layer_id
int64
0
223
name
stringlengths
26
32
D
float64
0.02
0.18
M
int64
1.02k
4.1k
N
int64
4.1k
14.3k
Q
float64
1
4
alpha
float64
3.57
40.4
alpha_weighted
float64
-123.19
-7.38
entropy
float64
1.1
1.57
has_esd
bool
1 class
lambda_max
float32
0
0.01
layer_type
stringclasses
1 value
log_alpha_norm
float64
-123.03
-6.97
log_norm
float32
-1.93
-0.76
log_spectral_norm
float32
-3.35
-2
matrix_rank
int64
64
64
norm
float32
0.01
0.17
num_evals
int64
1.02k
4.1k
num_pl_spikes
int64
7
64
rank_loss
int64
960
4.03k
rf
int64
1
1
sigma
float64
0.59
11.9
spectral_norm
float32
0
0.01
stable_rank
float32
14
56.5
status
stringclasses
1 value
sv_max
float64
0.02
0.1
sv_min
float64
0
0
warning
stringclasses
2 values
weak_rank_loss
int64
960
4.03k
xmax
float64
0
0.01
xmin
float64
0
0
0
model.layers.0.mlp.down_proj
0.032919
4,096
14,336
3.5
18.055209
-48.640228
1.567931
true
0.002023
dense
-48.269201
-0.9936
-2.693972
64
0.101485
4,096
48
4,032
1
2.461707
0.002023
50.161728
success
0.044979
0.000001
under-trained
4,032
0.002023
0.00152
1
model.layers.0.mlp.gate_proj
0.160123
4,096
14,336
3.5
10.852054
-29.049223
1.562717
true
0.002105
dense
-28.678506
-1.185878
-2.676841
64
0.065181
4,096
62
4,032
1
1.251212
0.002105
30.971571
success
0.045875
0.000001
under-trained
4,032
0.002105
0.000911
2
model.layers.0.mlp.up_proj
0.17812
4,096
14,336
3.5
12.453256
-32.740183
1.563214
true
0.002349
dense
-32.534855
-1.156636
-2.629046
64
0.069721
4,096
64
4,032
1
1.431657
0.002349
29.676323
success
0.04847
0.000001
under-trained
4,032
0.002349
0.000981
3
model.layers.0.self_attn.k_proj
0.083637
1,024
4,096
4
5.034398
-15.510934
1.104559
true
0.00083
dense
-15.467863
-1.933724
-3.080991
64
0.011649
1,024
12
960
1
1.16463
0.00083
14.036742
success
0.028807
0.000001
960
0.00083
0.000259
4
model.layers.0.self_attn.o_proj
0.054402
4,096
4,096
1
8.622944
-24.251016
1.564303
true
0.00154
dense
-24.223236
-1.381247
-2.812382
64
0.041567
4,096
62
4,032
1
0.968115
0.00154
26.985811
success
0.039247
0
under-trained
4,032
0.00154
0.000564
5
model.layers.0.self_attn.q_proj
0.078194
4,096
4,096
1
3.928884
-12.483412
1.5311
true
0.000665
dense
-12.093811
-1.929221
-3.177343
64
0.01177
4,096
17
4,032
1
0.710359
0.000665
17.706078
success
0.025783
0
4,032
0.000665
0.000228
6
model.layers.0.self_attn.v_proj
0.037198
1,024
4,096
4
9.168773
-29.572681
1.133628
true
0.000595
dense
-29.552212
-1.780241
-3.225369
64
0.016587
1,024
31
960
1
1.467155
0.000595
27.869484
success
0.024396
0.000001
under-trained
960
0.000595
0.000252
7
model.layers.1.mlp.down_proj
0.087105
4,096
14,336
3.5
22.468248
-58.120207
1.567733
true
0.00259
dense
-58.087316
-0.948784
-2.586771
64
0.112516
4,096
64
4,032
1
2.683531
0.00259
43.449684
success
0.050888
0.000001
under-trained
4,032
0.00259
0.001674
8
model.layers.1.mlp.gate_proj
0.100303
4,096
14,336
3.5
16.665195
-42.134642
1.566147
true
0.002963
dense
-42.134535
-1.054559
-2.528302
64
0.088194
4,096
64
4,032
1
1.958149
0.002963
29.767494
success
0.054431
0.000001
under-trained
4,032
0.002963
0.001283
9
model.layers.1.mlp.up_proj
0.093469
4,096
14,336
3.5
6.394431
-15.962968
1.565633
true
0.003189
dense
-15.793623
-1.026606
-2.496386
64
0.094058
4,096
9
4,032
1
1.798144
0.003189
29.497108
success
0.056469
0.000001
under-trained
4,032
0.003189
0.001509
10
model.layers.1.self_attn.k_proj
0.046914
1,024
4,096
4
5.407095
-18.119668
1.130692
true
0.000446
dense
-17.410583
-1.817623
-3.351091
64
0.015219
1,024
44
960
1
0.664395
0.000446
34.156071
success
0.021108
0.000001
960
0.000446
0.000202
11
model.layers.1.self_attn.o_proj
0.071885
4,096
4,096
1
10.221763
-26.319684
1.562144
true
0.002662
dense
-26.319406
-1.261839
-2.574867
64
0.054722
4,096
64
4,032
1
1.15272
0.002662
20.560261
success
0.05159
0
under-trained
4,032
0.002662
0.000753
12
model.layers.1.self_attn.q_proj
0.042567
4,096
4,096
1
6.800043
-21.868052
1.563175
true
0.000608
dense
-21.428138
-1.691062
-3.21587
64
0.020368
4,096
27
4,032
1
1.116219
0.000608
33.481743
success
0.024664
0
under-trained
4,032
0.000608
0.000313
13
model.layers.1.self_attn.v_proj
0.076443
1,024
4,096
4
9.857553
-30.2983
1.134389
true
0.000844
dense
-30.292004
-1.638683
-3.073613
64
0.022978
1,024
59
960
1
1.153155
0.000844
27.222609
success
0.029053
0.000001
under-trained
960
0.000844
0.00032
14
model.layers.2.mlp.down_proj
0.044829
4,096
14,336
3.5
24.039725
-62.65624
1.568052
true
0.002475
dense
-62.583448
-0.918557
-2.606363
64
0.120627
4,096
63
4,032
1
2.902732
0.002475
48.731022
success
0.049753
0.000001
under-trained
4,032
0.002475
0.001804
15
model.layers.2.mlp.gate_proj
0.122919
4,096
14,336
3.5
16.383023
-39.734896
1.565553
true
0.003755
dense
-39.734813
-0.980617
-2.42537
64
0.104564
4,096
63
4,032
1
1.938079
0.003755
27.845358
success
0.061279
0.000001
under-trained
4,032
0.003755
0.001518
16
model.layers.2.mlp.up_proj
0.121084
4,096
14,336
3.5
5.922999
-14.265511
1.56518
true
0.003904
dense
-14.105961
-0.967536
-2.408494
64
0.107761
4,096
7
4,032
1
1.860719
0.003904
27.603111
success
0.062482
0.000001
4,032
0.003904
0.001794
17
model.layers.2.self_attn.k_proj
0.08431
1,024
4,096
4
7.398291
-22.674196
1.135633
true
0.000861
dense
-21.732295
-1.400087
-3.064789
64
0.039803
1,024
59
960
1
0.832986
0.000861
46.20631
success
0.02935
0.000001
under-trained
960
0.000861
0.000535
18
model.layers.2.self_attn.o_proj
0.053606
4,096
4,096
1
6.88414
-18.728038
1.56454
true
0.001903
dense
-18.608163
-1.266283
-2.720462
64
0.054165
4,096
16
4,032
1
1.471035
0.001903
28.456308
success
0.043628
0
under-trained
4,032
0.001903
0.000853
19
model.layers.2.self_attn.q_proj
0.045028
4,096
4,096
1
13.196397
-39.407577
1.567217
true
0.001032
dense
-39.116808
-1.344605
-2.986238
64
0.045227
4,096
31
4,032
1
2.190538
0.001032
43.815971
success
0.032128
0
under-trained
4,032
0.001032
0.000695
20
model.layers.2.self_attn.v_proj
0.055929
1,024
4,096
4
12.699136
-39.315057
1.135977
true
0.000802
dense
-39.286448
-1.537234
-3.095884
64
0.029025
1,024
31
960
1
2.101227
0.000802
36.19511
success
0.028318
0.000001
under-trained
960
0.000802
0.000443
21
model.layers.3.mlp.down_proj
0.069587
4,096
14,336
3.5
24.161103
-62.837628
1.568032
true
0.002507
dense
-62.654764
-0.902753
-2.600776
64
0.125097
4,096
63
4,032
1
2.918025
0.002507
49.891129
success
0.050074
0.000001
under-trained
4,032
0.002507
0.001871
22
model.layers.3.mlp.gate_proj
0.108322
4,096
14,336
3.5
5.989237
-14.297708
1.565328
true
0.0041
dense
-14.129423
-0.938871
-2.387234
64
0.115114
4,096
8
4,032
1
1.763962
0.0041
28.077747
success
0.06403
0.000001
4,032
0.0041
0.001855
23
model.layers.3.mlp.up_proj
0.088098
4,096
14,336
3.5
6.218851
-14.741318
1.564996
true
0.004262
dense
-14.595718
-0.926769
-2.370425
64
0.118367
4,096
10
4,032
1
1.650346
0.004262
27.775105
success
0.065281
0.000001
under-trained
4,032
0.004262
0.001882
24
model.layers.3.self_attn.k_proj
0.039784
1,024
4,096
4
9.502453
-29.300807
1.135065
true
0.000825
dense
-29.097352
-1.519796
-3.083499
64
0.030214
1,024
28
960
1
1.606813
0.000825
36.61871
success
0.028724
0.000001
under-trained
960
0.000825
0.000465
25
model.layers.3.self_attn.o_proj
0.03449
4,096
4,096
1
11.703897
-32.998486
1.566898
true
0.001515
dense
-32.790331
-1.21244
-2.819444
64
0.061314
4,096
64
4,032
1
1.337987
0.001515
40.457954
success
0.038929
0
under-trained
4,032
0.001515
0.000868
26
model.layers.3.self_attn.q_proj
0.044331
4,096
4,096
1
9.75992
-29.598527
1.566602
true
0.000928
dense
-29.273948
-1.428317
-3.032661
64
0.037298
4,096
46
4,032
1
1.29158
0.000928
40.210899
success
0.030456
0
under-trained
4,032
0.000928
0.000538
27
model.layers.3.self_attn.v_proj
0.037176
1,024
4,096
4
17.910739
-56.070237
1.136824
true
0.00074
dense
-55.960304
-1.470565
-3.130537
64
0.03384
1,024
25
960
1
3.382148
0.00074
45.705894
success
0.02721
0.000001
under-trained
960
0.00074
0.000533
28
model.layers.4.mlp.down_proj
0.080889
4,096
14,336
3.5
22.294176
-57.197063
1.567888
true
0.002719
dense
-56.910812
-0.881898
-2.565561
64
0.131251
4,096
63
4,032
1
2.682814
0.002719
48.268436
success
0.052146
0.000001
under-trained
4,032
0.002719
0.001954
29
model.layers.4.mlp.gate_proj
0.086992
4,096
14,336
3.5
5.701482
-13.174763
1.564059
true
0.004889
dense
-13.052403
-0.911412
-2.310761
64
0.122628
4,096
10
4,032
1
1.486739
0.004889
25.081268
success
0.069923
0.000001
4,032
0.004889
0.001941
30
model.layers.4.mlp.up_proj
0.085917
4,096
14,336
3.5
5.745872
-13.215527
1.56369
true
0.005012
dense
-13.064761
-0.890269
-2.300004
64
0.128745
4,096
11
4,032
1
1.430934
0.005012
25.68824
success
0.070794
0.000001
4,032
0.005012
0.002069
31
model.layers.4.self_attn.k_proj
0.081884
1,024
4,096
4
14.177225
-42.433407
1.1351
true
0.001016
dense
-42.247339
-1.376714
-2.993069
64
0.042004
1,024
10
960
1
4.167004
0.001016
41.338539
success
0.031876
0.000001
under-trained
960
0.001016
0.000765
32
model.layers.4.self_attn.o_proj
0.041909
4,096
4,096
1
8.999342
-24.947075
1.565933
true
0.00169
dense
-24.706348
-1.208685
-2.7721
64
0.061846
4,096
49
4,032
1
1.142763
0.00169
36.594429
success
0.04111
0
under-trained
4,032
0.00169
0.000873
33
model.layers.4.self_attn.q_proj
0.052784
4,096
4,096
1
9.725256
-28.848369
1.566779
true
0.001081
dense
-28.309011
-1.32605
-2.966335
64
0.047201
4,096
44
4,032
1
1.315382
0.001081
43.680317
success
0.032872
0
under-trained
4,032
0.001081
0.000685
34
model.layers.4.self_attn.v_proj
0.046636
1,024
4,096
4
14.819596
-45.950279
1.136522
true
0.000793
dense
-45.797468
-1.460378
-3.100643
64
0.034644
1,024
25
960
1
2.763919
0.000793
43.678276
success
0.028163
0.000001
under-trained
960
0.000793
0.000545
35
model.layers.5.mlp.down_proj
0.078902
4,096
14,336
3.5
22.152337
-56.400195
1.567959
true
0.002844
dense
-56.248918
-0.862235
-2.546016
64
0.13733
4,096
64
4,032
1
2.644042
0.002844
48.281437
success
0.053333
0.000001
under-trained
4,032
0.002844
0.002043
36
model.layers.5.mlp.gate_proj
0.098271
4,096
14,336
3.5
5.474008
-12.563457
1.564191
true
0.005069
dense
-12.384134
-0.880202
-2.295111
64
0.131764
4,096
9
4,032
1
1.491336
0.005069
25.996128
success
0.071194
0.000001
4,032
0.005069
0.002119
37
model.layers.5.mlp.up_proj
0.093281
4,096
14,336
3.5
5.63767
-12.907683
1.56396
true
0.005134
dense
-12.713778
-0.863864
-2.289542
64
0.136816
4,096
10
4,032
1
1.46656
0.005134
26.648809
success
0.071652
0.000001
4,032
0.005134
0.002233
38
model.layers.5.self_attn.k_proj
0.083045
1,024
4,096
4
14.811831
-44.299109
1.136177
true
0.001021
dense
-44.030285
-1.336815
-2.990792
64
0.046045
1,024
15
960
1
3.566199
0.001021
45.07933
success
0.03196
0.000001
under-trained
960
0.001021
0.000774
39
model.layers.5.self_attn.o_proj
0.025052
4,096
4,096
1
11.793457
-32.892559
1.567067
true
0.001625
dense
-32.748331
-1.186162
-2.789052
64
0.065139
4,096
57
4,032
1
1.429628
0.001625
40.076469
success
0.040316
0
under-trained
4,032
0.001625
0.000933
40
model.layers.5.self_attn.q_proj
0.05413
4,096
4,096
1
12.98071
-38.08368
1.56739
true
0.001164
dense
-37.655263
-1.268225
-2.933867
64
0.053923
4,096
33
4,032
1
2.085574
0.001164
46.306519
success
0.034125
0
under-trained
4,032
0.001164
0.000822
41
model.layers.5.self_attn.v_proj
0.05871
1,024
4,096
4
19.824345
-62.459979
1.13694
true
0.000707
dense
-62.171833
-1.452914
-3.150671
64
0.035244
1,024
20
960
1
4.209251
0.000707
49.860538
success
0.026587
0.000001
under-trained
960
0.000707
0.000566
42
model.layers.6.mlp.down_proj
0.097807
4,096
14,336
3.5
20.600959
-51.765735
1.567756
true
0.003071
dense
-51.572194
-0.845753
-2.512783
64
0.142642
4,096
64
4,032
1
2.45012
0.003071
46.4547
success
0.055413
0.000001
under-trained
4,032
0.003071
0.002113
43
model.layers.6.mlp.gate_proj
0.068414
4,096
14,336
3.5
5.533623
-12.467065
1.563599
true
0.005585
dense
-12.311158
-0.850254
-2.252966
64
0.141171
4,096
12
4,032
1
1.308744
0.005585
25.276239
success
0.074734
0.000001
4,032
0.005585
0.002209
44
model.layers.6.mlp.up_proj
0.076429
4,096
14,336
3.5
5.67715
-12.874706
1.563689
true
0.005397
dense
-12.679234
-0.84128
-2.267811
64
0.144119
4,096
13
4,032
1
1.297208
0.005397
26.701216
success
0.073467
0.000001
4,032
0.005397
0.00227
45
model.layers.6.self_attn.k_proj
0.09852
1,024
4,096
4
8.767472
-26.809819
1.136442
true
0.000875
dense
-25.700285
-1.348075
-3.057873
64
0.044867
1,024
63
960
1
0.978609
0.000875
51.262314
success
0.029584
0.000001
under-trained
960
0.000875
0.000615
46
model.layers.6.self_attn.o_proj
0.040391
4,096
4,096
1
9.963633
-27.33182
1.566175
true
0.001807
dense
-27.155354
-1.181547
-2.743158
64
0.065834
4,096
64
4,032
1
1.120454
0.001807
36.442715
success
0.042503
0
under-trained
4,032
0.001807
0.000912
47
model.layers.6.self_attn.q_proj
0.040589
4,096
4,096
1
12.254351
-35.641948
1.567165
true
0.001234
dense
-35.379423
-1.274873
-2.908514
64
0.053104
4,096
29
4,032
1
2.08988
0.001234
43.017075
success
0.035135
0
under-trained
4,032
0.001234
0.000817
48
model.layers.6.self_attn.v_proj
0.042567
1,024
4,096
4
14.386236
-44.097629
1.136462
true
0.00086
dense
-43.998409
-1.443458
-3.065265
64
0.03602
1,024
25
960
1
2.677247
0.00086
41.860809
success
0.029334
0.000001
under-trained
960
0.00086
0.000564
49
model.layers.7.mlp.down_proj
0.085805
4,096
14,336
3.5
20.775565
-52.011701
1.567809
true
0.003137
dense
-51.827012
-0.830214
-2.503504
64
0.147838
4,096
64
4,032
1
2.471946
0.003137
47.129108
success
0.056008
0.000001
under-trained
4,032
0.003137
0.002191
50
model.layers.7.mlp.gate_proj
0.081984
4,096
14,336
3.5
5.883159
-13.182678
1.563816
true
0.005744
dense
-13.049045
-0.829893
-2.240748
64
0.147947
4,096
12
4,032
1
1.409647
0.005744
25.75465
success
0.075792
0.000001
4,032
0.005744
0.002348
51
model.layers.7.mlp.up_proj
0.057328
4,096
14,336
3.5
6.148233
-13.927992
1.564189
true
0.005428
dense
-13.756112
-0.822357
-2.265365
64
0.150537
4,096
14
4,032
1
1.375923
0.005428
27.733747
success
0.073675
0.000001
under-trained
4,032
0.005428
0.002372
52
model.layers.7.self_attn.k_proj
0.09518
1,024
4,096
4
7.604473
-22.570781
1.135798
true
0.001076
dense
-21.502538
-1.281329
-2.968093
64
0.05232
1,024
58
960
1
0.86721
0.001076
48.614307
success
0.032806
0.000001
under-trained
960
0.001076
0.000709
53
model.layers.7.self_attn.o_proj
0.026661
4,096
4,096
1
11.071689
-30.661835
1.566892
true
0.001701
dense
-30.318646
-1.146771
-2.769391
64
0.071323
4,096
49
4,032
1
1.438813
0.001701
41.939178
success
0.041239
0
under-trained
4,032
0.001701
0.001032
54
model.layers.7.self_attn.q_proj
0.055803
4,096
4,096
1
16.982169
-48.844106
1.567477
true
0.00133
dense
-48.732499
-1.224751
-2.876199
64
0.0596
4,096
16
4,032
1
3.995542
0.00133
44.817566
success
0.036467
0
under-trained
4,032
0.00133
0.000977
55
model.layers.7.self_attn.v_proj
0.081528
1,024
4,096
4
17.819071
-55.523497
1.136963
true
0.000766
dense
-55.024378
-1.40785
-3.115959
64
0.039098
1,024
31
960
1
3.020794
0.000766
51.063366
success
0.027671
0.000001
under-trained
960
0.000766
0.000608
56
model.layers.8.mlp.down_proj
0.061533
4,096
14,336
3.5
21.01559
-51.882457
1.567765
true
0.003398
dense
-51.846039
-0.823899
-2.46876
64
0.150003
4,096
64
4,032
1
2.501949
0.003398
44.143002
success
0.058293
0.000001
under-trained
4,032
0.003398
0.002224
57
model.layers.8.mlp.gate_proj
0.068686
4,096
14,336
3.5
5.448702
-11.997627
1.563144
true
0.006282
dense
-11.855454
-0.813531
-2.201924
64
0.153628
4,096
12
4,032
1
1.28423
0.006282
24.456436
success
0.079257
0.000001
4,032
0.006282
0.002431
58
model.layers.8.mlp.up_proj
0.056817
4,096
14,336
3.5
6.014112
-13.355063
1.563554
true
0.006017
dense
-13.222077
-0.806294
-2.220621
64
0.156209
4,096
15
4,032
1
1.294638
0.006017
25.961346
success
0.077569
0.000001
under-trained
4,032
0.006017
0.002433
59
model.layers.8.self_attn.k_proj
0.088969
1,024
4,096
4
9.859432
-29.38636
1.136428
true
0.001046
dense
-28.462179
-1.284628
-2.980533
64
0.051924
1,024
54
960
1
1.205616
0.001046
49.648315
success
0.03234
0.000001
under-trained
960
0.001046
0.000737
60
model.layers.8.self_attn.o_proj
0.033804
4,096
4,096
1
10.868981
-30.062994
1.566883
true
0.001714
dense
-29.660789
-1.136309
-2.765944
64
0.073062
4,096
64
4,032
1
1.233623
0.001714
42.62207
success
0.041403
0
under-trained
4,032
0.001714
0.001026
61
model.layers.8.self_attn.q_proj
0.030906
4,096
4,096
1
12.153658
-34.439359
1.567197
true
0.001467
dense
-34.210802
-1.207567
-2.833662
64
0.062006
4,096
48
4,032
1
1.609892
0.001467
42.276085
success
0.038297
0
under-trained
4,032
0.001467
0.000906
62
model.layers.8.self_attn.v_proj
0.038532
1,024
4,096
4
13.524507
-40.222681
1.136178
true
0.001062
dense
-40.189634
-1.394706
-2.974059
64
0.040299
1,024
25
960
1
2.504901
0.001062
37.962379
success
0.032581
0.000001
under-trained
960
0.001062
0.000631
63
model.layers.9.mlp.down_proj
0.06213
4,096
14,336
3.5
20.084147
-50.021743
1.567869
true
0.003231
dense
-49.887609
-0.816982
-2.490608
64
0.152411
4,096
64
4,032
1
2.385518
0.003231
47.165665
success
0.056845
0.000001
under-trained
4,032
0.003231
0.002255
64
model.layers.9.mlp.gate_proj
0.069464
4,096
14,336
3.5
5.4589
-11.935915
1.562619
true
0.006509
dense
-11.787865
-0.800629
-2.186505
64
0.15826
4,096
14
4,032
1
1.191691
0.006509
24.315136
success
0.080677
0.000001
4,032
0.006509
0.00247
65
model.layers.9.mlp.up_proj
0.048199
4,096
14,336
3.5
5.901424
-13.009582
1.563118
true
0.006245
dense
-12.85789
-0.791337
-2.204482
64
0.161682
4,096
17
4,032
1
1.18877
0.006245
25.890726
success
0.079024
0.000001
4,032
0.006245
0.002484
66
model.layers.9.self_attn.k_proj
0.108648
1,024
4,096
4
8.484636
-24.745348
1.136499
true
0.001212
dense
-23.627736
-1.206466
-2.916489
64
0.062163
1,024
64
960
1
0.935579
0.001212
51.288914
success
0.034814
0.000001
under-trained
960
0.001212
0.000846
67
model.layers.9.self_attn.o_proj
0.03061
4,096
4,096
1
10.436632
-28.550257
1.566731
true
0.001838
dense
-28.225721
-1.125417
-2.735581
64
0.074917
4,096
54
4,032
1
1.284163
0.001838
40.753433
success
0.042876
0
under-trained
4,032
0.001838
0.001066
68
model.layers.9.self_attn.q_proj
0.052522
4,096
4,096
1
13.246666
-36.376856
1.567171
true
0.001794
dense
-36.314785
-1.151612
-2.746114
64
0.070532
4,096
42
4,032
1
1.889702
0.001794
39.309879
success
0.042359
0
under-trained
4,032
0.001794
0.00105
69
model.layers.9.self_attn.v_proj
0.052762
1,024
4,096
4
14.481143
-43.779659
1.136397
true
0.000948
dense
-43.737233
-1.423086
-3.023218
64
0.03775
1,024
31
960
1
2.421285
0.000948
39.822842
success
0.030789
0.000001
under-trained
960
0.000948
0.000581
70
model.layers.10.mlp.down_proj
0.075484
4,096
14,336
3.5
10.934874
-26.172484
1.567238
true
0.004041
dense
-26.076547
-0.814239
-2.393487
64
0.153377
4,096
13
4,032
1
2.755438
0.004041
37.953167
success
0.063571
0.000001
under-trained
4,032
0.004041
0.002432
71
model.layers.10.mlp.gate_proj
0.072846
4,096
14,336
3.5
4.636268
-9.481178
1.557717
true
0.009016
dense
-9.39916
-0.789586
-2.045002
64
0.162336
4,096
14
4,032
1
0.971834
0.009016
18.005938
success
0.094951
0.000001
4,032
0.009016
0.0025
72
model.layers.10.mlp.up_proj
0.060395
4,096
14,336
3.5
4.955356
-10.359555
1.559506
true
0.008118
dense
-10.251761
-0.78265
-2.090577
64
0.164949
4,096
14
4,032
1
1.057113
0.008118
20.320147
success
0.090097
0.000001
4,032
0.008118
0.002598
73
model.layers.10.self_attn.k_proj
0.094365
1,024
4,096
4
15.683611
-45.501024
1.136444
true
0.001256
dense
-44.901573
-1.20619
-2.901183
64
0.062203
1,024
17
960
1
3.561299
0.001256
49.544209
success
0.035433
0.000001
under-trained
960
0.001256
0.001027
74
model.layers.10.self_attn.o_proj
0.037535
4,096
4,096
1
9.877892
-26.532661
1.565923
true
0.00206
dense
-26.188098
-1.11339
-2.686065
64
0.077021
4,096
62
4,032
1
1.127493
0.00206
37.383114
success
0.045391
0
under-trained
4,032
0.00206
0.001069
75
model.layers.10.self_attn.q_proj
0.037533
4,096
4,096
1
13.054052
-36.288138
1.567345
true
0.00166
dense
-36.072602
-1.143307
-2.779837
64
0.071894
4,096
37
4,032
1
1.981674
0.00166
43.304161
success
0.040746
0
under-trained
4,032
0.00166
0.001081
76
model.layers.10.self_attn.v_proj
0.060372
1,024
4,096
4
14.002535
-42.984731
1.136544
true
0.000852
dense
-42.610043
-1.405518
-3.069782
64
0.039308
1,024
25
960
1
2.600507
0.000852
46.159813
success
0.029182
0.000001
under-trained
960
0.000852
0.000617
77
model.layers.11.mlp.down_proj
0.064006
4,096
14,336
3.5
18.143359
-44.600654
1.567634
true
0.003481
dense
-44.504382
-0.813716
-2.458236
64
0.153562
4,096
64
4,032
1
2.14292
0.003481
44.108185
success
0.059004
0.000001
under-trained
4,032
0.003481
0.002257
78
model.layers.11.mlp.gate_proj
0.061851
4,096
14,336
3.5
4.729063
-9.84292
1.559193
true
0.008291
dense
-9.72596
-0.782129
-2.081368
64
0.165147
4,096
14
4,032
1
0.996634
0.008291
19.917686
success
0.091058
0.000001
4,032
0.008291
0.002583
79
model.layers.11.mlp.up_proj
0.052182
4,096
14,336
3.5
5.172912
-10.963762
1.560651
true
0.007595
dense
-10.834115
-0.775218
-2.119456
64
0.167796
4,096
16
4,032
1
1.043228
0.007595
22.092144
success
0.087151
0.000001
4,032
0.007595
0.002597
80
model.layers.11.self_attn.k_proj
0.097096
1,024
4,096
4
25.593823
-73.865998
1.136346
true
0.0013
dense
-73.555482
-1.187924
-2.886087
64
0.064875
1,024
9
960
1
8.197941
0.0013
49.907162
success
0.036054
0.000001
under-trained
960
0.0013
0.001146
81
model.layers.11.self_attn.o_proj
0.040468
4,096
4,096
1
10.338723
-27.704059
1.566199
true
0.002091
dense
-27.529661
-1.112696
-2.67964
64
0.077144
4,096
64
4,032
1
1.16734
0.002091
36.893032
success
0.045728
0
under-trained
4,032
0.002091
0.001074
82
model.layers.11.self_attn.q_proj
0.0556
4,096
4,096
1
15.688182
-42.828
1.567348
true
0.001862
dense
-42.80471
-1.128807
-2.729953
64
0.074335
4,096
30
4,032
1
2.681683
0.001862
39.91589
success
0.043154
0
under-trained
4,032
0.001862
0.00115
83
model.layers.11.self_attn.v_proj
0.066851
1,024
4,096
4
15.642017
-48.128035
1.136797
true
0.000838
dense
-47.647632
-1.385308
-3.076843
64
0.041181
1,024
29
960
1
2.718954
0.000838
49.151302
success
0.028945
0.000001
under-trained
960
0.000838
0.00064
84
model.layers.12.mlp.down_proj
0.046249
4,096
14,336
3.5
19.143419
-47.722061
1.567887
true
0.003215
dense
-47.515283
-0.808447
-2.49287
64
0.155437
4,096
64
4,032
1
2.267927
0.003215
48.353001
success
0.056698
0.000001
under-trained
4,032
0.003215
0.002294
85
model.layers.12.mlp.gate_proj
0.082356
4,096
14,336
3.5
5.576734
-11.745804
1.560038
true
0.00783
dense
-11.671995
-0.78163
-2.106216
64
0.165337
4,096
24
4,032
1
0.934222
0.00783
21.114716
success
0.08849
0.000001
4,032
0.00783
0.002393
86
model.layers.12.mlp.up_proj
0.067437
4,096
14,336
3.5
5.63354
-12.118184
1.561774
true
0.007062
dense
-11.99408
-0.775037
-2.151078
64
0.167866
4,096
20
4,032
1
1.036091
0.007062
23.770645
success
0.084035
0.000001
4,032
0.007062
0.002511
87
model.layers.12.self_attn.k_proj
0.075255
1,024
4,096
4
7.307717
-20.30396
1.135072
true
0.001666
dense
-19.509019
-1.143765
-2.778427
64
0.071818
1,024
48
960
1
0.910441
0.001666
43.118359
success
0.040812
0.000001
under-trained
960
0.001666
0.000996
88
model.layers.12.self_attn.o_proj
0.037535
4,096
4,096
1
13.204657
-37.122458
1.567481
true
0.001544
dense
-36.591702
-1.13263
-2.811316
64
0.073684
4,096
37
4,032
1
2.006433
0.001544
47.718407
success
0.039295
0
under-trained
4,032
0.001544
0.00111
89
model.layers.12.self_attn.q_proj
0.043548
4,096
4,096
1
14.551028
-39.510564
1.567378
true
0.001926
dense
-39.467633
-1.109314
-2.715311
64
0.077747
4,096
37
4,032
1
2.227775
0.001926
40.364216
success
0.043888
0
under-trained
4,032
0.001926
0.001177
90
model.layers.12.self_attn.v_proj
0.058039
1,024
4,096
4
18.939154
-58.92721
1.136923
true
0.000774
dense
-58.459355
-1.403804
-3.111396
64
0.039464
1,024
22
960
1
3.824641
0.000774
51.002598
success
0.027816
0.000001
under-trained
960
0.000774
0.00063
91
model.layers.13.mlp.down_proj
0.079269
4,096
14,336
3.5
9.616183
-22.950278
1.567183
true
0.004106
dense
-22.740849
-0.797377
-2.386631
64
0.159449
4,096
11
4,032
1
2.597877
0.004106
38.837742
success
0.064074
0.000001
under-trained
4,032
0.004106
0.002567
92
model.layers.13.mlp.gate_proj
0.079731
4,096
14,336
3.5
4.984892
-10.360039
1.55877
true
0.008351
dense
-10.255785
-0.773513
-2.078287
64
0.168456
4,096
20
4,032
1
0.891049
0.008351
20.173187
success
0.091381
0.000001
4,032
0.008351
0.002494
93
model.layers.13.mlp.up_proj
0.072429
4,096
14,336
3.5
5.011493
-10.601177
1.560401
true
0.007667
dense
-10.445835
-0.767323
-2.115373
64
0.170874
4,096
17
4,032
1
0.97293
0.007667
22.286915
success
0.087562
0.000001
4,032
0.007667
0.002607
94
model.layers.13.self_attn.k_proj
0.085804
1,024
4,096
4
10.917614
-31.714969
1.13663
true
0.001245
dense
-30.802451
-1.199312
-2.904936
64
0.063196
1,024
50
960
1
1.402562
0.001245
50.771942
success
0.03528
0.000001
under-trained
960
0.001245
0.000914
95
model.layers.13.self_attn.o_proj
0.038864
4,096
4,096
1
10.873859
-29.532194
1.566954
true
0.001924
dense
-29.111348
-1.083524
-2.715889
64
0.082504
4,096
52
4,032
1
1.369258
0.001924
42.890877
success
0.043859
0
under-trained
4,032
0.001924
0.001184
96
model.layers.13.self_attn.q_proj
0.044763
4,096
4,096
1
12.123026
-32.701739
1.567134
true
0.002007
dense
-32.617086
-1.106532
-2.69749
64
0.078247
4,096
55
4,032
1
1.499829
0.002007
38.99041
success
0.044798
0
under-trained
4,032
0.002007
0.001128
97
model.layers.13.self_attn.v_proj
0.067765
1,024
4,096
4
20.641453
-63.667613
1.136971
true
0.000823
dense
-63.173656
-1.36992
-3.084454
64
0.042666
1,024
18
960
1
4.629535
0.000823
51.824352
success
0.028693
0.000001
under-trained
960
0.000823
0.00069
98
model.layers.14.mlp.down_proj
0.079255
4,096
14,336
3.5
11.89016
-29.105109
1.567366
true
0.003566
dense
-28.577562
-0.787616
-2.447832
64
0.163074
4,096
23
4,032
1
2.270755
0.003566
45.731548
success
0.059715
0.000001
under-trained
4,032
0.003566
0.002507
99
model.layers.14.mlp.gate_proj
0.063937
4,096
14,336
3.5
4.882276
-10.067112
1.558951
true
0.00867
dense
-9.97402
-0.76949
-2.061971
64
0.170024
4,096
15
4,032
1
1.002399
0.00867
19.610151
success
0.093114
0.000001
4,032
0.00867
0.002664