layer_id
int64
0
223
name
stringlengths
26
32
D
float64
0.03
0.18
M
int64
1.02k
4.1k
N
int64
4.1k
14.3k
Q
float64
1
4
alpha
float64
2.02
8.65
alpha_weighted
float64
-20.71
-1.63
entropy
float64
0.77
1.55
has_esd
bool
1 class
lambda_max
float32
0
0.2
layer_type
stringclasses
1 value
log_alpha_norm
float64
-20.64
-1.6
log_norm
float32
-1.48
-0.16
log_spectral_norm
float32
-2.44
-0.7
matrix_rank
int64
64
64
norm
float32
0.03
0.69
num_evals
int64
1.02k
4.1k
num_pl_spikes
int64
5
64
rank_loss
int64
960
4.03k
rf
int64
1
1
sigma
float64
0.19
1.31
spectral_norm
float32
0
0.2
stable_rank
float32
1.95
30.3
status
stringclasses
1 value
sv_max
float64
0.06
0.45
sv_min
float64
0
0
warning
stringclasses
2 values
weak_rank_loss
int64
960
4.03k
xmax
float64
0
0.2
xmin
float64
0
0.01
100
model.layers.14.mlp.up_proj
0.051827
4,096
14,336
3.5
2.800088
-3.628625
1.488427
true
0.050594
dense
-3.588206
-0.518272
-1.295897
64
0.303199
4,096
16
4,032
1
0.450022
0.050594
5.992734
success
0.224932
0.000001
4,032
0.050594
0.004062
101
model.layers.14.self_attn.k_proj
0.057086
1,024
4,096
4
6.199175
-14.232983
1.129956
true
0.005059
dense
-14.099066
-0.911296
-2.295948
64
0.12266
1,024
47
960
1
0.758378
0.005059
24.246637
success
0.071126
0.000001
under-trained
960
0.005059
0.00164
102
model.layers.14.self_attn.o_proj
0.090266
4,096
4,096
1
2.585232
-4.272046
1.448028
true
0.02226
dense
-4.256153
-1.034877
-1.65248
64
0.092283
4,096
10
4,032
1
0.501294
0.02226
4.145756
success
0.149197
0
4,032
0.02226
0.001198
103
model.layers.14.self_attn.q_proj
0.105963
4,096
4,096
1
3.329436
-6.011685
1.53537
true
0.015645
dense
-5.827881
-0.723697
-1.805617
64
0.188931
4,096
13
4,032
1
0.646069
0.015645
12.075896
success
0.125081
0
4,032
0.015645
0.002949
104
model.layers.14.self_attn.v_proj
0.123454
1,024
4,096
4
6.821701
-15.461374
1.094498
true
0.005414
dense
-15.461344
-1.379272
-2.266498
64
0.041757
1,024
64
960
1
0.727713
0.005414
7.713043
success
0.073578
0.000001
under-trained
960
0.005414
0.000497
105
model.layers.15.mlp.down_proj
0.070957
4,096
14,336
3.5
3.021847
-4.307824
1.511609
true
0.037535
dense
-4.27718
-0.583201
-1.42556
64
0.261095
4,096
13
4,032
1
0.56076
0.037535
6.955993
success
0.19374
0.000001
4,032
0.037535
0.003697
106
model.layers.15.mlp.gate_proj
0.062411
4,096
14,336
3.5
3.060523
-4.569587
1.532581
true
0.032131
dense
-4.388315
-0.43447
-1.493074
64
0.367731
4,096
13
4,032
1
0.571486
0.032131
11.444687
success
0.179252
0.000001
4,032
0.032131
0.005762
107
model.layers.15.mlp.up_proj
0.068851
4,096
14,336
3.5
3.065923
-4.183579
1.504459
true
0.043197
dense
-4.148508
-0.526475
-1.364542
64
0.297526
4,096
21
4,032
1
0.450821
0.043197
6.887586
success
0.20784
0.000001
4,032
0.043197
0.003679
108
model.layers.15.self_attn.k_proj
0.037717
1,024
4,096
4
8.646316
-20.710051
1.13398
true
0.004025
dense
-20.638224
-0.914096
-2.395246
64
0.121872
1,024
34
960
1
1.311332
0.004025
30.279596
success
0.063442
0.000001
under-trained
960
0.004025
0.001807
109
model.layers.15.self_attn.o_proj
0.122858
4,096
4,096
1
2.504459
-4.26952
1.476369
true
0.019735
dense
-4.239047
-1.01376
-1.704768
64
0.096881
4,096
7
4,032
1
0.568632
0.019735
4.909166
success
0.140481
0
4,032
0.019735
0.001465
110
model.layers.15.self_attn.q_proj
0.096988
4,096
4,096
1
4.536139
-8.823039
1.547764
true
0.011349
dense
-8.549584
-0.714671
-1.945055
64
0.192898
4,096
28
4,032
1
0.668267
0.011349
16.997444
success
0.10653
0
4,032
0.011349
0.0026
111
model.layers.15.self_attn.v_proj
0.125653
1,024
4,096
4
7.41719
-17.159905
1.100835
true
0.004858
dense
-17.159896
-1.389447
-2.313532
64
0.04079
1,024
64
960
1
0.802149
0.004858
8.396245
success
0.0697
0.000001
under-trained
960
0.004858
0.0005
112
model.layers.16.mlp.down_proj
0.069149
4,096
14,336
3.5
2.994428
-4.299193
1.509609
true
0.036666
dense
-4.262789
-0.590133
-1.435731
64
0.256961
4,096
18
4,032
1
0.470091
0.036666
7.008056
success
0.191485
0.000001
4,032
0.036666
0.003171
113
model.layers.16.mlp.gate_proj
0.071433
4,096
14,336
3.5
3.363564
-5.22929
1.53804
true
0.027881
dense
-5.020193
-0.429531
-1.554687
64
0.371936
4,096
19
4,032
1
0.542239
0.027881
13.339994
success
0.166977
0.000001
4,032
0.027881
0.005212
114
model.layers.16.mlp.up_proj
0.071571
4,096
14,336
3.5
3.042077
-4.257494
1.507473
true
0.039853
dense
-4.211461
-0.537539
-1.399535
64
0.290042
4,096
22
4,032
1
0.435372
0.039853
7.277741
success
0.199633
0.000001
4,032
0.039853
0.003506
115
model.layers.16.self_attn.k_proj
0.041292
1,024
4,096
4
8.196622
-19.099869
1.132987
true
0.004675
dense
-19.076341
-0.914985
-2.330212
64
0.121623
1,024
36
960
1
1.199437
0.004675
26.015173
success
0.068374
0.000001
under-trained
960
0.004675
0.001777
116
model.layers.16.self_attn.o_proj
0.120509
4,096
4,096
1
2.506106
-4.330797
1.489687
true
0.018703
dense
-4.291268
-0.994538
-1.728098
64
0.101266
4,096
7
4,032
1
0.569255
0.018703
5.414517
success
0.136757
0
4,032
0.018703
0.001499
117
model.layers.16.self_attn.q_proj
0.086157
4,096
4,096
1
5.534747
-10.994184
1.553557
true
0.010318
dense
-10.80152
-0.697787
-1.986393
64
0.200545
4,096
45
4,032
1
0.676
0.010318
19.435957
success
0.101579
0
4,032
0.010318
0.00258
118
model.layers.16.self_attn.v_proj
0.119849
1,024
4,096
4
7.636985
-18.037476
1.111341
true
0.004347
dense
-18.037442
-1.351812
-2.361858
64
0.044482
1,024
64
960
1
0.829623
0.004347
10.234013
success
0.065928
0.000001
under-trained
960
0.004347
0.00056
119
model.layers.17.mlp.down_proj
0.057677
4,096
14,336
3.5
2.925293
-4.425994
1.52282
true
0.03069
dense
-4.336686
-0.571949
-1.513008
64
0.267948
4,096
15
4,032
1
0.497109
0.03069
8.730907
success
0.175185
0.000001
4,032
0.03069
0.003644
120
model.layers.17.mlp.gate_proj
0.08632
4,096
14,336
3.5
3.363855
-5.343612
1.538498
true
0.025791
dense
-5.078477
-0.435103
-1.588538
64
0.367195
4,096
22
4,032
1
0.503976
0.025791
14.237547
success
0.160595
0.000001
4,032
0.025791
0.004822
121
model.layers.17.mlp.up_proj
0.066077
4,096
14,336
3.5
2.984643
-4.25335
1.512351
true
0.037577
dense
-4.176748
-0.52061
-1.425078
64
0.301571
4,096
21
4,032
1
0.433085
0.037577
8.025428
success
0.193848
0.000001
4,032
0.037577
0.003673
122
model.layers.17.self_attn.k_proj
0.076913
1,024
4,096
4
5.344615
-11.449767
1.12312
true
0.007206
dense
-11.42087
-0.93969
-2.1423
64
0.114897
1,024
62
960
1
0.551767
0.007206
15.94444
success
0.084889
0.000001
960
0.007206
0.001375
123
model.layers.17.self_attn.o_proj
0.109501
4,096
4,096
1
2.681201
-4.596399
1.476859
true
0.019306
dense
-4.576493
-1.021634
-1.714306
64
0.095141
4,096
9
4,032
1
0.5604
0.019306
4.92802
success
0.138946
0
4,032
0.019306
0.001343
124
model.layers.17.self_attn.q_proj
0.110106
4,096
4,096
1
3.725948
-6.799514
1.534264
true
0.014966
dense
-6.590783
-0.731528
-1.824908
64
0.185555
4,096
19
4,032
1
0.625375
0.014966
12.398818
success
0.122334
0
4,032
0.014966
0.002582
125
model.layers.17.self_attn.v_proj
0.099106
1,024
4,096
4
7.040562
-16.239521
1.100732
true
0.004937
dense
-16.239505
-1.384083
-2.306566
64
0.041297
1,024
64
960
1
0.75507
0.004937
8.365337
success
0.070261
0.000001
under-trained
960
0.004937
0.000501
126
model.layers.18.mlp.down_proj
0.071383
4,096
14,336
3.5
3.122996
-4.761385
1.524815
true
0.02988
dense
-4.679995
-0.570696
-1.524621
64
0.268722
4,096
16
4,032
1
0.530749
0.02988
8.993419
success
0.172858
0.000001
4,032
0.02988
0.00353
127
model.layers.18.mlp.gate_proj
0.097748
4,096
14,336
3.5
3.587258
-5.752391
1.53836
true
0.024914
dense
-5.481344
-0.438982
-1.603562
64
0.36393
4,096
25
4,032
1
0.517452
0.024914
14.607631
success
0.157841
0.000001
4,032
0.024914
0.004635
128
model.layers.18.mlp.up_proj
0.083083
4,096
14,336
3.5
2.97663
-4.262311
1.51109
true
0.036989
dense
-4.169111
-0.521359
-1.431925
64
0.301051
4,096
18
4,032
1
0.465896
0.036989
8.138896
success
0.192326
0.000001
4,032
0.036989
0.00387
129
model.layers.18.self_attn.k_proj
0.042833
1,024
4,096
4
7.462724
-17.60662
1.132488
true
0.004372
dense
-17.552315
-0.942999
-2.359275
64
0.114025
1,024
56
960
1
0.863618
0.004372
26.078098
success
0.066124
0.000001
under-trained
960
0.004372
0.001533
130
model.layers.18.self_attn.o_proj
0.14367
4,096
4,096
1
3.131129
-5.526621
1.497595
true
0.017177
dense
-5.510782
-0.991533
-1.765057
64
0.101969
4,096
13
4,032
1
0.591069
0.017177
5.936418
success
0.13106
0
4,032
0.017177
0.001331
131
model.layers.18.self_attn.q_proj
0.104319
4,096
4,096
1
6.274545
-12.388616
1.550981
true
0.010607
dense
-12.140452
-0.710425
-1.974425
64
0.194794
4,096
64
4,032
1
0.659318
0.010607
18.365349
success
0.102988
0
under-trained
4,032
0.010607
0.002386
132
model.layers.18.self_attn.v_proj
0.121918
1,024
4,096
4
7.790656
-18.424523
1.110799
true
0.004316
dense
-18.424488
-1.356509
-2.364951
64
0.044004
1,024
64
960
1
0.848832
0.004316
10.196293
success
0.065694
0.000001
under-trained
960
0.004316
0.000555
133
model.layers.19.mlp.down_proj
0.103851
4,096
14,336
3.5
2.783166
-4.39243
1.527772
true
0.026411
dense
-4.205248
-0.572705
-1.578213
64
0.267482
4,096
11
4,032
1
0.537645
0.026411
10.127645
success
0.162515
0.000001
4,032
0.026411
0.003934
134
model.layers.19.mlp.gate_proj
0.100896
4,096
14,336
3.5
3.203293
-5.172868
1.540524
true
0.024274
dense
-4.861641
-0.445934
-1.61486
64
0.358151
4,096
17
4,032
1
0.534377
0.024274
14.75455
success
0.155801
0.000001
4,032
0.024274
0.004964
135
model.layers.19.mlp.up_proj
0.077495
4,096
14,336
3.5
2.774112
-4.078
1.51257
true
0.033883
dense
-3.924596
-0.53195
-1.47002
64
0.293799
4,096
15
4,032
1
0.458074
0.033883
8.671007
success
0.184073
0.000001
4,032
0.033883
0.003921
136
model.layers.19.self_attn.k_proj
0.04709
1,024
4,096
4
7.184724
-17.316427
1.13296
true
0.003889
dense
-17.108346
-0.93864
-2.410173
64
0.115175
1,024
56
960
1
0.826469
0.003889
29.616436
success
0.062361
0.000001
under-trained
960
0.003889
0.001541
137
model.layers.19.self_attn.o_proj
0.132094
4,096
4,096
1
2.775273
-4.906047
1.50843
true
0.01707
dense
-4.859072
-0.945561
-1.767771
64
0.113355
4,096
8
4,032
1
0.627654
0.01707
6.640643
success
0.130652
0
4,032
0.01707
0.001648
138
model.layers.19.self_attn.q_proj
0.093234
4,096
4,096
1
6.157941
-12.076389
1.551054
true
0.010937
dense
-11.927908
-0.718626
-1.961108
64
0.19115
4,096
61
4,032
1
0.660407
0.010937
17.477636
success
0.104579
0
under-trained
4,032
0.010937
0.002354
139
model.layers.19.self_attn.v_proj
0.125872
1,024
4,096
4
8.091071
-18.958077
1.115843
true
0.004539
dense
-18.958017
-1.283993
-2.343086
64
0.052
1,024
64
960
1
0.886384
0.004539
11.457603
success
0.067368
0.000001
under-trained
960
0.004539
0.000667
140
model.layers.20.mlp.down_proj
0.103056
4,096
14,336
3.5
2.946135
-4.82915
1.532166
true
0.022954
dense
-4.591432
-0.573669
-1.639147
64
0.266889
4,096
14
4,032
1
0.520127
0.022954
11.627288
success
0.151505
0.000001
4,032
0.022954
0.003648
141
model.layers.20.mlp.gate_proj
0.107723
4,096
14,336
3.5
3.137646
-5.089113
1.541798
true
0.023881
dense
-4.76666
-0.448487
-1.621953
64
0.356052
4,096
16
4,032
1
0.534411
0.023881
14.909585
success
0.154534
0.000001
4,032
0.023881
0.004929
142
model.layers.20.mlp.up_proj
0.093373
4,096
14,336
3.5
2.538296
-3.817332
1.513797
true
0.03134
dense
-3.580806
-0.541189
-1.503896
64
0.287615
4,096
11
4,032
1
0.463814
0.03134
9.177135
success
0.177032
0.000001
4,032
0.03134
0.004204
143
model.layers.20.self_attn.k_proj
0.031205
1,024
4,096
4
6.975102
-16.712404
1.132022
true
0.004018
dense
-16.606544
-0.96967
-2.396009
64
0.107233
1,024
60
960
1
0.771382
0.004018
26.689388
success
0.063386
0.000001
under-trained
960
0.004018
0.001405
144
model.layers.20.self_attn.o_proj
0.174078
4,096
4,096
1
3.007913
-5.294946
1.514268
true
0.017364
dense
-5.262796
-0.917475
-1.760339
64
0.120928
4,096
9
4,032
1
0.669304
0.017364
6.964087
success
0.131774
0
4,032
0.017364
0.001692
145
model.layers.20.self_attn.q_proj
0.092093
4,096
4,096
1
5.264649
-10.24639
1.551539
true
0.011317
dense
-10.111431
-0.703507
-1.946262
64
0.197921
4,096
36
4,032
1
0.710775
0.011317
17.488613
success
0.106382
0
4,032
0.011317
0.002627
146
model.layers.20.self_attn.v_proj
0.104626
1,024
4,096
4
7.85427
-18.363858
1.118896
true
0.004591
dense
-18.363723
-1.243456
-2.338073
64
0.057088
1,024
63
960
1
0.863557
0.004591
12.434187
success
0.067758
0.000001
under-trained
960
0.004591
0.000735
147
model.layers.21.mlp.down_proj
0.079596
4,096
14,336
3.5
3.029296
-4.948785
1.529227
true
0.023247
dense
-4.719165
-0.57944
-1.633642
64
0.263366
4,096
17
4,032
1
0.492176
0.023247
11.329282
success
0.152468
0.000001
4,032
0.023247
0.003376
148
model.layers.21.mlp.gate_proj
0.094017
4,096
14,336
3.5
2.989302
-4.812227
1.542004
true
0.024557
dense
-4.488498
-0.449826
-1.609817
64
0.354955
4,096
14
4,032
1
0.531663
0.024557
14.454076
success
0.156708
0.000001
4,032
0.024557
0.005015
149
model.layers.21.mlp.up_proj
0.091166
4,096
14,336
3.5
2.582572
-3.912199
1.511829
true
0.03056
dense
-3.678549
-0.555985
-1.514846
64
0.277981
4,096
12
4,032
1
0.456849
0.03056
9.096218
success
0.174814
0.000001
4,032
0.03056
0.003957
150
model.layers.21.self_attn.k_proj
0.079493
1,024
4,096
4
6.956964
-15.629022
1.126659
true
0.005669
dense
-15.582809
-0.958626
-2.246529
64
0.109995
1,024
64
960
1
0.744621
0.005669
19.404533
success
0.07529
0.000001
under-trained
960
0.005669
0.001404
151
model.layers.21.self_attn.o_proj
0.176281
4,096
4,096
1
3.370562
-6.003884
1.513879
true
0.016547
dense
-5.983528
-0.932704
-1.781271
64
0.116761
4,096
12
4,032
1
0.684322
0.016547
7.056139
success
0.128637
0
4,032
0.016547
0.001583
152
model.layers.21.self_attn.q_proj
0.066834
4,096
4,096
1
4.638017
-8.909138
1.550841
true
0.011998
dense
-8.793721
-0.712162
-1.920894
64
0.194016
4,096
24
4,032
1
0.742607
0.011998
16.170797
success
0.109535
0
4,032
0.011998
0.002747
153
model.layers.21.self_attn.v_proj
0.126238
1,024
4,096
4
3.311769
-7.818543
1.118226
true
0.004357
dense
-7.718305
-1.265306
-2.360836
64
0.054287
1,024
7
960
1
0.873766
0.004357
12.460354
success
0.066006
0.000001
960
0.004357
0.000847
154
model.layers.22.mlp.down_proj
0.074772
4,096
14,336
3.5
3.019885
-4.901532
1.527962
true
0.023818
dense
-4.668336
-0.571874
-1.623086
64
0.267994
4,096
18
4,032
1
0.476091
0.023818
11.251527
success
0.154332
0.000001
4,032
0.023818
0.003375
155
model.layers.22.mlp.gate_proj
0.095786
4,096
14,336
3.5
3.072182
-4.98022
1.542248
true
0.023929
dense
-4.653951
-0.451267
-1.621069
64
0.353779
4,096
15
4,032
1
0.535035
0.023929
14.784342
success
0.154691
0.000001
4,032
0.023929
0.00493
156
model.layers.22.mlp.up_proj
0.081175
4,096
14,336
3.5
2.789309
-4.256108
1.512422
true
0.029794
dense
-4.035986
-0.551264
-1.525865
64
0.281019
4,096
18
4,032
1
0.421744
0.029794
9.431942
success
0.172611
0.000001
4,032
0.029794
0.003397
157
model.layers.22.self_attn.k_proj
0.032389
1,024
4,096
4
6.590438
-15.656089
1.131142
true
0.004211
dense
-15.559769
-0.975978
-2.375576
64
0.105687
1,024
62
960
1
0.709986
0.004211
25.095661
success
0.064895
0.000001
under-trained
960
0.004211
0.001358
158
model.layers.22.self_attn.o_proj
0.167063
4,096
4,096
1
2.517164
-4.428645
1.512564
true
0.017403
dense
-4.347603
-0.919943
-1.759379
64
0.120242
4,096
5
4,032
1
0.678496
0.017403
6.909326
success
0.13192
0
4,032
0.017403
0.002152
159
model.layers.22.self_attn.q_proj
0.05687
4,096
4,096
1
4.553436
-8.80271
1.551259
true
0.011663
dense
-8.666579
-0.705602
-1.933201
64
0.196969
4,096
26
4,032
1
0.696886
0.011663
16.888807
success
0.107994
0
4,032
0.011663
0.002756
160
model.layers.22.self_attn.v_proj
0.118992
1,024
4,096
4
7.647707
-17.960785
1.117166
true
0.004482
dense
-17.960598
-1.271057
-2.348519
64
0.053573
1,024
64
960
1
0.830963
0.004482
11.952587
success
0.066948
0.000001
under-trained
960
0.004482
0.000682
161
model.layers.23.mlp.down_proj
0.081972
4,096
14,336
3.5
2.958241
-4.783727
1.525407
true
0.02415
dense
-4.528521
-0.572288
-1.617085
64
0.267739
4,096
17
4,032
1
0.474943
0.02415
11.086566
success
0.155402
0.000001
4,032
0.02415
0.003384
162
model.layers.23.mlp.gate_proj
0.11222
4,096
14,336
3.5
3.081949
-4.980754
1.542534
true
0.024204
dense
-4.654759
-0.445724
-1.616105
64
0.358324
4,096
14
4,032
1
0.556424
0.024204
14.804085
success
0.155578
0.000001
4,032
0.024204
0.005105
163
model.layers.23.mlp.up_proj
0.122277
4,096
14,336
3.5
2.754597
-4.191707
1.510211
true
0.030081
dense
-3.954775
-0.550779
-1.521713
64
0.281333
4,096
17
4,032
1
0.425552
0.030081
9.352628
success
0.173438
0.000001
4,032
0.030081
0.003429
164
model.layers.23.self_attn.k_proj
0.061232
1,024
4,096
4
6.808357
-15.800998
1.129791
true
0.004777
dense
-15.747591
-0.965567
-2.320824
64
0.108251
1,024
64
960
1
0.726045
0.004777
22.659834
success
0.069117
0.000001
under-trained
960
0.004777
0.001387
165
model.layers.23.self_attn.o_proj
0.095379
4,096
4,096
1
2.760744
-4.795917
1.508561
true
0.018315
dense
-4.753651
-0.919109
-1.737183
64
0.120473
4,096
9
4,032
1
0.586915
0.018315
6.577704
success
0.135335
0
4,032
0.018315
0.001733
166
model.layers.23.self_attn.q_proj
0.068262
4,096
4,096
1
5.252235
-10.175315
1.552267
true
0.011552
dense
-10.079469
-0.701534
-1.93733
64
0.198823
4,096
42
4,032
1
0.656134
0.011552
17.210617
success
0.107482
0
4,032
0.011552
0.002561
167
model.layers.23.self_attn.v_proj
0.111805
1,024
4,096
4
7.729375
-18.155227
1.119943
true
0.004479
dense
-18.155025
-1.240277
-2.348861
64
0.057507
1,024
64
960
1
0.841172
0.004479
12.840569
success
0.066922
0.000001
under-trained
960
0.004479
0.000739
168
model.layers.24.mlp.down_proj
0.086787
4,096
14,336
3.5
2.812475
-4.423423
1.517943
true
0.026743
dense
-4.199659
-0.580988
-1.572786
64
0.262429
4,096
16
4,032
1
0.453119
0.026743
9.81292
success
0.163534
0.000001
4,032
0.026743
0.003283
169
model.layers.24.mlp.gate_proj
0.108217
4,096
14,336
3.5
3.077065
-4.972722
1.542911
true
0.024207
dense
-4.642523
-0.443429
-1.61606
64
0.360223
4,096
14
4,032
1
0.555119
0.024207
14.880961
success
0.155586
0.000001
4,032
0.024207
0.005088
170
model.layers.24.mlp.up_proj
0.086578
4,096
14,336
3.5
2.725081
-4.119051
1.506911
true
0.030794
dense
-3.900914
-0.560706
-1.511533
64
0.274975
4,096
18
4,032
1
0.406606
0.030794
8.929493
success
0.175482
0.000001
4,032
0.030794
0.003231
171
model.layers.24.self_attn.k_proj
0.063295
1,024
4,096
4
6.460718
-15.652908
1.129588
true
0.003778
dense
-15.450463
-1.012566
-2.422781
64
0.097148
1,024
64
960
1
0.68259
0.003778
25.716692
success
0.061462
0.000001
under-trained
960
0.003778
0.001229
172
model.layers.24.self_attn.o_proj
0.123548
4,096
4,096
1
2.86961
-4.954011
1.495066
true
0.018777
dense
-4.914207
-0.94394
-1.726371
64
0.113778
4,096
11
4,032
1
0.563709
0.018777
6.059414
success
0.13703
0
4,032
0.018777
0.001498
173
model.layers.24.self_attn.q_proj
0.048025
4,096
4,096
1
4.735601
-9.300159
1.550077
true
0.010867
dense
-9.17374
-0.746334
-1.963881
64
0.179335
4,096
35
4,032
1
0.631432
0.010867
16.502409
success
0.104246
0
4,032
0.010867
0.002339
174
model.layers.24.self_attn.v_proj
0.141549
1,024
4,096
4
7.681461
-18.182051
1.116182
true
0.004295
dense
-18.180917
-1.272719
-2.367004
64
0.053368
1,024
64
960
1
0.835183
0.004295
12.424675
success
0.065539
0.000001
under-trained
960
0.004295
0.000677
175
model.layers.25.mlp.down_proj
0.084803
4,096
14,336
3.5
2.624031
-4.078317
1.514263
true
0.027911
dense
-3.840436
-0.584362
-1.554218
64
0.260398
4,096
14
4,032
1
0.434041
0.027911
9.329459
success
0.167067
0.000001
4,032
0.027911
0.003322
176
model.layers.25.mlp.gate_proj
0.106628
4,096
14,336
3.5
3.0995
-4.974277
1.543284
true
0.024839
dense
-4.675506
-0.441108
-1.604864
64
0.362153
4,096
14
4,032
1
0.561115
0.024839
14.579967
success
0.157604
0.000001
4,032
0.024839
0.005098
177
model.layers.25.mlp.up_proj
0.07333
4,096
14,336
3.5
2.721864
-4.119572
1.507759
true
0.030654
dense
-3.897811
-0.561181
-1.513511
64
0.274675
4,096
18
4,032
1
0.405847
0.030654
8.960459
success
0.175083
0.000001
4,032
0.030654
0.003226
178
model.layers.25.self_attn.k_proj
0.072017
1,024
4,096
4
5.910716
-14.246115
1.127593
true
0.003888
dense
-14.083166
-1.045428
-2.410218
64
0.090068
1,024
64
960
1
0.61384
0.003888
23.162771
success
0.062358
0.000001
960
0.003888
0.001109
179
model.layers.25.self_attn.o_proj
0.130917
4,096
4,096
1
2.535992
-4.479667
1.503629
true
0.017122
dense
-4.404227
-0.953003
-1.766436
64
0.111429
4,096
7
4,032
1
0.58055
0.017122
6.507784
success
0.130853
0
4,032
0.017122
0.001747
180
model.layers.25.self_attn.q_proj
0.06216
4,096
4,096
1
3.769991
-7.473098
1.548359
true
0.010417
dense
-7.207383
-0.744584
-1.982259
64
0.180059
4,096
21
4,032
1
0.604462
0.010417
17.285206
success
0.102064
0
4,032
0.010417
0.00259
181
model.layers.25.self_attn.v_proj
0.114343
1,024
4,096
4
7.043728
-16.877178
1.120178
true
0.004017
dense
-16.873665
-1.252529
-2.396058
64
0.055908
1,024
64
960
1
0.755466
0.004017
13.916468
success
0.063383
0.000001
under-trained
960
0.004017
0.000705
182
model.layers.26.mlp.down_proj
0.086084
4,096
14,336
3.5
2.73
-4.124196
1.51121
true
0.030854
dense
-3.946468
-0.575053
-1.510695
64
0.26604
4,096
15
4,032
1
0.446684
0.030854
8.622666
success
0.175652
0.000001
4,032
0.030854
0.003319
183
model.layers.26.mlp.gate_proj
0.1314
4,096
14,336
3.5
2.866928
-4.578423
1.542788
true
0.025294
dense
-4.226251
-0.435548
-1.596978
64
0.366819
4,096
11
4,032
1
0.5629
0.025294
14.502092
success
0.159042
0.000001
4,032
0.025294
0.005498
184
model.layers.26.mlp.up_proj
0.085293
4,096
14,336
3.5
2.72493
-4.054374
1.507879
true
0.032518
dense
-3.856305
-0.548781
-1.487882
64
0.28263
4,096
17
4,032
1
0.418357
0.032518
8.691625
success
0.180326
0.000001
4,032
0.032518
0.00337
185
model.layers.26.self_attn.k_proj
0.079312
1,024
4,096
4
3.89645
-8.834109
1.120099
true
0.005405
dense
-8.64514
-1.048722
-2.26722
64
0.089388
1,024
14
960
1
0.774109
0.005405
16.538574
success
0.073517
0.000001
960
0.005405
0.001399
186
model.layers.26.self_attn.o_proj
0.113602
4,096
4,096
1
2.523885
-4.260975
1.480911
true
0.020499
dense
-4.218082
-0.967543
-1.68826
64
0.10776
4,096
9
4,032
1
0.507962
0.020499
5.256752
success
0.143176
0
4,032
0.020499
0.001427
187
model.layers.26.self_attn.q_proj
0.058537
4,096
4,096
1
3.76136
-7.07028
1.541981
true
0.013191
dense
-6.90823
-0.739166
-1.879714
64
0.18232
4,096
23
4,032
1
0.575783
0.013191
13.821252
success
0.114853
0
4,032
0.013191
0.002525
188
model.layers.26.self_attn.v_proj
0.10874
1,024
4,096
4
7.005587
-16.662293
1.116191
true
0.004184
dense
-16.66157
-1.297269
-2.378429
64
0.050435
1,024
64
960
1
0.750698
0.004184
12.054801
success
0.064682
0.000001
under-trained
960
0.004184
0.00063
189
model.layers.27.mlp.down_proj
0.087225
4,096
14,336
3.5
2.767673
-4.177903
1.508045
true
0.030936
dense
-4.001064
-0.581225
-1.509537
64
0.262286
4,096
16
4,032
1
0.441918
0.030936
8.478357
success
0.175886
0.000001
4,032
0.030936
0.003187
190
model.layers.27.mlp.gate_proj
0.108623
4,096
14,336
3.5
3.015622
-4.748994
1.541597
true
0.02662
dense
-4.469618
-0.43442
-1.574798
64
0.367774
4,096
14
4,032
1
0.538698
0.02662
13.815862
success
0.163155
0.000001
4,032
0.02662
0.005123
191
model.layers.27.mlp.up_proj
0.080013
4,096
14,336
3.5
2.635323
-3.936561
1.508264
true
0.03208
dense
-3.709272
-0.545852
-1.493768
64
0.284543
4,096
16
4,032
1
0.408831
0.03208
8.869834
success
0.179108
0.000001
4,032
0.03208
0.003415
192
model.layers.27.self_attn.k_proj
0.100903
1,024
4,096
4
3.848036
-8.653889
1.115134
true
0.005638
dense
-8.428997
-1.053695
-2.24891
64
0.08837
1,024
18
960
1
0.671289
0.005638
15.675286
success
0.075084
0.000001
960
0.005638
0.001285
193
model.layers.27.self_attn.o_proj
0.149665
4,096
4,096
1
2.882353
-4.807091
1.474397
true
0.02149
dense
-4.79098
-0.972003
-1.667766
64
0.106659
4,096
12
4,032
1
0.543389
0.02149
4.963214
success
0.146594
0
4,032
0.02149
0.001339
194
model.layers.27.self_attn.q_proj
0.077458
4,096
4,096
1
4.298874
-7.951557
1.530192
true
0.014136
dense
-7.731489
-0.766257
-1.849683
64
0.171294
4,096
44
4,032
1
0.497324
0.014136
12.117868
success
0.118894
0
4,032
0.014136
0.001972
195
model.layers.27.self_attn.v_proj
0.11691
1,024
4,096
4
2.962216
-6.823495
1.108643
true
0.004972
dense
-6.732206
-1.301896
-2.30351
64
0.0499
1,024
7
960
1
0.741648
0.004972
10.037226
success
0.070509
0.000001
960
0.004972
0.000773
196
model.layers.28.mlp.down_proj
0.081542
4,096
14,336
3.5
2.671088
-3.938925
1.503762
true
0.033523
dense
-3.792632
-0.58461
-1.474652
64
0.260249
4,096
15
4,032
1
0.431473
0.033523
7.763222
success
0.183094
0.000001
4,032
0.033523
0.003181
197
model.layers.28.mlp.gate_proj
0.094254
4,096
14,336
3.5
2.926973
-4.452223
1.536784
true
0.030123
dense
-4.227278
-0.4381
-1.521102
64
0.36467
4,096
13
4,032
1
0.534446
0.030123
12.106011
success
0.17356
0.000001
4,032
0.030123
0.005213
198
model.layers.28.mlp.up_proj
0.104847
4,096
14,336
3.5
2.518493
-3.692098
1.505129
true
0.034198
dense
-3.464016
-0.540147
-1.465995
64
0.288305
4,096
12
4,032
1
0.438351
0.034198
8.43039
success
0.184928
0.000001
4,032
0.034198
0.003868
199
model.layers.28.self_attn.k_proj
0.078058
1,024
4,096
4
4.026448
-9.461495
1.119544
true
0.004469
dense
-9.104806
-1.06835
-2.349837
64
0.085438
1,024
20
960
1
0.676734
0.004469
19.11994
success
0.066847
0.000001
960
0.004469
0.001231