filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_17215
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Yahoo! Finance market data downloader (+fix for Pandas Datareader) # https://github.com/ranaroussi/yfinance # # Copyright 2017-2019 Ran Aroussi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import time as _time import datetime as _datetime import requests as _requests import pandas as _pd import numpy as _np from . import utils # import json as _json # import re as _re # import sys as _sys from . import shared class TickerBase(): def __init__(self, ticker): self.ticker = ticker.upper() self._history = None self._base_url = 'https://query1.finance.yahoo.com' self._scrape_url = 'https://finance.yahoo.com/quote' self._fundamentals = False self._info = None self._sustainability = None self._recommendations = None self._major_holders = None self._institutional_holders = None self._calendar = None self._expirations = {} self._earnings = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._financials = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._balancesheet = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._cashflow = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} def history(self, period="1mo", interval="1d", start=None, end=None, prepost=False, actions=True, auto_adjust=True, back_adjust=False, proxy=None, rounding=True, tz=None, **kwargs): """ :Parameters: period : str Valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max Either Use period parameter or use start and end interval : str Valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo Intraday data cannot extend last 60 days start: str Download start date string (YYYY-MM-DD) or _datetime. Default is 1900-01-01 end: str Download end date string (YYYY-MM-DD) or _datetime. Default is now prepost : bool Include Pre and Post market data in results? Default is False auto_adjust: bool Adjust all OHLC automatically? Default is True back_adjust: bool Back-adjusted data to mimic true historical prices proxy: str Optional. Proxy server URL scheme. Default is None rounding: bool Round values to 2 decimal places? Optional. Default is False = precision suggested by Yahoo! tz: str Optional timezone locale for dates. (default data is returned as non-localized dates) **kwargs: dict debug: bool Optional. If passed as False, will suppress error message printing to console. """ if start or period is None or period.lower() == "max": if start is None: start = -2208988800 elif isinstance(start, _datetime.datetime): start = int(_time.mktime(start.timetuple())) else: start = int(_time.mktime( _time.strptime(str(start), '%Y-%m-%d'))) if end is None: end = int(_time.time()) elif isinstance(end, _datetime.datetime): end = int(_time.mktime(end.timetuple())) else: end = int(_time.mktime(_time.strptime(str(end), '%Y-%m-%d'))) params = {"period1": start, "period2": end} else: period = period.lower() params = {"range": period} params["interval"] = interval.lower() params["includePrePost"] = prepost params["events"] = "div,splits" # 1) fix weired bug with Yahoo! - returning 60m for 30m bars if params["interval"] == "30m": params["interval"] = "15m" # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} # Getting data from json url = "{}/v8/finance/chart/{}".format(self._base_url, self.ticker) data = _requests.get(url=url, params=params, proxies=proxy) if "Will be right back" in data.text: raise RuntimeError("*** YAHOO! FINANCE IS CURRENTLY DOWN! ***\n" "Our engineers are working quickly to resolve " "the issue. Thank you for your patience.") data = data.json() # Work with errors debug_mode = True if "debug" in kwargs and isinstance(kwargs["debug"], bool): debug_mode = kwargs["debug"] err_msg = "No data found for this date range, symbol may be delisted" if "chart" in data and data["chart"]["error"]: err_msg = data["chart"]["error"]["description"] shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] elif "chart" not in data or data["chart"]["result"] is None or \ not data["chart"]["result"]: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # parse quotes try: quotes = utils.parse_quotes(data["chart"]["result"][0], tz) except Exception: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # 2) fix weired bug with Yahoo! - returning 60m for 30m bars if interval.lower() == "30m": quotes2 = quotes.resample('30T') quotes = _pd.DataFrame(index=quotes2.last().index, data={ 'Open': quotes2['Open'].first(), 'High': quotes2['High'].max(), 'Low': quotes2['Low'].min(), 'Close': quotes2['Close'].last(), 'Adj Close': quotes2['Adj Close'].last(), 'Volume': quotes2['Volume'].sum() }) try: quotes['Dividends'] = quotes2['Dividends'].max() except Exception: pass try: quotes['Stock Splits'] = quotes2['Dividends'].max() except Exception: pass if auto_adjust: quotes = utils.auto_adjust(quotes) elif back_adjust: quotes = utils.back_adjust(quotes) if rounding: quotes = _np.round(quotes, data[ "chart"]["result"][0]["meta"]["priceHint"]) quotes['Volume'] = quotes['Volume'].fillna(0).astype(_np.int64) quotes.dropna(inplace=True) # actions dividends, splits = utils.parse_actions(data["chart"]["result"][0], tz) # combine df = _pd.concat([quotes, dividends, splits], axis=1, sort=True) df["Dividends"].fillna(0, inplace=True) df["Stock Splits"].fillna(0, inplace=True) # index eod/intraday df.index = df.index.tz_localize("UTC").tz_convert( data["chart"]["result"][0]["meta"]["exchangeTimezoneName"]) if params["interval"][-1] == "m": df.index.name = "Datetime" else: df.index = _pd.to_datetime(df.index.date) if tz is not None: df.index = df.index.tz_localize(tz) df.index.name = "Date" self._history = df.copy() if not actions: df.drop(columns=["Dividends", "Stock Splits"], inplace=True) return df # ------------------------ def _get_fundamentals(self, kind=None, proxy=None): def cleanup(data): df = _pd.DataFrame(data).drop(columns=['maxAge']) for col in df.columns: df[col] = _np.where( df[col].astype(str) == '-', _np.nan, df[col]) df.set_index('endDate', inplace=True) try: df.index = _pd.to_datetime(df.index, unit='s') except ValueError: df.index = _pd.to_datetime(df.index) df = df.T df.columns.name = '' df.index.name = 'Breakdown' df.index = utils.camel2title(df.index) return df # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} if self._fundamentals: return # get info and sustainability url = '%s/%s' % (self._scrape_url, self.ticker) data = utils.get_json(url, proxy) # holders holders = _pd.read_html('https://finance.yahoo.com/quote/MSFT/holders') self._major_holders = holders[0] self._institutional_holders = holders[1] self._institutional_holders['Date Reported'] = _pd.to_datetime( self._institutional_holders['Date Reported']) self._institutional_holders['% Out'] = self._institutional_holders[ '% Out'].str.replace('%', '').astype(float)/100 # sustainability d = {} if isinstance(data.get('esgScores'), dict): for item in data['esgScores']: if not isinstance(data['esgScores'][item], (dict, list)): d[item] = data['esgScores'][item] s = _pd.DataFrame(index=[0], data=d)[-1:].T s.columns = ['Value'] s.index.name = '%.f-%.f' % ( s[s.index == 'ratingYear']['Value'].values[0], s[s.index == 'ratingMonth']['Value'].values[0]) self._sustainability = s[~s.index.isin( ['maxAge', 'ratingYear', 'ratingMonth'])] # info (be nice to python 2) self._info = {} items = ['summaryProfile', 'summaryDetail', 'quoteType', 'defaultKeyStatistics', 'assetProfile', 'summaryDetail'] for item in items: if isinstance(data.get(item), dict): self._info.update(data[item]) self._info['regularMarketPrice'] = self._info['regularMarketOpen'] self._info['logo_url'] = "" try: domain = self._info['website'].split( '://')[1].split('/')[0].replace('www.', '') self._info['logo_url'] = 'https://logo.clearbit.com/%s' % domain except Exception: pass # events try: cal = _pd.DataFrame( data['calendarEvents']['earnings']) cal['earningsDate'] = _pd.to_datetime( cal['earningsDate'], unit='s') self._calendar = cal.T self._calendar.index = utils.camel2title(self._calendar.index) self._calendar.columns = ['Value'] except Exception: pass # analyst recommendations try: rec = _pd.DataFrame( data['upgradeDowngradeHistory']['history']) rec['earningsDate'] = _pd.to_datetime( rec['epochGradeDate'], unit='s') rec.set_index('earningsDate', inplace=True) rec.index.name = 'Date' rec.columns = utils.camel2title(rec.columns) self._recommendations = rec[[ 'Firm', 'To Grade', 'From Grade', 'Action']].sort_index() except Exception: pass # get fundamentals data = utils.get_json(url+'/financials', proxy) # generic patterns for key in ( (self._cashflow, 'cashflowStatement', 'cashflowStatements'), (self._balancesheet, 'balanceSheet', 'balanceSheetStatements'), (self._financials, 'incomeStatement', 'incomeStatementHistory') ): item = key[1] + 'History' if isinstance(data.get(item), dict): key[0]['yearly'] = cleanup(data[item][key[2]]) item = key[1]+'HistoryQuarterly' if isinstance(data.get(item), dict): key[0]['quarterly'] = cleanup(data[item][key[2]]) # earnings if isinstance(data.get('earnings'), dict): earnings = data['earnings']['financialsChart'] df = _pd.DataFrame(earnings['yearly']).set_index('date') df.columns = utils.camel2title(df.columns) df.index.name = 'Year' self._earnings['yearly'] = df df = _pd.DataFrame(earnings['quarterly']).set_index('date') df.columns = utils.camel2title(df.columns) df.index.name = 'Quarter' self._earnings['quarterly'] = df self._fundamentals = True def get_recommendations(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._recommendations if as_dict: return data.to_dict() return data def get_calendar(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._calendar if as_dict: return data.to_dict() return data def get_major_holders(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._major_holders if as_dict: return data.to_dict() return data def get_institutional_holders(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._institutional_holders if as_dict: return data.to_dict() return data def get_info(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._info if as_dict: return data.to_dict() return data def get_sustainability(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._sustainability if as_dict: return data.to_dict() return data def get_earnings(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._earnings[freq] if as_dict: return data.to_dict() return data def get_financials(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._financials[freq] if as_dict: return data.to_dict() return data def get_balancesheet(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._balancesheet[freq] if as_dict: return data.to_dict() return data def get_balance_sheet(self, proxy=None, as_dict=False, freq="yearly"): return self.get_balancesheet(proxy, as_dict, freq) def get_cashflow(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._cashflow[freq] if as_dict: return data.to_dict() return data def get_dividends(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) dividends = self._history["Dividends"] return dividends[dividends != 0] def get_splits(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) splits = self._history["Stock Splits"] return splits[splits != 0] def get_actions(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) actions = self._history[["Dividends", "Stock Splits"]] return actions[actions != 0].dropna(how='all').fillna(0)
the-stack_0_17216
# Copyright (c) 2016-2021 The Regents of the University of Michigan # This file is part of the General Simulation Data (GSD) project, released under # the BSD 2-Clause License. """Read and write HOOMD schema GSD files. The main package :py:mod:`gsd.hoomd` is a reference implementation of the GSD schema ``hoomd``. It is a simple, but high performance and memory efficient, reader and writer for the schema. See :ref:`hoomd-examples` for full examples. * `open` - Open a hoomd schema GSD file. * `HOOMDTrajectory` - Read and write hoomd schema GSD files. * `Snapshot` - Store the state of a single frame. * `ConfigurationData` - Store configuration data in a snapshot. * `ParticleData` - Store particle data in a snapshot. * `BondData` - Store topology data in a snapshot. """ import numpy from collections import OrderedDict import logging import json try: from gsd import fl except ImportError: fl = None try: import gsd except ImportError: gsd = None logger = logging.getLogger('gsd.hoomd') class ConfigurationData(object): """Store configuration data. Use the `Snapshot.configuration` attribute of a to access the configuration. Attributes: step (int): Time step of this frame (:chunk:`configuration/step`). dimensions (int): Number of dimensions (:chunk:`configuration/dimensions`). When not set explicitly, dimensions will default to different values based on the value of :math:`L_z` in `box`. When :math:`L_z = 0` dimensions will default to 2, otherwise 3. User set values always take precedence. """ _default_value = OrderedDict() _default_value['step'] = numpy.uint64(0) _default_value['dimensions'] = numpy.uint8(3) _default_value['box'] = numpy.array([1, 1, 1, 0, 0, 0], dtype=numpy.float32) def __init__(self): self.step = None self.dimensions = None self._box = None @property def box(self): """((6, 1) `numpy.ndarray` of ``numpy.float32``): Box dimensions \ (:chunk:`configuration/box`). [lx, ly, lz, xy, xz, yz]. """ return self._box @box.setter def box(self, box): self._box = box try: Lz = box[2] except TypeError: return else: if self.dimensions is None: self.dimensions = 2 if Lz == 0 else 3 def validate(self): """Validate all attributes. Convert every array attribute to a `numpy.ndarray` of the proper type and check that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ConfigurationData') if self.box is not None: self.box = numpy.ascontiguousarray(self.box, dtype=numpy.float32) self.box = self.box.reshape([6]) class ParticleData(object): """Store particle data chunks. Use the `Snapshot.particles` attribute of a to access the particles. Instances resulting from file read operations will always store array quantities in `numpy.ndarray` objects of the defined types. User created snapshots may provide input data that can be converted to a `numpy.ndarray`. Attributes: N (int): Number of particles in the snapshot (:chunk:`particles/N`). types (`typing.List` [str]): Names of the particle types (:chunk:`particles/types`). position ((*N*, 3) `numpy.ndarray` of ``numpy.float32``): Particle position (:chunk:`particles/position`). orientation ((*N*, 4) `numpy.ndarray` of ``numpy.float32``): Particle orientation. (:chunk:`particles/orientation`). typeid ((*N*, ) `numpy.ndarray` of ``numpy.uint32``): Particle type id (:chunk:`particles/typeid`). mass ((*N*, ) `numpy.ndarray` of ``numpy.float32``): Particle mass (:chunk:`particles/mass`). charge ((*N*, ) `numpy.ndarray` of ``numpy.float32``): Particle charge (:chunk:`particles/charge`). diameter ((*N*, ) `numpy.ndarray` of ``numpy.float32``): Particle diameter (:chunk:`particles/diameter`). body ((*N*, ) `numpy.ndarray` of ``numpy.int32``): Particle body (:chunk:`particles/body`). moment_inertia ((*N*, 3) `numpy.ndarray` of ``numpy.float32``): Particle moment of inertia (:chunk:`particles/moment_inertia`). velocity ((*N*, 3) `numpy.ndarray` of ``numpy.float32``): Particle velocity (:chunk:`particles/velocity`). angmom ((*N*, 4) `numpy.ndarray` of ``numpy.float32``): Particle angular momentum (:chunk:`particles/angmom`). image ((*N*, 3) `numpy.ndarray` of ``numpy.int32``): Particle image (:chunk:`particles/image`). type_shapes (`typing.List` [`typing.Dict`]): Shape specifications for visualizing particle types (:chunk:`particles/type_shapes`). """ _default_value = OrderedDict() _default_value['N'] = numpy.uint32(0) _default_value['types'] = ['A'] _default_value['typeid'] = numpy.uint32(0) _default_value['mass'] = numpy.float32(1.0) _default_value['charge'] = numpy.float32(0) _default_value['diameter'] = numpy.float32(1.0) _default_value['body'] = numpy.int32(-1) _default_value['moment_inertia'] = numpy.array([0, 0, 0], dtype=numpy.float32) _default_value['position'] = numpy.array([0, 0, 0], dtype=numpy.float32) _default_value['orientation'] = numpy.array([1, 0, 0, 0], dtype=numpy.float32) _default_value['velocity'] = numpy.array([0, 0, 0], dtype=numpy.float32) _default_value['angmom'] = numpy.array([0, 0, 0, 0], dtype=numpy.float32) _default_value['image'] = numpy.array([0, 0, 0], dtype=numpy.int32) _default_value['type_shapes'] = [{}] def __init__(self): self.N = 0 self.position = None self.orientation = None self.types = None self.typeid = None self.mass = None self.charge = None self.diameter = None self.body = None self.moment_inertia = None self.velocity = None self.angmom = None self.image = None self.type_shapes = None def validate(self): """Validate all attributes. Convert every array attribute to a `numpy.ndarray` of the proper type and check that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ParticleData') if self.position is not None: self.position = numpy.ascontiguousarray(self.position, dtype=numpy.float32) self.position = self.position.reshape([self.N, 3]) if self.orientation is not None: self.orientation = numpy.ascontiguousarray(self.orientation, dtype=numpy.float32) self.orientation = self.orientation.reshape([self.N, 4]) if self.typeid is not None: self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32) self.typeid = self.typeid.reshape([self.N]) if self.mass is not None: self.mass = numpy.ascontiguousarray(self.mass, dtype=numpy.float32) self.mass = self.mass.reshape([self.N]) if self.charge is not None: self.charge = numpy.ascontiguousarray(self.charge, dtype=numpy.float32) self.charge = self.charge.reshape([self.N]) if self.diameter is not None: self.diameter = numpy.ascontiguousarray(self.diameter, dtype=numpy.float32) self.diameter = self.diameter.reshape([self.N]) if self.body is not None: self.body = numpy.ascontiguousarray(self.body, dtype=numpy.int32) self.body = self.body.reshape([self.N]) if self.moment_inertia is not None: self.moment_inertia = numpy.ascontiguousarray(self.moment_inertia, dtype=numpy.float32) self.moment_inertia = self.moment_inertia.reshape([self.N, 3]) if self.velocity is not None: self.velocity = numpy.ascontiguousarray(self.velocity, dtype=numpy.float32) self.velocity = self.velocity.reshape([self.N, 3]) if self.angmom is not None: self.angmom = numpy.ascontiguousarray(self.angmom, dtype=numpy.float32) self.angmom = self.angmom.reshape([self.N, 4]) if self.image is not None: self.image = numpy.ascontiguousarray(self.image, dtype=numpy.int32) self.image = self.image.reshape([self.N, 3]) class BondData(object): """Store bond data chunks. Use the `Snapshot.bonds`, `Snapshot.angles`, `Snapshot.dihedrals`, `Snapshot.impropers`, and `Snapshot.pairs` attributes to access the bonds. Instances resulting from file read operations will always store array quantities in `numpy.ndarray` objects of the defined types. User created snapshots may provide input data that can be converted to a `numpy.ndarray`. Note: *M* varies depending on the type of bond. `BondData` represents all types of bonds. ======== === Type *M* ======== === Bond 2 Angle 3 Dihedral 4 Improper 4 Pair 2 ======== === Attributes: N (int): Number of particles in the snapshot (:chunk:`bonds/N`, :chunk:`angles/N`, :chunk:`dihedrals/N`, :chunk:`impropers/N`, :chunk:`pairs/N`). types (`typing.List` [str]): Names of the particle types (:chunk:`bonds/types`, :chunk:`angles/types`, :chunk:`dihedrals/types`, :chunk:`impropers/types`, :chunk:`pairs/types`). typeid ((*N*, 3) `numpy.ndarray` of ``numpy.uint32``): Bond type id (:chunk:`bonds/typeid`, :chunk:`angles/typeid`, :chunk:`dihedrals/typeid`, :chunk:`impropers/typeid`, :chunk:`pairs/types`). group ((*N*, *M*) `numpy.ndarray` of ``numpy.uint32``): Tags of the particles in the bond (:chunk:`bonds/group`, :chunk:`angles/group`, :chunk:`dihedrals/group`, :chunk:`impropers/group`, :chunk:`pairs/group`). """ def __init__(self, M): self.M = M self.N = 0 self.types = None self.typeid = None self.group = None self._default_value = OrderedDict() self._default_value['N'] = numpy.uint32(0) self._default_value['types'] = [] self._default_value['typeid'] = numpy.uint32(0) self._default_value['group'] = numpy.array([0] * M, dtype=numpy.int32) def validate(self): """Validate all attributes. Convert every array attribute to a `numpy.ndarray` of the proper type and check that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating BondData') if self.typeid is not None: self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32) self.typeid = self.typeid.reshape([self.N]) if self.group is not None: self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32) self.group = self.group.reshape([self.N, self.M]) class ConstraintData(object): """Store constraint data chunks. Use the `Snapshot.constraints` attribute to access the constraints. Instances resulting from file read operations will always store array quantities in `numpy.ndarray` objects of the defined types. User created snapshots may provide input data that can be converted to a `numpy.ndarray`. Attributes: N (int): Number of particles in the snapshot (:chunk:`constraints/N`). value ((*N*, ) `numpy.ndarray` of ``numpy.float32``): Constraint length (:chunk:`constraints/value`). group ((*N*, *2*) `numpy.ndarray` of ``numpy.uint32``): Tags of the particles in the constraint (:chunk:`constraints/group`). """ def __init__(self): self.M = 2 self.N = 0 self.value = None self.group = None self._default_value = OrderedDict() self._default_value['N'] = numpy.uint32(0) self._default_value['value'] = numpy.float32(0) self._default_value['group'] = numpy.array([0] * self.M, dtype=numpy.int32) def validate(self): """Validate all attributes. Convert every array attribute to a `numpy.ndarray` of the proper type and check that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ConstraintData') if self.value is not None: self.value = numpy.ascontiguousarray(self.value, dtype=numpy.float32) self.value = self.value.reshape([self.N]) if self.group is not None: self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32) self.group = self.group.reshape([self.N, self.M]) class Snapshot(object): """Snapshot of a system state. Attributes: configuration (`ConfigurationData`): Configuration data. particles (`ParticleData`): Particles. bonds (`BondData`): Bonds. angles (`BondData`): Angles. dihedrals (`BondData`): Dihedrals. impropers (`BondData`): Impropers. pairs (`BondData`): Special pair. constraints (`ConstraintData`): Distance constraints. state (typing.Dict): State data. log (typing.Dict): Logged data (values must be `numpy.ndarray` or `array_like`) """ def __init__(self): self.configuration = ConfigurationData() self.particles = ParticleData() self.bonds = BondData(2) self.angles = BondData(3) self.dihedrals = BondData(4) self.impropers = BondData(4) self.constraints = ConstraintData() self.pairs = BondData(2) self.state = {} self.log = {} self._valid_state = [ 'hpmc/integrate/d', 'hpmc/integrate/a', 'hpmc/sphere/radius', 'hpmc/sphere/orientable', 'hpmc/ellipsoid/a', 'hpmc/ellipsoid/b', 'hpmc/ellipsoid/c', 'hpmc/convex_polyhedron/N', 'hpmc/convex_polyhedron/vertices', 'hpmc/convex_spheropolyhedron/N', 'hpmc/convex_spheropolyhedron/vertices', 'hpmc/convex_spheropolyhedron/sweep_radius', 'hpmc/convex_polygon/N', 'hpmc/convex_polygon/vertices', 'hpmc/convex_spheropolygon/N', 'hpmc/convex_spheropolygon/vertices', 'hpmc/convex_spheropolygon/sweep_radius', 'hpmc/simple_polygon/N', 'hpmc/simple_polygon/vertices', ] def validate(self): """Validate all contained snapshot data.""" logger.debug('Validating Snapshot') self.configuration.validate() self.particles.validate() self.bonds.validate() self.angles.validate() self.dihedrals.validate() self.impropers.validate() self.constraints.validate() self.pairs.validate() # validate HPMC state if self.particles.types is not None: NT = len(self.particles.types) else: NT = 1 if 'hpmc/integrate/d' in self.state: self.state['hpmc/integrate/d'] = \ numpy.ascontiguousarray(self.state['hpmc/integrate/d'], dtype=numpy.float64) self.state['hpmc/integrate/d'] = \ self.state['hpmc/integrate/d'].reshape([1]) if 'hpmc/integrate/a' in self.state: self.state['hpmc/integrate/a'] = \ numpy.ascontiguousarray(self.state['hpmc/integrate/a'], dtype=numpy.float64) self.state['hpmc/integrate/a'] = \ self.state['hpmc/integrate/a'].reshape([1]) if 'hpmc/sphere/radius' in self.state: self.state['hpmc/sphere/radius'] = \ numpy.ascontiguousarray(self.state['hpmc/sphere/radius'], dtype=numpy.float32) self.state['hpmc/sphere/radius'] = \ self.state['hpmc/sphere/radius'].reshape([NT]) if 'hpmc/sphere/orientable' in self.state: self.state['hpmc/sphere/orientable'] = \ numpy.ascontiguousarray(self.state['hpmc/sphere/orientable'], dtype=numpy.uint8) self.state['hpmc/sphere/orientable'] = \ self.state['hpmc/sphere/orientable'].reshape([NT]) if 'hpmc/ellipsoid/a' in self.state: self.state['hpmc/ellipsoid/a'] = \ numpy.ascontiguousarray(self.state['hpmc/ellipsoid/a'], dtype=numpy.float32) self.state['hpmc/ellipsoid/a'] = \ self.state['hpmc/ellipsoid/a'].reshape([NT]) self.state['hpmc/ellipsoid/b'] = \ numpy.ascontiguousarray(self.state['hpmc/ellipsoid/b'], dtype=numpy.float32) self.state['hpmc/ellipsoid/b'] = \ self.state['hpmc/ellipsoid/b'].reshape([NT]) self.state['hpmc/ellipsoid/c'] = \ numpy.ascontiguousarray(self.state['hpmc/ellipsoid/c'], dtype=numpy.float32) self.state['hpmc/ellipsoid/c'] = \ self.state['hpmc/ellipsoid/c'].reshape([NT]) if 'hpmc/convex_polyhedron/N' in self.state: self.state['hpmc/convex_polyhedron/N'] = \ numpy.ascontiguousarray(self.state['hpmc/convex_polyhedron/N'], dtype=numpy.uint32) self.state['hpmc/convex_polyhedron/N'] = \ self.state['hpmc/convex_polyhedron/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_polyhedron/N']) self.state['hpmc/convex_polyhedron/vertices'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_polyhedron/vertices'], dtype=numpy.float32) self.state['hpmc/convex_polyhedron/vertices'] = \ self.state['hpmc/convex_polyhedron/vertices'].reshape([sumN, 3]) if 'hpmc/convex_spheropolyhedron/N' in self.state: self.state['hpmc/convex_spheropolyhedron/N'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolyhedron/N'], dtype=numpy.uint32) self.state['hpmc/convex_spheropolyhedron/N'] = \ self.state['hpmc/convex_spheropolyhedron/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_spheropolyhedron/N']) self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolyhedron/sweep_radius'], dtype=numpy.float32) self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = \ self.state[ 'hpmc/convex_spheropolyhedron/sweep_radius'].reshape([NT]) self.state['hpmc/convex_spheropolyhedron/vertices'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolyhedron/vertices'], dtype=numpy.float32) self.state['hpmc/convex_spheropolyhedron/vertices'] = \ self.state[ 'hpmc/convex_spheropolyhedron/vertices'].reshape([sumN, 3]) if 'hpmc/convex_polygon/N' in self.state: self.state['hpmc/convex_polygon/N'] = \ numpy.ascontiguousarray(self.state['hpmc/convex_polygon/N'], dtype=numpy.uint32) self.state['hpmc/convex_polygon/N'] = \ self.state['hpmc/convex_polygon/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_polygon/N']) self.state['hpmc/convex_polygon/vertices'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_polygon/vertices'], dtype=numpy.float32) self.state['hpmc/convex_polygon/vertices'] = \ self.state['hpmc/convex_polygon/vertices'].reshape([sumN, 2]) if 'hpmc/convex_spheropolygon/N' in self.state: self.state['hpmc/convex_spheropolygon/N'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolygon/N'], dtype=numpy.uint32) self.state['hpmc/convex_spheropolygon/N'] = \ self.state['hpmc/convex_spheropolygon/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_spheropolygon/N']) self.state['hpmc/convex_spheropolygon/sweep_radius'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolygon/sweep_radius'], dtype=numpy.float32) self.state['hpmc/convex_spheropolygon/sweep_radius'] = \ self.state[ 'hpmc/convex_spheropolygon/sweep_radius'].reshape([NT]) self.state['hpmc/convex_spheropolygon/vertices'] = \ numpy.ascontiguousarray( self.state['hpmc/convex_spheropolygon/vertices'], dtype=numpy.float32) self.state['hpmc/convex_spheropolygon/vertices'] = \ self.state[ 'hpmc/convex_spheropolygon/vertices'].reshape([sumN, 2]) if 'hpmc/simple_polygon/N' in self.state: self.state['hpmc/simple_polygon/N'] = \ numpy.ascontiguousarray(self.state['hpmc/simple_polygon/N'], dtype=numpy.uint32) self.state['hpmc/simple_polygon/N'] = \ self.state['hpmc/simple_polygon/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/simple_polygon/N']) self.state['hpmc/simple_polygon/vertices'] = \ numpy.ascontiguousarray( self.state['hpmc/simple_polygon/vertices'], dtype=numpy.float32) self.state['hpmc/simple_polygon/vertices'] = \ self.state[ 'hpmc/simple_polygon/vertices'].reshape([sumN, 2]) for k in self.state: if k not in self._valid_state: raise RuntimeError('Not a valid state: ' + k) class _HOOMDTrajectoryIterable(object): """Iterable over a HOOMDTrajectory object.""" def __init__(self, trajectory, indices): self._trajectory = trajectory self._indices = indices self._indices_iterator = iter(indices) def __next__(self): return self._trajectory[next(self._indices_iterator)] next = __next__ # Python 2.7 compatibility def __iter__(self): return type(self)(self._trajectory, self._indices) def __len__(self): return len(self._indices) class _HOOMDTrajectoryView(object): """A view of a HOOMDTrajectory object. Enables the slicing and iteration over a subset of a trajectory instance. """ def __init__(self, trajectory, indices): self._trajectory = trajectory self._indices = indices def __iter__(self): return _HOOMDTrajectoryIterable(self._trajectory, self._indices) def __len__(self): return len(self._indices) def __getitem__(self, key): if isinstance(key, slice): return type(self)(self._trajectory, self._indices[key]) else: return self._trajectory[self._indices[key]] class HOOMDTrajectory(object): """Read and write hoomd gsd files. Args: file (`gsd.fl.GSDFile`): File to access. Open hoomd GSD files with `open`. """ def __init__(self, file): if file.mode == 'ab': raise ValueError('Append mode not yet supported') self._file = file self._initial_frame = None logger.info('opening HOOMDTrajectory: ' + str(self.file)) if self.file.schema != 'hoomd': raise RuntimeError('GSD file is not a hoomd schema file: ' + str(self.file)) valid = False version = self.file.schema_version if (version < (2, 0) and version >= (1, 0)): valid = True if not valid: raise RuntimeError('Incompatible hoomd schema version ' + str(version) + ' in: ' + str(self.file)) logger.info('found ' + str(len(self)) + ' frames') @property def file(self): """:class:`gsd.fl.GSDFile`: The underlying file handle.""" return self._file def __len__(self): """The number of frames in the trajectory.""" return self.file.nframes def append(self, snapshot): """Append a snapshot to a hoomd gsd file. Args: snapshot (:py:class:`Snapshot`): Snapshot to append. Write the given snapshot to the file at the current frame and increase the frame counter. Do not write any fields that are ``None``. For all non-``None`` fields, scan them and see if they match the initial frame or the default value. If the given data differs, write it out to the frame. If it is the same, do not write it out as it can be instantiated either from the value at the initial frame or the default value. """ logger.debug('Appending snapshot to hoomd trajectory: ' + str(self.file)) snapshot.validate() # want the initial frame specified as a reference to detect if chunks # need to be written if self._initial_frame is None and len(self) > 0: self.read_frame(0) for path in [ 'configuration', 'particles', 'bonds', 'angles', 'dihedrals', 'impropers', 'constraints', 'pairs', ]: container = getattr(snapshot, path) for name in container._default_value: if self._should_write(path, name, snapshot): logger.debug('writing data chunk: ' + path + '/' + name) data = getattr(container, name) if name == 'N': data = numpy.array([data], dtype=numpy.uint32) if name == 'step': data = numpy.array([data], dtype=numpy.uint64) if name == 'dimensions': data = numpy.array([data], dtype=numpy.uint8) if name in ('types', 'type_shapes'): if name == 'type_shapes': data = [ json.dumps(shape_dict) for shape_dict in data ] wid = max(len(w) for w in data) + 1 b = numpy.array(data, dtype=numpy.dtype((bytes, wid))) data = b.view(dtype=numpy.int8).reshape(len(b), wid) self.file.write_chunk(path + '/' + name, data) # write state data for state, data in snapshot.state.items(): self.file.write_chunk('state/' + state, data) # write log data for log, data in snapshot.log.items(): self.file.write_chunk('log/' + log, data) self.file.end_frame() def truncate(self): """Remove all frames from the file.""" self.file.truncate() self._initial_frame = None def close(self): """Close the file.""" self.file.close() del self._initial_frame def _should_write(self, path, name, snapshot): """Test if we should write a given data chunk. Args: path (str): Path part of the data chunk. name (str): Name part of the data chunk. snapshot (:py:class:`Snapshot`): Snapshot data is from. Returns: False if the data matches that in the initial frame. False if the data matches all default values. True otherwise. """ container = getattr(snapshot, path) data = getattr(container, name) if data is None: return False if self._initial_frame is not None: initial_container = getattr(self._initial_frame, path) initial_data = getattr(initial_container, name) if numpy.array_equal(initial_data, data): logger.debug('skipping data chunk, matches frame 0: ' + path + '/' + name) return False if numpy.array_equiv(data, container._default_value[name]): logger.debug('skipping data chunk, default value: ' + path + '/' + name) return False return True def extend(self, iterable): """Append each item of the iterable to the file. Args: iterable: An iterable object the provides :py:class:`Snapshot` instances. This could be another HOOMDTrajectory, a generator that modifies snapshots, or a simple list of snapshots. """ for item in iterable: self.append(item) def read_frame(self, idx): """Read the frame at the given index from the file. Args: idx (int): Frame index to read. Returns: `Snapshot` with the frame data Replace any data chunks not present in the given frame with either data from frame 0, or initialize from default values if not in frame 0. Cache frame 0 data to avoid file read overhead. Return any default data as non-writable numpy arrays. """ if idx >= len(self): raise IndexError logger.debug('reading frame ' + str(idx) + ' from: ' + str(self.file)) if self._initial_frame is None and idx != 0: self.read_frame(0) snap = Snapshot() # read configuration first if self.file.chunk_exists(frame=idx, name='configuration/step'): step_arr = self.file.read_chunk(frame=idx, name='configuration/step') snap.configuration.step = step_arr[0] else: if self._initial_frame is not None: snap.configuration.step = self._initial_frame.configuration.step else: snap.configuration.step = \ snap.configuration._default_value['step'] if self.file.chunk_exists(frame=idx, name='configuration/dimensions'): dimensions_arr = self.file.read_chunk( frame=idx, name='configuration/dimensions') snap.configuration.dimensions = dimensions_arr[0] else: if self._initial_frame is not None: snap.configuration.dimensions = \ self._initial_frame.configuration.dimensions else: snap.configuration.dimensions = \ snap.configuration._default_value['dimensions'] if self.file.chunk_exists(frame=idx, name='configuration/box'): snap.configuration.box = self.file.read_chunk( frame=idx, name='configuration/box') else: if self._initial_frame is not None: snap.configuration.box = self._initial_frame.configuration.box else: snap.configuration.box = \ snap.configuration._default_value['box'] # then read all groups that have N, types, etc... for path in [ 'particles', 'bonds', 'angles', 'dihedrals', 'impropers', 'constraints', 'pairs', ]: container = getattr(snap, path) if self._initial_frame is not None: initial_frame_container = getattr(self._initial_frame, path) container.N = 0 if self.file.chunk_exists(frame=idx, name=path + '/N'): N_arr = self.file.read_chunk(frame=idx, name=path + '/N') container.N = N_arr[0] else: if self._initial_frame is not None: container.N = initial_frame_container.N # type names if 'types' in container._default_value: if self.file.chunk_exists(frame=idx, name=path + '/types'): tmp = self.file.read_chunk(frame=idx, name=path + '/types') tmp = tmp.view(dtype=numpy.dtype((bytes, tmp.shape[1]))) tmp = tmp.reshape([tmp.shape[0]]) container.types = list(a.decode('UTF-8') for a in tmp) else: if self._initial_frame is not None: container.types = initial_frame_container.types else: container.types = container._default_value['types'] # type shapes if ('type_shapes' in container._default_value and path == 'particles'): if self.file.chunk_exists(frame=idx, name=path + '/type_shapes'): tmp = self.file.read_chunk(frame=idx, name=path + '/type_shapes') tmp = tmp.view(dtype=numpy.dtype((bytes, tmp.shape[1]))) tmp = tmp.reshape([tmp.shape[0]]) container.type_shapes = \ list(json.loads(json_string.decode('UTF-8')) for json_string in tmp) else: if self._initial_frame is not None: container.type_shapes = \ initial_frame_container.type_shapes else: container.type_shapes = \ container._default_value['type_shapes'] for name in container._default_value: if name in ('N', 'types', 'type_shapes'): continue # per particle/bond quantities if self.file.chunk_exists(frame=idx, name=path + '/' + name): container.__dict__[name] = self.file.read_chunk( frame=idx, name=path + '/' + name) else: if (self._initial_frame is not None and initial_frame_container.N == container.N): # read default from initial frame container.__dict__[name] = \ initial_frame_container.__dict__[name] else: # initialize from default value tmp = numpy.array([container._default_value[name]]) s = list(tmp.shape) s[0] = container.N container.__dict__[name] = numpy.empty(shape=s, dtype=tmp.dtype) container.__dict__[name][:] = tmp container.__dict__[name].flags.writeable = False # read state data for state in snap._valid_state: if self.file.chunk_exists(frame=idx, name='state/' + state): snap.state[state] = self.file.read_chunk(frame=idx, name='state/' + state) # read log data logged_data_names = self.file.find_matching_chunk_names('log/') for log in logged_data_names: if self.file.chunk_exists(frame=idx, name=log): snap.log[log[4:]] = self.file.read_chunk(frame=idx, name=log) else: if self._initial_frame is not None: snap.log[log[4:]] = self._initial_frame.log[log[4:]] # store initial frame if self._initial_frame is None and idx == 0: self._initial_frame = snap return snap def __getitem__(self, key): """Index trajectory frames. The index can be a positive integer, negative integer, or slice and is interpreted the same as `list` indexing. Warning: As you loop over frames, each frame is read from the file when it is reached in the iteration. Multiple passes may lead to multiple disk reads if the file does not fit in cache. """ if isinstance(key, slice): return _HOOMDTrajectoryView(self, range(*key.indices(len(self)))) elif isinstance(key, int): if key < 0: key += len(self) if key >= len(self) or key < 0: raise IndexError() return self.read_frame(key) else: raise TypeError def __iter__(self): """Iterate over HOOMD trajectories.""" return _HOOMDTrajectoryIterable(self, range(len(self))) def __enter__(self): """Enter the context manager.""" return self def __exit__(self, exc_type, exc_value, traceback): """Close the file when the context manager exits.""" self.file.close() def open(name, mode='rb'): """Open a hoomd schema GSD file. The return value of `open` can be used as a context manager. Args: name (str): File name to open. mode (str): File open mode. Returns: An `HOOMDTrajectory` instance that accesses the file *name* with the given mode. Valid values for mode: +------------------+---------------------------------------------+ | mode | description | +==================+=============================================+ | ``'rb'`` | Open an existing file for reading. | +------------------+---------------------------------------------+ | ``'rb+'`` | Open an existing file for reading and | | | writing. | +------------------+---------------------------------------------+ | ``'wb'`` | Open a file for writing. Creates the file | | | if needed, or overwrites an existing file. | +------------------+---------------------------------------------+ | ``'wb+'`` | Open a file for reading and writing. | | | Creates the file if needed, or overwrites | | | an existing file. | +------------------+---------------------------------------------+ | ``'xb'`` | Create a gsd file exclusively and opens it | | | for writing. | | | Raise an :py:exc:`FileExistsError` | | | exception if it already exists. | +------------------+---------------------------------------------+ | ``'xb+'`` | Create a gsd file exclusively and opens it | | | for reading and writing. | | | Raise an :py:exc:`FileExistsError` | | | exception if it already exists. | +------------------+---------------------------------------------+ | ``'ab'`` | Open an existing file for writing. | | | Does *not* create or overwrite existing | | | files. | +------------------+---------------------------------------------+ """ if fl is None: raise RuntimeError("file layer module is not available") if gsd is None: raise RuntimeError("gsd module is not available") gsdfileobj = fl.open(name=str(name), mode=mode, application='gsd.hoomd ' + gsd.__version__, schema='hoomd', schema_version=[1, 4]) return HOOMDTrajectory(gsdfileobj)
the-stack_0_17217
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2016, Clearpath Robotics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Open Source Robotics Foundation, Inc. nor # the names of its contributors may be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import subprocess import sys import threading import time try: import queue except ImportError: import Queue as queue CONCURRENT_DEFAULT = 16 def freeze_distribution_sources(dist, release_version=False, release_tag=False, concurrent_ops=CONCURRENT_DEFAULT, quiet=False): # Populate this queue with tuples of repositories instances to be updated, # so that this work can be spread across multiple threads. work_queue = queue.Queue() for repo_name, repo in dist.repositories.iteritems(): # Only manipulate distribution entries with a source repo listed. if repo.source_repository: # Decide which git ref string we'll be using as the replacement match. if repo.release_repository and (release_version or release_tag): version = repo.release_repository.version.split('-')[0] else: version = repo.source_repository.version work_queue.put((repo.source_repository, version, release_tag)) total_items = work_queue.qsize() for i in range(concurrent_ops): threading.Thread(target=_worker, args=[work_queue]).start() # Wait until the threads have done all the work and exited. while not work_queue.empty(): time.sleep(0.1) if not quiet: sys.stdout.write("Updating source repo versions (%d/%d) \r" % (total_items - work_queue.qsize(), total_items)) sys.stdout.flush() work_queue.join() # Clear past the updating line. if not quiet: print("") # Get the repo commit information def _get_repo_info(url, retry=2, retry_period=1): cmd = ['git', 'ls-remote', url] try: return subprocess.check_output(cmd).splitlines() except subprocess.CalledProcessError as err: if not retry: raise print(' Non-zero return code for: %s, retrying in %f seconds' % (' '.join(cmd), retry_period), file=sys.stderr) # brief delay incase its an intermittent issue with infrastructure time.sleep(retry_period) return _get_repo_info(url, retry=retry - 1, retry_period=retry_period * 2) def _worker(work_queue): while True: try: source_repo, freeze_version, freeze_to_tag = work_queue.get(block=False) ls_remote_lines = _get_repo_info(source_repo.url) for line in ls_remote_lines: hash, ref = line.split('\t', 1) if freeze_to_tag and ref == 'refs/tags/%s' % freeze_version: source_repo.version = ref.split('refs/tags/')[1] break elif ref in ('refs/heads/%s' % freeze_version, 'refs/tags/%s' % freeze_version): source_repo.version = hash break work_queue.task_done() except subprocess.CalledProcessError as e: print("No information could be retrieved for repo %s with error: %s" % (source_repo.url, e), file=sys.stderr) work_queue.task_done() except queue.Empty: break
the-stack_0_17218
import tensorflow as tf import numpy as np from .gradients import GradientAttribution class IntegratedGradients(GradientAttribution): def GetMask(self, x_value, feed_dict={}, x_baseline=None, x_steps=25): if x_baseline is None: x_baseline = np.zeros_like(x_value) assert x_baseline.shape == x_value.shape x_diff = x_value - x_baseline total_gradients = np.zeros_like(x_value) for alpha in np.linspace(0, 1, x_steps): x_step = x_baseline + alpha * x_diff total_gradients += super().GetMask(x_step, feed_dict) return total_gradients * x_diff / x_steps
the-stack_0_17219
"""Tests for runway.cfngin.hooks.iam.""" import unittest import boto3 from awacs.helpers.trust import get_ecs_assumerole_policy from botocore.exceptions import ClientError from moto import mock_iam from runway.cfngin.hooks.iam import _get_cert_arn_from_response, create_ecs_service_role from ..factories import mock_context, mock_provider REGION = "us-east-1" # No test for stacker.hooks.iam.ensure_server_cert_exists until # updated version of moto is imported # (https://github.com/spulec/moto/pull/679) merged class TestIAMHooks(unittest.TestCase): """Tests for runway.cfngin.hooks.iam.""" def setUp(self): """Run before tests.""" self.context = mock_context(namespace="fake") self.provider = mock_provider(region=REGION) def test_get_cert_arn_from_response(self): """Test get cert arn from response.""" arn = "fake-arn" # Creation response response = {"ServerCertificateMetadata": {"Arn": arn}} self.assertEqual(_get_cert_arn_from_response(response), arn) # Existing cert response response = {"ServerCertificate": response} self.assertEqual(_get_cert_arn_from_response(response), arn) def test_create_service_role(self): """Test create service role.""" with mock_iam(): client = boto3.client("iam", region_name=REGION) role_name = "ecsServiceRole" with self.assertRaises(ClientError): client.get_role(RoleName=role_name) self.assertTrue( create_ecs_service_role(context=self.context, provider=self.provider,) ) role = client.get_role(RoleName=role_name) self.assertIn("Role", role) self.assertEqual(role_name, role["Role"]["RoleName"]) policy_name = "AmazonEC2ContainerServiceRolePolicy" client.get_role_policy(RoleName=role_name, PolicyName=policy_name) def test_create_service_role_already_exists(self): """Test create service role already exists.""" with mock_iam(): client = boto3.client("iam", region_name=REGION) role_name = "ecsServiceRole" client.create_role( RoleName=role_name, AssumeRolePolicyDocument=get_ecs_assumerole_policy().to_json(), ) self.assertTrue( create_ecs_service_role(context=self.context, provider=self.provider,) ) role = client.get_role(RoleName=role_name) self.assertIn("Role", role) self.assertEqual(role_name, role["Role"]["RoleName"]) policy_name = "AmazonEC2ContainerServiceRolePolicy" client.get_role_policy(RoleName=role_name, PolicyName=policy_name)
the-stack_0_17220
from multiprocessing import Pool import torch.utils import torch.utils.data from data_utils import indexed_dataset import torch import os import re import pdb from data_utils.tokenization import BertWordPieceTokenizer key_word = { "…":"...", "—":"-", "“":"\"", "”":"\"", "‘":"'", "’":"'" } SPECIAL_SIGNAL = "./';,\(\)\"\"'~`''“”《》<>" def cut_sentence(paragraph): paragraph = paragraph.replace(" ", "") sentences = re.split('(。|!|\!|?|\?)',paragraph) # 保留分割符 if len(sentences) == 1: return [sentences[0]] new_sents = [] for i in range(int(len(sentences)/2)): sent = sentences[2*i] + sentences[2*i+1] if len(new_sents) != 0 and (sent[0] in SPECIAL_SIGNAL or len(new_sents[-1]) < 20): new_sents[-1] += sent else: new_sents.append(sent) sent = sentences[-1] if len(sentences) % 2 == 1 and len(sent) > 0: if len(new_sents) != 0 and (sent[0] in SPECIAL_SIGNAL or len(new_sents[-1]) < 20): new_sents[-1] += sent else: new_sents.append(sent) return new_sents def replace_text(text): for key,value in key_word.items(): text = re.sub(key, value, text) return text def safe_readline(f): pos = f.tell() while True: try: return f.readline() except UnicodeDecodeError: pos -= 1 f.seek(pos) # search where this character begins def read_split( filename, tokenizer, worker_id, num_workers, type_doc, min_lens=10 ): with open(filename, 'r') as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_workers offset = worker_id * chunk_size end = offset + chunk_size f.seek(offset) if offset > 0: safe_readline(f) # drop first incomplete line result = [] line = f.readline() while line: line = replace_text(line) ids = tokenizer.convert_text_to_ids(line) ids = ids[:509] if len(ids) >= min_lens: ids = [type_doc]+ids result.append(ids) if f.tell() > end: break line = f.readline() return result def merge_multi_line( filename, tokenizer, worker_id, num_workers, type_doc, min_lens=10 ): with open(filename, 'r') as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_workers offset = worker_id * chunk_size end = offset + chunk_size eos_id = tokenizer.eos() f.seek(offset) if offset > 0: safe_readline(f) # drop first incomplete line result = [] line = f.readline() tmp_ids = [] while line: line = replace_text(line) ids = tokenizer.convert_text_to_ids(line)+[eos_id] # tmp_ids.extend(ids) if len(tmp_ids) + len(ids) > 511: ids_cur = tmp_ids[:511] if ids_cur[0] == eos_id: ids_cur[0] = type_doc else: ids_cur = [type_doc] + ids_cur if ids_cur[-1] == eos_id: ids_cur.pop() ids_cur = ids_cur[:511] result.append(ids_cur) tmp_ids = tmp_ids[511:] if len(tmp_ids) + len(ids) < 511: tmp_ids += ids else: tmp_ids = ids[-511:] else: tmp_ids.extend(ids) if f.tell() > end: break line = f.readline() return result def main_multi_task(args): from argparse import ArgumentParser parser = ArgumentParser() # parser.add_argument("--tokenizer", type=str, help="where to load vocabulary") parser.add_argument("--data", type=str) parser.add_argument("--out", type=str, help="output path") parser.add_argument("--prefix", type=str, default="train") parser.add_argument("--workers", type=int, default=6) parser.add_argument("--task", type=str, choices=['single', 'multi'], default="single") args = parser.parse_args(args) tokenizer = BertWordPieceTokenizer("bert-base-chinese", cache_dir="temp_cache_dir") data_bin = os.path.join(args.out, "{}-CLM.bin".format(args.prefix)) data_idx = os.path.join(args.out, "{}-CLM.idx".format(args.prefix)) data_ds = indexed_dataset.IndexedDatasetBuilder(data_bin) def comsume(worker_result): for ids in worker_result: data_ds.add_item(torch.IntTensor(ids) ) pool = Pool(processes=args.workers) worker_result = [] if args.task == "single": handle_func = read_split elif args.task == "multi": handle_func = merge_multi_line for i in range(args.workers): w = pool.apply_async( handle_func, ( args.data, tokenizer, i, args.workers, 0, 10 ), callback=comsume ) worker_result.append(w) pool.close() pool.join() data_ds.finalize(data_idx) print("| write data into {}".format(args.out)) if __name__ == "__main__": import sys main_multi_task(sys.argv[1:])
the-stack_0_17221
# insertion sort practice # exercises from introductions to algorithms 3rd edition import numpy as np import math A = np.array([15, 26, 34, 31, 57, 93, 27]) # ascending order, 2.1 for j in range(1, np.size(A)): key = A[j] i = j - 1 while (i > -1) and (A[i] > key): A[i+1] = A[i] i = i-1 A[i+1] = key print('Ascending order A is', A) # descending order, exercise 2.1-2 for j in range(1, np.size(A)): key = A[j] i = j - 1 while (i > -1) and (A[i] < key): A[i+1] = A[i] i = i-1 A[i+1] = key print('Descending order A is', A) # find the index of a number v from A, exercise 2.1-3 v = 32 quitflag = 0 for j in range(np.size(A)): key = v if A[j] == key: quitflag = 1 break if quitflag == 0: print('v is not in A') else: print('index is', j+1) # or if def as a function, use return instead of quitflag # sum of two n-bit binary integers, 2.1-4 A = [1, 0, 1, 0, 1, 0, 1] B = [1, 1, 1, 0, 0, 1, 0] C = [] n = len(A) carry = 0 for i in range(n-1, -1, -1): C.append((A[i] + B[i] + carry) % 2) carry = math.floor((A[i] + B[i] + carry) / 2) C.append(carry) C.reverse() print('C is', C)
the-stack_0_17222
import numpy import os from grocsvs import datasets as svdatasets from grocsvs import step from grocsvs import utilities from grocsvs.stages import call_readclouds CHUNKSIZE = 5e7 def chunks_for_chrom(options, chrom): return int(numpy.ceil(options.reference.chrom_lengths[chrom]/CHUNKSIZE)) class WindowBarcodesStep(step.StepChunk): """ Build a list of all the fragment barcodes overlapping each genomic window Output files: bcwindows.sample.dataset.chrom.pickle - dictionary: - barcode_windows - a list of sets of barcode IDs - barcod_map - a dict of barcode->barcode ID - window_size - the size of the genomic window used; eg 10,000 would mean that window starts were range(0, chrom_length, 10000) """ @staticmethod def get_steps(options): for sample, dataset in options.iter_10xdatasets(): for chrom in options.reference.chroms: for chunk in range(chunks_for_chrom(options, chrom)): yield WindowBarcodesStep( options, sample, dataset, chrom, chunk) def __init__(self, options, sample, dataset, chrom, chunk): self.options = options self.sample = sample self.dataset = dataset self.chrom = chrom self.chunk = chunk assert isinstance(self.dataset, svdatasets.TenXDataset) def __str__(self): return ".".join([self.__class__.__name__, self.sample.name, self.dataset.id, self.chrom, str(self.chunk)]) def outpaths(self, final): directory = self.results_dir if final \ else self.working_dir file_name = "bcwindows.{}.{}.{}.{}.pickle".format( self.sample.name, self.dataset.id, self.chrom, self.chunk) paths = { "bcwindows": os.path.join(directory, file_name) } return paths def run(self): import logging logging.info("running!") window_size = self.options.constants["window_size"] outpath = self.outpaths(final=False)["bcwindows"] self.logger.log("Loading barcode map...") # call_readclouds_step = call_readclouds.FilterFragmentsStep( input_step = call_readclouds.CombineReadcloudsStep( self.options, self.sample, self.dataset) barcode_map = utilities.pickle.load( open(input_step.outpaths(final=True)["barcode_map"])) chrom_length = self.options.reference.chrom_lengths[self.chrom] start = int(self.chunk*CHUNKSIZE) end = int(min((self.chunk+1)*CHUNKSIZE, chrom_length)) self.logger.log("Running chunk: {}:{:,}-{:,}".format(self.chrom, start, end)) fragments = call_readclouds.load_fragments( self.options, self.sample, self.dataset, self.chrom, start, end, min_reads_per_frag=0) barcode_windows = get_barcode_windows( fragments, barcode_map, window_size, chrom_length, start, end) self.logger.log("Saving results...") result = { "barcode_windows": barcode_windows, # "barcode_map": barcode_map, "nbcs": len(barcode_map), "window_size": window_size } utilities.pickle.dump(result, open(outpath, "w"), protocol=-1) def get_barcode_windows(fragments, barcode_map, window_size, chrom_length, start, end): window_starts = range(start, end, window_size) barcode_windows = [] for start in window_starts: end = start + window_size overlap = utilities.frags_overlap_same_chrom(fragments, start, end) barcodes = set(barcode_map[bc] for bc in overlap["bc"]) barcode_windows.append(barcodes) return barcode_windows
the-stack_0_17225
"""Support for FRITZ!Box routers.""" from __future__ import annotations import datetime import logging import voluptuous as vol from homeassistant.components.device_tracker import ( DOMAIN as DEVICE_TRACKER_DOMAIN, PLATFORM_SCHEMA as PARENT_PLATFORM_SCHEMA, SOURCE_TYPE_ROUTER, ) from homeassistant.components.device_tracker.config_entry import ScannerEntity from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import CONF_HOST, CONF_PASSWORD, CONF_USERNAME from homeassistant.core import HomeAssistant, callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType from .common import ( FritzBoxTools, FritzData, FritzDevice, FritzDeviceBase, device_filter_out_from_trackers, ) from .const import DATA_FRITZ, DOMAIN _LOGGER = logging.getLogger(__name__) YAML_DEFAULT_HOST = "169.254.1.1" YAML_DEFAULT_USERNAME = "admin" PLATFORM_SCHEMA = vol.All( cv.deprecated(CONF_HOST), cv.deprecated(CONF_USERNAME), cv.deprecated(CONF_PASSWORD), PARENT_PLATFORM_SCHEMA.extend( { vol.Optional(CONF_HOST, default=YAML_DEFAULT_HOST): cv.string, vol.Optional(CONF_USERNAME, default=YAML_DEFAULT_USERNAME): cv.string, vol.Optional(CONF_PASSWORD): cv.string, } ), ) async def async_get_scanner(hass: HomeAssistant, config: ConfigType) -> None: """Import legacy FRITZ!Box configuration.""" _LOGGER.debug("Import legacy FRITZ!Box configuration from YAML") hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=config[DEVICE_TRACKER_DOMAIN], ) ) _LOGGER.warning( "Your Fritz configuration has been imported into the UI, " "please remove it from configuration.yaml. " "Loading Fritz via scanner setup is now deprecated" ) return None async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up device tracker for FRITZ!Box component.""" _LOGGER.debug("Starting FRITZ!Box device tracker") router: FritzBoxTools = hass.data[DOMAIN][entry.entry_id] data_fritz: FritzData = hass.data[DATA_FRITZ] @callback def update_router() -> None: """Update the values of the router.""" _async_add_entities(router, async_add_entities, data_fritz) entry.async_on_unload( async_dispatcher_connect(hass, router.signal_device_new, update_router) ) update_router() @callback def _async_add_entities( router: FritzBoxTools, async_add_entities: AddEntitiesCallback, data_fritz: FritzData, ) -> None: """Add new tracker entities from the router.""" new_tracked = [] if router.unique_id not in data_fritz.tracked: data_fritz.tracked[router.unique_id] = set() for mac, device in router.devices.items(): if device_filter_out_from_trackers(mac, device, data_fritz.tracked.values()): continue new_tracked.append(FritzBoxTracker(router, device)) data_fritz.tracked[router.unique_id].add(mac) if new_tracked: async_add_entities(new_tracked) class FritzBoxTracker(FritzDeviceBase, ScannerEntity): """This class queries a FRITZ!Box router.""" def __init__(self, router: FritzBoxTools, device: FritzDevice) -> None: """Initialize a FRITZ!Box device.""" super().__init__(router, device) self._last_activity: datetime.datetime | None = device.last_activity @property def is_connected(self) -> bool: """Return device status.""" return self._router.devices[self._mac].is_connected @property def unique_id(self) -> str: """Return device unique id.""" return f"{self._mac}_tracker" @property def mac_address(self) -> str: """Return mac_address.""" return self._mac @property def icon(self) -> str: """Return device icon.""" if self.is_connected: return "mdi:lan-connect" return "mdi:lan-disconnect" @property def extra_state_attributes(self) -> dict[str, str]: """Return the attributes.""" attrs: dict[str, str] = {} device = self._router.devices[self._mac] self._last_activity = device.last_activity if self._last_activity is not None: attrs["last_time_reachable"] = self._last_activity.isoformat( timespec="seconds" ) if device.connected_to: attrs["connected_to"] = device.connected_to if device.connection_type: attrs["connection_type"] = device.connection_type if device.ssid: attrs["ssid"] = device.ssid return attrs @property def source_type(self) -> str: """Return tracker source type.""" return SOURCE_TYPE_ROUTER
the-stack_0_17226
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .deploy_stage_execution_progress import DeployStageExecutionProgress from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ComputeInstanceGroupCanaryDeployStageExecutionProgress(DeployStageExecutionProgress): """ Specifies the Instance Group Canary deployment stage. """ def __init__(self, **kwargs): """ Initializes a new ComputeInstanceGroupCanaryDeployStageExecutionProgress object with values from keyword arguments. The default value of the :py:attr:`~oci.devops.models.ComputeInstanceGroupCanaryDeployStageExecutionProgress.deploy_stage_type` attribute of this class is ``COMPUTE_INSTANCE_GROUP_CANARY_DEPLOYMENT`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param deploy_stage_display_name: The value to assign to the deploy_stage_display_name property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type deploy_stage_display_name: str :param deploy_stage_type: The value to assign to the deploy_stage_type property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type deploy_stage_type: str :param deploy_stage_id: The value to assign to the deploy_stage_id property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type deploy_stage_id: str :param time_started: The value to assign to the time_started property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type time_started: datetime :param time_finished: The value to assign to the time_finished property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type time_finished: datetime :param status: The value to assign to the status property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. Allowed values for this property are: "ACCEPTED", "IN_PROGRESS", "FAILED", "SUCCEEDED", "CANCELING", "CANCELED", "ROLLBACK_IN_PROGRESS", "ROLLBACK_SUCCEEDED", "ROLLBACK_FAILED" :type status: str :param deploy_stage_predecessors: The value to assign to the deploy_stage_predecessors property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type deploy_stage_predecessors: oci.devops.models.DeployStagePredecessorCollection :param deploy_stage_execution_progress_details: The value to assign to the deploy_stage_execution_progress_details property of this ComputeInstanceGroupCanaryDeployStageExecutionProgress. :type deploy_stage_execution_progress_details: list[oci.devops.models.DeployStageExecutionProgressDetails] """ self.swagger_types = { 'deploy_stage_display_name': 'str', 'deploy_stage_type': 'str', 'deploy_stage_id': 'str', 'time_started': 'datetime', 'time_finished': 'datetime', 'status': 'str', 'deploy_stage_predecessors': 'DeployStagePredecessorCollection', 'deploy_stage_execution_progress_details': 'list[DeployStageExecutionProgressDetails]' } self.attribute_map = { 'deploy_stage_display_name': 'deployStageDisplayName', 'deploy_stage_type': 'deployStageType', 'deploy_stage_id': 'deployStageId', 'time_started': 'timeStarted', 'time_finished': 'timeFinished', 'status': 'status', 'deploy_stage_predecessors': 'deployStagePredecessors', 'deploy_stage_execution_progress_details': 'deployStageExecutionProgressDetails' } self._deploy_stage_display_name = None self._deploy_stage_type = None self._deploy_stage_id = None self._time_started = None self._time_finished = None self._status = None self._deploy_stage_predecessors = None self._deploy_stage_execution_progress_details = None self._deploy_stage_type = 'COMPUTE_INSTANCE_GROUP_CANARY_DEPLOYMENT' def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
the-stack_0_17227
from replit import clear from art import logo print(logo) bids = {} bidding_finished = False def find_highest_bidder(bidding_record): maximum = max(bidding_record, key=bidding_record.get) print(f"The winner is {maximum} with a bid of ${bidding_record[maximum]}") while True: name = input("What is your name?: ") price = int(input("What is your bid?: $")) bids[name] = price should_continue = input( "Are there any other bidders? Type 'yes or 'no'.\n") if should_continue == "no": break elif should_continue == "yes": clear() find_highest_bidder(bids)
the-stack_0_17228
import torch import torch.nn as nn from torch.nn.functional import relu from torch.nn.utils.rnn import pad_sequence class Regressor(): """A PyTorch MLP model consisting of an MLP for each module type. The model is learnt only on single module. The model takes as input the input power and the meta data of the corresponding cascade. To predict the output power the model simply cascades the different MLPs matching the input module cascade.""" def __init__(self): super().__init__() # Since the model need meta data present in the data # we will only instantiate the model when calling the fit function self.Model = PyTorchModel # PyTorch model class self.model = None # PyTorch model instance self.mod_id = None # Module IDs def fit(self, X, y): # Retrieve some information about the modules from the data all_mods = set( [(("type", mod[0]), ("nb_feat", len(mod[1]))) for seq, _, _ in X for mod in seq]) mod_info = [dict(m) for m in all_mods] self.mod_id = {mod["type"]: i for i, mod in enumerate(mod_info)} # Instantiate the PyTorch model self.model = self.Model(mod_info) # Turn on training mode self.model.train() # Get data and create train data loaders data_list = [{"mod_id_seq": torch.tensor( [self.mod_id[mod] for mod, _ in mod_seq]), "mod_feat_seq_list": [torch.tensor(feat).float() for _, feat in mod_seq], "input_power": torch.tensor(p_in).float(), "output_power": torch.tensor(p_out).float()} for (mod_seq, p_in, campaign_id), p_out in zip(X, y)] train_loader = torch.utils.data.DataLoader(data_list, batch_size=128, collate_fn=collate_fn) # Instantiate criterion and optimizer crit = torch.nn.MSELoss() opt = torch.optim.Adam(self.model.parameters(), lr=0.0001) # Training loop for e in range(100): for data in train_loader: (mod_id_seq, mod_feat_seq, p_in), p_out = data opt.zero_grad() preds = self.model(mod_id_seq, mod_feat_seq, p_in) # Since the evaluation is only done for on-channels it # helps the optimization to only backpropagate through them. on_chan = p_in != 0 on_preds = torch.mul(on_chan, preds) on_p_out = torch.mul(on_chan, p_out) loss = crit(on_preds, on_p_out) # Since we are only looking at single modules if loss.requires_grad: loss.backward() opt.step() def predict(self, X): # Turn on evaluation mode self.model.eval() # No ground truth when predicting, format input arguments # Input powers p_in = torch.stack([torch.tensor(p_in).float() for _, p_in, _ in X]) # Module features mod_feat_seq = [[torch.tensor(feat).float() for _, feat in mod_seq] for mod_seq, _, _ in X] # Module IDs mod_id_seq = [torch.tensor([self.mod_id[mod] for mod, _ in mod_seq]) for mod_seq, _, _ in X] mod_id_seq = pad_sequence(mod_id_seq, batch_first=True, padding_value=-1) # Model prediction preds = self.model(mod_id_seq, mod_feat_seq, p_in).detach().numpy() return preds class PyTorchModel(torch.nn.Module): def __init__(self, mod_info): super(PyTorchModel, self).__init__() self.mod_info = mod_info # Construct as many MLPs as modules present in the data self.MLPs = torch.nn.ModuleList( [MLP(m["nb_feat"]) for m in self.mod_info]) def forward(self, mod_id_seq, mod_feat_seq, p_in): seq_len = torch.tensor(list(map(len, mod_feat_seq))) p_out = p_in max_nb_mod = max(seq_len) for n in range(max_nb_mod): for i, mlp in enumerate(self.MLPs): msk = torch.mul(mod_id_seq[:, n] == i, seq_len > n) if msk.any(): feats = torch.stack( [f[n] for i, f in enumerate(mod_feat_seq) if msk[i]]) p_out[msk] = mlp(torch.cat([p_out[msk], feats], dim=-1)) # Return positive values when evaluating the model return p_out if self.training else relu(p_out) class MLP(torch.nn.Module): """A simple two layer MLP taking as input the input powers and the features of the module""" def __init__(self, feat_size): super(MLP, self).__init__() self.drop_layer = nn.Dropout(p=0.5) # Definition of the modules of the model # Two fully connected layers self.fc0 = torch.nn.Linear(32 + feat_size, 256) self.fc1 = torch.nn.Linear(256, 256) self.fc2 = torch.nn.Linear(256, 256) self.fc3 = torch.nn.Linear(256, 32) def forward(self, x): # Compute the output of the model using a tanh activation function p_out = self.drop_layer(self.fc1(relu(self.fc0(x)))) p_out = self.fc3(relu(self.fc2(p_out))) return p_out def collate_fn(batch): # Power output p_out = torch.stack([sample["output_power"] for sample in batch]) # Power input p_in = torch.stack([sample["input_power"] for sample in batch]) # Module id l_id_seq = [sample["mod_id_seq"] for sample in batch] mod_id_seq = pad_sequence(l_id_seq, batch_first=True, padding_value=-1) # Module features mod_feat_seq = [sample["mod_feat_seq_list"] for sample in batch] return (mod_id_seq, mod_feat_seq, p_in), p_out
the-stack_0_17229
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes import struct # Reference: draft-krovetz-vmac-01.txt # This only implements VMAC with AES as cipher and 64 bit tags. BLOCKSIZE = 16 # block size of AES in bytes L1KEYSIZE = 128 # size of the L1 key in bytes MASK_POLY = 0x1FFFFFFF1FFFFFFF1FFFFFFF1FFFFFFF P127 = 2 ** 127 - 1 P64 = 2 ** 64 - 257 PP = 2 ** 64 - 2 ** 32 def nh(k, m): mask64 = 0xffffffffffffffff res = 0 for i in range(0, len(m), 2): res += ((m[i] + k[i]) & mask64) * ((m[i+1] + k[i+1]) & mask64) return res % 2**126 class Vmac64: def __init__(self, key: bytes): self.cipher = self.create_cipher(key) self.l1_keys = self.kdf_int(128, 0, L1KEYSIZE // 8) self.l2_keys = self.kdf_int(192, 0, 2) idx = 1 while True: k0, k1 = self.kdf_int(224, 2 * (idx - 1), 2 * idx) if (k0 < P64) and (k1 < P64): self.l3_keys = k0, k1 break idx += 1 def create_cipher(self, key): if isinstance(key, bytearray): key = bytes(key) assert isinstance(key, bytes) and len(key) in (16, 24, 32) return Cipher(algorithms.AES(key), modes.ECB(), default_backend()) def encrypt_block(self, ba) -> bytes: encryptor = self.cipher.encryptor() assert len(ba) == 16 if isinstance(ba, bytearray): ba = bytes(ba) return encryptor.update(ba) + encryptor.finalize() def kdf(self, index: int, size: int) -> bytes: if size % BLOCKSIZE > 0: return self.kdf(index, size + (-size % BLOCKSIZE))[:size] res = bytearray(size) for i in range(size // BLOCKSIZE): inp = bytes([index] + [0] * 14 + [i]) res[BLOCKSIZE * i : BLOCKSIZE * (i+1)] = self.encrypt_block(inp) return bytes(res) def kdf_int(self, index: int, start: int, stop: int): ba = self.kdf(index, 8 * stop) return struct.unpack('>%dQ' % (stop - start), ba[8 * start: 8 * stop]) def pdf(self, nonce: bytes) -> bytes: index = nonce[-1] % 2 block = bytearray(BLOCKSIZE - len(nonce)) + nonce block[-1] -= index enc = self.encrypt_block(bytes(block)) return enc[8 * index : 8 * (index + 1)] def l1_hash(self, m: bytes): k = self.l1_keys blocks = (len(m) + L1KEYSIZE - 1) // L1KEYSIZE fullblocks = len(m) // L1KEYSIZE y = [None] * blocks cnt = L1KEYSIZE // 8 fmt = '<%dQ' % cnt for i in range(fullblocks): pos = i * L1KEYSIZE hstr = struct.unpack_from(fmt, m, pos) y[i] = nh(k, hstr) if blocks > fullblocks: pos = fullblocks * L1KEYSIZE ba = m[pos : pos + L1KEYSIZE] ba += bytes(-len(ba) % 16) cnt = len(ba) // 8 hstr = struct.unpack('<%dQ' % cnt, ba) y[fullblocks] = nh(k, hstr) return y def l2_hash(self, m: bytes, bitlength: int) -> int: t0, t1 = self.l2_keys k = ((t0 & MASK_POLY) << 64) | (t1 & MASK_POLY) if len(m) == 0: y = k else: y = 1 for v in m: y = (y * k + v) % P127 return (y + ((bitlength % (L1KEYSIZE * 8)) << 64)) % P127 def l3_hash(self, m: int) -> int: k0, k1 = self.l3_keys m0, m1 = divmod(m, PP) return ((k0 + m0) * (k1 + m1)) % P64 def vhash(self, m: bytes) -> int: t1 = self.l1_hash(m) t2 = self.l2_hash(t1, 8 * len(m)) return self.l3_hash(t2) def mac(self, m: bytes, nonce: bytes): if len(nonce) > 16: raise ValueError("Nonce too long") elif len(nonce) == 16 and nonce[0] >= 128: raise ValueError("Nonce must be smaller than 128-bits") v = self.vhash(m) m = struct.unpack('>Q', self.pdf(nonce))[0] tag = (m + v) % 2 ** 64 return struct.pack('>Q', tag) def tag(self, m: bytes, nonce: bytes) -> str: return self.mac(m, nonce)
the-stack_0_17230
import re from collections import defaultdict with open('input.txt') as file: data = file.read() ALLERGENS = defaultdict(list) FOOD = [] KNOWN = [] for line in data.splitlines(): if m := re.search(r'(.+) \(contains (.+)\)', line): food = m[1].split(' ') allergens = m[2].split(', ') FOOD.append(food) for a in allergens: ALLERGENS[a].append(food) else: assert False, "chujowy regex?" def learn(alg): # generate common ingredients common = set.intersection(*map(set, ALLERGENS[alg])) # remove known ingredients for known_ing, _ in KNOWN: try: common.remove(known_ing) except: pass # if 1 left, add to known if len(common) == 1: KNOWN.append((*common, alg)) while len(KNOWN) < len(ALLERGENS): for alg in ALLERGENS: learn(alg) cnt = 0 known_ing = set(ing for ing, alg in KNOWN) cnt = sum(len(set(food) - known_ing) for food in FOOD) print(f"Part 1: {cnt}") result = ','.join(ing for ing, _ in sorted(KNOWN, key=lambda x: x[1])) print(f"Part 2: {result}")
the-stack_0_17231
import _plotly_utils.basevalidators class HoverlabelValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="hoverlabel", parent_name="scattergl", **kwargs): super(HoverlabelValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Hoverlabel"), data_docs=kwargs.pop( "data_docs", """ align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . """, ), **kwargs )
the-stack_0_17232
#!/usr/bin/env python # encoding: utf-8 """ @author: sherlock @contact: [email protected] """ import logging import os import sys sys.path.append('.') from fastreid.config import get_cfg from fastreid.engine import DefaultTrainer, default_argument_parser, default_setup, launch from fastreid.utils.checkpoint import Checkpointer from fastreid.engine import hooks from partialreid import * class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, num_query, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return DsrEvaluator(cfg, num_query) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_partialreid_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: logger = logging.getLogger("fastreid.trainer") cfg.defrost() cfg.MODEL.BACKBONE.PRETRAIN = False model = Trainer.build_model(cfg) Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model if cfg.TEST.PRECISE_BN.ENABLED and hooks.get_bn_modules(model): prebn_cfg = cfg.clone() prebn_cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN prebn_cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET]) # set dataset name for PreciseBN logger.info("Prepare precise BN dataset") hooks.PreciseBN( # Run at the same freq as (but before) evaluation. model, # Build a new data loader to not affect training Trainer.build_train_loader(prebn_cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ).update_stats() res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
the-stack_0_17235
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import boilerplate try: from setuptools import setup except ImportError: from distutils.core import setup version = boilerplate.__version__ if sys.argv[-1] == 'publish': os.system('cd docs && make html') os.system('python setup.py sdist upload') print("You probably want to also tag the version now:") print(" git tag -a %s -m 'version %s'" % (version, version)) print(" git push --tags") sys.exit() if sys.argv[-1] == 'test': print("Running tests only on current environment.") print("Use `tox` for testing multiple environments.") os.system('python manage.py test') sys.exit() with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read().replace('.. :changelog:', '') setup( name='django-boilerplate', version=version, description="""What Django is missing""", long_description=readme + '\n\n' + history, author='Irving Kcam', author_email='[email protected]', url='https://github.com/cubope/django-boilerplate', packages=[ 'boilerplate', ], include_package_data=True, install_requires=['Pillow', 'six'], license="Apache License 2.0", zip_safe=False, keywords='django-boilerplate', classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries", "Topic :: Utilities", "Environment :: Web Environment", "Framework :: Django", ], )
the-stack_0_17236
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.reverse_sequence_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests.xla_test import XLATestCase from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class ReverseSequenceTest(XLATestCase): def _testReverseSequence(self, x, batch_axis, seq_axis, seq_lengths, truth, expected_err_re=None): with self.test_session(): p = array_ops.placeholder(dtypes.as_dtype(x.dtype)) lengths = array_ops.placeholder(dtypes.as_dtype(seq_lengths.dtype)) with self.test_scope(): ans = array_ops.reverse_sequence( p, batch_axis=batch_axis, seq_axis=seq_axis, seq_lengths=lengths) if expected_err_re is None: tf_ans = ans.eval(feed_dict={p: x, lengths: seq_lengths}) self.assertAllClose(tf_ans, truth, atol=1e-10) else: with self.assertRaisesOpError(expected_err_re): ans.eval(feed_dict={p: x, lengths: seq_lengths}) def testSimple(self): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) expected = np.array([[1, 2, 3], [6, 5, 4], [8, 7, 9]], dtype=np.int32) self._testReverseSequence( x, batch_axis=0, seq_axis=1, seq_lengths=np.array([1, 3, 2], np.int32), truth=expected) def _testBasic(self, dtype, len_dtype): x = np.asarray( [[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]], [[17, 18, 19, 20], [21, 22, 23, 24]]], dtype=dtype) x = x.reshape(3, 2, 4, 1, 1) x = x.transpose([2, 1, 0, 3, 4]) # permute axes 0 <=> 2 # reverse dim 2 up to (0:3, none, 0:4) along dim=0 seq_lengths = np.asarray([3, 0, 4], dtype=len_dtype) truth_orig = np.asarray( [ [[3, 2, 1, 4], [7, 6, 5, 8]], # reverse 0:3 [[9, 10, 11, 12], [13, 14, 15, 16]], # reverse none [[20, 19, 18, 17], [24, 23, 22, 21]] ], # reverse 0:4 (all) dtype=dtype) truth_orig = truth_orig.reshape(3, 2, 4, 1, 1) truth = truth_orig.transpose([2, 1, 0, 3, 4]) # permute axes 0 <=> 2 seq_axis = 0 # permute seq_axis and batch_axis (originally 2 and 0, resp.) batch_axis = 2 self._testReverseSequence(x, batch_axis, seq_axis, seq_lengths, truth) def testSeqLength(self): for dtype in self.all_types: for seq_dtype in self.int_types: self._testBasic(dtype, seq_dtype) if __name__ == "__main__": test.main()
the-stack_0_17238
from lib.utilities import get_truncated_normal, get_truncated_exponential from lib import static class DistributionsManager: def __init__(self, yaml_parser): self.favorite_subjects_per_user_distribution = self.build_favorite_subjects_distribution(yaml_parser) self.subjects_distribution = self.build_subjects_distribution(yaml_parser) self.age_distribution = self.build_age_distribution(yaml_parser) self.likes_distribution = self.build_likes_distribution(yaml_parser) self.followers_distribution = self.build_followers_distribution(yaml_parser) self.salary_distribution_per_occupation = self.build_compensations_distribution(yaml_parser) @staticmethod def build_favorite_subjects_distribution(yaml_parser): distribution_type = yaml_parser.favorite_subjects_per_user_distribution if distribution_type is static.NORMAL: try: s = get_truncated_normal(yaml_parser.favorite_subjects_per_user_mean, yaml_parser.favorite_subjects_per_user_sd, yaml_parser.favorite_subjects_per_user_lower_bound, yaml_parser.favorite_subjects_per_user_upper_bound) except: print('Incorrect parameters for that kind of distribution. Using default value.') s = get_truncated_normal(static.NORMAL_DISTRIBUTION[1], static.NORMAL_DISTRIBUTION[2], static.NORMAL_DISTRIBUTION[3], static.NORMAL_DISTRIBUTION[4]) return s else: try: s = get_truncated_exponential(yaml_parser.favorite_subjects_per_user_upper_bound, yaml_parser.favorite_subjects_per_user_lower_bound, yaml_parser.favorite_subjects_scale) except: print('Incorrect parameters for that kind of distribution. Using default value.') s = get_truncated_exponential(static.EXPONENTIAL_DISTRIBUTION[4], static.EXPONENTIAL_DISTRIBUTION[3], static.EXPONENTIAL_DISTRIBUTION[5]) return s @staticmethod def build_subjects_distribution(yaml_parser): distribution_type = yaml_parser.subjects_distribution if distribution_type is static.NORMAL: try: s = get_truncated_normal(yaml_parser.subjects_mean, yaml_parser.subjects_sd, yaml_parser.subjects_lower_bound, yaml_parser.subjects_upper_bound) except: print('Incorrect parameters for that kind of distribution. Using default value.') s = get_truncated_normal(static.NORMAL_DISTRIBUTION[1], static.NORMAL_DISTRIBUTION[2], static.NORMAL_DISTRIBUTION[3], static.NORMAL_DISTRIBUTION[4]) return s else: try: s = get_truncated_exponential(yaml_parser.subjects_upper_bound, yaml_parser.subjects_lower_bound, yaml_parser.subjects_scale) except: print('Incorrect parameters for that kind of distribution. Using default value.') s = get_truncated_exponential(static.EXPONENTIAL_DISTRIBUTION[4], static.EXPONENTIAL_DISTRIBUTION[3], static.EXPONENTIAL_DISTRIBUTION[5]) return s @staticmethod def build_age_distribution(yaml_parser): return get_truncated_normal(yaml_parser.age_mean, yaml_parser.age_sd, yaml_parser.age_lower_bound, yaml_parser.age_upper_bound) @staticmethod def build_compensations_distribution(yaml_parser): salary_distribution_per_occupation = {} for occupation in yaml_parser.compensations_distribution: prob = yaml_parser.compensations_distribution[occupation] salary_distribution_per_occupation[occupation] = get_truncated_normal(prob[0], prob[1], prob[2], prob[3]) return salary_distribution_per_occupation @staticmethod def build_likes_distribution(yaml_parser): return get_truncated_exponential(yaml_parser.likes_upper_bound, yaml_parser.likes_lower_bound, yaml_parser.likes_scale) @staticmethod def build_followers_distribution(yaml_parser): return get_truncated_exponential(yaml_parser.followers_upper_bound, yaml_parser.followers_lower_bound, yaml_parser.followers_scale)
the-stack_0_17239
import numpy as np import scipy.io.wavfile import sys from aubio import source, pitch win_s = 4096 hop_s = 512 out = scipy.io.wavfile.read("StarWars60.wav", mmap=False) a, b = out your_file = "StarWars60.wav" samplerate = a s = source(your_file, samplerate, hop_s) samplerate = s.samplerate tolerance = 0.8 pitch_o = pitch("yin", win_s, hop_s, samplerate) pitch_o.set_unit("midi") pitch_o.set_tolerance(tolerance) pitches = [] confidences = [] total_frames = 0 while True: samples, read = s() pitch = pitch_o(samples)[0] pitches += [pitch] confidence = pitch_o.get_confidence() confidences += [confidence] total_frames += read if read < hop_s: break print("Average frequency = " + str(np.array(pitches).mean()) + " hz")
the-stack_0_17240
import logging from typing import Dict, List, Optional, Tuple, Any import aiosqlite import zstd from chia.consensus.block_record import BlockRecord from chia.types.blockchain_format.sized_bytes import bytes32 from chia.types.full_block import FullBlock from chia.types.weight_proof import SubEpochChallengeSegment, SubEpochSegments from chia.util.db_wrapper import DBWrapper from chia.util.ints import uint32 from chia.util.lru_cache import LRUCache log = logging.getLogger(__name__) class BlockStore: db: aiosqlite.Connection block_cache: LRUCache db_wrapper: DBWrapper ses_challenge_cache: LRUCache @classmethod async def create(cls, db_wrapper: DBWrapper): self = cls() # All full blocks which have been added to the blockchain. Header_hash -> block self.db_wrapper = db_wrapper self.db = db_wrapper.db if self.db_wrapper.db_version == 2: # TODO: most data in block is duplicated in block_record. The only # reason for this is that our parsing of a FullBlock is so slow, # it's faster to store duplicate data to parse less when we just # need the BlockRecord. Once we fix the parsing (and data structure) # of FullBlock, this can use less space await self.db.execute( "CREATE TABLE IF NOT EXISTS full_blocks(" "header_hash blob PRIMARY KEY," "prev_hash blob," "height bigint," "sub_epoch_summary blob," "is_fully_compactified tinyint," "in_main_chain tinyint," "block blob," "block_record blob)" ) # This is a single-row table containing the hash of the current # peak. The "key" field is there to make update statements simple await self.db.execute("CREATE TABLE IF NOT EXISTS current_peak(key int PRIMARY KEY, hash blob)") await self.db.execute("CREATE INDEX IF NOT EXISTS height on full_blocks(height)") # Sub epoch segments for weight proofs await self.db.execute( "CREATE TABLE IF NOT EXISTS sub_epoch_segments_v3(" "ses_block_hash blob PRIMARY KEY," "challenge_segments blob)" ) await self.db.execute( "CREATE INDEX IF NOT EXISTS is_fully_compactified ON" " full_blocks(is_fully_compactified, in_main_chain) WHERE in_main_chain=1" ) await self.db.execute( "CREATE INDEX IF NOT EXISTS main_chain ON full_blocks(height, in_main_chain) WHERE in_main_chain=1" ) else: await self.db.execute( "CREATE TABLE IF NOT EXISTS full_blocks(header_hash text PRIMARY KEY, height bigint," " is_block tinyint, is_fully_compactified tinyint, block blob)" ) # Block records await self.db.execute( "CREATE TABLE IF NOT EXISTS block_records(header_hash " "text PRIMARY KEY, prev_hash text, height bigint," "block blob, sub_epoch_summary blob, is_peak tinyint, is_block tinyint)" ) # Sub epoch segments for weight proofs await self.db.execute( "CREATE TABLE IF NOT EXISTS sub_epoch_segments_v3(ses_block_hash text PRIMARY KEY," "challenge_segments blob)" ) # Height index so we can look up in order of height for sync purposes await self.db.execute("CREATE INDEX IF NOT EXISTS full_block_height on full_blocks(height)") await self.db.execute( "CREATE INDEX IF NOT EXISTS is_fully_compactified on full_blocks(is_fully_compactified)" ) await self.db.execute("CREATE INDEX IF NOT EXISTS height on block_records(height)") if self.db_wrapper.allow_upgrades: await self.db.execute("DROP INDEX IF EXISTS hh") await self.db.execute("DROP INDEX IF EXISTS is_block") await self.db.execute("DROP INDEX IF EXISTS peak") await self.db.execute( "CREATE INDEX IF NOT EXISTS is_peak_eq_1_idx on block_records(is_peak) where is_peak = 1" ) else: await self.db.execute("CREATE INDEX IF NOT EXISTS peak on block_records(is_peak) where is_peak = 1") await self.db.commit() self.block_cache = LRUCache(1000) self.ses_challenge_cache = LRUCache(50) return self def maybe_from_hex(self, field: Any) -> bytes: if self.db_wrapper.db_version == 2: return field else: return bytes.fromhex(field) def maybe_to_hex(self, field: bytes) -> Any: if self.db_wrapper.db_version == 2: return field else: return field.hex() def compress(self, block: FullBlock) -> bytes: return zstd.compress(bytes(block)) def maybe_decompress(self, block_bytes: bytes) -> FullBlock: if self.db_wrapper.db_version == 2: return FullBlock.from_bytes(zstd.decompress(block_bytes)) else: return FullBlock.from_bytes(block_bytes) async def rollback(self, height: int) -> None: if self.db_wrapper.db_version == 2: await self.db.execute( "UPDATE OR FAIL full_blocks SET in_main_chain=0 WHERE height>? AND in_main_chain=1", (height,) ) async def set_in_chain(self, header_hashes: List[Tuple[bytes32]]) -> None: if self.db_wrapper.db_version == 2: await self.db.executemany( "UPDATE OR FAIL full_blocks SET in_main_chain=1 WHERE header_hash=?", header_hashes ) async def add_full_block(self, header_hash: bytes32, block: FullBlock, block_record: BlockRecord) -> None: self.block_cache.put(header_hash, block) if self.db_wrapper.db_version == 2: ses: Optional[bytes] = ( None if block_record.sub_epoch_summary_included is None else bytes(block_record.sub_epoch_summary_included) ) await self.db.execute( "INSERT OR REPLACE INTO full_blocks VALUES(?, ?, ?, ?, ?, ?, ?, ?)", ( header_hash, block.prev_header_hash, block.height, ses, int(block.is_fully_compactified()), 0, # in_main_chain self.compress(block), bytes(block_record), ), ) else: await self.db.execute( "INSERT OR REPLACE INTO full_blocks VALUES(?, ?, ?, ?, ?)", ( header_hash.hex(), block.height, int(block.is_transaction_block()), int(block.is_fully_compactified()), bytes(block), ), ) await self.db.execute( "INSERT OR REPLACE INTO block_records VALUES(?, ?, ?, ?,?, ?, ?)", ( header_hash.hex(), block.prev_header_hash.hex(), block.height, bytes(block_record), None if block_record.sub_epoch_summary_included is None else bytes(block_record.sub_epoch_summary_included), False, block.is_transaction_block(), ), ) async def persist_sub_epoch_challenge_segments( self, ses_block_hash: bytes32, segments: List[SubEpochChallengeSegment] ) -> None: async with self.db_wrapper.lock: await self.db.execute( "INSERT OR REPLACE INTO sub_epoch_segments_v3 VALUES(?, ?)", (self.maybe_to_hex(ses_block_hash), bytes(SubEpochSegments(segments))), ) await self.db.commit() async def get_sub_epoch_challenge_segments( self, ses_block_hash: bytes32, ) -> Optional[List[SubEpochChallengeSegment]]: cached = self.ses_challenge_cache.get(ses_block_hash) if cached is not None: return cached async with self.db.execute( "SELECT challenge_segments from sub_epoch_segments_v3 WHERE ses_block_hash=?", (self.maybe_to_hex(ses_block_hash),), ) as cursor: row = await cursor.fetchone() if row is not None: challenge_segments = SubEpochSegments.from_bytes(row[0]).challenge_segments self.ses_challenge_cache.put(ses_block_hash, challenge_segments) return challenge_segments return None def rollback_cache_block(self, header_hash: bytes32): try: self.block_cache.remove(header_hash) except KeyError: # this is best effort. When rolling back, we may not have added the # block to the cache yet pass async def get_full_block(self, header_hash: bytes32) -> Optional[FullBlock]: cached = self.block_cache.get(header_hash) if cached is not None: log.debug(f"cache hit for block {header_hash.hex()}") return cached log.debug(f"cache miss for block {header_hash.hex()}") async with self.db.execute( "SELECT block from full_blocks WHERE header_hash=?", (self.maybe_to_hex(header_hash),) ) as cursor: row = await cursor.fetchone() if row is not None: block = self.maybe_decompress(row[0]) self.block_cache.put(header_hash, block) return block return None async def get_full_block_bytes(self, header_hash: bytes32) -> Optional[bytes]: cached = self.block_cache.get(header_hash) if cached is not None: log.debug(f"cache hit for block {header_hash.hex()}") return bytes(cached) log.debug(f"cache miss for block {header_hash.hex()}") async with self.db.execute( "SELECT block from full_blocks WHERE header_hash=?", (self.maybe_to_hex(header_hash),) ) as cursor: row = await cursor.fetchone() if row is not None: if self.db_wrapper.db_version == 2: return zstd.decompress(row[0]) else: return row[0] return None async def get_full_blocks_at(self, heights: List[uint32]) -> List[FullBlock]: if len(heights) == 0: return [] heights_db = tuple(heights) formatted_str = f'SELECT block from full_blocks WHERE height in ({"?," * (len(heights_db) - 1)}?)' async with self.db.execute(formatted_str, heights_db) as cursor: ret: List[FullBlock] = [] for row in await cursor.fetchall(): ret.append(self.maybe_decompress(row[0])) return ret async def get_block_records_by_hash(self, header_hashes: List[bytes32]): """ Returns a list of Block Records, ordered by the same order in which header_hashes are passed in. Throws an exception if the blocks are not present """ if len(header_hashes) == 0: return [] all_blocks: Dict[bytes32, BlockRecord] = {} if self.db_wrapper.db_version == 2: async with self.db.execute( "SELECT header_hash,block_record FROM full_blocks " f'WHERE header_hash in ({"?," * (len(header_hashes) - 1)}?)', tuple(header_hashes), ) as cursor: for row in await cursor.fetchall(): header_hash = bytes32(row[0]) all_blocks[header_hash] = BlockRecord.from_bytes(row[1]) else: formatted_str = f'SELECT block from block_records WHERE header_hash in ({"?," * (len(header_hashes) - 1)}?)' async with self.db.execute(formatted_str, tuple([hh.hex() for hh in header_hashes])) as cursor: for row in await cursor.fetchall(): block_rec: BlockRecord = BlockRecord.from_bytes(row[0]) all_blocks[block_rec.header_hash] = block_rec ret: List[BlockRecord] = [] for hh in header_hashes: if hh not in all_blocks: raise ValueError(f"Header hash {hh} not in the blockchain") ret.append(all_blocks[hh]) return ret async def get_blocks_by_hash(self, header_hashes: List[bytes32]) -> List[FullBlock]: """ Returns a list of Full Blocks blocks, ordered by the same order in which header_hashes are passed in. Throws an exception if the blocks are not present """ if len(header_hashes) == 0: return [] header_hashes_db: Tuple[Any, ...] if self.db_wrapper.db_version == 2: header_hashes_db = tuple(header_hashes) else: header_hashes_db = tuple([hh.hex() for hh in header_hashes]) formatted_str = ( f'SELECT header_hash, block from full_blocks WHERE header_hash in ({"?," * (len(header_hashes_db) - 1)}?)' ) all_blocks: Dict[bytes32, FullBlock] = {} async with self.db.execute(formatted_str, header_hashes_db) as cursor: for row in await cursor.fetchall(): header_hash = self.maybe_from_hex(row[0]) full_block: FullBlock = self.maybe_decompress(row[1]) # TODO: address hint error and remove ignore # error: Invalid index type "bytes" for "Dict[bytes32, FullBlock]"; # expected type "bytes32" [index] all_blocks[header_hash] = full_block # type: ignore[index] self.block_cache.put(header_hash, full_block) ret: List[FullBlock] = [] for hh in header_hashes: if hh not in all_blocks: raise ValueError(f"Header hash {hh} not in the blockchain") ret.append(all_blocks[hh]) return ret async def get_block_record(self, header_hash: bytes32) -> Optional[BlockRecord]: if self.db_wrapper.db_version == 2: async with self.db.execute( "SELECT block_record FROM full_blocks WHERE header_hash=?", (header_hash,), ) as cursor: row = await cursor.fetchone() if row is not None: return BlockRecord.from_bytes(row[0]) else: async with self.db.execute( "SELECT block from block_records WHERE header_hash=?", (header_hash.hex(),), ) as cursor: row = await cursor.fetchone() if row is not None: return BlockRecord.from_bytes(row[0]) return None async def get_block_records_in_range( self, start: int, stop: int, ) -> Dict[bytes32, BlockRecord]: """ Returns a dictionary with all blocks in range between start and stop if present. """ ret: Dict[bytes32, BlockRecord] = {} if self.db_wrapper.db_version == 2: async with self.db.execute( "SELECT header_hash, block_record FROM full_blocks WHERE height >= ? AND height <= ?", (start, stop), ) as cursor: for row in await cursor.fetchall(): header_hash = bytes32(row[0]) ret[header_hash] = BlockRecord.from_bytes(row[1]) else: formatted_str = f"SELECT header_hash, block from block_records WHERE height >= {start} and height <= {stop}" async with await self.db.execute(formatted_str) as cursor: for row in await cursor.fetchall(): header_hash = bytes32(self.maybe_from_hex(row[0])) ret[header_hash] = BlockRecord.from_bytes(row[1]) return ret async def get_peak(self) -> Optional[Tuple[bytes32, uint32]]: if self.db_wrapper.db_version == 2: async with self.db.execute("SELECT hash FROM current_peak WHERE key = 0") as cursor: peak_row = await cursor.fetchone() if peak_row is None: return None async with self.db.execute("SELECT height FROM full_blocks WHERE header_hash=?", (peak_row[0],)) as cursor: peak_height = await cursor.fetchone() if peak_height is None: return None return bytes32(peak_row[0]), uint32(peak_height[0]) else: async with self.db.execute("SELECT header_hash, height from block_records WHERE is_peak = 1") as cursor: peak_row = await cursor.fetchone() if peak_row is None: return None return bytes32(bytes.fromhex(peak_row[0])), uint32(peak_row[1]) async def get_block_records_close_to_peak( self, blocks_n: int ) -> Tuple[Dict[bytes32, BlockRecord], Optional[bytes32]]: """ Returns a dictionary with all blocks that have height >= peak height - blocks_n, as well as the peak header hash. """ peak = await self.get_peak() if peak is None: return {}, None ret: Dict[bytes32, BlockRecord] = {} if self.db_wrapper.db_version == 2: async with self.db.execute( "SELECT header_hash, block_record FROM full_blocks WHERE height >= ?", (peak[1] - blocks_n,), ) as cursor: for row in await cursor.fetchall(): header_hash = bytes32(row[0]) ret[header_hash] = BlockRecord.from_bytes(row[1]) else: formatted_str = f"SELECT header_hash, block from block_records WHERE height >= {peak[1] - blocks_n}" async with self.db.execute(formatted_str) as cursor: for row in await cursor.fetchall(): header_hash = bytes32(self.maybe_from_hex(row[0])) ret[header_hash] = BlockRecord.from_bytes(row[1]) return ret, peak[0] async def set_peak(self, header_hash: bytes32) -> None: # We need to be in a sqlite transaction here. # Note: we do not commit this to the database yet, as we need to also change the coin store if self.db_wrapper.db_version == 2: # Note: we use the key field as 0 just to ensure all inserts replace the existing row await self.db.execute("INSERT OR REPLACE INTO current_peak VALUES(?, ?)", (0, header_hash)) else: await self.db.execute("UPDATE block_records SET is_peak=0 WHERE is_peak=1") await self.db.execute( "UPDATE block_records SET is_peak=1 WHERE header_hash=?", (self.maybe_to_hex(header_hash),), ) async def is_fully_compactified(self, header_hash: bytes32) -> Optional[bool]: async with self.db.execute( "SELECT is_fully_compactified from full_blocks WHERE header_hash=?", (self.maybe_to_hex(header_hash),) ) as cursor: row = await cursor.fetchone() if row is None: return None return bool(row[0]) async def get_random_not_compactified(self, number: int) -> List[int]: if self.db_wrapper.db_version == 2: async with self.db.execute( f"SELECT height FROM full_blocks WHERE in_main_chain=1 AND is_fully_compactified=0 " f"ORDER BY RANDOM() LIMIT {number}" ) as cursor: rows = await cursor.fetchall() else: # Since orphan blocks do not get compactified, we need to check whether all blocks with a # certain height are not compact. And if we do have compact orphan blocks, then all that # happens is that the occasional chain block stays uncompact - not ideal, but harmless. async with self.db.execute( f"SELECT height FROM full_blocks GROUP BY height HAVING sum(is_fully_compactified)=0 " f"ORDER BY RANDOM() LIMIT {number}" ) as cursor: rows = await cursor.fetchall() heights = [int(row[0]) for row in rows] return heights
the-stack_0_17242
import numpy as np import sys, os import yaml import trimesh parent_dir = os.path.dirname(os.getcwd()) pykin_path = parent_dir + "/../../" sys.path.append(pykin_path) from pykin.robots.single_arm import SingleArm from pykin.planners.rrt_star_planner import RRTStarPlanner from pykin.collision.collision_manager import CollisionManager from pykin.kinematics.transform import Transform from pykin.utils.object_utils import ObjectManager from pykin.utils import plot_utils as plt fig, ax = plt.init_3d_figure(figsize=(10,6), dpi= 100) file_path = '../../../asset/urdf/sawyer/sawyer.urdf' mesh_path = pykin_path+"/asset/urdf/sawyer/" yaml_path = '../../../asset/config/sawyer_init_params.yaml' with open(yaml_path) as f: controller_config = yaml.safe_load(f) robot = SingleArm(file_path, Transform(rot=[0.0, 0.0, 0], pos=[0, 0, 0])) robot.setup_link_name("sawyer_base", "sawyer_right_hand") ################################################################## init_qpos = controller_config["init_qpos"] init_fk = robot.forward_kin(np.concatenate((np.zeros(1), init_qpos))) init_eef_pose = robot.get_eef_pose(init_fk) goal_eef_pose = controller_config["goal_pose"] c_manager = CollisionManager(mesh_path) c_manager.setup_robot_collision(robot, init_fk) milk_path = pykin_path+"/asset/objects/meshes/milk.stl" milk_mesh = trimesh.load_mesh(milk_path) obs = ObjectManager() o_manager = CollisionManager(milk_path) for i in range(9): name = "miik_" + str(i) if i < 3: obs_pos = [0.3, -0.5 + i * 0.5, 0.3] elif 3 <= i < 6: obs_pos = [0.3, -0.5 + (i-3) * 0.5, 0.9] else: obs_pos = [0.3, -0.5 + (i-6) * 0.5, -0.3] o_manager.add_object(name, gtype="mesh", gparam=milk_mesh, transform=Transform(pos=obs_pos).h_mat) obs(name=name, gtype="mesh", gparam=milk_mesh, transform=Transform(pos=obs_pos).h_mat) ################################################################## planner = RRTStarPlanner( robot=robot, self_collision_manager=c_manager, object_collision_manager=o_manager, delta_distance=0.1, epsilon=0.2, max_iter=300, gamma_RRT_star=0.2, dimension=7, n_step=1 ) joint_path,_ = planner.get_path_in_joinst_space(cur_q=init_qpos, goal_pose=goal_eef_pose) if joint_path is None : print("Cannot Visulization Path") exit() joint_trajectory = [] eef_poses = [] for step, joint in enumerate(joint_path): transformations = robot.forward_kin(np.concatenate((np.zeros(1),joint))) joint_trajectory.append(transformations) eef_poses.append(transformations[robot.eef_name].pos) plt.plot_animation( robot, joint_trajectory, fig, ax, eef_poses=eef_poses, objects=obs, visible_objects=True, visible_collision=True, interval=1, repeat=True)
the-stack_0_17243
#!/usr/bin/env python from __future__ import unicode_literals from mptt import VERSION requires = () try: from setuptools import setup kwargs = {str('install_requires'): requires} except ImportError: from distutils.core import setup kwargs = {str('requires'): requires} # Dynamically calculate the version based on mptt.VERSION version_tuple = VERSION version = ".".join([str(v) for v in version_tuple]) # on py3, all these are text strings # on py2, they're all byte strings. # ... and that's how setuptools likes it. setup( name=str('django-mptt'), description=str('''Utilities for implementing Modified Preorder Tree Traversal with your Django Models and working with trees of Model instances.'''), version=version, author=str('Craig de Stigter'), author_email=str('[email protected]'), url=str('http://github.com/django-mptt/django-mptt'), packages=[str('mptt'), str('mptt.templatetags')], package_data={str('mptt'): [str('templates/admin/*'), str('locale/*/*/*.*')]}, classifiers=[ str('Development Status :: 4 - Beta'), str('Environment :: Web Environment'), str('Framework :: Django'), str('Intended Audience :: Developers'), str('License :: OSI Approved :: MIT License'), str('Operating System :: OS Independent'), str('Programming Language :: Python'), str('Programming Language :: Python :: 2'), str('Programming Language :: Python :: 3'), str('Topic :: Utilities'), ], **kwargs )
the-stack_0_17246
import matplotlib matplotlib.use('Agg') #matplotlib.use("gtk") #matplotlib.use('Qt5Agg') from table_functions import * import pickle import os import pandas as pd import matplotlib.pyplot as plt import sys #sys.path.insert() # print(data) import numpy as np import os from scipy import stats from matplotlib.pyplot import figure import glob import numpy as np from hist_functions import * import scipy.stats from pathlib import Path # ipdb.set_trace() import ipdb from scatter_plot_functions import * from rectify_vars_and_wald_functions import * from checkpickle_EFFECT_new import parse_dir SMALL_SIZE = 13 MEDIUM_SIZE = 10 BIGGER_SIZE = 14 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=8.5) # fontsize of the tick labels plt.rc('ytick', labelsize=10) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title PROP_EPS_KEY = "prop_exploring_ppd_cuml" def plot_hist_and_table(df_for_num_steps_eg0pt1, df_for_num_steps_eg0pt3, df_for_num_steps_ts, df_for_num_steps_unif, num_steps, epsilon, n): fig_h, ax_h = plt.subplots() proportions_unif = df_for_num_steps_unif['sample_size_1'] / num_steps proportions_eg0pt1 = df_for_num_steps_eg0pt1['sample_size_1'] / num_steps proportions_eg0pt3 = df_for_num_steps_eg0pt3['sample_size_1'] / num_steps proportions_ts = df_for_num_steps_ts['sample_size_1'] / num_steps ax_h.hist(proportions_eg0pt1, alpha = 0.5, label = "Epsilon Greedy 0.1") ax_h.hist(proportions_eg0pt3, alpha = 0.5, label = "Epsilon Greedy 0.3") ax_h.hist(proportions_unif, alpha = 0.5, label = "Uniform Random") ax_h.hist(proportions_ts, alpha = 0.5, label = "Thompson Sampling") ax_h.legend() fig_h.suptitle("Histogram of Proportion of {} Participants Assigned to Condition 1 Across 500 Simulations".format(num_steps)) # rows = ["Areferg"] # columns = ["Berger"] # cell_text = ["ergerg"] # the_table = ax_h.table(cellText=cell_text, # rowLabels=rows, # colLabels=columns, # loc='right') # fig_h.subplots_adjust(left=0.2, wspace=0.4) data = np.random.uniform(0, 1, 80).reshape(20, 4) mean_ts = np.mean(proportions_ts) var_ts = np.var(proportions_ts) mean_eg0pt1 = np.mean(proportions_eg0pt1) mean_eg0pt3 = np.mean(proportions_eg0pt3) var_eg0pt1 = np.var(proportions_eg0pt1) var_eg0pt3 = np.var(proportions_eg0pt3) prop_lt_25_eg0pt1 = np.sum(proportions_eg0pt1 < 0.25) / len(proportions_eg0pt1) prop_lt_25_eg0pt3 = np.sum(proportions_eg0pt3 < 0.25) / len(proportions_eg0pt3) prop_lt_25_ts = np.sum(proportions_ts < 0.25) / len(proportions_ts) # prop_gt_25_lt_5_eg = np.sum(> proportions > 0.25) / len(proportions) # prop_gt_25_lt_5_ts = np.sum(> proportions_ts > 0.25) / len(proportions_ts) data = [[mean_ts, var_ts, prop_lt_25_ts],\ [mean_eg0pt1, var_eg0pt1, prop_lt_25_eg0pt1],\ [mean_eg0pt3, var_eg0pt3, prop_lt_25_eg0pt3]] final_data = [['%.3f' % j for j in i] for i in data] #<0.25, 0.25< & <0.5, <0.5 & <0.75, <0.75 & <1.0 #table.auto_set_font_size(False) # table.set_fontsize(7) # table.auto_set_column_width((-1, 0, 1, 2, 3)) table = ax_h.table(cellText=final_data, colLabels=['Mean', 'Variance', 'prop < 0.25'], rowLabels = ["Thompson Sampling", "Epsilon Greedy 0.1", "Epsilon Greedy 0.3"], loc='bottom', cellLoc='center', bbox=[0.25, -0.5, 0.5, 0.3]) table.auto_set_font_size(False) table.set_fontsize(7) table.auto_set_column_width((-1, 0, 1, 2, 3)) # Adjust layout to make room for the table: #ax_h.tick_params(axis='x', pad=20) #fig_h.subplots_adjust(left=0.2, bottom=0.5) #fig_h.tight_layout() save_dir = "../simulation_analysis_saves/histograms/ExploreAndExploit/N={}".format(n) Path(save_dir).mkdir(parents=True, exist_ok=True) fig_h.savefig(save_dir + "/condition_prop_n={}.png".format(num_steps), bbox_inches = 'tight') fig_h.clf() def stacked_bar_plot_with_cutoff(df_ts = None, df_eg0pt1 = None, df_eg0pt3 = None, df_unif = None, df_tsppd = None, n = None, num_sims = None, df_ets = None, \ title = None, bs_prop = 0.0,\ ax = None, ax_idx = None, epsilon = None, es=None): step_sizes = df_unif['num_steps'].unique() size_vars = ["n/2", "n", "2*n", "4*n"] t1_list_eg0pt1 = [] t1_list_eg0pt3 = [] t1_list_unif = [] t1_wald_list_unif = [] #IS REWARD NOT T1 TODO CHnage VAR NAMES var_list = [] t1_list_ts = [] t1_list_tsppd = [] t1_list_ets = [] for num_steps in step_sizes: df_for_num_steps_eg0pt1 = df_eg0pt1[df_eg0pt1['num_steps'] == num_steps].dropna() df_for_num_steps_eg0pt3 = df_eg0pt3[df_eg0pt3['num_steps'] == num_steps].dropna() df_for_num_steps_unif = df_unif[df_unif['num_steps'] == num_steps].dropna() df_for_num_steps_ts = df_ts[df_ts['num_steps'] == num_steps].dropna() df_for_num_steps_tsppd = df_tsppd[df_tsppd['num_steps'] == num_steps].dropna() df_for_num_steps_ets = df_ets[df_ets['num_steps'] == num_steps].dropna() #df_for_num_steps_unif = df_for_num_steps_unif.dropna() # bins = np.arange(0, 1.01, .025) unif_reward_mean = (df_for_num_steps_unif['total_reward']/num_steps).mean() ts_reward_mean = (df_for_num_steps_ts['total_reward']/num_steps).mean() eps_greedy_reward_mean_0pt1 = (df_for_num_steps_eg0pt1['total_reward']/num_steps).mean() eps_greedy_reward_mean_0pt3 = (df_for_num_steps_eg0pt3['total_reward']/num_steps).mean() tsppd_reward_mean = (df_for_num_steps_tsppd['total_reward']/num_steps).mean() ets_reward_mean = (df_for_num_steps_ets['total_reward']/num_steps).mean() t1_list_unif.append(unif_reward_mean) t1_list_ts.append(ts_reward_mean) t1_list_eg0pt1.append(eps_greedy_reward_mean_0pt1) t1_list_eg0pt3.append(eps_greedy_reward_mean_0pt3) t1_list_tsppd.append(tsppd_reward_mean) t1_list_ets.append(ets_reward_mean) t1_list_ts = np.array(t1_list_ts) t1_list_tsppd = np.array(t1_list_tsppd) t1_list_ets = np.array(t1_list_ets) ind = np.arange(3*len(step_sizes), step=3) # print(ind) # print(step_sizes) ax.set_xticks(ind) ax.set_xticklabels(step_sizes) print("var", var_list) width = 0.44 capsize = width*4 width_total = 2*width t1_list_eg0pt1 = np.array(t1_list_eg0pt1) t1_list_eg0pt3 = np.array(t1_list_eg0pt3) t1_list_unif = np.array(t1_list_unif) num_sims_RL4RL = 5000 t1_eg0pt1_se = stats.t.ppf(1-0.025, num_sims)*np.sqrt(t1_list_eg0pt1*(1-t1_list_eg0pt1)/num_sims_RL4RL) #95 CI for Proportion t1_eg0pt3_se = stats.t.ppf(1-0.025, num_sims)*np.sqrt(t1_list_eg0pt3*(1-t1_list_eg0pt3)/num_sims_RL4RL) #95 CI for Proportion t1_se_unif = stats.t.ppf(1-0.025, num_sims)*np.sqrt(t1_list_unif*(1-t1_list_unif)/num_sims_RL4RL) t1_se_ts = stats.t.ppf(1-0.025, num_sims)*np.sqrt(t1_list_ts*(1-t1_list_ts)/num_sims_RL4RL) num_sims_ppd = num_sims t1_se_tsppd = stats.t.ppf(1-0.025, num_sims_ppd)*np.sqrt(t1_list_tsppd*(1-t1_list_tsppd)/num_sims_ppd) num_sims_ets = num_sims t1_se_ets = stats.t.ppf(1-0.025, num_sims_ppd)*np.sqrt(t1_list_ets*(1-t1_list_ets)/num_sims_ets) print(t1_se_unif) #note that power goes to 1.0 for unif, thus error bars #print(t1_se_unif) p1 = ax.bar(ind, t1_list_eg0pt1, width = width, yerr = t1_eg0pt1_se, \ ecolor='black', capsize=capsize, color = 'yellow', edgecolor='black') p3 = ax.bar(ind+width, t1_list_eg0pt3, width = width, yerr = t1_eg0pt3_se, \ ecolor='black', capsize=capsize, color = 'green', edgecolor='black') p4 = ax.bar(ind+2*width, t1_list_ts, width = width, yerr = t1_se_ts, ecolor='black', capsize=capsize, color = 'blue', edgecolor='black') p5 = ax.bar(ind+3*width, t1_list_tsppd, width = width, yerr = t1_se_tsppd, ecolor='black', capsize=capsize, color = 'purple', edgecolor='black') p6 = ax.bar(ind+4*width, t1_list_ets, width = width, yerr = t1_se_ets, ecolor='black', capsize=capsize, color = 'brown', edgecolor='black') p2 = ax.bar(ind-width, t1_list_unif, width = width,\ yerr = t1_se_unif, ecolor='black', \ capsize=capsize, color = 'red', \ edgecolor='black') if ax_idx == 2: # leg1 = ax.legend((p1[0], p2[0], p3[0], p4[0]), ('Epsilon Greedy Chi Squared 0.1', "Uniform Chi Squared", "Epsilon Greedy Chi Squared 0.3", "Thompson Sampling Chi Squared"), bbox_to_anchor=(1.0, 1.76)) leg1 = ax.legend((p2[0], p1[0], p3[0], p4[0], p5[0], p6[0]), ("Uniform Wald", 'Epsilon Greedy 0.1 Wald', "Epsilon Greedy 0.3 Wald", "Thompson Sampling Wald", "PPD c 0.1 Thompson Sampling Wald", "Epsilon 0.1 Thompson Sampling Wald"), bbox_to_anchor=(1.0, 1.76)) #leg1 = ax.legend((p2[0], p1[0], p3[0], p4[0]), ("Uniform Chi Squared", 'Epsilon Greedy Chi Squared 0.1', "Epsilon Greedy Chi Squared 0.3", "Thompson Sampling Chi Squared"), bbox_to_anchor=(1.0, 1.76)) #leg2 = ax.legend(loc = 2) ax.add_artist(leg1) # plt.tight_layout() # plt.title(title) # if ax_idx == 6 or ax_idx == 7 or ax_idx == 8: ax.set_xlabel("number of participants = \n n/2, n, 2*n, 4*n") ax.set_ylim(0.40, 0.8) x = es / 2 optimal_arm = 0.5 + x ax.axhline(y=optimal_arm, linestyle='--') return [t1_list_unif, t1_list_eg0pt1, t1_list_ts] #returns [UR Eps_Greedy, TS], in this case, need to return for each step size, but only plotting for one bs, so save step size by model (4x2) def parse_dir_old(root, root_cutoffs, num_sims): arm_prob= 0.5 arm_prob_list = [0.2, 0.5, 0.8] es_list = [0.5, 0.3, 0.1] n_list = [32, 88, 785] epsilon = 0.1 #EpsilonGreedyIsEffect/num_sims=5armProb=0.5/es=0.3epsilon=0.1/ root_dir = root + "/num_sims={}armProb={}".format(num_sims, arm_prob) fig, ax = plt.subplots(1,3, figsize = (12,5)) #fig.set_size_inches(17.5, 13.5) ax = ax.ravel() i = 0 # ipdb.set_trace() c = 0.1 num_sims_secb = 5000 root_ts = "../../../RL4RLSectionB/simulation_saves/IsEffect_fixedbs_RL4RLMay8/num_sims={}armProb=0.5".format(num_sims_secb) root_eg = "../../../RL4RLSectionB/simulation_saves/EpsilonGreedyIsEffect/num_sims={}armProb=0.5".format(num_sims_secb) root_unif = "../../../RL4RLSectionB/simulation_saves/UniformIsEffect/num_sims={}armProb=0.5".format(num_sims_secb) root_ets = "../simulation_saves/EpsilonTSIsEffect/num_sims={}armProb=0.5".format(5000) for n in n_list: es = es_list[i] bs = 1 es_dir_0pt1 = root_eg + "/es={}epsilon={}/".format(es, 0.1) es_dir_0pt3 = root_eg + "/es={}epsilon={}/".format(es, 0.3) ts_dir = root_ts + "/es={}/".format(es) tsppd_dir = root_dir + "/es={}c={}/".format(es, c) ets_dir = root_ets + "/es={}epsilon={}/".format(es, 0.1) unif_dir = root_unif + "/es={}/".format(es) to_check_eg0pt1 = glob.glob(es_dir_0pt1 + "/*Prior*{}*{}Df.pkl".format(bs,es))[0] #Has eg, 34 in 348!! assert(len(glob.glob(es_dir_0pt1 + "/*Prior*{}*{}Df.pkl".format(bs,es))) == 1) to_check_eg0pt3 = glob.glob(es_dir_0pt3 + "/*Prior*{}*{}Df.pkl".format(bs,es))[0] #Has eg, 34 in 348!! assert(len(glob.glob(es_dir_0pt3 + "/*Prior*{}*{}Df.pkl".format(bs,es))) == 1) to_check_unif = glob.glob(unif_dir + "/*Uniform*{}*{}Df.pkl".format(bs, es))[0] assert(len(glob.glob(unif_dir + "/*Uniform*{}*{}Df.pkl".format(bs, es))) == 1) to_check_ts = glob.glob(ts_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))[0] #Has eg, 34 in 348!! assert(len(glob.glob(ts_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))) == 1) to_check_tsppd = glob.glob(tsppd_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))[0] #Has eg, 34 in 348!! assert(len(glob.glob(tsppd_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))) == 1) to_check_ets = glob.glob(ets_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))[0] #Has eg, 34 in 348!! assert(len(glob.glob(ets_dir + "/*Prior*{}*{}Df.pkl".format(bs,es))) == 1) #------hists, tables etc with open(to_check_eg0pt1, 'rb') as f: df_eg0pt1 = pickle.load(f) with open(to_check_eg0pt3, 'rb') as f: df_eg0pt3 = pickle.load(f) with open(to_check_unif, 'rb') as f: df_unif = pickle.load(f) if to_check_ts != None: with open(to_check_ts, 'rb') as t: df_ts = pickle.load(t) with open(to_check_tsppd, 'rb') as f: df_tsppd = pickle.load(f) with open(to_check_ets, 'rb') as f: df_ets = pickle.load(f) # ipdb.set_trace() rect_key = "TS" rect_key = "Drop NA" rectify_vars_noNa(df_eg0pt1, alg_key = rect_key) rectify_vars_noNa(df_eg0pt3, alg_key = rect_key) rectify_vars_noNa(df_ts, alg_key = rect_key) rectify_vars_noNa(df_unif, alg_key = rect_key) assert np.sum(df_eg0pt1["wald_type_stat"].isna()) == 0 assert np.sum(df_eg0pt1["wald_pval"].isna()) == 0 next_df = stacked_bar_plot_with_cutoff(df_eg0pt1 = df_eg0pt1, df_eg0pt3 = df_eg0pt3,\ df_unif = df_unif, df_ts = df_ts, df_tsppd = df_tsppd, df_ets = df_ets,\ n = n, es=es,num_sims = num_sims, ax = ax[i], ax_idx = i, epsilon = epsilon) # ax[i].set_title("es = {}, n = {}".format(es, n)) ax[i].set_ylabel("Reward") i += 1 df = pd.DataFrame(next_df, columns = ["n/2","n","2n","4n"]) df.index = ["Uniform Random Chi Squared","Epsilon Greedy Chi Squared", "Thompson Sampling Chi Squared"] save_dir = "../simulation_analysis_saves/histograms/ExploreAndExploit/N={}".format(n) Path(save_dir).mkdir(parents=True, exist_ok=True) df.to_csv(save_dir + "/Reward={}_numsims={}.csv".format(n, num_sims)) title = "Average Reward \n Across {} Simulations".format(num_sims) #ax[i].set_title(title, fontsize = 55) #i +=1 #fig.suptitle("Type One Error Rates Across {} Simulations".format(num_sims)) fig.suptitle(title) #fig.tight_layout(rect=[0, 0.03, 1, 0.95]) #handles, labels = ax[i-1].get_legend_handles_labels() #fig.legend(handles, labels, loc='upper right', prop={'size': 50}) #fig.tight_layout() save_dir = "../simulation_analysis_saves/power_t1_plots" if not os.path.isdir(save_dir): os.mkdir(save_dir) # print("saving to ", "plots/{}.png".format(title)) #fig.set_tight_layout(True) fig.tight_layout() fig.subplots_adjust(top=.8) fig.savefig(save_dir + "/{}.svg".format(title), bbox_inches = 'tight') # plt.show() fig.clf() plt.close(fig) if __name__ == "__main__": root = "../simulation_saves/TSPPDIsEffect" #parse_dir(root, root_cutoffs) num_sims = 500 num_sims = 5000 num_sims = 10000 title = "Mean Reward \n Averaged Across {} Simulations".format(num_sims) # parse_dir_old(root, root, num_sims) parse_dir(root, root, num_sims, title = title, metric = "Reward", ylabel = "Reward", ymax = 0.80, num_es = 3) title = "Proportion of Optimal Allocations \n Averaged Across {} Simulations".format(num_sims) parse_dir(root, root, num_sims, title = title, metric = "PropOpt", ylabel = "Proportion Optimal Allocation", ymax = 1.0, num_es = 3) parse_dir(root, root, num_sims, title = title, metric = "PropEps", ylabel = "Proportion Eps", ymax = 1.0, num_es = 3)
the-stack_0_17247
from warnings import simplefilter import numpy as np from sklearn import model_selection import wandb from wandb.sklearn import utils # ignore all future warnings simplefilter(action="ignore", category=FutureWarning) def learning_curve( model, X, y, cv=None, shuffle=False, random_state=None, train_sizes=None, n_jobs=1, scoring=None, ): """Trains model on datasets of varying size and generates plot of score vs size. Called by plot_learning_curve to visualize learning curve. Please use the function plot_learning_curve() if you wish to visualize your learning curves. """ train_sizes, train_scores, test_scores = model_selection.learning_curve( model, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=scoring, shuffle=shuffle, random_state=random_state, ) train_scores_mean = np.mean(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) table = make_table(train_scores_mean, test_scores_mean, train_sizes) chart = wandb.visualize("wandb/learning_curve/v1", table) return chart def make_table(train, test, train_sizes): data = [] for i in range(len(train)): if utils.check_against_limit( i, "learning_curve", utils.chart_limit / 2, ): break train_set = ["train", utils.round_2(train[i]), train_sizes[i]] test_set = ["test", utils.round_2(test[i]), train_sizes[i]] data.append(train_set) data.append(test_set) table = wandb.Table(columns=["dataset", "score", "train_size"], data=data) return table
the-stack_0_17248
import time import math import numpy as np import tensorflow as tf import ops from config import config from mac_cell import MACCell ''' The MAC network model. It performs reasoning processes to answer a question over knowledge base (the image) by decomposing it into attention-based computational steps, each perform by a recurrent MAC cell. The network has three main components. Input unit: processes the network inputs: raw question strings and image into distributional representations. The MAC network: calls the MACcells (mac_cell.py) config.netLength number of times, to perform the reasoning process over the question and image. The output unit: a classifier that receives the question and final state of the MAC network and uses them to compute log-likelihood over the possible one-word answers. ''' class MACnet(object): '''Initialize the class. Args: embeddingsInit: initialization for word embeddings (random / glove). answerDict: answers dictionary (mapping between integer id and symbol). ''' def __init__(self, embeddingsInit, answerDict, questionDict, nextElement = None): self.input = nextElement self.embeddingsInit = embeddingsInit self.answerDict = answerDict self.questionDict = questionDict self.build() ''' Initializes placeholders. questionIndicesAll: integer ids of question words. [batchSize, questionLength] questionLengthsAll: length of each question. [batchSize] imagesPlaceholder: image features. [batchSize, channels, height, width] (converted internally to [batchSize, height, width, channels]) answerIndicesAll: integer ids of answer words. [batchSize] lr: learning rate (tensor scalar) train: train / evaluation (tensor boolean) dropout values dictionary (tensor scalars) ''' # change to H x W x C? def addPlaceholders(self): with tf.variable_scope("Placeholders"): ## data # questions self.questionIndicesAll = tf.placeholder(tf.int32, shape = (None, None)) self.questionLengthsAll = tf.placeholder(tf.int32, shape = (None, )) # images # put image known dimension as last dim? if config.imageObjects: self.imagesAll = tf.placeholder(tf.float32, shape = (None, None, None)) self.imagesObjectNumAll = tf.placeholder(tf.int32, shape = (None, )) else: self.imagesPlaceholder = tf.placeholder(tf.float32, shape = (None, None, None, None)) self.imagesAll = tf.transpose(self.imagesPlaceholder, (0, 2, 3, 1)) # answers self.answerIndicesAll = tf.placeholder(tf.int32, shape = (None, )) if config.dataset == "VQA": self.answerFreqListsAll = tf.placeholder(tf.int32, shape = (None, None)) self.answerFreqNumsAll = tf.placeholder(tf.int32, shape = (None, )) if config.ansFormat == "mc": self.choicesIndicesAll = tf.placeholder(tf.int32, shape = (None, None)) self.choicesNumsAll = tf.placeholder(tf.int32, shape = (None, )) # in general could consolidate that with mc and make it more general if i did choicesIndices all of them # in case of open ended ## optimization self.lr = tf.placeholder(tf.float32, shape = ()) self.train = tf.placeholder(tf.bool, shape = ()) self.batchSizeAll = tf.shape(self.questionIndicesAll)[0] ## dropouts # TODO: change dropouts to be 1 - current self.dropouts = { "encInput": tf.placeholder(tf.float32, shape = ()), "encState": tf.placeholder(tf.float32, shape = ()), "stem": tf.placeholder(tf.float32, shape = ()), "question": tf.placeholder(tf.float32, shape = ()), "read": tf.placeholder(tf.float32, shape = ()), "write": tf.placeholder(tf.float32, shape = ()), "memory": tf.placeholder(tf.float32, shape = ()), "output": tf.placeholder(tf.float32, shape = ()), "controlPre": tf.placeholder(tf.float32, shape = ()), "controlPost": tf.placeholder(tf.float32, shape = ()), "wordEmb": tf.placeholder(tf.float32, shape = ()), "word": tf.placeholder(tf.float32, shape = ()), "vocab": tf.placeholder(tf.float32, shape = ()), "object": tf.placeholder(tf.float32, shape = ()), "wordStandard": tf.placeholder(tf.float32, shape = ()) } # batch norm params self.batchNorm = {"decay": config.bnDecay, "train": self.train} self.imageInDim = config.imageDims[-1] if not config.imageObjects: self.H, self.W, self.imageInDim = 7, 7, 2048# config.imageDims if config.dataset == "CLEVR": self.H, self.W, self.imageInDim = 14, 14, 1024 # Feeds data into placeholders. See addPlaceholders method for further details. def createFeedDict(self, data, images, train): feedDict = { self.questionIndicesAll: data["questions"], self.questionLengthsAll: data["questionLengths"], self.answerIndicesAll: data["answers"], self.dropouts["encInput"]: config.encInputDropout if train else 1.0, self.dropouts["encState"]: config.encStateDropout if train else 1.0, self.dropouts["stem"]: config.stemDropout if train else 1.0, self.dropouts["question"]: config.qDropout if train else 1.0, #_ self.dropouts["memory"]: config.memoryDropout if train else 1.0, self.dropouts["read"]: config.readDropout if train else 1.0, #_ self.dropouts["write"]: config.writeDropout if train else 1.0, self.dropouts["output"]: config.outputDropout if train else 1.0, self.dropouts["controlPre"]: config.controlPreDropout if train else 1.0, self.dropouts["controlPost"]: config.controlPostDropout if train else 1.0, self.dropouts["wordEmb"]: config.wordEmbDropout if train else 1.0, self.dropouts["word"]: config.wordDp if train else 1.0, self.dropouts["vocab"]: config.vocabDp if train else 1.0, self.dropouts["object"]: config.objectDp if train else 1.0, self.dropouts["wordStandard"]: config.wordStandardDp if train else 1.0, self.lr: config.lr, self.train: train } if config.imageObjects: feedDict.update({ self.imagesAll: images["images"], self.imagesObjectNumAll: data["objectsNums"], }) else: feedDict.update({ self.imagesPlaceholder: images["images"] }) if config.dataset == "VQA": feedDict.update({ self.answerFreqListsAll: data["answerFreqs"], self.answerFreqNumsAll: data["answerFreqNums"] }) if config.ansFormat == "mc": feedDict.update({ self.choicesIndicesAll: data["choices"], self.choicesNumsAll: data["choicesNums"] }) return feedDict # Splits data to a specific GPU (tower) for parallelization def initTowerBatch(self, towerI, towersNum, dataSize): towerBatchSize = tf.floordiv(dataSize, towersNum) start = towerI * towerBatchSize end = (towerI + 1) * towerBatchSize if towerI < towersNum - 1 else dataSize self.questionIndices = self.questionIndicesAll[start:end] self.questionLengths = self.questionLengthsAll[start:end] self.images = self.imagesAll[start:end] self.imagesObjectNum = None if config.imageObjects: self.imagesObjectNum = self.imagesObjectNumAll[start:end] self.answerIndices = self.answerIndicesAll[start:end] self.answerFreqs = self.answerFreqNums = None if config.dataset == "VQA": self.answerFreqLists = self.answerFreqListsAll[start:end] self.answerFreqNums = self.answerFreqNumsAll[start:end] self.choicesIndices = self.choicesNums = None if config.ansFormat == "mc": self.choicesIndices = self.choicesIndicesAll[start:end] self.choicesNums = self.choicesNumsAll[start:end] self.batchSize = end - start ''' The Image Input Unit (stem). Passes the image features through a CNN-network Optionally adds position encoding (doesn't in the default behavior). Flatten the image into Height * Width "Knowledge base" array. Args: images: image input. [batchSize, height, width, inDim] inDim: input image dimension outDim: image out dimension addLoc: if not None, adds positional encoding to the image Returns preprocessed images. [batchSize, height * width, outDim] ''' def stem(self, images, inDim, outDim, addLoc = None): with tf.variable_scope("stem"): if config.stemNormalize: images = tf.nn.l2_normalize(images, dim = -1) if config.imageObjects: # VQA ??? or config.useBaseline: features, dim = images, inDim if config.stemLinear: features = ops.linear(images, inDim, outDim, dropout = self.dropouts["stem"]) dim = outDim elif config.stemDeep: dims = [inDim] + config.stemDims + [outDim] features = ops.FCLayer(features, dims, dropout = self.dropouts["stem"]) if config.stemAct != "NON": features = ops.actF(config.stemAct)(features) return features, dim if addLoc is None: addLoc = config.locationAware if config.stemLinear: features = ops.linear(images, inDim, outDim) else: if config.stemNumLayers == 0: outDim = inDim else: dims = [inDim] + ([config.stemDim] * (config.stemNumLayers - 1)) + [outDim] if addLoc: images, inDim = ops.addLocation(images, inDim, config.locationDim, h = self.H, w = self.W, locType = config.locationType) dims[0] = inDim features = ops.CNNLayer(images, dims, batchNorm = self.batchNorm if config.stemBN else None, dropout = self.dropouts["stem"], kernelSizes = config.stemKernelSizes, strides = config.stemStrideSizes) if config.stemGridRnn: features = ops.multigridRNNLayer(features, H, W, outDim) if config.baselineNew or (not config.useBaseline): features = tf.reshape(features, (self.batchSize, -1, outDim)) return features, outDim # Embed question using parametrized word embeddings. # The embedding are initialized to the values supported to the class initialization def qEmbeddingsOp(self, qIndices, embInit): with tf.variable_scope("qEmbeddings"): embInit = tf.to_float(embInit) embeddingsVar = tf.get_variable("emb", initializer = embInit, dtype = tf.float32, trainable = (not config.wrdEmbQFixed)) embeddings = tf.concat([tf.zeros((1, config.wrdQEmbDim)), embeddingsVar], axis = 0) questions = tf.nn.embedding_lookup(embeddings, qIndices) return questions, embeddings # Embed answer words def aEmbeddingsOp(self, aIndices, embInit): with tf.variable_scope("aEmbeddings"): if embInit is None: return None embInit = tf.to_float(embInit) embeddings = tf.get_variable("emb", initializer = embInit, dtype = tf.float32, trainable = (not config.wrdEmbAFixed)) if config.ansFormat == "mc": answers = tf.nn.embedding_lookup(embeddings, aIndices) else: answers = embeddings return answers def vocabEmbeddings(self, embInit, name): with tf.variable_scope("vocabEmbeddings" + name): embInit = tf.to_float(embInit) embeddings = tf.get_variable("emb", initializer = embInit, dtype = tf.float32, trainable = (not config.semanticFixEmbs)) return embeddings # Embed question and answer words with tied embeddings def qaEmbeddingsOp(self, qIndices, aIndices, embInit): questions, embeddings = self.qEmbeddingsOp(qIndices, embInit) answers = tf.nn.embedding_lookup(embeddings, aIndices) return questions, answers, embeddings ''' Embed question (and optionally answer) using parametrized word embeddings. The embedding are initialized to the values supported to the class initialization ''' def embeddingsOp(self, qIndices, aIndices, embInit): # nullWord = tf.tile(tf.expand_dims(nullWord, axis = 0), [self.batchSize, 1, 1]) if config.ansEmbMod == "SHARED": if config.ansFormat == "oe": #if aIndices is None: aIndices = embInit["oeAnswers"] questions, answers, qaEmbeddings = self.qaEmbeddingsOp(qIndices, aIndices, embInit["qa"]) else: questions, qEmbeddings = self.qEmbeddingsOp(qIndices, embInit["q"]) answers = self.aEmbeddingsOp(aIndices, embInit["a"]) if config.ansFormat == "oe" and config.ansEmbMod != "NON": answers = tf.tile(tf.expand_dims(answers, axis = 0), [self.batchSize, 1, 1]) return questions, answers # , embeddings ''' The Question Input Unit embeds the questions to randomly-initialized word vectors, and runs a recurrent bidirectional encoder (RNN/LSTM etc.) that gives back vector representations for each question (the RNN final hidden state), and representations for each of the question words (the RNN outputs for each word). The method uses bidirectional LSTM, by default. Optionally projects the outputs of the LSTM (with linear projection / optionally with some activation). Args: questions: question word embeddings [batchSize, questionLength, wordEmbDim] questionLengths: the question lengths. [batchSize] projWords: True to apply projection on RNN outputs. projQuestion: True to apply projection on final RNN state. projDim: projection dimension in case projection is applied. Returns: Contextual Words: RNN outputs for the words. [batchSize, questionLength, ctrlDim] Vectorized Question: Final hidden state representing the whole question. [batchSize, ctrlDim] ''' def encoder(self, questions, questionLengths, projWords = False, projQuestion = False, projDim = None): with tf.variable_scope("encoder"): # variational dropout option varDp = None if config.encVariationalDropout: varDp = {"stateDp": self.dropouts["stateInput"], "inputDp": self.dropouts["encInput"], "inputSize": config.wrdQEmbDim} # rnns for i in range(config.encNumLayers): questionCntxWords, vecQuestions = ops.RNNLayer(questions, questionLengths, config.encDim, bi = config.encBi, cellType = config.encType, dropout = self.dropouts["encInput"], varDp = varDp, name = "rnn%d" % i) # dropout for the question vector vecQuestions = tf.nn.dropout(vecQuestions, self.dropouts["question"]) # projection of encoder outputs if projWords: questionCntxWords = ops.linear(questionCntxWords, config.encDim, projDim, name = "projCW") if projQuestion: vecQuestions = ops.linear(vecQuestions, config.encDim, projDim, act = config.encProjQAct, name = "projQ") return questionCntxWords, vecQuestions ''' Stacked Attention Layer for baseline. Computes interaction between images and the previous memory, and casts it back to compute attention over the image, which in turn is summed up with the previous memory to result in the new one. Args: images: input image. [batchSize, H * W, inDim] memory: previous memory value [batchSize, inDim] inDim: inputs dimension hDim: hidden dimension to compute interactions between image and memory Returns the new memory value. ''' def baselineAttLayer(self, images, memory, inDim, hDim, name = "", reuse = None): with tf.variable_scope("attLayer" + name, reuse = reuse): # projImages = ops.linear(images, inDim, hDim, name = "projImage") # projMemory = tf.expand_dims(ops.linear(memory, inDim, hDim, name = "projMemory"), axis = -2) # if config.saMultiplicative: # interactions = projImages * projMemory # else: # interactions = tf.tanh(projImages + projMemory) interactions, hDim = ops.mul(images, memory, inDim, proj = {"dim": hDim, "shared": False}, interMod = config.baselineAttType) attention = ops.inter2att(interactions, hDim, mask = self.imagesObjectNum) summary = ops.att2Smry(attention, images) newMemory = memory + summary return newMemory ''' Baseline approach: If baselineAtt is True, applies several layers (baselineAttNumLayers) of stacked attention to image and memory, when memory is initialized to the vector questions. See baselineAttLayer for further details. Otherwise, computes result output features based on image representation (baselineCNN), or question (baselineLSTM) or both. Args: vecQuestions: question vector representation [batchSize, questionDim] questionDim: dimension of question vectors images: (flattened) image representation [batchSize, imageDim] imageDim: dimension of image representations. hDim: hidden dimension to compute interactions between image and memory (for attention-based baseline). Returns final features to use in later classifier. [batchSize, outDim] (out dimension depends on baseline method) ''' def baseline(self, vecQuestions, questionDim, images, imageDim, hDim): with tf.variable_scope("baseline"): if config.baselineAtt: memory = ops.linear(vecQuestions, questionDim, hDim, name = "qProj") images = ops.linear(images, imageDim, hDim, name = "iProj") for i in range(config.baselineAttNumLayers): memory = self.baselineAttLayer(images, memory, hDim, hDim, name = "baseline%d" % i) memDim = hDim else: if config.imageObjects: cff = tf.get_variable("cff", shape = (imageDim, ), initializer = tf.random_normal_initializer()) interactions, hDim = ops.mul(images, cff, imageDim) attention = ops.inter2att(interactions, hDim, mask = self.imagesObjectNum) images = ops.att2Smry(attention, images) else: images, imageDim = ops.linearizeFeatures(images, self.H, self.W, imageDim, projDim = config.baselineProjDim) if config.baselineLSTM and config.baselineCNN: memory = tf.concat([vecQuestions, images], axis = -1) memDim = questionDim + imageDim elif config.baselineLSTM: memory = vecQuestions memDim = questionDim else: # config.baselineCNN memory = images memDim = imageDim return memory, memDim ''' Runs the MAC recurrent network to perform the reasoning process. Initializes a MAC cell and runs netLength iterations. Currently it passes the question and knowledge base to the cell during its creating, such that it doesn't need to interact with it through inputs / outputs while running. The recurrent computation happens by working iteratively over the hidden (control, memory) states. Args: images: flattened image features. Used as the "Knowledge Base". (Received by default model behavior from the Image Input Units). [batchSize, H * W, memDim] vecQuestions: vector questions representations. (Received by default model behavior from the Question Input Units as the final RNN state). [batchSize, ctrlDim] questionWords: question word embeddings. [batchSize, questionLength, ctrlDim] questionCntxWords: question contextual words. (Received by default model behavior from the Question Input Units as the series of RNN output states). [batchSize, questionLength, ctrlDim] questionLengths: question lengths. [batchSize] Returns the final control state and memory state resulted from the network. ([batchSize, ctrlDim], [bathSize, memDim]) ''' def MACnetwork(self, images, vecQuestions, questionWords, questionCntxWords, questionLengths, name = "", reuse = None): with tf.variable_scope("MACnetwork" + name, reuse = reuse): self.macCell = MACCell( vecQuestions = vecQuestions, questionWords = questionWords, questionCntxWords = questionCntxWords, questionLengths = questionLengths, knowledgeBase = images, kbSize = self.imagesObjectNum, memoryDropout = self.dropouts["memory"], readDropout = self.dropouts["read"], writeDropout = self.dropouts["write"], controlDropoutPre = self.dropouts["controlPre"], controlDropoutPost = self.dropouts["controlPost"], wordDropout = self.dropouts["word"], vocabDropout = self.dropouts["vocab"], objectDropout = self.dropouts["object"], # qDropoutMAC = self.qDropoutMAC, batchSize = self.batchSize, train = self.train, reuse = reuse) state = self.macCell.zero_state(self.batchSize, tf.float32) none = tf.zeros((self.batchSize, 1), dtype = tf.float32) for i in range(config.netLength): self.macCell.iteration = i _, state = self.macCell(none, state) finalControl = state.control finalMemory = state.memory return finalControl, finalMemory ''' Output Unit (step 1): chooses the inputs to the output classifier. By default the classifier input will be the the final memory state of the MAC network. If outQuestion is True, concatenate the question representation to that. If outImage is True, concatenate the image flattened representation. Args: memory: (final) memory state of the MAC network. [batchSize, memDim] vecQuestions: question vector representation. [batchSize, ctrlDim] images: image features. [batchSize, H, W, imageInDim] imageInDim: images dimension. Returns the resulted features and their dimension. ''' def outputOp(self, memory, control, vecQuestions, images, imageInDim): with tf.variable_scope("outputUnit"): features = memory dim = config.memDim if config.outQuestion: q = vecQuestions eQ = ops.linear(q, config.ctrlDim, config.memDim, name = "outQuestion") features, dim = ops.concat(features, eQ, config.memDim, mul = config.outQuestionMul) # assumes imageObjects False if config.outImage: images, imagesDim = ops.linearizeFeatures(images, self.H, self.W, self.imageInDim, outputDim = config.outImageDim) images = ops.linear(images, config.memDim, config.outImageDim, name = "outImage") features = tf.concat([features, images], axis = -1) dim += config.outImageDim return features, dim ''' Output Unit (step 2): Computes the logits for the answers. Passes the features through fully-connected network to get the logits over the possible answers. Optionally uses answer word embeddings in computing the logits (by default, it doesn't). Args: features: features used to compute logits [batchSize, inDim] inDim: features dimension aEmbedding: supported word embeddings for answer words in case answerMod is not NON. Optionally computes logits by computing dot-product with answer embeddings. Returns: the computed logits. [batchSize, answerWordsNum] ''' # in mc has to be ansMod not NON def classifier(self, features, inDim, choices = None, choicesNums = None): with tf.variable_scope("classifier"): outDim = config.answerWordsNum dims = [inDim] + config.outClassifierDims + [outDim] if config.answerMod != "NON": dims[-1] = config.wrdAEmbDim logits = ops.FCLayer(features, dims, batchNorm = self.batchNorm if config.outputBN else None, dropout = self.dropouts["output"]) if config.answerMod != "NON": logits = ops.gatedAct(config.outAct, gate = config.outGate)(logits) logits = tf.nn.dropout(logits, self.dropouts["output"]) concat = {"x": config.answerBias} interactions, interDim = ops.mul(choices, logits, dims[-1], interMod = config.answerMod, concat = concat) logits = ops.inter2logits(interactions, interDim, sumMod = config.answerSumMod) if config.ansFormat == "oe": logits += ops.getBias((outDim, ), "ans") else: logits = ops.expMask(logits, choicesNums) return logits def aggregateFreqs(self, answerFreqs, answerFreqNums): if answerFreqs is None: return None answerFreqs = tf.one_hot(answerFreqs, config.answerWordsNum) # , axis = -1 mask = tf.sequence_mask(answerFreqNums, maxlen = config.AnswerFreqMaxNum) mask = tf.expand_dims(tf.to_float(mask), axis = -1) answerFreqs *= mask answerFreqs = tf.reduce_sum(answerFreqs, axis = 1) return answerFreqs # Computes mean cross entropy loss between logits and answers. def addAnswerLossOp(self, logits, answers, answerFreqs, answerFreqNums): if config.lossType == "softmax": # or config.ansFormat == "mc": losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = answers, logits = logits) elif config.lossType == "svm": answers = tf.one_hot(answers, config.answerWordsNum) # , axis = -1 losses = ops.hingeLoss(labels = answers, logits = logits) elif config.lossType == "probSoftmax": answerFreqs = tf.to_float(answerFreqs) answerDist = answerFreqs / tf.expand_dims(tf.to_float(answerFreqNums), axis = -1) losses = tf.nn.softmax_cross_entropy_with_logits_v2(labels = answerDist, logits = logits) if config.weightedSoftmax: weights = tf.to_float(answerFreqNums) / float(config.AnswerFreqMaxNum) losses *= weights elif config.lossType == "sigmoid": if config.dataset == "VQA": answerFreqs = tf.to_float(answerFreqs) answerDist = answerFreqs / float(config.AnswerFreqMaxNum) else: answerDist = tf.one_hot(answers, config.answerWordsNum) if config.lossWeight == 1: losses = tf.nn.sigmoid_cross_entropy_with_logits(labels = answerDist, logits = logits) else: print("weighted sigmoid") losses = tf.nn.weighted_cross_entropy_with_logits(targets = answerDist, logits = logits, pos_weight = config.lossWeight) if config.ansWeighting or config.ansWeightingRoot: losses *= self.answerDict.weights losses = tf.reduce_sum(losses, axis = -1) else: print("non-identified loss") loss = tf.reduce_mean(losses) self.answerLossList.append(loss) return loss, losses # Computes predictions (by finding maximal logit value, corresponding to highest probability) # and mean accuracy between predictions and answers. def addPredOp(self, logits, answers): # , answerFreqs with tf.variable_scope("pred"): if config.ansFormat == "oe":# and config.ansAddUnk: mask = tf.to_float(tf.sequence_mask([2], config.answerWordsNum)) * (-1e30) # 1 or 2? logits += mask preds = tf.to_int32(tf.argmax(logits, axis = -1)) # tf.nn.softmax( if config.dataset == "VQA" and config.ansFormat == "oe": agreeing = tf.reduce_sum(tf.one_hot(preds, config.answerWordsNum) * self.answerFreqs, axis = -1) corrects = tf.minimum(agreeing * 0.3, 1.0) # /3 ? else: corrects = tf.to_float(tf.equal(preds, answers)) correctNum = tf.reduce_sum(corrects) acc = tf.reduce_mean(corrects) self.correctNumList.append(correctNum) self.answerAccList.append(acc) return preds, corrects, correctNum # Creates optimizer (adam) def addOptimizerOp(self): with tf.variable_scope("trainAddOptimizer"): self.globalStep = tf.Variable(0, dtype = tf.int32, trainable = False, name = "globalStep") # init to 0 every run? optimizer = tf.train.AdamOptimizer(learning_rate = self.lr) if config.subsetOpt: self.subsetOptimizer = tf.train.AdamOptimizer(learning_rate = self.lr * config.subsetOptMult) return optimizer ''' Computes gradients for all variables or subset of them, based on provided loss, using optimizer. ''' def computeGradients(self, optimizer, loss, trainableVars = None): # tf.trainable_variables() with tf.variable_scope("computeGradients"): if config.trainSubset: trainableVars = [] allVars = tf.trainable_variables() for var in allVars: if any((s in var.name) for s in config.varSubset): trainableVars.append(var) if config.subsetOpt: trainableVars = [] subsetVars = [] allVars = tf.trainable_variables() for var in allVars: if any((s in var.name) for s in config.varSubset): subsetVars.append(var) else: trainableVars.append(var) gradients_vars = optimizer.compute_gradients(loss, trainableVars) if config.subsetOpt: self.subset_gradients_vars = self.subsetOptimizer.compute_gradients(loss, subsetVars) self.subset_gradientVarsList.append(self.subset_gradients_vars) return gradients_vars ''' Apply gradients. Optionally clip them, and update exponential moving averages for parameters. ''' def addTrainingOp(self, optimizer, gradients_vars): with tf.variable_scope("train"): gradients, variables = zip(*gradients_vars) norm = tf.global_norm(gradients) # gradient clipping if config.clipGradients: clippedGradients, _ = tf.clip_by_global_norm(gradients, config.gradMaxNorm, use_norm = norm) gradients_vars = zip(clippedGradients, variables) # updates ops (for batch norm) and train op updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(updateOps): train = optimizer.apply_gradients(gradients_vars, global_step = self.globalStep) if config.subsetOpt: subsetTrain = self.subsetOptimizer.apply_gradients(self.subset_gradientVarsAll) train = tf.group(train, subsetTrain) # exponential moving average if config.useEMA: ema = tf.train.ExponentialMovingAverage(decay = config.emaDecayRate) maintainAveragesOp = ema.apply(tf.trainable_variables()) with tf.control_dependencies([train]): trainAndUpdateOp = tf.group(maintainAveragesOp) train = trainAndUpdateOp self.emaDict = ema.variables_to_restore() return train, norm def averageAcrossTowers(self, gpusNum): if gpusNum == 1: self.lossAll = self.lossList[0] self.answerLossAll = self.answerLossList[0] self.answerAccAll = self.answerAccList[0] self.correctNumAll = self.correctNumList[0] self.predsAll = self.predsList[0] self.gradientVarsAll = self.gradientVarsList[0] if config.subsetOpt: self.subset_gradientVarsAll = self.subset_gradientVarsList[0] else: self.lossAll = tf.reduce_mean(tf.stack(self.lossList, axis = 0), axis = 0) self.answerLossAll = tf.reduce_mean(tf.stack(self.answerLossList, axis = 0), axis = 0) self.answerAccAll = tf.reduce_mean(tf.stack(self.answerAccList, axis = 0), axis = 0) self.correctNumAll = tf.reduce_sum(tf.stack(self.correctNumList, axis = 0), axis = 0) self.predsAll = tf.concat(self.predsList, axis = 0) self.gradientVarsAll = [] for grads_var in zip(*self.gradientVarsList): gradients, variables = zip(*grads_var) if gradients[0] != None: avgGradient = tf.reduce_mean(tf.stack(gradients, axis = 0), axis = 0) else: avgGradient = None var = variables[0] grad_var = (avgGradient, var) self.gradientVarsAll.append(grad_var) if config.subsetOpt: self.subset_gradientVarsAll = [] for grads_var in zip(*self.subset_gradientVarsList): gradients, variables = zip(*grads_var) if gradients[0] != None: avgGradient = tf.reduce_mean(tf.stack(gradients, axis = 0), axis = 0) else: avgGradient = None var = variables[0] grad_var = (avgGradient, var) self.subset_gradientVarsAll.append(grad_var) def trim2DVectors(self, vectors, vectorsLengths): maxLength = np.max(vectorsLengths) return vectors[:,:maxLength] def trimData(self, data): data["questions"] = self.trim2DVectors(data["questions"], data["questionLengths"]) return data ''' Builds predictions JSON, by adding the model's predictions and attention maps back to the original data JSON. ''' def buildPredsList(self, data, predictions, attentionMaps): predsList = [] for i, instance in enumerate(data["instances"]): if predictions is not None: if config.ansFormat == "oe": pred = self.answerDict.decodeId(predictions[i]) else: pred = instance["choices"][predictions[i]] instance["prediction"] = pred # aggregate np attentions of instance i in the batch into 2d list attMapToList = lambda attMap: [step[i].tolist() for step in attMap] if attentionMaps is not None: attentions = {k: attMapToList(attentionMaps[k]) for k in attentionMaps} instance["attentions"] = attentions predsList.append(instance) return predsList ''' Processes a batch of data with the model. Args: sess: TF session data: Data batch. Dictionary that contains numpy array for: questions, questionLengths, answers. See preprocess.py for further information of the batch structure. images: batch of image features, as numpy array. images["images"] contains [batchSize, channels, h, w] train: True to run batch for training. getAtt: True to return attention maps for question and image (and optionally self-attention and gate values). Returns results: e.g. loss, accuracy, running time. ''' def runBatch(self, sess, data, images, train, getPreds = False, getAtt = False, allData = None): batchSizeOp = self.batchSizeAll indicesOp = self.noOp trainOp = self.trainOp if train else self.noOp gradNormOp = self.gradNorm if train else self.noOp predsOp = (self.predsAll, self.correctNumAll, self.answerAccAll) attOp = self.macCell.attentions if not config.useBaseline else (self.attentions if config.baselineNew else self.noOp) time0 = time.time() feed = self.createFeedDict(data, images, train) time1 = time.time() batchSize, indices, _, loss, predsInfo, gradNorm, attentionMaps = sess.run( [batchSizeOp, indicesOp, trainOp, self.lossAll, predsOp, gradNormOp, attOp], feed_dict = feed) time2 = time.time() predsList = [] if getPreds: if data is None: data = [allData["instances"][i] for i in indices] predsList = self.buildPredsList(data, predsInfo[0], attentionMaps if getAtt else None) return {"loss": loss, "correctNum": predsInfo[1], "acc": predsInfo[2], "preds": predsList, "gradNorm": gradNorm if train else -1, "readTime": time1 - time0, "trainTime": time2 - time1, "batchSize": batchSize} def build(self): self.addPlaceholders() self.optimizer = self.addOptimizerOp() self.gradientVarsList = [] if config.subsetOpt: self.subset_gradientVarsList = [] self.lossList = [] self.answerLossList = [] self.correctNumList = [] self.answerAccList = [] self.predsList = [] with tf.variable_scope("macModel"): for i in range(config.gpusNum): with tf.device("/gpu:{}".format(i)): with tf.name_scope("tower{}".format(i)) as scope: self.initTowerBatch(i, config.gpusNum, self.batchSizeAll) self.loss = tf.constant(0.0) # embed questions words (and optionally answer words) questionWords, choices = self.embeddingsOp(self.questionIndices, self.choicesIndices, self.embeddingsInit) projWords = projQuestion = ((config.encDim != config.ctrlDim) or config.encProj) questionCntxWords, vecQuestions = self.encoder(questionWords, self.questionLengths, projWords, projQuestion, config.ctrlDim) # Image Input Unit (stem) imageFeatures, imageDim = self.stem(self.images, self.imageInDim, config.memDim) # baseline model if config.useBaseline: # inpImg = imageFeatures if config.baselineNew else self.images # inpDim = imageDim if config.baselineNew else self.imageInDim output, dim = self.baseline(vecQuestions, config.ctrlDim, imageFeatures, imageDim, config.attDim) # self.images # MAC model else: finalControl, finalMemory = self.MACnetwork(imageFeatures, vecQuestions, questionWords, questionCntxWords, self.questionLengths) # Output Unit - step 1 (preparing classifier inputs) output, dim = self.outputOp(finalMemory, finalControl, vecQuestions, self.images, self.imageInDim) # Output Unit - step 2 (classifier) logits = self.classifier(output, dim, choices, self.choicesNums) # compute loss, predictions, accuracy if config.dataset == "VQA": self.answerFreqs = self.aggregateFreqs(self.answerFreqLists, self.answerFreqNums) else: self.answerFreqs = None self.answerFreqNums = None answerLoss, self.losses = self.addAnswerLossOp(logits, self.answerIndices, self.answerFreqs, self.answerFreqNums) self.preds, self.corrects, self.correctNum = self.addPredOp(logits, self.answerIndices) # ,self.answerFreqs self.loss += answerLoss self.predsList.append(self.preds) self.lossList.append(self.loss) # compute gradients gradient_vars = self.computeGradients(self.optimizer, self.loss, trainableVars = None) self.gradientVarsList.append(gradient_vars) # reuse variables in next towers tf.get_variable_scope().reuse_variables() self.averageAcrossTowers(config.gpusNum) self.trainOp, self.gradNorm = self.addTrainingOp(self.optimizer, self.gradientVarsAll) self.noOp = tf.no_op()
the-stack_0_17249
# Copyright 2017 Netflix # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module: security_monkey.watchers.github.team :platform: Unix :synopsis: Watcher for GitHub Organization Teams. .. version:: $$VERSION$$ .. moduleauthor:: Mike Grima <[email protected]> """ from security_monkey import app from security_monkey.common.github.util import get_github_creds, iter_org, strip_url_fields from security_monkey.datastore import Account from security_monkey.decorators import record_exception from security_monkey.exceptions import InvalidResponseCodeFromGitHubError from security_monkey.watcher import Watcher, ChangeItem import requests GITHUB_URL = "https://api.github.com/" class GitHubTeam(Watcher): index = 'team' i_am_singular = 'team' i_am_plural = 'teams' account_type = 'GitHub' def __init__(self, accounts=None, debug=False): super(GitHubTeam, self).__init__(accounts=accounts, debug=debug) self.honor_ephemerals = True self.ephemeral_paths = [] self.github_creds = get_github_creds(self.accounts) def slurp(self): @record_exception(source="{index}-watcher".format(index=self.index)) def fetch_org_teams(**kwargs): account = Account.query.filter(Account.name == kwargs["account_name"]).first() item_list = [] # Fetch teams: app.logger.debug("Fetching organization teams for: {}".format(account.identifier)) teams = strip_url_fields(self.list_org_teams(account.identifier)) for team in teams: item_list.append(GitHubTeamItem( account=account.name, name=team["name"], arn="{}/team/{}".format(account.identifier, team["slug"]), config=team, source_watcher=self )) return item_list, kwargs["exception_map"] @iter_org(orgs=self.accounts) def slurp_items(**kwargs): # Are we skipping this org? if self.check_ignore_list(kwargs["account_name"]): app.logger.debug("Skipping ignored account: {}".format(kwargs["account_name"])) return [], kwargs["exception_map"] # Exception handling complexities... results = fetch_org_teams(**kwargs) if not results: return [], kwargs["exception_map"] return results items, exc = slurp_items(index=self.index) return items, exc def list_org_teams(self, org): headers = { 'Authorization': 'token {}'.format(self.github_creds[org]) } params = { "page": 1, } done = False teams = [] while not done: url = "{}orgs/{}/teams".format(GITHUB_URL, org) result = requests.get(url, headers=headers, params=params) if result.status_code != 200: raise InvalidResponseCodeFromGitHubError(org, result.status_code) if not result.links.get("last"): done = True else: params["page"] += 1 result_json = result.json() teams += result_json return teams class GitHubTeamItem(ChangeItem): def __init__(self, account=None, name=None, arn=None, config=None, source_watcher=None): super(GitHubTeamItem, self).__init__(index=GitHubTeam.index, region="universal", account=account, name=name, arn=arn, new_config=config if config else {}, source_watcher=source_watcher)
the-stack_0_17250
#### # MQTT Publish # # Wertet Temperatur Sensor, Button und RFID Reader aus und sendet die Daten an MQTT Broker import time from machine import I2C, Pin, SoftI2C, SoftSPI from lib.sensors.bmp180 import BMP180 from lib.sensors.mfrc522 import MFRC522 from lib.config import * from umqtt.robust import MQTTClient import ubinascii import machine from lib.config import * import micropython import network client_id = ubinascii.hexlify(machine.unique_id()) # Topic's topicTEMP = b"iotkit/sensor" topicALERT = b"iotkit/alert" topicRFID = b"iotkit/rfid" topicSERVO = b"iotkit/servo" # MQTT Brocker hostname = "cloud.tbz.ch" port = 1883 # Klassifikation cls = ( "low", "middle", "high" ) type = 0 # Temperatur Sensor bus = SoftI2C(sda=Pin(DEFAULT_IOTKIT_I2C_SDA), scl=Pin(DEFAULT_IOTKIT_I2C_SCL)) bmp180 = BMP180(bus) bmp180.oversample_sett = 2 bmp180.baseline = 101325 # RFID Reader sck = Pin(DEFAULT_IOTKIT_SPI_SCLK) mosi = Pin(DEFAULT_IOTKIT_SPI_MOSI) miso = Pin(DEFAULT_IOTKIT_SPI_MISO) spi = SoftSPI(baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, miso=miso) sda = Pin(DEFAULT_IOTKIT_SPI_SS, Pin.OUT) rdr = MFRC522(spi, sda) # Button button = Pin(DEFAULT_IOTKIT_BUTTON1, Pin.IN) # MQTT Subscribe def sub_cb(topic, msg): print((topic, msg)) if topic == b'notification' and msg == b'received': print('ESP received hello message') # MQTT Login def connect_and_subscribe(): global client_id, hostname, port, topicSERVO client = MQTTClient(client_id, hostname, port) client.set_callback(sub_cb) client.connect() client.subscribe(topicSERVO) print('Connected to %s MQTT broker, subscribed to %s topic' % (hostname, topicSERVO)) return client # MQTT Restart def restart_and_reconnect(): print('Failed to connect to MQTT broker. Reconnecting...') time.sleep(10) machine.reset() ### Hauptprogramm counter = 1 try: client = connect_and_subscribe() except OSError as e: restart_and_reconnect() while True: try: client.check_msg() # Temperatur if counter % 3 == 1: msg = "0xBC," + str(bmp180.temperature - 5) + "," + str(bmp180.pressure / 1000) + ",low" if counter % 3 == 2: msg = "0xBC," + str(bmp180.temperature) + "," + str(bmp180.pressure / 1000) + ",middle" if counter % 3 == 0: msg = "0xBC," + str(bmp180.temperature + 5) + "," + str(bmp180.pressure / 1000) + ",high" client.publish(topicTEMP, msg) print( topicTEMP, counter, msg ) counter = counter + 1 # Button startet BPMN Prozess if button.value() == 0: client.publish(topicALERT, "alert") print( topicALERT, counter, "alert" ) uid = "" (stat, tag_type) = rdr.request(rdr.REQIDL) if stat == rdr.OK: (stat, raw_uid) = rdr.anticoll() if stat == rdr.OK: uid = ("0x%02x%02x%02x%02x" % (raw_uid[0], raw_uid[1], raw_uid[2], raw_uid[3])) client.publish(topicRFID, uid ) print(topicRFID, counter, uid) time.sleep( 1.0 ) except OSError as e: restart_and_reconnect()
the-stack_0_17251
#!/usr/bin/python -u # -*- coding: latin-1 -*- # # Monks and doors problem in Z3 # # From http://user.it.uu.se/~rolandb/LP/gammal/960615_facit.ps # """ # There is a room with four doors and eight monks. One or more of # the doors may be exit. Each monk is either telling a lie or the truth. # # The monks make the following statements: # Monk 1: Door A is the exit. # Monk 2: At least one of the doors B and C is the exit. # Monk 3: Monk 1 and Monk 2 are telling the truth. # Monk 4: Doors A and B are both exits. # Monk 5: Doors A and B are both exits. # Monk 6: Either Monk 4 or Monk 5 is telling the truth. # Monk 7: If Monk 3 is telling the truth, so is Monk 6. # Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1. # # Which door is an exit no matter who is a liar and who is telling the # truth. # """ # # Answer: Door A is an exit. # And monks 1, 7, and 8 are telling the truth. # # This Z3 model was written by Hakan Kjellerstrand ([email protected]) # See also my Z3 page: http://hakank.org/z3/ # from z3_utils_hakank import * sol = Solver() # variables A,B,C,D = Bools("A B C D") # Doors doors = [A,B,C,D] M1,M2,M3,M4,M5,M6,M7,M8 = Bools("M1 M2 M3 M4 M5 M6 M7 M8") # monks monks = [M1,M2,M3,M4,M5,M6,M7,M8] # constraints # Monk 1: Door A is the exit. sol.add(M1 == A) # Monk 2: At least one of the doors B and C is the exit. sol.add(M2 == (If(B,1,0) + If(C,1,0) >= 1)) # Monk 3: Monk 1 and Monk 2 are telling the truth. sol.add(M3 == And(M1, M2)) # Monk 4: Doors A and B are both exits. sol.add(M4 == And(A,B)) # Monk 5: Doors A and C are both exits. sol.add(M5 == And(A, C)) # Monk 6: Either Monk 4 or Monk 5 is telling the truth. sol.add(M6 == Or(M4,M5)) # Monk 7: If Monk 3 is telling the truth, so is Monk 6. sol.add(M7 == Implies(M3, M6)) # Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1. sol.add(M8 == (Implies(And(M7, M8),M1))) # Exactly one door is an exit. sol.add(If(A,1,0) + If(B,1,0) + If(C,1,0) + If(D,1,0) == 1) num_solutions = 0 while sol.check() == sat: num_solutions += 1 mod = sol.model() print("doors:", [mod.eval(D) for D in doors]) print("monks:", [mod.eval(M) for M in monks]) getDifferentSolution(sol,mod,doors,monks) print("num_solutions:", num_solutions)
the-stack_0_17252
import random from collections import namedtuple from threading import RLock import numpy as np Transition = namedtuple("Transition", ("s", "a", "r", "s_", "done")) class ServerBuffer: def __init__(self, capacity, observation_shapes, action_size): self.size = capacity self.num_in_buffer = 0 self.stored_in_buffer = 0 self.num_parts = len(observation_shapes) self.obs_shapes = observation_shapes self.act_shape = (action_size,) # initialize all np.arrays which store necessary data self.observations = [] for part_id in range(self.num_parts): obs = np.empty((self.size, ) + self.obs_shapes[part_id], dtype=np.float32) self.observations.append(obs) self.actions = np.empty((self.size, ) + self.act_shape, dtype=np.float32) self.rewards = np.empty((self.size, ), dtype=np.float32) self.dones = np.empty((self.size, ), dtype=np.bool) self.td_errors = np.empty((self.size, ), dtype=np.float32) self.pointer = 0 self._store_lock = RLock() def push_episode(self, episode): """ episode = [observations, actions, rewards, dones] observations = [obs_part_1, ..., obs_part_n] """ with self._store_lock: observations, actions, rewards, dones = episode episode_len = len(actions) self.stored_in_buffer += episode_len self.num_in_buffer = min(self.size, self.num_in_buffer + episode_len) indices = np.arange(self.pointer, self.pointer + episode_len) % self.size for part_id in range(self.num_parts): self.observations[part_id][indices] = np.array(observations[part_id]) self.actions[indices] = np.array(actions) self.rewards[indices] = np.array(rewards) self.dones[indices] = np.array(dones) self.td_errors[indices] = np.ones(len(indices)) self.pointer = (self.pointer + episode_len) % self.size def get_stored_in_buffer(self): return self.stored_in_buffer def get_state(self, idx, history_len=1): """ compose the state from a number (history_len) of observations """ state = [] for part_id in range(self.num_parts): start_idx = idx - history_len + 1 if (start_idx < 0 or np.any(self.dones[start_idx:idx+1])): s = np.zeros((history_len, ) + self.obs_shapes[part_id], dtype=np.float32) indices = [idx] for i in range(history_len-1): next_idx = (idx-i-1) % self.size if next_idx >= self.num_in_buffer or self.dones[next_idx]: break indices.append(next_idx) indices = indices[::-1] s[-len(indices):] = self.observations[part_id][indices] else: s = self.observations[part_id][slice(start_idx, idx+1, 1)] state.append(s) return state def get_transition_n_step(self, idx, history_len=1, n_step=1, gamma=0.99): state = self.get_state(idx, history_len) next_state = self.get_state((idx + n_step) % self.size, history_len) cum_reward = 0 indices = np.arange(idx, idx + n_step) % self.size for num, i in enumerate(indices): cum_reward += self.rewards[i] * (gamma ** num) done = self.dones[i] if done: break return state, self.actions[idx], cum_reward, next_state, done, self.td_errors[idx] def update_td_errors(self, indices, td_errors): self.td_errors[indices] = td_errors def get_batch(self, batch_size, history_len=1, n_step=1, gamma=0.99, indices=None): with self._store_lock: if indices is None: indices = random.sample(range(self.num_in_buffer), k=batch_size) transitions = [] for idx in indices: transition = self.get_transition_n_step(idx, history_len, n_step, gamma) transitions.append(transition) states = [] for part_id in range(self.num_parts): state = [transitions[i][0][part_id] for i in range(batch_size)] states.append(state) actions = [transitions[i][1] for i in range(batch_size)] rewards = [transitions[i][2] for i in range(batch_size)] next_states = [] for part_id in range(self.num_parts): next_state = [transitions[i][3][part_id] for i in range(batch_size)] next_states.append(next_state) dones = [transitions[i][4] for i in range(batch_size)] batch = Transition( np.array(states, dtype=np.float32), np.array(actions, dtype=np.float32), np.array(rewards, dtype=np.float32), np.array(next_states, dtype=np.float32), np.array(dones, dtype=np.bool) ) return batch def get_prioritized_batch(self, batch_size, history_len=1, n_step=1, gamma=0.99, priority="proportional", alpha=0.6, beta=1.0): with self._store_lock: if priority == "proportional": p = np.power(np.abs(self.td_errors[:self.num_in_buffer])+1e-6, alpha) p = p / p.sum() indices = np.random.choice(range(self.num_in_buffer), size=batch_size, p=p) probs = p[indices] is_weights = np.power(self.num_in_buffer * probs, -beta) is_weights = is_weights / is_weights.max() batch = self.get_batch(batch_size, history_len, n_step, gamma, indices) return batch, indices, is_weights
the-stack_0_17254
import logging from collections import OrderedDict from dataclasses import dataclass, field from typing import Dict, Type import requests from requests.exceptions import HTTPError from datahub.configuration.common import ConfigModel from datahub.ingestion.api.common import RecordEnvelope, WorkUnit from datahub.ingestion.api.sink import Sink, SinkReport, WriteCallback from datahub.metadata import ( # MLFeatureSnapshotClass, ChartSnapshotClass, CorpGroupSnapshotClass, CorpUserSnapshotClass, DashboardSnapshotClass, DataProcessSnapshotClass, DatasetSnapshotClass, MLModelSnapshotClass, ) from datahub.metadata.com.linkedin.pegasus2avro.mxe import MetadataChangeEvent logger = logging.getLogger(__name__) resource_locator: Dict[Type[object], str] = { ChartSnapshotClass: "charts", DashboardSnapshotClass: "dashboards", CorpUserSnapshotClass: "corpUsers", CorpGroupSnapshotClass: "corpGroups", DatasetSnapshotClass: "datasets", DataProcessSnapshotClass: "dataProcesses", MLModelSnapshotClass: "mlModels", } def _rest_li_ify(obj): if isinstance(obj, (dict, OrderedDict)): if len(obj.keys()) == 1: key = list(obj.keys())[0] value = obj[key] if key.find("com.linkedin.pegasus2avro.") >= 0: new_key = key.replace("com.linkedin.pegasus2avro.", "com.linkedin.") return {new_key: _rest_li_ify(value)} elif key == "string" or key == "array": return value new_obj = {} for key, value in obj.items(): if value is not None: new_obj[key] = _rest_li_ify(value) return new_obj elif isinstance(obj, list): new_obj = [_rest_li_ify(item) for item in obj] return new_obj return obj class DatahubRestSinkConfig(ConfigModel): """Configuration class for holding connectivity to datahub gms""" server: str = "http://localhost:8080" @dataclass class DatahubRestSink(Sink): config: DatahubRestSinkConfig report: SinkReport = field(default_factory=SinkReport) @classmethod def create(cls, config_dict, ctx): config = DatahubRestSinkConfig.parse_obj(config_dict) return cls(ctx, config) def get_ingest_endpoint(self, mce: MetadataChangeEvent): snapshot_type = type(mce.proposedSnapshot) snapshot_resource = resource_locator.get(snapshot_type, None) if not snapshot_resource: raise ValueError( f"Failed to locate a snapshot resource for type {snapshot_type}" ) return f"{self.config.server}/{snapshot_resource}?action=ingest" def handle_work_unit_start(self, workunit: WorkUnit) -> None: pass def handle_work_unit_end(self, workunit: WorkUnit) -> None: pass def write_record_async( self, record_envelope: RecordEnvelope[MetadataChangeEvent], write_callback: WriteCallback, ): headers = {"X-RestLi-Protocol-Version": "2.0.0"} mce = record_envelope.record url = self.get_ingest_endpoint(mce) raw_mce_obj = mce.proposedSnapshot.to_obj() mce_obj = _rest_li_ify(raw_mce_obj) snapshot = {"snapshot": mce_obj} try: response = requests.post(url, headers=headers, json=snapshot) # with open('data.json', 'w') as outfile: # json.dump(serialized_snapshot, outfile) response.raise_for_status() self.report.report_record_written(record_envelope) write_callback.on_success(record_envelope, {}) except HTTPError as e: info = response.json() self.report.report_failure({"e": e, "info": info}) write_callback.on_failure(record_envelope, e, info) except Exception as e: self.report.report_failure({"e": e}) write_callback.on_failure(record_envelope, e, {}) def get_report(self) -> SinkReport: return self.report def close(self): pass
the-stack_0_17256
#*************************************************************** #* Name: LMS7002_GFIR3.py #* Purpose: Class implementing LMS7002 GFIR3 functions #* Author: Lime Microsystems () #* Created: 2016-11-14 #* Copyright: Lime Microsystems (limemicro.com) #* License: #************************************************************** from LMS7002_base import * from LMS7002_GFIR import * class LMS7002_GFIR3(LMS7002_base): __slots__ = ['CMB0a', 'CMB0b', 'CMB0c','CMB1a','CMB1b','CMB1c', 'CMB2a', 'CMB2b', 'CMB2c', 'CMB3a', 'CMB3b', 'CMB3c', 'CMB4a', 'CMB4b', 'CMB4c', 'rxtx'] # Used to generate error on typos def __init__(self, chip, RxTx, Channel): if RxTx not in ['RX', 'TX']: raise ValueError("Parameter RxTx must be 'RX' or 'TX'") if Channel not in ['A', 'B']: raise ValueError("Parameter Channel must be 'A' or 'B'") self.chip = chip self.rxtx = RxTx self.channel = Channel self.CMB0a = LMS7002_GFIR(chip, RxTx, Channel, 3, '0a') self.CMB1a = LMS7002_GFIR(chip, RxTx, Channel, 3, '1a') self.CMB2a = LMS7002_GFIR(chip, RxTx, Channel, 3, '2a') self.CMB3a = LMS7002_GFIR(chip, RxTx, Channel, 3, '3a') self.CMB4a = LMS7002_GFIR(chip, RxTx, Channel, 3, '4a') self.CMB0b = LMS7002_GFIR(chip, RxTx, Channel, 3, '0b') self.CMB1b = LMS7002_GFIR(chip, RxTx, Channel, 3, '1b') self.CMB2b = LMS7002_GFIR(chip, RxTx, Channel, 3, '2b') self.CMB3b = LMS7002_GFIR(chip, RxTx, Channel, 3, '3b') self.CMB4b = LMS7002_GFIR(chip, RxTx, Channel, 3, '4b') self.CMB0c = LMS7002_GFIR(chip, RxTx, Channel, 3, '0c') self.CMB1c = LMS7002_GFIR(chip, RxTx, Channel, 3, '1c') self.CMB2c = LMS7002_GFIR(chip, RxTx, Channel, 3, '2c') self.CMB3c = LMS7002_GFIR(chip, RxTx, Channel, 3, '3c') self.CMB4c = LMS7002_GFIR(chip, RxTx, Channel, 3, '4c') def zeroOut(self): """ Initialize all FIR coefficients to 0 """ for i in range(0, 8): self.CMB0a[i] = 0 self.CMB1a[i] = 0 self.CMB2a[i] = 0 self.CMB3a[i] = 0 self.CMB4a[i] = 0 self.CMB0b[i] = 0 self.CMB1b[i] = 0 self.CMB2b[i] = 0 self.CMB3b[i] = 0 self.CMB4b[i] = 0 self.CMB0c[i] = 0 self.CMB1c[i] = 0 self.CMB2c[i] = 0 self.CMB3c[i] = 0 self.CMB4c[i] = 0 # # Operator overloading for easy access FIR[index]=val # def __getitem__(self, key): """ Get the FIR coefficient bank """ if key not in [(0,'a'), (0, 'b'), (0, 'c'), (1,'a'), (1, 'b'), (1, 'c'), (2,'a'), (2, 'b'), (2, 'c'), (3,'a'), (3, 'b'), (3, 'c'), (4,'a'), (4, 'b'), (4, 'c')]: raise ValueError("Index must be in [(0,'a'), (0, 'b'), (0, 'c'), (1,'a'), (1, 'b'), (1, 'c'), (2,'a'), (2, 'b'), (2, 'c'), (3,'a'), (3, 'b'), (3, 'c'), (4,'a'), (4, 'b'), (4, 'c')") if key==(0,'a'): return self.CMB0a elif key==(1,'a'): return self.CMB1a elif key==(2,'a'): return self.CMB2a elif key==(3,'a'): return self.CMB3a elif key==(4,'a'): return self.CMB4a elif key==(0,'b'): return self.CMB0b elif key==(1,'b'): return self.CMB1b elif key==(2,'b'): return self.CMB2b elif key==(3,'b'): return self.CMB3b elif key==(4,'b'): return self.CMB4b elif key==(0,'c'): return self.CMB0c elif key==(1,'c'): return self.CMB1c elif key==(2,'c'): return self.CMB2c elif key==(3,'c'): return self.CMB3c else: return self.CMB4c # # Operator overloading for readable representation of FIR coefficients # def __str__(self): return self.__repr__() def __repr__(self): ret = self.rxtx+"GFIR3 Channel "+self.channel+"\n" for coef in [self.CMB0a, self.CMB1a, self.CMB2a, self.CMB3a, self.CMB4a, self.CMB0b, self.CMB1b, self.CMB2b, self.CMB3b, self.CMB4b, self.CMB0c, self.CMB1c, self.CMB2c, self.CMB3c, self.CMB4c]: tmp = "CMB"+coef.suffix+" = [" for i in range(0,8): tmp += self.intToHex(coef[i])+', ' tmp = tmp[:-2] + "]\n" ret += tmp return ret
the-stack_0_17257
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import is_platform_32bit, is_platform_windows import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or is_platform_32bit() @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_repr_embedded_ndarray(self): arr = np.empty(10, dtype=[("err", object)]) for i in range(len(arr)): arr["err"][i] = np.random.randn(i) df = DataFrame(arr) repr(df["err"]) repr(df) df.to_string() def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(null_counts, result): buf = StringIO() df.info(buf=buf, null_counts=null_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) def test_repr_tuples(self): buf = StringIO() df = DataFrame({"tups": list(zip(range(10), range(10)))}) repr(df) df.to_string(col_space=10, buf=buf) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt._get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # FIXME: remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) pd.reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = pd.DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = pd.MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = pd.DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = pd.DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = pd.DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = pd.DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = pd.DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = pd.DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = pd.DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_to_string_truncate(self): # GH 9784 - dont truncate when calling DataFrame.to_string df = pd.DataFrame( [ { "a": "foo", "b": "bar", "c": "let's make this a very VERY long line that is longer " "than the default 50 character limit", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert df.to_string() == ( " a b " " c d\n" "0 foo bar let's make this a very VERY long line t" "hat is longer than the default 50 character limit 1\n" "1 foo bar " " stuff 1" ) with option_context("max_colwidth", 20): # the display option has no effect on the to_string method assert df.to_string() == ( " a b " " c d\n" "0 foo bar let's make this a very VERY long line t" "hat is longer than the default 50 character limit 1\n" "1 foo bar " " stuff 1" ) assert df.to_string(max_colwidth=20) == ( " a b c d\n" "0 foo bar let's make this ... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("max_rows", None): with option_context("max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("max_rows", 0): with option_context("max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("max_rows", 0): with option_context("max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("max_rows", None): with option_context("max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_to_string_unicode_columns(self, float_frame): df = DataFrame({"\u03c3": np.arange(10.0)}) buf = StringIO() df.to_string(buf=buf) buf.getvalue() buf = StringIO() df.info(buf=buf) buf.getvalue() result = float_frame.to_string() assert isinstance(result, str) def test_to_string_utf8_columns(self): n = "\u05d0".encode("utf-8") with option_context("display.max_rows", 1): df = DataFrame([1, 2], columns=[n]) repr(df) def test_to_string_unicode_two(self): dm = DataFrame({"c/\u03c3": []}) buf = StringIO() dm.to_string(buf) def test_to_string_unicode_three(self): dm = DataFrame(["\xc2"]) buf = StringIO() dm.to_string(buf) def test_to_string_with_formatters(self): df = DataFrame( { "int": [1, 2, 3], "float": [1.0, 2.0, 3.0], "object": [(1, 2), True, False], }, columns=["int", "float", "object"], ) formatters = [ ("int", lambda x: f"0x{x:x}"), ("float", lambda x: f"[{x: 4.1f}]"), ("object", lambda x: f"-{x!s}-"), ] result = df.to_string(formatters=dict(formatters)) result2 = df.to_string(formatters=list(zip(*formatters))[1]) assert result == ( " int float object\n" "0 0x1 [ 1.0] -(1, 2)-\n" "1 0x2 [ 2.0] -True-\n" "2 0x3 [ 3.0] -False-" ) assert result == result2 def test_to_string_with_datetime64_monthformatter(self): months = [datetime(2016, 1, 1), datetime(2016, 2, 2)] x = DataFrame({"months": months}) def format_func(x): return x.strftime("%Y-%m") result = x.to_string(formatters={"months": format_func}) expected = "months\n0 2016-01\n1 2016-02" assert result.strip() == expected def test_to_string_with_datetime64_hourformatter(self): x = DataFrame( { "hod": pd.to_datetime( ["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f" ) } ) def format_func(x): return x.strftime("%H:%M") result = x.to_string(formatters={"hod": format_func}) expected = "hod\n0 10:10\n1 12:12" assert result.strip() == expected def test_to_string_with_formatters_unicode(self): df = DataFrame({"c/\u03c3": [1, 2, 3]}) result = df.to_string(formatters={"c/\u03c3": str}) assert result == " c/\u03c3\n" + "0 1\n1 2\n2 3" def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=pd.Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=pd.Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = pd.MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = pd.DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=pd.Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=pd.Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = pd.MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = pd.DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with pd.option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with pd.option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame( {"date": [pd.Timestamp("20130101").tz_localize("UTC")] + [pd.NaT] * 5} ) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [pd.Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [pd.NaT] * 5 df = pd.DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [pd.NaT] * 5 + [pd.Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = pd.DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [pd.Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ pd.Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = pd.DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = pd.read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join(re.sub(r"\s+", " ", x).strip() for x in lines[1:]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n 11 33 AAA\n 22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n 33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with pd.option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(l) for l in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with pd.option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_period(self): # GH 12615 df = pd.DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), pd.Period("2011-04", freq="M"), ], "C": list("abcd"), } ) exp = ( " A B C\n" "0 2013-01 2011-01 a\n" "1 2013-02 2011-02-01 b\n" "2 2013-03 2011-03-01 09:00 c\n" "3 2013-04 2011-04 d" ) assert str(df) == exp def gen_series_formatting(): s1 = pd.Series(["a"] * 100) s2 = pd.Series(["ab"] * 100) s3 = pd.Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) s4 = s3[::-1] test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} return test_sers class TestSeriesFormatting: def setup_method(self, method): self.ts = tm.makeTimeSeries() def test_repr_unicode(self): s = Series(["\u03c3"] * 10) repr(s) a = Series(["\u05d0"] * 1000) a.name = "title1" repr(a) def test_to_string(self): buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) assert retval is None assert buf.getvalue().strip() == s # pass float_format format = "%.4f".__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split("\n")[:-1]] expected = [format(x) for x in self.ts] assert result == expected # empty string result = self.ts[:0].to_string() assert result == "Series([], Freq: B)" result = self.ts[:0].to_string(length=0) assert result == "Series([], Freq: B)" # name and length cp = self.ts.copy() cp.name = "foo" result = cp.to_string(length=True, name=True, dtype=True) last_line = result.split("\n")[-1].strip() assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") def test_freq_name_separation(self): s = Series( np.random.randn(10), index=date_range("1/1/2000", periods=10), name=0 ) result = repr(s) assert "Freq: D, Name: 0" in result def test_to_string_mixed(self): s = Series(["foo", np.nan, -1.23, 4.56]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 -1.23\n" + "3 4.56" assert result == expected # but don't count NAs as floats s = Series(["foo", np.nan, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 bar\n" + "3 baz" assert result == expected s = Series(["foo", 5, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 5\n" + "2 bar\n" + "3 baz" assert result == expected def test_to_string_float_na_spacing(self): s = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) s[::2] = np.nan result = s.to_string() expected = ( "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" ) assert result == expected def test_to_string_without_index(self): # GH 11729 Test index=False option s = Series([1, 2, 3, 4]) result = s.to_string(index=False) expected = " 1\n" + " 2\n" + " 3\n" + " 4" assert result == expected def test_unicode_name_in_footer(self): s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf._get_footer() # should not raise exception def test_east_asian_unicode_series(self): # not aligned properly because of east asian width # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = "あ a\nいい bb\nううう CCC\nええええ D\ndtype: object" assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = "a あ\nbb いい\nc ううう\nddd ええええ\ndtype: object" assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\nいいいい いい\nう ううう\nえええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお" ) expected = ( "ああ あ\nいいいい いい\nう ううう\n" "えええ ええええ\nName: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = pd.MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", pd.Timestamp("2011-01-01"), "あああ"] ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # Emable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = ( "あ a\nいい bb\nううう CCC\n" "ええええ D\ndtype: object" ) assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = ( "a あ\nbb いい\nc ううう\n" "ddd ええええ\ndtype: object" ) assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお", ) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\n" "Name: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = pd.MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\n" "dtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", pd.Timestamp("2011-01-01"), "あああ"], ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n" " ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # ambiguous unicode s = Series( ["¡¡", "い¡¡", "ううう", "ええええ"], index=["ああ", "¡¡¡¡いい", "¡¡", "えええ"] ) expected = ( "ああ ¡¡\n" "¡¡¡¡いい い¡¡\n" "¡¡ ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] for line in repr(Series(vals)).split("\n"): if line.startswith("dtype:"): continue if _three_digit_exp(): assert "+010" in line else: assert "+10" in line def test_datetimeindex(self): index = date_range("20130102", periods=6) s = Series(1, index=index) result = s.to_string() assert "2013-01-02" in result # nat in index s2 = Series(2, index=[Timestamp("20130111"), NaT]) s = s2.append(s) result = s.to_string() assert "NaT" in result # nat in summary result = str(s2.index) assert "NaT" in result @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex s1 = Series(date_range(start=start_date, freq="D", periods=5)) result = str(s1) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) s2 = Series(3, index=dti) result = str(s2.index) assert start_date in result def test_timedelta64(self): from datetime import datetime, timedelta Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string() s = Series(date_range("2012-1-1", periods=3, freq="D")) # GH2146 # adding NaTs y = s - s.shift(1) result = y.to_string() assert "1 days" in result assert "00:00:00" not in result assert "NaT" in result # with frac seconds o = Series([datetime(2012, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +23:59:59.999850" in result # rounding? o = Series([datetime(2012, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +23:00:00" in result assert "1 days 23:00:00" in result o = Series([datetime(2012, 1, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +22:59:00" in result assert "1 days 22:59:00" in result o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +22:58:59.999850" in result assert "0 days 22:58:59.999850" in result # neg time td = timedelta(minutes=5, seconds=3) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - s2 result = y.to_string() assert "-1 days +23:54:57" in result td = timedelta(microseconds=550) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - td result = y.to_string() assert "2012-01-01 23:59:59.999450" in result # no boxing of the actual elements td = Series(pd.timedelta_range("1 days", periods=3)) result = td.to_string() assert result == "0 1 days\n1 2 days\n2 3 days" def test_mixed_datetime64(self): df = DataFrame({"A": [1, 2], "B": ["2012-01-01", "2012-01-02"]}) df["B"] = pd.to_datetime(df.B) result = repr(df.loc[0]) assert "2012-01-01" in result def test_period(self): # GH 12615 index = pd.period_range("2013-01", periods=6, freq="M") s = Series(np.arange(6, dtype="int64"), index=index) exp = ( "2013-01 0\n" "2013-02 1\n" "2013-03 2\n" "2013-04 3\n" "2013-05 4\n" "2013-06 5\n" "Freq: M, dtype: int64" ) assert str(s) == exp s = Series(index) exp = ( "0 2013-01\n" "1 2013-02\n" "2 2013-03\n" "3 2013-04\n" "4 2013-05\n" "5 2013-06\n" "dtype: period[M]" ) assert str(s) == exp # periods with mixed freq s = Series( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), ] ) exp = ( "0 2011-01\n1 2011-02-01\n" "2 2011-03-01 09:00\ndtype: object" ) assert str(s) == exp def test_max_multi_index_display(self): # GH 7101 # doc example (indexing.rst) # multi-index arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=["first", "second"]) s = Series(np.random.randn(8), index=index) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 10 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 10 # index s = Series(np.random.randn(8), None) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 9 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 3 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 9 # Make sure #8532 is fixed def test_consistent_format(self): s = pd.Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10) with option_context("display.max_rows", 10, "display.show_dimensions", False): res = repr(s) exp = ( "0 1.0000\n1 1.0000\n2 1.0000\n3 " "1.0000\n4 1.0000\n ... \n125 " "1.0000\n126 1.0000\n127 0.9999\n128 " "1.0000\n129 1.0000\ndtype: float64" ) assert res == exp def chck_ncols(self, s): with option_context("display.max_rows", 10): res = repr(s) lines = res.split("\n") lines = [ line for line in repr(s).split("\n") if not re.match(r"[^\.]*\.+", line) ][:-1] ncolsizes = len({len(line.strip()) for line in lines}) assert ncolsizes == 1 def test_format_explicit(self): test_sers = gen_series_formatting() with option_context("display.max_rows", 4, "display.show_dimensions", False): res = repr(test_sers["onel"]) exp = "0 a\n1 a\n ..\n98 a\n99 a\ndtype: object" assert exp == res res = repr(test_sers["twol"]) exp = "0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype: object" assert exp == res res = repr(test_sers["asc"]) exp = ( "0 a\n1 ab\n ... \n4 abcde\n5 " "abcdef\ndtype: object" ) assert exp == res res = repr(test_sers["desc"]) exp = ( "5 abcdef\n4 abcde\n ... \n1 ab\n0 " "a\ndtype: object" ) assert exp == res def test_ncols(self): test_sers = gen_series_formatting() for s in test_sers.values(): self.chck_ncols(s) def test_max_rows_eq_one(self): s = Series(range(10), dtype="int64") with option_context("display.max_rows", 1): strrepr = repr(s).split("\n") exp1 = ["0", "0"] res1 = strrepr[0].split() assert exp1 == res1 exp2 = [".."] res2 = strrepr[1].split() assert exp2 == res2 def test_truncate_ndots(self): def getndots(s): return len(re.match(r"[^\.]*(\.*)", s).groups()[0]) s = Series([0, 2, 3, 6]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 2 s = Series([0, 100, 200, 400]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 3 def test_show_dimensions(self): # gh-7117 s = Series(range(5)) assert "Length" not in repr(s) with option_context("display.max_rows", 4): assert "Length" in repr(s) with option_context("display.show_dimensions", True): assert "Length" in repr(s) with option_context("display.max_rows", 4, "display.show_dimensions", False): assert "Length" not in repr(s) def test_repr_min_rows(self): s = pd.Series(range(20)) # default setting no truncation even if above min_rows assert ".." not in repr(s) s = pd.Series(range(61)) # default of max_rows 60 triggers truncation if above assert ".." in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(s) assert "2 " not in repr(s) with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(s) with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(s) def test_to_string_name(self): s = Series(range(100), dtype="int64") s.name = "myser" res = s.to_string(max_rows=2, name=True) exp = "0 0\n ..\n99 99\nName: myser" assert res == exp res = s.to_string(max_rows=2, name=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_dtype(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, dtype=True) exp = "0 0\n ..\n99 99\ndtype: int64" assert res == exp res = s.to_string(max_rows=2, dtype=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_length(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, length=True) exp = "0 0\n ..\n99 99\nLength: 100" assert res == exp def test_to_string_na_rep(self): s = pd.Series(index=range(100), dtype=np.float64) res = s.to_string(na_rep="foo", max_rows=2) exp = "0 foo\n ..\n99 foo" assert res == exp def test_to_string_float_format(self): s = pd.Series(range(10), dtype="float64") res = s.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2) exp = "0 0.0\n ..\n9 9.0" assert res == exp def test_to_string_header(self): s = pd.Series(range(10), dtype="int64") s.index.name = "foo" res = s.to_string(header=True, max_rows=2) exp = "foo\n0 0\n ..\n9 9" assert res == exp res = s.to_string(header=False, max_rows=2) exp = "0 0\n ..\n9 9" assert res == exp def test_to_string_multindex_header(self): # GH 16718 df = pd.DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index( ["a", "b"] ) res = df.to_string(header=["r1", "r2"]) exp = " r1 r2\na b \n0 1 2 3" assert res == exp def _three_digit_exp(): return f"{1.7e8:.4g}" == "1.7e+008" class TestFloatArrayFormatter: def test_misc(self): obj = fmt.FloatArrayFormatter(np.array([], dtype=np.float64)) result = obj.get_result() assert len(result) == 0 def test_format(self): obj = fmt.FloatArrayFormatter(np.array([12, 0], dtype=np.float64)) result = obj.get_result() assert result[0] == " 12.0" assert result[1] == " 0.0" def test_output_significant_digits(self): # Issue #9764 # In case default display precision changes: with pd.option_context("display.precision", 6): # DataFrame example from issue #9764 d = pd.DataFrame( { "col1": [ 9.999e-8, 1e-7, 1.0001e-7, 2e-7, 4.999e-7, 5e-7, 5.0001e-7, 6e-7, 9.999e-7, 1e-6, 1.0001e-6, 2e-6, 4.999e-6, 5e-6, 5.0001e-6, 6e-6, ] } ) expected_output = { (0, 6): " col1\n" "0 9.999000e-08\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 6): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 8): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07\n" "6 5.000100e-07\n" "7 6.000000e-07", (8, 16): " col1\n" "8 9.999000e-07\n" "9 1.000000e-06\n" "10 1.000100e-06\n" "11 2.000000e-06\n" "12 4.999000e-06\n" "13 5.000000e-06\n" "14 5.000100e-06\n" "15 6.000000e-06", (9, 16): " col1\n" "9 0.000001\n" "10 0.000001\n" "11 0.000002\n" "12 0.000005\n" "13 0.000005\n" "14 0.000005\n" "15 0.000006", } for (start, stop), v in expected_output.items(): assert str(d[start:stop]) == v def test_too_long(self): # GH 10451 with pd.option_context("display.precision", 4): # need both a number > 1e6 and something that normally formats to # having length > display.precision + 6 df = pd.DataFrame(dict(x=[12345.6789])) assert str(df) == " x\n0 12345.6789" df = pd.DataFrame(dict(x=[2e6])) assert str(df) == " x\n0 2000000.0" df = pd.DataFrame(dict(x=[12345.6789, 2e6])) assert str(df) == " x\n0 1.2346e+04\n1 2.0000e+06" class TestRepr_timedelta64: def test_none(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base() assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "0 days" assert drepr(delta_1s) == "0 days 00:00:01" assert drepr(delta_500ms) == "0 days 00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_sub_day(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base(format="sub_day") assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "00:00:00" assert drepr(delta_1s) == "00:00:01" assert drepr(delta_500ms) == "00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_long(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base(format="long") assert drepr(delta_1d) == "1 days 00:00:00" assert drepr(-delta_1d) == "-1 days +00:00:00" assert drepr(delta_0d) == "0 days 00:00:00" assert drepr(delta_1s) == "0 days 00:00:01" assert drepr(delta_500ms) == "0 days 00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_all(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1ns = pd.to_timedelta(1, unit="ns") drepr = lambda x: x._repr_base(format="all") assert drepr(delta_1d) == "1 days 00:00:00.000000000" assert drepr(-delta_1d) == "-1 days +00:00:00.000000000" assert drepr(delta_0d) == "0 days 00:00:00.000000000" assert drepr(delta_1ns) == "0 days 00:00:00.000000001" assert drepr(-delta_1d + delta_1ns) == "-1 days +00:00:00.000000001" class TestTimedelta64Formatter: def test_days(self): x = pd.to_timedelta(list(range(5)) + [pd.NaT], unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" assert result[1].strip() == "'1 days'" result = fmt.Timedelta64Formatter(x[1:2], box=True).get_result() assert result[0].strip() == "'1 days'" result = fmt.Timedelta64Formatter(x, box=False).get_result() assert result[0].strip() == "0 days" assert result[1].strip() == "1 days" result = fmt.Timedelta64Formatter(x[1:2], box=False).get_result() assert result[0].strip() == "1 days" def test_days_neg(self): x = pd.to_timedelta(list(range(5)) + [pd.NaT], unit="D") result = fmt.Timedelta64Formatter(-x, box=True).get_result() assert result[0].strip() == "'0 days'" assert result[1].strip() == "'-1 days'" def test_subdays(self): y = pd.to_timedelta(list(range(5)) + [pd.NaT], unit="s") result = fmt.Timedelta64Formatter(y, box=True).get_result() assert result[0].strip() == "'00:00:00'" assert result[1].strip() == "'00:00:01'" def test_subdays_neg(self): y = pd.to_timedelta(list(range(5)) + [pd.NaT], unit="s") result = fmt.Timedelta64Formatter(-y, box=True).get_result() assert result[0].strip() == "'00:00:00'" assert result[1].strip() == "'-1 days +23:59:59'" def test_zero(self): x = pd.to_timedelta(list(range(1)) + [pd.NaT], unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" x = pd.to_timedelta(list(range(1)), unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" class TestDatetime64Formatter: def test_mixed(self): x = Series([datetime(2013, 1, 1), datetime(2013, 1, 1, 12), pd.NaT]) result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 00:00:00" assert result[1].strip() == "2013-01-01 12:00:00" def test_dates(self): x = Series([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT]) result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01" assert result[1].strip() == "2013-01-02" def test_date_nanos(self): x = Series([Timestamp(200)]) result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "1970-01-01 00:00:00.000000200" def test_dates_display(self): # 10170 # make sure that we are consistently display date formatting x = Series(date_range("20130101 09:00:00", periods=5, freq="D")) x.iloc[1] = np.nan result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 09:00:00" assert result[1].strip() == "NaT" assert result[4].strip() == "2013-01-05 09:00:00" x = Series(date_range("20130101 09:00:00", periods=5, freq="s")) x.iloc[1] = np.nan result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 09:00:00" assert result[1].strip() == "NaT" assert result[4].strip() == "2013-01-01 09:00:04" x = Series(date_range("20130101 09:00:00", periods=5, freq="ms")) x.iloc[1] = np.nan result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 09:00:00.000" assert result[1].strip() == "NaT" assert result[4].strip() == "2013-01-01 09:00:00.004" x = Series(date_range("20130101 09:00:00", periods=5, freq="us")) x.iloc[1] = np.nan result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 09:00:00.000000" assert result[1].strip() == "NaT" assert result[4].strip() == "2013-01-01 09:00:00.000004" x = Series(date_range("20130101 09:00:00", periods=5, freq="N")) x.iloc[1] = np.nan result = fmt.Datetime64Formatter(x).get_result() assert result[0].strip() == "2013-01-01 09:00:00.000000000" assert result[1].strip() == "NaT" assert result[4].strip() == "2013-01-01 09:00:00.000000004" def test_datetime64formatter_yearmonth(self): x = Series([datetime(2016, 1, 1), datetime(2016, 2, 2)]) def format_func(x): return x.strftime("%Y-%m") formatter = fmt.Datetime64Formatter(x, formatter=format_func) result = formatter.get_result() assert result == ["2016-01", "2016-02"] def test_datetime64formatter_hoursecond(self): x = Series( pd.to_datetime(["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f") ) def format_func(x): return x.strftime("%H:%M") formatter = fmt.Datetime64Formatter(x, formatter=format_func) result = formatter.get_result() assert result == ["10:10", "12:12"] class TestNaTFormatting: def test_repr(self): assert repr(pd.NaT) == "NaT" def test_str(self): assert str(pd.NaT) == "NaT" class TestDatetimeIndexFormat: def test_datetime(self): formatted = pd.to_datetime([datetime(2003, 1, 1, 12), pd.NaT]).format() assert formatted[0] == "2003-01-01 12:00:00" assert formatted[1] == "NaT" def test_date(self): formatted = pd.to_datetime([datetime(2003, 1, 1), pd.NaT]).format() assert formatted[0] == "2003-01-01" assert formatted[1] == "NaT" def test_date_tz(self): formatted = pd.to_datetime([datetime(2013, 1, 1)], utc=True).format() assert formatted[0] == "2013-01-01 00:00:00+00:00" formatted = pd.to_datetime([datetime(2013, 1, 1), pd.NaT], utc=True).format() assert formatted[0] == "2013-01-01 00:00:00+00:00" def test_date_explicit_date_format(self): formatted = pd.to_datetime([datetime(2003, 2, 1), pd.NaT]).format( date_format="%m-%d-%Y", na_rep="UT" ) assert formatted[0] == "02-01-2003" assert formatted[1] == "UT" class TestDatetimeIndexUnicode: def test_dates(self): text = str(pd.to_datetime([datetime(2013, 1, 1), datetime(2014, 1, 1)])) assert "['2013-01-01'," in text assert ", '2014-01-01']" in text def test_mixed(self): text = str( pd.to_datetime( [datetime(2013, 1, 1), datetime(2014, 1, 1, 12), datetime(2014, 1, 1)] ) ) assert "'2013-01-01 00:00:00'," in text assert "'2014-01-01 00:00:00']" in text class TestStringRepTimestamp: def test_no_tz(self): dt_date = datetime(2013, 1, 2) assert str(dt_date) == str(Timestamp(dt_date)) dt_datetime = datetime(2013, 1, 2, 12, 1, 3) assert str(dt_datetime) == str(Timestamp(dt_datetime)) dt_datetime_us = datetime(2013, 1, 2, 12, 1, 3, 45) assert str(dt_datetime_us) == str(Timestamp(dt_datetime_us)) ts_nanos_only = Timestamp(200) assert str(ts_nanos_only) == "1970-01-01 00:00:00.000000200" ts_nanos_micros = Timestamp(1200) assert str(ts_nanos_micros) == "1970-01-01 00:00:00.000001200" def test_tz_pytz(self): dt_date = datetime(2013, 1, 2, tzinfo=pytz.utc) assert str(dt_date) == str(Timestamp(dt_date)) dt_datetime = datetime(2013, 1, 2, 12, 1, 3, tzinfo=pytz.utc) assert str(dt_datetime) == str(Timestamp(dt_datetime)) dt_datetime_us = datetime(2013, 1, 2, 12, 1, 3, 45, tzinfo=pytz.utc) assert str(dt_datetime_us) == str(Timestamp(dt_datetime_us)) def test_tz_dateutil(self): utc = dateutil.tz.tzutc() dt_date = datetime(2013, 1, 2, tzinfo=utc) assert str(dt_date) == str(Timestamp(dt_date)) dt_datetime = datetime(2013, 1, 2, 12, 1, 3, tzinfo=utc) assert str(dt_datetime) == str(Timestamp(dt_datetime)) dt_datetime_us = datetime(2013, 1, 2, 12, 1, 3, 45, tzinfo=utc) assert str(dt_datetime_us) == str(Timestamp(dt_datetime_us)) def test_nat_representations(self): for f in (str, repr, methodcaller("isoformat")): assert f(pd.NaT) == "NaT" def test_format_percentiles(): result = fmt.format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) expected = ["1.999%", "2.001%", "50%", "66.667%", "99.99%"] assert result == expected result = fmt.format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) expected = ["0%", "50%", "2.0%", "50%", "66.67%", "99.99%"] assert result == expected msg = r"percentiles should all be in the interval \[0,1\]" with pytest.raises(ValueError, match=msg): fmt.format_percentiles([0.1, np.nan, 0.5]) with pytest.raises(ValueError, match=msg): fmt.format_percentiles([-0.001, 0.1, 0.5]) with pytest.raises(ValueError, match=msg): fmt.format_percentiles([2, 0.1, 0.5]) with pytest.raises(ValueError, match=msg): fmt.format_percentiles([0.1, 0.5, "a"]) def test_format_percentiles_integer_idx(): # Issue #26660 result = fmt.format_percentiles(np.linspace(0, 1, 10 + 1)) expected = [ "0%", "10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "100%", ] assert result == expected def test_repr_html_ipython_config(ip): code = textwrap.dedent( """\ import pandas as pd df = pd.DataFrame({"A": [1, 2]}) df._repr_html_() cfg = get_ipython().config cfg['IPKernelApp']['parent_appname'] df._repr_html_() """ ) result = ip.run_cell(code) assert not result.error_in_exec @pytest.mark.parametrize("method", ["to_string", "to_html", "to_latex"]) @pytest.mark.parametrize( "encoding, data", [(None, "abc"), ("utf-8", "abc"), ("gbk", "造成输出中文显示乱码"), ("foo", "abc")], ) def test_filepath_or_buffer_arg( method, filepath_or_buffer, assert_filepath_or_buffer_equals, encoding, data, filepath_or_buffer_id, ): df = DataFrame([data]) if filepath_or_buffer_id not in ["string", "pathlike"] and encoding is not None: with pytest.raises( ValueError, match="buf is not a file name and encoding is specified." ): getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) elif encoding == "foo": with tm.assert_produces_warning(None): with pytest.raises(LookupError, match="unknown encoding"): getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) else: expected = getattr(df, method)() getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) assert_filepath_or_buffer_equals(expected) @pytest.mark.parametrize("method", ["to_string", "to_html", "to_latex"]) def test_filepath_or_buffer_bad_arg_raises(float_frame, method): msg = "buf is not a file name and it has no write method" with pytest.raises(TypeError, match=msg): getattr(float_frame, method)(buf=object())
the-stack_0_17258
# ! Warning ! # This code is the worst code # I have ever writen. Reading # it can cause and has caused # permanent eye damage. import sys file = open(sys.argv[1]) assembly = file.read() file.close() tokens = assembly.split() output = "" curInstr = "" jump = False for tok in tokens: if tok == "add": curInstr += "0001" elif tok == "addi": curInstr += "0010" elif tok == "jmp": curInstr += "0011000000" elif tok == "jeq": curInstr += "0100" elif tok == "store": curInstr += "0101" elif tok == "load": curInstr += "0110" elif tok == "xor": curInstr += "0111" elif tok == "and": curInstr += "1000" elif tok[0] == "r": curInstr += "{0:03b}".format(int(tok[1])) else: curInstr += "{0:016b}".format(int(tok)) if len(curInstr) == 26: output += curInstr + "\n" curInstr = "" elif len(curInstr) == 13: curInstr += "0000000000000\n" output += curInstr curInstr = "" file = open(sys.argv[2], "w") file.write(output)
the-stack_0_17260
import datetime import logging import multiprocessing import os import secrets import shutil from typing import Any, Dict, Iterable, List, Optional, Tuple import boto3 import orjson from bs4 import BeautifulSoup from django.conf import settings from django.core.cache import cache from django.db import connection from django.utils.timezone import now as timezone_now from psycopg2.extras import execute_values from psycopg2.sql import SQL, Identifier from analytics.models import RealmCount, StreamCount, UserCount from zerver.lib.actions import ( UserMessageLite, bulk_insert_ums, do_change_avatar_fields, do_change_plan_type, ) from zerver.lib.avatar_hash import user_avatar_path_from_ids from zerver.lib.bulk_create import bulk_create_users, bulk_set_users_or_streams_recipient_fields from zerver.lib.export import DATE_FIELDS, Field, Path, Record, TableData, TableName from zerver.lib.markdown import markdown_convert from zerver.lib.markdown import version as markdown_version from zerver.lib.message import get_last_message_id from zerver.lib.server_initialization import create_internal_realm, server_initialized from zerver.lib.streams import render_stream_description from zerver.lib.timestamp import datetime_to_timestamp from zerver.lib.upload import BadImageError, guess_type, sanitize_name from zerver.lib.utils import generate_api_key, process_list_in_batches from zerver.models import ( AlertWord, Attachment, BotConfigData, BotStorageData, Client, CustomProfileField, CustomProfileFieldValue, DefaultStream, Huddle, Message, MutedTopic, Reaction, Realm, RealmAuditLog, RealmDomain, RealmEmoji, RealmFilter, Recipient, Service, Stream, Subscription, UserActivity, UserActivityInterval, UserGroup, UserGroupMembership, UserHotspot, UserMessage, UserPresence, UserProfile, get_huddle_hash, get_system_bot, get_user_profile_by_id, ) realm_tables = [("zerver_defaultstream", DefaultStream, "defaultstream"), ("zerver_realmemoji", RealmEmoji, "realmemoji"), ("zerver_realmdomain", RealmDomain, "realmdomain"), ("zerver_realmfilter", RealmFilter, "realmfilter")] # List[Tuple[TableName, Any, str]] # ID_MAP is a dictionary that maps table names to dictionaries # that map old ids to new ids. We use this in # re_map_foreign_keys and other places. # # We explicitly initialize ID_MAP with the tables that support # id re-mapping. # # Code reviewers: give these tables extra scrutiny, as we need to # make sure to reload related tables AFTER we re-map the ids. ID_MAP: Dict[str, Dict[int, int]] = { 'alertword': {}, 'client': {}, 'user_profile': {}, 'huddle': {}, 'realm': {}, 'stream': {}, 'recipient': {}, 'subscription': {}, 'defaultstream': {}, 'reaction': {}, 'realmemoji': {}, 'realmdomain': {}, 'realmfilter': {}, 'message': {}, 'user_presence': {}, 'useractivity': {}, 'useractivityinterval': {}, 'usermessage': {}, 'customprofilefield': {}, 'customprofilefieldvalue': {}, 'attachment': {}, 'realmauditlog': {}, 'recipient_to_huddle_map': {}, 'userhotspot': {}, 'mutedtopic': {}, 'service': {}, 'usergroup': {}, 'usergroupmembership': {}, 'botstoragedata': {}, 'botconfigdata': {}, 'analytics_realmcount': {}, 'analytics_streamcount': {}, 'analytics_usercount': {}, } id_map_to_list: Dict[str, Dict[int, List[int]]] = { 'huddle_to_user_list': {}, } path_maps: Dict[str, Dict[str, str]] = { 'attachment_path': {}, } def update_id_map(table: TableName, old_id: int, new_id: int) -> None: if table not in ID_MAP: raise Exception(f''' Table {table} is not initialized in ID_MAP, which could mean that we have not thought through circular dependencies. ''') ID_MAP[table][old_id] = new_id def fix_datetime_fields(data: TableData, table: TableName) -> None: for item in data[table]: for field_name in DATE_FIELDS[table]: if item[field_name] is not None: item[field_name] = datetime.datetime.fromtimestamp(item[field_name], tz=datetime.timezone.utc) def fix_upload_links(data: TableData, message_table: TableName) -> None: """ Because the URLs for uploaded files encode the realm ID of the organization being imported (which is only determined at import time), we need to rewrite the URLs of links to uploaded files during the import process. """ for message in data[message_table]: if message['has_attachment'] is True: for key, value in path_maps['attachment_path'].items(): if key in message['content']: message['content'] = message['content'].replace(key, value) if message['rendered_content']: message['rendered_content'] = message['rendered_content'].replace(key, value) def create_subscription_events(data: TableData, realm_id: int) -> None: """ When the export data doesn't contain the table `zerver_realmauditlog`, this function creates RealmAuditLog objects for `subscription_created` type event for all the existing Stream subscriptions. This is needed for all the export tools which do not include the table `zerver_realmauditlog` (Slack, Gitter, etc.) because the appropriate data about when a user was subscribed is not exported by the third-party service. """ all_subscription_logs = [] event_last_message_id = get_last_message_id() event_time = timezone_now() recipient_id_to_stream_id = { d['id']: d['type_id'] for d in data['zerver_recipient'] if d['type'] == Recipient.STREAM } for sub in data['zerver_subscription']: recipient_id = sub['recipient_id'] stream_id = recipient_id_to_stream_id.get(recipient_id) if stream_id is None: continue user_id = sub['user_profile_id'] all_subscription_logs.append(RealmAuditLog(realm_id=realm_id, acting_user_id=user_id, modified_user_id=user_id, modified_stream_id=stream_id, event_last_message_id=event_last_message_id, event_time=event_time, event_type=RealmAuditLog.SUBSCRIPTION_CREATED)) RealmAuditLog.objects.bulk_create(all_subscription_logs) def fix_service_tokens(data: TableData, table: TableName) -> None: """ The tokens in the services are created by 'generate_api_key'. As the tokens are unique, they should be re-created for the imports. """ for item in data[table]: item['token'] = generate_api_key() def process_huddle_hash(data: TableData, table: TableName) -> None: """ Build new huddle hashes with the updated ids of the users """ for huddle in data[table]: user_id_list = id_map_to_list['huddle_to_user_list'][huddle['id']] huddle['huddle_hash'] = get_huddle_hash(user_id_list) def get_huddles_from_subscription(data: TableData, table: TableName) -> None: """ Extract the IDs of the user_profiles involved in a huddle from the subscription object This helps to generate a unique huddle hash from the updated user_profile ids """ id_map_to_list['huddle_to_user_list'] = { value: [] for value in ID_MAP['recipient_to_huddle_map'].values()} for subscription in data[table]: if subscription['recipient'] in ID_MAP['recipient_to_huddle_map']: huddle_id = ID_MAP['recipient_to_huddle_map'][subscription['recipient']] id_map_to_list['huddle_to_user_list'][huddle_id].append(subscription['user_profile_id']) def fix_customprofilefield(data: TableData) -> None: """ In CustomProfileField with 'field_type' like 'USER', the IDs need to be re-mapped. """ field_type_USER_id_list = [] for item in data['zerver_customprofilefield']: if item['field_type'] == CustomProfileField.USER: field_type_USER_id_list.append(item['id']) for item in data['zerver_customprofilefieldvalue']: if item['field_id'] in field_type_USER_id_list: old_user_id_list = orjson.loads(item['value']) new_id_list = re_map_foreign_keys_many_to_many_internal( table='zerver_customprofilefieldvalue', field_name='value', related_table='user_profile', old_id_list=old_user_id_list) item['value'] = orjson.dumps(new_id_list).decode() def fix_message_rendered_content(realm: Realm, sender_map: Dict[int, Record], messages: List[Record]) -> None: """ This function sets the rendered_content of all the messages after the messages have been imported from a non-Zulip platform. """ for message in messages: if message['rendered_content'] is not None: # For Zulip->Zulip imports, we use the original rendered # Markdown; this avoids issues where e.g. a mention can no # longer render properly because a user has changed their # name. # # However, we still need to update the data-user-id and # similar values stored on mentions, stream mentions, and # similar syntax in the rendered HTML. soup = BeautifulSoup(message["rendered_content"], "html.parser") user_mentions = soup.findAll("span", {"class": "user-mention"}) if len(user_mentions) != 0: user_id_map = ID_MAP["user_profile"] for mention in user_mentions: if not mention.has_attr("data-user-id"): # Legacy mentions don't have a data-user-id # field; we should just import them # unmodified. continue if mention['data-user-id'] == "*": # No rewriting is required for wildcard mentions continue old_user_id = int(mention["data-user-id"]) if old_user_id in user_id_map: mention["data-user-id"] = str(user_id_map[old_user_id]) message['rendered_content'] = str(soup) stream_mentions = soup.findAll("a", {"class": "stream"}) if len(stream_mentions) != 0: stream_id_map = ID_MAP["stream"] for mention in stream_mentions: old_stream_id = int(mention["data-stream-id"]) if old_stream_id in stream_id_map: mention["data-stream-id"] = str(stream_id_map[old_stream_id]) message['rendered_content'] = str(soup) user_group_mentions = soup.findAll("span", {"class": "user-group-mention"}) if len(user_group_mentions) != 0: user_group_id_map = ID_MAP["usergroup"] for mention in user_group_mentions: old_user_group_id = int(mention["data-user-group-id"]) if old_user_group_id in user_group_id_map: mention["data-user-group-id"] = str(user_group_id_map[old_user_group_id]) message['rendered_content'] = str(soup) continue try: content = message['content'] sender_id = message['sender_id'] sender = sender_map[sender_id] sent_by_bot = sender['is_bot'] translate_emoticons = sender['translate_emoticons'] # We don't handle alert words on import from third-party # platforms, since they generally don't have an "alert # words" type feature, and notifications aren't important anyway. realm_alert_words_automaton = None rendered_content = markdown_convert( content=content, realm_alert_words_automaton=realm_alert_words_automaton, message_realm=realm, sent_by_bot=sent_by_bot, translate_emoticons=translate_emoticons, ) message['rendered_content'] = rendered_content message['rendered_content_version'] = markdown_version except Exception: # This generally happens with two possible causes: # * rendering Markdown throwing an uncaught exception # * rendering Markdown failing with the exception being # caught in Markdown (which then returns None, causing the the # rendered_content assert above to fire). logging.warning("Error in Markdown rendering for message ID %s; continuing", message['id']) def current_table_ids(data: TableData, table: TableName) -> List[int]: """ Returns the ids present in the current table """ id_list = [] for item in data[table]: id_list.append(item["id"]) return id_list def idseq(model_class: Any) -> str: if model_class == RealmDomain: return 'zerver_realmalias_id_seq' elif model_class == BotStorageData: return 'zerver_botuserstatedata_id_seq' elif model_class == BotConfigData: return 'zerver_botuserconfigdata_id_seq' return f'{model_class._meta.db_table}_id_seq' def allocate_ids(model_class: Any, count: int) -> List[int]: """ Increases the sequence number for a given table by the amount of objects being imported into that table. Hence, this gives a reserved range of IDs to import the converted Slack objects into the tables. """ conn = connection.cursor() sequence = idseq(model_class) conn.execute("select nextval(%s) from generate_series(1, %s)", [sequence, count]) query = conn.fetchall() # Each element in the result is a tuple like (5,) conn.close() # convert List[Tuple[int]] to List[int] return [item[0] for item in query] def convert_to_id_fields(data: TableData, table: TableName, field_name: Field) -> None: ''' When Django gives us dict objects via model_to_dict, the foreign key fields are `foo`, but we want `foo_id` for the bulk insert. This function handles the simple case where we simply rename the fields. For cases where we need to munge ids in the database, see re_map_foreign_keys. ''' for item in data[table]: item[field_name + "_id"] = item[field_name] del item[field_name] def re_map_foreign_keys(data: TableData, table: TableName, field_name: Field, related_table: TableName, verbose: bool=False, id_field: bool=False, recipient_field: bool=False, reaction_field: bool=False) -> None: """ This is a wrapper function for all the realm data tables and only avatar and attachment records need to be passed through the internal function because of the difference in data format (TableData corresponding to realm data tables and List[Record] corresponding to the avatar and attachment records) """ # See comments in bulk_import_user_message_data. assert('usermessage' not in related_table) re_map_foreign_keys_internal(data[table], table, field_name, related_table, verbose, id_field, recipient_field, reaction_field) def re_map_foreign_keys_internal(data_table: List[Record], table: TableName, field_name: Field, related_table: TableName, verbose: bool=False, id_field: bool=False, recipient_field: bool=False, reaction_field: bool=False) -> None: ''' We occasionally need to assign new ids to rows during the import/export process, to accommodate things like existing rows already being in tables. See bulk_import_client for more context. The tricky part is making sure that foreign key references are in sync with the new ids, and this fixer function does the re-mapping. (It also appends `_id` to the field.) ''' lookup_table = ID_MAP[related_table] for item in data_table: old_id = item[field_name] if recipient_field: if related_table == "stream" and item['type'] == 2: pass elif related_table == "user_profile" and item['type'] == 1: pass elif related_table == "huddle" and item['type'] == 3: # save the recipient id with the huddle id, so that we can extract # the user_profile ids involved in a huddle with the help of the # subscription object # check function 'get_huddles_from_subscription' ID_MAP['recipient_to_huddle_map'][item['id']] = lookup_table[old_id] else: continue old_id = item[field_name] if reaction_field: if item['reaction_type'] == Reaction.REALM_EMOJI: old_id = int(old_id) else: continue if old_id in lookup_table: new_id = lookup_table[old_id] if verbose: logging.info('Remapping %s %s from %s to %s', table, field_name + '_id', old_id, new_id) else: new_id = old_id if not id_field: item[field_name + "_id"] = new_id del item[field_name] else: if reaction_field: item[field_name] = str(new_id) else: item[field_name] = new_id def re_map_foreign_keys_many_to_many(data: TableData, table: TableName, field_name: Field, related_table: TableName, verbose: bool=False) -> None: """ We need to assign new ids to rows during the import/export process. The tricky part is making sure that foreign key references are in sync with the new ids, and this wrapper function does the re-mapping only for ManyToMany fields. """ for item in data[table]: old_id_list = item[field_name] new_id_list = re_map_foreign_keys_many_to_many_internal( table, field_name, related_table, old_id_list, verbose) item[field_name] = new_id_list del item[field_name] def re_map_foreign_keys_many_to_many_internal(table: TableName, field_name: Field, related_table: TableName, old_id_list: List[int], verbose: bool=False) -> List[int]: """ This is an internal function for tables with ManyToMany fields, which takes the old ID list of the ManyToMany relation and returns the new updated ID list. """ lookup_table = ID_MAP[related_table] new_id_list = [] for old_id in old_id_list: if old_id in lookup_table: new_id = lookup_table[old_id] if verbose: logging.info('Remapping %s %s from %s to %s', table, field_name + '_id', old_id, new_id) else: new_id = old_id new_id_list.append(new_id) return new_id_list def fix_bitfield_keys(data: TableData, table: TableName, field_name: Field) -> None: for item in data[table]: item[field_name] = item[field_name + '_mask'] del item[field_name + '_mask'] def fix_realm_authentication_bitfield(data: TableData, table: TableName, field_name: Field) -> None: """Used to fixup the authentication_methods bitfield to be a string""" for item in data[table]: values_as_bitstring = ''.join('1' if field[1] else '0' for field in item[field_name]) values_as_int = int(values_as_bitstring, 2) item[field_name] = values_as_int def remove_denormalized_recipient_column_from_data(data: TableData) -> None: """ The recipient column shouldn't be imported, we'll set the correct values when Recipient table gets imported. """ for stream_dict in data['zerver_stream']: if "recipient" in stream_dict: del stream_dict["recipient"] for user_profile_dict in data['zerver_userprofile']: if 'recipient' in user_profile_dict: del user_profile_dict['recipient'] for huddle_dict in data['zerver_huddle']: if 'recipient' in huddle_dict: del huddle_dict['recipient'] def get_db_table(model_class: Any) -> str: """E.g. (RealmDomain -> 'zerver_realmdomain')""" return model_class._meta.db_table def update_model_ids(model: Any, data: TableData, related_table: TableName) -> None: table = get_db_table(model) # Important: remapping usermessage rows is # not only unnessary, it's expensive and can cause # memory errors. We don't even use ids from ID_MAP. assert('usermessage' not in table) old_id_list = current_table_ids(data, table) allocated_id_list = allocate_ids(model, len(data[table])) for item in range(len(data[table])): update_id_map(related_table, old_id_list[item], allocated_id_list[item]) re_map_foreign_keys(data, table, 'id', related_table=related_table, id_field=True) def bulk_import_user_message_data(data: TableData, dump_file_id: int) -> None: model = UserMessage table = 'zerver_usermessage' lst = data[table] # IMPORTANT NOTE: We do not use any primary id # data from either the import itself or ID_MAP. # We let the DB itself generate ids. Note that # no tables use user_message.id as a foreign key, # so we can safely avoid all re-mapping complexity. def process_batch(items: List[Dict[str, Any]]) -> None: ums = [ UserMessageLite( user_profile_id = item['user_profile_id'], message_id = item['message_id'], flags=item['flags'], ) for item in items ] bulk_insert_ums(ums) chunk_size = 10000 process_list_in_batches( lst=lst, chunk_size=chunk_size, process_batch=process_batch, ) logging.info("Successfully imported %s from %s[%s].", model, table, dump_file_id) def bulk_import_model(data: TableData, model: Any, dump_file_id: Optional[str]=None) -> None: table = get_db_table(model) # TODO, deprecate dump_file_id model.objects.bulk_create(model(**item) for item in data[table]) if dump_file_id is None: logging.info("Successfully imported %s from %s.", model, table) else: logging.info("Successfully imported %s from %s[%s].", model, table, dump_file_id) # Client is a table shared by multiple realms, so in order to # correctly import multiple realms into the same server, we need to # check if a Client object already exists, and so we need to support # remap all Client IDs to the values in the new DB. def bulk_import_client(data: TableData, model: Any, table: TableName) -> None: for item in data[table]: try: client = Client.objects.get(name=item['name']) except Client.DoesNotExist: client = Client.objects.create(name=item['name']) update_id_map(table='client', old_id=item['id'], new_id=client.id) def process_avatars(record: Dict[str, Any]) -> None: from zerver.lib.upload import upload_backend if record['s3_path'].endswith('.original'): user_profile = get_user_profile_by_id(record['user_profile_id']) if settings.LOCAL_UPLOADS_DIR is not None: avatar_path = user_avatar_path_from_ids(user_profile.id, record['realm_id']) medium_file_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", avatar_path) + '-medium.png' if os.path.exists(medium_file_path): # We remove the image here primarily to deal with # issues when running the import script multiple # times in development (where one might reuse the # same realm ID from a previous iteration). os.remove(medium_file_path) try: upload_backend.ensure_medium_avatar_image(user_profile=user_profile) if record.get("importer_should_thumbnail"): upload_backend.ensure_basic_avatar_image(user_profile=user_profile) except BadImageError: logging.warning( "Could not thumbnail avatar image for user %s; ignoring", user_profile.id, ) # Delete the record of the avatar to avoid 404s. do_change_avatar_fields(user_profile, UserProfile.AVATAR_FROM_GRAVATAR, acting_user=None) def import_uploads(realm: Realm, import_dir: Path, processes: int, processing_avatars: bool=False, processing_emojis: bool=False, processing_realm_icons: bool=False) -> None: if processing_avatars and processing_emojis: raise AssertionError("Cannot import avatars and emojis at the same time!") if processing_avatars: logging.info("Importing avatars") elif processing_emojis: logging.info("Importing emojis") elif processing_realm_icons: logging.info("Importing realm icons and logos") else: logging.info("Importing uploaded files") records_filename = os.path.join(import_dir, "records.json") with open(records_filename, "rb") as records_file: records: List[Dict[str, Any]] = orjson.loads(records_file.read()) timestamp = datetime_to_timestamp(timezone_now()) re_map_foreign_keys_internal(records, 'records', 'realm_id', related_table="realm", id_field=True) if not processing_emojis and not processing_realm_icons: re_map_foreign_keys_internal(records, 'records', 'user_profile_id', related_table="user_profile", id_field=True) s3_uploads = settings.LOCAL_UPLOADS_DIR is None if s3_uploads: if processing_avatars or processing_emojis or processing_realm_icons: bucket_name = settings.S3_AVATAR_BUCKET else: bucket_name = settings.S3_AUTH_UPLOADS_BUCKET session = boto3.Session(settings.S3_KEY, settings.S3_SECRET_KEY) bucket = session.resource('s3', endpoint_url=settings.S3_ENDPOINT_URL).Bucket(bucket_name) count = 0 for record in records: count += 1 if count % 1000 == 0: logging.info("Processed %s/%s uploads", count, len(records)) if processing_avatars: # For avatars, we need to rehash the user ID with the # new server's avatar salt relative_path = user_avatar_path_from_ids(record['user_profile_id'], record['realm_id']) if record['s3_path'].endswith('.original'): relative_path += '.original' else: # TODO: This really should be unconditional. However, # until we fix the S3 upload backend to use the .png # path suffix for its normal avatar URLs, we need to # only do this for the LOCAL_UPLOADS_DIR backend. if not s3_uploads: relative_path += '.png' elif processing_emojis: # For emojis we follow the function 'upload_emoji_image' relative_path = RealmEmoji.PATH_ID_TEMPLATE.format( realm_id=record['realm_id'], emoji_file_name=record['file_name']) record['last_modified'] = timestamp elif processing_realm_icons: icon_name = os.path.basename(record["path"]) relative_path = os.path.join(str(record['realm_id']), "realm", icon_name) record['last_modified'] = timestamp else: # Should be kept in sync with its equivalent in zerver/lib/uploads in the # function 'upload_message_file' relative_path = "/".join([ str(record['realm_id']), secrets.token_urlsafe(18), sanitize_name(os.path.basename(record['path'])), ]) path_maps['attachment_path'][record['s3_path']] = relative_path if s3_uploads: key = bucket.Object(relative_path) metadata = {} if processing_emojis and "user_profile_id" not in record: # Exported custom emoji from tools like Slack don't have # the data for what user uploaded them in `user_profile_id`. pass elif processing_realm_icons and "user_profile_id" not in record: # Exported realm icons and logos from local export don't have # the value of user_profile_id in the associated record. pass else: user_profile_id = int(record['user_profile_id']) # Support email gateway bot and other cross-realm messages if user_profile_id in ID_MAP["user_profile"]: logging.info("Uploaded by ID mapped user: %s!", user_profile_id) user_profile_id = ID_MAP["user_profile"][user_profile_id] user_profile = get_user_profile_by_id(user_profile_id) metadata["user_profile_id"] = str(user_profile.id) if 'last_modified' in record: metadata["orig_last_modified"] = str(record['last_modified']) metadata["realm_id"] = str(record['realm_id']) # Zulip exports will always have a content-type, but third-party exports might not. content_type = record.get("content_type") if content_type is None: content_type = guess_type(record['s3_path'])[0] if content_type is None: # This is the default for unknown data. Note that # for `.original` files, this is the value we'll # set; that is OK, because those are never served # directly anyway. content_type = 'application/octet-stream' key.upload_file(os.path.join(import_dir, record['path']), ExtraArgs={ 'ContentType': content_type, 'Metadata': metadata}) else: if processing_avatars or processing_emojis or processing_realm_icons: file_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", relative_path) else: file_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "files", relative_path) orig_file_path = os.path.join(import_dir, record['path']) os.makedirs(os.path.dirname(file_path), exist_ok=True) shutil.copy(orig_file_path, file_path) if processing_avatars: # Ensure that we have medium-size avatar images for every # avatar. TODO: This implementation is hacky, both in that it # does get_user_profile_by_id for each user, and in that it # might be better to require the export to just have these. if processes == 1: for record in records: process_avatars(record) else: connection.close() cache._cache.disconnect_all() with multiprocessing.Pool(processes) as p: for out in p.imap_unordered(process_avatars, records): pass # Importing data suffers from a difficult ordering problem because of # models that reference each other circularly. Here is a correct order. # # * Client [no deps] # * Realm [-notifications_stream] # * Stream [only depends on realm] # * Realm's notifications_stream # * Now can do all realm_tables # * UserProfile, in order by ID to avoid bot loop issues # * Huddle # * Recipient # * Subscription # * Message # * UserMessage # # Because the Python object => JSON conversion process is not fully # faithful, we have to use a set of fixers (e.g. on DateTime objects # and Foreign Keys) to do the import correctly. def do_import_realm(import_dir: Path, subdomain: str, processes: int=1) -> Realm: logging.info("Importing realm dump %s", import_dir) if not os.path.exists(import_dir): raise Exception("Missing import directory!") realm_data_filename = os.path.join(import_dir, "realm.json") if not os.path.exists(realm_data_filename): raise Exception("Missing realm.json file!") if not server_initialized(): create_internal_realm() logging.info("Importing realm data from %s", realm_data_filename) with open(realm_data_filename, "rb") as f: data = orjson.loads(f.read()) remove_denormalized_recipient_column_from_data(data) sort_by_date = data.get('sort_by_date', False) bulk_import_client(data, Client, 'zerver_client') # We don't import the Stream model yet, since it depends on Realm, # which isn't imported yet. But we need the Stream model IDs for # notifications_stream. update_model_ids(Stream, data, 'stream') re_map_foreign_keys(data, 'zerver_realm', 'notifications_stream', related_table="stream") re_map_foreign_keys(data, 'zerver_realm', 'signup_notifications_stream', related_table="stream") fix_datetime_fields(data, 'zerver_realm') # Fix realm subdomain information data['zerver_realm'][0]['string_id'] = subdomain data['zerver_realm'][0]['name'] = subdomain fix_realm_authentication_bitfield(data, 'zerver_realm', 'authentication_methods') update_model_ids(Realm, data, 'realm') realm = Realm(**data['zerver_realm'][0]) if realm.notifications_stream_id is not None: notifications_stream_id: Optional[int] = int(realm.notifications_stream_id) else: notifications_stream_id = None realm.notifications_stream_id = None if realm.signup_notifications_stream_id is not None: signup_notifications_stream_id: Optional[int] = int(realm.signup_notifications_stream_id) else: signup_notifications_stream_id = None realm.signup_notifications_stream_id = None realm.save() # Email tokens will automatically be randomly generated when the # Stream objects are created by Django. fix_datetime_fields(data, 'zerver_stream') re_map_foreign_keys(data, 'zerver_stream', 'realm', related_table="realm") # Handle rendering of stream descriptions for import from non-Zulip for stream in data['zerver_stream']: if 'rendered_description' in stream: continue stream["rendered_description"] = render_stream_description(stream["description"]) bulk_import_model(data, Stream) realm.notifications_stream_id = notifications_stream_id realm.signup_notifications_stream_id = signup_notifications_stream_id realm.save() # Remap the user IDs for notification_bot and friends to their # appropriate IDs on this server for item in data['zerver_userprofile_crossrealm']: logging.info("Adding to ID map: %s %s", item['id'], get_system_bot(item['email']).id) new_user_id = get_system_bot(item['email']).id update_id_map(table='user_profile', old_id=item['id'], new_id=new_user_id) new_recipient_id = Recipient.objects.get(type=Recipient.PERSONAL, type_id=new_user_id).id update_id_map(table='recipient', old_id=item['recipient_id'], new_id=new_recipient_id) # Merge in zerver_userprofile_mirrordummy data['zerver_userprofile'] = data['zerver_userprofile'] + data['zerver_userprofile_mirrordummy'] del data['zerver_userprofile_mirrordummy'] data['zerver_userprofile'].sort(key=lambda r: r['id']) # To remap foreign key for UserProfile.last_active_message_id update_message_foreign_keys(import_dir=import_dir, sort_by_date=sort_by_date) fix_datetime_fields(data, 'zerver_userprofile') update_model_ids(UserProfile, data, 'user_profile') re_map_foreign_keys(data, 'zerver_userprofile', 'realm', related_table="realm") re_map_foreign_keys(data, 'zerver_userprofile', 'bot_owner', related_table="user_profile") re_map_foreign_keys(data, 'zerver_userprofile', 'default_sending_stream', related_table="stream") re_map_foreign_keys(data, 'zerver_userprofile', 'default_events_register_stream', related_table="stream") re_map_foreign_keys(data, 'zerver_userprofile', 'last_active_message_id', related_table="message", id_field=True) for user_profile_dict in data['zerver_userprofile']: user_profile_dict['password'] = None user_profile_dict['api_key'] = generate_api_key() # Since Zulip doesn't use these permissions, drop them del user_profile_dict['user_permissions'] del user_profile_dict['groups'] # The short_name field is obsolete in Zulip, but it's # convenient for third party exports to populate it. if 'short_name' in user_profile_dict: del user_profile_dict['short_name'] user_profiles = [UserProfile(**item) for item in data['zerver_userprofile']] for user_profile in user_profiles: user_profile.set_unusable_password() UserProfile.objects.bulk_create(user_profiles) re_map_foreign_keys(data, 'zerver_defaultstream', 'stream', related_table="stream") re_map_foreign_keys(data, 'zerver_realmemoji', 'author', related_table="user_profile") for (table, model, related_table) in realm_tables: re_map_foreign_keys(data, table, 'realm', related_table="realm") update_model_ids(model, data, related_table) bulk_import_model(data, model) if 'zerver_huddle' in data: update_model_ids(Huddle, data, 'huddle') # We don't import Huddle yet, since we don't have the data to # compute huddle hashes until we've imported some of the # tables below. # TODO: double-check this. re_map_foreign_keys(data, 'zerver_recipient', 'type_id', related_table="stream", recipient_field=True, id_field=True) re_map_foreign_keys(data, 'zerver_recipient', 'type_id', related_table="user_profile", recipient_field=True, id_field=True) re_map_foreign_keys(data, 'zerver_recipient', 'type_id', related_table="huddle", recipient_field=True, id_field=True) update_model_ids(Recipient, data, 'recipient') bulk_import_model(data, Recipient) bulk_set_users_or_streams_recipient_fields(Stream, Stream.objects.filter(realm=realm)) bulk_set_users_or_streams_recipient_fields(UserProfile, UserProfile.objects.filter(realm=realm)) re_map_foreign_keys(data, 'zerver_subscription', 'user_profile', related_table="user_profile") get_huddles_from_subscription(data, 'zerver_subscription') re_map_foreign_keys(data, 'zerver_subscription', 'recipient', related_table="recipient") update_model_ids(Subscription, data, 'subscription') bulk_import_model(data, Subscription) if 'zerver_realmauditlog' in data: fix_datetime_fields(data, 'zerver_realmauditlog') re_map_foreign_keys(data, 'zerver_realmauditlog', 'realm', related_table="realm") re_map_foreign_keys(data, 'zerver_realmauditlog', 'modified_user', related_table='user_profile') re_map_foreign_keys(data, 'zerver_realmauditlog', 'acting_user', related_table='user_profile') re_map_foreign_keys(data, 'zerver_realmauditlog', 'modified_stream', related_table="stream") update_model_ids(RealmAuditLog, data, related_table="realmauditlog") bulk_import_model(data, RealmAuditLog) else: logging.info('about to call create_subscription_events') create_subscription_events( data=data, realm_id=realm.id, ) logging.info('done with create_subscription_events') if 'zerver_huddle' in data: process_huddle_hash(data, 'zerver_huddle') bulk_import_model(data, Huddle) for huddle in Huddle.objects.filter(recipient_id=None): recipient = Recipient.objects.get(type=Recipient.HUDDLE, type_id=huddle.id) huddle.recipient = recipient huddle.save(update_fields=["recipient"]) if 'zerver_alertword' in data: re_map_foreign_keys(data, 'zerver_alertword', 'user_profile', related_table='user_profile') re_map_foreign_keys(data, 'zerver_alertword', 'realm', related_table='realm') update_model_ids(AlertWord, data, 'alertword') bulk_import_model(data, AlertWord) if 'zerver_userhotspot' in data: fix_datetime_fields(data, 'zerver_userhotspot') re_map_foreign_keys(data, 'zerver_userhotspot', 'user', related_table='user_profile') update_model_ids(UserHotspot, data, 'userhotspot') bulk_import_model(data, UserHotspot) if 'zerver_mutedtopic' in data: fix_datetime_fields(data, 'zerver_mutedtopic') re_map_foreign_keys(data, 'zerver_mutedtopic', 'user_profile', related_table='user_profile') re_map_foreign_keys(data, 'zerver_mutedtopic', 'stream', related_table='stream') re_map_foreign_keys(data, 'zerver_mutedtopic', 'recipient', related_table='recipient') update_model_ids(MutedTopic, data, 'mutedtopic') bulk_import_model(data, MutedTopic) if 'zerver_service' in data: re_map_foreign_keys(data, 'zerver_service', 'user_profile', related_table='user_profile') fix_service_tokens(data, 'zerver_service') update_model_ids(Service, data, 'service') bulk_import_model(data, Service) if 'zerver_usergroup' in data: re_map_foreign_keys(data, 'zerver_usergroup', 'realm', related_table='realm') re_map_foreign_keys_many_to_many(data, 'zerver_usergroup', 'members', related_table='user_profile') update_model_ids(UserGroup, data, 'usergroup') bulk_import_model(data, UserGroup) re_map_foreign_keys(data, 'zerver_usergroupmembership', 'user_group', related_table='usergroup') re_map_foreign_keys(data, 'zerver_usergroupmembership', 'user_profile', related_table='user_profile') update_model_ids(UserGroupMembership, data, 'usergroupmembership') bulk_import_model(data, UserGroupMembership) if 'zerver_botstoragedata' in data: re_map_foreign_keys(data, 'zerver_botstoragedata', 'bot_profile', related_table='user_profile') update_model_ids(BotStorageData, data, 'botstoragedata') bulk_import_model(data, BotStorageData) if 'zerver_botconfigdata' in data: re_map_foreign_keys(data, 'zerver_botconfigdata', 'bot_profile', related_table='user_profile') update_model_ids(BotConfigData, data, 'botconfigdata') bulk_import_model(data, BotConfigData) fix_datetime_fields(data, 'zerver_userpresence') re_map_foreign_keys(data, 'zerver_userpresence', 'user_profile', related_table="user_profile") re_map_foreign_keys(data, 'zerver_userpresence', 'client', related_table='client') re_map_foreign_keys(data, 'zerver_userpresence', 'realm', related_table="realm") update_model_ids(UserPresence, data, 'user_presence') bulk_import_model(data, UserPresence) fix_datetime_fields(data, 'zerver_useractivity') re_map_foreign_keys(data, 'zerver_useractivity', 'user_profile', related_table="user_profile") re_map_foreign_keys(data, 'zerver_useractivity', 'client', related_table='client') update_model_ids(UserActivity, data, 'useractivity') bulk_import_model(data, UserActivity) fix_datetime_fields(data, 'zerver_useractivityinterval') re_map_foreign_keys(data, 'zerver_useractivityinterval', 'user_profile', related_table="user_profile") update_model_ids(UserActivityInterval, data, 'useractivityinterval') bulk_import_model(data, UserActivityInterval) re_map_foreign_keys(data, 'zerver_customprofilefield', 'realm', related_table="realm") update_model_ids(CustomProfileField, data, related_table="customprofilefield") bulk_import_model(data, CustomProfileField) re_map_foreign_keys(data, 'zerver_customprofilefieldvalue', 'user_profile', related_table="user_profile") re_map_foreign_keys(data, 'zerver_customprofilefieldvalue', 'field', related_table="customprofilefield") fix_customprofilefield(data) update_model_ids(CustomProfileFieldValue, data, related_table="customprofilefieldvalue") bulk_import_model(data, CustomProfileFieldValue) # Import uploaded files and avatars import_uploads(realm, os.path.join(import_dir, "avatars"), processes, processing_avatars=True) import_uploads(realm, os.path.join(import_dir, "uploads"), processes) # We need to have this check as the emoji files are only present in the data # importer from Slack # For Zulip export, this doesn't exist if os.path.exists(os.path.join(import_dir, "emoji")): import_uploads(realm, os.path.join(import_dir, "emoji"), processes, processing_emojis=True) if os.path.exists(os.path.join(import_dir, "realm_icons")): import_uploads(realm, os.path.join(import_dir, "realm_icons"), processes, processing_realm_icons=True) sender_map = { user['id']: user for user in data['zerver_userprofile'] } # Import zerver_message and zerver_usermessage import_message_data(realm=realm, sender_map=sender_map, import_dir=import_dir) re_map_foreign_keys(data, 'zerver_reaction', 'message', related_table="message") re_map_foreign_keys(data, 'zerver_reaction', 'user_profile', related_table="user_profile") re_map_foreign_keys(data, 'zerver_reaction', 'emoji_code', related_table="realmemoji", id_field=True, reaction_field=True) update_model_ids(Reaction, data, 'reaction') bulk_import_model(data, Reaction) # Similarly, we need to recalculate the first_message_id for stream objects. for stream in Stream.objects.filter(realm=realm): recipient = Recipient.objects.get(type=Recipient.STREAM, type_id=stream.id) first_message = Message.objects.filter(recipient=recipient).first() if first_message is None: stream.first_message_id = None else: stream.first_message_id = first_message.id stream.save(update_fields=["first_message_id"]) # Do attachments AFTER message data is loaded. # TODO: de-dup how we read these json files. fn = os.path.join(import_dir, "attachment.json") if not os.path.exists(fn): raise Exception("Missing attachment.json file!") logging.info("Importing attachment data from %s", fn) with open(fn, "rb") as f: data = orjson.loads(f.read()) import_attachments(data) # Import the analytics file. import_analytics_data(realm=realm, import_dir=import_dir) if settings.BILLING_ENABLED: do_change_plan_type(realm, Realm.LIMITED) else: do_change_plan_type(realm, Realm.SELF_HOSTED) return realm # create_users and do_import_system_bots differ from their equivalent # in zerver/lib/server_initialization.py because here we check if the # bots don't already exist and only then create a user for these bots. def do_import_system_bots(realm: Any) -> None: internal_bots = [(bot['name'], bot['email_template'] % (settings.INTERNAL_BOT_DOMAIN,)) for bot in settings.INTERNAL_BOTS] create_users(realm, internal_bots, bot_type=UserProfile.DEFAULT_BOT) print("Finished importing system bots.") def create_users(realm: Realm, name_list: Iterable[Tuple[str, str]], bot_type: Optional[int]=None) -> None: user_set = set() for full_name, email in name_list: if not UserProfile.objects.filter(email=email): user_set.add((email, full_name, True)) bulk_create_users(realm, user_set, bot_type) def update_message_foreign_keys(import_dir: Path, sort_by_date: bool) -> None: old_id_list = get_incoming_message_ids( import_dir=import_dir, sort_by_date=sort_by_date, ) count = len(old_id_list) new_id_list = allocate_ids(model_class=Message, count=count) for old_id, new_id in zip(old_id_list, new_id_list): update_id_map( table='message', old_id=old_id, new_id=new_id, ) # We don't touch user_message keys here; that happens later when # we're actually read the files a second time to get actual data. def get_incoming_message_ids(import_dir: Path, sort_by_date: bool) -> List[int]: ''' This function reads in our entire collection of message ids, which can be millions of integers for some installations. And then we sort the list. This is necessary to ensure that the sort order of incoming ids matches the sort order of date_sent, which isn't always guaranteed by our utilities that convert third party chat data. We also need to move our ids to a new range if we're dealing with a server that has data for other realms. ''' if sort_by_date: tups: List[Tuple[int, int]] = [] else: message_ids: List[int] = [] dump_file_id = 1 while True: message_filename = os.path.join(import_dir, f"messages-{dump_file_id:06}.json") if not os.path.exists(message_filename): break with open(message_filename, "rb") as f: data = orjson.loads(f.read()) # Aggressively free up memory. del data['zerver_usermessage'] for row in data['zerver_message']: # We truncate date_sent to int to theoretically # save memory and speed up the sort. For # Zulip-to-Zulip imports, the # message_id will generally be a good tiebreaker. # If we occasionally mis-order the ids for two # messages from the same second, it's not the # end of the world, as it's likely those messages # arrived to the original server in somewhat # arbitrary order. message_id = row['id'] if sort_by_date: date_sent = int(row['date_sent']) tup = (date_sent, message_id) tups.append(tup) else: message_ids.append(message_id) dump_file_id += 1 if sort_by_date: tups.sort() message_ids = [tup[1] for tup in tups] return message_ids def import_message_data(realm: Realm, sender_map: Dict[int, Record], import_dir: Path) -> None: dump_file_id = 1 while True: message_filename = os.path.join(import_dir, f"messages-{dump_file_id:06}.json") if not os.path.exists(message_filename): break with open(message_filename, "rb") as f: data = orjson.loads(f.read()) logging.info("Importing message dump %s", message_filename) re_map_foreign_keys(data, 'zerver_message', 'sender', related_table="user_profile") re_map_foreign_keys(data, 'zerver_message', 'recipient', related_table="recipient") re_map_foreign_keys(data, 'zerver_message', 'sending_client', related_table='client') fix_datetime_fields(data, 'zerver_message') # Parser to update message content with the updated attachment URLs fix_upload_links(data, 'zerver_message') # We already create mappings for zerver_message ids # in update_message_foreign_keys(), so here we simply # apply them. message_id_map = ID_MAP['message'] for row in data['zerver_message']: row['id'] = message_id_map[row['id']] for row in data['zerver_usermessage']: assert(row['message'] in message_id_map) fix_message_rendered_content( realm=realm, sender_map=sender_map, messages=data['zerver_message'], ) logging.info("Successfully rendered Markdown for message batch") # A LOT HAPPENS HERE. # This is where we actually import the message data. bulk_import_model(data, Message) # Due to the structure of these message chunks, we're # guaranteed to have already imported all the Message objects # for this batch of UserMessage objects. re_map_foreign_keys(data, 'zerver_usermessage', 'message', related_table="message") re_map_foreign_keys(data, 'zerver_usermessage', 'user_profile', related_table="user_profile") fix_bitfield_keys(data, 'zerver_usermessage', 'flags') bulk_import_user_message_data(data, dump_file_id) dump_file_id += 1 def import_attachments(data: TableData) -> None: # Clean up the data in zerver_attachment that is not # relevant to our many-to-many import. fix_datetime_fields(data, 'zerver_attachment') re_map_foreign_keys(data, 'zerver_attachment', 'owner', related_table="user_profile") re_map_foreign_keys(data, 'zerver_attachment', 'realm', related_table="realm") # Configure ourselves. Django models many-to-many (m2m) # relations asymmetrically. The parent here refers to the # Model that has the ManyToManyField. It is assumed here # the child models have been loaded, but we are in turn # responsible for loading the parents and the m2m rows. parent_model = Attachment parent_db_table_name = 'zerver_attachment' parent_singular = 'attachment' child_singular = 'message' child_plural = 'messages' m2m_table_name = 'zerver_attachment_messages' parent_id = 'attachment_id' child_id = 'message_id' update_model_ids(parent_model, data, 'attachment') # We don't bulk_import_model yet, because we need to first compute # the many-to-many for this table. # First, build our list of many-to-many (m2m) rows. # We do this in a slightly convoluted way to anticipate # a future where we may need to call re_map_foreign_keys. m2m_rows: List[Record] = [] for parent_row in data[parent_db_table_name]: for fk_id in parent_row[child_plural]: m2m_row: Record = {} m2m_row[parent_singular] = parent_row['id'] m2m_row[child_singular] = ID_MAP['message'][fk_id] m2m_rows.append(m2m_row) # Create our table data for insert. m2m_data: TableData = {m2m_table_name: m2m_rows} convert_to_id_fields(m2m_data, m2m_table_name, parent_singular) convert_to_id_fields(m2m_data, m2m_table_name, child_singular) m2m_rows = m2m_data[m2m_table_name] # Next, delete out our child data from the parent rows. for parent_row in data[parent_db_table_name]: del parent_row[child_plural] # Update 'path_id' for the attachments for attachment in data[parent_db_table_name]: attachment['path_id'] = path_maps['attachment_path'][attachment['path_id']] # Next, load the parent rows. bulk_import_model(data, parent_model) # Now, go back to our m2m rows. # TODO: Do this the kosher Django way. We may find a # better way to do this in Django 1.9 particularly. with connection.cursor() as cursor: sql_template = SQL(''' INSERT INTO {m2m_table_name} ({parent_id}, {child_id}) VALUES %s ''').format( m2m_table_name=Identifier(m2m_table_name), parent_id=Identifier(parent_id), child_id=Identifier(child_id), ) tups = [(row[parent_id], row[child_id]) for row in m2m_rows] execute_values(cursor.cursor, sql_template, tups) logging.info('Successfully imported M2M table %s', m2m_table_name) def import_analytics_data(realm: Realm, import_dir: Path) -> None: analytics_filename = os.path.join(import_dir, "analytics.json") if not os.path.exists(analytics_filename): return logging.info("Importing analytics data from %s", analytics_filename) with open(analytics_filename, "rb") as f: data = orjson.loads(f.read()) # Process the data through the fixer functions. fix_datetime_fields(data, 'analytics_realmcount') re_map_foreign_keys(data, 'analytics_realmcount', 'realm', related_table="realm") update_model_ids(RealmCount, data, 'analytics_realmcount') bulk_import_model(data, RealmCount) fix_datetime_fields(data, 'analytics_usercount') re_map_foreign_keys(data, 'analytics_usercount', 'realm', related_table="realm") re_map_foreign_keys(data, 'analytics_usercount', 'user', related_table="user_profile") update_model_ids(UserCount, data, 'analytics_usercount') bulk_import_model(data, UserCount) fix_datetime_fields(data, 'analytics_streamcount') re_map_foreign_keys(data, 'analytics_streamcount', 'realm', related_table="realm") re_map_foreign_keys(data, 'analytics_streamcount', 'stream', related_table="stream") update_model_ids(StreamCount, data, 'analytics_streamcount') bulk_import_model(data, StreamCount)
the-stack_0_17261
import numpy,random,os lr = 1 bias = 1 weights = list() for k in range(3): weights.append(random.random()) #Assigning random weights def ptron(inp1,inp2,outp): outp_pn = inp1*weights[0]+inp2*weights[1]+bias*weights[2] outp_pn = 1.0/(1+numpy.exp(-outp_pn)) #Sigmoid Function err = outp - outp_pn weights[0] += err*inp1*lr #Modifying weights weights[1] += err*inp2*lr weights[2] += err*bias*lr for i in range(100): #Training With Data ptron(0,0,0) #Passing the tryth values of OR ptron(1,1,1) ptron(1,0,0) ptron(0,1,0) for x,y in [(0,0),(1,0),(0,1),(1,1)]: outp_pn = x*weights[0]+y*weights[1]+bias*weights[2] #Based on the trained wieghts outp = 1.0/(1+numpy.exp(-outp_pn)) print(str(x) + " AND " + str(y) + " yields: " + str(outp))
the-stack_0_17263
from queue import Queue class Node: def __init__(self, data): self.data = data self.parent = None self.children = dict() """ Dictionary whose values are the node children and whose keys are the corresponding nodes data. """ def add_child(self, child): child.parent = self self.children[child.data] = child class Tree: def __init__(self, root: Node): self.root = root def bfs_search(self, data, depth=None): """ Searches for a node, given its data. The search starts from the root. :param data: Data of the node to find. :param depth: Limits the search to nodes with the given depth. :return: The node if it's found, None otherwise. """ visited, queue = set(), Queue() # Each element of the queue is a couple (node, level): queue.put((self.root, 0)) while not queue.empty(): node, level = queue.get() if depth is not None and level > depth: break if depth is None: if node.data == data: return node else: if level == depth and node.data == data: return node for child in node.children.values(): if child in visited: continue queue.put((child, level + 1)) visited.add(node) return None def _bfs_insert(self, child: Node, parent: Node) -> bool: node = self.bfs_search(parent.data) if node is not None: node.add_child(child) return True else: return False def insert(self, child: Node, parent: Node) -> bool: """ Inserts a node given its parent. Note: insertion is done on the first node with the same data as the given parent node. :param child: Node to insert. :param parent: Parent node. :return: True if the node has been inserted, False otherwise. """ return self._bfs_insert(child, parent) def parent(self, data): """ Gets the parent of a node, given the node data. :param data: Data of the node to find. :return: Parent node if found, None otherwise. """ node = self.bfs_search(data) if node is not None: return node.parent else: return None
the-stack_0_17265
# -*- coding: utf-8 -*- """ mygeotab.py3.api_async ~~~~~~~~~~~~~~~~~~~~~~ Async/Await-able (Python 3.5+) public objects and methods wrapping the MyGeotab API. """ import asyncio import sys if sys.version_info < (3, 5): raise Exception("Python 3.5+ is required to use the async API") import ssl from concurrent.futures import TimeoutError import aiohttp from mygeotab import api from mygeotab.api import DEFAULT_TIMEOUT, get_headers from mygeotab.exceptions import MyGeotabException, TimeoutException, AuthenticationException from mygeotab.serializers import json_serialize, json_deserialize class API(api.API): """A simple, asynchronous, and Pythonic wrapper for the MyGeotab API.""" def __init__( self, username, password=None, database=None, session_id=None, server="my.geotab.com", timeout=DEFAULT_TIMEOUT, proxies=None, ): """ Initialize the asynchronous MyGeotab API object with credentials. :param username: The username used for MyGeotab servers. Usually an email address. :param password: The password associated with the username. Optional if `session_id` is provided. :param database: The database or company name. Optional as this usually gets resolved upon authentication. :param session_id: A session ID, assigned by the server. :param server: The server ie. my23.geotab.com. Optional as this usually gets resolved upon authentication. :param timeout: The timeout to make the call, in seconds. By default, this is 300 seconds (or 5 minutes). :param proxies: The proxies dictionary to apply to the request. :raise Exception: Raises an Exception if a username, or one of the session_id or password is not provided. """ super().__init__(username, password, database, session_id, server, timeout, proxies=proxies) async def call_async(self, method, **parameters): """Makes an async call to the API. :param method: The method name. :param params: Additional parameters to send (for example, search=dict(id='b123') ) :return: The JSON result (decoded into a dict) from the server.abs :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server. :raise TimeoutException: Raises when the request does not respond after some time. """ if method is None: raise Exception("A method name must be specified") params = api.process_parameters(parameters) if self.credentials and not self.credentials.session_id: self.authenticate() if "credentials" not in params and self.credentials.session_id: params["credentials"] = self.credentials.get_param() try: result = await _query(self._server, method, params, verify_ssl=self._is_verify_ssl) if result is not None: self.__reauthorize_count = 0 return result except MyGeotabException as exception: if exception.name == "InvalidUserException": if self.__reauthorize_count == 0 and self.credentials.password: self.__reauthorize_count += 1 self.authenticate() return await self.call_async(method, **parameters) else: raise AuthenticationException( self.credentials.username, self.credentials.database, self.credentials.server ) raise async def multi_call_async(self, calls): """Performs an async multi-call to the API :param calls: A list of call 2-tuples with method name and params (for example, ('Get', dict(typeName='Trip')) ) :return: The JSON result (decoded into a dict) from the server :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server :raise TimeoutException: Raises when the request does not respond after some time. """ formatted_calls = [dict(method=call[0], params=call[1] if len(call) > 1 else {}) for call in calls] return await self.call_async("ExecuteMultiCall", calls=formatted_calls) async def get_async(self, type_name, **parameters): """Gets entities asynchronously using the API. Shortcut for using async_call() with the 'Get' method. :param type_name: The type of entity. :param parameters: Additional parameters to send. :return: The JSON result (decoded into a dict) from the server. :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server. :raise TimeoutException: Raises when the request does not respond after some time. """ if parameters: results_limit = parameters.get("resultsLimit", None) if results_limit is not None: del parameters["resultsLimit"] if "search" in parameters: parameters.update(parameters["search"]) del parameters["search"] parameters = dict(search=parameters, resultsLimit=results_limit) return await self.call_async("Get", type_name=type_name, **parameters) async def add_async(self, type_name, entity): """ Adds an entity asynchronously using the API. Shortcut for using async_call() with the 'Add' method. :param type_name: The type of entity. :param entity: The entity to add. :return: The id of the object added. :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server. :raise TimeoutException: Raises when the request does not respond after some time. """ return await self.call_async("Add", type_name=type_name, entity=entity) async def set_async(self, type_name, entity): """Sets an entity asynchronously using the API. Shortcut for using async_call() with the 'Set' method. :param type_name: The type of entity :param entity: The entity to set :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server """ return await self.call_async("Set", type_name=type_name, entity=entity) async def remove_async(self, type_name, entity): """Removes an entity asynchronously using the API. Shortcut for using async_call() with the 'Remove' method. :param type_name: The type of entity. :param entity: The entity to remove. :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server. :raise TimeoutException: Raises when the request does not respond after some time. """ return await self.call_async("Remove", type_name=type_name, entity=entity) @staticmethod def from_credentials(credentials): """Returns a new async API object from an existing Credentials object. :param credentials: The existing saved credentials. :return: A new API object populated with MyGeotab credentials. """ return API( username=credentials.username, password=credentials.password, database=credentials.database, session_id=credentials.session_id, server=credentials.server, ) async def server_call_async(method, server, timeout=DEFAULT_TIMEOUT, verify_ssl=True, **parameters): """Makes an asynchronous call to an un-authenticated method on a server. :param method: The method name. :param server: The MyGeotab server. :param timeout: The timeout to make the call, in seconds. By default, this is 300 seconds (or 5 minutes). :param verify_ssl: If True, verify the SSL certificate. It's recommended not to modify this. :param parameters: Additional parameters to send (for example, search=dict(id='b123') ). :return: The JSON result (decoded into a dict) from the server. :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server. :raise TimeoutException: Raises when the request does not respond after some time. """ if method is None: raise Exception("A method name must be specified") if server is None: raise Exception("A server (eg. my3.geotab.com) must be specified") parameters = api.process_parameters(parameters) return await _query(server, method, parameters, timeout=timeout, verify_ssl=verify_ssl) async def _query(server, method, parameters, timeout=DEFAULT_TIMEOUT, verify_ssl=True): """Formats and performs the asynchronous query against the API :param server: The server to query. :param method: The method name. :param parameters: A dict of parameters to send :param timeout: The timeout to make the call, in seconds. By default, this is 300 seconds (or 5 minutes). :param verify_ssl: Whether or not to verify SSL connections :return: The JSON-decoded result from the server :raise MyGeotabException: Raises when an exception occurs on the MyGeotab server :raise TimeoutException: Raises when the request does not respond after some time. :raise aiohttp.ClientResponseError: Raises when there is an HTTP status code that indicates failure. """ api_endpoint = api.get_api_url(server) params = dict(id=-1, method=method, params=parameters) headers = get_headers() conn = aiohttp.TCPConnector(ssl=ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) if verify_ssl else False) try: async with aiohttp.ClientSession(connector=conn) as session: response = await session.post( api_endpoint, data=json_serialize(params), headers=headers, timeout=timeout, allow_redirects=True ) response.raise_for_status() content_type = response.headers.get("Content-Type") body = await response.text() except (TimeoutError, asyncio.TimeoutError): raise TimeoutException(server) if content_type and "application/json" not in content_type.lower(): return body return api._process(json_deserialize(body))
the-stack_0_17269
import Tkinter # snake0.py from Tkinter import * def mousePressed(event): canvas = event.widget.canvas redrawAll(canvas) def keyPressed(event): canvas = event.widget.canvas redrawAll(canvas) def timerFired(canvas): redrawAll(canvas) delay = 250 # milliseconds canvas.after(delay, timerFired, canvas) # pause, then call timerFired again def redrawAll(canvas): canvas.delete(ALL) drawSnakeBoard(canvas) def drawSnakeBoard(canvas): space = 30 findSnakeHead(canvas) for i in range(len(canvas.data["snakeBoard"])): canvas.create_line(i*space, 0,i*space, 300) canvas.create_line(0, i*space, 300, i*space) for r, row in enumerate (canvas.data["snakeBoard"]): for c, col in enumerate (row): if col > 0 : drawSnakeCell(canvas, r, c) return def drawSnakeCell(canvas, row, col): x0 = 30*col y0 = 30*row x1 = 30*col + 30 y1 = 30*row + 30 id = canvas.create_oval(x0, y0, x1, y1, fill = "blue") margin = 5 cellSize = 30 return def findSnakeHead(canvas): for r, row in enumerate(canvas.data['snakeBoard']): for c, col in enumerate(row): if col == 9: break if col == 9: break canvas.data["headRow"]= r canvas.data["headCol"]= c def removeTail(canvas): for r, row in enumerate(canvas.data['snakeBoard']): for c, col in enumerate(row): if col > 0: canvas.data['snakeBoard'][r][c] = col - 1 def placeFood(canvas): snakeBoard = canvas.data["snakeBoard"] rows = len(snakeBoard) cols = len(snakeBoard[0]) while True: row = random.randint(0,rows-1) col = random.randint(0,cols-1) if (snakeBoard[row][col] == 0): break snakeBoard[row][col] = -1 def moveSnake(canvas, drow, dcol): headCol = canvas.data["headCol"] headRow = canvas.data["headRow"] newHeadRow = headRow + drow; if newHeadRow < 0: newHeadRow = len(canvas.data["snakeBoard"]) - 1; elif newHeadRow >= len(canvas.data["snakeBoard"]): newHeadRow = 0 newHeadCol = headCol + dcol; if newHeadCol < 0: newHeadCol = len(canvas.data["snakeBoard"][0]) - 1; elif newHeadCol >= len(canvas.data["snakeBoard"][0]): newHeadCol = 0 canvas.data["snakeBoard"][newHeadRow][newHeadCol] = canvas.data["snakeBoard"][headRow][headCol] + 1 canvas.data["headRow"] = newHeadRow canvas.data["headCol"] = newHeadCol removeTail(canvas); def gameOver(canvas): canvas.data["isGameOver"] = True def keyPressed(event): canvas = event.widget.canvas if (event.keysym == "Up"): moveSnake(canvas, -1, 0) elif (event.keysym == "Down"): moveSnake(canvas, +1, 0) elif (event.keysym == "Left"): moveSnake(canvas, 0,-1) elif (event.keysym == "Right"): moveSnake(canvas, 0,+1) elif (event.char == "d"): canvas.data["inDebugMode"] = not canvas.data["inDebugMode"] redrawAll(canvas) def loadSnakeBoard(canvas): canvas.data["snakeBoard"] = [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 4, 5, 6, 0, 0, 0 ], [ 0, 0, 0, 0, 3, 0, 7, 0, 0, 0 ], [ 0, 0, 0, 1, 2, 0, 8, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 9, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ] findSnakeHead(canvas) return def printInstructions(): print("Snake! Use the arrow keys to move the snake." + " Eat food to grow."+ "Stay on the board!"+ "And don't crash into yourslf") return def init(canvas): printInstructions() loadSnakeBoard(canvas) redrawAll(canvas) ########### copy-paste below here ########### def run(): # create the root and the canvas root = Tk() canvas = Canvas(root, width=310, height=310) canvas.pack() # Store canvas in root and in canvas itself for callbacks root.canvas = canvas.canvas = canvas # Set up canvas data and call init canvas.data = { } init(canvas) # set up events root.bind("<Button-1>", mousePressed) root.bind("<Key>", keyPressed) timerFired(canvas) # and launch the app root.mainloop() # This call BLOCKS (so your program waits until you close the window!) if __name__ == '__main__': run()
the-stack_0_17271
from .views import UplinkViewSet from .views import SegmentsListViewSet UPLINK_LIST = UplinkViewSet.as_view({ 'get': 'list', 'post': 'create' }) UPLINK_DETAIL = UplinkViewSet.as_view({ 'get': 'retrieve', 'put': 'update', 'patch': 'partial_update', 'delete': 'destroy' }) SEGMENTS_LIST = SegmentsListViewSet.as_view({ 'get': 'list', 'post': 'create' }) SEGMENTS_DETAIL = SegmentsListViewSet.as_view({ 'get': 'list', 'patch': 'partial_update', 'put': 'update', 'delete': 'destroy', })
the-stack_0_17272
import pytest from .factories.metrics import MetricFactory, RecordFactory @pytest.mark.django_db class TestMetricModel: def test_repr(self): obj = MetricFactory.create(name='my-metric') assert str(obj) == 'my-metric' @pytest.mark.django_db class TestRecordModel: def test_repr(self): obj = RecordFactory.create(value=23) assert str(obj).startswith('{0}/'.format(obj.metric_id)) assert '/{0:%s}/'.format(obj.timestamp) in str(obj) assert str(obj).endswith('/23')
the-stack_0_17273
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://realpython.com/async-io-python/ + myself modifications import asyncio import random import time async def part1(n: int) -> str: i = random.randint(0, 10) print(f"{n} part1 sleeping for [{i}] seconds") await asyncio.sleep(i) result = f"result1" print(f"{n} part1 returning [{result}]") return result async def part2(n: int, arg: str) -> str: i = random.randint(0, 10) print(f"{n} part2 receive [{arg}] and sleeping for [{i}] seconds") await asyncio.sleep(i) result = f"result2+{arg}" print(f"{n} part2 receive [{arg}] returning [{result}]") return result async def chain(n: int) -> None: print(f'{n} Starting') start = time.perf_counter() p1 = await part1(n) p2 = await part2(n, p1) end = time.perf_counter() - start print(f"{n} -->Chained result: [{p2}] (took {end:0.2f} seconds).") async def main(*args): await asyncio.gather(*(chain(n) for n in args)) if __name__ == "__main__": import sys random.seed(444) args = [1, 2, 3] if len(sys.argv) == 1 else map(int, sys.argv[1:]) start = time.perf_counter() asyncio.run(main(*args)) end = time.perf_counter() - start print(f"Program finished in {end:0.2f} seconds.")
the-stack_0_17274
import torch import pandas as pd import numpy as np def _isEven(num): return num % 2 == 0 # return next multiple of 16 that is larger than num def _nextMult16(num): return (num // 16 + 1) * 16 # given the current dimension return the needed padding on each side # for this dimension def _determineDimPadding(dim): is_even = _isEven(dim) next_mult = _nextMult16(dim) if is_even: padding_lt = (next_mult - dim) // 2 padding_rb = padding_lt else: padding_lt = (next_mult - dim) // 2 padding_rb = padding_lt + 1 return padding_lt, padding_rb class DataPadding: # dataV is a tensor variable that is to be padded so that it's dimensions # are a mutliple of 16. This is mainly used for the DCGAN @staticmethod def padData(dataV, row_dim, col_dim): padding_left, padding_right = _determineDimPadding(row_dim) padding_top, padding_bottom = _determineDimPadding(col_dim) torch_padder = torch.nn.ZeroPad2d((padding_left, padding_right, padding_top, padding_bottom)) temp = torch_padder(dataV) return temp
the-stack_0_17275
# -*- coding: utf-8 -*- ''' pip install weather-api ''' from weather import Weather, Unit import translator weather = Weather(unit=Unit.CELSIUS) ''' w = Weather(Unit.CELSIUS) lookup = w.lookup_by_latlng(53.3494,-6.2601) condition = lookup.condition print(condition.text) ''' location = weather.lookup_by_location('หนองคาย') forecasts = location.forecast def get_now_day(): text="พยากรณ์อากาศวันนี้ \n"+"สภาพอากาศ : "+translator.translator_to_thai(forecasts[0].text)+"\nมีอุณหภูมิสูงสุด : "+forecasts[0].high+" C\nและมีอุณหภูมิต่ำสุด : "+forecasts[0].low+" C" return text
the-stack_0_17277
# model settings temperature = 0.2 with_norm = True query_dim = 128 model = dict( type='SimSiamBaseTSNTracker', backbone=dict( type='ResNet', pretrained=None, depth=18, out_indices=(3, ), # strides=(1, 2, 1, 1), norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, zero_init_residual=True), # cls_head=None, # patch_head=None, att_plugin=dict( type='SelfAttention', dropout=0., matmul_norm=True, use_residual=True), img_head=dict( type='SimSiamHead', in_channels=512, norm_cfg=dict(type='SyncBN'), num_projection_fcs=3, projection_mid_channels=512, projection_out_channels=512, num_predictor_fcs=2, predictor_mid_channels=128, predictor_out_channels=512, with_norm=True, loss_feat=dict(type='CosineSimLoss', negative=False), spatial_type='avg')) # model training and testing settings train_cfg = dict( intra_video=False, att_indices=(3, ), att_to_target=False, feat_rescale=True, aux_as_value=False) test_cfg = dict( precede_frames=20, topk=10, temperature=0.2, strides=(1, 2, 1, 1), out_indices=(2, 3), neighbor_range=24, with_first=True, with_first_neighbor=True, output_dir='eval_results') # dataset settings dataset_type = 'VideoDataset' dataset_type_val = 'DavisDataset' data_prefix = 'data/kinetics400/videos_train' ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt' data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p' anno_prefix_val = 'data/davis/DAVIS/Annotations/480p' data_root_val = 'data/davis/DAVIS' ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames', clip_len=1, frame_interval=8, num_clips=4), # dict(type='DuplicateFrames', times=4), dict(type='DecordDecode'), dict( type='RandomResizedCrop', area_range=(0.2, 1.), same_across_clip=False, same_on_clip=False, same_clip_indices=(1, 3)), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict( type='Flip', flip_ratio=0.5, same_across_clip=False, same_on_clip=False, same_clip_indices=(1, 3)), # dict( # type='ColorJitter', # brightness=0.4, # contrast=0.4, # saturation=0.4, # hue=0.1, # p=0.8, # same_across_clip=False, # same_on_clip=False), # dict( # type='RandomGrayScale', # p=0.2, # same_across_clip=False, # same_on_clip=False), # dict( # type='RandomGaussianBlur', # p=0.5, # same_across_clip=False, # same_on_clip=False), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='SequentialSampleFrames', frame_interval=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 480), keep_ratio=True), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict( type='Collect', keys=['imgs', 'ref_seg_map'], meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')), dict(type='ToTensor', keys=['imgs', 'ref_seg_map']) ] data = dict( videos_per_gpu=128, workers_per_gpu=16, val_workers_per_gpu=1, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_prefix, pipeline=train_pipeline)), val=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True)) # optimizer # optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) # lr_config = dict(policy='Fixed') # lr_config = dict( # policy='step', # warmup='linear', # warmup_iters=100, # warmup_ratio=0.001, # step=[1, 2]) total_epochs = 50 checkpoint_config = dict(interval=1, max_keep_ckpts=5) evaluation = dict( interval=1, metrics='davis', key_indicator='feat_1.J&F-Mean', rule='greater') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='mmaction2', name='{{fileBasenameNoExtension}}', resume=True, tags=['ssbt'], dir='wandb/{{fileBasenameNoExtension}}', config=dict( model=model, train_cfg=train_cfg, test_cfg=test_cfg, data=data))), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
the-stack_0_17278
from keras.layers import Dense,Activation,Dropout,Flatten,Conv2D,MaxPooling2D from keras.models import Sequential from keras.optimizers import Adam from keras.callbacks import TensorBoard import matplotlib.pyplot as plt from random import shuffle import numpy as np from glob import glob Image_width=128 Image_height=59 threshold=50 Epochs=40 input_shape=(Image_width,Image_height,1) model=Sequential() model.add(Conv2D(32,(3,3),input_shape=input_shape)) model.add(Activation('relu')) model.add(Conv2D(32,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2))) model.add(Conv2D(64,(3,3))) model.add(Activation('relu')) model.add(Conv2D(64,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2))) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(4)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=1e-4,beta_1=0.9,beta_2=0.999,epsilon=1e-8),metrics=['accuracy']) call_back=TensorBoard(log_dir="D:\DL PYTHON\AI\TRAINING MODELS\LOGS") data=np.load("Training_data.npy",allow_pickle=True) left=[];right=[];forward=[];reverse=[] for each_sample in data: if each_sample[1]==[1,0,0,0]: left.append(each_sample) elif each_sample[1]==[0,1,0,0]: right.append(each_sample) elif each_sample[1]==[0,0,1,0]: forward.append(each_sample) elif each_sample[1]==[0,0,0,1]: reverse.append(each_sample) training_data=left[:-threshold]+right[:-threshold]+forward[:-threshold]+reverse[:-threshold] testing_data=left[-threshold:]+right[-threshold:]+forward[-threshold:]+reverse[-threshold:] print("Total data-points considered for training : {}".format(len(training_data))) print("Total data-points considered for testing : {}".format(len(testing_data))) input("Press any key to start training") x_train=np.array([data[0] for data in training_data]).reshape(len(training_data),Image_width,Image_height,1) x_train=x_train/255 y_train=np.array([data[1] for data in training_data]) x_test=np.array([data[0] for data in testing_data]).reshape(len(testing_data),Image_width,Image_height,1) x_test=x_test/255 y_test=np.array([data[1] for data in testing_data]) h=model.fit(x_train,y_train,epochs=Epochs,validation_data=(x_test,y_test),callbacks=[call_back]) model.save('model.h5')
the-stack_0_17279
import random import timeit from PIL import Image from models import Yolov3Model from config_reader import CocoConfigReader from utils.dataset import CocoImagePathFileDataset from utils.dataloader import get_data_loader from utils.utils import (convert_corner_to_pyplot_repr, non_max_suppression, load_classes) import torch import numpy as np from matplotlib import pyplot as plt import matplotlib.patches as patches from matplotlib.ticker import NullLocator YOLO_CONFIG_PATH = "../cfg/yolov3.cfg" COCO_CONFIG_PATH = "../cfg/coco.data" def plot_detections_on_image(detections, image): #Ignore image index detections = detections[:,1:] #load class names classes=load_classes("/home/ubuntu/workspace/pytorch_yolov3/data/coco.names") img = image.permute(1, 2, 0).numpy() img = Image.fromarray(np.uint8(img*255)) plt.figure() fig, ax = plt.subplots(1) ax.imshow(img) cmap = plt.get_cmap('tab20') colors = [cmap(i) for i in np.linspace(0, 1, 30)] unique_labels = torch.unique(detections[:, -1]).cpu() n_cls_preds = unique_labels.shape[0] bbox_colors = random.sample(colors, n_cls_preds) for prediction in detections: x1, y1, h, w = convert_corner_to_pyplot_repr( prediction[:4].unsqueeze(0)).squeeze() class_prob = prediction[-2] pred_class = prediction[-1] color = bbox_colors[int(np.where(unique_labels == int(pred_class))[0])] bbox = patches.Rectangle((x1, y1), h, w, linewidth=2, edgecolor=color, facecolor="none") # Add the bbox to the image ax.add_patch(bbox) # Add class with probability plt.text(x1, y1, s="P(" + classes[int(pred_class)] +f")={class_prob:.2f}", color='white', verticalalignment='top', bbox={'color': color, 'pad': 0}) plt.axis('off') #remove axes plt.gca().xaxis.set_major_locator(NullLocator())#remove axis markings plt.gca().yaxis.set_major_locator(NullLocator()) plt.savefig('../inference_test.png' , bbox_inches='tight', pad_inches=0.0) plt.close() if __name__ == "__main__": yolo = Yolov3Model(YOLO_CONFIG_PATH) yolo.load_weights() yolo.eval() data_loader = get_data_loader(COCO_CONFIG_PATH, CocoConfigReader, CocoImagePathFileDataset, mode="valid") for i, (image, _) in enumerate(data_loader): out = yolo(image) out = out.to("cuda") #Also changes (center_x, center_y, x, y) to (x1, y1, x2, y2) detections = non_max_suppression(out, object_thresh=0.7) plot_detections_on_image(detections[0], image[0]) print ("Image generated") break
the-stack_0_17281
from __future__ import print_function, division, absolute_import, with_statement, unicode_literals, generators import os import argparse import importlib def flag(s): return bool(int(s)) def get_data_name(config): return '{}__'.format(config.training_data_hparams['source_dataset']['vocab_file'].split('/')[-2]) def get_model_name(config): name = '' name += 'model_{}__'.format(config.task) name += 'dim_{}__'.format(config.dim) name += 'embdim_{}__'.format(config.embdim) name += 'nlayerssrc_{}__'.format(config.nlayerssrc) name += 'nlayerstgt_{}__'.format(config.nlayerstgt) name += 'bidir_{}__'.format(config.bidir) return name def get_train_name(config): name = '' name += 'bleu_w_{}__'.format(config.bleu_w) name += 'max_order_{}__'.format(config.max_order) name += 'dropout_{}__'.format(config.dropout) name += 'soft_length_mask_{}__'.format(config.soft_length_mask) name += 'recall_w_{}__'.format(config.recall_w) name += 'max_decode_length_{}__'.format(config.max_decode_length) name += 'gamma_{}__'.format(config.gamma) name += 'lr_{}__'.format(config.lr) name += 'pretrain_{}__'.format(config.pretrain) if config.enable_pg: if config.enable_xe: name += 'xe_w_{}__'.format(config.xe_w) if config.enable_pg: name += 'pg_w_{}__'.format(config.pg_w) if config.enable_bleu: name += 'fix_rate_{}_{}_{}__'.format(config.fix_teach_gap, config.teach_gap, config.teach_cont) name += 'teach_anneal_{}_{}_{}__'.format(config.initial_teach_rate, config.teach_rate_anneal, config.teach_rate_anneal_steps) if hasattr(config, 'teach_X'): name += 'teach_X_{}__'.format(config.teach_X) if hasattr(config, 'seed'): name += 'seed_{}__'.format(config.seed) return name argparser = argparse.ArgumentParser() argparser.add_argument('--train', type=str, default='train_config') argparser.add_argument('--model', type=str, default='model_config') argparser.add_argument('--data', type=str, default='data_configs') argparser.add_argument('--verbose', type=str, default='verbose_config') argparser.add_argument('--running_mode', type=str, default='train') argparser.add_argument('--caption', type=str, default='') args = argparser.parse_args() train_config = importlib.import_module(args.train) model_config = importlib.import_module(args.model) data_config = importlib.import_module(args.data) verbose_config = importlib.import_module(args.verbose) if args.caption: captioning = True caption_config = importlib.import_module(args.caption) else: captioning = False mBLEU = train_config.mBLEU if hasattr(train_config, "exp_name"): exp_name = train_config.exp_name else: raise Exception("train config has no exp_name") exp_name = get_data_name(data_config) + get_model_name(model_config) + get_train_name(train_config) logdir = os.path.join('log', exp_name) if not os.path.exists(logdir): os.makedirs(logdir) logging_file = os.path.join(logdir, 'logging.txt')
the-stack_0_17282
# APIs for Windows 64-bit MSVC 2013 runtime library (msvcr120). # Built as a delta from the 32-bit version. # Format: retval, rettype, callconv, exactname, arglist(type, name) # arglist type is one of ['int', 'void *'] # arglist name is one of [None, 'funcptr', 'obj', 'ptr'] # List the normalized name of any 32-bit functions to omit. api_32_omits = [ 'msvcr120.??2@yapaxi@z', 'msvcr120.??_u@yapaxi@z', 'msvcr120.??3@yaxpax@z', 'msvcr120.??_v@yaxpax@z' ] # Define any functions specific to 64-bit. api_64_adds = { 'msvcr120.??2@yapeax_k@z':( 'int', None, 'cdecl', 'msvcr120.??2@YAPEAX_K@Z', (('int', None),) ), 'msvcr120.??_u@yapeax_k@z':( 'int', None, 'cdecl', 'msvcr120.??_U@YAPEAX_K@Z', (('int', None),) ), 'msvcr120.??3@yaxpeax@z':( 'void', None, 'cdecl', 'msvcr120.??3@YAXPEAX@Z', (('void *', 'ptr'),) ), 'msvcr120.??_v@yaxpeax@z':( 'void', None, 'cdecl', 'msvcr120.??_V@YAXPEAX@Z', (('void *', 'ptr'),) ), } # Build from the 32-bit API, skipping omits, changing the calling convention, # and adding any specific 64-bit functions. api_defs_64 = {} import vivisect.impapi.windows.msvcr120_32 as m32 for name in m32.api_defs.iterkeys(): if name in api_32_omits: continue (rtype,rname,cconv,cname,cargs) = m32.api_defs[name] api_defs_64[name] = (rtype, rname, 'msx64call', cname, cargs) api_defs_64.update(api_64_adds)
the-stack_0_17283
import requests import sys def request_api(username: str) -> list: page = 1 followers = [] while True: url = "https://api.github.com/users/"+username+"/followers?page="+str(page)+"&per_page=100" req = requests.get(url) if req.status_code == 200: data = req.json() if len(data) == 0: break else: followers += data page += 1 else: print("URL: " + url) print("request status_code:"+str(req.status_code)) sys.exit(-1) return followers
the-stack_0_17284
import sys n, m, *sc = map(int, sys.stdin.read().split()) sc = zip(*[iter(sc)] * 2) def main(): res = [0] * n determined = set() for s, c in sc: if s in determined: if res[s-1] != c: return -1 else: res[s-1] = c determined.add(s) if n > 1 and not res[0] == 0: return -1 res = ''.join([str(d) for d in res]) return res if __name__ == '__main__': ans = main() print(ans)
the-stack_0_17285
_base_ = [ '../_base_/datasets/waymo_cars_and_peds.py', '../_base_/models/pointnet2_seg.py', '../_base_/schedules/cyclic_20e.py', '../_base_/default_runtime.py' ] # data settings data = dict(samples_per_gpu=16) evaluation = dict(interval=50) # runtime settings checkpoint_config = dict(interval=50) # PointNet2-MSG needs longer training time than PointNet2-SSG runner = dict(type='EpochBasedRunner', max_epochs=1000) #resume_from = 'work_dirs/pointnet2_cars_and_peds/latest.pth'
the-stack_0_17286
import unittest from panelexpr._utils.utils import * from panelexpr.base.operator import TimeSeriesOperator import panelexpr as pe import pandas as pd THRESHOLD = 1e-6 class MyMovingAverageOperator(TimeSeriesOperator): def eval(self, series: pd.Series, window): s = series.rolling(window).mean() return s pe.register("my_ma", MyMovingAverageOperator) class BasicTest(unittest.TestCase): # 继承unittest.TestCase @classmethod def setUpClass(cls): # 必须使用@classmethod 装饰器,所有test运行前运行一次 cls.data = pd.read_csv("data/sample_zh_2.csv") def test_rolling_mean(self): s1 = pe.eval("mmean(Open, 2, group_by='windcode')", data=self.data) s2 = pe.eval("my_ma(Open, 2)", data=self.data, group_tag="windcode") v = mean_absolute_deviation(s1, s2) matching = nan_matching(s1, s2) self.assertTrue(v < THRESHOLD) self.assertTrue(matching) if __name__ == '__main__': unittest.main() # 运行所有的测试用例
the-stack_0_17287
from django.db import models from mongoengine import DynamicDocument, ListField, StringField class CollectionList(DynamicDocument): meta = {'collection' : 'CollectionList'} collectionlist = ListField(StringField()) class testcl(DynamicDocument): # raw tweet data meta = {'collection' : 'testcl'} text = StringField() class rt_eliminated(DynamicDocument): # retweets are eliminated meta = {'collection' : 'rt_eliminated'} text = StringField() class duplicates_eliminated(DynamicDocument): # duplicates are eliminated meta = {'collection' : 'duplicates_eliminated'} text = StringField() class Clusters(DynamicDocument): meta = {'abstract': True,} ctweettuplelist = ListField(StringField()) cstr = StringField() cno = StringField() cnoprefix = StringField() rif = ListField(StringField()) twids = ListField(StringField()) user_entropy = StringField() label = StringField() class all_data_clusters(Clusters): meta = {'collection': 'all_data_clusters'} class genocide_clusters_20151005(Clusters): meta = {'collection': 'genocide_clusters_20151005'}
the-stack_0_17288
from pytorch_toolbelt.modules import ABN from pytorch_toolbelt.modules import decoders as D from pytorch_toolbelt.modules import encoders as E from torch import nn from torch.nn import functional as F from ..dataset import OUTPUT_MASK_32_KEY, OUTPUT_MASK_KEY from catalyst.registry import Model __all__ = ["DeeplabV3SegmentationModel", "resnet34_deeplab128", "seresnext101_deeplab256"] class DeeplabV3SegmentationModel(nn.Module): def __init__( self, encoder: E.EncoderModule, num_classes: int, dropout=0.25, abn_block=ABN, high_level_bottleneck=256, low_level_bottleneck=32, full_size_mask=True, ): super().__init__() self.encoder = encoder self.decoder = D.DeeplabV3Decoder( feature_maps=encoder.output_filters, output_stride=encoder.output_strides[-1], num_classes=num_classes, high_level_bottleneck=high_level_bottleneck, low_level_bottleneck=low_level_bottleneck, abn_block=abn_block, dropout=dropout, ) self.full_size_mask = full_size_mask def forward(self, x): enc_features = self.encoder(x) # Decode mask mask, dsv = self.decoder(enc_features) if self.full_size_mask: mask = F.interpolate(mask, size=x.size()[2:], mode="bilinear", align_corners=False) output = {OUTPUT_MASK_KEY: mask, OUTPUT_MASK_32_KEY: dsv} return output @Model def resnet34_deeplab128(num_classes=1, dropout=0.0, pretrained=True): encoder = E.Resnet34Encoder(pretrained=pretrained) return DeeplabV3SegmentationModel(encoder, num_classes=num_classes, high_level_bottleneck=128, dropout=dropout) @Model def seresnext101_deeplab256(num_classes=1, dropout=0.0, pretrained=True): encoder = E.SEResNeXt101Encoder(pretrained=pretrained) return DeeplabV3SegmentationModel(encoder, num_classes=num_classes, high_level_bottleneck=256, dropout=dropout)
the-stack_0_17289
"""Script to transform and upload IRENA's capacity data to Resource Watch. IRENA information is available through a Tableau applet. This data must be downloaded manually, it is not possible to acquire through an HTTP GET as we can tell. Once downloaded, only minor transformation is needed to prepare it for upload. The core issue is that the information does not fall into a data cube without aggregating some rows to fit with expectations around data dimensionality. It seems the data should be keyed on the dimensions: - country - year - most granular technology (e.g. "offshore wind" not "wind") - on-grid/off-grid When keyed in this way there are still many compound keys that have multiple rows and need to be summed to produce the values expressed in Tableau visualization. """ import os import pandas as pd from zipfile import ZipFile import shutil utils_path = os.path.join(os.path.abspath(os.getenv('PROCESSING_DIR')),'utils') if utils_path not in sys.path: sys.path.append(utils_path) import util_files import util_cloud import util_carto import logging # Set up logging # Get the top-level logger object logger = logging.getLogger() for handler in logger.handlers: logger.removeHandler(handler) logger.setLevel(logging.INFO) # make it print to the console. console = logging.StreamHandler() logger.addHandler(console) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') # name of table on Carto where you want to upload data # this should be a table name that is not currently in use dataset_name = 'ene_009_renewable_generation_annually' logger.info('Executing script for dataset: ' + dataset_name) # create a new sub-directory within your specified dir called 'data' # within this directory, create files to store raw and processed data data_dir = util_files.prep_dirs(dataset_name) ''' Download data and save to your data directory ''' # data can be downloaded by following the steps in the 'Data Acquisition' section of the README file # generate path to downloaded data file download = os.path.join(os.path.expanduser("~"), 'Downloads', 'Export_Full_Data_data.csv') # Move this file into your data directory raw_data_file = os.path.join(data_dir, os.path.basename(download)) shutil.move(download,raw_data_file) ''' Process data ''' # read in csv file as Dataframe df = pd.read_csv(raw_data_file, dtype=str) # filter pumped storage plants just like IRENA default df = df[df['Sub-technology'] != 'Pumped Storage'] # convert values from string to float because summing later df['Values_asfloat'] = df['Values'].astype(float) # subset into generation generation_data = df[df['DataType'] == 'Electricity Generation'] # assuming GWh everywhere, check that; yes the field name has a space at the end assert (generation_data['Unit '] == 'GWh').all() # group by the key dimensions grouped = generation_data.groupby(['ISO', 'Years', 'Sub-technology', 'Type']) # ensure Technology is mapped 1:1 with Sub-technology assert grouped.agg({'Technology': lambda x: len(set(x)) == 1}).Technology.all() # create the data frame, renaming values and organizing the column order data = grouped.agg({ 'Values_asfloat': 'sum', # sum the numeric capacity value 'IRENA Label': 'first', # take a long name for the country 'Technology': 'first', # take the technology (superclass) }).reset_index().rename(columns={ 'ISO': 'iso_a3', 'Years': 'year', 'Sub-technology': 'subtechnology', 'Technology': 'technology', 'Type': 'grid_connection', 'IRENA Label': 'country_name', 'Values_asfloat': 'generation_GWh', })[[ # set a new column order 'iso_a3', # key 'country_name', # 1:1 with iso_a3 'year', # key 'subtechnology', # key 'technology', # 1:n with subtechnology 'grid_connection', # key 'generation_GWh' # the numeric generation value in gigawatt-hours ]] #save processed dataset to csv processed_data_file = os.path.join(data_dir, dataset_name+'_edit.csv') data.to_csv(processed_data_file, index=False) ''' Upload processed data to Carto ''' logger.info('Uploading processed data to Carto.') util_carto.upload_to_carto(processed_data_file, 'LINK') ''' Upload original data and processed data to Amazon S3 storage ''' # initialize AWS variables aws_bucket = 'wri-public-data' s3_prefix = 'resourcewatch/' logger.info('Uploading original data to S3.') # Upload raw data file to S3 # Copy the raw data into a zipped file to upload to S3 raw_data_dir = os.path.join(data_dir, dataset_name+'.zip') with ZipFile(raw_data_dir,'w') as zip: zip.write(raw_data_file, os.path.basename(raw_data_file)) # Upload raw data file to S3 uploaded = util_cloud.aws_upload(raw_data_dir, aws_bucket, s3_prefix+os.path.basename(raw_data_dir)) logger.info('Uploading processed data to S3.') # Copy the processed data into a zipped file to upload to S3 processed_data_dir = os.path.join(data_dir, dataset_name+'_edit.zip') with ZipFile(processed_data_dir,'w') as zip: zip.write(processed_data_file, os.path.basename(processed_data_file)) # Upload processed data file to S3 uploaded = util_cloud.aws_upload(processed_data_dir, aws_bucket, s3_prefix+os.path.basename(processed_data_dir))
the-stack_0_17290
from fastapi import APIRouter, Request from app.dependencies import templates from app.internal.celebrity import get_today_month_and_day router = APIRouter() @router.get("/celebrity") def celebrity(request: Request): today = get_today_month_and_day() return templates.TemplateResponse("celebrity.html", { "request": request, "date": today })
the-stack_0_17291
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Copyright (c) 2017-2018 The Cryptomiles Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for setting nMinimumChainWork on command line. Nodes don't consider themselves out of "initial block download" until their active chain has more work than nMinimumChainWork. Nodes don't download blocks from a peer unless the peer's best known block has more work than nMinimumChainWork. While in initial block download, nodes won't relay blocks to their peers, so test that this parameter functions as intended by verifying that block relay only succeeds past a given node once its nMinimumChainWork has been exceeded. """ import time from test_framework.test_framework import CryptomilesTestFramework from test_framework.util import sync_blocks, connect_nodes, assert_equal # 2 hashes required per regtest block (with no difficulty adjustment) REGTEST_WORK_PER_BLOCK = 2 class MinimumChainWorkTest(CryptomilesTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]] self.node_min_work = [0, 101, 101] def setup_network(self): # This test relies on the chain setup being: # node0 <- node1 <- node2 # Before leaving IBD, nodes prefer to download blocks from outbound # peers, so ensure that we're mining on an outbound peer and testing # block relay to inbound peers. self.setup_nodes() for i in range(self.num_nodes-1): connect_nodes(self.nodes[i+1], i) def run_test(self): # Start building a chain on node0. node2 shouldn't be able to sync until node1's # minchainwork is exceeded starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work self.log.info("Testing relay across node %d (minChainWork = %d)", 1, self.node_min_work[1]) starting_blockcount = self.nodes[2].getblockcount() num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK) self.log.info("Generating %d blocks on node0", num_blocks_to_generate) hashes = self.nodes[0].generate(num_blocks_to_generate) self.log.info("Node0 current chain work: %s", self.nodes[0].getblockheader(hashes[-1])['chainwork']) # Sleep a few seconds and verify that node2 didn't get any new blocks # or headers. We sleep, rather than sync_blocks(node0, node1) because # it's reasonable either way for node1 to get the blocks, or not get # them (since they're below node1's minchainwork). time.sleep(3) self.log.info("Verifying node 2 has no more blocks than before") self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) # Node2 shouldn't have any new headers yet, because node1 should not # have relayed anything. assert_equal(len(self.nodes[2].getchaintips()), 1) assert_equal(self.nodes[2].getchaintips()[0]['height'], 0) assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash() assert_equal(self.nodes[2].getblockcount(), starting_blockcount) self.log.info("Generating one more block") self.nodes[0].generate(1) self.log.info("Verifying nodes are all synced") # Because nodes in regtest are all manual connections (eg using # addnode), node1 should not have disconnected node0. If not for that, # we'd expect node1 to have disconnected node0 for serving an # insufficient work chain, in which case we'd need to reconnect them to # continue the test. self.sync_all() self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) if __name__ == '__main__': MinimumChainWorkTest().main()
the-stack_0_17292
"""This module implements the AppFutures. We have two basic types of futures: 1. DataFutures which represent data objects 2. AppFutures which represent the futures on App/Leaf tasks. """ from concurrent.futures import Future import logging import threading from parsl.app.errors import RemoteExceptionWrapper logger = logging.getLogger(__name__) # Possible future states (for internal use by the futures package). PENDING = 'PENDING' RUNNING = 'RUNNING' # The future was cancelled by the user... CANCELLED = 'CANCELLED' # ...and _Waiter.add_cancelled() was called by a worker. CANCELLED_AND_NOTIFIED = 'CANCELLED_AND_NOTIFIED' FINISHED = 'FINISHED' _STATE_TO_DESCRIPTION_MAP = { PENDING: "pending", RUNNING: "running", CANCELLED: "cancelled", CANCELLED_AND_NOTIFIED: "cancelled", FINISHED: "finished" } class AppFuture(Future): """An AppFuture wraps a sequence of Futures which may fail and be retried. An AppFuture starts with no parent future. A sequence of parent futures may be assigned by code outside of this class, by passing that new parent future into "update_future". The AppFuture will set its result to the result of the parent future, if that parent future completes without an exception. This result setting should cause .result(), .exception() and done callbacks to fire as expected when a Future has a result set. The AppFuture will not set its result to the result of the parent future, if that parent future completes with an exception, and if that parent future has retries left. In that case, no result(), exception() or done callbacks should report a result. The AppFuture will set its result to the result of the parent future, if that parent future completes with an exception and if that parent future has no retries left, or if it has no retry field. .result(), .exception() and done callbacks should give a result as expected when a Future has a result set The parent future may return a RemoteExceptionWrapper as a result and AppFuture will treat this an an exception for the above retry and result handling behaviour. """ def __init__(self, tid=None, stdout=None, stderr=None): """Initialize the AppFuture. Args: KWargs: - tid (Int) : Task id should be any unique identifier. Now Int. - stdout (str) : Stdout file of the app. Default: None - stderr (str) : Stderr file of the app. Default: None """ self._tid = tid super().__init__() self.parent = None self._update_lock = threading.Lock() self._outputs = [] self._stdout = stdout self._stderr = stderr def parent_callback(self, executor_fu): """Callback from a parent future to update the AppFuture. Used internally by AppFuture, and should not be called by code using AppFuture. Args: - executor_fu (Future): Future returned by the executor along with callback. This may not be the current parent future, as the parent future may have already been updated to point to a retrying execution, and in that case, this is logged. In the case that a new parent has been attached, we must immediately discard this result no matter what it contains (although it might be interesting to log if it was successful...) Returns: - None Updates the super() with the result() or exception() """ with self._update_lock: if not executor_fu.done(): raise ValueError("done callback called, despite future not reporting itself as done") # this is for consistency checking if executor_fu != self.parent: if executor_fu.exception() is None and not isinstance(executor_fu.result(), RemoteExceptionWrapper): # ... then we completed with a value, not an exception or wrapped exception, # but we've got an updated executor future. # This is bad - for example, we've started a retry even though we have a result raise ValueError("internal consistency error: AppFuture done callback called without an exception, but parent has been changed since then") try: res = executor_fu.result() if isinstance(res, RemoteExceptionWrapper): res.reraise() super().set_result(executor_fu.result()) except Exception as e: if executor_fu.retries_left > 0: # ignore this exception, because assume some later # parent executor, started external to this class, # will provide the answer pass else: super().set_exception(e) @property def stdout(self): return self._stdout @property def stderr(self): return self._stderr @property def tid(self): return self._tid def update_parent(self, fut): """Add a callback to the parent to update the state. This handles the case where the user has called result on the AppFuture before the parent exists. """ self.parent = fut try: fut.add_done_callback(self.parent_callback) except Exception as e: logger.error("add_done_callback got an exception {} which will be ignored".format(e)) def cancel(self): raise NotImplementedError("Cancel not implemented") def cancelled(self): return False def running(self): if self.parent: return self.parent.running() else: return False @property def outputs(self): return self._outputs def __repr__(self): return '<%s super=%s parent=%s>' % ( self.__class__.__name__, super().__repr__(), self.parent.__repr__())
the-stack_0_17294
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cpovc_ovc', '0002_remove_ovcregistration_art_status'), ] operations = [ migrations.AddField( model_name='ovcregistration', name='art_status', field=models.CharField(max_length=4, null=True), ), ]
the-stack_0_17295
"""Posterior/Prior predictive plot.""" from numbers import Integral import platform import logging import numpy as np from .plot_utils import ( xarray_var_iter, _scale_fig_size, default_grid, filter_plotters_list, get_plotting_function, ) from ..utils import _var_names _log = logging.getLogger(__name__) def plot_ppc( data, kind="kde", alpha=None, mean=True, figsize=None, textsize=None, data_pairs=None, var_names=None, coords=None, flatten=None, flatten_pp=None, num_pp_samples=None, random_seed=None, jitter=None, animated=False, animation_kwargs=None, legend=True, ax=None, backend=None, backend_kwargs=None, group="posterior", show=None, ): """ Plot for posterior/prior predictive checks. Parameters ---------- data : az.InferenceData object InferenceData object containing the observed and posterior/prior predictive data. kind : str Type of plot to display (kde, cumulative, or scatter). Defaults to kde. alpha : float Opacity of posterior/prior predictive density curves. Defaults to 0.2 for kind = kde and cumulative, for scatter defaults to 0.7 mean : bool Whether or not to plot the mean posterior/prior predictive distribution. Defaults to True figsize : tuple Figure size. If None it will be defined automatically. textsize: float Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. data_pairs : dict Dictionary containing relations between observed data and posterior/prior predictive data. Dictionary structure: - key = data var_name - value = posterior/prior predictive var_name For example, `data_pairs = {'y' : 'y_hat'}` If None, it will assume that the observed data and the posterior/prior predictive data have the same variable name. var_names : list List of variables to be plotted. Defaults to all observed variables in the model if None. coords : dict Dictionary mapping dimensions to selected coordinates to be plotted. Dimensions without a mapping specified will include all coordinates for that dimension. Defaults to including all coordinates for all dimensions if None. flatten : list List of dimensions to flatten in observed_data. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. flatten_pp : list List of dimensions to flatten in posterior_predictive/prior_predictive. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. Dimensions should match flatten excluding dimensions for data_pairs parameters. If flatten is defined and flatten_pp is None, then `flatten_pp=flatten`. num_pp_samples : int The number of posterior/prior predictive samples to plot. For `kind` = 'scatter' and `animation = False` if defaults to a maximum of 5 samples and will set jitter to 0.7 unless defined otherwise. Otherwise it defaults to all provided samples. random_seed : int Random number generator seed passed to numpy.random.seed to allow reproducibility of the plot. By default, no seed will be provided and the plot will change each call if a random sample is specified by `num_pp_samples`. jitter : float If kind is "scatter", jitter will add random uniform noise to the height of the ppc samples and observed data. By default 0. animated : bool Create an animation of one posterior/prior predictive sample per frame. Defaults to False. animation_kwargs : dict Keywords passed to `animation.FuncAnimation`. legend : bool Add legend to figure. By default True. ax: axes, optional Matplotlib axes or bokeh figures. backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. group : {"prior", "posterior"}, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. Other value can be 'prior'. show : bool, optional Call backend show function. Returns ------- axes : matplotlib axes or bokeh figures Examples -------- Plot the observed data KDE overlaid on posterior predictive KDEs. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('radon') >>> az.plot_ppc(data,data_pairs={"obs":"obs"}) >>> #az.plot_ppc(data,data_pairs={"obs":"obs_hat"}) Plot the overlay with empirical CDFs. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='cumulative') Use the coords and flatten parameters to plot selected variable dimensions across multiple plots. .. plot:: :context: close-figs >>> az.plot_ppc(data, coords={'observed_county': ['ANOKA', 'BELTRAMI']}, flatten=[]) Plot the overlay using a stacked scatter plot that is particularly useful when the sample sizes are small. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='scatter', flatten=[], >>> coords={'observed_county': ['AITKIN', 'BELTRAMI']}) Plot random posterior predictive sub-samples. .. plot:: :context: close-figs >>> az.plot_ppc(data, num_pp_samples=30, random_seed=7) """ if group not in ("posterior", "prior"): raise TypeError("`group` argument must be either `posterior` or `prior`") for groups in ("{}_predictive".format(group), "observed_data"): if not hasattr(data, groups): raise TypeError( '`data` argument must have the group "{group}" for ppcplot'.format(group=groups) ) if kind.lower() not in ("kde", "cumulative", "scatter"): raise TypeError("`kind` argument must be either `kde`, `cumulative`, or `scatter`") if data_pairs is None: data_pairs = {} if animation_kwargs is None: animation_kwargs = {} if platform.system() == "Linux": animation_kwargs.setdefault("blit", True) else: animation_kwargs.setdefault("blit", False) if animated and backend == "bokeh": raise TypeError("Animation option is only supported with matplotlib backend.") if animated and animation_kwargs["blit"] and platform.system() != "Linux": _log.warning( "If you experience problems rendering the animation try setting" "`animation_kwargs({'blit':False}) or changing the plotting backend (e.g. to TkAgg)" ) if alpha is None: if animated: alpha = 1 else: if kind.lower() == "scatter": alpha = 0.7 else: alpha = 0.2 if jitter is None: jitter = 0.0 assert jitter >= 0.0 observed = data.observed_data if group == "posterior": predictive_dataset = data.posterior_predictive elif group == "prior": predictive_dataset = data.prior_predictive if var_names is None: var_names = list(observed.data_vars) var_names = _var_names(var_names, observed) pp_var_names = [data_pairs.get(var, var) for var in var_names] pp_var_names = _var_names(pp_var_names, predictive_dataset) if flatten_pp is None and flatten is None: flatten_pp = list(predictive_dataset.dims.keys()) elif flatten_pp is None: flatten_pp = flatten if flatten is None: flatten = list(observed.dims.keys()) if coords is None: coords = {} if random_seed is not None: np.random.seed(random_seed) total_pp_samples = predictive_dataset.sizes["chain"] * predictive_dataset.sizes["draw"] if num_pp_samples is None: if kind == "scatter" and not animated: num_pp_samples = min(5, total_pp_samples) else: num_pp_samples = total_pp_samples if ( not isinstance(num_pp_samples, Integral) or num_pp_samples < 1 or num_pp_samples > total_pp_samples ): raise TypeError( "`num_pp_samples` must be an integer between 1 and " + "{limit}.".format(limit=total_pp_samples) ) pp_sample_ix = np.random.choice(total_pp_samples, size=num_pp_samples, replace=False) for key in coords.keys(): coords[key] = np.where(np.in1d(observed[key], coords[key]))[0] obs_plotters = filter_plotters_list( list( xarray_var_iter( observed.isel(coords), skip_dims=set(flatten), var_names=var_names, combined=True ) ), "plot_ppc", ) length_plotters = len(obs_plotters) pp_plotters = [ tup for _, tup in zip( range(length_plotters), xarray_var_iter( predictive_dataset.isel(coords), var_names=pp_var_names, skip_dims=set(flatten_pp), combined=True, ), ) ] rows, cols = default_grid(length_plotters) (figsize, ax_labelsize, _, xt_labelsize, linewidth, markersize) = _scale_fig_size( figsize, textsize, rows, cols ) ppcplot_kwargs = dict( ax=ax, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, animated=animated, obs_plotters=obs_plotters, pp_plotters=pp_plotters, predictive_dataset=predictive_dataset, pp_sample_ix=pp_sample_ix, kind=kind, alpha=alpha, linewidth=linewidth, mean=mean, xt_labelsize=xt_labelsize, ax_labelsize=ax_labelsize, jitter=jitter, total_pp_samples=total_pp_samples, legend=legend, markersize=markersize, animation_kwargs=animation_kwargs, num_pp_samples=num_pp_samples, backend_kwargs=backend_kwargs, show=show, ) if backend == "bokeh": ppcplot_kwargs.pop("animated") ppcplot_kwargs.pop("animation_kwargs") ppcplot_kwargs.pop("legend") ppcplot_kwargs.pop("xt_labelsize") ppcplot_kwargs.pop("ax_labelsize") # TODO: Add backend kwargs plot = get_plotting_function("plot_ppc", "ppcplot", backend) axes = plot(**ppcplot_kwargs) return axes
the-stack_0_17296
import warnings import json import os from vaex.utils import _ensure_strings_from_expressions class DataFrameAccessorML(object): def __init__(self, df): self.df = df def state_transfer(self): from .transformations import StateTransfer state = self.df.state_get() state.pop('active_range') # we are not interested in this.. return StateTransfer(state=state) def train_test_split(self, test_size=0.2, strings=True, virtual=True, verbose=True): '''Will split the DataFrame in train and test part, assuming it is shuffled. :param test_size: The fractional size of the test set. :param strings: If True, the output DataFrames will also contain string columns, if any. :param virtual: If True, the output DataFrames will also contain virtual contain, if any. :param verbose: If True, print warnings to screen. ''' if verbose: warnings.warn('Make sure the DataFrame is shuffled') initial = None try: assert self.df.filtered is False, 'Filtered DataFrames are not yet supported.' # full_length = len(self) df = self.df.trim() initial = self.df.get_active_range() df.set_active_fraction(test_size) test = df.trim() __, end = df.get_active_range() df.set_active_range(end, df.length_original()) train = df.trim() finally: if initial is not None: df.set_active_range(*initial) return train, test filename_spec = os.path.join(os.path.dirname(__file__), 'spec.json') if os.path.exists(filename_spec): # add DataFrameAccessorML.<snake_name> wrapper methods with open(filename_spec) as f: try: spec = json.load(f) except json.decoder.JSONDecodeError: pass # we are generating the file probably else: for class_spec in spec: def closure(class_spec=class_spec): def wrapper(self, features=None, transform=True, **kwargs): kwargs = kwargs.copy() # we do modifications, so make a copy features = features or self.df.get_column_names() features = _ensure_strings_from_expressions(features) import importlib module = importlib.import_module(class_spec['module']) cls = getattr(module, class_spec['classname']) if 'target' in kwargs: kwargs['target'] = str(kwargs['target']) object = cls(features=features, **kwargs) object.fit(self.df) if transform: dft = object.transform(self.df) return dft else: return object # Append trait help strings to the docstring doc = '\n' for trait in class_spec['traits']: doc += f':param {trait["name"]}: {trait["help"]} \n' doc += ':param transform: If True, return a shallow copy of the transformed DataFrame, otherwise the return fitted transformer. \n' try: wrapper.__doc__= class_spec['doc'] + doc except TypeError: # unsupported operand type(s) for +: 'NoneType' and 'str' wrapper.__doc__= doc return wrapper accessor = DataFrameAccessorML name = class_spec['snake_name'] setattr(accessor, name, closure()) from .transformations import PCA, PCAIncremental, RandomProjections from .transformations import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler from .transformations import LabelEncoder, OneHotEncoder, MultiHotEncoder, FrequencyEncoder from .transformations import CycleTransformer from .transformations import BayesianTargetEncoder from .transformations import WeightOfEvidenceEncoder from .transformations import GroupByTransformer, KBinsDiscretizer from .pipeline import Pipeline
the-stack_0_17298
#!/usr/bin/python # Compresses the files for one game into a single JavaScript file. # # Copyright 2013 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script generates two files: # compressed.js # uncompressed.js # The compressed file is a concatenation of all the relevant JavaScript which # has then been run through Google's Closure Compiler. # The uncompressed file is a script that loads in each JavaScript file # one by one. This takes much longer for a browser to load, but is useful # when debugging code since line numbers are meaningful and variables haven't # been renamed. The uncompressed file also allows for a faster development # cycle since there is no need to rebuild or recompile, just reload. import json import os.path import re import subprocess import sys import threading # Define a warning message for all the generated files. WARNING = '// Automatically generated file. Do not edit!\n' messageNames = [] def main(name, lang): if lang != None: filterMessages(name, lang) language(name, lang) else: # Extract the list of supported languages from boot.js. # This is a bit fragile. boot = open('appengine/common/boot.js', 'r') js = ' '.join(boot.readlines()) boot.close() m = re.search('\[\'BlocklyGamesLanguages\'\] = (\[[-,\'\\s\\w]+\])', js) if not m: raise Exception("Can't find BlocklyGamesLanguages in boot.js") langs = m.group(1) langs = langs.replace("'", '"') langs = json.loads(langs) filterMessages(name, langs[0]) for lang in langs: language(name, lang) def filterMessages(name, lang): global messageNames # Do a dummy compile and identify all the Blockly messages used. print("Scanning for Blockly messages in %s..." % name) f = open('appengine/%s/generated/%s/msg.js' % (name, lang), 'w') f.write(""" goog.provide('BlocklyGames.Msg'); goog.require('Blockly.Msg'); Blockly.Msg["ybr8uu2q3b"] = ''; """) f.close() thread0 = Gen_compressed(name, lang) thread0.start() thread0.join() f = open('appengine/%s/generated/%s/compressed.js' % (name, lang), 'r') js = f.read() f.close() # Locate what Blockly.Msg has compiled into (e.g. h.Y) m = re.search('([\w.$]+)\.ybr8uu2q3b=', js) if m: blocklyMsg = m.group(1) blocklyMsg = blocklyMsg.replace('.', '\\.').replace('$', '\\$') msgs1 = re.findall('\W' + blocklyMsg + '.([A-Z0-9_]+)', js); msgs2 = re.findall('\WBKY_([A-Z0-9_]+)', js); messageNames = list(set(msgs1 + msgs2)) # Resolve references. # Blockly.Msg["TEXT_APPEND_VAR"] = Blockly.Msg["VAR_DEFAULT_NAME"]; # Does not handle long chains of references. msgs = getMessages(lang) for msg in msgs: m = re.search('Blockly\.Msg\["([A-Z0-9_]+)"\] = Blockly\.Msg\["([A-Z0-9_]+)"\]', msg) if m and m.group(1) in messageNames: messageNames.append(m.group(2)) messageNames.sort() print("Found %d Blockly messages." % len(messageNames)) def getMessages(lang): # Read Blockly's message file for this language (default to English). blocklyMsgFileName = 'appengine/third-party/blockly/msg/js/%s.js' % lang; if not os.path.exists(blocklyMsgFileName): blocklyMsgFileName = 'appengine/third-party/blockly/msg/js/en.js'; f = open(blocklyMsgFileName, 'r') msgs = f.readlines() f.close() return msgs def language(name, lang): global messageNames msgs = getMessages(lang) # Write copy to Blockly Games. f = open('appengine/%s/generated/%s/msg.js' % (name, lang), 'w') for msg in msgs: if msg == "'use strict';\n": f.write("""'use strict'; goog.provide('BlocklyGames.Msg'); goog.require('Blockly.Msg'); """) else: # Only write out messages that are used (as detected in filterMessages). m = re.search('Blockly\.Msg\["([A-Z0-9_]+)"\] = ', msg) if not m or m.group(1) in messageNames: f.write(msg) f.close() print('Compiling %s - %s' % (name.title(), lang)) # Run uncompressed and compressed code generation in separate threads. # For multi-core computers, this offers a significant speed boost. thread1 = Gen_uncompressed(name, lang) thread2 = Gen_compressed(name, lang) thread1.start() thread2.start() thread1.join() thread2.join() print("") class Gen_uncompressed(threading.Thread): def __init__(self, name, lang): threading.Thread.__init__(self) self.name = name self.lang = lang def run(self): cmd = ['third-party-downloads/build/closurebuilder.py', '--root=appengine/third-party/', '--root=appengine/generated/%s/' % self.lang, '--root=appengine/js/', '--namespace=%s' % self.name.replace('/', '.').title(), '--output_mode=list'] directory = self.name while directory: cmd.append('--root=appengine/%s/generated/%s/' % (directory, self.lang)) cmd.append('--root=appengine/%s/js/' % directory) (directory, sep, fragment) = directory.rpartition(os.path.sep) try: proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) except: raise Exception("Failed to Popen: %s" % ' '.join(cmd)) files = readStdout(proc) if self.name == 'pond/docs': path = '../' else: path = '' prefix = 'appengine/' srcs = [] for file in files: file = file.strip() if file[:len(prefix)] == prefix: file = file[len(prefix):] else: raise Exception('"%s" is not in "%s".' % (file, prefix)) srcs.append('"%s%s"' % (path, file)) f = open('appengine/%s/generated/%s/uncompressed.js' % (self.name, self.lang), 'w') f.write("""%s window.CLOSURE_NO_DEPS = true; (function() { var srcs = [ %s ]; function loadScript() { var src = srcs.shift(); if (src) { var script = document.createElement('script'); script.src = src; script.type = 'text/javascript'; script.onload = loadScript; document.head.appendChild(script); } } loadScript(); })(); """ % (WARNING, ',\n '.join(srcs))) f.close() print('Found %d dependencies.' % len(srcs)) class Gen_compressed(threading.Thread): def __init__(self, name, lang): threading.Thread.__init__(self) self.name = name self.lang = lang def run(self): cmd = [ 'java', '-jar', 'third-party-downloads/closure-compiler.jar', '--generate_exports', '--compilation_level', 'ADVANCED_OPTIMIZATIONS', '--dependency_mode=PRUNE', '--externs', 'externs/gviz-externs.js', '--externs', 'externs/interpreter-externs.js', '--externs', 'externs/prettify-externs.js', '--externs', 'externs/soundJS-externs.js', '--externs', 'externs/storage-externs.js', '--externs', 'appengine/third-party/blockly/externs/svg-externs.js', '--language_in', 'ECMASCRIPT5_STRICT', '--language_out', 'ECMASCRIPT5_STRICT', '--entry_point=%s' % self.name.replace('/', '.').title(), "--js='appengine/third-party/**.js'", "--js='!appengine/third-party/base.js'", "--js='!appengine/third-party/blockly/externs/**.js'", "--js='appengine/generated/%s/*.js'" % self.lang, "--js='appengine/js/*.js'", '--warning_level', 'QUIET', ] directory = self.name while directory: cmd.append("--js='appengine/%s/generated/%s/*.js'" % (directory, self.lang)) cmd.append("--js='appengine/%s/js/*.js'" % directory) (directory, sep, fragment) = directory.rpartition(os.path.sep) try: proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) except: print("Failed to Popen: %s" % cmd) raise script = readStdout(proc) script = ''.join(script) script = self.trim_licence(script) print('Compressed to %d KB.' % (len(script) / 1024)) f = open('appengine/%s/generated/%s/compressed.js' % (self.name, self.lang), 'w') f.write(WARNING) f.write(script) f.close() def trim_licence(self, code): """Strip out Google's and MIT's Apache licences. JS Compiler preserves dozens of Apache licences in the Blockly code. Remove these if they belong to Google or MIT. MIT's permission to do this is logged in Blockly issue 2412. Args: code: Large blob of compiled source code. Returns: Code with Google's and MIT's Apache licences trimmed. """ apache2 = re.compile("""/\\* (Copyright \\d+ (Google LLC|Massachusetts Institute of Technology)) ( All rights reserved. )? SPDX-License-Identifier: Apache-2.0 \\*/""") return re.sub(apache2, '', code) def readStdout(proc): data = proc.stdout.readlines() # Python 2 reads stdout as text. # Python 3 reads stdout as bytes. return list(map(lambda line: type(line) == str and line or str(line, 'utf-8'), data)) if __name__ == '__main__': if len(sys.argv) == 2: main(sys.argv[1], None) elif len(sys.argv) == 3: main(sys.argv[1], sys.argv[2]) else: print('Format: %s <appname> [<language>]' % sys.argv[0]) sys.exit(2)
the-stack_0_17299
from keras.datasets import mnist, fashion_mnist from models import load_model import numpy as np import os import argparse import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import math curdir = os.path.dirname(os.path.abspath(__file__)) parser = argparse.ArgumentParser() parser.add_argument('--optimizer', choices=['adam','sgd','adagrad'], default='adam') parser.add_argument('--loss', choices=['mean_squared_error', 'binary_crossentropy'], default='mean_squared_error') parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--test_samples', type=int, default=50) parser.add_argument('--result', default=os.path.join(curdir, 'result.png')) def main(args): # prepare normal dataset (Mnist) (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train / 255. # normalize into [0,1] x_test = x_test / 255. # prapare abnormal dataset (Fashion Mnist) (_, _), (x_abnormal, _) = fashion_mnist.load_data() x_abnormal = x_abnormal / 255. # sample args.test_samples images from eaech of x_test and x_abnormal perm = np.random.permutation(args.test_samples) x_test = x_test[perm][:args.test_samples] x_abnormal = x_abnormal[perm][:args.test_samples] # train each model and test their capabilities of anomaly deteciton model_names = ['autoencoder', 'deep_autoencoder', 'convolutional_autoencoder'] for model_name in model_names: # instantiate model model = load_model(model_name) # reshape input data according to the model's input tensor if model_name == 'convolutional_autoencoder': x_train = x_train.reshape(-1,28,28,1) x_test = x_test.reshape(-1,28,28,1) x_abnormal = x_abnormal.reshape(-1,28,28,1) elif model_name == 'autoencoder' or model_name == 'deep_autoencoder': x_train = x_train.reshape(-1,28*28) x_test = x_test.reshape(-1,28*28) x_abnormal = x_abnormal.reshape(-1,28*28) else: raise ValueError('Unknown model_name %s was given' % model_name) # compile model model.compile(optimizer=args.optimizer, loss=args.loss) # train on only normal training data model.fit( x=x_train, y=x_train, epochs=args.epochs, batch_size=args.batch_size, ) # test x_concat = np.concatenate([x_test, x_abnormal], axis=0) losses = [] for x in x_concat: # compule loss for each test sample x = np.expand_dims(x, axis=0) loss = model.test_on_batch(x, x) losses.append(loss) # plot plt.plot(range(len(losses)), losses, linestyle='-', linewidth=1, label=model_name) # delete model for saving memory del model # create graph plt.legend(loc='best') plt.grid() plt.xlabel('sample index') plt.ylabel('loss') plt.savefig(args.result) plt.clf() if __name__ == '__main__': args = parser.parse_args() main(args)
the-stack_0_17302
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import aws_cdk.core as cdk import aws_cdk.aws_s3 as s3 import aws_cdk.aws_ec2 as ec2 import aws_cdk.aws_glue as glue import aws_cdk.aws_iam as iam import aws_cdk.aws_kms as kms import aws_cdk.aws_s3_deployment as s3_deployment from .configuration import ( AVAILABILITY_ZONE_1, SUBNET_ID_1, S3_ACCESS_LOG_BUCKET, S3_KMS_KEY, S3_CONFORMED_BUCKET, S3_PURPOSE_BUILT_BUCKET, SHARED_SECURITY_GROUP_ID, get_environment_configuration, get_logical_id_prefix, get_resource_name_prefix ) class GlueStack(cdk.Stack): def __init__( self, scope: cdk.Construct, construct_id: str, target_environment: str, **kwargs ) -> None: """ CloudFormation stack to create Glue Jobs, Connections, Script Bucket, Temporary Bucket, and an IAM Role for permissions. @param scope cdk.Construct: Parent of this stack, usually an App or a Stage, but could be any construct. @param construct_id str: The construct ID of this stack. If stackName is not explicitly defined, this id (and any parent IDs) will be used to determine the physical ID of the stack. @param target_environment str: The target environment for stacks in the deploy stage @param kwargs: """ super().__init__(scope, construct_id, **kwargs) self.mappings = get_environment_configuration(target_environment) logical_id_prefix = get_logical_id_prefix() resource_name_prefix = get_resource_name_prefix() existing_access_logs_bucket_name = cdk.Fn.import_value(self.mappings[S3_ACCESS_LOG_BUCKET]) access_logs_bucket = s3.Bucket.from_bucket_attributes( self, 'ImportedBucket', bucket_name=existing_access_logs_bucket_name ) s3_kms_key_parameter = cdk.Fn.import_value(self.mappings[S3_KMS_KEY]) s3_kms_key = kms.Key.from_key_arn(self, 'ImportedKmsKey', s3_kms_key_parameter) shared_security_group_parameter = cdk.Fn.import_value(self.mappings[SHARED_SECURITY_GROUP_ID]) glue_connection_subnet = cdk.Fn.import_value(self.mappings[SUBNET_ID_1]) glue_connection_availability_zone = cdk.Fn.import_value(self.mappings[AVAILABILITY_ZONE_1]) conformed_bucket_name = cdk.Fn.import_value(self.mappings[S3_CONFORMED_BUCKET]) conformed_bucket = s3.Bucket.from_bucket_name( self, id='ImportedConformedBucket', bucket_name=conformed_bucket_name ) purposebuilt_bucket_name = cdk.Fn.import_value(self.mappings[S3_PURPOSE_BUILT_BUCKET]) purposebuilt_bucket = s3.Bucket.from_bucket_name( self, id='ImportedPurposeBuiltBucket', bucket_name=purposebuilt_bucket_name ) shared_security_group = ec2.SecurityGroup.from_security_group_id( self, 'ImportedSecurityGroup', shared_security_group_parameter ) subnet = ec2.Subnet.from_subnet_attributes( self, 'ImportedSubnet', subnet_id=glue_connection_subnet, availability_zone=glue_connection_availability_zone ) glue_scripts_bucket = self.glue_scripts_bucket( target_environment, logical_id_prefix, resource_name_prefix, s3_kms_key, access_logs_bucket ) glue_scripts_temp_bucket = self.glue_scripts_temporary_bucket( target_environment, logical_id_prefix, resource_name_prefix, s3_kms_key, access_logs_bucket ) glue_role = self.get_role( target_environment, logical_id_prefix, resource_name_prefix, s3_kms_key, ) job_connection = glue.Connection( self, f'{target_environment}{logical_id_prefix}RawToConformedWorkflowConnection', type=glue.ConnectionType.NETWORK, connection_name=f'{target_environment.lower()}-{resource_name_prefix}-raw-to-conformed-connection', security_groups=[shared_security_group], subnet=subnet ) self.raw_to_conformed_job = glue.CfnJob( self, f'{target_environment}{logical_id_prefix}RawToConformedJob', name=f'{target_environment.lower()}-{resource_name_prefix}-raw-to-conformed-job', command=glue.CfnJob.JobCommandProperty( name='glueetl', python_version='3', script_location=f's3://{glue_scripts_bucket.bucket_name}/etl/etl_raw_to_conformed.py' ), connections=glue.CfnJob.ConnectionsListProperty( connections=[job_connection.connection_name], ), default_arguments={ '--enable-glue-datacatalog': '""', '--target_database_name': 'datablog_arg', '--target_bucket': conformed_bucket.bucket_name, '--target_table_name': 'datablog_nyc_raw', '--TempDir': f's3://{glue_scripts_temp_bucket.bucket_name}/etl/raw-to-conformed', }, execution_property=glue.CfnJob.ExecutionPropertyProperty( max_concurrent_runs=1, ), glue_version='2.0', max_retries=0, number_of_workers=5, role=glue_role.role_arn, worker_type='G.1X', ) self.conformed_to_purpose_built_job = glue.CfnJob( self, f'{target_environment}{logical_id_prefix}ConformedToPurposeBuiltJob', name=f'{target_environment.lower()}-{resource_name_prefix}-conformed-to-purpose-built-job', command=glue.CfnJob.JobCommandProperty( name='glueetl', python_version='3', script_location=f's3://{glue_scripts_bucket.bucket_name}/etl/etl_conformed_to_purposebuilt.py' ), connections=glue.CfnJob.ConnectionsListProperty( connections=[job_connection.connection_name], ), default_arguments={ '--enable-glue-datacatalog': '""', '--target_database_name': 'datablog_conformed_arg', '--target_bucketname': purposebuilt_bucket.bucket_name, '--target_table_name': 'datablog_nyc_purposebuilt', '--txn_bucket_name': glue_scripts_bucket.bucket_name, '--txn_sql_prefix_path': '/etl/transformation-sql/', '--TempDir': f's3://{glue_scripts_temp_bucket.bucket_name}/etl/conformed-to-purpose-built' }, execution_property=glue.CfnJob.ExecutionPropertyProperty( max_concurrent_runs=1, ), glue_version='2.0', max_retries=0, number_of_workers=5, role=glue_role.role_arn, worker_type='G.1X', ) def glue_scripts_bucket( self, target_environment, logical_id_prefix: str, resource_name_prefix: str, s3_kms_key: kms.Key, access_logs_bucket: s3.Bucket ) -> s3.Bucket: """ Creates S3 Bucket that contains glue scripts used in Job execution @param target_environment str: The target environment for stacks in the deploy stage @param logical_id_prefix str: The logical id prefix to apply to all CloudFormation resources @param resource_name_prefix str: The prefix applied to all resource names @param s3_kms_key kms.Key: The KMS Key to use for encryption of data at rest @param access_logs_bucket s3.Bucket: The access logs target for this bucket """ bucket_name = f'{target_environment.lower()}-{resource_name_prefix}-{self.account}-etl-scripts' bucket = s3.Bucket( self, f'{target_environment}{logical_id_prefix}RawGlueScriptsBucket', bucket_name=bucket_name, access_control=s3.BucketAccessControl.PRIVATE, block_public_access=s3.BlockPublicAccess.BLOCK_ALL, bucket_key_enabled=s3_kms_key is not None, encryption=s3.BucketEncryption.KMS, encryption_key=s3_kms_key, public_read_access=False, removal_policy=cdk.RemovalPolicy.DESTROY, versioned=True, object_ownership=s3.ObjectOwnership.OBJECT_WRITER, server_access_logs_bucket=access_logs_bucket, server_access_logs_prefix=bucket_name, ) # Dynamically upload resources to the script target s3_deployment.BucketDeployment( self, 'DeployGlueJobScript', # This path is relative to the root of the project sources=[s3_deployment.Source.asset('./lib/glue_scripts')], destination_bucket=bucket, destination_key_prefix='etl', ) return bucket def glue_scripts_temporary_bucket( self, target_environment, logical_id_prefix: str, resource_name_prefix: str, s3_kms_key: kms.Key, access_logs_bucket: s3.Bucket ) -> s3.Bucket: """ Creates S3 Bucket used as a temporary file store in Job execution @param target_environment str: The target environment for stacks in the deploy stage @param logical_id_prefix str: The logical id prefix to apply to all CloudFormation resources @param resource_name_prefix str: The prefix applied to all resource names @param s3_kms_key kms.Key: The KMS Key to use for encryption of data at rest @param access_logs_bucket s3.Bucket: The access logs target for this bucket """ bucket_name = f'{target_environment.lower()}-{resource_name_prefix}-{self.account}-glue-temporary-scripts' bucket = s3.Bucket( self, f'{target_environment}{logical_id_prefix}RawGlueScriptsTemporaryBucket', bucket_name=bucket_name, access_control=s3.BucketAccessControl.PRIVATE, block_public_access=s3.BlockPublicAccess.BLOCK_ALL, bucket_key_enabled=s3_kms_key is not None, encryption=s3.BucketEncryption.KMS if s3_kms_key else s3.BucketEncryption.S3_MANAGED, encryption_key=s3_kms_key if s3_kms_key else None, public_read_access=False, removal_policy=cdk.RemovalPolicy.DESTROY, versioned=True, object_ownership=s3.ObjectOwnership.OBJECT_WRITER, server_access_logs_bucket=access_logs_bucket, server_access_logs_prefix=bucket_name, ) return bucket def get_role( self, target_environment: str, logical_id_prefix: str, resource_name_prefix: str, s3_kms_key: kms.Key, ) -> iam.Role: """ Creates the role used during Glue Job execution @param target_environment str: The target environment for stacks in the deploy stage @param logical_id_prefix str: The logical id prefix to apply to all CloudFormation resources @param resource_name_prefix str: The prefix applied to all resource names @param s3_kms_key kms.Key: The KMS Key to provide permissions to @returns iam.Role: The role that was created """ return iam.Role( self, f'{target_environment}{logical_id_prefix}RawGlueRole', role_name=f'{target_environment.lower()}-{resource_name_prefix}-raw-glue-role', assumed_by=iam.ServicePrincipal('glue.amazonaws.com'), inline_policies=[ iam.PolicyDocument(statements=[ iam.PolicyStatement( effect=iam.Effect.ALLOW, actions=[ 's3:ListBucketVersions', 's3:ListBucket', 's3:GetBucketNotification', 's3:GetBucketLocation', ], resources=[ 'arn:aws:s3:::*' ] ) ]), iam.PolicyDocument(statements=[ iam.PolicyStatement( effect=iam.Effect.ALLOW, actions=[ 's3:ReplicationObject', 's3:PutObject', 's3:GetObject', 's3:DeleteObject', ], resources=[ 'arn:aws:s3:::*/*' ] ) ]), iam.PolicyDocument(statements=[ iam.PolicyStatement( effect=iam.Effect.ALLOW, actions=[ 's3:ListAllMyBuckets', ], resources=[ '*' ] ) ]), # NOTE: This is required due to bucket level encryption on S3 Buckets iam.PolicyDocument(statements=[ iam.PolicyStatement( effect=iam.Effect.ALLOW, actions=[ 'kms:*', ], resources=[ s3_kms_key.key_arn, ] ) ]), ], managed_policies=[ iam.ManagedPolicy.from_aws_managed_policy_name('service-role/AWSGlueServiceRole'), ] )
the-stack_0_17304
""" udp_server """ from socket import * # 创建套接字 udp_socket = socket(AF_INET, SOCK_DGRAM) # 绑定地址、端口 udp_socket.bind(('0.0.0.0', 8888)) """ 功能: 接收UDP消息 参数: 每次最多接收多少字节 返回值: data 接收到的内容 addr 消息发送方地址 """ data, addr = udp_socket.recvfrom(1024 * 1024) print(addr) print(data.decode()) # 字节串收发 udp_socket.sendto(b'thanks', addr)
the-stack_0_17305
# Copyright 1996-2019 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """led_controller controller.""" from controller import Robot robot = Robot() timestep = int(robot.getBasicTimeStep()) led = robot.getLED('led') led.set(True) positionSensor = robot.getPositionSensor('emergency button sensor') positionSensor.enable(timestep) released = True while robot.step(timestep) != -1: value = positionSensor.getValue() if value > -0.002: released = True if released and value < -0.010: released = False led.set(not led.get())
the-stack_0_17306
"""This module contains the main functions used to load the required data from disk for training.""" import functools import gzip import pickle import os import numpy as np import torch from sketchgraphs_models import distributed_utils from sketchgraphs_models.nn import data_util from sketchgraphs_models.graph import dataset from sketchgraphs.data import flat_array def load_sequences_and_mappings(dataset_file, auxiliary_file, quantization, entity_features=True, edge_features=True): data = flat_array.load_dictionary_flat(np.load(dataset_file, mmap_mode='r')) if auxiliary_file is None: root, _ = os.path.splitext(dataset_file) auxiliary_file = root + '.stats.pkl.gz' if entity_features or edge_features: with gzip.open(auxiliary_file, 'rb') as f: auxiliary_dict = pickle.load(f) if entity_features: entity_feature_mapping = dataset.EntityFeatureMapping(auxiliary_dict['node']) else: entity_feature_mapping = None seqs = data['sequences'] weights = data['sequence_lengths'] if edge_features: if isinstance(quantization['angle'], dataset.QuantizationMap): angle_map = quantization['angle'] else: angle_map = dataset.QuantizationMap.from_counter(auxiliary_dict['edge']['angle'], quantization['angle']) if isinstance(quantization['length'], dataset.QuantizationMap): length_map = quantization['length'] else: length_map = dataset.QuantizationMap.from_counter(auxiliary_dict['edge']['length'], quantization['length']) edge_feature_mapping = dataset.EdgeFeatureMapping(angle_map, length_map) else: edge_feature_mapping = None return { 'sequences': seqs.share_memory_(), 'entity_feature_mapping': entity_feature_mapping, 'edge_feature_mapping': edge_feature_mapping, 'weights': weights } def load_dataset_and_weights_with_mapping(dataset_file, node_feature_mapping, edge_feature_mapping, seed=None): data = flat_array.load_dictionary_flat(np.load(dataset_file, mmap_mode='r')) seqs = data['sequences'] seqs.share_memory_() ds = dataset.GraphDataset(seqs, node_feature_mapping, edge_feature_mapping, seed) return ds, data['sequence_lengths'] def load_dataset_and_weights(dataset_file, auxiliary_file, quantization, seed=None, entity_features=True, edge_features=True, force_entity_categorical_features=False): data = load_sequences_and_mappings(dataset_file, auxiliary_file, quantization, entity_features, edge_features) if data['entity_feature_mapping'] is None and force_entity_categorical_features: # Create an entity mapping which only computes the categorical features (i.e. isConstruction and clockwise) data['entity_feature_mapping'] = dataset.EntityFeatureMapping() return dataset.GraphDataset( data['sequences'], data['entity_feature_mapping'], data['edge_feature_mapping'], seed=seed), data['weights'] def make_dataloader_train(collate_fn, ds_train, weights, batch_size, num_epochs, num_workers, distributed_config=None): sampler = torch.utils.data.WeightedRandomSampler( weights, len(weights), replacement=True) if distributed_config is not None: sampler = distributed_utils.DistributedSampler( sampler, distributed_config.world_size, distributed_config.rank) batch_sampler = torch.utils.data.BatchSampler( sampler, batch_size, drop_last=False) dataloader_train = torch.utils.data.DataLoader( ds_train, collate_fn=collate_fn, batch_sampler=data_util.MultiEpochSampler(batch_sampler, num_epochs), num_workers=num_workers, pin_memory=True) batches_per_epoch = len(batch_sampler) return dataloader_train, batches_per_epoch def _make_dataloader_eval(ds_eval, weights, batch_size, num_workers, distributed_config=None): sampler = torch.utils.data.WeightedRandomSampler( weights, len(weights), replacement=True) if distributed_config is not None: sampler = distributed_utils.DistributedSampler( sampler, distributed_config.world_size, distributed_config.rank) dataloader_eval = torch.utils.data.DataLoader( ds_eval, collate_fn=functools.partial( dataset.collate, entity_feature_mapping=ds_eval.node_feature_mapping, edge_feature_mapping=ds_eval.edge_feature_mapping), sampler=sampler, batch_size=batch_size, num_workers=num_workers, pin_memory=True) return dataloader_eval def initialize_datasets(args, distributed_config: distributed_utils.DistributedTrainingInfo = None): """Initialize datasets and dataloaders. Parameters ---------- args : dict Dictionary containing all the dataset configurations. distributed_config : distributed_utils.DistributedTrainingInfo, optional If not None, configuration options for distributed training. Returns ------- torch.data.utils.Dataloader Training dataloader torch.data.utils.Dataloader If not None, testing dataloader int Number of batches per training epoch dataset.EntityFeatureMapping Feature mapping in use for entities dataset.EdgeFeatureMapping Feature mapping in use for constraints """ quantization = {'angle': args['num_quantize_angle'], 'length': args['num_quantize_length']} dataset_train_path = args['dataset_train'] auxiliary_path = args['dataset_auxiliary'] ds_train, weights_train = load_dataset_and_weights( dataset_train_path, auxiliary_path, quantization, args['seed'], not args.get('disable_entity_features', False), not args.get('disable_edge_features', False), args.get('force_entity_categorical_features', False)) batch_size = args['batch_size'] num_workers = args['num_workers'] if distributed_config: batch_size = batch_size // distributed_config.world_size num_workers = num_workers // distributed_config.world_size collate_fn = functools.partial( dataset.collate, entity_feature_mapping=ds_train.node_feature_mapping, edge_feature_mapping=ds_train.edge_feature_mapping) dl_train, batches_per_epoch = make_dataloader_train( collate_fn, ds_train, weights_train, batch_size, args['num_epochs'], num_workers, distributed_config) if args['dataset_test'] is not None: ds_test, weights_test = load_dataset_and_weights_with_mapping( args['dataset_test'], ds_train.node_feature_mapping, ds_train.edge_feature_mapping, args['seed']) dl_test = _make_dataloader_eval( ds_test, weights_test, batch_size, num_workers, distributed_config) else: dl_test = None return dl_train, dl_test, batches_per_epoch, ds_train.node_feature_mapping, ds_train.edge_feature_mapping
the-stack_0_17307
import graphene from ...core.permissions import ShippingPermissions from ..channel.types import ChannelContext from ..core.fields import ChannelContextFilterConnectionField from ..decorators import permission_required from ..translations.mutations import ShippingPriceTranslate from .bulk_mutations import ShippingPriceBulkDelete, ShippingZoneBulkDelete from .filters import ShippingZoneFilterInput from .mutations.channels import ShippingMethodChannelListingUpdate from .mutations.shippings import ( ShippingPriceCreate, ShippingPriceDelete, ShippingPriceExcludeProducts, ShippingPriceRemoveProductFromExclude, ShippingPriceUpdate, ShippingZoneCreate, ShippingZoneDelete, ShippingZoneUpdate, ) from .resolvers import resolve_shipping_zones from .types import ShippingZone class ShippingQueries(graphene.ObjectType): shipping_zone = graphene.Field( ShippingZone, id=graphene.Argument( graphene.ID, description="ID of the shipping zone.", required=True ), channel=graphene.String( description="Slug of a channel for which the data should be returned." ), description="Look up a shipping zone by ID.", ) shipping_zones = ChannelContextFilterConnectionField( ShippingZone, filter=ShippingZoneFilterInput( description="Filtering options for shipping zones." ), channel=graphene.String( description="Slug of a channel for which the data should be returned." ), description="List of the shop's shipping zones.", ) @permission_required(ShippingPermissions.MANAGE_SHIPPING) def resolve_shipping_zone(self, info, id, channel=None): instance = graphene.Node.get_node_from_global_id(info, id, ShippingZone) return ChannelContext(node=instance, channel_slug=channel) if instance else None @permission_required(ShippingPermissions.MANAGE_SHIPPING) def resolve_shipping_zones(self, info, channel=None, **_kwargs): return resolve_shipping_zones(channel) class ShippingMutations(graphene.ObjectType): shipping_method_channel_listing_update = ShippingMethodChannelListingUpdate.Field() shipping_price_create = ShippingPriceCreate.Field() shipping_price_delete = ShippingPriceDelete.Field() shipping_price_bulk_delete = ShippingPriceBulkDelete.Field() shipping_price_update = ShippingPriceUpdate.Field() shipping_price_translate = ShippingPriceTranslate.Field() shipping_price_exclude_products = ShippingPriceExcludeProducts.Field() shipping_price_remove_product_from_exclude = ( ShippingPriceRemoveProductFromExclude.Field() ) shipping_zone_create = ShippingZoneCreate.Field() shipping_zone_delete = ShippingZoneDelete.Field() shipping_zone_bulk_delete = ShippingZoneBulkDelete.Field() shipping_zone_update = ShippingZoneUpdate.Field()
the-stack_0_17308
import json import logging import pytest from model.msg_model import MsgModel from util.auth_util import Identity from util.auth_util import JWTAuthenticator from util.auth_util import Role from util.config_util import Config logger = logging.getLogger(__name__) class TestReadMsgs: path = "/api/user/read_msgs" @pytest.fixture(autouse=True) def __setup__(self, client): self.client = client def trigger_run(self, role, payload): headers = {} if role: auth_token = JWTAuthenticator.dump_access_token( Config.auth_secret_key, Identity(user="xxx", role=role), exp=86400 ) headers = {"Authorization": f"bearer {auth_token}"} return self.client.post( url=self.path, data=json.dumps(payload), headers=headers ) def test__ok(self): # prepare fixture MsgModel.leave_msg("hello") MsgModel.leave_msg("world") # user read two messages resp = self.trigger_run(Role.USER, {}) assert resp.status_code == 200 assert resp.json() == {"msgs": ["hello", "world"]} # admin also has permission to read resp = self.trigger_run(Role.ADMIN, {"limit": 1}) assert resp.status_code == 200 assert resp.json() == {"msgs": ["hello"]} def test__authentication_error(self): resp = self.trigger_run(None, {"msg": "hello"}) assert resp.status_code == 401 assert resp.json() == {"code": "UNAUTHENTICATED", "msg": "JWT is missing"} def test__limit_error(self): resp = self.trigger_run(Role.USER, {"limit": 101}) assert resp.status_code == 400 assert resp.json() == { "code": "INVALID_PARAM", "msg": "Invalid body param: limit", }
the-stack_0_17309
from corehq.apps.app_manager.suite_xml.contributors import PostProcessor from corehq.apps.app_manager.suite_xml.post_process.workflow import ( CommandId, WorkflowDatumMeta, WorkflowHelper, prepend_parent_frame_children, ) from corehq.apps.app_manager.suite_xml.xml_models import ( Argument, PushFrame, SessionEndpoint, Stack, StackDatum, ) from corehq.util.timer import time_method class EndpointsHelper(PostProcessor): """ Generates "Session Endpoints" - user-defined labels for forms or modules. They end up as entries in the suite file that declare stack operations necessary to navigate to the form or module, as well as what arguments (eg: case IDs) must be provided to get there. """ @time_method() def update_suite(self): for module in self.modules: if module.session_endpoint_id: self.suite.endpoints.append(self._make_session_endpoint(module)) if module.module_type != "shadow": for form in module.get_suite_forms(): if form.session_endpoint_id: self.suite.endpoints.append(self._make_session_endpoint(module, form)) def _make_session_endpoint(self, module, form=None): if form is not None: endpoint_id = form.session_endpoint_id else: endpoint_id = module.session_endpoint_id stack = Stack() children = self.get_frame_children(module, form) argument_ids = self._get_argument_ids(children) # Add a claim request for each endpoint argument. # This assumes that all arguments are case ids. for arg_id in argument_ids: self._add_claim_frame(stack, arg_id, endpoint_id) # Add a frame to navigate to the endpoint frame = PushFrame() stack.add_frame(frame) for child in children: if isinstance(child, CommandId): frame.add_command(child.to_command()) elif child.id in argument_ids: self._add_datum_for_arg(frame, child.id) return SessionEndpoint( id=endpoint_id, arguments=[Argument(id=i) for i in argument_ids], stack=stack, ) def _get_argument_ids(self, frame_children): return [ child.id for child in frame_children if isinstance(child, WorkflowDatumMeta) and child.requires_selection ] def _add_claim_frame(self, stack, arg_id, endpoint_id): frame = PushFrame() stack.add_frame(frame) self._add_datum_for_arg(frame, arg_id) frame.add_command(f"'claim_command.{endpoint_id}.{arg_id}'") def _add_datum_for_arg(self, frame, arg_id): frame.add_datum( StackDatum(id=arg_id, value=f"${arg_id}") ) def get_frame_children(self, module, form): helper = WorkflowHelper(self.suite, self.app, self.app.get_modules()) frame_children = helper.get_frame_children(module, form) if module.root_module_id: frame_children = prepend_parent_frame_children(helper, frame_children, module.root_module) return frame_children
the-stack_0_17311
from pathlib import Path from urllib.request import urlopen from .element import Element import json import shutil import logging logger = logging.getLogger(__name__) def read_gltf(fin): with open(fin, encoding='utf-8') as f: gltf = json.load(f, object_hook=lambda d: Element(**d)) # buffers = [] # for buffer in gltf.buffers: # buffers.append(read_buffer(buffer.uri)) # with open(Path(fin).parent / gltf.buffers[0].uri, "rb") as f: # buffer = f.read() buffer = read_buffer(gltf.buffers[0].uri, Path(fin).parent) return gltf, buffer def read_buffer(uri, parent): if is_data_uri(uri): with urlopen(uri) as response: return response.read() with open(parent / uri, "rb") as f: return f.read() def is_data_uri(uri): return uri.startswith("data:") def copy_textures(fin, fout, images): if not images: return src_parent = Path(fin).parent dest_parent = Path(fout).parent if src_parent == dest_parent: return for image in images: dest = dest_parent / image.uri try: dest.parent.mkdir(parents=True, exist_ok=True) shutil.copyfile(src_parent / image.uri, dest) except Exception as e: logger.error(e)
the-stack_0_17312
import io import json import re from operator import itemgetter from typing import Any, Dict, List, Optional, Union, cast import pytest # type: ignore from PIL import Image # type: ignore from looker_sdk.sdk.api40 import methods as mtds from looker_sdk.sdk.api40 import models as ml @pytest.fixture(scope="module") def sdk(sdk40) -> mtds.Looker40SDK: return sdk40 def test_crud_user(sdk: mtds.Looker40SDK): """Test creating, retrieving, updating and deleting a user.""" # Create user user = sdk.create_user( ml.WriteUser(first_name="John", last_name="Doe", is_disabled=False, locale="fr") ) assert isinstance(user, ml.User) assert isinstance(user.id, int) assert user.first_name == "John" assert user.last_name == "Doe" assert not user.is_disabled assert user.locale == "fr" # sudo checks user_id = user.id sdk.login_user(user_id) user = sdk.me() assert user.first_name == "John" assert user.last_name == "Doe" sdk.logout() user = sdk.me() assert user.first_name != "John" assert user.last_name != "Doe" # Update user and check fields we didn't intend to change didn't change update_user = ml.WriteUser(is_disabled=True, locale="uk") sdk.update_user(user_id, update_user) user = sdk.user(user_id) assert user.first_name == "John" assert user.last_name == "Doe" assert user.locale == "uk" assert user.is_disabled # Update user and check fields we intended to wipe out are now None # first way to specify nulling out a field update_user = ml.WriteUser(first_name=ml.EXPLICIT_NULL) # second way update_user.last_name = ml.EXPLICIT_NULL sdk.update_user(user_id, update_user) user = sdk.user(user_id) assert user.first_name == "" assert user.last_name == "" # Try adding email creds sdk.create_user_credentials_email( user_id, ml.WriteCredentialsEmail(email="[email protected]") ) user = sdk.user(user_id) assert isinstance(user.credentials_email, ml.CredentialsEmail) assert user.credentials_email.email == "[email protected]" # Delete user resp = sdk.delete_user(user_id) assert resp == "" def test_me_returns_correct_result(sdk: mtds.Looker40SDK): """me() should return the current authenticated user""" me = sdk.me() assert isinstance(me, ml.User) assert isinstance(me.credentials_api3, list) assert len(me.credentials_api3) > 0 assert isinstance(me.credentials_api3[0], ml.CredentialsApi3) def test_me_field_filters(sdk: mtds.Looker40SDK): """me() should return only the requested fields.""" me = sdk.me("id, first_name, last_name") assert isinstance(me, ml.User) assert isinstance(me.id, int) assert isinstance(me.first_name, str) assert me.first_name != "" assert isinstance(me.last_name, str) assert me.last_name != "" assert not me.display_name assert not me.email assert not me.personal_space_id @pytest.mark.usefixtures("test_users") def test_bad_user_search_returns_no_results(sdk: mtds.Looker40SDK): """search_users() should return an empty list when no match is found.""" resp = sdk.search_users(first_name="Bad", last_name="News") assert isinstance(resp, list) assert len(resp) == 0 @pytest.mark.usefixtures("test_users") def test_search_users_matches_pattern( sdk: mtds.Looker40SDK, users: List[Dict[str, str]], email_domain: str ): """search_users should return a list of all matches.""" user = users[0] # Search by full email search_email = f'{user["first_name"]}.{user["last_name"]}{email_domain}' search_results = sdk.search_users_names(pattern=search_email) assert len(search_results) == 1 assert search_results[0].first_name == user["first_name"] assert search_results[0].last_name == user["last_name"] assert search_results[0].email == search_email # Search by first name search_results = sdk.search_users_names(pattern=user["first_name"]) assert len(search_results) > 0 assert search_results[0].first_name == user["first_name"] # First name with spaces u = sdk.create_user(ml.WriteUser(first_name="John Allen", last_name="Smith")) if u.id: search_results = sdk.search_users_names(pattern="John Allen") assert len(search_results) == 1 assert search_results[0].first_name == "John Allen" assert search_results[0].last_name == "Smith" # Delete user resp = sdk.delete_user(u.id) assert resp == "" @pytest.mark.usefixtures("test_users") def test_it_matches_email_domain_and_returns_sorted( sdk: mtds.Looker40SDK, email_domain: str, users: List[Dict[str, str]] ): """search_users_names() should search users matching a given pattern and return sorted results if sort fields are specified. """ search_results = sdk.search_users_names( pattern=f"%{email_domain}", sorts="last_name, first_name" ) assert len(search_results) == len(users) sorted_test_data: List[Dict[str, str]] = sorted( users, key=itemgetter("last_name", "first_name") ) for actual, expected in zip(search_results, sorted_test_data): assert actual.first_name == expected["first_name"] assert actual.last_name == expected["last_name"] @pytest.mark.usefixtures("test_users") def test_delim_sequence( sdk: mtds.Looker40SDK, email_domain: str, users: List[Dict[str, str]] ): search_results = sdk.search_users_names(pattern=f"%{email_domain}") assert len(search_results) == len(users) delim_ids = ml.DelimSequence([cast(int, u.id) for u in search_results]) all_users = sdk.all_users(ids=delim_ids) assert len(all_users) == len(users) def test_it_retrieves_session(sdk: mtds.Looker40SDK): """session() should return the current session.""" current_session = sdk.session() assert current_session.workspace_id == "production" def test_it_updates_session(sdk: mtds.Looker40SDK): """update_session() should allow us to change the current workspace.""" # Switch workspace to dev mode sdk.update_session(ml.WriteApiSession(workspace_id="dev")) current_session = sdk.session() assert isinstance(current_session, ml.ApiSession) assert current_session.workspace_id == "dev" # Switch workspace back to production current_session = sdk.update_session(ml.WriteApiSession(workspace_id="production")) assert isinstance(current_session, ml.ApiSession) assert current_session.workspace_id == "production" TQueries = List[Dict[str, Union[str, List[str], Dict[str, str]]]] def test_it_creates_and_runs_query( sdk: mtds.Looker40SDK, queries_system_activity: TQueries ): """create_query() creates a query and run_query() returns its result.""" for q in queries_system_activity: limit = cast(str, q["limit"]) or "10" request = create_query_request(q, limit) query = sdk.create_query(request) assert isinstance(query, ml.Query) assert query.id assert isinstance(query.id, int) assert query.id > 0 sql = sdk.run_query(query.id, "sql") assert "SELECT" in sql json_ = sdk.run_query(query.id, "json") assert isinstance(json_, str) json_ = json.loads(json_) assert isinstance(json_, list) assert len(json_) == int(limit) row = json_[0] if q.get("fields"): for field in q["fields"]: assert field in row.keys() csv = sdk.run_query(query.id, "csv") assert isinstance(csv, str) assert len(re.findall(r"\n", csv)) == int(limit) + 1 def test_it_runs_inline_query(sdk: mtds.Looker40SDK, queries_system_activity: TQueries): """run_inline_query() should run a query and return its results.""" for q in queries_system_activity: limit = cast(str, q["limit"]) or "10" request = create_query_request(q, limit) json_resp = sdk.run_inline_query("json", request) assert isinstance(json_resp, str) json_: List[Dict[str, Any]] = json.loads(json_resp) assert len(json_) == int(limit) row = json_[0] if q.get("fields"): for field in q["fields"]: assert field in row.keys() csv = sdk.run_inline_query("csv", request) assert isinstance(csv, str) assert len(re.findall(r"\n", csv)) == int(limit) + 1 # only do 1 image download since it takes a while png = sdk.run_inline_query("png", request) assert isinstance(png, bytes) try: Image.open(io.BytesIO(png)) except IOError: raise AssertionError("png format failed to return an image") @pytest.mark.usefixtures("remove_test_looks") def test_crud_look(sdk: mtds.Looker40SDK, looks): """Test creating, retrieving, updating and deleting a look.""" for l in looks: request = create_query_request(l["query"][0], "10") query = sdk.create_query(request) look = sdk.create_look( ml.WriteLookWithQuery( title=l.get("title"), description=l.get("description"), deleted=l.get("deleted"), is_run_on_load=l.get("is_run_on_load"), public=l.get("public"), query_id=query.id, space_id=l.get("space_id") or str(sdk.me().personal_space_id), ) ) assert isinstance(look, ml.LookWithQuery) assert look.title == l.get("title") assert look.description == l.get("description") assert look.deleted == l.get("deleted") assert look.is_run_on_load == l.get("is_run_on_load") # TODO this is broken for local dev but works for CI... # assert look.public == l.get("public") assert look.query_id == query.id assert look.space_id == l.get("space_id") or sdk.me().home_space_id assert look.user_id == l.get("user_id") or sdk.me().id # Update assert isinstance(look.id, int) updated_look = sdk.update_look(look.id, ml.WriteLookWithQuery(deleted=True)) assert updated_look.deleted assert updated_look.title == look.title look = sdk.update_look(look.id, ml.WriteLookWithQuery(deleted=False)) assert not look.deleted def test_search_looks_returns_looks(sdk: mtds.Looker40SDK): """search_looks() should return a list of looks.""" search_results = sdk.search_looks() assert isinstance(search_results, list) assert len(search_results) > 0 look = search_results[0] assert isinstance(look, ml.Look) assert look.title != "" assert look.created_at is not None def test_search_looks_fields_filter(sdk: mtds.Looker40SDK): """search_looks() should only return the requested fields passed in the fields argument of the request. """ search_results = sdk.search_looks(fields="id, title, description") assert isinstance(search_results, list) assert len(search_results) > 0 look = search_results[0] assert isinstance(look, ml.Look) assert look.title is not None assert look.created_at is None def test_search_looks_title_fields_filter(sdk: mtds.Looker40SDK): """search_looks() should be able to filter on title.""" search_results = sdk.search_looks(title="An SDK%", fields="id, title") assert isinstance(search_results, list) assert len(search_results) > 0 look = search_results[0] assert isinstance(look.id, int) assert look.id > 0 assert "SDK" in look.title assert look.description is None def test_search_look_and_run(sdk: mtds.Looker40SDK): """run_look() should return CSV and JSON CSV will use column descriptions JSON will use column names JSON_LABEL will use column descriptions """ search_results = sdk.search_looks(title="An SDK Look", fields="id, title") assert isinstance(search_results, list) assert len(search_results) > 0 look = search_results[0] assert isinstance(look.id, int) assert look.id > 0 assert "SDK" in look.title assert look.description is None actual = sdk.run_look(look_id=look.id, result_format="csv") assert "Dashboard Count" in actual assert "Dashboard ID" in actual actual = sdk.run_look(look_id=look.id, result_format="json") assert "dashboard.count" in actual assert "dashboard.id" in actual actual = sdk.run_look(look_id=look.id, result_format="json_label") assert "Dashboard Count" in actual assert "Dashboard ID" in actual def create_query_request(q, limit: Optional[str] = None) -> ml.WriteQuery: return ml.WriteQuery( model=q.get("model"), view=q.get("view"), fields=q.get("fields"), pivots=q.get("pivots"), fill_fields=q.get("fill_fields"), filters=q.get("filters"), filter_expression=q.get("filter_expressions"), sorts=q.get("sorts"), limit=q.get("limit") or limit, column_limit=q.get("column_limit"), total=q.get("total"), row_total=q.get("row_total"), subtotals=q.get("subtotal"), runtime=q.get("runtime"), vis_config=q.get("vis_config"), filter_config=q.get("filter_config"), visible_ui_sections=q.get("visible_ui_sections"), dynamic_fields=q.get("dynamic_fields"), client_id=q.get("client_id"), query_timezone=q.get("query_timezone"), ) @pytest.mark.usefixtures("remove_test_dashboards") def test_crud_dashboard(sdk: mtds.Looker40SDK, queries_system_activity, dashboards): """Test creating, retrieving, updating and deleting a dashboard. """ qhash: Dict[Union[str, int], ml.Query] = {} for idx, q in enumerate(queries_system_activity): limit = "10" request = create_query_request(q, limit) key = q.get("id") or str(idx) qhash[key] = sdk.create_query(request) for d in dashboards: dashboard = sdk.create_dashboard( ml.WriteDashboard( description=d.get("description"), hidden=d.get("hidden"), query_timezone=d.get("query_timezone"), refresh_interval=d.get("refresh_interval"), title=d.get("title"), background_color=d.get("background_color"), load_configuration=d.get("load_configuration"), lookml_link_id=d.get("lookml_link_id"), show_filters_bar=d.get("show_filters_bar"), show_title=d.get("show_title"), slug=d.get("slug"), space_id=d.get("space_id") or sdk.me().home_space_id, text_tile_text_color=d.get("text_tile_text_color"), tile_background_color=d.get("tile_background_color"), tile_text_color=d.get("tile_text_color"), title_color=d.get("title_color"), ) ) assert isinstance(dashboard, ml.Dashboard) if d.get("background_color"): assert d["background_color"] == dashboard.background_color if d.get("text_tile_text_color"): assert d["text_tile_text_color"] == dashboard.text_tile_text_color if d.get("tile_background_color"): assert d["tile_background_color"] == dashboard.tile_background_color if d.get("tile_text_color"): assert d["tile_text_color"] == dashboard.tile_text_color if d.get("title_color"): assert d["title_color"] == dashboard.title_color # Update dashboard assert isinstance(dashboard.id, str) update_response = sdk.update_dashboard( dashboard.id, ml.WriteDashboard(deleted=True) ) assert update_response.deleted assert update_response.title == dashboard.title dashboard = sdk.update_dashboard(dashboard.id, ml.WriteDashboard(deleted=False)) assert isinstance(dashboard.id, str) assert not dashboard.deleted if d.get("filters"): for f in d["filters"]: filter = sdk.create_dashboard_filter( ml.WriteCreateDashboardFilter( dashboard_id=dashboard.id, name=f.get("name"), title=f.get("title"), type=f.get("type"), default_value=f.get("default_value"), model=f.get("model"), explore=f.get("explore"), dimension=f.get("dimension"), row=f.get("row"), listens_to_filters=f.get("listens_to_filters"), allow_multiple_values=f.get("allow_multiple_values"), required=f.get("required"), ) ) assert isinstance(filter, ml.DashboardFilter) assert filter.name == f.get("name") assert filter.title == f.get("title") assert filter.type == f.get("type") assert filter.default_value == f.get("default_value") assert filter.model == f.get("model") assert filter.explore == f.get("explore") assert filter.dimension == f.get("dimension") assert filter.row == f.get("row") assert filter.allow_multiple_values == f.get( "allow_multiple_values", False ) assert filter.required == f.get("required", False) if d.get("tiles"): for t in d["tiles"]: tile = sdk.create_dashboard_element( ml.WriteDashboardElement( body_text=t.get("body_text"), dashboard_id=dashboard.id, look=t.get("look"), look_id=t.get("look_id"), merge_result_id=t.get("merge_result_id"), note_display=t.get("note_display"), note_state=t.get("note_state"), note_text=t.get("note_text"), query=t.get("query"), query_id=get_query_id(qhash, t.get("query_id")), refresh_interval=t.get("refresh_interval"), subtitle_text=t.get("subtitle_text"), title=t.get("title"), title_hidden=t.get("title_hidden"), type=t.get("type"), ) ) assert isinstance(tile, ml.DashboardElement) assert tile.dashboard_id == dashboard.id assert tile.title == t.get("title") assert tile.type == t.get("type") def get_query_id( qhash: Dict[Union[str, int], ml.Query], id: Union[str, int] ) -> Optional[int]: if isinstance(id, str) and id.startswith("#"): id = id[1:] # if id is invalid, default to first query. test data is bad query = qhash.get(id) or list(qhash.values())[0] query_id = query.id elif (isinstance(id, str) and id.isdigit()) or isinstance(id, int): query_id = int(id) else: query_id = None return query_id
the-stack_0_17314
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.conf.urls import include, url # 用户自定义 urlconf urlpatterns_custom = [ url(r"^", include("gcloud.core.urls")), url(r"^", include("gcloud.resources.urls")), url(r"^apigw/", include("gcloud.apigw.urls")), url(r"^common_template/", include("gcloud.commons.template.urls")), url(r"^template/", include("gcloud.tasktmpl3.urls")), url(r"^taskflow/", include("gcloud.taskflow3.urls")), url(r"^appmaker/", include("gcloud.contrib.appmaker.urls")), url(r"^develop/", include("gcloud.contrib.develop.urls")), url(r"^pipeline/", include("pipeline_plugins.base.urls")), url(r"^pipeline/", include("pipeline_plugins.components.urls")), url(r"^pipeline/", include("pipeline_plugins.variables.urls")), url(r"^analysis/", include("gcloud.contrib.analysis.urls")), url(r"^periodictask/", include("gcloud.periodictask.urls")), url(r"^weixin/", include("weixin.urls")), url(r"^weixin/login/", include("weixin.core.urls")), url(r"^admin/", include("gcloud.contrib.admin.urls")), ]
the-stack_0_17315
from google.cloud import bigquery, storage import argparse from abc import ABCMeta import yaml import os from ga_bq_pipeline.logger import Logger from pathlib import Path GOOGLE_APP_CREDENTIALS_ENV_NAME = 'GOOGLE_APPLICATION_CREDENTIALS' GOOGLE_CREDENTIALS_PATH = '/google-keys/' ROOT = str(Path(os.path.dirname(os.path.abspath(__file__))).parent.parent) class ETL(metaclass=ABCMeta): """ Skeleton of a generic ETL pipeline. This class take care of parsing and loading environment and arguments A concrete ETL MUST inherit from this class and implements the 3 abstract methods def pre_execution_cleansing(self): pass def pipeline(self) pass def post_execution_cleanup(self): pass This methods are called by the execute() method and they run in sequence. """ def __init__(self, app_name, conf_file_path, args_file_name, logger_name, env_name=None): """ Configure the ETL class :param app_name: application name used for logging references :param conf_file_path: environment configuration directory path :param args_file_name: arguments definition file path :param logger_name: logger name """ self.__get_arguments(args_file_name) # configure the logging self._logger = Logger(app_name, logger_name) env_name = self.__args.get('environment', None) if env_name is None else env_name # get the environment variables from env configuration file self.__get_env_vars(conf_file_path, env_name) prefix = ROOT if env_name in ['local', 'local-dev'] else '' # Google key credentials file path if not os.environ.get(GOOGLE_APP_CREDENTIALS_ENV_NAME): os.environ[GOOGLE_APP_CREDENTIALS_ENV_NAME] = prefix + GOOGLE_CREDENTIALS_PATH + self.env['service_account'] @property def logger(self): """ Get the logger :return: logger """ return self._logger @property def args(self): """ Get the arguments :return: arguments """ return self.__args @property def env(self): """ Get the environment :return: environment variables """ return self.__env @property def service_account(self): """ Get the Service Account :return: Service Account File Location """ return os.environ.get(GOOGLE_APP_CREDENTIALS_ENV_NAME) @property def bq_client(self): """ Creates a BigQuery Client :return: BigQuery Client """ return bigquery.Client() @property def gs_client(self): """ Creates a Cloud Storage Client :return: Cloud Storage Client """ return storage.Client() @property def bigquery(self): """ Get BigQuery properties """ return self.env['bigquery'] @property def storage(self): """ Get BigQuery properties """ return self.env['storage'] def __get_arguments(self, args_file_name): """ Get all arguments from the arg configuration file and parse them. :param args_file_name: arguments definition file path """ if args_file_name is None: self.__args = {} return try: with open(args_file_name) as args_file: args_data = yaml.load(args_file.read(), Loader=yaml.FullLoader) except IOError as ex: self.logger.critical('Fail to read configuration file: {0}'.format(ex)) return try: description = args_data['description'] except KeyError: print("Argument description is required.") return parser = argparse.ArgumentParser(description=description) try: args = args_data['args'] except KeyError: print("No arguments is found!") return for arg in args: try: short = args[arg]['short'] except KeyError: print("Short name is required for an argument!") return arg_required = args[arg].get('required', False) arg_choices = args[arg].get('choices', None) arg_help = args[arg].get('help', None) arg_type = int if args[arg].get('type', None) == 'int' else None parser.add_argument( '-{0}'.format(short), '--{0}'.format(arg), required=arg_required, help=arg_help, choices=arg_choices, type=arg_type ) self.__args = vars(parser.parse_args()) def __get_env_vars(self, env_path, env_name): """ Get the environment variables from env configuration file :param env_path: environment configuration directory path :param env_name: environment name """ conf_file_name = '{env_path}/{env_name}.yaml'.format( env_path=env_path, env_name=env_name ) try: with open(conf_file_name) as conf: env = yaml.load(conf.read(), Loader=yaml.FullLoader) except IOError as ex: self.logger.critical('Fail to read environment variables: {0}'.format(ex)) return self.__env = env
the-stack_0_17316
from typing import NamedTuple from src.message import Message from src.lib import get_by_path color = { 4293271831: "red", 4293467747: "pink", 4294278144: "orange", 4294953512: "yellow", 4280150454: "green", 4278248959: "water", 4280191205: "blue" } class MessageRendererTuple(NamedTuple): message: str authorName: str authorExternalChannelId: str timestampUsec: str timestampText: str message_type: str purchaseAmountText: str bodyBackgroundColor: str id: str class MessageRenderer: def __init__(self, item: dict) -> None: conv_c = { "liveChatTextMessageRenderer": LiveChatText, "liveChatPaidMessageRenderer": LiveChatPaid, "liveChatMembershipItemRenderer": LiveChatMembership, "liveChatViewerEngagementMessageRenderer": LiveChatViewerEngagementMessage, "liveChatPaidStickerRenderer": LiveChatPaidSticker, } self.item = item renderer_type = list(item.keys())[0] if "showItemEndpoint" in list(item[renderer_type].keys()): massage = f"[warn] showItemEndpoint [id] {item[list(item.keys())[0]]['id']}" raise KeyError(massage) else: input = item[renderer_type] self.renderer = conv_c[renderer_type](input) class LiveChatText(MessageRendererTuple): def __new__(cls, input: dict) -> MessageRendererTuple: params = [ str(Message(input["message"]["runs"])), input["authorName"]["simpleText"], input["authorExternalChannelId"], input["timestampUsec"], input["timestampText"]["simpleText"], "LiveChatText", "", "", input["id"] ] return super().__new__(cls, *params) class LiveChatPaid(MessageRendererTuple): def __new__(cls, input: dict) -> MessageRendererTuple: message = str(Message(input["message"]["runs"]) ) if "message" in input.keys() else "" params = [ message, input["authorName"]["simpleText"], input["authorExternalChannelId"], input["timestampUsec"], input["timestampText"]["simpleText"], "LiveChatPaid", input["purchaseAmountText"]["simpleText"], color[input["bodyBackgroundColor"]], input["id"] ] return super().__new__(cls, *params) class LiveChatMembership(MessageRendererTuple): def __new__(cls, input: dict) -> MessageRendererTuple: params = [ "".join(x["text"] for x in input["headerSubtext"]["runs"]), input["authorName"]["simpleText"], input["authorExternalChannelId"], input["timestampUsec"], input["timestampText"]["simpleText"], "LiveChatMembership", "", "", input["id"] ] return super().__new__(cls, *params) class LiveChatPaidSticker(MessageRendererTuple): def __new__(cls, input: dict) -> MessageRendererTuple: message = get_by_path( input, [ "sticker", "accessibility", "accessibilityData", "label" ] ) params = [ message, input["authorName"]["simpleText"], input["authorExternalChannelId"], input["timestampUsec"], input["timestampText"]["simpleText"], "LiveChatPaidSticker", input["purchaseAmountText"]["simpleText"], color[input["moneyChipBackgroundColor"]], input["id"] ] return super().__new__(cls, *params) class LiveChatViewerEngagementMessage(MessageRendererTuple): def __new__(cls, input: dict) -> MessageRendererTuple: params = [ "".join(x["text"] for x in input["message"]["runs"]), "YOUTUBE", "", input["timestampUsec"], "0:00", "LiveChatViewerEngagementMessage", "", "", input["id"] ] return super().__new__(cls, *params)
the-stack_0_17318
from sim_common import * ass_cards = MyCards([ Assist("劇場乳神", 1207, 213, 643, 312, 406, 438, 289, skill=Skill(buffs=[Effect(Scope.my_team, Ability.dex, 0.2)], debuffs=[Effect(Scope.foes, Endurance.foe, 0.15)], adj_buffs=[], ) ), Assist("奧娜", 1202, 238, 412, 232, 401, 663, 412, skill=Skill( buffs=[Effect(Scope.my_self, Ability.counter_rate, 0.3), Effect(Scope.my_self, Ability.guard_rate, 0.3)], debuffs=[Effect(Scope.foes, Endurance.phy, 0.15), Effect(Scope.foes, Endurance.mag, 0.15)], adj_buffs=[], ) ), Assist("情人埃伊娜", 946, 196, 299, 180, 304, 434, 315, skill=Skill(buffs=[Effect(Scope.my_team, Damage.earth, 0.1), Effect(Scope.my_team, Damage.light, 0.1)], debuffs=[Effect(Scope.foes, Endurance.earth, 0.05), Effect(Scope.foes, Endurance.light, 0.05)], adj_buffs=[], ) ), Assist("新娘乳神", 1015, 158, 221, 168, 266, 249, 486, skill=Skill(buffs=[Effect(Scope.my_team, Ability.mag, 0.15), Effect(Scope.my_team, Ability.crit_rate, 0.08)], debuffs=[], adj_buffs=[], ) ), Assist("溫泉乳神", 942, 278, 293, 244, 406, 329, 591, skill=Skill(buffs=[], debuffs=[Effect(Scope.foes, Ability.str, 0.15)], adj_buffs=[], ) ), Assist("洋裝埃伊娜", 1197, 215, 265, 227, 391, 393, 652, skill=Skill(buffs=[Effect(Scope.my_team, Endurance.foes, 0.1), Effect(Scope.my_team, Endurance.phy, 0.15)], debuffs=[], adj_buffs=[], ) ), Assist("伯爵希兒", 1188, 138, 323, 268, 297, 206, 389, skill=Skill(buffs=[Effect(Scope.my_self, Ability.energy_bar, 0.66)], debuffs=[], adj_buffs=[], ) ), ]) adv_cards = MyCards([ Adventurer("折紙", 4045, 414, 423, 548, 737, 929, 2045, skills=[Skill(Scope.foe, Power.high, Damage.light, Attack.mag, temp_boost=True, mp=34, buffs=[], debuffs=[Effect(Scope.foe, Endurance.light, 0.35, 4)], adj_buffs=[], ), Skill(Scope.foe, Power.mid, Damage.light, Attack.mag, mp=30, buffs=[Effect(Scope.my_self, Ability.mag, 0.8, 4)], debuffs=[], adj_buffs=[], ), Skill(Scope.foes, Power.high, Damage.light, Attack.mag, temp_boost=True, mp=29, buffs=[], debuffs=[], adj_buffs=[], ), Skill(Scope.foe, Power.ultra, Damage.light, Attack.mag, temp_boost=True, is_special=True, buffs=[], debuffs=[], adj_buffs=[], )], passive_skills=[Skill(buffs=[Effect(Scope.my_self, SuccessUp.pene, 0.2), Effect(Scope.my_self, Endurance.dark, 0.35)])], killer=Killer.fairy, ), Adventurer("情人艾斯", 4017, 421, 459, 560, 744, 902, 1802, skills=[ Skill(Scope.foe, Power.high, Damage.light, Attack.mag, temp_boost=True, mp=41, buffs=[], debuffs=[], adj_buffs=[Effect(Scope.foes, AdjBuff.clear_buff, 0, 0, Ability.mag)], ), Skill(Scope.foe, Power.high, Damage.light, Attack.mag, temp_boost=True, mp=44, buffs=[Effect(Scope.my_team, Damage.light, 0.2, 4)], debuffs=[], adj_buffs=[], ), Skill(Scope.foe, Power.low, Damage.light, Attack.mag, mp=27, buffs=[Effect(Scope.my_self, Ability.mag, 0.75, 4)], debuffs=[], adj_buffs=[], ), Skill(Scope.foe, Power.ultra, Damage.light, Attack.mag, temp_boost=True, is_special=True, buffs=[], debuffs=[], adj_buffs=[], )], passive_skills=[Skill(buffs=[Effect(Scope.my_self, SuccessUp.pene, 0.2), Effect(Scope.my_self, Endurance.dark, 0.35)])], killer=Killer.rock, ), Adventurer("春姬", 4140, 438, 1040, 514, 848, 838, 1647, skills=[Skill(Scope.foes, Power.mid, Damage.fire, Attack.mag, mp=34, buffs=[], debuffs=[Effect(Scope.foes, Ability.str, 0.4, 3), Effect(Scope.foes, Ability.mag, 0.4, 3)], adj_buffs=[], ), Skill(mp=12, buffs=[Effect(Scope.my_self, Recover.mp_imm, 0.15), Effect(Scope.my_team, Ability.counter_rate, 0.3, 3), Effect(Scope.my_team, Ability.pene_rate, 0.3, 3)], debuffs=[], adj_buffs=[], ), Skill(mp=141, buffs=[Effect(Scope.my_team, Recover.hp_imm, 0.3)], debuffs=[], adj_buffs=[Effect(Scope.my_team, AdjBuff.extend_buff, 2, 0), Effect(Scope.foes, AdjBuff.extend_debuff, 2, 0)], ), Skill(is_special=True, buffs=[Effect(Scope.my_team, Recover.hp_imm, 0.8), Effect(Scope.my_team, Recover.hp_turn, 0.4, 3), Effect(Scope.my_team, Ability.str, 1.0, 3), Effect(Scope.my_team, Ability.mag, 1.0, 3)], debuffs=[], adj_buffs=[], )], passive_skills=[Skill(buffs=[Effect(Scope.my_self, SuccessUp.guard, 0.3), Effect(Scope.my_self, Endurance.wind, 0.35), Effect(Scope.my_self, Ability.mag, 0.25), Effect(Scope.my_self, Ability.agi, 0.25), Effect(Scope.my_self, Ability.dex, 0.25), Effect(Scope.my_self, Recover.hp_turn, 0.04), Effect(Scope.my_self, Recover.mp_turn, 0.04)])], counter_hp=True, ), Adventurer("偶像莉涅", 2510 + 1084, 312 + 87, 721 + 201, 212 + 69, 413 + 81, 762 + 284, 727 + 304, skills=[ Skill(Scope.foes, Power.super, Damage.light, Attack.phy, mp=59, adj_buffs=[Effect(Scope.foes, AdjBuff.clear_buff, 0, 0, Ability.str), Effect(Scope.foes, AdjBuff.clear_buff, 0, 0, Ability.mag)]), Skill(is_fast=True, p=45, buffs=[Effect(Scope.my_team, Ability.energy_bar, 0.33, 4), Effect(Scope.my_team, Ability.counter_rate, 0.20, 4), Effect(Scope.my_team, Ability.crit_rate, 0.20, 4), Effect(Scope.my_team, Ability.pene_rate, 0.20, 4)]), Skill(Scope.foe, Power.high, Damage.light, Attack.phy, mp=25, boost_by_buff=[Effect(Scope.my_self, Ability.crit_rate, 0.40)]), ]), Adventurer("無人島春姬", 2103, 313, 209, 183, 397, 392, 849, skills=[Skill(mp=52, buffs=[Effect(Scope.my_self, Ability.mag, 0.6, 4), Effect(Scope.my_self, Ability.dex, 0.6, 4), Effect(Scope.my_self, Damage.light, 0.6, 4), Effect(Scope.my_team, Ability.mag, 0.3, 4), Effect(Scope.my_team, Ability.dex, 0.3, 4), Effect(Scope.my_team, Damage.light, 0.3, 4)], debuffs=[], adj_buffs=[], ), Skill(mp=20, buffs=[], debuffs=[Effect(Scope.foe, Endurance.foe, 0.2, 4)], adj_buffs=[Effect(Scope.foe, AdjBuff.clear_buff, 0, 0, Ability.str), Effect(Scope.foe, AdjBuff.clear_buff, 0, 0, Ability.mag), Effect(Scope.foe, AdjBuff.clear_buff, 0, 0, Ability.agi)], ), Skill(Scope.foe, Power.super, Damage.light, Attack.mag, boost_by_buff=[Effect(Scope.my_self, Ability.mag, 0.4)], mp=136, buffs=[Effect(Scope.my_team, Recover.hp_turn, 0.2, 1)], debuffs=[], adj_buffs=[], ), Skill(Scope.foe, Power.ultra, Damage.light, Attack.mag, boost_by_buff=[Effect(Scope.my_self, Ability.mag, 0.8)], is_special=True, buffs=[Effect(Scope.my_team, Recover.hp_turn, 0.4, 3), Effect(Scope.my_team, Damage.light, 0.8, 3)], debuffs=[], adj_buffs=[], )], passive_skills=[Skill( buffs=[Effect(Scope.my_self, Recover.hp_turn, 0.08), Effect(Scope.my_self, Recover.mp_turn, 0.08), Effect(Scope.my_self, SuccessUp.counter, 0.5), Effect(Scope.my_self, Endurance.dark, 0.35)])], killer=Killer.undead, ), Adventurer("18", 2506, 224, 1387, 599, 601, 416, 981, skills=[Skill(is_fast=True, mp=47, buffs=[Effect(Scope.my_team, Endurance.foes, 0.35, 3), Effect(Scope.my_team, Endurance.foe, 0.35, 3)], debuffs=[], adj_buffs=[], ), Skill(Scope.foe, Power.high, Damage.earth, Attack.phy, temp_boost=True, mp=30, buffs=[], debuffs=[], adj_buffs=[], ), Skill(Scope.foes, Power.super, Damage.earth, Attack.phy, temp_boost=True, mp=69, buffs=[], debuffs=[], adj_buffs=[Effect(Scope.foes, AdjBuff.shorten_buff, 1, 0)], ), Skill(Scope.foes, Power.ultra, Damage.earth, Attack.phy, temp_boost=True, is_special=True, buffs=[], debuffs=[], adj_buffs=[], )], passive_skills=[Skill(buffs=[Effect(Scope.my_self, SuccessUp.guard, 0.3), Effect(Scope.my_self, Endurance.thunder, 0.35), Effect(Scope.my_self, Ability.str, 0.4), Effect(Scope.my_self, Ability.end, 0.4)])], killer=Killer.dragon, ), ]) boss_cards = MyCards([ Adventurer("九魔姬", 100000000, 0, 0, 100, 0, 0, 1000, skills=[Skill(Scope.foes, Power.low, Damage.dark, Attack.mag)], passive_skills=[Skill(buffs=[Effect(Scope.my_self, Endurance.fire, 0.1)])] ), Adventurer("紅髮怪人", 100000000, 0, 100, 100, 0, 0, 0, skills=[Skill(Scope.foes, Power.low, Damage.none, Attack.phy), Skill(Scope.foes, Power.high, Damage.none, Attack.phy), Skill(debuffs=[Effect(Scope.my_self, Endurance.mag, 0.7, 15)]), Skill(adj_buffs=[Effect(Scope.my_self, AdjBuff.clear_debuff, 0, 0)]), Skill(buffs=[Effect(Scope.my_self, Ability.str, 0.20, 3)]), ], passive_skills=[Skill(debuffs=[Effect(Scope.my_self, Endurance.light, 0.7)])], init_skill=Skill(debuffs=[Effect(Scope.my_self, Endurance.mag, 0.7, 15)], idx="init"), ), ]) ranker = Ranker() boss1 = boss_cards.get("紅髮怪人") enemy_team = Team(1, [boss1.set_steps([ [1, 1], # 1 [1, 1, 1], # 2 [1, 1, 1, 5], # 3 [1, 1, 2], # 4 [1, 1, 4], # 5 [1, 1, 1], # 6 [1, 1, 1, 5], # 7 [1, 1, 2, 3], # 8 [1, 1, 4], # 9 [1, 1, 1], # 10 [1, 1, 1, 5], # 11 [1, 1, 2, 3], # 12 [1, 1, 1], # 13 [1, 1, 1, 1], # 14 1, # 15 ]) ]) p1 = adv_cards.get("無人島春姬").set_assist(ass_cards.get("溫泉乳神")) p2 = adv_cards.get("折紙").set_assist(ass_cards.get("奧娜")) p3 = adv_cards.get("情人艾斯").set_assist(ass_cards.get("洋裝埃伊娜")) p4 = adv_cards.get("偶像莉涅").set_one_shot().set_assist(ass_cards.get("新娘乳神")) p5 = adv_cards.get("18").set_one_shot().set_assist(ass_cards.get("情人埃伊娜")) p6 = adv_cards.get("春姬").set_assist(ass_cards.get("劇場乳神")) # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 my_team = Team(4, [p1.set_steps([1, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 2, 4, 3, 3]), p2.set_steps([2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1]), p3.set_steps([3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1]), p4.set_steps([2]), p5.set_steps([x, 1]), p6.set_steps([x, x, 1, 3, 3, 1, 3, 2, 3, 1, 3, 2, 3, 3, 1]), ] ) battle = BattleStage(15) battle.set_player_team(my_team).set_enemy_team(enemy_team) battle.run() rank = ranker.add(battle) ranker.report(rank=rank, detail=True) # ranker.report(limit=1, detail=False) # ranker.report(rank=rank, detail=False) # ranker.report()
the-stack_0_17326
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='ScreenshotFormat', version='1', packages=setuptools.find_packages(), author="Gomes Alexis", author_email="[email protected]", description="Python package to help create screenshot to upload on stores", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/AlexisGomes/ScreenshotFormat", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
the-stack_0_17327
# -*- coding: utf-8 -*- # # MEOPAR MIDOSS project documentation Sphinx builder configuration file. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import datetime # -- Project information ----------------------------------------------------- project = 'MEOPAR MIDOSS Project Docs' author = ( 'The MIDOSS Project Contributors, ' 'the University of British Columbia, ' 'and Dalhousie University') copyright_years = ( "2018" if datetime.date.today().year == 2018 else f"2018-{datetime.date.today():%Y}" ) copyright = f"{copyright_years}, {author}" # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.intersphinx", "sphinx.ext.mathjax", ] intersphinx_mapping = { "salishseanowcast": ("https://salishsea-nowcast.readthedocs.io/en/latest/", None), } # Private GitHub repositories that linkcheck will ignore linkcheck_ignore = [ 'https://github.com/MIDOSS/MIDOSS-MOHID-CODE', 'https://github.com/MIDOSS/MIDOSS-MOHID-grid', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "_static/MEOPAR_favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True
the-stack_0_17328
import numpy as np from sklearn.metrics import r2_score from sklearn.datasets import load_svmlight_file from sklearn.linear_model import Ridge from train.build_model import * np.random.seed(1337) x, y = load_svmlight_file('data/reg_big.data') x = np.asarray(x.todense()) tri, tei = split_testing_data_r(y) xtr = x[tri] ytr = y[tri] xte = x[tei] yte = y[tei] alp = 1000 m = Ridge(alpha=alp) m.fit(xtr, ytr) r2_train = r2_score(ytr, m.predict(xtr)) r2_test = r2_score(yte, m.predict(xte)) print('Traing R2 Score: {0}'.format(np.round(r2_train, 5))) print('Testing R2 Score: {0}'.format(np.round(r2_test, 5)))
the-stack_0_17330
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import logging import os import random from smarts.core.utils.logging import surpress_stdout import subprocess import time from typing import List, Sequence import numpy as np from shapely.geometry import Polygon, box as shapely_box from shapely.affinity import rotate as shapely_rotate import traci.constants as tc from traci.exceptions import FatalTraCIError, TraCIException from smarts.core import gen_id from .colors import SceneColors from .coordinates import Heading, Pose from .provider import ProviderState, ProviderTLS, ProviderTrafficLight from .vehicle import VEHICLE_CONFIGS, VehicleState # We need to import .utils.sumo before we can use traci from .utils.sumo import SUMO_PATH, traci from .utils import networking class SumoTrafficSimulation: """ Args: net_file: path to sumo .net.xml file headless: False to run with `sumo-gui`. True to run with `sumo` time_resolution: SUMO simulation is descretized into steps of `time_resolution` seconds WARNING: Since our interface(TRACI) to SUMO is delayed by one simulation step, setting a higher time resolution may lead to unexpected artifacts """ def __init__( self, headless=True, time_resolution=0.1, num_clients=1, num_external_sumo_clients=0, sumo_port=None, auto_start=True, endless_traffic=True, debug=True, ): self._log = logging.getLogger(self.__class__.__name__) self._debug = debug self._scenario = None self._log_file = None self._time_resolution = time_resolution self._headless = headless self._cumulative_sim_seconds = 0 self._non_sumo_vehicle_ids = set() self._sumo_vehicle_ids = set() self._is_setup = False self._last_trigger_time = -1000000 self._num_dynamic_ids_used = 0 self._traci_conn = None self._sumo_proc = None self._num_clients = 1 + num_external_sumo_clients self._sumo_port = sumo_port self._auto_start = auto_start self._endless_traffic = endless_traffic self._to_be_teleported = dict() self._reserved_areas = dict() def __repr__(self): return f"""SumoTrafficSim( _scenario={repr(self._scenario)}, _time_resolution={self._time_resolution}, _headless={self._headless}, _cumulative_sim_seconds={self._cumulative_sim_seconds}, _non_sumo_vehicle_ids={self._non_sumo_vehicle_ids}, _sumo_vehicle_ids={self._sumo_vehicle_ids}, _is_setup={self._is_setup}, _last_trigger_time={self._last_trigger_time}, _num_dynamic_ids_used={self._num_dynamic_ids_used}, _traci_conn={repr(self._traci_conn)} )""" def __str__(self): return repr(self) def _initialize_traci_conn(self, num_retries=5): # TODO: inline sumo or process pool # the retries are to deal with port collisions # since the way we start sumo here has a race condition on # each spawned process claiming a port for _ in range(num_retries): self._close_traci_and_pipes() sumo_port = self._sumo_port if sumo_port is None: sumo_port = networking.find_free_port() sumo_binary = "sumo" if self._headless else "sumo-gui" sumo_cmd = [ os.path.join(SUMO_PATH, "bin", sumo_binary), "--remote-port=%s" % sumo_port, *self._base_sumo_load_params(), ] self._log.debug("Starting sumo process:\n\t %s", sumo_cmd) self._sumo_proc = subprocess.Popen( sumo_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, ) time.sleep(0.05) # give SUMO time to start try: with surpress_stdout(): self._traci_conn = traci.connect( sumo_port, numRetries=100, proc=self._sumo_proc, waitBetweenRetries=0.05, ) # SUMO must be ready within 5 seconds try: assert ( self._traci_conn.getVersion()[0] >= 20 ), "TraCI API version must be >= 20 (SUMO 1.5.0)" # We will retry since this is our first sumo command except FatalTraCIError: logging.debug("Connection closed. Retrying...") self._close_traci_and_pipes() continue except ConnectionRefusedError: logging.debug( "Connection refused. Tried to connect to unpaired TraCI client." ) self._close_traci_and_pipes() continue # It is mandatory to set order when using multiple clients. self._traci_conn.setOrder(0) break try: self._traci_conn.getVersion() except Exception as e: logging.error( f"""Failed to initialize SUMO Your scenario might not be configured correctly or you were trying to initialize many SUMO instances at once and we were not able to assign unique port numbers to all SUMO processes. Check {self._log_file} for hints""" ) raise e self._log.debug("Finished starting sumo process") def _base_sumo_load_params(self): load_params = [ "--num-clients=%d" % self._num_clients, "--net-file=%s" % self._scenario.net_filepath, "--quit-on-end", "--log=%s" % self._log_file, "--error-log=%s" % self._log_file, "--no-step-log", "--no-warnings=1", "--seed=%s" % random.randint(0, 2147483648), "--time-to-teleport=%s" % -1, "--collision.check-junctions=true", "--collision.action=none", "--lanechange.duration=3.0", # TODO: 1--lanechange.duration1 or 1--lateral-resolution`, in combination with `route_id`, # causes lane change crashes as of SUMO 1.6.0. # Controlling vehicles that have been added to the simulation with a route causes # lane change related crashes. # "--lateral-resolution=100", # smooth lane changes "--step-length=%f" % self._time_resolution, "--default.action-step-length=%f" % self._time_resolution, "--begin=0", # start simulation at time=0 "--end=31536000", # keep the simulation running for a year ] if self._auto_start: load_params.append("--start") if self._scenario.route_files_enabled: load_params.append("--route-files={}".format(self._scenario.route_filepath)) return load_params def setup(self, scenario) -> ProviderState: self._log.debug("Setting up SumoTrafficSim %s" % self) assert not self._is_setup, ( "Can't setup twice, %s, see teardown()" % self._is_setup ) # restart sumo process only when map file changes if self._scenario and self._scenario.net_file_hash == scenario.net_file_hash: restart_sumo = False else: restart_sumo = True self._scenario = scenario self._log_file = scenario.unique_sumo_log_file() if restart_sumo: self._initialize_traci_conn() else: self._traci_conn.load(self._base_sumo_load_params()) assert self._traci_conn is not None, "No active traci conn" self._traci_conn.simulation.subscribe( [tc.VAR_DEPARTED_VEHICLES_IDS, tc.VAR_ARRIVED_VEHICLES_IDS] ) for tls_id in self._traci_conn.trafficlight.getIDList(): self._traci_conn.trafficlight.subscribe( tls_id, [tc.TL_RED_YELLOW_GREEN_STATE, tc.TL_CONTROLLED_LINKS] ) # XXX: SUMO caches the previous subscription results. Calling `simulationStep` # effectively flushes the results. We need to use epsilon instead of zero # as zero will step according to a default (non-zero) step-size. self.step({}, 1e-6, 0) self._is_setup = True return self._compute_provider_state() def _close_traci_and_pipes(self): if self._sumo_proc: self._sumo_proc.stdin.close() self._sumo_proc.stdout.close() self._sumo_proc.stderr.close() self._sumo_proc = None if self._traci_conn: self._traci_conn.close() self._traci_conn = None def teardown(self): self._log.debug("Tearing down SUMO traffic sim %s" % self) if not self._is_setup: self._log.debug("Nothing to teardown") return assert self._is_setup self._cumulative_sim_seconds = 0 self._non_sumo_vehicle_ids = set() self._sumo_vehicle_ids = set() self._is_setup = False self._num_dynamic_ids_used = 0 self._to_be_teleported = dict() self._reserved_areas = dict() @property def action_spaces(self): # Unify interfaces with other providers return {} def reset(self): # Unify interfaces with other providers pass def step(self, provider_actions, dt, elapsed_sim_time) -> ProviderState: """ Args: dt: time (in seconds) to simulate during this simulation step managed_vehicles: dict of {vehicle_id: (x, y, heading)} !! The vehicle state should represent the state of the !! vehicles at the start of the current simulation step Returns: ProviderState representing the state of the SUMO simulation """ # we tell SUMO to step through dt more seconds of the simulation self._cumulative_sim_seconds += dt self._traci_conn.simulationStep(self._cumulative_sim_seconds) return self._compute_provider_state() def sync(self, provider_state: ProviderState): provider_vehicles = {v.vehicle_id: v for v in provider_state.vehicles} external_vehicles = [v for v in provider_state.vehicles if v.source != "SUMO"] external_vehicle_ids = {v.vehicle_id for v in external_vehicles} # Represents current state traffic_vehicle_states = self._traci_conn.vehicle.getAllSubscriptionResults() traffic_vehicle_ids = set(traffic_vehicle_states) # State / ownership changes external_vehicles_that_have_left = ( self._non_sumo_vehicle_ids - external_vehicle_ids - traffic_vehicle_ids ) external_vehicles_that_have_joined = ( external_vehicle_ids - self._non_sumo_vehicle_ids - traffic_vehicle_ids ) vehicles_that_have_become_external = ( traffic_vehicle_ids & external_vehicle_ids - self._non_sumo_vehicle_ids ) # XXX: They may have become internal because they've been relinquished or # because they've been destroyed from a collision. Presently we're not # differentiating and will take over as social vehicles regardless. vehicles_that_have_become_internal = ( self._non_sumo_vehicle_ids - external_vehicle_ids ) & traffic_vehicle_ids log = "" if external_vehicles_that_have_left: log += ( f"external_vehicles_that_have_left={external_vehicles_that_have_left}\n" ) if external_vehicles_that_have_joined: log += f"external_vehicles_that_have_joined={external_vehicles_that_have_joined}\n" if vehicles_that_have_become_external: log += f"vehicles_that_have_become_external={vehicles_that_have_become_external}\n" if vehicles_that_have_become_internal: log += f"vehicles_that_have_become_internal={vehicles_that_have_become_internal}\n" if log: self._log.debug(log) for vehicle_id in external_vehicles_that_have_left: self._log.debug("Non SUMO vehicle %s left simulation", vehicle_id) self._non_sumo_vehicle_ids.remove(vehicle_id) self._traci_conn.vehicle.remove(vehicle_id) for vehicle_id in external_vehicles_that_have_joined: dimensions = provider_vehicles[vehicle_id].dimensions self._create_vehicle(vehicle_id, dimensions) # update the state of all current managed vehicles for vehicle_id in self._non_sumo_vehicle_ids: provider_vehicle = provider_vehicles[vehicle_id] pos, sumo_heading = provider_vehicle.pose.as_sumo( provider_vehicle.dimensions.length, Heading(0) ) # See https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html#move_to_xy_0xb4 # for flag values try: self._move_vehicle( provider_vehicle.vehicle_id, pos, sumo_heading, provider_vehicle.speed, ) except TraCIException as e: # Likely as a result of https://github.com/eclipse/sumo/issues/3993 # the vehicle got removed because we skipped a moveToXY call between # internal stepSimulations, so we add the vehicle back here. self._log.warning( "Attempted to (TraCI) SUMO.moveToXY(...) on missing " f"vehicle(id={vehicle_id})" ) self._create_vehicle(vehicle_id, provider_vehicle.dimensions) self._move_vehicle( provider_vehicle.vehicle_id, pos, sumo_heading, provider_vehicle.speed, ) for vehicle_id in vehicles_that_have_become_external: self._traci_conn.vehicle.setColor( vehicle_id, SumoTrafficSimulation._social_agent_vehicle_color() ) self._non_sumo_vehicle_ids.add(vehicle_id) for vehicle_id in vehicles_that_have_become_internal: self._traci_conn.vehicle.setColor( vehicle_id, SumoTrafficSimulation._social_vehicle_color() ) self._non_sumo_vehicle_ids.remove(vehicle_id) # Let sumo take over speed again self._traci_conn.vehicle.setSpeed(vehicle_id, -1) if self._endless_traffic: self._reroute_vehicles(traffic_vehicle_states) self._teleport_exited_vehicles() @staticmethod def _ego_agent_vehicle_color(): return np.array(SceneColors.Agent.value[:3]) * 255 @staticmethod def _social_agent_vehicle_color(): return np.array(SceneColors.SocialAgent.value[:3]) * 255 @staticmethod def _social_vehicle_color(): return np.array(SceneColors.SocialVehicle.value[:3]) * 255 def _move_vehicle(self, vehicle_id, position, heading, speed): x, y, _ = position self._traci_conn.vehicle.moveToXY( vehID=vehicle_id, edgeID="", # let sumo choose the edge lane=-1, # let sumo choose the lane x=x, y=y, angle=heading, # only used for visualizing in sumo-gui keepRoute=0, ) self._traci_conn.vehicle.setSpeed(vehicle_id, speed) def _create_vehicle(self, vehicle_id, dimensions): assert ( type(vehicle_id) == str ), f"SUMO expects string ids: {vehicle_id} is a {type(vehicle_id)}" self._log.debug("Non SUMO vehicle %s joined simulation", vehicle_id) self._non_sumo_vehicle_ids.add(vehicle_id) self._traci_conn.vehicle.add( vehID=vehicle_id, routeID="", # we don't care which route this vehicle is on ) # TODO: Vehicle Id should not be using prefixes this way if vehicle_id.startswith("social-agent"): # This is based on ID convention vehicle_color = SumoTrafficSimulation._social_agent_vehicle_color() else: vehicle_color = SumoTrafficSimulation._ego_agent_vehicle_color() self._traci_conn.vehicle.setColor(vehicle_id, vehicle_color) # Directly below are two of the main factors that affect vehicle secure gap for # purposes of determining the safety gaps that SUMO vehicles will abide by. The # remaining large factor is vehicle speed. # See: # http://sumo-user-mailing-list.90755.n8.nabble.com/sumo-user-Questions-on-SUMO-Built-In-Functions-getSecureGap-amp-brakeGap-td3254.html # Set the controlled vehicle's time headway in seconds self._traci_conn.vehicle.setTau(vehicle_id, 4) # Set the controlled vehicle's maximum natural deceleration in m/s self._traci_conn.vehicle.setDecel(vehicle_id, 6) # setup the vehicle size self._traci_conn.vehicle.setLength(vehicle_id, dimensions.length) self._traci_conn.vehicle.setWidth(vehicle_id, dimensions.width) self._traci_conn.vehicle.setHeight(vehicle_id, dimensions.height) def _compute_provider_state(self) -> ProviderState: return ProviderState( vehicles=self._compute_traffic_vehicles(), traffic_light_systems=self._compute_traffic_lights(), ) def _compute_traffic_vehicles(self) -> List[VehicleState]: sub_results = self._traci_conn.simulation.getSubscriptionResults() if sub_results is None or sub_results == {}: return {} # New social vehicles that have entered the map newly_departed_sumo_traffic = [ vehicle_id for vehicle_id in sub_results[tc.VAR_DEPARTED_VEHICLES_IDS] if vehicle_id not in self._non_sumo_vehicle_ids ] reserved_areas = [position for position in self._reserved_areas.values()] for vehicle_id in newly_departed_sumo_traffic: other_vehicle_shape = self._shape_of_vehicle(vehicle_id) violates_reserved_area = False for reserved_area in reserved_areas: if reserved_area.intersects(other_vehicle_shape): violates_reserved_area = True break if violates_reserved_area: self._traci_conn.vehicle.remove(vehicle_id) continue self._log.debug("SUMO vehicle %s entered simulation", vehicle_id) self._traci_conn.vehicle.subscribe( vehicle_id, [ tc.VAR_POSITION, tc.VAR_ANGLE, tc.VAR_SPEED, tc.VAR_VEHICLECLASS, tc.VAR_ROUTE_INDEX, tc.VAR_EDGES, tc.VAR_TYPE, ], ) # Non-sumo vehicles will show up the step after the sync where the non-sumo vehicle is # added. newly_departed_non_sumo_vehicles = [ vehicle_id for vehicle_id in sub_results[tc.VAR_DEPARTED_VEHICLES_IDS] if vehicle_id not in newly_departed_sumo_traffic ] for vehicle_id in newly_departed_non_sumo_vehicles: if vehicle_id in self._reserved_areas: del self._reserved_areas[vehicle_id] sumo_vehicle_state = self._traci_conn.vehicle.getAllSubscriptionResults() self._sumo_vehicle_ids = ( set(sumo_vehicle_state.keys()) - self._non_sumo_vehicle_ids ) provider_vehicles = [] # batched conversion of positions to numpy arrays front_bumper_positions = np.array( [ sumo_vehicle[tc.VAR_POSITION] for sumo_vehicle in sumo_vehicle_state.values() ] ).reshape(-1, 2) for i, (sumo_id, sumo_vehicle) in enumerate(sumo_vehicle_state.items()): # XXX: We can safely rely on iteration order over dictionaries being # stable on py3.7. # See: https://www.python.org/downloads/release/python-370/ # "The insertion-order preservation nature of dict objects is now an # official part of the Python language spec." front_bumper_pos = front_bumper_positions[i] heading = Heading.from_sumo(sumo_vehicle[tc.VAR_ANGLE]) speed = sumo_vehicle[tc.VAR_SPEED] vehicle_type = sumo_vehicle[tc.VAR_VEHICLECLASS] dimensions = VEHICLE_CONFIGS[vehicle_type].dimensions provider_vehicles.append( VehicleState( # XXX: In the case of the SUMO traffic provider, the vehicle ID is # the sumo ID is the actor ID. vehicle_id=sumo_id, vehicle_type=vehicle_type, pose=Pose.from_front_bumper( front_bumper_pos, heading, dimensions.length ), dimensions=dimensions, speed=speed, source="SUMO", ) ) return provider_vehicles def _teleport_exited_vehicles(self): sub_results = self._traci_conn.simulation.getSubscriptionResults() if not sub_results: return exited_sumo_traffic = [ vehicle_id for vehicle_id in sub_results[tc.VAR_ARRIVED_VEHICLES_IDS] if vehicle_id not in self._non_sumo_vehicle_ids ] for v_id in exited_sumo_traffic: if v_id in self._to_be_teleported: route = self._to_be_teleported[v_id]["route"] type_id = self._to_be_teleported[v_id]["type_id"] self._teleport_vehicle(v_id, route, 0, type_id) def _teleport_vehicle(self, vehicle_id, route, lane_offset, type_id): self._log.debug( f"Teleporting {vehicle_id} to lane_offset={lane_offset} route={route}" ) spawn_edge = self._scenario.road_network.graph.getEdge(route[0]) lane_index = random.randint(0, len(spawn_edge.getLanes()) - 1) self._emit_vehicle_by_route(vehicle_id, route, lane_index, lane_offset, type_id) def _reroute_vehicles(self, vehicle_states): for vehicle_id, state in vehicle_states.items(): if vehicle_id not in self._sumo_vehicle_ids: continue route_index = state[tc.VAR_ROUTE_INDEX] route_edges = state[tc.VAR_EDGES] type_id = state[tc.VAR_TYPE] if route_index != len(route_edges) - 1: # The vehicle is not in the last route edge. continue # Check if these edges forms a loop. from_edge = self._scenario.road_network.graph.getEdge(route_edges[-1]) to_edge = self._scenario.road_network.graph.getEdge(route_edges[0]) next_edges = from_edge.getOutgoing().keys() if to_edge not in next_edges: # Reroute only if it's loop, otherwise, teleport the vehicle. self._to_be_teleported[vehicle_id] = { "route": route_edges, "type_id": type_id, } continue # The first edge in the list has to be the one that the vehicle # is in at the moment, which is the last edge in current route_edges. new_route_edges = route_edges[-1:] + route_edges self._traci_conn.vehicle.setRoute(vehicle_id, new_route_edges) def _compute_traffic_lights(self) -> List[ProviderTLS]: """TraCI will automatically generate TLS programs if none was specified according to the net/program. To support this we opt to use TraCI instead of the sumolib interface for TLS support. """ sub_results = self._traci_conn.trafficlight.getSubscriptionResults(None) tlss = [] if not sub_results: return tlss for tls_id in sub_results: light_states = sub_results[tls_id][tc.TL_RED_YELLOW_GREEN_STATE] links = sub_results[tls_id][tc.TL_CONTROLLED_LINKS] traffic_lights = [] for link, state in zip(links, light_states): lane_start, lane_end, lane_via = [ self._scenario.road_network.lane_by_id(lane) for lane in link[0] ] traffic_lights.append( ProviderTrafficLight( lane_in=lane_start, lane_via=lane_via, lane_out=lane_end, state=state, ) ) tlss.append(ProviderTLS(tls_id, traffic_lights)) return tlss def _unique_id(self): route_id = "hiway_id_%s" % self._num_dynamic_ids_used self._num_dynamic_ids_used += 1 return route_id def vehicle_route(self, vehicle_id) -> Sequence[str]: return self._traci_conn.vehicle.getRoute(vehicle_id) def reserve_traffic_location_for_vehicle( self, vehicle_id: str, reserved_location: Polygon, ): """Reserve an area around a location where vehicles cannot spawn until a given vehicle is added. Args: vehicle_id: The vehicle to wait for. reserved_location: The space the vehicle takes up. """ self._reserved_areas[vehicle_id] = reserved_location def remove_traffic_vehicle(self, vehicle_id: str): self._traci_conn.vehicle.remove(vehicle_id) self._sumo_vehicle_ids.remove(vehicle_id) def _shape_of_vehicle(self, vehicle_id): p = self._traci_conn.vehicle.getPosition(vehicle_id) length = self._traci_conn.vehicle.getLength(vehicle_id) width = self._traci_conn.vehicle.getWidth(vehicle_id) heading = Heading.from_sumo(self._traci_conn.vehicle.getAngle(vehicle_id)) poly = shapely_box(p[0] - width * 0.5, p[1] - length, p[0] + width * 0.5, p[1],) return shapely_rotate(poly, heading, use_radians=True) def _emit_vehicle_by_route( self, vehicle_id, route, lane_index, lane_offset, type_id="DEFAULT_VEHTYPE" ): route_id = f"route-{gen_id()}" self._traci_conn.route.add(route_id, route) self._traci_conn.vehicle.add( vehicle_id, route_id, typeID=type_id, departPos=lane_offset, departLane=lane_index, ) return vehicle_id def _emit_vehicle_near_position(self, position, vehicle_id=None) -> str: wp = self._scenario.waypoints.closest_waypoint(position) lane = self._scenario.road_network.lane_by_id(wp.lane_id) offset_in_lane = self._scenario.road_network.offset_into_lane( lane, tuple(wp.pos) ) if not vehicle_id: vehicle_id = self._unique_id() # XXX: Do not give this a route or it will crash on `moveTo` calls self._traci_conn.vehicle.add( vehicle_id, "", departPos=offset_in_lane, departLane=wp.lane_index, ) self._traci_conn.vehicle.moveToXY( vehID=vehicle_id, edgeID="", # let sumo choose the edge lane=-1, # let sumo choose the lane x=position[0], y=position[1], # angle=sumo_heading, # only used for visualizing in sumo-gui keepRoute=0b000, # On lane ) return vehicle_id
the-stack_0_17331
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import pickle import pytest # noqa: F401 import numpy as np # noqa: F401 import awkward as ak # noqa: F401 ak_Array = ak._v2.highlevel.Array ak_Record = ak._v2.highlevel.Record ak_to_buffers = ak._v2.operations.to_buffers ak_from_buffers = ak._v2.operations.from_buffers def test_numpyarray(): assert ak_from_buffers(*ak_to_buffers(ak_Array([1, 2, 3, 4, 5]))).tolist() == [ 1, 2, 3, 4, 5, ] assert pickle.loads(pickle.dumps(ak_Array([1, 2, 3, 4, 5]), -1)).tolist() == [ 1, 2, 3, 4, 5, ] def test_listoffsetarray(): assert ak_from_buffers(*ak_to_buffers([[1, 2, 3], [], [4, 5]])).tolist() == [ [1, 2, 3], [], [4, 5], ] assert ak_from_buffers( *ak_to_buffers(["one", "two", "three", "four", "five"]) ).tolist() == ["one", "two", "three", "four", "five"] assert ak_from_buffers( *ak_to_buffers([["one", "two", "three"], [], ["four", "five"]]) ).tolist() == [["one", "two", "three"], [], ["four", "five"]] assert pickle.loads( pickle.dumps(ak_Array([[1, 2, 3], [], [4, 5]]), -1) ).tolist() == [[1, 2, 3], [], [4, 5]] def test_listarray(): listoffsetarray = ak_Array([[1, 2, 3], [], [4, 5]]).layout listarray = ak._v2.contents.ListArray( listoffsetarray.starts, listoffsetarray.stops, listoffsetarray.content ) assert ak_from_buffers(*ak_to_buffers(listarray)).tolist() == [ [1, 2, 3], [], [4, 5], ] assert pickle.loads(pickle.dumps(ak_Array(listarray), -1)).tolist() == [ [1, 2, 3], [], [4, 5], ] def test_indexedoptionarray(): assert ak_from_buffers(*ak_to_buffers([1, 2, 3, None, None, 5])).tolist() == [ 1, 2, 3, None, None, 5, ] assert pickle.loads( pickle.dumps(ak_Array([1, 2, 3, None, None, 5]), -1) ).tolist() == [1, 2, 3, None, None, 5] def test_indexedarray(): content = ak_Array([0.0, 1.1, 2.2, 3.3, 4.4]).layout index = ak._v2.index.Index64(np.array([3, 1, 1, 4, 2], dtype=np.int64)) indexedarray = ak._v2.contents.IndexedArray(index, content) assert ak_from_buffers(*ak_to_buffers(indexedarray)).tolist() == [ 3.3, 1.1, 1.1, 4.4, 2.2, ] assert pickle.loads(pickle.dumps(ak_Array(indexedarray), -1)).tolist() == [ 3.3, 1.1, 1.1, 4.4, 2.2, ] def test_emptyarray(): assert ak_from_buffers(*ak_to_buffers([])).tolist() == [] assert ak_from_buffers(*ak_to_buffers([[], [], []])).tolist() == [[], [], []] assert pickle.loads(pickle.dumps(ak_Array([]), -1)).tolist() == [] assert pickle.loads(pickle.dumps(ak_Array([[], [], []]), -1)).tolist() == [ [], [], [], ] def test_bytemaskedarray(): content = ak_Array([0.0, 1.1, 2.2, 3.3, 4.4]).layout mask = ak._v2.index.Index8( np.array([False, True, True, False, False], dtype=np.int8) ) bytemaskedarray = ak._v2.contents.ByteMaskedArray(mask, content, True) assert ak_from_buffers(*ak_to_buffers(bytemaskedarray)).tolist() == [ None, 1.1, 2.2, None, None, ] assert pickle.loads(pickle.dumps(ak_Array(bytemaskedarray), -1)).tolist() == [ None, 1.1, 2.2, None, None, ] def test_bitmaskedarray(): content = ak_Array([0.0, 1.1, 2.2, 3.3, 4.4]).layout mask = ak._v2.index.IndexU8( np.packbits(np.array([False, True, True, False, False], dtype=np.int8)) ) bitmaskedarray = ak._v2.contents.BitMaskedArray(mask, content, True, 5, False) assert ak_from_buffers(*ak_to_buffers(bitmaskedarray)).tolist() == [ None, 1.1, 2.2, None, None, ] assert pickle.loads(pickle.dumps(ak_Array(bitmaskedarray), -1)).tolist() == [ None, 1.1, 2.2, None, None, ] def test_recordarray(): assert ak_from_buffers( *ak_to_buffers([(1.1, [1]), (2.2, [1, 2]), (3.3, [1, 2, 3])]) ).tolist() == [(1.1, [1]), (2.2, [1, 2]), (3.3, [1, 2, 3])] assert ak_from_buffers( *ak_to_buffers( [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}] ) ).tolist() == [ {"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}, ] assert pickle.loads( pickle.dumps(ak_Array([(1.1, [1]), (2.2, [1, 2]), (3.3, [1, 2, 3])]), -1) ).tolist() == [(1.1, [1]), (2.2, [1, 2]), (3.3, [1, 2, 3])] assert pickle.loads( pickle.dumps( ak_Array( [ {"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}, ] ), -1, ) ).tolist() == [ {"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}, ] def test_record(): assert pickle.loads( pickle.dumps(ak_Record({"x": 2.2, "y": [1, 2]}), -1) ).tolist() == {"x": 2.2, "y": [1, 2]} assert pickle.loads( pickle.dumps( ak_Array( [ {"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}, ] )[1], -1, ) ).tolist() == {"x": 2.2, "y": [1, 2]} def test_regulararray(): content = ak_Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]).layout regulararray = ak._v2.contents.RegularArray(content, 3, zeros_length=0) assert ak_from_buffers(*ak_to_buffers(regulararray)).tolist() == [ [1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], ] assert pickle.loads(pickle.dumps(ak_Array(regulararray), -1)).tolist() == [ [1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], ] def test_unionarray(): assert ak_from_buffers(*ak_to_buffers([[1, 2, 3], [], 4, 5])).tolist() == [ [1, 2, 3], [], 4, 5, ] assert pickle.loads(pickle.dumps(ak_Array([[1, 2, 3], [], 4, 5]), -1)).tolist() == [ [1, 2, 3], [], 4, 5, ] def test_unmaskedarray(): content = ak_Array([1, 2, 3, 4, 5]).layout unmaskedarray = ak._v2.contents.UnmaskedArray(content) assert ak_from_buffers(*ak_to_buffers(unmaskedarray)).tolist() == [1, 2, 3, 4, 5] assert pickle.loads(pickle.dumps(ak_Array(unmaskedarray), -1)).tolist() == [ 1, 2, 3, 4, 5, ]
the-stack_0_17332
"""Given an string S, find all its permutations. Example: S = "abc" Permutations found = ["abc", "cab", "bac", "acb", "bac", "cba"] """ def find_permutations(s): if len(s) <= 1: return [s] permutations = [] def _find_permutations(partial, rest, permutations): if len(rest) == 0: permutations.append(partial) for i in range(len(rest)): _find_permutations(partial + rest[i], rest[:i] + rest[i+1:], permutations) _find_permutations("", s, permutations) return permutations if __name__ == "__main__": test_cases = [ ("", [""]), ("a", ["a"]), ("ab", ["ab", "ba"]), ("abc", ["abc", "acb", "cab", "bac", "bca", "cba"]), ("abcd", [ "abcd", "abdc", "adbc", "dabc", "acbd", "acdb", "adcb", "dacb", "cabd", "cadb", "cdab", "dcab", "bacd", "badc", "bdac", "dbac", "bcad", "bcda", "bdca", "dbca", "cbad", "cbda", "cdba", "dcba" ]), ] for s, expected in test_cases: found_permutations = find_permutations(s) print(found_permutations) assert set(found_permutations) == set(expected)
the-stack_0_17335
from cloudify import ctx from cloudify import utils from cloudify.exceptions import NonRecoverableError from StringIO import StringIO import base64 import os import platform import re import subprocess import sys import time import threading import platform import json def convert_env_value_to_string(envDict): for key, value in envDict.items(): envDict[str(key)] = str(envDict.pop(key)) def get_attribute_user(ctx): if get_attribute_from_top_host(ctx, 'user'): return get_attribute_from_top_host(ctx, 'user') if get_attribute(ctx, 'cloudify_agent'): return get_attribute(ctx, 'cloudify_agent').get('user', None) if get_attribute(ctx, 'agent_config'): return get_attribute(ctx, 'agent_config').get('user', None) return None def get_attribute_key(ctx): if get_attribute_from_top_host(ctx, 'key'): return get_attribute_from_top_host(ctx, 'key') if get_attribute(ctx, 'cloudify_agent'): return get_attribute(ctx, 'cloudify_agent').get('key', None) if get_attribute(ctx, 'agent_config'): return get_attribute(ctx, 'agent_config').get('key', None) return None def get_host(entity): if entity.instance.relationships: for relationship in entity.instance.relationships: if 'cloudify.relationships.contained_in' in relationship.type_hierarchy: return relationship.target return None def has_attribute_mapping(entity, attribute_name): # ctx.logger.debug('Check if it exists mapping for attribute {0} in {1}'.format(attribute_name,json.dumps(entity.node.properties))) mapping_configuration = entity.node.properties.get('_a4c_att_' + attribute_name, None) if mapping_configuration is not None: if mapping_configuration['parameters'][0] == 'SELF' and mapping_configuration['parameters'][1] == attribute_name: return False else: return True return False def process_attribute_mapping(entity, attribute_name, data_retriever_function): # This is where attribute mapping is defined in the cloudify type mapping_configuration = entity.node.properties['_a4c_att_' + attribute_name] # ctx.logger.debug('Mapping configuration found for attribute {0} is {1}'.format(attribute_name, json.dumps(mapping_configuration))) # If the mapping configuration exist and if it concerns SELF then just get attribute of the mapped attribute name # Else if it concerns TARGET then follow the relationship and retrieved the mapped attribute name from the TARGET if mapping_configuration['parameters'][0] == 'SELF': return data_retriever_function(entity, mapping_configuration['parameters'][1]) elif mapping_configuration['parameters'][0] == 'TARGET' and entity.instance.relationships: for relationship in entity.instance.relationships: if mapping_configuration['parameters'][1] in relationship.type_hierarchy: return data_retriever_function(relationship.target, mapping_configuration['parameters'][2]) return "" def get_nested_attribute(entity, attribute_names): deep_properties = get_attribute(entity, attribute_names[0]) attribute_names_iter = iter(attribute_names) next(attribute_names_iter) for attribute_name in attribute_names_iter: if deep_properties is None: return "" else: deep_properties = deep_properties.get(attribute_name, None) return deep_properties def _all_instances_get_nested_attribute(entity, attribute_names): return None def get_attribute(entity, attribute_name): if has_attribute_mapping(entity, attribute_name): # First check if any mapping exist for attribute mapped_value = process_attribute_mapping(entity, attribute_name, get_attribute) # ctx.logger.debug('Mapping exists for attribute {0} with value {1}'.format(attribute_name, json.dumps(mapped_value))) return mapped_value # No mapping exist, try to get directly the attribute from the entity attribute_value = entity.instance.runtime_properties.get(attribute_name, None) if attribute_value is not None: # ctx.logger.debug('Found the attribute {0} with value {1} on the node {2}'.format(attribute_name, json.dumps(attribute_value), entity.node.id)) return attribute_value # Attribute retrieval fails, fall back to property property_value = entity.node.properties.get(attribute_name, None) if property_value is not None: return property_value # Property retrieval fails, fall back to host instance host = get_host(entity) if host is not None: # ctx.logger.debug('Attribute not found {0} go up to the parent node {1}'.format(attribute_name, host.node.id)) return get_attribute(host, attribute_name) # Nothing is found return "" def get_target_capa_or_node_attribute(entity, capability_attribute_name, attribute_name): attribute_value = entity.instance.runtime_properties.get(capability_attribute_name, None) if attribute_value is not None: # ctx.logger.debug('Found the capability attribute {0} with value {1} on the node {2}'.format(attribute_name, json.dumps(attribute_value), entity.node.id)) return attribute_value return get_attribute(entity, attribute_name) def _all_instances_get_attribute(entity, attribute_name): result_map = {} # get all instances data using cfy rest client # we have to get the node using the rest client with node_instance.node_id # then we will have the relationships node = client.nodes.get(ctx.deployment.id, entity.node.id) all_node_instances = client.node_instances.list(ctx.deployment.id, entity.node.id) for node_instance in all_node_instances: prop_value = __recursively_get_instance_data(node, node_instance, attribute_name) if prop_value is not None: # ctx.logger.debug('Found the property/attribute {0} with value {1} on the node {2} instance {3}'.format(attribute_name, json.dumps(prop_value), entity.node.id, # node_instance.id)) result_map[node_instance.id + '_'] = prop_value return result_map # Same as previous method but will first try to find the attribute on the capability. def _all_instances_get_target_capa_or_node_attribute(entity, capability_attribute_name, attribute_name): result_map = {} node = client.nodes.get(ctx.deployment.id, entity.node.id) all_node_instances = client.node_instances.list(ctx.deployment.id, entity.node.id) for node_instance in all_node_instances: attribute_value = node_instance.runtime_properties.get(capability_attribute_name, None) if attribute_value is not None: prop_value = attribute_value else: prop_value = __recursively_get_instance_data(node, node_instance, attribute_name) if prop_value is not None: # ctx.logger.debug('Found the property/attribute {0} with value {1} on the node {2} instance {3}'.format(attribute_name, json.dumps(prop_value), entity.node.id, # node_instance.id)) result_map[node_instance.id + '_'] = prop_value return result_map def get_property(entity, property_name): # Try to get the property value on the node property_value = entity.node.properties.get(property_name, None) if property_value is not None: # ctx.logger.debug('Found the property {0} with value {1} on the node {2}'.format(property_name, json.dumps(property_value), entity.node.id)) return property_value # No property found on the node, fall back to the host host = get_host(entity) if host is not None: # ctx.logger.debug('Property not found {0} go up to the parent node {1}'.format(property_name, host.node.id)) return get_property(host, property_name) return "" def get_instance_list(node_id): result = '' all_node_instances = client.node_instances.list(ctx.deployment.id, node_id) for node_instance in all_node_instances: if len(result) > 0: result += ',' result += node_instance.id return result def get_host_node_name(instance): for relationship in instance.relationships: if 'cloudify.relationships.contained_in' in relationship.type_hierarchy: return relationship.target.node.id return None def __get_relationship(node, target_name, relationship_type): for relationship in node.relationships: if relationship.get('target_id') == target_name and relationship_type in relationship.get('type_hierarchy'): return relationship return None def __has_attribute_mapping(node, attribute_name): # ctx.logger.debug('Check if it exists mapping for attribute {0} in {1}'.format(attribute_name, json.dumps(node.properties))) mapping_configuration = node.properties.get('_a4c_att_' + attribute_name, None) if mapping_configuration is not None: if mapping_configuration['parameters'][0] == 'SELF' and mapping_configuration['parameters'][1] == attribute_name: return False else: return True return False def __process_attribute_mapping(node, node_instance, attribute_name, data_retriever_function): # This is where attribute mapping is defined in the cloudify type mapping_configuration = node.properties['_a4c_att_' + attribute_name] # ctx.logger.debug('Mapping configuration found for attribute {0} is {1}'.format(attribute_name, json.dumps(mapping_configuration))) # If the mapping configuration exist and if it concerns SELF then just get attribute of the mapped attribute name # Else if it concerns TARGET then follow the relationship and retrieved the mapped attribute name from the TARGET if mapping_configuration['parameters'][0] == 'SELF': return data_retriever_function(node, node_instance, mapping_configuration['parameters'][1]) elif mapping_configuration['parameters'][0] == 'TARGET' and node_instance.relationships: for rel in node_instance.relationships: relationship = __get_relationship(node, rel.get('target_name'), rel.get('type')) if mapping_configuration['parameters'][1] in relationship.get('type_hierarchy'): target_instance = client.node_instances.get(rel.get('target_id')) target_node = client.nodes.get(ctx.deployment.id, target_instance.node_id) return data_retriever_function(target_node, target_instance, mapping_configuration['parameters'][2]) return None def __recursively_get_instance_data(node, node_instance, attribute_name): if __has_attribute_mapping(node, attribute_name): return __process_attribute_mapping(node, node_instance, attribute_name, __recursively_get_instance_data) attribute_value = node_instance.runtime_properties.get(attribute_name, None) if attribute_value is not None: return attribute_value elif node_instance.relationships: for rel in node_instance.relationships: # on rel we have target_name, target_id (instanceId), type relationship = __get_relationship(node, rel.get('target_name'), rel.get('type')) if 'cloudify.relationships.contained_in' in relationship.get('type_hierarchy'): parent_instance = client.node_instances.get(rel.get('target_id')) parent_node = client.nodes.get(ctx.deployment.id, parent_instance.node_id) return __recursively_get_instance_data(parent_node, parent_instance, attribute_name) return None else: return None def get_public_or_private_ip(entity): public_ip = get_attribute(entity, 'public_ip_address') if not public_ip: return get_attribute(entity, 'ip_address') return public_ip def get_attribute_from_top_host(entity, attribute_name): host = get_host(entity) while host is not None: entity = host host = get_host(entity) return get_attribute(entity, attribute_name) ctx.instance.runtime_properties['tosca_id'] = ctx.instance.id ctx.instance.runtime_properties['tosca_name'] = ctx.node.id ctx.instance.runtime_properties['component_version'] = r'5'
the-stack_0_17336
"""Service calls related dependencies for LCN component.""" import pypck import voluptuous as vol from homeassistant.const import ( CONF_ADDRESS, CONF_BRIGHTNESS, CONF_STATE, CONF_UNIT_OF_MEASUREMENT, TIME_SECONDS, ) import homeassistant.helpers.config_validation as cv from .const import ( CONF_CONNECTIONS, CONF_KEYS, CONF_LED, CONF_OUTPUT, CONF_PCK, CONF_RELVARREF, CONF_ROW, CONF_SETPOINT, CONF_TABLE, CONF_TEXT, CONF_TIME, CONF_TIME_UNIT, CONF_TRANSITION, CONF_VALUE, CONF_VARIABLE, DATA_LCN, LED_PORTS, LED_STATUS, OUTPUT_PORTS, RELVARREF, SENDKEYCOMMANDS, SETPOINTS, THRESHOLDS, TIME_UNITS, VAR_UNITS, VARIABLES, ) from .helpers import ( get_connection, is_address, is_key_lock_states_string, is_relays_states_string, ) class LcnServiceCall: """Parent class for all LCN service calls.""" schema = vol.Schema({vol.Required(CONF_ADDRESS): is_address}) def __init__(self, hass): """Initialize service call.""" self.connections = hass.data[DATA_LCN][CONF_CONNECTIONS] def get_address_connection(self, call): """Get address connection object.""" addr, connection_id = call.data[CONF_ADDRESS] addr = pypck.lcn_addr.LcnAddr(*addr) if connection_id is None: connection = self.connections[0] else: connection = get_connection(self.connections, connection_id) return connection.get_address_conn(addr) class OutputAbs(LcnServiceCall): """Set absolute brightness of output port in percent.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Required(CONF_BRIGHTNESS): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), vol.Optional(CONF_TRANSITION, default=0): vol.All( vol.Coerce(float), vol.Range(min=0.0, max=486.0) ), } ) def __call__(self, call): """Execute service call.""" output = pypck.lcn_defs.OutputPort[call.data[CONF_OUTPUT]] brightness = call.data[CONF_BRIGHTNESS] transition = pypck.lcn_defs.time_to_ramp_value( call.data[CONF_TRANSITION] * 1000 ) address_connection = self.get_address_connection(call) address_connection.dim_output(output.value, brightness, transition) class OutputRel(LcnServiceCall): """Set relative brightness of output port in percent.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Required(CONF_BRIGHTNESS): vol.All( vol.Coerce(int), vol.Range(min=-100, max=100) ), } ) def __call__(self, call): """Execute service call.""" output = pypck.lcn_defs.OutputPort[call.data[CONF_OUTPUT]] brightness = call.data[CONF_BRIGHTNESS] address_connection = self.get_address_connection(call) address_connection.rel_output(output.value, brightness) class OutputToggle(LcnServiceCall): """Toggle output port.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Optional(CONF_TRANSITION, default=0): vol.All( vol.Coerce(float), vol.Range(min=0.0, max=486.0) ), } ) def __call__(self, call): """Execute service call.""" output = pypck.lcn_defs.OutputPort[call.data[CONF_OUTPUT]] transition = pypck.lcn_defs.time_to_ramp_value( call.data[CONF_TRANSITION] * 1000 ) address_connection = self.get_address_connection(call) address_connection.toggle_output(output.value, transition) class Relays(LcnServiceCall): """Set the relays status.""" schema = LcnServiceCall.schema.extend( {vol.Required(CONF_STATE): is_relays_states_string} ) def __call__(self, call): """Execute service call.""" states = [ pypck.lcn_defs.RelayStateModifier[state] for state in call.data[CONF_STATE] ] address_connection = self.get_address_connection(call) address_connection.control_relays(states) class Led(LcnServiceCall): """Set the led state.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_LED): vol.All(vol.Upper, vol.In(LED_PORTS)), vol.Required(CONF_STATE): vol.All(vol.Upper, vol.In(LED_STATUS)), } ) def __call__(self, call): """Execute service call.""" led = pypck.lcn_defs.LedPort[call.data[CONF_LED]] led_state = pypck.lcn_defs.LedStatus[call.data[CONF_STATE]] address_connection = self.get_address_connection(call) address_connection.control_led(led, led_state) class VarAbs(LcnServiceCall): """Set absolute value of a variable or setpoint. Variable has to be set as counter! Regulator setpoints can also be set using R1VARSETPOINT, R2VARSETPOINT. """ schema = LcnServiceCall.schema.extend( { vol.Required(CONF_VARIABLE): vol.All( vol.Upper, vol.In(VARIABLES + SETPOINTS) ), vol.Optional(CONF_VALUE, default=0): vol.All( vol.Coerce(int), vol.Range(min=0) ), vol.Optional(CONF_UNIT_OF_MEASUREMENT, default="native"): vol.All( vol.Upper, vol.In(VAR_UNITS) ), } ) def __call__(self, call): """Execute service call.""" var = pypck.lcn_defs.Var[call.data[CONF_VARIABLE]] value = call.data[CONF_VALUE] unit = pypck.lcn_defs.VarUnit.parse(call.data[CONF_UNIT_OF_MEASUREMENT]) address_connection = self.get_address_connection(call) address_connection.var_abs(var, value, unit) class VarReset(LcnServiceCall): """Reset value of variable or setpoint.""" schema = LcnServiceCall.schema.extend( {vol.Required(CONF_VARIABLE): vol.All(vol.Upper, vol.In(VARIABLES + SETPOINTS))} ) def __call__(self, call): """Execute service call.""" var = pypck.lcn_defs.Var[call.data[CONF_VARIABLE]] address_connection = self.get_address_connection(call) address_connection.var_reset(var) class VarRel(LcnServiceCall): """Shift value of a variable, setpoint or threshold.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_VARIABLE): vol.All( vol.Upper, vol.In(VARIABLES + SETPOINTS + THRESHOLDS) ), vol.Optional(CONF_VALUE, default=0): int, vol.Optional(CONF_UNIT_OF_MEASUREMENT, default="native"): vol.All( vol.Upper, vol.In(VAR_UNITS) ), vol.Optional(CONF_RELVARREF, default="current"): vol.All( vol.Upper, vol.In(RELVARREF) ), } ) def __call__(self, call): """Execute service call.""" var = pypck.lcn_defs.Var[call.data[CONF_VARIABLE]] value = call.data[CONF_VALUE] unit = pypck.lcn_defs.VarUnit.parse(call.data[CONF_UNIT_OF_MEASUREMENT]) value_ref = pypck.lcn_defs.RelVarRef[call.data[CONF_RELVARREF]] address_connection = self.get_address_connection(call) address_connection.var_rel(var, value, unit, value_ref) class LockRegulator(LcnServiceCall): """Locks a regulator setpoint.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_SETPOINT): vol.All(vol.Upper, vol.In(SETPOINTS)), vol.Optional(CONF_STATE, default=False): bool, } ) def __call__(self, call): """Execute service call.""" setpoint = pypck.lcn_defs.Var[call.data[CONF_SETPOINT]] state = call.data[CONF_STATE] reg_id = pypck.lcn_defs.Var.to_set_point_id(setpoint) address_connection = self.get_address_connection(call) address_connection.lock_regulator(reg_id, state) class SendKeys(LcnServiceCall): """Sends keys (which executes bound commands).""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_KEYS): vol.All( vol.Upper, cv.matches_regex(r"^([A-D][1-8])+$") ), vol.Optional(CONF_STATE, default="hit"): vol.All( vol.Upper, vol.In(SENDKEYCOMMANDS) ), vol.Optional(CONF_TIME, default=0): vol.All(int, vol.Range(min=0)), vol.Optional(CONF_TIME_UNIT, default=TIME_SECONDS): vol.All( vol.Upper, vol.In(TIME_UNITS) ), } ) def __call__(self, call): """Execute service call.""" address_connection = self.get_address_connection(call) keys = [[False] * 8 for i in range(4)] key_strings = zip(call.data[CONF_KEYS][::2], call.data[CONF_KEYS][1::2]) for table, key in key_strings: table_id = ord(table) - 65 key_id = int(key) - 1 keys[table_id][key_id] = True delay_time = call.data[CONF_TIME] if delay_time != 0: hit = pypck.lcn_defs.SendKeyCommand.HIT if pypck.lcn_defs.SendKeyCommand[call.data[CONF_STATE]] != hit: raise ValueError( "Only hit command is allowed when sending deferred keys." ) delay_unit = pypck.lcn_defs.TimeUnit.parse(call.data[CONF_TIME_UNIT]) address_connection.send_keys_hit_deferred(keys, delay_time, delay_unit) else: state = pypck.lcn_defs.SendKeyCommand[call.data[CONF_STATE]] address_connection.send_keys(keys, state) class LockKeys(LcnServiceCall): """Lock keys.""" schema = LcnServiceCall.schema.extend( { vol.Optional(CONF_TABLE, default="a"): vol.All( vol.Upper, cv.matches_regex(r"^[A-D]$") ), vol.Required(CONF_STATE): is_key_lock_states_string, vol.Optional(CONF_TIME, default=0): vol.All(int, vol.Range(min=0)), vol.Optional(CONF_TIME_UNIT, default=TIME_SECONDS): vol.All( vol.Upper, vol.In(TIME_UNITS) ), } ) def __call__(self, call): """Execute service call.""" address_connection = self.get_address_connection(call) states = [ pypck.lcn_defs.KeyLockStateModifier[state] for state in call.data[CONF_STATE] ] table_id = ord(call.data[CONF_TABLE]) - 65 delay_time = call.data[CONF_TIME] if delay_time != 0: if table_id != 0: raise ValueError( "Only table A is allowed when locking keys for a specific time." ) delay_unit = pypck.lcn_defs.TimeUnit.parse(call.data[CONF_TIME_UNIT]) address_connection.lock_keys_tab_a_temporary(delay_time, delay_unit, states) else: address_connection.lock_keys(table_id, states) address_connection.request_status_locked_keys_timeout() class DynText(LcnServiceCall): """Send dynamic text to LCN-GTxD displays.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_ROW): vol.All(int, vol.Range(min=1, max=4)), vol.Required(CONF_TEXT): vol.All(str, vol.Length(max=60)), } ) def __call__(self, call): """Execute service call.""" row_id = call.data[CONF_ROW] - 1 text = call.data[CONF_TEXT] address_connection = self.get_address_connection(call) address_connection.dyn_text(row_id, text) class Pck(LcnServiceCall): """Send arbitrary PCK command.""" schema = LcnServiceCall.schema.extend({vol.Required(CONF_PCK): str}) def __call__(self, call): """Execute service call.""" pck = call.data[CONF_PCK] address_connection = self.get_address_connection(call) address_connection.pck(pck)
the-stack_0_17337
#from six.moves import xrange import common import tensorflow as tf FLAGS = tf.app.flags.FLAGS # basics tf.app.flags.DEFINE_integer('batch_size', 24, """Number of images to process in a batch.""") # naming tf.app.flags.DEFINE_string('UPDATE_OPS_COLLECTION', 'update_ops', """ collection of ops to be updated""") tf.app.flags.DEFINE_string('LOSSES_COLLECTION', 'losses', """ collection of ops to be updated""") # training tf.app.flags.DEFINE_integer('num_epochs_per_decay', 2, """number of epochs per decay""") tf.app.flags.DEFINE_float('initial_learning_rate', 0.01, """initial learning rate""") tf.app.flags.DEFINE_float('learning_rate_decay', 0.1, """decay factor of learning rate""") tf.app.flags.DEFINE_float('momentum', 0.9, """momentum of optimization""") # inference of resnet def inference_resnet(images, num_output=1): with tf.variable_scope('1'): conv1 = common.conv(images, 64, ksize=7, stride=2) conv1 = common.bn(conv1) pool1 = common.max_pool(conv1) with tf.variable_scope('2'): stack2 = common.res_stack(pool1, [256, 256, 256], pool=False) with tf.variable_scope('3'): stack3 = common.res_stack(stack2, [512, 512, 512, 512]) with tf.variable_scope('4'): stack4 = common.res_stack(stack3, [1024, 1024, 1024, 1024, 1024, 1024]) with tf.variable_scope('5'): stack5 = common.res_stack(stack4, [2048, 2048, 2048]) pool5 = common.global_ave_pool(stack5) with tf.variable_scope('fc'): fc = common.fc(pool5, num_output) return tf.sigmoid(fc)
the-stack_0_17338
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ NOTE: This module shall not be used by external projects. It will be moved to neutron-lib in due course, and then it can be used from there. """ import contextlib from neutron_lib.db import utils as db_utils from oslo_log import log as logging from oslo_utils import excutils LOG = logging.getLogger(__name__) @contextlib.contextmanager def _noop_context_manager(): yield def safe_creation(context, create_fn, delete_fn, create_bindings, transaction=True): '''This function wraps logic of object creation in safe atomic way. In case of exception, object is deleted. More information when this method could be used can be found in developer guide - Effective Neutron: Database interaction section. https://docs.openstack.org/neutron/latest/contributor/effective_neutron.html :param context: context :param create_fn: function without arguments that is called to create object and returns this object. :param delete_fn: function that is called to delete an object. It is called with object's id field as an argument. :param create_bindings: function that is called to create bindings for an object. It is called with object's id field as an argument. :param transaction: if true the whole operation will be wrapped in a transaction. if false, no transaction will be used. ''' cm = (context.session.begin(subtransactions=True) if transaction else _noop_context_manager()) with cm: obj = create_fn() try: value = create_bindings(obj['id']) except Exception: with excutils.save_and_reraise_exception(): try: delete_fn(obj['id']) except Exception as e: LOG.error("Cannot clean up created object %(obj)s. " "Exception: %(exc)s", {'obj': obj['id'], 'exc': e}) return obj, value def model_query(context, model): query = context.session.query(model) # define basic filter condition for model query query_filter = None if db_utils.model_query_scope_is_project(context, model): query_filter = (model.tenant_id == context.tenant_id) if query_filter is not None: query = query.filter(query_filter) return query
the-stack_0_17340
from PIL import Image,ImageTk import random as rand import turtle as trtl # import required module import os from playsound import playsound import tkinter.messagebox wn = trtl.Screen() #si = tk.Tk() si = trtl.Turtle() caller = trtl.Turtle() st = trtl.Turtle() rSt = trtl.Turtle() user = trtl.Turtle() point = trtl.Turtle() #score = trtl.Turtle() count = 0 caller_list = ['abrupt stop', 'speed bump','right','left','go'] caller_txt = [] #Message ="Abrupt stop = DOWN speed bump = SHIFT right = RIGHT left = LEFT go =UP" tkinter.messagebox.showinfo('Directions','Abrupt stop = DOWN speed bump = SHIFT right = RIGHT left = LEFT go =UP') #wn = tk.Tk() #wn.screensize("400x400") # --- Window Creator --- wn.title("Vroom Vroom: BTS Edition") #wn.window_height(150) wn.setup(height=500,width=500) #caller_img ="huh_resize.gif" #user_label = Label(wn,image=caller_img) # ---IMages --- as_img = "vAb.gif" wn.addshape(as_img) sb_img = "vSb_resize.gif" wn.addshape(sb_img) r_img = "right_resize.gif" wn.addshape(r_img) l_img = "vL.gif" wn.addshape(l_img) go_img = "go_resize.gif" wn.addshape(go_img) caller_img = "huh_resize.gif" wn.addshape(caller_img) # --- Functions --- x = -191 y = 180 caller.pu() caller.goto(x,y) si.pu() si.ht() si.goto(-120,150) start_pic = "st_resize.gif" wn.addshape(start_pic) st.shape(start_pic) st.pu() st.goto(0,180) restart_pic = "restart_resized.gif" wn.addshape(restart_pic) rSt.shape(restart_pic) rSt.pu() rSt.goto(0,180) user_pic = "plyr_resize.gif" wn.addshape(user_pic) user.shape(user_pic) user.pu() user.goto(0,-50) def startPress(x, y): caller.shape(caller_img) st.ht() rSt.st() #print('playing sound using native player') playsound('vvvcopy.wav') wn.delay(10) si.clear() callerChoose() # callerSoundOs() def rStPress(x, y): rSt.ht() st.st() si.clear() # gameMain() def callerChoose(): #st.ht() global caller_txt si.ht() caller_txt = rand.choice(caller_list) si.write(caller_txt,font=("Arial",15)) print(caller_txt) callerSoundOs() #wn.delay(10) #si.ht() def callerSound(): #caller_pic = "huh_resize.gif" if caller_txt == caller_list[0]: print("Ab") playsound('vDa_AS.wav') cAs() elif caller_txt == caller_list[1]: print("sb") playsound('vS_sb.wav') cSb() elif caller_txt == caller_list[2]: print("right") playsound('vR.wav') cR() elif caller_txt == caller_list[3]: print("left") playsound('vL.wav') cL() #vroomVroom_wn.addshape(caller_pic) #caller.shape(caller_pic) elif caller_txt == caller_list[4]: print('go') playsound('vUp_go.wav') cGo() def callerSoundOs(): global caller_txt print("cSOs") #caller_pic = "huh_resize.gif" if caller_txt == caller_list[0]: print("ab") playsound('vDa_AS.wav') #cAs() elif caller_txt == caller_list[1]: print("sb") playsound('vS_sb.wav') #cSb() elif caller_txt == caller_list[2]: print("r") playsound('vR.wav') #cR() elif caller_txt == caller_list[3]: print("l") playsound('vL.wav') #cL() #vroomVroom_wn.addshape(caller_pic) #caller.shape(caller_pic) elif caller_txt == caller_list[4]: print("g") playsound('vUp_go.wav') #cGo() def playSound(caller_txt): if caller_txt == [d for d in caller_list if "abrupt stop" in d]: playsound('vDa_AS.wav') caller == 'as_resize.gif' elif caller_txt == [d for d in caller_list if 'speed bump'in d]: playsound('vDa_AS.wav') caller == 'vSb_resize.gif' elif caller_list == [d for d in caller_list if 'right' in d]: playsound('vR.wav') caller == 'right_resize.gif' elif caller_txt == [d for d in caller_list if 'left' in d]: playsound('vL.wav') caller == 'vL.gif' elif caller_txt == [d for d in caller_list if 'go' in d]: playsound('vUp_go') caller == 'go_resize.gif' def abruptStop(): user.shape(as_img) caller.shape(as_img) def speedBump(): user.shape(sb_img) caller.shape(sb_img) def rightTurn(): user.shape(r_img) def leftTurn(): user.shape(l_img) def goFD(): user.shape(go_img) def cAs(): caller.shape(as_img) def cSb(): caller.shape(sb_img) def cR(): caller.shape(r_img) def cL(): caller.shape(l_img) def cGo(): caller.shape(go_img) def gameMain(): #caller.shapesize(10) callerChoose() #callerSoundOs() #callerSound() gameMain() st.onclick(startPress) rSt.onclick(rStPress) wn.onkeypress(abruptStop,'Down') wn.onkeypress(speedBump,'Return') wn.onkeypress(rightTurn,'Right') wn.onkeypress(leftTurn,'Left') wn.onkeypress(goFD,'Up') # createCaller() # createRestart_btn() # createUser() # createStart_btn() wn.listen() wn.mainloop()
the-stack_0_17341
''' Created on 29 Oct 2013 @author: michael ''' from django import template from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.core.urlresolvers import reverse from tunobase.core import models, nodes register = template.Library() @register.tag def smart_query_string(parser, token): ''' Outputs current GET query string with additions appended. Additions are provided in token pairs. ''' args = token.split_contents() additions = args[1:] addition_pairs = [] while additions: addition_pairs.append(additions[0:2]) additions = additions[2:] return nodes.SmartQueryStringNode(addition_pairs) @register.assignment_tag def gallery_surrounding_image_pks(gallery, gallery_image_pk): gallery_images = list(gallery.images.all()) previous_image_pk = None next_image_pk = None for i, gallery_image in enumerate(gallery_images): if gallery_image.pk == gallery_image_pk: try: previous_image_pk = gallery_images[i+1].pk except IndexError: pass try: next_image_pk = gallery_images[i-1].pk except IndexError: pass break return { 'next_image_pk': next_image_pk, 'previous_image_pk': previous_image_pk } @register.filter def letterify(value): return str(unichr(65 + value)) @register.filter def class_name(obj): return obj.__class__.__name__
the-stack_0_17343
from os import path from setuptools import setup this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md')) as f: long_description = f.read() setup( name='apt-ios-repo', version='0.1', packages=['apt_ios_repo'], url='https://github.com/arturgoms/python-apt-ios-repo', license='MIT', author='Artur Gomes', author_email='[email protected]', description='Python library to manage and query APT repositories from iOS Jailbreak community', long_description_content_type='text/markdown', long_description=long_description, python_requires='>=3.9', install_requires=['requests'], )
the-stack_0_17348
import os import traceback import sys from tensorflow.core.framework import summary_pb2 from tensorflow.python.summary.writer import writer_cache import tensorflow as tf import numpy as np class InMemoryFinetune(tf.estimator.SessionRunHook): def __init__(self, config_to_eval, model, eval_dir, X, Y, X_test, Y_test, name=None, every_n_iter=100): if every_n_iter is None or every_n_iter <= 0: raise ValueError('invalid every_n_iter=%s.' % every_n_iter) self._current_finetune = model self._config_to_finetune = config_to_eval self._name = name self._every_n_iter = every_n_iter self._timer = tf.estimator.SecondOrStepTimer(every_steps=every_n_iter) self._eval_dir = eval_dir self.train_data = (X, Y) self.test_data = (X_test, Y_test) self._iter_count = 0 def begin(self): self._timer.reset() self._iter_count = 0 def after_create_session(self, session, coord): """Does first run which shows the metrics before training.""" self._evaluate(session) def _evaluate(self, session): try: with tf.Graph().as_default(): from finetune import Classifier model = Classifier(**self._config_to_finetune) if self._current_finetune.saver.variables: model.saver.variables = { k: v.copy() for k, v in self._current_finetune.saver.variables.items() if "global_step" not in k and "Adam" not in k } model.saver.fallback_ = { k: v for k, v in self._current_finetune.saver.fallback.items() if "global_step" not in k } train_x, train_y = self.train_data model.fit(train_x, train_y) test_x, test_y = self.test_data test_accuracy = np.mean(model.predict(test_x) == test_y) train_accuracy = np.mean(model.predict(train_x) == train_y) except IOError as e: traceback.print_exc(file=sys.stdout) test_accuracy = -1.0 train_accuracy = -1.0 global_step = session.run(tf.compat.v1.train.get_or_create_global_step()) directory = os.path.join(self._eval_dir, "..", "finetuning") if not os.path.exists(directory): os.makedirs(directory) summary_writer = writer_cache.FileWriterCache.get(directory) summary_proto = summary_pb2.Summary() summary_proto.value.add(tag="finetuning/{}_train_accurary".format(self._name), simple_value=float(train_accuracy)) summary_proto.value.add(tag="finetuning/{}_test_accurary".format(self._name), simple_value=float(test_accuracy)) summary_writer.add_summary(summary_proto, global_step) summary_writer.flush() self._timer.update_last_triggered_step(self._iter_count) def after_run(self, run_context, run_values): self._iter_count += 1 if self._timer.should_trigger_for_step(self._iter_count): self._evaluate(run_context.session) def end(self, session): self._evaluate(session) def make_in_memory_finetune_hooks(model, estimator): hooks = [] for f in model.config.in_memory_finetune: hooks.append(InMemoryFinetune( config_to_eval=f["config"], model=model, eval_dir=estimator.eval_dir(), X=f["X"], Y=f["Y"], X_test=f["X_test"], Y_test=f["Y_test"], name=f["name"], every_n_iter=f["every_n_iter"] )) return hooks
the-stack_0_17349
#!/usr/bin/env python # coding: utf-8 # # Ans 1. # In[16]: def getrange(fibfun): def fibseries(): print("Enter the range of Fibonacci Series") end = int(input("Enter ending no: ")) fibfun(end) return fibseries # In[17]: @getrange def fibonacciSeries(ending): starting = 0 num = 0 first = 1 for i in range(ending): print("Fibonacci Series :", num) starting = first first = num num = starting + first # In[18]: fibonacciSeries() # # Ans 2) # In[60]: file = open("Day8-AA","w") file.write("Hey there!, How are you") file.close() # In[61]: file = open("Day8-AA","r") fileData = file.read() print(fileData) file.close() # In[62]: file = open("Day8-AA","a") file.write("?") file.close() # In[63]: file = open("Day8-AA","r") fileData = file.read() print(fileData) file.close() # In[64]: file = open("Day8-AA", "r") try : file.write("I am fine thankyou") except : print("File is opened in read only mode, not writable!!!") fileData = file.read() print(fileData) file.close() # In[ ]:
the-stack_0_17350
# EQUILIBRIUM PROFILES import numpy as np import csv from matplotlib import pyplot as plt def eqProfs(state): #Compiling CSV data into independent variables dataArr = [] with open('output_runModel/equilibrium.csv', 'r') as equilibriumFile: csvRead = csv.reader(equilibriumFile) for row in csvRead: dataArr.append(row) dataArr = [ele for ele in dataArr if ele != []] lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf = dataArr[0],dataArr[1],dataArr[2], dataArr[3], dataArr[4] timeTaken = ''.join(dataArr[5]) airPressure_vCoord = np.array(state['air_pressure_on_interface_levels']).flatten() airPressure_vCoord = [round((float(ele)/1000),0) for ele in airPressure_vCoord] # Plotting Schwarzchild deltas. fig = plt.figure() lwFluxNet = [float(i) for i in lwFluxNet] plt.plot(lwFluxNet,airPressure_vCoord) plt.gca().invert_yaxis() plt.xlabel("Net longwave radiative flux (Wm^-2)") plt.ylabel("Pressure (kPa)") plt.savefig("graphs/equilibrium_netFlux_vertical.png") # Plotting upwelling longwave flux (p) fig = plt.figure() lwFluxUp = [float(i) for i in lwFluxUp] plt.gca().invert_yaxis() plt.plot(lwFluxUp, airPressure_vCoord) plt.xlabel("Upwelling longwave radiative flux (Wm^-2)") plt.ylabel("Pressure (kPa)") plt.savefig("graphs/equilibrium_upFlux_vertical.png") # Plotting downwelling longwave flux (p) fig = plt.figure() lwFluxDown = [float(i) for i in lwFluxDown] plt.xlabel("Downwelling longwave radiative flux (Wm^-2)") plt.ylabel("Pressure (kPa)") plt.gca().invert_yaxis() plt.plot(lwFluxDown,airPressure_vCoord) plt.savefig("graphs/equilibrium_downFlux_vertical.png") # Plotting heating rate (p) fig = plt.figure() heatRate = [float(i) for i in heatRate] plt.xlabel("Longwave Heating Rate") plt.ylabel("Pressure (kPa)") plt.gca().invert_yaxis() plt.plot(heatRate,airPressure_vCoord) plt.savefig("graphs/equilibrium_heatRate_vertical.png") fig = plt.figure() airTemperatureProf = [float(i) for i in airTemperatureProf] plt.xlabel("Air Temperature (K)") plt.ylabel("Pressure (kPa)") plt.gca().invert_yaxis() plt.plot(airTemperatureProf,airPressure_vCoord[:28]) plt.savefig("graphs//equilibrium_airT_vertical.png") return 0.
the-stack_0_17351
""" COSE_Encrypt0: Encrypted Messages with Implicit Key COSE_Encrypt0 = [ Headers, ciphertext: bstr / nil, ] """ from typing import Optional, TYPE_CHECKING from cose import utils from cose.messages import enccommon, cosemessage if TYPE_CHECKING: from cose.keys.symmetric import SK CBOR = bytes @cosemessage.CoseMessage.record_cbor_tag(16) class Enc0Message(enccommon.EncCommon): context = "Encrypt0" cbor_tag = 16 @classmethod def from_cose_obj(cls, cose_obj: list, *args, **kwargs) -> 'Enc0Message': return super().from_cose_obj(cose_obj) def __init__(self, phdr: Optional[dict] = None, uhdr: Optional[dict] = None, payload: bytes = b'', external_aad: bytes = b'', key: Optional['SK'] = None): """ Create a COSE_encrypt0 message. :param phdr: Protected header bucket. :param uhdr: Unprotected header bucket. :param payload: The payload (will be encrypted and authenticated). :param external_aad: External data (is authenticated but not transported in the message). :param key: The Symmetric COSE key for encryption/decryption of the message :returns: Returns a COSE Encrypt0 message object. """ if phdr is None: phdr = {} if uhdr is None: uhdr = {} super().__init__(phdr, uhdr, payload, external_aad, key) def encode(self, tag: bool = True, encrypt: bool = True, *args, **kwargs) -> CBOR: """ Encode and protect the COSE_Encrypt0 message. :param tag: Boolean value which indicates if the COSE message will have a CBOR tag. :param encrypt: Boolean which activates or deactivates the payload protection. :return: Returns a CBOR-encoded COSE Encrypt0 message. """ if encrypt: message = [self.phdr_encoded, self.uhdr_encoded, self.encrypt()] else: message = [self.phdr_encoded, self.uhdr_encoded, self.payload] res = super(Enc0Message, self).encode(message, tag) return res def __repr__(self) -> str: phdr, uhdr = self._hdr_repr() return f'<COSE_Encrypt0: [{phdr}, {uhdr}, {utils.truncate(self._payload)}]>'
the-stack_0_17354
def gen_fn(): result = yield 1 print('result of yield: {}'.format(result)) result2 = yield 2 print('result of 2nd yield: {}'.format(result2)) return 'done' def caller_fn(): gen = gen_fn() rv = yield from gen print('return value of yield-from: {}' .format(rv)) # Make a generator from the # generator function. caller = caller_fn() caller.send(None) caller.send('hello') caller.send('goodbye') # def gen_fn(): # result = yield 1 # print('result of yield: {}'.format(result)) # result2 = yield 2 # print('result of 2nd yield: {}'.format(result2)) # return 'done'
the-stack_0_17355
# Copyright (c) Microsoft Corporation # Licensed under the MIT License. # Defines common utilities for responsibleai tests from dice_ml.utils import helpers import numpy as np import pandas as pd from sklearn import svm from sklearn.compose import ColumnTransformer from sklearn.datasets import load_iris, load_breast_cancer, \ make_classification, load_boston from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from lightgbm import LGBMClassifier from xgboost import XGBClassifier def create_sklearn_random_forest_classifier(X, y): rfc = RandomForestClassifier(n_estimators=10, max_depth=4, random_state=777) model = rfc.fit(X, y) return model def create_lightgbm_classifier(X, y): lgbm = LGBMClassifier(boosting_type='gbdt', learning_rate=0.1, max_depth=5, n_estimators=200, n_jobs=1, random_state=777) model = lgbm.fit(X, y) return model def create_xgboost_classifier(X, y): xgb = XGBClassifier(learning_rate=0.1, max_depth=3, n_estimators=100, n_jobs=1, random_state=777) model = xgb.fit(X, y) return model def create_sklearn_svm_classifier(X, y, probability=True): clf = svm.SVC(gamma=0.001, C=100., probability=probability, random_state=777) model = clf.fit(X, y) return model def create_sklearn_logistic_regressor(X, y, pipeline=False): lin = LogisticRegression(solver='liblinear') if pipeline: lin = Pipeline([('lin', lin)]) model = lin.fit(X, y) return model def create_sklearn_random_forest_regressor(X, y): rfc = RandomForestRegressor(n_estimators=10, max_depth=4, random_state=777) model = rfc.fit(X, y) return model def create_iris_data(): # Import Iris dataset iris = load_iris() # Split data into train and test X_train, X_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=0) feature_names = [name.replace(' (cm)', '') for name in iris.feature_names] classes = iris.target_names X_train = pd.DataFrame(X_train, columns=feature_names) X_test = pd.DataFrame(X_test, columns=feature_names) return X_train, X_test, y_train, y_test, feature_names, classes def create_cancer_data(): breast_cancer_data = load_breast_cancer() classes = breast_cancer_data.target_names.tolist() # Split data into train and test X_train, X_test, y_train, y_test = train_test_split( breast_cancer_data.data, breast_cancer_data.target, test_size=0.2, random_state=0) feature_names = breast_cancer_data.feature_names classes = breast_cancer_data.target_names.tolist() X_train = pd.DataFrame(X_train, columns=feature_names) X_test = pd.DataFrame(X_test, columns=feature_names) return X_train, X_test, y_train, y_test, feature_names, classes def create_binary_classification_dataset(): X, y = make_classification() # Split data into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) classes = np.unique(y_train).tolist() feature_names = ["col" + str(i) for i in list(range(X_train.shape[1]))] X_train = pd.DataFrame(X_train, columns=feature_names) X_test = pd.DataFrame(X_test, columns=feature_names) return X_train, y_train, X_test, y_test, classes def create_boston_data(): # Import Boston housing dataset boston = load_boston() # Split data into train and test X_train, X_test, y_train, y_validation = train_test_split( boston.data, boston.target, test_size=0.2, random_state=7) return X_train, X_test, y_train, y_validation, boston.feature_names def create_adult_income_dataset(): dataset = helpers.load_adult_income_dataset() continuous_features = ['age', 'hours_per_week'] target_name = 'income' target = dataset[target_name] classes = list(np.unique(target)) categorical_features = list(set(dataset.columns) - set(continuous_features) - set([target_name])) # Split data into train and test data_train, data_test, y_train, y_test = train_test_split( dataset, target, test_size=0.2, random_state=7, stratify=target) return data_train, data_test, y_train, y_test, categorical_features, \ continuous_features, target_name, classes def create_complex_classification_pipeline( X_train, y_train, continuous_features, categorical_features): # We create the preprocessing pipelines for both # numeric and categorical data. numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) transformations = ColumnTransformer( transformers=[ ('num', numeric_transformer, continuous_features), ('cat', categorical_transformer, categorical_features)]) # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. pipeline = Pipeline(steps=[('preprocessor', transformations), ('classifier', RandomForestClassifier())]) return pipeline.fit(X_train, y_train) def create_models_classification(X_train, y_train): svm_model = create_sklearn_svm_classifier(X_train, y_train) log_reg_model = create_sklearn_logistic_regressor(X_train, y_train) xgboost_model = create_xgboost_classifier(X_train, y_train) lgbm_model = create_lightgbm_classifier(X_train, y_train) rf_model = create_sklearn_random_forest_classifier(X_train, y_train) return [svm_model, log_reg_model, xgboost_model, lgbm_model, rf_model] def create_models_regression(X_train, y_train): rf_model = create_sklearn_random_forest_regressor(X_train, y_train) return [rf_model]
the-stack_0_17356
''' Descripttion: version: Author: LiQiang Date: 2021-01-21 11:45:22 LastEditTime: 2021-01-21 13:05:07 ''' import argparse import cv2 import torch import os import os.path as osp import glob from mmdet.apis import inference_detector, init_detector from mmcv.utils import mkdir_or_exist from tqdm import tqdm def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--video_in_dir', type=str, default='',help='test video path') parser.add_argument( '--video_out_dir', type=str, default='', help='output video path') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--show', type=bool, default=False, help='bbox score threshold') args = parser.parse_args() return args def list_files(path, ends): files = [] list_dir = os.walk(path) for maindir, subdir, all_file in list_dir: for filename in all_file: apath = os.path.join(maindir, filename) if apath.endswith(ends): files.append(apath) return files def detectvideo(model, video_in, video_out, args): cap = cv2.VideoCapture(video_in) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) #获取视频帧率 #设置写入视频的编码格式 fourcc = cv2.VideoWriter_fourcc(*"mp4v") fps_video = cap.get(cv2.CAP_PROP_FPS) ####重要 videoWriter = cv2.VideoWriter(video_out, fourcc, fps_video, (frame_width, frame_height)) count=0 print('Press "Esc", "q" or "Q" to exit.') length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) pbar = tqdm(range(length)) for i in pbar: torch.cuda.empty_cache() ret_val, img = cap.read() if ret_val: if count<0: count+=1 print('Write {} in result Successfully!'.format(count)) continue ############################# result = inference_detector(model, img) # ch = cv2.waitKey(1) # if ch == 27 or ch == ord('q') or ch == ord('Q'): # break frame=model.show_result( img, result, score_thr=args.score_thr, wait_time=1, show=False,thickness=1) if args.show: cv2.imshow('frame',frame) cv2.waitKey(1) if len(frame)>=1 or frame: #写入视频 videoWriter.write(frame) count+=1 if count == 1000: break ############################# """ # if count%24==0: #快些看到效果 # result = inference_detector(model, img) # ch = cv2.waitKey(1) # if ch == 27 or ch == ord('q') or ch == ord('Q'): # break # frame=model.show_result( # img, result, score_thr=args.score_thr, wait_time=1, show=False,thickness=1,font_scale=1) # cv2.imshow('frame',frame) # if len(frame)>=1 or frame: # #写入视频 # videoWriter.write(frame) # count+=1 # print('Write {} in result Successfully!'.format(count)) # else: # count+=1 """ else: print('fail!!') break pbar.set_description("Processing video %s, frame : %d" % (video_in.replace(args.video_in_dir, ''), i)) cap.release() videoWriter.release() def main(): args = parse_args() device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) input_videos = list_files(args.video_in_dir, '.mp4') print(input_videos) for video in input_videos: video_out = video.replace(args.video_in_dir, args.video_out_dir) dir_name = osp.abspath(osp.dirname(video_out)) mkdir_or_exist(dir_name) if 'RGB' in video: continue detectvideo(model, video, video_out, args) if __name__ == '__main__': main()
the-stack_0_17357
import numpy as np from collections import OrderedDict from concurrent import futures as futures from os import path as osp from pathlib import Path from skimage import io from pdb import set_trace def get_image_index_str(img_idx, use_prefix_id=False): if use_prefix_id: return '{:07d}'.format(img_idx) else: return '{:06d}'.format(img_idx) def get_kitti_info_path(idx, prefix, info_type='image_2', file_tail='.png', training=True, relative_path=True, exist_check=True, use_prefix_id=False): img_idx_str = get_image_index_str(idx, use_prefix_id) img_idx_str += file_tail prefix = Path(prefix) if training: file_path = Path('training') / info_type / img_idx_str else: file_path = Path('testing') / info_type / img_idx_str if exist_check and not (prefix / file_path).exists(): raise ValueError('file not exist: {}'.format(file_path)) if relative_path: return str(file_path) else: return str(prefix / file_path) def get_image_path(idx, prefix, training=True, relative_path=True, exist_check=True, info_type='image_2', use_prefix_id=False): exist_check=False return get_kitti_info_path(idx, prefix, info_type, '.png', training, relative_path, exist_check, use_prefix_id) def get_label_path(idx, prefix, training=True, relative_path=True, exist_check=True, info_type='label_2', use_prefix_id=False): return get_kitti_info_path(idx, prefix, info_type, '.txt', training, relative_path, exist_check, use_prefix_id) def get_velodyne_path(idx, prefix, training=True, relative_path=True, exist_check=True, use_prefix_id=False): return get_kitti_info_path(idx, prefix, 'velodyne', '.bin', training, relative_path, exist_check, use_prefix_id) def get_calib_path(idx, prefix, training=True, relative_path=True, exist_check=True, use_prefix_id=False): return get_kitti_info_path(idx, prefix, 'calib', '.txt', training, relative_path, exist_check, use_prefix_id) def get_pose_path(idx, prefix, training=True, relative_path=True, exist_check=True, use_prefix_id=False): return get_kitti_info_path(idx, prefix, 'pose', '.txt', training, relative_path, exist_check, use_prefix_id) def get_label_anno(label_path): annotations = {} annotations.update({ 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [] }) with open(label_path, 'r') as f: lines = f.readlines() # if len(lines) == 0 or len(lines[0]) < 15: # content = [] # else: content = [line.strip().split(' ') for line in lines] num_objects = len([x[0] for x in content if x[0] != 'DontCare']) annotations['name'] = np.array([x[0] for x in content]) num_gt = len(annotations['name']) annotations['truncated'] = np.array([float(x[1]) for x in content]) annotations['occluded'] = np.array([int(x[2]) for x in content]) annotations['alpha'] = np.array([float(x[3]) for x in content]) annotations['bbox'] = np.array([[float(info) for info in x[4:8]] for x in content]).reshape(-1, 4) # dimensions will convert hwl format to standard lhw(camera) format. annotations['dimensions'] = np.array([[float(info) for info in x[8:11]] for x in content ]).reshape(-1, 3)[:, [2, 0, 1]] annotations['location'] = np.array([[float(info) for info in x[11:14]] for x in content]).reshape(-1, 3) annotations['rotation_y'] = np.array([float(x[14]) for x in content]).reshape(-1) if len(content) != 0 and len(content[0]) == 16: # have score annotations['score'] = np.array([float(x[15]) for x in content]) else: annotations['score'] = np.zeros((annotations['bbox'].shape[0], )) index = list(range(num_objects)) + [-1] * (num_gt - num_objects) annotations['index'] = np.array(index, dtype=np.int32) annotations['group_ids'] = np.arange(num_gt, dtype=np.int32) return annotations def _extend_matrix(mat): mat = np.concatenate([mat, np.array([[0., 0., 0., 1.]])], axis=0) return mat def get_kitti_image_info(path, training=True, label_info=True, velodyne=False, calib=False, image_ids=7481, extend_matrix=True, num_worker=8, relative_path=True, with_imageshape=True): """ KITTI annotation format version 2: { [optional]points: [N, 3+] point cloud [optional, for kitti]image: { image_idx: ... image_path: ... image_shape: ... } point_cloud: { num_features: 4 velodyne_path: ... } [optional, for kitti]calib: { R0_rect: ... Tr_velo_to_cam: ... P2: ... } annos: { location: [num_gt, 3] array dimensions: [num_gt, 3] array rotation_y: [num_gt] angle array name: [num_gt] ground truth name array [optional]difficulty: kitti difficulty [optional]group_ids: used for multi-part object } } """ root_path = Path(path) if not isinstance(image_ids, list): image_ids = list(range(image_ids)) def map_func(idx): info = {} pc_info = {'num_features': 4} calib_info = {} image_info = {'image_idx': idx} annotations = None if velodyne: pc_info['velodyne_path'] = get_velodyne_path( idx, path, training, relative_path) image_info['image_path'] = get_image_path(idx, path, training, relative_path) if with_imageshape: img_path = image_info['image_path'] if relative_path: img_path = str(root_path / img_path) image_info['image_shape'] = np.array( io.imread(img_path).shape[:2], dtype=np.int32) if label_info: label_path = get_label_path(idx, path, training, relative_path) if relative_path: label_path = str(root_path / label_path) annotations = get_label_anno(label_path) info['image'] = image_info info['point_cloud'] = pc_info if calib: calib_path = get_calib_path( idx, path, training, relative_path=False) with open(calib_path, 'r') as f: lines = f.readlines() P0 = np.array([float(info) for info in lines[0].split(' ')[1:13] ]).reshape([3, 4]) P1 = np.array([float(info) for info in lines[1].split(' ')[1:13] ]).reshape([3, 4]) P2 = np.array([float(info) for info in lines[2].split(' ')[1:13] ]).reshape([3, 4]) P3 = np.array([float(info) for info in lines[3].split(' ')[1:13] ]).reshape([3, 4]) if extend_matrix: P0 = _extend_matrix(P0) P1 = _extend_matrix(P1) P2 = _extend_matrix(P2) P3 = _extend_matrix(P3) R0_rect = np.array([ float(info) for info in lines[4].split(' ')[1:10] ]).reshape([3, 3]) if extend_matrix: rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype) rect_4x4[3, 3] = 1. rect_4x4[:3, :3] = R0_rect else: rect_4x4 = R0_rect Tr_velo_to_cam = np.array([ float(info) for info in lines[5].split(' ')[1:13] ]).reshape([3, 4]) Tr_imu_to_velo = np.array([ float(info) for info in lines[6].split(' ')[1:13] ]).reshape([3, 4]) if extend_matrix: Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam) Tr_imu_to_velo = _extend_matrix(Tr_imu_to_velo) calib_info['P0'] = P0 calib_info['P1'] = P1 calib_info['P2'] = P2 calib_info['P3'] = P3 calib_info['R0_rect'] = rect_4x4 calib_info['Tr_velo_to_cam'] = Tr_velo_to_cam calib_info['Tr_imu_to_velo'] = Tr_imu_to_velo info['calib'] = calib_info if annotations is not None: info['annos'] = annotations add_difficulty_to_annos(info) return info with futures.ThreadPoolExecutor(num_worker) as executor: image_infos = executor.map(map_func, image_ids) return list(image_infos) def get_waymo_image_info(path, training=True, label_info=True, velodyne=False, calib=False, pose=False, image_ids=7481, extend_matrix=True, num_worker=1, relative_path=True, with_imageshape=True, max_sweeps=5): """ Waymo annotation format version like KITTI: { [optional]points: [N, 3+] point cloud [optional, for kitti]image: { image_idx: ... image_path: ... image_shape: ... } point_cloud: { num_features: 6 velodyne_path: ... } [optional, for kitti]calib: { R0_rect: ... Tr_velo_to_cam0: ... P0: ... } annos: { location: [num_gt, 3] array dimensions: [num_gt, 3] array rotation_y: [num_gt] angle array name: [num_gt] ground truth name array [optional]difficulty: kitti difficulty [optional]group_ids: used for multi-part object } } """ root_path = Path(path) if not isinstance(image_ids, list): image_ids = list(range(image_ids)) def map_func(idx): print(f"Sample idx:{idx}") info = {} pc_info = {'num_features': 6} calib_info = {} image_info = {'image_idx': idx} annotations = None if velodyne: pc_info['velodyne_path'] = get_velodyne_path( idx, path, training, relative_path, use_prefix_id=True) points = np.fromfile( Path(path) / pc_info['velodyne_path'], dtype=np.float32) points = np.copy(points).reshape(-1, pc_info['num_features']) info['timestamp'] = np.int64(points[0, -1]) # values of the last dim are all the timestamp image_info['image_path'] = get_image_path( idx, path, training, relative_path, info_type='image_0', use_prefix_id=True) if with_imageshape: image_info['image_shape'] = np.array([1,1], dtype=np.int32) #img_path = image_info['image_path'] #if relative_path: # img_path = str(root_path / img_path) #image_info['image_shape'] = np.array( # io.imread(img_path).shape[:2], dtype=np.int32) if label_info: label_path = get_label_path( idx, path, training, relative_path, info_type='label_all', use_prefix_id=True) if relative_path: label_path = str(root_path / label_path) annotations = get_label_anno(label_path) info['image'] = image_info info['point_cloud'] = pc_info if calib: calib_path = get_calib_path( idx, path, training, relative_path=False, use_prefix_id=True) with open(calib_path, 'r') as f: lines = f.readlines() P0 = np.array([float(info) for info in lines[0].split(' ')[1:13] ]).reshape([3, 4]) P1 = np.array([float(info) for info in lines[1].split(' ')[1:13] ]).reshape([3, 4]) P2 = np.array([float(info) for info in lines[2].split(' ')[1:13] ]).reshape([3, 4]) P3 = np.array([float(info) for info in lines[3].split(' ')[1:13] ]).reshape([3, 4]) P4 = np.array([float(info) for info in lines[4].split(' ')[1:13] ]).reshape([3, 4]) if extend_matrix: P0 = _extend_matrix(P0) P1 = _extend_matrix(P1) P2 = _extend_matrix(P2) P3 = _extend_matrix(P3) P4 = _extend_matrix(P4) R0_rect = np.array([ float(info) for info in lines[5].split(' ')[1:10] ]).reshape([3, 3]) if extend_matrix: rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype) rect_4x4[3, 3] = 1. rect_4x4[:3, :3] = R0_rect else: rect_4x4 = R0_rect Tr_velo_to_cam = np.array([ float(info) for info in lines[6].split(' ')[1:13] ]).reshape([3, 4]) if extend_matrix: Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam) calib_info['P0'] = P0 calib_info['P1'] = P1 calib_info['P2'] = P2 calib_info['P3'] = P3 calib_info['P4'] = P4 calib_info['R0_rect'] = rect_4x4 calib_info['Tr_velo_to_cam'] = Tr_velo_to_cam info['calib'] = calib_info if pose: pose_path = get_pose_path( idx, path, training, relative_path=False, use_prefix_id=True) info['pose'] = np.loadtxt(pose_path) if annotations is not None: info['annos'] = annotations info['annos']['camera_id'] = info['annos'].pop('score') add_difficulty_to_annos(info) sweeps = [] prev_idx = idx while len(sweeps) < max_sweeps: prev_info = {} prev_idx -= 1 prev_info['velodyne_path'] = get_velodyne_path( prev_idx, path, training, relative_path, exist_check=False, use_prefix_id=True) if_prev_exists = osp.exists( Path(path) / prev_info['velodyne_path']) if if_prev_exists: prev_points = np.fromfile( Path(path) / prev_info['velodyne_path'], dtype=np.float32) prev_points = np.copy(prev_points).reshape( -1, pc_info['num_features']) prev_info['timestamp'] = np.int64(prev_points[0, -1]) prev_pose_path = get_pose_path( prev_idx, path, training, relative_path=False, use_prefix_id=True) prev_info['pose'] = np.loadtxt(prev_pose_path) sweeps.append(prev_info) else: break info['sweeps'] = sweeps return info with futures.ThreadPoolExecutor(num_worker) as executor: image_infos = executor.map(map_func, image_ids) return list(image_infos) def kitti_anno_to_label_file(annos, folder): folder = Path(folder) for anno in annos: image_idx = anno['metadata']['image_idx'] label_lines = [] for j in range(anno['bbox'].shape[0]): label_dict = { 'name': anno['name'][j], 'alpha': anno['alpha'][j], 'bbox': anno['bbox'][j], 'location': anno['location'][j], 'dimensions': anno['dimensions'][j], 'rotation_y': anno['rotation_y'][j], 'score': anno['score'][j], } label_line = kitti_result_line(label_dict) label_lines.append(label_line) label_file = folder / f'{get_image_index_str(image_idx)}.txt' label_str = '\n'.join(label_lines) with open(label_file, 'w') as f: f.write(label_str) def add_difficulty_to_annos(info): min_height = [40, 25, 25] # minimum height for evaluated groundtruth/detections max_occlusion = [ 0, 1, 2 ] # maximum occlusion level of the groundtruth used for evaluation max_trunc = [ 0.15, 0.3, 0.5 ] # maximum truncation level of the groundtruth used for evaluation annos = info['annos'] dims = annos['dimensions'] # lhw format bbox = annos['bbox'] height = bbox[:, 3] - bbox[:, 1] occlusion = annos['occluded'] truncation = annos['truncated'] diff = [] easy_mask = np.ones((len(dims), ), dtype=np.bool) moderate_mask = np.ones((len(dims), ), dtype=np.bool) hard_mask = np.ones((len(dims), ), dtype=np.bool) i = 0 for h, o, t in zip(height, occlusion, truncation): if o > max_occlusion[0] or h <= min_height[0] or t > max_trunc[0]: easy_mask[i] = False if o > max_occlusion[1] or h <= min_height[1] or t > max_trunc[1]: moderate_mask[i] = False if o > max_occlusion[2] or h <= min_height[2] or t > max_trunc[2]: hard_mask[i] = False i += 1 is_easy = easy_mask is_moderate = np.logical_xor(easy_mask, moderate_mask) is_hard = np.logical_xor(hard_mask, moderate_mask) for i in range(len(dims)): if is_easy[i]: diff.append(0) elif is_moderate[i]: diff.append(1) elif is_hard[i]: diff.append(2) else: diff.append(-1) annos['difficulty'] = np.array(diff, np.int32) return diff def kitti_result_line(result_dict, precision=4): prec_float = '{' + ':.{}f'.format(precision) + '}' res_line = [] all_field_default = OrderedDict([ ('name', None), ('truncated', -1), ('occluded', -1), ('alpha', -10), ('bbox', None), ('dimensions', [-1, -1, -1]), ('location', [-1000, -1000, -1000]), ('rotation_y', -10), ('score', 0.0), ]) res_dict = [(key, None) for key, val in all_field_default.items()] res_dict = OrderedDict(res_dict) for key, val in result_dict.items(): if all_field_default[key] is None and val is None: raise ValueError('you must specify a value for {}'.format(key)) res_dict[key] = val for key, val in res_dict.items(): if key == 'name': res_line.append(val) elif key in ['truncated', 'alpha', 'rotation_y', 'score']: if val is None: res_line.append(str(all_field_default[key])) else: res_line.append(prec_float.format(val)) elif key == 'occluded': if val is None: res_line.append(str(all_field_default[key])) else: res_line.append('{}'.format(val)) elif key in ['bbox', 'dimensions', 'location']: if val is None: res_line += [str(v) for v in all_field_default[key]] else: res_line += [prec_float.format(v) for v in val] else: raise ValueError('unknown key. supported key:{}'.format( res_dict.keys())) return ' '.join(res_line)
the-stack_0_17358
import os import queue import sys from time import time import sounddevice as sd import soundfile as sf from PySide2.QtCore import QObject, Signal from ..models.ActualProjectModel import ActualProjectModel as actual_project from . import file as fileutils class MicWorker(QObject): update_volume = Signal(object) finished = Signal(bool) @staticmethod def log(msg): print(f'[MicWorker] {msg}') def config_mic(self, input_device, buffer=0): """[summary] Args: input_device ([type]): index of the actual input mic. fs (int, optional): Sampling frequency 44.1 kHz. buffer (int, optional): Defaults to 0 => automatic blocksize """ self.io = (input_device, sd.default.device[1]) self.fs = int(sd.query_devices()[input_device]['default_samplerate']) self.buffer = buffer self.q = queue.Queue() self._running = False self._rec = False def rec(self): self.log("Start recording!") self.start_time = time() self._rec = True def stop_rec(self): self.log("Stopping rec...") self._rec = False self._running = False def stop(self): self.error = True self._running = False # to raise the Exception def run(self): self.error = False self.log("Running!") self._running = True self.stream = sd.Stream(device=self.io, channels=2, samplerate=self.fs, blocksize=self.buffer, callback=self.callback) path = os.path.join(actual_project.project_location, 'Audio Files') fileutils.mkdir(path) self.file_stream = sf.SoundFile(os.path.join(path, 'audio.wav'), mode='w', samplerate=self.fs, channels=2) try: with self.file_stream as file: with self.stream: while self._running: if self._rec: file.write(self.q.get()) else: self.q.get() if not self._running: raise KeyboardInterrupt("Recording stopped!") except KeyboardInterrupt as e: self.log(e) except Exception as e: self.log("Unexpected Exception:", e) if not self.error: elapsed = time()-self.start_time print(f' -> Time spent recording: {round(elapsed,2)}s') print(f' -> fs = {self.fs}') print( f' -> Theoretical num of samples => {round(elapsed*self.fs)}') self.finished.emit(self.error) def callback(self, indata, outdata, frames, time, status): """This is called (from a separate thread) for each audio block.""" if status: print(status, file=sys.stderr) # outdata[:] = indata # self.update_volume.emit(indata.copy()) # print(indata) self.q.put(indata.copy())
the-stack_0_17359
import cv2 # Chapter 1 - Reading in Images, Videos, and WebCam if __name__ == '__main__': """ print("Package imported") # reading in an image file img = cv2.imread('static/mugshot.png') # showing an image cv2.imshow("Output", img) # delaying the amount of time the image stays cv2.waitKey(7000) """ """ # reading in a video file cap = cv2.VideoCapture('static/forest.mov') # display the video while True: # read in one image frame from thr video at a time sucess, img = cap.read() cv2.imshow("Video", img) # event-driven loop early exit if cv2.waitKey(1) & 0xFF == ord('q'): break """ # use the webcam for video cam = cv2.VideoCapture(0) # set the dimensions of the video to take cam.set(3, 640) # 3 is for the width cam.set(4, 480) # 4 is for the height cam.set(10, 100) # 10 is for brightness settings # display the video from the camera - same as before while True: # read in one image frame from thr video at a time sucess, img = cam.read() cv2.imshow("Video", img) # event-driven loop early exit if cv2.waitKey(1) & 0xFF == ord('q'): break