layer_id
int64 0
223
| name
stringlengths 26
32
| D
float64 0.02
0.18
| M
int64 1.02k
4.1k
| N
int64 4.1k
14.3k
| Q
float64 1
4
| alpha
float64 3.57
40.4
| alpha_weighted
float64 -123.19
-7.38
| entropy
float64 1.1
1.57
| has_esd
bool 1
class | lambda_max
float32 0
0.01
| layer_type
stringclasses 1
value | log_alpha_norm
float64 -123.03
-6.97
| log_norm
float32 -1.93
-0.76
| log_spectral_norm
float32 -3.35
-2
| matrix_rank
int64 64
64
| norm
float32 0.01
0.17
| num_evals
int64 1.02k
4.1k
| num_pl_spikes
int64 7
64
| rank_loss
int64 960
4.03k
| rf
int64 1
1
| sigma
float64 0.59
11.9
| spectral_norm
float32 0
0.01
| stable_rank
float32 14
56.5
| status
stringclasses 1
value | sv_max
float64 0.02
0.1
| sv_min
float64 0
0
| warning
stringclasses 2
values | weak_rank_loss
int64 960
4.03k
| xmax
float64 0
0.01
| xmin
float64 0
0
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | model.layers.0.mlp.down_proj | 0.032919 | 4,096 | 14,336 | 3.5 | 18.055209 | -48.640228 | 1.567931 | true | 0.002023 | dense | -48.269201 | -0.9936 | -2.693972 | 64 | 0.101485 | 4,096 | 48 | 4,032 | 1 | 2.461707 | 0.002023 | 50.161728 | success | 0.044979 | 0.000001 | under-trained | 4,032 | 0.002023 | 0.00152 |
1 | model.layers.0.mlp.gate_proj | 0.160123 | 4,096 | 14,336 | 3.5 | 10.852054 | -29.049223 | 1.562717 | true | 0.002105 | dense | -28.678506 | -1.185878 | -2.676841 | 64 | 0.065181 | 4,096 | 62 | 4,032 | 1 | 1.251212 | 0.002105 | 30.971571 | success | 0.045875 | 0.000001 | under-trained | 4,032 | 0.002105 | 0.000911 |
2 | model.layers.0.mlp.up_proj | 0.17812 | 4,096 | 14,336 | 3.5 | 12.453256 | -32.740183 | 1.563214 | true | 0.002349 | dense | -32.534855 | -1.156636 | -2.629046 | 64 | 0.069721 | 4,096 | 64 | 4,032 | 1 | 1.431657 | 0.002349 | 29.676323 | success | 0.04847 | 0.000001 | under-trained | 4,032 | 0.002349 | 0.000981 |
3 | model.layers.0.self_attn.k_proj | 0.083637 | 1,024 | 4,096 | 4 | 5.034398 | -15.510934 | 1.104559 | true | 0.00083 | dense | -15.467863 | -1.933724 | -3.080991 | 64 | 0.011649 | 1,024 | 12 | 960 | 1 | 1.16463 | 0.00083 | 14.036742 | success | 0.028807 | 0.000001 | 960 | 0.00083 | 0.000259 |
|
4 | model.layers.0.self_attn.o_proj | 0.054402 | 4,096 | 4,096 | 1 | 8.622944 | -24.251016 | 1.564303 | true | 0.00154 | dense | -24.223236 | -1.381247 | -2.812382 | 64 | 0.041567 | 4,096 | 62 | 4,032 | 1 | 0.968115 | 0.00154 | 26.985811 | success | 0.039247 | 0 | under-trained | 4,032 | 0.00154 | 0.000564 |
5 | model.layers.0.self_attn.q_proj | 0.078194 | 4,096 | 4,096 | 1 | 3.928884 | -12.483412 | 1.5311 | true | 0.000665 | dense | -12.093811 | -1.929221 | -3.177343 | 64 | 0.01177 | 4,096 | 17 | 4,032 | 1 | 0.710359 | 0.000665 | 17.706078 | success | 0.025783 | 0 | 4,032 | 0.000665 | 0.000228 |
|
6 | model.layers.0.self_attn.v_proj | 0.037198 | 1,024 | 4,096 | 4 | 9.168773 | -29.572681 | 1.133628 | true | 0.000595 | dense | -29.552212 | -1.780241 | -3.225369 | 64 | 0.016587 | 1,024 | 31 | 960 | 1 | 1.467155 | 0.000595 | 27.869484 | success | 0.024396 | 0.000001 | under-trained | 960 | 0.000595 | 0.000252 |
7 | model.layers.1.mlp.down_proj | 0.087105 | 4,096 | 14,336 | 3.5 | 22.468248 | -58.120207 | 1.567733 | true | 0.00259 | dense | -58.087316 | -0.948784 | -2.586771 | 64 | 0.112516 | 4,096 | 64 | 4,032 | 1 | 2.683531 | 0.00259 | 43.449684 | success | 0.050888 | 0.000001 | under-trained | 4,032 | 0.00259 | 0.001674 |
8 | model.layers.1.mlp.gate_proj | 0.100303 | 4,096 | 14,336 | 3.5 | 16.665195 | -42.134642 | 1.566147 | true | 0.002963 | dense | -42.134535 | -1.054559 | -2.528302 | 64 | 0.088194 | 4,096 | 64 | 4,032 | 1 | 1.958149 | 0.002963 | 29.767494 | success | 0.054431 | 0.000001 | under-trained | 4,032 | 0.002963 | 0.001283 |
9 | model.layers.1.mlp.up_proj | 0.093469 | 4,096 | 14,336 | 3.5 | 6.394431 | -15.962968 | 1.565633 | true | 0.003189 | dense | -15.793623 | -1.026606 | -2.496386 | 64 | 0.094058 | 4,096 | 9 | 4,032 | 1 | 1.798144 | 0.003189 | 29.497108 | success | 0.056469 | 0.000001 | under-trained | 4,032 | 0.003189 | 0.001509 |
10 | model.layers.1.self_attn.k_proj | 0.046914 | 1,024 | 4,096 | 4 | 5.407095 | -18.119668 | 1.130692 | true | 0.000446 | dense | -17.410583 | -1.817623 | -3.351091 | 64 | 0.015219 | 1,024 | 44 | 960 | 1 | 0.664395 | 0.000446 | 34.156071 | success | 0.021108 | 0.000001 | 960 | 0.000446 | 0.000202 |
|
11 | model.layers.1.self_attn.o_proj | 0.071885 | 4,096 | 4,096 | 1 | 10.221763 | -26.319684 | 1.562144 | true | 0.002662 | dense | -26.319406 | -1.261839 | -2.574867 | 64 | 0.054722 | 4,096 | 64 | 4,032 | 1 | 1.15272 | 0.002662 | 20.560261 | success | 0.05159 | 0 | under-trained | 4,032 | 0.002662 | 0.000753 |
12 | model.layers.1.self_attn.q_proj | 0.042567 | 4,096 | 4,096 | 1 | 6.800043 | -21.868052 | 1.563175 | true | 0.000608 | dense | -21.428138 | -1.691062 | -3.21587 | 64 | 0.020368 | 4,096 | 27 | 4,032 | 1 | 1.116219 | 0.000608 | 33.481743 | success | 0.024664 | 0 | under-trained | 4,032 | 0.000608 | 0.000313 |
13 | model.layers.1.self_attn.v_proj | 0.076443 | 1,024 | 4,096 | 4 | 9.857553 | -30.2983 | 1.134389 | true | 0.000844 | dense | -30.292004 | -1.638683 | -3.073613 | 64 | 0.022978 | 1,024 | 59 | 960 | 1 | 1.153155 | 0.000844 | 27.222609 | success | 0.029053 | 0.000001 | under-trained | 960 | 0.000844 | 0.00032 |
14 | model.layers.2.mlp.down_proj | 0.044829 | 4,096 | 14,336 | 3.5 | 24.039725 | -62.65624 | 1.568052 | true | 0.002475 | dense | -62.583448 | -0.918557 | -2.606363 | 64 | 0.120627 | 4,096 | 63 | 4,032 | 1 | 2.902732 | 0.002475 | 48.731022 | success | 0.049753 | 0.000001 | under-trained | 4,032 | 0.002475 | 0.001804 |
15 | model.layers.2.mlp.gate_proj | 0.122919 | 4,096 | 14,336 | 3.5 | 16.383023 | -39.734896 | 1.565553 | true | 0.003755 | dense | -39.734813 | -0.980617 | -2.42537 | 64 | 0.104564 | 4,096 | 63 | 4,032 | 1 | 1.938079 | 0.003755 | 27.845358 | success | 0.061279 | 0.000001 | under-trained | 4,032 | 0.003755 | 0.001518 |
16 | model.layers.2.mlp.up_proj | 0.121084 | 4,096 | 14,336 | 3.5 | 5.922999 | -14.265511 | 1.56518 | true | 0.003904 | dense | -14.105961 | -0.967536 | -2.408494 | 64 | 0.107761 | 4,096 | 7 | 4,032 | 1 | 1.860719 | 0.003904 | 27.603111 | success | 0.062482 | 0.000001 | 4,032 | 0.003904 | 0.001794 |
|
17 | model.layers.2.self_attn.k_proj | 0.08431 | 1,024 | 4,096 | 4 | 7.398291 | -22.674196 | 1.135633 | true | 0.000861 | dense | -21.732295 | -1.400087 | -3.064789 | 64 | 0.039803 | 1,024 | 59 | 960 | 1 | 0.832986 | 0.000861 | 46.20631 | success | 0.02935 | 0.000001 | under-trained | 960 | 0.000861 | 0.000535 |
18 | model.layers.2.self_attn.o_proj | 0.053606 | 4,096 | 4,096 | 1 | 6.88414 | -18.728038 | 1.56454 | true | 0.001903 | dense | -18.608163 | -1.266283 | -2.720462 | 64 | 0.054165 | 4,096 | 16 | 4,032 | 1 | 1.471035 | 0.001903 | 28.456308 | success | 0.043628 | 0 | under-trained | 4,032 | 0.001903 | 0.000853 |
19 | model.layers.2.self_attn.q_proj | 0.045028 | 4,096 | 4,096 | 1 | 13.196397 | -39.407577 | 1.567217 | true | 0.001032 | dense | -39.116808 | -1.344605 | -2.986238 | 64 | 0.045227 | 4,096 | 31 | 4,032 | 1 | 2.190538 | 0.001032 | 43.815971 | success | 0.032128 | 0 | under-trained | 4,032 | 0.001032 | 0.000695 |
20 | model.layers.2.self_attn.v_proj | 0.055929 | 1,024 | 4,096 | 4 | 12.699136 | -39.315057 | 1.135977 | true | 0.000802 | dense | -39.286448 | -1.537234 | -3.095884 | 64 | 0.029025 | 1,024 | 31 | 960 | 1 | 2.101227 | 0.000802 | 36.19511 | success | 0.028318 | 0.000001 | under-trained | 960 | 0.000802 | 0.000443 |
21 | model.layers.3.mlp.down_proj | 0.069587 | 4,096 | 14,336 | 3.5 | 24.161103 | -62.837628 | 1.568032 | true | 0.002507 | dense | -62.654764 | -0.902753 | -2.600776 | 64 | 0.125097 | 4,096 | 63 | 4,032 | 1 | 2.918025 | 0.002507 | 49.891129 | success | 0.050074 | 0.000001 | under-trained | 4,032 | 0.002507 | 0.001871 |
22 | model.layers.3.mlp.gate_proj | 0.108322 | 4,096 | 14,336 | 3.5 | 5.989237 | -14.297708 | 1.565328 | true | 0.0041 | dense | -14.129423 | -0.938871 | -2.387234 | 64 | 0.115114 | 4,096 | 8 | 4,032 | 1 | 1.763962 | 0.0041 | 28.077747 | success | 0.06403 | 0.000001 | 4,032 | 0.0041 | 0.001855 |
|
23 | model.layers.3.mlp.up_proj | 0.088098 | 4,096 | 14,336 | 3.5 | 6.218851 | -14.741318 | 1.564996 | true | 0.004262 | dense | -14.595718 | -0.926769 | -2.370425 | 64 | 0.118367 | 4,096 | 10 | 4,032 | 1 | 1.650346 | 0.004262 | 27.775105 | success | 0.065281 | 0.000001 | under-trained | 4,032 | 0.004262 | 0.001882 |
24 | model.layers.3.self_attn.k_proj | 0.039784 | 1,024 | 4,096 | 4 | 9.502453 | -29.300807 | 1.135065 | true | 0.000825 | dense | -29.097352 | -1.519796 | -3.083499 | 64 | 0.030214 | 1,024 | 28 | 960 | 1 | 1.606813 | 0.000825 | 36.61871 | success | 0.028724 | 0.000001 | under-trained | 960 | 0.000825 | 0.000465 |
25 | model.layers.3.self_attn.o_proj | 0.03449 | 4,096 | 4,096 | 1 | 11.703897 | -32.998486 | 1.566898 | true | 0.001515 | dense | -32.790331 | -1.21244 | -2.819444 | 64 | 0.061314 | 4,096 | 64 | 4,032 | 1 | 1.337987 | 0.001515 | 40.457954 | success | 0.038929 | 0 | under-trained | 4,032 | 0.001515 | 0.000868 |
26 | model.layers.3.self_attn.q_proj | 0.044331 | 4,096 | 4,096 | 1 | 9.75992 | -29.598527 | 1.566602 | true | 0.000928 | dense | -29.273948 | -1.428317 | -3.032661 | 64 | 0.037298 | 4,096 | 46 | 4,032 | 1 | 1.29158 | 0.000928 | 40.210899 | success | 0.030456 | 0 | under-trained | 4,032 | 0.000928 | 0.000538 |
27 | model.layers.3.self_attn.v_proj | 0.037176 | 1,024 | 4,096 | 4 | 17.910739 | -56.070237 | 1.136824 | true | 0.00074 | dense | -55.960304 | -1.470565 | -3.130537 | 64 | 0.03384 | 1,024 | 25 | 960 | 1 | 3.382148 | 0.00074 | 45.705894 | success | 0.02721 | 0.000001 | under-trained | 960 | 0.00074 | 0.000533 |
28 | model.layers.4.mlp.down_proj | 0.080889 | 4,096 | 14,336 | 3.5 | 22.294176 | -57.197063 | 1.567888 | true | 0.002719 | dense | -56.910812 | -0.881898 | -2.565561 | 64 | 0.131251 | 4,096 | 63 | 4,032 | 1 | 2.682814 | 0.002719 | 48.268436 | success | 0.052146 | 0.000001 | under-trained | 4,032 | 0.002719 | 0.001954 |
29 | model.layers.4.mlp.gate_proj | 0.086992 | 4,096 | 14,336 | 3.5 | 5.701482 | -13.174763 | 1.564059 | true | 0.004889 | dense | -13.052403 | -0.911412 | -2.310761 | 64 | 0.122628 | 4,096 | 10 | 4,032 | 1 | 1.486739 | 0.004889 | 25.081268 | success | 0.069923 | 0.000001 | 4,032 | 0.004889 | 0.001941 |
|
30 | model.layers.4.mlp.up_proj | 0.085917 | 4,096 | 14,336 | 3.5 | 5.745872 | -13.215527 | 1.56369 | true | 0.005012 | dense | -13.064761 | -0.890269 | -2.300004 | 64 | 0.128745 | 4,096 | 11 | 4,032 | 1 | 1.430934 | 0.005012 | 25.68824 | success | 0.070794 | 0.000001 | 4,032 | 0.005012 | 0.002069 |
|
31 | model.layers.4.self_attn.k_proj | 0.081884 | 1,024 | 4,096 | 4 | 14.177225 | -42.433407 | 1.1351 | true | 0.001016 | dense | -42.247339 | -1.376714 | -2.993069 | 64 | 0.042004 | 1,024 | 10 | 960 | 1 | 4.167004 | 0.001016 | 41.338539 | success | 0.031876 | 0.000001 | under-trained | 960 | 0.001016 | 0.000765 |
32 | model.layers.4.self_attn.o_proj | 0.041909 | 4,096 | 4,096 | 1 | 8.999342 | -24.947075 | 1.565933 | true | 0.00169 | dense | -24.706348 | -1.208685 | -2.7721 | 64 | 0.061846 | 4,096 | 49 | 4,032 | 1 | 1.142763 | 0.00169 | 36.594429 | success | 0.04111 | 0 | under-trained | 4,032 | 0.00169 | 0.000873 |
33 | model.layers.4.self_attn.q_proj | 0.052784 | 4,096 | 4,096 | 1 | 9.725256 | -28.848369 | 1.566779 | true | 0.001081 | dense | -28.309011 | -1.32605 | -2.966335 | 64 | 0.047201 | 4,096 | 44 | 4,032 | 1 | 1.315382 | 0.001081 | 43.680317 | success | 0.032872 | 0 | under-trained | 4,032 | 0.001081 | 0.000685 |
34 | model.layers.4.self_attn.v_proj | 0.046636 | 1,024 | 4,096 | 4 | 14.819596 | -45.950279 | 1.136522 | true | 0.000793 | dense | -45.797468 | -1.460378 | -3.100643 | 64 | 0.034644 | 1,024 | 25 | 960 | 1 | 2.763919 | 0.000793 | 43.678276 | success | 0.028163 | 0.000001 | under-trained | 960 | 0.000793 | 0.000545 |
35 | model.layers.5.mlp.down_proj | 0.078902 | 4,096 | 14,336 | 3.5 | 22.152337 | -56.400195 | 1.567959 | true | 0.002844 | dense | -56.248918 | -0.862235 | -2.546016 | 64 | 0.13733 | 4,096 | 64 | 4,032 | 1 | 2.644042 | 0.002844 | 48.281437 | success | 0.053333 | 0.000001 | under-trained | 4,032 | 0.002844 | 0.002043 |
36 | model.layers.5.mlp.gate_proj | 0.098271 | 4,096 | 14,336 | 3.5 | 5.474008 | -12.563457 | 1.564191 | true | 0.005069 | dense | -12.384134 | -0.880202 | -2.295111 | 64 | 0.131764 | 4,096 | 9 | 4,032 | 1 | 1.491336 | 0.005069 | 25.996128 | success | 0.071194 | 0.000001 | 4,032 | 0.005069 | 0.002119 |
|
37 | model.layers.5.mlp.up_proj | 0.093281 | 4,096 | 14,336 | 3.5 | 5.63767 | -12.907683 | 1.56396 | true | 0.005134 | dense | -12.713778 | -0.863864 | -2.289542 | 64 | 0.136816 | 4,096 | 10 | 4,032 | 1 | 1.46656 | 0.005134 | 26.648809 | success | 0.071652 | 0.000001 | 4,032 | 0.005134 | 0.002233 |
|
38 | model.layers.5.self_attn.k_proj | 0.083045 | 1,024 | 4,096 | 4 | 14.811831 | -44.299109 | 1.136177 | true | 0.001021 | dense | -44.030285 | -1.336815 | -2.990792 | 64 | 0.046045 | 1,024 | 15 | 960 | 1 | 3.566199 | 0.001021 | 45.07933 | success | 0.03196 | 0.000001 | under-trained | 960 | 0.001021 | 0.000774 |
39 | model.layers.5.self_attn.o_proj | 0.025052 | 4,096 | 4,096 | 1 | 11.793457 | -32.892559 | 1.567067 | true | 0.001625 | dense | -32.748331 | -1.186162 | -2.789052 | 64 | 0.065139 | 4,096 | 57 | 4,032 | 1 | 1.429628 | 0.001625 | 40.076469 | success | 0.040316 | 0 | under-trained | 4,032 | 0.001625 | 0.000933 |
40 | model.layers.5.self_attn.q_proj | 0.05413 | 4,096 | 4,096 | 1 | 12.98071 | -38.08368 | 1.56739 | true | 0.001164 | dense | -37.655263 | -1.268225 | -2.933867 | 64 | 0.053923 | 4,096 | 33 | 4,032 | 1 | 2.085574 | 0.001164 | 46.306519 | success | 0.034125 | 0 | under-trained | 4,032 | 0.001164 | 0.000822 |
41 | model.layers.5.self_attn.v_proj | 0.05871 | 1,024 | 4,096 | 4 | 19.824345 | -62.459979 | 1.13694 | true | 0.000707 | dense | -62.171833 | -1.452914 | -3.150671 | 64 | 0.035244 | 1,024 | 20 | 960 | 1 | 4.209251 | 0.000707 | 49.860538 | success | 0.026587 | 0.000001 | under-trained | 960 | 0.000707 | 0.000566 |
42 | model.layers.6.mlp.down_proj | 0.097807 | 4,096 | 14,336 | 3.5 | 20.600959 | -51.765735 | 1.567756 | true | 0.003071 | dense | -51.572194 | -0.845753 | -2.512783 | 64 | 0.142642 | 4,096 | 64 | 4,032 | 1 | 2.45012 | 0.003071 | 46.4547 | success | 0.055413 | 0.000001 | under-trained | 4,032 | 0.003071 | 0.002113 |
43 | model.layers.6.mlp.gate_proj | 0.068414 | 4,096 | 14,336 | 3.5 | 5.533623 | -12.467065 | 1.563599 | true | 0.005585 | dense | -12.311158 | -0.850254 | -2.252966 | 64 | 0.141171 | 4,096 | 12 | 4,032 | 1 | 1.308744 | 0.005585 | 25.276239 | success | 0.074734 | 0.000001 | 4,032 | 0.005585 | 0.002209 |
|
44 | model.layers.6.mlp.up_proj | 0.076429 | 4,096 | 14,336 | 3.5 | 5.67715 | -12.874706 | 1.563689 | true | 0.005397 | dense | -12.679234 | -0.84128 | -2.267811 | 64 | 0.144119 | 4,096 | 13 | 4,032 | 1 | 1.297208 | 0.005397 | 26.701216 | success | 0.073467 | 0.000001 | 4,032 | 0.005397 | 0.00227 |
|
45 | model.layers.6.self_attn.k_proj | 0.09852 | 1,024 | 4,096 | 4 | 8.767472 | -26.809819 | 1.136442 | true | 0.000875 | dense | -25.700285 | -1.348075 | -3.057873 | 64 | 0.044867 | 1,024 | 63 | 960 | 1 | 0.978609 | 0.000875 | 51.262314 | success | 0.029584 | 0.000001 | under-trained | 960 | 0.000875 | 0.000615 |
46 | model.layers.6.self_attn.o_proj | 0.040391 | 4,096 | 4,096 | 1 | 9.963633 | -27.33182 | 1.566175 | true | 0.001807 | dense | -27.155354 | -1.181547 | -2.743158 | 64 | 0.065834 | 4,096 | 64 | 4,032 | 1 | 1.120454 | 0.001807 | 36.442715 | success | 0.042503 | 0 | under-trained | 4,032 | 0.001807 | 0.000912 |
47 | model.layers.6.self_attn.q_proj | 0.040589 | 4,096 | 4,096 | 1 | 12.254351 | -35.641948 | 1.567165 | true | 0.001234 | dense | -35.379423 | -1.274873 | -2.908514 | 64 | 0.053104 | 4,096 | 29 | 4,032 | 1 | 2.08988 | 0.001234 | 43.017075 | success | 0.035135 | 0 | under-trained | 4,032 | 0.001234 | 0.000817 |
48 | model.layers.6.self_attn.v_proj | 0.042567 | 1,024 | 4,096 | 4 | 14.386236 | -44.097629 | 1.136462 | true | 0.00086 | dense | -43.998409 | -1.443458 | -3.065265 | 64 | 0.03602 | 1,024 | 25 | 960 | 1 | 2.677247 | 0.00086 | 41.860809 | success | 0.029334 | 0.000001 | under-trained | 960 | 0.00086 | 0.000564 |
49 | model.layers.7.mlp.down_proj | 0.085805 | 4,096 | 14,336 | 3.5 | 20.775565 | -52.011701 | 1.567809 | true | 0.003137 | dense | -51.827012 | -0.830214 | -2.503504 | 64 | 0.147838 | 4,096 | 64 | 4,032 | 1 | 2.471946 | 0.003137 | 47.129108 | success | 0.056008 | 0.000001 | under-trained | 4,032 | 0.003137 | 0.002191 |
50 | model.layers.7.mlp.gate_proj | 0.081984 | 4,096 | 14,336 | 3.5 | 5.883159 | -13.182678 | 1.563816 | true | 0.005744 | dense | -13.049045 | -0.829893 | -2.240748 | 64 | 0.147947 | 4,096 | 12 | 4,032 | 1 | 1.409647 | 0.005744 | 25.75465 | success | 0.075792 | 0.000001 | 4,032 | 0.005744 | 0.002348 |
|
51 | model.layers.7.mlp.up_proj | 0.057328 | 4,096 | 14,336 | 3.5 | 6.148233 | -13.927992 | 1.564189 | true | 0.005428 | dense | -13.756112 | -0.822357 | -2.265365 | 64 | 0.150537 | 4,096 | 14 | 4,032 | 1 | 1.375923 | 0.005428 | 27.733747 | success | 0.073675 | 0.000001 | under-trained | 4,032 | 0.005428 | 0.002372 |
52 | model.layers.7.self_attn.k_proj | 0.09518 | 1,024 | 4,096 | 4 | 7.604473 | -22.570781 | 1.135798 | true | 0.001076 | dense | -21.502538 | -1.281329 | -2.968093 | 64 | 0.05232 | 1,024 | 58 | 960 | 1 | 0.86721 | 0.001076 | 48.614307 | success | 0.032806 | 0.000001 | under-trained | 960 | 0.001076 | 0.000709 |
53 | model.layers.7.self_attn.o_proj | 0.026661 | 4,096 | 4,096 | 1 | 11.071689 | -30.661835 | 1.566892 | true | 0.001701 | dense | -30.318646 | -1.146771 | -2.769391 | 64 | 0.071323 | 4,096 | 49 | 4,032 | 1 | 1.438813 | 0.001701 | 41.939178 | success | 0.041239 | 0 | under-trained | 4,032 | 0.001701 | 0.001032 |
54 | model.layers.7.self_attn.q_proj | 0.055803 | 4,096 | 4,096 | 1 | 16.982169 | -48.844106 | 1.567477 | true | 0.00133 | dense | -48.732499 | -1.224751 | -2.876199 | 64 | 0.0596 | 4,096 | 16 | 4,032 | 1 | 3.995542 | 0.00133 | 44.817566 | success | 0.036467 | 0 | under-trained | 4,032 | 0.00133 | 0.000977 |
55 | model.layers.7.self_attn.v_proj | 0.081528 | 1,024 | 4,096 | 4 | 17.819071 | -55.523497 | 1.136963 | true | 0.000766 | dense | -55.024378 | -1.40785 | -3.115959 | 64 | 0.039098 | 1,024 | 31 | 960 | 1 | 3.020794 | 0.000766 | 51.063366 | success | 0.027671 | 0.000001 | under-trained | 960 | 0.000766 | 0.000608 |
56 | model.layers.8.mlp.down_proj | 0.061533 | 4,096 | 14,336 | 3.5 | 21.01559 | -51.882457 | 1.567765 | true | 0.003398 | dense | -51.846039 | -0.823899 | -2.46876 | 64 | 0.150003 | 4,096 | 64 | 4,032 | 1 | 2.501949 | 0.003398 | 44.143002 | success | 0.058293 | 0.000001 | under-trained | 4,032 | 0.003398 | 0.002224 |
57 | model.layers.8.mlp.gate_proj | 0.068686 | 4,096 | 14,336 | 3.5 | 5.448702 | -11.997627 | 1.563144 | true | 0.006282 | dense | -11.855454 | -0.813531 | -2.201924 | 64 | 0.153628 | 4,096 | 12 | 4,032 | 1 | 1.28423 | 0.006282 | 24.456436 | success | 0.079257 | 0.000001 | 4,032 | 0.006282 | 0.002431 |
|
58 | model.layers.8.mlp.up_proj | 0.056817 | 4,096 | 14,336 | 3.5 | 6.014112 | -13.355063 | 1.563554 | true | 0.006017 | dense | -13.222077 | -0.806294 | -2.220621 | 64 | 0.156209 | 4,096 | 15 | 4,032 | 1 | 1.294638 | 0.006017 | 25.961346 | success | 0.077569 | 0.000001 | under-trained | 4,032 | 0.006017 | 0.002433 |
59 | model.layers.8.self_attn.k_proj | 0.088969 | 1,024 | 4,096 | 4 | 9.859432 | -29.38636 | 1.136428 | true | 0.001046 | dense | -28.462179 | -1.284628 | -2.980533 | 64 | 0.051924 | 1,024 | 54 | 960 | 1 | 1.205616 | 0.001046 | 49.648315 | success | 0.03234 | 0.000001 | under-trained | 960 | 0.001046 | 0.000737 |
60 | model.layers.8.self_attn.o_proj | 0.033804 | 4,096 | 4,096 | 1 | 10.868981 | -30.062994 | 1.566883 | true | 0.001714 | dense | -29.660789 | -1.136309 | -2.765944 | 64 | 0.073062 | 4,096 | 64 | 4,032 | 1 | 1.233623 | 0.001714 | 42.62207 | success | 0.041403 | 0 | under-trained | 4,032 | 0.001714 | 0.001026 |
61 | model.layers.8.self_attn.q_proj | 0.030906 | 4,096 | 4,096 | 1 | 12.153658 | -34.439359 | 1.567197 | true | 0.001467 | dense | -34.210802 | -1.207567 | -2.833662 | 64 | 0.062006 | 4,096 | 48 | 4,032 | 1 | 1.609892 | 0.001467 | 42.276085 | success | 0.038297 | 0 | under-trained | 4,032 | 0.001467 | 0.000906 |
62 | model.layers.8.self_attn.v_proj | 0.038532 | 1,024 | 4,096 | 4 | 13.524507 | -40.222681 | 1.136178 | true | 0.001062 | dense | -40.189634 | -1.394706 | -2.974059 | 64 | 0.040299 | 1,024 | 25 | 960 | 1 | 2.504901 | 0.001062 | 37.962379 | success | 0.032581 | 0.000001 | under-trained | 960 | 0.001062 | 0.000631 |
63 | model.layers.9.mlp.down_proj | 0.06213 | 4,096 | 14,336 | 3.5 | 20.084147 | -50.021743 | 1.567869 | true | 0.003231 | dense | -49.887609 | -0.816982 | -2.490608 | 64 | 0.152411 | 4,096 | 64 | 4,032 | 1 | 2.385518 | 0.003231 | 47.165665 | success | 0.056845 | 0.000001 | under-trained | 4,032 | 0.003231 | 0.002255 |
64 | model.layers.9.mlp.gate_proj | 0.069464 | 4,096 | 14,336 | 3.5 | 5.4589 | -11.935915 | 1.562619 | true | 0.006509 | dense | -11.787865 | -0.800629 | -2.186505 | 64 | 0.15826 | 4,096 | 14 | 4,032 | 1 | 1.191691 | 0.006509 | 24.315136 | success | 0.080677 | 0.000001 | 4,032 | 0.006509 | 0.00247 |
|
65 | model.layers.9.mlp.up_proj | 0.048199 | 4,096 | 14,336 | 3.5 | 5.901424 | -13.009582 | 1.563118 | true | 0.006245 | dense | -12.85789 | -0.791337 | -2.204482 | 64 | 0.161682 | 4,096 | 17 | 4,032 | 1 | 1.18877 | 0.006245 | 25.890726 | success | 0.079024 | 0.000001 | 4,032 | 0.006245 | 0.002484 |
|
66 | model.layers.9.self_attn.k_proj | 0.108648 | 1,024 | 4,096 | 4 | 8.484636 | -24.745348 | 1.136499 | true | 0.001212 | dense | -23.627736 | -1.206466 | -2.916489 | 64 | 0.062163 | 1,024 | 64 | 960 | 1 | 0.935579 | 0.001212 | 51.288914 | success | 0.034814 | 0.000001 | under-trained | 960 | 0.001212 | 0.000846 |
67 | model.layers.9.self_attn.o_proj | 0.03061 | 4,096 | 4,096 | 1 | 10.436632 | -28.550257 | 1.566731 | true | 0.001838 | dense | -28.225721 | -1.125417 | -2.735581 | 64 | 0.074917 | 4,096 | 54 | 4,032 | 1 | 1.284163 | 0.001838 | 40.753433 | success | 0.042876 | 0 | under-trained | 4,032 | 0.001838 | 0.001066 |
68 | model.layers.9.self_attn.q_proj | 0.052522 | 4,096 | 4,096 | 1 | 13.246666 | -36.376856 | 1.567171 | true | 0.001794 | dense | -36.314785 | -1.151612 | -2.746114 | 64 | 0.070532 | 4,096 | 42 | 4,032 | 1 | 1.889702 | 0.001794 | 39.309879 | success | 0.042359 | 0 | under-trained | 4,032 | 0.001794 | 0.00105 |
69 | model.layers.9.self_attn.v_proj | 0.052762 | 1,024 | 4,096 | 4 | 14.481143 | -43.779659 | 1.136397 | true | 0.000948 | dense | -43.737233 | -1.423086 | -3.023218 | 64 | 0.03775 | 1,024 | 31 | 960 | 1 | 2.421285 | 0.000948 | 39.822842 | success | 0.030789 | 0.000001 | under-trained | 960 | 0.000948 | 0.000581 |
70 | model.layers.10.mlp.down_proj | 0.075484 | 4,096 | 14,336 | 3.5 | 10.934874 | -26.172484 | 1.567238 | true | 0.004041 | dense | -26.076547 | -0.814239 | -2.393487 | 64 | 0.153377 | 4,096 | 13 | 4,032 | 1 | 2.755438 | 0.004041 | 37.953167 | success | 0.063571 | 0.000001 | under-trained | 4,032 | 0.004041 | 0.002432 |
71 | model.layers.10.mlp.gate_proj | 0.072846 | 4,096 | 14,336 | 3.5 | 4.636268 | -9.481178 | 1.557717 | true | 0.009016 | dense | -9.39916 | -0.789586 | -2.045002 | 64 | 0.162336 | 4,096 | 14 | 4,032 | 1 | 0.971834 | 0.009016 | 18.005938 | success | 0.094951 | 0.000001 | 4,032 | 0.009016 | 0.0025 |
|
72 | model.layers.10.mlp.up_proj | 0.060395 | 4,096 | 14,336 | 3.5 | 4.955356 | -10.359555 | 1.559506 | true | 0.008118 | dense | -10.251761 | -0.78265 | -2.090577 | 64 | 0.164949 | 4,096 | 14 | 4,032 | 1 | 1.057113 | 0.008118 | 20.320147 | success | 0.090097 | 0.000001 | 4,032 | 0.008118 | 0.002598 |
|
73 | model.layers.10.self_attn.k_proj | 0.094365 | 1,024 | 4,096 | 4 | 15.683611 | -45.501024 | 1.136444 | true | 0.001256 | dense | -44.901573 | -1.20619 | -2.901183 | 64 | 0.062203 | 1,024 | 17 | 960 | 1 | 3.561299 | 0.001256 | 49.544209 | success | 0.035433 | 0.000001 | under-trained | 960 | 0.001256 | 0.001027 |
74 | model.layers.10.self_attn.o_proj | 0.037535 | 4,096 | 4,096 | 1 | 9.877892 | -26.532661 | 1.565923 | true | 0.00206 | dense | -26.188098 | -1.11339 | -2.686065 | 64 | 0.077021 | 4,096 | 62 | 4,032 | 1 | 1.127493 | 0.00206 | 37.383114 | success | 0.045391 | 0 | under-trained | 4,032 | 0.00206 | 0.001069 |
75 | model.layers.10.self_attn.q_proj | 0.037533 | 4,096 | 4,096 | 1 | 13.054052 | -36.288138 | 1.567345 | true | 0.00166 | dense | -36.072602 | -1.143307 | -2.779837 | 64 | 0.071894 | 4,096 | 37 | 4,032 | 1 | 1.981674 | 0.00166 | 43.304161 | success | 0.040746 | 0 | under-trained | 4,032 | 0.00166 | 0.001081 |
76 | model.layers.10.self_attn.v_proj | 0.060372 | 1,024 | 4,096 | 4 | 14.002535 | -42.984731 | 1.136544 | true | 0.000852 | dense | -42.610043 | -1.405518 | -3.069782 | 64 | 0.039308 | 1,024 | 25 | 960 | 1 | 2.600507 | 0.000852 | 46.159813 | success | 0.029182 | 0.000001 | under-trained | 960 | 0.000852 | 0.000617 |
77 | model.layers.11.mlp.down_proj | 0.064006 | 4,096 | 14,336 | 3.5 | 18.143359 | -44.600654 | 1.567634 | true | 0.003481 | dense | -44.504382 | -0.813716 | -2.458236 | 64 | 0.153562 | 4,096 | 64 | 4,032 | 1 | 2.14292 | 0.003481 | 44.108185 | success | 0.059004 | 0.000001 | under-trained | 4,032 | 0.003481 | 0.002257 |
78 | model.layers.11.mlp.gate_proj | 0.061851 | 4,096 | 14,336 | 3.5 | 4.729063 | -9.84292 | 1.559193 | true | 0.008291 | dense | -9.72596 | -0.782129 | -2.081368 | 64 | 0.165147 | 4,096 | 14 | 4,032 | 1 | 0.996634 | 0.008291 | 19.917686 | success | 0.091058 | 0.000001 | 4,032 | 0.008291 | 0.002583 |
|
79 | model.layers.11.mlp.up_proj | 0.052182 | 4,096 | 14,336 | 3.5 | 5.172912 | -10.963762 | 1.560651 | true | 0.007595 | dense | -10.834115 | -0.775218 | -2.119456 | 64 | 0.167796 | 4,096 | 16 | 4,032 | 1 | 1.043228 | 0.007595 | 22.092144 | success | 0.087151 | 0.000001 | 4,032 | 0.007595 | 0.002597 |
|
80 | model.layers.11.self_attn.k_proj | 0.097096 | 1,024 | 4,096 | 4 | 25.593823 | -73.865998 | 1.136346 | true | 0.0013 | dense | -73.555482 | -1.187924 | -2.886087 | 64 | 0.064875 | 1,024 | 9 | 960 | 1 | 8.197941 | 0.0013 | 49.907162 | success | 0.036054 | 0.000001 | under-trained | 960 | 0.0013 | 0.001146 |
81 | model.layers.11.self_attn.o_proj | 0.040468 | 4,096 | 4,096 | 1 | 10.338723 | -27.704059 | 1.566199 | true | 0.002091 | dense | -27.529661 | -1.112696 | -2.67964 | 64 | 0.077144 | 4,096 | 64 | 4,032 | 1 | 1.16734 | 0.002091 | 36.893032 | success | 0.045728 | 0 | under-trained | 4,032 | 0.002091 | 0.001074 |
82 | model.layers.11.self_attn.q_proj | 0.0556 | 4,096 | 4,096 | 1 | 15.688182 | -42.828 | 1.567348 | true | 0.001862 | dense | -42.80471 | -1.128807 | -2.729953 | 64 | 0.074335 | 4,096 | 30 | 4,032 | 1 | 2.681683 | 0.001862 | 39.91589 | success | 0.043154 | 0 | under-trained | 4,032 | 0.001862 | 0.00115 |
83 | model.layers.11.self_attn.v_proj | 0.066851 | 1,024 | 4,096 | 4 | 15.642017 | -48.128035 | 1.136797 | true | 0.000838 | dense | -47.647632 | -1.385308 | -3.076843 | 64 | 0.041181 | 1,024 | 29 | 960 | 1 | 2.718954 | 0.000838 | 49.151302 | success | 0.028945 | 0.000001 | under-trained | 960 | 0.000838 | 0.00064 |
84 | model.layers.12.mlp.down_proj | 0.046249 | 4,096 | 14,336 | 3.5 | 19.143419 | -47.722061 | 1.567887 | true | 0.003215 | dense | -47.515283 | -0.808447 | -2.49287 | 64 | 0.155437 | 4,096 | 64 | 4,032 | 1 | 2.267927 | 0.003215 | 48.353001 | success | 0.056698 | 0.000001 | under-trained | 4,032 | 0.003215 | 0.002294 |
85 | model.layers.12.mlp.gate_proj | 0.082356 | 4,096 | 14,336 | 3.5 | 5.576734 | -11.745804 | 1.560038 | true | 0.00783 | dense | -11.671995 | -0.78163 | -2.106216 | 64 | 0.165337 | 4,096 | 24 | 4,032 | 1 | 0.934222 | 0.00783 | 21.114716 | success | 0.08849 | 0.000001 | 4,032 | 0.00783 | 0.002393 |
|
86 | model.layers.12.mlp.up_proj | 0.067437 | 4,096 | 14,336 | 3.5 | 5.63354 | -12.118184 | 1.561774 | true | 0.007062 | dense | -11.99408 | -0.775037 | -2.151078 | 64 | 0.167866 | 4,096 | 20 | 4,032 | 1 | 1.036091 | 0.007062 | 23.770645 | success | 0.084035 | 0.000001 | 4,032 | 0.007062 | 0.002511 |
|
87 | model.layers.12.self_attn.k_proj | 0.075255 | 1,024 | 4,096 | 4 | 7.307717 | -20.30396 | 1.135072 | true | 0.001666 | dense | -19.509019 | -1.143765 | -2.778427 | 64 | 0.071818 | 1,024 | 48 | 960 | 1 | 0.910441 | 0.001666 | 43.118359 | success | 0.040812 | 0.000001 | under-trained | 960 | 0.001666 | 0.000996 |
88 | model.layers.12.self_attn.o_proj | 0.037535 | 4,096 | 4,096 | 1 | 13.204657 | -37.122458 | 1.567481 | true | 0.001544 | dense | -36.591702 | -1.13263 | -2.811316 | 64 | 0.073684 | 4,096 | 37 | 4,032 | 1 | 2.006433 | 0.001544 | 47.718407 | success | 0.039295 | 0 | under-trained | 4,032 | 0.001544 | 0.00111 |
89 | model.layers.12.self_attn.q_proj | 0.043548 | 4,096 | 4,096 | 1 | 14.551028 | -39.510564 | 1.567378 | true | 0.001926 | dense | -39.467633 | -1.109314 | -2.715311 | 64 | 0.077747 | 4,096 | 37 | 4,032 | 1 | 2.227775 | 0.001926 | 40.364216 | success | 0.043888 | 0 | under-trained | 4,032 | 0.001926 | 0.001177 |
90 | model.layers.12.self_attn.v_proj | 0.058039 | 1,024 | 4,096 | 4 | 18.939154 | -58.92721 | 1.136923 | true | 0.000774 | dense | -58.459355 | -1.403804 | -3.111396 | 64 | 0.039464 | 1,024 | 22 | 960 | 1 | 3.824641 | 0.000774 | 51.002598 | success | 0.027816 | 0.000001 | under-trained | 960 | 0.000774 | 0.00063 |
91 | model.layers.13.mlp.down_proj | 0.079269 | 4,096 | 14,336 | 3.5 | 9.616183 | -22.950278 | 1.567183 | true | 0.004106 | dense | -22.740849 | -0.797377 | -2.386631 | 64 | 0.159449 | 4,096 | 11 | 4,032 | 1 | 2.597877 | 0.004106 | 38.837742 | success | 0.064074 | 0.000001 | under-trained | 4,032 | 0.004106 | 0.002567 |
92 | model.layers.13.mlp.gate_proj | 0.079731 | 4,096 | 14,336 | 3.5 | 4.984892 | -10.360039 | 1.55877 | true | 0.008351 | dense | -10.255785 | -0.773513 | -2.078287 | 64 | 0.168456 | 4,096 | 20 | 4,032 | 1 | 0.891049 | 0.008351 | 20.173187 | success | 0.091381 | 0.000001 | 4,032 | 0.008351 | 0.002494 |
|
93 | model.layers.13.mlp.up_proj | 0.072429 | 4,096 | 14,336 | 3.5 | 5.011493 | -10.601177 | 1.560401 | true | 0.007667 | dense | -10.445835 | -0.767323 | -2.115373 | 64 | 0.170874 | 4,096 | 17 | 4,032 | 1 | 0.97293 | 0.007667 | 22.286915 | success | 0.087562 | 0.000001 | 4,032 | 0.007667 | 0.002607 |
|
94 | model.layers.13.self_attn.k_proj | 0.085804 | 1,024 | 4,096 | 4 | 10.917614 | -31.714969 | 1.13663 | true | 0.001245 | dense | -30.802451 | -1.199312 | -2.904936 | 64 | 0.063196 | 1,024 | 50 | 960 | 1 | 1.402562 | 0.001245 | 50.771942 | success | 0.03528 | 0.000001 | under-trained | 960 | 0.001245 | 0.000914 |
95 | model.layers.13.self_attn.o_proj | 0.038864 | 4,096 | 4,096 | 1 | 10.873859 | -29.532194 | 1.566954 | true | 0.001924 | dense | -29.111348 | -1.083524 | -2.715889 | 64 | 0.082504 | 4,096 | 52 | 4,032 | 1 | 1.369258 | 0.001924 | 42.890877 | success | 0.043859 | 0 | under-trained | 4,032 | 0.001924 | 0.001184 |
96 | model.layers.13.self_attn.q_proj | 0.044763 | 4,096 | 4,096 | 1 | 12.123026 | -32.701739 | 1.567134 | true | 0.002007 | dense | -32.617086 | -1.106532 | -2.69749 | 64 | 0.078247 | 4,096 | 55 | 4,032 | 1 | 1.499829 | 0.002007 | 38.99041 | success | 0.044798 | 0 | under-trained | 4,032 | 0.002007 | 0.001128 |
97 | model.layers.13.self_attn.v_proj | 0.067765 | 1,024 | 4,096 | 4 | 20.641453 | -63.667613 | 1.136971 | true | 0.000823 | dense | -63.173656 | -1.36992 | -3.084454 | 64 | 0.042666 | 1,024 | 18 | 960 | 1 | 4.629535 | 0.000823 | 51.824352 | success | 0.028693 | 0.000001 | under-trained | 960 | 0.000823 | 0.00069 |
98 | model.layers.14.mlp.down_proj | 0.079255 | 4,096 | 14,336 | 3.5 | 11.89016 | -29.105109 | 1.567366 | true | 0.003566 | dense | -28.577562 | -0.787616 | -2.447832 | 64 | 0.163074 | 4,096 | 23 | 4,032 | 1 | 2.270755 | 0.003566 | 45.731548 | success | 0.059715 | 0.000001 | under-trained | 4,032 | 0.003566 | 0.002507 |
99 | model.layers.14.mlp.gate_proj | 0.063937 | 4,096 | 14,336 | 3.5 | 4.882276 | -10.067112 | 1.558951 | true | 0.00867 | dense | -9.97402 | -0.76949 | -2.061971 | 64 | 0.170024 | 4,096 | 15 | 4,032 | 1 | 1.002399 | 0.00867 | 19.610151 | success | 0.093114 | 0.000001 | 4,032 | 0.00867 | 0.002664 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.