filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_20800
# //////////////////////// Node Class ////////////////////////// class Node: def __init__(self, value): self.value = value self.next = None # //////////////////////// Stack Class ////////////////////////// class Stack: def __init__(self): self.top = None def push(self, value): # Create New Node node = Node(value) if self.top: node.next = self.top self.top = node def pop(self): if self.top == None: raise AttributeError("Stack is empty") temp = self.top.value self.top = self.top.next return(temp) def peek(self): if self.top == None: raise AttributeError("Stack is empty.") return self.top.value def isEmpty(self): return self.top == None # //////////////////////// PseudoQueue Class ////////////////////////// class PseudoQueue: def __init__(self): self.stack_En=Stack() self.stack_De=Stack() def enqueue(self,value): self.stack_En.push(value) def dequeue(self): pop_item = None if self.stack_En.peek() == None : return "Queue is Empty" while (self.stack_En.top): self.stack_De.push(self.stack_En.pop()) pop_item = self.stack_De.pop() while (self.stack_De.top): self.stack_En.push(self.stack_De.pop()) return pop_item def print_(self): temp = self.stack_En.top while (temp): print(temp.value) temp = temp.next if __name__ == "__main__": aghyad = PseudoQueue() aghyad.enqueue(5) aghyad.enqueue(6) aghyad.enqueue(77) aghyad.dequeue() aghyad.print_()
the-stack_0_20801
try: from nrgpy import logger except ImportError: pass from datetime import datetime from nrgpy.utils.utilities import affirm_directory from .auth import nrg_api, export_url import os import requests import zipfile class nrg_api_export(nrg_api): """Uses NRG hosted web-based API to download data in text format To sign up for the service, go to https://services.nrgsystems.com/ Parameters ---------- out_dir : str path to save exported data out_file : str (optional) filename to save serial_number : str or int serial number of data logger (like, 820612345) start_date : str "YYYY-MM-DD HH:MM:SS" format, if just date it will return the whole day times are in logger local time end_date : str "YYYY-MM-DD HH:MM:SS" format, if just date it will return the whole day times are in logger local time client_id : str provided by NRG Systems client_secret : str provided by NRG Systems save_file : bool (True) whether to save the result to file nec_file : str, optional path to NEC file for custom export formatting text_timestamps : bool get export data with text timestamps instead of datetime export_type : str [meas], samples, diag, comm Returns ------- object export object that includes an nrgpy reader object Examples -------- Download 3 days of data with an NEC file applied >>> import nrgpy >>> client_id = "contact [email protected] for access" >>> client_secret = "contact [email protected] for access" >>> exporter = nrgpy.nrg_api_export( client_id=client_id, client_secret=client_secret, out_dir=txt_dir, nec_file='12vbat.nec', serial_number=820600019, start_date="2020-05-01", end_date="2020-05-03", text_timestamps=False, save_file=False ) >>> reader = exporter.reader >>> reader.format_site_data() >>> if reader: >>> print(f"Site number : {reader.site_number}") >>> print(f"Site description : {reader.site_description}") >>> reader.interval_check = nrgpy.check_intervals(reader.data) >>> else: >>> print("unable to get reader") """ def __init__(self, out_dir='', serial_number='', out_file='', start_date='2014-01-01', end_date='2023-12-31', client_id='', client_secret='', nec_file='', export_type='meas', text_timestamps=False, save_file=True, **kwargs): super().__init__(client_id, client_secret) self.txt_file = f'{serial_number}_{start_date}_{end_date}.txt'.replace(':', '-').replace(' ', '_') self.filepath = os.path.join(out_dir, self.txt_file.replace('txt', 'zip')) self.out_dir = out_dir self.out_file = out_file affirm_directory(self.out_dir) # self.serial_number = str(serial_number)[-5:] # removing... no longer necessary 2021-01-14 self.serial_number = serial_number self.start_date = start_date self.end_date = end_date self.nec_file = nec_file self.export_type = export_type self.text_timestamps = text_timestamps if self.nec_file: self.encoded_nec_bytes = self.prepare_file_bytes(self.nec_file) else: self.encoded_nec_bytes = '' self.save_file = save_file self.reader = self.export() def export(self): from nrgpy.read.sympro_txt import sympro_txt_read self.headers = {"Authorization": "Bearer " + self.session_token} self.data = { 'serialnumber': self.serial_number, # 'sitenumber': self.site_number, 'startdate': self.start_date, 'enddate': self.end_date, 'exporttype': self.export_type, 'necfilebytes': self.encoded_nec_bytes } self.request_time = datetime.now() self.resp = requests.post(data=self.data, url=export_url, headers=self.headers) self.request_duration = datetime.now() - self.request_time if self.resp.status_code == 200: with open(self.filepath, 'wb') as f: f.write(self.resp.content) with zipfile.ZipFile(self.filepath, 'r') as z: data_file = z.namelist()[0] z.extractall(self.out_dir) reader = sympro_txt_read( filename=os.path.join(self.out_dir, data_file), text_timestamps=self.text_timestamps ) reader.format_site_data() try: self.serial_number = reader.logger_sn self.site_number = reader.site_number except AttributeError: pass os.remove(self.filepath) os.remove(os.path.join(self.out_dir, data_file)) if self.save_file: if not self.out_file: self.out_file = f'{self.site_number}_{self.start_date}_{self.end_date}.txt'.replace(':', '.').replace(' ', '') else: self.out_file = os.path.join(self.out_dir, self.txt_file) reader.output_txt_file(standard=True, out_file=self.out_file) del self.data['necfilebytes'] self.data['nec_file'] = self.nec_file reader.post_json = self.data logger.info(f"export created") logger.info(f"export took {self.request_duration}") return reader else: logger.error(f"export not created") logger.debug(f"{self.resp.status_code} | {self.resp.reason}") logger.debug(self.resp.text.split(':')[1].split('"')[1]) print(self.resp.status_code) print(self.resp.reason) return False
the-stack_0_20802
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 18 2021 CO2 emissions for MSOAs or LSOAs combining 2 years at a time, IO part adapted from code by Anne Owen @author: lenakilian """ import pandas as pd import pickle import LCFS_functions as lcfs import copy as cp import numpy as np import demand_functions as dm df = pd.DataFrame def make_area_footprint(geog, first_year, last_year, working_directory): """ Claculate consumption-based household GHG emissions for MSOAs or LSOAs from the LCFS (emissios calculated in LCFS_aggregation_combined_years.py) and the UKMRIO 2020 geog = LSOA or MSOA as str first_year = first year to calculate footprint as int last_year = last year to calculate footprint as int working_directory = full working directory as str (without last '/') """ # create data directory from working directory data_directory = working_directory + "/data/" ############# # load data # ############# # load IO data from UKMRIO meta = pickle.load(open(eval("r'" + data_directory + "raw/UKMRIO_2020/meta.p'"), "rb" )) # load household spends hhdspend = pickle.load(open(eval("r'" + data_directory + "processed/LCFS/lcfsXoac/" + geog + "_expenditure.p'"), "rb" )) # create year lists years = list(hhdspend.keys()) # load populations pop = {} for year in years: hhdspend[year] = hhdspend[year].drop_duplicates() pop[year] = hhdspend[year][['population']] / 1000 hhdspend[year] = hhdspend[year].iloc[:,1:].apply(lambda x: x * hhdspend[year]['population']) # load and clean up concs to make it usable # these translate IO data sectors to LCFS products/services #concs_dict = pd.read_excel(eval("r'" + data_directory + "raw/Concordances/COICOP_LCF_concs.xlsx'"), sheet_name=None) concs_dict2 = pd.read_excel(eval("r'" + data_directory + "raw/Concordances/ONS_to_COICOP_LCF_concs.xlsx'"), sheet_name=None) for dictionary in ['concs_dict2']: #'concs_dict', concs = eval(dictionary) for item in concs.keys(): concs[item] = concs[item].set_index('Unnamed: 0') ####################### # aggregate emissions # ####################### # get mean from 2 years # calculate differnece between years in household data to calculate means for other vairables if len(years) > 1: difference = years[1] - years[0] else: difference = 0 # calculate means for UKMRIO data ukmrio = {}; means = {} for data in ['ghg', 'uk_ghg_direct', 'S', 'U', 'Y']: ukmrio[data] = pickle.load(open(eval("r'" + data_directory + "raw/UKMRIO_2020/" + data + ".p'"), "rb" )) means[data] = {} for year in years: temp = [ukmrio[data][year + i] for i in range(difference)] means[data][year] = sum(temp) / difference for year in list(hhdspend.keys()): # use concs temp = np.dot(means['Y'][year], concs_dict2['C43_to_C40']) means['Y'][year] = df(temp, index = means['Y'][year].index, columns = concs_dict2['C43_to_C40'].columns) total_Yhh_106 = dm.make_Yhh_106(means['Y'], list(hhdspend.keys()), meta) coicop_exp_tot = lcfs.expected_totals(hhdspend, list(hhdspend.keys()), concs_dict2, total_Yhh_106) yhh_wide = lcfs.make_y_hh_307(means['Y'], coicop_exp_tot, list(hhdspend.keys()), concs_dict2, meta) newY = lcfs.make_new_Y(means['Y'], yhh_wide, meta, list(hhdspend.keys())) ylcf_props = lcfs.make_ylcf_props(hhdspend, list(hhdspend.keys())) COICOP_ghg = lcfs.makefoot(means['S'], means['U'], newY, means['ghg'], list(hhdspend.keys())) Total_ghg = {}; PC_ghg = {} for year in list(hhdspend.keys()): COICOP_ghg[year][160] += means['uk_ghg_direct'][year][1] COICOP_ghg[year][101] += means['uk_ghg_direct'][year][0] # this gives GHG emissions for the groups, break down to per capita emissions temp = np.dot(ylcf_props[year], np.diag(COICOP_ghg[year])) Total_ghg[year] = df(temp, index=hhdspend[year].index, columns=hhdspend[year].columns) Total_ghg[year] = Total_ghg[year].join(pop[year]) PC_ghg[year] = cp.copy(Total_ghg[year]) PC_ghg[year].iloc[:,:-1] = PC_ghg[year].iloc[:,:-1].apply(lambda x: x/PC_ghg[year]['population']) return(PC_ghg) ################# # save datasets # ################# def save_footprint_data(PC_ghg, working_directory, geog): """ Save per capita GHG emissions of UK MSOAs or LSOAs PC_ghg = per capita emissions of UK MSOAs or LSOAs as dictrionary containing pandas.DataFrame working_directory = full working directory as str (without last '/') """ data_directory = working_directory + "/data/" years = list(PC_ghg.keys()) if len(years) > 1: difference = years[1] - years[0] else: difference = 0 for year in years: if difference > 1: year_str = str(year) + '-' + str(year + difference - 1) else: year_str = str(year) PC_ghg[year].to_csv(eval("r'" + data_directory + "processed/GHG_Estimates/" + geog + '_' + year_str + ".csv'")) print("Saved: " + data_directory + "processed/GHG_Estimates/" + geog + '_' + year_str + ".csv") # code run in run_all.py
the-stack_0_20803
"""Module to handle all of the graphics components. 'rendering' converts a display specification (such as :0) into an actual Display object. Pyglet only supports multiple Displays on Linux. """ from datetime import datetime import math import os from random import randint from time import strftime from gym.utils import reraise import numpy as np from scipy.misc import imresize as resize try: import pyglet except ImportError as error: reraise( suffix="Install pyglet with 'pip install pyglet'. If you want to just " "install all Gym dependencies, run 'pip install -e .[all]' or " "'pip install gym[all]'.") try: from pyglet.gl import * LAYER_BACKGROUND = pyglet.graphics.OrderedGroup(0) LAYER_FOREGROUND = pyglet.graphics.OrderedGroup(1) LAYER_TOP = pyglet.graphics.OrderedGroup(2) except pyglet.canvas.xlib.NoSuchDisplayException as error: print("Import error NSDE! You will not be able to render --> %s" % error) except ImportError as error: print("Import error GL! You will not be able to render --> %s" % error) from . import constants from . import utility __location__ = os.path.dirname(os.path.realpath(__file__)) RESOURCE_PATH = os.path.join(__location__, constants.RESOURCE_DIR) class Viewer(object): ''' Base class for the graphics module. Used to share common functionality between the different rendering engines. ''' def __init__(self): self.window = None self.display = None self._agents = [] self._agent_count = 0 self._board_state = None self._batch = None self.window = None self._step = 0 self._agent_view_size = None self._is_partially_observable = False self.isopen = False glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) def set_board(self, state): self._board_state = state def set_bombs(self, bombs): self._bombs = bombs def set_agents(self, agents): self._agents = agents self._agent_count = len(agents) def set_step(self, step): self._step = step def close(self): self.window.close() self.isopen = False def window_closed_by_user(self): self.isopen = False def save(self, path): now = datetime.now() filename = now.strftime('%m-%d-%y_%H-%M-%S_') + str( self._step) + '.png' path = os.path.join(path, filename) pyglet.image.get_buffer_manager().get_color_buffer().save(path) class PixelViewer(Viewer): '''Renders the game as a set of square pixels''' def __init__(self, display=None, board_size=11, agents=[], partially_observable=False, agent_view_size=None, game_type=None): super().__init__() from gym.envs.classic_control import rendering self.display = rendering.get_display(display) self._board_size = board_size self._agent_count = len(agents) self._agents = agents self._is_partially_observable = partially_observable self._agent_view_size = agent_view_size def render(self): frames = self.build_frame() if self.window is None: height, width, _channels = frames.shape self.window = pyglet.window.Window( width=4 * width, height=4 * height, display=self.display, vsync=False, resizable=True) self.width = width self.height = height self.isopen = True @self.window.event def on_resize(width, height): '''Registers an event handler with a pyglet window to resize the window''' self.width = width self.height = height @self.window.event def on_close(): ''' Registers an event handler with a pyglet to tell the render engine the window is closed ''' self.isopen = True assert len(frames.shape ) == 3, "You passed in an image with the wrong number shape" image = pyglet.image.ImageData( frames.shape[1], frames.shape[0], 'RGB', frames.tobytes(), pitch=frames.shape[1] * -3) self.window.clear() self.window.switch_to() self.window.dispatch_events() image.blit(0, 0, width=self.window.width, height=self.window.height) self.window.flip() def build_frame(self): board = self._board_state board_size = self._board_size agents = self._agents human_factor = constants.HUMAN_FACTOR rgb_array = self.rgb_array(board, board_size, agents, self._is_partially_observable, self._agent_view_size) all_img = resize( rgb_array[0], (board_size * human_factor, board_size * human_factor), interp='nearest') other_imgs = [ resize( frame, (int(board_size * human_factor / 4), int(board_size * human_factor / 4)), interp='nearest') for frame in rgb_array[1:] ] other_imgs = np.concatenate(other_imgs, 0) img = np.concatenate([all_img, other_imgs], 1) return img @staticmethod def rgb_array(board, board_size, agents, is_partially_observable, agent_view_size): frames = [] all_frame = np.zeros((board_size, board_size, 3)) num_items = len(constants.Item) for row in range(board_size): for col in range(board_size): value = board[row][col] if utility.position_is_agent(board, (row, col)): num_agent = value - num_items if agents[num_agent].is_alive: all_frame[row][col] = constants.AGENT_COLORS[num_agent] else: all_frame[row][col] = constants.ITEM_COLORS[value] all_frame = np.array(all_frame) frames.append(all_frame) for agent in agents: row, col = agent.position my_frame = all_frame.copy() for r in range(board_size): for c in range(board_size): if is_partially_observable and not all([ row >= r - agent_view_size, row < r + agent_view_size, col >= c - agent_view_size, col < c + agent_view_size ]): my_frame[r, c] = constants.ITEM_COLORS[ constants.Item.Fog.value] frames.append(my_frame) return frames class PommeViewer(Viewer): '''The primary render engine for pommerman.''' def __init__(self, display=None, board_size=11, agents=[], partially_observable=False, agent_view_size=None, game_type=None): super().__init__() from gym.envs.classic_control import rendering self.display = rendering.get_display(display) board_height = constants.TILE_SIZE * board_size height = math.ceil(board_height + (constants.BORDER_SIZE * 2) + (constants.MARGIN_SIZE * 3)) width = math.ceil(board_height + board_height / 4 + (constants.BORDER_SIZE * 2) + constants.MARGIN_SIZE*10) self._height = height self._width = width self.window = pyglet.window.Window( width=width, height=height, display=display) self.window.set_caption('Pommerman') self.isopen = True self._board_size = board_size self._resource_manager = ResourceManager(game_type) self._tile_size = constants.TILE_SIZE self._agent_tile_size = (board_height / 4) / board_size self._agent_count = len(agents) self._agents = agents self._game_type = game_type self._is_partially_observable = partially_observable self._agent_view_size = agent_view_size @self.window.event def close(self): '''Pyglet event handler to close the window''' self.window.close() self.isopen = False def render(self): self.window.switch_to() self.window.dispatch_events() self._batch = pyglet.graphics.Batch() background = self.render_background() text = self.render_text() agents = self.render_dead_alive() board = self.render_main_board() agents_board = self.render_agents_board() self._batch.draw() self.window.flip() def render_main_board(self): board = self._board_state size = self._tile_size x_offset = constants.BORDER_SIZE y_offset = constants.BORDER_SIZE top = self.board_top(-constants.BORDER_SIZE - 8) return self.render_board(board, x_offset, y_offset, size, top) def render_agents_board(self): x_offset = self._board_size * self._tile_size + constants.BORDER_SIZE x_offset += constants.MARGIN_SIZE size = self._agent_tile_size agents = [] top = self._height - constants.BORDER_SIZE + constants.MARGIN_SIZE for agent in self._agents: y_offset = agent.agent_id * size * self._board_size + ( agent.agent_id * constants.MARGIN_SIZE) + constants.BORDER_SIZE agent_board = self.agent_view(agent) sprite = self.render_board(agent_board, x_offset, y_offset, size, top) agents.append(sprite) return agents def render_board(self, board, x_offset, y_offset, size, top=0): sprites = [] for row in range(self._board_size): for col in range(self._board_size): x = col * size + x_offset y = top - y_offset - row * size tile_state = board[row][col] if tile_state == constants.Item.Bomb.value: bomb_life = self.get_bomb_life(row, col) tile = self._resource_manager.get_bomb_tile(bomb_life) else: tile = self._resource_manager.tile_from_state_value(tile_state) tile.width = size tile.height = size sprite = pyglet.sprite.Sprite( tile, x, y, batch=self._batch, group=LAYER_FOREGROUND) sprites.append(sprite) return sprites def agent_view(self, agent): if not self._is_partially_observable: return self._board_state agent_view_size = self._agent_view_size state = self._board_state.copy() fog_value = self._resource_manager.fog_value() row, col = agent.position for r in range(self._board_size): for c in range(self._board_size): if self._is_partially_observable and not all([ row >= r - agent_view_size, row <= r + agent_view_size, col >= c - agent_view_size, col <= c + agent_view_size ]): state[r][c] = fog_value return state def render_background(self): image_pattern = pyglet.image.SolidColorImagePattern( color=constants.BACKGROUND_COLOR) image = image_pattern.create_image(self._width, self._height) return pyglet.sprite.Sprite( image, 0, 0, batch=self._batch, group=LAYER_BACKGROUND) def render_text(self): text = [] board_top = self.board_top(y_offset=8) title_label = pyglet.text.Label( 'Pommerman', font_name='Cousine-Regular', font_size=36, x=constants.BORDER_SIZE, y=board_top, batch=self._batch, group=LAYER_TOP) title_label.color = constants.TILE_COLOR text.append(title_label) info_text = '' if self._game_type is not None: info_text += 'Mode: ' + self._game_type.name + ' ' info_text += 'Time: ' + strftime('%b %d, %Y %H:%M:%S') info_text += ' Step: ' + str(self._step) time_label = pyglet.text.Label( info_text, font_name='Arial', font_size=10, x=constants.BORDER_SIZE, y=5, batch=self._batch, group=LAYER_TOP) time_label.color = constants.TEXT_COLOR text.append(time_label) board_right = self.board_right(x_offset=150) acts = self._agents[0].acts best = int(acts[-1]) action = pyglet.text.Label( 'Action-Values', font_name='Arial', font_size=10, x=board_right, y=200, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Stop.name + ': ' + acts[constants.Action.Stop.value], font_name='Arial', font_size=10, x=board_right, y=185, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Stop.value != best else constants.TILE_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Up.name + ': ' + acts[constants.Action.Up.value], font_name='Arial', font_size=10, x=board_right, y=170, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Up.value != best else constants.TILE_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Down.name + ': ' + acts[constants.Action.Down.value], font_name='Arial', font_size=10, x=board_right, y=155, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Down.value != best else constants.TILE_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Left.name + ': ' + acts[constants.Action.Left.value], font_name='Arial', font_size=10, x=board_right, y=140, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Left.value != best else constants.TILE_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Right.name + ': ' + acts[constants.Action.Right.value], font_name='Arial', font_size=10, x=board_right, y=125, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Right.value != best else constants.TILE_COLOR text.append(action) action = pyglet.text.Label( constants.Action.Bomb.name + ': ' + acts[constants.Action.Bomb.value], font_name='Arial', font_size=10, x=board_right, y=110, batch=self._batch, group=LAYER_TOP) action.color = constants.TEXT_COLOR if constants.Action.Bomb.value != best else constants.TILE_COLOR text.append(action) return text def render_dead_alive(self): board_top = self.board_top(y_offset=5) image_size = 30 spacing = 5 dead = self._resource_manager.dead_marker() dead.width = image_size dead.height = image_size sprites = [] if self._game_type is constants.GameType.FFA: agents = self._agents else: agents = [self._agents[i] for i in [0,2,1,3]] for index, agent in enumerate(agents): # weird math to make sure the alignment # is correct. 'image_size + spacing' is an offset # that includes padding (spacing) for each image. # '4 - index' is used to space each agent out based # on where they are in the array based off of their # index. x = self.board_right() - (4 - index) * ( image_size + spacing) y = board_top agent_image = self._resource_manager.agent_image(agent.agent_id) agent_image.width = image_size agent_image.height = image_size sprites.append( pyglet.sprite.Sprite( agent_image, x, y, batch=self._batch, group=LAYER_FOREGROUND)) if agent.is_alive is False: sprites.append( pyglet.sprite.Sprite( dead, x, y, batch=self._batch, group=LAYER_TOP)) return sprites def board_top(self, y_offset=0): return constants.BORDER_SIZE + ( self._board_size * self._tile_size) + y_offset def board_right(self, x_offset=0): return constants.BORDER_SIZE + ( self._board_size * self._tile_size) + x_offset def get_bomb_life(self, row, col): for bomb in self._bombs: x, y = bomb.position if x == row and y == col: return bomb.life class ResourceManager(object): '''Handles sprites and other resources for the PommeViewer''' def __init__(self, game_type): self._index_resources() self._load_fonts() self.images = self._load_images() self.bombs = self._load_bombs() self._fog_value = self._get_fog_index_value() self._is_team = True if game_type == constants.GameType.FFA: self._is_team = False @staticmethod def _index_resources(): # Tell pyglet where to find the resources pyglet.resource.path = [RESOURCE_PATH] pyglet.resource.reindex() @staticmethod def _load_images(): images_dict = constants.IMAGES_DICT for i in range(0, len(images_dict)): image_data = images_dict[i] image = pyglet.resource.image(image_data['file_name']) images_dict[i]['image'] = image return images_dict @staticmethod def _load_bombs(): images_dict = constants.BOMB_DICT for i in range(0, len(images_dict)): image_data = images_dict[i] image = pyglet.resource.image(image_data['file_name']) images_dict[i]['image'] = image return images_dict @staticmethod def _load_fonts(): for i in range(0, len(constants.FONTS_FILE_NAMES)): font_path = os.path.join(RESOURCE_PATH, constants.FONTS_FILE_NAMES[i]) pyglet.font.add_file(font_path) @staticmethod def _get_fog_index_value(): for id, data in constants.IMAGES_DICT.items(): if data['name'] == 'Fog': return id def tile_from_state_value(self, value): if self._is_team and value in range(10, 14): return self.images[value + 10]['image'] return self.images[value]['image'] def agent_image(self, agent_id): if self._is_team: return self.images[agent_id + 24]['image'] return self.images[agent_id + 15]['image'] def dead_marker(self): return self.images[19]['image'] def fog_value(self): return self._fog_value def fog_tile(self): img = self.images[self._fog_value] return img['image'] def get_bomb_tile(self, life): return self.bombs[life - 1]['image']
the-stack_0_20804
import sys from pytest import raises from zeiterfassung import main def test_urlaub(): sys.argv[1:] = [ "--db_path", "/tmp/", "--date", "2018-07-18", "--user", "test_urlaub", "--export", "", "--urlaub" ] db = main(db={}) day = db[2018][7][29][18] assert "urlaub" in day["comment"].lower() assert "start" not in day assert "end" not in day assert "pause" not in day assert day["Tagessaldo"] == "0:00" def test_zeitausgleich(): sys.argv[1:] = [ "--db_path", "/tmp/", "--date", "2018-07-18", "--user", "test_zeitausgleich", "--work_time", "8:00", "--export", "", "--zeitausgleich" ] db = main(db={}) day = db[2018][7][29][18] assert "zeitausgleich" in day["comment"].lower() assert "start" not in day assert "end" not in day assert "pause" not in day assert day["Tagessaldo"] == "-8:00" def test_wochenend(): sys.argv[1:] = [ "--db_path", "/tmp/", "--date", "2018-07-21", "--user", "test_zeitausgleich", "--work_time", "8:00", "--start", "9:00", "--end", "18:00", "--pause", "0", "--export", "" ] db = main(db={}) day = db[2018][7][29][21] assert day["Arbeitszeit"] == day["Tagessaldo"] assert "wochenende" in day["comment"].lower()
the-stack_0_20808
import logging import json import torch from torch.utils.data import DataLoader import hydra from omegaconf import DictConfig, OmegaConf from mtb.data import TACREDDataset, SemEvalDataset, SmilerDataset from mtb.model import MTBModel from mtb.processor import BatchTokenizer, aggregate_batch from mtb.train_eval import train_and_eval from mtb.utils import resolve_relative_path, seed_everything logger = logging.getLogger(__name__) @hydra.main(config_name="config", config_path="configs") def main(cfg: DictConfig) -> None: """ Conducts evaluation given the configuration. Args: cfg: Hydra-format configuration given in a dict. """ resolve_relative_path(cfg) print(OmegaConf.to_yaml(cfg)) seed_everything(cfg.seed) # prepare dataset: parse raw dataset and do some simple pre-processing such as # convert special tokens and insert entity markers entity_marker = True if cfg.variant in ["d", "e", "f"] else False if "tacred" in cfg.train_file.lower(): train_dataset = TACREDDataset(cfg.train_file, entity_marker=entity_marker) eval_dataset = TACREDDataset(cfg.eval_file, entity_marker=entity_marker) layer_norm = False elif "semeval" in cfg.train_file.lower(): train_dataset = SemEvalDataset(cfg.train_file, entity_marker=entity_marker) eval_dataset = SemEvalDataset(cfg.eval_file, entity_marker=entity_marker) layer_norm = True elif "smiler" in cfg.train_file.lower(): train_dataset = SmilerDataset(cfg.train_file, entity_marker=entity_marker) eval_dataset = SmilerDataset(cfg.eval_file, entity_marker=entity_marker) layer_norm = True label_to_id = train_dataset.label_to_id # set dataloader train_loader = DataLoader( train_dataset, batch_size=cfg.batch_size, shuffle=True, pin_memory=True, collate_fn=aggregate_batch, ) eval_loader = DataLoader( eval_dataset, batch_size=cfg.batch_size, shuffle=False, pin_memory=True, collate_fn=aggregate_batch, ) # set a processor that tokenizes and aligns all the tokens in a batch batch_processor = BatchTokenizer( tokenizer_name_or_path=cfg.model, variant=cfg.variant, max_length=cfg.max_length, ) vocab_size = len(batch_processor.tokenizer) # set model and device model = MTBModel( encoder_name_or_path=cfg.model, variant=cfg.variant, layer_norm=layer_norm, vocab_size=vocab_size, num_classes=len(label_to_id), dropout=cfg.dropout, ) device = ( torch.device("cuda", cfg.cuda_device) if cfg.cuda_device > -1 else torch.device("cpu") ) micro_f1, macro_f1 = train_and_eval( model, train_loader, eval_loader, label_to_id, batch_processor, num_epochs=cfg.num_epochs, lr=cfg.lr, device=device, ) logger.info( "Evaluation micro-F1: {:.4f}, macro_f1: {:.4f}.".format(micro_f1, macro_f1) ) # save evaluation results to json with open("./results.json", "w") as f: json.dump({"micro_f1": micro_f1, "macro_f1": macro_f1}, f, indent=4) if __name__ == "__main__": main()
the-stack_0_20809
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions.""" from typing import Optional, Text from absl import logging import jax import jax.numpy as jnp def topk_accuracy( logits: jnp.ndarray, labels: jnp.ndarray, topk: int, ignore_label_above: Optional[int] = None, ) -> jnp.ndarray: """Top-num_codes accuracy.""" assert len(labels.shape) == 1, 'topk expects 1d int labels.' assert len(logits.shape) == 2, 'topk expects 2d logits.' if ignore_label_above is not None: logits = logits[labels < ignore_label_above, :] labels = labels[labels < ignore_label_above] prds = jnp.argsort(logits, axis=1)[:, ::-1] prds = prds[:, :topk] total = jnp.any(prds == jnp.tile(labels[:, jnp.newaxis], [1, topk]), axis=1) return total def softmax_cross_entropy( logits: jnp.ndarray, labels: jnp.ndarray, reduction: Optional[Text] = 'mean', ) -> jnp.ndarray: """Computes softmax cross entropy given logits and one-hot class labels. Args: logits: Logit output values. labels: Ground truth one-hot-encoded labels. reduction: Type of reduction to apply to loss. Returns: Loss value. If `reduction` is `none`, this has the same shape as `labels`; otherwise, it is scalar. Raises: ValueError: If the type of `reduction` is unsupported. """ loss = -jnp.sum(labels * jax.nn.log_softmax(logits), axis=-1) if reduction == 'sum': return jnp.sum(loss) elif reduction == 'mean': return jnp.mean(loss) elif reduction == 'none' or reduction is None: return loss else: raise ValueError(f'Incorrect reduction mode {reduction}') def l2_normalize( x: jnp.ndarray, axis: Optional[int] = None, epsilon: float = 1e-12, ) -> jnp.ndarray: """l2 normalize a tensor on an axis with numerical stability.""" square_sum = jnp.sum(jnp.square(x), axis=axis, keepdims=True) x_inv_norm = jax.lax.rsqrt(jnp.maximum(square_sum, epsilon)) return x * x_inv_norm def l2_weight_regularizer(params): """Helper to do lasso on weights. Args: params: the entire param set. Returns: Scalar of the l2 norm of the weights. """ l2_norm = 0. for mod_name, mod_params in params.items(): if 'norm' not in mod_name: for param_k, param_v in mod_params.items(): if param_k != 'b' not in param_k: # Filter out biases l2_norm += jnp.sum(jnp.square(param_v)) else: logging.warning('Excluding %s/%s from optimizer weight decay!', mod_name, param_k) else: logging.warning('Excluding %s from optimizer weight decay!', mod_name) return 0.5 * l2_norm def regression_loss(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray: """Byol's regression loss. This is a simple cosine similarity.""" normed_x, normed_y = l2_normalize(x, axis=-1), l2_normalize(y, axis=-1) return jnp.sum((normed_x - normed_y)**2, axis=-1) def bcast_local_devices(value): """Broadcasts an object to all local devices.""" devices = jax.local_devices() def _replicate(x): """Replicate an object on each device.""" x = jnp.array(x) return jax.device_put_sharded(len(devices) * [x], devices) return jax.tree_util.tree_map(_replicate, value) def get_first(xs): """Gets values from the first device.""" return jax.tree_map(lambda x: x[0], xs)
the-stack_0_20810
""" drugstone.task.tasks_result This module implements the class :class:`TasksResult` for the drugstone API. :copyright: 2022 Institute for Computational Systems Biology by Prof. Dr. Jan Baumbach :author: Ugur Turhan """ import sys import json import logging from typing import List from .task import Task from .scripts.create_path import create_path from .scripts.make_upsetplot import make_upset_plot class TasksResult: """Represents the results of a list of :class:`Task` objects. get_tasks_list() -> List[:class:`Task`]: Returns the list of tasks. to_dict() -> dict: Returns a dict with the results of the tasks. download_json(path: str, name: str) -> None: Downloads a json file with the results. create_upset_plot() -> None: Opens a new window with an upset plot of the results. """ def __init__(self, tasks: List[Task] = []) -> None: self.__tasks = tasks def get_tasks_list(self) -> List[Task]: """Returns the list of tasks.""" return self.__tasks def to_dict(self) -> dict: """Returns a dict with the results of the tasks.""" d = {} for t in self.__tasks: d[t.get_parameters()["taskId"]] = { "info": t.get_info(), "parameters": t.get_parameters(), "results": t.get_result().to_dict() } return d def download_json(self, path: str = "", name: str = "result") -> None: """Downloads a json file with the results. :param str path: (optional) Path, where to download the file. Defaults to the current path. :param str name: (optional) Name for the file. Defaults to 'result'. """ path = create_path(path, name, "json") with open(path, "x") as f: json.dump(self.to_dict(), f, indent=4) def create_upset_plot(self) -> None: """Opens a new window with an upset plot of the drug results. At least one of the tasks has to be a drug-search. This is only available with python 3.6! """ has_drugs = False for task in self.get_tasks_list(): if task.get_result().get_drugs(): has_drugs = True if has_drugs: if sys.version_info[:2] == (3, 6): logging.info("IMPORTANT: The script pauses for the new window, for the UpSet plot! " + "Close the UpSet plot window, for the script to continue or terminate! ") make_upset_plot(self.to_dict()) else: logging.warn("create_upset_plot() is only compatible with Python 3.6!") else: logging.warn("Something went wrong! " + "At least one task has to be a drug-search. " + "No drugs were found.")
the-stack_0_20812
""" Helpers for parsing methods and attributes. """ import inspect import textwrap from types import MethodType from typing import Any, Dict, List from boto3.resources.base import ServiceResource as Boto3ServiceResource from mypy_boto3_builder.logger import get_logger from mypy_boto3_builder.parsers.docstring_parser.argspec_parser import ArgSpecParser from mypy_boto3_builder.parsers.docstring_parser.docstring_parser import DocstringParser from mypy_boto3_builder.service_name import ServiceName from mypy_boto3_builder.structures.attribute import Attribute from mypy_boto3_builder.structures.method import Method from mypy_boto3_builder.type_maps.docstring_type_map import get_type_from_docstring from mypy_boto3_builder.type_maps.method_argument_map import get_method_arguments_stub from mypy_boto3_builder.type_maps.method_type_map import get_method_type_stub from mypy_boto3_builder.utils.strings import get_class_prefix def get_public_methods(inspect_class: Any) -> Dict[str, MethodType]: """ Extract public methods from any class. Arguments: inspect_class -- Inspect class. Returns: A dictionary of method name and method. """ class_members = inspect.getmembers(inspect_class) methods: Dict[str, MethodType] = {} for name, member in class_members: if not inspect.ismethod(member): continue if name.startswith("_"): continue methods[name] = member return methods def parse_attributes( service_name: ServiceName, resource_name: str, resource: Boto3ServiceResource ) -> List[Attribute]: """ Extract attributes from boto3 resource. Arguments: resource -- boto3 service resource. Returns: A list of Attribute structures. """ result: List[Attribute] = [] if not resource.meta.client: return result if not resource.meta.resource_model: return result service_model = resource.meta.client.meta.service_model if resource.meta.resource_model.shape: shape = service_model.shape_for(resource.meta.resource_model.shape) attributes = resource.meta.resource_model.get_attributes(shape) for name, attribute in attributes.items(): argument_type = get_method_type_stub(service_name, resource_name, "_attributes", name) if argument_type is None: argument_type = get_type_from_docstring(attribute[1].type_name) result.append(Attribute(name, argument_type)) return result def parse_method( parent_name: str, name: str, method: MethodType, service_name: ServiceName ) -> Method: """ Parse method to a structure. Arguments: parent_name -- Parent class name. method -- Inspect method. Returns: Method structure. """ logger = get_logger() docstring = textwrap.dedent(inspect.getdoc(method) or "") method_name = f"{parent_name}.{name}" logger.debug(f"Slow parsing of {method_name}: {len(docstring)} chars") prefix = f"{get_class_prefix(parent_name)}{get_class_prefix(name)}" arg_spec_parser = ArgSpecParser(prefix, service_name) arguments = get_method_arguments_stub(service_name, parent_name, name) if arguments is None: arguments = arg_spec_parser.get_arguments(parent_name, name, method) docstring_parser = DocstringParser(service_name, parent_name, name, arguments) arguments = docstring_parser.get_arguments(docstring) return_type = arg_spec_parser.get_return_type(parent_name, name) if return_type is None: return_type = DocstringParser(service_name, parent_name, name, []).get_return_type( docstring ) return Method(name=name, arguments=arguments, return_type=return_type)
the-stack_0_20813
## postprocessing import numpy as np import sys import pickle import joblib import matplotlib.ticker as ticker sys.dont_write_bytecode = True sys.path.insert(0, '../../') from matplotlib import pyplot as plt from SKDMD.PREP_DATA_SRC.source_code.lib.utilities import mkdir from scipy.io import loadmat plt.style.use('siads') plt.locator_params(axis='y', nbins=6) plt.locator_params(axis='x', nbins=10) FIG_SIZE = (8,8) N_CPU = joblib.cpu_count() def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') b = int(b) return r'${} \times 10^{{{}}}$'.format(a, b) class ClassKoopmanPPS(object): def __init__(self, pps_dir, eval_dir, model_dir, params, draw_eigen_function_plot=True, compare_against_spdmd=False): self.pps_dir = pps_dir self.eval_dir = eval_dir self.model_dir = model_dir mkdir(self.pps_dir) self.params = params self.type = None self.dt = None self.index_selected_in_full = None self.draw_eigen_function_plot = draw_eigen_function_plot self.compare_against_spdmd = compare_against_spdmd def pps_eigenfunction(self): raise NotImplementedError("Postprocessing for eigenfunction need to be implemented!") def plot_eigenfunction_given_index_and_path(self, index_of_eigens, save_path): raise NotImplementedError("Postprocessing for eigenfunction need to be implemented!") def pps_eigenvalues(self): raise NotImplementedError("Postprocessing for eigenvalues need to be implemented!") def pps_eigenmodes_eval(self): raise NotImplementedError("Postprocessing for eigenmodes evaluation need to be implemented!") def pps_scatter_plot_eigenvalue(self, index_selected_array, path_to_save,zoomed_X_Y_max, case_specific_frequency_dict): raise NotImplementedError("Postprocessing for plotting scatter eigenvalues evaluation need to be implemented!") def pps_sweep_alpha(self, zoomed_X_Y_max=None, case_specific_frequency_dict={'draw_st':False}): fig_data = np.load(self.eval_dir + '/MultiTaskElasticNet_result.npz') alphas_enet = fig_data['alphas_enet'] coefs_enet_comp = fig_data['coefs_enet_comp'] # loop over all alpha for ii, alpha in enumerate(alphas_enet): print("current alpha = ", alpha, " index = ",ii) # 1 make directory alpha_dir_eval = self.eval_dir + '/sweep/sweep_alpha_' + str(alpha) alpha_dir = self.pps_dir + '/sweep_alpha_' + str(alpha) mkdir(alpha_dir) # 2 compute the index of selected modes non_zero_index_bool_array = np.linalg.norm(coefs_enet_comp[:, :, ii],axis=0) > 0 further_selected_index_array = self.index_selected_in_full[non_zero_index_bool_array] print("number of non-zero coef = ", len(further_selected_index_array)) if len(further_selected_index_array) > 0: # 3 draw the eigenvalue selected plot self.pps_scatter_plot_eigenvalue(index_selected_array=further_selected_index_array, path_to_save=alpha_dir, zoomed_X_Y_max=zoomed_X_Y_max, case_specific_frequency_dict=case_specific_frequency_dict) # 4. load and draw trajectory comparison # load npz data from eval directory for parameter sweep fig_data = np.load(alpha_dir_eval + '/save_trj_comparison.npz') true_trajectory = fig_data['ttrj'] pred_trajectory = fig_data['ptrj'] true_tsnap = fig_data['tt'] self.pps_plot_trajectory_given_pred(true_tsnap=true_tsnap, pred_trajectory=pred_trajectory, true_trajectory=true_trajectory, path_to_save_fig=alpha_dir) # 5. load and draw eigenfunction plot if self.draw_eigen_function_plot: self.plot_eigenfunction_given_index_and_path(index_of_eigens=further_selected_index_array, save_path=alpha_dir) return def pps_plot_trajectory_given_pred(self, true_tsnap, pred_trajectory, true_trajectory, path_to_save_fig): # # plot num_components = true_trajectory.shape[1] for i_comp in range(num_components): # plt.figure(figsize=FIG_SIZE) plt.figure(figsize=(8, 4)) plt.plot(true_tsnap, true_trajectory[:, i_comp], 'k-', label='true') plt.plot(true_tsnap, pred_trajectory[:, i_comp], 'r--',label='pred') plt.xlabel('time',fontsize = 32) plt.ylabel(r'$x_{' + str(i_comp + 1) + '}$',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(path_to_save_fig + '/component_' + str(i_comp + 1) + '.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() print('finished drawing E/KDMD prediction plot') ## if comparison against spdmd is needed... if self.compare_against_spdmd: # load data from matlab solution of SPDMD # # cylinder case # data_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/20_pred.mat') # data_full_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_pred.mat') # data_spdmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_sp_pred.mat') # # ship case # data_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/20_pred.mat') # data_full_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_pred.mat') # data_spdmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_sp_pred.mat') # cylinder re 70 data_spdmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_sp_pred_ship.mat') # ship airwake # dmd_pred = data_dmd['x_list'].T # full_dmd_pred = data_full_dmd['x_list'].T sp_dmd_pred = np.real(data_spdmd['x_list_2'].T[:,:-1]) # plot them others for i_comp in range(num_components): # plt.figure(figsize=FIG_SIZE) plt.figure(figsize=(8,4)) plt.plot(true_tsnap[:-1], true_trajectory[:-1, i_comp], 'k-', label='true') plt.plot(true_tsnap[:-1], pred_trajectory[:-1, i_comp], 'r--', label='spKDMD') # plt.plot(true_tsnap[1:], dmd_pred[1:, i_comp], 'c--', label='DMD r=20') # plt.plot(true_tsnap[:-1], full_dmd_pred[:-1, i_comp], 'g--', label='full DMD (r=200)') plt.plot(true_tsnap[:], sp_dmd_pred[:, i_comp], 'b--', label='spDMD r=200') plt.xlabel('time', fontsize=32) plt.ylabel(r'$x_{' + str(i_comp + 1) + '}$', fontsize=32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(path_to_save_fig + '/vs_spdmd_component_' + str(i_comp + 1) + '.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def pps_component_trj(self): ## LOAD SaveCompareWithTruth fig_data = np.load(self.eval_dir + '/save_trj_comparison.npz') true_trajectory = fig_data['ttrj'] pred_trajectory = fig_data['ptrj'] true_tsnap = fig_data['tt'] self.pps_plot_trajectory_given_pred(true_tsnap=true_tsnap, pred_trajectory=pred_trajectory, true_trajectory=true_trajectory, path_to_save_fig=self.pps_dir) def pps_2d_data_dist(self, data_path): # only obtain the phase space locations data2D = np.load(data_path)['Xtrain'] plt.figure(figsize=FIG_SIZE) plt.scatter(data2D[:,0], data2D[:,1], s=0.1 ,c='k') plt.xlabel(r'$x_1$',fontsize = 32) plt.ylabel(r'$x_2$',fontsize = 32) plt.savefig( self.pps_dir + '/trainPhaseDist.png', bbox_inches='tight' ) plt.close() def get_cmap(self, n, name='rainbow'): '''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct RGB color; the keyword argument name must be a standard mpl colormap name.''' return plt.cm.get_cmap(name, n) class ClassDictPPS(ClassKoopmanPPS): def pps_singular_value(self): raise NotImplementedError() def pps_eigenmodes_eval(self, y_scale_linear_error=None, y_scale_recon_error=None): ## LOAD ComputeSaveNormalizedEigenError: fig1 fig1_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig1.npz') normalized_relative_error = fig1_data['nre'] true_tsnap = fig1_data['tt'] linearEvolvingEigen = fig1_data['le'] relative_error = self.params['relative_error'] ## draw ComputeSaveNormalizedEigenError: fig1 # but if it is too much, just skip.. if normalized_relative_error.shape[1] <= 30: # plot normalized relative error for each eigenmodes plt.figure(figsize=FIG_SIZE) cmap = self.get_cmap(normalized_relative_error.shape[1]) for i in range(normalized_relative_error.shape[1]): plt.plot(true_tsnap, normalized_relative_error[:, i], '-', c=cmap(i), label= str(i + 1) + 'th-eigenvalue: ' + "{0:.3f}".format(linearEvolvingEigen[i,i])) plt.xlabel('time',fontsize = 32) if relative_error: plt.ylabel('normalized error',fontsize = 32) else: plt.ylabel('error',fontsize = 32) plt.yscale('log') lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/normalized_relative_eigen_error.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() ## LOAD ComputeSaveNormalizedEigenError: fig2 fig2_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig2.npz') mean_normalized_relative_error = fig2_data['mre'] small_to_large_error_eigen_index = fig2_data['stli'] small_to_large_error_eigen_index_kou = fig2_data['stli_kou'] abs_sum_kou = fig2_data['abs_sum_kou'] error_reconstruct_state_list = fig2_data['ersl'] # bool_index_further = fig2_data['iestli'] ## it is removed.. self.small_to_large_error_eigen_index = small_to_large_error_eigen_index # self.bool_index_further = bool_index_further ## draw ComputeSaveNormalizedEigenError: fig2 # error ordered fig= plt.figure(figsize=FIG_SIZE) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(range(1, normalized_relative_error.shape[1] + 1), mean_normalized_relative_error[small_to_large_error_eigen_index], 'b-^', label='max relative eigenfunction error') ax1.set_xlabel(r'number of selected eigenmodes $\hat{L}$',fontsize = 32) # ax1.legend(bbox_to_anchor=(1, 0.5)) ax1.set_yscale('log') if relative_error: ax1.set_ylabel('max linear evolving normalized error', color='b',fontsize = 32) else: ax1.set_ylabel('max error', color='b',fontsize = 32) # plot error from reconstruction state from eigenfunction values ax2.plot(np.arange(1,len(error_reconstruct_state_list)+1), error_reconstruct_state_list,'r-o', label='reconstruction normalized error') if relative_error: ax2.set_ylabel('reconstruction normalized error', color='r',fontsize = 32) else: ax2.set_ylabel('reconstruction error', color='r',fontsize = 32) # ax2.set_ylim([-1,20]) ax2.set_yscale('log') # set up ticks yticks = ticker.LogLocator() ax1.yaxis.set_major_locator(yticks) ax2.yaxis.set_major_locator(yticks) if type(y_scale_linear_error)!=type(None): # set up range ax1.set_ylim(y_scale_linear_error) ax2.set_ylim(y_scale_recon_error) # ax2.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/reConstr_decay_normalized_relative_eigen_error.png', bbox_inches='tight') plt.close() ## LOAD ComputeSaveNormalizedEigenError: fig3 fig3_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig3.npz') top_k_modes_list = fig3_data['tkm_index_list'] self.top_k_modes_list = top_k_modes_list # print out kou's result if type(small_to_large_error_eigen_index_kou) != type(None): print('as a comparison: index chosen by Kou criterion: ') print(small_to_large_error_eigen_index_kou + 1) print('corresponding abs sum:') print(abs_sum_kou) self.index_selected_in_full = self.small_to_large_error_eigen_index[:self.top_k_modes_list[-1] + 1] # self.index_selected_in_full = self.small_to_large_error_eigen_index ## draw ComputeSaveNormalizedEigenError: fig3 # if the number is larger than 20, not plotting it if len(top_k_modes_list) <= 20: # fig. 3: plot normalized relative error for top K smallest error eigenmodes plt.figure(figsize=FIG_SIZE) cmap = self.get_cmap(len(top_k_modes_list)) for i in top_k_modes_list: i_s = small_to_large_error_eigen_index[i] plt.plot(true_tsnap, normalized_relative_error[:, i_s], '-', c=cmap(i), label= str(i_s + 1) + 'th-eigenvalue: ' + "{0:.3f}".format(linearEvolvingEigen[i_s,i_s])) # print eigenvectors # print 'no. eigen vectors ', i_s+1 # print self.model.KoopmanEigenV[:, i_s] plt.xlabel('time',fontsize = 32) if relative_error: plt.ylabel('normalized error',fontsize = 32) else: plt.ylabel('error',fontsize = 32) plt.yscale('log') lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/top_' + str(len(top_k_modes_list)) + '_normalized_relative_eigen_error.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() # load MTENET fig4_data = np.load(self.eval_dir + '/MultiTaskElasticNet_result.npz') alphas_enet = fig4_data['alphas_enet'] coefs_enet = fig4_data['coefs_enet'] residual_array = fig4_data['residual_array'] # coefficients vs alpha & number non-zero num_target_components = coefs_enet.shape[0] alphas_enet_log_negative = -np.log10(alphas_enet) # print("coef_enet real= ", np.real(coefs_enet)) # print("coef_enet imag= ", np.imag(coefs_enet)) for i_component in range(num_target_components): plt.figure(figsize=FIG_SIZE) cmap = self.get_cmap(len(top_k_modes_list)) for i in top_k_modes_list: i_s = small_to_large_error_eigen_index[i] # as suggested by reviewer, not using the No.. # plt.plot(alphas_enet_log_negative, abs(coefs_enet[i_component,i,:]), '-*', c=cmap(i), # label = 'No. ' + str(i + 1) + ', index = ' + str(i_s+1)) plt.plot(alphas_enet_log_negative, abs(coefs_enet[i_component,i,:]), '-*', c=cmap(i), label = 'index = ' + str(i_s+1)) max_val = np.max(abs(coefs_enet[i_component, :, -1])) min_val = np.min(abs(coefs_enet[i_component, :, -1])) diss = (max_val - min_val)/2 mean = (max_val + min_val)/2 plt.xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32) plt.ylabel('abs of coefficients',fontsize = 32) plt.ylim([mean - diss*1.05, mean + diss*3]) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/multi-elastic-net-coef-' + str(i_component+1) + '.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() # total number of non-zero terms1 plt.figure(figsize=FIG_SIZE) num_non_zeros = [len((coefs_enet[i_component, abs(coefs_enet[i_component, :, ii]) >0*np.max(abs(coefs_enet[i_component,:,ii])), ii])) for ii in range(coefs_enet.shape[2])] plt.plot(alphas_enet_log_negative, num_non_zeros , 'k^-') plt.xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32) plt.ylabel('number of selected features',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/multi-elastic-net-coef-non-zeros-' + str(i_component+1) + '.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() num_non_zero_all_alpha = [] for ii in range(coefs_enet.shape[2]): non_zero_index_per_alpha = [] for i_component in range(num_target_components): # non_zero_index_per_alpha_per_target = abs(coefs_enet[i_component, :, ii]) > 0 non_zero_index_per_alpha_per_target = abs(coefs_enet[i_component, :, ii]) > 0*np.max(abs(coefs_enet[i_component, :, ii])) non_zero_index_per_alpha.append(non_zero_index_per_alpha_per_target) non_zero_index_per_alpha_all_targets = np.logical_or.reduce(non_zero_index_per_alpha) num_non_zero_all_alpha.append(np.sum(non_zero_index_per_alpha_all_targets)) num_non_zero_all_alpha = np.array(num_non_zero_all_alpha) # total residual vs alpha AND number of non-zero modes vs alpha fig=plt.figure(figsize=FIG_SIZE) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(alphas_enet_log_negative, residual_array, 'k*-') ax1.set_xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32) ax1.set_ylabel('normalized reconstruction MSE',color='k',fontsize = 32) # ax1.set_yscale('log') ax2.plot(alphas_enet_log_negative, num_non_zero_all_alpha,'r*-') ax2.set_ylabel('number of selected features',color='r',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/multi-elastic-net-mse.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def pps_scatter_plot_eigenvalue(self, index_selected_array, path_to_save, zoomed_X_Y_max=None, mag_contrib_all_kmd=None, case_specific_frequency_dict={'draw_st':False}): ## read eigenvalues from model ev = self.model.Koopman['eigenvalues'] ## finally I decided to draw discrete time in discrete time # if self.model.type == 'd': # ev = np.log(ev) / self.dt D_real = np.real(ev) D_imag = np.imag(ev) # 1+. eigenvalue distribution plt.figure(figsize=FIG_SIZE) plt.grid() # draw all of the eigenvalue in the rank truncated case, i.e., original version of reduced KDMD plt.scatter(D_real, D_imag, c='b', label='full') # draw the one selected plt.scatter(D_real[index_selected_array], D_imag[index_selected_array], c='r', label='selected') if self.type == 'd': # draw circle only for discrete model theta = np.linspace(0, 2*np.pi ,200) plt.plot(np.cos(theta), np.sin(theta), 'k-',alpha=0.2) plt.xlabel(r'Real($\lambda$)',fontsize = 32) plt.ylabel(r'Imag($\lambda$)',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) # if zoomed version if type(zoomed_X_Y_max) != type(None): plt.savefig(path_to_save + '/koopmanEigVal.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) if case_specific_frequency_dict['draw_st']: ## here we add St-lines-plot theta_for_st = np.linspace(0, np.pi/2, 50) length_array = np.linspace(0, 1.0, 2) max_num_tot = case_specific_frequency_dict['max_num_st_lines'] tot = 0 for i, theta_line in enumerate(theta_for_st): plt.plot(length_array*np.cos(theta_line), length_array*np.sin(theta_line), 'k--', alpha=0.3) if tot < max_num_tot: if i % 5 == 0: tot += 1 St_sample = case_specific_frequency_dict['St_sample'] # cylinder case # dt = 0.6 # U_infty = 1 # D = 2 # St_sample = D/(dt*U_infty) St = St_sample * theta_line/(2*np.pi) # ship case # if i == 0: s = 'St=0' else: s = 'St='+"{0:.2f}".format(St) plt.plot(length_array * np.cos(theta_line), length_array * np.sin(theta_line), 'k-') plt.text(1.005*length_array[-1]*np.cos(theta_line), 1.005*length_array[-1]*np.sin(theta_line), s, rotation=theta_line/np.pi*180*0.3 ) if case_specific_frequency_dict['characteristic_st_list'] != None: for st_char_color_pair in case_specific_frequency_dict['characteristic_st_list']: st_char = st_char_color_pair[0] theta_st = st_char / St_sample * 2 * np.pi plt.plot(length_array * np.cos(theta_st), length_array * np.sin(theta_st), st_char_color_pair[1]) # Std = 0.3012 # Stl = 0.1506 # # # Re 100 # # Std = 0.3386 # # Stl = 0.1694 # # Re 130 # # Std = 0.3634 # # Stl = 0.1816 plt.xlim(zoomed_X_Y_max[0]) plt.ylim(zoomed_X_Y_max[1]) plt.savefig(path_to_save + '/koopmanEigVal_zoomed.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) else: plt.savefig(path_to_save + '/koopmanEigVal.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) # last, plot the reference plot for eigenvalue and its number for index in index_selected_array: plt.text(D_real[index], D_imag[index], str(index)) plt.savefig(path_to_save + '/koopmanEigVal_numbered.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) plt.close() if self.compare_against_spdmd: # plot against spDMD result plt.figure(figsize=FIG_SIZE) plt.grid() # draw all of the eigenvalue in the rank truncated case, i.e., original version of reduced KDMD # plt.scatter(D_real, D_imag, s=30, marker='3',c='b', label='full KDMD') # draw the one selected plt.scatter(D_real[index_selected_array], D_imag[index_selected_array], s=150, marker='o',c='r', label='spKDMD',edgecolors='k') # load data from matlab solution of SPDMD # data_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/20_pred.mat') # data_full_dmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_pred.mat') # data_spdmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_sp_pred.mat') # cylinder re 70 data_spdmd = loadmat('/home/shaowu/Documents/2016_PHD/PROJECTS/2019_aerospace/spdmd/200_sp_pred_ship.mat') # ship airwake # normal DMD # D_DMD_real = np.real(np.exp(data_dmd['Edmd']*self.dt)) # D_DMD_imag = np.imag(np.exp(data_dmd['Edmd']*self.dt)) # draw full DMD # D_full_DMD_real = np.real(np.exp(data_full_dmd['Edmd']*self.dt)) # D_full_DMD_imag = np.imag(np.exp(data_full_dmd['Edmd']*self.dt)) # draw spDMD # D_sp_DMD_real = np.real(np.exp(data_spdmd['Edmd_select']*self.dt)) # D_sp_DMD_imag = np.imag(np.exp(data_spdmd['Edmd_select']*self.dt)) D_sp_DMD_real = np.real(np.exp(data_spdmd['Edmd_select']*self.dt)) D_sp_DMD_imag = np.imag(np.exp(data_spdmd['Edmd_select']*self.dt)) # plt.scatter(D_DMD_real, D_DMD_imag, s=80, marker='d', c='yellow', label='DMD r=20',edgecolors='k') # plt.scatter(D_full_DMD_real, D_full_DMD_imag, s=60,marker='s', c='lime', label='full DMD (r=200)',edgecolors='k') plt.scatter(D_sp_DMD_real, D_sp_DMD_imag, s=50, marker='^', c='b', label='spDMD r=200', edgecolors='k') # draw circle theta = np.linspace(0, 2 * np.pi, 200) plt.plot(np.cos(theta), np.sin(theta), 'k-',alpha=0.2) plt.xlabel(r'Real($\lambda$)', fontsize=32) plt.ylabel(r'Imag($\lambda$)', fontsize=32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) # if zoomed version if type(zoomed_X_Y_max) != type(None): plt.savefig(path_to_save + '/vs_spdmd_koopmanEigVal.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) if case_specific_frequency_dict['draw_st']: ## here we add St-lines-plot theta_for_st = np.linspace(0, np.pi / 2, 50) length_array = np.linspace(0, 1.0, 2) max_num_tot = case_specific_frequency_dict['max_num_st_lines'] tot = 0 for i, theta_line in enumerate(theta_for_st): plt.plot(length_array * np.cos(theta_line), length_array * np.sin(theta_line), 'k--', alpha=0.3) if tot < max_num_tot: if i % 5 == 0: tot += 1 St_sample = case_specific_frequency_dict['St_sample'] # cylinder case # dt = 0.6 # U_infty = 1 # D = 2 # St_sample = D/(dt*U_infty) St = St_sample * theta_line / (2 * np.pi) # ship case # if i == 0: s = 'St=0' else: s = 'St=' + "{0:.2f}".format(St) plt.plot(length_array * np.cos(theta_line), length_array * np.sin(theta_line), 'k-') plt.text(1.005 * length_array[-1] * np.cos(theta_line), 1.005 * length_array[-1] * np.sin(theta_line), s, rotation=theta_line / np.pi * 180 * 0.3) if case_specific_frequency_dict['characteristic_st_list'] != None: for st_char_color_pair in case_specific_frequency_dict['characteristic_st_list']: st_char = st_char_color_pair[0] theta_st = st_char / St_sample * 2 * np.pi plt.plot(length_array * np.cos(theta_st), length_array * np.sin(theta_st), st_char_color_pair[1]) plt.xlim(zoomed_X_Y_max[0]) plt.ylim(zoomed_X_Y_max[1]) plt.savefig(path_to_save + '/vs_spdmd_koopmanEigVal_zoomed.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) else: plt.savefig(path_to_save + '/vs_spdmd_koopmanEigVal.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) plt.close() # print the final number of koopmans print("final number of modes = ", len(D_real[index_selected_array])) # if we would plot the mag. percent. of each mode if type(mag_contrib_all_kmd) != type(None): plt.figure(figsize=FIG_SIZE) plt.plot(np.arange(1, len(mag_contrib_all_kmd)+1), mag_contrib_all_kmd) plt.xticks(np.arange(1, len(mag_contrib_all_kmd)+1)) plt.xlabel('index of eigenvalue',fontsize = 32) plt.ylabel('mag. percent. of each eigen-modes',fontsize = 32) plt.close() np.savez(self.pps_dir + 'eigenvalue_circle.npz', ev_real=D_real[index_selected_array], ev_imag=D_imag[index_selected_array], mag_percent=mag_contrib_all_kmd) def pps_eigenvalues(self, zoomed_X_Y_max=None, mag_contrib_all_kmd=None,case_specific_frequency_dict={'draw_st':False}): # simply draw the scatter plot of eigenvalue self.pps_scatter_plot_eigenvalue(index_selected_array=self.index_selected_in_full, path_to_save=self.pps_dir, zoomed_X_Y_max=zoomed_X_Y_max,mag_contrib_all_kmd=mag_contrib_all_kmd, case_specific_frequency_dict=case_specific_frequency_dict) return def plot_eigenfunction_given_index_and_path(self, index_of_eigens, save_path): ## load eigenfunction data fig_data = np.load(self.model_dir + '/koopman_eigenfunctions.npz') numKoopmanModes = fig_data['numKoopmanModes'] phi_eigen_array = fig_data['phi_eigen_array'] ndraw = fig_data['ndraw'] D_real = fig_data['D_real'] D_imag = fig_data['D_imag'] x1_ = fig_data['x1_'] x2_ = fig_data['x2_'] for ikoopman in index_of_eigens: # R_i = R[:, ikoopman:ikoopman + 1] # phi_eigen = np.matmul(phi_array, R_i) phi_eigen = phi_eigen_array[:, ikoopman:ikoopman + 1] phi_eigen_mesh = phi_eigen.reshape((ndraw, ndraw)) # draw || mag. of eigenfunction plt.figure(figsize=FIG_SIZE) plt.xlabel(r'$x_1$',fontsize = 32) plt.ylabel(r'$x_2$',fontsize = 32) plt.title(r'$\lambda$ = ' + "{0:.3f}".format(D_real[ikoopman]) + ' + ' + "{0:.3f}".format(D_imag[ikoopman]) + 'i') plt.contourf(x1_, x2_, np.abs(phi_eigen_mesh), 100, cmap=plt.cm.get_cmap('jet')) plt.colorbar(format=ticker.FuncFormatter(fmt)) plt.savefig(save_path + '/koopmanEigFunct_MAG_mode_' + str(ikoopman + 1) + '.png', bbox_inches='tight') plt.close() # draw phase angle of eigenfunction plt.figure(figsize=FIG_SIZE) plt.xlabel(r'$x_1$',fontsize = 32) plt.ylabel(r'$x_2$',fontsize = 32) plt.title(r'$\lambda$ = ' + "{0:.3f}".format(D_real[ikoopman]) + ' + ' + "{0:.3f}".format(D_imag[ikoopman]) + 'i') plt.contourf(x1_, x2_, np.angle(phi_eigen_mesh), 100, cmap=plt.cm.get_cmap('jet')) plt.colorbar(format=ticker.FuncFormatter(fmt)) plt.savefig(save_path + '/koopmanEigFunct_ANG_mode_' + str(ikoopman + 1) + '.png', bbox_inches='tight') plt.close() def pps_eigenfunction(self): self.plot_eigenfunction_given_index_and_path(index_of_eigens=self.index_selected_in_full, save_path=self.pps_dir) class ClassEDMDPPS(ClassDictPPS): def __init__(self, pps_dir, eval_dir, model_dir, params,draw_eigen_function_plot=True): super(ClassEDMDPPS, self).__init__(pps_dir, eval_dir, model_dir, params,draw_eigen_function_plot) model_path = model_dir + '/edmd.model' self.model = pickle.load(open(model_path, "rb")) self.type = self.model.type def pps_singular_value(self): # load full singular value data fig_data = np.load(self.eval_dir + '/sv.npz') full_sv = fig_data['full_sv'] # this is the Ghat eigenvalues without any truncation # plot singular value decay plt.figure(figsize=FIG_SIZE) plt.plot(np.arange(1, 1+len(full_sv)), full_sv, 'k-o', markersize=1) plt.xlabel('number of terms',fontsize = 32) plt.yscale('log') plt.ylabel(r'singular values of $\Phi_X$',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/sv_full_phi_x.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) plt.close() def pps_2d_simple_lusch_effect_svd_on_phi(self): ## LOAD data: compute_save_svd_effect_on_phi_edmd fig_data = np.load(self.eval_dir + '/compute_save_svd_effect_on_phi_edmd.npz') phi_ev_after_svd_list = fig_data['phi_r_ev_list'] phi_ev_before_svd = fig_data['phi_ev'] cmap = self.get_cmap(len(phi_ev_after_svd_list)) plt.figure(figsize=FIG_SIZE) for i in range(len(phi_ev_after_svd_list)): plt.plot(range(1, phi_ev_before_svd.shape[1] + 1), np.linalg.norm(phi_ev_after_svd_list[i], axis=0), color=cmap(i), label='r = '+str(i+1),alpha=0.7) plt.plot(range(1, phi_ev_before_svd.shape[1] + 1), np.linalg.norm(phi_ev_before_svd, axis=0), 'o-' , label='before SVD') plt.xlabel(r'feature index',fontsize = 32) plt.yscale('log') plt.ylabel(r'$\Vert \Phi V_i \Vert_2$',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/effect_svd_on_phi.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) # plt.show() plt.close() def pps_lsq_spectrum(self): X = self.model.Phi_X_i_sample Y = self.model.Phi_Xdot_i_sample np.savez(self.pps_dir + '/lsq_spectrum.npz', X=X,Y=Y) class ClassKDMDPPS(ClassDictPPS): def __init__(self, pps_dir, eval_dir, model_dir, params,draw_eigen_function_plot=True, compare_against_spdmd=False): super(ClassKDMDPPS, self).__init__(pps_dir, eval_dir, model_dir, params, draw_eigen_function_plot, compare_against_spdmd) model_path = model_dir + '/kdmd.model' self.model = pickle.load(open(model_path, "rb")) self.type = self.model.type if self.type == 'd': self.dt = self.model.dt print('discrete mode, with dt = ', self.dt) def pps_singular_value(self): # load full singular value data fig_data = np.load(self.eval_dir + '/sv_squared.npz') full_sv_squared = fig_data['full_sv_squared'] # this is the Ghat eigenvalues without any truncation # cut off at 1e-7 due to double precision full_sv_squared = full_sv_squared[np.abs(full_sv_squared) > 1e-14] # plot singular value decay plt.figure(figsize=FIG_SIZE) plt.plot(np.arange(1, 1+len(full_sv_squared)), np.sqrt(np.abs(full_sv_squared[::-1])),'k-o',markersize=1) plt.xlabel('number of terms',fontsize = 32) plt.yscale('log') plt.ylabel(r'singular values of $\Phi_X$',fontsize = 32) lgd = plt.legend(bbox_to_anchor=(1, 0.5)) plt.savefig(self.pps_dir + '/sv_full_phi_x.png', bbox_inches='tight', bbox_extra_artists=(lgd,)) plt.close() # # if __name__=='__main__': # # testing on # # case = '2d_lusch' # case = '2d_duffing' # # if case == '2d_lusch': # # # # elif case == '2d_duffing': # # # 3. postprocessing for DLDMD model + apo eval # pps_dldmd = ClassDLPPS(pps_dir='./2d_duffing_otto2017/dldmd', # eval_dir='../eval_src/2d_duffing_otto2017-dl', # model_dir='../model_src/result/2d_duffing_otto2017/dldmd_2019-02-16-03-58-22/model_saved', # params={} # ) # # # plot eigenvalues # pps_dldmd.pps_eigenvalues() # # # plot eigenfunctions # pps_dldmd.pps_eigenfunction() # # # plot aposteriori component trj comparison # pps_dldmd.pps_component_trj() # # # plot learning curve # pps_dldmd.pps_learning_curve()
the-stack_0_20814
from django.conf.urls import include, url, patterns from cms.apphook_pool import apphook_pool from cms.views import details from django.conf import settings if settings.APPEND_SLASH: reg = url(r'^(?P<slug>[0-9A-Za-z-_.//]+)/$', details, name='pages-details-by-slug') else: reg = url(r'^(?P<slug>[0-9A-Za-z-_.//]+)$', details, name='pages-details-by-slug') urlpatterns = [ # Public pages url(r'^example/', include('cms.test_utils.project.sampleapp.urls_example', namespace="example1", app_name='example_app')), url(r'^example2/', include('cms.test_utils.project.sampleapp.urls_example', namespace="example2", app_name='example_app')), url(r'^$', details, {'slug': ''}, name='pages-root'), reg, ] if apphook_pool.get_apphooks(): """If there are some application urls, add special resolver, so we will have standard reverse support. """ from cms.appresolver import get_app_patterns urlpatterns = get_app_patterns() + urlpatterns #urlpatterns = (dynamic_app_regex_url_resolver, ) + urlpatterns urlpatterns = patterns('', *urlpatterns)
the-stack_0_20819
# -*- coding: utf-8 -*- # # pptk documentation build configuration file, created by # sphinx-quickstart on Fri Aug 10 11:29:10 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.imgmath', 'sphinx.ext.githubpages'] def setup(app): app.add_stylesheet('css/custom.css') imgmath_image_format = 'svg' imgmath_dvisvgm = 'F:\Programs\dvisvgm-2.3.3-win64\dvisvgm.exe' autodoc_member_order = 'groupwise' autosummary_generate = True napoleon_use_rtype = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pptk' copyright = u'2018, HERE Europe B.V.' author = u'Victor Lu' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.1' # The full version, including alpha/beta/rc tags. release = u'0.1.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'haiku' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'pptkdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pptk.tex', u'pptk Documentation', u'Victor Lu, HERE Europe B.V.', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pptk', u'pptk Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pptk', u'pptk Documentation', author, 'pptk', 'One line description of project.', 'Miscellaneous'), ]
the-stack_0_20820
import os from src.configuration.config import Configs from src.utils.logging_engine import logger # Output logs through console and files def ini_logger(file_name, level='info'): log_folder = os.path.join(Configs.instance_output_folder, 'log') # change output_folder to instance_output_fold if not os.path.exists(log_folder): os.makedirs(log_folder) delete_files(log_folder, Configs.MAX_LOG_FILE_NUM) log_file = os.path.join(log_folder, file_name) logger.add_file_output(log_file, level) def remove_file_handler_of_logging(file_name: str): log_folder = os.path.join(Configs.instance_output_folder, 'log') # change output_folder to instance_output_fold file_path = os.path.join(log_folder, file_name) try: logger.remove_file_handler(file_path) except Exception as e: print(f"Failed to remove file handler {file_path}, reason: {e}") def delete_files(file_folder, max_num): """ Inputs: - file_folder: 目标文件夹, 绝对路径 - max_num: 最大文件数量 """ num = count_file(file_folder) if num > max_num: delete_num = max_num // 2 total_files_and_dirs = os.listdir(file_folder) total_files = [] for item in total_files_and_dirs: if not os.path.isdir(os.path.join(file_folder, item)): total_files.append(item) total_files.sort() for i in range(delete_num): os.remove(os.path.join(file_folder, total_files[i])) def count_file(directory): ''' 计算目标文件夹下的文件数量, 不递归文件夹 ''' file_num = 0 if not os.path.exists(directory): os.makedirs(directory) for item in os.listdir(directory): if os.path.isfile(os.path.join(directory, item)): file_num += 1 return file_num
the-stack_0_20821
### # Copyright (c) 2002-2005, Jeremiah Fincher # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ Schedule plugin with a subclass of drivers.IrcDriver in order to be run as a Supybot driver. """ from __future__ import with_statement import time import heapq import functools from threading import Lock from . import drivers, log, world class mytuple(tuple): def __cmp__(self, other): return cmp(self[0], other[0]) def __le__(self, other): return self[0] <= other[0] def __lt__(self, other): return self[0] < other[0] def __gt__(self, other): return self[0] > other[0] def __ge__(self, other): return self[0] >= other[0] class Schedule(drivers.IrcDriver): """An IrcDriver to handling scheduling of events. Events, in this case, are functions accepting no arguments. """ def __init__(self): drivers.IrcDriver.__init__(self) self.schedule = [] self.events = {} self.counter = 0 self.lock = Lock() def reset(self): with self.lock: self.events.clear() self.schedule[:] = [] # We don't reset the counter here because if someone has held an id of # one of the nuked events, we don't want them removing new events with # their old id. def name(self): return 'Schedule' def addEvent(self, f, t, name=None, args=[], kwargs={}): """Schedules an event f to run at time t. name must be hashable and not an int. """ if name is None: name = self.counter self.counter += 1 assert name not in self.events, \ 'An event with the same name has already been scheduled.' with self.lock: self.events[name] = f heapq.heappush(self.schedule, mytuple((t, name, args, kwargs))) return name def removeEvent(self, name): """Removes the event with the given name from the schedule.""" f = self.events.pop(name) # We must heapify here because the heap property may not be preserved # by the above list comprehension. We could, conceivably, just mark # the elements of the heap as removed and ignore them when we heappop, # but that would only save a constant factor (we're already linear for # the listcomp) so I'm not worried about it right now. with self.lock: self.schedule = [x for x in self.schedule if x[1] != name] heapq.heapify(self.schedule) return f def rescheduleEvent(self, name, t): f = self.removeEvent(name) self.addEvent(f, t, name=name) def addPeriodicEvent(self, f, t, name=None, now=True, args=[], kwargs={}, count=None): """Adds a periodic event that is called every t seconds.""" def wrapper(count): try: f(*args, **kwargs) finally: # Even if it raises an exception, let's schedule it. if count[0] is not None: count[0] -= 1 if count[0] is None or count[0] > 0: return self.addEvent(wrapper, time.time() + t, name) wrapper = functools.partial(wrapper, [count]) if now: return wrapper() else: return self.addEvent(wrapper, time.time() + t, name) removePeriodicEvent = removeEvent def run(self): if len(drivers._drivers) == 1 and not world.testing: log.error('Schedule is the only remaining driver, ' 'why do we continue to live?') time.sleep(1) # We're the only driver; let's pause to think. while self.schedule and self.schedule[0][0] < time.time(): with self.lock: (t, name, args, kwargs) = heapq.heappop(self.schedule) f = self.events.pop(name) try: f(*args, **kwargs) except Exception: log.exception('Uncaught exception in scheduled function:') schedule = Schedule() addEvent = schedule.addEvent removeEvent = schedule.removeEvent rescheduleEvent = schedule.rescheduleEvent addPeriodicEvent = schedule.addPeriodicEvent removePeriodicEvent = removeEvent run = schedule.run # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
the-stack_0_20822
#!/usr/bin/env python # Copyright 2016 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DOCUMENTATION = ''' --- module: panos_check short_description: check if PAN-OS device is ready for configuration description: - Check if PAN-OS device is ready for being configured (no pending jobs). - The check could be done once or multiple times until the device is ready. author: "Luigi Mori (@jtschichold), Ivan Bojer (@ivanbojer)" version_added: "2.3" requirements: - pan-python - pandevice notes: - Panorama is supported. - Checkmode is not supported. extends_documentation_fragment: - panos.transitional_provider options: initial_delay: description: - Length of time (in seconds) to wait before doing any readiness checks. default: 0 type: int timeout: description: - Length of time (in seconds) to wait for jobs to finish. default: 60 type: int interval: description: - Length of time (in seconds) to wait between checks. default: 0 type: int ''' EXAMPLES = ''' # Single check. - name: check if ready panos_check: provider: '{{ provider }}' timeout: 0 # Wait 2 minutes, then check every 5 seconds for 10 minutes. - name: wait for reboot panos_check: provider: '{{ provider }}' initial_delay: 120 interval: 5 timeout: 600 ''' RETURN = ''' # Default return values ''' ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} import time from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.panos.panos import get_connection try: from pandevice.errors import PanDeviceError except ImportError: pass def check_jobs(jobs): for j in jobs: status = j.find('.//status') if status is None or status.text != 'FIN': return False return True def main(): helper = get_connection( with_classic_provider_spec=True, argument_spec=dict( initial_delay=dict(default=0, type='int'), timeout=dict(default=60, type='int'), interval=dict(default=0, type='int') ), ) module = AnsibleModule( argument_spec=helper.argument_spec, supports_check_mode=False, required_one_of=helper.required_one_of, ) # Optional delay before performing readiness checks. if module.params['initial_delay']: time.sleep(module.params['initial_delay']) timeout = module.params['timeout'] interval = module.params['interval'] end_time = time.time() + timeout parent = helper.get_pandevice_parent(module, timeout) # TODO(gfreeman) - consider param for "show chassis-ready". while True: try: ans = parent.op(cmd="show jobs all") except PanDeviceError: pass else: jobs = ans.findall('.//job') if check_jobs(jobs): break if time.time() > end_time: module.fail_json(msg='Timeout') time.sleep(interval) module.exit_json(changed=True, msg="done") if __name__ == '__main__': main()
the-stack_0_20823
"""Market module to interact with Serum DEX.""" from __future__ import annotations from typing import List from solana.account import Account from solana.publickey import PublicKey from solana.rpc.api import Client from solana.rpc.types import RPCResponse, TxOpts from solana.transaction import Transaction from pyserum import instructions import pyserum.market.types as t from .._layouts.open_orders import OPEN_ORDERS_LAYOUT from ..enums import OrderType, Side from ..open_orders_account import OpenOrdersAccount from ..utils import load_bytes_data from ._internal.queue import decode_event_queue, decode_request_queue from .orderbook import OrderBook from .state import MarketState from .core import MarketCore LAMPORTS_PER_SOL = 1000000000 # pylint: disable=too-many-public-methods,abstract-method class Market(MarketCore): """Represents a Serum Market.""" def __init__(self, conn: Client, market_state: MarketState, force_use_request_queue: bool = False) -> None: super().__init__(market_state=market_state, force_use_request_queue=force_use_request_queue) self._conn = conn @classmethod # pylint: disable=unused-argument def load( cls, conn: Client, market_address: PublicKey, program_id: PublicKey = instructions.DEFAULT_DEX_PROGRAM_ID, force_use_request_queue: bool = False, ) -> Market: """Factory method to create a Market. :param conn: The connection that we use to load the data, created from `solana.rpc.api`. :param market_address: The market address that you want to connect to. :param program_id: The program id of the given market, it will use the default value if not provided. """ market_state = MarketState.load(conn, market_address, program_id) return cls(conn, market_state, force_use_request_queue) def find_open_orders_accounts_for_owner(self, owner_address: PublicKey) -> List[OpenOrdersAccount]: return OpenOrdersAccount.find_for_market_and_owner( self._conn, self.state.public_key(), owner_address, self.state.program_id() ) def load_bids(self) -> OrderBook: """Load the bid order book""" bytes_data = load_bytes_data(self.state.bids(), self._conn) return self._parse_bids_or_asks(bytes_data) def load_asks(self) -> OrderBook: """Load the ask order book.""" bytes_data = load_bytes_data(self.state.asks(), self._conn) return self._parse_bids_or_asks(bytes_data) def load_orders_for_owner(self, owner_address: PublicKey) -> List[t.Order]: """Load orders for owner.""" bids = self.load_bids() asks = self.load_asks() open_orders_accounts = self.find_open_orders_accounts_for_owner(owner_address) return self._parse_orders_for_owner(bids, asks, open_orders_accounts) def load_event_queue(self) -> List[t.Event]: """Load the event queue which includes the fill item and out item. For any trades two fill items are added to the event queue. And in case of a trade, cancel or IOC order that missed, out items are added to the event queue. """ bytes_data = load_bytes_data(self.state.event_queue(), self._conn) return decode_event_queue(bytes_data) def load_request_queue(self) -> List[t.Request]: bytes_data = load_bytes_data(self.state.request_queue(), self._conn) return decode_request_queue(bytes_data) def load_fills(self, limit=100) -> List[t.FilledOrder]: bytes_data = load_bytes_data(self.state.event_queue(), self._conn) return self._parse_fills(bytes_data, limit) def place_order( # pylint: disable=too-many-arguments,too-many-locals self, payer: PublicKey, owner: Account, order_type: OrderType, side: Side, limit_price: float, max_quantity: float, client_id: int = 0, opts: TxOpts = TxOpts(), ) -> RPCResponse: # TODO: Add open_orders_address_key param and fee_discount_pubkey transaction = Transaction() signers: List[Account] = [owner] open_order_accounts = self.find_open_orders_accounts_for_owner(owner.public_key()) if open_order_accounts: place_order_open_order_account = open_order_accounts[0].address else: mbfre_resp = self._conn.get_minimum_balance_for_rent_exemption(OPEN_ORDERS_LAYOUT.sizeof()) place_order_open_order_account = self._after_oo_mbfre_resp( mbfre_resp=mbfre_resp, owner=owner, signers=signers, transaction=transaction ) # TODO: Cache new_open_orders_account # TODO: Handle fee_discount_pubkey self._prepare_order_transaction( transaction=transaction, payer=payer, owner=owner, order_type=order_type, side=side, signers=signers, limit_price=limit_price, max_quantity=max_quantity, client_id=client_id, open_order_accounts=open_order_accounts, place_order_open_order_account=place_order_open_order_account, ) return self._conn.send_transaction(transaction, *signers, opts=opts) def cancel_order_by_client_id( self, owner: Account, open_orders_account: PublicKey, client_id: int, opts: TxOpts = TxOpts() ) -> RPCResponse: txs = self._build_cancel_order_by_client_id_tx( owner=owner, open_orders_account=open_orders_account, client_id=client_id ) return self._conn.send_transaction(txs, owner, opts=opts) def cancel_order(self, owner: Account, order: t.Order, opts: TxOpts = TxOpts()) -> RPCResponse: txn = self._build_cancel_order_tx(owner=owner, order=order) return self._conn.send_transaction(txn, owner, opts=opts) def match_orders(self, fee_payer: Account, limit: int, opts: TxOpts = TxOpts()) -> RPCResponse: txn = self._build_match_orders_tx(limit) return self._conn.send_transaction(txn, fee_payer, opts=opts) def settle_funds( # pylint: disable=too-many-arguments self, owner: Account, open_orders: OpenOrdersAccount, base_wallet: PublicKey, quote_wallet: PublicKey, # TODO: add referrer_quote_wallet. opts: TxOpts = TxOpts(), ) -> RPCResponse: # TODO: Handle wrapped sol accounts should_wrap_sol = self._settle_funds_should_wrap_sol() min_bal_for_rent_exemption = ( self._conn.get_minimum_balance_for_rent_exemption(165)["result"] if should_wrap_sol else 0 ) # value only matters if should_wrap_sol signers = [owner] transaction = self._build_settle_funds_tx( owner=owner, signers=signers, open_orders=open_orders, base_wallet=base_wallet, quote_wallet=quote_wallet, min_bal_for_rent_exemption=min_bal_for_rent_exemption, should_wrap_sol=should_wrap_sol, ) return self._conn.send_transaction(transaction, *signers, opts=opts)
the-stack_0_20827
# -*- coding: utf-8 -*- """Subclass of InteractiveShell for terminal based frontends.""" #----------------------------------------------------------------------------- # Copyright (C) 2001 Janko Hauser <[email protected]> # Copyright (C) 2001-2007 Fernando Perez. <[email protected]> # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import print_function import bdb import os import sys from IPython.core.error import TryNext, UsageError from IPython.core.usage import interactive_usage from IPython.core.inputsplitter import IPythonInputSplitter from IPython.core.interactiveshell import InteractiveShell, InteractiveShellABC from IPython.core.magic import Magics, magics_class, line_magic from IPython.lib.clipboard import ClipboardEmpty from IPython.utils.encoding import get_stream_enc from IPython.utils import py3compat from IPython.utils.terminal import toggle_set_term_title, set_term_title from IPython.utils.process import abbrev_cwd from IPython.utils.warn import warn, error from IPython.utils.text import num_ini_spaces, SList, strip_email_quotes from traitlets import Integer, CBool, Unicode #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def get_default_editor(): try: ed = os.environ['EDITOR'] if not py3compat.PY3: ed = ed.decode() return ed except KeyError: pass except UnicodeError: warn("$EDITOR environment variable is not pure ASCII. Using platform " "default editor.") if os.name == 'posix': return 'vi' # the only one guaranteed to be there! else: return 'notepad' # same in Windows! def get_pasted_lines(sentinel, l_input=py3compat.input, quiet=False): """ Yield pasted lines until the user enters the given sentinel value. """ if not quiet: print("Pasting code; enter '%s' alone on the line to stop or use Ctrl-D." \ % sentinel) prompt = ":" else: prompt = "" while True: try: l = py3compat.str_to_unicode(l_input(prompt)) if l == sentinel: return else: yield l except EOFError: print('<EOF>') return #------------------------------------------------------------------------ # Terminal-specific magics #------------------------------------------------------------------------ @magics_class class TerminalMagics(Magics): def __init__(self, shell): super(TerminalMagics, self).__init__(shell) self.input_splitter = IPythonInputSplitter() def store_or_execute(self, block, name): """ Execute a block, or store it in a variable, per the user's request. """ if name: # If storing it for further editing self.shell.user_ns[name] = SList(block.splitlines()) print("Block assigned to '%s'" % name) else: b = self.preclean_input(block) self.shell.user_ns['pasted_block'] = b self.shell.using_paste_magics = True try: self.shell.run_cell(b) finally: self.shell.using_paste_magics = False def preclean_input(self, block): lines = block.splitlines() while lines and not lines[0].strip(): lines = lines[1:] return strip_email_quotes('\n'.join(lines)) def rerun_pasted(self, name='pasted_block'): """ Rerun a previously pasted command. """ b = self.shell.user_ns.get(name) # Sanity checks if b is None: raise UsageError('No previous pasted block available') if not isinstance(b, py3compat.string_types): raise UsageError( "Variable 'pasted_block' is not a string, can't execute") print("Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))) self.shell.run_cell(b) @line_magic def autoindent(self, parameter_s = ''): """Toggle autoindent on/off (if available).""" self.shell.set_autoindent() print("Automatic indentation is:",['OFF','ON'][self.shell.autoindent]) @line_magic def cpaste(self, parameter_s=''): """Paste & execute a pre-formatted code block from clipboard. You must terminate the block with '--' (two minus-signs) or Ctrl-D alone on the line. You can also provide your own sentinel with '%paste -s %%' ('%%' is the new sentinel for this operation). The block is dedented prior to execution to enable execution of method definitions. '>' and '+' characters at the beginning of a line are ignored, to allow pasting directly from e-mails, diff files and doctests (the '...' continuation prompt is also stripped). The executed block is also assigned to variable named 'pasted_block' for later editing with '%edit pasted_block'. You can also pass a variable name as an argument, e.g. '%cpaste foo'. This assigns the pasted block to variable 'foo' as string, without dedenting or executing it (preceding >>> and + is still stripped) '%cpaste -r' re-executes the block previously entered by cpaste. '%cpaste -q' suppresses any additional output messages. Do not be alarmed by garbled output on Windows (it's a readline bug). Just press enter and type -- (and press enter again) and the block will be what was just pasted. IPython statements (magics, shell escapes) are not supported (yet). See also -------- paste: automatically pull code from clipboard. Examples -------- :: In [8]: %cpaste Pasting code; enter '--' alone on the line to stop. :>>> a = ["world!", "Hello"] :>>> print " ".join(sorted(a)) :-- Hello world! """ opts, name = self.parse_options(parameter_s, 'rqs:', mode='string') if 'r' in opts: self.rerun_pasted() return quiet = ('q' in opts) sentinel = opts.get('s', u'--') block = '\n'.join(get_pasted_lines(sentinel, quiet=quiet)) self.store_or_execute(block, name) @line_magic def paste(self, parameter_s=''): """Paste & execute a pre-formatted code block from clipboard. The text is pulled directly from the clipboard without user intervention and printed back on the screen before execution (unless the -q flag is given to force quiet mode). The block is dedented prior to execution to enable execution of method definitions. '>' and '+' characters at the beginning of a line are ignored, to allow pasting directly from e-mails, diff files and doctests (the '...' continuation prompt is also stripped). The executed block is also assigned to variable named 'pasted_block' for later editing with '%edit pasted_block'. You can also pass a variable name as an argument, e.g. '%paste foo'. This assigns the pasted block to variable 'foo' as string, without executing it (preceding >>> and + is still stripped). Options: -r: re-executes the block previously entered by cpaste. -q: quiet mode: do not echo the pasted text back to the terminal. IPython statements (magics, shell escapes) are not supported (yet). See also -------- cpaste: manually paste code into terminal until you mark its end. """ opts, name = self.parse_options(parameter_s, 'rq', mode='string') if 'r' in opts: self.rerun_pasted() return try: block = self.shell.hooks.clipboard_get() except TryNext as clipboard_exc: message = getattr(clipboard_exc, 'args') if message: error(message[0]) else: error('Could not get text from the clipboard.') return except ClipboardEmpty: raise UsageError("The clipboard appears to be empty") # By default, echo back to terminal unless quiet mode is requested if 'q' not in opts: write = self.shell.write write(self.shell.pycolorize(block)) if not block.endswith('\n'): write('\n') write("## -- End pasted text --\n") self.store_or_execute(block, name) # Class-level: add a '%cls' magic only on Windows if sys.platform == 'win32': @line_magic def cls(self, s): """Clear screen. """ os.system("cls") #----------------------------------------------------------------------------- # Main class #----------------------------------------------------------------------------- class TerminalInteractiveShell(InteractiveShell): autoedit_syntax = CBool(False, config=True, help="auto editing of files with syntax errors.") confirm_exit = CBool(True, config=True, help=""" Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a direct exit without any confirmation.""", ) # This display_banner only controls whether or not self.show_banner() # is called when mainloop/interact are called. The default is False # because for the terminal based application, the banner behavior # is controlled by the application. display_banner = CBool(False) # This isn't configurable! embedded = CBool(False) embedded_active = CBool(False) editor = Unicode(get_default_editor(), config=True, help="Set the editor used by IPython (default to $EDITOR/vi/notepad)." ) pager = Unicode('less', config=True, help="The shell program to be used for paging.") screen_length = Integer(0, config=True, help= """Number of lines of your screen, used to control printing of very long strings. Strings longer than this number of lines will be sent through a pager instead of directly printed. The default value for this is 0, which means IPython will auto-detect your screen size every time it needs to print certain potentially long strings (this doesn't change the behavior of the 'print' keyword, it's only triggered internally). If for some reason this isn't working well (it needs curses support), specify it yourself. Otherwise don't change the default.""", ) term_title = CBool(False, config=True, help="Enable auto setting the terminal title." ) usage = Unicode(interactive_usage) # This `using_paste_magics` is used to detect whether the code is being # executed via paste magics functions using_paste_magics = CBool(False) # In the terminal, GUI control is done via PyOS_InputHook @staticmethod def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. """ # Deferred import from IPython.lib.inputhook import enable_gui as real_enable_gui try: return real_enable_gui(gui, app) except ValueError as e: raise UsageError("%s" % e) system = InteractiveShell.system_raw #------------------------------------------------------------------------- # Overrides of init stages #------------------------------------------------------------------------- def init_display_formatter(self): super(TerminalInteractiveShell, self).init_display_formatter() # terminal only supports plaintext self.display_formatter.active_types = ['text/plain'] #------------------------------------------------------------------------- # Things related to the terminal #------------------------------------------------------------------------- @property def usable_screen_length(self): if self.screen_length == 0: return 0 else: num_lines_bot = self.separate_in.count('\n')+1 return self.screen_length - num_lines_bot def _term_title_changed(self, name, new_value): self.init_term_title() def init_term_title(self): # Enable or disable the terminal title. if self.term_title: toggle_set_term_title(True) set_term_title('IPython: ' + abbrev_cwd()) else: toggle_set_term_title(False) #------------------------------------------------------------------------- # Things related to aliases #------------------------------------------------------------------------- def init_alias(self): # The parent class defines aliases that can be safely used with any # frontend. super(TerminalInteractiveShell, self).init_alias() # Now define aliases that only make sense on the terminal, because they # need direct access to the console in a way that we can't emulate in # GUI or web frontend if os.name == 'posix': aliases = [('clear', 'clear'), ('more', 'more'), ('less', 'less'), ('man', 'man')] else : aliases = [] for name, cmd in aliases: self.alias_manager.soft_define_alias(name, cmd) #------------------------------------------------------------------------- # Mainloop and code execution logic #------------------------------------------------------------------------- def mainloop(self, display_banner=None): """Start the mainloop. If an optional banner argument is given, it will override the internally created default banner. """ with self.builtin_trap, self.display_trap: while 1: try: self.interact(display_banner=display_banner) #self.interact_with_readline() # XXX for testing of a readline-decoupled repl loop, call # interact_with_readline above break except KeyboardInterrupt: # this should not be necessary, but KeyboardInterrupt # handling seems rather unpredictable... self.write("\nKeyboardInterrupt in interact()\n") def _replace_rlhist_multiline(self, source_raw, hlen_before_cell): """Store multiple lines as a single entry in history""" # do nothing without readline or disabled multiline if not self.has_readline or not self.multiline_history: return hlen_before_cell # windows rl has no remove_history_item if not hasattr(self.readline, "remove_history_item"): return hlen_before_cell # skip empty cells if not source_raw.rstrip(): return hlen_before_cell # nothing changed do nothing, e.g. when rl removes consecutive dups hlen = self.readline.get_current_history_length() if hlen == hlen_before_cell: return hlen_before_cell for i in range(hlen - hlen_before_cell): self.readline.remove_history_item(hlen - i - 1) stdin_encoding = get_stream_enc(sys.stdin, 'utf-8') self.readline.add_history(py3compat.unicode_to_str(source_raw.rstrip(), stdin_encoding)) return self.readline.get_current_history_length() def interact(self, display_banner=None): """Closely emulate the interactive Python console.""" # batch run -> do not interact if self.exit_now: return if display_banner is None: display_banner = self.display_banner if isinstance(display_banner, py3compat.string_types): self.show_banner(display_banner) elif display_banner: self.show_banner() more = False if self.has_readline: self.readline_startup_hook(self.pre_readline) hlen_b4_cell = self.readline.get_current_history_length() else: hlen_b4_cell = 0 # exit_now is set by a call to %Exit or %Quit, through the # ask_exit callback. while not self.exit_now: self.hooks.pre_prompt_hook() if more: try: prompt = self.prompt_manager.render('in2') except: self.showtraceback() if self.autoindent: self.rl_do_indent = True else: try: prompt = self.separate_in + self.prompt_manager.render('in') except: self.showtraceback() try: line = self.raw_input(prompt) if self.exit_now: # quick exit on sys.std[in|out] close break if self.autoindent: self.rl_do_indent = False except KeyboardInterrupt: #double-guard against keyboardinterrupts during kbdint handling try: self.write('\n' + self.get_exception_only()) source_raw = self.input_splitter.raw_reset() hlen_b4_cell = \ self._replace_rlhist_multiline(source_raw, hlen_b4_cell) more = False except KeyboardInterrupt: pass except EOFError: if self.autoindent: self.rl_do_indent = False if self.has_readline: self.readline_startup_hook(None) self.write('\n') self.exit() except bdb.BdbQuit: warn('The Python debugger has exited with a BdbQuit exception.\n' 'Because of how pdb handles the stack, it is impossible\n' 'for IPython to properly format this particular exception.\n' 'IPython will resume normal operation.') except: # exceptions here are VERY RARE, but they can be triggered # asynchronously by signal handlers, for example. self.showtraceback() else: try: self.input_splitter.push(line) more = self.input_splitter.push_accepts_more() except SyntaxError: # Run the code directly - run_cell takes care of displaying # the exception. more = False if (self.SyntaxTB.last_syntax_error and self.autoedit_syntax): self.edit_syntax_error() if not more: source_raw = self.input_splitter.raw_reset() self.run_cell(source_raw, store_history=True) hlen_b4_cell = \ self._replace_rlhist_multiline(source_raw, hlen_b4_cell) # Turn off the exit flag, so the mainloop can be restarted if desired self.exit_now = False def raw_input(self, prompt=''): """Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the EOF key sequence, EOFError is raised. Parameters ---------- prompt : str, optional A string to be printed to prompt the user. """ # raw_input expects str, but we pass it unicode sometimes prompt = py3compat.cast_bytes_py2(prompt) try: line = py3compat.cast_unicode_py2(self.raw_input_original(prompt)) except ValueError: warn("\n********\nYou or a %run:ed script called sys.stdin.close()" " or sys.stdout.close()!\nExiting IPython!\n") self.ask_exit() return "" # Try to be reasonably smart about not re-indenting pasted input more # than necessary. We do this by trimming out the auto-indent initial # spaces, if the user's actual input started itself with whitespace. if self.autoindent: if num_ini_spaces(line) > self.indent_current_nsp: line = line[self.indent_current_nsp:] self.indent_current_nsp = 0 return line #------------------------------------------------------------------------- # Methods to support auto-editing of SyntaxErrors. #------------------------------------------------------------------------- def edit_syntax_error(self): """The bottom half of the syntax error handler called in the main loop. Loop until syntax error is fixed or user cancels. """ while self.SyntaxTB.last_syntax_error: # copy and clear last_syntax_error err = self.SyntaxTB.clear_err_state() if not self._should_recompile(err): return try: # may set last_syntax_error again if a SyntaxError is raised self.safe_execfile(err.filename,self.user_ns) except: self.showtraceback() else: try: f = open(err.filename) try: # This should be inside a display_trap block and I # think it is. sys.displayhook(f.read()) finally: f.close() except: self.showtraceback() def _should_recompile(self,e): """Utility routine for edit_syntax_error""" if e.filename in ('<ipython console>','<input>','<string>', '<console>','<BackgroundJob compilation>', None): return False try: if (self.autoedit_syntax and not self.ask_yes_no('Return to editor to correct syntax error? ' '[Y/n] ','y')): return False except EOFError: return False def int0(x): try: return int(x) except TypeError: return 0 # always pass integer line and offset values to editor hook try: self.hooks.fix_error_editor(e.filename, int0(e.lineno),int0(e.offset),e.msg) except TryNext: warn('Could not open editor') return False return True #------------------------------------------------------------------------- # Things related to exiting #------------------------------------------------------------------------- def ask_exit(self): """ Ask the shell to exit. Can be overiden and used as a callback. """ self.exit_now = True def exit(self): """Handle interactive exit. This method calls the ask_exit callback.""" if self.confirm_exit: if self.ask_yes_no('Do you really want to exit ([y]/n)?','y'): self.ask_exit() else: self.ask_exit() #------------------------------------------------------------------------- # Things related to magics #------------------------------------------------------------------------- def init_magics(self): super(TerminalInteractiveShell, self).init_magics() self.register_magics(TerminalMagics) def showindentationerror(self): super(TerminalInteractiveShell, self).showindentationerror() if not self.using_paste_magics: print("If you want to paste code into IPython, try the " "%paste and %cpaste magic functions.") InteractiveShellABC.register(TerminalInteractiveShell)
the-stack_0_20830
# Copyright 2021 The NetKet Authors - All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from functools import partial from netket.jax import compose, vmap_chunked import jax import jax.flatten_util import jax.numpy as jnp import numpy as np from netket.stats import subtract_mean, sum from netket.utils import mpi from netket.utils.types import Array, Callable, PyTree, Scalar from netket.jax import tree_cast, tree_conj, tree_axpy, tree_to_real # TODO better name and move it somewhere sensible def single_sample(forward_fn): """ A decorator to make the forward_fn accept a single sample """ def f(W, σ): return forward_fn(W, σ[jnp.newaxis, :])[0] return f # TODO move it somewhere reasonable def tree_subtract_mean(oks: PyTree) -> PyTree: """ subtract the mean with MPI along axis 0 of every leaf """ return jax.tree_map(partial(subtract_mean, axis=0), oks) # MPI def jacobian_real_holo( forward_fn: Callable, params: PyTree, samples: Array, chunk_size: int = None ) -> PyTree: """Calculates Jacobian entries by vmapping grad. Assumes the function is R→R or holomorphic C→C, so single grad is enough Args: forward_fn: the log wavefunction ln Ψ params : a pytree of parameters p samples : an array of n samples σ Returns: The Jacobian matrix ∂/∂pₖ ln Ψ(σⱼ) as a PyTree """ def _jacobian_real_holo(forward_fn, params, samples): y, vjp_fun = jax.vjp(single_sample(forward_fn), params, samples) res, _ = vjp_fun(np.array(1.0, dtype=jnp.result_type(y))) return res return vmap_chunked( _jacobian_real_holo, in_axes=(None, None, 0), chunk_size=chunk_size )(forward_fn, params, samples) def jacobian_cplx( forward_fn: Callable, params: PyTree, samples: Array, chunk_size: int = None, _build_fn: Callable = partial(jax.tree_multimap, jax.lax.complex), ) -> PyTree: """Calculates Jacobian entries by vmapping grad. Assumes the function is R→C, backpropagates 1 and -1j Args: forward_fn: the log wavefunction ln Ψ params : a pytree of parameters p samples : an array of n samples σ Returns: The Jacobian matrix ∂/∂pₖ ln Ψ(σⱼ) as a PyTree """ def _jacobian_cplx(forward_fn, params, samples, _build_fn): y, vjp_fun = jax.vjp(single_sample(forward_fn), params, samples) gr, _ = vjp_fun(np.array(1.0, dtype=jnp.result_type(y))) gi, _ = vjp_fun(np.array(-1.0j, dtype=jnp.result_type(y))) return _build_fn(gr, gi) return vmap_chunked( _jacobian_cplx, in_axes=(None, None, 0, None), chunk_size=chunk_size )(forward_fn, params, samples, _build_fn) centered_jacobian_real_holo = compose(tree_subtract_mean, jacobian_real_holo) centered_jacobian_cplx = compose(tree_subtract_mean, jacobian_cplx) def _divide_by_sqrt_n_samp(oks, samples): """ divide Oⱼₖ by √n """ n_samp = samples.shape[0] * mpi.n_nodes # MPI return jax.tree_map(lambda x: x / np.sqrt(n_samp), oks) def _multiply_by_pdf(oks, pdf): """ Computes O'ⱼ̨ₖ = Oⱼₖ pⱼ . Used to multiply the log-derivatives by the probability density. """ return jax.tree_map( lambda x: jax.lax.broadcast_in_dim(pdf, x.shape, (0,)) * x, oks, ) def stack_jacobian(centered_oks: PyTree) -> PyTree: """ Return the real and imaginary parts of ΔOⱼₖ stacked along the sample axis Re[S] = Re[(ΔOᵣ + i ΔOᵢ)ᴴ(ΔOᵣ + i ΔOᵢ)] = ΔOᵣᵀ ΔOᵣ + ΔOᵢᵀ ΔOᵢ = [ΔOᵣ ΔOᵢ]ᵀ [ΔOᵣ ΔOᵢ] """ return jax.tree_map( lambda x: jnp.concatenate([x.real, x.imag], axis=0), centered_oks ) def stack_jacobian_tuple(centered_oks_re_im): """ stack the real and imaginary parts of ΔOⱼₖ along the sample axis Re[S] = Re[(ΔOᵣ + i ΔOᵢ)ᴴ(ΔOᵣ + i ΔOᵢ)] = ΔOᵣᵀ ΔOᵣ + ΔOᵢᵀ ΔOᵢ = [ΔOᵣ ΔOᵢ]ᵀ [ΔOᵣ ΔOᵢ] Args: centered_oks_re_im : a tuple (ΔOᵣ, ΔOᵢ) of two PyTrees representing the real and imag part of ΔOⱼₖ """ return jax.tree_multimap( lambda re, im: jnp.concatenate([re, im], axis=0), *centered_oks_re_im ) def _rescale(centered_oks): """ compute ΔOₖ/√Sₖₖ and √Sₖₖ to do scale-invariant regularization (Becca & Sorella 2017, pp. 143) Sₖₗ/(√Sₖₖ√Sₗₗ) = ΔOₖᴴΔOₗ/(√Sₖₖ√Sₗₗ) = (ΔOₖ/√Sₖₖ)ᴴ(ΔOₗ/√Sₗₗ) """ scale = jax.tree_map( lambda x: mpi.mpi_sum_jax(jnp.sum((x * x.conj()).real, axis=0, keepdims=True))[ 0 ] ** 0.5, centered_oks, ) centered_oks = jax.tree_multimap(jnp.divide, centered_oks, scale) scale = jax.tree_map(partial(jnp.squeeze, axis=0), scale) return centered_oks, scale def _jvp(oks: PyTree, v: PyTree) -> Array: """ Compute the matrix-vector product between the pytree jacobian oks and the pytree vector v """ td = lambda x, y: jnp.tensordot(x, y, axes=y.ndim) return jax.tree_util.tree_reduce(jnp.add, jax.tree_multimap(td, oks, v)) def _vjp(oks: PyTree, w: Array) -> PyTree: """ Compute the vector-matrix product between the vector w and the pytree jacobian oks """ res = jax.tree_map(partial(jnp.tensordot, w, axes=1), oks) return jax.tree_map(lambda x: mpi.mpi_sum_jax(x)[0], res) # MPI def _mat_vec(v: PyTree, oks: PyTree) -> PyTree: """ Compute ⟨O† O⟩v = ∑ₗ ⟨Oₖᴴ Oₗ⟩ vₗ """ res = tree_conj(_vjp(oks, _jvp(oks, v).conjugate())) return tree_cast(res, v) # ============================================================================== # the logic above only works for R→R, R→C and holomorphic C→C # here the other modes are converted @partial(jax.jit, static_argnames=("apply_fun", "mode", "rescale_shift", "chunk_size")) def prepare_centered_oks( apply_fun: Callable, params: PyTree, samples: Array, model_state: Optional[PyTree], mode: str, rescale_shift: bool, pdf=None, chunk_size: int = None, ) -> PyTree: """ compute ΔOⱼₖ = Oⱼₖ - ⟨Oₖ⟩ = ∂/∂pₖ ln Ψ(σⱼ) - ⟨∂/∂pₖ ln Ψ⟩ divided by √n In a somewhat intransparent way this also internally splits all parameters to real in the 'real' and 'complex' modes (for C→R, R&C→R, R&C→C and general C→C) resulting in the respective ΔOⱼₖ which is only compatible with split-to-real pytree vectors Args: apply_fun: The forward pass of the Ansatz params : a pytree of parameters p samples : an array of (n in total) batched samples σ model_state: untrained state parameters of the model mode: differentiation mode, must be one of 'real', 'complex', 'holomorphic' rescale_shift: whether scale-invariant regularisation should be used (default: True) pdf: |ψ(x)|^2 if exact optimization is being used else None chunk_size: an int specfying the size of the chunks the gradient should be computed in (default: None) Returns: if not rescale_shift: a pytree representing the centered jacobian of ln Ψ evaluated at the samples σ, divided by √n; None else: the same pytree, but the entries for each parameter normalised to unit norm; pytree containing the norms that were divided out (same shape as params) """ # un-batch the samples samples = samples.reshape((-1, samples.shape[-1])) # pre-apply the model state def forward_fn(W, σ): return apply_fun({"params": W, **model_state}, σ) if mode == "real": split_complex_params = True # convert C→R and R&C→R to R→R centered_jacobian_fun = centered_jacobian_real_holo jacobian_fun = jacobian_real_holo elif mode == "complex": split_complex_params = True # convert C→C and R&C→C to R→C # centered_jacobian_fun = compose(stack_jacobian, centered_jacobian_cplx) # avoid converting to complex and then back # by passing around the oks as a tuple of two pytrees representing the real and imag parts centered_jacobian_fun = compose( stack_jacobian_tuple, partial(centered_jacobian_cplx, _build_fn=lambda *x: x), ) jacobian_fun = jacobian_cplx elif mode == "holomorphic": split_complex_params = False centered_jacobian_fun = centered_jacobian_real_holo jacobian_fun = jacobian_real_holo else: raise NotImplementedError( 'Differentiation mode should be one of "real", "complex", or "holomorphic", got {}'.format( mode ) ) if split_complex_params: # doesn't do anything if the params are already real params, reassemble = tree_to_real(params) def f(W, σ): return forward_fn(reassemble(W), σ) else: f = forward_fn if pdf is None: centered_oks = _divide_by_sqrt_n_samp( centered_jacobian_fun( f, params, samples, chunk_size=chunk_size, ), samples, ) else: oks = jacobian_fun(f, params, samples) oks_mean = jax.tree_map(partial(sum, axis=0), _multiply_by_pdf(oks, pdf)) centered_oks = jax.tree_multimap(lambda x, y: x - y, oks, oks_mean) centered_oks = _multiply_by_pdf(centered_oks, jnp.sqrt(pdf)) if rescale_shift: return _rescale(centered_oks) else: return centered_oks, None def mat_vec(v: PyTree, centered_oks: PyTree, diag_shift: Scalar) -> PyTree: """ Compute (S + δ) v = 1/n ⟨ΔO† ΔO⟩v + δ v = ∑ₗ 1/n ⟨ΔOₖᴴΔOₗ⟩ vₗ + δ vₗ Only compatible with R→R, R→C, and holomorphic C→C for C→R, R&C→R, R&C→C and general C→C the parameters for generating ΔOⱼₖ should be converted to R, and thus also the v passed to this function as well as the output are expected to be of this form Args: v: pytree representing the vector v compatible with centered_oks centered_oks: pytree of gradients 1/√n ΔOⱼₖ diag_shift: a scalar diagonal shift δ Returns: a pytree corresponding to the sr matrix-vector product (S + δ) v """ return tree_axpy(diag_shift, v, _mat_vec(v, centered_oks))
the-stack_0_20831
# 2022 eCTF # Attack-Phase Image Update Routine # Jake Grycel # # (c) 2022 The MITRE Corporation # # This source file is part of an example system for MITRE's 2022 Embedded System # CTF (eCTF). This code is being provided only for educational purposes for the # 2022 MITRE eCTF competition, and may not meet MITRE standards for quality. # Use this code at your own risk! import argparse from pathlib import Path from serial import Serial from serial.tools import list_ports success_codes = [1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 18, 21, 22, 23] error_codes = [4, 11, 14, 16, 17, 19, 20] UPDATE_COMMAND = b"\x00" # Wait for expected bootloader repsonse byte # Exit if response does not match def verify_resp(ser, print_out=True): resp = ser.read(1) while (resp == b"") or (not ord(resp) in (success_codes + error_codes)): resp = ser.read(1) if ord(resp) not in success_codes: print(f"Error. Bootloader responded with: {ord(resp)}") exit() if print_out: print(f"Success. Bootloader responded with code {ord(resp)}") return ord(resp) # Run full application update def image_update(in_file): # USAGE: # 1. Start this script # 2. Start the device # # This script finds the correct serial port by looking at an initial # list and waiting for a new entry to show up. # It then assumes that is the correct port and tries an update # Look for a serial port to open print("Looking for new serial port to open...") search = True orig_port_list = list_ports.comports() orig_len = len(orig_port_list) while search: new_port_list = list_ports.comports() new_len = len(new_port_list) if new_len == (orig_len + 1): for port in new_port_list: if port not in orig_port_list: com_port = port.device search = False break elif new_len != orig_len: # Something changed, so we adapt orig_port_list = new_port_list orig_len = new_len # Keep trying to connect while 1: try: ser = Serial(com_port, 115200, timeout=2) ser.reset_input_buffer() break except Exception: pass print(f"Connected to bootloader on {com_port}") # Open protected image img_file = Path(in_file) if not img_file.exists(): print(f"Image file {img_file} not found. Exiting") exit() with open(img_file, "rb") as image_fp: # Send update command print("Requesting update") ser.write(UPDATE_COMMAND) # Wait for initial status messages to synchronize resp = -1 while resp != success_codes[2]: resp = verify_resp(ser) # Send image and verify each block success print("Update started") print("Sending image data") block_bytes = image_fp.read(16) count = 0 while block_bytes != b"": if (count % 100) == 0: print(f"Sending block {count}") count += 1 ser.write(block_bytes) verify_resp(ser, print_out=False) block_bytes = image_fp.read(16) # Wait for update finish print("\nListening for update status...\n") resp = -1 while resp != success_codes[-1]: resp = verify_resp(ser) print("\nUpdate Complete!\n") # Run in application mode if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser( description="Tool for loading designs into the keyed attack-phase device", ) parser.add_argument("--infile", required=True, help="Path to the input binary") args = parser.parse_args() image_update(args.infile)
the-stack_0_20832
#!/usr/bin/env python2.7 # -*- encoding: utf-8 -*- from __future__ import print_function from __future__ import division import kivy kivy.require('1.9.0') Initialize_Window_Width = 1280 Initialize_Window_Height = 800 from kivy.config import Config Config.set('graphics', 'width', str(Initialize_Window_Width)) Config.set('graphics', 'height', str(Initialize_Window_Height)) from kivy.utils import platform as Kivy_Platform from kivy.lang.builder import Builder from kivy.app import App from kivy.core.window import Window from kivy.uix.screenmanager import ScreenManager, Screen, NoTransition from kivy.uix.scrollview import ScrollView from kivy.uix.gridlayout import GridLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.button import Button from kivy.uix.slider import Slider from kivy.uix.label import Label from kivy.uix.image import Image # , AsyncImage from kivy.clock import Clock from kivy.graphics import Rectangle, Color from kivy.properties import ListProperty from kivy.factory import Factory import os, sys import platform import datetime, calendar import math execution_directory = os.path.abspath(os.path.dirname(sys.argv[0])) os_platform = platform.system() path_to_time_slider_cursor = "" path_to_time_slider_cursor_disabled = "" path_to_cwremote_screen_image = "" if (os_platform == "Darwin"): execution_directory = execution_directory.split("CW_Remote.app")[0] def resource_path ( relative_path ): """ Get absolute path to resource, works for dev and for PyInstaller """ try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception: base_path = execution_directory return os.path.join(base_path, relative_path) path_to_icon_image = resource_path(os.path.join("data", "cwremote-icon-512.png")) path_to_time_slider_cursor = resource_path(os.path.join("data", "time_slider_cursor.png")) path_to_time_slider_cursor_disabled = resource_path(os.path.join("data", "time_slider_cursor_disabled.png")) path_to_cwremote_screen_image = resource_path(os.path.join("data", "CW_Remote_Screen.png")) Config.set('kivy','window_icon', path_to_icon_image) Config.write() elif (os_platform == "Linux"): if (Kivy_Platform == "android"): pass elif (os_platform == "Windows"): pass else: pass # Convenience function to bound a value def bound ( low, high, value ): return max(low, min(high, value)) # Local wall time, this works for New York City class Time_Zone ( datetime.tzinfo ): def __init__(self, offset_in_minutes): super(Time_Zone, self).__init__() self.offset = offset_in_minutes def utcoffset(self, dt): return datetime.timedelta(minutes=self.offset) def tzname(self, dt): return "" def dst(self, dt): return datetime.timedelta(0) UTC_Time_Zone = Time_Zone(0) Eastern_Daylight_Time_Zone = Time_Zone(-4 * 60) Eastern_Standard_Time_Zone = Time_Zone(-5 * 60) def NYC_Wall_DateTime_Offset ( Time_Zone_Aware_DateTime ): # In the US, since 2007, DST starts at 2am (standard time) on the second # Sunday in March, which is the first Sunday on or after Mar 8. # and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov. datetime_nyc_wall = Time_Zone_Aware_DateTime.astimezone(Eastern_Standard_Time_Zone) # Test whether in primetime begin_daylight_savings = \ datetime.datetime(year=datetime_nyc_wall.year, month=3, day=8, hour=2, tzinfo=Eastern_Standard_Time_Zone) begin_daylight_savings += datetime.timedelta(days=(6 - begin_daylight_savings.date().weekday())) end_daylight_savings = \ datetime.datetime(year=datetime_nyc_wall.year, month=11, day=1, hour=1, tzinfo=Eastern_Standard_Time_Zone) end_daylight_savings += datetime.timedelta(days=(6 - end_daylight_savings.date().weekday())) if ((datetime_nyc_wall >= begin_daylight_savings) and (datetime_nyc_wall <= end_daylight_savings)): datetime_nyc_wall_offset = "-0400" else: datetime_nyc_wall_offset = "-0500" return datetime_nyc_wall_offset def NYC_Wall_DateTime ( Time_Zone_Aware_DateTime ): # In the US, since 2007, DST starts at 2am (standard time) on the second # Sunday in March, which is the first Sunday on or after Mar 8. # and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov. datetime_nyc_wall = Time_Zone_Aware_DateTime.astimezone(Eastern_Standard_Time_Zone) # Test whether in primetime begin_daylight_savings = \ datetime.datetime(year=datetime_nyc_wall.year, month=3, day=8, hour=2, tzinfo=Eastern_Standard_Time_Zone) begin_daylight_savings += datetime.timedelta(days=(6 - begin_daylight_savings.date().weekday())) end_daylight_savings = \ datetime.datetime(year=datetime_nyc_wall.year, month=11, day=1, hour=1, tzinfo=Eastern_Standard_Time_Zone) end_daylight_savings += datetime.timedelta(days=(6 - end_daylight_savings.date().weekday())) if ((datetime_nyc_wall >= begin_daylight_savings) and (datetime_nyc_wall <= end_daylight_savings)): datetime_nyc_wall = Time_Zone_Aware_DateTime.astimezone(Eastern_Daylight_Time_Zone) return datetime_nyc_wall def Return_NYC_Wall_Time_String ( UTC_Datetime=None, NYC_Wall_Datetime=None, Time_Zone_Indicator="" ): if (UTC_Datetime is not None): datetime_NYC_Wall = NYC_Wall_DateTime(UTC_Datetime) elif (NYC_Wall_Datetime is not None): datetime_NYC_Wall = NYC_Wall_Datetime else: datetime_NYC_Wall = None isoformatted_datetime_NYC_Wall = datetime_NYC_Wall.isoformat() if (Time_Zone_Indicator == "E"): return isoformatted_datetime_NYC_Wall[:-6] if (datetime_NYC_Wall is not None): return (isoformatted_datetime_NYC_Wall + Time_Zone_Indicator) else: return "Error" def Period_Span_NYC_Wall_Time ( Period_Hours, Period_End_Hours_Ago ): datetime_now_utc = datetime.datetime.now(UTC_Time_Zone) period_end_utc = datetime_now_utc - datetime.timedelta(hours=Period_End_Hours_Ago) period_begin_utc = period_end_utc - datetime.timedelta(hours=Period_Hours) period_begin_NYC_Wall = NYC_Wall_DateTime(period_begin_utc) period_end_NYC_Wall = NYC_Wall_DateTime(period_end_utc) period_begin_nyc_wall_string = \ Return_NYC_Wall_Time_String(NYC_Wall_Datetime=period_begin_NYC_Wall, Time_Zone_Indicator="E")[:-10].replace("T", " ") period_end_nyc_wall_string = \ Return_NYC_Wall_Time_String(NYC_Wall_Datetime=period_end_NYC_Wall, Time_Zone_Indicator="E")[:-10].replace("T", " ") return (calendar.day_abbr[period_begin_NYC_Wall.weekday()] + " " + period_begin_nyc_wall_string + "NYC to " + calendar.day_abbr[period_end_NYC_Wall.weekday()] + " " + period_end_nyc_wall_string + "NYC") # Since this is a "static" widget, it's more convenient to create as kv Builder.load_string( """ <VerticalTabBarBoxLayout>: orientation: 'vertical' canvas: Color: rgba: 0.75, 0.95, 1, 1 Rectangle: pos: self.pos size: self.size size_hint: (0.02, 1) Widget: Button: padding: (15, 5) on_press: root.trigger_on_press_previous() center_x: self.parent.center_x center_y: self.parent.top - (self.texture_size[0] / 2.0) size: self.texture_size canvas.before: PushMatrix Rotate: angle: 90 origin: self.center canvas.after: PopMatrix text: "Previous" Button: padding: (15, 5) on_press: root.trigger_on_press_simplex() center_x: self.parent.center_x center_y: self.parent.top - (self.parent.height * 0.3) size: self.texture_size canvas.before: PushMatrix Rotate: angle: 90 origin: self.center canvas.after: PopMatrix text: "Simplex" Button: padding: (15, 5) on_press: root.trigger_on_press_help() center: self.parent.center size: self.texture_size canvas.before: PushMatrix Rotate: angle: 90 origin: self.center canvas.after: PopMatrix text: "Help" Button: padding: (15, 5) on_press: root.trigger_on_press_duplex() center_x: self.parent.center_x center_y: self.parent.top - (self.parent.height * 0.7) size: self.texture_size canvas.before: PushMatrix Rotate: angle: 90 origin: self.center canvas.after: PopMatrix text: "Duplex" Button: padding: (15, 5) on_press: root.trigger_on_press_next() center_x: self.parent.center_x center_y: self.parent.top - self.parent.height + (self.texture_size[0] / 2.0) size: self.texture_size canvas.before: PushMatrix Rotate: angle: 90 origin: self.center canvas.after: PopMatrix text: "Next" """) class VerticalTabBarBoxLayout(BoxLayout): def __init__(self, **kwargs): super(VerticalTabBarBoxLayout, self).__init__(**kwargs) self.register_event_type('on_press_previous') self.register_event_type('on_press_next') self.register_event_type('on_press_simplex') self.register_event_type('on_press_duplex') self.register_event_type('on_press_help') def trigger_on_press_previous(self, *args): self.dispatch('on_press_previous') def on_press_previous(self, *args): pass def trigger_on_press_next(self, *args): self.dispatch('on_press_next') def on_press_next(self, *args): pass def trigger_on_press_simplex(self, *args): self.dispatch('on_press_simplex') def on_press_simplex(self, *args): pass def trigger_on_press_duplex(self, *args): self.dispatch('on_press_duplex') def on_press_duplex(self, *args): pass def trigger_on_press_help(self, *args): self.dispatch('on_press_help') def on_press_help(self, *args): pass # This slider extension allows the code to avoid the very expensive refreshes of ... # ... the widget images until the user has stopped sliding the slider. Refresh then. class SliderExtended(Slider): def __init__(self, **kwargs): self.register_event_type('on_release') super(SliderExtended, self).__init__(**kwargs) def on_release(self): pass # Because there appears to be no event for touch_up, ... # ... override on_touch_up and create a custom event def on_touch_up(self, touch): super(SliderExtended, self).on_touch_up(touch) if (touch.grab_current == self): self.dispatch('on_release') return True # Since this is a relatively complicated "dynamic" widget, ... # ... it's more convenient to render as Python code. class TimeSpanControlBar(BoxLayout): Period_Duration_Steps = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, # 18 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, # 12 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, # 12 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, # 12 100, 104, 108, 112, 116, 120, # 6 124, 128, 132, 136, 140, 144, # 6 148, 152, 156, 160, 164, 168] # 6 Period_Hours_Ago_Steps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, # 19 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, # 12 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, # 12 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, # 12 100, 104, 108, 112, 116, 120, # 6 124, 128, 132, 136, 140, 144, # 6 148, 152, 156, 160, 164, 168] # 6 def __init__(self, **kwargs): self.register_event_type('on_release') self._period_duration_hours = 24 self._period_end_hours_ago = 0 slider_minimum_value = -1000 period_duration_slider_maximum_value = -1 self.period_duration_slider_value_span = period_duration_slider_maximum_value - slider_minimum_value period_end_slider_maximum_value = 0 self.period_end_slider_value_span = period_end_slider_maximum_value - slider_minimum_value super(TimeSpanControlBar, self).__init__(**kwargs) self.period_duration_label = Label(text="proxy", size_hint=(0.075, 1)) self.period_duration_slider = \ SliderExtended(cursor_image=path_to_time_slider_cursor, cursor_disabled_image=path_to_time_slider_cursor_disabled, cursor_height=28, border_horizontal=[0, 0, 0, 0], padding=12, min=slider_minimum_value, max=period_duration_slider_maximum_value, value=period_duration_slider_maximum_value, step=1, size_hint=(0.4, 1)) self.period_duration_slider.bind(value=self._on_period_duration_value_change) self.period_duration_slider.bind(on_release=self._trigger_on_release) refresh_button = Button(text="Refresh", size_hint=(0.05, 1)) refresh_button.font_size = 14 refresh_button.bind(on_press=self._trigger_on_release) self.period_end_slider = \ SliderExtended(cursor_image=path_to_time_slider_cursor, cursor_disabled_image=path_to_time_slider_cursor_disabled, cursor_height=28, border_horizontal=[0, 0, 0, 0], padding=12, min=slider_minimum_value, max=period_end_slider_maximum_value, value=period_end_slider_maximum_value, step=1, size_hint=(0.4, 1)) self.period_end_slider.bind(value=self._on_period_end_value_change) self.period_end_slider.bind(on_release=self._trigger_on_release) self.period_end_label = Label(text="proxy", size_hint=(0.075, 1)) self.add_widget(self.period_duration_label) self.add_widget(self.period_duration_slider) self.add_widget(refresh_button) self.add_widget(self.period_end_slider) self.add_widget(self.period_end_label) self.set_period_duration_value(self._period_duration_hours) self.set_period_end_value(self._period_end_hours_ago) # Public functions (used to synchronize multiple TimeSpanControlBars) ... def set_period_duration_value(self, period_duration_value, *args): self._period_duration_hours = period_duration_value self.period_duration_label.text = (self._period_value_display(self._period_duration_hours)) self.period_duration_slider.value = -(self.period_duration_slider_value_span * (self.Period_Duration_Steps.index(self._period_duration_hours) / len(self.Period_Duration_Steps))) def set_period_end_value(self, period_end_value, *args): self._period_end_hours_ago = period_end_value self.period_end_slider.value = -(self.period_end_slider_value_span * (self.Period_Hours_Ago_Steps.index(self._period_end_hours_ago) / len(self.Period_Hours_Ago_Steps))) self.period_end_label.text = (self._period_value_display(self._period_end_hours_ago) + " ago") # ... Public functions (used to synchronize multiple TimeSpanControlBars) # Private functions ... def _period_value_display(self, Period_Value): period_value_string = "" if ((Period_Value // 24) > 0): period_value_string += str(Period_Value // 24) + "D" if (((Period_Value % 24) > 0) or (len(period_value_string) == 0)): if (len(period_value_string) > 0): period_value_string += " " period_value_string += str(Period_Value % 24) + "H" return period_value_string def _on_period_duration_value_change(self, instance, period_duration_slider_value, *args): # print (period_duration_slider_value) period_value_index = \ int(round(len(self.Period_Duration_Steps) * (abs(period_duration_slider_value) / self.period_duration_slider_value_span))) self._period_duration_hours = \ self.Period_Duration_Steps[bound(0, (len(self.Period_Duration_Steps) - 1), period_value_index)] self.period_duration_label.text = (self._period_value_display(self._period_duration_hours)) # print (period_duration_slider_value, period_value_index, self._period_duration_hours, self.period_duration_label.text) return True def _on_period_end_value_change(self, instance, period_end_slider_value, *args): period_end_value_index = \ int(round(len(self.Period_Hours_Ago_Steps) * (abs(period_end_slider_value) / self.period_end_slider_value_span))) self._period_end_hours_ago = \ self.Period_Hours_Ago_Steps[bound(0, (len(self.Period_Hours_Ago_Steps) - 1), period_end_value_index)] self.period_end_label.text = (self._period_value_display(self._period_end_hours_ago) + " ago") return True # ... Private functions # Proxy for public event def on_release(self, *args): pass # Private function def _trigger_on_release(self, *args): self.dispatch('on_release', self._period_duration_hours, self._period_end_hours_ago) return True Builder.load_string(""" <LabelExtended>: background_color: 1, 1, 1, 1 canvas.before: Color: rgba: self.background_color Rectangle: pos: self.pos size: self.size """) class LabelExtended(Label): background_color = ListProperty([1, 1, 1, 1]) Factory.register('KivyExtended', module='LabelExtended') class GridLayoutExtended ( GridLayout ): def __init__(self, **kwargs): # Gotta be able to do its business super(GridLayoutExtended, self).__init__(**kwargs) with self.canvas.before: Color(1, 0, 0, 1) self.rect = Rectangle(size=self.size, pos=self.pos) self.bind(size=self._update_rect, pos=self._update_rect) def _update_rect(self, instance, value): self.rect.pos = instance.pos self.rect.size = instance.size def Build_Help_GridLayout ( on_help_escape_callback ): kivy_app_help = \ GridLayoutExtended(cols=1, padding=[2, 2, 0, 2], spacing=0, size_hint=(None, None), width=Initialize_Window_Width) cwremote_screen_image = \ Image(source=path_to_cwremote_screen_image, size=((Initialize_Window_Width - 4), 815), size_hint=(None, None)) kivy_app_help.add_widget(cwremote_screen_image) help_escape_button = Button(text="Return to graphs", bold=True, background_color=[1, 0, 0, 1], size=((Initialize_Window_Width - 4), 28), size_hint=(None, None)) help_escape_button.bind(on_press=on_help_escape_callback) kivy_app_help.add_widget(help_escape_button) CW_Remote_Help_Text_Paragraphs = [ "The red '[b][color=ff0000]A[/color][/b]' marks the slider that adjusts the duration of the period for which the graphed data will appear. " + "It can adjust from 1 hour to 7 days (168 hours). " + "The label to the left of the this slider displays the current period duration in days and hours. " + "This slider is logarithmic, it is increasingly sensitive toward the right end of the scale. ", "The red '[b][color=ff0000]B[/color][/b]' marks the slider that adjusts the hours before now that the graphed period ends. " + "It can adjust from 0 hours to 7 days (168 hours). " + "The label to the right of the this slider displays the days and hours before now that the graphed period ends. " + "This slider is logarithmic, it is increasingly sensitive toward the right end of the scale. " ] # Add help text paragraphs to grid. for help_text_paragraph in CW_Remote_Help_Text_Paragraphs: help_txt_para = LabelExtended(text=help_text_paragraph, markup=True, text_size=(1272, None), color=[0, 0, 0, 1], padding_x=2, width=(Initialize_Window_Width - 4), size_hint=(None, None)) help_txt_para.height = math.ceil(len(help_text_paragraph) * (1.33 / 255)) * 25 kivy_app_help.add_widget(help_txt_para) kivy_app_help.bind(minimum_height=kivy_app_help.setter('height')) return kivy_app_help class Build_Kivy_App_UI ( App ): def __init__(self, **kwargs): super(Build_Kivy_App_UI, self).__init__(**kwargs) Window.bind(on_key_down=self.on_keyboard_down) def build(self): self.title = "Kivy App Demo Step2" Window.bind(on_key_down=self.on_keyboard_down) self.Period_Duration_Hours = 24 self.Period_End_Hours_Ago = 0 self.Visible_Payload_Count = 2 self.Kivy_App_UI = ScreenManager(transition=NoTransition()) # Duplex self.Kivy_App_Duplex_Screen = Screen(name="duplex") self.Kivy_App_Duplex = BoxLayout(orientation='horizontal') self.Duplex_Tab_Bar = VerticalTabBarBoxLayout() self.Duplex_Tab_Bar.bind(on_press_previous=self.on_previous) self.Duplex_Tab_Bar.bind(on_press_next=self.on_next) self.Duplex_Tab_Bar.bind(on_press_simplex=self.on_simplex) self.Duplex_Tab_Bar.bind(on_press_duplex=self.on_duplex) self.Duplex_Tab_Bar.bind(on_press_help=self.on_help) self.Duplex_Kivy_App_Panel = BoxLayout(orientation='vertical', size_hint=(0.98, 1)) self.Duplex_TimeSpanControlBar = TimeSpanControlBar() self.Duplex_TimeSpanControlBar.bind(on_release=self.update_with_parameters) self.Duplex_TimeSpanControlBar.size_hint = (1, 0.04) # Simplex self.Kivy_App_Simplex_Screen = Screen(name="simplex") self.Kivy_App_Simplex = BoxLayout(orientation='horizontal') self.Simplex_Tab_Bar = VerticalTabBarBoxLayout() self.Simplex_Tab_Bar.bind(on_press_previous=self.on_previous) self.Simplex_Tab_Bar.bind(on_press_next=self.on_next) self.Simplex_Tab_Bar.bind(on_press_simplex=self.on_simplex) self.Simplex_Tab_Bar.bind(on_press_duplex=self.on_duplex) self.Simplex_Tab_Bar.bind(on_press_help=self.on_help) self.Simplex_Kivy_App_Panel = BoxLayout(orientation='vertical', size_hint=(0.98, 1)) self.Simplex_TimeSpanControlBar = TimeSpanControlBar() self.Simplex_TimeSpanControlBar.bind(on_release=self.update_with_parameters) self.Simplex_TimeSpanControlBar.size_hint = (1, 0.04) # Duplex screen self.Duplex_Upper_Payload_Box = BoxLayout(orientation='vertical', size_hint=(1, 0.48)) self.Duplex_Lower_Payload_Box = BoxLayout(orientation='vertical', size_hint=(1, 0.48)) self.Duplex_Kivy_App_Panel.add_widget(self.Duplex_Upper_Payload_Box) self.Duplex_Kivy_App_Panel.add_widget(self.Duplex_TimeSpanControlBar) self.Duplex_Kivy_App_Panel.add_widget(self.Duplex_Lower_Payload_Box) self.Kivy_App_Duplex.add_widget(self.Duplex_Tab_Bar) self.Kivy_App_Duplex.add_widget(self.Duplex_Kivy_App_Panel) self.Kivy_App_Duplex_Screen.add_widget(self.Kivy_App_Duplex) self.Kivy_App_UI.add_widget(self.Kivy_App_Duplex_Screen) # Simplex screen self.Simplex_Lower_Payload_Box = BoxLayout(orientation='vertical', size_hint=(1, (2 * 0.48))) self.Simplex_Kivy_App_Panel.add_widget(self.Simplex_TimeSpanControlBar) self.Simplex_Kivy_App_Panel.add_widget(self.Simplex_Lower_Payload_Box) self.Kivy_App_Simplex.add_widget(self.Simplex_Tab_Bar) self.Kivy_App_Simplex.add_widget(self.Simplex_Kivy_App_Panel) self.Kivy_App_Simplex_Screen.add_widget(self.Kivy_App_Simplex) self.Kivy_App_UI.add_widget(self.Kivy_App_Simplex_Screen) # Help screen self.Kivy_App_Help_Screen = Screen(name="help") self.Kivy_App_Help = Build_Help_GridLayout(self.on_help_escape) self.Kivy_App_Help_ScrollView = \ ScrollView(size_hint=(None, None), size=(Initialize_Window_Width, Initialize_Window_Height), bar_width=5, bar_color=[1, 0, 0, 0.5], bar_inactive_color=[1, 0, 0, 0.2], do_scroll_x=False) self.Kivy_App_Help_ScrollView.add_widget(self.Kivy_App_Help) self.Kivy_App_Help_Screen.add_widget(self.Kivy_App_Help_ScrollView) self.Kivy_App_UI.add_widget(self.Kivy_App_Help_Screen) return self.Kivy_App_UI def on_simplex ( self, *args ): if (self.Visible_Payload_Count == 2): self.toggle_duplex_versus_simplex() return True def on_duplex ( self, *args ): if (self.Visible_Payload_Count == 1): self.toggle_duplex_versus_simplex() return True def toggle_duplex_versus_simplex ( self ): if (self.Kivy_App_UI.current == "duplex"): self.synchronize_control_bar_values(self.Simplex_TimeSpanControlBar) self.Visible_Payload_Count = 1 self.Kivy_App_UI.current = "simplex" elif (self.Kivy_App_UI.current == "simplex"): self.synchronize_control_bar_values(self.Duplex_TimeSpanControlBar) self.Visible_Payload_Count = 2 self.Kivy_App_UI.current = "duplex" self.update() def synchronize_control_bar_values ( self, target_control_bar ): for destination_child in target_control_bar.children: target_control_bar.set_period_duration_value(self.Period_Duration_Hours) target_control_bar.set_period_end_value(self.Period_End_Hours_Ago) def update_with_parameters ( self, instance, period_value, period_end_value, *args ): # print ("update_params:", period_value, period_end_value) self.Period_Duration_Hours = period_value self.Period_End_Hours_Ago = period_end_value self.update() def update ( self, *args ): if (self.Visible_Payload_Count == 2): self.Duplex_Upper_Payload_Box.clear_widgets() self.Duplex_Lower_Payload_Box.clear_widgets() upper_payload_label = \ Label(text=Period_Span_NYC_Wall_Time(self.Period_Duration_Hours, self.Period_End_Hours_Ago)) self.Duplex_Upper_Payload_Box.add_widget(upper_payload_label) lower_payload_label = \ Label(text=Period_Span_NYC_Wall_Time(self.Period_Duration_Hours, self.Period_End_Hours_Ago)) self.Duplex_Lower_Payload_Box.add_widget(lower_payload_label) elif (self.Visible_Payload_Count == 1): self.Simplex_Lower_Payload_Box.clear_widgets() lower_payload_label = \ Label(text=Period_Span_NYC_Wall_Time(self.Period_Duration_Hours, self.Period_End_Hours_Ago)) self.Simplex_Lower_Payload_Box.add_widget(lower_payload_label) self.Kivy_App_UI.canvas.ask_update() def on_previous ( self, *args ): return True def on_next ( self, *args ): return True def on_help ( self, *args ): self.Kivy_App_UI.current = "help" return True def on_help_escape ( self, *args ): if (self.Kivy_App_UI.current == "help"): if (self.Visible_Payload_Count == 2): self.Kivy_App_UI.current = "duplex" elif (self.Visible_Payload_Count == 1): self.Kivy_App_UI.current = "simplex" def on_keyboard_down ( self, instance, keyboard, keycode, text, modifiers ): # print ("keycode:", keycode, ", text:", text, ", modifiers:", modifiers) if (keycode == 44): if (not (self.Kivy_App_UI.current == "help")): self.toggle_duplex_versus_simplex() elif (keycode == 41): self.on_help_escape() elif ((keycode == 81) or (keycode == 79)): if (not (self.Kivy_App_UI.current == "help")): self.on_next() elif ((keycode == 82) or (keycode == 80)): if (not (self.Kivy_App_UI.current == "help")): self.on_previous() return True def on_start ( self, **kwargs ): Clock.schedule_once(self.update, 0.5) return True if __name__ == '__main__': Build_Kivy_App_UI().run()
the-stack_0_20833
# -*- coding: utf-8 -*- import numpy as np import random import tensorflow as tf import tensorflow.contrib.layers as layers class Network(): def __init__(self, sess, name, inpt_shape, inpt_network=None): self.sess = sess self.name = name self.inpt_network = inpt_network with tf.variable_scope(self.name): if self.inpt_network is None: self.inpt_shape = inpt_shape self.inpt = tf.placeholder(tf.float32, (None,)+self.inpt_shape) self.out = self.build_network(self.inpt) else: self.inpt_shape = self.inpt_network.inpt.shape self.inpt = self.inpt_network.inpt self.out = self.build_network(self.inpt_network.out) self.vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name) self.trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) self.pertubable_vars = [var for var in self.trainable_vars if 'LayerNorm' not in var.name] def build_network(self, inpt): return inpt class PreprocessingNetwork(Network): def __init__(self, sess, name, inpt_shape, n_features, layer_norm=True): self.n_features = n_features self.layer_norm = layer_norm super().__init__(sess=sess, name=name, inpt_shape=inpt_shape, inpt_network=None) def build_network(self, inpt): h = inpt # h = layers.convolution2d(h, num_outputs=32, kernel_size=8, stride=4, activation_fn=None) # if self.layer_norm: # h = layers.layer_norm(h, activation_fn=tf.nn.relu) # else: # h = tf.nn.relu(h) # h = layers.convolution2d(h, num_outputs=64, kernel_size=4, stride=2, activation_fn=None) # if self.layer_norm: # h = layers.layer_norm(h, activation_fn=tf.nn.relu) # else: # h = tf.nn.relu(h) # h = layers.convolution2d(h, num_outputs=64, kernel_size=3, stride=1, activation_fn=None) # if self.layer_norm: # h = layers.layer_norm(h, activation_fn=tf.nn.relu) # else: # h = tf.nn.relu(h) # h = layers.fully_connected(h, num_outputs=300, activation_fn=None) # if self.layer_norm: # h = layers.layer_norm(h, activation_fn=tf.nn.relu) # else: # h = tf.nn.relu(h) # fs = layers.fully_connected(h, num_outputs=self.n_features, activation_fn=None) # if self.layer_norm: # fs = layers.layer_norm(fs, activation_fn=tf.nn.relu) # else: # fs = tf.nn.relu(fs) # return layers.flatten(fs) return inpt class ActorNetwork(Network): def __init__(self, sess, name, n_actions, inpt_shape, inpt_network, learning_rate=1e-4, layer_norm=True, invert_gradients=False): self.n_actions = n_actions self.learning_rate = learning_rate self.layer_norm = layer_norm self.invert_gradients = invert_gradients super().__init__(sess=sess, name=name, inpt_shape=inpt_shape, inpt_network=inpt_network) with tf.variable_scope(self.name): self.action_gradients = tf.placeholder(tf.float32, [None, self.n_actions]) self.batch_size = tf.placeholder(tf.float32, None) self.total_trainable_vars = self.trainable_vars if inpt_network is not None: self.total_trainable_vars += inpt_network.trainable_vars self.actor_gradients = tf.gradients(self.out, self.total_trainable_vars, -self.action_gradients) self.actor_gradients = list(map(lambda x: tf.div(x, self.batch_size), self.actor_gradients)) self.trainer = tf.train.AdamOptimizer(self.learning_rate) self.optimize = self.trainer.apply_gradients(zip(self.actor_gradients, self.total_trainable_vars)) def build_network(self, inpt): h = inpt h = layers.fully_connected(h, num_outputs=300, activation_fn=None) if self.layer_norm: h = layers.layer_norm(h, activation_fn=tf.nn.relu) else: h = tf.nn.relu(h) if not self.invert_gradients: actions = layers.fully_connected(h, num_outputs=self.n_actions, weights_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3), activation_fn=tf.nn.tanh) else: actions = layers.fully_connected(h, num_outputs=self.n_actions, activation_fn=None) return actions def train(self, inpt, a_gradients, batch_size, actions): if self.invert_gradients: def invert(grad, a): if grad<0: return grad*(a+1)/2 return grad*(1-a)/2 for b in range(batch_size): a_gradients[b] = [invert(grad, a) for (grad, a) in zip(a_gradients[b], actions[b])] self.sess.run(self.optimize, feed_dict={ self.inpt: inpt, self.action_gradients: a_gradients, self.batch_size: batch_size }) def policy(self, inpt): return self.sess.run(self.out, feed_dict={ self.inpt: inpt, }) class CriticNetwork(Network): def __init__(self, sess, name, n_actions, inpt_shape, inpt_network, learning_rate=1e-3, layer_norm=True, optimism=0): self.sess = sess self.n_actions = n_actions self.learning_rate = learning_rate self.layer_norm = layer_norm super().__init__(sess=sess, name=name, inpt_shape=inpt_shape, inpt_network=inpt_network) with tf.variable_scope(self.name): self.ys = tf.placeholder(tf.float32, [None, 1]) # self.loss = tf.losses.mean_squared_error(self.ys, self.out) error = self.out - self.ys def aloss(a): return tf.pow(error, 2) * tf.pow(tf.sign(error) + a, 2) self.loss = aloss(-optimism) self.trainer = tf.train.AdamOptimizer(self.learning_rate) self.optimize = self.trainer.minimize(self.loss) self.a_gradients = tf.gradients(self.out, self.actions) def build_network(self, inpt): self.actions = tf.placeholder(tf.float32, [None, self.n_actions]) h_a = self.actions # h_a = layers.fully_connected(h_a, num_outputs=32, activation_fn=None) # if self.layer_norm: # h_a = layers.layer_norm(h_a, activation_fn=tf.nn.relu) # else: # h_a = tf.nn.relu(h_a) h = tf.concat([inpt, h_a], 1) # h = tf.add(inpt, h_a) h = layers.fully_connected(h, num_outputs=300, activation_fn=None) if self.layer_norm: h = layers.layer_norm(h, activation_fn=tf.nn.relu) else: h = tf.nn.relu(h) Q_values = layers.fully_connected(h, num_outputs=1, activation_fn=None) return Q_values def train(self, inpt, actions, ys): return self.sess.run([self.out, self.loss, self.optimize], feed_dict={ self.inpt: inpt, self.actions: actions, self.ys: ys }) def compute_Q(self, inpt, actions): return self.sess.run(self.out, feed_dict={ self.inpt: inpt, self.actions: actions }) def action_gradients(self, inpt, actions): return self.sess.run(self.a_gradients, feed_dict={ self.inpt: inpt, self.actions: actions }) class QNetwork(Network): def __init__(self, sess, name, n_actions, inpt_shape, inpt_network, dueling=True, optimism=0): self.sess = sess self.n_actions = n_actions self.dueling=dueling self.learning_rate = tf.placeholder(tf.float32, shape=[]) super().__init__(sess=sess, name=name, inpt_shape=inpt_shape, inpt_network=inpt_network) with tf.variable_scope(self.name): self.ys = tf.placeholder(tf.float32, [None]) self.actions = tf.placeholder(tf.int32, [None]) self.selected_out = tf.reduce_sum(tf.multiply(self.out, tf.one_hot(self.actions, self.n_actions)), 1) self.error = self.ys - self.selected_out # def aloss(a): return tf.pow(error, 2) * tf.pow(tf.sign(error) + a, 2) # self.loss = aloss(-optimism) self.loss = tf.losses.mean_squared_error(self.ys, self.selected_out) self.trainer = tf.train.AdamOptimizer(self.learning_rate) self.optimize = self.trainer.minimize(self.loss) def build_network(self, inpt): h = layers.fully_connected(inpt, num_outputs=64, activation_fn=tf.nn.relu) h = layers.fully_connected(h, num_outputs=64, activation_fn=tf.nn.relu) hidden_out = layers.fully_connected(h, num_outputs=64, activation_fn=tf.nn.relu) action_scores = layers.fully_connected(hidden_out, num_outputs=self.n_actions, activation_fn=None) if self.dueling: state_score = layers.fully_connected(hidden_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) out = state_score + action_scores_centered else: out = action_scores return out def train(self, inpt, actions, ys, learning_rate): return self.sess.run([self.error, self.loss, self.optimize], feed_dict={ self.inpt: inpt, self.actions: actions, self.ys: ys, self.learning_rate: learning_rate }) def compute_Q(self, inpt): return self.sess.run(self.out, feed_dict={ self.inpt: inpt }) def compute_selected_Q(self, inpt, actions): return self.sess.run(self.selected_out, feed_dict={ self.inpt: inpt, self.actions: actions }) class PredictionNetwork(Network): def __init__(self, sess, name, n_actions, inpt_shape, inpt_network, n_output, learning_rate=1e-4, layer_norm=True, classifier=False): self.sess = sess self.n_actions = n_actions self.n_output = n_output self.learning_rate = learning_rate self.layer_norm = layer_norm self.classifier = classifier super().__init__(sess=sess, name=name, inpt_shape=inpt_shape, inpt_network=inpt_network) with tf.variable_scope(self.name): self.ys = tf.placeholder(tf.float32, [None, self.n_output]) if self.classifier: self.loss = tf.losses.sigmoid_cross_entropy(self.ys, self.out)/self.n_output else: self.loss = tf.losses.mean_squared_error(self.ys, self.out)/self.n_output self.trainer = tf.train.AdamOptimizer(self.learning_rate) self.optimize = self.trainer.minimize(self.loss) def build_network(self, inpt): self.actions = tf.placeholder(tf.float32, [None, self.n_actions]) h_a = self.actions # h_a = layers.fully_connected(h_a, num_outputs=32, activation_fn=None) # if self.layer_norm: # h_a = layers.layer_norm(h_a, activation_fn=tf.nn.relu) # else: # h_a = tf.nn.relu(h_a) h = tf.concat([inpt, h_a], 1) # h = tf.add(inpt, h_a) h = layers.fully_connected(h, num_outputs=64, activation_fn=None) if self.layer_norm: h = layers.layer_norm(h, activation_fn=tf.nn.relu) else: h = tf.nn.relu(h) pred = layers.fully_connected(h, num_outputs=self.n_output, activation_fn=None) return pred def train(self, inpt, actions, ys): return self.sess.run([self.loss, self.optimize], feed_dict={ self.inpt: inpt, self.actions: actions, self.ys: ys }) def predict(self, inpt, actions): return self.sess.run(self.out, feed_dict={ self.inpt: inpt, self.actions: actions })
the-stack_0_20834
""" Implement weak defense model for Athena on top of IBM ART. It wraps a keras model to a weak defense in Athena ensemble. @author: Ying Meng (y(dot)meng201011(at)gmail(dot)com) """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np import six from art.classifiers.classifier import Classifier, ClassifierNeuralNetwork, ClassifierGradients from models.image_processor import transform logger = logging.getLogger(__name__) class WeakDefense(ClassifierNeuralNetwork, ClassifierGradients, Classifier): def __init__(self, model, trans_configs, use_logits=False, channel_index=3, clip_values=(0., 1.), input_layer=0, output_layer=0, ): super(WeakDefense, self).__init__(clip_values=clip_values, preprocessing_defences=None, postprocessing_defences=None, preprocessing=(0, 1), channel_index=channel_index, ) self._model = model self._trans_configs = trans_configs self._channel_index = channel_index self._input_layer = input_layer self._output_layer = output_layer if "<class 'tensorflow" in str(type(model)): self.is_tensorflow = True elif "<class 'keras" in str(type(model)): self.is_tensorflow = False else: raise TypeError("Type of model not recognized:" + type(model)) self._initialize_params(model, use_logits, input_layer, output_layer) def loss_gradient(self, x, y, **kwargs): """ Compute the gradient of the loss function w.r.t. `x`. :param x: Sample input with shape as expected by the model. :type x: `np.ndarray` :param y: Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,). :type y: `np.ndarray` :return: Array of gradients of the same shape as `x`. :rtype: `np.ndarray` """ # Check shape of `x` because of custom function for `_loss_gradients` if self._input_shape != x.shape[1:]: raise ValueError( "Error when checking x: expected x to have shape {} but got array with shape {}".format( self._input_shape, x.shape[1:] ) ) # Apply preprocessing x_preprocessed, y_preprocessed = self._apply_preprocessing(x, y, fit=False) # Adjust the shape of y for loss functions that do not take labels in one-hot encoding if self._reduce_labels: y_preprocessed = np.argmax(y_preprocessed, axis=1) # Compute gradients gradients = self._loss_gradients([x_preprocessed, y_preprocessed])[0] gradients = self._apply_preprocessing_gradient(x, gradients) assert gradients.shape == x_preprocessed.shape return gradients def class_gradient(self, x, label=None, **kwargs): """ Compute per-class derivatives w.r.t. `x`. :param x: Sample input with shape as expected by the model. :type x: `np.ndarray` :param label: Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of `x`, and each value will be used as target for its corresponding sample in `x`. If `None`, then gradients for all classes will be computed for each sample. :type label: `int` or `list` :return: Array of gradients of input features w.r.t. each class in the form `(batch_size, nb_classes, input_shape)` when computing for all classes, otherwise shape becomes `(batch_size, 1, input_shape)` when `label` parameter is specified. :rtype: `np.ndarray` """ # Check value of label for computing gradients if not ( label is None or (isinstance(label, (int, np.integer)) and label in range(self.nb_classes())) or ( isinstance(label, np.ndarray) and len(label.shape) == 1 and (label < self.nb_classes()).all() and label.shape[0] == x.shape[0] ) ): raise ValueError("Label %s is out of range." % str(label)) # Check shape of `x` because of custom function for `_loss_gradients` if self._input_shape != x.shape[1:]: raise ValueError( "Error when checking x: expected x to have shape {} but got array with shape {}".format( self._input_shape, x.shape[1:] ) ) self._init_class_gradients(label=label) # Apply preprocessing x_preprocessed, _ = self._apply_preprocessing(x, y=None, fit=False) if label is None: # Compute the gradients w.r.t. all classes gradients = np.swapaxes(np.array(self._class_gradients([x_preprocessed])), 0, 1) elif isinstance(label, (int, np.integer)): # Compute the gradients only w.r.t. the provided label gradients = np.swapaxes(np.array(self._class_gradients_idx[label]([x_preprocessed])), 0, 1) assert gradients.shape == (x_preprocessed.shape[0], 1) + self.input_shape else: # For each sample, compute the gradients w.r.t. the indicated target class (possibly distinct) unique_label = list(np.unique(label)) gradients = np.array([self._class_gradients_idx[l]([x_preprocessed]) for l in unique_label]) gradients = np.swapaxes(np.squeeze(gradients, axis=1), 0, 1) lst = [unique_label.index(i) for i in label] gradients = np.expand_dims(gradients[np.arange(len(gradients)), lst], axis=1) gradients = self._apply_preprocessing_gradient(x, gradients) return gradients def predict(self, x, batch_size=128, **kwargs): """ Perform prediction for a batch of inputs. :param x: Test set. :type x: `np.ndarray` :param batch_size: Size of batches. :type batch_size: `int` :return: Array of predictions of shape `(nb_inputs, nb_classes)`. :rtype: `np.ndarray` """ from art.config import ART_NUMPY_DTYPE # Apply transformation x_preprocessed = transform(x, self._trans_configs) # Apply preprocessing x_preprocessed, _ = self._apply_preprocessing(x_preprocessed, y=None, fit=False) # Run predictions with batching predictions = np.zeros((x_preprocessed.shape[0], self.nb_classes()), dtype=ART_NUMPY_DTYPE) for batch_index in range(int(np.ceil(x_preprocessed.shape[0] / float(batch_size)))): begin, end = batch_index * batch_size, min((batch_index + 1) * batch_size, x_preprocessed.shape[0]) predictions[begin:end] = self._model.predict([x_preprocessed[begin:end]]) # Apply postprocessing predictions = self._apply_postprocessing(preds=predictions, fit=False) return predictions def fit(self, x, y, batch_size=128, nb_epochs=20, **kwargs): """ Fit the classifier on the training set `(x, y)`. :param x: Training data. :type x: `np.ndarray` :param y: Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,). :type y: `np.ndarray` :param batch_size: Size of batches. :type batch_size: `int` :param nb_epochs: Number of epochs to use for training. :type nb_epochs: `int` :param kwargs: Dictionary of framework-specific arguments. These should be parameters supported by the `fit_generator` function in Keras and will be passed to this function as such. Including the number of epochs or the number of steps per epoch as part of this argument will result in as error. :type kwargs: `dict` :return: `None` """ # Apply preprocessing x_preprocessed, y_preprocessed = self._apply_preprocessing(x, y, fit=True) # Adjust the shape of y for loss functions that do not take labels in one-hot encoding if self._reduce_labels: y_preprocessed = np.argmax(y_preprocessed, axis=1) gen = generator_fit(x_preprocessed, y_preprocessed, batch_size) steps_per_epoch = max(int(x_preprocessed.shape[0] / batch_size), 1) self._model.fit_generator(gen, steps_per_epoch=steps_per_epoch, epochs=nb_epochs, **kwargs) def fit_generator(self, generator, nb_epochs=20, **kwargs): """ Fit the classifier using the generator that yields batches as specified. :param generator: Batch generator providing `(x, y)` for each epoch. If the generator can be used for native training in Keras, it will. :type generator: :class:`.DataGenerator` :param nb_epochs: Number of epochs to use for training. :type nb_epochs: `int` :param kwargs: Dictionary of framework-specific arguments. These should be parameters supported by the `fit_generator` function in Keras and will be passed to this function as such. Including the number of epochs as part of this argument will result in as error. :type kwargs: `dict` :return: `None` """ from art.data_generators import KerasDataGenerator # Try to use the generator as a Keras native generator, otherwise use it through the `DataGenerator` interface if isinstance(generator, KerasDataGenerator) and \ (self.preprocessing_defences is None or self.preprocessing_defences == []) and \ self.preprocessing == (0, 1): try: self._model.fit_generator(generator.iterator, epochs=nb_epochs, **kwargs) except ValueError: logger.info('Unable to use data generator as Keras generator. Now treating as framework-independent.') super(WeakDefense, self).fit_generator(generator, nb_epochs=nb_epochs, **kwargs) else: super(WeakDefense, self).fit_generator(generator, nb_epochs=nb_epochs, **kwargs) @property def layer_names(self): """ Return the hidden layers in the model, if applicable. :return: The hidden layers in the model, input and output layers excluded. :rtype: `list` .. warning:: `layer_names` tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either. """ return self._layer_names def get_activations(self, x, layer, batch_size): """ Return the output of the specified layer for input `x`. `layer` is specified by layer index (between 0 and `nb_layers - 1`) or by name. The number of layers can be determined by counting the results returned by calling `layer_names`. :param x: Input for computing the activations. :type x: `np.ndarray` :param layer: Layer for computing the activations :type layer: `int` or `str` :param batch_size: Size of batches. :type batch_size: `int` :return: The output of `layer`, where the first dimension is the batch size corresponding to `x`. :rtype: `np.ndarray` """ # pylint: disable=E0401 if self.is_tensorflow: import tensorflow.keras.backend as k else: import keras.backend as k from art.config import ART_NUMPY_DTYPE if isinstance(layer, six.string_types): if layer not in self._layer_names: raise ValueError("Layer name %s is not part of the graph." % layer) layer_name = layer elif isinstance(layer, int): if layer < 0 or layer >= len(self._layer_names): raise ValueError( "Layer index %d is outside of range (0 to %d included)." % (layer, len(self._layer_names) - 1) ) layer_name = self._layer_names[layer] else: raise TypeError("Layer must be of type `str` or `int`.") layer_output = self._model.get_layer(layer_name).output output_func = k.function([self._input], [layer_output]) if x.shape == self.input_shape: x_expanded = np.expand_dims(x, 0) else: x_expanded = x # Apply preprocessing x_preprocessed, _ = self._apply_preprocessing(x=x_expanded, y=None, fit=False) # Determine shape of expected output and prepare array output_shape = output_func([x_preprocessed[0][None, ...]])[0].shape activations = np.zeros((x_preprocessed.shape[0],) + output_shape[1:], dtype=ART_NUMPY_DTYPE) # Get activations with batching for batch_index in range(int(np.ceil(x_preprocessed.shape[0] / float(batch_size)))): begin, end = batch_index * batch_size, min((batch_index + 1) * batch_size, x_preprocessed.shape[0]) activations[begin:end] = output_func([x_preprocessed[begin:end]])[0] return activations def set_learning_phase(self, train): """ Set the learning phase for the backend framework. :param train: True to set the learning phase to training, False to set it to prediction. :type train: `bool` """ # pylint: disable=E0401 if self.is_tensorflow: import tensorflow.keras.backend as k else: import keras.backend as k if isinstance(train, bool): self._learning_phase = train k.set_learning_phase(int(train)) def nb_classes(self): """ Return the number of output classes. :return: Number of classes in the data. :rtype: `int` """ return self._nb_classes def save(self, filename, path=None): """ Save a model to file in the format specific to the backend framework. For Keras, .h5 format is used. :param filename: Name of the file where to store the model. :type filename: `str` :param path: Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library `ART_DATA_PATH`. :type path: `str` :return: None """ import os if path is None: from art.config import ART_DATA_PATH full_path = os.path.join(ART_DATA_PATH, filename) else: full_path = os.path.join(path, filename) folder = os.path.split(full_path)[0] if not os.path.exists(folder): os.makedirs(folder) self._model.save(str(full_path)) logger.info("Model saved in path: %s.", full_path) def _init_class_gradients(self, label=None): # pylint: disable=E0401 if self.is_tensorflow: import tensorflow.keras.backend as k else: import keras.backend as k if len(self._output.shape) == 2: nb_outputs = self._output.shape[1] else: raise ValueError("Unexpected output shape for classification in Keras model.") if label is None: logger.debug("Computing class gradients for all %i classes.", self.nb_classes()) if not hasattr(self, "_class_gradients"): class_gradients = [k.gradients(self._predictions_op[:, i], self._input)[0] for i in range(nb_outputs)] self._class_gradients = k.function([self._input], class_gradients) else: if isinstance(label, int): unique_labels = [label] else: unique_labels = np.unique(label) logger.debug("Computing class gradients for classes %s.", str(unique_labels)) if not hasattr(self, "_class_gradients_idx"): self._class_gradients_idx = [None for _ in range(nb_outputs)] for current_label in unique_labels: if self._class_gradients_idx[current_label] is None: class_gradients = [k.gradients(self._predictions_op[:, current_label], self._input)[0]] self._class_gradients_idx[current_label] = k.function([self._input], class_gradients) def _initialize_params(self, model, use_logits, input_layer, output_layer, synthesis=True, num_synthesis=10): """ Initialize most parameters of the classifier. This is a convenience function called by `__init__` and `__setstate__` to avoid code duplication. :param model: Keras model :type model: `keras.models.Model` :param use_logits: True if the output of the model are logits. :type use_logits: `bool` :param input_layer: Which layer to consider as the Input when the model has multiple input layers. :type input_layer: `int` :param output_layer: Which layer to consider as the Output when the model has multiple output layers. :type output_layer: `int` """ # pylint: disable=E0401 if self.is_tensorflow: import tensorflow as tf if tf.executing_eagerly(): raise ValueError("TensorFlow is executing eagerly. Please disable eager execution.") import tensorflow.keras as keras import tensorflow.keras.backend as k else: import keras import keras.backend as k if hasattr(model, "inputs"): self._input_layer = input_layer self._input = model.inputs[input_layer] else: self._input = model.input self._input_layer = 0 if hasattr(model, "outputs"): self._output = model.outputs[output_layer] self._output_layer = output_layer else: self._output = model.output self._output_layer = 0 _, self._nb_classes = k.int_shape(self._output) self._input_shape = k.int_shape(self._input)[1:] logger.debug( "Inferred %i classes and %s as input shape for Keras classifier.", self.nb_classes(), str(self.input_shape) ) self._use_logits = use_logits # Get loss function if not hasattr(self._model, "loss"): logger.warning("Keras model has no loss set. Classifier tries to use `k.sparse_categorical_crossentropy`.") loss_function = k.sparse_categorical_crossentropy else: if isinstance(self._model.loss, six.string_types): loss_function = getattr(k, self._model.loss) elif "__name__" in dir(self._model.loss) and self._model.loss.__name__ in [ "categorical_hinge", "categorical_crossentropy", "sparse_categorical_crossentropy", "binary_crossentropy", "kullback_leibler_divergence", ]: if self._model.loss.__name__ in ["categorical_hinge", "kullback_leibler_divergence"]: loss_function = getattr(keras.losses, self._model.loss.__name__) else: loss_function = getattr(keras.backend, self._model.loss.__name__) elif isinstance( self._model.loss, ( keras.losses.CategoricalHinge, keras.losses.CategoricalCrossentropy, keras.losses.SparseCategoricalCrossentropy, keras.losses.BinaryCrossentropy, keras.losses.KLDivergence, ), ): loss_function = self._model.loss else: loss_function = getattr(k, self._model.loss.__name__) # Check if loss function is an instance of loss function generator, the try is required because some of the # modules are not available in older Keras versions try: flag_is_instance = isinstance( loss_function, ( keras.losses.CategoricalHinge, keras.losses.CategoricalCrossentropy, keras.losses.BinaryCrossentropy, keras.losses.KLDivergence, ), ) except AttributeError: flag_is_instance = False # Check if the labels have to be reduced to index labels and create placeholder for labels if ( "__name__" in dir(loss_function) and loss_function.__name__ in ["categorical_hinge", "categorical_crossentropy", "binary_crossentropy", "kullback_leibler_divergence"] ) or (self.is_tensorflow and flag_is_instance): self._reduce_labels = False label_ph = k.placeholder(shape=self._output.shape) elif ( "__name__" in dir(loss_function) and loss_function.__name__ in ["sparse_categorical_crossentropy"] ) or isinstance(loss_function, keras.losses.SparseCategoricalCrossentropy): self._reduce_labels = True label_ph = k.placeholder(shape=[None,]) else: raise ValueError("Loss function not recognised.") # Define the loss using the loss function if "__name__" in dir(loss_function,) and loss_function.__name__ in [ "categorical_crossentropy", "sparse_categorical_crossentropy", "binary_crossentropy", ]: loss_ = loss_function(label_ph, self._output, from_logits=self._use_logits) elif "__name__" in dir(loss_function) and loss_function.__name__ in [ "categorical_hinge", "kullback_leibler_divergence", ]: loss_ = loss_function(label_ph, self._output) elif isinstance( loss_function, ( keras.losses.CategoricalHinge, keras.losses.CategoricalCrossentropy, keras.losses.SparseCategoricalCrossentropy, keras.losses.KLDivergence, keras.losses.BinaryCrossentropy, ), ): loss_ = loss_function(label_ph, self._output) # Average the loss for synthesizer # if synthesis: # print('>>> SYNTHESIZING ADVERSARIAL EXAMPLES...') # raw_loss_ = loss_.detach().clone() # num_samples = int(raw_loss_.shape[0] / num_synthesis) # loss_ = [] # for i in range(num_samples): # l_ = 0. # for j in range(num_synthesis): # id = i * num_synthesis + j # l_ += raw_loss_[id] # loss_.append(l_) # loss_ = np.asarray(loss_) # loss_ = k.sum(loss_) # Define loss gradients loss_gradients = k.gradients(loss_, self._input) if k.backend() == "tensorflow": loss_gradients = loss_gradients[0] elif k.backend() == "cntk": raise NotImplementedError("Only TensorFlow and Theano support is provided for Keras.") # Set loss, gradients and prediction functions self._predictions_op = self._output self._loss = loss_ self._loss_gradients = k.function([self._input, label_ph], [loss_gradients]) # Get the internal layer self._layer_names = self._get_layers() def _get_layers(self): """ Return the hidden layers in the model, if applicable. :return: The hidden layers in the model, input and output layers excluded. :rtype: `list` """ # pylint: disable=E0401 if self.is_tensorflow: from tensorflow.keras.layers import InputLayer else: from keras.engine.topology import InputLayer layer_names = [layer.name for layer in self._model.layers[:-1] if not isinstance(layer, InputLayer)] logger.info("Inferred %i hidden layers on Keras classifier.", len(layer_names)) return layer_names def __getstate__(self): """ Use to ensure `KerasClassifier` can be pickled. :return: State dictionary with instance parameters. :rtype: `dict` """ import time state = self.__dict__.copy() # Remove the unpicklable entries del state["_model"] del state["_input"] del state["_output"] del state["_predictions_op"] del state["_loss"] del state["_loss_gradients"] del state["_layer_names"] model_name = str(time.time()) + ".h5" state["model_name"] = model_name self.save(model_name) return state def __setstate__(self, state): """ Use to ensure `KerasClassifier` can be unpickled. :param state: State dictionary with instance parameters to restore. :type state: `dict` """ self.__dict__.update(state) # Load and update all functionality related to Keras # pylint: disable=E0401 import os from art.config import ART_DATA_PATH if self.is_tensorflow: from tensorflow.keras.models import load_model else: from keras.models import load_model full_path = os.path.join(ART_DATA_PATH, state["model_name"]) model = load_model(str(full_path)) self._model = model self._initialize_params(model, state["_use_logits"], state["_input_layer"], state["_output_layer"]) def __repr__(self): repr_ = ( "%s(model=%r, use_logits=%r, channel_index=%r, clip_values=%r, preprocessing_defences=%r, " "postprocessing_defences=%r, preprocessing=%r, input_layer=%r, output_layer=%r)" % ( self.__module__ + "." + self.__class__.__name__, self._model, self._use_logits, self.channel_index, self.clip_values, self.preprocessing_defences, self.postprocessing_defences, self.preprocessing, self._input_layer, self._output_layer, ) ) return repr_ def generator_fit(x, y, batch_size=128): """ Minimal data generator for randomly batching large datasets. :param x: The data sample to batch. :type x: `np.ndarray` :param y: The labels for `x`. The first dimension has to match the first dimension of `x`. :type y: `np.ndarray` :param batch_size: The size of the batches to produce. :type batch_size: `int` :return: A batch of size `batch_size` of random samples from `(x, y)` :rtype: `tuple(np.ndarray, np.ndarray)` """ while True: indices = np.random.randint(x.shape[0], size=batch_size) yield x[indices], y[indices]
the-stack_0_20835
import sys import gym import pylab import random import numpy as np from SumTree import SumTree from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES = 300 # 카트폴 예제에서의 DQN 에이전트 class DQNAgent: def __init__(self, state_size, action_size): self.render = False self.load_model = False # 상태와 행동의 크기 정의 self.state_size = state_size self.action_size = action_size # DQN 하이퍼파라미터 self.discount_factor = 0.99 self.learning_rate = 0.001 self.epsilon = 1.0 self.epsilon_decay = 0.999 self.epsilon_min = 0.01 self.batch_size = 64 self.train_start = 2000 self.memory_size = 2000 # 리플레이 메모리, 최대 크기 2000 self.memory = Memory(self.memory_size) # 모델과 타깃 모델 생성 self.model = self.build_model() self.target_model = self.build_model() # 타깃 모델 초기화 self.update_target_model() if self.load_model: self.model.load_weights("./save_model/cartpole_dqn_trained.h5") # 상태가 입력, 큐함수가 출력인 인공신경망 생성 def build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(24, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(self.action_size, activation='linear', kernel_initializer='he_uniform')) model.summary() model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model # 타깃 모델을 모델의 가중치로 업데이트 def update_target_model(self): self.target_model.set_weights(self.model.get_weights()) # 입실론 탐욕 정책으로 행동 선택 def get_action(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) else: q_value = self.model.predict(state) return np.argmax(q_value[0]) # 샘플 <s, a, r, s'>을 리플레이 메모리에 저장 def append_sample(self, state, action, reward, next_state, done): if self.epsilon == 1: done = True # TD-error 를 구해서 같이 메모리에 저장 target = self.model.predict([state]) old_val = target[0][action] target_val = self.target_model.predict([next_state]) if done: target[0][action] = reward else: target[0][action] = reward + self.discount_factor * ( np.amax(target_val[0])) error = abs(old_val - target[0][action]) self.memory.add(error, (state, action, reward, next_state, done)) # 리플레이 메모리에서 무작위로 추출한 배치로 모델 학습 def train_model(self): if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay # 메모리에서 배치 크기만큼 무작위로 샘플 추출 mini_batch = self.memory.sample(self.batch_size) errors = np.zeros(self.batch_size) states = np.zeros((self.batch_size, self.state_size)) next_states = np.zeros((self.batch_size, self.state_size)) actions, rewards, dones = [], [], [] for i in range(self.batch_size): states[i] = mini_batch[i][1][0] actions.append(mini_batch[i][1][1]) rewards.append(mini_batch[i][1][2]) next_states[i] = mini_batch[i][1][3] dones.append(mini_batch[i][1][4]) # 현재 상태에 대한 모델의 큐함수 # 다음 상태에 대한 타깃 모델의 큐함수 target = self.model.predict(states) target_val = self.target_model.predict(next_states) # 벨만 최적 방정식을 이용한 업데이트 타깃 for i in range(self.batch_size): old_val = target[i][actions[i]] if dones[i]: target[i][actions[i]] = rewards[i] else: target[i][actions[i]] = rewards[i] + self.discount_factor * ( np.amax(target_val[i])) # TD-error를 저장 errors[i] = abs(old_val - target[i][actions[i]]) # TD-error로 priority 업데이트 for i in range(self.batch_size): idx = mini_batch[i][0] self.memory.update(idx, errors[i]) self.model.fit(states, target, batch_size=self.batch_size, epochs=1, verbose=0) class Memory: # stored as ( s, a, r, s_ ) in SumTree e = 0.01 a = 0.6 def __init__(self, capacity): self.tree = SumTree(capacity) def _getPriority(self, error): return (error + self.e) ** self.a def add(self, error, sample): p = self._getPriority(error) self.tree.add(p, sample) def sample(self, n): batch = [] segment = self.tree.total() / n for i in range(n): a = segment * i b = segment * (i + 1) s = random.uniform(a, b) (idx, p, data) = self.tree.get(s) batch.append((idx, data)) return batch def update(self, idx, error): p = self._getPriority(error) self.tree.update(idx, p) if __name__ == "__main__": # CartPole-v1 환경, 최대 타임스텝 수가 500 env = gym.make('CartPole-v1') state_size = env.observation_space.shape[0] action_size = env.action_space.n # DQN 에이전트 생성 agent = DQNAgent(state_size, action_size) scores, episodes = [], [] step = 0 for e in range(EPISODES): done = False score = 0 # env 초기화 state = env.reset() state = np.reshape(state, [1, state_size]) while not done: if agent.render: env.render() step += 1 # 현재 상태로 행동을 선택 action = agent.get_action(state) # 선택한 행동으로 환경에서 한 타임스텝 진행 next_state, reward, done, info = env.step(action) next_state = np.reshape(next_state, [1, state_size]) # 에피소드가 중간에 끝나면 -100 보상 r = reward if not done or score+reward == 500 else -10 # 리플레이 메모리에 샘플 <s, a, r, s'> 저장 agent.append_sample(state, action, r, next_state, done) # 매 타임스텝마다 학습 if step >= agent.train_start: agent.train_model() score += reward state = next_state if done: # 각 에피소드마다 타깃 모델을 모델의 가중치로 업데이트 agent.update_target_model() # score = score if score == 500 else score + 100 # 에피소드마다 학습 결과 출력 scores.append(score) episodes.append(e) pylab.plot(episodes, scores, 'b') pylab.savefig("./save_graph/cartpole_dqn.png") print("episode:", e, " score:", score, " memory length:", step if step <= agent.memory_size else agent.memory_size, " epsilon:", agent.epsilon) # 이전 10개 에피소드의 점수 평균이 490보다 크면 학습 중단 if np.mean(scores[-min(10, len(scores)):]) > 490: agent.model.save_weights("./save_model/cartpole_dqn.h5") sys.exit()
the-stack_0_20837
from librispect.features import spectrogram import glob import librispect as lspct import librosa import numpy as np import pytest def test_stft_to_wav(): """testing the similarity between the original and reconstructed data""" hparams = lspct.features.spectrogram.HPARAMS wavfile = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[0] data, hparams["sample_rate"] = librosa.load(wavfile) stft = spectrogram.wav_to_stft(data, hparams) reconstructed_data = spectrogram.stft_to_wav(stft, hparams) # assume aligned, trim end min_len = min(len(data), len(reconstructed_data)) assert np.allclose(data[:min_len], reconstructed_data[:min_len]) def test_mel_spectrogram(): """test the mel sepctrogram""" hparams = lspct.features.spectrogram.HPARAMS wavfile = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[0] data, hparams["sample_rate"] = librosa.load(wavfile) mel_basis = spectrogram.build_mel_basis(hparams) for pre in [True, False]: stft = spectrogram.wav_to_stft(data, hparams, pre=pre) spect = spectrogram.spectrogram(stft, hparams) assert len(spect.shape) == 2, spect.shape mel_spect = spectrogram.linear_to_mel(spect, mel_basis) assert len(mel_spect.shape) == 2, mel_spect.shape assert hparams["num_mels"] in mel_spect.shape, mel_spect.shape assert len(mel_spect) != 0 def test_spect_iter(): """test the spect_maker class with the diff between spect created by class and function""" hparams = lspct.features.spectrogram.HPARAMS wavfile = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[0] data, hparams["sample_rate"] = librosa.load(wavfile) sm = spectrogram.spect_maker(hparams) for spect, stft in sm.spect_iter( glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[:25] ): assert len(stft.shape) == 3, stft.shape assert stft.shape[0] == 2, stft.shape assert len(spect.shape) == 2, spect.shape new_spect = spectrogram.spectrogram(stft, hparams) assert len(new_spect.shape) == 2, new_spect.shape assert np.allclose(spect, new_spect) def test_mel_spect_iter(): hparams = lspct.features.spectrogram.HPARAMS wavfile = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[0] data, hparams["sample_rate"] = librosa.load(wavfile) sm = spectrogram.spect_maker(hparams) mel_basis = spectrogram.build_mel_basis(hparams) for mspect, stft in sm.mel_spect_iter( glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[:25] ): assert len(stft.shape) == 3, stft.shape assert stft.shape[0] == 2, stft.shape assert len(mspect.shape) == 2, mspect.shape new_spect = spectrogram.spectrogram(stft, hparams) assert len(new_spect.shape) == 2, new_spect.shape new_mspect = spectrogram.linear_to_mel(new_spect, mel_basis) assert np.allclose(mspect, new_mspect) test_params = [ (1, 16, 1, 32), (5, 16, 1, 32), (5, 4, 1, 32), (5, 32, 1, 32), (5, 16, 4, 32), (5, 16, 16, 32), (5, 16, 1, 8), (5, 16, 1, 64), (25, 16, 1, 32), (100, 16, 1, 32), # (None, 16, 16, 32), ] @pytest.mark.parametrize("samples,window_size,step_size,batch_size", test_params) def test_batch_ss_iter(samples, window_size, step_size, batch_size): hparams = lspct.features.spectrogram.HPARAMS wavfile = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix())[0] data, hparams["sample_rate"] = librosa.load(wavfile) sm = spectrogram.spect_maker(hparams, window_size=window_size, step_size=step_size) path_list = glob.glob((lspct.paths.WAV_DIR / "*.wav").as_posix()) if samples: path_list = path_list[:samples] steps_per_epoch = sm.batch_ss_per_epoch(path_list, batch_size) assert isinstance(steps_per_epoch, int) assert steps_per_epoch > 0, steps_per_epoch for i, (spect_batch, stft_batch) in enumerate( sm.batch_iter(path_list, batch_size, False) ): assert spect_batch.shape[0] == stft_batch.shape[0], ( spect_batch.shape[0], stft_batch.shape[0], ) for batch in [spect_batch, stft_batch]: assert batch.shape[0] <= batch_size, (batch.shape[0], batch_size) assert batch.shape[-1] == window_size, (batch.shape[-1], window_size) if step_size < window_size: overlap = window_size - step_size first_sample = batch[0, ...] second_sample = batch[1, ...] assert np.allclose( first_sample[..., -overlap:], second_sample[..., :overlap] ) if i == 0: start_spect_batch = spect_batch start_stft_batch = stft_batch elif i == steps_per_epoch: assert np.allclose( start_spect_batch, spect_batch ), "hasn't looped around yet" assert np.allclose(start_stft_batch, stft_batch), "hasn't looped around yet" break if __name__ == "__main__": test_stft_to_wav() test_mel_spectrogram() test_spect_iter() test_mel_spect_iter()
the-stack_0_20839
""" Copyright 2018 Skyscanner Ltd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cfripper.model.rule_processor import Rule from cfripper.config.logger import get_logger logger = get_logger() class S3BucketPublicReadAclAndListStatementRule(Rule): REASON = "S3 Bucket {} should not have a public read acl and list bucket statement" MONITOR_MODE = True def invoke(self, resources): # Get all bucket policies and filter to get the ones that allow list actions bucket_policies = [] for policy in resources.get("AWS::S3::BucketPolicy", []): if any(policy.policy_document.wildcard_allowed_actions(pattern=r"^s3:L.*$")): bucket_policies.append(policy.bucket["Ref"]) # Check if bucket policies exist if bucket_policies: # Get S3 buckets buckets = resources.get("AWS::S3::Bucket", []) for resource in buckets: try: if resource.access_control == "PublicRead" and resource.logical_id in bucket_policies: self.add_failure( type(self).__name__, self.REASON.format(resource.logical_id), ) except AttributeError: logger.info("No access control on bucket")
the-stack_0_20845
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Luascoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test wallet group functionality.""" from test_framework.test_framework import LuascoinTestFramework from test_framework.messages import CTransaction, FromHex, ToHex from test_framework.util import ( assert_approx, assert_equal, ) class WalletGroupTest(LuascoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], [], ['-avoidpartialspends']] self.rpc_timeout = 240 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Mine some coins self.nodes[0].generate(110) # Get some addresses from the two nodes addr1 = [self.nodes[1].getnewaddress() for i in range(3)] addr2 = [self.nodes[2].getnewaddress() for i in range(3)] addrs = addr1 + addr2 # Send 1 + 0.5 coin to each address [self.nodes[0].sendtoaddress(addr, 1.0) for addr in addrs] [self.nodes[0].sendtoaddress(addr, 0.5) for addr in addrs] self.nodes[0].generate(1) self.sync_all() # For each node, send 0.2 coins back to 0; # - node[1] should pick one 0.5 UTXO and leave the rest # - node[2] should pick one (1.0 + 0.5) UTXO group corresponding to a # given address, and leave the rest txid1 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx1 = self.nodes[1].getrawtransaction(txid1, True) # txid1 should have 1 input and 2 outputs assert_equal(1, len(tx1["vin"])) assert_equal(2, len(tx1["vout"])) # one output should be 0.2, the other should be ~0.3 v = [vout["value"] for vout in tx1["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 0.3, 0.0001) txid2 = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx2 = self.nodes[2].getrawtransaction(txid2, True) # txid2 should have 2 inputs and 2 outputs assert_equal(2, len(tx2["vin"])) assert_equal(2, len(tx2["vout"])) # one output should be 0.2, the other should be ~1.3 v = [vout["value"] for vout in tx2["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 1.3, 0.0001) # Empty out node2's wallet self.nodes[2].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=self.nodes[2].getbalance(), subtractfeefromamount=True) self.sync_all() self.nodes[0].generate(1) # Fill node2's wallet with 10000 outputs corresponding to the same # scriptPubKey for i in range(5): raw_tx = self.nodes[0].createrawtransaction([{"txid":"0"*64, "vout":0}], [{addr2[0]: 0.05}]) tx = FromHex(CTransaction(), raw_tx) tx.vin = [] tx.vout = [tx.vout[0]] * 2000 funded_tx = self.nodes[0].fundrawtransaction(ToHex(tx)) signed_tx = self.nodes[0].signrawtransactionwithwallet(funded_tx['hex']) self.nodes[0].sendrawtransaction(signed_tx['hex']) self.nodes[0].generate(1) self.sync_all() # Check that we can create a transaction that only requires ~100 of our # utxos, without pulling in all outputs and creating a transaction that # is way too big. assert self.nodes[2].sendtoaddress(address=addr2[0], amount=5) if __name__ == '__main__': WalletGroupTest().main ()
the-stack_0_20849
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import importlib import os import subprocess import cudf import numpy as np import pandas as pd import pytest from sklearn.metrics import roc_auc_score import nvtabular as nvt import nvtabular.tools.data_gen as datagen from nvtabular import ops from nvtabular.io.dataset import Dataset tf = pytest.importorskip("tensorflow") # If tensorflow isn't installed skip these tests. Note that the # tf_dataloader import needs to happen after this line tf_dataloader = pytest.importorskip("nvtabular.loader.tensorflow") def test_nested_list(): num_rows = 100 batch_size = 12 df = pd.DataFrame( { "data": [ np.random.rand(np.random.randint(10) + 1, 3).tolist() for i in range(num_rows) ], "data2": [np.random.rand(np.random.randint(10) + 1).tolist() for i in range(num_rows)], "label": [np.random.rand() for i in range(num_rows)], } ) train_dataset = tf_dataloader.KerasSequenceLoader( Dataset(df), cont_names=["data", "data2"], label_names=["label"], batch_size=batch_size, shuffle=False, ) batch = next(iter(train_dataset)) pad_data_col = tf.RaggedTensor.from_row_lengths( batch[0]["data"][0][:, 0], batch[0]["data"][1][:, 0] ).to_tensor() true_data_col = tf.reshape( tf.ragged.constant(df.iloc[:batch_size, 0].tolist()).to_tensor(), [batch_size, -1] ) pad_data2_col = tf.RaggedTensor.from_row_lengths( batch[0]["data2"][0][:, 0], batch[0]["data2"][1][:, 0] ).to_tensor() true_data2_col = tf.reshape( tf.ragged.constant(df.iloc[:batch_size, 1].tolist()).to_tensor(), [batch_size, -1] ) assert np.allclose(pad_data_col.numpy(), true_data_col.numpy()) assert np.allclose(pad_data2_col.numpy(), true_data2_col.numpy()) def test_shuffling(): num_rows = 10000 batch_size = 10000 df = pd.DataFrame({"a": np.asarray(range(num_rows)), "b": np.asarray([0] * num_rows)}) train_dataset = tf_dataloader.KerasSequenceLoader( Dataset(df), cont_names=["a"], label_names=["b"], batch_size=batch_size, shuffle=True ) batch = next(iter(train_dataset)) first_batch = tf.reshape(tf.cast(batch[0]["a"].cpu(), tf.int32), (batch_size,)) in_order = tf.range(0, batch_size, dtype=tf.int32) assert (first_batch != in_order).numpy().any() assert (tf.sort(first_batch) == in_order).numpy().all() @pytest.mark.parametrize("batch_size", [10, 9, 8]) @pytest.mark.parametrize("drop_last", [True, False]) @pytest.mark.parametrize("num_rows", [100]) def test_tf_drp_reset(tmpdir, batch_size, drop_last, num_rows): df = cudf.DataFrame( { "cat1": [1] * num_rows, "cat2": [2] * num_rows, "cat3": [3] * num_rows, "label": [0] * num_rows, "cont3": [3.0] * num_rows, "cont2": [2.0] * num_rows, "cont1": [1.0] * num_rows, } ) path = os.path.join(tmpdir, "dataset.parquet") df.to_parquet(path) cat_names = ["cat3", "cat2", "cat1"] cont_names = ["cont3", "cont2", "cont1"] label_name = ["label"] data_itr = tf_dataloader.KerasSequenceLoader( [path], cat_names=cat_names, cont_names=cont_names, batch_size=batch_size, label_names=label_name, shuffle=False, drop_last=drop_last, ) all_len = len(data_itr) if drop_last else len(data_itr) - 1 all_rows = 0 for idx, (X, y) in enumerate(data_itr): all_rows += len(X["cat1"]) if idx < all_len: assert list(X["cat1"].numpy()) == [1] * batch_size assert list(X["cat2"].numpy()) == [2] * batch_size assert list(X["cat3"].numpy()) == [3] * batch_size assert list(X["cont1"].numpy()) == [1.0] * batch_size assert list(X["cont2"].numpy()) == [2.0] * batch_size assert list(X["cont3"].numpy()) == [3.0] * batch_size if drop_last and num_rows % batch_size > 0: assert num_rows > all_rows else: assert num_rows == all_rows def test_tf_catname_ordering(tmpdir): df = cudf.DataFrame( { "cat1": [1] * 100, "cat2": [2] * 100, "cat3": [3] * 100, "label": [0] * 100, "cont3": [3.0] * 100, "cont2": [2.0] * 100, "cont1": [1.0] * 100, } ) path = os.path.join(tmpdir, "dataset.parquet") df.to_parquet(path) cat_names = ["cat3", "cat2", "cat1"] cont_names = ["cont3", "cont2", "cont1"] label_name = ["label"] data_itr = tf_dataloader.KerasSequenceLoader( [path], cat_names=cat_names, cont_names=cont_names, batch_size=10, label_names=label_name, shuffle=False, ) for X, y in data_itr: assert list(X["cat1"].numpy()) == [1] * 10 assert list(X["cat2"].numpy()) == [2] * 10 assert list(X["cat3"].numpy()) == [3] * 10 assert list(X["cont1"].numpy()) == [1.0] * 10 assert list(X["cont2"].numpy()) == [2.0] * 10 assert list(X["cont3"].numpy()) == [3.0] * 10 def test_tf_map(tmpdir): df = cudf.DataFrame( { "cat1": [1] * 100, "cat2": [2] * 100, "cat3": [3] * 100, "label": [0] * 100, "sample_weight": [1.0] * 100, "cont2": [2.0] * 100, "cont1": [1.0] * 100, } ) path = os.path.join(tmpdir, "dataset.parquet") df.to_parquet(path) cat_names = ["cat3", "cat2", "cat1"] cont_names = ["sample_weight", "cont2", "cont1"] label_name = ["label"] def add_sample_weight(features, labels, sample_weight_col_name="sample_weight"): sample_weight = tf.cast(features.pop(sample_weight_col_name) > 0, tf.float32) return features, labels, sample_weight data_itr = tf_dataloader.KerasSequenceLoader( [path], cat_names=cat_names, cont_names=cont_names, batch_size=10, label_names=label_name, shuffle=False, ).map(add_sample_weight) for X, y, sample_weight in data_itr: assert list(X["cat1"].numpy()) == [1] * 10 assert list(X["cat2"].numpy()) == [2] * 10 assert list(X["cat3"].numpy()) == [3] * 10 assert list(X["cont1"].numpy()) == [1.0] * 10 assert list(X["cont2"].numpy()) == [2.0] * 10 assert list(sample_weight.numpy()) == [1.0] * 10 # TODO: include use_columns option # TODO: include parts_per_chunk test @pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.06]) @pytest.mark.parametrize("engine", ["parquet"]) @pytest.mark.parametrize("batch_size", [1, 10, 100]) @pytest.mark.parametrize("use_paths", [True, False]) @pytest.mark.parametrize("cpu_true", [False, True]) @pytest.mark.parametrize("device", ["cpu", 0]) def test_tf_gpu_dl( tmpdir, paths, use_paths, device, cpu_true, dataset, batch_size, gpu_memory_frac, engine ): cont_names = ["x", "y", "id"] cat_names = ["name-string"] label_name = ["label"] if engine == "parquet": cat_names.append("name-cat") columns = cont_names + cat_names conts = cont_names >> ops.FillMedian() >> ops.Normalize() cats = cat_names >> ops.Categorify() workflow = nvt.Workflow(conts + cats + label_name) workflow.fit(dataset) workflow.transform(dataset).to_parquet(tmpdir + "/processed") data_itr = tf_dataloader.KerasSequenceLoader( str(tmpdir + "/processed"), # workflow.transform(dataset), cat_names=cat_names, cont_names=cont_names, batch_size=batch_size, buffer_size=gpu_memory_frac, label_names=label_name, engine=engine, shuffle=False, device=device, reader_kwargs={"cpu": cpu_true}, ) _ = tf.random.uniform((1,)) rows = 0 for idx in range(len(data_itr)): X, y = next(data_itr) # first elements to check epoch-to-epoch consistency if idx == 0: X0, y0 = X, y # check that we have at most batch_size elements num_samples = y.shape[0] if num_samples != batch_size: try: next(data_itr) except StopIteration: rows += num_samples continue else: raise ValueError("Batch size too small at idx {}".format(idx)) # check that all the features in X have the # appropriate length and that the set of # their names is exactly the set of names in # `columns` these_cols = columns.copy() for column, x in X.items(): try: these_cols.remove(column) except ValueError as e: raise AssertionError from e assert x.shape[0] == num_samples assert len(these_cols) == 0 rows += num_samples assert (idx + 1) * batch_size >= rows assert rows == (60 * 24 * 3 + 1) # if num_samples is equal to batch size, # we didn't exhaust the iterator and do # cleanup. Try that now if num_samples == batch_size: try: next(data_itr) except StopIteration: pass else: raise ValueError assert not data_itr._working assert data_itr._batch_itr is None # check start of next epoch to ensure consistency X, y = next(data_itr) assert (y.numpy() == y0.numpy()).all() for column, x in X.items(): x0 = X0.pop(column) assert (x.numpy() == x0.numpy()).all() assert len(X0) == 0 data_itr.stop() assert not data_itr._working assert data_itr._batch_itr is None @pytest.mark.parametrize("batch_size", [1, 2, 3]) def test_mh_support(tmpdir, batch_size): data = { "Authors": [["User_A"], ["User_A", "User_E"], ["User_B", "User_C"], ["User_C"]], "Reviewers": [ ["User_A"], ["User_A", "User_E"], ["User_B", "User_C"], ["User_C"], ], "Engaging User": ["User_B", "User_B", "User_A", "User_D"], "Embedding": [ [0.1, 0.2, 0.3], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], [0.8, 0.4, 0.2], ], "Post": [1, 2, 3, 4], } df = cudf.DataFrame(data) cat_names = ["Authors", "Reviewers", "Engaging User"] cont_names = ["Embedding"] label_name = ["Post"] cats = cat_names >> ops.HashBucket(num_buckets=10) workflow = nvt.Workflow(cats + cont_names + label_name) data_itr = tf_dataloader.KerasSequenceLoader( workflow.transform(nvt.Dataset(df)), cat_names=cat_names, cont_names=cont_names, label_names=label_name, batch_size=batch_size, shuffle=False, ) nnzs = None idx = 0 for X, y in data_itr: assert len(X) == 4 n_samples = y.shape[0] for mh_name in ["Authors", "Reviewers", "Embedding"]: # assert (mh_name) in X array, nnzs = X[mh_name] nnzs = nnzs.numpy()[:, 0] array = array.numpy()[:, 0] if mh_name == "Embedding": assert (nnzs == 3).all() else: lens = [ len(x) for x in data[mh_name][idx * batch_size : idx * batch_size + n_samples] ] assert (nnzs == np.array(lens)).all() if mh_name == "Embedding": assert len(array) == (n_samples * 3) else: assert len(array) == sum(lens) idx += 1 assert idx == (3 // batch_size + 1) @pytest.mark.parametrize("batch_size", [1, 2, 4]) def test_validater(tmpdir, batch_size): n_samples = 9 rand = np.random.RandomState(0) gdf = cudf.DataFrame({"a": rand.randn(n_samples), "label": rand.randint(2, size=n_samples)}) dataloader = tf_dataloader.KerasSequenceLoader( nvt.Dataset(gdf), batch_size=batch_size, cat_names=[], cont_names=["a"], label_names=["label"], shuffle=False, ) input_ = tf.keras.Input(name="a", dtype=tf.float32, shape=(1,)) x = tf.keras.layers.Dense(128, "relu")(input_) x = tf.keras.layers.Dense(1, activation="softmax")(x) model = tf.keras.Model(inputs=input_, outputs=x) model.compile("sgd", "binary_crossentropy", metrics=["accuracy", tf.keras.metrics.AUC()]) validater = tf_dataloader.KerasSequenceValidater(dataloader) model.fit(dataloader, epochs=2, verbose=0, callbacks=[validater]) predictions, labels = [], [] for X, y_true in dataloader: y_pred = model(X) labels.extend(y_true.numpy()[:, 0]) predictions.extend(y_pred.numpy()[:, 0]) predictions = np.array(predictions) labels = np.array(labels) logs = {} validater.on_epoch_end(0, logs) auc_key = [i for i in logs if i.startswith("val_auc")][0] true_accuracy = (labels == (predictions > 0.5)).mean() estimated_accuracy = logs["val_accuracy"] assert np.isclose(true_accuracy, estimated_accuracy, rtol=1e-6) true_auc = roc_auc_score(labels, predictions) estimated_auc = logs[auc_key] assert np.isclose(true_auc, estimated_auc, rtol=1e-6) @pytest.mark.parametrize("engine", ["parquet"]) @pytest.mark.parametrize("batch_size", [1, 10, 100]) @pytest.mark.parametrize("global_rank", [0, 1]) def test_multigpu_partitioning(datasets, engine, batch_size, global_rank): cont_names = ["x", "y", "id"] cat_names = ["name-string", "name-cat"] label_name = ["label"] data_loader = tf_dataloader.KerasSequenceLoader( str(datasets["parquet"]), cat_names=cat_names, cont_names=cont_names, batch_size=batch_size, buffer_size=0.1, label_names=label_name, engine=engine, shuffle=False, global_size=2, global_rank=global_rank, ) indices = data_loader._gather_indices_for_dev(None) assert indices == [global_rank] @pytest.mark.parametrize("sparse_dense", [False, True]) def test_sparse_tensors(tmpdir, sparse_dense): # create small dataset, add values to sparse_list json_sample = { "conts": {}, "cats": { "spar1": { "dtype": None, "cardinality": 50, "min_entry_size": 1, "max_entry_size": 5, "multi_min": 2, "multi_max": 4, "multi_avg": 3, }, "spar2": { "dtype": None, "cardinality": 50, "min_entry_size": 1, "max_entry_size": 5, "multi_min": 3, "multi_max": 5, "multi_avg": 4, }, # "": {"dtype": None, "cardinality": 500, "min_entry_size": 1, "max_entry_size": 5}, }, "labels": {"rating": {"dtype": None, "cardinality": 2}}, } cols = datagen._get_cols_from_schema(json_sample) df_gen = datagen.DatasetGen(datagen.UniformDistro(), gpu_frac=0.0001) target_path = os.path.join(tmpdir, "input/") os.mkdir(target_path) df_files = df_gen.full_df_create(10000, cols, output=target_path) spa_lst = ["spar1", "spar2"] spa_mx = {"spar1": 5, "spar2": 6} batch_size = 10 data_itr = tf_dataloader.KerasSequenceLoader( df_files, cat_names=spa_lst, cont_names=[], label_names=["rating"], batch_size=batch_size, buffer_size=0.1, sparse_names=spa_lst, sparse_max=spa_mx, sparse_as_dense=sparse_dense, ) for batch in data_itr: feats, labs = batch for col in spa_lst: feature_tensor = feats[f"{col}"] if not sparse_dense: assert list(feature_tensor.shape) == [batch_size, spa_mx[col]] assert isinstance(feature_tensor, tf.sparse.SparseTensor) else: assert feature_tensor.shape[1] == spa_mx[col] assert not isinstance(feature_tensor, tf.sparse.SparseTensor) @pytest.mark.skip(reason="not working correctly in ci environment") @pytest.mark.skipif(importlib.util.find_spec("horovod") is None, reason="needs horovod") def test_horovod_multigpu(tmpdir): json_sample = { "conts": {}, "cats": { "genres": { "dtype": None, "cardinality": 50, "min_entry_size": 1, "max_entry_size": 5, "multi_min": 2, "multi_max": 4, "multi_avg": 3, }, "movieId": { "dtype": None, "cardinality": 500, "min_entry_size": 1, "max_entry_size": 5, }, "userId": {"dtype": None, "cardinality": 500, "min_entry_size": 1, "max_entry_size": 5}, }, "labels": {"rating": {"dtype": None, "cardinality": 2}}, } cols = datagen._get_cols_from_schema(json_sample) df_gen = datagen.DatasetGen(datagen.UniformDistro(), gpu_frac=0.0001) target_path = os.path.join(tmpdir, "input/") os.mkdir(target_path) df_files = df_gen.full_df_create(10000, cols, output=target_path) # process them cat_features = nvt.ColumnGroup(["userId", "movieId", "genres"]) >> nvt.ops.Categorify() ratings = nvt.ColumnGroup(["rating"]) >> (lambda col: (col > 3).astype("int8")) output = cat_features + ratings proc = nvt.Workflow(output) target_path_train = os.path.join(tmpdir, "train/") os.mkdir(target_path_train) proc.fit_transform(nvt.Dataset(df_files)).to_parquet( output_path=target_path_train, out_files_per_proc=5 ) # add new location target_path = os.path.join(tmpdir, "workflow/") os.mkdir(target_path) proc.save(target_path) curr_path = os.path.abspath(__file__) repo_root = os.path.relpath(os.path.normpath(os.path.join(curr_path, "../../.."))) hvd_wrap_path = os.path.join(repo_root, "examples/multi-gpu-movielens/hvd_wrapper.sh") hvd_exam_path = os.path.join(repo_root, "examples/multi-gpu-movielens/tf_trainer.py") with subprocess.Popen( [ "horovodrun", "-np", "2", "-H", "localhost:2", "sh", hvd_wrap_path, "python", hvd_exam_path, "--dir_in", f"{tmpdir}", "--batch_size", "1024", ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) as process: process.wait() stdout, stderr = process.communicate() print(stdout, stderr) assert "Loss:" in str(stdout) # #
the-stack_0_20850
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ # # AUTO GENERATED TRANSFER VARIABLE CLASS. DO NOT MODIFY # ################################################################################ from federatedml.transfer_variable.base_transfer_variable import BaseTransferVariables # noinspection PyAttributeOutsideInit class HeteroNNTransferVariable(BaseTransferVariables): def __init__(self, flowid=0): super().__init__(flowid) self.batch_data_index = self._create_variable(name='batch_data_index', src=['guest'], dst=['host']) self.batch_info = self._create_variable(name='batch_info', src=['guest'], dst=['host', 'arbiter']) self.decrypted_guest_fowrad = self._create_variable(name='decrypted_guest_fowrad', src=['host'], dst=['guest']) self.decrypted_guest_weight_gradient = self._create_variable(name='decrypted_guest_weight_gradient', src=['host'], dst=['guest']) self.encrypted_acc_noise = self._create_variable(name='encrypted_acc_noise', src=['host'], dst=['guest']) self.encrypted_guest_forward = self._create_variable(name='encrypted_guest_forward', src=['guest'], dst=['host']) self.encrypted_guest_weight_gradient = self._create_variable(name='encrypted_guest_weight_gradient', src=['guest'], dst=['host']) self.encrypted_host_forward = self._create_variable(name='encrypted_host_forward', src=['host'], dst=['guest']) self.host_backward = self._create_variable(name='host_backward', src=['guest'], dst=['host']) self.is_converge = self._create_variable(name='is_converge', src=['guest'], dst=['host'])
the-stack_0_20851
import torch from torch import nn from torch.autograd import Variable from examples.Helper import Helper from examples.Regression_Network import LSTM1 import matplotlib.pyplot as plt class Train(): def __init__(self): #define train parameters self.num_epochs = 1000 # 1000 epochs self.learning_rate = 0.001 # 0.001 lr #define netwrok architecture self.input_size = 512 # number of features self.hidden_size = 1 # number of features in hidden state self.num_layers = 1 # number of stacked lstm layers self.num_classes = 1 # number of output classes self.sequence_length=20 self.Loss_history=[] lstm1 = LSTM1(num_classes=self.num_classes, input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers, seq_length=self.sequence_length) # our lstm class #MSE criteria for regression network self.criterion = torch.nn.MSELoss(reduction='sum') # mean-squared error for regression self.optimizer = torch.optim.Adam(lstm1.parameters(), lr= self.learning_rate) self.model = lstm1 self.help_tool=Helper() self.train_accuracy_MSE=[] self.predicted=0 self.GroundTruth=0 self.GroundTruth_history=[] self.epochs=[] def train(self,lstm1,event_data,Angular_velocities,epoch): # for epoch in range(self.num_epochs): outputs = lstm1.forward(event_data) # forward pass self.optimizer.zero_grad() # caluclate the gradient, manually setting to 0 # obtain the loss function loss = self.criterion(outputs[-1].double(), Angular_velocities[-1][2].double()) self.epochs.append(epoch) self.train_accuracy_MSE.append((outputs[-1]-Angular_velocities[-1][2])) self.predicted=outputs[-1] self.GroundTruth=Angular_velocities[-1][2] self.Loss_history.append(loss) self.GroundTruth_history.append(self.GroundTruth) loss.backward() # calculates the loss of the loss function # print('loss',loss) self.optimizer.step() # improve from loss, i.e backprop # if epoch % 5 == 0 and epoch>0 : # print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # self.help_tool.SavemyModel(lstm1) def print_train_data(self): # self.plt.fi self.plt.plot(self.Loss_history) plt.title('loss history') plt.ylabel('loss') plt.xlabel('epoch') plt.show()
the-stack_0_20852
# you can write to stdout for debugging purposes, e.g. # print("this is a debug message") results = dict() def solution(N): # write your code in Python 3.6 # 1000000 if N in results: return results[N] else: result = f_series(N) results[N] = result return result def f_series(n): if n < 2: return n else: if n in results: return results[n] else: result = (f_series(n - 1) + f_series(n - 2)) % 1000000 results[n] = result return result
the-stack_0_20854
""" Script calculates sea ice extent in the Bering Sea from SIC fields Notes ----- Author : Zachary Labe Date : 4 March 2018 """ ### Import modules import numpy as np from netCDF4 import Dataset import matplotlib.pyplot as plt import datetime import statsmodels.api as sm ### Define directories directorydata = '/surtsey/zlabe/seaice/SIC_Alaska/' directorydata2 = '/home/zlabe/Documents/Projects/BeringSeaIce2018/Data/' directoryfigure = '/home/zlabe/Documents/Projects/BeringSeaIce2018/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting Bering SIE - %s----' % titletime) ### Define years years = np.arange(1850,2019+1,1) yearsat = np.arange(1979,2019+1,1) #### Retrieve data from NSIDC regional extent in Bering Sea beringold = np.genfromtxt(directorydata2 + 'BeringSeaIce_NSIDC_Feb.txt') bering = beringold/1e6 ### Retrieve data from historical sea ice atlas filename = directorydata + 'Alaska_SIC_Feb_1850-2019.nc' data = Dataset(filename) iceold = data.variables['sic'][:] lat1 = data.variables['lat'][:] lon1 = data.variables['lon'][:] data.close() print('Completed: Data read!') ### Meshgrid lon2,lat2 = np.meshgrid(lon1,lat1) ### Bering Sea Ice Mask latq = lat2.copy() latq[np.where(latq>67)] = 0. latq[np.where(latq>0.)] = 1 ### Mask values below 20% ice = iceold * latq ### Extent is a binary 0 or 1 for 15% SIC threshold thresh=15 ice[np.where(ice<thresh)]=np.nan ice[np.where(ice>=thresh)]=1 ### Calculate sea ice extent ext = np.zeros((years.shape[0])) valyr = np.zeros((ice.shape)) for yr in range(years.shape[0]): for i in range(lat2.shape[0]): for j in range(lon2.shape[1]): if ice[yr,i,j] == 1.0: ### Area of 0.25 grid cell [769.3 = (111.32/4) * (110.57/4)] valyr[yr,i,j] = 769.3 * np.cos(np.radians(lat2[i,j])) ext[yr] = np.nansum(valyr[yr,:,:])/1e6 ### Save sea ice extent data (yearly) from sea ice atlas np.savetxt(directorydata2 + 'Bering_SIE_iceatlas_02_1850-2019.txt',ext, delimiter=',',header='File contains February SIE from historical' \ '\n ice atlas (University of Alaska) for years' \ '\n 1850-2019 \n') ### Calculate loess smoothed = sm.nonparametric.lowess(ext,np.arange(years.shape[0])) ############################################################################### ############################################################################### ############################################################################### ### Plot figures plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) plt.rc('savefig',facecolor='black') plt.rc('axes',edgecolor='darkgrey') plt.rc('xtick',color='white') plt.rc('ytick',color='white') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') fig = plt.figure() ax = plt.subplot(111) ### Adjust axes in time series plots def adjust_spines(ax, spines): for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward', 5)) else: spine.set_color('none') if 'left' in spines: ax.yaxis.set_ticks_position('left') else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks([]) ax.tick_params('both',length=5.5,width=2,which='major',color='darkgrey') adjust_spines(ax, ['left','bottom']) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.spines['bottom'].set_linewidth(2) ax.spines['left'].set_linewidth(2) plt.plot(years,ext,linewidth=2,color='deepskyblue', label=r'\textbf{Historical Sea Ice Atlas, University of Alaska}', clip_on=False) plt.plot(yearsat,bering,linewidth=0.9,color='r', label=r'\textbf{NSIDC Sea Ice Index, Version 3}') plt.plot(years,smoothed[:,1],linewidth=0.9,linestyle='--', dashes=(1, 0.2),color='w',label=r'\textbf{Lowess Smoothing}') xlabels = list(map(str,np.arange(1850,2021,25))) plt.xticks(np.arange(1850,2021,25),xlabels,rotation=0,color='darkgrey') plt.xlim([1850,2020]) plt.yticks(np.arange(0,2.5,0.2),list(map(str,np.round(np.arange(0,2.5,0.2),2))), color='darkgrey') plt.ylim([0.2,1]) fig.suptitle(r'\textbf{FEBRUARY : BERING SEA ICE}', fontsize=22,color='darkgrey') plt.ylabel(r'\textbf{Extent [$\bf{\times 10^{6}}$\ \textbf{km}$\bf{^2}$]}', fontsize=17,alpha=1,color='darkgrey',rotation=90) le = plt.legend(shadow=False,fontsize=8,loc='upper center', bbox_to_anchor=(0.285, 0.17),fancybox=True,frameon=False,ncol=1) for text in le.get_texts(): text.set_color('darkgrey') plt.savefig(directoryfigure + 'Bering_SIE_Atlas_February_2019.png',dpi=300) print('Completed: Figure plotted!') print('Completed: Script done!')
the-stack_0_20856
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PagingGetOdataMultiplePagesOptions(Model): """Additional parameters for get_odata_multiple_pages operation. :param maxresults: Sets the maximum number of items to return in the response. :type maxresults: int :param timeout: Sets the maximum time that the server can spend processing the request, in seconds. The default is 30 seconds. Default value: 30 . :type timeout: int """ _attribute_map = { 'maxresults': {'key': '', 'type': 'int'}, 'timeout': {'key': '', 'type': 'int'}, } def __init__(self, **kwargs): super(PagingGetOdataMultiplePagesOptions, self).__init__(**kwargs) self.maxresults = kwargs.get('maxresults', None) self.timeout = kwargs.get('timeout', 30)
the-stack_0_20857
import unittest from bandwidth.voice.bxml import Response from lxml.builder import E class ResponseTests(unittest.TestCase): def test_to_xml(self): """ to_xml() should build XML """ estimated_xml = b'<xml><Response><Hangup/></Response></xml>' xml = Response(E.Hangup()) self.assertEqual(estimated_xml, xml.to_xml()) def test_to_xml_with_several_verbs(self): """ to_xml() should build XML (some verbs) """ estimated_xml = b'<xml><Response><Pause duration="10"/><Hangup/></Response></xml>' xml = Response(E.Pause({'duration': '10'}), E.Hangup()) self.assertEqual(estimated_xml, xml.to_xml()) def test__str__(self): """ __str__() should return XML as string """ estimated_xml = '<xml><Response><Hangup/></Response></xml>' xml = Response(E.Hangup()) self.assertEqual(estimated_xml, str(xml))
the-stack_0_20858
from .endpoint import Endpoint, api from .exceptions import MissingRequiredFieldError from .. import RequestFactory, SubscriptionItem, PaginationItem import logging logger = logging.getLogger("tableau.endpoint.subscriptions") class Subscriptions(Endpoint): @property def baseurl(self): return "{0}/sites/{1}/subscriptions".format(self.parent_srv.baseurl, self.parent_srv.site_id) @api(version="2.3") def get(self, req_options=None): logger.info("Querying all subscriptions for the site") url = self.baseurl server_response = self.get_request(url, req_options) pagination_item = PaginationItem.from_response(server_response.content, self.parent_srv.namespace) all_subscriptions = SubscriptionItem.from_response(server_response.content, self.parent_srv.namespace) return all_subscriptions, pagination_item @api(version="2.3") def get_by_id(self, subscription_id): if not subscription_id: error = "No Subscription ID provided" raise ValueError(error) logger.info("Querying a single subscription by id ({})".format(subscription_id)) url = "{}/{}".format(self.baseurl, subscription_id) server_response = self.get_request(url) return SubscriptionItem.from_response(server_response.content, self.parent_srv.namespace)[0] @api(version="2.3") def create(self, subscription_item): if not subscription_item: error = "No Susbcription provided" raise ValueError(error) logger.info("Creating a subscription ({})".format(subscription_item)) url = self.baseurl create_req = RequestFactory.Subscription.create_req(subscription_item) server_response = self.post_request(url, create_req) return SubscriptionItem.from_response(server_response.content, self.parent_srv.namespace)[0] @api(version="2.3") def delete(self, subscription_id): if not subscription_id: error = "Subscription ID undefined." raise ValueError(error) url = "{0}/{1}".format(self.baseurl, subscription_id) self.delete_request(url) logger.info("Deleted subscription (ID: {0})".format(subscription_id)) @api(version="2.3") def update(self, subscription_item): if not subscription_item.id: error = "Subscription item missing ID. Subscription must be retrieved from server first." raise MissingRequiredFieldError(error) url = "{0}/{1}".format(self.baseurl, subscription_item.id) update_req = RequestFactory.Subscription.update_req(subscription_item) server_response = self.put_request(url, update_req) logger.info("Updated subscription item (ID: {0})".format(subscription_item.id)) return SubscriptionItem.from_response(server_response.content, self.parent_srv.namespace)[0]
the-stack_0_20861
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # Python v3.7.5 # # Michael Würtenberger # (c) 2019 # # Licence APL2.0 # ########################################################### # standard libraries import logging # external packages import numpy as np import astropy._erfa as erfa # local imports from mw4.modeldata.alignstars import generateAlignStars class Hipparcos(object): """ The class Data inherits all information and handling of hipparcos data and other attributes. this includes data about the alignment stars defined in generateAlignStars, their ra dec coordinates, proper motion, parallax and radial velocity and the calculation of data for display and slew commands >>> hip = Hipparcos( >>> app=app >>> mwGlob=mwglob >>> ) """ __all__ = ['Hipparcos', 'calculateAlignStarsPositionsAltAz', 'getAlignStarRaDecFromIndex', ] version = '0.100.0' logger = logging.getLogger(__name__) def __init__(self, app=None, mwGlob=None, ): self.app = app self.mwGlob = mwGlob self.lat = app.mount.obsSite.location.latitude.degrees self.name = list() self.alt = list() self.az = list() self.alignStars = generateAlignStars() self.calculateAlignStarPositionsAltAz() def calculateAlignStarPositionsAltAz(self): """ calculateAlignStarPositionsAltAz does calculate the star coordinates from give data out of generated star list. calculation routines are from astropy erfa. atco13 does the results based on proper motion, parallax and radial velocity and need J2000 coordinates. because of using the hipparcos catalogue, which is based on J1991, 25 epoch the pre calculation from J1991,25 to J2000 is done already when generating the alignstars file. there is no refraction data taken into account, because we need this only for display purpose and for this, the accuracy is more than sufficient. :return: lists for alt, az and name of star """ location = self.app.mount.obsSite.location if location is None: return False t = self.app.mount.obsSite.timeJD star = list(self.alignStars.values()) self.name = list(self.alignStars.keys()) aob, zob, hob, dob, rob, eo = erfa.atco13([x[0] for x in star], [x[1] for x in star], [x[2] for x in star], [x[3] for x in star], [x[4] for x in star], [x[5] for x in star], t.ut1, 0.0, t.dut1, location.longitude.radians, location.latitude.radians, location.elevation.m, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) self.az = aob * 360 / 2 / np.pi self.alt = 90.0 - zob * 360 / 2 / np.pi return True def getAlignStarRaDecFromName(self, name): """ getAlignStarRaDecFromName does calculate the star coordinates from give data out of generated star list. calculation routines are from astropy erfa. atco13 does the results based on proper motion, parallax and radial velocity and need J2000 coordinates. because of using the hipparcos catalogue, which is based on J1991, 25 epoch the pre calculation from J1991,25 to J2000 is done already when generating the alignstars file. there is no refraction data taken into account, because we need this only for display purpose and for this, the accuracy is more than sufficient. the return values are in JNow epoch as the mount only handles this epoch ! :param name: name of star :return: values for ra, dec in hours / degrees in JNow epoch ! """ if name not in self.alignStars: return None, None t = self.app.mount.obsSite.ts.now() values = self.alignStars[name] ra, dec, eo = erfa.atci13(values[0], values[1], values[2], values[3], values[4], values[5], t.ut1, 0.0, ) ra = erfa.anp(ra - eo) * 24 / 2 / np.pi dec = dec * 360 / 2 / np.pi return ra, dec
the-stack_0_20864
import os import io import xlsxwriter import mimetypes import string import secrets from datetime import datetime, timedelta from .middlewares import login_required from flask import Flask, json, g, request, send_file, Response from flask_cors import CORS from .sendgrid import email_send from bson.json_util import dumps from .login import query_member_record,create_new_member,create_password,login_call,get_users,update_user_details,saveSession, get_user_by_id, delete_user_details,get_current_user,delete_user_session from .pre_processing import pre_processing from werkzeug.utils import secure_filename from .dbquery import getOneRequestByID, doUpdateRequest, doInsertRequest, doDeleteRequest, getAnalyticData, getAnalyticDataByWeek from .prioritize import getOutstandingRequestsByPage app = Flask(__name__) CORS(app) def json_response(payload, status=200): return (json.dumps(payload), status, {'content-type': 'application/json'}) def id_generator(): generated_value = ''.join(secrets.choice(string.ascii_uppercase + string.digits) for _ in range(16)) return generated_value @app.route("/api/verification-email", methods=["POST"]) @login_required def sendEmail(): request_data = request.get_json() verification_data = { '_id': request_data.get('_id'), 'isAdmin': request_data.get('isAdmin'), 'verificationCode':id_generator(), 'verifyBy': (datetime.utcnow() + timedelta(days=1)).isoformat() } updated_user = update_user_details(**verification_data) if updated_user: message_data = { 'template_data': {'user_name': request_data['user_name'], 'verification_url': request_data.get('url') + '?_id=' + updated_user['verificationCode']}, 'to_email': request_data['to_email'], 'template_id': 'd-fd4424ab8c5b4cdd982e1b2ededa7e96' } received_response = email_send(**message_data) if(received_response == 202): return json_response({'message':'Sent verification email successfully.'}, 200) else: return json_response({'error': received_response}, 500) else: return json_response({'error': received_response}, 500) @app.route("/api/verify-email", methods=["POST"]) def verifyEmail(): request_data = request.get_json() query_data = { 'verificationCode': {'$eq':request_data.get('verification_code')}, 'verifyBy': {'$gte': datetime.utcnow()} } try: retrieved_user = query_member_record(**query_data) update_data = { '_id': str(retrieved_user.get('_id')), 'isActivated': True, 'isAdmin':retrieved_user.get('isAdmin'), 'verificationCode': None, 'verifyBy': None } updated_user = update_user_details(**update_data) return json_response(updated_user, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/password", methods=["PATCH"]) def set_password(): request_data = request.get_json() if not request_data.get('password'): return json_response({'error':'Unable to process this request'}, 500) authorization = request.headers.get("authorization", None) request_data['authorization'] = authorization try: create_password_status = create_password(**request_data) # Check and respond according to the status returned by the function. if (create_password_status == 404): return json_response({'error':'User not found'}, 404) elif (create_password_status == 401): return json.dumps({'error': 'No authorization token provided'}), 401, {'Content-type': 'application/json'} else: return json_response({'message':'Password created successfully'}, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/nlp", methods=["POST"]) def receive_file(): file_received = request.files['file_data'] received_string = file_received.read().decode("latin-1") pre_processing(received_string) return json_response({'message':'Data inserted'}, 200) @app.route("/api/user", methods=["GET"]) @login_required def get_user(): search_query = { 'selector': json.loads(request.args.to_dict().pop('where')) } for k, v in request.args.items(): search_query[k] = v result = get_users(**search_query) if (result): return json_response({'data': result.get('users'), 'total': result.get('total')}, 200) else: return json_response({'data': []}, 200) @app.route("/api/user", methods=["POST"]) @login_required def add_user(): # Variable to receive the new user data passed by the sign up page. request_data = request.get_json() try: # Call the create_new_member() in login.py to create a new member create_member_status = create_new_member(**request_data) # Check and respond according to the status returned by the function. if (create_member_status.get('status') == 200): return json_response(create_member_status.get('user'), 200) else: return json_response({'error':'An account with the email already exists.'}, 400) except Exception as e: print('e',e) return json_response({'error':'Account cannot be created.'}, 500) @app.route("/api/user", methods=["PATCH"]) @login_required def update_user(): request_data = request.get_json() try: updated_user = update_user_details(**request_data) return json_response(updated_user, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/<string:userID>/user", methods=["GET"]) @login_required def get_single_user(userID): request_data = {'_id': userID} try: retrieved_user = get_user_by_id(**request_data) if (retrieved_user == 404): return json_response({'error':'User not found'}, 404) else: return json_response(retrieved_user, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/<string:userID>/user", methods=["DELETE"]) @login_required def delete_user(userID): request_data = {'_id': userID} try: deleted_user = delete_user_details(**request_data) if (deleted_user > 0): return json_response({'_id': userID}, 200) else: return json_response({'error':'Unable to process this request'}, 500) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/login", methods=["POST"]) def login(): # Variable to receive the login information from login page. request_data = request.get_json() # Call the login() funcition in the login.py to perform login check. login_status = login_call(**request_data) if (login_status == 401): return json_response({'error':'Invalid Username or Password. Please try again'}, 401) elif (login_status == 404): return json_response({'error':'User not found'}, 404) else: try: savedSession = saveSession(login_status) return json_response({'access_token': savedSession.get('access_token'), 'expires_at': savedSession.get('expires_at')}, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/session", methods=["GET"]) @login_required def get_loggedin_user(): authorization = request.headers.get("authorization", None) if not authorization: return json.dumps({'error': 'No authorization token provided'}), 401, {'Content-type': 'application/json'} try: token = authorization.split(' ')[1] request_data = { 'access_token': token } current_user = get_current_user(**request_data) if (current_user == 404): return json_response({'error':'User not found'}, 404) else: return json_response(current_user, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/session", methods=["DELETE"]) # @login_required def delete_session(): authorization = request.headers.get("authorization", None) if not authorization: return json.dumps({'error': 'no authorization token provided'}), 401, {'Content-type': 'application/json'} try: token = authorization.split(' ')[1] request_data = { 'access_token': token } deleted_session = delete_user_session(**request_data) if (deleted_session == 200): return json_response({'message':'User logged out successfully'}, 200) else: return json_response({'error':'Unable to process this request'}, 500) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) ############################################################# # # Database Calls To Query, Create, Insert, Update and Delete # ############################################################# # Endpoint to query for all requests based on req_status. @app.route("/api/requests", methods=["GET"]) @login_required def queryRequests(): queryString = {} for k, v in request.args.items(): queryString[k] = v queryString["status"] = 1 if "_id" in queryString: return getOneRequestByID(**queryString) else: try: if queryString["function"] == "CompletedRequestsByPage": queryString["status"] = 3 elif queryString["function"] == "InProgressByPage": queryString["status"] = 2 requests_retrieved = getOutstandingRequestsByPage(**queryString) return requests_retrieved except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) # Endpoint to peform update of requests collection. @app.route("/api/requests", methods=["PATCH"]) @login_required def updateRequests(): queryString = request.get_json() return doUpdateRequest(**queryString) @app.route("/api/requests", methods=["POST"]) @login_required def insertRequests(): queryString = request.get_json() return doInsertRequest(**queryString) # Call this endpoint to delete request from the queue. @app.route("/api/requests", methods=["DELETE"]) @login_required def deleteRequests(): queryString = {} for k, v in request.args.items(): queryString[k] = v return doDeleteRequest(**queryString) # Endpoint to get requests based on nurse_id and date parameters for anlytic purposes. @app.route("/api/analyseData", methods=["GET"]) @login_required def analyseData(): queryString = {} for k, v in request.args.items(): queryString[k] = v try: analytic_data = getAnalyticData(**queryString) return json_response({"data": analytic_data}, 200) except Exception as e: print('e',e) return json_response({'error':'Unable to process this request'}, 500) @app.route("/api/analyseData/excel", methods=["GET"]) @login_required def exportData(): queryString = {} for k, v in request.args.items(): queryString[k] = v analytic_data = getAnalyticData(**queryString) response = Response() output = io.BytesIO() workbook = xlsxwriter.Workbook(output, {'in_memory': True}) worksheet = workbook.add_worksheet('Sheet_1') for i, d in enumerate(analytic_data): for j, res in enumerate(d): if (i == 0): worksheet.write(i, j, 'Date' if res == 'name' else 'No. of requests') if (res == 'name'): worksheet.write(i+1, j, datetime.strptime(d[res], '%Y-%m-%d %H:%M:%S').strftime("%m/%d/%Y %I:%M %p")) else: worksheet.write(i+1, j, d[res]) workbook.close() output.seek(0) response.data = output.read() file_name = 'my_file_{}.xlsx'.format( datetime.now().strftime('%d/%m/%Y')) mimetype_tuple = mimetypes.guess_type(file_name) response_headers = { 'Pragma': "public", # required, 'Expires': '0', 'Cache-Control': 'must-revalidate, post-check=0, pre-check=0', 'Cache-Control': 'private', # required for certain browsers, 'Content-Type': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'Content-Disposition': 'attachment; filename=\"%s\";' % file_name, 'Content-Transfer-Encoding': 'binary', 'Content-Length': len(response.data) } response.headers = response_headers if not mimetype_tuple[1] is None: response.headers['Content-Encoding'] = mimetype_tuple[1] return response
the-stack_0_20866
import unittest from msdm.core.utils.funcutils import cached_property, method_cache class FuncUtilsTests(unittest.TestCase): def test_cached_property(self): class X(object): def __init__(self): self._call_count = 0 @cached_property def expensive(self): self._call_count += 1 return 1 instance = X() # initial state assert instance._call_count == 0 assert not hasattr(instance, '_cached_expensive') # state after one call assert instance.expensive == 1 assert hasattr(instance, '_cached_expensive') assert getattr(instance, '_cached_expensive') == 1 assert instance._call_count == 1 # expecting caching to work for second & subsequent calls instance.expensive assert instance._call_count == 1 # Ensure it's only usable in the right place with self.assertRaises(AssertionError) as context: class X(object): @cached_property def expensive(self, argument): return 1 def test_method_cache(self): class X(object): def __init__(self): self._call_count = 0 @method_cache def expensive(self, argument): self._call_count += 1 return argument * 2 instance = X() instance.expensive(3) instance.expensive(3) assert instance._cache_expensive[((3,), None)] == 6 assert instance._cache_info_expensive == dict(hits=2, misses=1) assert instance._call_count == 1 # Can handle other entries too instance.expensive(4) assert instance._cache_expensive[((4,), None)] == 8 assert instance._cache_info_expensive == dict(hits=3, misses=2) assert instance._call_count == 2 # And we still cache appropriately instance.expensive(4) assert instance._cache_info_expensive == dict(hits=4, misses=2) assert instance._call_count == 2 if __name__ == '__main__': unittest.main()
the-stack_0_20867
# Copyright 2018 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Emoji codepoint definitions. See https://emojipedia.org for list of available unicode emojis. """ from __future__ import unicode_literals import collections emoji = collections.namedtuple('emoji', 'code help') EMOJI_MAP = { 'BUCKET': emoji('&#x1FAA3', 'Storage bucket'), 'CAMERA': emoji('&#x1F4F7', 'Screenshot activity'), 'FISHING_POLE': emoji('&#x1F3A3', 'Phishing'), 'GLOBE': emoji('&#x1F30F', 'The world'), 'ID_BUTTON': emoji('&#x1F194', 'Account ID'), 'LINK': emoji('&#x1F517', 'Events Linked'), 'LOCK': emoji('&#x1F512', 'Logon activity'), 'LOCOMOTIVE': emoji('&#x1F682', 'Execution activity'), 'MAGNIFYING_GLASS': emoji('&#x1F50E', 'Search related activity'), 'PERSON_STANDING': emoji('&#x1F9CD', 'Person'), 'SATELLITE': emoji('&#x1F4E1', 'Domain activity'), 'SCREEN': emoji('&#x1F5B5', 'Screensaver activity'), 'SKULL': emoji('&#x1F480;', 'Threat intel match'), 'SKULL_CROSSBONE': emoji('&#x2620', 'Suspicious entry'), 'SLEEPING_FACE': emoji('&#x1F634', 'Activity outside of regular hours'), 'SPARKLES': emoji('&#x2728', 'New entity created'), 'UNLOCK': emoji('&#x1F513', 'Logoff activity'), 'WASTEBASKET': emoji('&#x1F5D1', 'Deletion activity') } def get_emoji(name): """Returns a Unicode for an emoji given the name or blank if not saved. Args: name: string with the emoji name. Returns: Unicode string for the emoji if it exists or a blank string otherwise. """ name_upper = name.upper() emoji_object = EMOJI_MAP.get(name_upper) if emoji_object: return emoji_object.code return '' def get_helper_from_unicode(code): """Returns a helper string from an emoji Unicode code point. Args: code: a Unicode code point for an emoji. Returns: Helper text as a string or an empty string if emoji is not configured. """ code_upper = code.upper() for emoji_object in iter(EMOJI_MAP.values()): if code_upper == emoji_object.code.upper(): return emoji_object.help return '' def get_emojis_as_dict(): """Returns a dictionary with emoji codes and helper texts. Returns: Dict with emoji unicode code points as key and helper text as value. """ return {e.code: e.help for e in iter(EMOJI_MAP.values())}
the-stack_0_20869
#!/usr/bin/env python3 # encoding: utf-8 import cv2 import tensorflow as tf import sys, os, h5py import numpy as np import tensorflow.contrib.layers as layers import random import pandas as pd from random import shuffle from random import randint from tqdm import tqdm import time from input_data_v1 import * os.environ["CUDA_VISIBLE_DEVICES"] = "0" class C3dModel(object): def __init__(self, num_class = 101, keep_prob = 0.6, batch_size = 3, epoch=40, lr = 1e-4): self.IMG_WIDTH = 171 self.IMG_HEIGHT = 128 self.CROP_WIDTH = 112 self.CROP_HEIGHT = 112 self.graph = tf.Graph() self.num_class = num_class self.epoch = epoch self.CLIP_LENGTH = 16 self.keep_prob = keep_prob self.batch_size = batch_size decay_epoch=10 #每5个epoch改变一次学习率 # train clip: 9537*5 CLIP=5 # test clip: 3783*5 CLIP=5 # train clip: 9537*3 CLIP=3 # test clip: 3783*3 CLIP=3 self.n_step_epoch=int( 457/batch_size) with self.graph.as_default(): self.inputs = tf.placeholder(tf.float32, [None, self.CLIP_LENGTH, self.CROP_HEIGHT, self.CROP_WIDTH, 3]) self.labels = tf.placeholder(tf.int64, [batch_size,]) self.initializer = layers.xavier_initializer() self.global_step = tf.Variable(0, trainable = False, name = "global_step") self.lr = tf.train.exponential_decay(lr, self.global_step, int(decay_epoch*self.n_step_epoch), 1e-1, True) tf.add_to_collection(tf.GraphKeys.GLOBAL_STEP, self.global_step) def conv3d(self, inputs, shape, name,w_name,b_name): with self.graph.as_default(): with tf.variable_scope('var_name') as var_scope: W = tf.get_variable(name = w_name, shape = shape, initializer = self.initializer, dtype = tf.float32) b = tf.get_variable(name = b_name, shape = shape[-1], initializer = tf.zeros_initializer(), dtype = tf.float32) tf.add_to_collection(tf.GraphKeys.WEIGHTS, W) tf.add_to_collection(tf.GraphKeys.BIASES, b) return tf.nn.relu(tf.nn.bias_add(tf.nn.conv3d(inputs, W, strides = [1, 1, 1, 1, 1], padding = "SAME"), b)) # filter: # [filter_depth, filter_height, filter_width, in_channels,out_channels] def fc(self, inputs, shape, name,w_name,b_name,activation = True): with self.graph.as_default(): with tf.variable_scope('var_name') as var_scope: W = tf.get_variable(name = w_name, shape = shape, initializer = self.initializer, dtype = tf.float32) b = tf.get_variable(name = b_name, shape = shape[-1], initializer = tf.zeros_initializer(), dtype = tf.float32) tf.add_to_collection(tf.GraphKeys.WEIGHTS, W) tf.add_to_collection(tf.GraphKeys.BIASES, b) if activation: return tf.nn.relu(tf.nn.bias_add(tf.matmul(inputs, W), b)) else: return tf.nn.bias_add(tf.matmul(inputs, W), b) # netstrucet is an orderdict with form {"conv": [shape, name]} def parseNet(self, net, netstruct, istraining = True): for key in netstruct: if key[0] == "conv": net = self.conv3d(net, key[2], key[1],key[3], key[4]) elif key[0] == "fc": net = self.fc(net, key[2], key[1], key[3], key[4],activation = key[-1]) elif key[0] == "maxpool": net = tf.nn.max_pool3d(net, ksize = key[2], strides = key[2], padding = "SAME", name = key[1]) elif key[0] == "dropout" and istraining: net = tf.nn.dropout(net, key[2], name = key[1]) elif key[0] == "reshape": net = tf.reshape(net, key[-1]) elif key[0] == "softmax": net = tf.nn.softmax(net) elif key[0] == "transpose": net = tf.transpose(net, perm=key[-1]) return net def test(self, test_list, modelpath): with self.graph.as_default(): c3d_net = [ ["conv", "conv1", [3, 3, 3, 3, 64], 'wc1', 'bc1'], ["maxpool", "pool1", [1, 1, 2, 2, 1]], ["conv", "conv2", [3, 3, 3, 64, 128], 'wc2', 'bc2'], ["maxpool", "pool2", [1, 2, 2, 2, 1]], ["conv", "conv3a", [3, 3, 3, 128, 256], 'wc3a', 'bc3a'], ["conv", "conv3b", [3, 3, 3, 256, 256], 'wc3b', 'bc3b'], ["maxpool", "pool3", [1, 2, 2, 2, 1]], ["conv", "conv4a", [3, 3, 3, 256, 512], 'wc4a', 'bc4a'], ["conv", "conv4b", [3, 3, 3, 512, 512], 'wc4b', 'bc4b'], ["maxpool", "pool4", [1, 2, 2, 2, 1]], ["conv", "conv5a", [3, 3, 3, 512, 512], 'wc5a', 'bc5a'], ["conv", "conv5b", [3, 3, 3, 512, 512], 'wc5b', 'bc5b'], ["maxpool", "pool5", [1, 2, 2, 2, 1]], ["transpose", [0, 1, 4, 2, 3]], #only use it if you restore the sports1m_finetuning_ucf101.model, otherwise uncomment it,(e.g use conv3d_deepnetA_sport1m_iter_1900000_TF.model) ["reshape", [-1, 8192]], ["fc", "fc1", [8192, 4096], 'wd1', 'bd1', True], ["dropout", "dropout1", self.keep_prob], ["fc", "fc2", [4096, 4096],'wd2','bd2', True], ["dropout", "dropout2", self.keep_prob], ["fc", "fc3", [4096, self.num_class],'wout','bout',False], ] # print(tf.trainable_variables()) # print(var_list) # print(tf.get_collection(tf.GraphKeys.WEIGHTS)) # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = 0.5) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.9 with tf.Session(config=config, graph=self.graph) as sess: logits = self.parseNet(self.inputs, c3d_net) softmax_logits = tf.nn.softmax(logits) # int_label = tf.one_hot(self.labels, self.num_class) int_label = self.labels # [bs,101]-->[bs*4 or 8 or 16,101] # int_label=tf.concat( # [int_label,int_label,int_label,int_label,],axis=0) # int_label=tf.cast(int_label,dtype=tf.int64) task_loss = tf.reduce_sum( tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=int_label)) # task_loss = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = int_label)) # task_loss = -tf.reduce_sum(int_label*tf.log(logits)) acc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(softmax_logits, axis=-1), int_label), tf.float32)) right_count = tf.reduce_sum(tf.cast(tf.equal(tf.argmax(softmax_logits, axis=1), int_label), tf.int32)) reg_loss = layers.apply_regularization(layers.l2_regularizer(5e-4), tf.get_collection(tf.GraphKeys.WEIGHTS)) total_loss = task_loss + reg_loss # train_var_list = [v for v in tf.trainable_variables() if v.name.find("conv") == -1] train_op = tf.train.GradientDescentOptimizer(self.lr).minimize( total_loss, global_step=self.global_step) # train_op = tf.train.MomentumOptimizer(self.lr,0.9).minimize( # total_loss, global_step = self.global_step,var_list=train_var_list) total_para = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]) print('total_para:', total_para) # all CDC9 :28613120 #pool5 27655936 # train clip:762960 # test clip:302640 init = tf.global_variables_initializer() # var_list = [v for v in tf.trainable_variables() if v.name.find("conv") != -1] # 初始化只加载卷积层参数 # print(var_list) # saver = tf.train.Saver(tf.global_variables()) sess.run(init) saver = tf.train.Saver(tf.trainable_variables()) # saver.restore(sess, tf.train.latest_checkpoint(modelpath)) # saver.restore(sess, modelpath + "sports1m_finetuning_ucf101.model") saver.restore(sess, modelpath + "c3d_ucf_model-4999") print("Model Loading Done!") step = 0 print_freq = 2 next_start_pos = 0 for one_epoch in range(1): epostarttime = time.time() starttime = time.time() total_v = 0.0 test_correct_num = 0 total_correct = 0 total_all = 0 for i in tqdm(range(int(142 / self.batch_size))): step += 1 total_v += self.batch_size train_batch, label_batch, next_start_pos, _, _ = read_clip_and_label( filename=test_list, batch_size=self.batch_size, start_pos=next_start_pos, num_frames_per_clip=self.CLIP_LENGTH, height=self.IMG_HEIGHT, width=self.IMG_WIDTH, shuffle=False) assert len(train_batch)==self.batch_size train_batch = train_aug(train_batch, is_train=False, Crop_heith=self.CROP_HEIGHT, Crop_width=self.CROP_WIDTH,norm=True) val_feed = {self.inputs: train_batch, self.labels: label_batch} test_correct_num += sess.run(right_count, val_feed) total_correct += test_correct_num total_all += total_v print('test acc:', test_correct_num / total_v, 'test_correct_num:', test_correct_num, 'total_v:', total_v) print('Total test acc:', total_correct / total_all) if __name__ == "__main__": c3dnet = C3dModel() c3dnet.test(test_list="./KTH-testSAF.list", modelpath="./models/kth-saf/")
the-stack_0_20870
""" YOLOv3 Model """ import numpy as np import torch import torch.nn as nn from torch import jit import torchvision.transforms as T from torchvision.ops import nms def coco80_to_coco91_class(label): # converts 80-index (val2014) to 91-index (paper) coco91_classes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91] x = [coco91_classes[i] for i in label] x = torch.tensor(x, dtype=torch.long) return x def yolo_to_coco_traffic(label): """ Converts 0-index yolo data to custom COCO traffic data. The custom dataset has the same labels as COCO, with the extensions 92,93 and 94. """ traffic_classes = np.arange(1, 15) x = [traffic_classes[i] for i in label] # Map traffic labels to COCO label. traffic_to_coco = {1:1 , 2:2 ,3:3 ,4:4 ,5:6 ,6:7 ,7:8 ,8:11 , 9:13 , 10:17 ,11:18 , 12:92 , 13:93 , 14:94} x = [traffic_to_coco[i] for i in x] x = torch.tensor(x, dtype=torch.long) return x def yolo_model(): """ Loads the YOLOv5 model from ultralytics """ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, force_reload = True) model.eval() return model def yolo_model_traffic(): """ Loads the custom YOLOv5 model. It has to be placed into /yolo. """ weights = 'yolo/yolov5sTraffic.pt' model = torch.hub.load('ultralytics/yolov5', 'custom', weights, force_reload=True) model.eval() return model def yolo_predict(model, frame, thresh = 0.6): """ Predict with yolo model Args: frame - OpenCV image in BGR Return: boxes -- Torch tensor of coordinates of the top left and bottom right of the bounding box ordered as [(x1, y1, x2, y2)] labels -- Torch tensor of index labels for each bounding box [<label indices>] scores -- Torch tensor of class confidence scores for each bounding box [<class scores>]. For COCO, expects 91 different classes """ # Predict output = model(frame) # Unpack the output result = output.xyxy[0] boxes = result[:,:4] conf = result[:,4] labels = result[:,5].type(torch.LongTensor) # Apply threshold keep = conf > thresh boxes = boxes[keep] conf = conf[keep] labels = labels[keep] # Convert COCO labels because some classes were removed labels = coco80_to_coco91_class(labels) return boxes, labels, conf def yolo_traffic_predict(model, frame, thresh = 0.6): """ Predict with yolo model trained to detect traffic light status and more. Args: frame - OpenCV image in BGR Return: boxes -- Torch tensor of coordinates of the top left and bottom right of the bounding box ordered as [(x1, y1, x2, y2)] labels -- Torch tensor of index labels for each bounding box [<label indices>] scores -- Torch tensor of class confidence scores for each bounding box [<class scores>]. For COCO, expects 91 different classes """ # Predict output = model(frame) # Unpack the output result = output.xyxy[0] boxes = result[:,:4] conf = result[:,4] labels = result[:,5].type(torch.LongTensor) # Apply threshold keep = conf > thresh boxes = boxes[keep] conf = conf[keep] labels = labels[keep] # In 0-indexed yolo format # Convert COCO labels because some classes were removed labels = yolo_to_coco_traffic(labels) return boxes, labels, conf
the-stack_0_20871
#!/usr/bin/env python3 import argparse import json import os import sys from argparse import RawTextHelpFormatter from configparser import ConfigParser from datetime import datetime from glob import glob from urllib import request INSTRUCTIONS = ''' This can be used to download latest episodes from stations belonging to global radio network. ''' DOWNLOAD_PATH = '~/Downloads' MAX_PROGRESS_BAR_BLOCKS = 10 class Episode: def __init__(self, episode): self.id = episode['id'] self.start_date = episode['startDate'] self.date = datetime.strptime(episode['startDate'][0:10], '%Y-%m-%d') self.stream_url = episode['streamUrl'] self.title = episode['title'] self.title_with_date = f'{self.title} ({episode["startDate"][0:10]})' def __str__(self): return f'Episode{{id:"{self.id}", date:"{self.date}", start_date:"{self.start_date}", ' \ f'title:"{self.title}", title_with_date:"{self.title_with_date}"}}' class Download: def __init__(self, download_file): self.file_name = download_file self.date = datetime.strptime(download_file[0:8], '%Y%m%d') def __str__(self): return f'Download{{file:"{self.file_name}", date:"{self.date}"}}' def _get_show_catchup_url(): if show_config['station_catchup_url'].endswith("/"): return show_config['station_catchup_url'] + show_config['show_id'] else: return show_config['station_catchup_url'] + "/" + show_config['show_id'] def _get_show_catchup_response(): verbose('Calling channel catchup endpoint...') response = request.urlopen(_get_show_catchup_url()).read().decode('utf-8') return json.loads(response) def _read_catchup_response_from_file(): verbose('Reading a fake response from file...') with open('fake-response.json') as f: file_data = f.read() return json.loads(file_data) def _get_show_response(): if args.with_fake_response: return _read_catchup_response_from_file() else: return _get_show_catchup_response() def _get_file_format(): if show_config['file_format']: return show_config['file_format'] else: return 'm4a' def _get_episode_downloads_folder(): if show_config['download_folder']: download_folder = show_config['download_folder'] else: download_folder = DOWNLOAD_PATH download_folder = download_folder.strip() os.makedirs(name=os.path.expanduser(download_folder), exist_ok=True) if download_folder.endswith("/"): return download_folder else: return download_folder + "/" def get_downloaded_episodes(): verbose('Getting list of all downloaded episodes...') download_folder = os.path.expanduser(_get_episode_downloads_folder()) os.chdir(download_folder) files = glob('*.' + _get_file_format()) verbose(f'Found {len(files)} downloads in the folder...') downloads = [] for file in files: downloaded_file = Download(file) downloads.append(downloaded_file) return downloads def _parse_episodes(show): parsed_episodes = [] for episode in show['episodes']: parsed = Episode(episode) parsed_episodes.append(parsed) return parsed_episodes def get_latest_episodes(): show = _get_show_response() verbose(f'Show json response: {json.dumps(show, indent=2)}') episodes = _parse_episodes(show) verbose(f'Found {len(episodes)} episodes in show response...') for e in episodes: verbose(e) return episodes def download(episode): if args.with_fake_response: progress_complete(episode.title_with_date, 100) return url_request = request.Request(episode.stream_url) url_connect = request.urlopen(url_request) file_size = int(url_connect.info()['Content-Length']) download_block_size = 8192 downloaded_size = 0 out_file_name = datetime.strftime(episode.date, "%Y%m%d") + '.' + _get_file_format() download_folder = os.path.expanduser(_get_episode_downloads_folder()) tmp_folder = download_folder + 'tmp' if not os.path.exists(tmp_folder): os.mkdir(tmp_folder) os.chdir(tmp_folder) with open(out_file_name, 'wb') as out_file: while True: buffer = url_connect.read(download_block_size) downloaded_size += len(buffer) if not buffer: break out_file.write(buffer) progress(episode.title_with_date, file_size, downloaded_size) os.rename(out_file_name, os.path.join(download_folder, out_file_name)) progress_complete(episode.title_with_date, file_size) def progress(file_name, total_len, current_size): progress_blocks = int(total_len / MAX_PROGRESS_BAR_BLOCKS) current_position = int(current_size / progress_blocks) sys.stdout.write('\r%s: [%s%s] %s/%s %s' % (file_name, '=' * current_position, ' ' * (MAX_PROGRESS_BAR_BLOCKS - current_position), current_size, total_len, '' )) sys.stdout.flush() def progress_complete(file_name, total_len): print('\r%s: [%s] %s/%s => ✅ Done' % (file_name, '=' * MAX_PROGRESS_BAR_BLOCKS, total_len, total_len)) def get_episodes_to_download(): episodes = get_latest_episodes() downloaded = get_downloaded_episodes() downloaded_dates = {file.date for file in downloaded} episodes_to_download = [] for episode in episodes: if episode.date not in downloaded_dates: episodes_to_download.append(episode) return episodes_to_download def download_latest(): verbose('Checking for latest episodes..') pending_downloads = get_episodes_to_download() if not pending_downloads: print(f'Nothing to download, all up to date 🙌') return print(f'Found {len(pending_downloads)} new episodes to download.') for i in range(0, len(pending_downloads)): print(f'Downloading {i + 1} of {len(pending_downloads)}:') download(pending_downloads[i]) print(f'Downloads complete 🏁') if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description=INSTRUCTIONS) parser.add_argument('--with-fake-response', action='store_true', default=False) parser.add_argument('--verbose', action='store_true') args = parser.parse_args(sys.argv[1:]) if args.verbose: verbose = print else: def verbose(*arg, **kw): pass verbose(f'Called download latest episodes with args: {args}') config_file = os.path.expanduser('~/.global_radio_downloader.cfg') if not os.path.exists(config_file): parser.print_help() sys.exit(1) config = ConfigParser(default_section='radio-station') config.read(config_file) show_config = config['radio-station'] download_latest()
the-stack_0_20872
#!/usr/bin/env python import glob import os import os.path import sys if sys.version_info < (3, 5, 0): sys.stderr.write("ERROR: You need Python 3.5 or later to use mypy.\n") exit(1) # we'll import stuff from the source tree, let's ensure is on the sys path sys.path.insert(0, os.path.dirname(os.path.realpath(__file__))) # This requires setuptools when building; setuptools is not needed # when installing from a wheel file (though it is still neeeded for # alternative forms of installing, as suggested by README.md). from setuptools import setup from setuptools.command.build_py import build_py from mypy.version import __version__ as version from mypy import git git.verify_git_integrity_or_abort(".") description = 'Optional static typing for Python' long_description = ''' Mypy -- Optional Static Typing for Python ========================================= Add type annotations to your Python programs, and use mypy to type check them. Mypy is essentially a Python linter on steroids, and it can catch many programming errors by analyzing your program, without actually having to run it. Mypy has a powerful type system with features such as type inference, gradual typing, generics and union types. '''.lstrip() def find_package_data(base, globs, root='mypy'): """Find all interesting data files, for setup(package_data=) Arguments: root: The directory to search in. globs: A list of glob patterns to accept files. """ rv_dirs = [root for root, dirs, files in os.walk(base)] rv = [] for rv_dir in rv_dirs: files = [] for pat in globs: files += glob.glob(os.path.join(rv_dir, pat)) if not files: continue rv.extend([os.path.relpath(f, root) for f in files]) return rv class CustomPythonBuild(build_py): def pin_version(self): path = os.path.join(self.build_lib, 'mypy') self.mkpath(path) with open(os.path.join(path, 'version.py'), 'w') as stream: stream.write('__version__ = "{}"\n'.format(version)) def run(self): self.execute(self.pin_version, ()) build_py.run(self) cmdclass = {'build_py': CustomPythonBuild} package_data = ['py.typed'] package_data += find_package_data(os.path.join('mypy', 'typeshed'), ['*.py', '*.pyi']) package_data += find_package_data(os.path.join('mypy', 'xml'), ['*.xsd', '*.xslt', '*.css']) USE_MYPYC = False # To compile with mypyc, a mypyc checkout must be present on the PYTHONPATH if len(sys.argv) > 1 and sys.argv[1] == '--use-mypyc': sys.argv.pop(1) USE_MYPYC = True if os.getenv('MYPY_USE_MYPYC', None) == '1': USE_MYPYC = True if USE_MYPYC: MYPYC_BLACKLIST = tuple(os.path.join('mypy', x) for x in ( # Need to be runnable as scripts '__main__.py', 'sitepkgs.py', os.path.join('dmypy', '__main__.py'), # Uses __getattr__/__setattr__ 'split_namespace.py', # Lies to mypy about code reachability 'bogus_type.py', # We don't populate __file__ properly at the top level or something? # Also I think there would be problems with how we generate version.py. 'version.py', )) + ( # Don't want to grab this accidentally os.path.join('mypyc', 'lib-rt', 'setup.py'), ) everything = ( [os.path.join('mypy', x) for x in find_package_data('mypy', ['*.py'])] + [os.path.join('mypyc', x) for x in find_package_data('mypyc', ['*.py'], root='mypyc')]) # Start with all the .py files all_real_pys = [x for x in everything if not x.startswith(os.path.join('mypy', 'typeshed') + os.sep)] # Strip out anything in our blacklist mypyc_targets = [x for x in all_real_pys if x not in MYPYC_BLACKLIST] # Strip out any test code mypyc_targets = [x for x in mypyc_targets if not x.startswith((os.path.join('mypy', 'test') + os.sep, os.path.join('mypyc', 'test') + os.sep, os.path.join('mypyc', 'test-data') + os.sep, ))] # ... and add back in the one test module we need mypyc_targets.append(os.path.join('mypy', 'test', 'visitors.py')) # The targets come out of file system apis in an unspecified # order. Sort them so that the mypyc output is deterministic. mypyc_targets.sort() use_other_mypyc = os.getenv('ALTERNATE_MYPYC_PATH', None) if use_other_mypyc: # This bit is super unfortunate: we want to use a different # mypy/mypyc version, but we've already imported parts, so we # remove the modules that we've imported already, which will # let the right versions be imported by mypyc. del sys.modules['mypy'] del sys.modules['mypy.version'] del sys.modules['mypy.git'] sys.path.insert(0, use_other_mypyc) from mypyc.build import mypycify opt_level = os.getenv('MYPYC_OPT_LEVEL', '3') force_multifile = os.getenv('MYPYC_MULTI_FILE', '') == '1' ext_modules = mypycify( mypyc_targets + ['--config-file=mypy_bootstrap.ini'], opt_level=opt_level, # Use multi-file compliation mode on windows because without it # our Appveyor builds run out of memory sometimes. multi_file=sys.platform == 'win32' or force_multifile, ) else: ext_modules = [] classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Software Development', ] setup(name='mypy', version=version, description=description, long_description=long_description, author='Jukka Lehtosalo', author_email='[email protected]', url='http://www.mypy-lang.org/', license='MIT License', py_modules=[], ext_modules=ext_modules, packages=[ 'mypy', 'mypy.test', 'mypy.server', 'mypy.plugins', 'mypy.dmypy', 'mypyc', 'mypyc.test', ], package_data={'mypy': package_data}, scripts=['scripts/mypyc'], entry_points={'console_scripts': ['mypy=mypy.__main__:console_entry', 'stubgen=mypy.stubgen:main', 'dmypy=mypy.dmypy.client:console_entry', ]}, classifiers=classifiers, cmdclass=cmdclass, # When changing this, also update mypy-requirements.txt. install_requires=['typed_ast >= 1.4.0, < 1.5.0', 'typing_extensions>=3.7.4', 'mypy_extensions >= 0.4.3, < 0.5.0', ], # Same here. extras_require={'dmypy': 'psutil >= 4.0'}, python_requires=">=3.5", include_package_data=True, )
the-stack_0_20873
import collections import csv import glob import os import numpy as np Prices = collections.namedtuple("Prices", field_names=["open", "high", "low", "close", "volume"]) def read_csv(file_name, sep=",", filter_data=True, fix_open_price=False): print("Reading", file_name) with open(file_name, "rt", encoding="utf-8") as fd: reader = csv.reader(fd, delimiter=sep) h = next(reader) if "<OPEN>" not in h and sep == ",": return read_csv(file_name, ";") indices = [h.index(s) for s in ("<OPEN>", "<HIGH>", "<LOW>", "<CLOSE>", "<VOL>")] o, h, l, c, v = [], [], [], [], [] count_out = 0 count_filter = 0 count_fixed = 0 prev_vals = None for row in reader: vals = list(map(float, [row[idx] for idx in indices])) if filter_data and all(map(lambda v: abs(v - vals[0]) < 1e-8, vals[:-1])): count_filter += 1 continue po, ph, pl, pc, pv = vals # fix open price for current bar to match close price for the previous bar if fix_open_price and prev_vals is not None: ppo, pph, ppl, ppc, ppv = prev_vals if abs(po - ppc) > 1e-8: count_fixed += 1 po = ppc pl = min(pl, po) ph = max(ph, po) count_out += 1 o.append(po) c.append(pc) h.append(ph) l.append(pl) v.append(pv) prev_vals = vals print( "Read done, got %d rows, %d filtered, %d open prices adjusted" % (count_filter + count_out, count_filter, count_fixed) ) return Prices( open=np.array(o, dtype=np.float32), high=np.array(h, dtype=np.float32), low=np.array(l, dtype=np.float32), close=np.array(c, dtype=np.float32), volume=np.array(v, dtype=np.float32), ) def prices_to_relative(prices): """ Convert prices to relative in respect to open price :param ochl: tuple with open, close, high, low :return: tuple with open, rel_close, rel_high, rel_low """ assert isinstance(prices, Prices) rh = (prices.high - prices.open) / prices.open rl = (prices.low - prices.open) / prices.open rc = (prices.close - prices.open) / prices.open return Prices(open=prices.open, high=rh, low=rl, close=rc, volume=prices.volume) def load_relative(csv_file): return prices_to_relative(read_csv(csv_file)) def price_files(dir_name): result = [] for path in glob.glob(os.path.join(dir_name, "*.csv")): result.append(path) return result def load_year_data(year, basedir="data"): y = str(year)[-2:] result = {} for path in glob.glob(os.path.join(basedir, "*_%s*.csv" % y)): result[path] = load_relative(path) return result
the-stack_0_20875
""" <Module Name> util.py <Author> Santiago Torres-Arias <[email protected]> <Started> Nov 15, 2017 <Copyright> See LICENSE for licensing information. <Purpose> general-purpose utilities for binary data handling and pgp data parsing """ import struct import binascii import re import logging from distutils.version import StrictVersion # pylint: disable=no-name-in-module,import-error CRYPTO = True NO_CRYPTO_MSG = 'gpg.utils requires the cryptography library' try: from cryptography.hazmat import backends from cryptography.hazmat.primitives import hashes as hashing except ImportError: CRYPTO = False from securesystemslib import exceptions from securesystemslib import process from securesystemslib.gpg import constants from securesystemslib.gpg.exceptions import PacketParsingError log = logging.getLogger(__name__) def get_mpi_length(data): """ <Purpose> parses an MPI (Multi-Precision Integer) buffer and returns the appropriate length. This is mostly done to perform bitwise to byte-wise conversion. See RFC4880 section 3.2. Multiprecision Integers for details. <Arguments> data: The MPI data <Exceptions> None <Side Effects> None <Returns> The length of the MPI contained at the beginning of this data buffer. """ bitlength = int(struct.unpack(">H", data)[0]) # Notice the /8 at the end, this length is the bitlength, not the length of # the data in bytes (as len reports it) return int((bitlength - 1)/8) + 1 def hash_object(headers, algorithm, content): """ <Purpose> Hash data prior to signature verification in conformance of the RFC4880 openPGP standard. <Arguments> headers: the additional OpenPGP headers as populated from gpg_generate_signature algorithm: The hash algorithm object defined by the cryptography.io hashes module content: the signed content <Exceptions> securesystemslib.exceptions.UnsupportedLibraryError if: the cryptography module is unavailable <Side Effects> None <Returns> The RFC4880-compliant hashed buffer """ if not CRYPTO: # pragma: no cover raise exceptions.UnsupportedLibraryError(NO_CRYPTO_MSG) # As per RFC4880 Section 5.2.4., we need to hash the content, # signature headers and add a very opinionated trailing header hasher = hashing.Hash(algorithm, backend=backends.default_backend()) hasher.update(content) hasher.update(headers) hasher.update(b'\x04\xff') hasher.update(struct.pack(">I", len(headers))) return hasher.finalize() def parse_packet_header(data, expected_type=None): """ <Purpose> Parse out packet type and header and body lengths from an RFC4880 packet. <Arguments> data: An RFC4880 packet as described in section 4.2 of the rfc. expected_type: (optional) Used to error out if the packet does not have the expected type. See securesystemslib.gpg.constants.PACKET_TYPE_* for available types. <Exceptions> securesystemslib.gpg.exceptions.PacketParsingError If the new format packet length encodes a partial body length If the old format packet length encodes an indeterminate length If header or body length could not be determined If the expected_type was passed and does not match the packet type IndexError If the passed data is incomplete <Side Effects> None. <Returns> A tuple of packet type, header length, body length and packet length. (see RFC4880 4.3. for the list of available packet types) """ data = bytearray(data) header_len = None body_len = None # If Bit 6 of 1st octet is set we parse a New Format Packet Length, and # an Old Format Packet Lengths otherwise if data[0] & 0b01000000: # In new format packet lengths the packet type is encoded in Bits 5-0 of # the 1st octet of the packet packet_type = data[0] & 0b00111111 # The rest of the packet header is the body length header, which may # consist of one, two or five octets. To disambiguate the RFC, the first # octet of the body length header is the second octet of the packet. if data[1] < 192: header_len = 2 body_len = data[1] elif data[1] >= 192 and data[1] <= 223: header_len = 3 body_len = (data[1] - 192 << 8) + data[2] + 192 elif data[1] >= 224 and data[1] < 255: raise PacketParsingError("New length " "format packets of partial body lengths are not supported") elif data[1] == 255: header_len = 6 body_len = data[2] << 24 | data[3] << 16 | data[4] << 8 | data[5] else: # pragma: no cover # Unreachable: octet must be between 0 and 255 raise PacketParsingError("Invalid new length") else: # In old format packet lengths the packet type is encoded in Bits 5-2 of # the 1st octet and the length type in Bits 1-0 packet_type = (data[0] & 0b00111100) >> 2 length_type = data[0] & 0b00000011 # The body length is encoded using one, two, or four octets, starting # with the second octet of the packet if length_type == 0: body_len = data[1] header_len = 2 elif length_type == 1: header_len = 3 body_len = struct.unpack(">H", data[1:header_len])[0] elif length_type == 2: header_len = 5 body_len = struct.unpack(">I", data[1:header_len])[0] elif length_type == 3: raise PacketParsingError("Old length " "format packets of indeterminate length are not supported") else: # pragma: no cover (unreachable) # Unreachable: bits 1-0 must be one of 0 to 3 raise PacketParsingError("Invalid old length") if header_len is None or body_len is None: # pragma: no cover # Unreachable: One of above must have assigned lengths or raised error raise PacketParsingError("Could not determine packet length") if expected_type is not None and packet_type != expected_type: raise PacketParsingError("Expected packet " "{}, but got {} instead!".format(expected_type, packet_type)) return packet_type, header_len, body_len, header_len + body_len def compute_keyid(pubkey_packet_data): """ <Purpose> compute a keyid from an RFC4880 public-key buffer <Arguments> pubkey_packet_data: the public-key packet buffer <Exceptions> securesystemslib.exceptions.UnsupportedLibraryError if: the cryptography module is unavailable <Side Effects> None <Returns> The RFC4880-compliant hashed buffer """ if not CRYPTO: # pragma: no cover raise exceptions.UnsupportedLibraryError(NO_CRYPTO_MSG) hasher = hashing.Hash(hashing.SHA1(), backend=backends.default_backend()) hasher.update(b'\x99') hasher.update(struct.pack(">H", len(pubkey_packet_data))) hasher.update(bytes(pubkey_packet_data)) return binascii.hexlify(hasher.finalize()).decode("ascii") def parse_subpacket_header(data): """ Parse out subpacket header as per RFC4880 5.2.3.1. Signature Subpacket Specification. """ # NOTE: Although the RFC does not state it explicitly, the length encoded # in the header must be greater equal 1, as it includes the mandatory # subpacket type octet. # Hence, passed bytearrays like [0] or [255, 0, 0, 0, 0], which encode a # subpacket length 0 are invalid. # The caller has to deal with the resulting IndexError. if data[0] < 192: length_len = 1 length = data[0] elif data[0] >= 192 and data[0] < 255: length_len = 2 length = ((data[0] - 192 << 8) + (data[1] + 192)) elif data[0] == 255: length_len = 5 length = struct.unpack(">I", data[1:length_len])[0] else: # pragma: no cover (unreachable) raise PacketParsingError("Invalid subpacket header") return data[length_len], length_len + 1, length - 1, length_len + length def parse_subpackets(data): """ <Purpose> parse the subpackets fields <Arguments> data: the unparsed subpacketoctets <Exceptions> IndexErrorif the subpackets octets are incomplete or malformed <Side Effects> None <Returns> A list of tuples with like: [ (packet_type, data), (packet_type, data), ... ] """ parsed_subpackets = [] position = 0 while position < len(data): subpacket_type, header_len, _, subpacket_len = \ parse_subpacket_header(data[position:]) payload = data[position+header_len:position+subpacket_len] parsed_subpackets.append((subpacket_type, payload)) position += subpacket_len return parsed_subpackets def get_version(): """ <Purpose> Uses `gpg2 --version` to get the version info of the installed gpg2 and extracts and returns the version number. The executed base command is defined in constants.GPG_VERSION_COMMAND. <Exceptions> securesystemslib.exceptions.UnsupportedLibraryError: If the gpg command is not available <Returns> Version number string, e.g. "2.1.22" """ if not constants.HAVE_GPG: # pragma: no cover raise exceptions.UnsupportedLibraryError(constants.NO_GPG_MSG) command = constants.GPG_VERSION_COMMAND gpg_process = process.run(command, stdout=process.PIPE, stderr=process.PIPE, universal_newlines=True) full_version_info = gpg_process.stdout version_string = re.search(r'(\d\.\d\.\d+)', full_version_info).group(1) return version_string def is_version_fully_supported(): """ <Purpose> Compares the version of installed gpg2 with the minimal fully supported gpg2 version (2.1.0). <Returns> True if the version returned by `get_version` is greater-equal constants.FULLY_SUPPORTED_MIN_VERSION, False otherwise. """ installed_version = get_version() # Excluded so that coverage does not vary in different test environments if (StrictVersion(installed_version) >= StrictVersion(constants.FULLY_SUPPORTED_MIN_VERSION)): # pragma: no cover return True else: # pragma: no cover return False def get_hashing_class(hash_algorithm_id): """ <Purpose> Return a pyca/cryptography hashing class reference for the passed RFC4880 hash algorithm ID. <Arguments> hash_algorithm_id: one of SHA1, SHA256, SHA512 (see securesystemslib.gpg.constants) <Exceptions> ValueError if the passed hash_algorithm_id is not supported. <Returns> A pyca/cryptography hashing class """ supported_hashing_algorithms = [constants.SHA1, constants.SHA256, constants.SHA512] corresponding_hashing_classes = [hashing.SHA1, hashing.SHA256, hashing.SHA512] # Map supported hash algorithm ids to corresponding hashing classes hashing_class = dict(zip(supported_hashing_algorithms, corresponding_hashing_classes)) try: return hashing_class[hash_algorithm_id] except KeyError: raise ValueError("Hash algorithm '{}' not supported, must be one of '{}' " "(see RFC4880 9.4. Hash Algorithms).".format(hash_algorithm_id, supported_hashing_algorithms))
the-stack_0_20878
import csv from book import BookExporter class CategoryExporter: """ Write a csv formatted file containing one entry per book. """ def __init__(self, category): self.category = category def exec(self, file): writer = csv.writer(file) writer.writerow([ 'product_page_url', 'universal_ product_code (upc)', 'title', 'price_including_tax', 'price_excluding_tax', 'number_available', 'product_description', 'category', 'review_rating', 'image_url' ]) for book in self.category.books: exporter = BookExporter(book) exporter.exec(file)
the-stack_0_20879
import copy from typing import Tuple import numpy as np from odyssey.distribution import Distribution from iliad.integrators.info import EuclideanLeapfrogInfo from iliad.integrators.states import EuclideanLeapfrogState def single_step( distr: Distribution, state: EuclideanLeapfrogState, info: EuclideanLeapfrogInfo, step_size: float ) -> Tuple[EuclideanLeapfrogState, EuclideanLeapfrogInfo]: """Implements a single step of the leapfrog integrator, which is symmetric, symplectic, and second-order accurate for separable Hamiltonian systems. Args: distr: The distribution that guides the time evolution of the Euclidean Hamiltonian trajectory. state: An object containing the position and momentum variables of the state in phase space, and possibly previously computed log-posterior and gradients. info: An object that keeps track of the number of fixed point iterations and whether or not integration has been successful. step_size: Integration step_size. Returns: state: An augmented state object with the updated position and momentum and values for the log-posterior and its gradient. info: An information object with the indicator of successful integration. """ half_step = 0.5*step_size state.momentum += half_step * state.force state.velocity = state.inv_metric.dot(state.momentum) state.position += step_size * state.velocity state.update(distr) state.momentum += half_step * state.force return state, info def euclidean_leapfrog( state: EuclideanLeapfrogState, step_size: float, num_steps: int, distr: Distribution ) -> Tuple[EuclideanLeapfrogState, EuclideanLeapfrogInfo]: """Implements the leapfrog integrator for a separable Hamiltonian. Args: state: An object containing the position and momentum variables of the state in phase space, and possibly previously computed log-posterior and gradients. step_size: Integration step_size. num_steps: Number of integration steps. distr: The distribution that guides the time evolution of the Euclidean Hamiltonian trajectory. Returns: state: An augmented state object with the updated position and momentum and values for the log-posterior and its gradient. info: An information object with the indicator of successful integration. """ state = copy.copy(state) info = EuclideanLeapfrogInfo() for i in range(num_steps): state, info = single_step(distr, state, info, step_size) state.velocity = state.inv_metric.dot(state.momentum) return state, info
the-stack_0_20881
""" Context managers, i.e. things you can use with the 'with' statement. """ import fcntl from contextlib import contextmanager from typing import Iterator, IO, Any, Union @contextmanager def flock(lockfile: Union[int, IO[Any]], shared: bool=False) -> Iterator[None]: """Lock a file object using flock(2) for the duration of a 'with' statement. If shared is True, use a LOCK_SH lock, otherwise LOCK_EX.""" fcntl.flock(lockfile, fcntl.LOCK_SH if shared else fcntl.LOCK_EX) try: yield finally: fcntl.flock(lockfile, fcntl.LOCK_UN) @contextmanager def lockfile(filename: str, shared: bool=False) -> Iterator[None]: """Lock a file using flock(2) for the duration of a 'with' statement. If shared is True, use a LOCK_SH lock, otherwise LOCK_EX. The file is given by name and will be created if it does not exist.""" with open(filename, 'w') as lock: with flock(lock, shared=shared): yield
the-stack_0_20882
class SidebarPartField: """ Performs introspection into document part fields. """ def __init__( self, document, model, field_name, options={} ): """ `document` = papermerge.core.models.document instance `model` = document part model class as provided by 3rd party app `field_name` name of the field we are interested in """ self.document = document self.model = model self.field_name = field_name self.options = options fields = [ field for field in self.model._meta.fields if field.name == field_name ] if fields: # django field matching given field_name self.field = fields[0] def to_json(self): ret = {} internal_type = self.get_internal_type() ret['class'] = internal_type if internal_type == 'ForeignKey': r_obj = self.get_value() if self.options and self.options[self.field_name]: opts = self.options[self.field_name] # choice_fields: ['id', 'name'] option instructs # that this foreign key must be displayed as # choices. Thus, returned keys are: # * value # * choices if 'choice_fields' in opts: value, choices = self._choice_fields_opts( opts=opts, r_obj=r_obj ) ret['value'] = value ret['choices'] = choices ret['field_name'] = self.field_name elif 'fields' in opts: value = self._fields_opts( opts=opts, r_obj=r_obj ) ret['field_name'] = self.field_name ret['value'] = value else: _f = self.field_name msg = f"Field {_f} is foreignkey. You provide field_options" raise ValueError( msg ) else: ret['value'] = self.get_value() ret['field_name'] = self.field_name return ret def get_internal_type(self): return self.field.get_internal_type() def get_value(self): parts = getattr(self.document, 'parts') value = getattr(parts, self.field_name) return value def _fields_opts( self, opts, r_obj ): ret_dict = {} fields = opts['fields'] for field in fields: ret_dict[field] = getattr(r_obj, field) return ret_dict def _choice_fields_opts( self, opts, r_obj ): ret_value = None ret_choices = [] choice_fields = opts['choice_fields'] if choice_fields and r_obj: ret_value = ( getattr(r_obj, choice_fields[0]), getattr(r_obj, choice_fields[1]) ) remote_model_objects = getattr( self.field.remote_field.model, 'objects' ) for r_model_inst in remote_model_objects.all(): if choice_fields and r_model_inst: ret_choices.append( ( getattr(r_model_inst, choice_fields[0]), getattr(r_model_inst, choice_fields[1]), ) ) return ret_value, ret_choices class SidebarPart: """ Wrapper class for managing/rendering document parts on sidebar. """ fields = None exclude = None readonly_fields = () # model class of the document part model = None field_options = {} def __init__(self, document): # papermerge.core.models.document instance self.document = document if not self.model: raise ValueError("SidebarPart: missing model attribute") self.opts = self.model._meta def to_json(self): fields = [ SidebarPartField( document=self.document, field_name=field, model=self.model, options=self.field_options ).to_json() for field in self.fields ] ret = { 'label': self.get_label(), 'verbose_name': self.get_verbose_name(), 'js_widget': self.get_js_widget(), 'fields': fields } return ret def get_label(self): if hasattr(self, 'label'): return getattr(self, 'label') return self.opts.app_config.label def get_verbose_name(self): if hasattr(self, 'verbose_name'): return getattr(self, 'verbose_name') return self.opts.app_config.verbose_name def get_js_widget(self): if hasattr(self, 'js_widget'): return getattr(self, 'js_widget') return 'DefaultWidget'
the-stack_0_20887
#Class to calculate precision and recall import random class precision_recall_calculator(): def __init__(self, test_data, train_data, pm, is_model): self.test_data = test_data self.train_data = train_data self.user_test_sample = None self.model1 = pm self.model2 = is_model self.ism_training_dict = dict() self.pm_training_dict = dict() self.test_dict = dict() #Method to return random percentage of values from a list def remove_percentage(self, list_a, percentage): k = int(len(list_a) * percentage) random.seed(0) indicies = random.sample(range(len(list_a)), k) new_list = [list_a[i] for i in indicies] return new_list #Create a test sample of users for use in calculating precision #and recall def create_user_test_sample(self, percentage): #Find users common between training and test set users_test_and_training = list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id'].unique()))) print("Length of user_test_and_training:%d" % len(users_test_and_training)) #Take only random user_sample of users for evaluations self.users_test_sample = self.remove_percentage(users_test_and_training, percentage) print("Length of user sample:%d" % len(self.users_test_sample)) #Method to generate recommendations for users in the user test sample def get_test_sample_recommendations(self): #For these test_sample users, get top 10 recommendations from training set #self.ism_training_dict = {} #self.pm_training_dict = {} #self.test_dict = {} for user_id in self.users_test_sample: #Get items for user_id from item similarity model print("Getting recommendations for user:%s" % user_id) user_sim_items = self.model2.recommend(user_id) self.ism_training_dict[user_id] = list(user_sim_items["song"]) #Get items for user_id from popularity model user_sim_items = self.model1.recommend(user_id) self.pm_training_dict[user_id] = list(user_sim_items["song"]) #Get items for user_id from test_data test_data_user = self.test_data[self.test_data['user_id'] == user_id] self.test_dict[user_id] = set(test_data_user['song'].unique() ) #Method to calculate the precision and recall measures def calculate_precision_recall(self): #Create cutoff list for precision and recall calculation cutoff_list = list(range(1,11)) #For each distinct cutoff: # 1. For each distinct user, calculate precision and recall. # 2. Calculate average precision and recall. ism_avg_precision_list = [] ism_avg_recall_list = [] pm_avg_precision_list = [] pm_avg_recall_list = [] num_users_sample = len(self.users_test_sample) for N in cutoff_list: ism_sum_precision = 0 ism_sum_recall = 0 pm_sum_precision = 0 pm_sum_recall = 0 ism_avg_precision = 0 ism_avg_recall = 0 pm_avg_precision = 0 pm_avg_recall = 0 for user_id in self.users_test_sample: ism_hitset = self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N])) pm_hitset = self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N])) testset = self.test_dict[user_id] pm_sum_precision += float(len(pm_hitset))/float(N) pm_sum_recall += float(len(pm_hitset))/float(len(testset)) ism_sum_precision += float(len(ism_hitset))/float(len(testset)) ism_sum_recall += float(len(ism_hitset))/float(N) pm_avg_precision = pm_sum_precision/float(num_users_sample) pm_avg_recall = pm_sum_recall/float(num_users_sample) ism_avg_precision = ism_sum_precision/float(num_users_sample) ism_avg_recall = ism_sum_recall/float(num_users_sample) ism_avg_precision_list.append(ism_avg_precision) ism_avg_recall_list.append(ism_avg_recall) pm_avg_precision_list.append(pm_avg_precision) pm_avg_recall_list.append(pm_avg_recall) return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, ism_avg_recall_list) #A wrapper method to calculate all the evaluation measures def calculate_measures(self, percentage): #Create a test sample of users self.create_user_test_sample(percentage) #Generate recommendations for the test sample users self.get_test_sample_recommendations() #Calculate precision and recall at different cutoff values #for popularity mode (pm) as well as item similarity model (ism) return self.calculate_precision_recall() #return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, ism_avg_recall_list)
the-stack_0_20888
import os, time, yaml from datetime import datetime from pycti import OpenCTIConnectorHelper, get_config_variable from cape.cape import cuckoo, cuckooReport from cape.telemetry import openCTIInterface class capeConnector: """Connector object""" def __init__(self): """Read in config variables""" config_file_path = os.path.dirname(os.path.abspath(__file__)) config_file_path += "/config.yml" config = ( yaml.load(open(config_file_path), Loader=yaml.FullLoader) if os.path.isfile(config_file_path) else {} ) self.helper = OpenCTIConnectorHelper(config) self.cape_api_url = get_config_variable( "CAPE_API_URL", ["cape", "api_url"], config ) self.cape_url = get_config_variable( "CAPE_BASE_URL", ["cape", "base_url"], config ) self.EnableNetTraffic = get_config_variable( "CAPE_ENABLE_NETWORK_TRAFFIC", ["cape", "enable_network_traffic"], config, default=False, ) self.EnableRegKeys = get_config_variable( "CAPE_ENABLE_REGISTRY_KEYS", ["cape", "enable_registry_keys"], config, default=False, ) self.verify_ssl = get_config_variable( "VERIFY_SSL", ["cape", "verify_ssl"], config, default=True ) self.interval = get_config_variable( "CAPE_INTERVAL", ["cape", "interval"], config, True, 30 ) self.start_id = get_config_variable( "CAPE_START_TASK_ID", ["cape", "start_task_id"], config, True, 0 ) self.report_score = get_config_variable( "CAPE_REPORT_SCORE", ["cape", "report_score"], config, True, 0 ) self.create_indicators = get_config_variable( "CAPE_CREATE_INDICATORS", ["cape", "create_indicators"], config ) self.update_existing_data = get_config_variable( "CONNECTOR_UPDATE_EXISTING_DATA", ["connector", "update_existing_data"], config, ) self.cape_api: cuckoo = cuckoo(self.helper, self.cape_api_url, self.verify_ssl) def get_interval(self): """Converts interval hours to seconds""" return int(self.interval) * 60 @property def first_run(self): """Checks if connector has run before""" current_state = self.helper.get_state() return current_state is None or "last_run" not in current_state def run(self): """Run connector on a schedule""" while True: if self.first_run: state = self.helper.get_state() self.helper.log_info("Connector has never run") self.helper.log_info(str(state)) # Get Last Cape Task Pulled if not state: current_task = 0 else: if "task" in state: current_task = self.helper.get_state()["task"] else: current_task = 0 # Check If starting Task > last task if self.start_id > current_task: current_task = self.start_id self.helper.set_state({"task": self.start_id}) else: last_run = datetime.utcfromtimestamp( self.helper.get_state()["last_run"] ).strftime("%Y-%m-%d %H:%M:%S") self.helper.log_info("Connector last run: " + last_run) # Get Last Cape Task Pulled state = self.helper.get_state() self.helper.log_info(str(state)) if not state: current_task = 0 self.helper.log_info("Last Task ID (STATE): " + str(current_task)) if "task" in state: current_task = state["task"] self.helper.log_info("Last Task ID (STATE): " + str(current_task)) else: current_task = 0 # Check If starting Task > last task if self.start_id > current_task: current_task = self.start_id self.helper.set_state({"task": self.start_id}) try: CapeTasks = ( self.cape_api.getCuckooTasks() ) # Pull List of tasks from the Cape API except Exception as err: self.helper.log_error("Error connecting to Cape API") self.helper.log_error(str(err)) raise (err) for task in reversed(CapeTasks): if not task["status"] == "reported": continue # If task Has not reported Skip if not task["completed_on"]: continue # If task Has not completed Skip try: if task["id"] > current_task: taskSummary = cuckooReport( self.cape_api.getTaskReport(task["id"]) ) # Pull Cape Report and Searilize if not taskSummary: continue # If no report continue if not taskSummary.info: continue # If no report.info continue - we really need this :) self.helper.log_info(f"Processing Task {taskSummary.info.id}") # Process and submit cape task as stix bundle openCTIInterface( taskSummary, self.helper, self.update_existing_data, [], self.create_indicators, self.cape_url, self.EnableNetTraffic, self.EnableRegKeys, self.report_score, ) # Update last task pulled self.helper.set_state({"task": taskSummary.info.id}) self.helper.log_info(f"Synced task {task['id']}") except Exception as e: self.helper.log_error( f"An error Occured fetching task {task['id']}; {str(e)}" ) self.helper.log_info("Finished grabbing Cape Reports") self.helper.log_info( f"Run Complete. Sleeping until next run in " f"{self.interval} Minutes" ) time.sleep(self.get_interval()) if __name__ == "__main__": try: CONNECTOR = capeConnector() CONNECTOR.run() except Exception as e: raise e
the-stack_0_20889
"""testauto214_dev_23570 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "TestAuto214" admin.site.site_title = "TestAuto214 Admin Portal" admin.site.index_title = "TestAuto214 Admin" # swagger api_info = openapi.Info( title="TestAuto214 API", default_version="v1", description="API documentation for TestAuto214 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
the-stack_0_20891
# Sebastian Raschka 2017 # # screenlamp is a Python toolkit # for hypothesis-driven virtual screening. # # Copyright (C) 2017 Michigan State University # License: Apache v2 # # Software author: Sebastian Raschka <http://sebastianraschka.com> # Software author email: [email protected] # # Software source repository: https://github.com/rasbt/screenlamp # Documentation: https://psa-lab.github.io/screenlamp # # screenlamp was developed in the # Protein Structural Analysis & Design Laboratory # (http://www.kuhnlab.bmb.msu.edu) # # If you are using screenlamp in your research, please cite # the following journal article: # # Raschka, Sebastian, Anne M. Scott, Nan Liu, # Santosh Gunturu, Mar Huertas, Weiming Li, # and Leslie A. Kuhn. 2017 # # Enabling the hypothesis-driven prioritization of # ligand candidates in big databases: # Screenlamp and its application to GPCR inhibitor # discovery for invasive species control. # import os import argparse import sys import pandas as pd import time from mputil import lazy_imap from multiprocessing import cpu_count from biopandas.mol2 import split_multimol2 from biopandas.mol2 import PandasMol2 def parse_distance_string(s): dist = [int(p.strip()) for p in s.split('-')] return dist def get_mol2_files(dir_path): files = [] if os.path.isdir(dir_path): for f in os.listdir(dir_path): if f.endswith(('.mol2', 'mol2.gz')): file_path = os.path.join(dir_path, f) files.append(file_path) elif (os.path.isfile(dir_path) and dir_path.endswith(('.mol2', 'mol2.gz'))): files.append(dir_path) return files def parse_selection_string(s, df_name='pdmol.df'): columns = ['(atom_id', '(atom_name', '(atom_type', '(subst_id', '(subst_name', '(charge'] lst = [subs.strip() for subs in s.split('-->')] parsed = [] for subs in lst: for c in columns: subs = subs.replace(c, '(%s.%s' % (df_name, c[1:])) parsed.append(subs) return parsed def data_processor(mol2): pdmol = PandasMol2().read_mol2_from_list(mol2_lines=mol2[1], mol2_code=mol2[0]) coordinates = pdmol.df.loc[pd.eval(SELECTION[0]), ['x', 'y', 'z']].values pdmol._df = pdmol._df[pd.eval(SELECTION[1])] for xyz in coordinates: distances = pdmol.distance(xyz) match = ((distances.values >= DISTANCE[0]).any() and (distances.values <= DISTANCE[1]).any()) if match: return mol2[0] return '' def data_processor_gz(mol2_gz): pdmol = PandasMol2().read_mol2_from_list(mol2_lines=mol2_gz[1], mol2_code=mol2_gz[0]) coordinates = pdmol.df.loc[pd.eval(SELECTION[0]), ['x', 'y', 'z']].values pdmol._df = pdmol._df[pd.eval(SELECTION[1])] for xyz in coordinates: distances = pdmol.distance(xyz) match = ((distances.values >= DISTANCE[0]).any() and (distances.values <= DISTANCE[1]).any()) if match: return mol2_gz[0].decode('utf-8') return '' def read_and_write(mol2_files, id_file_path, verbose, n_cpus): if verbose: sys.stdout.write('Using selection: %s\n' % SELECTION) sys.stdout.flush() with open(id_file_path, 'w') as f: for mol2_file in mol2_files: if verbose: start = time.time() sys.stdout.write('Processing %s' % os.path.basename(mol2_file)) sys.stdout.flush() cnt = 0 if mol2_file.endswith('.gz'): data_processor_fn = data_processor_gz else: data_processor_fn = data_processor for chunk in lazy_imap(data_processor=data_processor_fn, data_generator=split_multimol2(mol2_file), n_cpus=n_cpus): _ = [f.write('%s\n' % mol2_id)for mol2_id in chunk if mol2_id] cnt += len(chunk) if verbose: elapsed = time.time() - start sys.stdout.write(' | %d mol/sec\n' % (cnt / elapsed)) sys.stdout.flush() def get_num_cpus(n_cpus): if not n_cpus: n_cpus = cpu_count() elif n_cpus < 0: n_cpus = cpu_count() - n_cpus return n_cpus def main(input_dir, output_file, verbose, n_cpus): n_cpus = get_num_cpus(n_cpus) dirpath = os.path.dirname(output_file) if not os.path.exists(dirpath): os.mkdir(dirpath) mol2_files = get_mol2_files(dir_path=input_dir) read_and_write(mol2_files=mol2_files, id_file_path=output_file, verbose=verbose, n_cpus=n_cpus) if verbose: print('Finished') if __name__ == '__main__': parser = argparse.ArgumentParser( description='A command line tool for filtering mol2 files' '\nby the distance of two atoms or functional groups.', epilog="""Example: python funcgroup_distance_to_id.py\\ --input mol2_dir/\\ --output ids.txt\\ --selection "((atom_type == \'S.3\') | (atom_type == \'S.o2\')) --> (atom_type == \'O.2\')"\\ --distance 13-20\\ --processes 0 \# The example above selects those molecules \# that contain S.2 or S.o2 atom that is within \# a 13-20 angstroms distance to an 'O.2' (sp2/keto oxygen) atom """, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', '--input', type=str, required=True, help='(Required.) Path to a `.mol2` or `.mol2.gz` file,' '\nor a directory containing `.mol2`/`.mol2.gz`' 'files.') parser.add_argument('-o', '--output', type=str, required=True, help='(Required.) Directory for writing the output files.') parser.add_argument('-s', '--selection', type=str, required=True, help='(Required.) Selection condition for the atom distance' ' checks.' '\n1) Selection example to compare 2 atom types:' '\n `"(atom_type == \'S.o2\') -->' ' (atom_type == \'O.2\')"`.' '\n2) Selection example to consider either' ' an S.o2 or S.3 atom to an O.2 atom:' '\n `"((atom_type == \'S.3\') |' ' (atom_type == \'S.o2\')) -->' ' (atom_type == \'O.2\')"`.' '\n3) Selection example using logical ORs on ' 'both sides:\n' ' `"((atom_type == \'S.3\') | (atom_type == ' '\'S.o2\'))' ' --> ((atom_type == \'O.2\') |' ' (atom_type == \'O.3\'))"`.') parser.add_argument('-d', '--distance', type=str, required=True, help='(Required.) A distance range formatted' '\n as "lowerbound-upperbound".' '\nFor example, if 13-20 is provided as an' '\nargument, two atoms are considered a match' '\nif they are not closer than 13 angstroms and' '\n not farther than 20 angstroms.') parser.add_argument('--processes', type=int, default=1, help='(Optional, default: `1`.) Number of processes to run in parallel.' '\nIf processes > 0, the specified number of CPUs' '\nwill be used.' '\nIf processes = 0, all available CPUs will' '\nbe used.' '\nIf processes = -1, all available CPUs' '\nminus `processes` will be used.') parser.add_argument('-v', '--verbose', type=int, default=1, help='(Optional, default: `1`.) Verbosity level. If 0, does not print any' ' output.' '\nIf 1 (default), prints the file currently' ' processing.') parser.add_argument('--version', action='version', version='v. 1.0') args = parser.parse_args() DISTANCE = parse_distance_string(args.distance) if len(DISTANCE) != 2: raise ValueError("Make sure you only have a lower and upper bound" " for --distance" "\nFor example 13-20") SELECTION = parse_selection_string(args.selection) if len(SELECTION) != 2: raise ValueError("Make sure you have 2 --selection criteria" " separated via '-->', for example," "\n\"((atom_type == 'S.3') |" " (atom_type == 'S.o2'))\"") main(input_dir=args.input, output_file=args.output, verbose=args.verbose, n_cpus=args.processes)
the-stack_0_20894
import pandas df = pandas.read_csv('data.csv') print(df.head()) df = df.drop('Name', axis=1) df['Sex'] = df['Sex'].replace('female', '0').replace('male', '1') df['Embarked_num'] = df.Embarked.map({'S': 0, 'C': 1, 'Q': 2}) df.dropna(subset=['Age', 'Embarked', 'Cabin'], inplace=True) print(df.head()) df.to_csv('res_data.csv', index=0)
the-stack_0_20895
from tornado.platform.asyncio import AnyThreadEventLoopPolicy import json import asyncio import aiohttp asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) APIKEY = '259ddcb11156c1648597938984b52919f458ec88e45a6364276e863b3289aadd' class Holidays(): def __init__(self): pass async def main(self, year, country): async with aiohttp.ClientSession() as session: async with session.get( f'https://calendarific.com/api/v2/holidays?&api_key={APIKEY}&country={country}&year={year}') as req: text = await req.text() return json.loads(text) def createHolidays(self, year, country): loop = asyncio.get_event_loop() holidays = loop.run_until_complete(self.main(year, country)) return holidays def getHoliday(self, day, month, year, dict): list = [] iso = f'{year}-{"%02d" % month}-{"%02d" % day}' for event in dict["response"]["holidays"]: if event["date"]["iso"] == iso: list.append(event) return list if __name__ == '__main__': print(Holidays().getHoliday(10, 5, 2021, Holidays().createHolidays(2021, 'US'))[1])
the-stack_0_20896
from ingenico.direct.sdk.data_object import DataObject class ShoppingCartExtension(DataObject): def __init__(self, creator, name, version, extension_id=None): if not creator: raise ValueError("creator is required") if not name: raise ValueError("name is required") if not version: raise ValueError("version is required") self.__creator = creator self.__name = name self.__version = version self.__extension_id = extension_id def to_dictionary(self): dictionary = super(ShoppingCartExtension, self).to_dictionary() if self.__creator is not None: dictionary['creator'] = self.__creator if self.__name is not None: dictionary['name'] = self.__name if self.__version is not None: dictionary['version'] = self.__version if self.__extension_id is not None: dictionary['extensionId'] = self.__extension_id return dictionary def from_dictionary(self, dictionary): super(ShoppingCartExtension, self).from_dictionary(dictionary) if 'creator' in dictionary: self.__creator = dictionary['creator'] if 'name' in dictionary: self.__name = dictionary['name'] if 'version' in dictionary: self.__version = dictionary['version'] if 'extensionId' in dictionary: self.__extension_id = dictionary['extensionId'] return self @staticmethod def create_from_dictionary(dictionary): if 'creator' in dictionary: creator = dictionary['creator'] else: raise ValueError("creator is required") if 'name' in dictionary: name = dictionary['name'] else: raise ValueError("name is required") if 'version' in dictionary: version = dictionary['version'] else: raise ValueError("version is required") if 'extensionId' in dictionary: extension_id = dictionary['extensionId'] else: extension_id = None return ShoppingCartExtension(creator, name, version, extension_id) @property def creator(self): return self.__creator @property def name(self): return self.__name @property def version(self): return self.__version @property def extension_id(self): return self.__extension_id
the-stack_0_20897
import datetime import dash import dash_core_components as dcc import dash_html_components as html import plotly from dash.dependencies import Input, Output import pymongo import plotly.graph_objects as go import time print("------- BIENVENIDO A iHashTag --------") external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div( html.Div([ html.H4('Hashtag Live Sentiment'), html.Div(id='live-update-text'), dcc.Graph(id='live-update-graph'), dcc.Interval( id='interval-component', interval=1*1000, # in milliseconds n_intervals=0 ) ]) ) @app.callback(Output('live-update-text', 'children'), [Input('interval-component', 'n_intervals')]) def update_metrics(n): myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["dashdata"] mycol = mydb["#Impeachment"] x = mycol.find_one() style = {'padding': '5px', 'fontSize': '16px'} file = open("resultados.txt", "a") string = time.strftime("%d/%m/%y %H:%M:%S") + "," + x["muypositivo"] + ","+ x["positivo"] + "," + "," + \ x["neutro"] + "," + x["negativo"] + "," +x["average"] + "\n" file.write(string) file.close() print("hola") return [ html.Span('Muy Positivos: {0:.2f}'.format(float(x["muypositivo"])), style=style), html.Span('Positivos: {0:.2f}'.format(float(x["positivo"])), style=style), html.Span('Neutros: {0:.2f}'.format(float(x["neutro"])), style=style), html.Span('Negativos: {0:0.2f}'.format(float(x["negativo"])), style=style), html.Span('Muy negativos: {0:0.2f}'.format(float(x["muynegativo"])), style=style), html.Span('Media Total: {0:0.2f}'.format(float(x["average"])), style=style) ] # Multiple components can update everytime interval gets fired. @app.callback(Output('live-update-graph', 'figure'), [Input('interval-component', 'n_intervals')]) def update_graph_live(n): myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["dashdata"] mycol = mydb["#Impeachment"] data = { 'positivo': [], 'negativo': [], 'neutro': [] } x = mycol.find_one() data['positivo'].append(float(x["positivo"])) data['negativo'].append(float(x["negativo"])) data['neutro'].append(float(x["neutro"])) # Create the graph with subplots fig = go.Figure(data=go.Bar(name = 'Tweet Sentiment',x=["Muy Positivo", "Positivo", "Neutral", "Negativo", "Muy Negativo"], y=[float(x['muypositivo']),float(x["positivo"]), float(x["neutro"]), float(x["negativo"]), float(x["muynegativo"])], marker_color=['cyan','green','gray','red','pink'], marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.6, text=[float(x['muypositivo']),float(x["positivo"]), float(x["neutro"]), float(x["negativo"]), float(x["muynegativo"])], textposition='auto' )) fig.add_trace( go.Scatter(name="Average", x=["Muy Positivo", "Positivo", "Neutral", "Negativo", "Muy Negativo"], y=[float(x['average']), float(x['average']), float(x['average']), float(x['average']), float(x['average'])] )) return fig if __name__ == '__main__': app.run_server(debug=True)
the-stack_0_20898
from typing import List import logging import os import time import sentry_sdk from fastapi import FastAPI from starlette.middleware.cors import CORSMiddleware from model import init_model sentry_sdk.init(os.getenv("SENTRY_DSN")) logging.basicConfig(format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class_dict, counters, label_to_name = init_model() def predict(label_name): try: class_id = class_dict[label_name] except KeyError: return {} sorted_classes = sorted(enumerate(counters[class_id]), reverse=False, key=lambda x: x[1]) sorted_classes = [x for x in sorted_classes if x[1] > 0] return [{"prediction": label_to_name[label], "confidence": probability} for label, probability in sorted_classes] try: predict("Reply.Acknowledge") logger.info("model loaded, test query processed") except Exception as e: logger.exception("model not loaded") sentry_sdk.capture_exception(e) raise e async def handler(payload: List[str]): responses = [{}] * len(payload) try: responses = [predict(speech_function) for speech_function in payload] except Exception as e: sentry_sdk.capture_exception(e) logger.exception(e) return responses @app.post("/model") async def answer(payload: List[str]): st_time = time.time() responses = await handler(payload) total_time = time.time() - st_time logger.info(f"speech_function_predictor model exec time: {total_time:.3f}s") return responses @app.post("/annotation") async def annotation(payload: List[str]): st_time = time.time() responses = await handler(payload) total_time = time.time() - st_time logger.info(f"speech_function_predictor batch exec time: {total_time:.3f}s") return [{"batch": responses}]
the-stack_0_20900
import math import numpy as np import cv2 from gym.envs.box2d.car_racing import PLAYFIELD, FPS, STATE_H, STATE_W, VIDEO_H, VIDEO_W, WINDOW_H, WINDOW_W, SCALE, \ ZOOM from gym.envs.box2d.car_racing import CarRacing as GymCarRacing from gym.envs.classic_control import rendering from gym import spaces import pyglet from pyglet import gl from environments.srl_env import SRLGymEnv from state_representation.episode_saver import EpisodeSaver MAX_STEPS = 10000 RENDER_HEIGHT = 224 RENDER_WIDTH = 224 N_DISCRETE_ACTIONS = 4 RELATIVE_POS = True # Use relative position for ground truth def getGlobals(): """ :return: (dict) """ return globals() class CarRacingEnv(GymCarRacing, SRLGymEnv): def __init__(self, name="car_racing", renders=False, record_data=False, is_discrete=True, state_dim=-1, learn_states=False, save_path='srl_zoo/data/', srl_model="raw_pixels", env_rank=0, srl_pipe=None, lookahead=5, **_): """ Gym wrapper for Racing car environment WARNING: to be compatible with kuka scripts, additional keyword arguments are discarded :param name: (str) name of the folder where recorded data will be stored :param renders: (bool) Whether to display the GUI or not :param record_data: (bool) Set to true, record frames with the rewards. :param is_discrete: (bool) Whether to use discrete or continuous actions :param state_dim: (int) When learning states :param learn_states: (bool) :param save_path: (str) location where the saved data should go :param srl_model: (str) The SRL_model used :param env_rank: (int) the number ID of the environment :param srl_pipe: (Queue, [Queue]) contains the input and output of the SRL model :param lookahead: (int) How many segments ahead of the current position of the track should the target be """ SRLGymEnv.__init__(self, srl_model=srl_model, relative_pos=RELATIVE_POS, env_rank=env_rank, srl_pipe=srl_pipe, img_shape=None) GymCarRacing.__init__(self) self._renders = renders self.img_shape = img_shape if self.img_shape is None: self._width = RENDER_WIDTH self._height = RENDER_HEIGHT else: self._height, self._width = self.img_shape[1:] self._is_discrete = is_discrete self.lookahead = lookahead self.relative_pos = RELATIVE_POS self._env_step_counter = 0 self._observation = None self.saver = None if record_data: self.saver = EpisodeSaver(name, None, state_dim, globals_=getGlobals(), relative_pos=RELATIVE_POS, learn_states=learn_states, path=save_path) # Accelerate, brake, stear left, stear right if self._is_discrete: self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS) else: self.action_space = spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) if self.srl_model == "ground_truth": self.state_dim = self.getGroundTruthDim() if self.srl_model == "raw_pixels": self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 3), dtype=np.uint8) else: self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(self.state_dim,), dtype=np.float32) def getTargetPos(self): # get the nearest track segment to the current position # then return the track segment position that is ahead of the nearest track segement nearest_idx = np.argmin(list(map( lambda a: np.sqrt(np.sum(((list(a[2:4]) + [0, 0, 0]) - self.getGroundTruth()) ** 2)), self.track))) return np.array(list(self.track[(nearest_idx + self.lookahead) % len(self.track)][2:4]) + [0, 0, 0]) @staticmethod def getGroundTruthDim(): return 5 def getGroundTruth(self): # the car's current x,y position, angle, speed and angular speed return np.array(list(self.car.__dict__["hull"].position) + [self.car.__dict__["hull"].angle, self.car.__dict__["hull"].inertia, self.car.__dict__["hull"].angularVelocity]) def getObservation(self): """ :return: (numpy array) """ self._observation = self.render("rgb_array") self._observation = cv2.resize(self._observation, (self._width, self._height)) return self._observation def reset(self): super().reset() self._env_step_counter = 0 self.getObservation() if self.saver is not None: self.saver.reset(self._observation, self.getTargetPos(), self.getGroundTruth()) if self.srl_model != "raw_pixels": return self.getSRLState(self._observation) return self._observation def step(self, action): if action is not None: if self._is_discrete: self.car.steer([-1, 1, 0, 0][action]) self.car.gas([0, 0, 1, 0][action]) self.car.brake([0, 0, 0, 1][action]) else: self.car.steer(-action[0]) self.car.gas(action[1]) self.car.brake(action[2]) self.car.step(1.0 / FPS) self.world.Step(1.0 / FPS, 6 * 30, 2 * 30) self.t += 1.0 / FPS self.getObservation() step_reward = 0 done = False if action is not None: # First step without action, called from reset() self.reward -= 0.1 self._env_step_counter += 1 # We actually don't want to count fuel spent, we want car to be faster. self.car.fuel_spent = 0.0 step_reward = self.reward - self.prev_reward self.prev_reward = self.reward if self.tile_visited_count == len(self.track) or self._env_step_counter >= MAX_STEPS: done = True x, y = self.car.hull.position if abs(x) > PLAYFIELD or abs(y) > PLAYFIELD: done = True step_reward = -100 if self.saver is not None: self.saver.step(self._observation, action, step_reward, done, self.getGroundTruth()) if self.srl_model != "raw_pixels": return self.getSRLState(self._observation), step_reward, done, {} return np.array(self._observation), step_reward, done, {} # Copied for the original Gym Racing Car env, it is modified to be able to remove the render window. def render(self, mode='human'): if self.viewer is None: self.viewer = rendering.Viewer(WINDOW_W, WINDOW_H) self.viewer.window.set_visible(self._renders) self.score_label = pyglet.text.Label('0000', font_size=36, x=20, y=WINDOW_H * 2.5 / 40.00, anchor_x='left', anchor_y='center', color=(255, 255, 255, 255)) self.transform = rendering.Transform() if "t" not in self.__dict__: return # reset() not called yet zoom = 0.1 * SCALE * max(1 - self.t, 0) + ZOOM * SCALE * min(self.t, 1) # Animate zoom first second scroll_x = self.car.hull.position[0] scroll_y = self.car.hull.position[1] angle = -self.car.hull.angle vel = self.car.hull.linearVelocity if np.linalg.norm(vel) > 0.5: angle = math.atan2(vel[0], vel[1]) self.transform.set_scale(zoom, zoom) self.transform.set_translation( WINDOW_W / 2 - (scroll_x * zoom * math.cos(angle) - scroll_y * zoom * math.sin(angle)), WINDOW_H / 4 - (scroll_x * zoom * math.sin(angle) + scroll_y * zoom * math.cos(angle))) self.transform.set_rotation(angle) self.car.draw(self.viewer, mode != "state_pixels") arr = None win = self.viewer.window if mode != 'state_pixels': win.switch_to() win.dispatch_events() if mode == "rgb_array" or mode == "state_pixels": win.clear() t = self.transform if mode == 'rgb_array': VP_W = VIDEO_W VP_H = VIDEO_H else: VP_W = STATE_W VP_H = STATE_H gl.glViewport(0, 0, VP_W, VP_H) t.enable() self.render_road() for geom in self.viewer.onetime_geoms: geom.render() t.disable() self.render_indicators(WINDOW_W, WINDOW_H) # TODO: find why 2x needed, wtf image_data = pyglet.image.get_buffer_manager().get_color_buffer().get_image_data() arr = np.fromstring(image_data.data, dtype=np.uint8, sep='') arr = arr.reshape(VP_H, VP_W, 4) arr = arr[::-1, :, 0:3] # agent can call or not call env.render() itself when recording video. if mode == "rgb_array" and not self.human_render: win.flip() if mode == 'human': self.human_render = True win.clear() t = self.transform gl.glViewport(0, 0, WINDOW_W, WINDOW_H) t.enable() self.render_road() for geom in self.viewer.onetime_geoms: geom.render() t.disable() self.render_indicators(WINDOW_W, WINDOW_H) win.flip() self.viewer.onetime_geoms = [] return arr
the-stack_0_20901
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import build_conv_layer, build_norm_layer from mmcv.runner import BaseModule, ModuleList, Sequential from torch.nn.modules.batchnorm import _BatchNorm from ..builder import BACKBONES from .resnet import BasicBlock, Bottleneck class HRModule(BaseModule): """High-Resolution Module for HRNet. In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange is in this module. """ def __init__(self, num_branches, blocks, num_blocks, in_channels, num_channels, multiscale_output=True, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), block_init_cfg=None, init_cfg=None): super(HRModule, self).__init__(init_cfg) self.block_init_cfg = block_init_cfg self._check_branches(num_branches, num_blocks, in_channels, num_channels) self.in_channels = in_channels self.num_branches = num_branches self.multiscale_output = multiscale_output self.norm_cfg = norm_cfg self.conv_cfg = conv_cfg self.with_cp = with_cp self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(inplace=False) def _check_branches(self, num_branches, num_blocks, in_channels, num_channels): if num_branches != len(num_blocks): error_msg = f'NUM_BRANCHES({num_branches}) ' \ f'!= NUM_BLOCKS({len(num_blocks)})' raise ValueError(error_msg) if num_branches != len(num_channels): error_msg = f'NUM_BRANCHES({num_branches}) ' \ f'!= NUM_CHANNELS({len(num_channels)})' raise ValueError(error_msg) if num_branches != len(in_channels): error_msg = f'NUM_BRANCHES({num_branches}) ' \ f'!= NUM_INCHANNELS({len(in_channels)})' raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): downsample = None if stride != 1 or \ self.in_channels[branch_index] != \ num_channels[branch_index] * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, self.in_channels[branch_index], num_channels[branch_index] * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, num_channels[branch_index] * block.expansion)[1]) layers = [] layers.append( block( self.in_channels[branch_index], num_channels[branch_index], stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg, init_cfg=self.block_init_cfg)) self.in_channels[branch_index] = \ num_channels[branch_index] * block.expansion for i in range(1, num_blocks[branch_index]): layers.append( block( self.in_channels[branch_index], num_channels[branch_index], with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg, init_cfg=self.block_init_cfg)) return Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): branches = [] for i in range(num_branches): branches.append( self._make_one_branch(i, block, num_blocks, num_channels)) return ModuleList(branches) def _make_fuse_layers(self): if self.num_branches == 1: return None num_branches = self.num_branches in_channels = self.in_channels fuse_layers = [] num_out_branches = num_branches if self.multiscale_output else 1 for i in range(num_out_branches): fuse_layer = [] for j in range(num_branches): if j > i: fuse_layer.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=1, stride=1, padding=0, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1], nn.Upsample( scale_factor=2**(j - i), mode='nearest'))) elif j == i: fuse_layer.append(None) else: conv_downsamples = [] for k in range(i - j): if k == i - j - 1: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1])) else: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[j], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[j])[1], nn.ReLU(inplace=False))) fuse_layer.append(nn.Sequential(*conv_downsamples)) fuse_layers.append(nn.ModuleList(fuse_layer)) return nn.ModuleList(fuse_layers) def forward(self, x): """Forward function.""" if self.num_branches == 1: return [self.branches[0](x[0])] for i in range(self.num_branches): x[i] = self.branches[i](x[i]) x_fuse = [] for i in range(len(self.fuse_layers)): y = 0 for j in range(self.num_branches): if i == j: y += x[j] else: y += self.fuse_layers[i][j](x[j]) x_fuse.append(self.relu(y)) return x_fuse @BACKBONES.register_module() class PoseHighResolutionNet(BaseModule): """HRNet backbone. `High-Resolution Representations for Labeling Pixels and Regions arXiv: <https://arxiv.org/abs/1904.04514>`_. Args: extra (dict): Detailed configuration for each stage of HRNet. There must be 4 stages, the configuration for each stage must have 5 keys: - num_modules(int): The number of HRModule in this stage. - num_branches(int): The number of branches in the HRModule. - block(str): The type of convolution block. - num_blocks(tuple): The number of blocks in each branch. The length must be equal to num_branches. - num_channels(tuple): The number of channels in each branch. The length must be equal to num_branches. in_channels (int): Number of input image channels. Default: 3. conv_cfg (dict): Dictionary to construct and config conv layer. norm_cfg (dict): Dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: True. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. zero_init_residual (bool): Whether to use zero init for last norm layer in resblocks to let them behave as identity. Default: False. multiscale_output (bool): Whether to output multi-level features produced by multiple branches. If False, only the first level feature will be output. Default: True. num_joints(int): the number of output for the final layer. Default: 24. pretrained (str, optional): Model pretrained path. Default: None. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None. """ blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} def __init__(self, extra, in_channels=3, conv_cfg=None, norm_cfg=dict(type='BN'), norm_eval=True, with_cp=False, num_joints=24, zero_init_residual=False, multiscale_output=True, pretrained=None, init_cfg=None): super(PoseHighResolutionNet, self).__init__(init_cfg) self.pretrained = pretrained assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') # Assert configurations of 4 stages are in extra assert 'stage1' in extra and 'stage2' in extra \ and 'stage3' in extra and 'stage4' in extra # Assert whether the length of `num_blocks` and `num_channels` are # equal to `num_branches` for i in range(4): cfg = extra[f'stage{i + 1}'] assert len(cfg['num_blocks']) == cfg['num_branches'] and \ len(cfg['num_channels']) == cfg['num_branches'] self.extra = extra self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.zero_init_residual = zero_init_residual # stem net self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) self.conv1 = build_conv_layer( self.conv_cfg, in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm1_name, norm1) self.conv2 = build_conv_layer( self.conv_cfg, 64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm2_name, norm2) self.relu = nn.ReLU(inplace=True) # stage 1 self.stage1_cfg = self.extra['stage1'] num_channels = self.stage1_cfg['num_channels'][0] block_type = self.stage1_cfg['block'] num_blocks = self.stage1_cfg['num_blocks'][0] block = self.blocks_dict[block_type] stage1_out_channels = num_channels * block.expansion self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) # stage 2 self.stage2_cfg = self.extra['stage2'] num_channels = self.stage2_cfg['num_channels'] block_type = self.stage2_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition1 = self._make_transition_layer([stage1_out_channels], num_channels) self.stage2, pre_stage_channels = self._make_stage( self.stage2_cfg, num_channels) # stage 3 self.stage3_cfg = self.extra['stage3'] num_channels = self.stage3_cfg['num_channels'] block_type = self.stage3_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage( self.stage3_cfg, num_channels) # stage 4 self.stage4_cfg = self.extra['stage4'] num_channels = self.stage4_cfg['num_channels'] block_type = self.stage4_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage( self.stage4_cfg, num_channels, multiscale_output=multiscale_output) # self.pretrained_layers = extra['pretrained_layers'] self.final_layer = build_conv_layer( cfg=self.conv_cfg, in_channels=pre_stage_channels[0], out_channels=num_joints, kernel_size=extra['final_conv_kernel'], stride=1, padding=1 if extra['final_conv_kernel'] == 3 else 0) if extra['downsample'] and extra['use_conv']: self.downsample_stage_1 = self._make_downsample_layer( 3, num_channel=self.stage2_cfg['num_channels'][0]) self.downsample_stage_2 = self._make_downsample_layer( 2, num_channel=self.stage2_cfg['num_channels'][-1]) self.downsample_stage_3 = self._make_downsample_layer( 1, num_channel=self.stage3_cfg['num_channels'][-1]) elif not extra['downsample'] and extra['use_conv']: self.upsample_stage_2 = self._make_upsample_layer( 1, num_channel=self.stage2_cfg['num_channels'][-1]) self.upsample_stage_3 = self._make_upsample_layer( 2, num_channel=self.stage3_cfg['num_channels'][-1]) self.upsample_stage_4 = self._make_upsample_layer( 3, num_channel=self.stage4_cfg['num_channels'][-1]) @property def norm1(self): """nn.Module: the normalization layer named "norm1" """ return getattr(self, self.norm1_name) @property def norm2(self): """nn.Module: the normalization layer named "norm2" """ return getattr(self, self.norm2_name) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append( nn.Sequential( build_conv_layer( self.conv_cfg, num_channels_pre_layer[i], num_channels_cur_layer[i], kernel_size=3, stride=1, padding=1, bias=False), build_norm_layer(self.norm_cfg, num_channels_cur_layer[i])[1], nn.ReLU(inplace=True))) else: transition_layers.append(None) else: conv_downsamples = [] for j in range(i + 1 - num_branches_pre): in_channels = num_channels_pre_layer[-1] out_channels = num_channels_cur_layer[i] \ if j == i - num_branches_pre else in_channels conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, out_channels)[1], nn.ReLU(inplace=True))) transition_layers.append(nn.Sequential(*conv_downsamples)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) layers = [] block_init_cfg = None if self.pretrained is None and not hasattr( self, 'init_cfg') and self.zero_init_residual: if block is BasicBlock: block_init_cfg = dict( type='Constant', val=0, override=dict(name='norm2')) elif block is Bottleneck: block_init_cfg = dict( type='Constant', val=0, override=dict(name='norm3')) layers.append( block( inplanes, planes, stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg, init_cfg=block_init_cfg, )) inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block( inplanes, planes, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg, init_cfg=block_init_cfg)) return Sequential(*layers) def _make_stage(self, layer_config, in_channels, multiscale_output=True): num_modules = layer_config['num_modules'] num_branches = layer_config['num_branches'] num_blocks = layer_config['num_blocks'] num_channels = layer_config['num_channels'] block = self.blocks_dict[layer_config['block']] hr_modules = [] block_init_cfg = None if self.pretrained is None and not hasattr( self, 'init_cfg') and self.zero_init_residual: if block is BasicBlock: block_init_cfg = dict( type='Constant', val=0, override=dict(name='norm2')) elif block is Bottleneck: block_init_cfg = dict( type='Constant', val=0, override=dict(name='norm3')) for i in range(num_modules): # multi_scale_output is only used for the last module if not multiscale_output and i == num_modules - 1: reset_multiscale_output = False else: reset_multiscale_output = True hr_modules.append( HRModule( num_branches, block, num_blocks, in_channels, num_channels, reset_multiscale_output, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg, block_init_cfg=block_init_cfg)) return Sequential(*hr_modules), in_channels def _make_upsample_layer(self, num_layers, num_channel, kernel_size=3): layers = [] for i in range(num_layers): layers.append( nn.Upsample( scale_factor=2, mode='bilinear', align_corners=True)) layers.append( build_conv_layer( cfg=self.conv_cfg, in_channels=num_channel, out_channels=num_channel, kernel_size=kernel_size, stride=1, padding=1, bias=False, )) layers.append(build_norm_layer(self.norm_cfg, num_channel)[1]) layers.append(nn.ReLU(inplace=True)) return nn.Sequential(*layers) def _make_downsample_layer(self, num_layers, num_channel, kernel_size=3): layers = [] for i in range(num_layers): layers.append( build_conv_layer( cfg=self.conv_cfg, in_channels=num_channel, out_channels=num_channel, kernel_size=kernel_size, stride=2, padding=1, bias=False, )) layers.append(build_norm_layer(self.norm_cfg, num_channel)[1]) layers.append(nn.ReLU(inplace=True)) return nn.Sequential(*layers) def forward(self, x): """Forward function.""" x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.conv2(x) x = self.norm2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['num_branches']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.stage3_cfg['num_branches']): if self.transition2[i] is not None: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.stage4_cfg['num_branches']): if self.transition3[i] is not None: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage4(x_list) if self.extra['return_list']: return y_list elif self.extra['downsample']: if self.extra['use_conv']: # Downsampling with strided convolutions x1 = self.downsample_stage_1(y_list[0]) x2 = self.downsample_stage_2(y_list[1]) x3 = self.downsample_stage_3(y_list[2]) x = torch.cat([x1, x2, x3, y_list[3]], 1) else: # Downsampling with interpolation x0_h, x0_w = y_list[3].size(2), y_list[3].size(3) x1 = F.interpolate( y_list[0], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x2 = F.interpolate( y_list[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x3 = F.interpolate( y_list[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x = torch.cat([x1, x2, x3, y_list[3]], 1) else: if self.extra['use_conv']: # Upsampling with interpolations + convolutions x1 = self.upsample_stage_2(y_list[1]) x2 = self.upsample_stage_3(y_list[2]) x3 = self.upsample_stage_4(y_list[3]) x = torch.cat([y_list[0], x1, x2, x3], 1) else: # Upsampling with interpolation x0_h, x0_w = y_list[0].size(2), y_list[0].size(3) x1 = F.interpolate( y_list[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x2 = F.interpolate( y_list[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x3 = F.interpolate( y_list[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True) x = torch.cat([y_list[0], x1, x2, x3], 1) return x def train(self, mode=True): """Convert the model into training mode will keeping the normalization layer freezed.""" super(PoseHighResolutionNet, self).train(mode) if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()
the-stack_0_20902
#!/usr/bin/python # -*- coding:utf8 -*- import numpy as np import math import Control_Exp1001 as CE import os import json from Control_Exp1001.demo.thickener_chinese.thickener_chinese import Thickener from Control_Exp1001.common.replay.replay_buffer import ReplayBuffer from Control_Exp1001.common.action_noise.no_exploration import No_Exploration from Control_Exp1001.demo.thickener_chinese.controllers.value_iterate import VI from Control_Exp1001.demo.thickener_chinese.controllers.hdp import HDP import torch import random from Control_Exp1001.common.penaltys.quadratic import Quadratic import matplotlib.pyplot as plt from Control_Exp1001.demo.thickener_chinese.common.one_round_exp import OneRoundExp from Control_Exp1001.demo.thickener_chinese.common.one_round_evaluation import OneRoundEvaluation penalty_para = { #"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt":1, "noise_in": False, "noise_p": 0.002, "noise_type": 3, 'time_length': 20,# 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener_chinese.common import exp_name exp_name.set_exp_name('HDP_Replay') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images',EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_hdp(capacity=2, batch_size=2): predict_round=3000 gamma=0.6 replay_hdp = ReplayBuffer(capacity=capacity) env_HDP = Thickener( noise_p=0.03, noise_in=True, ) exploration = No_Exploration() print('make new hdp controller') hdp = HDP( replay_buffer = replay_hdp, u_bounds = env_HDP.u_bounds, #exploration = None, exploration = exploration, env=env_HDP, predict_training_rounds=predict_round, gamma=gamma, batch_size = batch_size, predict_batch_size=32, model_nn_error_limit = 0.0008, critic_nn_error_limit = 0.001, actor_nn_error_limit = 0.001, # 0.005 actor_nn_lr = 0.003, critic_nn_lr = 0.02, model_nn_lr = 0.01, indice_y = None, indice_y_star = None, indice_c=None, hidden_model = 10, hidden_critic = 14, hidden_actor = 14, predict_epoch= 30, Na=220, Nc = 500, img_path=EXP_NAME ) env_HDP.reset() hdp.train_identification_model() return hdp def run_hdp(rounds=1000,seed=random.randint(0,1000000),name='VI',capacity=2,batch_size=2, predict_round=3000,u_optim='adam',): print('seed :',seed) torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) vi = new_hdp(capacity=capacity, batch_size=batch_size) penalty = Quadratic(**penalty_para) env_vi = Thickener( penalty_calculator=penalty, **thickner_para, ) res1 = OneRoundExp(controller=vi, env=env_vi,max_step=rounds, exp_name=name).run() return res1 if __name__ == '__main__': round = 1600 predict_round=800 res_list = [] rand_seed = np.random.randint(0,10000000) rand_seed = 9726164 res_list.append( run_hdp(rounds=round,seed=rand_seed, name='HDP-无经验回放', predict_round=predict_round, capacity=1, batch_size=1)) res_list.append( run_hdp(rounds=round,seed=rand_seed, name='HDP-经验回放数量为2', predict_round=predict_round, capacity=2, batch_size=2)) eval_res = OneRoundEvaluation(res_list=res_list) eval_res.plot_all()
the-stack_0_20903
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2019-2021 PythonistaGuild Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pathlib import os import re from setuptools import setup ROOT = pathlib.Path(__file__).parent on_rtd = os.getenv("READTHEDOCS") == "True" with open("requirements.txt") as f: requirements = f.read().splitlines() if on_rtd: with open("docs/requirements_rtd.txt") as f: requirements.extend(f.read().splitlines()) with open(ROOT / "wavelink" / "__init__.py", encoding="utf-8") as f: VERSION = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', f.read(), re.MULTILINE).group(1) readme = "" with open("README.rst") as f: readme = f.read() setup( name="wavelink", author="PythonistaGuild, EvieePy", url="https://github.com/PythonistaGuild/Wavelink", version=VERSION, packages=["wavelink", "wavelink.ext.spotify", "wavelink.types"], license="MIT", description="A robust and powerful Lavalink wrapper for disnake and derivatives.", long_description=readme, include_package_data=True, install_requires=requirements, classifiers=[ "License :: OSI Approved :: MIT License", "Intended Audience :: Developers", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Internet", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Utilities", ], )
the-stack_0_20904
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Detection model trainer. This file provides a generic training method that can be used to train a DetectionModel. """ import functools import tensorflow as tf from builders import optimizer_builder from builders import preprocessor_builder from core import batcher from core import preprocessor from core import standard_fields as fields from utils import ops as util_ops from utils import variables_helper from deployment import model_deploy slim = tf.contrib.slim def create_input_queue(batch_size_per_clone, create_tensor_dict_fn, batch_queue_capacity, num_batch_queue_threads, prefetch_queue_capacity, data_augmentation_options): """Sets up reader, prefetcher and returns input queue. Args: batch_size_per_clone: batch size to use per clone. create_tensor_dict_fn: function to create tensor dictionary. batch_queue_capacity: maximum number of elements to store within a queue. num_batch_queue_threads: number of threads to use for batching. prefetch_queue_capacity: maximum capacity of the queue used to prefetch assembled batches. data_augmentation_options: a list of tuples, where each tuple contains a data augmentation function and a dictionary containing arguments and their values (see preprocessor.py). Returns: input queue: a batcher.BatchQueue object holding enqueued tensor_dicts (which hold images, boxes and targets). To get a batch of tensor_dicts, call input_queue.Dequeue(). """ tensor_dict = create_tensor_dict_fn() tensor_dict[fields.InputDataFields.image] = tf.expand_dims( tensor_dict[fields.InputDataFields.image], 0) images = tensor_dict[fields.InputDataFields.image] float_images = tf.to_float(images) tensor_dict[fields.InputDataFields.image] = float_images include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks in tensor_dict) include_keypoints = (fields.InputDataFields.groundtruth_keypoints in tensor_dict) include_multiclass_scores = (fields.InputDataFields.multiclass_scores in tensor_dict) if data_augmentation_options: tensor_dict = preprocessor.preprocess( tensor_dict, data_augmentation_options, func_arg_map=preprocessor.get_default_func_arg_map( include_label_weights=True, include_multiclass_scores=include_multiclass_scores, include_instance_masks=include_instance_masks, include_keypoints=include_keypoints)) input_queue = batcher.BatchQueue( tensor_dict, batch_size=batch_size_per_clone, batch_queue_capacity=batch_queue_capacity, num_batch_queue_threads=num_batch_queue_threads, prefetch_queue_capacity=prefetch_queue_capacity) return input_queue def get_inputs(input_queue, num_classes, merge_multiple_label_boxes=False, use_multiclass_scores=False): """Dequeues batch and constructs inputs to object detection model. Args: input_queue: BatchQueue object holding enqueued tensor_dicts. num_classes: Number of classes. merge_multiple_label_boxes: Whether to merge boxes with multiple labels or not. Defaults to false. Merged boxes are represented with a single box and a k-hot encoding of the multiple labels associated with the boxes. use_multiclass_scores: Whether to use multiclass scores instead of groundtruth_classes. Returns: images: a list of 3-D float tensor of images. image_keys: a list of string keys for the images. locations_list: a list of tensors of shape [num_boxes, 4] containing the corners of the groundtruth boxes. classes_list: a list of padded one-hot (or K-hot) float32 tensors containing target classes. masks_list: a list of 3-D float tensors of shape [num_boxes, image_height, image_width] containing instance masks for objects if present in the input_queue. Else returns None. keypoints_list: a list of 3-D float tensors of shape [num_boxes, num_keypoints, 2] containing keypoints for objects if present in the input queue. Else returns None. weights_lists: a list of 1-D float32 tensors of shape [num_boxes] containing groundtruth weight for each box. """ read_data_list = input_queue.dequeue() label_id_offset = 1 def extract_images_and_targets(read_data): """Extract images and targets from the input dict.""" image = read_data[fields.InputDataFields.image] key = '' if fields.InputDataFields.source_id in read_data: key = read_data[fields.InputDataFields.source_id] location_gt = read_data[fields.InputDataFields.groundtruth_boxes] classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes], tf.int32) classes_gt -= label_id_offset if merge_multiple_label_boxes and use_multiclass_scores: raise ValueError( 'Using both merge_multiple_label_boxes and use_multiclass_scores is' 'not supported' ) if merge_multiple_label_boxes: location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels( location_gt, classes_gt, num_classes) classes_gt = tf.cast(classes_gt, tf.float32) elif use_multiclass_scores: classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores], tf.float32) else: classes_gt = util_ops.padded_one_hot_encoding( indices=classes_gt, depth=num_classes, left_pad=0) masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks) keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints) if (merge_multiple_label_boxes and ( masks_gt is not None or keypoints_gt is not None)): raise NotImplementedError('Multi-label support is only for boxes.') weights_gt = read_data.get( fields.InputDataFields.groundtruth_weights) return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt, weights_gt) return zip(*map(extract_images_and_targets, read_data_list)) def _create_losses(input_queue, create_model_fn, train_config): """Creates loss function for a DetectionModel. Args: input_queue: BatchQueue object holding enqueued tensor_dicts. create_model_fn: A function to create the DetectionModel. train_config: a train_pb2.TrainConfig protobuf. """ detection_model = create_model_fn() (images, _, groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list, groundtruth_keypoints_list, groundtruth_weights_list) = get_inputs( input_queue, detection_model.num_classes, train_config.merge_multiple_label_boxes, train_config.use_multiclass_scores) preprocessed_images = [] true_image_shapes = [] for image in images: resized_image, true_image_shape = detection_model.preprocess(image) preprocessed_images.append(resized_image) true_image_shapes.append(true_image_shape) images = tf.concat(preprocessed_images, 0) true_image_shapes = tf.concat(true_image_shapes, 0) if any(mask is None for mask in groundtruth_masks_list): groundtruth_masks_list = None if any(keypoints is None for keypoints in groundtruth_keypoints_list): groundtruth_keypoints_list = None detection_model.provide_groundtruth( groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list, groundtruth_keypoints_list, groundtruth_weights_list=groundtruth_weights_list) prediction_dict = detection_model.predict(images, true_image_shapes) losses_dict = detection_model.loss(prediction_dict, true_image_shapes) for loss_tensor in losses_dict.values(): tf.losses.add_loss(loss_tensor) def train(create_tensor_dict_fn, create_model_fn, train_config, master, task, num_clones, worker_replicas, clone_on_cpu, ps_tasks, worker_job_name, is_chief, train_dir, graph_hook_fn=None): """Training function for detection models. Args: create_tensor_dict_fn: a function to create a tensor input dictionary. create_model_fn: a function that creates a DetectionModel and generates losses. train_config: a train_pb2.TrainConfig protobuf. master: BNS name of the TensorFlow master to use. task: The task id of this training instance. num_clones: The number of clones to run per machine. worker_replicas: The number of work replicas to train with. clone_on_cpu: True if clones should be forced to run on CPU. ps_tasks: Number of parameter server tasks. worker_job_name: Name of the worker job. is_chief: Whether this replica is the chief replica. train_dir: Directory to write checkpoints and training summaries to. graph_hook_fn: Optional function that is called after the inference graph is built (before optimization). This is helpful to perform additional changes to the training graph such as adding FakeQuant ops. The function should modify the default graph. Raises: ValueError: If both num_clones > 1 and train_config.sync_replicas is true. """ detection_model = create_model_fn() data_augmentation_options = [ preprocessor_builder.build(step) for step in train_config.data_augmentation_options] with tf.Graph().as_default(): # Build a configuration specifying multi-GPU and multi-replicas. deploy_config = model_deploy.DeploymentConfig( num_clones=num_clones, clone_on_cpu=clone_on_cpu, replica_id=task, num_replicas=worker_replicas, num_ps_tasks=ps_tasks, worker_job_name=worker_job_name) # Place the global step on the device storing the variables. with tf.device(deploy_config.variables_device()): global_step = slim.create_global_step() if num_clones != 1 and train_config.sync_replicas: raise ValueError('In Synchronous SGD mode num_clones must ', 'be 1. Found num_clones: {}'.format(num_clones)) batch_size = train_config.batch_size // num_clones if train_config.sync_replicas: batch_size //= train_config.replicas_to_aggregate with tf.device(deploy_config.inputs_device()): input_queue = create_input_queue( batch_size, create_tensor_dict_fn, train_config.batch_queue_capacity, train_config.num_batch_queue_threads, train_config.prefetch_queue_capacity, data_augmentation_options) # Gather initial summaries. # TODO(rathodv): See if summaries can be added/extracted from global tf # collections so that they don't have to be passed around. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) global_summaries = set([]) model_fn = functools.partial(_create_losses, create_model_fn=create_model_fn, train_config=train_config) clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue]) first_clone_scope = clones[0].scope if graph_hook_fn: with tf.device(deploy_config.variables_device()): graph_hook_fn() # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope) with tf.device(deploy_config.optimizer_device()): training_optimizer, optimizer_summary_vars = optimizer_builder.build( train_config.optimizer) for var in optimizer_summary_vars: tf.summary.scalar(var.op.name, var, family='LearningRate') sync_optimizer = None if train_config.sync_replicas: training_optimizer = tf.train.SyncReplicasOptimizer( training_optimizer, replicas_to_aggregate=train_config.replicas_to_aggregate, total_num_replicas=worker_replicas) sync_optimizer = training_optimizer with tf.device(deploy_config.optimizer_device()): regularization_losses = (None if train_config.add_regularization_loss else []) total_loss, grads_and_vars = model_deploy.optimize_clones( clones, training_optimizer, regularization_losses=regularization_losses) total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.') # Optionally multiply bias gradients by train_config.bias_grad_multiplier. if train_config.bias_grad_multiplier: biases_regex_list = ['.*/biases'] grads_and_vars = variables_helper.multiply_gradients_matching_regex( grads_and_vars, biases_regex_list, multiplier=train_config.bias_grad_multiplier) # Optionally freeze some layers by setting their gradients to be zero. if train_config.freeze_variables: grads_and_vars = variables_helper.freeze_gradients_matching_regex( grads_and_vars, train_config.freeze_variables) # Optionally clip gradients if train_config.gradient_clipping_by_norm > 0: with tf.name_scope('clip_grads'): grads_and_vars = slim.learning.clip_gradient_norms( grads_and_vars, train_config.gradient_clipping_by_norm) # Create gradient updates. grad_updates = training_optimizer.apply_gradients(grads_and_vars, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops, name='update_barrier') with tf.control_dependencies([update_op]): train_tensor = tf.identity(total_loss, name='train_op') # Add summaries. for model_var in slim.get_model_variables(): global_summaries.add(tf.summary.histogram('ModelVars/' + model_var.op.name, model_var)) for loss_tensor in tf.losses.get_losses(): global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name, loss_tensor)) global_summaries.add( tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss())) # Add the summaries from the first clone. These contain the summaries # created by model_fn and either optimize_clones() or _gather_clone_loss(). summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope)) summaries |= global_summaries # Merge all summaries together. summary_op = tf.summary.merge(list(summaries), name='summary_op') # Soft placement allows placing on CPU ops without GPU implementation. session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) # Save checkpoints regularly. keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours saver = tf.train.Saver( keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) # Create ops required to initialize the model from a given checkpoint. init_fn = None if train_config.fine_tune_checkpoint: if not train_config.fine_tune_checkpoint_type: # train_config.from_detection_checkpoint field is deprecated. For # backward compatibility, fine_tune_checkpoint_type is set based on # from_detection_checkpoint. if train_config.from_detection_checkpoint: train_config.fine_tune_checkpoint_type = 'detection' else: train_config.fine_tune_checkpoint_type = 'classification' var_map = detection_model.restore_map( fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type, load_all_detection_checkpoint_vars=( train_config.load_all_detection_checkpoint_vars)) available_var_map = (variables_helper. get_variables_available_in_checkpoint( var_map, train_config.fine_tune_checkpoint, include_global_step=False)) init_saver = tf.train.Saver(available_var_map) def initializer_fn(sess): init_saver.restore(sess, train_config.fine_tune_checkpoint) init_fn = initializer_fn slim.learning.train( train_tensor, logdir=train_dir, master=master, is_chief=is_chief, session_config=session_config, startup_delay_steps=train_config.startup_delay_steps, init_fn=init_fn, summary_op=summary_op, number_of_steps=( train_config.num_steps if train_config.num_steps else None), save_summaries_secs=120, sync_optimizer=sync_optimizer, saver=saver)
the-stack_0_20905
#!/usr/bin/env python2.7 # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Run a pinned gsutil.""" import argparse import base64 import contextlib import hashlib import json import os import shutil import subprocess import sys import tempfile import time import urllib2 import zipfile GSUTIL_URL = 'https://storage.googleapis.com/pub/' API_URL = 'https://www.googleapis.com/storage/v1/b/pub/o/' THIS_DIR = os.path.dirname(os.path.abspath(__file__)) DEFAULT_BIN_DIR = os.path.join(THIS_DIR, 'external_bin', 'gsutil') DEFAULT_FALLBACK_GSUTIL = os.path.join( THIS_DIR, 'third_party', 'gsutil', 'gsutil') IS_WINDOWS = os.name == 'nt' class InvalidGsutilError(Exception): pass def download_gsutil(version, target_dir): """Downloads gsutil into the target_dir.""" filename = 'gsutil_%s.zip' % version target_filename = os.path.join(target_dir, filename) # Check if the target exists already. if os.path.exists(target_filename): md5_calc = hashlib.md5() with open(target_filename, 'rb') as f: while True: buf = f.read(4096) if not buf: break md5_calc.update(buf) local_md5 = md5_calc.hexdigest() metadata_url = '%s%s' % (API_URL, filename) metadata = json.load(urllib2.urlopen(metadata_url)) remote_md5 = base64.b64decode(metadata['md5Hash']) if local_md5 == remote_md5: return target_filename os.remove(target_filename) # Do the download. url = '%s%s' % (GSUTIL_URL, filename) u = urllib2.urlopen(url) with open(target_filename, 'wb') as f: while True: buf = u.read(4096) if not buf: break f.write(buf) return target_filename @contextlib.contextmanager def temporary_directory(base): tmpdir = tempfile.mkdtemp(prefix='gsutil_py', dir=base) try: yield tmpdir finally: if os.path.isdir(tmpdir): shutil.rmtree(tmpdir) def ensure_gsutil(version, target, clean): bin_dir = os.path.join(target, 'gsutil_%s' % version) gsutil_bin = os.path.join(bin_dir, 'gsutil', 'gsutil') gsutil_flag = os.path.join(bin_dir, 'gsutil', 'install.flag') # We assume that if gsutil_flag exists, then we have a good version # of the gsutil package. if not clean and os.path.isfile(gsutil_flag): # Everything is awesome! we're all done here. return gsutil_bin if not os.path.exists(target): os.makedirs(target) with temporary_directory(target) as instance_dir: # Clean up if we're redownloading a corrupted gsutil. cleanup_path = os.path.join(instance_dir, 'clean') try: os.rename(bin_dir, cleanup_path) except (OSError, IOError): cleanup_path = None if cleanup_path: shutil.rmtree(cleanup_path) download_dir = os.path.join(instance_dir, 'download') target_zip_filename = download_gsutil(version, instance_dir) with zipfile.ZipFile(target_zip_filename, 'r') as target_zip: target_zip.extractall(download_dir) try: os.rename(download_dir, bin_dir) except (OSError, IOError): # Something else did this in parallel. pass # Final check that the gsutil bin exists. This should never fail. if not os.path.isfile(gsutil_bin): raise InvalidGsutilError() # Drop a flag file. with open(gsutil_flag, 'w') as f: f.write('This flag file is dropped by gsutil.py') return gsutil_bin def run_gsutil(force_version, fallback, target, args, clean=False): if force_version: gsutil_bin = ensure_gsutil(force_version, target, clean) else: gsutil_bin = fallback disable_update = ['-o', 'GSUtil:software_update_check_period=0'] if sys.platform == 'cygwin': # This script requires Windows Python, so invoke with depot_tools' # Python. def winpath(path): return subprocess.check_output(['cygpath', '-w', path]).strip() cmd = ['python.bat', winpath(__file__)] cmd.extend(args) sys.exit(subprocess.call(cmd)) assert sys.platform != 'cygwin' # Run "gsutil" through "vpython". We need to do this because on GCE instances, # expectations are made about Python having access to "google-compute-engine" # and "boto" packages that are not met with non-system Python (e.g., bundles). cmd = [ 'vpython', '-vpython-spec', os.path.join(THIS_DIR, 'gsutil.vpython'), '--', gsutil_bin ] + disable_update + args return subprocess.call(cmd, shell=IS_WINDOWS) def parse_args(): bin_dir = os.environ.get('DEPOT_TOOLS_GSUTIL_BIN_DIR', DEFAULT_BIN_DIR) parser = argparse.ArgumentParser() parser.add_argument('--force-version', default='4.28') parser.add_argument('--clean', action='store_true', help='Clear any existing gsutil package, forcing a new download.') parser.add_argument('--fallback', default=DEFAULT_FALLBACK_GSUTIL) parser.add_argument('--target', default=bin_dir, help='The target directory to download/store a gsutil version in. ' '(default is %(default)s).') parser.add_argument('args', nargs=argparse.REMAINDER) args, extras = parser.parse_known_args() if args.args and args.args[0] == '--': args.args.pop(0) if extras: args.args = extras + args.args return args def main(): args = parse_args() return run_gsutil(args.force_version, args.fallback, args.target, args.args, clean=args.clean) if __name__ == '__main__': sys.exit(main())
the-stack_0_20906
""" Petrophysically guided inversion (PGI): Linear example ====================================================== We do a comparison between the classic Tikhonov inversion and our formulation of a petrophysically constrained inversion. We explore it through the UBC linear example. """ ##################### # Tikhonov Inversion# ##################### import discretize as Mesh from SimPEG import ( simulation, maps, data_misfit, directives, optimization, regularization, inverse_problem, inversion, utils, ) import numpy as np import matplotlib.pyplot as plt # Random seed for reproductibility np.random.seed(1) # Mesh N = 100 mesh = Mesh.TensorMesh([N]) # Survey design parameters nk = 20 jk = np.linspace(1.0, 60.0, nk) p = -0.25 q = 0.25 # Physics def g(k): return np.exp(p * jk[k] * mesh.cell_centers_x) * np.cos( np.pi * q * jk[k] * mesh.cell_centers_x ) G = np.empty((nk, mesh.nC)) for i in range(nk): G[i, :] = g(i) # True model mtrue = np.zeros(mesh.nC) mtrue[mesh.cell_centers_x > 0.2] = 1.0 mtrue[mesh.cell_centers_x > 0.35] = 0.0 t = (mesh.cell_centers_x - 0.65) / 0.25 indx = np.abs(t) < 1 mtrue[indx] = -(((1 - t**2.0) ** 2.0)[indx]) mtrue = np.zeros(mesh.nC) mtrue[mesh.cell_centers_x > 0.3] = 1.0 mtrue[mesh.cell_centers_x > 0.45] = -0.5 mtrue[mesh.cell_centers_x > 0.6] = 0 # SimPEG problem and survey prob = simulation.LinearSimulation(mesh, G=G, model_map=maps.IdentityMap()) std = 0.01 survey = prob.make_synthetic_data(mtrue, relative_error=std, add_noise=True) # Setup the inverse problem reg = regularization.Tikhonov(mesh, alpha_s=1.0, alpha_x=1.0) dmis = data_misfit.L2DataMisfit(data=survey, simulation=prob) opt = optimization.ProjectedGNCG(maxIter=10, maxIterCG=50, tolCG=1e-4) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) directiveslist = [ directives.BetaEstimate_ByEig(beta0_ratio=1e-5), directives.BetaSchedule(coolingFactor=10.0, coolingRate=2), directives.TargetMisfit(), ] inv = inversion.BaseInversion(invProb, directiveList=directiveslist) m0 = np.zeros_like(mtrue) mnormal = inv.run(m0) ######################################### # Petrophysically constrained inversion # ######################################### # fit a Gaussian Mixture Model with n components # on the true model to simulate the laboratory # petrophysical measurements n = 3 clf = utils.WeightedGaussianMixture( mesh=mesh, n_components=n, covariance_type="full", max_iter=100, n_init=3, reg_covar=5e-4, ) clf.fit(mtrue.reshape(-1, 1)) # Petrophyically constrained regularization reg = utils.make_PGI_regularization( gmmref=clf, mesh=mesh, alpha_s=1.0, alpha_x=1.0, ) # Optimization opt = optimization.ProjectedGNCG(maxIter=10, maxIterCG=50, tolCG=1e-4) opt.remember("xc") # Setup new inverse problem invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) # directives Alphas = directives.AlphasSmoothEstimate_ByEig(alpha0_ratio=10.0, verbose=True) beta = directives.BetaEstimate_ByEig(beta0_ratio=1e-6) betaIt = directives.PGI_BetaAlphaSchedule( verbose=True, coolingFactor=2.0, warmingFactor=1.0, tolerance=0.1, update_rate=1, progress=0.2, ) targets = directives.MultiTargetMisfits(verbose=True) petrodir = directives.PGI_UpdateParameters() addmref = directives.PGI_AddMrefInSmooth(verbose=True) # Setup Inversion inv = inversion.BaseInversion( invProb, directiveList=[Alphas, beta, petrodir, targets, addmref, betaIt] ) # Initial model same as for Tikhonov mcluster = inv.run(m0) # Final Plot fig, axes = plt.subplots(1, 3, figsize=(12 * 1.2, 4 * 1.2)) for i in range(prob.G.shape[0]): axes[0].plot(prob.G[i, :]) axes[0].set_title("Columns of matrix G") axes[1].hist(mtrue, bins=20, linewidth=3.0, density=True, color="k") axes[1].set_xlabel("Model value") axes[1].set_xlabel("Occurence") axes[1].hist(mnormal, bins=20, density=True, color="b") axes[1].hist(mcluster, bins=20, density=True, color="r") axes[1].legend(["Mtrue Hist.", "L2 Model Hist.", "PGI Model Hist."]) axes[2].plot(mesh.cell_centers_x, mtrue, color="black", linewidth=3) axes[2].plot(mesh.cell_centers_x, mnormal, color="blue") axes[2].plot(mesh.cell_centers_x, mcluster, "r-") axes[2].plot(mesh.cell_centers_x, invProb.reg.objfcts[0].mref, "r--") axes[2].legend(("True Model", "L2 Model", "PGI Model", "Learned Mref")) axes[2].set_ylim([-2, 2]) plt.show()
the-stack_0_20910
from typing import Optional from enum import Enum, unique @unique class BinaryTreeChildSelect(Enum): left = 0, right = 1 class BinaryTreeNode(object): """ 树结点 继承于 树 """ def __init__(self, left_node=None, right_node=None, value=None): super().__init__() self.left_node = left_node self.right_node = right_node self.value = value def __repr__(self): return f"<BinaryTreeNode value='{self.value}'>" @property def depth(self): if self.left_node is None: left_child_depth = 0 else: left_child_depth = self.left_node.depth if self.right_node is None: right_child_depth = 0 else: right_child_depth = self.right_node.depth return max(left_child_depth, right_child_depth) + 1 def insert_child(self, select: BinaryTreeChildSelect, node): # 检查结点的右子树为空 if node.right_node is not None: raise ValueError("插入结点的右结点不为空!") if select == BinaryTreeChildSelect.left: src_node = self.left_node elif select == BinaryTreeChildSelect.right: src_node = self.right_node else: raise TypeError # 插入的结点的右孩子被设置为原插入位置的结点 node.right_node = src_node self.left_node = node def pre_order_traverse(self, visit_callback, *extra_info): """ 使用指定的遍历回调函数前序遍历当前结点 :param visit_callback: :param extra_info: :return: """ result = visit_callback(self, *extra_info) if result: return result if self.left_node is not None: result = self.left_node.pre_order_traverse(visit_callback, *extra_info) if result: return result if self.right_node is not None: result = self.right_node.pre_order_traverse(visit_callback, *extra_info) if result: return result def in_order_traverse(self, visit_callback, *extra_info): """ 使用指定的遍历回调函数中序遍历当前结点 :param visit_callback: :param extra_info: :return: """ if self.left_node is not None: result = self.left_node.in_order_traverse(visit_callback, *extra_info) if result: return result result = visit_callback(self, *extra_info) if result: return result if self.right_node is not None: result = self.right_node.in_order_traverse(visit_callback, *extra_info) if result: return result def post_order_traverse(self, visit_callback, *extra_info): """ 使用指定的遍历回调函数后序遍历当前结点 :param visit_callback: :param extra_info: :return: """ if self.left_node is not None: result = self.left_node.post_order_traverse(visit_callback, *extra_info) if result: return result if self.right_node is not None: result = self.right_node.post_order_traverse(visit_callback, *extra_info) if result: return result result = visit_callback(self, *extra_info) if result: return result @property def end_node_count(self): if self.left_node is None: left_child_end_node = 0 else: left_child_end_node = self.left_node.end_node_count if self.right_node is None: right_child_end_node = 0 else: right_child_end_node = self.right_node.end_node_count # 如果左右结点没有任何一个具有终端结点,则返回1(即当前结点为终端结点),否则返回左右结点终端结点数之和 if not any([left_child_end_node, right_child_end_node]): return 1 else: return left_child_end_node + right_child_end_node class BinaryTree: """ 二叉树 """ # 空结点占位符 VOID_NODE_PLACEHOLDER = "$" def __init__(self, root=None): """实例化新的树实例""" self.root = root @staticmethod def create(definition): """根据前序字符串二叉树定义创建二叉树""" char_list = list(definition) def recursion(): if not char_list: return None ch = char_list.pop(0) if ch == BinaryTree.VOID_NODE_PLACEHOLDER: return None else: new_node = BinaryTreeNode() new_node.left_node = recursion() new_node.right_node = recursion() new_node.value = ch return new_node return BinaryTree(recursion()) @property def is_empty(self): """判断当前树是否为空树""" return self.root is None @property def depth(self): """获取当前树的深度""" if self.root is None: return 0 return self.root.depth @property def end_node_count(self): """ 获取当前树的终端结点总数 :return: """ if self.root is None: return 0 return self.root.end_node_count def get_node_parent(self, node_select_callback): """ 使用先序遍历获取选择回调函数指定结点的父结点 :return: """ if self.root is None: return None def traverse_callback(node): if (node.left_node and node_select_callback(node.left_node)) or \ (node.right_node and node_select_callback(node.right_node)): return node return self.root.pre_order_traverse(traverse_callback) def get_node_sibling(self, node_select_callback): """ 使用先序遍历获取选择回调函数指定结点的兄弟结点 :return: """ if self.root is None: return None def traverse_callback(node): # 当前结点左结点存在且符合选择回调函数,返回当前结点的右结点 if node.left_node and node_select_callback(node.left_node): return node.right_node # 当前结点右结点存在且符合选择回调函数,返回当前结点的左结点 if node.right_node and node_select_callback(node.right_node): return node.left_node return self.root.pre_order_traverse(traverse_callback) def clear(self): """清空树""" self.root = None def is_exist(self, node_select_callback) -> bool: """ 判断当前树中是否存在符合指定结点选择回调函数的结点 :param node: 欲查询的指定结点 :return: 存在返回 True,否则返回 False """ if self.root is None: return False def exist_callback(node): if node_select_callback(node): return True return bool(self.root.pre_order_traverse(exist_callback)) def pre_order_traverse(self, visit_callback, *extra_info): """ 使用指定访问回调函数对当前树的结点进行先序遍历访问 :param visit_callback: 访问器 :param extra_info: 给访问函数的额外参数 :return: None """ if self.root is not None: self.root.pre_order_traverse(visit_callback, *extra_info) def in_order_traverse(self, visit_callback, *extra_info): """ 使用指定访问回调函数对当前树的结点进行中序遍历访问 :param visit_callback: :param extra_info: 给访问函数的额外参数 :return: """ if self.root is not None: self.root.in_order_traverse(visit_callback, *extra_info) def post_order_traverse(self, visit_callback, *extra_info): """ 使用指定访问回调函数对当前树的结点进行后序遍历访问 :param visit_callback: :param extra_info: 给访问函数的额外参数 :return: """ if self.root is not None: self.root.post_order_traverse(visit_callback, *extra_info) class HuffmanTreeNode(BinaryTreeNode): """ 哈夫曼树结点 与一般的二叉树结点不同的是: 1. 这个结点可以进行小于比较,值只能为整数 2. 可以进行加法操作,得到一个新的哈夫曼树结点,其左孩子为原加法中值较小的一方,右孩子为值较大的一方,新结点的值为原两个结点值之和 """ def __init__(self, name=None, left_node=None, right_node=None, value=None): super().__init__(left_node, right_node) if not isinstance(value, int): raise TypeError self.name = name self.value = value self.child_status = -1 def __repr__(self): return f"<HuffmanTreeNode name='{self.name}' value='{self.value}'>" def __lt__(self, other): return self.value < other.value def __add__(self, other): if isinstance(other, HuffmanTreeNode): min_node = min(self, other) sum_val = self.value + other.value if min_node is self: self.child_status = 0 other.child_status = 1 return HuffmanTreeNode(left_node=self, right_node=other, value=sum_val) else: self.child_status = 1 other.child_status = 0 return HuffmanTreeNode(left_node=other, right_node=self, value=sum_val) raise NotImplementedError def pre_order_traverse(self, visit_callback, *extra_info): """ 使用指定的遍历回调函数前序遍历当前结点 :param visit_callback: :param extra_info: :return: """ # 拷贝当前递归层次的编码信息,这样,即使下一层某个分支对编码信息做了修改,也不会将影响传入到另一分支 extra_info = extra_info[0].copy() super().pre_order_traverse(visit_callback, extra_info) class HuffmanTree(BinaryTree): """ 哈夫曼树 """ @staticmethod def create(definition_dict): """根据前序字符串二叉树定义创建哈夫曼树""" node_list = [HuffmanTreeNode(name=name, value=val) for name, val in definition_dict.items() if name != HuffmanTree.VOID_NODE_PLACEHOLDER] # 忽略空树占位符 while len(node_list) >= 2: min_node_1 = node_list.pop() if len(node_list) == 1 else node_list.pop(node_list.index(min(*node_list))) min_node_2 = node_list.pop() if len(node_list) == 1 else node_list.pop(node_list.index(min(*node_list))) node_list.append(min_node_1 + min_node_2) # 最终正常情况下,应该还剩下一个结点 if node_list: return HuffmanTree(node_list.pop()) # 还有一种情况,就是原来列表中就没有任何结点,此时返回空树 return HuffmanTree() def dump_code_dict(self): """获取当前哈夫曼树的哈夫曼编码""" code_dict = {} def visit_callback(node, *extra_info): if node.child_status == -1: # 头结点 return extra_info[0].append(node.child_status) if node.name is not None: # 如果名称不为空,则表明该结点是叶子节点 code_dict[node.name] = extra_info[0].copy() self.pre_order_traverse(visit_callback, []) return code_dict
the-stack_0_20911
import os import Database import encode from flask import Flask, flash, request, redirect, url_for, render_template from werkzeug.utils import secure_filename UPLOAD_FOLDER = 'faces' ALLOWED_EXTENSIONS = set(['jpg', 'png']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER database = "faceStudent.db" def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': # Collect Data name = request.form.get('firstName') surname = request.form.get('surname') student_number = request.form.get('number') # Check if the post request has a file part if 'file' not in request.files: flash('No file Part') return render_template("index.html") file = request.files['file'] # if user does not select a file, browser also # submit an empty part without a filename if file.filename == '': flash('No file Selected') return render_template("index.html", message="No file Selected") if file and allowed_file(file.filename): # create a database connection conn = Database.create_connection(database) the_file_name = student_number + ".jpg" with conn: student_data = (student_number, name, surname, the_file_name) Database.create_student(conn, student_data) Database.select_all_students(conn) conn.close() filename = secure_filename(the_file_name) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) # Train Face Data encode.get_encoded_faces() return redirect(url_for('upload_file', filename=filename)) return render_template("index.html")
the-stack_0_20914
""" Test the multi-objective optimization algorithm. """ import matplotlib matplotlib.use('PS') import seaborn as sns sns.set_style("white") sns.set_context("paper") import sys import os import GPy sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import pydes import numpy as np from pyDOE import * from scipy.optimize import minimize from scipy.optimize import check_grad from scipy.optimize import approx_fprime from example_objective_functions import ObjFunc2 import shutil if __name__ == '__main__': assert len(sys.argv)==3 sigma = sys.argv[1] n = int(sys.argv[2]) out_dir = 'ex2_results_n={0:d}_sigma={1:s}'.format(n,sys.argv[1]) if os.path.isdir(out_dir): shutil.rmtree(out_dir) os.makedirs(out_dir) dim = 6 max_it = 2 obj_funcs = ObjFunc2(sigma=sigma, n_samp=1) obj_funcs_true = ObjFunc2(sigma=sigma, n_samp=100) X_init = design.latin_center(n, dim, seed=123455) Y_init = np.array([obj_funcs(x) for x in X_init]) X_d_true = design.latin_center(10000, 6, seed=12345) Y_true = np.array([obj_funcs_true(x) for x in X_d_true]) ehvi_opt_bounds = ((0, 1), ) * dim trans_function = lambda y: y p = pydes.ParetoFront(X_init, Y_init, obj_funcs, obj_funcs_true, Y_true=Y_true, ehvi_opt_bounds=ehvi_opt_bounds, X_design=1000, max_it=max_it, gp_fixed_noise=None, verbosity=1, kernel_type=GPy.kern.Matern32, do_posterior_samples=True, how='max', trans_function=trans_function, lim=None, pareto_how='max', figname=os.path.join(out_dir,'ex2')) p.optimize(plot=True)
the-stack_0_20917
# -*- coding: utf-8 -*- ''' Module for handling openstack keystone calls. :optdepends: - keystoneclient Python adapter :configuration: This module is not usable until the following are specified either in a pillar or in the minion's config file: .. code-block:: yaml keystone.user: admin keystone.password: verybadpass keystone.tenant: admin keystone.tenant_id: f80919baedab48ec8931f200c65a50df keystone.auth_url: 'http://127.0.0.1:5000/v2.0/' OR (for token based authentication) .. code-block:: yaml keystone.token: 'ADMIN' keystone.endpoint: 'http://127.0.0.1:35357/v2.0' If configuration for multiple openstack accounts is required, they can be set up as different configuration profiles. For example: .. code-block:: yaml openstack1: keystone.user: admin keystone.password: verybadpass keystone.tenant: admin keystone.tenant_id: f80919baedab48ec8931f200c65a50df keystone.auth_url: 'http://127.0.0.1:5000/v2.0/' openstack2: keystone.user: admin keystone.password: verybadpass keystone.tenant: admin keystone.tenant_id: f80919baedab48ec8931f200c65a50df keystone.auth_url: 'http://127.0.0.2:5000/v2.0/' With this configuration in place, any of the keystone functions can make use of a configuration profile by declaring it explicitly. For example: .. code-block:: bash salt '*' keystone.tenant_list profile=openstack1 ''' # Import third party libs HAS_KEYSTONE = False try: from keystoneclient.v2_0 import client import keystoneclient.exceptions HAS_KEYSTONE = True except ImportError: pass def __virtual__(): ''' Only load this module if keystone is installed on this minion. ''' if HAS_KEYSTONE: return 'keystone' return False __opts__ = {} def auth(profile=None, **connection_args): ''' Set up keystone credentials Only intended to be used within Keystone-enabled modules ''' if profile: prefix = profile + ":keystone." else: prefix = "keystone." # look in connection_args first, then default to config file def get(key, default=None): return connection_args.get('connection_' + key, __salt__['config.get'](prefix + key, default)) user = get('user', 'admin') password = get('password', 'ADMIN') tenant = get('tenant', 'admin') tenant_id = get('tenant_id') auth_url = get('auth_url', 'http://127.0.0.1:35357/v2.0/') insecure = get('insecure', False) token = get('token') endpoint = get('endpoint', 'http://127.0.0.1:35357/v2.0') if token: kwargs = {'token': token, 'endpoint': endpoint} else: kwargs = {'username': user, 'password': password, 'tenant_name': tenant, 'tenant_id': tenant_id, 'auth_url': auth_url} # 'insecure' keyword not supported by all v2.0 keystone clients # this ensures it's only passed in when defined if insecure: kwargs['insecure'] = True return client.Client(**kwargs) def ec2_credentials_create(user_id=None, name=None, tenant_id=None, tenant=None, profile=None, **connection_args): ''' Create EC2-compatible credentials for user per tenant CLI Examples: .. code-block:: bash salt '*' keystone.ec2_credentials_create name=admin tenant=admin salt '*' keystone.ec2_credentials_create \ user_id=c965f79c4f864eaaa9c3b41904e67082 \ tenant_id=722787eb540849158668370dc627ec5f ''' kstone = auth(profile, **connection_args) if name: user_id = user_get(name=name, profile=profile, **connection_args)[name]['id'] if not user_id: return {'Error': 'Could not resolve User ID'} if tenant: tenant_id = tenant_get(name=tenant, profile=profile, **connection_args)[tenant]['id'] if not tenant_id: return {'Error': 'Could not resolve Tenant ID'} newec2 = kstone.ec2.create(user_id, tenant_id) return {'access': newec2.access, 'secret': newec2.secret, 'tenant_id': newec2.tenant_id, 'user_id': newec2.user_id} def ec2_credentials_delete(user_id=None, name=None, access_key=None, profile=None, **connection_args): ''' Delete EC2-compatible credentials CLI Examples: .. code-block:: bash salt '*' keystone.ec2_credentials_delete \ 860f8c2c38ca4fab989f9bc56a061a64 access_key=5f66d2f24f604b8bb9cd28886106f442 salt '*' keystone.ec2_credentials_delete name=admin \ access_key=5f66d2f24f604b8bb9cd28886106f442 ''' kstone = auth(profile, **connection_args) if name: user_id = user_get(name=name, profile=None, **connection_args)[name]['id'] if not user_id: return {'Error': 'Could not resolve User ID'} kstone.ec2.delete(user_id, access_key) return 'ec2 key "{0}" deleted under user id "{1}"'.format(access_key, user_id) def ec2_credentials_get(user_id=None, name=None, access=None, profile=None, **connection_args): ''' Return ec2_credentials for a user (keystone ec2-credentials-get) CLI Examples: .. code-block:: bash salt '*' keystone.ec2_credentials_get c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f salt '*' keystone.ec2_credentials_get user_id=c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f salt '*' keystone.ec2_credentials_get name=nova access=722787eb540849158668370dc627ec5f ''' kstone = auth(profile, **connection_args) ret = {} if name: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} if not access: return {'Error': 'Access key is required'} ec2_credentials = kstone.ec2.get(user_id=user_id, access=access, profile=profile, **connection_args) ret[ec2_credentials.user_id] = {'user_id': ec2_credentials.user_id, 'tenant': ec2_credentials.tenant_id, 'access': ec2_credentials.access, 'secret': ec2_credentials.secret} return ret def ec2_credentials_list(user_id=None, name=None, profile=None, **connection_args): ''' Return a list of ec2_credentials for a specific user (keystone ec2-credentials-list) CLI Examples: .. code-block:: bash salt '*' keystone.ec2_credentials_list 298ce377245c4ec9b70e1c639c89e654 salt '*' keystone.ec2_credentials_list user_id=298ce377245c4ec9b70e1c639c89e654 salt '*' keystone.ec2_credentials_list name=jack ''' kstone = auth(profile, **connection_args) ret = {} if name: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} for ec2_credential in kstone.ec2.list(user_id): ret[ec2_credential.user_id] = {'user_id': ec2_credential.user_id, 'tenant_id': ec2_credential.tenant_id, 'access': ec2_credential.access, 'secret': ec2_credential.secret} return ret def endpoint_get(service, profile=None, **connection_args): ''' Return a specific endpoint (keystone endpoint-get) CLI Example: .. code-block:: bash salt '*' keystone.endpoint_get nova ''' kstone = auth(profile, **connection_args) services = service_list(profile, **connection_args) if service not in services: return {'Error': 'Could not find the specified service'} service_id = services[service]['id'] endpoints = endpoint_list(profile, **connection_args) for endpoint in endpoints: if endpoints[endpoint]['service_id'] == service_id: return endpoints[endpoint] return {'Error': 'Could not find endpoint for the specified service'} def endpoint_list(profile=None, **connection_args): ''' Return a list of available endpoints (keystone endpoints-list) CLI Example: .. code-block:: bash salt '*' keystone.endpoint_list ''' kstone = auth(profile, **connection_args) ret = {} for endpoint in kstone.endpoints.list(): ret[endpoint.id] = {'id': endpoint.id, 'region': endpoint.region, 'adminurl': endpoint.adminurl, 'internalurl': endpoint.internalurl, 'publicurl': endpoint.publicurl, 'service_id': endpoint.service_id} return ret def endpoint_create(service, publicurl=None, internalurl=None, adminurl=None, region=None, profile=None, **connection_args): ''' Create an endpoint for an Openstack service CLI Examples: .. code-block:: bash salt '*' keystone.endpoint_create nova 'http://public/url' 'http://internal/url' 'http://adminurl/url' region ''' kstone = auth(profile, **connection_args) keystone_service = service_get(name=service, **connection_args) if not keystone_service or 'Error' in keystone_service: return {'Error': 'Could not find the specified service'} kstone.endpoints.create(region=region, service_id=keystone_service[service]['id'], publicurl=publicurl, adminurl=adminurl, internalurl=internalurl) return endpoint_get(service, **connection_args) def endpoint_delete(service, profile=None, **connection_args): ''' Delete endpoints of an Openstack service CLI Examples: .. code-block:: bash salt '*' keystone.endpoint_delete nova ''' kstone = auth(profile, **connection_args) endpoint = endpoint_get(service, profile, **connection_args) if not endpoint or 'Error' in endpoint: return {'Error': 'Could not find any endpoints for the service'} kstone.endpoints.delete(endpoint['id']) endpoint = endpoint_get(service, profile, **connection_args) if not endpoint or 'Error' in endpoint: return True def role_create(name, profile=None, **connection_args): ''' Create named role .. code-block:: bash salt '*' keystone.role_create admin ''' kstone = auth(profile, **connection_args) if 'Error' not in role_get(name=name, profile=profile, **connection_args): return {'Error': 'Role "{0}" already exists'.format(name)} role = kstone.roles.create(name) return role_get(name=name, profile=profile, **connection_args) def role_delete(role_id=None, name=None, profile=None, **connection_args): ''' Delete a role (keystone role-delete) CLI Examples: .. code-block:: bash salt '*' keystone.role_delete c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.role_delete role_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.role_delete name=admin ''' kstone = auth(profile, **connection_args) if name: for role in kstone.roles.list(): if role.name == name: role_id = role.id break if not role_id: return {'Error': 'Unable to resolve role id'} role = role_get(role_id, profile=profile, **connection_args) kstone.roles.delete(role) ret = 'Role ID {0} deleted'.format(role_id) if name: ret += ' ({0})'.format(name) return ret def role_get(role_id=None, name=None, profile=None, **connection_args): ''' Return a specific roles (keystone role-get) CLI Examples: .. code-block:: bash salt '*' keystone.role_get c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.role_get role_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.role_get name=nova ''' kstone = auth(profile, **connection_args) ret = {} if name: for role in kstone.roles.list(): if role.name == name: role_id = role.id break if not role_id: return {'Error': 'Unable to resolve role id'} role = kstone.roles.get(role_id) ret[role.name] = {'id': role.id, 'name': role.name} return ret def role_list(profile=None, **connection_args): ''' Return a list of available roles (keystone role-list) CLI Example: .. code-block:: bash salt '*' keystone.role_list ''' kstone = auth(profile, **connection_args) ret = {} for role in kstone.roles.list(): ret[role.name] = {'id': role.id, 'name': role.name} return ret def service_create(name, service_type, description=None, profile=None, **connection_args): ''' Add service to Keystone service catalog CLI Examples: .. code-block:: bash salt '*' keystone.service_create nova compute \ 'OpenStack Compute Service' ''' kstone = auth(profile, **connection_args) service = kstone.services.create(name, service_type, description) return service_get(service.id, profile=profile, **connection_args) def service_delete(service_id=None, name=None, profile=None, **connection_args): ''' Delete a service from Keystone service catalog CLI Examples: .. code-block:: bash salt '*' keystone.service_delete c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.service_delete name=nova ''' kstone = auth(profile, **connection_args) if name: service_id = service_get(name=name, profile=profile, **connection_args)[name]['id'] service = kstone.services.delete(service_id) return 'Keystone service ID "{0}" deleted'.format(service_id) def service_get(service_id=None, name=None, profile=None, **connection_args): ''' Return a specific services (keystone service-get) CLI Examples: .. code-block:: bash salt '*' keystone.service_get c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.service_get service_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.service_get name=nova ''' kstone = auth(profile, **connection_args) ret = {} if name: for service in kstone.services.list(): if service.name == name: service_id = service.id break if not service_id: return {'Error': 'Unable to resolve service id'} service = kstone.services.get(service_id) ret[service.name] = {'id': service.id, 'name': service.name, 'type': service.type, 'description': service.description} return ret def service_list(profile=None, **connection_args): ''' Return a list of available services (keystone services-list) CLI Example: .. code-block:: bash salt '*' keystone.service_list ''' kstone = auth(profile, **connection_args) ret = {} for service in kstone.services.list(): ret[service.name] = {'id': service.id, 'name': service.name, 'description': service.description, 'type': service.type} return ret def tenant_create(name, description=None, enabled=True, profile=None, **connection_args): ''' Create a keystone tenant CLI Examples: .. code-block:: bash salt '*' keystone.tenant_create nova description='nova tenant' salt '*' keystone.tenant_create test enabled=False ''' kstone = auth(profile, **connection_args) new = kstone.tenants.create(name, description, enabled) return tenant_get(new.id, profile=profile, **connection_args) def tenant_delete(tenant_id=None, name=None, profile=None, **connection_args): ''' Delete a tenant (keystone tenant-delete) CLI Examples: .. code-block:: bash salt '*' keystone.tenant_delete c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.tenant_delete tenant_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.tenant_delete name=demo ''' kstone = auth(profile, **connection_args) if name: for tenant in kstone.tenants.list(): if tenant.name == name: tenant_id = tenant.id break if not tenant_id: return {'Error': 'Unable to resolve tenant id'} kstone.tenants.delete(tenant_id) ret = 'Tenant ID {0} deleted'.format(tenant_id) if name: ret += ' ({0})'.format(name) return ret def tenant_get(tenant_id=None, name=None, profile=None, **connection_args): ''' Return a specific tenants (keystone tenant-get) CLI Examples: .. code-block:: bash salt '*' keystone.tenant_get c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.tenant_get tenant_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.tenant_get name=nova ''' kstone = auth(profile, **connection_args) ret = {} if name: for tenant in kstone.tenants.list(): if tenant.name == name: tenant_id = tenant.id break if not tenant_id: return {'Error': 'Unable to resolve tenant id'} tenant = kstone.tenants.get(tenant_id) ret[tenant.name] = {'id': tenant.id, 'name': tenant.name, 'description': tenant.description, 'enabled': tenant.enabled} return ret def tenant_list(profile=None, **connection_args): ''' Return a list of available tenants (keystone tenants-list) CLI Example: .. code-block:: bash salt '*' keystone.tenant_list ''' kstone = auth(profile, **connection_args) ret = {} for tenant in kstone.tenants.list(): ret[tenant.name] = {'id': tenant.id, 'name': tenant.name, 'description': tenant.description, 'enabled': tenant.enabled} return ret def tenant_update(tenant_id=None, name=None, description=None, enabled=None, profile=None, **connection_args): ''' Update a tenant's information (keystone tenant-update) The following fields may be updated: name, email, enabled. Can only update name if targeting by ID CLI Examples: .. code-block:: bash salt '*' keystone.tenant_update name=admin enabled=True salt '*' keystone.tenant_update c965f79c4f864eaaa9c3b41904e67082 name=admin [email protected] ''' kstone = auth(profile, **connection_args) if not tenant_id: for tenant in kstone.tenants.list(): if tenant.name == name: tenant_id = tenant.id break if not tenant_id: return {'Error': 'Unable to resolve tenant id'} tenant = kstone.tenants.get(tenant_id) if not name: name = tenant.name if not description: description = tenant.description if enabled is None: enabled = tenant.enabled kstone.tenants.update(tenant_id, name, description, enabled) def token_get(profile=None, **connection_args): ''' Return the configured tokens (keystone token-get) CLI Example: .. code-block:: bash salt '*' keystone.token_get c965f79c4f864eaaa9c3b41904e67082 ''' kstone = auth(profile, **connection_args) token = kstone.service_catalog.get_token() return {'id': token['id'], 'expires': token['expires'], 'user_id': token['user_id'], 'tenant_id': token['tenant_id']} def user_list(profile=None, **connection_args): ''' Return a list of available users (keystone user-list) CLI Example: .. code-block:: bash salt '*' keystone.user_list ''' kstone = auth(profile, **connection_args) ret = {} for user in kstone.users.list(): ret[user.name] = {'id': user.id, 'name': user.name, 'email': user.email, 'enabled': user.enabled} tenant_id = getattr(user, 'tenantId', None) if tenant_id: ret[user.name]['tenant_id'] = tenant_id return ret def user_get(user_id=None, name=None, profile=None, **connection_args): ''' Return a specific users (keystone user-get) CLI Examples: .. code-block:: bash salt '*' keystone.user_get c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.user_get user_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.user_get name=nova ''' kstone = auth(profile, **connection_args) ret = {} if name: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} user = kstone.users.get(user_id) ret[user.name] = {'id': user.id, 'name': user.name, 'email': user.email, 'enabled': user.enabled} tenant_id = getattr(user, 'tenantId', None) if tenant_id: ret[user.name]['tenant_id'] = tenant_id return ret def user_create(name, password, email, tenant_id=None, enabled=True, profile=None, **connection_args): ''' Create a user (keystone user-create) CLI Examples: .. code-block:: bash salt '*' keystone.user_create name=jack password=zero [email protected] tenant_id=a28a7b5a999a455f84b1f5210264375e enabled=True ''' kstone = auth(profile, **connection_args) item = kstone.users.create(name=name, password=password, email=email, tenant_id=tenant_id, enabled=enabled) return user_get(item.id, profile=profile, **connection_args) def user_delete(user_id=None, name=None, profile=None, **connection_args): ''' Delete a user (keystone user-delete) CLI Examples: .. code-block:: bash salt '*' keystone.user_delete c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.user_delete user_id=c965f79c4f864eaaa9c3b41904e67082 salt '*' keystone.user_delete name=nova ''' kstone = auth(profile, **connection_args) if name: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} kstone.users.delete(user_id) ret = 'User ID {0} deleted'.format(user_id) if name: ret += ' ({0})'.format(name) return ret def user_update(user_id=None, name=None, email=None, enabled=None, tenant=None, profile=None, **connection_args): ''' Update a user's information (keystone user-update) The following fields may be updated: name, email, enabled, tenant. Because the name is one of the fields, a valid user id is required. CLI Examples: .. code-block:: bash salt '*' keystone.user_update user_id=c965f79c4f864eaaa9c3b41904e67082 name=newname salt '*' keystone.user_update c965f79c4f864eaaa9c3b41904e67082 name=newname [email protected] ''' kstone = auth(profile, **connection_args) if not user_id: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} user = kstone.users.get(user_id) # Keep previous settings if not updating them if not name: name = user.name if not email: email = user.email if enabled is None: enabled = user.enabled kstone.users.update(user=user_id, name=name, email=email, enabled=enabled) if tenant: for t in kstone.tenants.list(): if t.name == tenant: tenant_id = t.id break kstone.users.update_tenant(user_id, tenant_id) ret = 'Info updated for user ID {0}'.format(user_id) return ret def user_verify_password(user_id=None, name=None, password=None, profile=None, **connection_args): ''' Verify a user's password CLI Examples: .. code-block:: bash salt '*' keystone.user_verify_password name=test password=foobar salt '*' keystone.user_verify_password user_id=c965f79c4f864eaaa9c3b41904e67082 password=foobar ''' kstone = auth(profile, **connection_args) if 'connection_endpoint' in connection_args: auth_url = connection_args.get('connection_endpoint') else: auth_url = __salt__['config.option']('keystone.endpoint', 'http://127.0.0.1:35357/v2.0') if user_id: for user in kstone.users.list(): if user.id == user_id: name = user.name break if not name: return {'Error': 'Unable to resolve user name'} kwargs = {'username': name, 'password': password, 'auth_url': auth_url} try: userauth = client.Client(**kwargs) except keystoneclient.exceptions.Unauthorized: return False return True def user_password_update(user_id=None, name=None, password=None, profile=None, **connection_args): ''' Update a user's password (keystone user-password-update) CLI Examples: .. code-block:: bash salt '*' keystone.user_password_update c965f79c4f864eaaa9c3b41904e67082 password=12345 salt '*' keystone.user_password_update user_id=c965f79c4f864eaaa9c3b41904e67082 password=12345 salt '*' keystone.user_password_update name=nova password=12345 ''' kstone = auth(profile, **connection_args) if name: for user in kstone.users.list(): if user.name == name: user_id = user.id break if not user_id: return {'Error': 'Unable to resolve user id'} kstone.users.update_password(user=user_id, password=password) ret = 'Password updated for user ID {0}'.format(user_id) if name: ret += ' ({0})'.format(name) return ret def user_role_add(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None, **connection_args): ''' Add role for user in tenant (keystone user-role-add) CLI Examples: .. code-block:: bash salt '*' keystone.user_role_add \ user_id=298ce377245c4ec9b70e1c639c89e654 \ tenant_id=7167a092ece84bae8cead4bf9d15bb3b \ role_id=ce377245c4ec9b70e1c639c89e8cead4 salt '*' keystone.user_role_add user=admin tenant=admin role=admin ''' kstone = auth(profile, **connection_args) if user: user_id = user_get(name=user, profile=profile, **connection_args)[user]['id'] else: user = user_get(user_id, profile=profile, **connection_args).keys()[0]['name'] if not user_id: return {'Error': 'Unable to resolve user id'} if tenant: tenant_id = tenant_get(name=tenant, profile=profile, **connection_args)[tenant]['id'] else: tenant = tenant_get(tenant_id, profile=profile, **connection_args).keys()[0]['name'] if not tenant_id: return {'Error': 'Unable to resolve tenant id'} if role: role_id = role_get(name=role, profile=profile, **connection_args)[role]['id'] else: role = role_get(role_id, profile=profile, **connection_args).keys()[0]['name'] if not role_id: return {'Error': 'Unable to resolve role id'} kstone.roles.add_user_role(user_id, role_id, tenant_id) ret_msg = '"{0}" role added for user "{1}" for "{2}" tenant' return ret_msg.format(role, user, tenant) def user_role_remove(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None, **connection_args): ''' Remove role for user in tenant (keystone user-role-remove) CLI Examples: .. code-block:: bash salt '*' keystone.user_role_remove \ user_id=298ce377245c4ec9b70e1c639c89e654 \ tenant_id=7167a092ece84bae8cead4bf9d15bb3b \ role_id=ce377245c4ec9b70e1c639c89e8cead4 salt '*' keystone.user_role_remove user=admin tenant=admin role=admin ''' kstone = auth(profile, **connection_args) if user: user_id = user_get(name=user, profile=profile, **connection_args)[user]['id'] else: user = user_get(user_id, profile=profile, **connection_args).keys()[0]['name'] if not user_id: return {'Error': 'Unable to resolve user id'} if tenant: tenant_id = tenant_get(name=tenant, profile=profile, **connection_args)[tenant]['id'] else: tenant = tenant_get(tenant_id, profile=profile, **connection_args).keys()[0]['name'] if not tenant_id: return {'Error': 'Unable to resolve tenant id'} if role: role_id = role_get(name=role, profile=profile, **connection_args)[role]['id'] else: role = role_get(role_id).keys()[0]['name'] if not role_id: return {'Error': 'Unable to resolve role id'} kstone.roles.remove_user_role(user_id, role_id, tenant_id) ret_msg = '"{0}" role removed for user "{1}" under "{2}" tenant' return ret_msg.format(role, user, tenant) def user_role_list(user_id=None, tenant_id=None, user_name=None, tenant_name=None, profile=None, **connection_args): ''' Return a list of available user_roles (keystone user-roles-list) CLI Examples: .. code-block:: bash salt '*' keystone.user_role_list \ user_id=298ce377245c4ec9b70e1c639c89e654 \ tenant_id=7167a092ece84bae8cead4bf9d15bb3b salt '*' keystone.user_role_list user_name=admin tenant_name=admin ''' kstone = auth(profile, **connection_args) ret = {} if user_name: for user in kstone.users.list(): if user.name == user_name: user_id = user.id break if tenant_name: for tenant in kstone.tenants.list(): if tenant.name == tenant_name: tenant_id = tenant.id break if not user_id or not tenant_id: return {'Error': 'Unable to resolve user or tenant id'} for role in kstone.roles.roles_for_user(user=user_id, tenant=tenant_id): ret[role.name] = {'id': role.id, 'name': role.name, 'user_id': user_id, 'tenant_id': tenant_id} return ret def _item_list(profile=None, **connection_args): ''' Template for writing list functions Return a list of available items (keystone items-list) CLI Example: .. code-block:: bash salt '*' keystone.item_list ''' kstone = auth(profile, **connection_args) ret = [] for item in kstone.items.list(): ret.append(item.__dict__) #ret[item.name] = { # 'id': item.id, # 'name': item.name, # } return ret #The following is a list of functions that need to be incorporated in the #keystone module. This list should be updated as functions are added. # #endpoint-create Create a new endpoint associated with a service #endpoint-delete Delete a service endpoint #discover Discover Keystone servers and show authentication # protocols and #bootstrap Grants a new role to a new user on a new tenant, after # creating each.
the-stack_0_20918
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for adding a backend to a backend service.""" from apitools.base.py import encoding from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.compute import flags as compute_flags from googlecloudsdk.command_lib.compute.backend_services import backend_flags from googlecloudsdk.command_lib.compute.backend_services import backend_services_utils from googlecloudsdk.command_lib.compute.backend_services import flags @base.ReleaseTracks(base.ReleaseTrack.GA) class AddBackend(base.UpdateCommand): """Add a backend to a backend service. *{command}* is used to add a backend to a backend service. A backend is a group of tasks that can handle requests sent to a backend service. Currently, the group of tasks can be one or more Google Compute Engine virtual machine instances grouped together using an instance group. Traffic is first spread evenly across all virtual machines in the group. When the group is full, traffic is sent to the next nearest group(s) that still have remaining capacity. To modify the parameters of a backend after it has been added to the backend service, use `gcloud compute backend-services update-backend` or `gcloud compute backend-services edit`. """ @staticmethod def Args(parser): flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument(parser) backend_flags.AddDescription(parser) flags.MULTISCOPE_INSTANCE_GROUP_ARG.AddArgument( parser, operation_type='add to the backend service') backend_flags.AddBalancingMode(parser) backend_flags.AddCapacityLimits(parser) backend_flags.AddCapacityScalar(parser) def _GetGetRequest(self, client, backend_service_ref): if backend_service_ref.Collection() == 'compute.regionBackendServices': return (client.apitools_client.regionBackendServices, 'Get', client.messages.ComputeRegionBackendServicesGetRequest( backendService=backend_service_ref.Name(), region=backend_service_ref.region, project=backend_service_ref.project)) return (client.apitools_client.backendServices, 'Get', client.messages.ComputeBackendServicesGetRequest( backendService=backend_service_ref.Name(), project=backend_service_ref.project)) def _GetSetRequest(self, client, backend_service_ref, replacement): if backend_service_ref.Collection() == 'compute.regionBackendServices': return (client.apitools_client.regionBackendServices, 'Update', client.messages.ComputeRegionBackendServicesUpdateRequest( backendService=backend_service_ref.Name(), backendServiceResource=replacement, region=backend_service_ref.region, project=backend_service_ref.project)) return (client.apitools_client.backendServices, 'Update', client.messages.ComputeBackendServicesUpdateRequest( backendService=backend_service_ref.Name(), backendServiceResource=replacement, project=backend_service_ref.project)) def _CreateBackendMessage(self, messages, group_uri, balancing_mode, args): """Create a backend message. Args: messages: The avalible API proto messages. group_uri: String. The backend instance group uri. balancing_mode: Backend.BalancingModeValueValuesEnum. The backend load balancing mode. args: argparse Namespace. The arguments given to the add-backend command. Returns: A new Backend message with its fields set according to the given arguments. """ backend_services_utils.ValidateBalancingModeArgs(messages, args) return messages.Backend( balancingMode=balancing_mode, capacityScaler=args.capacity_scaler, description=args.description, group=group_uri, maxRate=args.max_rate, maxRatePerInstance=args.max_rate_per_instance, maxUtilization=args.max_utilization, maxConnections=args.max_connections, maxConnectionsPerInstance=args.max_connections_per_instance) def _Modify(self, client, resources, backend_service_ref, args, existing): replacement = encoding.CopyProtoMessage(existing) group_ref = flags.MULTISCOPE_INSTANCE_GROUP_ARG.ResolveAsResource( args, resources, scope_lister=compute_flags.GetDefaultScopeLister(client)) group_uri = group_ref.SelfLink() for backend in existing.backends: if group_uri == backend.group: if group_ref.Collection() == 'compute.instanceGroups': scope = 'zone' elif group_ref.Collection() == 'compute.regionInstanceGroups': scope = 'region' raise exceptions.ToolException( 'Backend [{}] in {} [{}] already exists in backend service ' '[{}].'.format(group_ref.Name(), scope, getattr(group_ref, scope), backend_service_ref.Name())) if args.balancing_mode: balancing_mode = client.messages.Backend.BalancingModeValueValuesEnum( args.balancing_mode) else: balancing_mode = None backend = self._CreateBackendMessage(client.messages, group_uri, balancing_mode, args) replacement.backends.append(backend) return replacement def Run(self, args): """Issues requests necessary to add backend to the Backend Service.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client backend_service_ref = ( flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.ResolveAsResource( args, holder.resources, scope_lister=compute_flags.GetDefaultScopeLister(client))) get_request = self._GetGetRequest(client, backend_service_ref) objects = client.MakeRequests([get_request]) new_object = self._Modify(client, holder.resources, backend_service_ref, args, objects[0]) return client.MakeRequests( [self._GetSetRequest(client, backend_service_ref, new_object)]) @base.ReleaseTracks(base.ReleaseTrack.BETA) class AddBackendBeta(AddBackend): """Add a backend to a backend service. *{command}* is used to add a backend to a backend service. A backend is a group of tasks that can handle requests sent to a backend service. Currently, the group of tasks can be one or more Google Compute Engine virtual machine instances grouped together using an instance group. Traffic is first spread evenly across all virtual machines in the group. When the group is full, traffic is sent to the next nearest group(s) that still have remaining capacity. To modify the parameters of a backend after it has been added to the backend service, use `gcloud compute backend-services update-backend` or `gcloud compute backend-services edit`. """ @staticmethod def Args(parser): flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument(parser) backend_flags.AddDescription(parser) flags.MULTISCOPE_INSTANCE_GROUP_ARG.AddArgument( parser, operation_type='add to the backend service') backend_flags.AddBalancingMode(parser) backend_flags.AddCapacityLimits(parser) backend_flags.AddCapacityScalar(parser) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class AddBackendAlpha(AddBackendBeta): """Add a backend to a backend service. *{command}* is used to add a backend to a backend service. A backend is a group of tasks that can handle requests sent to a backend service. Currently, the group of tasks can be one or more Google Compute Engine virtual machine instances grouped together using an instance group. Traffic is first spread evenly across all virtual machines in the group. When the group is full, traffic is sent to the next nearest group(s) that still have remaining capacity. To modify the parameters of a backend after it has been added to the backend service, use `gcloud compute backend-services update-backend` or `gcloud compute backend-services edit`. """ @staticmethod def Args(parser): flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument(parser) backend_flags.AddDescription(parser) flags.MULTISCOPE_INSTANCE_GROUP_ARG.AddArgument( parser, operation_type='add to the backend service') backend_flags.AddBalancingMode(parser) backend_flags.AddCapacityLimits(parser) backend_flags.AddCapacityScalar(parser) backend_flags.AddFailover(parser, default=None) def _CreateBackendMessage(self, messages, group_uri, balancing_mode, args): """Overrides.""" backend_services_utils.ValidateBalancingModeArgs(messages, args) return messages.Backend( balancingMode=balancing_mode, capacityScaler=args.capacity_scaler, description=args.description, group=group_uri, maxRate=args.max_rate, maxRatePerInstance=args.max_rate_per_instance, maxUtilization=args.max_utilization, maxConnections=args.max_connections, maxConnectionsPerInstance=args.max_connections_per_instance, failover=args.failover)
the-stack_0_20919
#!/bin/env python # -*- coding: utf-8 -*- __author__ = 'rublog' import requests import re import time import random import os import shutil from tqdm import tqdm import config import json import getpass def clear(): os.system('cls || clear') class Renren(object): def __init__(self): self.is_login = 0 self.params = {'origURL': 'http://www.renren.com', 'email': config.EMAIL, 'password': config.PASSWORD} self.get_symbol_code = re.compile('&failCode=(\d+)') self.user_id = 0 self.login_url = config.LOGINURL self.localtime = time.localtime() self.bak_time = time.strftime('%Y-%m-%d %H:%M:%S', self.localtime) self.this_year = self.localtime[0] self.cookies = {} self.s = requests.Session() self.icode_url = config.ICODEURL self.rtk = '1000' self.requestToken = '1000' self.user_name = 'No name!' self.tiny_photo_url = 'http://www.renren.com' self.dir_name = 'temp_name' # 登陆模块使用post来发送账号密码 def post_data(self, login_url, params): header = { 'Accept': 'text/html, application/xhtml+xml, */*', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko', 'Accept-Encoding': 'gzip, deflate', 'Cache-Control': 'no-cache' } o = self.s.post(login_url, data=header, params=params) return o # 登陆模块,查看是否有登陆验证码 def login(self): while not self.is_login: try_login = self.post_data(self.login_url, self.params) is_success = re.search('ren\.com/\d+', try_login.url) if not is_success: symbol_code = self.get_symbol_code.search(try_login.url) symbol_code_num = symbol_code.group(1) if symbol_code_num == '512': self.i_get_img() img_content = input('打开文件夹查看并输入验证码:') self.params['icode'] = img_content continue clear() print(config.FAILCODE[symbol_code_num]) else: user_page = try_login.url # print(user_page) self.is_login = 1 user_id = self.get_user_id(user_page) # print(user_id) self.user_id = user_id user_page = 'http://www.renren.com/' + user_id + '/profile' # print(user_page) index = self.open_url(user_page) # print(index.url) # print(index.request.headers) # print(index.headers) # print(index.content.decode()) self.rtk = self.get_rtk(index.content.decode()) # print(self.rtk) self.requestToken = self.get_requestToken( index.content.decode()) self.get_user_tiny_photo_url(index.content.decode()) self.get_user_name(index.content.decode()) # print(self.requestToken) # return user_id # else: # symbol_code = self.get_symbol_code.search(try_login.url) # symbol_code_num = symbol_code.group(1) # print(config.FAILCODE[symbol_code_num]) # if symbol_code_num == '512': # else: return 0 # 获取登陆验证码 def i_get_img(self): pic_data = self.open_url(self.icode_url) # print(pic_data.headers) # print(pic_data.request.headers) # print(type(pic_data.content)) with open('icode.jpg', 'wb') as f: kk = f.read f.write(pic_data.content) return 0 # 打开普通网页或者有组合数据的网页 def open_url(self, url, params=0): # 打开网址并返回解码后的页面(网页源码) header = { 'Accept': 'text/html, application/xhtml+xml, */*', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko', 'Accept-Encoding': 'gzip, deflate', 'Cache-Control': 'no-cache' } if not params: o = self.s.get(url, headers=header) # print('直接打开') else: o = self.s.get(url, params=params, headers=header) # print('组合网址了') # o_content_decode = o.content.decode() # print(o.text) # print(o.url) # print(o.headers) # print(o.content) # print(o) return o # .text # 获取个人首页 def get_user_page(self, shouye): user_page = re.findall('http://www.renren.com/\d*/profile', shouye) return user_page def get_user_tiny_photo_url(self, shouye): tiny_photo_url = re.findall('src="(http:[\w/\.\-_/]{10,200}\.[gbjp][gifbmpnje]{1,2}[fgp])"\s+id="userpic', shouye) # print(tiny_photo_url) if tiny_photo_url: self.tiny_photo_url = tiny_photo_url[0] return tiny_photo_url[0] return 1000 def get_user_name(self, shouye): user_name = re.findall( 'avatar_title\sno_auth">([\s\S]*?)<span>', shouye) if user_name: self.user_name = user_name[0].strip() return user_name[0].strip() return 1000 # 获取个人的人人id def get_user_id(self, user_page): user_id = re.findall('\d+', user_page) return user_id[0] def get_requestToken(self, shouye): find_requestToken = re.findall("requestToken\s:\s'(-*\d+)'", shouye) if find_requestToken: requestToken = find_requestToken[0] return requestToken else: return 1000 def get_rtk(self, shouye): find_rtk = re.findall("_rtk\s:\s'(\w+)'", shouye) if find_rtk: rtk = find_rtk[0] return rtk else: return 1000 # 在每个月的页面上截取每个微博的那段源代码 def get_detailpage_in_monthly_page(self, monthly_page): detailpage_in_monthly_page = re.findall( '<section id="newsfeed[\s|\S]+?</section>', monthly_page) return detailpage_in_monthly_page # 如果一条微博获取正常就进行保存一次,到html中 def save_every_weibo(self, detailpage_list, file_name): for detailpage in detailpage_list: weibo_our_keep = self.join_weibo(detailpage) if weibo_our_keep == 0: continue self.save_html(weibo_our_keep, file_name) # print('ever been here!') return 0 # 获取每条微博的发布时间,人人网没具体到时间点,只给到日期 def get_weibo_time(self, detail_page): pre_first_time = re.findall( '<input\stype="hidden"\svalue="\d{4}-\d{2}-\d{2}', detail_page) first_time = re.findall('\d{4}-\d{2}-\d{2}', pre_first_time[0]) # print(pre_first_time) # print(first_time) return first_time[0] # 获取每条微博的内容 def get_weibo_content(self, detail_page): pre_content = re.findall( '<div\sclass="content-main">[\S\s]+?</article>', detail_page) if len(pre_content) == 0: return [] content = re.sub('</h4>', 'brbrbr', pre_content[0]) content = re.sub('</span>', 'brbrbr', content) content = re.sub('<[\s\S]+?>', '', content) content = re.sub('[\s]{3,}', '', content) content = re.sub('brbrbr', '<br>', content) # print(content) # print(pre_content) return content # 去除一个字符串中的某些字符 def get_rid(self, all_string, wipe_string): all_string = all_string.lstrip(wipe_string) all_string = all_string.rstrip(wipe_string) return all_string # 获取每一条回复 def get_replys(self, detail_page): pre_reply = re.findall( 'class="reply-content">[\s|\S]*?</a>:&nbsp;[\s|\S]*?</p>\s*<div\sclass="bottom-bar">\s*<span\sclass="time">\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}</span>', detail_page) # print(pre_reply) replys = [] for reply in pre_reply: pre_man = re.findall('_blank">([\s|\S]*?)</a', reply) man = pre_man[0] # print(man) pre_reply_content = re.findall('nbsp;([\s|\S]*?)</', reply) reply_content = pre_reply_content[0] reply_content = re.sub('<a[\S\s]+?>', '', reply_content) reply_time = re.findall('\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}', reply) full_reply = ' ' + man + ': ' + \ reply_content + ' @' + reply_time[0] replys.append(full_reply) # print(replys) return replys # 组合微博到特定的格式 def join_weibo(self, detail_page): time1 = self.get_weibo_time(detail_page) content1 = self.get_weibo_content(detail_page) if len(content1) == 0: return 0 reply1 = self.get_replys(detail_page) text1 = """<div class="content"> <div class="time"> <span>""" text2 = """</span> </div> <div class="weibo"> <p class="weibo-text">""" text3 = """ </p> </div>\n""" text4 = """ <div class="reply"> <p class="reply-text">""" text5 = """\n </p> </div>\n""" text6 = """</div>""" weibo_one_html = text1 + time1 + text2 + content1 + text3 for reply in reply1: weibo_one_html = weibo_one_html + text4 + reply + text5 weibo = weibo_one_html + text6 + '\n' weibo = self.repl_img_url(weibo) return weibo # 保存特定格式的微博 def save_html(self, weibo_our_keep, file_name): with open(file_name, 'a+', encoding="utf-8") as f: f.write(weibo_our_keep) return 0 # 创建基本的html的头部 def create_basic_html(self, file_name): header = """<html> <head> <meta name="Description" content="人人网 校内------曾经的一个朋友"> <meta name="Keywords" content="Xiaonei,Renren,校内,大学,同学,人人,人人网"> <title>人人网/校内网---曾经的一个朋友</title><meta charset="utf-8"> </head> <body> <div class="body-head"> <li class="daohang-item"> <h2>人人网/校内网---曾经的一个朋友</h2> </li> <li class="daohang-item"> <a href="./index.html">首页</a> | <a href="./shuo.html" target="_blank">微博</a> | <a href="./blog.html" target="_blank">博文</a> | <a href="./album.html" target="_blank">相册</a> </li> </div> <div class="body-main"> <br> """ with open(file_name, 'w+', encoding="utf-8") as f: f.write(header) f.close return 0 # 第一层文件夹下的网址/bak和第二层文件夹下的网址/bak/blog中的html的超链接稍微有点不同,所以新开一个method def create_sub_folder_basic_html(self, file_name): header = """<html> <head> <meta name="Description" content="人人网 校内------曾经的一个朋友"> <meta name="Keywords" content="Xiaonei,Renren,校内,大学,同学,人人,人人网"> <title>人人网/校内网---曾经的一个朋友</title><meta charset="utf-8"> </head> <body> <div class="body-head"> <li class="daohang-item"> <h2>人人网/校内网---曾经的一个朋友</h2> </li> <li class="daohang-item"> <a href="../index.html">首页</a> | <a href="../shuo.html" target="_blank">微博</a> | <a href="../blog.html" target="_blank">博文</a> | <a href="../album.html" target="_blank">相册</a> </li> </div> <div class="body-main"> <br> """ with open(file_name, 'w+', encoding="utf-8") as f: f.write(header) f.close return 0 def create_weibo_page_head(self): blog_list_title = """ <h3>说说列表</h3>""" with open('shuo.html', 'a+', encoding='utf-8') as f: f.write(blog_list_title) return 0 # 循环打开所有月份的人人网页的说说并下载保存 def all_year_and_month(self): print('正在保存人人网状态/说说/微博') self.create_basic_html('shuo.html') self.create_weibo_page_head() weibo_urls = 'http://www.renren.com/timelinefeedretrieve.do' param = {"ownerid": " ", "render": "0", "begin": "0", "limit": "100", "year": "2012", "month": "1", "isAdmin": "false"} # print(self.cookies) param['ownerid'] = self.user_id for year in range(2016, 2007, -1): for month in tqdm(range(12, 0, -1)): param['year'] = year param['month'] = month detailpage_in_monthly_page = self.open_url(weibo_urls, param) # print(detailpage_in_monthly_page.content.url) a_month_weibo_list = self.get_detailpage_in_monthly_page( detailpage_in_monthly_page.content.decode()) # print(a_month_weibo_list) self.save_every_weibo(a_month_weibo_list, 'shuo.html') time.sleep(random.randint(1, 4)) self.full_fill_html('shuo.html') return 0 # 替换掉备份中的图片链接,并且下载图片 def repl_img_url(self, strings, blog=0): # print(strings) strings = re.sub('\?ver=\d', '', strings) img_url = re.findall( 'src=["\'](http:[\w/\.\-/]{9,200}\.[gbjp][gifbmpnje]{1,2}[fgp])', strings) # print(img_url) # print(len(img_url)) for url in img_url: try: self.download_img(url) except Exception as e: print(e) # print(url) if blog: strings = re.sub('src="http://[\s\S]+?/', 'src="../pic/', strings) strings = re.sub( 'src=\'http://[\s\S]+?/', 'src=\'../pic/', strings) else: strings = re.sub('src="http://[\s\S]+?/', 'src="./pic/', strings) strings = re.sub('src=\'http://[\s\S]+?/', 'src=\'./pic/', strings) strings = re.sub('thumbnail=["\'][\s\S]+?["\']', '', strings) return strings # 根据给定网址,下载图片并且保存到相关文件夹 def download_img(self, img_url): if img_url.count('/') < 4: return 0 k = img_url.split('/') i = 3 img_name = './pic' for x in range(3, len(k) - 1): img_name = img_name + '/' + k[x] # print(img_name) if not os.path.exists(img_name): os.makedirs(img_name) # print(img_name) img_name = img_name + '/' + k[-1] # print(img_name) if os.path.isfile(img_name): return 0 pic_data = self.open_url(img_url) with open(img_name, 'wb') as f: kk = f.read f.write(pic_data.content) return 0 # 把评论组合成特定格式的html源码 def join_comment(self, comment): comment_template = '<div class="comment" id={0}><span uid="{1}">{2}<span>:{3}@{4}</div>' comment_in_htmls = comment_template.format( comment['commentId'], comment['authorId'], comment[ 'authorName'], comment['content'], comment['time'] ) comment_in_html = self.repl_img_url(comment_in_htmls, 1) return comment_in_html # 根据给定的文章或者相片id获取相关的评论,如果是文章blog默认为0或指定为0,相片指定为非0非none非空,一般指定1 def get_comment(self, page_id, blog=0): param = {"limit": "20", "desc": "true", "offset": "0", "replaceUBBLarge": "true", "type": "blog", "entryId": page_id, "entryOwnerId": self.user_id, "requestToken": self.requestToken, "_rtk": self.rtk} comment_url = 'http://comment.renren.com/comment/xoa2' if blog: param["type"] = 'photo' comments_page = self.open_url(comment_url, param) comments_page = comments_page.content.decode() comments_list = json.loads(comments_page) # print(comments_list) comments = '' if comments_list and comments_list.get('commentCount'): for comment in comments_list.get('comments'): comments = comments + self.join_comment(comment) return comments # 根据博客的id获取博客内容,因为博客id是json格式并经过变换的,博客id小于99999999的是因为经过压缩,省略了末尾的0 def get_blog_content(self, blog_id): while int(blog_id) < 99999999: blog_id = int(blog_id) * 10 blog_id = str(blog_id) blog_url = 'http://blog.renren.com/blog/' + self.user_id + '/' + blog_id blog_page = self.open_url(blog_url) blog_page = blog_page.content.decode() # print(blog_page) patten = '<div\sid="blogContent"\sclass="blogDetail-content"[\s\S]+?>([\s\S]+?)</div>' blog_content = re.findall(patten, blog_page) # print(blog_content) if len(blog_content) == 0: return 0 else: blog_content = self.repl_img_url(blog_content[0], 1) return blog_content # 根据给定的博客id和博客描述的list来获取博客内容并组合成特定的html源码格式 def save_single_blog_page(self, blog_id, summary): if not os.path.exists('./blog'): os.makedirs('./blog') file_name = './blog/%i.html' % (blog_id) self.create_sub_folder_basic_html(file_name) blog_content = self.get_blog_content(blog_id) comments = self.get_comment(blog_id) blog_template = '{0}<div class="blog_content">{1}<br><h4>评论、留言</h4>{2}</div></body></html>' blog = blog_template.format(summary, blog_content, comments) # text1 = '"""<'div class="blog_discribe"> # <h3><a href="./blog/""" + blog_id + """.html">""" + blog_tuple[5] + """</a></h3> # </div> # <div class="blog_discribe"> # 发布:20""" + str(blog_tuple[1]) + """ 阅读:""" + str(blog_tuple[2]) + """ 回复:""" + str(blog_tuple[3]) + """ # </div> # <div class="blog_content">""" + str(blog_content) + """<br> # <h4>评论、留言</h4> # """ + str(comments) + """ # </div> # </body> # </html>""" self.save_html(blog, file_name) return 0 # 根据博客网址保存单独的一篇博客,因为因为博客id比较特殊的原因极有可能一两篇博客不能保存, # 只好补充一个保存单篇的method,获取tuple过程中直接就截取了博客内容,评论数目暂时没法获取, # 已知bug,博客显示页面上没有评论数的源码,需要另写method来获取评论数 def save_a_single_blog(self, a_blog_url): if not os.path.exists('./blog'): os.makedirs('./blog') blog_id = re.findall('blog\.renren\.com/blog/\d+/(\d+)', a_blog_url) if blog_id: blog_id = blog_id[0] else: print('请输入正确的博客网址!') return 0 file_name = './blog/' + blog_id + '.html' self.create_sub_folder_basic_html(file_name) comments = self.get_comment(blog_id) blog_tuple = self.get_blog_tuple(blog_id) text1 = """ <div class="blog_discribe"> <h3><a href="./blog/""" + blog_id + """.html">""" + blog_tuple[5] + """</a></h3> </div> <div class="blog_discribe"> 发布:""" + str(blog_tuple[1]) + """ 阅读:""" + str(blog_tuple[2]) + """ 回复:""" + str(blog_tuple[3]) + """ </div> <div class="blog_content">""" + str(blog_tuple[0]) + """<br> <h4>评论、留言</h4> """ + str(comments) + """ </div> </body> </html>""" self.save_html(text1, file_name) clear() print('*************************************************************') print(' ****已保存人人网这篇博文,请继续保存其他或输入5退出**** ') print('*************************************************************') print(' ') print(' ') return 0 # 根据博客id获取博客标题、发布时间、内容、阅读数 def get_blog_tuple(self, blog_id): while int(blog_id) < 99999999: blog_id = int(blog_id) * 10 blog_id = str(blog_id) blog_url = 'http://blog.renren.com/blog/' + self.user_id + '/' + blog_id blog_page = self.open_url(blog_url) blog_page = blog_page.content.decode() # print(blog_page) blog_title = re.findall( 'class="blogDetail-title">([\s\S]+?)<', blog_page) blog_time = re.findall('createTime":"(\d+)"', blog_page) blog_read_num = re.findall( 'blogDetail-readerNum-num">(\d+)<', blog_page) patten = '<div\sid="blogContent"\sclass="blogDetail-content"[\s\S]+?>([\s\S]+?)</div>' blog_content = re.findall(patten, blog_page) # print(blog_content) blog_tuple = ['none content', '2038-12-31 23:59:59', '0', '0', blog_id, 'fail'] if len(blog_content) == 0: blog_tuple[0] = blog_url + '博文内容未正确获取' else: blog_tuple[0] = self.repl_img_url(blog_content[0], 1) if len(blog_title) == 0: fail = blog_url + '未正确获取' blog_tuple[5] = fail else: blog_tuple[5] = blog_title[0] if len(blog_time): blog_tuple[1] = time.strftime( '%Y-%m-%d %H:%M:%S', time.localtime(int(blog_time[0]) / 1000)) if len(blog_title): blog_tuple[2] = blog_read_num[0] return blog_tuple # 把文章summary组合成特定的html源码格式 def join_blog_list(self, blog): if blog: summary_template = ''' <div class="blog_discribe" data-id="{0}"><a href="./blog/{0}.html">{1}"</a></div> <div class="blog_discribe"> 发布:20 {2} 阅读:{3} 回复:{4} 赞:{5}</div> ''' blog_id = int(blog['id']) summary = summary_template.format(blog_id, blog['title'], blog['createTime'], blog['readCount'], blog['commentCount'], blog['likeCount']) self.save_single_blog_page(blog_id, summary) summary += '<div class="blog_summary">%s</div><br><hr>' % (blog[ 'summary']) return summary return None # 根据博客总篇数获取博客列表的总页数 def get_blog_list_page_num(self): blog_start_url = 'http://blog.renren.com/blog/' + \ str(self.user_id) + '/myBlogs' blog_start_page = self.open_url(blog_start_url) # print(blog_start_page.content.decode()) blog_start_page_content_decode = blog_start_page.content.decode() all_blog_num = re.findall( 'itemCount="(\d+)"', blog_start_page_content_decode) # print(all_blog_num) if all_blog_num: all_blog_page_num = int(int(all_blog_num[0]) / 10) # print(all_blog_page_num) return all_blog_page_num return 0 # 为博客列表创建h3标题 def create_blog_list_page_head(self): self.create_basic_html('blog.html') blog_list_title = """ <h3>博客文章列表</h3> <br> """ with open('blog.html', 'a+', encoding='utf-8') as f: f.write(blog_list_title) return 0 # 获取summary页面中谋篇博客的信息并组合成list def get_blog_content_list(self, blog_list_url, blog_param): blog_list = self.open_url(blog_list_url, blog_param) blog_list_content = blog_list.content.decode() blog_content_list = json.loads(blog_list_content) return blog_content_list.get('data') # 把summary页面的博客的summary组合成特定的html源码格式 def save_blog_in_a_page(self, blog_content_list): blog_in_a_page = "" for blog in blog_content_list: summary = self.join_blog_list(blog) blog_in_a_page = blog_in_a_page + summary # print(blog_in_a_page) with open('blog.html', 'a+', encoding='utf-8') as f: f.write(blog_in_a_page) return 0 # 为网页补充完整源代码 def full_fill_html(self, file_name): blog_list_end_html = """ </body> </html>""" with open(file_name, 'a+', encoding='utf-8') as f: f.write(blog_list_end_html) return 0 # 调用相关功能,保存所有的博客文章,略微控制速度(随机暂停4~8秒),因为我发现请求同一个人速度太快了就被block了 def all_blogs(self): print('正在保存人人网文章/日志/博客') self.create_blog_list_page_head() all_blog_page_num = self.get_blog_list_page_num() # print(all_blog_page_num) blog_list_url = 'http://blog.renren.com/blog/' + \ str(self.user_id) + '/blogs' # print(blog_list_url) blog_param = {"categoryId": " ", "curpage": "0", "requestToken": self.requestToken, "_rtk": self.rtk} # print(blog_param) for page_num in tqdm((0, all_blog_page_num + 1)): blog_param["curpage"] = page_num blog_content_list = self.get_blog_content_list( blog_list_url, blog_param) self.save_blog_in_a_page(blog_content_list) time.sleep(random.randint(3, 5)) self.full_fill_html('blog.html') return 0 # 为相册列表添加h3标题 def create_album_list_page_head(self): self.create_basic_html('album.html') album_list_title = """ <h3>相册列表</h3>""" with open('album.html', 'a+', encoding='utf-8') as f: f.write(album_list_title) return 0 # 创建相册头部html并且添加标题 def create_album_page_head(self, album_id, album_name): if not os.path.exists('./album'): os.makedirs('./album') self.create_sub_folder_basic_html( './album/album-' + album_id + '.html') album_list_title = ' <h3>' + album_name + '</h3>' with open('./album/album-' + album_id + '.html', 'a+', encoding='utf-8') as f: f.write(album_list_title) return 0 # 把html源码的相册下载替换掉相关的链接并保存到文件 def save_photo_in_html(self, album_id, photo_in_html): photo_in_html = self.repl_img_url(photo_in_html, 1) with open('./album/album-' + album_id + '.html', 'a+', encoding='utf-8') as f: f.write(photo_in_html) return 0 # 获取相册列表和相关信息(相册名称、相册id、相册图片数量) def get_album_content_list(self, album_list_url): album_content_list_sourse = self.open_url(album_list_url) album_content_list_decode = album_content_list_sourse.content.decode() album_content_list = re.findall('albumName":"([\s\S]+?)","albumId":"(\d+)"[\s\S]+?photoCount":(\d+),', album_content_list_decode) # print(album_content_list) return album_content_list # 获取相关照片的描述 # 已知bug,描述开头用数字或者字母或者特殊符号,没法处理混码,备份后显示的是Unicode编码 def get_photo_discribe(self, photo_id): # photo_url = 'http://photo.renren.com/photo/' + self.user_id + '/photo-' + photo_id + '/v7' photo_url = 'http://photo.renren.com/photo/' + \ self.user_id + '/photo-' + photo_id + '/layer' photo_sourse = self.open_url(photo_url) photo_sourse_decode = photo_sourse.content.decode() # print(photo_sourse_decode) photo_info = json.loads(photo_sourse_decode) currentPhoto = photo_info.get('currentPhoto') if currentPhoto is not None: return currentPhoto.get('originTitle') or '本图没有标题' else: return '本图没有标题' # 保存相册并组合成html源码格式 def save_album(self, album_id, album_name): album_url = 'http://photo.renren.com/photo/' + \ self.user_id + '/album-' + album_id + '/v7' # print(album_url) album_sourse = self.open_url(album_url) album_sourse_decode = album_sourse.content.decode() # print(album_sourse_decode) photo_in_a_album = re.findall( 'photoId":"(\d+)"[\s\S]+?createTime\\\\":\\\\"(\d+)\\\\"[\s\S]+?url":"(http:[\\\\\\\\\w/\.-_]{10,200}\.[gbjp][gifbmpnje]{1,2}[fgp])"', album_sourse_decode) # print(photo_in_a_album) for photo in photo_in_a_album: photo_id = photo[0] photo_discribe = self.get_photo_discribe(photo_id) photo_comments = self.get_comment(photo_id, 1) create_time = photo[1] l = int(create_time) / 1000 k = time.localtime(l) create_time = time.strftime('%Y-%m-%d %H:%M:%S', k) photo_url = photo[2] # print(photo_url) # print(type(photo_url)) photo_url = photo_url.replace('\\', '') photo_in_html = """ <div class="photo"> <p><img """ + 'src="' + photo_url + '" alt="' + photo_discribe + '" /><br><a>' + photo_discribe + """</a> </p> </div> <br>""" + photo_comments + """ <br> <br>""" self.save_photo_in_html(album_id, photo_in_html) self.full_fill_html('./album/album-' + album_id + '.html') time.sleep(random.randint(0, 3)) return 0 # 保存相册的列表页面 def save_album_list(self, album_content_list): album_list_in_html = "" if album_content_list: for album_name in tqdm(album_content_list): album_name = list(album_name) if album_name[0].startswith('\\u'): album_name[0] = album_name[0].encode( 'latin-1').decode('unicode_escape') self.create_album_page_head(album_name[1], album_name[0]) self.save_album(album_name[1], album_name[0]) album_list_in_html = album_list_in_html + """ <div class="album_name"> <p><a href="./album/album-""" + album_name[1] + """.html">""" + album_name[0] + '</a> 共' + album_name[ 2] + '张 </p>' + """ </div> """ with open('album.html', 'a+', encoding='utf-8') as f: f.write(album_list_in_html) return 0 # 保存某用户的所有相册 def all_album(self): print('正在保存人人网相册') self.create_album_list_page_head() album_list_url = 'http://photo.renren.com/photo/' + \ str(self.user_id) + '/albumlist/v7' # print(album_list_url) album_content_list = self.get_album_content_list(album_list_url) # print(blog_content_list) self.save_album_list(album_content_list) self.full_fill_html('album.html') return 0 # 请用户输入账号、密码 def get_user_account_and_pw(self): print("人人网、校内备份脚本write by rublog") account_tips = "请输入人人网账号并按回车:" pw_tips = "请输入人人网密码并回车:" account = input(account_tips) pw = getpass.getpass(pw_tips) self.params['email'] = account self.params['password'] = pw return 0 # 创建用户的主页,很简单,只有相片名字和备份时间 def make_index(self): self.create_basic_html('index.html') index_content = """ <h3>""" + self.user_name + '的人人网备份' + """</h3> <div class="index_content"> <div class="bak_time"> <span>""" + self.user_name + '备份于' + self.bak_time + """</span> </div> <div class="tiny_photo"> <p class="tiny_photo"> <img src=\"""" + self.tiny_photo_url + """\" alt=\"""" + self.user_name + """\" /> </p> </div> </div> <div class="index_content"> <li class="daohang-item"> <a href="./index.html">首页</a> | <a href="./shuo.html" target="_blank">微博</a> | <a href="./blog.html" target="_blank">博文</a> | <a href="./album.html" target="_blank">相册</a> </li> </div> </body> </html>""" index_content = self.repl_img_url(index_content) with open('index.html', 'a+', encoding='utf-8') as f: f.write(index_content) self.dir_name = "人人网" + self.user_name + '资料备份' + \ time.strftime('%Y-%m-%d', self.localtime) if not os.path.exists(self.dir_name): os.makedirs(self.dir_name) return 0 def replace_guest_info(self, user_id): user_page = 'http://www.renren.com/' + user_id + '/profile' # print(user_page) index = self.open_url(user_page) # print(index.url) # print(index.request.headers) # print(index.headers) self.get_user_tiny_photo_url(index.content.decode()) self.get_user_name(index.content.decode()) return 0 def pack_up(self): file_list = ['index.html', 'album.html', 'blog.html', 'shuo.html', 'album', 'blog', 'pic'] for file in file_list: try: shutil.move(file, self.dir_name + '/' + file) except: continue finally: pass return 0 def main(): tips = """人人网、校内备份脚本 write by rublog 因人人网改版及个人精力原因无法保证本脚本一直能 正常使用,本人亦未收取您的任何费用,恕无力保持 脚本能正常使用。 本人保证原版脚本不存在任何上传个人账号行为,请在 本人网站或者本人github上下载使用,其他不做任何 保证。""" print(tips) ren = Renren() u_id = ren.login() # ren.save_album('1134407597', '用了太多的js') # print(ren.tiny_photo_url) # print(ren.user_name) # ren.make_index() # lol = input('stop here!') # 如果没登录就请用户输入账号、密码直到登陆成功 while not ren.is_login: ren.get_user_account_and_pw() u_id = ren.login() clear() choice_tips = """人人网、校内备份脚本 write by rublog 本脚本部分控制网页请求速度但未使用多线程, (0)、备份人人网说说、博客、相册 (1)、备份人人网说说 (2)、备份人人网博客 (3)、备份人人网相册 (4)、备份人人网单篇博客 (5)、退出 (6)、以我之权限保存某朋友在人人网说说、博客和相册 请输入选项数字1~6并按回车:""" # a_month_page = ren.all_year_and_month() # 上面一行是下载所有的人人说说/微博 # ren.all_blogs() # 上面一行是下载所有的人人日志、博客 # co = ren.all_album() # print(co) # 功能选择程序段 end = 1 while end: kk = input(choice_tips) print(kk) try: kk = int(kk) except: kk = 10 if kk == 0: clear() print('*************************************************************') print(' *****正在保存人人网说说、博客和相册,请稍候.......***** ') print('*************************************************************') print(' ') print(' ') ren.make_index() a_month_page = ren.all_year_and_month() hh = ren.all_blogs() co = ren.all_album() clear() print('*************************************************************') print(' *******已保存人人网说说、博客和相册,请输入5退出******* ') print('*************************************************************') print(' ') print(' ') elif kk == 1: clear() print('***********************************************************') print(' **********正在保存人人网说说,请稍候.......********** ') print('***********************************************************') print(' ') print(' ') ren.make_index() a_month_page = ren.all_year_and_month() clear() print('*************************************************************') print(' ******已保存人人网说说,请继续保存其他或输入5退出****** ') print('*************************************************************') print(' ') print(' ') elif kk == 2: clear() print('***********************************************************') print(' **********正在保存人人网博客,请稍候.......********** ') print('***********************************************************') print(' ') print(' ') ren.make_index() hh = ren.all_blogs() clear() print('*************************************************************') print(' ******已保存人人网博客,请继续保存其他或输入5退出****** ') print('*************************************************************') print(' ') print(' ') elif kk == 3: clear() print('***********************************************************') print(' **********正在保存人人网相册,请稍候.......********** ') print('***********************************************************') print(' ') print(' ') ren.make_index() co = ren.all_album() clear() print('*************************************************************') print(' ******已保存人人网相册,请继续保存其他或输入5退出****** ') print('*************************************************************') print(' ') print(' ') elif kk == 4: clear() print('*************************************************************') print(' ******************请输入博客网址.......****************** ') print('*************************************************************') print(' ') print(' ') a_blog_url = input('请输入博客网址:') ren.make_index() a_month_page = ren.save_a_single_blog(a_blog_url) elif kk == 5: print('正在打包备份的文件,请稍候......') ren.pack_up() print('正在退出,请稍候.......') time.sleep(2) end = 0 elif kk == 6: clear() print('*************************************************************') print('*************以我之权限保存某朋友在人人网说说、博客和相册**********') print('*******************请输入Ta的user_id**************************') print('********http://www.renren.com/653334272784/profile***********') print('*********上面的653334272784就是一个user_id示例*****************') print('*******************请输入Ta的user_id**************************') print('*************************************************************') print(' ') print(' ') self_user_id_bak = ren.user_id self_user_name_bak = ren.user_name self_tiny_photo_url_bak = ren.tiny_photo_url ren.user_id = input('请输入Ta的user_id:') ren.replace_guest_info(ren.user_id) ren.make_index() a_month_page = ren.all_year_and_month() hh = ren.all_blogs() co = ren.all_album() ren.pack_up() clear() print('************************************************************') print(' **********************已保存*************************** ') print(' ********您能看到的Ta在人人网的说说、博客和相册************* ') print(' *********************请输入5退出************************ ') print('*************************************************************') print(' ') print(' ') ren.user_id = self_user_id_bak ren.user_name = self_user_name_bak ren.tiny_photo_url = self_tiny_photo_url_bak else: clear() print('************************************************') print(' **********输入有误,请重新输入!********** ') print('************************************************') print(' ') print(' ') continue # main程序 if __name__ == '__main__': main()
the-stack_0_20920
from __future__ import print_function import os import sys IS_PYTHON3 = sys.version_info[0] >= 3 if IS_PYTHON3: from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer, ThreadingMixIn else: from SimpleHTTPServer import SimpleHTTPRequestHandler from SocketServer import TCPServer, ThreadingMixIn from os import chdir, path import threading import time HTTP_PORT = 14563 class CustomHandler(SimpleHTTPRequestHandler): def log_message(self, format, *args): pass # These methods get rid of errors messages caused by javaws closing the socket immediately def handle_one_request(self): try: SimpleHTTPRequestHandler.handle_one_request(self) except: pass def finish(self): try: SimpleHTTPRequestHandler.finish(self) except: pass # Added this method from Jython's SimpleHTTPRequestHandler for compatibility with Jython on Windows OS def send_head(self): """Common code for GET and HEAD commands. This sends the response code and MIME headers. Return value is either a file object (which has to be copied to the outputfile by the caller unless the command was HEAD, and must be closed by the caller under all circumstances), or None, in which case the caller has nothing further to do. """ path = self.translate_path(self.path) f = None if os.path.isdir(path): if not self.path.endswith('/'): # redirect browser - doing basically what apache does self.send_response(301) self.send_header("Location", self.path + "/") self.end_headers() return None for index in "index.html", "index.htm": index = os.path.join(path, index) if os.path.exists(index): path = index break else: return self.list_directory(path) ctype = self.guess_type(path) try: # Always read in binary mode. Opening files in text mode may cause # newline translations, making the actual size of the content # transmitted *less* than the content-length! f = open(path, 'rb') except IOError: self.send_error(404, "File not found") return None self.send_response(200) self.send_header("Content-type", ctype) try: fs = os.fstat(f.fileno()) except (OSError, AttributeError): # Jython on Windows lands here when f.fileno() is invalid fs = os.stat(path) self.send_header("Content-Length", str(fs[6])) self.send_header("Last-Modified", self.date_time_string(fs.st_mtime)) self.end_headers() return f class FileServer(ThreadingMixIn, TCPServer): allow_reuse_address = True def __init__(self): pass def start(self): TCPServer.__init__(self, ('localhost', int(HTTP_PORT)), CustomHandler) self.RESOURCE_LOCATION = path.abspath(path.dirname(__file__)) print("Server serving from DocumentRoot:" + self.RESOURCE_LOCATION) chdir(self.RESOURCE_LOCATION) server_thread = threading.Thread(name='test_file_server', target=self.serve_forever) server_thread.daemon = True server_thread.start() def stop(self): if hasattr(self, 'shutdown'): self.shutdown() else: self.server_close() print("Server stopped") if __name__ == '__main__': fs = FileServer() fs.start() while True: time.sleep(10) # fs.stop()
the-stack_0_20921
""" Handling test data. """ import os import hashlib def data_path(data_name: str) -> str: """ Load test data. """ data_path = os.path.join(os.path.split(__file__)[0], "data", data_name) assert os.path.exists(data_path) return data_path def get_sha256(path: str) -> str: """Calculates a sha256 hash of the file.""" sha256 = hashlib.sha256() with open(path, "rb") as f: while True: data = f.read(65536) if not data: break sha256.update(data) return sha256.hexdigest()
the-stack_0_20923
# -*- coding: utf-8 -*- """The fake file-like object implementation.""" import os from dfvfs.file_io import file_io from dfvfs.lib import errors class FakeFile(file_io.FileIO): """Class that implements a fake file-like object.""" def __init__(self, resolver_context, file_data): """Initializes the file-like object. Args: resolver_context: the resolver context (instance of resolver.Context). file_data: the fake file data. """ super(FakeFile, self).__init__(resolver_context) self._current_offset = 0 self._file_data = file_data self._size = 0 def _Close(self): """Closes the file-like object. Raises: IOError: if the close failed. """ return def _Open(self, path_spec=None, mode='rb'): """Opens the file-like object defined by path specification. Args: path_spec: optional path specification (instance of path.PathSpec). The default is None. mode: optional file access mode. The default is 'rb' read-only binary. Raises: AccessError: if the access to open the file was denied. IOError: if the file-like object could not be opened. PathSpecError: if the path specification is incorrect. ValueError: if the path specification is invalid. """ if not path_spec: raise ValueError(u'Missing path specfication.') if path_spec.HasParent(): raise errors.PathSpecError(u'Unsupported path specification with parent.') location = getattr(path_spec, u'location', None) if location is None: raise errors.PathSpecError(u'Path specification missing location.') self._current_offset = 0 self._size = len(self._file_data) # Note: that the following functions do not follow the style guide # because they are part of the file-like object interface. def read(self, size=None): """Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size: Optional integer value containing the number of bytes to read. Default is all remaining data (None). Returns: A byte string containing the data read. Raises: IOError: if the read failed. """ if not self._is_open: raise IOError(u'Not opened.') if self._current_offset < 0: raise IOError( u'Invalid current offset: {0:d} value less than zero.'.format( self._current_offset)) if self._file_data is None or self._current_offset >= self._size: return b'' if size is None: size = self._size if self._current_offset + size > self._size: size = self._size - self._current_offset start_offset = self._current_offset self._current_offset += size return self._file_data[start_offset:self._current_offset] def seek(self, offset, whence=os.SEEK_SET): """Seeks an offset within the file-like object. Args: offset: The offset to seek. whence: Optional value that indicates whether offset is an absolute or relative position within the file. Default is SEEK_SET. Raises: IOError: if the seek failed. """ if not self._is_open: raise IOError(u'Not opened.') if whence == os.SEEK_CUR: offset += self._current_offset elif whence == os.SEEK_END: offset += self._size elif whence != os.SEEK_SET: raise IOError(u'Unsupported whence.') if offset < 0: raise IOError(u'Invalid offset value less than zero.') self._current_offset = offset def get_offset(self): """Returns the current offset into the file-like object. Raises: IOError: if the file-like object has not been opened. """ if not self._is_open: raise IOError(u'Not opened.') return self._current_offset def get_size(self): """Returns the size of the file-like object. Raises: IOError: if the file-like object has not been opened. """ if not self._is_open: raise IOError(u'Not opened.') return self._size
the-stack_0_20925
"""Given a file of names and a file of salutations to give each name, make an output file with greetings for each name in the input file. This script demonstrates the use of single-valued keyword-style parameters to Kive pipelines. """ import argparse import csv import typing as ty PARSER = argparse.ArgumentParser() PARSER.add_argument("--names", type=argparse.FileType()) PARSER.add_argument("--salutations", type=argparse.FileType()) PARSER.add_argument("outputfile", type=argparse.FileType("w")) def greet(name: str, salutation: str = "Hello") -> str: return f"{salutation} {name}!" def get_salutations(inputfile: ty.Optional[ty.TextIO]) -> ty.Dict[str, str]: if inputfile is not None: rdr = csv.DictReader(inputfile) return {row["name"]: row["salutation"] for row in rdr} else: return { "Grace Hopper": "Oh my goodness, it's Admiral", "Radia Perlman": "Introducing the inventor of the spanning-tree protocol,", } def get_names(inputfile: ty.Optional[ty.TextIO]) -> ty.Iterable[str]: if inputfile is not None: rdr = csv.DictReader(inputfile) yield from (r["name"] for r in rdr) else: yield from iter(["Abraham", "Bud", "Charlize", "Radia Perlman"]) def main() -> None: args = PARSER.parse_args() names = get_names(args.names) salutations = get_salutations(args.salutations) output_writer = csv.DictWriter(args.outputfile, fieldnames=["greeting"]) output_writer.writeheader() for name in names: output_writer.writerow( {"greeting": greet(name, salutations.get(name, "Hello"))} ) if __name__ == "__main__": main()
the-stack_0_20928
import collections from typing import Dict, List, Optional, Tuple import numpy as np import logging from ray.tune import trial_runner from ray.tune.result import DEFAULT_METRIC from ray.tune.schedulers.trial_scheduler import FIFOScheduler, TrialScheduler from ray.tune.trial import Trial from ray.tune.error import TuneError logger = logging.getLogger(__name__) # Implementation notes: # This implementation contains 3 logical levels. # Each HyperBand iteration is a "band". There can be multiple # bands running at once, and there can be 1 band that is incomplete. # # In each band, there are at most `s` + 1 brackets. # `s` is a value determined by given parameters, and assigned on # a cyclic basis. # # In each bracket, there are at most `n(s)` trials, indicating that # `n` is a function of `s`. These trials go through a series of # halving procedures, dropping lowest performers. Multiple # brackets are running at once. # # Trials added will be inserted into the most recent bracket # and band and will spill over to new brackets/bands accordingly. # # This maintains the bracket size and max trial count per band # to 5 and 117 respectively, which correspond to that of # `max_attr=81, eta=3` from the blog post. Trials will fill up # from smallest bracket to largest, with largest # having the most rounds of successive halving. class HyperBandScheduler(FIFOScheduler): """Implements the HyperBand early stopping algorithm. HyperBandScheduler early stops trials using the HyperBand optimization algorithm. It divides trials into brackets of varying sizes, and periodically early stops low-performing trials within each bracket. To use this implementation of HyperBand with Tune, all you need to do is specify the max length of time a trial can run `max_t`, the time units `time_attr`, the name of the reported objective value `metric`, and if `metric` is to be maximized or minimized (`mode`). We automatically determine reasonable values for the other HyperBand parameters based on the given values. For example, to limit trials to 10 minutes and early stop based on the `episode_mean_reward` attr, construct: ``HyperBand('time_total_s', 'episode_reward_mean', max_t=600)`` Note that Tune's stopping criteria will be applied in conjunction with HyperBand's early stopping mechanisms. See also: https://people.eecs.berkeley.edu/~kjamieson/hyperband.html Args: time_attr (str): The training result attr to use for comparing time. Note that you can pass in something non-temporal such as `training_iteration` as a measure of progress, the only requirement is that the attribute should increase monotonically. metric (str): The training result objective value attribute. Stopping procedures will use this attribute. If None but a mode was passed, the `ray.tune.result.DEFAULT_METRIC` will be used per default. mode (str): One of {min, max}. Determines whether objective is minimizing or maximizing the metric attribute. max_t (int): max time units per trial. Trials will be stopped after max_t time units (determined by time_attr) have passed. The scheduler will terminate trials after this time has passed. Note that this is different from the semantics of `max_t` as mentioned in the original HyperBand paper. reduction_factor (float): Same as `eta`. Determines how sharp the difference is between bracket space-time allocation ratios. stop_last_trials (bool): Whether to terminate the trials after reaching max_t. Defaults to True. """ _supports_buffered_results = False def __init__(self, time_attr: str = "training_iteration", metric: Optional[str] = None, mode: Optional[str] = None, max_t: int = 81, reduction_factor: float = 3, stop_last_trials: bool = True): assert max_t > 0, "Max (time_attr) not valid!" if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!" FIFOScheduler.__init__(self) self._eta = reduction_factor self._s_max_1 = int( np.round(np.log(max_t) / np.log(reduction_factor))) + 1 self._max_t_attr = max_t # bracket max trials self._get_n0 = lambda s: int( np.ceil(self._s_max_1 / (s + 1) * self._eta**s)) # bracket initial iterations self._get_r0 = lambda s: int((max_t * self._eta**(-s))) self._hyperbands = [[]] # list of hyperband iterations self._trial_info = {} # Stores Trial -> Bracket, Band Iteration # Tracks state for new trial add self._state = {"bracket": None, "band_idx": 0} self._num_stopped = 0 self._metric = metric self._mode = mode self._metric_op = None if self._mode == "max": self._metric_op = 1. elif self._mode == "min": self._metric_op = -1. self._time_attr = time_attr self._stop_last_trials = stop_last_trials def set_search_properties(self, metric: Optional[str], mode: Optional[str]) -> bool: if self._metric and metric: return False if self._mode and mode: return False if metric: self._metric = metric if mode: self._mode = mode if self._mode == "max": self._metric_op = 1. elif self._mode == "min": self._metric_op = -1. if self._metric is None and self._mode: # If only a mode was passed, use anonymous metric self._metric = DEFAULT_METRIC return True def on_trial_add(self, trial_runner: "trial_runner.TrialRunner", trial: Trial): """Adds new trial. On a new trial add, if current bracket is not filled, add to current bracket. Else, if current band is not filled, create new bracket, add to current bracket. Else, create new iteration, create new bracket, add to bracket.""" if not self._metric or not self._metric_op: raise ValueError( "{} has been instantiated without a valid `metric` ({}) or " "`mode` ({}) parameter. Either pass these parameters when " "instantiating the scheduler, or pass them as parameters " "to `tune.run()`".format(self.__class__.__name__, self._metric, self._mode)) cur_bracket = self._state["bracket"] cur_band = self._hyperbands[self._state["band_idx"]] if cur_bracket is None or cur_bracket.filled(): retry = True while retry: # if current iteration is filled, create new iteration if self._cur_band_filled(): cur_band = [] self._hyperbands.append(cur_band) self._state["band_idx"] += 1 # cur_band will always be less than s_max_1 or else filled s = len(cur_band) assert s < self._s_max_1, "Current band is filled!" if self._get_r0(s) == 0: logger.info("Bracket too small - Retrying...") cur_bracket = None else: retry = False cur_bracket = self._create_bracket(s) cur_band.append(cur_bracket) self._state["bracket"] = cur_bracket self._state["bracket"].add_trial(trial) self._trial_info[trial] = cur_bracket, self._state["band_idx"] def _create_bracket(self, s): return Bracket( time_attr=self._time_attr, max_trials=self._get_n0(s), init_t_attr=self._get_r0(s), max_t_attr=self._max_t_attr, eta=self._eta, s=s, stop_last_trials=self._stop_last_trials) def _cur_band_filled(self) -> bool: """Checks if the current band is filled. The size of the current band should be equal to s_max_1""" cur_band = self._hyperbands[self._state["band_idx"]] return len(cur_band) == self._s_max_1 def on_trial_result(self, trial_runner: "trial_runner.TrialRunner", trial: Trial, result: Dict): """If bracket is finished, all trials will be stopped. If a given trial finishes and bracket iteration is not done, the trial will be paused and resources will be given up. This scheduler will not start trials but will stop trials. The current running trial will not be handled, as the trialrunner will be given control to handle it.""" bracket, _ = self._trial_info[trial] bracket.update_trial_stats(trial, result) if bracket.continue_trial(trial): return TrialScheduler.CONTINUE action = self._process_bracket(trial_runner, bracket) logger.debug(f"{action} for {trial} on " f"{self._time_attr}={result.get(self._time_attr)}") return action def _process_bracket(self, trial_runner: "trial_runner.TrialRunner", bracket: "Bracket") -> str: """This is called whenever a trial makes progress. When all live trials in the bracket have no more iterations left, Trials will be successively halved. If bracket is done, all non-running trials will be stopped and cleaned up, and during each halving phase, bad trials will be stopped while good trials will return to "PENDING".""" action = TrialScheduler.PAUSE if bracket.cur_iter_done(): if bracket.finished(): bracket.cleanup_full(trial_runner) return TrialScheduler.STOP good, bad = bracket.successive_halving(self._metric, self._metric_op) # kill bad trials self._num_stopped += len(bad) for t in bad: if t.status == Trial.PAUSED: trial_runner.stop_trial(t) elif t.status == Trial.RUNNING: bracket.cleanup_trial(t) action = TrialScheduler.STOP else: raise TuneError(f"Trial with unexpected bad status " f"encountered: {t.status}") # ready the good trials - if trial is too far ahead, don't continue for t in good: if t.status not in [Trial.PAUSED, Trial.RUNNING]: raise TuneError(f"Trial with unexpected good status " f"encountered: {t.status}") if bracket.continue_trial(t): if t.status == Trial.PAUSED: self._unpause_trial(trial_runner, t) elif t.status == Trial.RUNNING: action = TrialScheduler.CONTINUE return action def on_trial_remove(self, trial_runner: "trial_runner.TrialRunner", trial: Trial): """Notification when trial terminates. Trial info is removed from bracket. Triggers halving if bracket is not finished.""" bracket, _ = self._trial_info[trial] bracket.cleanup_trial(trial) if not bracket.finished(): self._process_bracket(trial_runner, bracket) def on_trial_complete(self, trial_runner: "trial_runner.TrialRunner", trial: Trial, result: Dict): """Cleans up trial info from bracket if trial completed early.""" self.on_trial_remove(trial_runner, trial) def on_trial_error(self, trial_runner: "trial_runner.TrialRunner", trial: Trial): """Cleans up trial info from bracket if trial errored early.""" self.on_trial_remove(trial_runner, trial) def choose_trial_to_run( self, trial_runner: "trial_runner.TrialRunner") -> Optional[Trial]: """Fair scheduling within iteration by completion percentage. List of trials not used since all trials are tracked as state of scheduler. If iteration is occupied (ie, no trials to run), then look into next iteration. """ for hyperband in self._hyperbands: # band will have None entries if no resources # are to be allocated to that bracket. scrubbed = [b for b in hyperband if b is not None] for bracket in sorted( scrubbed, key=lambda b: b.completion_percentage()): for trial in bracket.current_trials(): if (trial.status == Trial.PENDING and trial_runner.has_resources_for_trial(trial)): return trial return None def debug_string(self) -> str: """This provides a progress notification for the algorithm. For each bracket, the algorithm will output a string as follows: Bracket(Max Size (n)=5, Milestone (r)=33, completed=14.6%): {PENDING: 2, RUNNING: 3, TERMINATED: 2} "Max Size" indicates the max number of pending/running experiments set according to the Hyperband algorithm. "Milestone" indicates the iterations a trial will run for before the next halving will occur. "Completed" indicates an approximate progress metric. Some brackets, like ones that are unfilled, will not reach 100%. """ out = "Using HyperBand: " out += "num_stopped={} total_brackets={}".format( self._num_stopped, sum(len(band) for band in self._hyperbands)) for i, band in enumerate(self._hyperbands): out += "\nRound #{}:".format(i) for bracket in band: if bracket: out += "\n {}".format(bracket) return out def state(self) -> Dict[str, int]: return { "num_brackets": sum(len(band) for band in self._hyperbands), "num_stopped": self._num_stopped } def _unpause_trial(self, trial_runner: "trial_runner.TrialRunner", trial: Trial): trial_runner.trial_executor.unpause_trial(trial) class Bracket: """Logical object for tracking Hyperband bracket progress. Keeps track of proper parameters as designated by HyperBand. Also keeps track of progress to ensure good scheduling. """ def __init__(self, time_attr: str, max_trials: int, init_t_attr: int, max_t_attr: int, eta: float, s: int, stop_last_trials: bool = True): self._live_trials = {} # maps trial -> current result self._all_trials = [] self._time_attr = time_attr # attribute to self._n = self._n0 = max_trials self._r = self._r0 = init_t_attr self._max_t_attr = max_t_attr self._cumul_r = self._r0 self._eta = eta self._halves = s self._total_work = self._calculate_total_work(self._n0, self._r0, s) self._completed_progress = 0 self.stop_last_trials = stop_last_trials def add_trial(self, trial: Trial): """Add trial to bracket assuming bracket is not filled. At a later iteration, a newly added trial will be given equal opportunity to catch up.""" assert not self.filled(), "Cannot add trial to filled bracket!" self._live_trials[trial] = None self._all_trials.append(trial) def cur_iter_done(self) -> bool: """Checks if all iterations have completed. TODO(rliaw): also check that `t.iterations == self._r`""" return all( self._get_result_time(result) >= self._cumul_r for result in self._live_trials.values()) def finished(self) -> bool: if not self.stop_last_trials: return False return self._halves == 0 and self.cur_iter_done() def current_trials(self) -> List[Trial]: return list(self._live_trials) def continue_trial(self, trial: Trial) -> bool: result = self._live_trials[trial] if not self.stop_last_trials and self._halves == 0: return True elif self._get_result_time(result) < self._cumul_r: return True return False def filled(self) -> bool: """Checks if bracket is filled. Only let new trials be added at current level minimizing the need to backtrack and bookkeep previous medians.""" return len(self._live_trials) == self._n def successive_halving(self, metric: str, metric_op: float ) -> Tuple[List[Trial], List[Trial]]: if self._halves == 0 and not self.stop_last_trials: return self._live_trials, [] assert self._halves > 0 self._halves -= 1 self._n /= self._eta self._n = int(np.ceil(self._n)) self._r *= self._eta self._r = int(min(self._r, self._max_t_attr - self._cumul_r)) self._cumul_r = self._r sorted_trials = sorted( self._live_trials, key=lambda t: metric_op * self._live_trials[t][metric]) good, bad = sorted_trials[-self._n:], sorted_trials[:-self._n] return good, bad def update_trial_stats(self, trial: Trial, result: Dict): """Update result for trial. Called after trial has finished an iteration - will decrement iteration count. TODO(rliaw): The other alternative is to keep the trials in and make sure they're not set as pending later.""" assert trial in self._live_trials assert self._get_result_time(result) >= 0 observed_time = self._get_result_time(result) last_observed = self._get_result_time(self._live_trials[trial]) delta = observed_time - last_observed if delta <= 0: logger.info("Restoring from a previous point in time. " "Previous={}; Now={}".format(last_observed, observed_time)) self._completed_progress += delta self._live_trials[trial] = result def cleanup_trial(self, trial: Trial): """Clean up statistics tracking for terminated trials (either by force or otherwise). This may cause bad trials to continue for a long time, in the case where all the good trials finish early and there are only bad trials left in a bracket with a large max-iteration.""" assert trial in self._live_trials del self._live_trials[trial] def cleanup_full(self, trial_runner: "trial_runner.TrialRunner"): """Cleans up bracket after bracket is completely finished. Lets the last trial continue to run until termination condition kicks in.""" for trial in self.current_trials(): if (trial.status == Trial.PAUSED): trial_runner.stop_trial(trial) def completion_percentage(self) -> float: """Returns a progress metric. This will not be always finish with 100 since dead trials are dropped.""" if self.finished(): return 1.0 return min(self._completed_progress / self._total_work, 1.0) def _get_result_time(self, result: Dict) -> float: if result is None: return 0 return result[self._time_attr] def _calculate_total_work(self, n: int, r: float, s: int): work = 0 cumulative_r = r for _ in range(s + 1): work += int(n) * int(r) n /= self._eta n = int(np.ceil(n)) r *= self._eta r = int(min(r, self._max_t_attr - cumulative_r)) return work def __repr__(self) -> str: status = ", ".join([ "Max Size (n)={}".format(self._n), "Milestone (r)={}".format(self._cumul_r), "completed={:.1%}".format(self.completion_percentage()) ]) counts = collections.Counter([t.status for t in self._all_trials]) trial_statuses = ", ".join( sorted("{}: {}".format(k, v) for k, v in counts.items())) return "Bracket({}): {{{}}} ".format(status, trial_statuses)
the-stack_0_20929
from fosscord.ext import commands import fosscord class Bot(commands.Bot): def __init__(self): super().__init__(command_prefix=commands.when_mentioned_or("$")) async def on_ready(self): print(f"Logged in as {self.user} (ID: {self.user.id})") print("------") # Define a simple View that gives us a confirmation menu class Confirm(fosscord.ui.View): def __init__(self): super().__init__() self.value = None # When the confirm button is pressed, set the inner value to `True` and # stop the View from listening to more input. # We also send the user an ephemeral message that we're confirming their choice. @fosscord.ui.button(label="Confirm", style=fosscord.ButtonStyle.green) async def confirm( self, button: fosscord.ui.Button, interaction: fosscord.Interaction ): await interaction.response.send_message("Confirming", ephemeral=True) self.value = True self.stop() # This one is similar to the confirmation button except sets the inner value to `False` @fosscord.ui.button(label="Cancel", style=fosscord.ButtonStyle.grey) async def cancel(self, button: fosscord.ui.Button, interaction: fosscord.Interaction): await interaction.response.send_message("Cancelling", ephemeral=True) self.value = False self.stop() bot = Bot() @bot.command() async def ask(ctx: commands.Context): """Asks the user a question to confirm something.""" # We create the view and assign it to a variable so we can wait for it later. view = Confirm() await ctx.send("Do you want to continue?", view=view) # Wait for the View to stop listening for input... await view.wait() if view.value is None: print("Timed out...") elif view.value: print("Confirmed...") else: print("Cancelled...") bot.run("token")
the-stack_0_20930
"""Support for Ubiquiti mFi switches.""" import logging from mficlient.client import FailedToLogin, MFiClient import requests import voluptuous as vol from openpeerpower.components.switch import PLATFORM_SCHEMA, SwitchEntity from openpeerpower.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_USERNAME, CONF_VERIFY_SSL, ) import openpeerpower.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) DEFAULT_SSL = True DEFAULT_VERIFY_SSL = True SWITCH_MODELS = ["Outlet", "Output 5v", "Output 12v", "Output 24v", "Dimmer Switch"] PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_PORT): cv.port, vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean, vol.Optional(CONF_VERIFY_SSL, default=DEFAULT_VERIFY_SSL): cv.boolean, } ) def setup_platform(opp, config, add_entities, discovery_info=None): """Set up mFi sensors.""" host = config.get(CONF_HOST) username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) use_tls = config[CONF_SSL] verify_tls = config.get(CONF_VERIFY_SSL) default_port = 6443 if use_tls else 6080 port = int(config.get(CONF_PORT, default_port)) try: client = MFiClient( host, username, password, port=port, use_tls=use_tls, verify=verify_tls ) except (FailedToLogin, requests.exceptions.ConnectionError) as ex: _LOGGER.error("Unable to connect to mFi: %s", str(ex)) return False add_entities( MfiSwitch(port) for device in client.get_devices() for port in device.ports.values() if port.model in SWITCH_MODELS ) class MfiSwitch(SwitchEntity): """Representation of an mFi switch-able device.""" def __init__(self, port): """Initialize the mFi device.""" self._port = port self._target_state = None @property def unique_id(self): """Return the unique ID of the device.""" return self._port.ident @property def name(self): """Return the name of the device.""" return self._port.label @property def is_on(self): """Return true if the device is on.""" return self._port.output def update(self): """Get the latest state and update the state.""" self._port.refresh() if self._target_state is not None: self._port.data["output"] = float(self._target_state) self._target_state = None def turn_on(self, **kwargs): """Turn the switch on.""" self._port.control(True) self._target_state = True def turn_off(self, **kwargs): """Turn the switch off.""" self._port.control(False) self._target_state = False @property def current_power_w(self): """Return the current power usage in W.""" return int(self._port.data.get("active_pwr", 0)) @property def extra_state_attributes(self): """Return the state attributes for the device.""" return { "volts": round(self._port.data.get("v_rms", 0), 1), "amps": round(self._port.data.get("i_rms", 0), 1), }
the-stack_0_20931
""" Copyright (c) 2021 The Orbit Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. """ from absl import app from datetime import date, timedelta from core.orbit_e2e import E2ETestSuite from test_cases.capture_window import Capture, CheckTimers, CheckThreadStates, FilterTracks, \ ToggleCollapsedStateOfAllTracks, VerifyTracksExist from test_cases.connection_window import ConnectToStadiaInstance, FilterAndSelectFirstProcess, LoadCapture, \ LoadLatestCapture from test_cases.live_tab import AddIterator, VerifyFunctionCallCount from test_cases.main_window import EndSession """Verify loading a capture in Orbit using pywinauto. Before this script is run there needs to be a gamelet reserved and "hello_ggp_standalone" has to be started. Further, Orbit needs to be started. Also, the captures directory should be cleared. The script requires absl and pywinauto. Since pywinauto requires the bitness of the python installation to match the bitness of the program under test it needs to be run from 64 bit python. This automation script covers a basic workflow: - load an old, unsupported capture and verify this fails with a message - load a supported capture - verify that the scheduler track is present and contains timers - verify that the frame track is present and contains timers - verify that the tracks from manual instrumentation are present - verify that the memory tracks are present - verify that an iterator can be added to "TestFunc2" - verify that "TestFunc2" was called exactly 1257 times - take a capture and verify there is a corresponding capture in the latest captures list which contains the tracks """ def main(argv): # During the tests, we want to verify that captures get automatically saved. We will do so by filtering the recent # captures list with the current date (in addition to also deleting old captures before this script runs). However, # if it is around midnight when this code gets executed and we store the date string, it can be that the capture # actually gets taken on the next day. Therefore, we will also check for the next day. today = date.today() tomorrow = today + timedelta(days=1) today_string = today.strftime("%Y_%m_%d") tomorrow_string = tomorrow.strftime("%Y_%m_%d") test_cases = [ LoadCapture(capture_file_path="test_data\\OrbitTest_1-64.orbit", expect_fail=True), LoadCapture(capture_file_path="test_data\\OrbitTest_1-72.orbit"), FilterTracks(filter_string="Scheduler", expected_track_count=1), CheckTimers(track_name_filter='Scheduler*'), FilterTracks(filter_string="Frame", expected_track_count=1), CheckTimers(track_name_filter='Frame track*'), # Verify the frame track has timers FilterTracks(filter_string="DynamicName_", expected_track_count=5), FilterTracks(filter_string="_var", expected_track_count=6), FilterTracks(filter_string="OrbitThread_", expected_track_count=1), ToggleCollapsedStateOfAllTracks(), CheckTimers(track_name_filter="OrbitThread_*"), CheckThreadStates(track_name_filter='OrbitThread_*'), FilterTracks(filter_string="ORBIT_ASYNC_TASKS", expected_track_count=1), CheckTimers(track_name_filter="ORBIT_ASYNC_TASKS"), FilterTracks(filter_string="ORBIT_START_ASYNC_TEST", expected_track_count=1), CheckTimers(track_name_filter="ORBIT_START_ASYNC_TEST"), FilterTracks(filter_string=""), VerifyTracksExist(track_names=["Page*", "*System*", "*CGroup*"], allow_duplicates=True), AddIterator(function_name="TestFunc2"), VerifyFunctionCallCount(function_name="TestFunc2", min_calls=1257, max_calls=1257), # Let's take a capture with the current version and verify this can be loaded EndSession(), ConnectToStadiaInstance(), FilterAndSelectFirstProcess(process_filter="hello_ggp"), Capture(), VerifyTracksExist(track_names="hello_ggp_stand*", allow_duplicates=True), EndSession(), # If we took the capture around midnight, we need to ensure to also look for the next day. Remember, the strings # get created before the tests run. Thus the `today_string` might be actually from the day before the capture # gets auto-saved. LoadLatestCapture(filter_strings=[f"hello_ggp_stand_{today_string}", f"hello_ggp_stand_{tomorrow_string}"]), VerifyTracksExist(track_names="hello_ggp_stand*", allow_duplicates=True) ] suite = E2ETestSuite(test_name="Capture Loading", test_cases=test_cases) suite.execute() if __name__ == '__main__': app.run(main)
the-stack_0_20933
import base64 import os import pytest import rancher import time from .common import create_config_file from .common import create_user from .common import random_test_name from .common import readDataFile from .common import run_command_with_stderr from .common import set_url_password_token from lib.aws import AmazonWebServices DATA_SUBDIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'resource') RANCHER_CHART_VERSION = os.environ.get("RANCHER_CHART_VERSION") test_run_id = random_test_name("auto") # if hostname is not provided, generate one ( to support onTag ) RANCHER_HOSTNAME_PREFIX = os.environ.get("RANCHER_HOSTNAME_PREFIX", test_run_id) resource_suffix = test_run_id + "-" + RANCHER_HOSTNAME_PREFIX RANCHER_HA_HOSTNAME = os.environ.get("RANCHER_HA_HOSTNAME", RANCHER_HOSTNAME_PREFIX + ".qa.rancher.space") RANCHER_IMAGE_TAG = os.environ.get("RANCHER_IMAGE_TAG") RANCHER_SERVER_URL = "https://" + RANCHER_HA_HOSTNAME RANCHER_HELM_REPO = os.environ.get("RANCHER_HELM_REPO", "latest") RANCHER_LETSENCRYPT_EMAIL = os.environ.get("RANCHER_LETSENCRYPT_EMAIL") # cert type for HA install [rancher-self-signed, byo-valid, byo-self-signed, letsencrypt] RANCHER_HA_CERT_OPTION = os.environ.get("RANCHER_HA_CERT_OPTION", "rancher-self-signed") RANCHER_VALID_TLS_CERT = os.environ.get("RANCHER_VALID_TLS_CERT") RANCHER_VALID_TLS_KEY = os.environ.get("RANCHER_VALID_TLS_KEY") RANCHER_BYO_TLS_CERT = os.environ.get("RANCHER_BYO_TLS_CERT") RANCHER_BYO_TLS_KEY = os.environ.get("RANCHER_BYO_TLS_KEY") RANCHER_PRIVATE_CA_CERT = os.environ.get("RANCHER_PRIVATE_CA_CERT") RANCHER_HA_KUBECONFIG = os.environ.get("RANCHER_HA_KUBECONFIG") AWS_SSH_KEY_NAME = os.environ.get("AWS_SSH_KEY_NAME") kubeconfig_path = DATA_SUBDIR + "/kube_config_cluster-ha-filled.yml" export_cmd = "export KUBECONFIG=" + kubeconfig_path def test_create_ha(precheck_certificate_options): cm_install = True if "byo-" in RANCHER_HA_CERT_OPTION: cm_install = False ha_setup(install_cm=cm_install) install_rancher() ha_finalize() def test_upgrade_ha(precheck_upgrade_options): write_kubeconfig() add_repo_create_namespace() install_rancher(upgrade=True) def ha_setup(install_cm=True): print(RANCHER_HA_HOSTNAME) nodes = create_resources() rke_config = create_rke_cluster_config(nodes) create_rke_cluster(rke_config) if install_cm == True: install_cert_manager() add_repo_create_namespace() def ha_finalize(): set_url_and_password() print_kubeconfig() def create_resources(): # Create nlb and grab ARN & dns name lb = AmazonWebServices().create_network_lb(name="nlb-" + resource_suffix) lbArn = lb["LoadBalancers"][0]["LoadBalancerArn"] lbDns = lb["LoadBalancers"][0]["DNSName"] # Upsert the route53 record -- if it exists, update, if not, insert AmazonWebServices().upsert_route_53_record_cname(RANCHER_HA_HOSTNAME, lbDns) # Create the target groups targetGroup80 = AmazonWebServices(). \ create_ha_target_group(80, "tg-80-" + resource_suffix) targetGroup443 = AmazonWebServices(). \ create_ha_target_group(443, "tg-443-" + resource_suffix) targetGroup80Arn = targetGroup80["TargetGroups"][0]["TargetGroupArn"] targetGroup443Arn = targetGroup443["TargetGroups"][0]["TargetGroupArn"] # Create listeners for the load balancer, to forward to the target groups AmazonWebServices().create_ha_nlb_listener(loadBalancerARN=lbArn, port=80, targetGroupARN=targetGroup80Arn) AmazonWebServices().create_ha_nlb_listener(loadBalancerARN=lbArn, port=443, targetGroupARN=targetGroup443Arn) targets = [] aws_nodes = \ AmazonWebServices().create_multiple_nodes( 3, resource_suffix, wait_for_ready=True) assert len(aws_nodes) == 3 for aws_node in aws_nodes: print(aws_node.public_ip_address) targets.append(aws_node.provider_node_id) # Register the nodes to the target groups targets_list = [dict(Id=target_id, Port=80) for target_id in targets] AmazonWebServices().register_targets(targets_list, targetGroup80Arn) targets_list = [dict(Id=target_id, Port=443) for target_id in targets] AmazonWebServices().register_targets(targets_list, targetGroup443Arn) return aws_nodes def install_cert_manager(): helm_certmanager_cmd = \ export_cmd + " && " + \ "kubectl apply -f " + \ "https://raw.githubusercontent.com/jetstack/cert-manager/" + \ "release-0.12/deploy/manifests/00-crds.yaml && " + \ "kubectl create namespace cert-manager && " + \ "helm_v3 repo add jetstack https://charts.jetstack.io && " + \ "helm_v3 repo update && " + \ "helm_v3 install cert-manager jetstack/cert-manager " + \ "--namespace cert-manager --version v0.12.0" run_command_with_stderr(helm_certmanager_cmd) time.sleep(120) def add_repo_create_namespace(repo=RANCHER_HELM_REPO): helm_repo_cmd = \ export_cmd + " && helm_v3 repo add rancher-" + repo + \ " https://releases.rancher.com/server-charts/" + repo + " && " + \ "helm_v3 repo update" run_command_with_stderr(helm_repo_cmd) helm_init_cmd = \ export_cmd + \ " && kubectl create namespace cattle-system" run_command_with_stderr(helm_init_cmd) def install_rancher(type=RANCHER_HA_CERT_OPTION, repo=RANCHER_HELM_REPO, upgrade=False): operation = "install" if upgrade == True: operation = "upgrade" helm_rancher_cmd = \ export_cmd + " && helm_v3 " + operation + " rancher " + \ "rancher-" + repo + "/rancher " + \ "--version " + RANCHER_CHART_VERSION + " " \ "--namespace cattle-system " + \ "--set hostname=" + RANCHER_HA_HOSTNAME if type == 'letsencrypt': helm_rancher_cmd = helm_rancher_cmd + \ " --set ingress.tls.source=letsEncrypt " + \ "--set letsEncrypt.email=" + RANCHER_LETSENCRYPT_EMAIL elif type == 'byo-self-signed': helm_rancher_cmd = helm_rancher_cmd + \ " --set ingress.tls.source=secret " + \ "--set privateCA=true" elif type == 'byo-valid': helm_rancher_cmd = helm_rancher_cmd + \ " --set ingress.tls.source=secret" if RANCHER_IMAGE_TAG != "" and RANCHER_IMAGE_TAG is not None: helm_rancher_cmd = helm_rancher_cmd + \ " --set rancherImageTag=" + RANCHER_IMAGE_TAG if operation == "install": if type == "byo-self-signed": create_tls_secrets(valid_cert=False) elif type == "byo-valid": create_tls_secrets(valid_cert=True) run_command_with_stderr(helm_rancher_cmd) time.sleep(120) def create_tls_secrets(valid_cert): cert_path = DATA_SUBDIR + "/tls.crt" key_path = DATA_SUBDIR + "/tls.key" ca_path = DATA_SUBDIR + "/cacerts.pem" if valid_cert == True: # write files from env var write_encoded_certs(cert_path, RANCHER_VALID_TLS_CERT) write_encoded_certs(key_path, RANCHER_VALID_TLS_KEY) else: write_encoded_certs(cert_path, RANCHER_BYO_TLS_CERT) write_encoded_certs(key_path, RANCHER_BYO_TLS_KEY) write_encoded_certs(ca_path, RANCHER_PRIVATE_CA_CERT) tls_command = export_cmd + " && kubectl -n cattle-system create secret tls tls-rancher-ingress --cert=" + cert_path + " --key=" + key_path ca_command = export_cmd + " && kubectl -n cattle-system create secret generic tls-ca --from-file=" + ca_path run_command_with_stderr(tls_command) if valid_cert == False: run_command_with_stderr(ca_command) def write_encoded_certs(path, contents): file = open(path, "w") file.write(base64.b64decode(contents).decode("utf-8")) file.close() def write_kubeconfig(): file = open(kubeconfig_path, "w") file.write(base64.b64decode(RANCHER_HA_KUBECONFIG).decode("utf-8")) file.close() def set_url_and_password(): admin_token = set_url_password_token(RANCHER_SERVER_URL) admin_client = rancher.Client(url=RANCHER_SERVER_URL + "/v3", token=admin_token, verify=False) AUTH_URL = RANCHER_SERVER_URL + \ "/v3-public/localproviders/local?action=login" user, user_token = create_user(admin_client, AUTH_URL) env_details = "env.CATTLE_TEST_URL='" + RANCHER_SERVER_URL + "'\n" env_details += "env.ADMIN_TOKEN='" + admin_token + "'\n" env_details += "env.USER_TOKEN='" + user_token + "'\n" create_config_file(env_details) def create_rke_cluster(config_path): rke_cmd = "rke --version && rke up --config " + config_path run_command_with_stderr(rke_cmd) def print_kubeconfig(): kubeconfig_file = open(kubeconfig_path, "r") kubeconfig_contents = kubeconfig_file.read() kubeconfig_file.close() kubeconfig_contents_encoded = base64.b64encode(kubeconfig_contents.encode("utf-8")).decode("utf-8") print("\n\n" + kubeconfig_contents + "\n\n") print("\nBase64 encoded: \n\n" + kubeconfig_contents_encoded + "\n\n") def create_rke_cluster_config(aws_nodes): configfile = "cluster-ha.yml" rkeconfig = readDataFile(DATA_SUBDIR, configfile) rkeconfig = rkeconfig.replace("$ip1", aws_nodes[0].public_ip_address) rkeconfig = rkeconfig.replace("$ip2", aws_nodes[1].public_ip_address) rkeconfig = rkeconfig.replace("$ip3", aws_nodes[2].public_ip_address) rkeconfig = rkeconfig.replace("$internalIp1", aws_nodes[0].private_ip_address) rkeconfig = rkeconfig.replace("$internalIp2", aws_nodes[1].private_ip_address) rkeconfig = rkeconfig.replace("$internalIp3", aws_nodes[2].private_ip_address) rkeconfig = rkeconfig.replace("$AWS_SSH_KEY_NAME", AWS_SSH_KEY_NAME) clusterfilepath = DATA_SUBDIR + "/" + "cluster-ha-filled.yml" f = open(clusterfilepath, "w") f.write(rkeconfig) f.close() return clusterfilepath @pytest.fixture(scope='module') def precheck_certificate_options(): if RANCHER_HA_CERT_OPTION == 'byo-valid': if RANCHER_VALID_TLS_CERT == '' or RANCHER_VALID_TLS_KEY == '' or \ RANCHER_VALID_TLS_CERT is None or RANCHER_VALID_TLS_KEY is None: raise pytest.skip('Valid certificates not found in environment variables') elif RANCHER_HA_CERT_OPTION == 'byo-self-signed': if RANCHER_BYO_TLS_CERT == '' or RANCHER_BYO_TLS_KEY == '' or RANCHER_PRIVATE_CA_CERT == '' or \ RANCHER_BYO_TLS_CERT is None or RANCHER_BYO_TLS_KEY is None or RANCHER_PRIVATE_CA_CERT is None: raise pytest.skip('Self signed certificates not found in environment variables') elif RANCHER_HA_CERT_OPTION == 'letsencrypt': if RANCHER_LETSENCRYPT_EMAIL == '' or RANCHER_LETSENCRYPT_EMAIL is None: raise pytest.skip('LetsEncrypt email is not found in environment variables') @pytest.fixture(scope='module') def precheck_upgrade_options(): if RANCHER_HA_KUBECONFIG == '' or RANCHER_HA_KUBECONFIG is None: raise pytest.skip('Kubeconfig is not found for upgrade!') if RANCHER_HA_HOSTNAME == '' or RANCHER_HA_HOSTNAME is None: raise pytest.skip('Hostname is not found for upgrade!')
the-stack_0_20937
from torch.utils.data import Dataset import wget, os import pandas as pd import torch, numpy as np class HeartDataset(Dataset): def __init__(self, root): fname = os.path.join(root, 'HeartDisease.csv') if not os.path.exists(fname): raise('Please download the data from https://www.kaggle.com/sonumj/heart-disease-dataset-from-uci !') self.df = pd.read_csv(fname, header=0) train_cols = self.df.columns[0:-2] self.labels = self.df.columns[-2] self.labels = self.df[self.labels] self.df = self.df[train_cols] for col_name in self.df.columns: self.df[col_name].fillna(self.df[col_name].mode()[0], inplace=True) def __len__(self): return len(self.df) def __getitem__(self, idx): # Convert idx from tensor to list due to pandas bug (that arises when using pytorch's random_split) if isinstance(idx, torch.Tensor): idx = idx.tolist() return torch.FloatTensor(self.df.iloc[idx].values.astype(float)), self.labels[idx].astype(np.long) class CreditCardFraudDataset(Dataset): def __init__(self, root): fname = os.path.join(root, 'creditcard.csv') if not os.path.exists(fname): raise('Please download the data from https://www.kaggle.com/mlg-ulb/creditcardfraud !') self.df = pd.read_csv(fname, header=0) self.df = self.df.dropna() self.labels = self.df[self.df.columns[-1]] self.df = self.df[self.df.columns[0:-1]] def __len__(self): return len(self.df) def __getitem__(self, idx): # Convert idx from tensor to list due to pandas bug (that arises when using pytorch's random_split) if isinstance(idx, torch.Tensor): idx = idx.tolist() return torch.FloatTensor(self.df.iloc[idx].values.astype(float)), self.labels[idx].astype(np.long)
the-stack_0_20940
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ... import default_main_program from ... import default_startup_program from ... import layers from ... import unique_name from . import fp16_utils from .fp16_utils import update_loss_scaling, rewrite_program from .fp16_utils import update_role_var_grad from .fp16_lists import AutoMixedPrecisionLists __all__ = ["decorate"] class OptimizerWithMixedPrecison(object): """ Optimizer with mixed-precision (MP) training. This is a wrapper of a common optimizer, plus the support of mixed-precision pretraining. The object of this class almost has the same behavior as the common optimizer, with the methods `minimize()`, `backward()`, `apply_gradients()` implemented. Additionally, it enables the MP training automatically, i.e, the creation and maintenance of master parameters, scaling of loss, etc. Args: optimizer (Optimizer): A common Optimizer object. amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object. init_loss_scaling (float): The initial loss scaling factor. use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling. incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. incr_ratio(float): The multiplier to use when increasing the loss scaling. decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. """ def __init__(self, optimizer, amp_lists, init_loss_scaling, use_dynamic_loss_scaling, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio): self._optimizer = optimizer self._amp_lists = amp_lists self._param_grads = None self._train_program = default_main_program() self._startup_prog = default_startup_program() self._scaled_loss = None self._loss_scaling = layers.create_global_var( name=unique_name.generate("loss_scaling"), shape=[1], value=init_loss_scaling, dtype='float32', persistable=True) self._use_dynamic_loss_scaling = use_dynamic_loss_scaling if self._use_dynamic_loss_scaling: self._incr_every_n_steps = layers.fill_constant( shape=[1], dtype='int32', value=incr_every_n_steps) self._decr_every_n_nan_or_inf = layers.fill_constant( shape=[1], dtype='int32', value=decr_every_n_nan_or_inf) self._incr_ratio = incr_ratio self._decr_ratio = decr_ratio self._num_good_steps = layers.create_global_var( name=unique_name.generate("num_good_steps"), shape=[1], value=0, dtype='int32', persistable=True) self._num_bad_steps = layers.create_global_var( name=unique_name.generate("num_bad_steps"), shape=[1], value=0, dtype='int32', persistable=True) # Ensure the data type of learning rate vars is float32 (same as the # master parameter dtype) if isinstance(optimizer._learning_rate, float): optimizer._learning_rate_map[default_main_program()] = \ layers.create_global_var( name=unique_name.generate("learning_rate"), shape=[1], value=float(optimizer._learning_rate), dtype='float32', persistable=True) def get_loss_scaling(self): """Return the real-time loss scaling factor. """ return self._loss_scaling def get_scaled_loss(self): """Return the scaled loss. It's useful when you feed customed loss into executor. """ return self._scaled_loss def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): """ Backward propogation or auto differentiation for gradients' computation. Args: loss (Variable): The loss Variable to minimize. startup_program (Program|None): The startup Program for initializing parameters in `parameter_list`. parameter_list (list|None): A list of Variables to update. no_grad_set (set|None): A set of Variables should be ignored. callbacks (list|None): A list of callables to run when appending backward operator for one parameter. Returns: A list of (param, grad), which is a tuple of a parameter and its gradient respectively, and the scaled loss. """ rewrite_program(self._train_program, self._amp_lists) self._scaled_loss = loss * self._loss_scaling self._params_grads = self._optimizer.backward( self._scaled_loss, startup_program, parameter_list, no_grad_set, callbacks) update_role_var_grad(self._train_program, self._params_grads) scaled_params_grads = [] for p, g in self._params_grads: with self._train_program._optimized_guard([p, g]): scaled_g = g / self._loss_scaling scaled_params_grads.append([p, scaled_g]) return scaled_params_grads def apply_gradients(self, scaled_params_grads): """ Check scaled gradients to determine whether to update loss scaling and update parameters by their scaled gradients, Args: scaled_params_grads (list): A list of params and scaled grads. Returns: A list of optimize operators. """ if self._use_dynamic_loss_scaling: grads = [layers.reduce_sum(g) for [_, g] in scaled_params_grads] all_grads = layers.concat(grads) all_grads_sum = layers.reduce_sum(all_grads) is_overall_finite = layers.isfinite(all_grads_sum) update_loss_scaling(is_overall_finite, self._loss_scaling, self._num_good_steps, self._num_bad_steps, self._incr_every_n_steps, self._decr_every_n_nan_or_inf, self._incr_ratio, self._decr_ratio) # apply_gradient append all ops in global block, thus we shouldn't # apply gradient in the switch branch. with layers.Switch() as switch: with switch.case(is_overall_finite): pass with switch.default(): for _, g in scaled_params_grads: layers.assign(layers.zeros_like(g), g) optimize_ops = self._optimizer.apply_gradients(scaled_params_grads) return optimize_ops def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """ Perform optimization by minimizing the given loss. Args: loss (Variable): The loss Variable. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. Returns: The scaled loss by scaling factor, the list of optimize ops, and a list of scaled parameters and gradients. """ scaled_params_grads = self.backward( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set) optimize_ops = self.apply_gradients(scaled_params_grads) return optimize_ops, scaled_params_grads def decorate(optimizer, amp_lists=None, init_loss_scaling=1.0, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, incr_ratio=2.0, decr_ratio=0.8, use_dynamic_loss_scaling=True): """ Decorate the given optimizer to adapt to the mixed-precision training. Args: optimizer(Optimizer): A common Optimizer. amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object. init_loss_scaling(float): The initial loss scaling factor. incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. incr_ratio(float): The multiplier to use when increasing the loss scaling. decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Returns: An optimizer acting like a normal one but with mixed-precision training enabled. Examples: .. code-block:: python loss = network() optimizer = fluid.optimizer.Adam(learning_rate=0.001) mp_optimizer = fluid.contrib.mixed_precision.decorate( optimizer=optimizer, init_loss_scaling=8.0) ops, param_grads = mp_optimizer.minimize(loss) scaled_loss = mp_optimizer.get_scaled_loss() """ if amp_lists is None: amp_lists = AutoMixedPrecisionLists() mp_optimizer = OptimizerWithMixedPrecison( optimizer, amp_lists, init_loss_scaling, use_dynamic_loss_scaling, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio) return mp_optimizer
the-stack_0_20941
import re from concurrent.futures import as_completed from os import name as os_name from pathlib import Path from requests_futures.sessions import FuturesSession from pathvalidate import sanitize_filepath from pytr.utils import preview, Timeline, get_logger class DL: def __init__(self, tr, output_path, filename_fmt, since_timestamp=0): ''' tr: api object output_path: name of the directory where the downloaded files are saved filename_fmt: format string to customize the file names since_timestamp: downloaded files since this date (unix timestamp) ''' self.tr = tr self.output_path = Path(output_path) self.filename_fmt = filename_fmt self.since_timestamp = since_timestamp self.session = FuturesSession() self.futures = [] self.docs_request = 0 self.done = 0 self.filepaths = [] self.doc_urls = [] self.tl = Timeline(self.tr) self.log = get_logger(__name__) async def dl_loop(self): await self.tl.get_next_timeline(max_age_timestamp=self.since_timestamp) while True: _subscription_id, subscription, response = await self.tr.recv() # try: # _subscription_id, subscription, response = await self.tr.recv() # except TradeRepublicError as e: # self.log.error(str(e)) if subscription['type'] == 'timeline': await self.tl.get_next_timeline(response, max_age_timestamp=self.since_timestamp) elif subscription['type'] == 'timelineDetail': await self.tl.timelineDetail(response, self, max_age_timestamp=self.since_timestamp) else: self.log.warning(f"unmatched subscription of type '{subscription['type']}':\n{preview(response)}") def dl_doc(self, doc, titleText, subtitleText, subfolder=None): ''' send asynchronous request, append future with filepath to self.futures ''' doc_url = doc['action']['payload'] date = doc['detail'] iso_date = '-'.join(date.split('.')[::-1]) # extract time from subtitleText time = re.findall('um (\\d+:\\d+) Uhr', subtitleText) if time == []: time = '' else: time = f' {time[0]}' if subfolder is not None: directory = self.output_path / subfolder else: directory = self.output_path # If doc_type is something like 'Kosteninformation 2', then strip the 2 and save it in doc_type_num doc_type = doc['title'].rsplit(' ') if doc_type[-1].isnumeric() is True: doc_type_num = f' {doc_type.pop()}' else: doc_type_num = '' doc_type = ' '.join(doc_type) titleText = titleText.replace('\n', '').replace('/', '-') subtitleText = subtitleText.replace('\n', '').replace('/', '-') filename = self.filename_fmt.format( iso_date=iso_date, time=time, title=titleText, subtitle=subtitleText, doc_num=doc_type_num ) if os_name == 'nt': badChars = ['/', '\n', ':', '@', '.'] for badChar in badChars: filename = filename.replace(badChar, '') if doc_type in ['Kontoauszug', 'Depotauszug']: filepath = directory / 'Abschlüsse' / f'{filename}' / f'{doc_type}.pdf' else: filepath = directory / doc_type / f'{filename}.pdf' filepath = sanitize_filepath(filepath, '_', os_name) if filepath in self.filepaths: self.log.debug(f'File {filepath} already in queue. Skipping...') return else: self.filepaths.append(filepath) if filepath.is_file() is False: doc_url_base = doc_url.split('?')[0] if doc_url_base in self.doc_urls: self.log.debug(f'URL {doc_url_base} already in queue. Skipping...') return else: self.doc_urls.append(doc_url_base) future = self.session.get(doc_url) future.filepath = filepath self.futures.append(future) else: self.log.debug(f'file {filepath} already exists. Skipping...') def work_responses(self): ''' process responses of async requests ''' if len(self.doc_urls) == 0: self.log.info('Nothing to download') exit(0) self.log.info('Waiting for downloads to complete..') for future in as_completed(self.futures): if future.filepath.is_file() is True: self.log.debug(f'file {future.filepath} was already downloaded.') r = future.result() future.filepath.parent.mkdir(parents=True, exist_ok=True) with open(future.filepath, 'wb') as f: f.write(r.content) self.done += 1 self.log.debug(f'{self.done:>3}/{len(self.doc_urls)} {future.filepath.name}') if self.done == len(self.doc_urls): self.log.info('Done.') exit(0) def dl_all(output_path): ''' TODO '''
the-stack_0_20942
import logging import os import psycopg2 from psycopg2 import extensions from typing import Optional import doesntCare db: psycopg2.extensions.connection def connect() -> bool: global db try: db = psycopg2.connect(os.environ.get('DATABASE_URL')) db.autocommit = True logging.info('Connected to database') return True except psycopg2.Error: logging.exception('Error while connecting to database') return False def create_tables() -> bool: global db try: with db.cursor() as cur: cur.execute( 'CREATE TABLE IF NOT EXISTS \"DC_List\"' '(' 'id SERIAL,' 'chat_id BIGINT NOT NULL,' 'not_important_id TEXT NOT NULL,' 'doesnt_care_id BIGINT NOT NULL,' 'response_mode SMALLINT NOT NULL,' 'response_mode_option REAL NOT NULL,' 'last_response_dt TIMESTAMP NOT NULL,' 'response_counter INTEGER NOT NULL,' 'PRIMARY KEY (id)' ');' ) logging.info('Tables checked successfully') cur.execute( 'CREATE UNIQUE INDEX IF NOT EXISTS \"DC_Index\"' 'ON \"DC_List\"(' 'chat_id,' 'not_important_id,' 'doesnt_care_id' ')' ) logging.info('Indexes checked successfully') return True except psycopg2.Error: logging.exception('Error while creating tables') return False def insert(dc: doesntCare.DoesntCare) -> bool: global db try: with db.cursor() as cur: cur.execute( 'INSERT INTO \"DC_List\"(chat_id, not_important_id, doesnt_care_id, response_mode, ' 'response_mode_option, last_response_dt, response_counter) ' 'VALUES(%s, %s, %s, %s, %s, %s, %s)', (dc.chat_id, dc.not_important_id, dc.doesnt_care_id, dc.response_mode, dc.response_mode_option, dc.last_response_dt, dc.response_counter) ) return True except psycopg2.Error: logging.exception('Error while adding new entry to database') return False def update(dc: doesntCare.DoesntCare) -> bool: global db try: with db.cursor() as cur: cur.execute( 'UPDATE \"DC_List\" SET ' 'last_response_dt = %s,' 'response_counter = %s' 'WHERE chat_id = %s AND ' 'not_important_id = %s AND ' 'doesnt_care_id = %s', (dc.last_response_dt, dc.response_counter, dc.chat_id, dc.not_important_id, dc.doesnt_care_id) ) return True except psycopg2.Error: logging.exception('Error while adding new entry to database') return False def remove(dc: doesntCare.DoesntCare) -> bool: global db try: with db.cursor() as cur: cur.execute( 'DELETE FROM \"DC_List\" WHERE ' 'chat_id = %s AND ' 'not_important_id = %s AND ' 'doesnt_care_id = %s', (dc.chat_id, dc.not_important_id, dc.doesnt_care_id) ) return True except psycopg2.Error: logging.exception('Error while removing entry from database') return False def remove_all_dci(doesnt_care_id: int, chat_id: int) -> bool: global db try: with db.cursor() as cur: cur.execute( 'DELETE FROM \"DC_List\" WHERE ' 'doesnt_care_id = %s AND ' 'chat_id = %s', (doesnt_care_id, chat_id) ) return True except psycopg2.Error: logging.exception('Error while removing all for doesnt_care_id') return False def find(chat_id: int, not_important_id: str, doesnt_care_id: int) -> Optional[doesntCare.DoesntCare]: global db try: with db.cursor() as cur: cur.execute( 'SELECT response_mode, response_mode_option, last_response_dt, response_counter ' 'FROM \"DC_List\" WHERE ' 'chat_id = %s AND ' 'not_important_id = %s AND ' 'doesnt_care_id = %s', (chat_id, not_important_id, doesnt_care_id) ) row = cur.fetchone() if row is None: return None # Record not found return doesntCare.DoesntCare( chat_id=chat_id, not_important_id=not_important_id, doesnt_care_id=doesnt_care_id, response_mode=row[0], response_mode_option=row[1], last_response_dt=row[2], response_counter=row[3] ) except psycopg2.Error: logging.exception('Error while querying data') raise def find_by_nii_ci(not_important_id: str, chat_id: int) -> Optional[list]: global db dc_list = [] try: with db.cursor() as cur: cur.execute( 'SELECT doesnt_care_id, response_mode, response_mode_option, last_response_dt, response_counter ' 'FROM \"DC_List\" WHERE ' 'not_important_id = %s AND ' 'chat_id = %s', (not_important_id, chat_id) ) res = cur.fetchall() for row in res: dc_list.append(doesntCare.DoesntCare( chat_id=chat_id, not_important_id=not_important_id, doesnt_care_id=row[0], response_mode=row[1], response_mode_option=row[2], last_response_dt=row[3], response_counter=row[4] )) return dc_list except psycopg2.Error: logging.exception('Error while querying data') return None
the-stack_0_20943
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import json import os from operator import itemgetter import click from ....subprocess import run_command from ...utils import get_valid_checks, get_version_file from ..console import CONTEXT_SETTINGS, abort, echo_failure, echo_info, echo_success @click.command( context_settings=CONTEXT_SETTINGS, short_help="Verify if a custom check or integration can run on python 3" ) @click.argument('check') def py3(check): """Verify if a custom check or integration can run on python 3. CHECK can be an integration name or a valid path to a Python module or package folder. """ if check in get_valid_checks(): path_to_module = os.path.dirname(get_version_file(check)) else: path_to_module = check if not os.path.exists(path_to_module): abort(u"{} does not exist.".format(path_to_module)) echo_info(u"Validating python3 compatibility of {}...".format(check)) cmd = ["pylint", "-f", "json", "--py3k", "-d", "W1618", "--persistent", "no", "--exit-zero", path_to_module] results = json.loads(run_command(cmd, capture='stdout').stdout) if results: echo_failure(u"Incompatibilities were found for {}:".format(check)) current_path = None for problem in sorted(results, key=itemgetter("path")): # pylint returns an array a dicts like # { # "line": 23, # "column": 8, # "message": "Calling a dict.iter*() method", # "file": "/path/to/file.py", # } path = problem["path"] if current_path is None or path != current_path: echo_info(u"File {}:".format(path)) echo_failure(" Line {}, column {}: {}".format(problem['line'], problem['column'], problem["message"])) current_path = path abort() else: echo_success(u"{} is compatible with python3".format(check))
the-stack_0_20944
# -*- coding: utf-8 -*- from .datatables import Datatable, ValuesDatatable, LegacyDatatable from .columns import (Column, TextColumn, DateColumn, DateTimeColumn, BooleanColumn, IntegerColumn, FloatColumn, DisplayColumn, CompoundColumn) from .exceptions import SkipRecord __name__ = 'datatableview' __author__ = 'Autumn Valenta' __version_info__ = (0, 9, 0) __version__ = '.'.join(map(str, __version_info__)) __date__ = '2013/11/14 2:00:00 PM' __credits__ = ['Autumn Valenta', 'Steven Klass'] __license__ = 'See the file LICENSE.txt for licensing information.'
the-stack_0_20945
import tensorflow as tf LAYER = 5 if LAYER == 7: from bvlc_alexnet_fc7 import AlexNet elif LAYER == 5: from bvlc_alexnet_cn5 import AlexNet import fine_tune_nt import numpy as np import os import time import cv2 import image_io # the dimension of the final layer = feature dim NN_DIM = 100 LABEL_DIM = 10 TRAIN_TXT = 'file_list_fine_tune_train.txt' # TRAIN_TXT = 'file_list_fine_tune_test_nba_dunk.txt' TRAIN = True SHUFFLE_DATA = False BATCH_SIZE = 1 FEATURE_ROW = 227 FEATURE_COL = 227 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_log_dir','fine_tune_nn_logs', '''directory wherer to write event logs''') tf.app.flags.DEFINE_integer('max_training_iter', 10000, '''the max number of training iteration''') tf.app.flags.DEFINE_float('init_learning_rate',0.001, '''initial learning rate''') tf.app.flags.DEFINE_string('model_dir', 'fine_tune_nn_model_logs','''directory where to save the model''') # tf.app.flags.DEFINE_string('feature_dir', 'f7_dir/','''saved feature dir''') def define_graph_config(): config_proto = tf.ConfigProto() config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9 return config_proto def calculate_iter(): with open(TRAIN_TXT, 'r') as f: s = f.read() s_l = s.split('\n') total_num = len(s_l) FLAGS.max_training_iter = int(total_num / BATCH_SIZE) + 1 print(FLAGS.max_training_iter) def write_feature(file_name, feature): assert(len(file_name) == len(feature)) for i in range(len(file_name)): if LAYER == 7: f_name = file_name[i].replace(".jpg",".fc7") elif LAYER == 5: f_name = file_name[i].replace(".jpg",".cn5") feature.tofile(f_name) def filequeue_to_batch_data(filename_queue, line_reader, batch_size = BATCH_SIZE): key, next_line = line_reader.read(filename_queue) query_image_name, label = tf.decode_csv( next_line, [tf.constant([], dtype=tf.string), tf.constant([], dtype = tf.int32)], field_delim=" ") reverse_channel = True # for pre-trained purpose query_tensor = image_io.read_image(query_image_name, reverse_channel, FEATURE_ROW, FEATURE_COL) batch_query_image, batch_label, batch_image_name = tf.train.batch( [query_tensor, label, query_image_name], batch_size=batch_size) return batch_query_image, batch_label, batch_image_name def train(): calculate_iter() train_filenamequeue=tf.train.string_input_producer([TRAIN_TXT], shuffle=SHUFFLE_DATA) line_reader = tf.TextLineReader() train_batch_image, train_batch_label, batch_image_name = filequeue_to_batch_data(train_filenamequeue, line_reader) global_step = tf.Variable(0, name = 'global_step', trainable = False) image_data_ph = tf.placeholder(tf.float32, shape = (BATCH_SIZE, FEATURE_ROW, FEATURE_COL, 3)) label_ph = tf.placeholder(tf.float32, shape = (BATCH_SIZE, LABEL_DIM)) net = AlexNet({'data':image_data_ph}) infer = net.get_output() new_dim = 1 for d in infer.get_shape().as_list()[1:]: new_dim *= d infer_reshape = tf.reshape(infer, [-1,new_dim]) for var in tf.trainable_variables(): tf.histogram_summary(var.op.name, var) merged_sum = tf.merge_all_summaries() config_proto = define_graph_config() sess = tf.Session(config = config_proto) if TRAIN: writer_sum = tf.train.SummaryWriter(FLAGS.train_log_dir,graph_def = sess.graph_def) init_op = tf.initialize_all_variables() sess.run(init_op) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord = coord, sess = sess) if TRAIN: for i in xrange(FLAGS.max_training_iter): batch_image_v, batch_image_name_v = sess.run([train_batch_image, batch_image_name]) feed_data = {image_data_ph: batch_image_v} infer_v = sess.run(infer_reshape, feed_dict = feed_data) write_feature(batch_image_name_v, infer_v) def main(argv = None): # if not os.path.exists(FLAGS.feature_dir): # os.makedirs(FLAGS.feature_dir) train() if __name__ == '__main__': tf.app.run()
the-stack_0_20946
from typing import List, Tuple, Union, Dict, Any, Optional import click import wandb import pandas as pd import argparse import pathlib import sys from .wandb_utils import ( wandb_utils, pass_api_wrapper, pass_api_and_info, config_file_decorator, ) from .common import processor from wandb_utils.file_filter import FileFilter, GlobBasedFileFilter import logging import tqdm import pandas as pd logger = logging.getLogger(__name__) def download_run_from_wandb( api: wandb.PublicApi, entity: Optional[str], project: Optional[str], sweep: Optional[str], run: Optional[str], output_dir: pathlib.Path, include_filter: Optional[List[str]] = None, exclude_filter: Optional[List[str]] = None, overwrite: bool = False, move: bool = False, ) -> None: run_ = api.run(f"{entity}/{project}/{run}") # pbar = tqdm.tqdm(run_.files(), desc="Downloading files") output_dir.mkdir(parents=True, exist_ok=overwrite) ff = GlobBasedFileFilter( include_filter=include_filter, exclude_filter=exclude_filter ) for file_ in run_.files(): if ff(file_): # pbar.set_description(f"Downloading: {file_.name}") logger.debug(f"Downloading: {file_.name}") file_.download(output_dir, replace=overwrite) def download_runs_from_wandb( df: pd.DataFrame, api: wandb.PublicApi, entity: Optional[str], project: Optional[str], sweep: Optional[str], output_dir_field: str, include_filter: Optional[List[str]] = None, exclude_filter: Optional[List[str]] = None, ) -> pd.DataFrame: for row in tqdm.tqdm(df.iterrows(), desc="Downloading runs' files"): download_run_from_wandb( api, entity, project, sweep, row["run"], pathlib.Path(row[output_dir_field]), include_filter, exclude_filter, ) @click.command(name="download-run-from-wandb") @click.argument("run", type=str) @click.option( "-o", "--output_dir", required=True, type=click.Path(path_type=pathlib.Path), # type: ignore help="Directory in which to save the run data. It will be saved in output_dir/runid", ) @click.option( "--include_filter", multiple=True, type=str, help="Glob string for files to include (can pass multiple). See `glob_filter.py` for details.", ) @click.option( "--exclude_filter", multiple=True, type=str, help="Glob string for Files to exclude (can pass multiple). See `glob_filter.py` for details.", ) @click.option("--overwrite", is_flag=True) @pass_api_and_info @processor @config_file_decorator() def download_run_from_wandb_command( df: pd.DataFrame, api: wandb.PublicApi, entity: Optional[str], project: Optional[str], sweep: Optional[str], run: str, output_dir: pathlib.Path, include_filter: Optional[List[str]] = None, exclude_filter: Optional[List[str]] = None, overwrite: bool = False, ) -> pd.DataFrame: """ Download single run from wandb server. RUN is the unique run id. """ return download_run_from_wandb( api, entity, project, sweep, run, output_dir, include_filter, exclude_filter, overwrite, )
the-stack_0_20947
import os import torch import torch.nn as nn from torch.nn import functional as F import torch.optim as optim from transformer_disentangle.encoders import StyleEncoder, PoseEncoder from transformer_disentangle.decoder import Decoder from transformer_disentangle.discriminator import Discriminator def kl_divergence(mu, logvar): return - 0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) def mse_loss(input, target): return (input - target).pow(2).mean() class VAE_Model(nn.Module): def __init__(self, args): super(VAE_Model, self).__init__() style_enc = StyleEncoder( feature_size=args.dim_per_limb, latent_size=args.latent_dim, ninp=args.attention_embedding_size, nhead=args.attention_heads, nhid=args.attention_hidden_size, nlayers=args.attention_layers, max_num_limbs=args.max_num_limbs, ) pose_enc = PoseEncoder( root_size=args.root_size, feature_size=args.dim_per_limb, latent_size=args.latent_dim, batch_size=args.batch_size, ninp=args.attention_embedding_size, nhead=args.attention_heads, nhid=args.attention_hidden_size, nlayers=args.attention_layers, max_num_limbs=args.max_num_limbs, ) decoder = Decoder( root_size=args.root_size, feature_size=args.dim_per_limb, latent_size=args.latent_dim, batch_size=args.batch_size, ninp=args.attention_embedding_size, nhead=args.attention_heads, nhid=args.attention_hidden_size, nlayers=args.attention_layers, max_num_limbs=args.max_num_limbs, ) discriminator = Discriminator( root_size=args.root_size, feature_size=args.dim_per_limb, max_num_limbs=args.max_num_limbs ) self.add_module("style_enc", style_enc) self.add_module("pose_enc", pose_enc) self.add_module("decoder", decoder) self.add_module("discriminator", discriminator) self.batch_size = args.batch_size self.latent_dim = args.latent_dim encoder_parameters = list(self.style_enc.parameters()) + list(self.pose_enc.parameters()) self.auto_encoder_optimizer = optim.Adam( encoder_parameters + list(self.decoder.parameters()), lr=args.lr, ) self.discriminator_optimizer = optim.Adam( list(self.discriminator.parameters()), lr=args.lr, ) self.generator_optimizer = optim.Adam( encoder_parameters + list(self.decoder.parameters()), lr=args.lr, ) self.beta = args.beta self.device = torch.device("cuda" if args.cuda else "cpu") self.root_size = args.root_size def train_recon(self, x1, x2, structure): self.auto_encoder_optimizer.zero_grad() zs = self.style_enc(structure) zp_1, mean, logvar = self.pose_enc(x1) zp_2, mean, logvar = self.pose_enc(x2) x1_r = self.decoder(zp_1, zs) x2_r = self.decoder(zp_2, zs) kl_loss = kl_divergence(mean, logvar).mean() reconstruction_loss = mse_loss(x1_r, x1) + mse_loss(x2_r, x1) loss = reconstruction_loss + self.beta * kl_loss loss.backward() self.auto_encoder_optimizer.step() return reconstruction_loss, kl_loss def train_generator(self, x1, x3, structure3): self.generator_optimizer.zero_grad() zp_1, mean, logvar = self.pose_enc(x1) zs_3 = self.style_enc(structure3) xr_13 = self.decoder(zp_1, zs_3) kl_loss = kl_divergence(mean, logvar).mean() # True labels true_labels = torch.ones(self.batch_size, 1) true_labels = true_labels.to(self.device) d1 = self.discriminator(x3, xr_13) gen_loss_1 = F.binary_cross_entropy(d1, true_labels) z_random = torch.normal(0, 1, size=(self.batch_size, self.latent_dim)) z_random = z_random.to(self.device) xr_r3 = self.decoder(z_random, zs_3) d2 = self.discriminator(x3, xr_r3) gen_loss_2 = F.binary_cross_entropy(d2, true_labels) generator_loss = gen_loss_1 + gen_loss_2 + self.beta * kl_loss generator_loss.backward() self.generator_optimizer.step() return gen_loss_1, gen_loss_2, kl_loss def train_discriminator(self, x1, x2, x3, structure3): self.discriminator_optimizer.zero_grad() true_labels = torch.ones(self.batch_size, 1) true_labels = true_labels.to(self.device) d_real = self.discriminator(x2, x3) disc_loss_real = F.binary_cross_entropy(d_real, true_labels) fake_labels = torch.zeros(self.batch_size, 1) fake_labels = fake_labels.to(self.device) zp_1, mean, logvar = self.pose_enc(x1) zs_3 = self.style_enc(structure3) xr_13 = self.decoder(zp_1, zs_3) d_fake = self.discriminator(x3, xr_13) disc_loss_fake = F.binary_cross_entropy(d_fake, fake_labels) discriminator_loss = disc_loss_real + disc_loss_fake discriminator_loss.backward() self.discriminator_optimizer.step() return discriminator_loss def save_model(self, path): model_path = os.path.join(path, 'vae_model') torch.save({ "pose_encoder": self.pose_enc.state_dict(), }, model_path) torch.save({ "style_encoder": self.style_enc.state_dict(), }, model_path) torch.save({ "decoder": self.decoder.state_dict(), }, model_path) torch.save({ "discriminator": self.discriminator.state_dict(), }, model_path) def load_model(self, path): model_path = os.path.join(path, 'vae_model') data = torch.load(model_path) self.encoder.load_state_dict(data['encoder'])
the-stack_0_20949
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Problem 021 Divisible Sum Pairs Source : https://www.hackerrank.com/challenges/divisible-sum-pairs/problem """ _, d = map(int, input().split()) numbers = list(map(int, input().split())) nb = len(numbers) count = 0 for i in range(nb-1): for j in range(i+1, nb): count += (numbers[i] + numbers[j]) % d == 0 print(count)
the-stack_0_20951
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the Apache 2.0 License. import io import msgpack import struct GCM_SIZE_TAG = 16 GCM_SIZE_IV = 12 LEDGER_TRANSACTION_SIZE = 4 LEDGER_DOMAIN_SIZE = 8 def to_uint_32(buffer): return struct.unpack("@I", buffer)[0] def to_uint_64(buffer): return struct.unpack("@Q", buffer)[0] class GcmHeader: _gcm_tag = ["\0"] * GCM_SIZE_TAG _gcm_iv = ["\0"] * GCM_SIZE_IV def __init__(self, buffer): if len(buffer) < GcmHeader.size(): raise ValueError("Corrupt GCM header") self._gcm_tag = struct.unpack(f"@{GCM_SIZE_TAG}B", buffer[:GCM_SIZE_TAG]) self._gcm_iv = struct.unpack(f"@{GCM_SIZE_IV}B", buffer[GCM_SIZE_TAG:]) def size(): return GCM_SIZE_TAG + GCM_SIZE_IV class LedgerDomain: _buffer = None _unpacker = None _buffer_size = 0 _version = 0 _read_version = 0 _tables = {} def __init__(self, buffer): self._buffer = buffer self._buffer_size = buffer.getbuffer().nbytes self._unpacker = msgpack.Unpacker(self._buffer, raw=True, strict_map_key=False) self._version = self._read_next() self._read() def _read_next(self): return self._unpacker.unpack() def _read_next_string(self): return self._unpacker.unpack().decode() def _read(self): while self._buffer_size > self._unpacker.tell(): map_start_indicator = self._read_next() map_name = self._read_next_string() records = {} self._tables[map_name] = records read_version = self._read_next() read_count = self._read_next() write_count = self._read_next() if write_count: for i in range(write_count): k = self._read_next() val = self._read_next() records[k] = val remove_count = self._read_next() if remove_count: for i in range(remove_count): k = self._read_next() records[k] = None def get_tables(self): return self._tables def _byte_read_safe(file, num_of_bytes): ret = file.read(num_of_bytes) if len(ret) != num_of_bytes: raise ValueError("Failed to read precise number of bytes: %u" % num_of_bytes) return ret class Transaction: _file = None _total_size = 0 _public_domain_size = 0 _next_offset = 0 _public_domain = None _file_size = 0 gcm_header = None def __init__(self, filename): self._file = open(filename, mode="rb") self._file.seek(0, 2) self._file_size = self._file.tell() self._file.seek(0, 0) def __del__(self): self._file.close() def _read_header(self): # read the size of the transaction buffer = _byte_read_safe(self._file, LEDGER_TRANSACTION_SIZE) self._total_size = to_uint_32(buffer) self._next_offset += self._total_size self._next_offset += LEDGER_TRANSACTION_SIZE # read the AES GCM header buffer = _byte_read_safe(self._file, GcmHeader.size()) self.gcm_header = GcmHeader(buffer) # read the size of the public domain buffer = _byte_read_safe(self._file, LEDGER_DOMAIN_SIZE) self._public_domain_size = to_uint_64(buffer) def get_public_domain(self): if self._public_domain == None: buffer = io.BytesIO(_byte_read_safe(self._file, self._public_domain_size)) self._public_domain = LedgerDomain(buffer) return self._public_domain def _complete_read(self): self._file.seek(self._next_offset, 0) self._public_domain = None def __iter__(self): return self def __next__(self): if self._next_offset == self._file_size: raise StopIteration() try: self._complete_read() self._read_header() return self except: raise StopIteration() class Ledger: _filename = None def __init__(self, filename): self._filename = filename def __iter__(self): return Transaction(self._filename)
the-stack_0_20954
''' Unit tests for the gbdxtools.Vectors class See tests/readme.md for more about tests ''' from gbdxtools import Interface from gbdxtools.vectors import Vectors, AggregationDef, GeohashAggDef, \ DateHistogramAggDef, TermsAggDef, AvgAggDef, \ SumAggDef, AvgGeoLatAggDef, AvgGeoLonAggDef, CardinalityAggDef from helpers import mockable_interface, gbdx_vcr import unittest import types import json class TestVectors(unittest.TestCase): @classmethod def setUpClass(cls): cls.gbdx = mockable_interface() def test_init(self): c = Vectors() self.assertIsInstance(c, Vectors) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_search_1010.yaml') def test_vectors_search_paging(self): aoi = "POLYGON ((180 -90, 180 90, -180 90, -180 -90, 180 -90))" results = self.gbdx.vectors.query(aoi, query="item_type:WV03_VNIR", count=1010) self.assertEqual(len(results), 1010) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_search_55.yaml') def test_vectors_search_count_small(self): aoi = "POLYGON((17 25, 18 25, 18 24, 17 24, 17 25))" results = self.gbdx.vectors.query(aoi, query='item_type:WV02', count=55) self.assertEqual(len(results), 55) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_search_1.yaml') def test_vectors_search_count_single(self): aoi = "POLYGON((17 25, 18 25, 18 24, 17 24, 17 25))" results = self.gbdx.vectors.query(aoi, query="item_type:WV02", count=1) self.assertEqual(len(results), 1) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_search_index.yaml') def test_vectors_search_index(self): aoi = 'POLYGON ((-117.1 37.9, -117.1 38.1, -117.3 38.1, -117.3 37.9, -117.1 37.9))' results = self.gbdx.vectors.query(aoi, query="item_type:tweet", index="vector-sma-twitter*", count=100) self.assertEqual(len(results), 17) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_search_iterate.yaml') def test_vectors_search_iteratively(self): '''Run the same query directly and through paging''' aoi = "POLYGON((17 25, 18 25, 18 24, 17 24, 17 25))" query = "item_type:WV02" count = 150 generator = self.gbdx.vectors.query_iteratively(aoi, query=query, count=count) results = self.gbdx.vectors.query(aoi, query=query, count=count) self.assertIsInstance(generator, types.GeneratorType) self.assertEqual(len(results), count) self.assertEqual(len(list(generator)), len(results)) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_create_single.yaml') def test_vectors_create_single(self): results = self.gbdx.vectors.create({ "type": "Feature", "geometry": { "type": "Point", "coordinates": [1.0,1.0] }, "properties": { "text" : "item text", "name" : "item name", "item_type" : "type", "ingest_source" : "source", "attributes" : { "latitude" : 1, "institute_founded" : "2015-07-17", "mascot" : "moth" } } }) for result in results['successfulItemIds']: self.assertEqual(result, '/api/vector/vector-user-provided/e0f25c1c-9078-476b-ac5d-4c7fb08bb79a') @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_create_multiple.yaml') def test_vectors_create_multiple(self): results = self.gbdx.vectors.create([{ "type": "Feature", "geometry": { "type": "Point", "coordinates": [1.0,1.0] }, "properties": { "text" : "item text", "name" : "item name", "item_type" : "type", "ingest_source" : "source", "attributes" : { "latitude" : 1, "institute_founded" : "2015-07-17", "mascot" : "moth" } } }, { "type": "Feature", "geometry": { "type": "Point", "coordinates": [1.0,1.0] }, "properties": { "text" : "item text", "name" : "item name", "item_type" : "type", "ingest_source" : "source", "attributes" : { "latitude" : 1, "institute_founded" : "2015-07-17", "mascot" : "asdfadsfadf" } } }]) self.assertEqual(len(results), 2) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_create_from_wkt.yaml') def test_vectors_create_from_wkt(self): aoi = "POLYGON((0 3,3 3,3 0,0 0,0 3))" result = self.gbdx.vectors.create_from_wkt( aoi, item_type='test_type_123', ingest_source='api', attribute1='nothing', attribute2='something', number=6, date='2015-06-06' ) self.assertEqual(result, '488f1b61-a539-447e-bced-e66563040a89') @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_aggregate_query_with_default_index.yaml') def test_vectors_aggregate_query_with_default_index(self): wkt = 'POLYGON((-76.65 40.10, -76.65 40.14, -76.55 40.14, -76.55 40.10, -76.65 40.10))' aggs = 'terms:item_type' result = self.gbdx.vectors.aggregate_query(wkt, aggs) self.assertEqual(len(result), 1) self.assertIn('name', result[0]) self.assertEqual(result[0]['name'],'terms:item_type') self.assertIn('terms', result[0]) self.assertEqual(len(result[0]['terms']), 10) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_aggregate_query_with_defined_index.yaml') def test_vectors_aggregate_query_with_defined_index(self): wkt = 'POLYGON((-76.65 40.10, -76.65 40.14, -76.55 40.14, -76.55 40.10, -76.65 40.10))' aggs = 'terms:item_type' result = self.gbdx.vectors.aggregate_query(wkt, aggs, index='read-vector-osm-*') self.assertEqual(len(result), 1) self.assertIn('name', result[0]) self.assertEqual(result[0]['name'],'terms:item_type') self.assertIn('terms', result[0]) self.assertEqual(len(result[0]['terms']), 10) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_aggregate_query_simple.yaml') def test_vectors_aggregate_query_agg_string(self): wkt = 'POLYGON((-76.65 40.10, -76.65 40.14, -76.55 40.14, -76.55 40.10, -76.65 40.10))' aggs = 'terms:ingest_source' result = self.gbdx.vectors.aggregate_query(wkt, aggs) self.assertEqual(len(result), 1) self.assertIn('name', result[0]) self.assertEqual(result[0]['name'],'terms:ingest_source') self.assertIn('terms', result[0]) self.assertEqual(len(result[0]['terms']), 1) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_aggregate_query_simple.yaml') def test_vectors_aggregate_query_agg_def(self): wkt = 'POLYGON((-76.65 40.10, -76.65 40.14, -76.55 40.14, -76.55 40.10, -76.65 40.10))' aggs = AggregationDef(agg_type='terms', value='ingest_source') result = self.gbdx.vectors.aggregate_query(wkt, aggs) self.assertEqual(len(result), 1) self.assertIn('name', result[0]) self.assertEqual(result[0]['name'],'terms:ingest_source') self.assertIn('terms', result[0]) self.assertEqual(len(result[0]['terms']), 1) @gbdx_vcr.use_cassette('tests/unit/cassettes/test_vectors_aggregate_query_complex.yaml') def test_vectors_aggregate_query_complex(self): wkt = 'POLYGON((-76.65 40.10, -76.65 40.14, -76.55 40.14, -76.55 40.10, -76.65 40.10))' child_agg = AggregationDef(agg_type='date_hist', value='month') aggs = AggregationDef(agg_type='geohash', value='4', children=child_agg) query = 'item_type:tweet' start_date = 'now-12M' end_date = 'now' result = self.gbdx.vectors.aggregate_query(wkt, aggs, index='vector-sma-twitter*', query=query, start_date=start_date, end_date=end_date) self.assertEqual(len(result), 1) self.assertIn('name', result[0]) self.assertEqual(result[0]['name'],'geohash:4') self.assertIn('terms', result[0]) terms = result[0]['terms'] self.assertEqual(len(terms), 1) self.assertEqual(terms[0]['term'], 'dr1s') self.assertEqual(len(terms[0]['aggregations']), 1) self.assertEqual(len(terms[0]['aggregations'][0]['terms']), 2) def test_agg_def_repr_no_children(self): agg_def = AggregationDef(agg_type='terms', value='ingest_source') self.assertEqual(agg_def.__repr__(), 'terms:ingest_source') def test_agg_def_repr_with_children(self): grandkids = [ AggregationDef(agg_type='cardinality', value='ingest_source'), AggregationDef(agg_type='terms', value='ingest_source') ] kid = AggregationDef(agg_type='date_hist', value='d', children=grandkids) agg_def = AggregationDef(agg_type='geohash', value='4', children=kid) self.assertEqual(agg_def.__repr__(), 'geohash:4;date_hist:d;(cardinality:ingest_source,terms:ingest_source)') def test_geohash_agg_def_constructor(self): agg_def = GeohashAggDef() self.assertEqual(agg_def.agg_type, 'geohash') self.assertEqual(agg_def.value, '3') agg_def = GeohashAggDef('6') self.assertEqual(agg_def.agg_type, 'geohash') self.assertEqual(agg_def.value, '6') child_def = TermsAggDef('item_type') agg_def = GeohashAggDef('2', children=child_def) self.assertEqual(agg_def.agg_type, 'geohash') self.assertEqual(agg_def.value, '2') self.assertEqual(agg_def.children, child_def) def test_date_hist_agg_def_constructor(self): agg_def = DateHistogramAggDef() self.assertEqual(agg_def.agg_type, 'date_hist') self.assertEqual(agg_def.value, 'M') agg_def = DateHistogramAggDef('w') self.assertEqual(agg_def.agg_type, 'date_hist') self.assertEqual(agg_def.value, 'w') child_def = TermsAggDef('item_type') agg_def = DateHistogramAggDef('d', children=child_def) self.assertEqual(agg_def.agg_type, 'date_hist') self.assertEqual(agg_def.value, 'd') self.assertEqual(agg_def.children, child_def) def test_terms_agg_def_constructor(self): agg_def = TermsAggDef('foo') self.assertEqual(agg_def.agg_type, 'terms') self.assertEqual(agg_def.value, 'foo') child_def = DateHistogramAggDef('d') agg_def = TermsAggDef('bar', children=child_def) self.assertEqual(agg_def.agg_type, 'terms') self.assertEqual(agg_def.value, 'bar') self.assertEqual(agg_def.children, child_def) with self.assertRaises(Exception) as context: agg_def = TermsAggDef() self.assertTrue('The "field" property cannot be empty.' in str(context.exception)) def test_cardinality_agg_def_constructor(self): agg_def = CardinalityAggDef('foo') self.assertEqual(agg_def.agg_type, 'cardinality') self.assertEqual(agg_def.value, 'foo') with self.assertRaises(Exception) as context: agg_def = CardinalityAggDef() self.assertTrue('The "field" property cannot be empty.' in str(context.exception)) def test_avg_agg_def_constructor(self): agg_def = AvgAggDef('foo') self.assertEqual(agg_def.agg_type, 'avg') self.assertEqual(agg_def.value, 'foo') with self.assertRaises(Exception) as context: agg_def = AvgAggDef() self.assertTrue('The "field" property cannot be empty.' in str(context.exception)) def test_sum_agg_def_constructor(self): agg_def = SumAggDef('foo') self.assertEqual(agg_def.agg_type, 'sum') self.assertEqual(agg_def.value, 'foo') with self.assertRaises(Exception) as context: agg_def = SumAggDef() self.assertTrue('The "field" property cannot be empty.' in str(context.exception)) def test_avg_geo_lat_agg_def_constructor(self): agg_def = AvgGeoLatAggDef() self.assertEqual(agg_def.agg_type, 'avg_geo_lat') self.assertFalse(agg_def.value) self.assertEqual(str(agg_def), 'avg_geo_lat') def test_avg_geo_lon_agg_def_constructor(self): agg_def = AvgGeoLonAggDef() self.assertEqual(agg_def.agg_type, 'avg_geo_lon') self.assertFalse(agg_def.value) self.assertEqual(str(agg_def), 'avg_geo_lon')
the-stack_0_20955
import os, sys, subprocess, multiprocessing, re, string, json, shutil, logging, traceback import shared from js_optimizer import * DUPLICATE_FUNCTION_ELIMINATOR = path_from_root('tools', 'eliminate-duplicate-functions.js') def process_shell(js, js_engine, shell, equivalentfn_hash_info=None): suffix = '.eliminatedupes' temp_file = temp_files.get(suffix + '.js').name f = open(temp_file, 'w') f.write(shell) f.write('\n') f.write(equivalentfn_hash_info) f.close() (output,error) = subprocess.Popen(js_engine + [DUPLICATE_FUNCTION_ELIMINATOR, temp_file, '--use-hash-info', '--no-minimize-whitespace'], stdout=subprocess.PIPE,stderr=subprocess.PIPE).communicate() assert len(output) > 0 assert len(error) == 0 return output def run_on_chunk(command): try: file_suffix = '.js' index = command.index(DUPLICATE_FUNCTION_ELIMINATOR) filename = command[index + 1] if '--gen-hash-info' in command: file_suffix = '.json' if os.environ.get('EMCC_SAVE_OPT_TEMP') and os.environ.get('EMCC_SAVE_OPT_TEMP') != '0': saved = 'save_' + os.path.basename(filename) while os.path.exists(saved): saved = 'input' + str(int(saved.replace('input', '').replace('.txt', ''))+1) + '.txt' print >> sys.stderr, 'running DFE command', ' '.join(map(lambda c: c if c != filename else saved, command)) shutil.copyfile(filename, os.path.join(shared.get_emscripten_temp_dir(), saved)) if shared.EM_BUILD_VERBOSE_LEVEL >= 3: print >> sys.stderr, 'run_on_chunk: ' + str(command) proc = subprocess.Popen(command, stdout=subprocess.PIPE) output = proc.communicate()[0] assert proc.returncode == 0, 'Error in optimizer (return code ' + str(proc.returncode) + '): ' + output assert len(output) > 0 and not output.startswith('Assertion failed'), 'Error in optimizer: ' + output filename = temp_files.get(os.path.basename(filename) + '.jo' + file_suffix).name # Important to write out in binary mode, because the data we are writing contains Windows line endings '\r\n' because it was PIPED from console. # Otherwise writing \r\n to ascii mode file will result in Windows amplifying \n to \r\n, generating bad \r\r\n line endings. f = open(filename, 'wb') f.write(output) f.close() if DEBUG and not shared.WINDOWS: print >> sys.stderr, '.' # Skip debug progress indicator on Windows, since it doesn't buffer well with multiple threads printing to console. return filename except KeyboardInterrupt: # avoid throwing keyboard interrupts from a child process raise Exception() except (TypeError, ValueError) as e: formatted_lines = traceback.format_exc().splitlines() print >> sys.stderr, ">>>>>>>>>>>>>>>>>" for formatted_line in formatted_lines: print >> sys.stderr, formatted_line print >> sys.stderr, "<<<<<<<<<<<<<<<<<" raise def dump_equivalent_functions(passed_in_filename, global_data): # Represents the sets of equivalent functions for the passed in filename equivalent_fn_info = {} equivalent_fn_json_file = passed_in_filename + ".equivalent_functions.json" # If we are running more than one pass, then we want to merge # all the hash infos into one if os.path.isfile(equivalent_fn_json_file): print >> sys.stderr, "Merging data from current pass for {} into {}".format(passed_in_filename, equivalent_fn_json_file) with open(equivalent_fn_json_file) as data_file: equivalent_fn_info = json.load(data_file) else: print >> sys.stderr, "Writing equivalent functions for {} to {}".format(passed_in_filename, equivalent_fn_json_file) # Merge the global data's fn_hash_to_fn_name structure into # the equivalent function info hash. for fn_hash, fn_names in global_data['fn_hash_to_fn_name'].iteritems(): if fn_hash not in equivalent_fn_info: # Exclude single item arrays as they are of no use to us. if len(fn_names) > 1: equivalent_fn_info[fn_hash] = fn_names[:] else: for fn_name in fn_names: if fn_name not in equivalent_fn_info[fn_hash]: equivalent_fn_info[fn_hash].append(fn_name) with open(equivalent_fn_json_file, 'w') as fout: fout.write(json.dumps(equivalent_fn_info)) def write_equivalent_fn_hash_to_file(f, json_files, passed_in_filename): # Represents the aggregated info for all the json files passed in # Each json file contains info for one of the processed chunks global_data = {} global_data['fn_hash_to_fn_name'] = {} global_data['fn_hash_to_fn_body'] = {} global_data['variable_names'] = {} for json_file in json_files: with open(json_file) as data_file: data = json.load(data_file) # Merge the data's fn_hash_to_fn_name structure into # the global data hash. for fn_hash, fn_names in data['fn_hash_to_fn_name'].iteritems(): if fn_hash not in global_data['fn_hash_to_fn_name']: global_data['fn_hash_to_fn_name'][fn_hash] = fn_names[:] global_data['fn_hash_to_fn_body'][fn_hash] = data['fn_hash_to_fn_body'][fn_hash] else: assert(data['fn_hash_to_fn_body'][fn_hash] == global_data['fn_hash_to_fn_body'][fn_hash]) for fn_name in fn_names: if fn_name not in global_data['fn_hash_to_fn_name'][fn_hash]: global_data['fn_hash_to_fn_name'][fn_hash].append(fn_name) # Merge the data's variable_names structure into # the global data hash. for variable, value in data['variable_names'].iteritems(): if variable not in global_data['variable_names']: global_data['variable_names'][variable] = value variable_names = global_data['variable_names'] # Lets generate the equivalent function hash from the global data set equivalent_fn_hash = {} for fn_hash, fn_names in global_data['fn_hash_to_fn_name'].iteritems(): shortest_fn = None for fn_name in fn_names: if (fn_name not in variable_names) and (shortest_fn is None or (len(fn_name) < len(shortest_fn))): shortest_fn = fn_name if shortest_fn is not None: for fn_name in fn_names: if fn_name not in variable_names and fn_name != shortest_fn: equivalent_fn_hash[fn_name] = shortest_fn # Dump the sets of equivalent functions if the user desires it # This comes in handy for debugging if shared.Settings.ELIMINATE_DUPLICATE_FUNCTIONS_DUMP_EQUIVALENT_FUNCTIONS: dump_equivalent_functions(passed_in_filename, global_data) # Now write the equivalent function hash to the last line of the file f.write('// ' + json.dumps(equivalent_fn_hash, separators=(',',':'))) # gen_hash_info is used to determine whether we are generating # the global set of function implementation hashes. If set to # False, we assume that we have to use the global hash info to # reduce the set of duplicate functions def run_on_js(filename, gen_hash_info=False): js_engine=shared.NODE_JS js = open(filename).read() if os.linesep != '\n': js = js.replace(os.linesep, '\n') # we assume \n in the splitting code equivalentfn_hash_info = None passed_in_filename = filename # Find markers start_funcs = js.find(start_funcs_marker) end_funcs = js.rfind(end_funcs_marker) if start_funcs < 0 or end_funcs < start_funcs: logging.critical('Invalid input file. Did not contain appropriate markers. (start_funcs: %s, end_funcs: %s)' % (start_funcs, end_funcs)) sys.exit(1) if not gen_hash_info: equivalentfn_hash_info = js[js.rfind('//'):] start_asm = js.find(start_asm_marker) end_asm = js.rfind(end_asm_marker) assert (start_asm >= 0) == (end_asm >= 0) # We need to split out the asm shell as well, for minification pre = js[:start_asm + len(start_asm_marker)] post = js[end_asm:] asm_shell = js[start_asm + len(start_asm_marker):start_funcs + len(start_funcs_marker)] + ''' EMSCRIPTEN_FUNCS(); ''' + js[end_funcs + len(end_funcs_marker):end_asm + len(end_asm_marker)] js = js[start_funcs + len(start_funcs_marker):end_funcs] # we assume there is a maximum of one new name per line asm_shell_pre, asm_shell_post = process_shell(js, js_engine, asm_shell, equivalentfn_hash_info).split('EMSCRIPTEN_FUNCS();'); asm_shell_post = asm_shell_post.replace('});', '})'); pre += asm_shell_pre + '\n' + start_funcs_marker post = end_funcs_marker + asm_shell_post + post if not gen_hash_info: # We don't need the extra info at the end post = post[:post.rfind('//')].strip() else: pre = js[:start_funcs + len(start_funcs_marker)] post = js[end_funcs + len(end_funcs_marker):] js = js[start_funcs + len(start_funcs_marker):end_funcs] post = end_funcs_marker + post total_size = len(js) funcs = split_funcs(js, False) js = None # if we are making source maps, we want our debug numbering to start from the # top of the file, so avoid breaking the JS into chunks cores = int(os.environ.get('EMCC_CORES') or multiprocessing.cpu_count()) intended_num_chunks = int(round(cores * NUM_CHUNKS_PER_CORE)) chunk_size = min(MAX_CHUNK_SIZE, max(MIN_CHUNK_SIZE, total_size / intended_num_chunks)) chunks = shared.chunkify(funcs, chunk_size) chunks = filter(lambda chunk: len(chunk) > 0, chunks) if DEBUG and len(chunks) > 0: print >> sys.stderr, 'chunkification: num funcs:', len(funcs), 'actual num chunks:', len(chunks), 'chunk size range:', max(map(len, chunks)), '-', min(map(len, chunks)) funcs = None if len(chunks) > 0: def write_chunk(chunk, i): temp_file = temp_files.get('.jsfunc_%d.js' % i).name f = open(temp_file, 'w') f.write(chunk) if not gen_hash_info: f.write('\n') f.write(equivalentfn_hash_info) f.close() return temp_file filenames = [write_chunk(chunks[i], i) for i in range(len(chunks))] else: filenames = [] old_filenames = filenames[:] if len(filenames) > 0: commands = map(lambda filename: js_engine + [DUPLICATE_FUNCTION_ELIMINATOR, filename, '--gen-hash-info' if gen_hash_info else '--use-hash-info', '--no-minimize-whitespace'], filenames) if DEBUG and commands is not None: print >> sys.stderr, [' '.join(command if command is not None else '(null)') for command in commands] cores = min(cores, len(filenames)) if len(chunks) > 1 and cores >= 2: # We can parallelize if DEBUG: print >> sys.stderr, 'splitting up js optimization into %d chunks, using %d cores (total: %.2f MB)' % (len(chunks), cores, total_size/(1024*1024.)) pool = multiprocessing.Pool(processes=cores) filenames = pool.map(run_on_chunk, commands, chunksize=1) else: # We can't parallize, but still break into chunks to avoid uglify/node memory issues if len(chunks) > 1 and DEBUG: print >> sys.stderr, 'splitting up js optimization into %d chunks' % (len(chunks)) filenames = [run_on_chunk(command) for command in commands] else: filenames = [] json_files = [] # We're going to be coalescing the files back at the end # Just replace the file list with the ones provided in # the command list - and save off the generated Json if gen_hash_info: json_files = filenames[:] filenames = old_filenames[:] for filename in filenames: temp_files.note(filename) filename += '.jo.js' f = open(filename, 'w') f.write(pre); pre = None # sort functions by size, to make diffing easier and to improve aot times funcses = [] for out_file in filenames: funcses.append(split_funcs(open(out_file).read(), False)) funcs = [item for sublist in funcses for item in sublist] funcses = None def sorter(x, y): diff = len(y[1]) - len(x[1]) if diff != 0: return diff if x[0] < y[0]: return 1 elif x[0] > y[0]: return -1 return 0 if not os.environ.get('EMCC_NO_OPT_SORT'): funcs.sort(sorter) for func in funcs: f.write(func[1]) funcs = None f.write('\n') f.write(post); # No need to write suffix: if there was one, it is inside post which exists when suffix is there f.write('\n') if gen_hash_info and len(json_files) > 0: write_equivalent_fn_hash_to_file(f, json_files, passed_in_filename) f.close() return filename def save_temp_file(file_to_process): if os.environ.get('EMSCRIPTEN_SAVE_TEMP_FILES') and os.environ.get('EMSCRIPTEN_TEMP_FILES_DIR'): destinationFile = file_to_process temp_dir_name = os.environ.get('TEMP_DIR') destinationFile = destinationFile.replace(temp_dir_name, os.environ.get('EMSCRIPTEN_TEMP_FILES_DIR')) if not os.path.exists(os.path.dirname(destinationFile)): os.makedirs(os.path.dirname(destinationFile)) print >> sys.stderr, "Copying {} to {}".format(file_to_process, destinationFile) shutil.copyfile(file_to_process, destinationFile) def get_func_names(javascript_file): func_names = [] start_tok = "// EMSCRIPTEN_START_FUNCS" end_tok = "// EMSCRIPTEN_END_FUNCS" start_off = 0 end_off = 0 with open (javascript_file, 'rt') as fin: blob = "".join(fin.readlines()) start_off = blob.find(start_tok) + len(start_tok) end_off = blob.find(end_tok) asm_chunk = blob[start_off:end_off] for match in re.finditer('function (\S+?)\s*\(', asm_chunk): func_names.append(match.groups(1)[0]) return func_names def eliminate_duplicate_funcs(file_name): if shared.Settings.ELIMINATE_DUPLICATE_FUNCTIONS_DUMP_EQUIVALENT_FUNCTIONS != 0: # Remove previous log file if it exists equivalent_fn_json_file = file_name + ".equivalent_functions.json" if os.path.isfile(equivalent_fn_json_file): print >> sys.stderr, "Deleting old json: " + equivalent_fn_json_file os.remove(equivalent_fn_json_file) old_funcs = get_func_names(file_name) for pass_num in range(shared.Settings.ELIMINATE_DUPLICATE_FUNCTIONS_PASSES): if DEBUG: print >> sys.stderr, "[PASS {}]: eliminating duplicate functions in: {}.".format(pass_num, file_name) # Generate the JSON for the equivalent hash first processed_file = run_on_js(filename=file_name, gen_hash_info=True) save_temp_file(processed_file) # Use the hash to reduce the JS file final_file = run_on_js(filename=processed_file, gen_hash_info=False) save_temp_file(final_file) shared.safe_move(final_file, file_name) if shared.Settings.ELIMINATE_DUPLICATE_FUNCTIONS_DUMP_EQUIVALENT_FUNCTIONS != 0: new_funcs = get_func_names(file_name) eliminated_funcs_file = file_name + ".eliminated_functions.json" print >> sys.stderr, "Writing eliminated functions to file: {}".format(eliminated_funcs_file) with open(eliminated_funcs_file, 'w') as fout: eliminated_functions = list(set(old_funcs)-set(new_funcs)) eliminated_functions.sort() for eliminated_function in eliminated_functions: fout.write('{}\n'.format(eliminated_function)) def run(filename, js_engine=shared.NODE_JS): js_engine = shared.listify(js_engine) return temp_files.run_and_clean(lambda: eliminate_duplicate_funcs(filename)) if __name__ == '__main__': out = run(sys.argv[1], sys.argv[2:])
the-stack_0_20956
# coding: utf-8 # Program by Thomas W. Miller, August 16, 2018 # Previous work involved gathering embeddings via chakin # Following methods described in # https://github.com/chakki-works/chakin # The previous program, run-chakin-to-get-embeddings-v001.py # downloaded pre-trained GloVe embeddings, saved them in a zip archive, # and unzipped that archive to create the four word-to-embeddings # text files for use in language models. # This program sets uses word embeddings to set up defaultdict # dictionary data structures, that can them be employed in language # models. This is demonstrated with a simple RNN model for predicting # sentiment (thumbs-down versus thumbs-up) for movie reviews. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os # operating system functions import os.path # for manipulation of file path names import re # regular expressions from collections import defaultdict import nltk from nltk.tokenize import TreebankWordTokenizer import tensorflow as tf RANDOM_SEED = 9999 # To make output stable across runs def reset_graph(seed= RANDOM_SEED): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed) REMOVE_STOPWORDS = False # no stopword removal EVOCABSIZE = 50000 # specify desired size of pre-defined embedding vocabulary # ------------------------------------------------------------- # Select the pre-defined embeddings source # Define vocabulary size for the language model # Create a word_to_embedding_dict for GloVe.6B.50d embeddings_directory = 'embeddings/gloVe.6B' filename = 'glove.6B.50d.txt' embeddings_filename = os.path.join(embeddings_directory, filename) # ------------------------------------------------------------- # Utility function for loading embeddings follows methods described in # https://github.com/guillaume-chevalier/GloVe-as-a-TensorFlow-Embedding-Layer # Creates the Python defaultdict dictionary word_to_embedding_dict # for the requested pre-trained word embeddings # # Note the use of defaultdict data structure from the Python Standard Library # collections_defaultdict.py lets the caller specify a default value up front # The default value will be retuned if the key is not a known dictionary key # That is, unknown words are represented by a vector of zeros # For word embeddings, this default value is a vector of zeros # Documentation for the Python standard library: # Hellmann, D. 2017. The Python 3 Standard Library by Example. Boston: # Addison-Wesley. [ISBN-13: 978-0-13-429105-5] def load_embedding_from_disks(embeddings_filename, with_indexes=True): """ Read a embeddings txt file. If `with_indexes=True`, we return a tuple of two dictionnaries `(word_to_index_dict, index_to_embedding_array)`, otherwise we return only a direct `word_to_embedding_dict` dictionnary mapping from a string to a numpy array. """ if with_indexes: word_to_index_dict = dict() index_to_embedding_array = [] else: word_to_embedding_dict = dict() with open(embeddings_filename, 'r', encoding='utf-8') as embeddings_file: for (i, line) in enumerate(embeddings_file): split = line.split(' ') word = split[0] representation = split[1:] representation = np.array( [float(val) for val in representation] ) if with_indexes: word_to_index_dict[word] = i index_to_embedding_array.append(representation) else: word_to_embedding_dict[word] = representation # Empty representation for unknown words. _WORD_NOT_FOUND = [0.0] * len(representation) if with_indexes: _LAST_INDEX = i + 1 word_to_index_dict = defaultdict( lambda: _LAST_INDEX, word_to_index_dict) index_to_embedding_array = np.array( index_to_embedding_array + [_WORD_NOT_FOUND]) return word_to_index_dict, index_to_embedding_array else: word_to_embedding_dict = defaultdict(lambda: _WORD_NOT_FOUND) return word_to_embedding_dict print('\nLoading embeddings from', embeddings_filename) word_to_index, index_to_embedding = \ load_embedding_from_disks(embeddings_filename, with_indexes=True) print("Embedding loaded from disks.") # Note: unknown words have representations with values [0, 0, ..., 0] # Additional background code from # https://github.com/guillaume-chevalier/GloVe-as-a-TensorFlow-Embedding-Layer # shows the general structure of the data structures for word embeddings # This code is modified for our purposes in language modeling vocab_size, embedding_dim = index_to_embedding.shape print("Embedding is of shape: {}".format(index_to_embedding.shape)) print("This means (number of words, number of dimensions per word)\n") print("The first words are words that tend occur more often.") print("Note: for unknown words, the representation is an empty vector,\n" "and the index is the last one. The dictionnary has a limit:") print(" {} --> {} --> {}".format("A word", "Index in embedding", "Representation")) word = "worsdfkljsdf" # a word obviously not in the vocabulary idx = word_to_index[word] # index for word obviously not in the vocabulary complete_vocabulary_size = idx embd = list(np.array(index_to_embedding[idx], dtype=int)) # "int" compact print print(" {} --> {} --> {}".format(word, idx, embd)) word = "the" idx = word_to_index[word] embd = list(index_to_embedding[idx]) # "int" for compact print only. print(" {} --> {} --> {}".format(word, idx, embd)) # Show how to use embeddings dictionaries with a test sentence # This is a famous typing exercise with all letters of the alphabet # https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog a_typing_test_sentence = 'The quick brown fox jumps over the lazy dog' print('\nTest sentence: ', a_typing_test_sentence, '\n') words_in_test_sentence = a_typing_test_sentence.split() print('Test sentence embeddings from complete vocabulary of', complete_vocabulary_size, 'words:\n') for word in words_in_test_sentence: word_ = word.lower() embedding = index_to_embedding[word_to_index[word_]] print(word_ + ": ", embedding) # ------------------------------------------------------------- # Define vocabulary size for the language model # To reduce the size of the vocabulary to the n most frequently used words def default_factory(): return EVOCABSIZE # last/unknown-word row in limited_index_to_embedding # dictionary has the items() function, returns list of (key, value) tuples limited_word_to_index = defaultdict(default_factory, \ {k: v for k, v in word_to_index.items() if v < EVOCABSIZE}) # Select the first EVOCABSIZE rows to the index_to_embedding limited_index_to_embedding = index_to_embedding[0:EVOCABSIZE,:] # Set the unknown-word row to be all zeros as previously limited_index_to_embedding = np.append(limited_index_to_embedding, index_to_embedding[index_to_embedding.shape[0] - 1, :].\ reshape(1,embedding_dim), axis = 0) # Delete large numpy array to clear some CPU RAM del index_to_embedding # Verify the new vocabulary: should get same embeddings for test sentence # Note that a small EVOCABSIZE may yield some zero vectors for embeddings print('\nTest sentence embeddings from vocabulary of', EVOCABSIZE, 'words:\n') for word in words_in_test_sentence: word_ = word.lower() embedding = limited_index_to_embedding[limited_word_to_index[word_]] print(word_ + ": ", embedding) # ------------------------------------------------------------ # code for working with movie reviews data # Source: Miller, T. W. (2016). Web and Network Data Science. # Upper Saddle River, N.J.: Pearson Education. # ISBN-13: 978-0-13-388644-3 # This original study used a simple bag-of-words approach # to sentiment analysis, along with pre-defined lists of # negative and positive words. # Code available at: https://github.com/mtpa/wnds # ------------------------------------------------------------ # Utility function to get file names within a directory def listdir_no_hidden(path): start_list = os.listdir(path) end_list = [] for file in start_list: if (not file.startswith('.')): end_list.append(file) return(end_list) # define list of codes to be dropped from document # carriage-returns, line-feeds, tabs codelist = ['\r', '\n', '\t'] # We will not remove stopwords in this exercise because they are # important to keeping sentences intact if REMOVE_STOPWORDS: print(nltk.corpus.stopwords.words('english')) # previous analysis of a list of top terms showed a number of words, along # with contractions and other word strings to drop from further analysis, add # these to the usual English stopwords to be dropped from a document collection more_stop_words = ['cant','didnt','doesnt','dont','goes','isnt','hes',\ 'shes','thats','theres','theyre','wont','youll','youre','youve', 'br'\ 've', 're', 'vs'] some_proper_nouns_to_remove = ['dick','ginger','hollywood','jack',\ 'jill','john','karloff','kudrow','orson','peter','tcm','tom',\ 'toni','welles','william','wolheim','nikita'] # start with the initial list and add to it for movie text work stoplist = nltk.corpus.stopwords.words('english') + more_stop_words +\ some_proper_nouns_to_remove # text parsing function for creating text documents # there is more we could do for data preparation # stemming... looking for contractions... possessives... # but we will work with what we have in this parsing function # if we want to do stemming at a later time, we can use # porter = nltk.PorterStemmer() # in a construction like this # words_stemmed = [porter.stem(word) for word in initial_words] def text_parse(string): # replace non-alphanumeric with space temp_string = re.sub('[^a-zA-Z]', ' ', string) # replace codes with space for i in range(len(codelist)): stopstring = ' ' + codelist[i] + ' ' temp_string = re.sub(stopstring, ' ', temp_string) # replace single-character words with space temp_string = re.sub('\s.\s', ' ', temp_string) # convert uppercase to lowercase temp_string = temp_string.lower() if REMOVE_STOPWORDS: # replace selected character strings/stop-words with space for i in range(len(stoplist)): stopstring = ' ' + str(stoplist[i]) + ' ' temp_string = re.sub(stopstring, ' ', temp_string) # replace multiple blank characters with one blank character temp_string = re.sub('\s+', ' ', temp_string) return(temp_string) # ----------------------------------------------- # gather data for 500 negative movie reviews # ----------------------------------------------- dir_name = 'movie-reviews-negative' filenames = listdir_no_hidden(path=dir_name) num_files = len(filenames) for i in range(len(filenames)): file_exists = os.path.isfile(os.path.join(dir_name, filenames[i])) assert file_exists print('\nDirectory:',dir_name) print('%d files found' % len(filenames)) # Read data for negative movie reviews # Data will be stored in a list of lists where the each list represents # a document and document is a list of words. # We then break the text into words. def read_data(filename): with open(filename, encoding='utf-8') as f: data = tf.compat.as_str(f.read()) data = data.lower() data = text_parse(data) data = TreebankWordTokenizer().tokenize(data) # The Penn Treebank return data negative_documents = [] print('\nProcessing document files under', dir_name) for i in range(num_files): ## print(' ', filenames[i]) words = read_data(os.path.join(dir_name, filenames[i])) negative_documents.append(words) # print('Data size (Characters) (Document %d) %d' %(i,len(words))) # print('Sample string (Document %d) %s'%(i,words[:50])) # ----------------------------------------------- # gather data for 500 positive movie reviews # ----------------------------------------------- dir_name = 'movie-reviews-positive' filenames = listdir_no_hidden(path=dir_name) num_files = len(filenames) for i in range(len(filenames)): file_exists = os.path.isfile(os.path.join(dir_name, filenames[i])) assert file_exists print('\nDirectory:',dir_name) print('%d files found' % len(filenames)) # Read data for positive movie reviews # Data will be stored in a list of lists where the each list # represents a document and document is a list of words. # We then break the text into words. def read_data(filename): with open(filename, encoding='utf-8') as f: data = tf.compat.as_str(f.read()) data = data.lower() data = text_parse(data) data = TreebankWordTokenizer().tokenize(data) # The Penn Treebank return data positive_documents = [] print('\nProcessing document files under', dir_name) for i in range(num_files): ## print(' ', filenames[i]) words = read_data(os.path.join(dir_name, filenames[i])) positive_documents.append(words) # print('Data size (Characters) (Document %d) %d' %(i,len(words))) # print('Sample string (Document %d) %s'%(i,words[:50])) # ----------------------------------------------------- # convert positive/negative documents into numpy array # note that reviews vary from 22 to 1052 words # so we use the first 20 and last 20 words of each review # as our word sequences for analysis # ----------------------------------------------------- max_review_length = 0 # initialize for doc in negative_documents: max_review_length = max(max_review_length, len(doc)) for doc in positive_documents: max_review_length = max(max_review_length, len(doc)) print('max_review_length:', max_review_length) min_review_length = max_review_length # initialize for doc in negative_documents: min_review_length = min(min_review_length, len(doc)) for doc in positive_documents: min_review_length = min(min_review_length, len(doc)) print('min_review_length:', min_review_length) # construct list of 1000 lists with 40 words in each list from itertools import chain documents = [] for doc in negative_documents: doc_begin = doc[0:20] doc_end = doc[len(doc) - 20: len(doc)] documents.append(list(chain(*[doc_begin, doc_end]))) for doc in positive_documents: doc_begin = doc[0:20] doc_end = doc[len(doc) - 20: len(doc)] documents.append(list(chain(*[doc_begin, doc_end]))) # create list of lists of lists for embeddings embeddings = [] for doc in documents: embedding = [] for word in doc: embedding.append(limited_index_to_embedding[limited_word_to_index[word]]) embeddings.append(embedding) # ----------------------------------------------------- # Check on the embeddings list of list of lists # ----------------------------------------------------- # Show the first word in the first document test_word = documents[0][0] print('First word in first document:', test_word) print('Embedding for this word:\n', limited_index_to_embedding[limited_word_to_index[test_word]]) print('Corresponding embedding from embeddings list of list of lists\n', embeddings[0][0][:]) # Show the seventh word in the tenth document test_word = documents[6][9] print('First word in first document:', test_word) print('Embedding for this word:\n', limited_index_to_embedding[limited_word_to_index[test_word]]) print('Corresponding embedding from embeddings list of list of lists\n', embeddings[6][9][:]) # Show the last word in the last document test_word = documents[999][39] print('First word in first document:', test_word) print('Embedding for this word:\n', limited_index_to_embedding[limited_word_to_index[test_word]]) print('Corresponding embedding from embeddings list of list of lists\n', embeddings[999][39][:]) # ----------------------------------------------------- # Make embeddings a numpy array for use in an RNN # Create training and test sets with Scikit Learn # ----------------------------------------------------- embeddings_array = np.array(embeddings) # Define the labels to be used 500 negative (0) and 500 positive (1) thumbs_down_up = np.concatenate((np.zeros((500), dtype = np.int32), np.ones((500), dtype = np.int32)), axis = 0) # Scikit Learn for random splitting of the data from sklearn.model_selection import train_test_split # Random splitting of the data in to training (80%) and test (20%) X_train, X_test, y_train, y_test = \ train_test_split(embeddings_array, thumbs_down_up, test_size=0.20, random_state = RANDOM_SEED) # -------------------------------------------------------------------------- # We use a very simple Recurrent Neural Network for this assignment # Géron, A. 2017. Hands-On Machine Learning with Scikit-Learn & TensorFlow: # Concepts, Tools, and Techniques to Build Intelligent Systems. # Sebastopol, Calif.: O'Reilly. [ISBN-13 978-1-491-96229-9] # Chapter 14 Recurrent Neural Networks, pages 390-391 # Source code available at https://github.com/ageron/handson-ml # Jupyter notebook file 14_recurrent_neural_networks.ipynb # See section on Training an sequence Classifier, # In [34]: # which uses the MNIST case data... we revise to accommodate # the movie review data in this assignment # -------------------------------------------------------------------------- reset_graph() n_steps = embeddings_array.shape[1] # number of words per document n_inputs = embeddings_array.shape[2] # dimension of pre-trained embeddings n_neurons = 20 # analyst specified number of neurons n_outputs = 2 # thumbs-down or thumbs-up learning_rate = 0.001 X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) y = tf.placeholder(tf.int32, [None]) basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32) logits = tf.layers.dense(states, n_outputs) xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.reduce_mean(xentropy) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) training_op = optimizer.minimize(loss) correct = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) init = tf.global_variables_initializer() n_epochs = 50 batch_size = 100 with tf.Session() as sess: init.run() for epoch in range(n_epochs): print('\n ---- Epoch ', epoch, ' ----\n') for iteration in range(y_train.shape[0] // batch_size): X_batch = X_train[iteration*batch_size:(iteration + 1)*batch_size,:] y_batch = y_train[iteration*batch_size:(iteration + 1)*batch_size] print(' Batch ', iteration, ' training observations from ', iteration*batch_size, ' to ', (iteration + 1)*batch_size-1,) sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch}) acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test}) print('\n Train accuracy:', acc_train, 'Test accuracy:', acc_test)
the-stack_0_20957
from stix_shifter_utils.utils.base_entry_point import BaseEntryPoint # from stix_shifter_modules.qradar_perf_test.stix_translation.results_translator import ResultsTranslator class EntryPoint(BaseEntryPoint): def __init__(self, connection={}, configuration={}, options={}): super().__init__(connection, configuration, options) if connection: self.setup_transmission_basic(connection, configuration) self.setup_translation_simple(dialect_default='events')
the-stack_0_20959
import logging import os import random import numpy as np import torch def set_random_seed(seed=0): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def convert_ddp_model_dict(src_state): dst_state = {} for k in src_state.keys(): dst_state[k[7:]] = src_state[k] return dst_state def define_logger(logdir, logname): logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(logdir, logname)) handler.setFormatter(logging.Formatter('%(asctime)s - %(filename)s - %(message)s')) logger.addHandler(handler) return logger
the-stack_0_20960
# Copyright 2015 [email protected] # Copyright 2015 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections LogApiHeader = collections.namedtuple('LogApiHeader', ['name', 'is_required']) """Tuple describing a header.""" X_TENANT_ID = LogApiHeader(name='X-Tenant-Id', is_required=False) X_ROLES = LogApiHeader(name='X-Roles', is_required=False) X_APPLICATION_TYPE = LogApiHeader(name='X-Application-Type', is_required=False) X_DIMENSIONS = LogApiHeader(name='X_Dimensions', is_required=False)
the-stack_0_20962
"""Add an UnservedLoad component, which ensures the model is always feasible. This is often useful when the model is constrained to the edge of infeasibility, (e.g., when evaluating a pre-defined, just-feasible construction plan) to avoid spurious reports of infeasibility.""" from pyomo.environ import * def define_arguments(argparser): argparser.add_argument("--unserved-load-penalty", type=float, default=None, help="Penalty to charge per MWh of unserved load. Usually set high enough to force unserved load to zero (default is $10,000/MWh).") def define_components(m): # create an unserved load variable with a high penalty cost, # to avoid infeasibilities when # evaluating scenarios that are on the edge of infeasibility # cost per MWh for unserved load (high) if m.options.unserved_load_penalty is not None: # always use penalty factor supplied on the command line, if any m.unserved_load_penalty_per_mwh = Param(initialize=m.options.unserved_load_penalty) else: # no penalty on the command line, use whatever is in the parameter files, or 10000 m.unserved_load_penalty_per_mwh = Param(default=10000) # amount of unserved load during each timepoint m.UnservedLoad = Var(m.LOAD_ZONES, m.TIMEPOINTS, within=NonNegativeReals) # total cost for unserved load m.UnservedLoadPenalty = Expression(m.TIMEPOINTS, rule=lambda m, tp: m.tp_duration_hrs[tp] * sum(m.UnservedLoad[z, tp] * m.unserved_load_penalty_per_mwh for z in m.LOAD_ZONES) ) # add the unserved load to the model's energy balance m.Zone_Power_Injections.append('UnservedLoad') # add the unserved load penalty to the model's objective function m.Cost_Components_Per_TP.append('UnservedLoadPenalty') # amount of unserved reserves during each timepoint m.UnservedUpReserves = Var(m.TIMEPOINTS, within=NonNegativeReals) m.UnservedDownReserves = Var(m.TIMEPOINTS, within=NonNegativeReals) # total cost for unserved reserves (90% as high as cost of unserved load, # to make the model prefer to serve load when possible) m.UnservedReservePenalty = Expression(m.TIMEPOINTS, rule=lambda m, tp: m.tp_duration_hrs[tp] * 0.9 * m.unserved_load_penalty_per_mwh * (m.UnservedUpReserves[tp] + m.UnservedDownReserves[tp]) ) # add the unserved load penalty to the model's objective function m.Cost_Components_Per_TP.append('UnservedReservePenalty')
the-stack_0_20963
import fnmatch import os import sys from tkinter import StringVar, BooleanVar from tkinter.ttk import Checkbutton from idlelib.searchbase import SearchDialogBase from idlelib import searchengine def grep(text, io=None, flist=None): root = text._root() engine = searchengine.get(root) if not hasattr(engine, '_grepdialog'): engine._grepdialog = GrepDialog(root, engine, flist) dialog = engine._grepdialog searchphrase = text.get('sel.first', 'sel.last') dialog.open(text, searchphrase, io) class GrepDialog(SearchDialogBase): title = 'Find in Files Dialog' icon = 'Grep' needwrapbutton = 0 def __init__(self, root, engine, flist): SearchDialogBase.__init__(self, root, engine) self.flist = flist self.globvar = StringVar(root) self.recvar = BooleanVar(root) def open(self, text, searchphrase, io=None): SearchDialogBase.open(self, text, searchphrase) if io: path = io.filename or '' else: path = '' dir, base = os.path.split(path) head, tail = os.path.splitext(base) if not tail: tail = '.py' self.globvar.set(os.path.join(dir, '*' + tail)) def create_entries(self): SearchDialogBase.create_entries(self) self.globent = self.make_entry('In files:', self.globvar)[0] def create_other_buttons(self): btn = Checkbutton(self.make_frame()[0], variable=self.recvar, text= 'Recurse down subdirectories') btn.pack(side='top', fill='both') def create_command_buttons(self): SearchDialogBase.create_command_buttons(self) self.make_button('Search Files', self.default_command, 1) def default_command(self, event=None): prog = self.engine.getprog() if not prog: return path = self.globvar.get() if not path: self.top.bell() return from idlelib.outwin import OutputWindow save = sys.stdout try: sys.stdout = OutputWindow(self.flist) self.grep_it(prog, path) finally: sys.stdout = save def grep_it(self, prog, path): dir, base = os.path.split(path) list = self.findfiles(dir, base, self.recvar.get()) list.sort() self.close() pat = self.engine.getpat() print('Searching %r in %s ...' % (pat, path)) hits = 0 try: for fn in list: try: with open(fn, errors='replace') as f: for lineno, line in enumerate(f, 1): if line[-1:] == '\n': line = line[:-1] if prog.search(line): sys.stdout.write('%s: %s: %s\n' % (fn, lineno, line)) hits += 1 except OSError as msg: print(msg) print('Hits found: %s\n(Hint: right-click to open locations.)' % hits if hits else 'No hits.') except AttributeError: pass def findfiles(self, dir, base, rec): try: names = os.listdir(dir or os.curdir) except OSError as msg: print(msg) return [] list = [] subdirs = [] for name in names: fn = os.path.join(dir, name) if os.path.isdir(fn): subdirs.append(fn) elif fnmatch.fnmatch(name, base): list.append(fn) if rec: for subdir in subdirs: list.extend(self.findfiles(subdir, base, rec)) return list def close(self, event=None): if self.top: self.top.grab_release() self.top.withdraw() def _grep_dialog(parent): from tkinter import Toplevel, Text, SEL, END from tkinter.ttk import Button from idlelib.pyshell import PyShellFileList top = Toplevel(parent) top.title('Test GrepDialog') x, y = map(int, parent.geometry().split('+')[1:]) top.geometry('+%d+%d' % (x, y + 175)) flist = PyShellFileList(top) text = Text(top, height=5) text.pack() def show_grep_dialog(): text.tag_add(SEL, '1.0', END) grep(text, flist=flist) text.tag_remove(SEL, '1.0', END) button = Button(top, text='Show GrepDialog', command=show_grep_dialog) button.pack() if __name__ == '__main__': import unittest unittest.main('idlelib.idle_test.test_grep', verbosity=2, exit=False) from idlelib.idle_test.htest import run run(_grep_dialog)
the-stack_0_20964
import numpy as np import dask from os import path from cubequery.tasks import CubeQueryTask, Parameter, DType from datacube_utilities import import_export from datacube_utilities.query import ( create_base_query, create_product_measurement, is_dataset_empty, ) class WaterChange(CubeQueryTask): """ This task uses changes in water cover to identify water change. """ display_name = "Water Change" description = "Indicates the spatial change in water-covered surface area, between two time periods, taking an input of the water permanency product." img_url = "https://arcgis01.satapps.org/portal//sharing/rest/content/items/a499849ccd1f4c7fb0403b4c719f9dc1/resources/vF_Water%20Change.png?v=1601648787333" info_url = "https://arcgis01.satapps.org/portal/apps/sites/?fromEdit=true#/data/pages/data-cube" parameters = [ Parameter("aoi", "Area Of Interest", DType.WKT, "Area of interest."), Parameter( "output_projection", "Output Projection", DType.STRING, "Projection to generate the output in.", ["EPSG:3460"] ), Parameter( "baseline_start_date", "Baseline Start Date", DType.DATE, "Start date of the period to use for the baseline.", ), Parameter( "baseline_end_date", "Baseline End Date", DType.DATE, "End date of the period to use for the baseline.", ), Parameter( "analysis_start_date", "Analysis Start Date", DType.DATE, "Start date of the period to use for the analysis.", ), Parameter( "analysis_end_date", "Analysis End Date", DType.DATE, "End date of the period to use for the analysis.", ), Parameter( "platform_base", "Baseline Satellite", DType.STRING, "Satellite to use for the baseline.", ["SENTINEL_2", "LANDSAT_4", "LANDSAT_5", "LANDSAT_7", "LANDSAT_8"], ), Parameter( "platform_analysis", "Analysis Satellite", DType.STRING, "Satellite to use for the analysis.", ["SENTINEL_2", "LANDSAT_4", "LANDSAT_5", "LANDSAT_7", "LANDSAT_8"], ), Parameter( "res", "Resolution in meters", DType.INT, "Pixel resolution in meters.", [10, 500], ), Parameter("aoi_crs", "Area Of Interest CRS", DType.STRING, "CRS of the Area of Interest.", ["EPSG:4326"]), ] CubeQueryTask.cal_significant_kwargs(parameters) def generate_product( self, dc, path_prefix, aoi, output_projection, baseline_start_date, baseline_end_date, analysis_start_date, analysis_end_date, platform_base, platform_analysis, res, aoi_crs, **kwargs, ): ## Create datacube query dask_chunks = dict(time=1, x=2000, y=2000) query = create_base_query(aoi, res, output_projection, aoi_crs, dask_chunks) all_measurements = ["green", "red", "blue", "nir", "swir1", "swir2"] ( _baseline_product, _baseline_measurement, baseline_water_product, ) = create_product_measurement(platform_base, all_measurements) ( _analysis_product, _analysis_measurement, analysis_water_product, ) = create_product_measurement(platform_analysis, all_measurements) baseline_time_period = (baseline_start_date, baseline_end_date) analysis_time_period = (analysis_start_date, analysis_end_date) ## Create dask graph baseline_ds = dc.load( time=baseline_time_period, platform=platform_base, product=baseline_water_product, measurements=["water_classification"], **query, ) analysis_ds = dc.load( time=analysis_time_period, platform=platform_analysis, product=analysis_water_product, measurements=["water_classification"], **query, ) if is_dataset_empty(baseline_ds): raise Exception( "DataCube Load returned an empty Dataset." + "Please check load parameters for Baseline Dataset!" ) if is_dataset_empty(analysis_ds): raise Exception( "DataCube Load returned an empty Dataset." + "Please check load parameters for Analysis Dataset!" ) wc_baseline = baseline_ds.where(baseline_ds >= 0) wc_analysis = analysis_ds.where(analysis_ds >= 0) wc_baseline_mean = wc_baseline.water_classification.mean(dim="time") wc_analysis_mean = wc_analysis.water_classification.mean(dim="time") waterpres_prob = 0.3 T0_nd_water = np.isnan(wc_baseline_mean) wc_baseline_rc_int = wc_baseline_mean.where( (wc_baseline_mean < waterpres_prob) | (T0_nd_water == True), 1 ) # fix > prob to water wc_baseline_rc = wc_baseline_rc_int.where( (wc_baseline_rc_int >= waterpres_prob) | (T0_nd_water == True), 0 ) # fix < prob to no water T1_nd_water = np.isnan(wc_analysis_mean) wc_analysis_rc_int = wc_analysis_mean.where( (wc_analysis_mean < waterpres_prob) | (T1_nd_water == True), 1 ) # fix > prob to water wc_analysis_rc = wc_analysis_rc_int.where( (wc_analysis_rc_int >= waterpres_prob) | (T1_nd_water == True), 0 ) # fix < prob to no water # Outputs difference = wc_analysis_rc - wc_baseline_rc difference_range = wc_analysis_mean - wc_baseline_mean ## Compute difference_output, difference_range_output = dask.compute( difference, difference_range ) ## Write files result = [] file_name = path.join(path_prefix, "difference_range.tiff") import_export.export_xarray_to_geotiff( difference_range_output, file_name, crs=output_projection, x_coord="x", y_coord="y", ) result.append(file_name) file_name = path.join(path_prefix, "difference.tiff") import_export.export_xarray_to_geotiff( difference_output, file_name, crs=output_projection, x_coord="x", y_coord="y", ) result.append(file_name) return result
the-stack_0_20967
#------------------------------------------------------------------------------ # Copyright (c) 2007, Riverbank Computing Limited # All rights reserved. # # This software is provided without warranty under the terms of the BSD license. # However, when used with the GPL version of PyQt the additional terms described in the PyQt GPL exception also apply # # Author: Riverbank Computing Limited # Description: <Enthought pyface package component> #------------------------------------------------------------------------------ # Major package imports. from pyface.qt import QtCore, QtGui # Enthought library imports. from traits.api import Bool, Enum, Int, provides, Str, Unicode # Local imports. from pyface.i_dialog import IDialog, MDialog from pyface.constant import OK, CANCEL, YES, NO from .window import Window # Map PyQt dialog related constants to the pyface equivalents. _RESULT_MAP = { int(QtGui.QDialog.Accepted): OK, int(QtGui.QDialog.Rejected): CANCEL, int(QtGui.QMessageBox.Ok): OK, int(QtGui.QMessageBox.Cancel): CANCEL, int(QtGui.QMessageBox.Yes): YES, int(QtGui.QMessageBox.No): NO } @provides(IDialog) class Dialog(MDialog, Window): """ The toolkit specific implementation of a Dialog. See the IDialog interface for the API documentation. """ #### 'IDialog' interface ################################################## cancel_label = Unicode help_id = Str help_label = Unicode ok_label = Unicode resizeable = Bool(True) return_code = Int(OK) style = Enum('modal', 'nonmodal') #### 'IWindow' interface ################################################## title = Unicode("Dialog") ########################################################################### # Protected 'IDialog' interface. ########################################################################### def _create_buttons(self, parent): buttons = QtGui.QDialogButtonBox() # 'OK' button. if self.ok_label: btn = buttons.addButton(self.ok_label, QtGui.QDialogButtonBox.AcceptRole) else: btn = buttons.addButton(QtGui.QDialogButtonBox.Ok) btn.setDefault(True) btn.clicked.connect(self.control.accept) # 'Cancel' button. if self.cancel_label: btn = buttons.addButton(self.cancel_label, QtGui.QDialogButtonBox.RejectRole) else: btn = buttons.addButton(QtGui.QDialogButtonBox.Cancel) btn.clicked.connect(self.control.reject) # 'Help' button. # FIXME v3: In the original code the only possible hook into the help # was to reimplement self._on_help(). However this was a private # method. Obviously nobody uses the Help button. For the moment we # display it but can't actually use it. if len(self.help_id) > 0: if self.help_label: buttons.addButton(self.help_label, QtGui.QDialogButtonBox.HelpRole) else: buttons.addButton(QtGui.QDialogButtonBox.Help) return buttons def _create_contents(self, parent): layout = QtGui.QVBoxLayout() if not self.resizeable: layout.setSizeConstraint(QtGui.QLayout.SetFixedSize) layout.addWidget(self._create_dialog_area(parent)) layout.addWidget(self._create_buttons(parent)) parent.setLayout(layout) def _create_dialog_area(self, parent): panel = QtGui.QWidget(parent) panel.setMinimumSize(QtCore.QSize(100, 200)) palette = panel.palette() palette.setColor(QtGui.QPalette.Window, QtGui.QColor('red')) panel.setPalette(palette) panel.setAutoFillBackground(True) return panel def _show_modal(self): self.control.setWindowModality(QtCore.Qt.ApplicationModal) retval = self.control.exec_() return _RESULT_MAP[retval] ########################################################################### # Protected 'IWidget' interface. ########################################################################### def _create_control(self, parent): dlg = QtGui.QDialog(parent) # Setting return code and firing close events is handled for 'modal' in # MDialog's open method. For 'nonmodal', we do it here. if self.style == 'nonmodal': dlg.finished.connect(self._finished_fired) if self.size != (-1, -1): dlg.resize(*self.size) if self.position != (-1, -1): dlg.move(*self.position) dlg.setWindowTitle(self.title) return dlg ########################################################################### # Private interface. ########################################################################### def _finished_fired(self, result): """ Called when the dialog is closed (and nonmodal). """ self.return_code = _RESULT_MAP[result] self.close()