin+1:end-1] .≈ pbs1)
@test pbs2[end] ≈ 0
end
end
@testset "shift bands up by non-whole indices" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
scaler2 = 1.01
cbands2 = TPB{:center}(10, 16, scaler2)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs1)
if i < length(pbs1)
amp2_left = pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - lbands2[i])
amp2_right = pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(ubands2[i] - lbands1[i+1])
amp2_check = amp2_left + amp2_right
else
amp2_check = pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - lbands2[i])
end
@test pbs2[i] ≈ amp2_check
end
end
end
@testset "shift bands down by non-whole indices" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
scaler2 = 0.99
cbands2 = TPB{:center}(10, 16, scaler2)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs1)
if i > 1
amp2_left = pbs1[i-1]/(ubands1[i-1] - lbands1[i-1])*(ubands1[i-1] - lbands2[i])
amp2_right = pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[i] - lbands1[i])
amp2_check = amp2_left + amp2_right
else
amp2_check = pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[i] - lbands1[i])
end
@test pbs2[i] ≈ amp2_check
end
end
end
@testset "output bands too low" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = TPB{:center}(1, 9)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
@test all(pbs2 .≈ 0)
end
end
@testset "output bands too high" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = TPB{:center}(17, 20)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
@test all(pbs2 .≈ 0)
end
end
@testset "input 3rd-octave, output octave, aligned" begin
cbands1 = ExactProportionalBands{3,:center}(32, 49)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
pbs2 = LazyPBSProportionalBandSpectrum(ExactProportionalBands{1}, pbs1)
cbands2 = center_bands(pbs2)
@test band_start(cbands2) == 11
@test band_end(cbands2) == 16
for i in 1:length(pbs2)
j = (i-1)*3 + 1
@test pbs2[i] ≈ sum(pbs1[j:j+2])
end
end
@testset "input octave, output 3rd-octave, aligned" begin
cbands1 = ExactProportionalBands{1,:center}(11, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
pbs2 = LazyPBSProportionalBandSpectrum(ExactProportionalBands{3}, pbs1)
cbands2 = center_bands(pbs2)
@test band_start(cbands2) == 32
@test band_end(cbands2) == 49
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs1)
j = (i-1)*3 + 1
@test pbs2[j] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j] - lbands2[j])
@test pbs2[j+1] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j+1] - lbands2[j+1])
@test pbs2[j+2] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j+2] - lbands2[j+2])
end
end
@testset "input 3rd-octave, output octave, not aligned, scaled up" begin
cbands1 = ExactProportionalBands{3,:center}(32, 49)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = ExactProportionalBands{1,:center}(11, 16, 1.01)
# pbs2 = LazyPBSProportionalBandSpectrum(ExactProportionalBands{1}, pbs1, 1.01)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs2)
if i < length(pbs2)
# | . . | . . |
# | | |
j = (i-1)*3 + 1
amp2_left = (pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - lbands2[i])
+ pbs1[j+1]
+ pbs1[j+2])
j = (i)*3 + 1
amp2_right = pbs1[j]/(ubands1[j] - lbands1[j])*(ubands2[i] - lbands1[j])
amp2_check = amp2_left + amp2_right
else
j = (i-1)*3 + 1
amp2_check = (pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - lbands2[i])
+ pbs1[j+1]
+ pbs1[j+2])
end
@test pbs2[i] ≈ amp2_check
end
end
@testset "input 3rd-octave, output octave, not aligned, scaled down" begin
cbands1 = ExactProportionalBands{3,:center}(32, 49)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = ExactProportionalBands{1,:center}(11, 16, 0.99)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs2)
j = (i-1)*3 + 1
if i > 1
# | . . | . . |
# | | |
amp2_left = pbs1[j-1]/(ubands1[j-1] - lbands1[j-1])*(ubands1[j-1] - lbands2[i])
amp2_right = pbs1[j] + pbs1[j+1] + pbs1[j+2]/(ubands1[j+2] - lbands1[j+2])*(ubands2[i] - lbands1[j+2])
amp2_check = amp2_left + amp2_right
else
amp2_right = pbs1[j] + pbs1[j+1] + pbs1[j+2]/(ubands1[j+2] - lbands1[j+2])*(ubands2[i] - lbands1[j+2])
amp2_check = amp2_right
end
@test pbs2[i] ≈ amp2_check
end
end
@testset "input octave, output 3rd-octave, not aligned, scaled up" begin
cbands1 = ExactProportionalBands{1,:center}(11, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = ExactProportionalBands{3, :center}(32, 49, 1.01)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs1)
# | | |
# | . . | . . |
j = 3*(i - 1) + 1
@test pbs2[j] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j] - lbands2[j])
@test pbs2[j+1] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j+1] - lbands2[j+1])
if i < length(pbs1)
@test pbs2[j+2] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - lbands2[j+2])
+ pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(ubands2[j+2] - lbands1[i+1]))
else
@test pbs2[j+2] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - lbands2[j+2])
end
end
end
@testset "input octave, output 3rd-octave, not aligned, scaled down" begin
cbands1 = ExactProportionalBands{1,:center}(11, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = ExactProportionalBands{3, :center}(32, 49, 0.99)
pbs2 = LazyPBSProportionalBandSpectrum(pbs1, cbands2)
lbands1 = lower_bands(pbs1)
ubands1 = upper_bands(pbs1)
lbands2 = lower_bands(pbs2)
ubands2 = upper_bands(pbs2)
for i in 1:length(pbs1)
# | | |
# | . . | . . |
j = 3*(i - 1) + 1
if i > 1
@test pbs2[j] ≈ (
pbs1[i-1]/(ubands1[i-1] - lbands1[i-1])*(ubands1[i-1] - lbands2[j])
+ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j] - lbands1[i]))
else
@test pbs2[j] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j] - lbands1[i])
end
@test pbs2[j+1] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j+1] - lbands2[j+1])
@test pbs2[j+2] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands2[j+2] - lbands2[j+2])
end
end
end
@testset "combining proportional band spectrums" begin
@testset "same bands" begin
nfreq_nb = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12}, ApproximateThirdOctaveBands, ApproximateOctaveBands]
# pbs1_lazy = LazyNBProportionalBandSpectrum(TPB, freq_min_nb, df_nb, psd)
pbs1_lazy = LazyNBProportionalBandSpectrum(TPB, freq_min_nb, df_nb, msp)
pbs1 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs2 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs3 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
# So, when we add these, the proportional band spectrum should be just 3 times whatever the original was, and all the bands should be the same.
pbs_combined = combine([pbs1, pbs2, pbs3], center_bands(pbs1_lazy))
@test lower_bands(pbs_combined) == lower_bands(pbs1_lazy)
@test center_bands(pbs_combined) == center_bands(pbs1_lazy)
@test upper_bands(pbs_combined) == upper_bands(pbs1_lazy)
@test all(pbs_combined .≈ (3 .* pbs1_lazy))
end
end
@testset "outbands lower than all inbands" begin
nfreq_nb = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12}, ApproximateThirdOctaveBands, ApproximateOctaveBands]
# pbs1_lazy = LazyNBProportionalBandSpectrum(TPB, freq_min_nb, df_nb, psd)
pbs1_lazy = LazyNBProportionalBandSpectrum(TPB, freq_min_nb, df_nb, msp)
pbs1 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs2 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs3 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
# outcbands = ExactProportionalBands{3, :center}(10, 16)
outcbands = TPB{:center}(2.0, 10.0)
# Make sure the outbands are actually all lower than the input narrowbands.
@test last(upper_bands(outcbands)) < freq_min_nb - 0.5*df_nb
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test center_bands(pbs_combined) == outcbands
@test all(pbs_combined .≈ 0)
end
end
@testset "outbands higher than all inbands" begin
nfreq_nb = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
psd = psd_func.(f_nb)
msp = psd .* df_nb
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12}, ApproximateThirdOctaveBands, ApproximateOctaveBands]
pbs1_lazy = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, freq_min_nb, df_nb, msp)
pbs1 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs2 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
pbs3 = ProportionalBandSpectrum(collect(pbs1_lazy), center_bands(pbs1_lazy))
outcbands = TPB{:center}(3000.0, 20000.0)
# Make sure the outbands are actually all higher than the input narrowbands.
@test first(lower_bands(outcbands)) > freq_max_nb + 0.5*df_nb
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test center_bands(pbs_combined) == outcbands
@test all(pbs_combined .≈ 0)
end
end
@testset "inbands lined up with outbands" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12}, ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
cbands2 = TPB{:center}(11, 16)
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
cbands3 = TPB{:center}(12, 16)
pbs3 = ProportionalBandSpectrum(rand(length(cbands3)), cbands3)
# outcbands = ExactProportionalBands{3, :center}(10, 16)
outcbands = TPB{:center}(10, 16)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test pbs_combined[1] ≈ pbs1[1]
@test pbs_combined[2] ≈ pbs1[2] + pbs2[1]
@test all(pbs_combined[3:end] .≈ pbs1[3:end] .+ pbs2[2:end] .+ pbs3)
end
end
@testset "scaled outbands" begin
# Since proportional bands are... proportional, we can be clever about the scaler argument.
# For example, for a 1/3 octave band, log2(f_center2/f_center1) = (1/3), where f_center1 is a center frequency, and f_center2 is the next highest center frequency after f_center1.
# So, log2(f_center2) - log2(f_center1) = 1/3
# log2(f_center2) = log2(f_center1) + 1/3
# f_center2 = 2^(log2(f_center1) + 1/3) = f_center1*2^(1/3)
# So if I set the scaler argument to 2^(1/3), that should have the effect of shifting the frequency bands up one unscaled band.
# And if I do that twice (i.e., squaring the scaler), that should shift the frequency bands by two.
# But this doesn't work with the approximate bands, since those aren't exactly proportional bands.
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
# ApproximateThirdOctaveBands, ApproximateOctaveBands
]
# cbands1 = ExactProportionalBands{3, :center}(10, 16)
cbands1 = TPB{:center}(10, 16)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
# NO = octave_fraction(cbands1)
scaler = cbands1[2]/cbands1[1]
# cbands2 = ExactProportionalBands{3, :center}(10, 15, scaler)
cbands2 = TPB{:center}(10, 15, scaler)
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
scaler = cbands1[3]/cbands1[1]
# cbands3 = ExactProportionalBands{3, :center}(10, 14, scaler)
cbands3 = TPB{:center}(10, 14, scaler)
pbs3 = ProportionalBandSpectrum(rand(length(cbands3)), cbands3)
# outcbands = ExactProportionalBands{3, :center}(10, 16)
outcbands = TPB{:center}(10, 16)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test pbs_combined[1] ≈ pbs1[1]
@test pbs_combined[2] ≈ pbs1[2] + pbs2[1]
@test all(pbs_combined[3:end] .≈ pbs1[3:end] .+ pbs2[2:end] .+ pbs3)
end
end
@testset "non-aligned outbands, one input spectrum" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands
]
# cbands1 = ExactProportionalBands{3, :center}(10, 16)
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
# outcbands = ExactProportionalBands{3, :center}(10, 16, 1.1)
# Need to make sure the frequency shift (here `1.05`) is small enough to shift the frequency bands by less than 1.
# `1.1` was too big for the 12th-octave bands.
outcbands = TPB{:center}(10, 16, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1], outcbands)
for i in 1:length(pbs_combined)-1
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1])
)
end
i = length(pbs_combined)
@test pbs_combined[i] ≈ pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i])
end
end
@testset "non-aligned outbands, multiple input spectrums" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 15, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
@test all(cbands2 ./ cbands1[1:end-1] .≈ scaler)
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 14, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
@test all(cbands3 ./ cbands1[1:end-2] .≈ scaler)
pbs3 = ProportionalBandSpectrum(rand(length(cbands3)), cbands3)
scaler = 1.05
outcbands = TPB{:center}(10, 16, scaler)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
@test all(outcbands ./ cbands1 .≈ scaler)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
i = 1
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i])
)
i = 2
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
for i in 3:length(pbs_combined)-1
if TPB == ApproximateThirdOctaveBands && i == 6
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(ubands3[i-2] - outlbands[i]) +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
end
end
i = length(pbs_combined)
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs3[i-3]/(ubands3[i-3] - lbands3[i-3])*(ubands3[i-3] - outlbands[i]) +
pbs3[i-2]
)
else
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(ubands3[i-2] - outlbands[i])
)
end
end
end
@testset "non-aligned outbands, multiple input spectrums, all same length" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands,
ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
pbs3 = ProportionalBandSpectrum(rand(length(cbands3)), cbands3)
outcbands = TPB{:center}(10, 16, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
i = 1
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i])
)
i = 2
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
for i in 3:length(pbs_combined)-1
if TPB == ApproximateThirdOctaveBands && i == 6
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(ubands3[i-2] - outlbands[i]) +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
end
end
i = length(pbs_combined)
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
# pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-3]/(ubands3[i-3] - lbands3[i-3])*(ubands3[i-3] - outlbands[i]) +
pbs3[i-2] +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
else
@test pbs_combined[i] ≈ (
pbs1[i]/(ubands1[i] - lbands1[i])*(ubands1[i] - outlbands[i]) +
# pbs1[i+1]/(ubands1[i+1] - lbands1[i+1])*(outubands[i] - lbands1[i+1]) +
pbs2[i-1]/(ubands2[i-1] - lbands2[i-1])*(ubands2[i-1] - outlbands[i]) +
pbs2[i]/(ubands2[i] - lbands2[i])*(outubands[i] - lbands2[i]) +
pbs3[i-2]/(ubands3[i-2] - lbands3[i-2])*(ubands3[i-2] - outlbands[i]) +
pbs3[i-1]/(ubands3[i-1] - lbands3[i-1])*(outubands[i] - lbands3[i-1])
)
end
end
end
@testset "non-aligned wide outbands, multiple input spectrums, all same length" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
pbs1 = ProportionalBandSpectrum(rand(length(cbands1)), cbands1)
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
pbs3 = ProportionalBandSpectrum(rand(length(cbands3)), cbands3)
outcbands = TPB{:center}(5, 30, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test all(pbs_combined[1:4] .≈ 0)
i = 5
j = 1
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(outubands[i] - lbands1[j])
)
i = 6
j = 1
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j])
)
i = 7
j = 2
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
for i in 8:11
j += 1
if TPB == ApproximateThirdOctaveBands && j == 6
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
end
i = 12
j = 7
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-3]/(ubands3[j-3] - lbands3[j-3])*(ubands3[j-3] - outlbands[i]) +
pbs3[j-2] +
pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
else
@test pbs_combined[i] ≈ (
pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
i = 13
j = 8
@test pbs_combined[i] ≈ (
# pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
i = 14
j = 9
@test pbs_combined[i] ≈ (
# pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
# pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) #+
# pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
@test all(pbs_combined[15:end] .≈ 0)
end
end
@testset "aligned inbands and outbands, multiple input spectrums, lazy PBS" begin
outcbands = ExactProportionalBands{1}{:center}(5, 30)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
cbands1 = ExactProportionalBands{1}{:center}(11, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
# Find a narrowband frequency spacing that will fit in the first outband.
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[band_start(cbands1) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb_1band = outubands[band_start(cbands1) - band_start(outcbands) + 1]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[band_start(cbands1) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb = outubands[band_end(cbands1) - band_start(outcbands) + 1]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test f_nb[1] > lbands1[1]
@test f_nb[end] < ubands1[end]
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[band_start(cbands1) - band_start(outcbands) + 1]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[band_end(cbands1) - band_start(outcbands) + 1]
msp1 = rand(length(f_nb))
pbs1 = LazyNBProportionalBandSpectrum(f_nb[1], df_nb, msp1, cbands1)
cbands2 = ExactProportionalBands{1}{:center}(12, 16)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
# Find a narrowband frequency spacing that will fit in the second outband.
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[band_start(cbands2) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb_1band = outubands[band_start(cbands2) - band_start(outcbands) + 1]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[band_start(cbands2) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb = outubands[band_end(cbands2) - band_start(outcbands) + 1]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test f_nb[1] > lbands2[1]
@test f_nb[end] < ubands2[end]
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[band_start(cbands2) - band_start(outcbands) + 1]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[band_end(cbands2) - band_start(outcbands) + 1]
msp2 = rand(length(f_nb))
pbs2 = LazyNBProportionalBandSpectrum(f_nb[1], df_nb, msp2, cbands2)
cbands3 = ExactProportionalBands{1}{:center}(13, 16)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
# Find a narrowband frequency spacing that will fit in the second outband.
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[band_start(cbands3) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb_1band = outubands[band_start(cbands3) - band_start(outcbands) + 1]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[band_start(cbands3) - band_start(outcbands) + 1]
freq_max_nb_p_half_df_nb = outubands[band_end(cbands3) - band_start(outcbands) + 1]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test f_nb[1] > lbands3[1]
@test f_nb[end] < ubands3[end]
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[band_start(cbands3) - band_start(outcbands) + 1]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[band_end(cbands3) - band_start(outcbands) + 1]
msp3 = rand(length(f_nb))
pbs3 = LazyNBProportionalBandSpectrum(f_nb[1], df_nb, msp3, cbands3)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
f1_nb = frequency_nb(pbs1)
df1_nb = step(f1_nb)
f1_nb_l = f1_nb .- 0.5*df1_nb
f1_nb_u = f1_nb .+ 0.5*df1_nb
f2_nb = frequency_nb(pbs2)
df2_nb = step(f2_nb)
f2_nb_l = f2_nb .- 0.5*df2_nb
f2_nb_u = f2_nb .+ 0.5*df2_nb
f3_nb = frequency_nb(pbs3)
df3_nb = step(f3_nb)
f3_nb_l = f3_nb .- 0.5*df3_nb
f3_nb_u = f3_nb .+ 0.5*df3_nb
for i in 1:length(pbs_combined)
tol = 1e-6
jstart = searchsortedfirst(f1_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f1_nb_u, outubands[i]+tol)
pbs1_i = sum(msp1[jstart:jend])
jstart = searchsortedfirst(f2_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f2_nb_u, outubands[i]+tol)
pbs2_i = sum(msp2[jstart:jend])
jstart = searchsortedfirst(f3_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f3_nb_u, outubands[i]+tol)
pbs3_i = sum(msp3[jstart:jend])
@test isapprox(pbs_combined[i], pbs1_i + pbs2_i + pbs3_i; atol=1e-12)
end
end
@testset "non-aligned inbands, aligned outbands, multiple input spectrums, lazy PBS" begin
outcbands = ExactProportionalBands{1}{:center}(5, 30)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
# Find a narrowband frequency spacing that will fit in one of the output bands.
istart = 1
iend = length(outcbands)
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[istart]
freq_max_nb_p_half_df_nb_1band = outubands[istart]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[istart]
freq_max_nb_p_half_df_nb = outubands[iend]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[istart]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[iend]
msp1 = rand(length(f_nb))
pbs1 = LazyNBProportionalBandSpectrum(ExactProportionalBands{1}, f_nb[1], df_nb, msp1)
# Find a narrowband frequency spacing that will fit in one of the output bands.
istart = 2
iend = length(outcbands) - 1
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[istart]
freq_max_nb_p_half_df_nb_1band = outubands[istart]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[istart]
freq_max_nb_p_half_df_nb = outubands[iend]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[istart]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[iend]
msp2 = rand(length(f_nb))
pbs2 = LazyNBProportionalBandSpectrum(ExactProportionalBands{3}, f_nb[1], df_nb, msp2)
# Find a narrowband frequency spacing that will fit in one of the output bands.
istart = 3
iend = length(outcbands) - 2
nfreqs_nb_1band = 10
freq_min_nb_m_half_df_nb_1band = outlbands[istart]
freq_max_nb_p_half_df_nb_1band = outubands[istart]
df_nb = (freq_max_nb_p_half_df_nb_1band - freq_min_nb_m_half_df_nb_1band)/(nfreqs_nb_1band + 1)
# Now construct a narrowband frequency that spans the bands I'm interested in.
freq_min_nb_m_half_df_nb = outlbands[istart]
freq_max_nb_p_half_df_nb = outubands[iend]
n = Int(round((freq_max_nb_p_half_df_nb - freq_min_nb_m_half_df_nb)/df_nb)) + 1
f_lu = range(freq_min_nb_m_half_df_nb, freq_max_nb_p_half_df_nb; length=n)
f_nb = 0.5.*(f_lu[2:end] .+ f_lu[1:end-1])
@test step(f_nb) ≈ df_nb
@test (f_nb[1] - 0.5*step(f_nb)) ≈ outlbands[istart]
@test (f_nb[end] + 0.5*step(f_nb)) ≈ outubands[iend]
msp3 = rand(length(f_nb))
pbs3 = LazyNBProportionalBandSpectrum(ExactProportionalBands{12}, f_nb[1], df_nb, msp3)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
f1_nb = frequency_nb(pbs1)
df1_nb = step(f1_nb)
f1_nb_l = f1_nb .- 0.5*df1_nb
f1_nb_u = f1_nb .+ 0.5*df1_nb
f2_nb = frequency_nb(pbs2)
df2_nb = step(f2_nb)
f2_nb_l = f2_nb .- 0.5*df2_nb
f2_nb_u = f2_nb .+ 0.5*df2_nb
f3_nb = frequency_nb(pbs3)
df3_nb = step(f3_nb)
f3_nb_l = f3_nb .- 0.5*df3_nb
f3_nb_u = f3_nb .+ 0.5*df3_nb
for i in 1:length(pbs_combined)
tol = 1e-6
jstart = searchsortedfirst(f1_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f1_nb_u, outubands[i]+tol)
pbs1_i = sum(msp1[jstart:jend])
jstart = searchsortedfirst(f2_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f2_nb_u, outubands[i]+tol)
pbs2_i = sum(msp2[jstart:jend])
jstart = searchsortedfirst(f3_nb_l, outlbands[i]-tol)
jend = searchsortedlast(f3_nb_u, outubands[i]+tol)
pbs3_i = sum(msp3[jstart:jend])
@test isapprox(pbs_combined[i], pbs1_i + pbs2_i + pbs3_i; rtol=1e-12)
end
end
end
@testset "proportional bands with time" begin
@testset "no time" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands,
ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
# Create some random msp corresponding to the proportional bands defined by lbands1, cbands1, ubands1.
nfreq_nb = 800
freq_min_nb = lbands1[1] + 0.1*(ubands1[1] - lbands1[1])
freq_max_nb = ubands1[end] - 0.1*(ubands1[end] - lbands1[end])
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
@test (freq_min_nb - 0.5*df_nb) > lbands1[1]
@test (freq_max_nb + 0.5*df_nb) < ubands1[end]
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
msp1 = rand(length(f_nb))
pbs1 = LazyNBProportionalBandSpectrum(TPB, f_nb[1], df_nb, msp1)
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
# Create some random msp corresponding to the proportional bands defined by lbands2, cbands2, ubands2.
nfreq_nb = 800
freq_min_nb = lbands2[1] + 0.1*(ubands2[1] - lbands2[1])
freq_max_nb = ubands2[end] - 0.1*(ubands2[end] - lbands2[end])
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
@test (freq_min_nb - 0.5*df_nb) > lbands2[1]
@test (freq_max_nb + 0.5*df_nb) < ubands2[end]
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
msp2 = rand(length(f_nb))
pbs2 = LazyNBProportionalBandSpectrum(TPB, f_nb[1], df_nb, msp2, freq_scaler(cbands2))
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
# Create some random msp corresponding to the proportional bands defined by lbands3, cbands3, ubands3.
nfreq_nb = 800
freq_min_nb = lbands3[1] + 0.1*(ubands3[1] - lbands3[1])
freq_max_nb = ubands3[end] - 0.1*(ubands3[end] - lbands3[end])
df_nb = (freq_max_nb - freq_min_nb)/(nfreq_nb - 1)
@test (freq_min_nb - 0.5*df_nb) > lbands3[1]
@test (freq_max_nb + 0.5*df_nb) < ubands3[end]
f_nb = freq_min_nb .+ (0:(nfreq_nb-1)).*df_nb
msp3 = rand(length(f_nb))
pbs3 = LazyNBProportionalBandSpectrum(TPB, f_nb[1], df_nb, msp3, freq_scaler(cbands3))
T = time_period([pbs1, pbs2, pbs3])
@test T ≈ -Inf
@test time_scaler(pbs1, T) ≈ 1
@test time_scaler(pbs2, T) ≈ 1
@test time_scaler(pbs3, T) ≈ 1
end
end
@testset "with time" begin
@testset "all same time step" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
t1 = 2.0
dt1 = 0.2
pbs1 = ProportionalBandSpectrumWithTime(rand(length(cbands1)), cbands1, dt1, t1)
@test has_observer_time(pbs1) == true
@test observer_time(pbs1) ≈ t1
@test timestep(pbs1) ≈ dt1
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
t2 = 2.1
dt2 = 0.2
pbs2 = ProportionalBandSpectrumWithTime(rand(length(cbands2)), cbands2, dt2, t2)
@test has_observer_time(pbs2) == true
@test observer_time(pbs2) ≈ t2
@test timestep(pbs2) ≈ dt2
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
t3 = 2.3
dt3 = 0.2
pbs3 = ProportionalBandSpectrumWithTime(rand(length(cbands3)), cbands3, dt3, t3)
@test has_observer_time(pbs3) == true
@test observer_time(pbs3) ≈ t3
@test timestep(pbs3) ≈ dt3
T = time_period([pbs1, pbs2, pbs3])
@test T ≈ t3 - t1
tscaler1 = dt1/T
tscaler2 = dt2/T
tscaler3 = dt3/T
@test time_scaler(pbs1, T) ≈ tscaler1
@test time_scaler(pbs2, T) ≈ tscaler2
@test time_scaler(pbs3, T) ≈ tscaler3
outcbands = TPB{:center}(5, 30, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test all(pbs_combined[1:4] .≈ 0)
i = 5
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(outubands[i] - lbands1[j])
)
i = 6
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j])
)
i = 7
j = 2
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
for i in 8:11
j += 1
if TPB == ApproximateThirdOctaveBands && j == 6
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
end
i = 12
j = 7
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-3]/(ubands3[j-3] - lbands3[j-3])*(ubands3[j-3] - outlbands[i]) +
tscaler3*pbs3[j-2] +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
i = 13
j = 8
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
i = 14
j = 9
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
# tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) #+
# tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
@test all(pbs_combined[15:end] .≈ 0)
end
end
@testset "different time steps" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
t1 = 2.0
dt1 = 0.2
pbs1 = ProportionalBandSpectrumWithTime(rand(length(cbands1)), cbands1, dt1, t1)
@test has_observer_time(pbs1) == true
@test observer_time(pbs1) ≈ t1
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
t2 = 2.1
dt2 = 0.3
pbs2 = ProportionalBandSpectrumWithTime(rand(length(cbands2)), cbands2, dt2, t2)
@test has_observer_time(pbs2) == true
@test observer_time(pbs2) ≈ t2
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
t3 = 2.3
dt3 = 0.4
pbs3 = ProportionalBandSpectrumWithTime(rand(length(cbands3)), cbands3, dt3, t3)
@test has_observer_time(pbs3) == true
@test observer_time(pbs3) ≈ t3
T = time_period([pbs1, pbs2, pbs3])
@test T ≈ t3 - t1
tscaler1 = dt1/T
tscaler2 = dt2/T
tscaler3 = dt3/T
@test time_scaler(pbs1, T) ≈ tscaler1
@test time_scaler(pbs2, T) ≈ tscaler2
@test time_scaler(pbs3, T) ≈ tscaler3
outcbands = TPB{:center}(5, 30, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test all(pbs_combined[1:4] .≈ 0)
i = 5
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(outubands[i] - lbands1[j])
)
i = 6
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j])
)
i = 7
j = 2
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
for i in 8:11
j += 1
if TPB == ApproximateThirdOctaveBands && j == 6
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
end
i = 12
j = 7
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-3]/(ubands3[j-3] - lbands3[j-3])*(ubands3[j-3] - outlbands[i]) +
tscaler3*pbs3[j-2] +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
i = 13
j = 8
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
i = 14
j = 9
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
# tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) #+
# tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
@test all(pbs_combined[15:end] .≈ 0)
end
end
@testset "mix of with and without time" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
t1 = 2.0
dt1 = 0.2
pbs1 = ProportionalBandSpectrumWithTime(rand(length(cbands1)), cbands1, dt1, t1)
@test has_observer_time(pbs1) == true
@test observer_time(pbs1) ≈ t1
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
# t2 = 2.1
# dt2 = 0.3
pbs2 = ProportionalBandSpectrum(rand(length(cbands2)), cbands2)
@test has_observer_time(pbs2) == false
@test observer_time(pbs2) ≈ 0
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
t3 = 2.3
dt3 = 0.4
pbs3 = ProportionalBandSpectrumWithTime(rand(length(cbands3)), cbands3, dt3, t3)
@test has_observer_time(pbs3) == true
@test observer_time(pbs3) ≈ t3
T = time_period([pbs1, pbs2, pbs3])
@test T ≈ t3 - t1
tscaler1 = dt1/T
tscaler2 = 1.0
tscaler3 = dt3/T
@test time_scaler(pbs1, T) ≈ tscaler1
@test time_scaler(pbs2, T) ≈ tscaler2
@test time_scaler(pbs3, T) ≈ tscaler3
outcbands = TPB{:center}(5, 30, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine([pbs1, pbs2, pbs3], outcbands)
@test all(pbs_combined[1:4] .≈ 0)
i = 5
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(outubands[i] - lbands1[j])
)
i = 6
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j])
)
i = 7
j = 2
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
for i in 8:11
j += 1
if TPB == ApproximateThirdOctaveBands && j == 6
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
end
i = 12
j = 7
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-3]/(ubands3[j-3] - lbands3[j-3])*(ubands3[j-3] - outlbands[i]) +
tscaler3*pbs3[j-2] +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
end
i = 13
j = 8
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
i = 14
j = 9
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
# tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) #+
# tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
)
@test all(pbs_combined[15:end] .≈ 0)
end
end
@testset "different time steps, two dimensional arrays" begin
for TPB in [ExactProportionalBands{3}, ExactProportionalBands{1}, ExactProportionalBands{12},
ApproximateThirdOctaveBands, ApproximateOctaveBands]
cbands1 = TPB{:center}(10, 16)
lbands1 = lower_bands(cbands1)
ubands1 = upper_bands(cbands1)
t1 = 2.0
dt1 = 0.2
pbs1 = ProportionalBandSpectrumWithTime(rand(length(cbands1)), cbands1, dt1, t1)
@test has_observer_time(pbs1) == true
@test observer_time(pbs1) ≈ t1
scaler = cbands1[2]/cbands1[1]
cbands2 = TPB{:center}(10, 16, scaler)
lbands2 = lower_bands(cbands2)
ubands2 = upper_bands(cbands2)
t2 = 2.1
dt2 = 0.3
pbs2 = ProportionalBandSpectrumWithTime(rand(length(cbands2)), cbands2, dt2, t2)
@test has_observer_time(pbs2) == true
@test observer_time(pbs2) ≈ t2
scaler = cbands1[3]/cbands1[1]
cbands3 = TPB{:center}(10, 16, scaler)
lbands3 = lower_bands(cbands3)
ubands3 = upper_bands(cbands3)
t3 = 2.3
dt3 = 0.4
pbs3 = ProportionalBandSpectrumWithTime(rand(length(cbands3)), cbands3, dt3, t3)
@test has_observer_time(pbs3) == true
@test observer_time(pbs3) ≈ t3
cbands4 = TPB{:center}(10, 16)
lbands4 = lower_bands(cbands1)
ubands4 = upper_bands(cbands1)
t4 = 2.0
dt4 = 0.2
pbs4 = ProportionalBandSpectrumWithTime(rand(length(cbands4)), cbands4, dt4, t4)
@test has_observer_time(pbs4) == true
@test observer_time(pbs4) ≈ t4
scaler = cbands4[2]/cbands4[1]
cbands5 = TPB{:center}(10, 16, scaler)
lbands5 = lower_bands(cbands5)
ubands5 = upper_bands(cbands5)
t5 = 5.3
dt5 = 0.6
pbs5 = ProportionalBandSpectrumWithTime(rand(length(cbands5)), cbands5, dt5, t5)
@test has_observer_time(pbs5) == true
@test observer_time(pbs5) ≈ t5
scaler = cbands4[3]/cbands4[1]
cbands6 = TPB{:center}(10, 16, scaler)
lbands6 = lower_bands(cbands6)
ubands6 = upper_bands(cbands6)
t6 = 2.1
dt6 = 0.7
pbs6 = ProportionalBandSpectrumWithTime(rand(length(cbands6)), cbands6, dt6, t6)
@test has_observer_time(pbs6) == true
@test observer_time(pbs6) ≈ t6
pbss = hcat([pbs1, pbs2, pbs3], [pbs4, pbs5, pbs6])
@test size(pbss) == (3, 2)
# time period for column 1.
Tc1 = time_period(pbss[:, 1])
@test Tc1 ≈ t3 - t1
# time period for column 2.
Tc2 = time_period(pbss[:, 2])
@test Tc2 ≈ t5 - t4
tscaler1 = dt1/Tc1
tscaler2 = dt2/Tc1
tscaler3 = dt3/Tc1
tscaler4 = dt4/Tc2
tscaler5 = dt5/Tc2
tscaler6 = dt6/Tc2
@test time_scaler(pbs1, Tc1) ≈ tscaler1
@test time_scaler(pbs2, Tc1) ≈ tscaler2
@test time_scaler(pbs3, Tc1) ≈ tscaler3
@test time_scaler(pbs4, Tc2) ≈ tscaler4
@test time_scaler(pbs5, Tc2) ≈ tscaler5
@test time_scaler(pbs6, Tc2) ≈ tscaler6
outcbands = TPB{:center}(5, 30, 1.05)
outlbands = lower_bands(outcbands)
outubands = upper_bands(outcbands)
pbs_combined = combine(pbss, outcbands)
@test all(pbs_combined[1:4] .≈ 0)
i = 5
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(outubands[i] - lbands1[j]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(outubands[i] - lbands4[j])
)
i = 6
j = 1
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j])
)
i = 7
j = 2
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
for i in 8:11
j += 1
if TPB == ApproximateThirdOctaveBands && j == 6
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(outubands[i] - outlbands[i]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-2]/(ubands6[j-2] - lbands6[j-2])*(outubands[i] - outlbands[i])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-2]/(ubands6[j-2] - lbands6[j-2])*(ubands6[j-2] - outlbands[i]) +
tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
end
end
i = 12
j = 7
if TPB == ApproximateThirdOctaveBands
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-3]/(ubands3[j-3] - lbands3[j-3])*(ubands3[j-3] - outlbands[i]) +
tscaler3*pbs3[j-2] +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
# tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-3]/(ubands6[j-3] - lbands6[j-3])*(ubands6[j-3] - outlbands[i]) +
tscaler6*pbs6[j-2] +
tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
else
@test pbs_combined[i] ≈ (
tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1]) +
tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
# tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-2]/(ubands6[j-2] - lbands6[j-2])*(ubands6[j-2] - outlbands[i]) +
tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
end
i = 13
j = 8
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1]) +
# tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
# tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
# tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-2]/(ubands6[j-2] - lbands6[j-2])*(ubands6[j-2] - outlbands[i]) +
tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
i = 14
j = 9
@test pbs_combined[i] ≈ (
# tscaler1*pbs1[j]/(ubands1[j] - lbands1[j])*(ubands1[j] - outlbands[i]) +
# tscaler1*pbs1[j+1]/(ubands1[j+1] - lbands1[j+1])*(outubands[i] - lbands1[j+1]) +
# tscaler2*pbs2[j-1]/(ubands2[j-1] - lbands2[j-1])*(ubands2[j-1] - outlbands[i]) +
# tscaler2*pbs2[j]/(ubands2[j] - lbands2[j])*(outubands[i] - lbands2[j]) +
tscaler3*pbs3[j-2]/(ubands3[j-2] - lbands3[j-2])*(ubands3[j-2] - outlbands[i]) +
# tscaler3*pbs3[j-1]/(ubands3[j-1] - lbands3[j-1])*(outubands[i] - lbands3[j-1])
# tscaler4*pbs4[j]/(ubands4[j] - lbands4[j])*(ubands4[j] - outlbands[i]) +
# tscaler4*pbs4[j+1]/(ubands4[j+1] - lbands4[j+1])*(outubands[i] - lbands4[j+1]) +
# tscaler5*pbs5[j-1]/(ubands5[j-1] - lbands5[j-1])*(ubands5[j-1] - outlbands[i]) +
# tscaler5*pbs5[j]/(ubands5[j] - lbands5[j])*(outubands[i] - lbands5[j]) +
tscaler6*pbs6[j-2]/(ubands6[j-2] - lbands6[j-2])*(ubands6[j-2] - outlbands[i]) #+
# tscaler6*pbs6[j-1]/(ubands6[j-1] - lbands6[j-1])*(outubands[i] - lbands6[j-1])
)
@test all(pbs_combined[15:end] .≈ 0)
# Transpose to switch the time axis and compare to the original.
time_axis = 2
pbss_t = permutedims(pbss, (2, 1))
pbs_combined_t = combine(pbss_t, outcbands, time_axis)
@test all(pbs_combined_t .≈ pbs_combined)
end
end
end
end
end
@testset "OASPL" begin
@testset "Parseval's theorem" begin
fr(t) = 2*cos(1*2*pi*t) + 4*cos(2*2*pi*t) + 6*cos(3*2*pi*t) + 8*cos(4*2*pi*t)
fi(t) = 2*sin(1*2*pi*t) + 4*sin(2*2*pi*t) + 6*sin(3*2*pi*t) + 8*sin(4*2*pi*t)
f(t) = fr(t) + fi(t)
for T in [1.0, 2.0]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
amp = MSPSpectrumAmplitude(ap)
oaspl_time_domain = OASPL(ap)
oaspl_freq_domain = OASPL(amp)
@test oaspl_freq_domain ≈ oaspl_time_domain
end
end
end
@testset "function with know mean squared pressure" begin
f(t) = 4*cos(2*2*pi*t)
# What's the mean-square of that function? I think the mean-square of
#
# f(t) = a*cos(2*pi*k*t)
#
# is a^2/2. So
for T in [1.0, 2.0]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
msp_expected = 4^2/2
oaspl_expected = 10*log10(msp_expected/p_ref^2)
ap = PressureTimeHistory(p, dt)
amp = MSPSpectrumAmplitude(ap)
oaspl_time_domain = OASPL(ap)
oaspl_freq_domain = OASPL(amp)
@test oaspl_time_domain ≈ oaspl_expected
@test oaspl_freq_domain ≈ oaspl_expected
end
end
end
@testset "ANOPP2 comparison" begin
fr(t) = 2*cos(1*2*pi*t) + 4*cos(2*2*pi*t) + 6*cos(3*2*pi*t) + 8*cos(4*2*pi*t)
fi(t) = 2*sin(1*2*pi*t) + 4*sin(2*2*pi*t) + 6*sin(3*2*pi*t) + 8*sin(4*2*pi*t)
f(t) = fr(t) + fi(t)
oaspl_a2 = 114.77121254719663
for T in [1, 2]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
oaspl = OASPL(ap)
@test isapprox(oaspl, oaspl_a2, atol=1e-12)
end
end
end
end
@testset "A-weighting" begin
@testset "ANOPP2 comparison" begin
fr(t) = 2*cos(1e3*2*pi*t) + 4*cos(2e3*2*pi*t) + 6*cos(3e3*2*pi*t) + 8*cos(4e3*2*pi*t)
fi(t) = 2*sin(1e3*2*pi*t) + 4*sin(2e3*2*pi*t) + 6*sin(3e3*2*pi*t) + 8*sin(4e3*2*pi*t)
f(t) = fr(t) + fi(t)
nbs_A_a2 = Dict(
(1, 19)=>[0.0, 4.000002539852234, 21.098932320239594, 47.765983983028875, 79.89329612328712, 6.904751939255882e-29, 3.438658433244509e-29, 3.385314868430938e-29, 4.3828241499153937e-29, 3.334042101984942e-29],
(1, 20)=>[0.0, 4.000002539852235, 21.09893232023959, 47.76598398302881, 79.89329612328707, 2.4807405180395723e-29, 3.319538256490389e-29, 1.1860147288201262e-29, 1.5894684286161776e-29, 9.168407004474984e-30, 1.4222371367588704e-31],
(2, 19)=>[0.0, 4.137956256384954e-30, 4.00000253985224, 2.1118658029791977e-29, 21.098932320239633, 3.4572972532471526e-29, 47.765983983028924, 1.2630134771692395e-28, 79.89329612328716, 8.284388048614786e-29],
(2, 20)=>[0.0, 1.2697180778261437e-30, 4.000002539852251, 4.666290179209354e-29, 21.098932320239584, 3.4300386105764425e-29, 47.76598398302884, 6.100255343320017e-29, 79.89329612328727, 1.801023480958872e-28, 6.029776808298499e-29],
)
for T_ms in [1, 2]
for n in [19, 20]
dt = T_ms*1e-3/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
nbs = MSPSpectrumAmplitude(ap)
# nbs_A = W_A(nbs)
# amp_A = W_A(nbs)
amp_A = W_A.(frequency(nbs)).*nbs
# ANOPP2.a2_aa_weight(ANOPP2.a2_aa_a_weight, ANOPP2.a2_aa_nbs_enum, ANOPP2.a2_aa_msp, freq, nbs_A_a2)
# Wish I could get this to match more closely. But the weighting
# function looks pretty nasty numerically (frequencies raised to the
# 4th power, and one of the coefficients is about 2.24e16).
# @show T_ms n amp_A nbs_A_a2[(T_ms, n)]
@test all(isapprox.(amp_A, nbs_A_a2[(T_ms, n)], atol=1e-6))
end
end
end
@testset "1kHz check" begin
# A 1kHz signal should be unaffected by A-weighting.
fr(t) = 2*cos(1e3*2*pi*t)
fi(t) = 2*sin(1e3*2*pi*t)
f(t) = fr(t) + fi(t)
for T_ms in [1, 2]
for n in [19, 20]
dt = T_ms*1e-3/n
t = (0:n-1).*dt
p = f.(t)
ap = PressureTimeHistory(p, dt)
nbs = MSPSpectrumAmplitude(ap)
# amp = amplitude(nbs)
# nbs_A = W_A(nbs)
# amp_A = W_A(nbs)
amp_A = W_A.(frequency(nbs)).*nbs
# This is lame. Should be able to get this to match better,
# right?
@test all(isapprox.(amp_A, nbs, atol=1e-5))
end
end
end
end
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 6152 | module GetTestData
using ANOPP2
using JLD2
include("test_functions.jl")
function gen_nbs()
a2_nbs_freq = Dict{Tuple{Int, Int}, Vector{Float64}}()
a2_nbs_amp = Dict{Tuple{Int, Int}, Vector{Float64}}()
a2_nbs_phase = Dict{Tuple{Int, Int}, Vector{Float64}}()
for T in [1, 2]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = apth_for_nbs.(t)
t_a2 = range(0, T, length=n) |> collect # This needs to be an array, since we'll eventually be passing it to C/Fortran via ccall.
if mod(n, 2) == 0
p_a2 = p
else
p_a2 = apth_for_nbs.(t_a2)
end
freq_a2, nbs_msp_a2, nbs_phase_a2 = ANOPP2.a2jl_aa_nbs(ANOPP2.a2_aa_pa, ANOPP2.a2_aa_pa, t_a2, p_a2)
a2_nbs_freq[T, n] = freq_a2
a2_nbs_amp[T, n] = nbs_msp_a2
a2_nbs_phase[T, n] = nbs_phase_a2
end
end
return Dict("a2_nbs_freq"=>a2_nbs_freq,
"a2_nbs_amp"=>a2_nbs_amp,
"a2_nbs_phase"=>a2_nbs_phase)
end
function gen_psd()
a2_psd_freq = Dict{Tuple{Int, Int}, Vector{Float64}}()
a2_psd_amp = Dict{Tuple{Int, Int}, Vector{Float64}}()
a2_psd_phase = Dict{Tuple{Int, Int}, Vector{Float64}}()
for T in [1, 2]
for n in [19, 20]
dt = T/n
t = (0:n-1).*dt
p = apth_for_nbs.(t)
t_a2 = range(0, T, length=n) |> collect # This needs to be an array, since we'll eventually be passing it to C/Fortran via ccall.
if mod(n, 2) == 0
p_a2 = p
else
p_a2 = apth_for_nbs.(t_a2)
end
freq_a2, psd_msp_a2, psd_phase_a2 = ANOPP2.a2jl_aa_psd(ANOPP2.a2_aa_pa, ANOPP2.a2_aa_pa, t_a2, p_a2)
a2_psd_freq[T, n] = freq_a2
a2_psd_amp[T, n] = psd_msp_a2
a2_psd_phase[T, n] = psd_phase_a2
end
end
return Dict("a2_psd_freq"=>a2_psd_freq,
"a2_psd_amp"=>a2_psd_amp,
"a2_psd_phase"=>a2_psd_phase)
end
function gen_pbs()
# Need a PSD to pass to the routine.
freq0 = 1000.0
T = 20/freq0
t0 = 0.13
n = 128
dt = T/n
t = (0:n-1).*dt
t_a2 = range(0, T, length=n) |> collect # This needs to be an array, since we'll eventually be passing it to C/Fortran via ccall.
if mod(n, 2) == 0
p_a2 = apth_for_pbs.(freq0, t)
else
p_a2 = apth_for_pbs.(freq0, t_a2)
end
freq_a2, psd_msp_a2, psd_phase_a2 = ANOPP2.a2jl_aa_psd(ANOPP2.a2_aa_pa, ANOPP2.a2_aa_pa, t_a2, p_a2)
pbs_freq, pbs = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_msp_a2, 3.0, ANOPP2.a2_aa_exact)
return Dict("a2_pbs_freq"=>pbs_freq, "a2_pbs"=>pbs)
end
function gen_pbs()
# Need a PSD to pass to the routine.
freq0 = 1000.0
T = 20/freq0
t0 = 0.13
n = 128
dt = T/n
t = (0:n-1).*dt
t_a2 = range(0, T, length=n) |> collect # This needs to be an array, since we'll eventually be passing it to C/Fortran via ccall.
if mod(n, 2) == 0
p_a2 = apth_for_pbs.(freq0, t)
else
p_a2 = apth_for_pbs.(freq0, t_a2)
end
freq_a2, psd_msp_a2, psd_phase_a2 = ANOPP2.a2jl_aa_psd(ANOPP2.a2_aa_pa, ANOPP2.a2_aa_pa, t_a2, p_a2)
@show freq_a2
@show psd_msp_a2
pbs_freq, pbs = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_msp_a2, 3.0, ANOPP2.a2_aa_exact)
return Dict("a2_pbs_freq"=>pbs_freq, "a2_pbs"=>pbs)
end
function gen_pbs2()
n_freq = 2232
psd_freq = 45.0 .+ 5 .* (0:n_freq-1)
df = psd_freq[2] - psd_freq[1]
msp_amp = 20 .+ 10 .* (1:n_freq)./n_freq
# psd_amp = msp_amp ./ df
freq_a2 = psd_freq |> collect
# psd_msp_a2 = psd_amp |> collect
msp_amp_a2 = msp_amp |> collect
pbs_freq, pbs = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_nbs, ANOPP2.a2_aa_msp, freq_a2, msp_amp_a2, 3.0, ANOPP2.a2_aa_exact)
return Dict("a2_pbs_freq"=>pbs_freq, "a2_pbs"=>pbs)
end
function gen_pbs3()
nfreq = 800
freq_min_nb = 55.0
freq_max_nb = 1950.0
df = (freq_max_nb - freq_min_nb)/(nfreq - 1)
psd_freq = freq_min_nb .+ (0:nfreq-1).*df
psd_amp = psd_func.(psd_freq)
freq_a2 = psd_freq |> collect
psd_amp_a2 = psd_amp |> collect
pbs_freq, pbs = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_amp_a2, 3.0, ANOPP2.a2_aa_exact)
return Dict("a2_pbs_freq"=>pbs_freq, "a2_pbs"=>pbs)
end
psd_func_pbs4(freq) = 3*freq/1e1 + (4e-1)*(freq/1e1)^2 + (5e-2)*(freq/1e1)^3 + (6e-3)*(freq/1e1)^4
psd_func_pbs5(freq) = 100*(sin(2*pi/(100)*freq) + 2)
function gen_pbs4()
freq_min_nb = 1e-2
freq_max_nb = 1e5
# nfreq = 100000
# df = (freq_max_nb - freq_min_nb)/(nfreq - 1)
# psd_freq = freq_min_nb .+ (0:nfreq-1).*df
df = 1e-3
psd_freq = freq_min_nb:df:freq_max_nb
@show psd_freq length(psd_freq)
psd_amp = psd_func_pbs5.(psd_freq)
freq_a2 = psd_freq |> collect
psd_amp_a2 = psd_amp |> collect
pbs_freq_exact, pbs_exact = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_amp_a2, 1.0, ANOPP2.a2_aa_exact)
pbs_freq_approx, pbs_approx = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_amp_a2, 1.0, ANOPP2.a2_aa_approximate)
pbs_freq_pref, pbs_pref = ANOPP2.a2jl_aa_pbs(ANOPP2.a2_aa_psd, ANOPP2.a2_aa_msp, freq_a2, psd_amp_a2, 1.0, ANOPP2.a2_aa_preferred)
return Dict("a2_pbs_freq_exact"=>pbs_freq_exact, "a2_pbs_exact"=>pbs_exact,
"a2_pbs_freq_approx"=>pbs_freq_approx, "a2_pbs_approx"=>pbs_approx,
"a2_pbs_freq_pref"=>pbs_freq_pref, "a2_pbs_pref"=>pbs_pref)
end
function main()
# nbs_data = gen_nbs()
# save(joinpath(@__DIR__, "nbs-new.jld2"), nbs_data)
# psd_data = gen_psd()
# save(joinpath(@__DIR__, "psd-new.jld2"), psd_data)
# pbs_data = gen_pbs()
# save(joinpath(@__DIR__, "pbs-new.jld2"), pbs_data)
# pbs3_data = gen_pbs3()
# save(joinpath(@__DIR__, "pbs3-new.jld2"), pbs3_data)
pbs4_data = gen_pbs4()
@show pbs4_data
save(joinpath(@__DIR__, "pbs4-new.jld2"), pbs4_data)
return nothing
end
end # module
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | code | 712 | function apth_for_nbs(t)
fr = 2*cos(1*2*pi*t) + 4*cos(2*2*pi*t) + 6*cos(3*2*pi*t) + 8*cos(4*2*pi*t)
fi = 2*sin(1*2*pi*t) + 4*sin(2*2*pi*t) + 6*sin(3*2*pi*t) + 8*sin(4*2*pi*t)
return fr + fi
end
function apth_for_pbs(freq0, t)
return 6 + 8*cos(1*2*pi*freq0*t + 0.2) + 2.5*cos(2*2*pi*freq0*t - 3.0) + 9*cos(3*2*pi*freq0*t + 3.1)
end
psd_func(freq) = 3*freq/1e3 + (4e-1)*(freq/1e3)^2 + (5e-2)*(freq/1e3)^3 + (6e-3)*(freq/1e3)^4
psd_func_int(freq_l, freq_r) = (((1/2)*3*(freq_r/1e3)^2 + (1/3)*(4e-1)*(freq_r/1e3)^3 + (1/4)*(5e-2)*(freq_r/1e3)^4 + (1/5)*(6e-3)*(freq_r/1e3)^5) - ((1/2)*3*(freq_l/1e3)^2 + (1/3)*(4e-1)*(freq_l/1e3)^3 + (1/4)*(5e-2)*(freq_l/1e3)^4 + (1/5)*(6e-3)*(freq_l/1e3)^5))*1e3
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 934 | [](https://github.com/OpenMDAO/AcousticMetrics.jl/actions/workflows/test.yaml)
[](https://OpenMDAO.github.io/AcousticMetrics.jl/dev)
# Introduction
AcousticMetrics.jl is a Julia package for computing various metrics useful in acoustics.
Currently implemented metrics include:
* Various narrowband spectra
* Pressure amplitude
* Mean-squared pressure amplitude (MSP)
* Power Spectral Density (PSD)
* Phase
* Proportional band spectra
* Approximate octave and third-octave spectra
* Exact proportional spectra of any octave fraction > 0.
* Lazy representations of proportional band spectra constructed from either other narrowband or proportional band spectra
* Integrated metrics
* Unweighted and A-weighted Overall Sound Pressure Level (OASPL)
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 2145 | ```@meta
CurrentModule = AMDocs
```
# API Reference
## Fourier Transforms
```@docs
AcousticMetrics.rfft!
AcousticMetrics.irfft!
```
## Pressure Time History
```@docs
AbstractPressureTimeHistory
PressureTimeHistory
AcousticMetrics.pressure
AcousticMetrics.inputlength
AcousticMetrics.timestep(pth::AbstractPressureTimeHistory)
AcousticMetrics.starttime(pth::AbstractPressureTimeHistory)
AcousticMetrics.time
```
## Narrowband Metrics
```@docs
AbstractNarrowbandSpectrum
AcousticMetrics.halfcomplex
AcousticMetrics.timestep(sm::AbstractNarrowbandSpectrum)
AcousticMetrics.starttime(sm::AbstractNarrowbandSpectrum)
AcousticMetrics.samplerate
AcousticMetrics.frequency
AcousticMetrics.frequencystep
AcousticMetrics.istonal
PressureSpectrumAmplitude
PressureSpectrumPhase
MSPSpectrumAmplitude
MSPSpectrumPhase
PowerSpectralDensityAmplitude
PowerSpectralDensityPhase
```
### Proportional Bands and Proportional Band Spectra
```@docs
AbstractProportionalBands
AcousticMetrics.octave_fraction
AcousticMetrics.lower_center_upper
AcousticMetrics.freq_scaler
AcousticMetrics.band_start
AcousticMetrics.band_end
AcousticMetrics.lower_bands
AcousticMetrics.upper_bands
AcousticMetrics.center_bands
AcousticMetrics.cband_number
ExactProportionalBands
ExactOctaveCenterBands
ExactOctaveLowerBands
ExactOctaveUpperBands
ExactThirdOctaveCenterBands
ExactThirdOctaveLowerBands
ExactThirdOctaveUpperBands
ApproximateThirdOctaveBands
ApproximateThirdOctaveCenterBands
ApproximateThirdOctaveLowerBands
ApproximateThirdOctaveUpperBands
ApproximateOctaveBands
ApproximateOctaveCenterBands
ApproximateOctaveLowerBands
ApproximateOctaveUpperBands
AbstractProportionalBandSpectrum
AcousticMetrics.has_observer_time
AcousticMetrics.observer_time
AcousticMetrics.timestep(pbs::AbstractProportionalBandSpectrum)
AcousticMetrics.amplitude
AcousticMetrics.time_period
AcousticMetrics.time_scaler
LazyNBProportionalBandSpectrum
AcousticMetrics.frequency_nb
AcousticMetrics.lazy_pbs
ProportionalBandSpectrum
LazyPBSProportionalBandSpectrum
ProportionalBandSpectrumWithTime
AcousticMetrics.combine
```
## Weighting
```@docs
W_A
```
## Integrated Metrics
```@docs
OASPL
```
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 1397 | # Developer Notes
## CompatHelper.jl, Running Tests, and Signing Commits
CompatHelper.jl will automatically look for new versions of AcousticMetrics.jl's dependencies and, if it finds any breaking versions, open PRs with changes to AcousticMetrics.jl's `Project.toml` to incorporate the new versions.
But!
The PR won't automatically run the GitHub Action tests: https://github.com/peter-evans/create-pull-request/blob/main/docs/concepts-guidelines.md#triggering-further-workflow-runs
A workaround is to manually close and immediately re-open the PR, which will run the tests and isn't too much work.
The next problem: commits created by CompatHelper.jl/the github-actions bot aren't signed, and AcousticMetrics.jl is set up to require signed commits when merging into the `main` branch.
So, what to do?
Check out the CompatHelper.jl PR locally, manually sign the commits, then submit a new PR with the freshly-signed commits using this procedure:
* First, check the CompatHelper.jl PR locally: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/checking-out-pull-requests-locally?tool=cli
* Next, manually sign the CompatHelper.jl commit using git rebase: https://superuser.com/questions/397149/can-you-gpg-sign-old-commits#
* Then push the branch with the newly signed commits to my fork, and merge
* Close the CompatHelper.jl PR :-/
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 693 | ```@meta
CurrentModule = AMDocs
```
# Introduction
AcousticMetrics.jl is a Julia package for computing various metrics useful in acoustics.
Currently implemented metrics include:
* Various narrowband spectra
* Pressure amplitude
* Mean-squared pressure amplitude (MSP)
* Power Spectral Density (PSD)
* Phase
* Proportional band spectra
* Approximate octave and third-octave spectra
* Exact proportional spectra of any octave fraction integer > 0.
* Lazy representations of proportional band spectra constructed from either narrowband or proportional band spectra
* Integrated metrics
* Unweighted and A-weighted Overall Sound Pressure Level (OASPL)
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 1651 | ```@meta
CurrentModule = AMDocs
```
# Software Quality Assurance
## Tests
AcousticMetrics.jl uses the usual Julia testing framework to implement and run tests.
The tests can be run locally after installing AcousticMetrics.jl, and are also run automatically on GitHub Actions.
To run the tests locally, from the Julia REPL, type `]` to enter the Pkg prompt, then
```julia-repl
(docs) pkg> test AcousticMetrics
Testing AcousticMetrics
Test Summary: | Pass Total Time
Fourier transforms | 16 16 9.0s
Test Summary: | Pass Total Time
Pressure Spectrum | 108 108 1.7s
Test Summary: | Pass Total Time
Mean-squared Pressure Spectrum | 88 88 8.0s
Test Summary: | Pass Total Time
Power Spectral Density | 88 88 0.9s
Test Summary: | Pass Total Time
Proportional Band Spectrum | 1066 1066 5.3s
Test Summary: | Pass Total Time
OASPL | 16 16 0.3s
Test Summary: | Pass Total Time
A-weighting | 8 8 0.5s
Testing AcousticMetrics tests passed
(docs) pkg>
```
(The output associated with installing all the dependencies the tests need isn't shown above.)
## Signed Commits
The AcousticMetrics.jl GitHub repository requires all commits to the `main` branch to be signed.
See the [GitHub docs on signing commits](https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification) for more information.
## Reporting Bugs
Users can use the [GitHub Issues](https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues) feature to report bugs and submit feature requests.
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"Apache-2.0"
] | 0.7.1 | c9c326c4aff2be9866fa03a900380fb8dcdaaca8 | docs | 21103 | ```@meta
CurrentModule = AMDocs
```
# `AcousticMetrics.jl`
## The Fourier Transform
### The Basics
`AcousticMetrics.jl` uses the FFTW library, a very popular
implementation of the fast Fourier transform (FFT) algorithm. The FFT is a
method of computing the discrete Fourier transform (DFT) that reduces the
computational complexity from ``n^2`` to ``n \log(n)``, where ``n`` is the length
of the input to the transform. [FFTW's definition of the discrete Fourier
transform](http://www.fftw.org/fftw3_doc/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029) is
```math
y_k = \sum_{j=0}^{n-1} x_j e^{-2 \pi \imath jk/n}
```
where ``\imath=\sqrt{-1}``.
The goal of a Fourier transform is to take a function (let's call it a "signal") and express it as a sum of
sinusoids. Let's imagine we have a very simple signal
```math
p(t) = A \cos(ωt+φ)
```
where we call ``A`` the amplitude, ``ω`` the frequency, and ``φ`` the phase.
`AcousticAnalogies.jl` is interested in (surprise!) acoustics, which are real
numbers, so we'll assume that ``A``, ``ω``, and ``φ`` are all real. Say we
evaluate that function ``n`` times over a period ``T``, and assume that ``ω =
2πm/T``, i.e., that the period of our signal is some integer fraction of the
sampling period ``T``, since
```math
\frac{2 π}{ω} = \frac{2 π}{\frac{2πm}{T}} = \frac{T}{m}.
```
We'll refer to each of those samples as ``p_j = p(t_j)``, where ``t_j``
is the time at sample ``j`` and ``j`` is an index from ``0`` to ``n-1``.
What is the discrete Fourier transform of our signal ``p_j``? We should be able
to figure that out if we can express our signal ``p(t)`` as something that
looks like FFTW's definition of the DFT. How can we do that? Well, first we
need to remember that
```math
\cos(α+β) = \cos(α)\cos(β) - \sin(α)\sin(β)
```
which lets us rewrite our signal as
```math
p(t) = A \cos(ωt+φ) = A\left[ \cos(ωt)\cos(φ) - \sin(ωt)\sin(φ) \right] = A \cos(φ)\cos(ωt) - A\sin(φ)\sin(ωt).
```
Now, if we also remember that
```math
e^{ix} = \cos(x) + \imath \sin(x).
```
we can replace ``\sin(ωt)`` with
```math
\sin(ωt) = \frac{e^{\imath ωt} - e^{-\imath ωt}}{2\imath} = \frac{-\imath e^{\imath ωt} + \imath e^{-\imath ωt}}{2}
```
and ``\cos(ωt)`` with
```math
\cos(ωt) = \frac{e^{\imath ωt} + e^{-\imath ωt}}{2}.
```
Throw all that together and we get
```math
p(t) = \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{\imath ωt} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-\imath ωt}
```
This is looking much closer to the definition of the DFT that we started with.
Next thing we need to do is realize that since we've sampled our signal ``p(t)``
at ``n`` different times, equally spaced, over a time period ``T``, then we
can replace ``t`` with
```math
t_j = j \frac{T}{n} = j Δt
```
where ``T/n`` is ``Δt``, the time step size. We've previously said that ``ω=\frac{2πm}{T}``, which implies that
```math
ω t_j = \left( \frac{2πm}{T} \right) \left(j \frac{T}{n} \right) = \frac{2πmj}{n}
```
So if we throw that in there, we find
```math
p(t_j) = p_j = \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath jm/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath jm/n}
```
That's very close to the DFT definition. So what happens if we evaluate the DFT
of that last expression?
We'll call the discrete Fourier transform of the signal ``\hat{p}_k``. So...
```math
\begin{aligned}
\hat{p}_k &= \sum_{j=0}^{n-1} p_j e^{-2 \pi \imath jk/n} \\
&= \sum_{j=0}^{n-1} \left( \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath jm/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath jm/n} \right) e^{-2 \pi \imath jk/n} \\
&= \sum_{j=0}^{n-1} \left( \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(m-k)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(m+k)/n} \right) \\
&=\frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{2π\imath j(m-k)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{-2π\imath j(m+k)/n}
\end{aligned}
```
Pretty close now. Let's think about those two summations in the last
expression. First assume that ``m - k = q \ne 0``, where ``m`` and ``k`` are
both integers. Then the first sum would be
```math
\sum_{j=0}^{n-1} e^{2π\imath j(m-k)/n} = \sum_{j=0}^{n-1} e^{2π\imath jq/n}.
```
That's a signal that has period
```math
\frac{2π}{2πq/n} = n/q
```
that we're sampling ``n`` times. So we're sampling a sinusoid an integer number
of times over its period, and summing it up. That will give us... zero. Same thing will
happen to the second sum if ``m+k=r \ne 0``: we'll also get zero. So now we just
have to figure out what happens when ``m - k = 0`` and ``m + k = 0``, i.e., when
``k ± m``. Let's try ``k = m`` first. The first sum will be
```math
\sum_{j=0}^{n-1} e^{2π\imath j(m-m)/n} = \sum_{j=0}^{n-1} e^{0} = \sum_{j=0}^{n-1} 1 = n
```
and the second sum will be
```math
\sum_{j=0}^{n-1} e^{-2π\imath j(m+m)/n} = \sum_{j=0}^{n-1} e^{-4π\imath jm/n} = 0
```
from the previous discussion, since ``m+k=2m \ne 0``.
For ``k = -m``, the first sum will be zero, since ``m - -m = 2m \ne 0``, and
the second sum will be
```math
\sum_{j=0}^{n-1} e^{2π\imath j(m-m))/n} = n
```
again.
Great! So now we finally can write down the DFT of our example signal
```math
p(t) = A \cos(ωt+φ) = A \cos\left(\left[\frac{2πm}{T}\right]t+φ\right),
```
which is (wish I could figure out how to do the `cases` LaTeX environment)...
```math
\begin{aligned}
\hat{p}_m & = \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] n \\
\hat{p}_{-m} & = \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] n \\
\hat{p}_{k} & = 0\,\text{otherwise}.
\end{aligned}
```
### Some Special Cases
There are two special cases that we need to consider: the mean component and the Nyquist component of the DFT.
Let's try the mean component first.
#### The Mean Component
So imagine if we start out with the same signal
```math
p(t) = A \cos(ωt+φ)
```
but say that ``ω = 0``.
Since ``ω = 2πm/T``, that implies that ``m = 0`` also.
But anyway, let's rewrite that in terms of powers of ``e``:
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{\imath ωt} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-\imath ωt} \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{0} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{0}\\
&= \frac{A}{2}\left[2\cos(φ)\right]\\
&= A\cos(φ).
\end{aligned}
```
What happens if we plug that into the definition of the discrete Fourier transform?
We'll, it's not hard to see that we'll get
```math
\begin{aligned}
\hat{p}_0 &= A\cos(φ)n \\
\hat{p}_k &= 0 \,\text{otherwise}.
\end{aligned}
```
So the two takeaways are:
* the mean component doesn't contain a ``\frac{1}{2}`` factor
* the mean component is always real
Next, the Nyquist frequency component.
#### Nyquist Component
The Nyquist component is the one with two samples per period, which corresponds to ``k=n/2`` in the DFT definition.
It is the highest frequency component that the DFT can resolve.
So that means our signal will look like
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath jm/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath jm/n} \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(\frac{n}{2})/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(\frac{n}{2})/n}
\end{aligned}
```
Now here's where things get a bit tricky.
We've got a ``\frac{n}{2}/n`` term that we'd love to replace with ``\frac{1}{2}``.
That works fine if ``n`` is even, but what if ``n`` is odd?
We'll have to look at both cases.
First, the even case.
#### Nyquist Component with Even-Length Input
If ``n`` is even, then we can do
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(\frac{n}{2})/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(\frac{n}{2})/n} \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{π\imath j} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-π\imath j}
\end{aligned}
```
and then realize that ``e^{π\imath j} = e^{-π\imath j} = \left(-1\right)^j``, which let's us simplify a bit further to
```math
p(t) = \frac{A}{2}\left[2\cos(φ)]e^{π\imath j}\right] = A\cos(φ)e^{π\imath j}
```
The next step is to think about which components of the DFT we need to worry about.
If we shove that into the DFT, we'll need to just focus on the ``e^{-2π\imath j (n/2)/n} = e^{-π\imath j}`` component of the DFT, and we'll eventually end up with
```math
\begin{aligned}
\hat{p}_{n/2} &= A\cos(φ)n \\
\hat{p}_k &= 0 \,\text{otherwise},
\end{aligned}
```
and so the takeaways are identical to the mean component:
* the Nyquist component for ``n`` even doesn't contain a ``\frac{1}{2}`` factor
* the Nyquist component for ``n`` even is always real
#### Nyquist Component with Odd-Length Input
So, we're starting with
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
&= \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(\frac{n}{2})/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(\frac{n}{2})/n}
\end{aligned}
```
Now, the trick here is that there *is* no Nyquist frequency component with an odd-input DFT.
We'll never end up with ``e^{±2π\imath j(\frac{n}{2})/n} = e^{±π\imath}`` components in the DFT definition, since ``n`` is odd.
For example, if ``n=9``, the ``k`` in the original definition of the DFT
```math
y_k = \sum_{j=0}^{n-1} x_j e^{-2 \pi \imath jk/n}
```
will never take on the value ``n/2``, since that would be ``4\frac{1}{2}`` and ``k`` is an integer.
So this special case isn't special for odd input lengths.
### Order of Outputs
We're almost ready to compare our example signal to the output of the FFTW
library. The last thing we need to think about is how FFTW's output is ordered.
FFT libraries have different conventions, but [here is what FFTW does](http://www.fftw.org/fftw3_doc/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029):
> Note also that we use the standard “in-order” output ordering—the k-th output
> corresponds to the frequency k/n (or k/T, where T is your total sampling
> period). For those who like to think in terms of positive and negative
> frequencies, this means that the positive frequencies are stored in the first
> half of the output and the negative frequencies are stored in backwards order
> in the second half of the output. (The frequency -k/n is the same as the
> frequency (n-k)/n.)
So for our original example signal
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
\hat{p}_m & = \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] n \\
\hat{p}_{-m} & = \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] n \\
\hat{p}_{k} & = 0\,\text{otherwise}.
\end{aligned}
```
we would expect ``\hat{p}_m`` to appear in the ``1+m`` position (since ``m`` starts from 0, but the first "position" is 1 for Julia arrays), and ``\hat{p}_{-m}`` to appear in the ``1+n-m`` position.
But things get a bit more complicated if we use a real-input FFT (which AcousticMetrics.jl does).
See the next section.
### Real-Input FFTs and Half-Complex Format
If we look back at the results for the DFT of our simple signal
```math
\begin{aligned}
p(t) &= A \cos(ωt+φ) \\
\hat{p}_m & = \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] n \\
\hat{p}_{-m} & = \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] n \\
\hat{p}_{k} & = 0\,\text{otherwise}.
\end{aligned}
```
we can't help but notice that the negative and positive frequency results are closely related.
If we know one, we can figure out the other.
And if we want to find ``A`` and ``φ``, we just need either the positive or negative result.
For example, if ``a_r`` and ``a_i`` are the real and imaginary parts of ``\hat{p}_m``, respectively, then
```math
A = \frac{2}{n}\sqrt{a_r^2 + a_i^2}
```
and
```math
φ = \arctan(a_i/a_r).
```
For the Nyquist frequency, though, we know that
```math
\begin{aligned}
\hat{p}_{n/2} &= A\cos(φ)n \\
\hat{p}_k &= 0 \,\text{otherwise},
\end{aligned}
```
and so ``a_r = A\cos(φ)n`` and ``a_i = 0``.
We have only one non-zero component, so we'll have to define
```math
A = a_r/n
```
and
```math
φ = 0.
```
Or, wait, maybe it would be better to make `A = abs(a_r)/n` and `φ = π` if `a_r < 0`, and `φ = 0` otherwise.
So, for real-input FFTs, FFTW only gives you the non-negative frequencies of the DFT.
Finally, if we want to avoid complex numbers entirely, we can use the "real-to-real" transform that returns the DFT in the [halfcomplex format](https://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html).
This returns the frequencies in an order similar to the standard in-order manner discussed previously, but only returns the non-negative portion of the spectrum.
Specifically, the FFTW manual shows that the order of outputs will be
```math
r_0, r_1, r_2, ..., r_{n/2}, i_{(n+1)/2-1}, ..., i_2, i_1
```
where ``r_k`` and ``i_k`` are the real and imaginary parts of component ``k``, and division by 2 is rounded down.
An example makes this a bit more clear.
Let's imagine we have a signal of length 8, so ``n = 8``.
Then the output we'll get from FFTW will be
```math
r_0, r_1, r_2, r_3, r_4, i_3, i_2, i_1
```
``i_0`` and ``i_4`` are "missing," but that doesn't bother us since we know that both of those are always zero for a real-input even-length DFT.
What if we had an odd-length input signal?
Let's try ``n=9`` this time.
Then the output will be
```math
r_0, r_1, r_2, r_3, r_4, i_4, i_3, i_2, i_1
```
This time the ``i_4`` component isn't "missing," which is a good thing, since it's not zero.
### Time Offset
So far we've been assuming that the time ``t`` starts at 0.
What if that's not true, i.e., that ``t_j = t_0 + j\frac{T}{n}``?
Then
```math
ω t_j = \left( \frac{2πm}{T} \right) \left(t_0 + j \frac{T}{n} \right) = \frac{2πm t_0}{T} + \frac{2πmj}{n}
```
and the signal is now
```math
\begin{aligned}
p(t_j) = p_j &= A\cos(ω[t_0 + j\frac{T}{n}] + φ) \\
&= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath m t_0/T + 2π\imath jm/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath m t_0/T - 2π\imath jm/n} \\
&= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath m t_0/T} e^{2π\imath jm/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath m t_0/T} e^{-2π\imath jm/n}.
\end{aligned}
```
Next, we substitute the signal into the definition of the DFT:
```math
\begin{aligned}
\hat{p}_k &= \sum_{j=0}^{n-1} p_j e^{-2 \pi \imath jk/n} \\
&=\frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath m t_0/T} \sum_{j=0}^{n-1} e^{2π\imath j(m-k)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath m t_0/T} \sum_{j=0}^{n-1} e^{-2π\imath j(m+k)/n}
\end{aligned}
```
then use the same arguments we used before for the summations to find that
```math
\begin{aligned}
\hat{p}_m & = \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath m t_0/T} n \\
\hat{p}_{-m} & = \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath m t_0/T} n \\
\hat{p}_{k} & = 0\,\text{otherwise}.
\end{aligned}
```
Let's work on the non-zero ``\hat{p}`` components a bit.
First, the positive-``m`` one:
```math
\begin{aligned}
\hat{p}_m & = \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath m t_0/T} n \\
& = \frac{A}{2}\left[e^{\imath φ} \right] e^{2π\imath m t_0/T} n \\
& = \frac{A}{2}\left[e^{\imath φ + 2π\imath m t_0/T} \right] n \\
& = \frac{A}{2}\left[e^{\imath (φ + 2π m t_0/T)} \right] n \\
& = \frac{A}{2}\left[\cos(φ + 2π m t_0/T) + \imath \sin(φ+ 2π m t_0/T) \right] n
\end{aligned}
```
Then, the negative-``m`` one:
```math
\begin{aligned}
\hat{p}_{-m} & = \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath m t_0/T} n \\
& = \frac{A}{2}\left[e^{-\imath φ} \right] e^{-2π\imath m t_0/T} n \\
& = \frac{A}{2}\left[e^{-\imath φ - 2π\imath m t_0/T} \right] n \\
& = \frac{A}{2}\left[e^{-\imath (φ + 2π m t_0/T)} \right] n \\
& = \frac{A}{2}\left[\cos(φ + 2π m t_0/T) - \imath \sin(φ+ 2π m t_0/T) \right] n
\end{aligned}
```
So now, if we want to find ``A`` and ``φ`` from the ``\hat{p}_m`` components ``a_r``
```math
a_r = \frac{A}{2}\cos(φ + 2π m t_0/T)n
```
and ``a_i``
```math
a_i = \frac{A}{2}\sin(φ + 2π m t_0/T)n
```
we can use the same formula for ``A``
```math
A = \frac{2}{n}\sqrt{a_r^2 + a_i^2}
```
and a slightly modified version of the formula for ``φ``
```math
φ = \arctan(a_i/a_r) - 2π m t_0/T.
```
And we don't need to worry about the two special cases discussed previously, since the ``φ`` angle for both the mean and Nyquist components is always zero.
What about the special cases we discussed previously (the mean and the Nyquist frequencies)?
Obviously shifting the mean component shouldn't change anything.
But what about the Nyquist frequency?
#### Nyquist Component with a Time Offset
We know from previous work that the odd-input length Nyquist component isn't special, so we'll ignore that case.
So, for the even-input length Nyquist component, we'll start with the same signal
```math
\begin{aligned}
p(t_j) = p_j &= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath m t_0/T + 2π\imath jm/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath m t_0/T - 2π\imath jm/n} \\
&= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath m t_0/T} e^{2π\imath jm/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath m t_0/T} e^{-2π\imath jm/n},
\end{aligned}
```
and then say that ``m = n/2``, like previously
```math
\begin{aligned}
p_j &= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath (n/2) t_0/T} e^{2π\imath j(n/2)/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath (n/2) t_0/T} e^{-2π\imath j(n/2)/n} \\
&= \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{π\imath n t_0/T} e^{π\imath j} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-π\imath n t_0/T} e^{-π\imath j} \\
&= \frac{A}{2}\left[e^{\imath φ}\right] e^{π\imath n t_0/T} e^{π\imath j} + \frac{A}{2}\left[ e^{-\imath φ}\right] e^{-π\imath n t_0/T} e^{-π\imath j} \\
&= \frac{A}{2}\left[e^{\imath (φ + πn t_0/T)}\right] e^{π\imath j} + \frac{A}{2}\left[ e^{-\imath (φ + πn t_0/T)}\right] e^{-π\imath j} \\
&= \frac{A}{2}\left[\cos(φ + πn t_0/T) + \imath \sin(φ + πn t_0/T)\right] e^{π\imath j} + \frac{A}{2}\left[ \cos(φ + πn t_0/T) - \imath \sin(φ + πn t_0/T)\right] e^{-π\imath j} \\
&= A\cos(φ + πn t_0/T)e^{π\imath j} \\
&= A\cos(φ + 2π (n/2) t_0/T)e^{2π\imath j (n/2)/n}
\end{aligned}
```
So this means the Fourier transform is
```math
\hat{p}_{n/2} = A\cos(φ + 2π (n/2) t_0/T) n
```
and so we can find
```math
A = a_r/n
```
and
```math
φ = -2π(n/2) t_0/T.
```
### What if the signal frequency isn't a multiple of the sampling frequency?
```math
p(t) = A \cos(ωt+φ)
```
Say we evaluate that function ``n`` times over a period ``T``, just like before.
But this time we will assume that ``ω = 2π(m+a)/T`` where ``0 \lt a \lt 1``, i.e., that the period of our signal is *not* some integer fraction of the sampling period ``T``.
What will the Fourier transform of that be?
We can reuse a bunch of our previous work.
This expression for the signal ``p(t)`` still applies:
```math
p(t) = \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{\imath ωt} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-\imath ωt}
```
But now we just need to substitute our new expression for ``ω t_j``,
```math
ω t_j = \left( \frac{2π(m+a)}{T} \right) \left(j \frac{T}{n} \right) = \frac{2π(m+a)j}{n},
```
which will give us
```math
p(t_j) = p_j = \frac{A}{2}\left[ \cos(φ) + \imath \sin(φ)\right] e^{2π\imath j(m+a)/n} + \frac{A}{2}\left[ \cos(φ) - \imath \sin(φ)\right] e^{-2π\imath j(m+a)/n}
```
Now, if we do the FFT:
```math
\begin{aligned}
\hat{p}_k &= \sum_{j=0}^{n-1} p_j e^{-2 \pi \imath jk/n} \\
&= \sum_{j=0}^{n-1} \left( \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(m+a)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(m+a)/n} \right) e^{-2 \pi \imath jk/n} \\
&= \sum_{j=0}^{n-1} \left( \frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] e^{2π\imath j(m+a-k)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] e^{-2π\imath j(m+a+k)/n} \right) \\
&=\frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{2π\imath j(m+a-k)/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{-2π\imath j(m+a+k)/n} \\
&=\frac{A}{2}\left[\cos(φ) + \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{2π\imath j(m-k)/n} e^{2π\imath aj/n} + \frac{A}{2}\left[\cos(φ) - \imath \sin(φ) \right] \sum_{j=0}^{n-1} e^{-2π\imath j(m+k)/n} e^{2π\imath aj/n}
\end{aligned}
```
| AcousticMetrics | https://github.com/OpenMDAO/AcousticMetrics.jl.git |
|
[
"MIT"
] | 1.13.0 | 76c8dd8965e9b4c8639012c8815e1842c1306a66 | code | 9809 | module PkgButlerEngine
import Mustache
import Pkg
function configure_pkg(path::AbstractString; channel=:auto, template=:auto)
channel in (:auto, :stable, :dev) || error("Invalid value for channel.")
template in (:auto, :default, :bach) || error("Invalid value for template.")
path_for_butler_workflows_folder = joinpath(path, ".github", "workflows")
path_for_main_butler_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-butler-workflow.yml")
path_for_main_butler_dev_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-butler-dev-workflow.yml")
mkpath(path_for_butler_workflows_folder)
if channel == :auto
channel = isfile(path_for_main_butler_dev_workflow) ? :dev : :stable
end
if channel == :stable
if isfile(path_for_main_butler_dev_workflow)
rm(path_for_main_butler_dev_workflow, force=true)
end
cp(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-butler-workflow.yml"), path_for_main_butler_workflow, force=true)
elseif channel == :dev
if isfile(path_for_main_butler_workflow)
rm(path_for_main_butler_workflow, force=true)
end
cp(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-butler-dev-workflow.yml"), path_for_main_butler_dev_workflow, force=true)
end
path_for_config_file = joinpath(path, ".jlpkgbutler.toml")
if template !== :auto
if isfile(path_for_config_file)
config_content = Pkg.TOML.parsefile(path_for_config_file)
if haskey(config_content, "template")
if template !== :auto
config_content["template"] = string(template)
open(path_for_config_file, "w") do f
Pkg.TOML.print(f, config_content)
end
end
elseif template !== :default
config_content["template"] = string(template)
open(path_for_config_file, "w") do f
Pkg.TOML.print(f, config_content)
end
end
elseif template !== :default
open(path_for_config_file, "w") do f
Pkg.TOML.print(f, Dict{String,Any}("template" => string(template)))
end
end
end
end
function cp_with_mustache(src, dest, vals)
content = read(src, String)
open(dest, "w") do file
Mustache.render(file, content, vals, tags=("\$[[", "]]"))
end
end
function ensure_project_has_julia_compat(path)
proj_file = isfile(joinpath(path, "JuliaProject.toml")) ? joinpath(path, "JuliaProject.toml") : joinpath(path, "Project.toml")
pkg_toml_content = Pkg.TOML.parsefile(proj_file)
if !haskey(pkg_toml_content, "compat")
pkg_toml_content["compat"] = Dict{String,String}()
end
if !haskey(pkg_toml_content["compat"], "julia")
pkg_toml_content["compat"]["julia"] = "1"
open(proj_file, "w") do f
Pkg.TOML.print(f, pkg_toml_content)
end
end
end
function ensure_project_uses_new_enough_documenter(path)
doc_proj_file = isfile(joinpath(path, "docs", "JuliaProject.toml")) ? joinpath(path, "docs", "JuliaProject.toml") : joinpath(path, "docs", "Project.toml")
if isfile(doc_proj_file)
pkg_toml_content = Pkg.TOML.parsefile(doc_proj_file)
if haskey(pkg_toml_content, "compat") && haskey(pkg_toml_content["compat"], "Documenter")
documenter_compat_bound = pkg_toml_content["compat"]["Documenter"]
version_bound = Pkg.Types.semver_spec(documenter_compat_bound)
# This is the list of versions that don't work
invalid_versions = Pkg.Types.semver_spec("0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.20,0.21,0.22,0.23")
if !isempty(intersect(invalid_versions, version_bound))
# TODO This is a bit crude. Ideally we would try to see whether a version >= 0.24 is listed in the compat section, and if so,
# only remove the offending versions.
pkg_toml_content["compat"]["Documenter"] = "~0.24"
open(doc_proj_file, "w") do f
Pkg.TOML.print(f, pkg_toml_content)
end
end
end
end
end
function construct_version_matrix(path)
proj_file = isfile(joinpath(path, "JuliaProject.toml")) ? joinpath(path, "JuliaProject.toml") : joinpath(path, "Project.toml")
pkg_toml_content = Pkg.TOML.parsefile(proj_file)
julia_compat_bound = pkg_toml_content["compat"]["julia"]
version_spec = Pkg.Types.semver_spec(julia_compat_bound)
versions = [v"1.0.5" => "'1.0'", v"1.1.1" => "'1.1'", v"1.2.0" => "'1.2'", v"1.3.1" => "'1.3'", v"1.4.2" => "'1.4'", v"1.5.4" => "'1.5'", v"1.6.7" => "'1.6'", v"1.7.3" => "'1.7'", v"1.8.5" => "'1.8'", v"1.9.4" => "'1.9'", v"1.10.0" => "'1.10'"]
compat_versions = filter(i -> i[1] in version_spec, versions)
return join(map(i -> i[2], compat_versions), ", ")
end
function construct_matrix_exclude_list(path)
path_for_config_file = joinpath(path, ".jlpkgbutler.toml")
if isfile(path_for_config_file)
config_content = Pkg.TOML.parsefile(path_for_config_file)
if haskey(config_content, "strategy-matrix-exclude")
option_value = config_content["strategy-matrix-exclude"]
line_ending = Sys.iswindows() ? "\r\n" : "\n"
exclude_configs = split(option_value, ";", keepempty=false)
exclude_configs = strip.(exclude_configs)
ret = ""
for ec in exclude_configs
lines = split(ec, ",", keepempty=false)
lines = strip.(lines)
ret *= line_ending * " "^10 * "- " * lines[1] * (length(lines) > 1 ? line_ending * join(string.(" "^12, lines[2:end]), line_ending) : "")
end
return ret
end
end
return ""
end
function configure_tagbot!(path, view_vals)
path_for_config_file = joinpath(path, ".jlpkgbutler.toml")
if isfile(path_for_config_file)
config_content = Pkg.TOML.parsefile(path_for_config_file)
if haskey(config_content, "custom-registry")
option_value = config_content["custom-registry"]
view_vals["include_custom_registry"] = "true"
view_vals["JL_CUSTOM_REGISTRY"] = option_value
end
end
end
function add_compathelper(path)
path_for_butler_workflows_folder = joinpath(path, ".github", "workflows")
path_for_compathelper_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-compathelper-workflow.yml")
cp(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-compathelper-workflow.yml"), path_for_compathelper_workflow, force=true)
end
function detect_template(path)
path_for_config_file = joinpath(path, ".jlpkgbutler.toml")
if isfile(path_for_config_file)
config_content = Pkg.TOML.parsefile(path_for_config_file)
if haskey(config_content, "template")
return lowercase(config_content["template"])
end
end
return "default"
end
function update_pkg_bach(path)
if isfile(joinpath(path, ".travis.yml"))
rm(joinpath(path, ".travis.yml"), force=true)
end
if isfile(joinpath(path, "appveyor.yml"))
rm(joinpath(path, "appveyor.yml"), force=true)
end
if isfile(joinpath(path, ".appveyor.yml"))
rm(joinpath(path, ".appveyor.yml"), force=true)
end
end
function update_pkg(path::AbstractString)
configure_pkg(path)
template = detect_template(path)
path_for_butler_workflows_folder = joinpath(path, ".github", "workflows")
path_for_ci_master_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-ci-master-workflow.yml")
path_for_ci_pr_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-ci-pr-workflow.yml")
path_for_docdeploy_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-docdeploy-workflow.yml")
path_for_codeformat_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-codeformat-pr-workflow.yml")
path_for_tagbot_workflow = joinpath(path_for_butler_workflows_folder, "jlpkgbutler-tagbot-workflow.yml")
path_for_docs_make_file = joinpath(path, "docs", "make.jl")
mkpath(path_for_butler_workflows_folder)
ensure_project_has_julia_compat(path)
view_vals = Dict{String,Any}()
view_vals["JL_VERSION_MATRIX"] = construct_version_matrix(path)
# if template == "bach"
# view_vals["include_codeformat_lint"] = "true"
# end
view_vals["ADDITIONAL_MATRIX_EXCLUDES"] = construct_matrix_exclude_list(path)
configure_tagbot!(path, view_vals)
cp_with_mustache(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-ci-master-workflow.yml"), path_for_ci_master_workflow, view_vals)
cp_with_mustache(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-ci-pr-workflow.yml"), path_for_ci_pr_workflow, view_vals)
cp_with_mustache(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-tagbot-workflow.yml"), path_for_tagbot_workflow, view_vals)
if isfile(path_for_docs_make_file)
cp(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-docdeploy-workflow.yml"), path_for_docdeploy_workflow, force=true)
elseif isfile(path_for_docdeploy_workflow)
rm(path_for_docdeploy_workflow, force=true)
end
ensure_project_uses_new_enough_documenter(path)
add_compathelper(path)
isfile(path_for_codeformat_workflow) && rm(path_for_codeformat_workflow, force=true)
if template == "bach"
update_pkg_bach(path)
cp(joinpath(@__DIR__, "..", "templates", "jlpkgbutler-codeformat-pr-workflow.yml"), path_for_codeformat_workflow, force=true)
end
end
end # module
| PkgButlerEngine | https://github.com/davidanthoff/PkgButlerEngine.jl.git |
|
[
"MIT"
] | 1.13.0 | 76c8dd8965e9b4c8639012c8815e1842c1306a66 | code | 643 | using PkgButlerEngine
using Test
@testset "PkgButlerEngine" begin
mktempdir() do temp_path
temp_path_of_project = joinpath(temp_path, "TestPackage")
cp(joinpath(@__DIR__, "with_problems"), temp_path_of_project)
PkgButlerEngine.update_pkg(temp_path_of_project)
@test isfile(joinpath(temp_path_of_project, ".github", "workflows", "jlpkgbutler-butler-workflow.yml"))
@test isfile(joinpath(temp_path_of_project, ".github", "workflows", "jlpkgbutler-ci-master-workflow.yml"))
@test isfile(joinpath(temp_path_of_project, ".github", "workflows", "jlpkgbutler-ci-pr-workflow.yml"))
end
end
| PkgButlerEngine | https://github.com/davidanthoff/PkgButlerEngine.jl.git |
|
[
"MIT"
] | 1.13.0 | 76c8dd8965e9b4c8639012c8815e1842c1306a66 | docs | 1739 | # PkgButlerEngine.jl
## Overview
The backend engine for the Julia Package Butler. This is a low level package that most users will not directly use. Most users will want to use the [`julia-pkgbutler` GitHub Action](https://github.com/davidanthoff/julia-pkgbutler).
## Functionality
The Julia Package Butler currently makes the following changes to a package repository:
- The GitHub Action workflow for the Package Butler itself is updated to the latest version.
- If the `Project.toml` doesn't have a version bound for `julia` in the `compat` section, it will add a version bound declaring the package compatible with Julia 1.0.
- It will add GitHub Action workflows for continuous integration. These workflows are automatically configured to only run on Julia versions that are compatible with the `compat` entry for Julia in the `Project.toml` file of the package.
- If a `docs/make.jl` file exists, a GitHub Action workflow that builds and deploys documentation is added to the package.
- If a `docs/Project.toml` file exists, the butler will ensure that the version bound on Documenter.jl is no lower than 0.24 (the first version to support building documentation with GitHub Actions).
- Enable [CompatHelper.jl](https://github.com/bcbi/CompatHelper.jl) for the repository.
- Enable [TagBot](https://github.com/JuliaRegistries/TagBot) for the repository.
When the `bach` template is used, these additional channges are made:
- Travis and Appveyor configuration files are removed.
- Whenever any Julia file on `master` is not properly formatted, a PR with formatting changes is opened (based on https://github.com/julia-vscode/DocumentFormat.jl).
- Any PR has an additional check whether Julia code files are properly formatted.
| PkgButlerEngine | https://github.com/davidanthoff/PkgButlerEngine.jl.git |
|
[
"MIT"
] | 1.13.0 | 76c8dd8965e9b4c8639012c8815e1842c1306a66 | docs | 844 | # $[[PKG_NAME]]
[](http://www.repostatus.org/#active)
[](https://$[[PKG_OWNER]].github.io/$[[PKG_NAME]].jl/stable/)

[](https://codecov.io/gh/$[[PKG_OWNER]]/$[[PKG_NAME]].jl)
## Overview
$[[PKG_DESCRIPTION]]
## Installation
You can add the package at the Julia package REPL with:
```
pkg> add $[[PKG_NAME]]
```
## Getting started
To get started, take a look at the [documentation](https://$[[PKG_OWNER]].github.io/$[[PKG_NAME]].jl/stable/).
| PkgButlerEngine | https://github.com/davidanthoff/PkgButlerEngine.jl.git |
|
[
"MIT"
] | 1.13.0 | 76c8dd8965e9b4c8639012c8815e1842c1306a66 | docs | 35 | This is an artifical test project.
| PkgButlerEngine | https://github.com/davidanthoff/PkgButlerEngine.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | code | 510 | using FlowLock
using Documenter
DocMeta.setdocmeta!(FlowLock, :DocTestSetup, :(using FlowLock); recursive=true)
makedocs(;
modules=[FlowLock],
authors="Átila Saraiva Quintela Soares",
sitename="FlowLock.jl",
format=Documenter.HTML(;
canonical="https://AtilaSaraiva.github.io/FlowLock.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/AtilaSaraiva/FlowLock.jl",
devbranch="main",
)
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | code | 101 | module FlowLock
using SHA: sha256
using MacroTools: postwalk
include("flow.jl")
export @flow
end
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | code | 1956 | function checkFileExists(path, sha256sum)
file_exists = isfile(path)
if file_exists
file_sha256 = open(path) do io
io |> sha256 |> bytes2hex
end
if file_sha256 == sha256sum
return true
else
return false
end
else
return false
end
end
function flow(path::Expr, expr::Expr)
newExpr = postwalk(x -> x == :path ? path.args[2] : x, expr)
return quote
filePath = $(esc(path.args[2]))
hash_file = filePath * ".hash"
# Check if hash file exists
flag = true
if isfile(hash_file)
# Read the saved hash
saved_hash = read(hash_file, String)
# Check if the file exists and hash matches
if $checkFileExists(filePath, saved_hash)
flag = false
end
end
if flag
$(esc(newExpr))
# Compute new hash and save it
new_hash = open(filePath) do io
io |> $sha256 |> $bytes2hex
end
open(hash_file, "w") do io
write(io, new_hash)
end
end
end
end
"""
@flow path="path/to/file" expr
A macro that checks if the file in the `path` exists and if it didn't change and only runs the `expr` if needed. After the first run, create a file with the same name as `path` with the .hash suffix, and writes the sha256 sum hash.
# Example
```jldoctest
julia> filePath, _ = mktemp();
julia> @flow path=filePath begin
println("This should only show once")
write(filePath, "some random text")
end
This should only show once
64
julia> @flow path=filePath begin
println("This should only show once")
write(filePath, "some random text")
end
```
"""
macro flow(path::Expr, expr::Expr)
if path.args[1] != :path
error("Missing path keyword argument")
end
return flow(path, expr)
end
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | code | 399 | using FlowLock
using Test
@testset "FlowLock.jl" begin
counter = 1
path = "this should not change"
filePath, _ = mktemp()
@flow path=filePath begin
counter += 1
write(path, "oi1")
end
@flow path=filePath begin
counter += 1
end
rm(filePath)
rm(filePath * ".hash")
@test counter == 2
@test path == "this should not change"
end
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | docs | 1563 | # FlowLock
[](https://AtilaSaraiva.github.io/FlowLock.jl/stable/)
[](https://AtilaSaraiva.github.io/FlowLock.jl/dev/)
[](https://github.com/AtilaSaraiva/FlowLock.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/AtilaSaraiva/FlowLock.jl)
This packages provides a macro called `@flow` that wraps a piece of code that creates a file and only runs the code if the file is missing or changed.
Here is a snippet of how it works:
```julia
julia> using FlowLock
julia> filePath, _ = mktemp();
julia> @flow path=filePath begin
println("This should only show once")
write(filePath, "some random text")
end
This should only show once
64
julia> @flow path=filePath begin
println("This should only show once")
write(filePath, "some random text")
end
```
## How it works
The macro `@flow` prepends some code to check if the `path` file already exists and if its sha256 sum and the hash stored in a another file. If it matches, the piece of code passed to the macro is not ran. If doesn't match the piece of code is ran and afterwards creates with the same path as the `path` file but with the suffix ".hash".
This file contains the sha256 sum hash encoding of the output file.
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.1.0 | 7a3a220f1ebab80c72bd021a5263209352e6d014 | docs | 180 | ```@meta
CurrentModule = FlowLock
```
# FlowLock
Documentation for [FlowLock](https://github.com/AtilaSaraiva/FlowLock.jl).
```@index
```
```@autodocs
Modules = [FlowLock]
```
| FlowLock | https://github.com/AtilaSaraiva/FlowLock.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 3994 | """
Lets shift to using Regex to extract file information
"""
function OLDDataPathExtraction(path::String, calibration_file::String;
verbose=false,
extract_photons=true
)
#The last line of the string should be the nd information
if verbose
println(path)
end
path_array = splitpath(path) #first we can split the file path into seperate strings
nt = (Path=path,)
#println(path_array)
date_res = findmatch(path_array, date_regex; verbose=verbose)
if !isnothing(date_res)
nt = merge(nt, date_res)
end
animal_res = findmatch(path_array, animal_regex; verbose=verbose)
if !isnothing(animal_res)
nt = merge(nt, animal_res)
end
genotype_res = findmatch(path, genotype_regex; verbose = verbose)
if !isnothing(genotype_res)
nt = merge(nt, genotype_res)
end
age_res = findmatch(path, age_regex; verbose = verbose)
if !isnothing(age_res) || parse(Int, age_res.Age) > 30
if age_res.Age == "Adult"
nt = merge(nt, ("Age" => "30"))
else
nt = merge(nt, age_res)
end
end
#now lets look for a condition in the possible conds
cond_res = findmatch(path, cond_regex)
if cond_res.Condition == "Drugs"
cond = "BaCl_LAP4"
elseif cond_res.Condition == "NoDrugs" || cond_res.Condition == "No drugs"
cond = "BaCl"
else
cond = cond_res.Condition
end
nt = merge(nt, (Condition=cond,))
pc_res = findmatch(path, pc_regex)
if !isnothing(pc_res)
nt = merge(nt, pc_res)
if pc_res.Photoreceptors == "Rods" #No further label is needed
nt = merge(nt, (Wavelength = "520",))
else
color_res = findmatch(path, color_regex)
if color_res.Color == "Blue" || color_res.Color == "365" || color_res.Color == "365UV"
nt = merge(nt, (Wavelength = "365",))
elseif color_res.Color == "Green" || color_res.Color == "525" || color_res.Color == "525Green"
nt = merge(nt, (Wavelength="520",))
elseif color_res.Color == "520" || color_res.Color == "520Green"
nt = merge(nt, (Wavelength="520",))
else
println(color_res)
end
end
end
nd_res = findmatch(path, nd_regex; verbose = verbose)
if !isnothing(nd_res)
nt = merge(nt, nd_res)
end
percent_res = findmatch(path, percent_regex; verbose = verbose)
if !isnothing(nd_res)
nt = merge(nt, percent_res)
end
if extract_photons
#extract the stimulus from the data
stim_timestamps = extract_stimulus(path)[1].timestamps
stim_time = round(Int64, (stim_timestamps[2] - stim_timestamps[1]) * 1000)
#println(stim_time)
nt = merge(nt, (Stim_Time=stim_time,))
#now lets extract photons
if nd_res.ND == "0.5"
#println(intensity_info.Percent)
println(nd_res)
println(nt.Wavelength)
photons = photon_lookup(
parse(Int64, nt.Wavelength),
0,
parse(Int64, nd_res.Percent),
calibration_file
)
println(photons)
photons = (photons*stim_time) / (10^0.5)
nt = merge(nt, (Photons=photons,))
else
#println(intensity_info.Percent)
photons = photon_lookup(
parse(Int64, nt.Wavelength),
parse(Int64, nd_res.ND),
parse(Int64, percent_res.Percent),
calibration_file
) .* stim_time
nt = merge(nt, (Photons=photons,))
end
end
#println(nt)
#return nt |> clean_nt_numbers
return nt |> parseNamedTuple
end
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 27762 | """
"""
function run_A_wave_analysis(all_files::DataFrame;
measure_minima = false, a_cond = "BaCl_LAP4",
t_pre = 1.0, t_post = 2.0, #Extend these to see the end of the a-wave
peak_method = false,
lb = [1.0, 1.0, 0.1], #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0 = [500.0, 1000.0, 2.0], #Default r = 500.0, k = 200.0, n = 2.0
ub = [Inf, Inf, 10.0], #Default rmax = 2400, kmax = 800
verbose=false,
)
a_files = all_files |> @filter(_.Condition == a_cond) |> DataFrame #Extract all A-wave responses
if isnothing(a_files)
return nothing
else
a_files[!, :Path] = string.(a_files[!, :Path]) #Make sure the path is a string
uniqueData = a_files |> @unique({_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype}) |> DataFrame #Pull out all unique files
if verbose
println("Completed data query")
end
qTrace = DataFrame() #Make empty dataframes for all traces
qExperiment = DataFrame() #Make empty dataframe for all experiments
for (idx, i) in enumerate(eachrow(uniqueData)) #Walk through each unique data
qData = a_files |> @filter(
(_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype) ==
(i.Year, i.Month, i.Date, i.Number, i.Wavelength, i.Photoreceptor, i.Genotype)
) |>
DataFrame #Pull out the data
dataFile = readABF(qData.Path)
if verbose
println("Completeing A-wave analysis for $idx out of $(size(uniqueData,1))")
println("Path: $(i.Path)")
end
for data in eachchannel(dataFile) #walk through each row of the data iterator
#println(qData.Age)
if isa(qData.Age[1], String)
matches = match(r"P(?'Age'\d*|)", qData.Age[1])
isadult = match(r"Adult", qData.Age[1])
if !isnothing(matches)
age = parse(Int, matches[:Age]) #Extract the age
elseif !isnothing(isadult)
age = 30
end
else
age = qData.Age[1]
end
ch = data.chNames[1] #Extract channel information
gain = data.chTelegraph[1] #Extract the gain
if gain == 1
if verbose
println("Gain is a different")
end
data / 100.0
end
#======================DATA ANALYSIS========================#
if age <= 11 #If the data is below P11 calculate the response differently
filt_data = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post) #This function is found in the filter pipeline
responses = minimas = minimum(filt_data, dims=2)[:, 1, :]
maximas = maximum(filt_data, dims=2)[:, 1, :]
Resps = abs.(responses)
rmaxes = minimum(responses, dims=1)
else
filt_data = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post)
if peak_method
#println(argmin(filt_data))
peak_time = filt_data.t[argmin(filt_data)[1][2]]
#println(peak_time)
truncate_data!(filt_data, t_pre = -peak_time) #Cut the trace before peak
end
if measure_minima
responses = minimas = minimum(filt_data, dims=2)[:, 1, :]
#println(minimas)
else
responses = saturated_response(filt_data)
minimas = minimum(filt_data, dims=2)[:, 1, :]
end
maximas = maximum(filt_data, dims=2)[:, 1, :]
Resps = abs.(responses)
rmaxes = minimum(responses, dims=1)
end
Peak_Times = time_to_peak(filt_data) #Calculate the time to peak
Integrated_Times = abs.(integral(filt_data)) #Calculate the area under the curve
Percent_Recoveries = percent_recovery_interval(filt_data, rmaxes) #Calculate the 60% recovery
#======================GLUING TOGETHER THE QUERY========================#
#now we can walk through each one of the responses and add it to the qTrace
for swp = 1:size(data, 1) #Walk through all sweep info, since sweeps will represent individual datafiles most of the time
#inside_row = qData[idx, :Path] #We can break down each individual subsection by the inside row
push!(qTrace,
(
Path=qData[swp, :Path],
Year=qData[swp, :Year], Month=qData[swp, :Month], Date=qData[swp, :Date],
Age=qData[swp, :Age], Number=qData[swp, :Number], Genotype=qData[swp, :Genotype],
Condition = qData[swp, :Condition], Photoreceptor=qData[swp, :Photoreceptor], Wavelength=qData[swp, :Wavelength],
Photons=qData[swp, :Photons],
Channel=ch, Gain=gain,
Response=Resps[swp], Minima=minimas[swp], Maxima=maximas[swp],
Peak_Time=Peak_Times[swp], Integrated_Time=Integrated_Times[swp],
Percent_Recovery=Percent_Recoveries[swp]
#Recovery_Tau=Recovery_Taus[swp], Tau_GOF=Tau_GOFs[swp],
)
)
end
#This section we need to extract Rdim responses.
norm_resp = Resps ./ maximum(Resps)
rdim_idxs = findall(0.20 .< norm_resp .< 0.50)
if isempty(rdim_idxs)
rdim_idx = argmin(Resps)
else
rdim_min = argmin(Resps[rdim_idxs])
rdim_idx = rdim_idxs[rdim_min]
end
if size(Resps,1) > 2
#if Resps |> vec
p0 = [maximum(Resps), median(qData[:, :Photons]), 2.0]
fit, rsq = ePhys.IRfit(qData[:, :Photons], Resps |> vec,
p0 = p0
)
#Fitting each data trace to a IR curve
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Channel = ch,
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
rmax = maximum(Resps),
RMAX_fit = fit.param[1], K_fit = fit.param[2], N_fit = fit.param[3],
RSQ_fit = rsq, #, MSE_fit = mse_FIT,
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery = mean(Percent_Recoveries) #really strange these usually are averaged
#recovery_tau=Recovery_Taus[rdim_idx],
))
else
#Fitting each data trace to a IR curve
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Channel = ch,
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
rmax = maximum(Resps),
RMAX_fit = 0.0, K_fit = 0.0, N_fit = 0.0,
RSQ_fit = 0.0, #, MSE_fit = mse_FIT,
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery = mean(Percent_Recoveries) #really strange these usually are averaged
#recovery_tau=Recovery_Taus[rdim_idx],
))
end
end
end
qConditions = summarize_data(qTrace, qExperiment; lb = lb, p0 = p0, ub = ub)
return qTrace, qExperiment, qConditions
end
end
#We can update this with our updated channel analysis
function run_B_wave_analysis(all_files::DataFrame;
t_pre = 1.0, t_post = 2.0, #This can be very quick, the initiation of the b-wave is faster
a_cond = "BaCl_LAP4",
b_cond = "BaCl",
verbose=false,
)
trace_A = all_files |> @filter(_.Condition == a_cond) |> DataFrame
trace_AB = all_files |> @filter(_.Condition == b_cond) |> DataFrame
if isempty(trace_AB)
return nothing
elseif isempty(trace_A)
#println("Here")
#return nothing
b_files = trace_AB |> @join(trace_AB,
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{__...,
A_condition = _.Condition,
A_Path = _.Path,
}) |> DataFrame
if verbose
println("Completed data query")
end
else
b_files = trace_A |> @join(trace_AB,
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{__...,
A_condition = _.Condition,
A_Path = _.Path,
}) |> DataFrame
if verbose
println("Completed data query")
end
end
b_files[!, :Path] = string.(b_files[!, :Path]) #XLSX.jl converts things into Vector{Any}
b_files[!, :A_Path] = string.(b_files[!, :A_Path]) #XLSX.jl converts things into Vector{Any}
uniqueData = b_files |> @unique({_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype}) |> DataFrame
qTrace = DataFrame()
qExperiment = DataFrame()
for (idx, i) in enumerate(eachrow(uniqueData)) #We ca
if verbose
println("Completeing B-wave analysis for $idx out of $(size(uniqueData,1))")
println("Path: $(i.Path)")
end
qData = b_files |> @filter(
(_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype) ==
(i.Year, i.Month, i.Date, i.Number, i.Wavelength, i.Photoreceptor, i.Genotype)
) |> DataFrame
data_AB = readABF(qData.Path) #Read the AB data
filt_data_AB = data_filter(data_AB, avg_swp = false, t_pre = t_pre, t_post=t_post)
data_A = readABF(qData.A_Path)
filt_data_A = data_filter(data_A, avg_swp = false, t_pre = t_pre, t_post=t_post)
#if we want to subtract we need to filter first
sub_data = filt_data_AB - filt_data_A
for (ch_idx, data_ch) in enumerate(eachchannel(sub_data)) #walk through each row of the data iterator
unsubtracted_data_ch = getchannel(filt_data_AB, ch_idx)
ch = data_ch.chNames[1] #Extract channel information
gain = data_ch.chTelegraph[1]
#Calculate the response based on the age
if gain == 1
if verbose
println("Gain is a different")
end
data_ch / 100
end
#======================DATA ANALYSIS========================#
#data from P11 doesn't always make sense, so we can invert it
#if age == 11
# data_ch * -1
#end
responses = Resps = maximas = maximum(data_ch, dims=2)[:, 1, :]
rmaxes = maximum(responses, dims=1)
Unsubtracted_Resp = abs.(minima_to_peak(unsubtracted_data_ch)) #This is the unsubtracted Response
minimas = minimum(data_ch, dims=2)[:, 1, :]
maximas = maximum(data_ch, dims=2)[:, 1, :]
Peak_Times = time_to_peak(data_ch)
Integrated_Times = integral(data_ch)
Percent_Recoveries = percent_recovery_interval(data_ch, rmaxes)
#======================GLUING TOGETHER THE QUERY========================#
for swp = 1:size(data_ch, 1) #Walk through all sweep info, since sweeps will represent individual datafiles most of the time
push!(qTrace,
(
Path=qData[swp, :Path], A_Path=qData[swp, :A_Path],
Year=qData[swp, :Year], Month=qData[swp, :Month], Date=qData[swp, :Date],
Age=qData[swp, :Age], Number=qData[swp, :Number], Genotype=qData[swp, :Genotype],
Condition = qData[swp, :Condition], Photoreceptor=qData[swp, :Photoreceptor], Wavelength=qData[swp, :Wavelength],
Photons=qData[swp, :Photons],
Channel=ch, Gain=gain,
Response=Resps[swp], Unsubtracted_Response=Unsubtracted_Resp[swp],
Minima=minimas[swp], Maxima=maximas[swp],
Peak_Time=Peak_Times[swp], Integrated_Time=Integrated_Times[swp],
Percent_Recovery=Percent_Recoveries[swp]
)
)
end
norm_resp = Resps ./ maximum(Resps)
#println(norm_resp)
rdim_idxs = findall(0.20 .< norm_resp .< 0.50)
if isempty(rdim_idxs)
rdim_idx = argmin(Resps)
else
rdim_min = argmin(Resps[rdim_idxs])
rdim_idx = rdim_idxs[rdim_min]
end
if size(Resps,1) > 2
p0 = [maximum(Resps), median(qData[:, :Photons]), 2.0]
fit, rsq = ePhys.IRfit(qData[:, :Photons], Resps |> vec,
p0 = p0
)
#println(fit, rsq)
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
Channel = ch,
Photons=qData[1, :Photons],
rmax=maximum(Resps),
RMAX_fit = fit.param[1], K_fit = fit.param[2], N_fit = fit.param[3],
RSQ_fit = rsq, #, MSE_fit = mse_FIT,
unsubtracted_rmax=maximum(Unsubtracted_Resp),
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery=maximum(Percent_Recoveries) #sum(Percent_Recoveries) / length(Percent_Recoveries) #really strange these usually are averaged
))
else
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
Channel = ch,
Photons=qData[1, :Photons],
rmax=maximum(Resps),
RMAX_fit = 0.0, K_fit = 0.0, N_fit = 0.0,
RSQ_fit = 0.0, #, MSE_fit = mse_FIT,
unsubtracted_rmax=maximum(Unsubtracted_Resp),
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery=maximum(Percent_Recoveries) #sum(Percent_Recoveries) / length(Percent_Recoveries) #really strange these usually are averaged
))
end
end
end
qConditions = summarize_data(qTrace, qExperiment)
return qTrace, qExperiment, qConditions
end
"""
There is no version of G component analysis that is not subtractive
"""
function run_G_wave_analysis(all_files::DataFrame;
t_pre = 1.0, t_post = 2.0,
verbose=false,
)
trace_ABG = all_files |> @filter(_.Condition == "NoDrugs") |> DataFrame
trace_AB = all_files |> @filter(_.Condition == "BaCl") |> DataFrame
if isempty(trace_ABG)
return nothing
elseif isempty(trace_AB)
return nothing
else
g_files = trace_AB |> @join(trace_ABG,
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{_.Year, _.Month, _.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{__...,
AB_condition = _.Condition,
AB_Path = _.Path,
}) |> DataFrame
g_files[!, :Path] = string.(g_files[!, :Path]) #XLSX.jl converts things into Vector{Any}
g_files[!, :AB_Path] = string.(g_files[!, :AB_Path]) #XLSX.jl converts things into Vector{Any}
uniqueData = g_files |> @unique({_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype}) |> DataFrame
qTrace = DataFrame()
qExperiment = DataFrame()
for (idx, i) in enumerate(eachrow(uniqueData)) #We ca
qData = g_files |> @filter(
(_.Year, _.Month, _.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype) ==
(i.Year, i.Month, i.Date, i.Number, i.Wavelength, i.Photoreceptor, i.Genotype)
) |> DataFrame
data_ABG = readABF(qData.Path)
filt_data_ABG = data_filter(data_ABG, avg_swp = false, t_pre = t_pre, t_post = t_post)
data_AB = readABF(qData.AB_Path)
filt_data_AB = data_filter(data_AB, avg_swp = false, t_pre = t_pre, t_post = t_post)
#if we want to subtract we need to filter first
sub_data = filt_data_ABG - filt_data_AB
if verbose
println("Completeing Glial analysis for $idx out of $(size(uniqueData,1))")
println("Path: $(i.Path)")
end
for (ch_idx, data_ch) in enumerate(eachchannel(sub_data)) #walk through each row of the data iterator
ch = data_ch.chNames[1] #Extract channel information
gain = data_ch.chTelegraph[1]
if gain == 1
data_ch / 100.0
end
#Calculate the response based on the age
unsubtracted_data_ch = getchannel(filt_data_ABG, ch_idx)
#======================DATA ANALYSIS========================#
responses = minimas = minimum(data_ch, dims=2)[:, 1, :]
maximas = maximum(data_ch, dims=2)[:, 1, :]
rmaxes = minimum(responses, dims=1)
Resps = abs.(responses)
Unsubtracted_Resp = abs.(minimum(unsubtracted_data_ch, dims=2)[:, 1, :]) #This is the unsubtracted Response
#minimas = minimum(data_ch, dims=2)[:, 1, :]
Peak_Times = time_to_peak(data_ch)
Integrated_Times = integral(data_ch)
Percent_Recoveries = percent_recovery_interval(data_ch, rmaxes)
#======================GLUING TOGETHER THE QUERY========================#
#now we can walk through each one of the responses and add it to the qTrace
for swp = 1:size(data_ch, 1) #Walk through all sweep info, since sweeps will represent individual datafiles most of the time
#inside_row = qData[idx, :Path] #We can break down each individual subsection by the inside row
push!(qTrace, (
Path=qData[swp, :Path], AB_Path=qData[swp, :AB_Path],
Year=qData[swp, :Year], Month=qData[swp, :Month], Date=qData[swp, :Date],
Age=qData[swp, :Age], Number=qData[swp, :Number], Genotype=qData[swp, :Genotype],
Condition = qData[swp, :Condition], Photoreceptor=qData[swp, :Photoreceptor], Wavelength=qData[swp, :Wavelength],
Photons=qData[swp, :Photons],
Channel=ch, Gain=gain,
Response=Resps[swp], Unsubtracted_Response=Unsubtracted_Resp[swp],
Minima=minimas[swp], Maxima=maximas[swp],
Peak_Time=Peak_Times[swp],
Integrated_Time=Integrated_Times[swp],
Percent_Recovery=Percent_Recoveries[swp])
)
end
norm_resp = Resps ./ maximum(Resps)
#println(norm_resp)
rdim_idxs = findall(0.20 .< norm_resp .< 0.50)
if isempty(rdim_idxs)
rdim_idx = argmin(Resps)
else
rdim_min = argmin(Resps[rdim_idxs])
rdim_idx = rdim_idxs[rdim_min]
end
if size(Resps,1) > 2
#println(size(Resps))
#if Resps |> vec
p0 = [maximum(Resps), median(qData[:, :Photons]), 2.0]
fit, rsq = ePhys.IRfit(qData[:, :Photons], Resps |> vec,
p0 = p0
)
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Channel = ch,
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
Photons=qData[1, :Photons],
rmax=maximum(Resps),
RMAX_fit = fit.param[1], K_fit = fit.param[2], N_fit = fit.param[3],
RSQ_fit = rsq, #, MSE_fit = mse_FIT,
unsubtracted_rmax=maximum(Unsubtracted_Resp),
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery=maximum(Percent_Recoveries) #This is maximum vs average
))
else
push!(qExperiment, (
Year=qData[1, :Year], Month=qData[1, :Month], Date=qData[1, :Date],
Age=qData[1, :Age], Number=qData[1, :Number], Genotype=qData[1, :Genotype],
Channel = ch,
Photoreceptor=qData[1, :Photoreceptor], Wavelength=qData[1, :Wavelength],
Photons=qData[1, :Photons],
rmax=maximum(Resps),
RMAX_fit = 0.0, K_fit = 0.0, N_fit = 0.0,
RSQ_fit = 0.0, #, MSE_fit = mse_FIT,
unsubtracted_rmax=maximum(Unsubtracted_Resp),
rdim=Resps[rdim_idx],
integration_time=Integrated_Times[rdim_idx],
time_to_peak=Peak_Times[rdim_idx],
percent_recovery=maximum(Percent_Recoveries) #This is maximum vs average
))
end
end
end
qConditions = summarize_data(qTrace, qExperiment)
return qTrace, qExperiment, qConditions
end
end
function runAnalysis(datasheet::DataFrame; measure_minima = false, verbose = false)
resA = ePhys.run_A_wave_analysis(datasheet; measure_minima = measure_minima, verbose = verbose)
resB = ePhys.run_B_wave_analysis(datasheet, verbose = verbose)
resG = ePhys.run_G_wave_analysis(datasheet, verbose = verbose)
return (datasheet, resA, resB, resG)
end
function add_analysis_sheets(results, save_file::String; append="A")
trace, experiments, conditions = results
dataset = openDatasheet(save_file; sheetName = "all", typeConvert = false)
rewrite_sheets = ["trace_$append", "experiments_$append", "conditions_$append"]
for sheet in rewrite_sheets #We need to add any new sheets to the current sheet. Kind of a waste but it works
if sheet == "trace_$append"
dataset[sheet] = trace
elseif sheet == "experiments_$append"
dataset[sheet] = experiments
elseif sheet == "conditions_$append"
dataset[sheet] = conditions
end
end
XLSX.openxlsx(save_file, mode = "w") do xf
#This will always add a sheet1
for sName in keys(dataset)
#println("$sName")
if sName == "All_Files"
XLSX.rename!(xf[1], "All_Files")
else
XLSX.addsheet!(xf, sName)
end
XLSX.writetable!(xf[sName], dataset[sName])
end
end
end
function runAnalysis(datafile::String; kwargs...)
print("Opening datafile $(datafile)... ")
datasheet = openDatasheet(datafile, sheetName = "All_Files")
println("complete")
datasheet, resA, resB, resG = runAnalysis(datasheet; kwargs...)
if !isnothing(resA)
add_analysis_sheets(resA, datafile; append="A")
end
if !isnothing(resB)
add_analysis_sheets(resB, datafile; append="B")
end
if !isnothing(resG)
add_analysis_sheets(resG, datafile; append="G")
end
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 23603 | #This file contains the calibration data
function extract_categories(cond_df::DataFrame)
categories = []
for row in eachrow(cond_df)
a = [row.Age, row.Genotype, row.Photoreceptor, row.Wavelength]
push!(categories, a)
end
categories
end
function extractIR(trace_datafile::DataFrame, category; measure = :Response, kwargs...)
allIR = trace_datafile |>
@filter(_.Age == category[1]) |>
@filter(_.Genotype == category[2]) |>
@filter(_.Photoreceptor == category[3]) |>
@filter(_.Wavelength == category[4]) |>
DataFrame
intensity = allIR.Photons
response = abs.(allIR[!, measure])
#generate the fits for the equation
r = measure == :Minima ? abs(minimum(response)) : maximum(response)
#println(intensity)
fit = HILLfit(intensity, response; r = r, rmax = (r + 1000), kwargs...)
model(I, p) = map(i -> p[1]*IR(i, p[2], p[3]), I)
fitResponse = model(intensity, fit.param)
allIR[!, :FitVariable] = fitResponse
allIR[!, :Residual] = fit.resid
select!(allIR,
[
:Path, :Year, :Month, :Date,
:Age, :Number, :Genotype, :Photoreceptor, :Wavelength, :Channel, :Gain,
:Photons, measure, :FitVariable, :Residual
]
)
return allIR, fit
end
function runTraceAnalysis(dataset::Dict{String, DataFrame};
a_cond = "BaCl_LAP4",
b_cond = "BaCl",
g_cond = "NoDrugs",
sample_rate = 10_000.0,
t_pre=1.0,
t_post=1.0,
measure_minima = false,
measure_abs = false,
subtraction = true,
verbose = true,
)
uniqueData = dataset["ALL_FILES"] |> @unique({_.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype, _.Condition}) |> DataFrame #Pull out all unique files
if verbose
println("Completed data query")
end
qTrace = DataFrame() #Make empty dataframes for all traces
for (idx, i) in enumerate(eachrow(uniqueData)) #Walk through each unique data
if verbose
println("Completeing analysis for $idx out of $(size(uniqueData,1))")
println("Path: $(i.Path)")
end
qData = dataset["ALL_FILES"] |> @filter(
(_.Date, _.Number, _.Wavelength, _.Photoreceptor, _.Genotype) ==
(i.Date, i.Number, i.Wavelength, i.Photoreceptor, i.Genotype)
) |> DataFrame #Pull out the data
#Determine whether or not a subtraction should be done
if subtraction
if i.Condition == a_cond
qTRIALa = qTRIAL = qData |> @filter(_.Condition == a_cond) |> DataFrame
qTRIAL[!, :SubPath] .= "NONE" #There is no subtraction
#pull out only A-wave files
data = readABF(qTRIALa.Path, sort_by_date = false)
dataABF = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate) #This function is found in the filter pipeline
#println(dataABF |> size)
elseif i.Condition == b_cond
#println("Analysis of B-wave file")
qTRIALb = qData |> @filter(_.Condition == b_cond) |> DataFrame
qTRIALa = qData |> @filter(_.Condition == a_cond) |> DataFrame
qTRIAL = SubFiles = qTRIALa |> @join(qTRIALb,
{_.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{_.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{__...,
SubPath = _.Path,
}) |> DataFrame
if isempty(qTRIAL)
println("\t Experiment $(i.Path) was incomplete")
continue
end
#println(SubFiles.Path)
data = readABF(SubFiles.Path, sort_by_date = false) #Read the AB data
filt_data = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate,)
dataSUB = readABF(SubFiles.SubPath, sort_by_date = false)
filt_dataSUB = data_filter(dataSUB, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate,)
#if we want to subtract we need to filter first
dataABF = filt_data - filt_dataSUB
#println(size(dataABF))
elseif i.Condition == g_cond
#println("Analysis of Glial files")
qTRIALb = qData |> @filter(_.Condition == b_cond) |> DataFrame
qTRIALg = qData |> @filter(_.Condition == g_cond) |> DataFrame
qTRIAL = SubFiles = qTRIALb |> @join(qTRIALg,
{_.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{_.Date, _.Number, _.Photons, _.Wavelength, _.Photoreceptor, _.Genotype},
{__...,
SubPath = _.Path,
}) |> DataFrame
if isempty(qTRIAL)
println("\t Experiment $(i.Path) was incomplete")
continue
end
#println(qTRIAL |> size)
data = readABF(SubFiles.Path, sort_by_date = false) #Read the AB data
filt_data = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate)
dataSUB = readABF(SubFiles.SubPath, sort_by_date = false)
filt_dataSUB = data_filter(dataSUB, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate)
#if we want to subtract we need to filter first
dataABF = filt_data - filt_dataSUB
#println(size(dataABF))
end
else
if i.Condition == a_cond
qTRIAL = qData |> @filter(_.Condition == a_cond) |> DataFrame
qTRIAL[!, :SubPath] .= "NONE" #There is no subtraction
#pull out only A-wave files
data = readABF(qTRIAL.Path, sort_by_date = false)
dataABF = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate) #This function is found in the filter pipeline
#println(dataABF |> size)
elseif i.Condition == b_cond
#println("Analysis of B-wave file")
qTRIAL = qData |> @filter(_.Condition == b_cond) |> DataFrame
qTRIAL[!, :SubPath] .= "NONE" #There is no subtraction
#println(SubFiles.Path)
data = readABF(qTRIAL.Path, sort_by_date = false) #Read the AB data
dataABF = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate) #This function is found in the filter pipeline
#println(size(dataABF))
elseif i.Condition == g_cond
#println("Analysis of Glial files")
qTRIAL = qData |> @filter(_.Condition == g_cond) |> DataFrame
qTRIAL[!, :SubPath] .= "NONE" #There is no subtraction
#println(qTRIAL |> size)
data = readABF(qTRIAL.Path, sort_by_date = false) #Read the AB data
dataABF = data_filter(data, avg_swp = false, t_pre = t_pre, t_post=t_post, sample_rate = sample_rate) #This function is found in the filter pipeline
end
end
#Conduct the analysis for each channel
for (ch_idx, data_ch) in enumerate(eachchannel(dataABF)) #walk through each row of the data iterator
gain = data.chTelegraph[ch_idx]
if gain == 1 #Extract the gain == 1
if verbose
println("Gain is a different")
end
data / 100.0
end
minimas = minimum(data_ch, dims=2)[:, 1, :]
maximas = maximum(data_ch, dims=2)[:, 1, :]
if measure_abs
responses = maximum(abs.(hcat(maximas, minimas)), dims = 2) |> vec
else
if i.Condition == a_cond
if measure_minima || i.Photoreceptor == "Cones"
responses = abs.(minimas)
verbose ? println("Only minimas") : nothing
else
responses = abs.(saturated_response(data_ch))
end
elseif i.Condition == b_cond
responses = abs.(maximas)
elseif i.Condition == g_cond
responses = abs.(minimas)
end
end
Peak_Times = time_to_peak(data_ch)
Integrated_Times = integral(data_ch)
rmax = maximum(responses, dims = 1)
Percent_Recoveries = percent_recovery_interval(data_ch, rmax)
for swp in axes(data_ch, 1) #Walk through all sweep info, since sweeps will represent individual datafiles most of the time
#println(swp)
#inside_row = qData[idx, :Path] #We can break down each individual subsection by the inside row
push!(qTrace,
(
Path=qTRIAL[swp, :Path], SubPath = qTRIAL[swp, :SubPath],
#SubPath= isnothing(SubFiles) ? SubFiles[swp, :SubPath] : nothing,
Date=qTRIAL[swp, :Date], Age=qTRIAL[swp, :Age], Number=qTRIAL[swp, :Number], Genotype=qTRIAL[swp, :Genotype],
Condition = qTRIAL[swp, :Condition], Photoreceptor=qTRIAL[swp, :Photoreceptor], Wavelength=qTRIAL[swp, :Wavelength],
Photons=qTRIAL[swp, :Photons],
Channel=data_ch.chNames[1], Gain=gain,
Response=responses[swp], Minima=minimas[swp], Maxima=maximas[swp],
Peak_Time=Peak_Times[swp], Integrated_Time=Integrated_Times[swp],
Percent_Recovery=Percent_Recoveries[swp]
#Recovery_Tau=Recovery_Taus[swp], Tau_GOF=Tau_GOFs[swp],
)
)
end
end
end
dataset["TRACES"] = qTrace
return dataset
end
function runExperimentAnalysis(dataset::Dict{String, DataFrame};
lb = [1.0, 1.0, 0.1], #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0 = :determine,
ub = [Inf, Inf, 10.0], #Default rmax = 2400, kmax = 800
verbose = false,
)
EXPERIMENTS = dataset["TRACES"] |> @unique({_.Date, _.Age, _.Number, _.Genotype, _.Channel, _.Condition, _.Photoreceptor, _.Wavelength}) |> DataFrame
#println(EXPERIMENTS)
qExperiment = DataFrame() #Make empty dataframe for all experiments
for exp in eachrow(EXPERIMENTS)
INFO = (
Date = exp.Date,
Age = exp.Age,
Number = exp.Number,
Genotype = exp.Genotype,
Channel = exp.Channel,
Photoreceptor = exp.Photoreceptor,
Condition = exp.Condition,
Wavelength = exp.Wavelength
)
matched = matchExperiment(dataset["TRACES"], INFO)
rdim_idx = findRDIM(matched.Response)
#println(rdim_idx)
if size(matched.Response,1) > 2
if p0 == :determine
p0 = [maximum(matched.Response), median(matched.Photons), 2.0]
end
#Fitting each data trace to a IR curve
fit, fit_RSQ = HILLfit(matched.Photons, matched.Response; p0 = p0, lb = lb, ub = ub)
fit_RMAX = fit.param[1]
fit_K = fit.param[2]
fit_N = fit.param[3]
if verbose
println("Fit r-squared = $fit_RSQ")
end
else
#Fitting each data trace to a IR curve
fit_RMAX = 0.0
fit_K = 0.0
fit_N = 0.0
fit_RSQ = 0.0
#println("\t ONly $(length(responses)) responses. IR curve couldn't be fit")
end
frame = (;INFO... ,
rmax = maximum(matched.Response), rdim = matched.Response[rdim_idx],
RMAX_fit = fit_RMAX, K_fit = fit_K, N_fit = fit_N,
RSQ_fit = fit_RSQ, #, MSE_fit = mse_FIT,
integration_time = matched.Integrated_Time[rdim_idx],
time_to_peak = matched.Peak_Time[rdim_idx],
percent_recovery = mean(matched.Percent_Recovery) #really strange these usually are averaged
#recovery_tau=Recovery_Taus[rdim_idx],
)
push!(qExperiment, frame)
end
dataset["EXPERIMENTS"] = qExperiment
return dataset
end
function runConditionsAnalysis(dataset::Dict{String, DataFrame}; verbose = false, kwargs...)
#filter out all flags
qExps = dataset["EXPERIMENTS"]
qTraces = matchExperiment(dataset["TRACES"], qExps)
qConditions = qExps |>
@groupby({_.Age, _.Genotype, _.Photoreceptor, _.Wavelength, _.Condition}) |>
@map({
Age = _.Age[1], Genotype = _.Genotype[1], Photoreceptor = _.Photoreceptor[1], Wavelength = _.Wavelength[1],
Condition = _.Condition[1],
N = length(_),
Rmax = mean(_.rmax), Rmax_sem = sem(_.rmax),
Rdim = mean(_.rdim), Rdim_sem = sem(_.rdim),
Integrated_Time = mean(_.integration_time), Integrated_Time_sem = sem(_.integration_time),
Time_to_peak = mean(_.time_to_peak), Time_To_Peak_sem = sem(_.time_to_peak),
Percent_Recovery = mean(_.percent_recovery), Percent_Recovery_sem = sem(_.percent_recovery),
K_IR = mean(_.K_fit), K_SEM_IR = sem(_.K_fit),
RMAX_COLL = 0.0, K_COLL = 0.0, N_COLL = 0.0, RSQ_COLL = 0.0
#Recovery_Tau = mean(_.recovery_tau), Recovery_Tau_sem = sem(_.recovery_tau),
}) |>
DataFrame
#iterate through each conditon and generate a collated IR curve
for (idx, cond) in enumerate(eachrow(qConditions))
qIND_COND = qTraces |>
@filter(_.Age == cond.Age) |>
@filter(_.Genotype == cond.Genotype) |>
@filter(_.Condition == cond.Condition) |>
@filter(_.Photoreceptor == cond.Photoreceptor) |>
@filter(_.Wavelength == cond.Wavelength) |>
DataFrame
if verbose
println("Summarizing conditions $cond")
end
if size(qIND_COND, 1) > 2
fit, rsq = HILLfit(qIND_COND.Photons, qIND_COND.Response; kwargs...)
qConditions[idx, :RMAX_COLL] = fit.param[1]
qConditions[idx, :K_COLL] = fit.param[2]
qConditions[idx, :N_COLL] = fit.param[3]
qConditions[idx, :RSQ_COLL] = rsq
end
end
dataset["CONDITIONS"] = qConditions
return dataset
end
sem(x) = std(x)/sqrt(length(x))
function runStatsAnalysis(dataset;
control = "WT",
stat_metrics = [:rmax, :rdim, :K_fit, :time_to_peak, :percent_recovery, :integration_time],
verbose = true,
)
qEXP = dataset["EXPERIMENTS"]
#unflagged_exps = qEXP |> @filter(_.INCLUDE == true) |> DataFrame
exps = DataFrame[]
for stat in stat_metrics
if verbose
println("Running $stat")
end
res_stat = qEXP |>
@groupby({_.Genotype, _.Age, _.Condition, _.Photoreceptor}) |>
@map({Genotype = key(_)[1], Age = key(_)[2], Condition = key(_)[3], Photoreceptor = key(_)[4],
N = length(_),
METRIC = string(stat),
AVG = 0.0, STD = 0.0, SEM = 0.0, CI = 0.0,
LOWER = 0.0, UPPER = 0.0,
P = 0.0, SIGN = "-"
})|>
DataFrame
for (idx, info) in enumerate(eachrow(res_stat))
#first load the control data
ctrl_data = qEXP |>
@filter(_.Genotype == control && _.Age == info.Age && _.Condition == info.Condition && _.Photoreceptor == info.Photoreceptor) |>
DataFrame
exp_data = qEXP |>
@filter(_.Genotype == info.Genotype && _.Age == info.Age && _.Condition == info.Condition && _.Photoreceptor == info.Photoreceptor) |>
DataFrame
res_stat[idx, :AVG] = mean(exp_data[:, stat])
res_stat[idx, :STD] = std(exp_data[:, stat])
res_stat[idx, :SEM] = sem(exp_data[:, stat])
res_stat[idx, :CI] = CI = 1.96*sem(exp_data[:, stat])
res_stat[idx, :LOWER] = mean(exp_data[:, stat]) - CI
res_stat[idx, :UPPER] = mean(exp_data[:, stat]) + CI
verbose ? println(stat) : nothing
verbose ? println("Size data = $(size(exp_data,1))") : nothing
verbose ? println("Size control data = $(size(ctrl_data,1))") : nothing
verbose ? println(ctrl_data[:, stat]) : nothing
verbose ? println(exp_data[:, stat]) : nothing
if size(exp_data,1) > 1 && size(ctrl_data,1) > 1 && sum(ctrl_data[:, stat]) != sum(exp_data[:, stat])
try
res_stat[idx, :P] = P = UnequalVarianceTTest(ctrl_data[:, stat], exp_data[:, stat]) |> pvalue
res_stat[idx, :SIGN] = "*"
catch #error
res_stat[idx, :P] = 1.0
res_stat[idx, :SIGN] = "-"
end
else
res_stat[idx, :P] = 1.0
res_stat[idx, :SIGN] = "-"
end
end
push!(exps, res_stat)
end
stats = vcat(exps...)
dataset["STATS"] = stats
return dataset
end
function runDataAnalysis(filenames::Vector{String};
#Options for the createDataset
seperate_dates = false,
#Options for runTraceAnalysis
a_cond = "BaCl_LAP4",
b_cond = "BaCl",
g_cond = "NoDrugs",
sample_rate = 10_000.0,
t_pre=1.0,
t_post=1.0,
measure_minima = false,
measure_abs = false,
subtraction = true,
#Options for runExperimentAnalysis
lb = [1.0, 1.0, 0.1], #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0 = :determine,
ub = [Inf, Inf, 10.0], #Default rmax = 2400, kmax = 800
#Options for runStatsAnalysis
control = "WT",
stat_metrics = [:rmax, :rdim, :K_fit, :time_to_peak, :percent_recovery, :integration_time],
#General options
debug::Bool = false,
verbose = 1, #3 modes -> 0: nothing, 1: only shows progress, 2: shows progress and inside of functions
)
now = Dates.now()
verbose > 0 ? println("[$now]: Begin analyzing data: ") : nothing
dataset = createDataset(filenames; seperate_dates = seperate_dates, verbose = verbose==2, debug = debug);
verbose > 0 ? println("\t [$(Dates.now() - now)] Files") : nothing
now = Dates.now()
dataset = runTraceAnalysis(dataset,
a_cond = a_cond,
b_cond = b_cond,
g_cond = g_cond,
sample_rate = sample_rate,
t_pre = t_pre,
t_post = t_post,
measure_minima = measure_minima,
measure_abs = measure_abs,
subtraction = subtraction,
verbose = verbose==2,
);
verbose > 0 ? println("\t [$(Dates.now() - now)] Traces") : nothing
now = Dates.now()
dataset = runExperimentAnalysis(dataset, lb = lb, p0 = p0, ub = ub, verbose = verbose==2);
verbose > 0 ? println("\t [$(Dates.now() - now)] Experiments") : nothing
now = Dates.now()
dataset = runConditionsAnalysis(dataset, verbose = verbose==2);
verbose > 0 ? println("\t [$(Dates.now() - now)] Conditions") : nothing
now = Dates.now()
dataset = runStatsAnalysis(dataset, control = control, stat_metrics = stat_metrics, verbose = verbose==2);
verbose > 0 ? println("\t [$(Dates.now() - now)] Stats ") : nothing
return dataset
end
function runDataAnalysis(data::Experiment; verbose = false, subtraction = true)
filenames = joinpath(splitpath(data.HeaderDict["abfPath"])[1:end-1]...) |> parseABF
return runDataAnalysis(filenames; verbose = verbose, subtraction = subtraction)
end
function runDataAnalysis(fileroot::String; verbose = false, subtraction = true)
filenames = fileroot |> parseABF
return runDataAnalysis(filenames; verbose = verbose, subtraction = subtraction)
end
#This can be used for IR and STF, but not for Tau or LP model
function GenerateFitFrame(df_TRACE, xData, yData;
MODEL = HILL_MODEL, #These function
lb = (100.0, 1.0, 0.1), #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0 = (500.0, 200.0, 2.0), #Default r = 500.0, k = 200.0, n = 2.0
ub = (2400, 400, 4.0), #Default rmax = 2400, kmax = 800
verbose = true
)
df_EXP = df_TRACE |> @unique({_.Year, _.Month, _.Date, _.Number, _.Channel}) |>
@map({
_.Year, _.Month, _.Date, _.Number, _.Channel,
RMAX = 0.0, K = 0.0, N = 0.0,
RSQ = 0.0,
rmin = lb[1], r = p0[1], rmax = ub[1], #The highest b-wave ever seen is (2400)
kmin = lb[2], k = p0[2], kmax = ub[2], #Half of the highest a-wave ever seen (800),
nmin = lb[3], n = p0[3], nmax = ub[3],
MSE = 0.0,
SS_Resid = 0.0, SS_Total = 0.0,
}) |> DataFrame
for (idx, exp) in enumerate(eachrow(df_EXP))
#println(exp)
YEAR = exp.Year
MONTH = exp.Month
DATE = exp.Date
NUMBER = exp.Number
CHANNEL = exp.Channel
if verbose
print("Fitting exp $idx: $(YEAR)_$(MONTH)_$(DATE)_$(NUMBER)_$(CHANNEL)")
end
exp_traces = df_TRACE |> @filter((_.Year, _.Month, _.Date, _.Number, _.Channel) == (exp.Year, exp.Month, exp.Date, exp.Number, exp.Channel)) |> DataFrame
println(exp_traces)
#Conduct the fitting
p0 = [exp.r, exp.k, exp.n]
ub = [exp.rmax, exp.kmax, exp.nmax]
lb = [exp.rmin, exp.kmin, exp.nmin]
exp_STF = curve_fit(MODEL, exp_traces[:, xData], exp_traces[:, yData], p0, lower = lb, upper = ub)
df_EXP[idx, :RMAX] = exp_STF.param[1]
df_EXP[idx, :K] = exp_STF.param[2]
df_EXP[idx, :N] = exp_STF.param[3]
df_EXP[idx, :SS_Resid] = ss_resid = sum(exp_STF.resid.^2)
df_EXP[idx, :MSE] = ss_resid/size(exp_traces,1)
yTrue = exp_traces[:, yData]
yMean = mean(yTrue)
df_EXP[idx, :SS_Total] = ss_total = sum((yTrue .- yMean).^2)
df_EXP[idx, :RSQ] = 1 - (ss_resid/ss_total)
if verbose
println("RSQ is at $(println(df_EXP[idx, :RSQ]))")
end
end
return df_EXP
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 9076 | """
# Example
```julia-repl
dataset["EXPERIMENTS"]
test = convertDate_inFrame!(dataset["EXPERIMENTS"])
dataset["EXPERIMENTS"]
saveDataset(dataset, save_file)
```
"""
function convertDate_inFrame!(df::DataFrame)
df[!, :Date] = Date.(parse.(Int64, df[!, :Year]), parse.(Int64, df[!, :Month]), parse.(Int64, df[!, :Date]))
select!(df, Not(:Year))
select!(df, Not(:Month))
return df
end
"""
This function cleans the data out of a dataframe if the dataframe is already open
"""
function cleanDatasheet!(xf::XLSX.XLSXFile, sheetname::String)
if sheetname ∈ XLSX.sheetnames(xf)
sheet = xf[sheetname]
nrows, ncols = size(sheet[:])
names = map(col -> sheet[1, col], 1:ncols)
eraser = []
for name in names
eraser_col = (name, fill("", nrows - 1)...)
push!(eraser, eraser_col)
end
XLSX.writetable!(xf[sheetname],
fill(Tuple(fill("", nrows)), ncols), names
)
else
println("Sheetname not in sheets")
println("Choose from one of these sheets:")
for sn in XLSX.sheetnames(xf)
println("-> $sn")
end
end
end
"""
This function cleans the data out of a dataframe and saves it
"""
function cleanDatasheet!(filename::String, sheetname::String)
XLSX.openxlsx(filename, mode="rw") do xf
cleanDataFrame!(xf, sheetname)
end
end
"""
dataset = createDataset(files::Vector{String}[; verbose = false, run_analysis = true])
This function creates a dataset from a group of files. The best thing to do is to point to your datafiles root
and then use the parseABF function.
- If run_analysis is selected, the function runTraceAnalysis will automatically be run on the dataset
# Examples
```julia-repl
data_root = "\\user\\myroot"
data_files = parseABF(data_root)
dataset = createDataset(data_files)
```
"""
function createDataset(all_files::Vector{String};
seperate_dates = false,
verbose::Bool = false,
debug::Bool = false,
)
dataframe = DataFrame()
for (idx, file) in enumerate(all_files)
verbose ? print("Analyzing file $idx of $(size(all_files, 1)): $file ...") : nothing
try
entry = DataPathExtraction(file)
if isnothing(entry) && verbose #Throw this in the case that the entry cannot be fit
println("Failed")
#elseif length(entry) != size(dataframe, 2)
# println("Entry does not match dataframe size. Probably an extra category")
else
verbose ? println("Success") : nothing
push!(dataframe, entry)
end
catch error
verbose ? println("$file \n $error") : nothing
if debug
throw(error)
end
end
end
if !(seperate_dates)
convertDate_inFrame!(dataframe)
end
return Dict("ALL_FILES" => dataframe)
end
createDataset(file_root::String; verbose = false, run_analysis = true, kwargs...) = createDataset(file_root |> parseABF; verbose = verbose, run_analysis = run_analysis, kwargs...)
"""
dataset = openDataset(datafile::String, [;
typeConvert = true,
sheetnames::Union{String, Vector{String}} = ["ALL_FILES", "TRACES", "EXPERIMENTS", "CONDITIONS", "STATS"]
])
This function opens a saved dataset as an excel file.
# Example
```julia-repl
datafile = "\\user\\myroot\\datafile.xlsx"
dataset = openDataset(datafile)
```
"""
function openDataset(datafile::String;
typeConvert=true,
sheetnames=nothing,
verbose = true,
debug = false
)
if isnothing(sheetnames)
xf = XLSX.readxlsx(datafile)
df_set = Dict{String, DataFrame}()
for sn in XLSX.sheetnames(xf)
df_set[sn] = openDataset(datafile; typeConvert = typeConvert, sheetnames = sn)
end
return df_set
elseif !isnothing(sheetnames) && isa(sheetnames, String)
try
df = DataFrame(XLSX.readtable(datafile, sheetnames))
if typeConvert
df = safe_convert(df) #This converts the categories to a type in the first position
end
return df
catch error
if debug
throw(error)
end
if verbose
println("Table doesn't exist yet")
end
return DataFrame()
end
end
end
"""
This function will read and update the datasheet with the new files
"""
function updateDataset(data_file::String, all_files::Vector{String}; reset::Bool=false, savefile::Bool=true)
if reset
#If this is selected, completely reset the analysis
else
df = openDatasheet(data_file; sheetName = "ALL_FILES") #First, open the old datasheet
nrows, ncols = size(df)
println("Searching for files that need to be added and removed")
old_files = df[:, :Path] #Pull out a list of old files
#This searches for files that occur in all files, but not in old files, indicating they need added to the analysis
files_to_add = findall(isnothing, indexin(all_files, old_files))
#This searches for files that are in old files, but not not in all files, indicating they may need deleted
files_to_remove = findall(isnothing, indexin(old_files, all_files))
duplicate_files = findall(nonunique(df))
if !isempty(files_to_add) #There are no files to add
println("Adding $(length(files_to_add)) files")
new_files = all_files[files_to_add]
df_new = createDatasheet(new_files)
df = vcat(df, df_new) #Add the new datasheet to the old one
end
if !isempty(files_to_remove)
println("Removing $(length(files_to_add)) files")
deleteat!(df, files_to_remove)
end
if !isempty(duplicate_files)
println("Removing $(length(duplicate_files)) duplicated files")
deleteat!(df, duplicate_files)
end
#Sort the dataframe
df = df |>
@orderby(_.Year) |> @thenby(_.Month) |> @thenby(_.Date) |>
@thenby(_.Animal) |> @thenby(_.Genotype) |> @thenby(_.Condition) |>
@thenby(_.Wavelength) |> @thenby(_.Photons) |>
DataFrame
if savefile
println("Saving file... ")
XLSX.openxlsx(data_file, mode="rw") do xf
print("Erasing file")
cleanDatasheet!(xf, "All_Files") #This cleans all data from All_Files
#This re-writes it
XLSX.writetable!(xf["All_Files"],
collect(DataFrames.eachcol(df)),
DataFrames.names(df)
)
end
println("Complete")
end
return df
end
end
function copyDataset(datafile::String, sheetname = "all", backup = true)
root = joinpath(splitpath(datafile)[1:end-1])
if isfile(datafile) #we should only do these things if the datafile exists
new_fn = "$root\\temp.xlsx"
XLSX.openxlsx(new_fn, mode = "w") do xf
sheet1 = xf[1] #Sheet 1 should be renamed
XLSX.rename!(sheet1, "ALL_FILES")
XLSX.addsheet!(xf, "TRACES")
XLSX.addsheet!(xf, "EXPERIMENTS")
XLSX.addsheet!(xf, "CONDITIONS")
#XLSX.addsheet!(xf, "STATISTICS")
#XLSX.addsheet!(xf, "FITTING")
#XLSX.addsheet!(xf, "SYNAPTIC TRANSFER FUNCTION")
end
end
end
"""
This function quicksaves the datafile you are working with
"""
function backupDataset(datafile::String)
date = now()
root = joinpath(splitpath(datafile)[1:end-1])
filename = splitpath(datafile)[end][1:end-5]
backup_file = "$(root)\\$(year(date))_$(month(date))_$(day(date))_$(filename)_BACKUP_$(hour(date))_$(minute(date))_$(second(date)).xlsx"
cp(datafile, backup_file)
end
function saveDataset(dataset::Dict{String, DataFrame}, filename::String;
categories = [ "ALL_FILES", "TRACES", "EXPERIMENTS", "CONDITIONS", "STATS"]
)
XLSX.openxlsx(filename, mode = "w") do xf
sheet_ALL = xf[1] #Sheet 1 should be renamed
XLSX.rename!(sheet_ALL, categories[1])
XLSX.writetable!(sheet_ALL, dataset[categories[1]])
for i in eachindex(categories)[2:end]
XLSX.addsheet!(xf, categories[i])
if haskey(dataset, categories[i])
sheet_TRACES = xf[i]
if !isempty(dataset[categories[i]])
XLSX.writetable!(sheet_TRACES, dataset[categories[i]])
end
end
end
end
end
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 11627 | """
photon_lookup(wavelength, nd, percent, stim_time, calibration_file[,sheet_name])
Uses the calibration file or datasheet to look up the photon density. The Photon datasheet should be either
"""
function photon_lookup(wavelength::Real, nd::Real, percent::Real; path = :default, sheet_name::String="Current_Test")
try
if path == :default
df = DataFrame(XLSX.readtable(calibration_path(), sheet_name))
else
df = DataFrame(XLSX.readtable(path, sheet_name))
end
Qi = df |>
@filter(_.Wavelength == wavelength) |>
@filter(_.ND == nd) |>
@filter(_.Intensity == percent) |>
#@filter(_.stim_time == stim_time) |>
@map(_.Photons) |>
DataFrame
#%%
if !isempty(Qi)
#Only return f an entry exists
return Qi.value[1]
end
catch error
if isa(error, AssertionError)
println("Calibration File Incorrectly specified")
end
throw(error)
end
end
function photon_lookup(photon::Real; path = :default, sheet_name::String="Current_Test")
try
if path == :default
df = DataFrame(XLSX.readtable(calibration_path(), sheet_name))
else
df = DataFrame(XLSX.readtable(path, sheet_name))
end
Qi = df |>
@filter(_.Photons == photon) |>
@map({Wavelength = _.Wavelength, ND = _.ND, Intensity = _.Intensity}) |>
DataFrame
if !isempty(Qi)
#Only return f an entry exists
return (Qi.Wavelength[1], Qi.ND[1], Qi.Intensity[1])
end
catch error
if isa(error, AssertionError)
println("Calibration File Incorrectly specified")
end
throw(error)
end
end
"""
This function converts a dataframe of Any to one matching each row type.
catchNaN allows it to catch NaN errors from excel
"""
function safe_convert(dataframe::DataFrame; verbose = false)
new_obj = DataFrame(dataframe)
for (idx, col) in enumerate(eachcol(dataframe))
#println(names(dataframe)[idx])
typ = typeof(col[1]) #Check if there are
#We will try to convert each row. If it does not work, we can remove the NaN
#println(col)
if ("NaN" ∈ col) #Check if there exists a word NaN in the row (excel will call these strings)
#print("Is NaN") #debugging statements
whereNaN = findall(col .== "NaN")
#println("At position $whereNaN")
for idxNaN in whereNaN
if verbose
println("Indexes where a NaN is: $idxNaN")
end
col[idxNaN] = NaN #Instead use a NaN Floating point objects
end
new_obj[:, idx] = convert.(typ, col)
elseif !all(isa.(col, typ))#if col[1] #This is for if there is a Int to Float64 error
whereNotSame = findall(map(!, isa.(col, typ)))
irregular_type = col[whereNotSame[1]] |> typeof
if verbose
println(col[whereNotSame[1]])
println("Column type: $typ")
println("Irregular type: $(irregular_type)")
end
if irregular_type == Int64 && typ == Float64 #This can cause an error
new_obj[!, idx] = convert.(typ, col) #Convert all values to Float64
else
new_obj[!, idx] = convert.(irregular_type, col) #Convert all values to Float64
end
else
#conv = convert.(typ, col)
new_obj[!, idx] = convert.(typ, col)
end
end
return new_obj
end
function parseColumn!(T::Type, dataframe::DataFrame, col::Symbol)
if all(isa.(dataframe[!, col], T))
println("Already converted")
else
dataframe[! , col] = parse.(T, dataframe[:, col])
end
end
parseColumn!(dataframe::DataFrame, col::Symbol) = parseColumn!(Int64, dataframe, col)
#=============================================================================================
These fuctions help extract experiments
=============================================================================================#
"""
If you pass either a named tuple or a dataframe row, this will pull out all the related
"""
function matchExperiment(trace::DataFrame, info::NamedTuple)
return_traces = copy(trace)
if haskey(info, :Date)
return_traces = return_traces |> @filter(_.Date == info.Date) |> DataFrame
end
if haskey(info, :Number)
return_traces = return_traces |> @filter(_.Number == info.Number) |> DataFrame
end
if haskey(info,:Photoreceptor)
return_traces = return_traces |> @filter(_.Photoreceptor == info.Photoreceptor) |> DataFrame
end
if haskey(info, :Condition)
return_traces = return_traces |> @filter(_.Condition == info.Condition) |> DataFrame
end
if haskey(info, :Channel)
return_traces = return_traces |> @filter(_.Channel == info.Channel) |> DataFrame
end
if haskey(info, :Genotype)
return_traces = return_traces |> @filter(_.Genotype == info.Genotype) |> DataFrame
end
if haskey(info, :Age)
return_traces = return_traces |> @filter(_.Age == info.Age) |> DataFrame
end
return return_traces
end
matchExperiment(trace::DataFrame, row::DataFrameRow) = matchExperiment(trace, NamedTuple(row))
function matchExperiment(trace::DataFrame, rows::DataFrame)
return_dataset = DataFrame()
for row in eachrow(rows)
dataset_i = matchExperiment(trace, row)
return_dataset = vcat(return_dataset, dataset_i)
end
return return_dataset
end
function excludeExperiment(trace::DataFrame, info::NamedTuple)
data_opposite_match = matchExperiment(trace, info)
excluded_experiment = DataFrame()
for row in eachrow(trace)
if row ∉ eachrow(data_opposite_match)
push!(excluded_experiment, row)
end
end
return excluded_experiment
end
excludeExperiment(trace::DataFrame, row::DataFrameRow) = excludeExperiment(trace, NamedTuple(row))
function excludeExperiment(trace::DataFrame, rows::DataFrame)
return_dataset = DataFrame()
for row in eachrow(rows)
dataset_i = excludeExperiment(trace, row)
return_dataset = vcat(return_dataset, dataset_i)
end
return return_dataset
end
function match_excludeExperiment(trace::DataFrame, match_rows, exclude_rows)
matched = matchExperiment(trace, match_rows)
excluded = excludeExperiment(matched, exclude_rows)
return excluded
end
"""
This function takes the whole dataset and then returns it as a partition of that dataset
"""
function matchDataset(dataset::Dict{String, DataFrame}, info)
new_dataset = Dict{String, DataFrame}()
new_dataset["ALL_FILES"] = matchExperiment(dataset["ALL_FILES"], info)
new_dataset["TRACES"] = matchExperiment(dataset["TRACES"], info)
new_dataset["EXPERIMENTS"] = matchExperiment(dataset["EXPERIMENTS"], info)
new_dataset = runConditionsAnalysis(new_dataset)
new_dataset = runStatsAnalysis(new_dataset)
return new_dataset
end
function excludeDataset(dataset::Dict{String, DataFrame}, info)
new_dataset = Dict{String, DataFrame}()
new_dataset["ALL_FILES"] = excludeExperiment(dataset["ALL_FILES"], info)
new_dataset["TRACES"] = excludeExperiment(dataset["TRACES"], info)
new_dataset["EXPERIMENTS"] = excludeExperiment(dataset["EXPERIMENTS"], info)
new_dataset = runConditionsAnalysis(new_dataset)
new_dataset = runStatsAnalysis(new_dataset)
return new_dataset
end
function concatDatasets(dataset1::Dict{String, DataFrame}, dataset2::Dict{String, DataFrame})
dataset1["ALL_FILES"] = vcat(dataset1["ALL_FILES"], dataset2["ALL_FILES"])
dataset1["TRACES"] = vcat(dataset1["TRACES"], dataset2["TRACES"])
dataset1["EXPERIMENTS"] = vcat(dataset1["EXPERIMENTS"], dataset2["EXPERIMENTS"])
dataset1["CONDITIONS"] = vcat(dataset1["CONDITIONS"], dataset2["CONDITIONS"])
dataset1["STATS"] = vcat(dataset1["STATS"], dataset2["STATS"])
return dataset1
end
"""
This function matches the experiments in info and then switches the include flag to false
"""
function flagExperiment(trace::DataFrame, info)
return_traces = copy(trace)
matched = matchExperiment(trace, info)
matched_indexes = indexin(eachrow(matched), eachrow(trace))
return_traces[matched_indexes, :INCLUDE] .= false
return return_traces
end
function flagExperiment!(trace::DataFrame, info)
matched = matchExperiment(trace, info)
matched_indexes = indexin(eachrow(matched), eachrow(trace))
trace[matched_indexes, :INCLUDE] .= false
end
function unflagALL!(dataset)
dataset["TRACES"][:, :INCLUDE] .= true
dataset["EXPERIMENTS"][:, :INCLUDE] .= true
end
"""
This function won't work right until we can open data from XLSX files
"""
function analyzeXLSX(filename::String, data::Experiment; verbose = false)
filenames = joinpath(splitpath(data.HeaderDict["abfPath"])[1:end-1]...) |> parseABF
verbose ? print("Analyzing data for $filename \n Begin...") : nothing
dataset = createDataset(filenames, verbose = verbose)
verbose ? print("Files, ") : nothing
dataset = runTraceAnalysis(dataset, verbose = verbose)
verbose ? print("Traces, ") : nothing
dataset = runExperimentAnalysis(dataset, verbose = verbose)
verbose ? print("Experiments. Completed ") : nothing
dataset = runConditionsAnalysis(dataset, verbose = verbose)
verbose ? print("Conditions, ") : nothing
dataset = runStatsAnalysis(dataset, verbose = verbose)
verbose ? println("Stats. Completed.") : nothing
XLSX.openxlsx(filename, mode = "rw") do xf
for key in keys(dataset)
XLSX.addsheet!(xf, key)
sheet = xf[key]
XLSX.writetable!(sheet, dataset[key])
end
end
return dataset
end
#Extend the writeXLSX
import ElectroPhysiology.writeXLSX #we need to do this or it will get caught in a recursion
import ElectroPhysiology.Experiment
function writeXLSX(filename::String, data::Experiment, mode::Symbol; verbose = true, kwargs...)
println("Editing the function")
if mode == :analysis
dataset = runDataAnalysis(data; verbose = false)
#we need to change the photons of the experiment here
qPhotons = dataset["TRACES"] |> @unique(_.Photons) |> DataFrame
@assert length(qPhotons.Photons) == size(data, 1)
setIntensity(data.stimulus_protocol, qPhotons.Photons) ##Set the intensity of the flash intensities
println(dataset["TRACES"])
verbose ? print("Saving excel file... ") : nothing
writeXLSX(filename, data; verbose = verbose, kwargs...)
verbose ? println("Completed") : nothing
XLSX.openxlsx(filename, mode = "rw") do xf
for key in keys(dataset)
XLSX.addsheet!(xf, key)
sheet = xf[key]
XLSX.writetable!(sheet, dataset[key])
end
end
else
verbose ? print("Saving excel file... ") : nothing
writeXLSX(filename, data; verbose = verbose, kwargs...)
verbose ? println("Completed") : nothing
end
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 3539 | import Base.NamedTuple
date_regex = r"(?'Year'\d{2,4})_(?'Month'\d{1,2})_(?'Date'\d{1,2})_(?'Description'.+)"
#animal_file_regex = r"(?'Animal'\D+)(?'Number'\d)_(?'Age'.+)_(?'Genotype'.+)"
nd_file_regex = r"nd(?'ND'.{1,3})_(?'Percent'\d{1,3})p_.+abf"
animal_regex = r"(_m|(?'Animal'Mouse|Zebrafish|Organoid)|m)(?'Number'\d)"
age_regex = r"_P(?'Age'\d*|)"
adult_regex = r"(?'IsAdult'(?i)adult)"
genotype_regex = r"_(?'Genotype'WT|DR|R141C|RS1KO|C59S|MelKO|GNAT-KO|GNAT-HT)"
cond_regex = r"(?'Condition'Drugs|NoDrugs|BaCl_LAP4|BaCl|No drugs|No Drugs)"
pc_regex = r"(?'Photoreceptors'Cones|Rods)"
color_regex = r"(?'Color'blue|green|Blue|Green|UV|365|365UV|520|520Green|525|525Green)"
avg_regex = r"(?'Correct'Average|average)"
background_regex = r"(?'Background'withback|noback)"
percent_regex = r"(?'Percent'\d{1,3})(%|p)"
nd_regex = r"nd(?'ND'\d{1,3})"
#nd_regex = r"nd(?'ND'.{1,3})_(?'Percent'\d{1,3})p"
NamedTuple(m::RegexMatch) = NamedTuple{Symbol.(Tuple(keys(m)))}(values(m.captures))
function findmatch(str_array::Vector{String}, reg_format::Regex; verbose=false, first=true)
matches = map(r -> match(reg_format, r), str_array)
#println(matches)
#println("Revise is working")
#println(any(.! isnothing.(matches)))
if any(.! isnothing.(matches))
if verbose
println("We found a format")
end
if first
return matches[findall(!isnothing, matches)][1] |> NamedTuple
else
return matches[findall(!isnothing, matches)] .|> NamedTuple
end
else
if verbose
println("We did not find a format")
end
end
end
function findmatch(path::String, reg_format::Regex; kwargs...)
str_array = splitpath(path)
return findmatch(str_array, reg_format; kwargs...)
end
function find_condition(str_array; possible_conds=["BaCl", "BaCl_LAP4", "NoDrugs"])
for cond in possible_conds
val = findall(str_array .== cond)
if !isempty(val)
cond = str_array[val]
return cond[1]
end
end
end
"""
These functions keep only things parsed as the object T, which defaults to Int64
"""
filter_string(::Type{T}, str::String) where {T} = filter(!isnothing, map(c -> tryparse(T, c), split(str, ""))) |> join
filter_string(::Type{T}, str::SubString{String}) where {T} = filter_string(T, str |> string)
filter_string(str::String) = filter(!isnothing, map(c -> tryparse(Int64, c), split(str, ""))) |> join
filter_string(::Type{T}, ::Nothing) where {T} = nothing
"""
This function takes a named tuple that contains numbers and cleans those numbers
"""
function parseNamedTuple(::Type{T}, nt::NamedTuple{keys}) where {T<:Real,keys}
nt_vals = [values(nt)...] #Fill nt_vals with the values of the NamedTuple
new_vals = []
for itm in nt_vals
#println(itm |> typeof)
if isa(itm, String) || isa(itm, SubString{String})#If the item is not nothing
#We only want to parse the item if all of it is a number
#println(itm)
val = tryparse(T, itm) #Try to parse the item as a Int64
if !isnothing(val)
push!(new_vals, val)
else #We should make sure that we at least convert these to a string
push!(new_vals, String(itm))
end
else
push!(new_vals, itm)
end
end
NamedTuple{keys}(new_vals)
end
#If no type is provided the namedtuple is parsed as a Int64
parseNamedTuple(nt::NamedTuple{keys}) where {keys} = parseNamedTuple(Int64, nt) | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 1708 | """
A simple stimulus
"""
function stimulus_callback(step_begin, step_end, level)
condition_fn1(u, t, integrator) = t == step_begin
affect_fn1!(integrator) = integrator.u[1] = level
cb_fn1 = DiscreteCallback(condition_fn1, affect_fn1!)
condition_fn2(u, t, integrator) = t == step_end
affect_fn2!(integrator) = integrator.u[1] = 0.0
cb_fn2 = DiscreteCallback(condition_fn2, affect_fn2!)
return CallbackSet(cb_fn1, cb_fn2)
end
#u = [ui, uc] ui = stimulus, uc = artifact response
#P = [A, C] A = Amplitude, C = Capacitance
RC(du, u, p, t) = du[2] = ((u[1] - u[2]) / (p[2]))
function CapModel(du, u, p, t)
end
function RCArtifact(data::Experiment, p0; model = :RC)
u0 = [0.0, 0.0]
tstops = data.stim_protocol[1].timestamps
tspan = (data.t[1], data.t[end])
stim = stimulus_callback(tstops[1], tstops[2], p0[1])
prob = ODEProblem(RC, u0, tspan, p0)
sol = solve(prob, callback=stim, tstops=tstops)
artifact = sol(data.t, idxs=1) - sol(data.t, idxs=2)
#The second phase will be fitting the artifact to the data
return artifact
end
function fitArtifact(data::Experiment; p0 = [150.0, 1.0e-3], swp = 1, ch = 2)
println(size(data))
min_func(x) = MeanSquaredError(RCArtifact(data, x), data.data_array[swp,:,ch])
results = optimize(min_func, p0)
pOPT = Optim.minimizer(results)
return pOPT
end
function removeArtifact(exp::Experiment)
data = deepcopy(exp)
for swp in 1:size(data, 1), ch in 1:size(data,3)
pOPT = fitArtifact(data)
artifact = RCArtifact(data_unfilt, pOPT)
artifact_removed = artifact .- data_unfilt.data_array[swp, :, ch]
end
return data
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 288 | using Documenter, PhysiologyAnalysis
makedocs(
sitename = "PhysiologyAnalysis.jl",
#modules = [ PhysiologyAnalysis ],
#pages = [
# "Home" => "index.md"
#]
)
#deploydocs(
#repo = "github.com/mattar13/PhysiologyAnalysis.jl.git",
#target = "build"
#) | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 5156 | module PhysiologyAnalysis
using Requires
# The top level is the ElectroPhysiology package. These are not imported into the workspace
using Dates
using ElectroPhysiology
import ElectroPhysiology: Experiment, readABF, parseABF
import ElectroPhysiology: eachtrial, eachchannel
import ElectroPhysiology: now, year, month, day, hour, minute, second
import ElectroPhysiology: TWO_PHOTON
import ElectroPhysiology: readABFInfo, getABF_datetime
#= Packages used for fitting data ====================================#
using LsqFit #Used for fitting amplification, Intensity Response, and Resistance Capacitance models
#= Packages used for Analyzing data ==================================#
import Polynomials as PN #used for fitting and stats
using StatsBase #Used for mean, std, and SEM functions.
using Statistics
using HypothesisTests
import Statistics.mean
#= Packages not yet uses
using Distributions
using Statistics, StatsBase #These functions use R functions as well as StatsBase
#export some basic functions from ============================================================#
export readABF, parseABF
export plt
#This package does 3 things:
#1) Fitting ============================================================================#
include("Fitting/Models.jl")
export HILL_MODEL, HILLfit, STFfit
export AMP, AMPfit
export curve_fit #curve fitting from LsqFit
#2) Data anlysis ========================================================================#
include("Analysis/ERGAnalysis/ERGAnalysis.jl")
#export calculate_basic_stats
export saturated_response, dim_response
export minima_to_peak, time_to_peak
export percent_recovery_interval #This finds the dominant time constant
export recovery_time_constant #This finds the recovery time constant
export integral #This finds the integration time
export get_response
export calculate_threshold
#using JLD2 #Maybe this should be added to Requires.jl
include("Analysis/WaveAnalysis/thresholding.jl")
export calculate_threshold
using Peaks #Use this as a better way to find peaks
include("Analysis/WaveAnalysis/TimescaleAnalysis.jl")
export get_timestamps, extract_interval
export max_interval_algorithim, timeseries_analysis
export findmaxima
export crosscor, crosscor!
include("Analysis/WholeCellAnalysis/passive_analysis.jl")
export calculate_baseline, calculate_peak
export calculate_resistance, calculate_capacitance
export extract_timepoint
# These functions are used by the base
#This file contains things like extraction and convienance functions
function set_calibration_path(pathname::String ;path = "$(homepath)/Datasheets/calibration.txt")
open(path, "w") do file
write(file, pathname)
end
end
using FileIO, Images
include("Analysis/ImagingAnalysis/PixelExtraction.jl")
export zProject, frameAverage
export normalize, binarize
export findROIcentroid
using ImageFiltering
include("Analysis/ImagingAnalysis/deltaF.jl")
export deltaF, deltaF_F, roll_mean
include("Analysis/ImagingAnalysis/ROIAnalysis.jl")
export findROIcentroids
homepath = joinpath(splitpath(pathof(PhysiologyAnalysis))[1:end-1]...)
calibration_path() = read("$(homepath)/Datasheets/calibration.txt", String)
#3) Import all Datasheet tools ===========================================================#
function __init__()
@require OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" begin
using .OrdinaryDiffEq
@require ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" begin
println("Loading differential equations and nose fitting")
using .ModelingToolkit
include("Fitting/NoseModel.jl")
export findNosePeak
end
end
#Eventually we should massively restructure this
@require XLSX = "fdbf4ff8-1666-58a4-91e7-1b58723a45e0" begin
#println(XLSX exported)
println("Loading dataframes and file opening")
using .XLSX
@require DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" begin
using .DataFrames
@require Query = "1a8c2f83-1ff3-5112-b086-8aa67b057ba1" begin
using .Query
include("Datasheets/FilePathExtraction.jl")
export traverse_root
export parse_cell_details
include("Datasheets/DataSheetCreation.jl")
export create2PDataSheet
export save2PDataSheet, open2PDataSheet
include("Datasheets/DataSheetModify.jl")
export expand_dates
include("Datasheets/DataSheetAnalysis.jl")
export pair_experiments!, IV_analysis!
end
end
end
@require PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" begin
using .PyCall
@require Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d" begin
using .Conda
include("Analysis/ImagingAnalysis/CellPose_port.jl")
println("CellPose port loaded")
export cellpose_model
end
end
#We want to add something for PyCall
end
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 620 | """
This function is for computing the R-squared of a polynomial
"""
function RSQ(poly::PN.Polynomial, x, y)
ŷ = poly.(x)
ȳ = sum(ŷ) / length(ŷ)
SSE = sum((y - ŷ) .^ 2)
SST = sum((y .- ȳ) .^ 2)
1 - SSE / SST
end
function RSQ(ŷ::Array{T}, y::Array{T}) where {T<:Real}
ȳ = sum(ŷ) / length(ŷ)
SSE = sum((y - ŷ) .^ 2)
SST = sum((y .- ȳ) .^ 2)
1 - SSE / SST
end
function sig_symbol(val)
if val <= 0.001
return "***"
elseif val <= 0.005
return "**"
elseif val <= 0.05
return "*"
else
return "-"
end
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 8383 | """
This is useful for finding sequences of items. Requires a bitvector
"""
function findsequential(sequence::BitVector; seq_to_find=:all)
#first we need to do a normal findall
sequences = Vector{Int64}[] #Save all sequences in a vector of sequences
current = Int64[]
for (idx, itm) in enumerate(sequence)
if itm #If an item is true, push it to the current sequence
push!(current, idx)
elseif !isempty(current) && !itm #If the current sequence is not empty and the item is false
push!(current, idx) #push the item to the current sequence
if seq_to_find == :first #if we only want to find the first sequence, then return
return current
end
push!(sequences, current) #push the current sequence to all sequences
current = Int64[] #clear the current sequence
end
end
if seq_to_find == :last
return sequences[end]
else
return sequences
end
end
function gaussian_saturation(data::Experiment{T};
p0=[-250.0, 0.5, 80.0], ub=[0.0, 1.0, 10e3]
) where {T<:Real}
rmaxes = zeros(size(data, 1), size(data, 3))
f(xs, p) = map(x -> p[1] * exp((-(x - p[2])^2) / 2 * p[3]), xs)
#model(xs, p) = map(x -> f(x, p), xs)
t = data.t
for swp = axes(data, 1), ch = axes(data, 3)
ȳ = data.data_array[swp, :, ch]
fit = curve_fit(f, t, ȳ, p0, upper=ub)
y = f(t, fit.param) #Generate the model fit
idx_min = argmin(y)
resp_val = ȳ[idx_min]
rmaxes[swp, ch] = resp_val
end
return rmaxes
end
function histogram_saturation(data::Experiment{T}; precision::Int64=100) where {T<:Real}
norm_factor = minimum(data)
rmaxes = zeros(size(data, 1), size(data, 3))
minima = minimum(data, dims=2)[:, 1, :]
for swp = axes(data, 1), ch = axes(data, 3)
#Lets try to quickly zero any positive results
#y_data = data[swp, :, ch]
#y_data *= y_data[swp, y_data .==]
y_data = data[swp, :, ch] ./ norm_factor
hfit = Distributions.fit(Histogram, y_data, LinRange(0.15, 1.0, precision))
weights = hfit.weights / maximum(hfit.weights)
edges = collect(hfit.edges[1])[1:length(weights)]
resp = edges[argmax(weights)]
#println(minimum(edges))
if resp == minimum(edges)
#println("No Nose")
#println(minima[swp, ch])
rmaxes[swp, ch] = minima[swp, ch]
else
#println("Nose")
#println(resp)
rmaxes[swp, ch] = resp * norm_factor
end
end
rmaxes
end
"""
This function uses a histogram method to find the saturation point.
- In ERG datas, a short nose component is usually present in saturated values
- Does this same function work for the Rmax of nonsaturated responses?
- Setting the saturated threshold to infinity will completely disregard the histogram method
"""
function saturated_response(data::Experiment{T}; mode = :Gaussian, kwargs...) where {T<:Real}
#We want to pick the region to analyze first
if mode == :Gaussian
#This mode is better for data that has
rmaxes = gaussian_saturation(data; kwargs...)
elseif mode == :Histogram
rmaxes = histogram_saturation(data; kwargs...)
elseif mode == :Logistic
println("Not implemented")
#=
rmaxes = zeros(size(data,1), size(data,3))
nose_peak = findNosePeak(data; kwargs...) #First use the logistic function to fit out the nose
resp = minimum(data, dims = 2)[:, 1, :] #Then find the minimum
for i in axes(nose_peak,1)
vals = (resp[:, i] .>= nose_peak[i]) .* resp[:,i]
sats = (resp[:, i] .< nose_peak[i]) .* nose_peak[i]
rmaxes[:, i] .= (vals .+ sats)
end
#println(rmaxes)
return rmaxes
=#
end
end
function minima_to_peak(data::Experiment; verbose=false)
#We need to exclude the area
resp = zeros(size(data, 1), size(data, 3))
for swp = axes(data, 1), ch = axes(data, 3)
past_stim = findall(data.t .> 0.0)
data_section = data[swp, past_stim, ch] #Isolate all the items past the stim
# cutoff the analysis at the maximum (A-wave is before the B-wave)
cutoff_idx = argmax(data_section)
max_val = maximum(data_section)
data_section = data_section[1:cutoff_idx]
#Measure the minimum betweent the first value and the maximum
min_val = minimum(data_section)
if verbose
println("Minimum: $min_val")
println("Maximum: $max_val")
println(max_val - min_val)
end
resp[swp, ch] = max_val - min_val
end
resp
end
function findRDIM(responses::Vector{T}, rng = (0.1, 0.4)) where T <: Real
#This section we need to extract Rdim responses.
normalized_responses = abs.(responses) ./ maximum(abs.(responses))
#println(normalized_responses)
rdim_idxs = findall(rng[1] .< normalized_responses .< rng[2]) #Basically the rdim will now be any response under the half saturation point
if isempty(rdim_idxs)
rdim_idx = argmin(responses)
else
rdim_min = argmax(responses[rdim_idxs])
rdim_idx = rdim_idxs[rdim_min]
end
rdim_idx
end
"""
This function calculates the time to peak using the dim response properties of the concatenated file
"""
function time_to_peak(data::Experiment{T}) where {T<:Real}
over_stim = findall(data.t .> 0.0) #We only want to extract time points after the stim
lowest_val = map(x -> x[2], argmin(data[:, over_stim, :], dims=2))[:, 1, :]
lowest_val .+= over_stim[1] - 1
data.t[lowest_val] .* 1000
end
"""
This function is the amount of time that a certain trace spends in a particular bandwith.
I think it will be similar to the pepperburg, So this may become that function
The "criterion" is the percent.
This function will measure how long a response takes to return to a specific criterion amount (iᵣ)
-By default iᵣ is set to 0.60.
An intial problem is the tendancy for the function to pick up drift and other packets. We can eliminate non-sequential packets
For more information on this function see
Pepperburg & Cornwall et al. Light-dependent delay in the falling phase of the retinal rod photoresponse
Use:
>>> rmaxes = saturated_response(data1_testA)
>>> Tᵣ = percent_recovery_interval(data1_testA, rmaxes)
"""
function percent_recovery_interval(data::Experiment{T}, rmaxes::AbstractArray{T}; iᵣ::T=0.50) where {T<:Real}
#first we can normalize the data to a range
@assert size(data,3) == size(rmaxes, 2) #rmax data matches data channels
#Tᵣ = fill(NaN, size(data,1), size(data,3))
Tᵣ = zeros(size(data,1), size(data,3))
for swp in axes(data, 1), ch in axes(data, 3)
data_percent = data.data_array[swp, :, ch] ./ rmaxes[ch]
recovery_seqs = findsequential(data_percent .> iᵣ, seq_to_find=:all)
#we have to eliminate all datavalues under data.t = 0.0
after_stim = findall(map(seq -> all(data.t[seq] .> 0.0), recovery_seqs)) #this returns false anywhere where the data.t is less than 0.0
recovery_seqs = recovery_seqs[after_stim] #this eliminates all sequences with less than 0.0 time
if !isempty(recovery_seqs) #if there are no sequences then return 0.0
long_seq = argmax(length.(recovery_seqs))
recovery_idx = recovery_seqs[long_seq][end]
Tᵣ[swp, ch] = data.t[recovery_idx]
end
end
return Tᵣ
end
"""
The integration time is fit by integrating the dim flash response and dividing it by the dim flash response amplitude
- A key to note here is that the exact f(x) of the ERG data is not completely known
- The integral is therefore a defininte integral and a sum of the area under the curve
- This equation is according to
Baylor DA, Hodgkin AL (1973) Detection and resolution of visual stimuli
by turtle photoreceptors. J Physiol 234:163–198.
"""
function integral(data::Experiment{T}) where {T<:Real}
#we want this to be equal to any response after the stimuli
data_section = data[:, data.t.>0.0, :]
data_section = abs.(data_section)
data_section ./= maximum(data_section, dims=2)
return sum(data_section, dims=2) * data.dt
end
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 1187 | """
In order to run this, we need to have python included in the path
"""
function build_cellpose(;python_env = "")
ENV["PYTHON"] = python_env
Pkg.build("PyCall")
#This is necessary to run cellpose from new
Conda.pip_interop(true)
Conda.pip("install", "numpy")
Conda.pip("install --user", "opencv-python")
Conda.pip("install", "cellpose")
end
function cellpose_model(;model_type="cyto", flow_threshold = 0.4, cellprob_threshold = 0.0, relative_path_loc = "Analysis\\ImagingAnalysis\\CellPoseModels\\")
#╔═╡Set up the python environment to play nice with julia
path_loc = joinpath(splitpath(pathof(PhysiologyAnalysis))[1:end-1]..., relative_path_loc)
try
py"""
import os
os.environ["CELLPOSE_LOCAL_MODELS_PATH"] = $path_loc
import cellpose
from cellpose import models
"""
#╔═╡Import and create the models
cellpose = pyimport("cellpose")
model = cellpose.models.Cellpose(model_type=model_type)
return model
catch error
#If the error is with python, I want to build_cellpose from PyCall
throw(error)
end
end
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 944 | collapse_dims(a) = dropdims(a, dims = (findall(size(a) .== 1)...,))
function zProject(exp::Experiment{TWO_PHOTON, T}) where T <: Real
px, py = exp.HeaderDict["framesize"]
z_proj = (sum(exp, dims = 2) / size(exp, 2))
return reshape(z_proj, (px, py))
end
frameAverage(data::Experiment{TWO_PHOTON, T}) where T<: Real = sum(exp, dims = 1)/size(exp,1)
function binarize(img, threshold = 0.5)
return img .> threshold
end
function findROIcentroid(data, ROI_id::Int64)
ROI_mask = getROImask(data, ROI_id)
ROI_mask_coords = map(coord -> [coord[1],coord[2]], findall(ROI_mask.!= 0))
ROI_coords_arr = hcat(ROI_mask_coords...)
ROI_centroid = Tuple(mean(ROI_coords_arr, dims =2)')
#Find the centroid by taking the mean
return ROI_centroid
end
function findROIcentroid(data)
ROI_mask = getROImask(data)
ROI_centroids = map(i -> findROIcentroid(data, i), 1:maximum(ROI_mask))
return ROI_centroids
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 1620 | function findROIcentroids(array::Array{Int,2}, xlim::AbstractRange, ylim::AbstractRange)
# Ensure the array is square
size_x, size_y = size(array)
@assert size_x == size_y "The input array must be square."
# Calculate the number of elements along each axis
n = size_x
# Calculate the physical spacing between pixels
dx = (xlim[2] - xlim[1])
dy = (ylim[2] - ylim[1])
# Find unique labels excluding 0 (assumed to be background)
labels = setdiff(unique(array), [0])
# Dictionary to store centroids: label => (x_centroid, y_centroid)
centroids = Dict{Int, Tuple{Float64, Float64}}()
for label in labels
# Find indices where array equals the current label
inds = findall(array .== label)
if isempty(inds)
continue # Skip if no indices found for the label
end
# Initialize sums for x and y positions
sum_x = 0.0
sum_y = 0.0
for I in inds
i, j = Tuple(I)
# Map array indices to physical coordinates
x_pos = xlim[1] + (j - 0.5) * dx
y_pos = ylim[1] + (i - 0.5) * dy
sum_x += x_pos
sum_y += y_pos
end
# Compute the centroid by averaging positions
num_points = length(inds)
centroid_x = sum_x / num_points
centroid_y = sum_y / num_points
# Store the centroid in the dictionary
centroids[label] = (centroid_x, centroid_y)
end
return centroids
end
findROIcentroids(exp) = findROIcentroids(getROImask(exp), exp.HeaderDict["xrng"], exp.HeaderDict["yrng"]) | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 710 | function roll_mean(img; voxel_x = 1, voxel_y = 1, voxel_z = 100, boundary_mode ="replicate")
if voxel_x == 0
voxel_x = size(img,1)
end
if voxel_y == 0
voxel_y == size(img,2)
end
kernel = centered(ones(voxel_x,voxel_y,voxel_z) / (voxel_x*voxel_y*voxel_z))
imfilter(img, kernel, mode)
end
function deltaF(img; mode = :mean, kwargs...)
background = roll_mean(img; kwargs...)
img .- background
end
function deltaF_F(img; mode = :mean, kwargs...)
if mode == :rolling_mean
background = roll_mean(img; kwargs...)
elseif mode == :mean
background = mean(img, dims = 3)[:,:,1]
end
(img .- background)./background
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 12753 | """
This function returns all the time stamps in a spike or burst array
The same function exists in RetinalChaos
"""
function get_timestamps(tseries::Vector{T}, spike_array::BitArray{1}) where {T<:Real}
diff_vals = map(i -> (spike_array[i] - spike_array[i+1]), 1:length(spike_array)-1)
diff_starts = findall(x -> x == -1, diff_vals) #This is a list of all the starting points in the array
diff_ends = findall(x -> x == 1, diff_vals) #This is a list of all the ending points in the array
#If there is one more end than start than we have to remove the last point from the diff_starts
if spike_array[1] #This means we start out in a spike and will most likely end o
#println("We started out in a spike, the first value will be an end spike")
diff_ends = diff_ends[2:end]
end
if length(diff_starts) > length(diff_ends) #This happens because an end point was cutoff
diff_starts = diff_starts[1:length(diff_ends)]
elseif length(diff_starts) < length(diff_ends) #This happens because a start point was cutoff
diff_ends = diff_ends[2:end]
end
return zip(tseries[diff_starts], tseries[diff_ends]) |> collect
end
function get_timestamps(tseries::Vector{T}, spike_array::BitArray{3}) where {T<:Real}
n_trials, n_data, n_channels = size(spike_array)
tstamps = Array{Vector{Tuple{T,T}}}(undef, (size(spike_array,1), size(spike_array,3)))
for trial in 1:n_trials #focus the analysis on the last data channel
for channel in 1:n_channels
tstamps[trial, channel] = get_timestamps(tseries, spike_array[trial, :, channel])
end
end
return tstamps
end
function get_timestamps(exp::Experiment; Z = 4.0)
thresholds = calculate_threshold(exp, Z = Z)
spike_array = exp.data_array .> thresholds
get_timestamps(exp.t, spike_array)
end
function extract_interval(timestamps::Vector{Tuple{T,T}},
max_duration=10e5, max_interval=10e5,
min_duration=0.0, min_interval=0.0
) where T <: Real
durations = map(ts -> (ts[2]-ts[1]), timestamps)
intervals = map(i -> timestamps[i][1] - timestamps[i-1][2], 2:length(timestamps))
return durations[min_duration.<durations.<max_duration], intervals[min_interval.<intervals.<max_interval]
end
function extract_interval(timestamps::Matrix{Vector{Tuple{T,T}}}; kwargs...) where {T<:Real}
durations = Array{Vector{T}}(undef, size(timestamps))
intervals = Array{Vector{T}}(undef, size(timestamps))
for trial in axes(timestamps,1)
for channel in axes(timestamps, 2)
tstamps = timestamps[trial, channel]
if !isempty(tstamps)
duration_I, interval_I = extract_interval(tstamps; kwargs...)
durations[trial, channel] = duration_I
intervals[trial, channel] = interval_I
end
end
end
return durations, intervals
end
"""
This function uses the Maximum Interval Sorting method to sort bursts in a single trace.
It takes in timestamps and returns the burst durations and the spikes per burst
"""
function max_interval_algorithim(timestamps::Vector{Tuple{T,T}};
ISIstart::T=0.5, ISIend::T=0.5, IBImin::T=1.0, DURmin::T=0.05, SPBmin::Int64=4,
verbose=false
) where {T<:Real}
burst_timestamps = Tuple[]
SPB_list = Float64[]
#Lets organize the spipkes into intervals spikes and not spikes
durations, intervals = extract_interval(timestamps)
bursting = false
burst_start_list = T[]
burst_end_list = T[]
burst_start = 0.0
burst_end = 0.0
SPB = 0
idx = 1
for i in eachindex(intervals)
if verbose
println("Spike $i")
println(burst_start)
println(timestamps[i][2])
end
#println("Are the spikes part of the burst? $bursting")
#println("Are the intervals longer than the minimum? $(intervals[i] <= ISIstart)")
if bursting == false && intervals[i] <= ISIstart #If the cell does not start as bursting and the interval is under ISI start
bursting = true #Begin the burst
burst_start = timestamps[i][1] #Record the burst start
if verbose
println("\t Interval begins")
end
elseif bursting == true && intervals[i] >= ISIend || i == length(intervals) #If the cell is bursting, and the interval to the next spike is greater than ISI thresh
bursting = false #The bursting can stop
burst_end = timestamps[i][2] #The burst end can be recorded
if verbose
println("Interval $(intervals[i]) >= IBImin $(IBImin) $(intervals[i] >= IBImin)")
println("Duration $((burst_end - burst_start)) >= $DURmin $((burst_end - burst_start) >= DURmin)")
println("Spike per burst $(SPB) >= $SPBmin $(SPB >= SPBmin)")
end
if intervals[i] >= IBImin && (burst_end - burst_start) >= DURmin && SPB >= SPBmin #If the burst meets all the correct qualifications
if verbose
println("
Burst #$idx successfully added at timestamp : $burst_start -> $burst_end
Duration: $(burst_end - burst_start) > $DURmin
Spikes per burst: $SPB > $SPBmin
IBI to burst #$(idx+1): $(intervals[i])
"
)
end
push!(burst_start_list, burst_start)
push!(burst_end_list, burst_end)
push!(SPB_list, SPB)
SPB = 0
idx += 1
elseif i == length(intervals) && (burst_end - burst_start) >= DURmin && SPB >= SPBmin
#a weird caveat, bursting has finished but interval has never cleared the ISIend
if verbose
println("
Burst #$idx successfully added at timestamp : $burst_start -> $burst_end
Duration: $(burst_end - burst_start) > $DURmin
Spikes per burst: $SPB > $SPBmin
"
)
end
push!(burst_start_list, burst_start)
push!(burst_end_list, burst_end)
#push!(burst_timestamps, (burst_start, burst_end)) #Record it
push!(SPB_list, SPB)
SPB = 0
idx += 1
else
if verbose
println("Burst did not fit recommended qualities")
println("Timestamp $idx: $burst_start -> $burst_end")
println("DUR $idx: $(burst_end - burst_start) $(<) $DURmin")
println("SPB $idx: $SPB < $SPBmin")
println("IBI $idx: $(intervals[i])")
end
end
end
if bursting == true
SPB += 1
end
end
if length(burst_start_list) > length(burst_end_list)
#This algorithim usually leaves one last burst off because it has no end point. We can add this
push!(burst_end_list, burst_start_list[end] + intervals[end])
end
burst_timestamps = hcat(burst_start_list, burst_end_list)
return burst_timestamps, SPB_list
end
function max_interval_algorithim(timestamp_arr::VecOrMat{Matrix{T}}; reshape_back=true, kwargs...) where {T<:Real}
n_sizes = size(timestamp_arr)
n_flat = *(n_sizes...)
bursts = Vector{Matrix{T}}(undef, n_flat)
spd = Vector{Vector{T}}(undef, n_flat)
if length(n_sizes) > 1
resize_arr = reshape(timestamp_arr, n_flat)
else
#We don't need to reshape the array back since it is only 1D
reshape_back = false
resize_arr = timestamp_arr
end
for idx in 1:length(timestamp_arr)
if isassigned(timestamp_arr, idx)
result = max_interval_algorithim(resize_arr[idx]; kwargs...)
bursts[idx] = result[1]
spd[idx] = (result[2])
end
end
if reshape_back
return reshape(bursts, n_sizes...), reshape(spd, n_sizes...)
else
return bursts, spd
end
end
function timeseries_analysis(t, vm_array;
timestamps_only=false, Z::Float64=4.0,
max_spike_duration::Float64=50.0, max_spike_interval=100,
max_burst_duration::Float64=10e5, max_burst_interval=10e5,
verbose=false
) #where {T, N}
N = length(size(vm_array))
#println(N)
if verbose
print("[$(now())]: Extracting the thresholds... ")
end
if N == 1
thresholds = calculate_threshold(vm_array, Z=Z)
elseif N == 2 || N == 3
thresholds = calculate_threshold(vm_array, Z=Z, dims=2)
end
spike_array = Array(vm_array .> thresholds)
#println(spike_array |> typeof)
if verbose
println("Completed")
end
spikes = get_timestamps(t, spike_array)
res = max_interval_algorithim(spikes)
if isnothing(res)
bursts = spb = nothing
else
bursts, spb = res
end
timestamps = Dict(
"Spikes" => spikes,
"Bursts" => bursts
)
if timestamps_only
return timestamps
else
if verbose
print("[$(now())]: Extracting the Data... ")
end
#println(spikes)
spike_durs, isi = extract_interval(spikes, max_duration=max_spike_duration, max_interval=max_spike_interval)
spike_dur_avg = sum(spike_durs) / length(spike_durs)
spike_dur_sem = std(spike_durs) / sqrt(length(spike_durs))
isi_avg = sum(isi) / length(isi)
isi_sem = std(isi) / sqrt(length(isi))
if !isnothing(bursts)
burst_durs, ibi = extract_interval(bursts, max_duration=max_burst_duration, max_interval=max_burst_interval)
burst_dur_avg = sum(burst_durs) / length(burst_durs)
burst_dur_sem = std(burst_durs) / sqrt(length(burst_durs))
ibi_avg = sum(ibi) / length(ibi)
ibi_sem = std(ibi) / sqrt(length(ibi))
else
burst_durs = []
ibi = []
burst_dur_avg = NaN
burst_dur_sem = NaN
ibi_avg = NaN
ibi_sem = NaN
end
data = Dict(
"Time" => t,
"DataArray" => vm_array,
"Thresholds" => thresholds, "SpikeDurs" => spike_durs,
"SpikeDurAvg" => spike_dur_avg,
"SpikeDurSEM" => spike_dur_sem, "ISIs" => isi,
"ISIAvg" => isi_avg,
"ISISEM" => isi_sem, "BurstDurs" => burst_durs,
"BurstDurAvg" => burst_dur_avg,
"BurstDurSEM" => burst_dur_sem, "IBIs" => ibi,
"IBIAvg" => ibi_avg,
"IBISEM" => ibi_sem,
"SpikesPerBurst" => spb
)
if verbose
println("Complete")
end
return timestamps, data
end
end
#Eventually I will add a @require loop here
function timeseries_analysis(t::AbstractArray{T}, vm_array::Array{T,N}, save_file::String;
tstamps_name="timestamps", data_name="data",
verbose=false,
kwargs...
) where {T,N}
timestamps, data = timeseries_analysis(t, vm_array; kwargs...)
if verbose
print("[$(now())]: Saving data... ")
end
#Uncomment to use BSON file format
#bson("$(save_file)\\timestamps.bson", timestamps)
#bson("$(save_file)\\data.bson", data)
#Uncomment to use JLD2 to save the packages
save("$(save_file)/$(tstamps_name).jld2", timestamps)
save("$(save_file)/$(data_name).jld2", data)
if verbose
println("Complete")
end
return timestamps, data
end
timeseries_analysis(exp::Experiment; kwargs...) = timeseries_analysis(exp.t, exp.data_array; kwargs...)
timeseries_analysis(exp::Experiment, save_file::String; kwargs...) = timeseries_analysis(exp.t, exp.data_array, save_file; kwargs...)
#=================================Import this for the experiment objects=================================#
function get_timestamps(exp::Experiment{T}, threshold::AbstractArray{T}, rng::Tuple; dt=:exp) where {T<:Real}
if dt == :exp
dt = exp.dt
end
tseries = collect(rng[1]:dt:rng[2]-dt)
tidxs = round.(Int64, (tseries ./ dt) .+ 1)
spike_array = exp.data_array[:, tidxs, :] .> threshold
get_timestamps(spike_array, tseries)
end
get_timestamps(exp::Experiment{T}, threshold::AbstractArray{T}; dt=:exp) where {T<:Real} = get_timestamps(exp, threshold, (exp.t[1], exp.t[end]), dt=dt)
get_timestamps(exp::Experiment{T}, rng::Tuple; dt=:exp, kwargs...) where {T<:Real} = get_timestamps(exp, calculate_threshold(exp; kwargs...), rng, dt=dt)
get_timestamps(exp::Experiment{T}; dt=:exp, kwargs...) where {T<:Real} = get_timestamps(exp, calculate_threshold(exp; kwargs...), (exp.t[1], exp.t[end]), dt=dt)
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 731 | """
calculate_threshold(vm_arr::AbstractArray; Z = 4, dims = -1)
Finds the threshold of a trace by calculating the average and then adding the 4x the standard deviation.
If using a differential solution, make sure dt is set, otherwise the standard deviation will be unevenly sampled
"""
function calculate_threshold(x::AbstractArray{T}; Z = 4.0, dims = 2) where {T <: Real}
if dims == -1
return [mean(x) + Z*std(x)]
else
avg = mean(x, dims = dims)
dev = Z * std(x, dims = dims)
return avg + dev #We want these all to come out as vectors vs matrices
end
end
calculate_threshold(data::Experiment{F, T}; kwargs...) where {F, T<:Real} = calculate_threshold(data.data_array; kwargs...) | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 2382 | function calculate_baseline(exp::Experiment{E, T}; channel = 1) where {E, T <: Real}
baselines = Vector{Float64}()
for (i, trial) in enumerate(eachtrial(exp))
epoch1_idx = exp.HeaderDict["EpochTableByChannel"][channel].epochWaveformBytrial[i].p2s[2] #This monstrosity is the first point of the
avg_base = mean(trial[1,1:epoch1_idx,2])
push!(baselines, avg_base)
end
baselines
end
function calculate_peak(exp::Experiment{E, T}; channel = 1, digital_cmd = "Cmd 0") where {E, T<:Real}
if size(exp,3) != 3
#We need to add a new channel
create_signal_waveform!(exp, digital_cmd)
end
cmd_v = exp[:, findfirst(exp[1,:,3] .!= 0.0), 3]
I_CM = zeros(cmd_v |> size)
for (i, tr) in enumerate(eachtrial(exp))
if cmd_v[i]-10 < 0.0 #I don't know why we have to subtract 10. Maybe this isn't every time
I_CM[i] = minimum(tr, dims = 2)[1, 1, channel]
else
I_CM[i] = maximum(tr, dims = 2)[1, 1, channel]
end
end
I_CM
end
extract_timepoint(exp; timepoint = 0.5, channel = 1) = exp[:, findfirst(exp.t .>= timepoint), channel]
function calculate_resistance(exp)
V_HOLD = extract_timepoint(exp; channel = 2)
I_CM = calculate_peak(exp)
I_RIN = extract_timepoint(exp)
@. lin_model(x, p) = p[1]*x+p[2]
Rs_fit = curve_fit(lin_model, I_CM, V_HOLD, [1.0, 0.0])
Rin_fit = curve_fit(lin_model, I_RIN[1:4], V_HOLD[1:4], [1.0, 0.0]) #The higher
Rs = Rs_fit.param[1]*1e3
Rin = Rin_fit.param[1]*1e3
V_M = Rin_fit.param[2]
V_HOLD = Rs_fit.param[2]
return Rs, Rin, V_M, V_HOLD
end
function calculate_capacitance(exp; channel = 1)
V_HOLD = extract_timepoint(exp; channel = 2)
I_RIN = extract_timepoint(exp) #Find the stable state current
epoch_idx1 = exp.HeaderDict["EpochTableByChannel"][channel].epochWaveformBytrial[1].p1s[3] #This monstrosity is the first point of the
epoch_idx2 = exp.HeaderDict["EpochTableByChannel"][channel].epochWaveformBytrial[1].p2s[3] #This monstrosity is the first point of the
data_section = exp[:,epoch_idx1:epoch_idx2,1].-I_RIN
Q = sum((data_section[4,:])) * (exp.dt/1e3) * 1e-9 #This is the charge in Amp*ms
V = V_HOLD[4,1] * 1e-3 #This is the holding voltage in V
abs.((Q./V)*1e12) #This is the capacitance in picoFarads
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 2383 | function pair_experiments!(dataset::Dict{String, DataFrame};
vmin = 5.30,
vmax = 6.30
)
patch_datasheet = dataset["ABF Files"]
img_datasheet = dataset["TIF Files"]
paired_experiments = DataFrame(
"ABF Experiment" => String[],
"TIF Experiment" => String[],
"ABF Date" => DateTime[],
"TIF Date" => DateTime[]
)
for (i, row) in enumerate(eachrow(patch_datasheet))
if occursin("5mins", row.protocols)
date = row.date_created
elapsed_dates = (Dates.value.(abs.(date.- img_datasheet[:, "date_created"]))./1000)./60
idx = findlast(vmin .< elapsed_dates .<= vmax)
if !isnothing(idx)
push!(paired_experiments, (patch_datasheet[i, "filename"], img_datasheet[idx, "filename"], date, img_datasheet[idx, "date_created"]))
end
end
end
dataset["Paired Files"] = paired_experiments
dataset
end
function IV_analysis!(dataset::Dict{String, DataFrame})
patch_datasheet = dataset["ABF Files"]
patch_datasheet[!, "Rs"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "Ri"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "Vh"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "Vm"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "Cm"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "τ"] = fill(NaN, size(patch_datasheet,1))
patch_datasheet[!, "Quality"] = fill(NaN, size(patch_datasheet,1))
for (i, row) in enumerate(eachrow(patch_datasheet))
if occursin("IV", row.protocols)
println(i)
exp = readABF(row.filename);
if size(exp,3) >= 2 && size(exp,1) == 9
println(row.protocols)
println(row.filename)
Rs, Rin, V_M, V_HOLD = calculate_resistance(exp)
patch_datasheet[i, "Rs"] = Rs
patch_datasheet[i, "Ri"] = Rin
patch_datasheet[i, "Vh"] = V_HOLD
patch_datasheet[i, "Vm"] = V_M
patch_datasheet[i, "Cm"] = Cm = calculate_capacitance(exp)
patch_datasheet[i, "τ"] = Rs*Cm
patch_datasheet[i, "Quality"] = Rs/Rin * 100
end
end
end
dataset["ABF Files"] = patch_datasheet
return dataset
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 2723 | function create2PDataSheet(img_dir, patch_dir; verbose = false)
all_img_files = traverse_root(img_dir)
img_files = [] #This is the list of all files actually analyzed
img_allDates = []
for (idx, img_file) in enumerate(all_img_files)
if verbose
println(img_file)
end
try
img_test = readImage(img_file)
push!(img_files, img_file)
push!(img_allDates, img_test.HeaderDict["FileStartDateTime"])
if verbose
println("File $idx out of $(length(all_img_files))")
end
catch error
if verbose
println("File didn't load")
end
end
end
img_datasheet = DataFrame(
filename = img_files,
date_created = img_allDates, filetype = "TIF", protocols = "Image"
)
patch_files = traverse_root(patch_dir)
patch_allDates = []
protocols = []
for (idx, patch_file) in enumerate(patch_files)
if verbose
println(patch_file)
end
HeaderDict = ElectroPhysiology.readABFInfo(patch_file)
push!(patch_allDates, getABF_datetime(patch_file))
push!(protocols, HeaderDict["ProtocolPath"])
if verbose
println("File $idx out of $(length(patch_files))")
end
end
patch_datasheet = DataFrame(filename = patch_files,
date_created = patch_allDates, filetype = "ABF", protocols = protocols)
all_files = [img_datasheet; patch_datasheet] |> @orderby(_.date_created) |> DataFrame
return Dict{String, DataFrame}(
"All Files" => all_files,
"TIF Files" => img_datasheet,
"ABF Files" => patch_datasheet
)
end
function update2PDataSheet(img_dir, patch_dir, img_datasheet, patch_datasheet)
all_img_files = traverse_root(img_dir)
#Walk through each img file and check to see if it is in the datasheet
patch_files = traverse_root(patch_dir)
end
function save2PDataSheet(filename::String, dataset::Dict{String, DataFrame})
XLSX.openxlsx(filename, mode = "w") do xf
for (k, v) in dataset
if k == "All Files" #This one we want to rename sheet 1 (always first)
sheet_K = xf[1] #Sheet 1 should be renamed
XLSX.rename!(sheet_K, "All Files")
else
sheet_K = XLSX.addsheet!(xf, k)
end
XLSX.writetable!(sheet_K, v)
end
end
println("Datasheet saved")
end
function open2PDataSheet(filename)
xf = XLSX.readxlsx(filename)
df_set = Dict{String, DataFrame}()
for sn in XLSX.sheetnames(xf)
df_set[sn] = DataFrame(XLSX.readtable(filename, sn))
end
return df_set
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 200 | function expand_dates(datasheet)
datasheet |>
@mutate(
Date = Date(datasheet[1, "date_created"]),
Time = Time(datasheet[1, "date_created"])) |>
DataFrame
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 1762 | function traverse_root(root_path)
path_list = String[]
for (root, dirs, files) in walkdir(root_path)
for file in files
full_path = joinpath(root, file) # Create the full path to the file
push!(path_list, full_path) # Print the path or do other processing
end
end
return path_list
end
#%% Lets get a filename and extract all of the characteristics
date_age_regex = r"(?'Year'\d{2,4})_(?'Month'\d{1,2})_(?'Date'\d{1,2})_(?'Genotype'.+)_P(?'Age'\d+)" #One regex will have the age
date_regex = r"(?'Year'\d{2,4})_(?'Month'\d{1,2})_(?'Date'\d{1,2})_(?'Genotype'.+)" #One regex won't have the age
cell_patch_regex = r"Cell(?'Cell'\d+)"
ca_catch_regex = r"ca_img(?'Cell'\d)"
cell_catch_regex = r"cell_img(?'Cell'\d)"
function parse_cell_details(filename)
date_age_match = match(date_age_regex, filename)
date_match = match(date_regex, filename)
if !isnothing(date_age_match) #We failed to notate the age
genotype = date_age_match["Genotype"]
age = parse(Int64, date_age_match["Age"])
elseif !isnothing(date_match)
genotype = date_match["Genotype"]
age = 30
else
genotype = "WT"
age = 30
end
cell_match = match(cell_patch_regex, filename)
ca_catch_match = match(ca_catch_regex, filename)
cell_catch_match = match(cell_catch_regex, filename)
if !isnothing(cell_match)
cell_n = parse(Int64, cell_match["Cell"])
elseif !isnothing(ca_catch_match)
cell_n = parse(Int64, ca_catch_match["Cell"])
elseif !isnothing(cell_catch_match)
cell_n = parse(Int64, cell_catch_match["Cell"])
else
cell_n = 0
end
println(age, genotype, cell_n)
return age, genotype, cell_n
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 9557 | """
This function is used to calculate the photon density based on the photon energy from the calibrator
The equation for this function is as follows
E = Photon Energy
C = speed of Light
E/(C)
"""
photons(E::Float64; λ::Int64 = 525) = ( E / (6.626e-34 * 3e8/(λ*10e-9)))*10e-8
"""
This function is used to calculate the transferrance from the optical density (D)
"""
Transferrance(D) = 10^-D
#For the next equation we have 3 fit variables previously determined
"""
This function is the relationship between:
Independent Variables:
Transmittance (T)
LED Percent (I)
Stimulus Time (t_stim)
Dependent Variable
Photons (P)
x[1] = T
x[2] = I
x[3] = t_stim
"""
stimulus_model(x::Array{T,1}, p::Array{Float64,1}) where T <:Real = x[1]*(p[1]*x[2]^2 + p[2]*x[2] + p[3])*x[3]
stimulus_model(x::Array{T,2}, p::Array{Float64,1}) where T <:Real = [stimulus_model(x[i,:], p) for i in 1:size(x,1)]
stimulus_model(x::Array{T,1}) where T <:Real = stimulus_model(x, [25352.59, 43857.01, 929.56]) #Green stimuli
stimulus_model(x::Array{T,2}) where T <:Real = stimulus_model(x, [25352.59, 43857.01, 929.56])
f_I(ND::Float64, P::Float64, t_stim::Float64) = stimulus_model([Transferrance(ND), P, t_stim])
f_I(ND::Int64, P::Int64, t_stim::Int64) = stimulus_model([Transferrance(ND|>Float64), P|>Float64, t_stim|>Float64])
##############################These are the IR and Amplification models#############
"""
# Adult Intensity-Response models
## The relationship is demonstrated by
\$R = f(I)\$
\$f(I) = R_{max}\\frac{I^n}{I^n_{1/2}+I^n}\$
if Response values are normalized to 1, then \$R_{max}\$ = 1 and can be cancelled out to form the equations
### Variables:
- R: The response amplitude is the dependent variable
- I: The stimulus light intensity (I) is the independent variable
### Parameters:
- R_max: Maximum saturating value(\$R_{max}\$)
- Ih: The flash strength required to elicit half of \$R_{max}\$: (\$I_{1/2}\$)
- n: The power of the equation
### Function usage
[IN 1]: IR(I, Ih, n)
[OUT 1]: Response
"""
HILL(x, rmax, k, n) = rmax * (x^n / (k^n + x^n)) #This is the basic form of the model
HILL_MODEL(X, p) = map(x -> HILL(x, p[1], p[2], p[3]), X) #This is used for fitting a larger dataset
"""
# Developmental Intensity response (>P14)
## The relationship is demonstrated by
\$R = f(I)\$
where
\$f(I) =R_{max}\\left(\\alpha(1 - e^{SI}) + (1-\\alpha)\\frac{I^n}{Ih^n + S}\$
if Response values are normalized to 1, then \$R_{max}\$ = 1 and can be cancelled out to form the equations
### Variables:
- R: The response amplitude is the dependent variable
- I: The stimulus light intensity (I) is the independent variable
### Parameters:
- R_max: Maximum saturating value(\$R_{max}\$)
- Ih: The flash strength required to elicit half of \$R_{max}\$: (\$I_{1/2}\$)
- n: The power of the equation
- (\$\\alpha\$): The temperature-dependent weighting coefficient:
- S: he fractional sensitivity
### Function usage
[IN 1]: IR_dev(I, rmax, k, n, α, S)
[OUT 1]: Response_dev
"""
modHILL(x, rmax, k, n, α, S) = rmax * (α*(1-exp(S*x)) + (1-α)*(x^n / (k^n + S)))
modHILL_MODEL(X, p) = map(x -> modHILL(x, p[1], p[2], p[3], p[4], p[5]), X) #This is used for fitting a larger dataset
"""
# Amplification
Amplification is a time series, therefore it is a function of time
## The relationship is demonstrated by
\$R = f(t)\$
\$f(t) = R_{max}(1-e^{-\\alpha(t-t_{eff})^2})\$
### Variables
- R: The response is the dependent variable
- t: Time is the independent variable.
### Parameters
- (\$t_{eff}\$): The effective time delay is a short delay between stimulus onset and response onset indicative of the biomolecuar diffusion rates
- (\$\\alpha\$): The amplification coefficient represents the rate of the response increases from the biomolecular processes.
### Function usage
[IN 1]: AMP(t, α, t_eff, rmax)
[OUT 1]: Response
"""
AMP(t, α, t_eff, rmax) = t > t_eff ? rmax * (1 - exp(-α*(t-t_eff)^2)) : 0.0
"""
# Recovery Time Constant (τRec)
This function is a single exponential.
### Function usage
[IN 1]: Recovery(t, V⁰, τRec)
[OUT 1]: Response
"""
REC(t, V⁰, τRec) = V⁰ * exp(-t/τRec)
"""
Weber Contrast sensitivity
The
"""
WEBER(I_Feature::T, I_Background::T) where T <: Real = (I_Feature - I_Background)/I_Background
"""
Michelson Contrast
"""
MICHELSON(I_Min::T, I_Max::T) where T <: Real = (I_Max - I_Min)/(I_Max + I_Min)
MICHELSON(I::Array{T,2}) where T <: Real = (maximum(I) - minimum(I))/(maximum(I) + minimum(I))
"""
Root Mean Squared Contrast
This is the contrast of an image when the image is
M x N in size.
The image has i and j features (equal to 1->M-1 and 1->N-1)
"""
RMS_Contrast(I::Array{T, 2}; normalized = true) where T <: Real = (1/(size(I,1)*size(I,2))) .* sum((I.-sum(I)/length(I))^2)
#%% Lets write some fitting equations into the
#=========================== The below functions are created by fitting a model ===========================#
"""
function IRfit(intensity::AbstractArray{T}, response::AbstractArray{T};
lb::AbstractArray{T} = [1.0, 1.0, 0.1], #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0::AbstractArray{T} = [500.0, 1000.0, 2.0], #Default r = 500.0, k = 200.0, n = 2.0
ub::AbstractArray{T} = [Inf, Inf, 10.0], #Default rmax = 2400, kmax = 800
) where {T<:Real}
This function takes X and Y values and fits them according to a HILL type fit
"""
function HILLfit(intensity::AbstractArray{T}, response::AbstractArray{T};
lb::AbstractArray{T} = [1.0, 1.0, 0.1], #Default rmin = 100, kmin = 0.1, nmin = 0.1
p0::AbstractArray{T} = [500.0, 1000.0, 2.0], #Default r = 500.0, k = 200.0, n = 2.0
ub::AbstractArray{T} = [Inf, Inf, 10.0], #Default rmax = 2400, kmax = 800
) where {T<:Real}
fit = curve_fit(HILL_MODEL, intensity, response, p0, lower=lb, upper=ub)
#Calculate the R-squared
ss_resid = sum(fit.resid.^2)
ss_total = sum((response .- mean(response)).^2)
RSQ = 1 - ss_resid/ss_total
return fit, RSQ
end
function STFfit(a_wave::AbstractArray{T}, b_wave::AbstractArray{T};
lb::AbstractArray{T} = [0.001, 0.001, 0.1],
p0::AbstractArray{T} = [1.0, 10.0, 2.0],
ub::AbstractArray{T} = [Inf, Inf, 10.0],
) where {T <: Real}
fit = curve_fit(HILL_MODEL, a_wave, b_wave, p0, lower=lb, upper=ub) #for some reason this works the best when b is in log units
#Calculate the r squared
ss_resid = sum(fit.resid.^2)
ss_total = sum((b_wave .- mean(b_wave)).^2)
RSQ = 1 - ss_resid/ss_total
return fit, RSQ
end
"""
The recovery time constant is calculated by fitting the normalized Rdim with the response recovery equation
"""
function TAUfit(data::Experiment{T};
τRec::T=1.0
) where {T<:Real}
#Make sure the sizes are the same
#@assert size(resp) == (size(data, 1), size(data,3))
trec = zeros(T, size(data, 1), size(data, 3))
gofs = zeros(T, size(data, 1), size(data, 3))
#This function uses the recovery model and takes t as a independent variable
model(x, p) = map(t -> REC(t, -1.0, p[2]), x)
for swp in axes(data, 1), ch in axes(data, 3)
# println(dim_idx[ch])
xdata = data.t
ydata = data[swp, :, ch]
#Test both scenarios to ensure that
ydata ./= minimum(ydata) #Normalize the Rdim to the minimum value
#ydata ./= resp #Normalize the Rdim to the saturated response
#cutoff all points below -0.5 and above -1.0
over_1 = findall(ydata .>= 1.0)
if !isempty(over_1)
begin_rng = over_1[end]
xdata = xdata[begin_rng:end]
ydata = ydata[begin_rng:end]
cutoff = findall(ydata .< 0.5)
if isempty(cutoff)
#println("Exception")
end_rng = length(ydata)
else
end_rng = cutoff[1]
end
xdata = xdata[1:end_rng] .- xdata[1]
ydata = -ydata[1:end_rng]
p0 = [ydata[1], τRec]
fit = curve_fit(model, xdata, ydata, p0)
#report the goodness of fit
SSE = sum(fit.resid .^ 2)
ȳ = sum(model(xdata, fit.param)) / length(xdata)
SST = sum((ydata .- ȳ) .^ 2)
GOF = 1 - SSE / SST
trec[swp, ch] = fit.param[2]
gofs[swp, ch] = GOF
end
end
return trec, gofs
end
function AMPfit(data::Experiment{T}, resp::Union{T,Matrix{T}}; #This argument should be offloaded to a single value
time_cutoff=0.1,
lb::Vector{T}=(0.0, 0.001),
p0::Vector{T}=(200.0, 0.002),
ub::Vector{T}=(Inf, 0.040)
) where {T<:Real}
#@assert size(resp) == (size(data, 1), size(data,3))
amp = zeros(2, size(data, 1), size(data, 3))
gofs = zeros(T, size(data, 1), size(data, 3))
for swp = axes(data, 1), ch = axes(data, 3)
if isa(resp, Matrix{T})
resp_0 = resp[swp, ch]
else
resp_0 = resp
end
model(x, p) = map(t -> AMP(t, p[1], p[2], resp_0), x)
idx_end = findall(data.t .>= time_cutoff)[1]
xdata = data.t[1:idx_end]
ydata = data[swp, 1:idx_end, ch]
fit = curve_fit(model, xdata, ydata, p0, lower=lb, upper=ub)
#Check Goodness of fit
SSE = sum(fit.resid .^ 2)
ȳ = sum(model(xdata, fit.param)) / length(xdata)
SST = sum((ydata .- ȳ) .^ 2)
GOF = 1 - SSE / SST
amp[1, swp, ch] = fit.param[1] #Alpha amp value
amp[2, swp, ch] = fit.param[2] #Effective time value
gofs[swp, ch] = GOF
end
return amp, gofs
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 2292 | function DoubleLogistic(tsteps;
R1 = 100.0, K1 = -300,
R2 = 5.0, K2 = -200.0
)
@parameters r1 r2 k1 k2
@variables t N1(t) N2(t) X(t)
D = Differential(t)
eqs = [D(N1) ~ r1*(k1 - N1), D(N2) ~ r2*(k2-k1 - N2)]
@named sys = ODESystem(eqs)
sys = structural_simplify(sys)
u0 = [N1 => 0.0,N2 => 0.0,X => 0.0]
p = [r1=> R1,r2=> R2,k1=> K1,k2=> K2,]
prob = ODEProblem(sys, u0, (tsteps[1], tsteps[end]), p)
sol_arr = solve(prob, Tsit5(), saveat = tsteps) |> Array
return sol_arr[1,:]# .+ sol_arr[2,:]
end
function SingleLogistic(tsteps;
R1 = 100.0, K1 = 30,
)
@parameters r1 k1
@variables t N1(t)
D = Differential(t)
eqs = [D(N1) ~ r1*(k1 - N1)]
@named sys = ODESystem(eqs)
sys = structural_simplify(sys)
u0 = [N1 => 0.0]
p = [r1=> R1,k1=> K1]
prob = ODEProblem(sys, u0, (tsteps[1], tsteps[end]), p)
sol_arr = solve(prob, Tsit5(), saveat = tsteps) |> Array
return sol_arr[1,:]# .+ sol_arr[2,:]
end
NOSEMODEL1(x, p; init_y = -300.0) = init_y .+ SingleLogistic(x; R1 = p[1], K1 = p[2])
NOSEMODEL2(x, p) = DoubleLogistic(x; R1 = p[1], K1 = p[2], R2 = p[3], K2 = p[4])
function NOSEfit(time, response;
#ub = [],
p0 = [10.0, 30.0],
#lb = [],
)
MODEL(x, p) = NOSEMODEL1(x, p; init_y = minimum(response))
fit = curve_fit(NOSEMODEL1, time, response, p0)
ss_resid = sum(fit.resid.^2)
ss_total = sum((response .- mean(response)).^2)
RSQ = 1 - ss_resid/ss_total
return fit, RSQ
end
function findNosePeak(data::Experiment; tmax = 0.75, kwargs...)
t = data.t
resp = zeros(size(data, 3))
for ch in axes(data,3)
ŷ = minimum(data, dims =1)[1,:,ch]
if t[argmin(ŷ)] < tmax-data.dt
tidxs = findall(t[argmin(ŷ)].< t .< tmax)
fit, RSQ = NOSEfit(t[tidxs], ŷ[tidxs]; kwargs...)
y = NOSEMODEL1(t[tidxs], fit.param; init_y = minimum(ŷ));
if minimum(ŷ) < y[end] < 0.0
resp[ch] = y[end]
else
resp[ch] = minimum(ŷ)
end
else
resp[ch] = minimum(ŷ)
end
end
return resp
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 2182 | using Dates, Revise
using ElectroPhysiology, PhysiologyAnalysis
using Pkg; Pkg.activate("test")
#%% ╔═╡This task is for extraction of points, centroids, and ROIs using cellpose
using GLMakie, PhysiologyPlotting
file_loc = "G:/Data/Two Photon"
data2P_fn = "$(file_loc)/2024_09_03_SWCNT_VGGC6/swcntBATH_kpuff_nomf_20um001.tif"
#╔═╡Extract the image
data2P = readImage(data2P_fn);
xlims = data2P.HeaderDict["xrng"]
ylims = data2P.HeaderDict["yrng"]
deinterleave!(data2P) #This seperates the movies into two seperate movies
#Lets adjust the delta f/f calculation to take the mean
# ╔═╡Seperate the red and green channels
img_arr = get_all_frames(data2P)
red_zstack = img_arr[:,:,:,2]
grn_zstack = img_arr[:,:,:,1]
red_zproj = project(data2P, dims = (3))[:,:,1,2]
grn_zproj = project(data2P, dims = (3))[:,:,1,1]
red_trace = project(data2P, dims = (1,2))[1,1,:,2]
grn_trace = project(data2P, dims = (1,2))[1,1,:,1]
delta_f_f_red_zstack = deltaF_F(red_zstack)
delta_f_f_grn_zstack = deltaF_F(grn_zstack)
delta_f_f_red_trace = mean(delta_f_f_red_zstack, dims = (1,2))[1,1,:]
delta_f_f_grn_trace = mean(delta_f_f_grn_zstack, dims = (1,2))[1,1,:]
#%% ╔═╡ Lets use CellPose to label cells
#Pkg.build("PyCall")
using PyCall, Conda
model = cellpose_model()
mask, flow, style, diam = model.eval(grn_zproj)
data2P.HeaderDict["ROIs"] .= vec(mask)
# Can we find out the centroid of each img from ROIs?
mask = getROImask(data2P)
centroids = findROIcentroids(data2P)
# ╔═╡Plot the figure
fig2 = Figure(size = (1200, 500))
ax1 = GLMakie.Axis(fig2[1,1], title = "Green Channel", aspect = 1.0)
ax2 = GLMakie.Axis(fig2[1,2], title = "Fluor")
hm1 = heatmap!(ax1, xlims, ylims, grn_zproj, colormap = :viridis, colorrange = (0.0, maximum(grn_zproj)/25))
hm2 = contour!(ax1, xlims, ylims, mask, color = :red)
lines!(ax2, data2P.t, grn_trace)
for idx in 1:maximum(data2P.HeaderDict["ROIs"])
println(idx)
ROI_data = data2P[getROIindexes(data2P, idx), :, :]
ROI_trace = mean(ROI_data, dims = 1)[1,:,1]
lines!(ax2, data2P.t, ROI_trace)
end
for (k, v) in centroids
println("$k - $v")
scatter!(ax1, (v[2], v[1]))
end
fig2
#%%
for (k,v) in data2P.HeaderDict
println(k)
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 207 | using ElectroPhysiology
using PhysiologyAnalysis
using Test
test_file = raw"to_analyze.abf"
data = readABF(test_file) |> data_filter
@testset "Testing ERG analysis" begin
include("testAnalysis.jl")
end | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 590 | #finding the saturated response
print("Testing the saturated response... ")
resps = saturated_response(data);
@test size(resps, 1) == size(data,1)
@test size(resps, 2) == size(data,3)
#rmaxes = maximum(resps, dims=1);
#print("Finding the minima to peak... ")
#@time m2p = minima_to_peak(data);
#print("Finding the time to peak")
#@time t2p = time_to_peak(data);
#print("Finding the dominant time constant... ")
#@time t_dom = percent_recovery_interval(data, rmaxes);
#print("Finding the integration time")
#@time int_time = integral(data);
#println("Extracting some timescale data")
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 213 | using ePhys
#The most important functionality of the datasheet opener is to read through a file directory and parse files
#test the functionality to open datasheets
#test the functionality to update datasheets
| PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
|
[
"MIT"
] | 0.6.30 | d1abcd4b0b02e036f6a7630f6b563b576e9a8561 | code | 929 | println("Testing baseline adjust... ")
print("Inplace completed: ")
@time baseline_adjust!(data);
print("Function completed: ")
@time data_baseline = baseline_adjust(data);
println("Completed! ")
print("Testing Truncate functions")
@time data_trunc = truncate_data(data);
print("Inplace: ")
@time truncate_data!(data);
println("Testing filtering functions.")
print("Lowpass filter inplace:")
@time lowpass_filter!(data);
print("Lowpass filter: ")
@time filt_data = lowpass_filter(data);
print("Lowpass filter (choosing freq): ")
@time lopass_data = lowpass_filter(data, 300.0);
print("Highpass filter inplace:")
@time highpass_filter!(data);
print("Highpass filter: ")
@time hipass_data = highpass_filter(data);
print("Highpass filter (choosing freq): ")
@time hipass_data = highpass_filter(data, 60.0);
print("Notch filter inplace:")
@time notch_filter!(data);
print("Notch filter: ")
@time hipass_data = notch_filter(data); | PhysiologyAnalysis | https://github.com/mattar13/PhysiologyAnalysis.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.