filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_2209
from datetime import datetime from utils.api import fetch_events class Events: def __init__(self): self.items = [] def fetch(self, params): self.items = [] params['pageToken'] = None while True: events = fetch_events(params) if events and events.get('items'): self.items.extend(events.get('items')) page_token = events.get('nextPageToken') if not page_token: params['pageToken'] = page_token break return self.items def to_csv(self, filename): for obj in self.items: item = EventItem(obj) if item.is_cancelled(): continue csv_line = '"{}","{}","{}","{}","{}"'.format( item.get_summary(), '1' if item.is_all_day() else '0', item.get_start(), item.get_end(), item.get_total_minitues() ) with open(filename, 'a') as f: f.write(csv_line + '\n') class EventItem: def __init__(self, item): self.item = item def is_cancelled(self) -> bool: return self.item.get('status') == 'cancelled' def get_summary(self): return self.item.get('summary') def has_start(self): return self.item.get('start') is not None def get_start(self): d = self.get_start_date() if d != '': return d return self.get_start_datetime() def get_start_date(self): start = self.item.get('start') if not start: return '' d = start.get('date') if d: return d return '' def get_start_datetime(self): start = self.item.get('start') if not start: return '' dt = start.get('dateTime') if dt: return dt return '' def is_all_day(self): return self.get_start_date() != '' def get_end(self): d = self.get_end_date() if d != '': return d return self.get_end_datetime() def get_end_date(self): end = self.item.get('end') if not end: return '' d = end.get('date') if d: return d return '' def get_end_datetime(self): end = self.item.get('end') if not end: return '' dt = end.get('dateTime') if dt: return dt return '' def get_total_minitues(self): if not self.has_start() or self.is_all_day(): return 0 start = datetime.fromisoformat(self.get_start_datetime()) end = datetime.fromisoformat(self.get_end_datetime()) return (end - start).total_seconds() / 60
the-stack_0_2211
# globalprogramlib GUI example by PWRScript # Import necessary libs import tkinter from globalprogramlib.v1 import Language, Translator class App(tkinter.Tk): def __init__(self, translator: Translator, *args, **kwargs) -> None: """ This class will take care of creating our application This isn't the best sample, but will demonstrate the principles of globalprogramlib using a sync GUI lib """ super().__init__(*args, **kwargs) # Master canvas (for easely clear all screen) self.master_canvas = tkinter.Canvas(self) self.master_canvas.pack() # Make translator instance available for all class self.translator: Translator = translator # Render app self.render_choose_language_window() def clear_screen(self): """ Deletes all widgets rendered in the Tkinter application by destroying the canvas and replacing it """ self.master_canvas.destroy() self.master_canvas = tkinter.Canvas(self) self.master_canvas.pack() def render_choose_language_window(self): """ This function is the render for our application """ # Ensure that screen is cleared every reload to avoid duplicate widgets self.clear_screen() # Creates a new label # Displays the language pick message in current selected language in Translator # using translator.get_translation("pwrscript.guiapp.language_picker") tkinter.Label( self.master_canvas, text=self.translator.get_translation("pwrscript.guiapp.language_picker"), ).pack() # This will store the current selected language in translator # to be show in the "OptionMenu" widget language = tkinter.StringVar(self.master_canvas) language.set(self.translator.selected_language) tkinter.Label( self.master_canvas, text=self.translator.get_translation("pwrscript.guiapp.important_message"), ).pack() tkinter.OptionMenu( self.master_canvas, language, # Here we pass all Languages in the translator to the OptionMenu as separated arguments *self.translator.languages_loaded.values(), command=( # I know this isn't beginner friendly, but I will explain everything # # I need to execute an assignment (translator.SelectedLanguageCode = «selected language code») # and to re-render this «window» using self.render_choose_language_window() when user changes the language (event) # # Unfortunately tkinter "command" only accepts a unique function with one argument (the value selected) # # This leaded to render issues and self not being available (no access to translator/application) when I tried # to implement a «beginner friendly» code for "command" # # To acoplish this tasks, I needed to create a lambda (a unique line function) which accepts the argument need # by the OptionMenu "command" [lang] and the [self] (for getting the translator and application) which is a automatically # passed when this «event» is «executed» # # To solve the assignment issue I defined the SelectedLanguageCode attribute in the translator using the built-in object method # __set_attr__ since you cannot assign values in a lambda (the best approach to use in other environments is # translator.SelectedLanguageCode = «selected_language_code») # # The other issue, «re-rendering» was solved by the content in the 4th paragraph # lambda lang, self=self: [ self.translator.__setattr__("SelectedLanguageCode", lang.code), self.render_choose_language_window(), ] ) ).pack() def BuildTranslator(): """ This function will take care of creating the translations dynamicaly at runtime, without needing dependent files, which is ideal for examples and the translator object ready for use """ # Other way to do this, persisting the files in a folder and generating it at runtime if need (example: langs) """ # load_translations.py from os.path import is_file, is_dir, join from os import mkdir TRANSLATIONS_FOLDER = "langs" if not is_dir(TRANSLATIONS_FOLDER): mkdir(TRANSLATIONS_FOLDER) if not is_file(join(TRANSLATIONS_FOLDER,"pt.json")) with Language() as pt: pt.name = "Português" pt.code = "pt" pt.version = 1 # The version needs to be always 1 in this case pt.revision = 1 # This is what you need to touch when you need to upgrade the version of the language pt.authors = [ "PWRScript" ] # You can add authors and contributors with their name like this or "name <email>" pt.contributors = [] # Creating translations for our app pt.set_translation("pwrscript.guiapp.language_picker", "Escolha o seu idioma:") # Saving the translation to a file pt.to_file(join(TRANSLATIONS_FOLDER,"pt.json")) # When the context ends, the language file is always cleaned to ensure that it doesn't overflow system resources, so it will look like a new # instanced Language() and can be clean at any moment by the garbage collector # This object can be clean since it won't be used again del pt if not is_file(join(TRANSLATIONS_FOLDER,"en.json")) with Language() as en: en.name = "English" en.code = "en" en.version = 1 # The version needs to be always 1 in this case en.revision = 1 # This is what you need to touch when you need to upgrade the version of the language en.authors = [ "PWRScript" ] # You can add authors and contributors with their name like this or "name <email>" en.contributors = [] # Creating translations for our app en.set_translation("pwrscript.guiapp.language_picker", "Pick your language:") # Saving the translation to a file en.to_file(join(TRANSLATIONS_FOLDER,"en.json")) del en translator = Translator() translator.load_directory(TRANSLATIONS_FOLDER) translator.DefaultLanguageCode = "en" translator.SelectedLanguageCode = "en" """ # PT Language instantiation pt = Language() # Add language information pt.name = "Português" pt.code = "pt" pt.version = 1 # The version needs to be always 1 in this case pt.revision = 1 # This is what you need to touch when you need to upgrade the version of the language pt.authors = [ "PWRScript" ] # You can add authors and contributors with their name like this or "name <email>" pt.contributors = [] # Creating translations for our app pt.set_translation("pwrscript.guiapp.language_picker", "Escolha o seu idioma:") pt.set_translation("pwrscript.guiapp.important_message", "Funcionando em Português") # EN Language instantiation en = Language() # Add language information en.name = "English" en.code = "en" en.version = 1 # The version needs to be always 1 in this case en.revision = 1 # This is what you need to touch when you need to upgrade the version of the language en.authors = [ "PWRScript" ] # You can add authors and contributors with their name like this or "name <email>" en.contributors = [] # Creating translations for our app en.set_translation("pwrscript.guiapp.language_picker", "Pick your language:") en.set_translation("pwrscript.guiapp.important_message", "Working in English") # Translator creation translator = Translator() # Loading languages from the created Language() objects translator.load_languages(pt, en) # Sets the default (fallback language used when translation can't be found in the selected_language) # and the selected (first language) # This is obligatory since the get_translation() method needs to now what languages to use and the codes # must be valid code languages in the translator (loaded languages) else it won't translate anyting and # willalways return None translator.DefaultLanguageCode = "en" translator.SelectedLanguageCode = "en" return translator if __name__ == "__main__": # Creates the translator for use with the Tkinter class app translator = BuildTranslator() # Instances the application class and runs the application application = App(translator) application.mainloop()
the-stack_0_2213
import matplotlib.pyplot as plt #import the library, any procedures with plt.* come form this lib import numpy as np #imports numpy for standard deviation trials = [] for i in range(1,31): trials.append(i) #sets up the X axis #Y axis data = [2.5105, 2.5100, 2.5103, 2.5091, 2.5101, 2.5101, 2.5103, 2.5098, 2.5098, 2.5100, 2.5090, 2.5099, 2.5101, 2.5091, 2.5100, 2.5099, 2.5089, 2.5097, 2.5099, 2.5099, 2.5099, 2.5096, 2.5099, 2.5121, 2.5094, 2.5102, 2.5090, 2.5101, 2.5089, 2.5100] #plots the scatter with errorbars plt.errorbar(trials, data, yerr = 0.0005, marker = '+', linestyle = '', label = "Data") #axis labels/title plt.xlabel("Trial Number") plt.ylabel("Diameter of the Sphere(cm)") plt.title("Fig. 5: Diameter of a Steel Sphere with Mean and Standard Deviation") #mean plt.plot([0]+trials, [2.5099]*31, c = 'red', marker = '', label = 'Mean') #std dev print(np.std(data)) plt.plot([0]+trials, [2.5099+np.std(data)]*31, c = 'green', marker = '', label = 'Standard Deviation') plt.plot([0]+trials, [2.5099-np.std(data)]*31, c = 'green', marker = '') plt.legend()#generates the legend plt.show()#displays the plot
the-stack_0_2214
from astropy.time import Time __all__ = [ "_checkTime" ] def _checkTime(time, arg_name): """ Check that 'time' is an astropy time object, if not, raise an error. Parameters ---------- time : `~astropy.time.core.Time` arg_name : str Name of argument in function. Returns ------- None Raises ------ ValueError : If time is not an astropy time object. """ err = ( "Time ({}) has to be an `~astropy.time.core.Time` object.\n" "Convert using:\n\n" "from astropy.time import Time\n" "times = Time(t_array, scale='...', format='...')" ) if type(time) != Time: raise TypeError(err.format(arg_name)) return
the-stack_0_2215
import datetime from rest_framework import permissions, status from rest_framework.decorators import (api_view, authentication_classes, permission_classes, throttle_classes,) from django.db.models.expressions import RawSQL from django.db.models import FloatField from django.utils import timezone from rest_framework_expiring_authtoken.authentication import ( ExpiringTokenAuthentication,) from rest_framework.response import Response from rest_framework.throttling import UserRateThrottle, AnonRateThrottle from accounts.permissions import HasVerifiedEmail from base.utils import paginated_queryset, StandardResultSetPagination from challenges.models import ( ChallengePhase, Challenge, ChallengePhaseSplit, LeaderboardData,) from challenges.utils import get_challenge_model, get_challenge_phase_model from participants.models import (ParticipantTeam,) from participants.utils import ( get_participant_team_id_of_user_for_a_challenge,) from .models import Submission from .sender import publish_submission_message from .serializers import SubmissionSerializer @throttle_classes([UserRateThrottle]) @api_view(['GET', 'POST']) @permission_classes((permissions.IsAuthenticated, HasVerifiedEmail)) @authentication_classes((ExpiringTokenAuthentication,)) def challenge_submission(request, challenge_id, challenge_phase_id): """API Endpoint for making a submission to a challenge""" # check if the challenge exists or not try: challenge = Challenge.objects.get(pk=challenge_id) except Challenge.DoesNotExist: response_data = {'error': 'Challenge does not exist'} return Response(response_data, status=status.HTTP_400_BAD_REQUEST) # check if the challenge phase exists or not try: challenge_phase = ChallengePhase.objects.get( pk=challenge_phase_id, challenge=challenge) except ChallengePhase.DoesNotExist: response_data = {'error': 'Challenge Phase does not exist'} return Response(response_data, status=status.HTTP_400_BAD_REQUEST) if request.method == 'GET': # getting participant team object for the user for a particular challenge. participant_team_id = get_participant_team_id_of_user_for_a_challenge( request.user, challenge_id) # check if participant team exists or not. try: ParticipantTeam.objects.get(pk=participant_team_id) except ParticipantTeam.DoesNotExist: response_data = {'error': 'You haven\'t participated in the challenge'} return Response(response_data, status=status.HTTP_403_FORBIDDEN) submission = Submission.objects.filter(participant_team=participant_team_id, challenge_phase=challenge_phase).order_by('-submitted_at') paginator, result_page = paginated_queryset(submission, request) try: serializer = SubmissionSerializer(result_page, many=True, context={'request': request}) response_data = serializer.data return paginator.get_paginated_response(response_data) except: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'POST': # check if the challenge is active or not if not challenge.is_active: response_data = {'error': 'Challenge is not active'} return Response(response_data, status=status.HTTP_406_NOT_ACCEPTABLE) # check if challenge phase is active if not challenge_phase.is_active: response_data = { 'error': 'Sorry, cannot accept submissions since challenge phase is not active'} return Response(response_data, status=status.HTTP_406_NOT_ACCEPTABLE) # check if challenge phase is public and accepting solutions if not challenge_phase.is_public: response_data = { 'error': 'Sorry, cannot accept submissions since challenge phase is not public'} return Response(response_data, status=status.HTTP_406_NOT_ACCEPTABLE) participant_team_id = get_participant_team_id_of_user_for_a_challenge( request.user, challenge_id) try: participant_team = ParticipantTeam.objects.get(pk=participant_team_id) except ParticipantTeam.DoesNotExist: response_data = {'error': 'You haven\'t participated in the challenge'} return Response(response_data, status=status.HTTP_403_FORBIDDEN) serializer = SubmissionSerializer(data=request.data, context={'participant_team': participant_team, 'challenge_phase': challenge_phase, 'request': request }) if serializer.is_valid(): serializer.save() response_data = serializer.data submission = serializer.instance # publish message in the queue publish_submission_message(challenge_id, challenge_phase_id, submission.id) return Response(response_data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @throttle_classes([UserRateThrottle]) @api_view(['PATCH']) @permission_classes((permissions.IsAuthenticated, HasVerifiedEmail)) @authentication_classes((ExpiringTokenAuthentication,)) def change_submission_data_and_visibility(request, challenge_pk, challenge_phase_pk, submission_pk): """ API Endpoint for updating the submission meta data and changing submission visibility. """ # check if the challenge exists or not challenge = get_challenge_model(challenge_pk) # check if the challenge phase exists or not challenge_phase = get_challenge_phase_model(challenge_phase_pk) if not challenge.is_active: response_data = {'error': 'Challenge is not active'} return Response(response_data, status=status.HTTP_406_NOT_ACCEPTABLE) # check if challenge phase is public and accepting solutions if not challenge_phase.is_public: response_data = { 'error': 'Sorry, cannot accept submissions since challenge phase is not public'} return Response(response_data, status=status.HTTP_406_NOT_ACCEPTABLE) participant_team_pk = get_participant_team_id_of_user_for_a_challenge( request.user, challenge_pk) try: participant_team = ParticipantTeam.objects.get(pk=participant_team_pk) except ParticipantTeam.DoesNotExist: response_data = {'error': 'You haven\'t participated in the challenge'} return Response(response_data, status=status.HTTP_403_FORBIDDEN) try: submission = Submission.objects.get(participant_team=participant_team, challenge_phase=challenge_phase, id=submission_pk) except Submission.DoesNotExist: response_data = {'error': 'Submission does not exist'} return Response(response_data, status=status.HTTP_403_FORBIDDEN) try: is_public = request.data['is_public'] if is_public is True: when_made_public = datetime.datetime.now() request.data['when_made_public'] = when_made_public except KeyError: pass serializer = SubmissionSerializer(submission, data=request.data, context={ 'participant_team': participant_team, 'challenge_phase': challenge_phase, 'request': request }, partial=True) if serializer.is_valid(): serializer.save() response_data = serializer.data return Response(response_data, status=status.HTTP_200_OK) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @throttle_classes([AnonRateThrottle]) @api_view(['GET']) def leaderboard(request, challenge_phase_split_id): """Returns leaderboard for a corresponding Challenge Phase Split""" # check if the challenge exists or not try: challenge_phase_split = ChallengePhaseSplit.objects.get( pk=challenge_phase_split_id) except ChallengePhaseSplit.DoesNotExist: response_data = {'error': 'Challenge Phase Split does not exist'} return Response(response_data, status=status.HTTP_400_BAD_REQUEST) # Check if the Challenge Phase Split is publicly visible or not if challenge_phase_split.visibility != ChallengePhaseSplit.PUBLIC: response_data = {'error': 'Sorry, leaderboard is not public yet for this Challenge Phase Split!'} return Response(response_data, status=status.HTTP_400_BAD_REQUEST) # Get the leaderboard associated with the Challenge Phase Split leaderboard = challenge_phase_split.leaderboard # Get the default order by key to rank the entries on the leaderboard try: default_order_by = leaderboard.schema['default_order_by'] except: response_data = {'error': 'Sorry, Default filtering key not found in leaderboard schema!'} return Response(response_data, status=status.HTTP_400_BAD_REQUEST) # Get all the successful submissions related to the challenge phase split leaderboard_data = LeaderboardData.objects.filter( challenge_phase_split=challenge_phase_split, submission__is_public=True, submission__is_flagged=False).order_by('created_at') leaderboard_data = leaderboard_data.annotate( filtering_score=RawSQL('result->>%s', (default_order_by, ), output_field=FloatField())).values( 'id', 'submission__participant_team__team_name', 'challenge_phase_split', 'result', 'filtering_score', 'leaderboard__schema', 'submission__submitted_at') sorted_leaderboard_data = sorted(leaderboard_data, key=lambda k: float(k['filtering_score']), reverse=True) distinct_sorted_leaderboard_data = [] team_list = [] for data in sorted_leaderboard_data: if data['submission__participant_team__team_name'] in team_list: continue else: distinct_sorted_leaderboard_data.append(data) team_list.append(data['submission__participant_team__team_name']) leaderboard_labels = challenge_phase_split.leaderboard.schema['labels'] for item in distinct_sorted_leaderboard_data: item['result'] = [item['result'][index] for index in leaderboard_labels] paginator, result_page = paginated_queryset( distinct_sorted_leaderboard_data, request, pagination_class=StandardResultSetPagination()) response_data = result_page return paginator.get_paginated_response(response_data) @throttle_classes([UserRateThrottle]) @api_view(['GET']) @permission_classes((permissions.IsAuthenticated, HasVerifiedEmail)) @authentication_classes((ExpiringTokenAuthentication,)) def get_remaining_submissions(request, challenge_phase_pk, challenge_pk): get_challenge_model(challenge_pk) challenge_phase = get_challenge_phase_model(challenge_phase_pk) participant_team_pk = get_participant_team_id_of_user_for_a_challenge( request.user, challenge_pk) # Conditional check for the existence of participant team of the user. if not participant_team_pk: response_data = {'error': 'You haven\'t participated in the challenge'} return Response(response_data, status=status.HTTP_403_FORBIDDEN) max_submission_per_day = challenge_phase.max_submissions_per_day max_submission = challenge_phase.max_submissions submissions_done_today_count = Submission.objects.filter( challenge_phase__challenge=challenge_pk, challenge_phase=challenge_phase_pk, participant_team=participant_team_pk, submitted_at__gte=timezone.now().date()).count() failed_submissions_count = Submission.objects.filter( challenge_phase__challenge=challenge_pk, challenge_phase=challenge_phase_pk, participant_team=participant_team_pk, status=Submission.FAILED, submitted_at__gte=timezone.now().date()).count() # Checks if today's successfull submission is greater than or equal to max submission per day. if ((submissions_done_today_count - failed_submissions_count) >= max_submission_per_day or (max_submission_per_day == 0)): # Get the UTC time of the instant when the above condition is true. date_time_now = timezone.now() # Calculate the next day's date. date_time_tomorrow = date_time_now.date() + datetime.timedelta(1) utc = timezone.utc # Get the midnight time of the day i.e. 12:00 AM of next day. midnight = utc.localize(datetime.datetime.combine( date_time_tomorrow, datetime.time())) # Subtract the current time from the midnight time to get the remaining time for the next day's submissions. remaining_time = midnight - date_time_now # Return the remaining time with a message. response_data = {'message': 'You have exhausted today\'s submission limit', 'remaining_time': remaining_time } return Response(response_data, status=status.HTTP_200_OK) else: # Calculate the remaining submissions for today. remaining_submissions_today_count = (max_submission_per_day - (submissions_done_today_count - failed_submissions_count) ) # calculate the remaining submissions from total submissions. remaining_submission_count = max_submission - \ (submissions_done_today_count - failed_submissions_count) # Return the above calculated data. response_data = {'remaining_submissions_today_count': remaining_submissions_today_count, 'remaining_submissions': remaining_submission_count } return Response(response_data, status=status.HTTP_200_OK)
the-stack_0_2216
from concurrent.futures import ThreadPoolExecutor, as_completed from time import time import boto3 from botocore import UNSIGNED from botocore.config import Config from botocore.exceptions import ClientError from .start_lambda_api_integ_base import StartLambdaIntegBaseClass class TestParallelRequests(StartLambdaIntegBaseClass): template_path = "/testdata/invoke/template.yml" def setUp(self): self.url = "http://127.0.0.1:{}".format(self.port) self.lambda_client = boto3.client('lambda', endpoint_url=self.url, use_ssl=False, verify=False, config=Config(signature_version=UNSIGNED, read_timeout=120, retries={'max_attempts': 0})) def test_same_endpoint(self): """ Send two requests to the same path at the same time. This is to ensure we can handle multiple requests at once and do not block/queue up requests """ number_of_requests = 10 start_time = time() thread_pool = ThreadPoolExecutor(number_of_requests) futures = [thread_pool.submit(self.lambda_client.invoke, FunctionName="HelloWorldSleepFunction") for _ in range(0, number_of_requests)] results = [r.result() for r in as_completed(futures)] end_time = time() self.assertEquals(len(results), 10) self.assertGreater(end_time - start_time, 10) self.assertLess(end_time - start_time, 20) for result in results: self.assertEquals(result.get("Payload").read().decode('utf-8'), '"Slept for 10s"') class TestLambdaToLambdaInvoke(StartLambdaIntegBaseClass): template_path = "/testdata/start_lambda/template.yml" def setUp(self): self.url = "http://127.0.0.1:{}".format(self.port) self.lambda_client = boto3.client('lambda', endpoint_url=self.url, use_ssl=False, verify=False, config=Config(signature_version=UNSIGNED, read_timeout=120, retries={'max_attempts': 0})) def test_local_lambda_calling_local_lambda(self): pass class TestLambdaServiceErrorCases(StartLambdaIntegBaseClass): template_path = "/testdata/invoke/template.yml" def setUp(self): self.url = "http://127.0.0.1:{}".format(self.port) self.lambda_client = boto3.client('lambda', endpoint_url=self.url, use_ssl=False, verify=False, config=Config(signature_version=UNSIGNED, read_timeout=120, retries={'max_attempts': 0})) def test_invoke_with_non_json_data(self): expected_error_message = "An error occurred (InvalidRequestContent) when calling the Invoke operation: " \ "Could not parse request body into json: No JSON object could be decoded" with self.assertRaises(ClientError) as error: self.lambda_client.invoke(FunctionName="EchoEventFunction", Payload='notat:asdfasdf') self.assertEquals(str(error.exception), expected_error_message) def test_invoke_with_log_type_not_None(self): expected_error_message = "An error occurred (NotImplemented) when calling the Invoke operation: " \ "log-type: Tail is not supported. None is only supported." with self.assertRaises(ClientError) as error: self.lambda_client.invoke(FunctionName="EchoEventFunction", LogType="Tail") self.assertEquals(str(error.exception), expected_error_message) def test_invoke_with_invocation_type_not_RequestResponse(self): expected_error_message = "An error occurred (NotImplemented) when calling the Invoke operation: " \ "invocation-type: DryRun is not supported. RequestResponse is only supported." with self.assertRaises(ClientError) as error: self.lambda_client.invoke(FunctionName="EchoEventFunction", InvocationType="DryRun") self.assertEquals(str(error.exception), expected_error_message) class TestLambdaService(StartLambdaIntegBaseClass): template_path = "/testdata/invoke/template.yml" def setUp(self): self.url = "http://127.0.0.1:{}".format(self.port) self.lambda_client = boto3.client('lambda', endpoint_url=self.url, use_ssl=False, verify=False, config=Config(signature_version=UNSIGNED, read_timeout=120, retries={'max_attempts': 0})) def test_invoke_with_data(self): response = self.lambda_client.invoke(FunctionName="EchoEventFunction", Payload='"This is json data"') self.assertEquals(response.get("Payload").read().decode('utf-8'), '"This is json data"') self.assertIsNone(response.get("FunctionError")) self.assertEquals(response.get("StatusCode"), 200) def test_invoke_with_no_data(self): response = self.lambda_client.invoke(FunctionName="EchoEventFunction") self.assertEquals(response.get("Payload").read().decode('utf-8'), '{}') self.assertIsNone(response.get("FunctionError")) self.assertEquals(response.get("StatusCode"), 200) def test_invoke_with_log_type_None(self): response = self.lambda_client.invoke(FunctionName="EchoEventFunction", LogType='None') self.assertEquals(response.get("Payload").read().decode('utf-8'), '{}') self.assertIsNone(response.get("FunctionError")) self.assertEquals(response.get("StatusCode"), 200) def test_invoke_with_invocation_type_RequestResponse(self): response = self.lambda_client.invoke(FunctionName="EchoEventFunction", InvocationType='RequestResponse') self.assertEquals(response.get("Payload").read().decode('utf-8'), '{}') self.assertIsNone(response.get("FunctionError")) self.assertEquals(response.get("StatusCode"), 200) def test_lambda_function_raised_error(self): response = self.lambda_client.invoke(FunctionName="RaiseExceptionFunction", InvocationType='RequestResponse') self.assertEquals(response.get("Payload").read().decode('utf-8'), '{"errorMessage": "Lambda is raising an exception", ' '"errorType": "Exception", ' '"stackTrace": [["/var/task/main.py", 43, "raise_exception", ' '"raise Exception(\\"Lambda is raising an exception\\")"]]}') self.assertEquals(response.get("FunctionError"), 'Unhandled') self.assertEquals(response.get("StatusCode"), 200) def test_invoke_with_function_timeout(self): """ This behavior does not match the actually Lambda Service. For functions that timeout, data returned like the following: {"errorMessage":"<timestamp> <request_id> Task timed out after 5.00 seconds"} For Local Lambda's, however, timeouts are an interrupt on the thread that runs invokes the function. Since the invoke is on a different thread, we do not (currently) have a way to communicate this back to the caller. So when a timeout happens locally, we do not add the FunctionError: Unhandled to the response and have an empty string as the data returned (because no data was found in stdout from the container). """ response = self.lambda_client.invoke(FunctionName="TimeoutFunction") self.assertEquals(response.get("Payload").read().decode('utf-8'), '') self.assertIsNone(response.get("FunctionError")) self.assertEquals(response.get("StatusCode"), 200)
the-stack_0_2217
import asyncio import time def timed(fn, *args, **kwargs): name = fn.__name__ times = [] last = before = time.time() duration = 0 while duration < 1.0: if asyncio.iscoroutinefunction(fn): asyncio.run(fn(*args, **kwargs)) else: fn(*args, **kwargs) now = time.time() times.append(now - last) last = now duration = now - before count = len(times) times = list(sorted(times)) best = times[:3] avg = sum(best) / len(best) if avg < 0.001: avg *= 1000000 unit = "usec" elif avg < 0.1: avg *= 1000 unit = "msec" else: unit = "sec" print(f"{count} runs of {name} in {duration:.1f}s: {avg:.3f} {unit} per run") return count, duration
the-stack_0_2220
import pytest import math import numpy as np from pandas import read_table, DataFrame, Series from catboost import Pool, CatBoost, CatBoostClassifier, CatBoostRegressor, CatboostError, cv from catboost_pytest_lib import data_file, local_canonical_file, remove_time_from_json import yatest.common EPS = 1e-5 TRAIN_FILE = data_file('adult', 'train_small') TEST_FILE = data_file('adult', 'test_small') CD_FILE = data_file('adult', 'train.cd') NAN_TRAIN_FILE = data_file('adult_nan', 'train_small') NAN_TEST_FILE = data_file('adult_nan', 'test_small') NAN_CD_FILE = data_file('adult_nan', 'train.cd') CLOUDNESS_TRAIN_FILE = data_file('cloudness_small', 'train_small') CLOUDNESS_TEST_FILE = data_file('cloudness_small', 'test_small') CLOUDNESS_CD_FILE = data_file('cloudness_small', 'train.cd') QUERY_TRAIN_FILE = data_file('querywise_pool', 'train_full3') QUERY_TEST_FILE = data_file('querywise_pool', 'test3') QUERY_CD_FILE = data_file('querywise_pool', 'train_full3.cd') OUTPUT_MODEL_PATH = 'model.bin' PREDS_PATH = 'predictions.npy' FIMP_PATH = 'feature_importance.npy' JSON_LOG_PATH = 'catboost_training.json' TARGET_IDX = 1 CAT_FEATURES = [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 16] model_diff_tool = yatest.common.binary_path("catboost/tools/model_comparator/model_comparator") def compare_canonical_models(*args, **kwargs): return local_canonical_file(*args, diff_tool=model_diff_tool, **kwargs) def map_cat_features(data, cat_features): for i in range(len(data)): for j in cat_features: data[i][j] = str(data[i][j]) return data def _check_shape(pool): return np.shape(pool.get_features()) == (101, 17) def _check_data(data1, data2): return np.all(np.isclose(data1, data2, rtol=0.001, equal_nan=True)) def test_load_file(): assert _check_shape(Pool(TRAIN_FILE, column_description=CD_FILE)) def test_load_list(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = map_cat_features(pool.get_features(), cat_features) label = pool.get_label() assert _check_shape(Pool(data, label, cat_features)) def test_load_ndarray(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = np.array(map_cat_features(pool.get_features(), cat_features)) label = np.array(pool.get_label()) assert _check_shape(Pool(data, label, cat_features)) def test_load_df(): pool = Pool(NAN_TRAIN_FILE, column_description=NAN_CD_FILE) data = read_table(NAN_TRAIN_FILE, header=None) label = DataFrame(data.iloc[:, TARGET_IDX]) data.drop([TARGET_IDX], axis=1, inplace=True) cat_features = pool.get_cat_feature_indices() pool2 = Pool(data, label, cat_features) assert _check_data(pool.get_features(), pool2.get_features()) assert _check_data(pool.get_label(), pool2.get_label()) def test_load_series(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) data = read_table(TRAIN_FILE, header=None) label = Series(data.iloc[:, TARGET_IDX]) data.drop([TARGET_IDX], axis=1, inplace=True) data = Series(list(data.values)) cat_features = pool.get_cat_feature_indices() pool2 = Pool(data, label, cat_features) assert _check_data(pool.get_features(), pool2.get_features()) assert _check_data(pool.get_label(), pool2.get_label()) def test_pool_cat_features(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) assert np.all(pool.get_cat_feature_indices() == CAT_FEATURES) def test_load_generated(): pool_size = (100, 10) data = np.round(np.random.normal(size=pool_size), decimals=3) label = np.random.randint(2, size=pool_size[0]) pool = Pool(data, label) assert _check_data(pool.get_features(), data) assert _check_data(pool.get_label(), label) def test_load_dumps(): pool_size = (100, 10) data = np.random.randint(10, size=pool_size) label = np.random.randint(2, size=pool_size[0]) pool1 = Pool(data, label) lines = [] for i in range(len(data)): line = [str(label[i])] + [str(x) for x in data[i]] lines.append('\t'.join(line)) text = '\n'.join(lines) with open('test_data_dumps', 'w') as f: f.write(text) pool2 = Pool('test_data_dumps') assert _check_data(pool1.get_features(), pool2.get_features()) assert _check_data(pool1.get_label(), pool2.get_label()) def test_predict_regress(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'random_seed': 0, 'loss_function': 'RMSE'}) model.fit(train_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_predict_sklearn_regress(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostRegressor(iterations=2, random_seed=0) model.fit(train_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_predict_sklearn_class(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, random_seed=0, loss_function='Logloss:border=0.5') model.fit(train_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_predict_class_raw(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(train_pool) pred = model.predict(test_pool) np.save(PREDS_PATH, np.array(pred)) return local_canonical_file(PREDS_PATH) def test_predict_class(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(train_pool) pred = model.predict(test_pool, prediction_type="Class") np.save(PREDS_PATH, np.array(pred)) return local_canonical_file(PREDS_PATH) def test_predict_class_proba(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(train_pool) pred = model.predict_proba(test_pool) np.save(PREDS_PATH, np.array(pred)) return local_canonical_file(PREDS_PATH) def test_no_cat_in_predict(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(train_pool) pred1 = model.predict(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices())) pred2 = model.predict(Pool(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices()), cat_features=train_pool.get_cat_feature_indices())) assert _check_data(pred1, pred2) def test_save_model(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoost() model.fit(train_pool) model.save_model(OUTPUT_MODEL_PATH) model2 = CatBoost(model_file=OUTPUT_MODEL_PATH) pred1 = model.predict(test_pool) pred2 = model2.predict(test_pool) assert _check_data(pred1, pred2) def test_multiclass(): pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE) classifier = CatBoostClassifier(iterations=2, random_seed=0, loss_function='MultiClass', thread_count=8) classifier.fit(pool) classifier.save_model(OUTPUT_MODEL_PATH) new_classifier = CatBoostClassifier() new_classifier.load_model(OUTPUT_MODEL_PATH) pred = new_classifier.predict_proba(pool) np.save(PREDS_PATH, np.array(pred)) return local_canonical_file(PREDS_PATH) def test_querywise(): train_pool = Pool(QUERY_TRAIN_FILE, column_description=QUERY_CD_FILE) test_pool = Pool(QUERY_TEST_FILE, column_description=QUERY_CD_FILE) model = CatBoost(params={'loss_function': 'QueryRMSE', 'random_seed': 0, 'iterations': 2, 'thread_count': 8}) model.fit(train_pool) pred1 = model.predict(test_pool) df = read_table(QUERY_TRAIN_FILE, delimiter='\t', header=None) train_query_id = df.loc[:, 1] train_target = df.loc[:, 0] train_data = df.drop([0, 1], axis=1).astype(str) df = read_table(QUERY_TEST_FILE, delimiter='\t', header=None) test_data = df.drop([0, 1], axis=1).astype(str) model.fit(train_data, train_target, query_id=train_query_id) pred2 = model.predict(test_data) assert _check_data(pred1, pred2) def test_zero_baseline(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) baseline = np.zeros(pool.num_row()) pool.set_baseline(baseline) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_ones_weight(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) weight = np.ones(pool.num_row()) pool.set_weight(weight) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_non_ones_weight(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) weight = np.arange(1, pool.num_row()+1) pool.set_weight(weight) model = CatBoostClassifier(iterations=2, random_seed=0) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_fit_data(): pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE) eval_pool = Pool(CLOUDNESS_TEST_FILE, column_description=CLOUDNESS_CD_FILE) base_model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass") base_model.fit(pool) baseline = np.array(base_model.predict(pool, prediction_type='RawFormulaVal')) eval_baseline = np.array(base_model.predict(eval_pool, prediction_type='RawFormulaVal')) eval_pool.set_baseline(eval_baseline) model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass") data = map_cat_features(pool.get_features(), pool.get_cat_feature_indices()) model.fit(data, pool.get_label(), pool.get_cat_feature_indices(), sample_weight=np.arange(1, pool.num_row()+1), baseline=baseline, use_best_model=True, eval_set=eval_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_ntree_limit(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=100, random_seed=0) model.fit(train_pool) pred = model.predict_proba(test_pool, ntree_end=10) np.save(PREDS_PATH, np.array(pred)) return local_canonical_file(PREDS_PATH) def test_staged_predict(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, random_seed=0) model.fit(train_pool) preds = [] for pred in model.staged_predict(test_pool): preds.append(pred) np.save(PREDS_PATH, np.array(preds)) return local_canonical_file(PREDS_PATH) def test_invalid_loss_base(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({"loss_function": "abcdef"}) model.fit(pool) def test_invalid_loss_classifier(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(loss_function="abcdef") model.fit(pool) def test_invalid_loss_regressor(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostRegressor(loss_function="fee") model.fit(pool) def test_no_eval_set(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier() model.fit(pool, use_best_model=True) def test_fit_no_label(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier() model.fit(pool.get_features()) def test_predict_without_fit(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier() model.predict(pool) def test_real_numbers_cat_features(): with pytest.raises(CatboostError): data = np.random.rand(100, 10) label = np.random.randint(2, size=100) Pool(data, label, [1, 2]) def test_wrong_ctr_for_classification(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(ctr_description=['Borders:TargetBorderCount=5:TargetBorderType=Uniform']) model.fit(pool) def test_wrong_feature_count(): with pytest.raises(CatboostError): data = np.random.rand(100, 10) label = np.random.randint(2, size=100) model = CatBoostClassifier() model.fit(data, label) model.predict(data[:, :-1]) def test_feature_importance_off(): with pytest.raises(CatboostError): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, calc_feature_importance=False) model.fit(pool) model.feature_importances_ def test_wrong_params_classifier(): with pytest.raises(CatboostError): CatBoostClassifier(wrong_param=1) def test_wrong_params_base(): with pytest.raises(CatboostError): CatBoost({'wrong_param': 1}) def test_wrong_params_regressor(): with pytest.raises(CatboostError): CatBoostRegressor(wrong_param=1) def test_wrong_kwargs_base(): with pytest.raises(CatboostError): CatBoost({'kwargs': {'wrong_param': 1}}) def test_custom_eval(): class LoglossMetric(object): def get_final_error(self, error, weight): return error / (weight + 1e-38) def is_max_optimal(self): return True def evaluate(self, approxes, target, weight): assert len(approxes) == 1 assert len(target) == len(approxes[0]) approx = approxes[0] error_sum = 0.0 weight_sum = 0.0 for i in xrange(len(approx)): w = 1.0 if weight is None else weight[i] weight_sum += w error_sum += w * (target[i] * approx[i] - math.log(1 + math.exp(approx[i]))) return error_sum, weight_sum train_pool = Pool(data=TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(data=TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, eval_metric=LoglossMetric()) model.fit(train_pool, eval_set=test_pool) pred1 = model.predict(test_pool) model2 = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, eval_metric="Logloss") model2.fit(train_pool, eval_set=test_pool) pred2 = model2.predict(test_pool) for p1, p2 in zip(pred1, pred2): assert abs(p1 - p2) < EPS def test_custom_objective(): class LoglossObjective(object): def calc_ders_range(self, approxes, targets, weights): assert len(approxes) == len(targets) if weights is not None: assert len(weights) == len(approxes) exponents = [] for index in xrange(len(approxes)): exponents.append(math.exp(approxes[index])) result = [] for index in xrange(len(targets)): p = exponents[index] / (1 + exponents[index]) der1 = (1 - p) if targets[index] > 0.0 else -p der2 = -p * (1 - p) if weights is not None: der1 *= weights[index] der2 *= weights[index] result.append((der1, der2)) return result train_pool = Pool(data=TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(data=TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, loss_function=LoglossObjective(), eval_metric="Logloss", # Leaf estimation method and gradient iteration are set to match # defaults for Logloss. leaf_estimation_method="Newton", leaf_estimation_iterations=10) model.fit(train_pool, eval_set=test_pool) pred1 = model.predict(test_pool, prediction_type='RawFormulaVal') model2 = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, loss_function="Logloss") model2.fit(train_pool, eval_set=test_pool) pred2 = model2.predict(test_pool, prediction_type='RawFormulaVal') for p1, p2 in zip(pred1, pred2): assert abs(p1 - p2) < EPS def test_pool_after_fit(): pool1 = Pool(TRAIN_FILE, column_description=CD_FILE) pool2 = Pool(TRAIN_FILE, column_description=CD_FILE) assert _check_data(pool1.get_features(), pool2.get_features()) model = CatBoostClassifier(iterations=5, random_seed=0) model.fit(pool2) assert _check_data(pool1.get_features(), pool2.get_features()) def test_priors(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, has_time=True, ctr_description=["Borders:Prior=0:Prior=0.6:Prior=1:Prior=5", "Counter:Prior=0:Prior=0.6:Prior=1:Prior=5"]) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_ignored_features(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model1 = CatBoostClassifier(iterations=5, random_seed=0, ignored_features=[1, 2, 3]) model2 = CatBoostClassifier(iterations=5, random_seed=0) model1.fit(train_pool) model2.fit(train_pool) predictions1 = model1.predict(test_pool) predictions2 = model2.predict(test_pool) assert not _check_data(predictions1, predictions2) model1.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_class_weights(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, class_weights=[1, 2]) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_classification_ctr(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0, ctr_description=['Borders', 'Counter']) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_regression_ctr(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostRegressor(iterations=5, random_seed=0, ctr_description=['Borders:TargetBorderCount=5:TargetBorderType=Uniform', 'Counter']) model.fit(pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_copy_model(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model1 = CatBoostRegressor(iterations=5, random_seed=0) model1.fit(pool) model2 = model1.copy() predictions1 = model1.predict(pool) predictions2 = model2.predict(pool) assert _check_data(predictions1, predictions2) model2.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_cv(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) results = cv(pool, {"iterations": 5, "random_seed": 0, "loss_function": "Logloss"}) assert isinstance(results, dict) assert "Logloss_train_avg" in results prev_value = results["Logloss_train_avg"][0] for value in results["Logloss_train_avg"][1:]: assert value < prev_value prev_value = value def test_cv_query(): pool = Pool(QUERY_TRAIN_FILE, column_description=QUERY_CD_FILE) results = cv(pool, {"iterations": 5, "random_seed": 0, "loss_function": "QueryRMSE"}) assert isinstance(results, dict) assert "QueryRMSE_train_avg" in results prev_value = results["QueryRMSE_train_avg"][0] for value in results["QueryRMSE_train_avg"][1:]: assert value < prev_value prev_value = value def test_feature_importance(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0) model.fit(pool) np.save(FIMP_PATH, np.array(model.feature_importances_)) return local_canonical_file(FIMP_PATH) def test_interaction_feature_importance(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0) model.fit(pool) np.save(FIMP_PATH, np.array(model.get_feature_importance(pool, fstr_type='Interaction'))) return local_canonical_file(FIMP_PATH) def test_doc_feature_importance(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0) model.fit(pool) np.save(FIMP_PATH, np.array(model.get_feature_importance(pool, fstr_type='Doc'))) return local_canonical_file(FIMP_PATH) def test_one_doc_feature_importance(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=5, random_seed=0) model.fit(pool) np.save(FIMP_PATH, np.array(model.get_feature_importance(np.ones(pool.num_col(), dtype=int), 0, cat_features=pool.get_cat_feature_indices(), fstr_type='Doc'))) return local_canonical_file(FIMP_PATH) def test_od(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(od_type='Iter', od_wait=20, random_seed=42) model.fit(train_pool, eval_set=test_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_clone(): estimator = CatBoostClassifier( custom_metric="Accuracy", loss_function="MultiClass", iterations=400) # This is important for sklearn.base.clone since # it uses get_params for cloning estimator. params = estimator.get_params() new_estimator = CatBoostClassifier(**params) new_params = new_estimator.get_params() for param in params: assert param in new_params assert new_params[param] == params[param] def test_different_cat_features_order(): dataset = np.array([[2, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) labels = [1.2, 3.4, 9.5, 24.5] pool1 = Pool(dataset, labels, cat_features=[0, 1]) pool2 = Pool(dataset, labels, cat_features=[1, 0]) model = CatBoost({'learning_rate': 1, 'loss_function': 'RMSE', 'iterations': 2, 'random_seed': 42}) model.fit(pool1) assert (model.predict(pool1) == model.predict(pool2)).all() def test_full_history(): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(od_type='Iter', od_wait=20, random_seed=42, approx_on_full_history=True) model.fit(train_pool, eval_set=test_pool) model.save_model(OUTPUT_MODEL_PATH) return compare_canonical_models(OUTPUT_MODEL_PATH) def test_bad_params_in_cv(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) with pytest.warns(UserWarning): cv(pool, {"iterations": 5, "random_seed": 0, "loss_function": "Logloss", "use_best_model": True}) def test_cv_logging(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cv(pool, {"iterations": 5, "random_seed": 0, "loss_function": "Logloss", "json_log": JSON_LOG_PATH}) return local_canonical_file(remove_time_from_json(JSON_LOG_PATH)) def test_cv_with_not_binarized_target(): train_file = data_file('adult_not_binarized', 'train_small') cd = data_file('adult_not_binarized', 'train.cd') pool = Pool(train_file, column_description=cd) cv(pool, {"iterations": 5, "random_seed": 0, "loss_function": "Logloss", "json_log": JSON_LOG_PATH}) return local_canonical_file(remove_time_from_json(JSON_LOG_PATH))
the-stack_0_2223
import turtle, random rat = turtle.Turtle() screen = turtle.Screen() dot_distance = 75 #width = 5 height = 5 rat.penup() screen.register_shape("NickCage.gif") rat.shape("NickCage.gif") def draw_a_star(): for i in range(5): rat.pendown() rat.forward(50) rat.right(144) rat.penup() for y in range(height): # rat.dot() rat.right(random.randrange(0,360,1)) rat.forward(dot_distance-random.randrange(-100,100,1)) draw_a_star() turtle.done()
the-stack_0_2224
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/MedicationKnowledge Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ import sys from . import backboneelement, domainresource class MedicationKnowledge(domainresource.DomainResource): """ Definition of Medication Knowledge. Information about a medication that is used to support knowledge. """ resource_type = "MedicationKnowledge" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.administrationGuidelines = None """ Guidelines for administration of the medication. List of `MedicationKnowledgeAdministrationGuidelines` items (represented as `dict` in JSON). """ self.amount = None """ Amount of drug in package. Type `Quantity` (represented as `dict` in JSON). """ self.associatedMedication = None """ A medication resource that is associated with this medication. List of `FHIRReference` items referencing `['Medication']` (represented as `dict` in JSON). """ self.code = None """ Code that identifies this medication. Type `CodeableConcept` (represented as `dict` in JSON). """ self.contraindication = None """ Potential clinical issue with or between medication(s). List of `FHIRReference` items referencing `['DetectedIssue']` (represented as `dict` in JSON). """ self.cost = None """ The pricing of the medication. List of `MedicationKnowledgeCost` items (represented as `dict` in JSON). """ self.doseForm = None """ powder | tablets | capsule +. Type `CodeableConcept` (represented as `dict` in JSON). """ self.drugCharacteristic = None """ Specifies descriptive properties of the medicine. List of `MedicationKnowledgeDrugCharacteristic` items (represented as `dict` in JSON). """ self.ingredient = None """ Active or inactive ingredient. List of `MedicationKnowledgeIngredient` items (represented as `dict` in JSON). """ self.intendedRoute = None """ The intended or approved route of administration. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.kinetics = None """ The time course of drug absorption, distribution, metabolism and excretion of a medication from the body. List of `MedicationKnowledgeKinetics` items (represented as `dict` in JSON). """ self.manufacturer = None """ Manufacturer of the item. Type `FHIRReference` referencing `['Organization']` (represented as `dict` in JSON). """ self.medicineClassification = None """ Categorization of the medication within a formulary or classification system. List of `MedicationKnowledgeMedicineClassification` items (represented as `dict` in JSON). """ self.monitoringProgram = None """ Program under which a medication is reviewed. List of `MedicationKnowledgeMonitoringProgram` items (represented as `dict` in JSON). """ self.monograph = None """ Associated documentation about the medication. List of `MedicationKnowledgeMonograph` items (represented as `dict` in JSON). """ self.packaging = None """ Details about packaged medications. Type `MedicationKnowledgePackaging` (represented as `dict` in JSON). """ self.preparationInstruction = None """ The instructions for preparing the medication. Type `str`. """ self.productType = None """ Category of the medication or product. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.regulatory = None """ Regulatory information about a medication. List of `MedicationKnowledgeRegulatory` items (represented as `dict` in JSON). """ self.relatedMedicationKnowledge = None """ Associated or related medication information. List of `MedicationKnowledgeRelatedMedicationKnowledge` items (represented as `dict` in JSON). """ self.status = None """ active | inactive | entered-in-error. Type `str`. """ self.synonym = None """ Additional names for a medication. List of `str` items. """ super(MedicationKnowledge, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(MedicationKnowledge, self).elementProperties() js.extend( [ ( "administrationGuidelines", "administrationGuidelines", MedicationKnowledgeAdministrationGuidelines, "MedicationKnowledgeAdministrationGuidelines", True, None, False, ), ("amount", "amount", quantity.Quantity, "Quantity", False, None, False), ( "associatedMedication", "associatedMedication", fhirreference.FHIRReference, "Reference", True, None, False, ), ( "code", "code", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ( "contraindication", "contraindication", fhirreference.FHIRReference, "Reference", True, None, False, ), ( "cost", "cost", MedicationKnowledgeCost, "MedicationKnowledgeCost", True, None, False, ), ( "doseForm", "doseForm", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ( "drugCharacteristic", "drugCharacteristic", MedicationKnowledgeDrugCharacteristic, "MedicationKnowledgeDrugCharacteristic", True, None, False, ), ( "ingredient", "ingredient", MedicationKnowledgeIngredient, "MedicationKnowledgeIngredient", True, None, False, ), ( "intendedRoute", "intendedRoute", codeableconcept.CodeableConcept, "CodeableConcept", True, None, False, ), ( "kinetics", "kinetics", MedicationKnowledgeKinetics, "MedicationKnowledgeKinetics", True, None, False, ), ( "manufacturer", "manufacturer", fhirreference.FHIRReference, "Reference", False, None, False, ), ( "medicineClassification", "medicineClassification", MedicationKnowledgeMedicineClassification, "MedicationKnowledgeMedicineClassification", True, None, False, ), ( "monitoringProgram", "monitoringProgram", MedicationKnowledgeMonitoringProgram, "MedicationKnowledgeMonitoringProgram", True, None, False, ), ( "monograph", "monograph", MedicationKnowledgeMonograph, "MedicationKnowledgeMonograph", True, None, False, ), ( "packaging", "packaging", MedicationKnowledgePackaging, "MedicationKnowledgePackaging", False, None, False, ), ( "preparationInstruction", "preparationInstruction", str, "markdown", False, None, False, ), ( "productType", "productType", codeableconcept.CodeableConcept, "CodeableConcept", True, None, False, ), ( "regulatory", "regulatory", MedicationKnowledgeRegulatory, "MedicationKnowledgeRegulatory", True, None, False, ), ( "relatedMedicationKnowledge", "relatedMedicationKnowledge", MedicationKnowledgeRelatedMedicationKnowledge, "MedicationKnowledgeRelatedMedicationKnowledge", True, None, False, ), ("status", "status", str, "code", False, None, False), ("synonym", "synonym", str, "string", True, None, False), ] ) return js class MedicationKnowledgeAdministrationGuidelines(backboneelement.BackboneElement): """ Guidelines for administration of the medication. Guidelines for the administration of the medication. """ resource_type = "MedicationKnowledgeAdministrationGuidelines" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.dosage = None """ Dosage for the medication for the specific guidelines. List of `MedicationKnowledgeAdministrationGuidelinesDosage` items (represented as `dict` in JSON). """ self.indicationCodeableConcept = None """ Indication for use that apply to the specific administration guidelines. Type `CodeableConcept` (represented as `dict` in JSON). """ self.indicationReference = None """ Indication for use that apply to the specific administration guidelines. Type `FHIRReference` referencing `['ObservationDefinition']` (represented as `dict` in JSON). """ self.patientCharacteristics = None """ Characteristics of the patient that are relevant to the administration guidelines. List of `MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics` items (represented as `dict` in JSON). """ super(MedicationKnowledgeAdministrationGuidelines, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super( MedicationKnowledgeAdministrationGuidelines, self ).elementProperties() js.extend( [ ( "dosage", "dosage", MedicationKnowledgeAdministrationGuidelinesDosage, "MedicationKnowledgeAdministrationGuidelinesDosage", True, None, False, ), ( "indicationCodeableConcept", "indicationCodeableConcept", codeableconcept.CodeableConcept, "CodeableConcept", False, "indication", False, ), ( "indicationReference", "indicationReference", fhirreference.FHIRReference, "Reference", False, "indication", False, ), ( "patientCharacteristics", "patientCharacteristics", MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics, "MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics", True, None, False, ), ] ) return js class MedicationKnowledgeAdministrationGuidelinesDosage( backboneelement.BackboneElement ): """ Dosage for the medication for the specific guidelines. """ resource_type = "MedicationKnowledgeAdministrationGuidelinesDosage" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.dosage = None """ Dosage for the medication for the specific guidelines. List of `Dosage` items (represented as `dict` in JSON). """ self.type = None """ Type of dosage. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeAdministrationGuidelinesDosage, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super( MedicationKnowledgeAdministrationGuidelinesDosage, self ).elementProperties() js.extend( [ ("dosage", "dosage", dosage.Dosage, "Dosage", True, None, True), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js class MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics( backboneelement.BackboneElement ): """ Characteristics of the patient that are relevant to the administration guidelines. Characteristics of the patient that are relevant to the administration guidelines (for example, height, weight, gender, etc.). """ resource_type = "MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.characteristicCodeableConcept = None """ Specific characteristic that is relevant to the administration guideline. Type `CodeableConcept` (represented as `dict` in JSON). """ self.characteristicQuantity = None """ Specific characteristic that is relevant to the administration guideline. Type `Quantity` (represented as `dict` in JSON). """ self.value = None """ The specific characteristic. List of `str` items. """ super( MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics, self ).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super( MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics, self ).elementProperties() js.extend( [ ( "characteristicCodeableConcept", "characteristicCodeableConcept", codeableconcept.CodeableConcept, "CodeableConcept", False, "characteristic", True, ), ( "characteristicQuantity", "characteristicQuantity", quantity.Quantity, "Quantity", False, "characteristic", True, ), ("value", "value", str, "string", True, None, False), ] ) return js class MedicationKnowledgeCost(backboneelement.BackboneElement): """ The pricing of the medication. The price of the medication. """ resource_type = "MedicationKnowledgeCost" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.cost = None """ The price of the medication. Type `Money` (represented as `dict` in JSON). """ self.source = None """ The source or owner for the price information. Type `str`. """ self.type = None """ The category of the cost information. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeCost, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(MedicationKnowledgeCost, self).elementProperties() js.extend( [ ("cost", "cost", money.Money, "Money", False, None, True), ("source", "source", str, "string", False, None, False), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js class MedicationKnowledgeDrugCharacteristic(backboneelement.BackboneElement): """ Specifies descriptive properties of the medicine. Specifies descriptive properties of the medicine, such as color, shape, imprints, etc. """ resource_type = "MedicationKnowledgeDrugCharacteristic" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.type = None """ Code specifying the type of characteristic of medication. Type `CodeableConcept` (represented as `dict` in JSON). """ self.valueBase64Binary = None """ Description of the characteristic. Type `str`. """ self.valueCodeableConcept = None """ Description of the characteristic. Type `CodeableConcept` (represented as `dict` in JSON). """ self.valueQuantity = None """ Description of the characteristic. Type `Quantity` (represented as `dict` in JSON). """ self.valueString = None """ Description of the characteristic. Type `str`. """ super(MedicationKnowledgeDrugCharacteristic, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeDrugCharacteristic, self).elementProperties() js.extend( [ ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ( "valueBase64Binary", "valueBase64Binary", str, "base64Binary", False, "value", False, ), ( "valueCodeableConcept", "valueCodeableConcept", codeableconcept.CodeableConcept, "CodeableConcept", False, "value", False, ), ( "valueQuantity", "valueQuantity", quantity.Quantity, "Quantity", False, "value", False, ), ("valueString", "valueString", str, "string", False, "value", False), ] ) return js class MedicationKnowledgeIngredient(backboneelement.BackboneElement): """ Active or inactive ingredient. Identifies a particular constituent of interest in the product. """ resource_type = "MedicationKnowledgeIngredient" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.isActive = None """ Active ingredient indicator. Type `bool`. """ self.itemCodeableConcept = None """ Medication(s) or substance(s) contained in the medication. Type `CodeableConcept` (represented as `dict` in JSON). """ self.itemReference = None """ Medication(s) or substance(s) contained in the medication. Type `FHIRReference` referencing `['Substance']` (represented as `dict` in JSON). """ self.strength = None """ Quantity of ingredient present. Type `Ratio` (represented as `dict` in JSON). """ super(MedicationKnowledgeIngredient, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeIngredient, self).elementProperties() js.extend( [ ("isActive", "isActive", bool, "boolean", False, None, False), ( "itemCodeableConcept", "itemCodeableConcept", codeableconcept.CodeableConcept, "CodeableConcept", False, "item", True, ), ( "itemReference", "itemReference", fhirreference.FHIRReference, "Reference", False, "item", True, ), ("strength", "strength", ratio.Ratio, "Ratio", False, None, False), ] ) return js class MedicationKnowledgeKinetics(backboneelement.BackboneElement): """ The time course of drug absorption, distribution, metabolism and excretion of a medication from the body. """ resource_type = "MedicationKnowledgeKinetics" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.areaUnderCurve = None """ The drug concentration measured at certain discrete points in time. List of `Quantity` items (represented as `dict` in JSON). """ self.halfLifePeriod = None """ Time required for concentration in the body to decrease by half. Type `Duration` (represented as `dict` in JSON). """ self.lethalDose50 = None """ The median lethal dose of a drug. List of `Quantity` items (represented as `dict` in JSON). """ super(MedicationKnowledgeKinetics, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeKinetics, self).elementProperties() js.extend( [ ( "areaUnderCurve", "areaUnderCurve", quantity.Quantity, "Quantity", True, None, False, ), ( "halfLifePeriod", "halfLifePeriod", duration.Duration, "Duration", False, None, False, ), ( "lethalDose50", "lethalDose50", quantity.Quantity, "Quantity", True, None, False, ), ] ) return js class MedicationKnowledgeMedicineClassification(backboneelement.BackboneElement): """ Categorization of the medication within a formulary or classification system. """ resource_type = "MedicationKnowledgeMedicineClassification" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.classification = None """ Specific category assigned to the medication. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.type = None """ The type of category for the medication (for example, therapeutic classification, therapeutic sub-classification). Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeMedicineClassification, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeMedicineClassification, self).elementProperties() js.extend( [ ( "classification", "classification", codeableconcept.CodeableConcept, "CodeableConcept", True, None, False, ), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js class MedicationKnowledgeMonitoringProgram(backboneelement.BackboneElement): """ Program under which a medication is reviewed. The program under which the medication is reviewed. """ resource_type = "MedicationKnowledgeMonitoringProgram" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.name = None """ Name of the reviewing program. Type `str`. """ self.type = None """ Type of program under which the medication is monitored. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeMonitoringProgram, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeMonitoringProgram, self).elementProperties() js.extend( [ ("name", "name", str, "string", False, None, False), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ] ) return js class MedicationKnowledgeMonograph(backboneelement.BackboneElement): """ Associated documentation about the medication. """ resource_type = "MedicationKnowledgeMonograph" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.source = None """ Associated documentation about the medication. Type `FHIRReference` referencing `['DocumentReference', 'Media']` (represented as `dict` in JSON). """ self.type = None """ The category of medication document. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeMonograph, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeMonograph, self).elementProperties() js.extend( [ ( "source", "source", fhirreference.FHIRReference, "Reference", False, None, False, ), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ] ) return js class MedicationKnowledgePackaging(backboneelement.BackboneElement): """ Details about packaged medications. Information that only applies to packages (not products). """ resource_type = "MedicationKnowledgePackaging" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.quantity = None """ The number of product units the package would contain if fully loaded. Type `Quantity` (represented as `dict` in JSON). """ self.type = None """ A code that defines the specific type of packaging that the medication can be found in. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgePackaging, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgePackaging, self).elementProperties() js.extend( [ ( "quantity", "quantity", quantity.Quantity, "Quantity", False, None, False, ), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, False, ), ] ) return js class MedicationKnowledgeRegulatory(backboneelement.BackboneElement): """ Regulatory information about a medication. """ resource_type = "MedicationKnowledgeRegulatory" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.maxDispense = None """ The maximum number of units of the medication that can be dispensed in a period. Type `MedicationKnowledgeRegulatoryMaxDispense` (represented as `dict` in JSON). """ self.regulatoryAuthority = None """ Specifies the authority of the regulation. Type `FHIRReference` referencing `['Organization']` (represented as `dict` in JSON). """ self.schedule = None """ Specifies the schedule of a medication in jurisdiction. List of `MedicationKnowledgeRegulatorySchedule` items (represented as `dict` in JSON). """ self.substitution = None """ Specifies if changes are allowed when dispensing a medication from a regulatory perspective. List of `MedicationKnowledgeRegulatorySubstitution` items (represented as `dict` in JSON). """ super(MedicationKnowledgeRegulatory, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeRegulatory, self).elementProperties() js.extend( [ ( "maxDispense", "maxDispense", MedicationKnowledgeRegulatoryMaxDispense, "MedicationKnowledgeRegulatoryMaxDispense", False, None, False, ), ( "regulatoryAuthority", "regulatoryAuthority", fhirreference.FHIRReference, "Reference", False, None, True, ), ( "schedule", "schedule", MedicationKnowledgeRegulatorySchedule, "MedicationKnowledgeRegulatorySchedule", True, None, False, ), ( "substitution", "substitution", MedicationKnowledgeRegulatorySubstitution, "MedicationKnowledgeRegulatorySubstitution", True, None, False, ), ] ) return js class MedicationKnowledgeRegulatoryMaxDispense(backboneelement.BackboneElement): """ The maximum number of units of the medication that can be dispensed in a period. """ resource_type = "MedicationKnowledgeRegulatoryMaxDispense" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.period = None """ The period that applies to the maximum number of units. Type `Duration` (represented as `dict` in JSON). """ self.quantity = None """ The maximum number of units of the medication that can be dispensed. Type `Quantity` (represented as `dict` in JSON). """ super(MedicationKnowledgeRegulatoryMaxDispense, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeRegulatoryMaxDispense, self).elementProperties() js.extend( [ ("period", "period", duration.Duration, "Duration", False, None, False), ( "quantity", "quantity", quantity.Quantity, "Quantity", False, None, True, ), ] ) return js class MedicationKnowledgeRegulatorySchedule(backboneelement.BackboneElement): """ Specifies the schedule of a medication in jurisdiction. """ resource_type = "MedicationKnowledgeRegulatorySchedule" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.schedule = None """ Specifies the specific drug schedule. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeRegulatorySchedule, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeRegulatorySchedule, self).elementProperties() js.extend( [ ( "schedule", "schedule", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js class MedicationKnowledgeRegulatorySubstitution(backboneelement.BackboneElement): """ Specifies if changes are allowed when dispensing a medication from a regulatory perspective. """ resource_type = "MedicationKnowledgeRegulatorySubstitution" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.allowed = None """ Specifies if regulation allows for changes in the medication when dispensing. Type `bool`. """ self.type = None """ Specifies the type of substitution allowed. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeRegulatorySubstitution, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super(MedicationKnowledgeRegulatorySubstitution, self).elementProperties() js.extend( [ ("allowed", "allowed", bool, "boolean", False, None, True), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js class MedicationKnowledgeRelatedMedicationKnowledge(backboneelement.BackboneElement): """ Associated or related medication information. Associated or related knowledge about a medication. """ resource_type = "MedicationKnowledgeRelatedMedicationKnowledge" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.reference = None """ Associated documentation about the associated medication knowledge. List of `FHIRReference` items referencing `['MedicationKnowledge']` (represented as `dict` in JSON). """ self.type = None """ Category of medicationKnowledge. Type `CodeableConcept` (represented as `dict` in JSON). """ super(MedicationKnowledgeRelatedMedicationKnowledge, self).__init__( jsondict=jsondict, strict=strict ) def elementProperties(self): js = super( MedicationKnowledgeRelatedMedicationKnowledge, self ).elementProperties() js.extend( [ ( "reference", "reference", fhirreference.FHIRReference, "Reference", True, None, True, ), ( "type", "type", codeableconcept.CodeableConcept, "CodeableConcept", False, None, True, ), ] ) return js try: from . import codeableconcept except ImportError: codeableconcept = sys.modules[__package__ + ".codeableconcept"] try: from . import dosage except ImportError: dosage = sys.modules[__package__ + ".dosage"] try: from . import duration except ImportError: duration = sys.modules[__package__ + ".duration"] try: from . import fhirreference except ImportError: fhirreference = sys.modules[__package__ + ".fhirreference"] try: from . import money except ImportError: money = sys.modules[__package__ + ".money"] try: from . import quantity except ImportError: quantity = sys.modules[__package__ + ".quantity"] try: from . import ratio except ImportError: ratio = sys.modules[__package__ + ".ratio"]
the-stack_0_2226
#!/usr/bin/python3 import unittest from base import TestBase class LoginTest(TestBase): def test_anonymous_login(self): info = self.call('/user') self.assertIsNone(info['user']) def test_logged_in(self): with self.client: email = '[email protected]' self.login(email) info = self.call('/user') self.assertEqual(email, info['user']['email']) def test_new_user_has_zero_credit(self): with self.client: self.login('[email protected]') info = self.call('/user') self.assertEqual(0, info['user']['credit']) def test_user_cannot_change_his_credit(self): with self.client: user = self.login('[email protected]') self.assertEqual(0, user['credit']) userUrl = '/api/user/{}'.format(user['id']) self.call(userUrl, credit=20, expectedStatus=405) self.assertEqual(0, self.call('/user')['user']['credit']) if __name__ == "__main__": unittest.main(verbosity=2)
the-stack_0_2228
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ExpressRouteCircuitSku(Model): """Contains SKU in an ExpressRouteCircuit. :param name: The name of the SKU. :type name: str :param tier: The tier of the SKU. Possible values are 'Standard', 'Premium' or 'Basic'. Possible values include: 'Standard', 'Premium', 'Basic' :type tier: str or ~azure.mgmt.network.v2018_11_01.models.ExpressRouteCircuitSkuTier :param family: The family of the SKU. Possible values are: 'UnlimitedData' and 'MeteredData'. Possible values include: 'UnlimitedData', 'MeteredData' :type family: str or ~azure.mgmt.network.v2018_11_01.models.ExpressRouteCircuitSkuFamily """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'family': {'key': 'family', 'type': 'str'}, } def __init__(self, *, name: str=None, tier=None, family=None, **kwargs) -> None: super(ExpressRouteCircuitSku, self).__init__(**kwargs) self.name = name self.tier = tier self.family = family
the-stack_0_2229
""" Canny edge detection adapted from https://github.com/DCurro/CannyEdgePytorch """ import torch import torch.nn as nn import numpy as np from scipy.signal.windows import gaussian class CannyEdgeDetector(nn.Module): def __init__(self, non_max_suppression=True, gaussian_filter_std=1.0, gaussian_filter_size=5, threshold=0.2): super(CannyEdgeDetector, self).__init__() self.threshold = threshold self.non_max_suppression = non_max_suppression # Gaussian filter for smoothing gaussian_filter = gaussian(gaussian_filter_size, std=gaussian_filter_std).reshape([1, gaussian_filter_size]) gaussian_filter = gaussian_filter / gaussian_filter.sum() self.gaussian_filter_horizontal = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(1, gaussian_filter_size), padding=(0, gaussian_filter_size // 2), bias=False) # self.gaussian_filter_horizontal.weight[:] = torch.from_numpy(gaussian_filter).float() self.gaussian_filter_horizontal.weight.data = torch.from_numpy(gaussian_filter).float()[None, None, :, :] self.gaussian_filter_vertical = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(gaussian_filter_size, 1), padding=(gaussian_filter_size // 2, 0), bias=False) # self.gaussian_filter_vertical.weight[:] = torch.from_numpy(gaussian_filter.T) self.gaussian_filter_vertical.weight.data = torch.from_numpy(gaussian_filter.T).float()[None, None, :, :] # Sobel filter for gradient sobel_filter = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) self.sobel_filter_horizontal = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=sobel_filter.shape, padding=sobel_filter.shape[0] // 2, bias=False) # self.sobel_filter_horizontal.weight[:] = torch.from_numpy(sobel_filter).float() self.sobel_filter_horizontal.weight.data = torch.from_numpy(sobel_filter).float()[None, None, :, :] self.sobel_filter_vertical = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=sobel_filter.shape, padding=sobel_filter.shape[0] // 2, bias=False) # self.sobel_filter_vertical.weight[:] = torch.from_numpy(sobel_filter.T).float() self.sobel_filter_vertical.weight.data = torch.from_numpy(sobel_filter.T).float()[None, None, :, :] # Directional filters for non-max suppression (edge thinning) using gradient orientations. # filters were flipped manually if self.non_max_suppression: filter_0 = np.array([[0, 0, 0], [0, 1, -1], [0, 0, 0]]) filter_45 = np.array([[0, 0, 0], [0, 1, 0], [0, 0, -1]]) filter_90 = np.array([[0, 0, 0], [0, 1, 0], [0, -1, 0]]) filter_135 = np.array([[0, 0, 0], [0, 1, 0], [-1, 0, 0]]) filter_180 = np.array([[0, 0, 0], [-1, 1, 0], [0, 0, 0]]) filter_225 = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 0]]) filter_270 = np.array([[0, -1, 0], [0, 1, 0], [0, 0, 0]]) filter_315 = np.array([[0, 0, -1], [0, 1, 0], [0, 0, 0]]) all_filters = np.stack([filter_0, filter_45, filter_90, filter_135, filter_180, filter_225, filter_270, filter_315]) self.directional_filter = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=filter_0.shape, padding=filter_0.shape[-1] // 2, bias=False) # self.directional_filter.weight[:] = torch.from_numpy(all_filters[:, None, ...]) self.directional_filter.weight.data = torch.from_numpy(all_filters[:, None, :, :]).float() def forward(self, img): """ :param img: (batch_size, num_channels, img_wh, img_wh) :return: """ batch_size = img.shape[0] num_channels = img.shape[1] blurred_img = torch.zeros_like(img) # (batch_size, num_channels, img_wh, img_wh) grad_x = torch.zeros((batch_size, 1, *img.shape[2:]), device=img.device) # (batch_size, 1, img_wh, img_wh) grad_y = torch.zeros((batch_size, 1, *img.shape[2:]), device=img.device) # (batch_size, 1, img_wh, img_wh) for c in range(num_channels): # Gaussian smoothing blurred = self.gaussian_filter_vertical(self.gaussian_filter_horizontal(img[:, [c], :, :])) # (batch_size, 1, img_wh, img_wh) blurred_img[:, [c]] = blurred # Gradient grad_x += self.sobel_filter_horizontal(blurred) # (batch_size, 1, img_wh, img_wh) grad_y += self.sobel_filter_vertical(blurred) # (batch_size, 1, img_wh, img_wh) # Gradient magnitude and orientation grad_x, grad_y = grad_x / num_channels, grad_y / num_channels # Average per-pixel gradients over channels grad_magnitude = (grad_x ** 2 + grad_y ** 2) ** 0.5 # Per-pixel gradient magnitude grad_orientation = torch.atan2(grad_y, grad_x) * (180.0/np.pi) + 180.0 # Per-pixel gradient orientation in degrees with range (0°, 360°) grad_orientation = torch.round(grad_orientation / 45.0) * 45.0 # Bin gradient orientations # Thresholding thresholded_grad_magnitude = grad_magnitude.clone() thresholded_grad_magnitude[grad_magnitude < self.threshold] = 0.0 output = {'blurred_img': blurred_img, # (batch_size, num_channels, img_wh, img_wh) 'grad_magnitude': grad_magnitude, # (batch_size, 1, img_wh, img_wh) 'grad_orientation': grad_orientation, # (batch_size, 1, img_wh, img_wh) 'thresholded_grad_magnitude': thresholded_grad_magnitude} # (batch_size, 1, img_wh, img_wh) assert grad_magnitude.size() == grad_orientation.size() == thresholded_grad_magnitude.size() # Non-max suppression (edge thinning) if self.non_max_suppression: all_direction_filtered = self.directional_filter(grad_magnitude) # (batch_size, 8, img_wh, img_wh) positive_idx = (grad_orientation / 45) % 8 # (batch_size, 1, img_wh, img_wh) Index of positive gradient direction (0: 0°, ..., 7: 315°) at each pixel thin_edges = grad_magnitude.clone() # (batch_size, 1, img_wh, img_wh) for pos_i in range(4): neg_i = pos_i + 4 is_oriented_i = (positive_idx == pos_i) * 1 is_oriented_i = is_oriented_i + (positive_idx == neg_i) * 1 # > 0 if pixel is oriented in pos_i or neg_i direction pos_directional = all_direction_filtered[:, pos_i] neg_directional = all_direction_filtered[:, neg_i] selected_direction = torch.stack([pos_directional, neg_directional]) # get the local maximum pixels for the angle is_max = selected_direction.min(dim=0)[0] > 0.0 # Check if pixel greater than neighbours in pos_i and neg_i directions. is_max = torch.unsqueeze(is_max, dim=1) # apply non maximum suppression to_remove = (is_max == 0) * 1 * (is_oriented_i) > 0 thin_edges[to_remove] = 0.0 thresholded_thin_edges = thin_edges.clone() thresholded_thin_edges[thin_edges < self.threshold] = 0.0 output['thin_edges'] = thin_edges output['thresholded_thin_edges'] = thresholded_thin_edges return output
the-stack_0_2231
import time import orjson import asyncio import websockets from typing import Optional from enum import IntEnum from dataclasses import dataclass from dataclasses_json import dataclass_json from websockets.exceptions import ConnectionClosedError, ConnectionClosed, ConnectionClosedOK from athanor.app import Service UNKNOWN = "UNKNOWN" class MudProtocol(IntEnum): TELNET = 0 WEBSOCKET = 1 def __str__(self): if self == 0: return "Telnet" elif self == 1: return "WebSocket" else: return "Unknown" #Shamelessly yoinked this IntEnum from Rich for K.I.S.S. purposes. class ColorSystem(IntEnum): """One of the 3 color system supported by terminals.""" STANDARD = 1 EIGHT_BIT = 2 TRUECOLOR = 3 WINDOWS = 4 COLOR_MAP = { "ansi": ColorSystem.STANDARD, "xterm256": ColorSystem.EIGHT_BIT, "truecolor": ColorSystem.TRUECOLOR } @dataclass_json @dataclass class ConnectionDetails: protocol: MudProtocol = 0 client_id: str = UNKNOWN client_name: str = UNKNOWN client_version: str = UNKNOWN host_address: str = UNKNOWN host_name: str = UNKNOWN host_port: int = 0 connected: float = time.time() utf8: bool = False color: Optional[ColorSystem] = None screen_reader: bool = False proxy: bool = False osc_color_palette: bool = False vt100: bool = False mouse_tracking: bool = False naws: bool = False width: int = 78 height: int = 24 mccp2: bool = False mccp2_active: bool = False mccp3: bool = False mccp3_active: bool = False mtts: bool = False ttype: bool = False mnes: bool = False suppress_ga: bool = False force_endline: bool = False linemode: bool = False mssp: bool = False mxp: bool = False mxp_active: bool = False oob: bool = False class ConnectionInMessageType(IntEnum): GAMEDATA = 0 CONNECT = 1 READY = 2 MSSP = 4 DISCONNECT = 5 UPDATE = 6 @dataclass_json @dataclass class ConnectionInMessage: msg_type: ConnectionInMessageType client_id: str data: Optional[object] class ConnectionOutMessageType(IntEnum): GAMEDATA = 0 MSSP = 1 DISCONNECT = 2 @dataclass_json @dataclass class ConnectionOutMessage: msg_type: ConnectionOutMessageType client_id: str data: Optional[object] class PortalOutMessageType(IntEnum): EVENTS = 0 HELLO = 1 SYSTEM = 2 @dataclass_json @dataclass class PortalOutMessage: msg_type: PortalOutMessageType process_id: int data: Optional[object] class ServerInMessageType(IntEnum): EVENTS = 0 HELLO = 1 SYSTEM = 2 @dataclass_json @dataclass class ServerInMessage: msg_type: ServerInMessageType process_id: int data: Optional[object] class LinkProtocol: def __init__(self, service, ws, path): self.service = service self.connection = ws self.path = path self.outbox = asyncio.Queue() self.task = None self.running = False async def run(self): self.running = True self.task = asyncio.create_task(self.run_tasks()) await self.task self.running = False async def run_tasks(self): await asyncio.gather(self.read(), self.write()) async def read(self): try: async for message in self.connection: await self.process_message(message) except ConnectionClosedError: self.running = False self.task.cancel() except ConnectionClosedOK: self.running = False self.task.cancel() except ConnectionClosed: self.running = False self.task.cancel() async def write(self): while self.running: msg = await self.outbox.get() #print(f"{self.service.app.config.name.upper()} SENDING MESSAGE: {msg}") if isinstance(msg, str): await self.connection.send(msg) else: await self.connection.send(orjson.dumps(msg)) async def process_message(self, message): #print(f"{self.service.app.config.name.upper()} RECEIVED MESSAGE: {message}") if isinstance(message, bytes): data = orjson.loads(message.decode()) await self.service.message_from_link(data) else: print(f"{self.service.app.config.name} got unknown websocket message: {message}") class LinkService(Service): def __init__(self, app): super().__init__(app) self.app.link = self self.link: Optional[LinkProtocol] = None self.interface: Optional[str] = None self.port: int = 0 self.in_events: Optional[asyncio.Queue] = None self.out_events: Optional[asyncio.Queue] = None def setup(self): link_conf = self.app.config.link interface = self.app.config.interfaces.get(link_conf["interface"], None) if interface is None: raise ValueError("Portal must have a link interface!") self.interface = interface port = int(link_conf["port"]) if port < 0 or port > 65535: raise ValueError(f"Invalid port: {port}. Port must be 16-bit unsigned integer") self.port = port async def async_setup(self): self.in_events = asyncio.Queue() self.out_events = asyncio.Queue() async def async_run(self): pass async def handle_in_events(self): pass async def handle_out_events(self): pass def new_link(self, ws, path): link = LinkProtocol(self, ws, path) if self.link: self.close_link() self.link = link self.on_new_link() return link.run() def on_new_link(self): pass def close_link(self): pass async def message_from_link(self, message): pass class LinkServiceServer(LinkService): def __init__(self, app): super().__init__(app) self.listener = None async def async_run(self): await asyncio.gather(self.listener, self.handle_in_events(), self.handle_out_events()) async def async_setup(self): await super().async_setup() self.listener = websockets.serve(self.new_link, self.interface, self.port) class LinkServiceClient(LinkService): async def async_run(self): await asyncio.gather(self.async_link(), self.handle_in_events(), self.handle_out_events()) async def async_link(self): url = f"ws://{self.interface}:{self.port}" while True: async with websockets.connect(url) as ws: self.link = LinkProtocol(self, ws, "/") self.on_new_link() await self.link.run() await asyncio.sleep(0.1) async def handle_in_events(self): while True: msg = await self.in_events.get() await self.app.conn.in_events.put(msg) async def handle_out_events(self): while True: if self.link: msg = await self.out_events.get() await self.link.outbox.put(msg) else: await asyncio.sleep(1)
the-stack_0_2233
import inspect from typing import Callable, Type from open_mafia_engine.util.repr import ReprMixin class MafiaError(Exception, ReprMixin): """Base class for Mafia exceptions.""" class MafiaAmbiguousTypeName(MafiaError): """The type name conficts with an existing name.""" def __init__(self, existing_type: Type[object], new_type: Type[object]) -> None: self.existing_type = existing_type self.new_type = new_type self.type_name = type_name = existing_type.__qualname__ super().__init__( f"""Type {type_name!r} conficts with existing type. Existing type defined in: {inspect.getmodule(existing_type)} New type defined in: {inspect.getmodule(new_type)} """ ) class MafiaTypeNotFound(MafiaError): """The type was not found.""" def __init__(self, type_name: str) -> None: self.type_name = type_name super().__init__(f"Couldn't find GameObject subtype {type_name!r}") class MafiaConverterError(MafiaError, TypeError): """Could not convert object to the requested type.""" def __init__(self, obj: str, type_: Type): self.obj = obj self.type_ = type_ super().__init__(f"Couldn't convert {obj!r} to {type_!r}") class MafiaBadHandler(MafiaError, TypeError): """Function can't be used as an event handler.""" def __init__(self, func: Callable): self.func = func super().__init__(f"Function isn't a legal event handler: {func!r}") class MafiaBadBuilder(MafiaError, TypeError): """Function can't be used as a game builder.""" def __init__(self, func: Callable): self.func = func super().__init__(f"Function isn't a legal game builder: {func!r}")
the-stack_0_2235
''' Manage the pipeline : reading the logs, parsing them and generating stats. ''' import os import time from monilog.parser import Parser from monilog.statistics import Statistics from monilog.utils import init_logger HIGH_TRAFFIC_DUR = 2*60 STAT_DUR = 10 MAX_IDLE_TIME = 5*60 class MonilogPipeline: ''' Read logs and generates statistics. Args: file (str): The file with the logs to monitor. threshold (int): Max traffic entries for the past 2 mn. stop (bool): Whether to stop the monitoring. ''' def __init__(self, file='/tmp/access.log', threshold=10): self.file = file self.threshold = threshold self.stop = False def stop_monitoring(self): ''' To call when the monitoring app should be stopped. ''' self.stop = True def run(self): ''' Run the monitoring pipeline. ''' parser = Parser() get_stats = Statistics(STAT_DUR) alert = False high_traffic_nb = 0 traffic_buffer = [] if not os.path.exists(self.file): time.sleep(1) file = open(self.file, 'r', os.O_NONBLOCK) stat_time = time.time() high_traffic_time = time.time() start_idle_time = None idle_duration = 0 logger = init_logger() while not self.stop: line = file.readline() if not line: if not start_idle_time: start_idle_time = time.time() else: idle_duration = time.time() - start_idle_time if idle_duration > MAX_IDLE_TIME: logger.info( 'Stopping monitoring : Logging app not used for %d s.\n' % (int(idle_duration)) ) self.stop = True else: start_idle_time = None idle_duration = 0 try: parsed_line = parser(line) except: #logger.warning(f"There was an error parsing : {line}") continue traffic_buffer.append( parsed_line ) high_traffic_nb += 1 if time.time() - stat_time >= STAT_DUR: logger.info('\n'+get_stats(traffic_buffer)) stat_time = time.time() traffic_buffer = [] if time.time() - high_traffic_time >= HIGH_TRAFFIC_DUR: if high_traffic_nb/HIGH_TRAFFIC_DUR > self.threshold and not alert: alert = True logger.warning( "High traffic generated an alert - hits = %f, triggered at %s.\n" % ( high_traffic_nb/HIGH_TRAFFIC_DUR, time.strftime('%d/%b/%Y %H:%M:%S') ) ) elif high_traffic_nb/HIGH_TRAFFIC_DUR <= self.threshold and alert: logger.info( "The high traffic alert is recovered at %s.\n" % (time.strftime('%d/%b/%Y %H:%M:%S')) ) high_traffic_time = time.time() high_traffic_nb = 0
the-stack_0_2236
import sys sys.setrecursionlimit(500000) class Solution: # @param A : list of integers # @return an integer def solve(self, parents): if not parents: return 0 assert len(parents) >= 1 tree = make_tree(parents) depth, max_dist = find_max_dist(tree) return max_dist class TreeNode: __slots__ = ['childs'] def __init__(self): self.childs = [] def append(self, child): self.childs.append(child) def make_tree(parents): n = len(parents) assert -1 in parents root = parents.index(-1) nodes = [TreeNode() for _id in range(n)] for i,p in enumerate(parents): if p==-1: continue nodes[p].append(nodes[i]) assert parents[root] == -1 return nodes[root] def find_max_dist(tree): ''' @return (depth, max_dist) ''' assert tree if len(tree.childs) == 0: return (0, 0) dms = [find_max_dist(child) for child in tree.childs] ds, ms = zip(*dms) max_depth_so_far = 1+max(ds) if len(tree.childs) == 1: assert len(ds) == 1 max_dist_so_far = max(ds[0]+1, max(ms)) else: max_dist_so_far = max(sum(top2_among(ds))+2, max(ms)) return (max_depth_so_far, max_dist_so_far) def top2_among(ds): top2 = Top2() for d in ds: top2.push(d) return top2.fst, top2.snd class Top2: def __init__(self): self.fst, self.snd = 0, 0 def push(self, n): if self.fst <= n: self.fst, self.snd = n, self.fst elif self.snd < n: self.snd = n
the-stack_0_2237
"""Documenter module docstring.""" import ast import importlib import inspect import os import re import textwrap from collections import namedtuple from functools import lru_cache from types import ModuleType from typing import Any, Callable, Dict, GenericMeta, List, Optional, Pattern, Tuple, Type, Union RECURSIVE_NODES = (ast.If, ast.IfExp, ast.Try, ast.With, ast.ExceptHandler) # exactly two leading underscores, exactly two trailing underscores # since we enforce one non-underscore after the two leading underscores, # we put the rest in an optional group RE_SPECIAL: Pattern = re.compile(r"^__[^_]([\w_]*[^_])?__$") # at least two leading underscores, at most one trailing underscore # since we enforce one non-underscore before the last, # we make the previous characters optional with an asterisk RE_CLASS_PRIVATE: Pattern = re.compile(r"^__[\w_]*[^_]_?$") # at most one leading underscore, then whatever RE_PRIVATE: Pattern = re.compile(r"^_[^_][\w_]*$") CATEGORY_ATTRIBUTE = "attribute" CATEGORY_METHOD = "method" CATEGORY_FUNCTION = "function" CATEGORY_MODULE = "module" CATEGORY_CLASS = "class" NAME_SPECIAL = ("special", lambda n: bool(RE_SPECIAL.match(n))) NAME_CLASS_PRIVATE = ("class-private", lambda n: bool(RE_CLASS_PRIVATE.match(n))) NAME_PRIVATE = ("private", lambda n: bool(RE_PRIVATE.match(n))) NAME_PROPERTIES = { CATEGORY_ATTRIBUTE: [NAME_SPECIAL, NAME_CLASS_PRIVATE, NAME_PRIVATE], CATEGORY_METHOD: [NAME_SPECIAL, NAME_PRIVATE], CATEGORY_FUNCTION: [NAME_PRIVATE], CATEGORY_CLASS: [NAME_PRIVATE], CATEGORY_MODULE: [NAME_SPECIAL, NAME_PRIVATE], } def node_is_docstring(node: ast.AST) -> bool: return isinstance(node, ast.Expr) and isinstance(node.value, ast.Str) def node_to_docstring(node: Union[ast.Expr, ast.Str]) -> str: return node.value.s def node_is_assignment(node: ast.AST) -> bool: return isinstance(node, ast.Assign) def node_to_names(node: ast.Assign) -> List[str]: names = [] for target in node.targets: if isinstance(target, ast.Attribute): names.append(target.attr) elif isinstance(target, ast.Name): names.append(target.id) return names def get_name_properties(name: str, category: str) -> List[str]: properties = [] for prop in NAME_PROPERTIES[category]: if prop[1](name): properties.append(prop[0]) return properties def get_attribute_names_and_docstring(node1, node2): if node_is_docstring(node2) and node_is_assignment(node1): return node_to_names(node1), node_to_docstring(node2) raise ValueError @lru_cache(maxsize=None) def get_attributes(module: ModuleType) -> List["Object"]: with open(module.__file__) as stream: code = stream.read() initial_ast_body = ast.parse(code).body return _get_attributes(initial_ast_body, name_prefix=module.__name__) def _get_attributes(ast_body: list, name_prefix: str, properties: Optional[List[str]] = None) -> List["Object"]: if not properties: properties = [] documented_attributes = [] previous_node = None for node in ast_body: try: names, docstring = get_attribute_names_and_docstring(previous_node, node) except ValueError: if isinstance(node, RECURSIVE_NODES): documented_attributes.extend(_get_attributes(node.body, name_prefix, properties)) if isinstance(node, ast.Try): documented_attributes.extend(_get_attributes(node.finalbody, name_prefix, properties)) elif isinstance(node, ast.FunctionDef) and node.name == "__init__": documented_attributes.extend(_get_attributes(node.body, name_prefix)) elif isinstance(node, ast.ClassDef): documented_attributes.extend( _get_attributes(node.body, f"{name_prefix}.{node.name}", properties=["class"]) ) else: for name in names: documented_attributes.append( Object( category=CATEGORY_ATTRIBUTE, path=f"{name_prefix}.{name}", name=name, docstring=docstring, properties=properties + get_name_properties(name, CATEGORY_ATTRIBUTE), ) ) previous_node = node return documented_attributes def import_object(path: str) -> Tuple[ModuleType, Any]: """ Transform a path into an actual Python object. The path can be arbitrary long. You can pass the path to a package, a module, a class, a function or a global variable, as deep as you want, as long as the deepest module is importable through ``importlib.import_module`` and each object is obtainable through the ``getattr`` method. Local objects will not work. Args: path: the dot-separated path of the object. Returns: tuple: the imported module and obtained object. """ if not path: raise ValueError(f"path must be a valid Python path, not {path}") obj_parent_modules = path.split(".") objects = [] while True: try: parent_module_path = ".".join(obj_parent_modules) parent_module = importlib.import_module(parent_module_path) break except ImportError: if len(obj_parent_modules) == 1: raise ImportError("No module named '%s'" % obj_parent_modules[0]) objects.insert(0, obj_parent_modules.pop(-1)) current_object = parent_module for obj in objects: current_object = getattr(current_object, obj) module = inspect.getmodule(current_object) return module, current_object ADMONITIONS = { "note:": "note", "see also:": "seealso", "abstract:": "abstract", "summary:": "summary", "tldr:": "tldr", "info:": "info", "information:": "info", "todo:": "todo", "tip:": "tip", "hint:": "hint", "important:": "important", "success:": "success", "check:": "check", "done:": "done", "question:": "question", "help:": "help", "faq:": "faq", "warning:": "warning", "caution:": "caution", "attention:": "attention", "failure:": "failure", "fail:": "fail", "missing:": "missing", "danger:": "danger", "error:": "error", "bug:": "bug", "example:": "example", "snippet:": "snippet", "quote:": "quote", "cite:": "cite", } def render_signature(signature): # credits to https://github.com/tomchristie/mkautodoc params = [] render_pos_only_separator = True render_kw_only_separator = True for parameter in signature.parameters.values(): value = parameter.name if parameter.default is not parameter.empty: value = f"{value}={parameter.default!r}" if parameter.kind is parameter.VAR_POSITIONAL: render_kw_only_separator = False value = f"*{value}" elif parameter.kind is parameter.VAR_KEYWORD: value = f"**{value}" elif parameter.kind is parameter.POSITIONAL_ONLY: if render_pos_only_separator: render_pos_only_separator = False params.append("/") elif parameter.kind is parameter.KEYWORD_ONLY: if render_kw_only_separator: render_kw_only_separator = False params.append("*") params.append(value) return ", ".join(params) def get_param_info(signature, param_name): parameter = signature.parameters[param_name] param_default = param_type = "" if parameter.annotation is not parameter.empty: if inspect.isclass(parameter.annotation) and not isinstance(parameter.annotation, GenericMeta): param_type = parameter.annotation.__name__ else: param_type = str(parameter.annotation).replace("typing.", "") if parameter.kind is parameter.VAR_KEYWORD: param_name = f"**{param_name}" if parameter.default is not parameter.empty: param_default = str(parameter.default) return namedtuple("Param", "name default type")(param_name, param_default, param_type) def get_return_type(signature): ret = signature.return_annotation if ret is not signature.empty: if inspect.isclass(ret) and not isinstance(ret, GenericMeta): ret_type = ret.__name__ else: ret_type = str(ret).replace("typing.", "") else: ret_type = "" return ret_type def parse_docstring(docstring: str, signature) -> str: """ Parse a docstring! Note: to try notes. Args: docstring: this is the docstring to parse. Raises: OSError: no it doesn't lol. Returns: markdown: the docstring converted to a nice markdown text. """ params = {} exceptions = {} returns = "" lines = docstring.split("\n") new_lines = [] i = 0 while i < len(lines): if lines[i].lower() in ("args:", "arguments:", "params:", "parameters:"): j = i + 1 name = None while j < len(lines) and lines[j].startswith(" "): if lines[j].startswith(" ") and params[name]: params[name] += " " + lines[j].lstrip(" ") else: name, description = lines[j].lstrip(" ").split(":", 1) params[name] = description.lstrip(" ") j += 1 new_lines.append("**Parameters**\n") new_lines.append("| Name | Type | Description |") new_lines.append("| ---- | ---- | ----------- |") for param_name, param_description in params.items(): param_name, param_default, param_type = get_param_info(signature, param_name) # if param_default: # param_default = f"`{param_default}`" new_lines.append(f"| `{param_name}` | `{param_type}` | {param_description} |") new_lines.append("") i = j - 1 elif lines[i].lower() in ("raise:", "raises:", "except:", "exceptions:"): j = i + 1 name = None while j < len(lines) and lines[j].startswith(" "): if lines[j].startswith(" ") and exceptions[name]: exceptions[name] += " " + lines[j].lstrip(" ") else: name, description = lines[j].lstrip(" ").split(":", 1) exceptions[name] = description.lstrip(" ") j += 1 new_lines.append("**Exceptions**\n") new_lines.append("| Type | Description |") new_lines.append("| ---- | ----------- |") for exception_name, exception_description in exceptions.items(): new_lines.append(f"| `{exception_name}` | {exception_description} |") new_lines.append("") i = j - 1 elif lines[i].lower() in ("return:", "returns:"): j = i + 1 while j < len(lines) and lines[j].startswith(" "): description = lines[j].lstrip(" ") returns += " " + description j += 1 new_lines.append("**Returns**\n") new_lines.append("| Type | Description |") new_lines.append("| ---- | ----------- |") new_lines.append(f"| `{get_return_type(signature)}` | {returns} |") new_lines.append("") i = j - 1 elif lines[i].lower() in ADMONITIONS.keys(): j = i + 1 admonition = [] while j < len(lines) and lines[j].startswith(" ") or lines[j] == "": admonition.append(lines[j]) j += 1 new_lines.append(f"!!! {ADMONITIONS[lines[i].lower()]}") new_lines.append("\n".join(admonition)) new_lines.append("") i = j - 1 else: new_lines.append(lines[i]) i += 1 return "\n".join(new_lines) class Object: """ Class to store information about a Python object. - the object category (ex: module, function, class, method or attribute) - the object path (ex: `package.submodule.class.inner_class.method`) - the object name (ex: `__init__`) - the object docstring - the object properties, depending on its category (ex: special, classmethod, etc.) - the object signature (soon) Each instance additionally stores references to its children, grouped by category (see Attributes). """ def __init__( self, category: str, name: str, path: str, docstring: str, properties: List[str], signature: Optional[str] = None, source: Optional[str] = None, file: Optional[str] = None, ) -> None: self.category = category self.name = name self.signature = signature or "" self.path = path self.docstring = docstring or "" self.properties = properties self.parent = None self.source = source or "" self.file = file or "" self._path_map = {} self.attributes = [] """List of all the object's attributes.""" self.methods = [] """List of all the object's methods.""" self.functions = [] """List of all the object's functions.""" self.modules = [] """List of all the object's submodules.""" self.classes = [] """List of all the object's classes.""" self.children = [] """List of all the object's children.""" def __str__(self): return self.path @property def parent_path(self) -> str: """The parent's path, computed from the current path.""" return self.path.rsplit(".", 1)[0] def add_child(self, obj: "Object") -> None: """Add an object as a child of this object.""" if obj.parent_path != self.path: return self.children.append(obj) { CATEGORY_ATTRIBUTE: self.attributes, CATEGORY_METHOD: self.methods, CATEGORY_FUNCTION: self.functions, CATEGORY_MODULE: self.modules, CATEGORY_CLASS: self.classes, }.get(obj.category).append(obj) obj.parent = self self._path_map[obj.path] = obj def add_children(self, children: List["Object"]) -> None: """Add a list of objects as children of this object.""" for child in children: self.add_child(child) def dispatch_attributes(self, attributes: List["Object"]) -> None: for attribute in attributes: try: attach_to = self._path_map[attribute.parent_path] except KeyError: pass else: attach_to.attributes.append(attribute) attach_to.children.append(attribute) attribute.parent = attach_to def render_references(self, base_url: str): lines = [f"[{self.path}]: {base_url}#{self.path}"] for child in self.children: lines.append(child.render_references(base_url)) return "\n".join(lines) def render(self, heading: int = 1, **config: Dict[str, Any]) -> str: """ Render this object as Markdown. This is dirty and will be refactored as a Markdown extension soon. Parameters: heading: The initial level of heading to use. config: The rendering configuration dictionary. Returns: The rendered Markdown. """ lines = [] show_top_object_heading = config.pop("show_top_object_heading", True) show_top_object_full_path = config.pop("show_top_object_full_path", False) if show_top_object_heading: if self.docstring or not config["hide_no_doc"] or not self.parent: signature = "" toc_signature = "" if self.category in (CATEGORY_FUNCTION, CATEGORY_METHOD): if self.signature: signature = f"({render_signature(self.signature)})" toc_signature = "()" object_heading = f"`:::python {self.path if show_top_object_full_path else self.name}{signature}`" object_permalink = self.path.replace("__", r"\_\_") object_toc = self.name.replace("__", r"\_\_") + toc_signature properties = ", ".join(self.properties) if properties: object_heading += f"*({properties})*" lines.append( f"{'#' * heading} {object_heading} {{: #{object_permalink} data-toc-label='{object_toc}' }}" ) if config["add_source_details"] and self.source: lines.append("") lines.append(f'??? note "Show source code"') lines.append(f' ```python linenums="{self.source[1]}"') lines.append(textwrap.indent("".join(self.source[0]), " ")) lines.append(" ```") lines.append("") if self.docstring: lines.append(parse_docstring(self.docstring, self.signature)) lines.append("") if config["group_by_categories"]: lines.append(self.render_categories(heading + 1, **config,)) else: for child in sorted(self.children, key=lambda o: o.name.lower()): lines.append(child.render(heading + 1, **config,)) lines.append("") return "\n".join(lines) def render_categories(self, heading: int, **config): extra_level = 1 if config["show_groups_headings"] else 0 lines = [] if self.attributes: if config["show_groups_headings"]: lines.append(f"{'#' * heading} Attributes") lines.append("") for attribute in sorted(self.attributes, key=lambda o: o.name.lower()): lines.append(attribute.render(heading + extra_level, **config)) lines.append("") if self.classes: if config["show_groups_headings"]: lines.append(f"{'#' * heading} Classes") lines.append("") for class_ in sorted(self.classes, key=lambda o: o.name.lower()): lines.append(class_.render(heading + extra_level, **config)) lines.append("") if self.methods: if config["show_groups_headings"]: lines.append(f"{'#' * heading} Methods") lines.append("") for method in sorted(self.methods, key=lambda o: o.name.lower()): lines.append(method.render(heading + extra_level, **config)) lines.append("") if self.functions: if config["show_groups_headings"]: lines.append(f"{'#' * heading} Functions") lines.append("") for function in sorted(self.functions, key=lambda o: o.name.lower()): lines.append(function.render(heading + extra_level, **config)) lines.append("") return "\n".join(lines) class Documenter: """Class that contains the object documentation loading mechanisms.""" def __init__(self, global_filters): self.global_filters = [(f, re.compile(f.lstrip("!"))) for f in global_filters] def get_object_documentation(self, import_string: str) -> Object: """ Documenting to see return type. Return: The object with all its children populated. """ module, obj = import_object(import_string) path = module.__name__ if inspect.ismodule(obj): root_object = self.get_module_documentation(obj, path) elif inspect.isclass(obj): path = f"{path}.{obj.__name__}" root_object = self.get_class_documentation(obj, path) elif inspect.isfunction(obj): path = f"{path}.{obj.__name__}" root_object = self.get_function_documentation(obj, path) else: raise ValueError(f"{obj}:{type(obj)} not yet supported") attributes = get_attributes(module) root_object.dispatch_attributes([a for a in attributes if not self.filter_name_out(a.name)]) return root_object def get_module_documentation(self, module: ModuleType, path: str) -> Object: module_name = path.split(".")[-1] module_file_basename = os.path.splitext(os.path.basename(module.__file__))[0] properties = get_name_properties(module_file_basename, CATEGORY_MODULE) root_object = Object( category=CATEGORY_MODULE, name=module_name, path=path, docstring=inspect.getdoc(module), properties=properties, ) for member_name, member in inspect.getmembers(module): if self.filter_name_out(member_name): continue member_path = f"{path}.{member_name}" if inspect.isclass(member) and inspect.getmodule(member) == module: root_object.add_child(self.get_class_documentation(member, member_path)) elif inspect.isfunction(member) and inspect.getmodule(member) == module: root_object.add_child(self.get_function_documentation(member, member_path)) return root_object def get_class_documentation(self, class_: Type[Any], path: str) -> Object: class_name = class_.__name__ root_object = Object( category=CATEGORY_CLASS, name=class_name, path=path, docstring=inspect.getdoc(class_), properties=get_name_properties(class_name, CATEGORY_CLASS), signature=inspect.signature(class_), ) for member_name, member in sorted(class_.__dict__.items()): if self.filter_name_out(member_name): continue member_path = f"{path}.{member_name}" if inspect.isclass(member): root_object.add_child(self.get_class_documentation(member, member_path)) continue actual_member = getattr(class_, member_name) docstring = inspect.getdoc(actual_member) try: source = inspect.getsourcelines(actual_member) except TypeError: source = "" if isinstance(member, classmethod): root_object.add_child( Object( category=CATEGORY_METHOD, name=member_name, path=member_path, docstring=docstring, properties=get_name_properties(member_name, CATEGORY_METHOD) + ["classmethod"], source=source, signature=inspect.signature(actual_member), ) ) elif isinstance(member, staticmethod): root_object.add_child( Object( category=CATEGORY_METHOD, name=member_name, path=member_path, docstring=docstring, properties=get_name_properties(member_name, CATEGORY_METHOD) + ["staticmethod"], source=source, signature=inspect.signature(actual_member), ) ) elif isinstance(member, type(lambda: 0)): # regular method root_object.add_child( Object( category=CATEGORY_METHOD, name=member_name, path=member_path, docstring=docstring, properties=get_name_properties(member_name, CATEGORY_METHOD), source=source, signature=inspect.signature(actual_member), ) ) elif isinstance(member, property): properties = ["property"] if member.fset is None: properties.append("readonly") root_object.add_child( Object( category=CATEGORY_ATTRIBUTE, name=member_name, path=member_path, docstring=docstring, properties=properties + get_name_properties(member_name, CATEGORY_ATTRIBUTE), source=source, signature=inspect.signature(actual_member.fget), ) ) return root_object def get_function_documentation(self, function: Callable, path: str) -> Object: function_name = function.__name__ return Object( category=CATEGORY_FUNCTION, name=function_name, path=path, docstring=inspect.getdoc(function), properties=get_name_properties(function_name, CATEGORY_FUNCTION), source=inspect.getsourcelines(function), signature=inspect.signature(function), ) @lru_cache(maxsize=None) def filter_name_out(self, name: str) -> bool: keep = True for f, regex in self.global_filters: is_matching = bool(regex.match(name)) if is_matching: if str(f).startswith("!"): is_matching = not is_matching keep = is_matching return not keep
the-stack_0_2238
import os import asyncio import pygame import random from functools import partial import json import asyncio import websockets import logging import argparse import time from mapa import Map, Tiles logging.basicConfig(level=logging.DEBUG) logger_websockets = logging.getLogger("websockets") logger_websockets.setLevel(logging.WARN) logger = logging.getLogger("Map") logger.setLevel(logging.DEBUG) BOMBERMAN = { "up": (3 * 16, 1 * 16), "left": (0, 0), "down": (3 * 16, 0), "right": (0, 1 * 16), } BALLOOM = { "up": (0, 15 * 16), "left": (16, 15 * 16), "down": (2 * 16, 15 * 16), "right": (3 * 16, 15 * 16), } ONEAL = { "up": (0, 16 * 16), "left": (16, 16 * 16), "down": (2 * 16, 16 * 16), "right": (3 * 16, 16 * 16), } DOLL = { "up": (0, 17 * 16), "left": (16, 17 * 16), "down": (2 * 16, 17 * 16), "right": (3 * 16, 17 * 16), } MINVO = { "up": (0, 18 * 16), "left": (16, 18 * 16), "down": (2 * 16, 18 * 16), "right": (3 * 16, 18 * 16), } ENEMIES = {"Balloom": BALLOOM, "Oneal": ONEAL, "Doll": DOLL, "Minvo": MINVO} POWERUPS = {"Bombs": (0, 14 * 16), "Flames": (1 * 16, 14 * 16), "Detonator": (4 * 16, 14 * 16)} STONE = (48, 48) WALL = (64, 48) PASSAGE = (0, 64) EXIT = (11 * 16, 3 * 16) BOMB = [(32, 48), (16, 48), (0, 48)] EXPLOSION = { "c": (112, 96), "l": (96, 96), "r": (128, 96), "u": (112, 80), "d": (112, 112), "xl": (80, 96), "xr": (144, 96), "xu": (112, 64), "xd": (112, 128), } FALLOUT = {"c": (32, 96)} CHAR_LENGTH = 16 CHAR_SIZE = CHAR_LENGTH, CHAR_LENGTH SCALE = 1 COLORS = { "white": (255, 255, 255), "red": (255, 0, 0), "pink": (255, 105, 180), "blue": (135, 206, 235), "orange": (255, 165, 0), "yellow": (255, 255, 0), "grey": (120, 120, 120), } BACKGROUND = (0, 0, 0) RANKS = { 1: "1ST", 2: "2ND", 3: "3RD", 4: "4TH", 5: "5TH", 6: "6TH", 7: "7TH", 8: "8TH", 9: "9TH", 10: "10TH", } SPRITES = None async def messages_handler(ws_path, queue): async with websockets.connect(ws_path) as websocket: await websocket.send(json.dumps({"cmd": "join"})) while True: r = await websocket.recv() queue.put_nowait(r) class GameOver(BaseException): pass class Artifact(pygame.sprite.Sprite): def __init__(self, *args, **kw): self.x, self.y = None, None # postpone to update_sprite() x, y = kw.pop("pos", ((kw.pop("x", 0), kw.pop("y", 0)))) new_pos = scale((x, y)) self.image = pygame.Surface(CHAR_SIZE) self.rect = pygame.Rect(new_pos + CHAR_SIZE) self.update_sprite((x, y)) super().__init__() def update_sprite(self, pos=None): if not pos: pos = self.x, self.y else: pos = scale(pos) self.rect = pygame.Rect(pos + CHAR_SIZE) self.image.fill((0, 0, 230)) self.image.blit(*self.sprite) # self.image = pygame.transform.scale(self.image, scale((1, 1))) self.x, self.y = pos def update(self, *args): self.update_sprite() class BomberMan(Artifact): def __init__(self, *args, **kw): self.direction = "left" self.sprite = (SPRITES, (0, 0), (*BOMBERMAN[self.direction], *scale((1, 1)))) super().__init__(*args, **kw) def update(self, new_pos): x, y = scale(new_pos) if x > self.x: self.direction = "right" if x < self.x: self.direction = "left" if y > self.y: self.direction = "down" if y < self.y: self.direction = "up" self.sprite = (SPRITES, (0, 0), (*BOMBERMAN[self.direction], *scale((1, 1)))) self.update_sprite(tuple(new_pos)) class Enemy(Artifact): def __init__(self, *args, **kw): self.direction = "left" self.name = kw.pop("name") self.sprite = ( SPRITES, (0, 0), (*ENEMIES[self.name][self.direction], *scale((1, 1))), ) super().__init__(*args, **kw) def update(self, new_pos): x, y = scale(new_pos) if x > self.x: self.direction = "right" if x < self.x: self.direction = "left" if y > self.y: self.direction = "down" if y < self.y: self.direction = "up" self.sprite = ( SPRITES, (0, 0), (*ENEMIES[self.name][self.direction], *scale((1, 1))), ) self.update_sprite(new_pos) class Bomb(Artifact): def __init__(self, *args, **kw): self.index = 0 self.sprite = (SPRITES, (0, 0), (*BOMB[self.index], *scale((1, 1)))) self.exploded = False self.timeout = kw.pop("timeout", -1) self.radius = kw.pop("radius", 0) super().__init__(*args, **kw) def update(self, bombs_state): for pos, timeout, radius in bombs_state: if scale(pos) == (self.x, self.y): # It's me! self.timeout = int(timeout) self.radius = radius self.index = (self.index + 1) % len(BOMB) self.sprite = (SPRITES, (0, 0), (*BOMB[self.index], *scale((1, 1)))) self.update_sprite() if self.timeout == 0: self.exploded = True self.sprite = () self.rect.inflate_ip( self.radius * 2 * CHAR_LENGTH, self.radius * 2 * CHAR_LENGTH ) self.image = pygame.Surface( ( self.radius * 2 * CHAR_LENGTH + CHAR_LENGTH, self.radius * 2 * CHAR_LENGTH + CHAR_LENGTH, ) ) self.image.blit( SPRITES, scale((self.radius, self.radius)), (*EXPLOSION["c"], *scale((1, 1))), ) for r in range(1, self.radius): self.image.blit( SPRITES, scale((self.radius - r, self.radius)), (*EXPLOSION["l"], *scale((1, 1))), ) self.image.blit( SPRITES, scale((self.radius + r, self.radius)), (*EXPLOSION["r"], *scale((1, 1))), ) self.image.blit( SPRITES, scale((self.radius, self.radius - r)), (*EXPLOSION["u"], *scale((1, 1))), ) self.image.blit( SPRITES, scale((self.radius, self.radius + r)), (*EXPLOSION["d"], *scale((1, 1))), ) self.image.blit( SPRITES, scale((0, self.radius)), (*EXPLOSION["xl"], *scale((1, 1))) ) self.image.blit( SPRITES, scale((2 * self.radius, self.radius)), (*EXPLOSION["xr"], *scale((1, 1))), ) self.image.blit( SPRITES, scale((self.radius, 0)), (*EXPLOSION["xu"], *scale((1, 1))) ) self.image.blit( SPRITES, scale((self.radius, 2 * self.radius)), (*EXPLOSION["xd"], *scale((1, 1))), ) class Wall(Artifact): def __init__(self, *args, **kw): self.sprite = (SPRITES, (0, 0), (*WALL, *scale((1, 1)))) super().__init__(*args, **kw) class Exit(Artifact): def __init__(self, *args, **kw): self.sprite = (SPRITES, (0, 0), (*EXIT, *scale((1, 1)))) super().__init__(*args, **kw) class Powerups(Artifact): def __init__(self, *args, **kw): self.type = kw.pop("name") self.sprite = (SPRITES, (0, 0), (*POWERUPS[self.type], *scale((1, 1)))) super().__init__(*args, **kw) def clear_callback(surf, rect): """beneath everything there is a passage.""" surf.blit(SPRITES, (rect.x, rect.y), (*PASSAGE, rect.width, rect.height)) def scale(pos): x, y = pos return int(x * CHAR_LENGTH / SCALE), int(y * CHAR_LENGTH / SCALE) def draw_background(mapa): background = pygame.Surface(scale((int(mapa.size[0]), int(mapa.size[1])))) for x in range(int(mapa.size[0])): for y in range(int(mapa.size[1])): wx, wy = scale((x, y)) if mapa.map[x][y] == Tiles.STONE: background.blit(SPRITES, (wx, wy), (*STONE, *scale((1, 1)))) else: background.blit(SPRITES, (wx, wy), (*PASSAGE, *scale((1, 1)))) return background def draw_info(SCREEN, text, pos, color=(0, 0, 0), background=None): myfont = pygame.font.Font(None, int(22 / SCALE)) textsurface = myfont.render(text, True, color, background) x, y = pos if x > SCREEN.get_width(): pos = SCREEN.get_width() - textsurface.get_width(), y if y > SCREEN.get_height(): pos = x, SCREEN.get_height() - textsurface.get_height() if background: SCREEN.blit(background, pos) else: erase = pygame.Surface(textsurface.get_size()) erase.fill(COLORS["grey"]) # SCREEN.blit(erase, pos) SCREEN.blit(textsurface, pos) async def main_loop(q): while True: await main_game() async def main_game(): global SPRITES, SCREEN main_group = pygame.sprite.LayeredUpdates() bombs_group = pygame.sprite.OrderedUpdates() enemies_group = pygame.sprite.OrderedUpdates() walls_group = pygame.sprite.OrderedUpdates() logging.info("Waiting for map information from server") state = await q.get() # first state message includes map information logging.debug("Initial game status: %s", state) newgame_json = json.loads(state) GAME_SPEED = newgame_json["fps"] mapa = Map(size=newgame_json["size"], mapa=newgame_json["map"]) TIMEOUT = newgame_json["timeout"] SCREEN = pygame.display.set_mode(scale(mapa.size)) SPRITES = pygame.image.load("data/nes.png").convert_alpha() BACKGROUND = draw_background(mapa) SCREEN.blit(BACKGROUND, (0, 0)) main_group.add(BomberMan(pos=mapa.bomberman_spawn)) state = {"score": 0, "player": "player1", "bomberman": (1, 1)} while True: pygame.event.pump() if pygame.key.get_pressed()[pygame.K_ESCAPE]: asyncio.get_event_loop().stop() main_group.clear(SCREEN, clear_callback) bombs_group.clear(SCREEN, BACKGROUND) enemies_group.clear(SCREEN, clear_callback) if "score" in state and "player" in state: text = str(state["score"]) draw_info(SCREEN, text.zfill(6), (0, 0)) text = str(state["player"]).rjust(32) draw_info(SCREEN, text, (4000, 0)) if "bombs" in state: for bomb in bombs_group: if bomb.exploded: bombs_group.remove(bomb) if len(bombs_group.sprites()) < len(state["bombs"]): pos, timeout, radius = state["bombs"][-1] bombs_group.add(Bomb(pos=pos, timeout=timeout, radius=radius)) bombs_group.update(state["bombs"]) if "enemies" in state: enemies_group.empty() for enemy in state["enemies"]: enemies_group.add(Enemy(name=enemy["name"], pos=enemy["pos"])) if "walls" in state: walls_group.empty() for wall in state["walls"]: walls_group.add(Wall(pos=wall)) if "exit" in state and len(state["exit"]): if not [p for p in main_group if isinstance(p, Exit)]: logger.debug("Add Exit") ex = Exit(pos=state["exit"]) main_group.add(ex) main_group.move_to_back(ex) if "powerups" in state: for pos, name in state["powerups"]: if name not in [p.type for p in main_group if isinstance(p, Powerups)]: logger.debug(f"Add {name}") p = Powerups(pos=pos, name=name) main_group.add(p) main_group.move_to_back(p) for powerup in main_group: if isinstance(powerup, Powerups): name = powerup.type if name not in [p[1] for p in state["powerups"]]: logger.debug(f"Remove {name}") main_group.remove(powerup) walls_group.draw(SCREEN) main_group.draw(SCREEN) enemies_group.draw(SCREEN) bombs_group.draw(SCREEN) # Highscores Board if ( ("lives" in state and state["lives"] == 0) or ("step" in state and state["step"] >= TIMEOUT) or ( "bomberman" in state and "exit" in state and state["bomberman"] == state["exit"] and "enemies" in state and state["enemies"] == [] ) ): highscores = newgame_json["highscores"] HIGHSCORES = pygame.Surface(scale((20, 16))) HIGHSCORES.fill(COLORS["grey"]) draw_info(HIGHSCORES, "THE 10 BEST PLAYERS", scale((5, 1)), COLORS["white"]) draw_info(HIGHSCORES, "RANK", scale((2, 3)), COLORS["orange"]) draw_info(HIGHSCORES, "SCORE", scale((6, 3)), COLORS["orange"]) draw_info(HIGHSCORES, "NAME", scale((11, 3)), COLORS["orange"]) for i, highscore in enumerate(highscores): c = (i % 5) + 1 draw_info( HIGHSCORES, RANKS[i + 1], scale((2, i + 5)), list(COLORS.values())[c], ) draw_info( HIGHSCORES, str(highscore[1]), scale((6, i + 5)), list(COLORS.values())[c], ) draw_info( HIGHSCORES, highscore[0], scale((11, i + 5)), list(COLORS.values())[c], ) SCREEN.blit( HIGHSCORES, ( (SCREEN.get_width() - HIGHSCORES.get_width()) / 2, (SCREEN.get_height() - HIGHSCORES.get_height()) / 2, ), ) if "bomberman" in state: main_group.update(state["bomberman"]) pygame.display.flip() try: state = json.loads(q.get_nowait()) if ( "step" in state and state["step"] == 1 or "level" in state and state["level"] != mapa.level ): # New level! lets clean everything up! SCREEN.blit(BACKGROUND, (0, 0)) walls_group.empty() main_group.empty() enemies_group.empty() bombs_group.empty() main_group.add(BomberMan(pos=mapa.bomberman_spawn)) mapa.level = state["level"] except asyncio.queues.QueueEmpty: await asyncio.sleep(1.0 / GAME_SPEED) continue if __name__ == "__main__": SERVER = os.environ.get("SERVER", "localhost") PORT = os.environ.get("PORT", "8000") parser = argparse.ArgumentParser() parser.add_argument("--server", help="IP address of the server", default=SERVER) parser.add_argument( "--scale", help="reduce size of window by x times", type=int, default=1 ) parser.add_argument("--port", help="TCP port", type=int, default=PORT) args = parser.parse_args() SCALE = args.scale LOOP = asyncio.get_event_loop() pygame.font.init() q = asyncio.Queue() ws_path = f"ws://{args.server}:{args.port}/viewer" try: LOOP.run_until_complete( asyncio.gather(messages_handler(ws_path, q), main_loop(q)) ) finally: LOOP.stop()
the-stack_0_2240
from in_data import in_data from random import choice import operator from GA import * class main: DeliveryPoints = in_data() nth_population = 0 BestSolution = None population= Inicial_Population(DeliveryPoints) while nth_population < EndPoint: nth_population+=1 Population_Fitness = PopulationFitness(population, DeliveryPoints) if BestSolution == None: BestSolution = max(Population_Fitness.items(), key=operator.itemgetter(1)) else: b = max(Population_Fitness.items(), key=operator.itemgetter(1)) if b[1] > BestSolution[1]: BestSolution = max(Population_Fitness.items(), key=operator.itemgetter(1)) selection = Selection(Population_Fitness) i = 0 #crossing over NextGeneration = [] while i < PopulationSize: while True: p, j = choice(list(selection.values())), choice(list(selection.values())) p1 = [i for i in p] p2 = [i for i in j] while p2 == p1: j = choice(list(selection.values())) p2 = [i for i in j] if p2 != p1: break f1, f2 = CrossingOver(p1, p2) if f1 not in NextGeneration: NextGeneration.append(f1) i+=1 if f2 not in NextGeneration: NextGeneration.append(f2) i+=1 #mutation population = Mutation(NextGeneration) print(BestSolution[0])
the-stack_0_2241
# coding=utf-8 # Copyright 2018 Google LLC & Hwalsuk Lee. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model evaluation tools for TFGAN. These methods come from https://arxiv.org/abs/1606.03498 and https://arxiv.org/abs/1706.08500. NOTE: This implementation uses the same weights as in https://github.com/openai/improved-gan/blob/master/inception_score/model.py, but is more numerically stable and is an unbiased estimator of the true Inception score even when splitting the inputs into batches. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import sys import tarfile # Dependency imports from six.moves import urllib from tensorflow.contrib.layers.python.layers import layers from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import resource_loader __all__ = [ 'get_graph_def_from_disk', 'get_graph_def_from_resource', 'get_graph_def_from_url_tarball', 'preprocess_image', 'run_image_classifier', 'run_inception', 'inception_score', 'classifier_score', 'classifier_score_from_logits', 'frechet_inception_distance', 'frechet_classifier_distance', 'frechet_classifier_distance_from_activations', 'INCEPTION_DEFAULT_IMAGE_SIZE', ] INCEPTION_URL = 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz' INCEPTION_FROZEN_GRAPH = 'inceptionv1_for_inception_score.pb' INCEPTION_INPUT = 'Mul:0' INCEPTION_OUTPUT = 'logits:0' INCEPTION_FINAL_POOL = 'pool_3:0' INCEPTION_DEFAULT_IMAGE_SIZE = 299 def _validate_images(images, image_size): images = ops.convert_to_tensor(images) images.shape.with_rank(4) images.shape.assert_is_compatible_with( [None, image_size, image_size, None]) return images def _symmetric_matrix_square_root(mat, eps=1e-10): """Compute square root of a symmetric matrix. Note that this is different from an elementwise square root. We want to compute M' where M' = sqrt(mat) such that M' * M' = mat. Also note that this method **only** works for symmetric matrices. Args: mat: Matrix to take the square root of. eps: Small epsilon such that any element less than eps will not be square rooted to guard against numerical instability. Returns: Matrix square root of mat. """ # Unlike numpy, tensorflow's return order is (s, u, v) s, u, v = linalg_ops.svd(mat) # sqrt is unstable around 0, just use 0 in such case si = array_ops.where(math_ops.less(s, eps), s, math_ops.sqrt(s)) # Note that the v returned by Tensorflow is v = V # (when referencing the equation A = U S V^T) # This is unlike Numpy which returns v = V^T return math_ops.matmul( math_ops.matmul(u, array_ops.diag(si)), v, transpose_b=True) def preprocess_image( images, height=INCEPTION_DEFAULT_IMAGE_SIZE, width=INCEPTION_DEFAULT_IMAGE_SIZE, scope=None): """Prepare a batch of images for evaluation. This is the preprocessing portion of the graph from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz. Note that it expects Tensors in [0, 255]. This function maps pixel values to [-1, 1] and resizes to match the InceptionV1 network. Args: images: 3-D or 4-D Tensor of images. Values are in [0, 255]. height: Integer. Height of resized output image. width: Integer. Width of resized output image. scope: Optional scope for name_scope. Returns: 3-D or 4-D float Tensor of prepared image(s). Values are in [-1, 1]. """ is_single = images.shape.ndims == 3 with ops.name_scope(scope, 'preprocess', [images, height, width]): if not images.dtype.is_floating: images = math_ops.to_float(images) if is_single: images = array_ops.expand_dims(images, axis=0) resized = image_ops.resize_bilinear(images, [height, width]) resized = (resized - 128.0) / 128.0 if is_single: resized = array_ops.squeeze(resized, axis=0) return resized def _kl_divergence(p, p_logits, q): """Computes the Kullback-Liebler divergence between p and q. This function uses p's logits in some places to improve numerical stability. Specifically: KL(p || q) = sum[ p * log(p / q) ] = sum[ p * ( log(p) - log(q) ) ] = sum[ p * ( log_softmax(p_logits) - log(q) ) ] Args: p: A 2-D floating-point Tensor p_ij, where `i` corresponds to the minibatch example and `j` corresponds to the probability of being in class `j`. p_logits: A 2-D floating-point Tensor corresponding to logits for `p`. q: A 1-D floating-point Tensor, where q_j corresponds to the probability of class `j`. Returns: KL divergence between two distributions. Output dimension is 1D, one entry per distribution in `p`. Raises: ValueError: If any of the inputs aren't floating-point. ValueError: If p or p_logits aren't 2D. ValueError: If q isn't 1D. """ for tensor in [p, p_logits, q]: if not tensor.dtype.is_floating: raise ValueError('Input %s must be floating type.', tensor.name) p.shape.assert_has_rank(2) p_logits.shape.assert_has_rank(2) q.shape.assert_has_rank(1) return math_ops.reduce_sum( p * (nn_ops.log_softmax(p_logits) - math_ops.log(q)), axis=1) def get_graph_def_from_disk(filename): """Get a GraphDef proto from a disk location.""" with gfile.FastGFile(filename, 'rb') as f: return graph_pb2.GraphDef.FromString(f.read()) def get_graph_def_from_resource(filename): """Get a GraphDef proto from within a .par file.""" return graph_pb2.GraphDef.FromString(resource_loader.load_resource(filename)) def get_graph_def_from_url_tarball(url, filename): """Get a GraphDef proto from a tarball on the web.""" def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( url, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() tar_filename, _ = urllib.request.urlretrieve(url, reporthook=_progress) with tarfile.open(tar_filename, 'r:gz') as tar: proto_str = tar.extractfile(filename).read() return graph_pb2.GraphDef.FromString(proto_str) def _default_graph_def_fn(): return get_graph_def_from_url_tarball(INCEPTION_URL, INCEPTION_FROZEN_GRAPH) def run_inception(images, graph_def=None, default_graph_def_fn=_default_graph_def_fn, image_size=INCEPTION_DEFAULT_IMAGE_SIZE, input_tensor=INCEPTION_INPUT, output_tensor=INCEPTION_OUTPUT): """Run images through a pretrained Inception classifier. Args: images: Input tensors. Must be [batch, height, width, channels]. Input shape and values must be in [-1, 1], which can be achieved using `preprocess_image`. graph_def: A GraphDef proto of a pretrained Inception graph. If `None`, call `default_graph_def_fn` to get GraphDef. default_graph_def_fn: A function that returns a GraphDef. Used if `graph_def` is `None. By default, returns a pretrained InceptionV3 graph. image_size: Required image width and height. See unit tests for the default values. input_tensor: Name of input Tensor. output_tensor: Name or list of output Tensors. This function will compute activations at the specified layer. Examples include INCEPTION_V3_OUTPUT and INCEPTION_V3_FINAL_POOL which would result in this function computing the final logits or the penultimate pooling layer. Returns: Tensor or Tensors corresponding to computed `output_tensor`. Raises: ValueError: If images are not the correct size. ValueError: If neither `graph_def` nor `default_graph_def_fn` are provided. """ images = _validate_images(images, image_size) if graph_def is None: if default_graph_def_fn is None: raise ValueError('If `graph_def` is `None`, must provide ' '`default_graph_def_fn`.') graph_def = default_graph_def_fn() activations = run_image_classifier(images, graph_def, input_tensor, output_tensor) if isinstance(activations, list): for i, activation in enumerate(activations): if array_ops.rank(activation) != 2: activations[i] = layers.flatten(activation) else: if array_ops.rank(activations) != 2: activations = layers.flatten(activations) return activations def run_image_classifier(tensor, graph_def, input_tensor, output_tensor, scope='RunClassifier'): """Runs a network from a frozen graph. Args: tensor: An Input tensor. graph_def: A GraphDef proto. input_tensor: Name of input tensor in graph def. output_tensor: A tensor name or list of tensor names in graph def. scope: Name scope for classifier. Returns: Classifier output if `output_tensor` is a string, or a list of outputs if `output_tensor` is a list. Raises: ValueError: If `input_tensor` or `output_tensor` aren't in the graph_def. """ input_map = {input_tensor: tensor} is_singleton = isinstance(output_tensor, str) if is_singleton: output_tensor = [output_tensor] classifier_outputs = importer.import_graph_def( graph_def, input_map, output_tensor, name=scope) if is_singleton: classifier_outputs = classifier_outputs[0] return classifier_outputs def classifier_score(images, classifier_fn, num_batches=1): """Classifier score for evaluating a conditional generative model. This is based on the Inception Score, but for an arbitrary classifier. This technique is described in detail in https://arxiv.org/abs/1606.03498. In summary, this function calculates exp( E[ KL(p(y|x) || p(y)) ] ) which captures how different the network's classification prediction is from the prior distribution over classes. NOTE: This function consumes images, computes their logits, and then computes the classifier score. If you would like to precompute many logits for large batches, use clasifier_score_from_logits(), which this method also uses. Args: images: Images to calculate the classifier score for. classifier_fn: A function that takes images and produces logits based on a classifier. num_batches: Number of batches to split `generated_images` in to in order to efficiently run them through the classifier network. Returns: The classifier score. A floating-point scalar of the same type as the output of `classifier_fn`. """ generated_images_list = array_ops.split( images, num_or_size_splits=num_batches) # Compute the classifier splits using the memory-efficient `map_fn`. logits = functional_ops.map_fn( fn=classifier_fn, elems=array_ops.stack(generated_images_list), parallel_iterations=1, back_prop=False, swap_memory=True, name='RunClassifier') logits = array_ops.concat(array_ops.unstack(logits), 0) return classifier_score_from_logits(logits) def classifier_score_from_logits(logits): """Classifier score for evaluating a generative model from logits. This method computes the classifier score for a set of logits. This can be used independently of the classifier_score() method, especially in the case of using large batches during evaluation where we would like precompute all of the logits before computing the classifier score. This technique is described in detail in https://arxiv.org/abs/1606.03498. In summary, this function calculates: exp( E[ KL(p(y|x) || p(y)) ] ) which captures how different the network's classification prediction is from the prior distribution over classes. Args: logits: Precomputed 2D tensor of logits that will be used to compute the classifier score. Returns: The classifier score. A floating-point scalar of the same type as the output of `logits`. """ logits.shape.assert_has_rank(2) # Use maximum precision for best results. logits_dtype = logits.dtype if logits_dtype != dtypes.float64: logits = math_ops.to_double(logits) p = nn_ops.softmax(logits) q = math_ops.reduce_mean(p, axis=0) kl = _kl_divergence(p, logits, q) kl.shape.assert_has_rank(1) log_score = math_ops.reduce_mean(kl) final_score = math_ops.exp(log_score) if logits_dtype != dtypes.float64: final_score = math_ops.cast(final_score, logits_dtype) return final_score inception_score = functools.partial( classifier_score, classifier_fn=functools.partial( run_inception, output_tensor=INCEPTION_OUTPUT)) def trace_sqrt_product(sigma, sigma_v): """Find the trace of the positive sqrt of product of covariance matrices. '_symmetric_matrix_square_root' only works for symmetric matrices, so we cannot just take _symmetric_matrix_square_root(sigma * sigma_v). ('sigma' and 'sigma_v' are symmetric, but their product is not necessarily). Let sigma = A A so A = sqrt(sigma), and sigma_v = B B. We want to find trace(sqrt(sigma sigma_v)) = trace(sqrt(A A B B)) Note the following properties: (i) forall M1, M2: eigenvalues(M1 M2) = eigenvalues(M2 M1) => eigenvalues(A A B B) = eigenvalues (A B B A) (ii) if M1 = sqrt(M2), then eigenvalues(M1) = sqrt(eigenvalues(M2)) => eigenvalues(sqrt(sigma sigma_v)) = sqrt(eigenvalues(A B B A)) (iii) forall M: trace(M) = sum(eigenvalues(M)) => trace(sqrt(sigma sigma_v)) = sum(eigenvalues(sqrt(sigma sigma_v))) = sum(sqrt(eigenvalues(A B B A))) = sum(eigenvalues(sqrt(A B B A))) = trace(sqrt(A B B A)) = trace(sqrt(A sigma_v A)) A = sqrt(sigma). Both sigma and A sigma_v A are symmetric, so we **can** use the _symmetric_matrix_square_root function to find the roots of these matrices. Args: sigma: a square, symmetric, real, positive semi-definite covariance matrix sigma_v: same as sigma Returns: The trace of the positive square root of sigma*sigma_v """ # Note sqrt_sigma is called "A" in the proof above sqrt_sigma = _symmetric_matrix_square_root(sigma) # This is sqrt(A sigma_v A) above sqrt_a_sigmav_a = math_ops.matmul( sqrt_sigma, math_ops.matmul(sigma_v, sqrt_sigma)) return math_ops.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a)) def frechet_classifier_distance(real_images, generated_images, classifier_fn, num_batches=1): """Classifier distance for evaluating a generative model. This is based on the Frechet Inception distance, but for an arbitrary classifier. This technique is described in detail in https://arxiv.org/abs/1706.08500. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calcuates |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2)) which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. Note that when computed using sample means and sample covariance matrices, Frechet distance is biased. It is more biased for small sample sizes. (e.g. even if the two distributions are the same, for a small sample size, the expected Frechet distance is large). It is important to use the same sample size to compute frechet classifier distance when comparing two generative models. NOTE: This function consumes images, computes their activations, and then computes the classifier score. If you would like to precompute many activations for real and generated images for large batches, please use frechet_clasifier_distance_from_activations(), which this method also uses. Args: real_images: Real images to use to compute Frechet Inception distance. generated_images: Generated images to use to compute Frechet Inception distance. classifier_fn: A function that takes images and produces activations based on a classifier. num_batches: Number of batches to split images in to in order to efficiently run them through the classifier network. Returns: The Frechet Inception distance. A floating-point scalar of the same type as the output of `classifier_fn`. """ real_images_list = array_ops.split( real_images, num_or_size_splits=num_batches) generated_images_list = array_ops.split( generated_images, num_or_size_splits=num_batches) imgs = array_ops.stack(real_images_list + generated_images_list) # Compute the activations using the memory-efficient `map_fn`. activations = functional_ops.map_fn( fn=classifier_fn, elems=imgs, parallel_iterations=1, back_prop=False, swap_memory=True, name='RunClassifier') # Split the activations by the real and generated images. real_a, gen_a = array_ops.split(activations, [num_batches, num_batches], 0) # Ensure the activations have the right shapes. real_a = array_ops.concat(array_ops.unstack(real_a), 0) gen_a = array_ops.concat(array_ops.unstack(gen_a), 0) return frechet_classifier_distance_from_activations(real_a, gen_a) def frechet_classifier_distance_from_activations( real_activations, generated_activations): """Classifier distance for evaluating a generative model from activations. This methods computes the Frechet classifier distance from activations of real images and generated images. This can be used independently of the frechet_classifier_distance() method, especially in the case of using large batches during evaluation where we would like precompute all of the activations before computing the classifier distance. This technique is described in detail in https://arxiv.org/abs/1706.08500. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calcuates |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2)) which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. Args: real_activations: 2D Tensor containing activations of real data. Shape is [batch_size, activation_size]. generated_activations: 2D Tensor containing activations of generated data. Shape is [batch_size, activation_size]. Returns: The Frechet Inception distance. A floating-point scalar of the same type as the output of the activations. """ real_activations.shape.assert_has_rank(2) generated_activations.shape.assert_has_rank(2) activations_dtype = real_activations.dtype if activations_dtype != dtypes.float64: real_activations = math_ops.to_double(real_activations) generated_activations = math_ops.to_double(generated_activations) # Compute mean and covariance matrices of activations. m = math_ops.reduce_mean(real_activations, 0) m_v = math_ops.reduce_mean(generated_activations, 0) num_examples = math_ops.to_double(array_ops.shape(real_activations)[0]) # sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T real_centered = real_activations - m sigma = math_ops.matmul( real_centered, real_centered, transpose_a=True) / (num_examples - 1) gen_centered = generated_activations - m_v sigma_v = math_ops.matmul( gen_centered, gen_centered, transpose_a=True) / (num_examples - 1) # Find the Tr(sqrt(sigma sigma_v)) component of FID sqrt_trace_component = trace_sqrt_product(sigma, sigma_v) # Compute the two components of FID. # First the covariance component. # Here, note that trace(A + B) = trace(A) + trace(B) trace = math_ops.trace(sigma + sigma_v) - 2.0 * sqrt_trace_component # Next the distance between means. mean = math_ops.square(linalg_ops.norm(m - m_v)) # This uses the L2 norm. fid = trace + mean if activations_dtype != dtypes.float64: fid = math_ops.cast(fid, activations_dtype) return fid frechet_inception_distance = functools.partial( frechet_classifier_distance, classifier_fn=functools.partial( run_inception, output_tensor=INCEPTION_FINAL_POOL))
the-stack_0_2244
from Roteiro8.Roteiro8__funcoes import Grafo grafo = Grafo() for v in ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']: grafo.adicionaVertice(v) for a, p in {'a-b': 9, 'a-g': 4, 'b-c': 6, 'b-g': 10, 'b-h': 7, 'c-d': 8, 'c-e': 12, 'c-f': 8, 'd-e': 14, 'e-f': 2, 'f-h': 2, 'f-g': 1}.items(): grafo.adicionaArestaComPeso(a, p) print('Grafo:') print(grafo) print('Pesos:', grafo.pesos()) print() print('Minimum Spanning Tree com Prim Modificado:') print(grafo.prim_mod())
the-stack_0_2245
from random import randint from kivy.animation import Animation from kivy.lang import Builder from kivy.metrics import dp from kivy.properties import Clock, NumericProperty, ListProperty from kivy.uix.floatlayout import FloatLayout Builder.load_file("uix/components/kv/confetti_rain.kv") class ConfettiItem(FloatLayout): color = ListProperty() def __init__(self, color, **kwargs): super().__init__(**kwargs) self.color = color Clock.schedule_once(self._update) def _update(self, *args): (Animation(opacity=1, d=randint(*self.parent.time_before_fade))).start( self) class ConfettiRain(FloatLayout): size_range = ListProperty([dp(2), dp(7)]) time_range = ListProperty([3, 5]) speed = ListProperty([3, 6]) time_before_fade = ListProperty([1, 3]) number = NumericProperty(150) def __init__(self, **kwargs): super().__init__(**kwargs) self.running = False def start(self): if not self.running: self.running = True Clock.schedule_once(self._update) def stop(self): self.running = False def add_item(self, count): for x in range(count): color = [randint(0, 255)/255, randint(0, 255)/255, randint(0, 255)/255, 1] item = ConfettiItem( size=[ randint(int(self.size_range[0]), int(self.size_range[1])), randint(int(self.size_range[0]), int(self.size_range[1])) ], pos=[ randint(0, int(self.width)), randint(int(self.height * 0.9), int(self.height)) ], color=color ) self.add_widget(item) self.start_anim(item) return None def _update(self, *args): self.add_item(self.number) def start_anim(self, item): target_pos = [randint(0, self.width), 0] final_time = randint(*self.time_range) speed = randint(*self.time_range) anim = Animation(pos=target_pos, d=speed) anim.start(item) # remove Clock.schedule_once(lambda x: self.remove_widget(item), final_time) # add new if self.running: Clock.schedule_once(lambda x: self.add_item(1), final_time) fade_time = final_time - randint(*self.time_before_fade) Clock.schedule_once(lambda x: self._fade_out(item, fade_time), final_time - fade_time) def _fade_out(self, item, time): anim = Animation(opacity=0, d=time) anim.start(item)
the-stack_0_2248
from __future__ import absolute_import import argparse import docker import os import random import sys import shutil import traceback from ann_benchmarks.datasets import get_dataset, DATASETS from ann_benchmarks.constants import INDEX_DIR from ann_benchmarks.algorithms.definitions import get_definitions, list_algorithms, algorithm_status, InstantiationStatus from ann_benchmarks.results import get_result_filename from ann_benchmarks.runner import run, run_docker def positive_int(s): i = None try: i = int(s) except ValueError: pass if not i or i < 1: raise argparse.ArgumentTypeError("%r is not a positive integer" % s) return i def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--dataset', metavar='NAME', help='the dataset to load training points from', default='glove-100-angular', choices=DATASETS.keys()) parser.add_argument( "-k", "--count", default=10, type=positive_int, help="the number of near neighbours to search for") parser.add_argument( '--definitions', metavar='FILE', help='load algorithm definitions from FILE', default='algos.yaml') parser.add_argument( '--algorithm', metavar='NAME', help='run only the named algorithm', default=None) parser.add_argument( '--docker-tag', metavar='NAME', help='run only algorithms in a particular docker image', default=None) parser.add_argument( '--list-algorithms', help='print the names of all known algorithms and exit', action='store_true') parser.add_argument( '--force', help='''re-run algorithms even if their results already exist''', action='store_true') parser.add_argument( '--runs', metavar='COUNT', type=positive_int, help='run each algorithm instance %(metavar)s times and use only the best result', default=2) parser.add_argument( '--timeout', type=int, help='Timeout (in seconds) for each individual algorithm run, or -1 if no timeout should be set', default=5*3600) parser.add_argument( '--local', action='store_true', help='If set, then will run everything locally (inside the same process) rather than using Docker') parser.add_argument( '--batch', action='store_true', help='If set, algorithms get all queries at once') parser.add_argument( '--max-n-algorithms', type=int, help='Max number of algorithms to run (just used for testing)', default=-1) parser.add_argument( '--run-disabled', help='run algorithms that are disabled in algos.yml', action='store_true') args = parser.parse_args() if args.timeout == -1: args.timeout = None if args.list_algorithms: list_algorithms(args.definitions) sys.exit(0) # Nmslib specific code # Remove old indices stored on disk if os.path.exists(INDEX_DIR): shutil.rmtree(INDEX_DIR) dataset = get_dataset(args.dataset) dimension = len(dataset['train'][0]) # TODO(erikbern): ugly point_type = dataset.attrs.get('point_type', 'float') distance = dataset.attrs['distance'] definitions = get_definitions(args.definitions, dimension, point_type, distance, args.count) # Filter out, from the loaded definitions, all those query argument groups # that correspond to experiments that have already been run. (This might # mean removing a definition altogether, so we can't just use a list # comprehension.) filtered_definitions = [] for definition in definitions: query_argument_groups = definition.query_argument_groups if not query_argument_groups: query_argument_groups = [[]] not_yet_run = [] for query_arguments in query_argument_groups: fn = get_result_filename(args.dataset, args.count, definition, query_arguments, args.batch) if args.force or not os.path.exists(fn): not_yet_run.append(query_arguments) if not_yet_run: if definition.query_argument_groups: definition = definition._replace( query_argument_groups = not_yet_run) filtered_definitions.append(definition) definitions = filtered_definitions random.shuffle(definitions) if args.algorithm: print('running only', args.algorithm) definitions = [d for d in definitions if d.algorithm == args.algorithm] if not args.local: # See which Docker images we have available docker_client = docker.from_env() docker_tags = set() for image in docker_client.images.list(): for tag in image.tags: tag = tag.split(':')[0] docker_tags.add(tag) if args.docker_tag: print('running only', args.docker_tag) definitions = [d for d in definitions if d.docker_tag == args.docker_tag] if set(d.docker_tag for d in definitions).difference(docker_tags): print('not all docker images available, only:', set(docker_tags)) print('missing docker images:', set(d.docker_tag for d in definitions).difference(docker_tags)) definitions = [d for d in definitions if d.docker_tag in docker_tags] else: def _test(df): status = algorithm_status(df) # If the module was loaded but doesn't actually have a constructor of # the right name, then the definition is broken assert status != InstantiationStatus.NO_CONSTRUCTOR, """\ %s.%s(%s): error: the module '%s' does not expose the named constructor""" % (df.module, df.constructor, df.arguments, df.module) if status == InstantiationStatus.NO_MODULE: # If the module couldn't be loaded (presumably because of a missing # dependency), print a warning and remove this definition from the # list of things to be run print("""\ %s.%s(%s): warning: the module '%s' could not be loaded; skipping""" % (df.module, df.constructor, df.arguments, df.module)) return False else: return True definitions = [d for d in definitions if _test(d)] if not args.run_disabled: if len([d for d in definitions if d.disabled]): print('Not running disabled algorithms:', [d for d in definitions if d.disabled]) definitions = [d for d in definitions if not d.disabled] if args.max_n_algorithms >= 0: definitions = definitions[:args.max_n_algorithms] if len(definitions) == 0: raise Exception('Nothing to run') else: print('Order:', definitions) for definition in definitions: print(definition, '...') try: if args.local: run(definition, args.dataset, args.count, args.runs, args.batch) else: run_docker(definition, args.dataset, args.count, args.runs, args.timeout, args.batch) except KeyboardInterrupt: break except: traceback.print_exc()
the-stack_0_2249
import unittest from tests._compat import patch, call import requests_mock from proxy_db.utils import download_file, get_domain class TestDownloadFile(unittest.TestCase): url = 'https://domain.com/' def setUp(self): super(TestDownloadFile, self).setUp() self.session_mock = requests_mock.Mocker() self.session_mock.start() def tearDown(self): super(TestDownloadFile, self).tearDown() self.session_mock.stop() @patch('proxy_db.utils.open') def test_request(self, m): text = 'foo' * 1000 self.session_mock.get(self.url, text=text) download_file(self.url) self.assertEqual(self.session_mock.call_count, 1) calls = [call.write(text[i:i+1024].encode('utf-8')) for i in range(0, len(text), 1024)] self.assertEqual(m.return_value.__enter__.return_value.mock_calls, calls) class TestGetDomain(unittest.TestCase): def test_get_domain(self): self.assertEqual(get_domain('https://user:[email protected]:8888/'), 'domain.com')
the-stack_0_2250
import asyncio import aiopg import aiosqlite from motor import motor_asyncio import discordSuperUtils async def database_test(): mongo_database = discordSuperUtils.DatabaseManager.connect( motor_asyncio.AsyncIOMotorClient("con-string")["name"] ) # Replace 'con-string' with the MongoDB connection string and 'name' by the database name you want to use. postgre_database = discordSuperUtils.DatabaseManager.connect( await aiopg.create_pool("con-string") ) # Replace 'con-string' with the PostrgeSQL connection string. # PostgreSQL connection string example: # "dbname=name user=postgres password=xxx host=host" host is not required. mysql_database = await discordSuperUtils.create_mysql( host=..., port=..., user=..., password=..., dbname=... ) # Replace '...' with the arguments. # create_mysql supports mysql AND mariaDB sqlite_database = discordSuperUtils.DatabaseManager.connect( await aiosqlite.connect("path") ) # Replace 'path' with the SQLite database path. (must be on your computer) await sqlite_database.insert( "economy", {"guild": ..., "member": ..., "currency": ..., "bank": ...} ) await sqlite_database.close() # not required. loop = asyncio.get_event_loop() loop.run_until_complete(database_test())
the-stack_0_2251
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 from KratosMultiphysics import kratos_utilities import KratosMultiphysics.KratosUnittest as KratosUnittest from KratosMultiphysics.CoSimulationApplication.solver_wrappers.sdof.sdof_static_solver import SDoFStaticSolver import os import numpy as np class TestSdofStaticSolver(KratosUnittest.TestCase): def setUp(self): self.system_settings = { "system_parameters":{ "stiffness" : 50000.0, }, "output_parameters":{ "write_output_file": True, "file_name" : "result.dat" } } #result.dat self.end_time = 1.0 self.time = 0.0 @classmethod def tearDownClass(self): kratos_utilities.DeleteFileIfExisting("result.dat") kratos_utilities.DeleteFileIfExisting('fsi_sdof_static/results_final_sdof.dat') def __CompareResults(self, reference, result): ref = np.loadtxt(reference, skiprows=1) res = np.loadtxt(result, skiprows=1) self.assertEqual(ref.all(), res.all()) def __ExecuteTest(self, settings, ref_file_name): settings.update(self.system_settings) system = SDoFStaticSolver(settings) system.Initialize() system.SolveSolutionStep() system.OutputSolutionStep() self.__CompareResults(os.path.join("reference_files", ref_file_name), "result.dat") def test_initial_displacement(self): settings = { "initial_values":{ "displacement" : 1.0, } } self.__ExecuteTest(settings, "ref_sdof_static_initial_displacement.dat") def test_final_displacement(self): import json parameter_file_name = "fsi_sdof_static/ProjectParametersSDoF.json" with open(parameter_file_name, 'r') as parameter_file: settings = json.load(parameter_file) settings["output_parameters"]["write_output_file"] = True system = SDoFStaticSolver(settings) system.Initialize() system.SolveSolutionStep() system.OutputSolutionStep() results_obtained = np.loadtxt('fsi_sdof_static/results_final_sdof.dat', skiprows=1) results_reference = np.loadtxt('reference_files/ref_sdof_static_final_displacement.dat', skiprows=1) self.assertEqual(results_reference.all(), results_obtained.all()) if __name__ == '__main__': KratosUnittest.main()
the-stack_0_2252
from nltk import word_tokenize from nltk.stem import PorterStemmer from nltk.stem.snowball import SnowballStemmer from sklearn.cluster import KMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from nltk.corpus import stopwords import re import nltk import collections from sklearn.metrics import silhouette_samples, silhouette_score import pandas as pd import json FILE = open("/tmp/resultat_clustering.txt", "w") # Read Token with open('token.json') as json_file: TOKENIZED_WORDS = json.load(json_file) def body_to_words(raw_body): """ Args: raw_body: Returns: """ letters_only = re.sub("[^a-zA-Z]", " ", raw_body) text = re.sub("<[^<]+?>", "", letters_only) text_clean = " ".join([w for w in text.split() if ((len(w) > 3) and (len(w) < 23))]) words = text_clean.lower().split() stop_words = set( stopwords.words("french") + stopwords.words("english") + TOKENIZED_WORDS ) meaningful_words = [w for w in words if w not in stop_words] # clean_words = [w for w in meaningful_words if w not in TOKENIZED_WORDS] return " ".join(meaningful_words) def word_tokenizer(text): """ Args: text: Returns: """ tokens = word_tokenize(text, language="french") stemmer = PorterStemmer() tokens = [ stemmer.stem(t) for t in tokens if t not in (stopwords.words("french") + stopwords.words("english")) ] return tokens def tokenize_and_stem(text): """ Args: text: Returns: """ tokens = [ word for sent in nltk.sent_tokenize(text, language="french") for word in nltk.word_tokenize(sent, language="french") ] filtered_tokens = [] stemmer = SnowballStemmer(language="french") for token in tokens: if re.search("[a-zA-Z]", token): filtered_tokens.append(token) stems = [stemmer.stem(t) for t in filtered_tokens] return stems def tokenize_only(text): """ first tokenize by sentence, then by word to ensure that punctuation is caught as it's own token filter out any tokens not containing letters (e.g., numeric tokens, raw punctuation) Args: text: Returns: """ tokens = [ word.lower() for sent in nltk.sent_tokenize(text, language="french") for word in nltk.word_tokenize(sent, language="french") ] filtered_tokens = [] for token in tokens: if re.search("[a-zA-Z]", token): filtered_tokens.append(token) return filtered_tokens def pre_processing_dataset(dataset_train): """Prepare dataset to list[dict] to do clustering in body Args: dataset_train: Returns: """ num_reviews = dataset_train["body"].size clean_train_reviews = [] for i in range(0, num_reviews): if (i + 1) % 1000 == 0: print("body %d of %d\n" % (i + 1, num_reviews)) clean_train_reviews.append( { "body": body_to_words(str(dataset_train["body"][i])), "idMail": dataset_train["idMail"][i], } ) print("Creating the bag of words...\n") return clean_train_reviews def predict_clustering_group(k_means_model, tfidf_matrix): """ Args: k_means_model: tfidf_matrix: Returns: """ cluster_labels = k_means_model.fit_predict(tfidf_matrix) print("cluster_labels", cluster_labels) silhouette_avg = silhouette_score(tfidf_matrix, cluster_labels) print("silhouette_avg", silhouette_avg) sample_silhouette_values = silhouette_samples(tfidf_matrix, cluster_labels) print("sample_silhouette_values", sample_silhouette_values) centers = k_means_model.cluster_centers_ print("centers", centers) n_clusters = centers.shape[0] print("n_clusters", n_clusters) return cluster_labels, silhouette_avg, sample_silhouette_values def build_label_mails( vocab_frame, k_means_model, tfidf_vectorizer, clusters, clean_train_reviews, n_clusters, ): """ Args: vocab_frame: k_means_model: tfidf_vectorizer: clusters: clean_train_reviews: n_clusters: Returns: """ order_centroids = k_means_model.cluster_centers_.argsort()[:, ::-1] terms = tfidf_vectorizer.get_feature_names() label = [] for cluster in range(n_clusters): cluster_label = [] for ind in order_centroids[cluster, :n_clusters]: label_name = ( vocab_frame.loc[terms[ind].split(" ")] .values.tolist()[0][0] .encode("utf-8", "ignore") ) cluster_label.insert(cluster, label_name.decode("utf-8")) label.append(cluster_label) for cluster in range(n_clusters): FILE.write("cluster " + str(cluster) + ":" + "\n") FILE.write("centroid" + str(cluster) + "\n") for i, sentence in enumerate(clusters[cluster]): clean_train_reviews[sentence]["cluster_group"] = str(cluster) clean_train_reviews[sentence]["label"] = label[cluster] FILE.write( "mail :" + str(i) + ": " + str(clean_train_reviews[sentence]) + "\n" ) centers = k_means_model.cluster_centers_ return label def build_cluster_from_model(n_clusters, tfidf_matrix): """ Args: n_clusters: tfidf_matrix: Returns: dict(clusters): k_means_model: """ k_means_model = KMeans( n_clusters=n_clusters, init="k-means++", max_iter=300, n_init=1 ) k_means_model.fit(tfidf_matrix) clusters = collections.defaultdict(list) for i, label in enumerate(k_means_model.labels_): clusters[label].append(i) return dict(clusters), k_means_model def build_tfidf_matrix_vector(dataset): """ Args: dataset: Returns: tfidf_matrix: tfidf_vectorizer: """ train_body = [] for i in range(0, len(dataset)): train_body.append(dataset[i]["body"]) tfidf_vectorizer = TfidfVectorizer( tokenizer=tokenize_and_stem, analyzer="word", stop_words=stopwords.words("french") + TOKENIZED_WORDS + stopwords.words("english"), max_df=0.8, min_df=0.1, lowercase=False, use_idf=True, max_features=200000, ngram_range=(1, 3), ) tfidf_matrix = tfidf_vectorizer.fit_transform(train_body) print(tfidf_matrix.shape) return tfidf_matrix, tfidf_vectorizer def build_vocab_frame(clean_train_reviews): """ Build frame of vocabulary Args: clean_train_reviews(list): list of mails Returns: vocab_frame: """ body = [mail["body"] for mail in clean_train_reviews] total_vocab_stemmed = [] total_vocab_tokenized = [] for i in body: allwords_stemmed = tokenize_and_stem( i ) # for each item in 'synopses', tokenize/stem total_vocab_stemmed.extend( allwords_stemmed ) # extend the 'totalvocab_stemmed' list allwords_tokenized = tokenize_only(i) total_vocab_tokenized.extend(allwords_tokenized) vocab_frame = pd.DataFrame( {"words": total_vocab_tokenized}, index=total_vocab_stemmed ) return vocab_frame
the-stack_0_2253
from flask import request, jsonify, Blueprint from app.models import Nonprofit, NonprofitSchema api_blueprint = Blueprint('api', __name__,) npschema = NonprofitSchema() npschemas = NonprofitSchema(many=True) def jsonsift(obj, attrlist): ''' Use a custom attribute list to filter attributes from the model object to send a specific built JSON response back ''' resp = {} for attr in attrlist: resp[attr] = getattr(obj,attr) return resp @api_blueprint.route("/api/orgs/all", methods=["GET"]) def get_orgs(): all_orgs = Nonprofit.query.all() # paginate logic records = [] for x, org in enumerate(all_orgs): records.append(org) if x == 10: break return npschemas.jsonify(records) @api_blueprint.route("/api/orgs/id/<int:id>", methods=["GET"]) def get_org_by_id(id): org = Nonprofit.query.get(id) return npschema.jsonify(org) @api_blueprint.route("/api/orgs/id/<int:id>/address", methods=["GET"]) def get_org_address_by_id(id): org = Nonprofit.query.get(id) only_these_fields = ["id", "ein", "name", "street", "city", "state", "zipcode"] return jsonify(jsonsift(org, only_these_fields)) @api_blueprint.route("/api/orgs/id/<int:id>/geocode", methods=["GET"]) def get_org_geocode_by_id(id): org = Nonprofit.query.get(id) only_these_fields = ["id", "ein", "name", "longitude", "latitude"] return jsonify(jsonsift(org, only_these_fields)) @api_blueprint.route("/api/orgs/ein/<int:ein>", methods=["GET"]) def get_org_by_ein(ein): org = Nonprofit.query.filter(Nonprofit.ein == ein).first() return npschema.jsonify(org) @api_blueprint.route("/api/orgs/ein/<int:ein>/address", methods=["GET"]) def get_org_address_by_ein(ein): org = Nonprofit.query.filter(Nonprofit.ein == ein).first() only_these_fields = ["id", "ein", "name", "street", "city", "state", "zipcode"] return jsonify(jsonsift(org, only_these_fields)) @api_blueprint.route("/api/orgs/ein/<int:ein>/geocode", methods=["GET"]) def get_org_geocode_by_ein(ein): org = Nonprofit.query.filter(Nonprofit.ein == ein).first() only_these_fields = ["id", "ein", "name", "longitude", "latitude"] return jsonify(jsonsift(org, only_these_fields))
the-stack_0_2254
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging import math import mxnet as mx from mxnet import np, npx from mxnet.gluon.nn.activations import Activation from . import constants as C logger = logging.getLogger(__name__) # Modified from the source to mxnet.gluon.nn.basic_layers.Dense which is: # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. class QuantizableDense(mx.gluon.HybridBlock): r"""Optionally Quantized fully-connected NN layer. `QuantDense` implements the operation: `output = activation(dot(input, weight) + bias)` where `activation` is the element-wise activation function passed as the `activation` argument, `weight` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only applicable if `use_bias` is `True`). Note: the input must be a tensor with rank 2. Use `flatten` to convert it to rank 2 manually if necessary. Parameters ---------- units : int Dimensionality of the output space. activation : str Activation function to use. See help on `Activation` layer. If you don't specify anything, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias : bool, default True Whether the layer uses a bias vector. flatten: bool, default True Whether the input tensor should be flattened. If true, all but the first axis of input data are collapsed together. If false, all but the last axis of input data are kept the same, and the transformation applies on the last axis. dtype : str or np.dtype, default C.DTYPE_FP32 Data type of output embeddings. weight_initializer : str or `Initializer` Initializer for the `kernel` weights matrix. bias_initializer: str or `Initializer` Initializer for the bias vector. in_units : int, optional Size of the input data. If not specified, initialization will be deferred to the first time `forward` is called and `in_units` will be inferred from the shape of input data. prefix : str or None See document of `Block`. params : ParameterDict or None See document of `Block`. Inputs: - **data**: if `flatten` is True, `data` should be a tensor with shape `(batch_size, x1, x2, ..., xn)`, where x1 * x2 * ... * xn is equal to `in_units`. If `flatten` is False, `data` should have shape `(x1, x2, ..., xn, in_units)`. Outputs: - **out**: if `flatten` is True, `out` will be a tensor with shape `(batch_size, units)`. If `flatten` is False, `out` will have shape `(x1, x2, ..., xn, units)`. """ def __init__(self, units, dtype: str, activation=None, use_bias=True, flatten=True, weight_initializer=None, bias_initializer='zeros', in_units=0): super(QuantizableDense, self).__init__() self._flatten = flatten self._dtype = dtype self._units = units self._in_units = in_units self.scaling = None if dtype == C.DTYPE_INT8: self.scaling = mx.gluon.Parameter('scaling', shape=(1,), # Initialize to an obviously wrong value so we can detect later init=mx.initializer.Constant(-1.0), dtype=C.DTYPE_FP32, allow_deferred_init=True) weight_initializer = 'zeros' # Most initializers don't work for int8, but this is for inference anyway. self.weight = mx.gluon.Parameter('weight', shape=(units, in_units), init=weight_initializer, dtype=dtype, allow_deferred_init=True) self.bias = mx.gluon.Parameter('bias', shape=(units,), init=bias_initializer, dtype=C.DTYPE_FP32, allow_deferred_init=True) if use_bias else None self.act = Activation(activation) if activation is not None else None if activation is not None: self.act = Activation(activation) def cast(self, dtype): if self._dtype != C.DTYPE_INT8: self._dtype = dtype super(QuantizableDense, self).cast(dtype) else: #No casting an already quantized matrix. logger.warning("Ignoring casting on int8 matrix") def infer_shape(self, x, *args): if self._flatten: num_input = 1 for i in range(1, x.ndim): num_input *= x.shape[i] self.weight.shape = (self.weight.shape[0], num_input) else: self.weight.shape = (self.weight.shape[0], x.shape[x.ndim - 1]) def forward(self, x): if self._dtype == C.DTYPE_INT8: if self.bias is not None: act = npx.intgemm_fully_connected(x, weight=self.weight.data(), scaling=self.scaling.data(), bias=self.bias.data(), no_bias=False, num_hidden=self._units, flatten=self._flatten) else: act = npx.intgemm_fully_connected(x, weight=self.weight.data(), scaling=self.scaling.data(), no_bias=True, num_hidden=self._units, flatten=self._flatten) else: act = npx.fully_connected(x, weight=self.weight.data(), bias=self.bias.data() if self.bias else None, no_bias=self.bias is None, num_hidden=self._units, flatten=self._flatten) if self.act is not None: act = self.act(act) return act def __repr__(self): s = '{name}({layout}, {act})' shape = self.weight.shape return s.format(name=self.__class__.__name__, act=self.act if self.act else 'linear', layout='{0} -> {1}'.format(shape[1] if shape[1] else None, shape[0])) def optimize_quantization_mse(tensor, rounds=10): """ Minimize mean squared error of quantizing a tensor, returning the top value (i.e. the one that quantizes to 127). Scaling = 127.0 / return value. This is a convex optimization problem. EM works but makes slow steps. Instead of EM, use binary search in the direction minimization suggests. """ best_mse = math.inf best_top = None maxabs = npx.intgemm_maxabsolute(tensor) low = 0.0 high = maxabs for _ in range(rounds): value = (low + high) / 2.0 quant = npx.intgemm_prepare_data(tensor, value) quant_float = quant.astype(C.DTYPE_FP32) mse = (quant_float * (value / 127.0) - tensor).norm().item() / math.sqrt(float(tensor.size)) if mse < best_mse: best_mse = mse best_top = value # This optimizes scaling subject to cluster assignment. # It can be used for EM but the step is really slow, so use it for direction. scale = np.sum(quant_float * quant_float) / np.sum(quant_float * tensor) top = 127.0 / scale.item() if top < value: high = value else: low = value return best_top def extract_quant_max(tensor_param: mx.gluon.parameter.Parameter, scaling_param: mx.gluon.parameter.Parameter) -> float: """ Extract or tune the scaling factor for a parameter. """ scaling = scaling_param.data() if scaling.item() < 0: # Bogus auto initialized scaling factor. b_max = optimize_quantization_mse(tensor_param.data()) scaling_param.set_data(b_max / 127.0) else: b_max = scaling * 127.0 return b_max def convert_weights_disk_format(params: C.ParameterDict, dtype_store: str): """ Convert weights from float32 MXNet format (B^T in float32) to disk format (B^T in int8 format). If dtype_store == 'int8' then compute scaling and quantize the model. If dtype_store == 'float32' then just annotate with scaling factors. :param params model parameters from model.collect_params() in a float32 model. :param dtype_store data type to store on disk. """ logger.info("Optimizing quantization scaling factors") for name, param in params.items(): if name.endswith("_weight"): scaling_name = name[0:-6] + "scaling" if scaling_name in params: b_max = extract_quant_max(param, params[scaling_name]) if dtype_store == C.DTYPE_INT8: quantized = npx.intgemm_prepare_data(param.data(), b_max) param.set_data(quantized) param.dtype = C.DTYPE_INT8 def convert_weights_cpu_dependent(params: C.ParameterDict): """ Convert weights from disk format to intgemm's CPU-dependent format for quantized matrix multiplication. :param params model parameters from model.collect_params() in a model that came from convert_weights_disk_format. """ logger.info("Converting weights to CPU format.") for name, param in params.items(): if name.endswith("_weight"): scaling_name = name[0:-6] + "scaling" if scaling_name in params: if param.dtype == C.DTYPE_INT8: # Already fully quantized, just rearrange. weight = npx.intgemm_prepare_weight(param.data(), already_quantized=True) else: # Use offline scaling factor if available. b_max = extract_quant_max(param, params[scaling_name]) weight = npx.intgemm_prepare_weight(param.data(), b_max) param.set_data(weight) param.dtype = C.DTYPE_INT8
the-stack_0_2255
""" Test label generation for nodes. """ from map_machine.map_configuration import LabelMode from map_machine.text import Label from tests import SCHEME __author__ = "Sergey Vartanov" __email__ = "[email protected]" def construct_labels(tags: dict[str, str]) -> list[Label]: """Construct labels from OSM node tags.""" processed: set[str] = set() return SCHEME.construct_text(tags, processed, LabelMode.ALL) def test_1_label() -> None: """Test tags that should be converted into single label.""" labels = construct_labels({"name": "Name"}) assert len(labels) == 1 assert labels[0].text == "Name" def test_1_label_unknown_tags() -> None: """ Test tags with some unknown tags that should be converted into single label. """ labels = construct_labels({"name": "Name", "aaa": "bbb"}) assert len(labels) == 1 assert labels[0].text == "Name" def test_2_labels() -> None: """Test tags that should be converted into two labels.""" labels = construct_labels({"name": "Name", "ref": "5"}) assert len(labels) == 2 assert labels[0].text == "Name" assert labels[1].text == "5"
the-stack_0_2256
"""Typing middleware.""" from typing import Any, Callable, Dict, Optional import falcon from falcon import Request, Response from falcontyping.base import (PydanticBaseModel, TypedResource, TypeValidationError) from falcontyping.typedjson import DecodingError, ExternalSerializerException from falcontyping.typedjson import decode as decode_using_hints _VALID_RESPONSE_TYPES = set([PydanticBaseModel, dict, type(None)]) class TypingMiddleware: @staticmethod def _decode_or_raise_error(hint: Any, parameter: Any) -> Any: """ Decode value using type hint or fail. :raises: falcon.HTTPError or ExternalSerializerException """ result = decode_using_hints(hint, parameter) if isinstance(result, DecodingError): if isinstance(result.reason, ExternalSerializerException): raise result.reason.exception from None else: raise falcon.HTTPError(status=falcon.HTTP_UNPROCESSABLE_ENTITY, # pylint: disable=no-member description=f'\'{parameter}\' must be of type {hint} not {type(parameter)}') return result @staticmethod def _try_decode_query_or_body(request: falcon.Request, hint: Any) -> Any: """Decode values by looking for them in both URI and request body.""" # An assumption is being made here, That only POST, PUT and PATCH can have bodies. if request.method.lower() in ['post', 'put', 'patch']: key = 'media' else: key = 'params' return TypingMiddleware._decode_or_raise_error(hint, getattr(request, key, None)) def process_request(self, request: Request, response: Response) -> None: """ Process the request before routing it. Because Falcon routes each request based on req.path, a request can be effectively re-routed by setting that attribute to a new value from within process_request(). :param request: Request object that will eventually be routed to an on_* responder method. :param response: Response object that will be routed to the on_* responder. """ ... def process_resource(self, request: Request, response: Response, resource: Any, parameters: Dict) -> None: """ Process the request after routing. This method is only called when the request matches a route to a resource. :param request: Request object that will be passed to the routed responder. :param response: Response object that will be passed to the responder. :param resource: Resource object to which the request was routed. :param parameters: A dict-like object representing any additional parameters derived from the route's URI template fields, that will be passed to the resource's responder method as keyword arguments. """ if not isinstance(resource, TypedResource): return handler: Optional[Callable] = getattr(resource, 'on_%s' % request.method.lower(), None) if handler: # Get hints for only those variables that should be passed to the request handler. hints = resource.hints[handler.__name__] # Decode values using type hints, All values in parameters will be based as # Keyword arguments to the request handler. for parameter in filter(hints.get, parameters): parameters[parameter] = self._decode_or_raise_error(hints[parameter], parameters.get(parameter)) # Decode body parameter if there is one. body_parameter = resource.methods_body_parameter[handler.__name__] if body_parameter: parameters[body_parameter] = self._try_decode_query_or_body(request, hints[body_parameter]) def process_response(self, request: Request, response: Response, resource: Any, request_succeeded: bool) -> None: """ Post-processing of the response (after routing). :param request: Request object. :param response: Response object. :param resource: Resource object to which the request was routed. May be None if no route was found for the request. :param request_succeeded: True if no exceptions were raised while the framework processed and routed the request; otherwise False. """ if not (isinstance(resource, TypedResource) and request_succeeded): return handler: Optional[Callable] = getattr(resource, 'on_%s' % request.method.lower(), None) # Get type hint for the return type of the request handler. hint: Any = resource.hints[handler.__name__].get('return') if handler else None if hint: media = getattr(response, 'media', None) media = decode_using_hints(hint, media) if not any(isinstance(media, type_) for type_ in _VALID_RESPONSE_TYPES): # type: ignore raise TypeValidationError(f'{resource}.{handler} returned a unexpected value. ', f'Resource methods must return either Nothing, ' f'marshmallow.Schema or pydantic.BaseModel not {type(media)}') if isinstance(media, PydanticBaseModel): media = media.dict() response.media = media
the-stack_0_2258
import networkx as nx import utils import sys import logging import os import uuid def convert(args): for graph in args.graphs: if args.nocycles: g=nx.DiGraph() else: g=nx.MultiDiGraph() g.graph['paths']=[] g.graph['path2id']=dict() g.graph['id2path']=dict() if graph.endswith(".gfa"): #gfa to gml/gfa utils.read_gfa(graph,None,None,g,minsamples=args.minsamples, maxsamples=args.maxsamples, targetsample=args.targetsample, remap=False) if args.type=="gfa": fn=graph.replace(".gfa",".rewrite.gfa") graph=utils.write_gfa(g,"", outputfile=fn) logging.info("gfa graph written to: %s"%fn) elif args.type=="gml": fn=utils.write_gml(g,"", hwm=args.hwm, outputfile=graph.replace(".gfa",""), partition=args.partition) logging.info("gml graph written to: %s"%fn) elif args.type=="maf": logging.info("Converting graph to maf..") graph2maf(g,graph.replace(".gfa",".maf")) elif graph.endswith(".maf"): #multiple alignment format, convert to graph g=maf2graph(graph) filename=graph[:graph.rfind(".")]+".gml" utils.write_gml(g,"", outputfile=filename) filename=graph[:graph.rfind(".")]+".gfa" utils.write_gfa(g,"", outputfile=filename) logging.debug("gfa graph written to: %s"%filename) elif graph.endswith(".fa") or graph.endswith(".fasta") or graph.endswith(".fna"): #assume fasta to gfa if args.aligned: seqs=[] names=[] for name,seq in utils.fasta_reader(graph,keepdash=True): seqs.append(seq) names.append(name) g,nid=utils.aln2graph(seqs,names) else: i=0 start=uuid.uuid4().hex end=uuid.uuid4().hex g.graph['startnodes']=[start] g.graph['endnodes']=[end] g.add_node(start,offsets=dict()) g.add_node(end,offsets=dict()) for i,v in enumerate(utils.fasta_reader(graph)): name,seq=v g.graph['paths'].append(name) g.graph['path2id'][name]=i g.graph['id2path'][i]=name g.node[start]['offsets'][i]=0 g.node[end]['offsets'][i]=len(seq) g.add_node(i,offsets={i:0},seq=seq) g.add_edge(start,i,paths=set([i])) g.add_edge(i,end,paths=set([i])) filename=graph[:graph.rfind(".")]+".gfa" utils.write_gfa(g,"", outputfile=filename) logging.debug("gfa graph written to: %s"%filename) else: logging.fatal("Unknown filetype, need gfa or fasta extension.") return #converts a multiple alignment format file to a graph def maf2graph(maffile): files=set() G=nx.MultiDiGraph() startnode=uuid.uuid4().hex endnode=uuid.uuid4().hex G.graph['startnodes']=set([startnode]) G.graph['endnodes']=set([endnode]) G.graph['path2id']=dict() G.add_node(startnode,offsets=dict()) G.add_node(endnode,offsets=dict()) nid=0 with open(maffile,"r") as maf: for line in maf: if line.startswith("#"): continue elif line.startswith("a"): #start of an aligned segment nid+=1 G.add_node(nid,data=dict()) elif line.startswith("s"): cols=line.rstrip().split() if '.' in cols[1]: #TODO: use db parameter to specificy a single mfa file with all sequence file,name=cols[1][:cols[1].find('.')],cols[1][cols[1].find('.')+1:] files.add(file) else: file=None #args.db? name=cols[1] if name not in G.graph['path2id']: G.graph['path2id'][name]=len(G.graph['path2id']) G.node[startnode]['offsets'][G.graph['path2id'][name]]=0 G.node[nid]['data'][(file,name)]={'start':int(cols[2]), 'end':int(cols[2])+int(cols[3]), 'orientation':cols[4], 'aln':cols[6] } nid+=1 remove=[] for node,d in G.nodes(data=True): if 'data' in d and len(d['data'])==1: #multiplicity of 1, strictly not an alignment remove.append(node) G.remove_nodes_from(remove) db=dict() #map name to sequence for file in files: for name,seq in utils.fasta_reader(file+".fasta"): #guess that the original file has a ".fasta" extension name=name.split()[0] key=(file,name) if key in db: logging.fatal("Non unique contig-name: %s. quit."%name) sys.exit(1) else: db[key]=seq remove=[] #for every sequence, check that none of the alignments overlap, otherwise assignment is not 1-1 for file,name in db: seq=db[(file,name)] intvs=[] for node in G: if 'data' in G.node[node]: #does the node represent an aligned segment? if (file,name) in G.node[node]['data']: intvs.append((G.node[node]['data'][(file,name)]['start'] , G.node[node]['data'][(file,name)]['end'], node)) intvs.sort() #sort by start position pstart=0 pend=0 pnode=startnode unaligned=[] for start,end,node in intvs: if start>pend: unaligned.append((pend,start)) G.add_node(nid,intv=(pend,start),seq=seq[pend:start]) G.add_edge(pnode,nid,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") G.add_edge(nid,node,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") nid+=1 elif start<pend: logging.fatal("Overlapping alignments for sequence: %s.%s --> (%d,%d) and (%d,%d)."%(file,name,pstart,pend,start,end)) remove.append(node) # sys.exit(1) else: #no gap, just connect subsequent intervals G.add_edge(pnode,node,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") pstart,pend,pnode=start,end,node if len(seq)!=pend: unaligned.append((pend,len(seq))) G.add_node(nid,intv=((pend,len(seq))),seq=seq[pend:len(seq)]) G.add_edge(pnode,nid,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") G.add_edge(nid,endnode,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") nid+=1 else: G.add_edge(pnode,endnode,paths=set([G.graph['path2id'][name]]),ofrom="+",oto="+") G.remove_nodes_from(remove) # print "Unaligned segments",unaligned alignments=[node for node in G if 'data' in G.node[node]] for node in alignments: #expand all alignments in the graph if 'data' in G.node[node]: seqs=[] names=[] offsets={} for file,name in G.node[node]['data']: seqs.append(G.node[node]['data'][(file,name)]['aln']) offsets[G.graph['path2id'][name]]=G.node[node]['data'][(file,name)]['start'] names.append(name) sg,nid=utils.aln2graph(seqs,names,idoffset=nid,path2id=G.graph['path2id'],offsets=offsets) nid+=1 G.add_nodes_from(sg.nodes(data=True)) G.add_edges_from(sg.edges(data=True)) assert(len(sg.graph['startnodes'])==1) assert(len(sg.graph['endnodes'])==1) sgstart=sg.graph['startnodes'][0] sgend=sg.graph['endnodes'][0] for v,t,d in G.in_edges(node,data=True): G.add_edge(v,sgstart,paths=d['paths'],ofrom="+",oto="+") for v,t,d in G.out_edges(node,data=True): G.add_edge(sgend,t,paths=d['paths'],ofrom="+",oto="+") #hack this in here so we can continue G.node[sgstart]['seq']="" G.node[sgend]['seq']="" nx.relabel_nodes(G,{sgstart: nid, sgend: nid+1},copy=False) nid+=2 G.remove_node(node) return G def graph2maf(G,filename): if isinstance(G,nx.MultiDiGraph): #TODO: decompose global alignment into local alignments by deconnecting structure edges #determine set of structure edges orgpaths=set([G.graph['path2id'][p] for p in G.graph['paths'] if p.startswith('*')]) refpaths=set([G.graph['path2id'][p] for p in G.graph['paths'] if not p.startswith('*')]) es=[] for e0,e1,d in G.edges(data=True): if len(d['paths'] & refpaths)==0: #edge that exclusively represents structural event es.append((e0,e1)) toremove=es G.remove_edges_from(toremove) sizes={sid:0 for sid in G.graph['id2path']} with open(filename,'w') as maf: for g in nx.weakly_connected_component_subgraphs(G): longest=0 sids=set() for node in nx.topological_sort(g): if type(node)!=str: go=max([0]+[G.node[pred]['graphoffset']+len(G.node[pred]['seq']) for pred in G.predecessors(node) if type(pred)!=str]) G.node[node]['graphoffset']=go if go+len(G.node[node]['seq'])>longest: longest=go+len(G.node[node]['seq']) for k in G.node[node]['offsets']: sids.add(k) if G.node[node]['offsets'][k]+len(G.node[node]['seq'])>sizes[k]: sizes[k]=G.node[node]['offsets'][k]+len(G.node[node]['seq']) ml=max([len(p) for p in G.graph['paths']]) maf.write("##maf version=1\n") maf.write("a\n") for sid in sids: path=G.graph['id2path'][sid] o=0 sl=0 maf.write("s %s %d %d + %-10d "%(path.ljust(ml), 0, sizes[G.graph['path2id'][path]], sizes[G.graph['path2id'][path]]) ) for node in nx.topological_sort(g): if type(node)!=str and sid in G.node[node]['offsets']: while o<G.node[node]['graphoffset']: maf.write("-") o+=1 sl+=len(G.node[node]['seq'].replace("-","")) maf.write("%s"%G.node[node]['seq']) o+=len(G.node[node]['seq']) maf.write("-"*(longest-o)) #pad with dash so all lines are equally long maf.write("\n") maf.write("\n")
the-stack_0_2259
from collections import Counter from itertools import product def count_letters(input_): """ Given an input_ like "abcdef" return a tuple with the result of the following rules a letter appears exactly 2 times a letter appears exactly 3 times """ counter = Counter(input_) two_times = 0 three_times = 0 for quantity in counter.values(): if quantity == 2: two_times += 1 elif quantity == 3: three_times += 1 return two_times > 0, three_times > 0 def check_repeated(str1, str2): """ Given 2 string check if these strings have a diff of 1 character if it's the case return the position of the character otherwise return None """ assert len(str1) == len(str2) position = None quantity = 0 for i in range(len(str1)): if str1[i] != str2[i]: quantity += 1 position = i if quantity == 1: return position else: return None def run(): with open("../inputs/day02.txt") as f: lines = f.readlines() two_times, three_times = 0, 0 for line in lines: if not line: continue two, three = count_letters(line) if two: two_times += 1 if three: three_times += 1 print(f"The checksum is {two_times * three_times}") for id_1, id_2 in product(lines, lines): if id_1 == id_2: continue pos = check_repeated(id_1, id_2) if pos is not None: res = id_1[0:pos] + id_1[pos + 1:] print(f"The result is {res}")
the-stack_0_2260
"""Cloud optical properties from ECHAM.""" from os.path import dirname, join import numpy as np import xarray as xr from scipy.interpolate import interp1d class EchamCloudOptics: """Interface to interpolate cloud optical properties used in ECHAM.""" def __init__(self): self.database = xr.open_dataset( join(dirname(__file__), "data", "ECHAM6_CldOptProps.nc") ) def interp_ice_properties(self, particle_size=100.0, kind="linear"): x = self.database.re_crystal r = interp1d( x, self.database[f"co_albedo_crystal"], axis=1, kind=kind, ) s = interp1d( x, self.database[f"asymmetry_factor_crystal"], axis=1, kind=kind, ) t = interp1d( x, self.database[f"extinction_per_mass_crystal"], axis=1, kind=kind, ) return ( 1 - r(particle_size)[16:], # SW bands s(particle_size)[16:], t(particle_size)[16:], t(particle_size)[:16], # LW bands ) def interp_liquid_properties(self, particle_size=10.0, kind="linear"): x = self.database.re_droplet r = interp1d( x, self.database[f"co_albedo_droplet"], axis=1, kind="linear", ) s = interp1d( x, self.database[f"asymmetry_factor_droplet"], axis=1, kind="linear", ) t = interp1d( x, self.database[f"extinction_per_mass_droplet"], axis=1, kind="linear", ) return ( 1 - r(particle_size)[16:], s(particle_size)[16:], t(particle_size)[16:], t(particle_size)[:16], ) def get_cloud_properties(self, particle_size, water_path, phase="ice"): if phase == "ice": ssa, asym, tau_sw, tau_lw = self.interp_ice_properties(particle_size) elif phase == "liquid": ssa, asym, tau_sw, tau_lw = self.interp_liquid_properties(particle_size) else: raise ValueError('Invalid phase. Allowed values are "ice" and "liquid".') cld_optics = xr.Dataset( coords={ "num_shortwave_bands": np.arange(14), "num_longwave_bands": np.arange(16), }, ) cld_optics["single_scattering_albedo_due_to_cloud"] = ( ("num_shortwave_bands",), ssa.ravel(), ) cld_optics["cloud_asymmetry_parameter"] = ( ("num_shortwave_bands",), asym.ravel(), ) cld_optics["cloud_forward_scattering_fraction"] = ( ("num_shortwave_bands",), asym.ravel() ** 2, ) cld_optics["shortwave_optical_thickness_due_to_cloud"] = ( ("num_shortwave_bands",), water_path * tau_sw.ravel(), ) cld_optics["longwave_optical_thickness_due_to_cloud"] = ( ("num_longwave_bands",), water_path * tau_lw.ravel(), ) return cld_optics
the-stack_0_2262
import os, pymysql, logging, matplotlib, sys from logging.handlers import RotatingFileHandler from flask import Flask from config import app_config from .utils.mattermostdriver import Driver config_name = os.getenv('FLASK_CONFIG', 'default') app = Flask(__name__) # load the color list from the matplotlib color_list = set() for name, hex in matplotlib.colors.cnames.items(): if name.startswith("light"): color_list.add(hex) # inherit the configuration object from the config file app.config.from_object(app_config[config_name]) app_config = app_config[config_name] logger = logging.getLogger(__name__) formatter = logging.Formatter( "[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s") handler = RotatingFileHandler(app_config.LOG_FILE_PATH, maxBytes=10000000, backupCount=5) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) app.logger.addHandler(handler) try: mysql = pymysql.connect(host=app_config.MYSQL_HOST, port=app_config.MYSQL_PORT, user=app_config.MYSQL_USER, password=app_config.MYSQL_PASSWORD, db=app_config.MYSQL_DB, cursorclass=pymysql.cursors.DictCursor) except Exception as e: logger.critical("Not able to connect to MySQL Server. Can't proceed further. Shutting down gracefully", exc_info=True) sys.exit() default_options = { 'scheme': app_config.MM_SCHEME, 'url': app_config.MM_URL, 'port': app_config.MM_PORT, 'basepath': '/api/v4', 'verify': True, 'timeout': 30, 'request_timeout': None, 'login_id': None, 'password': None, 'token': app_config.MM_BOT_TOKEN, 'mfa_token': None, 'auth': None, 'debug': False } SLASH_TOKEN = app_config.MM_SLASH_TOKEN mm_client = Driver(default_options) try: mm_client.login() except Exception as e: logger.critical("Not able to connect to MatterSQL Server. Can't proceed further. \ Shutting down gracefully", exc_info=True) sys.exit() DAILY_POINT_LIMIT = app_config.DAILY_POINT_LIMIT PER_TRANSACTION_POINT_LIMIT = app_config.PER_TRANSACTION_POINT_LIMIT INSERT_QUERY_STRING = "insert into transaction(channel_id, channel_name, from_user_id, from_user_name, points, to_user_id, to_user_name, post_id, insertionTime, message) values (\"%s\", \"%s\", \"%s\", \"%s\", %d, \"%s\", \"%s\", \"%s\", \"%s\", \"%s\");" WEEKLY_THRESHOLD = app_config.WEEKLY_THRESHOLD from .utils.helpers import * # REGISTER BLUEPRINTS from app.routes.index import main_service app.register_blueprint(main_service, url_prefix='/v1/index')
the-stack_0_2264
from sqlalchemy import Column, Integer, String, ForeignKey, DateTime, Boolean from sqlalchemy.orm import relationship import datetime from models.SessionWorkouts import SessionWorkouts # from .SessionModel import Session from database import Base class Workout(Base): __tablename__ = "workout" id = Column(Integer, primary_key=True, index=True) name = Column(String, unique=True, nullable=False) repetition = Column(Integer, unique=False, nullable=False) set = Column(Integer, unique=False, nullable=False) weight = Column(Integer, unique=False, nullable=False) done = Column(Boolean, default=False) created_at = Column(DateTime, default=datetime.datetime.utcnow) updated_at = Column(DateTime, default=datetime.datetime.utcnow) sessions = relationship("Session", secondary=SessionWorkouts.__tablename__, backref="workout") exercise_id = Column(Integer, ForeignKey("exercise.id"), nullable=False) exercise = relationship("Exercise", back_populates="workout") # session_has_user = relationship("SessionHasUser", back_populates="workout")
the-stack_0_2266
#!/usr/bin/env python3 # # This file is part of LiteX-Boards. # # Copyright (c) 2019 Antti Lukats <[email protected]> # Copyright (c) 2019 msloniewski <[email protected]> # Copyright (c) 2019 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os import argparse from migen import * from litex_boards.platforms import c10lprefkit from litex.soc.cores.clock import Cyclone10LPPLL from litex.soc.integration.soc_core import * from litex.soc.integration.builder import * from litex.soc.cores.led import LedChaser from litedram.modules import MT48LC16M16 from litedram.phy import GENSDRPHY from liteeth.phy.mii import LiteEthPHYMII from litex.soc.cores.hyperbus import HyperRAM # CRG ---------------------------------------------------------------------------------------------- class _CRG(Module): def __init__(self, platform, sys_clk_freq): self.rst = Signal() self.clock_domains.cd_sys = ClockDomain() self.clock_domains.cd_sys_ps = ClockDomain(reset_less=True) # # # # Clk / Rst clk12 = platform.request("clk12") # PLL self.submodules.pll = pll = Cyclone10LPPLL(speedgrade="-A7") self.comb += pll.reset.eq(~platform.request("cpu_reset") | self.rst) pll.register_clkin(clk12, 12e6) pll.create_clkout(self.cd_sys, sys_clk_freq) pll.create_clkout(self.cd_sys_ps, sys_clk_freq, phase=90) # SDRAM clock self.comb += platform.request("sdram_clock").eq(self.cd_sys_ps.clk) # BaseSoC ------------------------------------------------------------------------------------------ class BaseSoC(SoCCore): mem_map = { "hyperram": 0x20000000, } mem_map.update(SoCCore.mem_map) def __init__(self, sys_clk_freq=int(50e6), with_led_chaser=True, with_ethernet=False, with_etherbone=False, **kwargs): platform = c10lprefkit.Platform() # SoCCore ---------------------------------------------------------------------------------- SoCCore.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on C10 LP RefKit", **kwargs) # CRG -------------------------------------------------------------------------------------- self.submodules.crg = _CRG(platform, sys_clk_freq) # HyperRam --------------------------------------------------------------------------------- self.submodules.hyperram = HyperRAM(platform.request("hyperram")) self.add_wb_slave(self.mem_map["hyperram"], self.hyperram.bus) self.add_memory_region("hyperram", self.mem_map["hyperram"], 8*1024*1024) # SDR SDRAM -------------------------------------------------------------------------------- if not self.integrated_main_ram_size: self.submodules.sdrphy = GENSDRPHY(platform.request("sdram"), sys_clk_freq) self.add_sdram("sdram", phy = self.sdrphy, module = MT48LC16M16(sys_clk_freq, "1:1"), l2_cache_size = kwargs.get("l2_size", 8192) ) # Ethernet / Etherbone --------------------------------------------------------------------- if with_ethernet or with_etherbone: self.submodules.ethphy = LiteEthPHYMII( clock_pads = self.platform.request("eth_clocks"), pads = self.platform.request("eth")) if with_ethernet: self.add_ethernet(phy=self.ethphy) if with_etherbone: self.add_etherbone(phy=self.ethphy) # Leds ------------------------------------------------------------------------------------- if with_led_chaser: self.submodules.leds = LedChaser( pads = platform.request_all("user_led"), sys_clk_freq = sys_clk_freq) # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on C10 LP RefKit") parser.add_argument("--build", action="store_true", help="Build bitstream.") parser.add_argument("--load", action="store_true", help="Load bitstream.") parser.add_argument("--sys-clk-freq", default=50e6, help="System clock frequency.") parser.add_argument("--with-ethernet", action="store_true", help="Enable Ethernet support.") parser.add_argument("--with-etherbone", action="store_true", help="Enable Etherbone support.") builder_args(parser) soc_core_args(parser) args = parser.parse_args() soc = BaseSoC( sys_clk_freq = int(float(args.sys_clk_freq)), with_ethernet = args.with_ethernet, with_etherbone = args.with_etherbone, **soc_core_argdict(args) ) builder = Builder(soc, **builder_argdict(args)) builder.build(run=args.build) if args.load: prog = soc.platform.create_programmer() prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".sof")) if __name__ == "__main__": main()
the-stack_0_2267
import numpy as np import matplotlib.pyplot as plt from scipy import linalg from simupy.systems import LTISystem from simupy.systems.symbolic import DynamicalSystem, dynamicsymbols from simupy.block_diagram import BlockDiagram from sympy.tensor.array import Array legends = [r'$x_1(t)$', r'$x_2(t)$', r'$x_3(t)$', r'$u(t)$'] tF = 6 """ This example shows the design of a linear quadratic regulator for a nonlinear system linearized about the origin. It is stable for some initial conditions, but not all initial conditions. The region of stability is not dependent only on the distance from the origin. """ # construct system x = Array(dynamicsymbols('x1:4')) u = dynamicsymbols('u') x1, x2, x3 = x sys = DynamicalSystem(Array([-x1+x2-x3, -x1*x2-x2+u, -x1+u]), x, Array([u])) # linearization to design LQR t0 = 0 x0 = np.zeros((3, 1)) u0 = 0 A = sys.state_jacobian_equation_function(t0, x0, u0) B = sys.input_jacobian_equation_function(t0, x0, u0) # LQR gain Q = np.matlib.eye(3) R = np.matrix([1]) S = linalg.solve_continuous_are(A, B, Q, R,) K = linalg.solve(R, B.T @ S).reshape(1, -1) ctr_sys = LTISystem(-K) # Construct block diagram BD = BlockDiagram(sys, ctr_sys) BD.connect(sys, ctr_sys) BD.connect(ctr_sys, sys) # case 1 - un-recoverable sys.initial_condition = np.r_[1, 1, 2.25] result1 = BD.simulate(tF) plt.figure() plt.plot(result1.t, result1.y) plt.legend(legends) plt.title('controlled system with unstable initial conditions') plt.xlabel('$t$, s') plt.tight_layout() plt.show() # case 2 - recoverable sys.initial_condition = np.r_[5, -3, 1] result2 = BD.simulate(tF) plt.figure() plt.plot(result2.t, result2.y) plt.legend(legends) plt.title('controlled system with stable initial conditions') plt.xlabel('$t$, s') plt.tight_layout() plt.show()
the-stack_0_2269
"""Bit manipulation class.""" import math from abc import abstractmethod from copy import deepcopy from typing import ( Any, Container, Iterable, Iterator, MutableSequence, SupportsInt, Tuple, Union, overload, ) from biterator._biterators import biterate from biterator.bits_exceptions import SubscriptError from biterator.const import ONES, ZEROS, DirtyBits, ValidBit class Bits(MutableSequence[bool]): """ Stores bits in a list-like object, supports all bit-wise operators. Bits can be instantiated with: * A string of binary e.g. "1010" or "0b1100_0010". * A prefixed string of hexadecimals e.g. "0x1f 0xb2" or "0xbadc0de". * A bytes-like object. * An integer-like object with a specified bit_length. * An Iterable containing any of: True, False, 0, 1, "0", "1". * An Iterable of arbitrary objects specifed by 'ones' and 'zero' collections as arguments. The add (+) operator functions as concatination only, and supports all of the above schemes. Addition may be done by first casting to int. Binary and hexadecimal representations may be accessed with the 'bin' and 'hex' properties and the 'decode' method may be used to read the bits as bytes using a specified codec. >>> bits = Bits(); bits.extend('1010'); bits.bin() # Concatenate regular strings of binary. '0b1010' >>> bits.extend(dict(value=15, bit_length=4)); bits.bin() # Concatenate bits from an integer. '0b1010_1111' >>> bits.extend(b"A"); bits.bin(compact=True) # Concatenate bytes-like objects. '0b1010111101000001' >>> Bits("0xFF") + "0b1001_1001" # Concatenation directly with (+) operator. Bits("0b1111111110011001") >>> Bits("1111 0011 0000 1010")[:8] # Instantiate with binary; slicing is supported. Bits("0b11110011") >>> Bits("0xAAAA")[0:8:2] # Instantiate with hex; advanced slicing Bits("0b1111") >>> Bits("1111") << 4 # Bitshift operators supported Bits("0b11110000") >>> Bits(15, bit_length=4) # Add bits from integers Bits("0b1111") >>> Bits(255, -8) Traceback (most recent call last): ValueError: 'bit_length' must be provided and must be greater than 0 for integer values All bitwise operators are supported. 'NOR' mask example, left and right 'NOR' with eachother when the mask is active: >>> mask_ = Bits('00001111') >>> left_ = Bits('01010101') >>> right = Bits('00110011') >>> ((mask_ ^ left_) & (mask_ | left_) & ~(mask_ & right)).bin() '0b0101_1000' """ # Pylint literally crashes on this line for some reason. __slots__ = ["__bytes", "__last_byte", "__len_last_byte", "__len"] # pylint: disable=all (literally will crash) __bytes: bytearray __len: int # Contains the trailing (incomplete) byte; has less than the 8 bits of an actual byte. __last_byte: int __len_last_byte: int def __new__(cls, bit_values: Union[Iterable, int] = None, *args, **kwargs): """ Copy Bits object if passed as argument to Bits class. >>> class BitsTest(Bits): ... def copy(self): ... print('copied') ... return super().copy() >>> bits_1 = BitsTest('1010') >>> bits_2 = BitsTest(bits_1) copied >>> bits_2 += '1111' >>> bits_1 Bits("0b1010") >>> bits_2 Bits("0b10101111") """ if isinstance(bit_values, cls): return bit_values.copy() return super().__new__(cls) def __init__( self, bit_values: Union[Iterable, int] = None, bit_length: int = None, ones: Container = None, zeros: Container = None, ): """ Create a new Bits object from an Iterable of bit like object. Create from a string of binary e.g.: "1010", "0b1001", or "0b1001_1101" Create from a string of hex values: "0xFA 0xDE", "0XFFAA", "0Xab" Create from bytes-like objects. Create from Iterable of arbitrary objects by specifying containers of objects for 'ones' and 'zeros'. >>> Bits("10011001") Bits("0b10011001") >>> Bits("ffffabababffff", ones={"a"}, zeros={"b"}) Bits("0b101010") >>> Bits("0xFF") Bits("0b11111111") >>> Bits("MPMPEEMP", ones="M", zeros="EP") Bits("0b10100010") >>> Bits() + b"Hi" Bits("0b0100100001101001") >>> def double_gen(size: int): ... if size: ... yield size % 4 < 2 ... yield from double_gen(size - 1) >>> Bits(double_gen(16)) # Supports generators Bits("0b1001100110011001") >>> Bits(255, 8) Bits("0b11111111") >>> Bits(255) Traceback (most recent call last): ValueError: 'bit_length' must be provided and must be greater than 0 for integer values :param bit_values: Values to initialize a Bits object with. :param bit_length: Bit length if an integer is given for bit_values. :param ones: If set, symbols in this collection will represent True bits. :param zeros: If set, symbols in this collection will represent False bits. """ self.__bytes = bytearray() self.__len_last_byte = 0 self.__last_byte = 0 self.__len = 0 if bit_values is None and any(arg is not None for arg in (bit_length, ones, zeros)): raise ValueError("unexpected argument, 'bit_values' must be set or there must be no other args set") elif bit_values is not None: for value in biterate(bit_values, bit_length=bit_length, ones=ones, zeros=zeros): self.append(value) @classmethod def _clean_bits( cls, dirty_bits: DirtyBits, ones: Container = None, zeros: Container = None, ) -> Iterator[bool]: # noinspection PyUnresolvedReferences """ Attempt, by a biterator, to iterate over `dirty_bits`; yields Booleans. `dirty_bits` can be a dictionary of the form {"value": 15, "bit_length": 4} to iterate over the bits of an integer. >>> list(Bits._clean_bits(dict(value=255, bit_length=8))) == [True] * 8 True >>> "".join("1" if bit else "0" for bit in Bits._clean_bits((1, 0, 0, 1))) '1001' >>> list(Bits._clean_bits(dict(value=255))) Traceback (most recent call last): ValueError: unsupported dict format {'value': 255} :param dirty_bits: The bits containing object. :param ones: If set, symbols in this collection will represent True bits. :param zeros: If set, symbols in this collection will represent False bits. """ # Iterate from another Bits object. if isinstance(dirty_bits, cls): yield from dirty_bits return # Biterate an integer if isinstance(dirty_bits, dict): if "value" in dirty_bits and "bit_length" in dirty_bits: bit_values = dirty_bits["value"] bit_length = dirty_bits["bit_length"] yield from biterate(bit_values=bit_values, bit_length=bit_length) return raise ValueError(f"unsupported dict format {repr(dirty_bits)}") # Biterate other values yield from biterate(bit_values=dirty_bits, ones=ones, zeros=zeros) def copy(self) -> "Bits": """ Return a deep copy of the Bits object. >>> bits_1 = Bits('1111') >>> bits_2 = bits_1.copy() >>> bits_2 += '1111' >>> bits_2.bin(True, prefix="") '11111111' >>> bits_1.bin(True, prefix="") '1111' """ return deepcopy(self) def __repr__(self) -> str: # noinspection PyUnresolvedReferences """ Represent the Bits object. Equivalent to code which would create an identical object but only up to a size of 64 bytes; after which it is abbreviated. >>> Bits([1, 0]*32) Bits("0b1010101010101010101010101010101010101010101010101010101010101010") >>> exec("bits = " + repr(Bits([1, 0]*32))); bits == Bits([1, 0]*32) True >>> Bits('0xCAB00D1E'*6) Bits(4969887947907717934627081996608040267272832614365316255006, 192) >>> exec("bits = " + repr(Bits('0xCAB00D1E'*6))); bits == Bits('0xCAB00D1E'*6) True >>> Bits('0xBA5EBA11'*10) Bits("0xBA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11BA5EBA11") >>> exec("bits = " + repr(Bits('0xBA5EBA11'*10))); bits == Bits('0xBA5EBA11'*10) True >>> Bits('0xDEADBEEF'*10) + '1' Bits("0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF80", 321) >>> exec("bits = " + repr(Bits('0xDEADBEEF'*10) + '1')); bits == Bits('0xDEADBEEF'*10) + '1' True >>> Bits('0x0DDBA11'*200) Bits("0x0D 0xDB 0xA1 ... 0xDD 0xBA 0x11", bit_length=5_600) >>> Bits('0x0DDBA11'*200) + '1001' Bits("0x0D 0xDB 0xA1 ... 0xBA 0x11 0x90", bit_length=5_604) """ if self.__len <= 64: return f'Bits("{format(int(self), f"#0{self.__len + 2}b")}")' largest_possible_decimal = int(math.log(1 << self.__len, 10)) if largest_possible_decimal <= 64: return f'Bits({format(int(self), f"0{largest_possible_decimal}d")}, {self.__len})' if self.__len // 8 <= 64: if self.__len_last_byte > 0: return f'Bits("{self.hex(compact=True)}", {self.__len})' return f'Bits("{self.hex(compact=True)}")' length_str = f"bit_length={self.__len:_d}" if self.__len_last_byte > 0: return f'Bits("{self[:24].hex()} ... {self[-(self.__len_last_byte + 16):].hex()}", {length_str})' return f'Bits("{self[:24].hex()} ... {self[-24:].hex()}", {length_str})' def iter_bytes(self) -> Iterator[int]: # noinspection PyUnresolvedReferences """ Generate bytes from the bits. Yield an integer representation of each byte, uless `as_bytes` is set, in which case return single `bytes` objects. An incomplete byte will be written from the left, for example: >>> for byte in Bits('10101010 1111').iter_bytes(): print(bin(byte)) 0b10101010 0b11110000 :return: The Iterator. """ yield from self.__bytes if self.__len_last_byte: yield self.__last_byte << 8 - self.__len_last_byte def __bytes__(self) -> bytes: r""" Return bytes object; an incomplete byte is written from the left. For example: >>> bytes(Bits('1111')) b'\xf0' """ return bytes(self.iter_bytes()) def decode(self, *args, **kwargs) -> str: """ Decode the bytes using the codec registered for encoding. Wraps the `bytes.decode()` method. >>> Bits('01101000 01101001 00100000 01101101 01100001 01110010 01101011').decode('utf-8') 'hi mark' :param args: :param kwargs: :return: """ return bytes(self).decode(*args, **kwargs) def __bool__(self): """Return true if not empty.""" for byte in self.__bytes: if byte > 0: return True return bool(self.__last_byte) def _byte_bit_indices(self, index: int) -> Tuple[int, int, int]: """ Calculate byte index, bit index (on the byte), and apply clipping to the original index. :param index: The index to calculate. :return: The tuple with computed index values. """ if index >= self.__len or index < -self.__len: raise IndexError # Modulo corrects negative indices if index < 0: index %= self.__len # The first is the index of the byte that the index is within. # The second is the index of the bit within the byte (counting from the left). return index // 8, index % 8, index @classmethod def _clean_bit(cls, value: ValidBit) -> bool: """ Ensure bit is a ValidBit, cast to bool. >>> Bits._clean_bit('1') True >>> Bits._clean_bit(0) False >>> Bits._clean_bit('a') Traceback (most recent call last): TypeError: could not determine single bit value for 'a' :param value: The value to check. :return: The bool representation. """ if value in ONES: return True if value in ZEROS: return False raise TypeError(f"could not determine single bit value for {repr(value)}") def insert(self, index: int, value: ValidBit) -> None: """ Insert a bit at given index. >>> bits = Bits('001'); bits.insert(0, True); bits.bin() '0b1001' >>> for _ in range(4): bits.insert(len(bits), False) >>> bits.bin() '0b1001_0000' >>> bits.insert(5, "1"); bits.bin() '0b1001_0100 0b0' >>> bits.insert(-2, 1); bits.bin() '0b1001_0101 0b00' >>> bits = Bits('11110000 11110000 11110000 '); bits.insert(5, "1"); bits.bin(prefix="", group=False) '11110100 01111000 01111000 0' >>> bits.insert(0, 'g') Traceback (most recent call last): TypeError: could not determine single bit value for 'g' :param index: The index at whitch to insert the bit. :param value: The bit to be inserted. """ if not isinstance(value, bool): value = self._clean_bit(value) # If the index is above the length, set it to the length. # If the index is below the negative length, set it to the negative length. # Then if the new index is negative, take the modulo to get the correct positive index. if self.__len == 0: index = 0 else: if index >= 0: index = min(self.__len, index) else: index = max(-self.__len, index) % self.__len byte_index, bit_index = index // 8, index % 8 # If appending to the end. if index == self.__len: self.__last_byte = (self.__last_byte << 1) | value self._increment_last_byte() # If inserting within the last (incomplete) byte. elif byte_index == len(self.__bytes): self.__last_byte = self._insert_bit_in_byte(self.__last_byte, self.__len_last_byte, bit_index, value) self._increment_last_byte() # If inserting anywhere else. else: # Insert the bit then remove the rightmost bit to carry over into the next byte to the right. new_byte = self._insert_bit_in_byte(self.__bytes[byte_index], 8, bit_index, value) carry = new_byte & 1 new_byte >>= 1 # Append the byte with the carry over bit removed. self.__bytes[byte_index] = new_byte # Repeat for the remaining whole bytes to the right of the index. for i in range(byte_index + 1, len(self.__bytes)): new_byte = (carry << 8) | self.__bytes[i] carry = new_byte & 1 new_byte >>= 1 self.__bytes[i] = new_byte # Append the last carry bit to the last (incomplete) byte, and increment it's length. self.__last_byte = (carry << self.__len_last_byte) | self.__last_byte self._increment_last_byte() def extend(self, values: DirtyBits) -> None: """Override of the mixin to add data validation.""" # Prevent race conditions by copying if extending by self for v in self.copy() if values is self else self._clean_bits(values): self.append(v) @staticmethod def _insert_bit_in_byte(byte: int, length: int, index: int, value: bool) -> int: """ Insert a bit in a byte, indexed from the left. >>> bin(Bits._insert_bit_in_byte(0b1010010, 7, 4, True)) '0b10101010' :param byte: Byte in which to insert the bit. :param length: Length of the Byte. :param index: Index at which to insert the bit. :param value: Value to be inserted. :return: Byte with new bit inserted. """ right_index = length - index left_bits = byte >> right_index right_bits = byte & ((1 << right_index) - 1) return (((left_bits << 1) | value) << right_index) | right_bits def _increment_last_byte(self) -> None: """ Call when a bit has been added anywhere in the last (incomplete) byte. >>> bits = Bits(0b111_1111, 7); bits.last_byte_length 7 >>> bits.append(False); bits.last_byte_length 0 >>> len(bits) 8 """ self.__len_last_byte += 1 self.__len += 1 if self.__len_last_byte == 8: self.__bytes.append(self.__last_byte) self.__last_byte = 0 self.__len_last_byte = 0 @overload @abstractmethod def __getitem__(self, i: int) -> bool: """Retrieve a bit.""" ... @overload @abstractmethod def __getitem__(self, s: slice) -> "Bits": """Retrieve a slice of bits.""" ... def __getitem__(self, index): """ Retrieve a bit or a slice of bits. >>> Bits('0001 0000')[3] True >>> Bits('0001 0000')[-5] True >>> Bits('0001 1000')[3:5] Bits("0b11") >>> Bits("00001111 00110011 01010101")[:-16] Bits("0b00001111") >>> Bits("00001111 00110011 01010101")[-8:] Bits("0b01010101") >>> Bits('01001001')["s"] Traceback (most recent call last): biterator.bits_exceptions.SubscriptError: unsupported subscript, 'Bits' does not support 'str' subscripts :param index: The index or slice to retrieve. :return: The new Bits object or a bit value. """ if isinstance(index, int): byte_index, bit_index, index = self._byte_bit_indices(index) # If the index is in the last (incomplete) byte. if byte_index == len(self.__bytes): return self._get_bit_from_byte(self.__last_byte, self.__len_last_byte, bit_index) # If the index is anywhere else. return self._get_bit_from_byte(self.__bytes[byte_index], 8, bit_index) if isinstance(index, slice): start, stop, step = index.indices(self.__len) # For the case where the slice starts from a whole byte. if step == 1 and start % 8 == 0: last_byte_index, last_bit_index = stop // 8, stop % 8 start_byte_index = start // 8 new = type(self)(self.__bytes[start_byte_index:last_byte_index]) # Append any remaining bits. if last_bit_index: for i in range(stop - last_bit_index, stop): # Recurse into the branch for integers new.append(self[i]) return new # For all other cases (not particularly efficient). new = type(self)() for i in range(start, stop, step): # Recurse into the branch for integers new.append(self[i]) return new raise SubscriptError(self, index) @staticmethod def _get_bit_from_byte(byte: int, length: int, index: int) -> bool: """ Return the bit value at the given index, indexed from the left. >>> Bits._get_bit_from_byte(0b00000100, 8, 5) True :param byte: Byte from which to get a bit. :param index: Index of bit to retrieve. :param length: Length of byte. :return: The value of the bit. """ right_index = length - index - 1 return bool((1 << right_index) & byte) @overload @abstractmethod def __setitem__(self, i: int, o: ValidBit) -> None: """Set a bit.""" ... @overload @abstractmethod def __setitem__(self, s: slice, o: DirtyBits) -> None: """Set a slice of bits.""" ... def __setitem__(self, index, other): """ Set a bit or slice of bits. >>> bits = Bits('1111 1111 1111'); bits[4:8] = '0000'; bits.bin() '0b1111_0000 0b1111' >>> bits[4:8] = 15; bits.bin() '0b1111_1111 0b1111' >>> bits[-4:] = '0000'; bits.bin() '0b1111_1111 0b0000' >>> bits[0] = False; bits.bin() '0b0111_1111 0b0000' :param index: The index or slice to modify. :param other: The bit or bits to replace the old bit or bits. """ if isinstance(index, int): other = self._clean_bit(other) byte_index, bit_index, index = self._byte_bit_indices(index) # If the index is in the last (incomplete) byte. if byte_index == len(self.__bytes): self.__last_byte = self._set_bit_in_byte(self.__last_byte, self.__len_last_byte, bit_index, other) # If the index is anywhere else. else: self.__bytes[byte_index] = self._set_bit_in_byte(self.__bytes[byte_index], 8, bit_index, other) elif isinstance(index, slice): start, stop, step = index.indices(self.__len) # Cast other to a Bits object if isinstance(other, int): other_bit = iter(type(self)(other, stop - start)) else: other_bit = iter(type(self)(other)) try: for i in range(start, stop, step): # Recurse into the branch for integers self[i] = next(other_bit) except StopIteration: pass else: raise SubscriptError(self, index) @classmethod def _set_bit_in_byte(cls, byte: int, length: int, index: int, value: bool) -> int: """ Modify a bit in a byte, indexed from the left. >>> Bits._set_bit_in_byte(0b11011111, 8, 2, True) 255 :param byte: Byte in which to modify a bit. :param length: Length of the byte. :param index: Index of the bit to modify. :param value: Value to modify the bit to. :return: The Byte with bit modified. """ right_index = length - index - 1 # If the bit is the same, do nothing. if bool((1 << right_index) & byte) == value: return byte # The bit is different, flip it. return (1 << right_index) ^ byte @overload @abstractmethod def __delitem__(self, i: int) -> None: """Remove a single bit.""" ... @overload @abstractmethod def __delitem__(self, i: slice) -> None: """Remove a slice.""" ... def __delitem__(self, index): """ Remove a bit or a slice. >>> bits = Bits("1000 0000 0000 0100 0001"); del bits[13]; bits.bin() '0b1000_0000 0b0000_0000 0b001' >>> bits = Bits("1010 1010 1010 1010 0000"); del bits[1::2]; bits.bin() '0b1111_1111 0b00' >>> del bits[8:10]; bits.bin() '0b1111_1111' >>> del bits[-4:]; bits.bin() '0b1111' :param index: Index or slice to delete. """ if isinstance(index, int): byte_index, bit_index, index = self._byte_bit_indices(index) # If the bit deleted in in the last (incomplete) byte. if byte_index == len(self.__bytes): self.__last_byte = self._del_bit_from_byte(self.__last_byte, self.__len_last_byte, bit_index) self._decrement_last_byte() # All other cases. else: # Remove the bit from the target byte, then append the first bit from the next byte. # Cascade similarly through the list of bytes. new_byte = self._del_bit_from_byte(self.__bytes[byte_index], 8, bit_index) for i in range(byte_index + 1, len(self.__bytes)): first_bit = bool(self.__bytes[i] & 0b1000_0000) self.__bytes[i - 1] = (new_byte << 1) | first_bit new_byte = self.__bytes[i] & 0b0111_1111 # If the last (incomplete) byte is not empty, append the first bit from it. if self.__len_last_byte: first_bit = bool(self.__last_byte & (1 << self.__len_last_byte - 1)) self.__bytes[-1] = (new_byte << 1) | first_bit # Truncate the first bit of the last (incomplete) byte. self.__last_byte &= (1 << self.__len_last_byte - 1) - 1 # If the last (incomplete) byte is empty, remove the last full byte. else: self.__bytes.pop() # The former last full byte becomes the last (incomplete) byte with it's first bit removed. self.__last_byte = new_byte # Decrement the length and last (incomplete) byte length in both cases. self._decrement_last_byte() elif isinstance(index, slice): start, stop, step = index.indices(self.__len) # NOTE: ***VERY inefficient*** Consider refactor. # NOTE: Good opportunity to use interval library to remove all deleted bits and concat what remains. # Always proceeds in reverse order to not mess up the indexing. removal_indices = sorted(list(range(start, stop, step)), reverse=True) for i in removal_indices: del self[i] else: raise SubscriptError(self, index) @staticmethod def _del_bit_from_byte(byte: int, length: int, index: int) -> int: """ Remove a bit from a byte, indexed from the left. >>> Bits._del_bit_from_byte(0b00010000, 8, 3) 0 :param byte: Byte from which to remove a bit. :param length: Length of the byte. :param index: Index of the bit to remove. :return: The Byte with bit removed. """ right_index = length - index left_bits = (byte >> right_index) << right_index - 1 right_bits = byte & ((1 << right_index - 1) - 1) return left_bits | right_bits def _decrement_last_byte(self) -> None: """ Call when a bit has been removed anywhere in the last (incomplete) byte. >>> bits = Bits(0b010001000, 9); bits.last_byte_length 1 >>> del bits[0]; bits.last_byte_length 0 """ self.__len_last_byte -= 1 self.__len -= 1 if self.__len_last_byte < 0: self.__len_last_byte = 7 def __invert__(self) -> "Bits": """ Return a Bits object with each bit inverted. >>> (~Bits('01001110')).bin() '0b1011_0001' :return: The Bits object with inverted bits. """ return type(self)(not bit for bit in self) def __int__(self) -> int: """ Represent the sequence of bits as an int. >>> int(Bits("0xff")) 255 >>> int(Bits("0xfff")) 4095 >>> int(Bits("0xffff")) 65535 :return: The integer representation. """ return (int.from_bytes(self.__bytes, "big") << self.__len_last_byte) | self.__last_byte def __len__(self) -> int: """Total number of bits.""" return self.__len def __lt__(self, other: SupportsInt) -> bool: """Int value of bits is less than the int value of other.""" if isinstance(other, SupportsInt): return int(self) < int(other) return NotImplemented def __le__(self, other: SupportsInt) -> bool: """Int value of bits is less than or equal to the int value of other.""" if isinstance(other, SupportsInt): return int(self) <= int(other) return NotImplemented def __eq__(self, other: Any) -> bool: """Bits are equal or Int value of Bits are equal to the int value of other.""" if isinstance(other, type(self)): if all( ( self.__len == other.__len, self.__bytes == other.__bytes, self.__last_byte == other.__last_byte, ), ): return True return False if isinstance(other, SupportsInt): return int(self) == int(other) return NotImplemented def __ne__(self, other: Any) -> bool: """Bits are not equal or Int value of Bits are not equal to the int value of other.""" if isinstance(other, type(self)): if not all( ( self.__len == other.__len, self.__bytes == other.__bytes, self.__last_byte == other.__last_byte, ), ): return True return False if isinstance(other, SupportsInt): return int(self) != int(other) return NotImplemented def __gt__(self, other: SupportsInt) -> bool: """Int value of bits is greater than the int value of other.""" if isinstance(other, SupportsInt): return int(self) > int(other) return NotImplemented def __ge__(self, other: SupportsInt) -> bool: """Int value of bits is greater than or equal to the int value of other.""" if isinstance(other, SupportsInt): return int(self) >= int(other) return NotImplemented # Concatenate def __add__(self, other: DirtyBits) -> "Bits": """ Concatenate bits; NOT addition. >>> (Bits("0110") + Bits("1001")).bin() '0b0110_1001' >>> (Bits("0110") + "1001").bin() '0b0110_1001' >>> (Bits("0110") + dict(value=15, bit_length=4)).bin() # Concat an integer '0b0110_1111' >>> bits = Bits('10'*10); bits += bits; bits.bin(True, "") '1010101010101010101010101010101010101010' >>> Bits('01000101') + b"Z" Bits("0b0100010101011010") >>> Bits('01000101') + "Z" Traceback (most recent call last): ValueError: non valid binary 'Z' was found in the string :param other: Other object to be concatenated. :return: New Bits object that is a concatenation of the inputs. """ if isinstance(other, (Iterable, dict)): new = self.copy() new.extend(other) return new return NotImplemented def __radd__(self, other: DirtyBits) -> "Bits": """ Right concatenation. >>> "1001" + Bits("0110") Bits("0b10010110") """ if isinstance(other, (Iterable, dict)): new = type(self)() new.extend(other) new.extend(self) return new return NotImplemented def __iadd__(self, other: DirtyBits) -> "Bits": """ Extend in-place. >>> bits = Bits("1111"); bits += "0000"; bits.bin() '0b1111_0000' >>> bits += dict(value=255, bit_length=8); bits.bin() '0b1111_0000 0b1111_1111' :param other: Bits to extend. :return: The Bits object that was modified in place. """ if isinstance(other, (Iterable, dict)): self.extend(other) return self return NotImplemented # Left Bitshift def __lshift__(self, index: int) -> "Bits": """ Left shift the bits. >>> (Bits("1111") << 4).bin() '0b1111_0000' :param index: Number of places to shift :return: Shifted Bits object """ if isinstance(index, SupportsInt): new = self.copy() new.extend(type(self)(0, int(index))) return new return NotImplemented def __ilshift__(self, index: int) -> "Bits": """ Left bitshift in-place. >>> bits = Bits("1111"); bits <<= 4; bits.bin() '0b1111_0000' :param index: Number of places to shift. :return: The Bits object that was modified in place. """ if isinstance(index, SupportsInt): self.extend({"value": 0, "bit_length": int(index)}) return self return NotImplemented # Right Bitshift def __rshift__(self, index: int) -> "Bits": """ Right shift the bits. >>> (Bits("11110000") >> 4).bin() '0b1111' :param index: Number of places to shift :return: Shifted Bits object """ if isinstance(index, SupportsInt): return type(self)(self[: -int(index)]) return NotImplemented def __irshift__(self, index: int) -> "Bits": """ Right bitshift in-place. >>> bits = Bits("1111 1111"); bits >>= 4; bits.bin() '0b1111' :param index: Number of places to shift. :return: The Bits object that was modified in place. """ if index: del self[-index:] return self # AND def __and__(self, other: DirtyBits) -> "Bits": """ Bitwise and operation. >>> (Bits('01111000') & Bits('00011110')).bin() '0b0001_1000' >>> (Bits('0111') & Bits('00011110')).bin() '0b0001' >>> (Bits("1110") & "0b0111").bin() '0b0110' >>> Bits("1110") & dict(value=7, bit_length=4) Bits("0b0110") :param other: Other Bits to 'and' with :return: Combined Bits objects """ if isinstance(other, (Iterable, dict)): return type(self)(a & b for a, b in zip(self, self._clean_bits(other))) return NotImplemented __rand__ = __and__ def __iand__(self, other: DirtyBits) -> "Bits": """ Bitwise 'and' with other bits; in-place. >>> bits_ = Bits("1110"); bits_ &= "0111"; bits_.bin() '0b0110' :param other: The Iterable bits to 'and' with. :return: The Bits object that was modified in place. """ if isinstance(other, (Iterable, dict)): len_other = 1 for index, bits in enumerate(zip(self, self._clean_bits(other))): self[index] = bits[0] & bits[1] len_other += 1 if self.__len > len_other: del self[-len_other:] return self return NotImplemented # XOR def __xor__(self, other: DirtyBits) -> "Bits": """ Bitwise xor operation. >>> (Bits('01111000') ^ Bits('00011110')).bin() '0b0110_0110' >>> (Bits('01111000') ^ '0b00011110').bin() '0b0110_0110' >>> (Bits("1110") ^ "0111").bin() '0b1001' :param other: Other Bits to 'xor' with :return: Combined Bits objects """ if isinstance(other, (Iterable, dict)): return type(self)(a ^ b for a, b in zip(self, self._clean_bits(other))) return NotImplemented __rxor__ = __xor__ def __ixor__(self, other: DirtyBits) -> "Bits": """ Bitwise 'xor' with other bits; in-place. >>> bits_ = Bits("0110"); bits_ ^= "0101"; bits_.bin() '0b0011' :param other: The Iterable bits to 'xor' with. :return: The Bits object that was modified in place. """ len_other = 1 for index, bits in enumerate(zip(self, self._clean_bits(other))): self[index] = bits[0] ^ bits[1] len_other += 1 if self.__len > len_other: del self[-len_other:] return self # OR def __or__(self, other: DirtyBits) -> "Bits": """ Bitwise or operation. >>> (Bits('01111000') | Bits('00011110')).bin() '0b0111_1110' >>> (Bits("1100") | "0011").bin() '0b1111' :param other: Other Bits to 'or' with :return: Combined Bits objects """ return type(self)(a | b for a, b in zip(self, self._clean_bits(other))) __ror__ = __or__ def __ior__(self, other: DirtyBits) -> "Bits": """ Bitwise 'or' with other bits; in-place. >>> bits_ = Bits("1100"); bits_ |= "0011"; bits_.bin() '0b1111' :param other: The Iterable bits to 'or' with. :return: The Bits object that was modified in place. """ len_other = 1 for index, bits in enumerate(zip(self, self._clean_bits(other))): self[index] = bits[0] | bits[1] len_other += 1 if self.__len > len_other: del self[-len_other:] return self @property def last_byte_length(self): """ If the totall number of bits is not divisible by 8, get the remainder. This property gives the length of the last incomplete byte in the object. >>> bits = Bits("10011001 1010"); bits[-bits.last_byte_length:].bin(True, prefix="") '1010' :return: Number of bits in the last incomplete byte. """ return self.__len_last_byte def hex(self, compact: bool = False, prefix: str = "0x", sep: str = " ", fmt: str = None) -> str: r""" Return a string with hexadecimal representation of each byte. NOTE: The prefix argument can be set to the empty string and then enabled in the formatting argument if that is preferred. >>> Bits("0b1111").hex() '0xF0' >>> Bits("0b00_1111").hex() # Interpreted as 0011_1100 '0x3C' >>> Bits("0b1111_1111 0b1111").hex() '0xFF 0xF0' >>> Bits("0b1111_1111 0b1111_1111").hex(compact=True, prefix=r"\x") '\\xFFFF' >>> Bits("0b1011_0001 0b1010_1101 0b1110_0101").hex(prefix="", compact=True) 'B1ADE5' >>> Bits("0b1111_1111 0b1111_1111").hex(compact=True, prefix='', fmt="4X") ' FF FF' :param compact: No separators and only prefixed at the beggining. :param prefix: Prefix for each byte, default: '0x'. :param sep: Separator between bytes, default ' '. :param fmt: Formatting for each byte. :return: The string representation of the bytes as hexadecimal. """ if compact: ret_str = prefix + "".join(format(byte, fmt or "02X") for byte in self.iter_bytes()) else: ret_str = sep.join(prefix + format(byte, fmt or "02X") for byte in self.iter_bytes()) return ret_str def bin(self, compact: bool = False, prefix: str = "0b", sep: str = " ", group: bool = True) -> str: """ Return a string with the binary representations of each byte. NOTE: The prefix argument can be set to the empty string and then enabled in the formatting argument if that is preferred. >>> Bits(255, 8).bin() '0b1111_1111' >>> Bits(4095, 12).bin(prefix="") '1111_1111 1111' >>> Bits(65535, 16).bin(group=False) '0b11111111 0b11111111' >>> Bits("1111 11").bin() '0b11_1111' >>> Bits(43690, 16).bin(compact=True, prefix="") '1010101010101010' :param compact: No separators or grouping, only prefixed at the beggining. :param prefix: Prefix on each byte, default '0b'. :param sep: Spacer between bytes, default: ' '. :param group: Digit grouping symbol, may be '_' or None default: '_'. :return: The string of the bits in binary representation. """ if compact: ret_str = "".join(format(byte, "08b") for byte in self.__bytes) if self.__len_last_byte: ret_str += format(self.__last_byte, f"0{self.__len_last_byte}b") ret_str = prefix + ret_str else: ret_str = sep.join(prefix + format(byte, "09_b" if group else "08b") for byte in self.__bytes) if self.__len_last_byte: ret_str += sep if ret_str else "" if group: has_group = 1 if self.__len_last_byte > 4 else 0 last_byte_fmt = f"0{self.__len_last_byte + has_group}_b" else: last_byte_fmt = f"0{self.__len_last_byte}b" ret_str += prefix + format(self.__last_byte, last_byte_fmt) return ret_str
the-stack_0_2270
import asyncio import logging from zof.event import load_event LOGGER = logging.getLogger(__package__) class Protocol(asyncio.SubprocessProtocol): """Implements an asyncio Protocol for parsing data received from oftr. """ def __init__(self, post_event): self.post_event = post_event self.buf = b'' self.exit_future = asyncio.Future() def pipe_data_received(self, fd, data): LOGGER.debug('zof.Protocol.pipe_data_received: %d bytes, fd=%d', len(data), fd) begin = 0 offset = len(self.buf) self.buf += data while True: offset = self.buf.find(b'\x00', offset) if offset < 0: self.buf = self.buf[begin:] return if begin != offset: self.post_event(load_event(self.buf[begin:offset])) offset += 1 begin = offset def pipe_connection_lost(self, fd, exc): if exc is not None: LOGGER.warning('zof.Protocol.pipe_connection_lost: fd=%d, exc=%r', fd, exc) def process_exited(self): LOGGER.debug('zof.Protocol.process_exited') self.post_event(load_event(b'')) self.exit_future.set_result(0)
the-stack_0_2271
""" WRITEME """ from __future__ import absolute_import, print_function, division import logging import theano from theano import gof import theano.gof.vm from theano.configparser import config from theano.compile.ops import _output_guard from six import string_types _logger = logging.getLogger('theano.compile.mode') # If a string is passed as the linker argument in the constructor for # Mode, it will be used as the key to retrieve the real linker in this # dictionary predefined_linkers = { 'py': gof.PerformLinker(), # Use allow_gc Theano flag 'c': gof.CLinker(), # Don't support gc. so don't check allow_gc 'c|py': gof.OpWiseCLinker(), # Use allow_gc Theano flag 'c|py_nogc': gof.OpWiseCLinker(allow_gc=False), 'vm': gof.vm.VM_Linker(use_cloop=False), # Use allow_gc Theano flag 'cvm': gof.vm.VM_Linker(use_cloop=True), # Use allow_gc Theano flag 'vm_nogc': gof.vm.VM_Linker(allow_gc=False, use_cloop=False), 'cvm_nogc': gof.vm.VM_Linker(allow_gc=False, use_cloop=True)} def register_linker(name, linker): """Add a `Linker` which can be referred to by `name` in `Mode`.""" if name in predefined_linkers: raise ValueError('Linker name already taken: %s' % name) predefined_linkers[name] = linker # If a string is passed as the optimizer argument in the constructor # for Mode, it will be used as the key to retrieve the real optimizer # in this dictionary exclude = [] if not theano.config.cxx: exclude = ['cxx_only'] OPT_NONE = gof.Query(include=[], exclude=exclude) # Even if multiple merge optimizer call will be there, this shouldn't # impact performance. OPT_MERGE = gof.Query(include=['merge'], exclude=exclude) OPT_FAST_RUN = gof.Query(include=['fast_run'], exclude=exclude) OPT_FAST_RUN_STABLE = OPT_FAST_RUN.requiring('stable') # We need fast_compile_gpu here. As on the GPU, we don't have all # operation that exist in fast_compile, but have some that get # introduced in fast_run, we want those optimization to also run in # fast_compile+gpu. We can't tag them just as 'gpu', as this would # exclude them if we exclude 'gpu'. OPT_FAST_COMPILE = gof.Query(include=['fast_compile', 'fast_compile_gpu'], exclude=exclude) OPT_STABILIZE = gof.Query(include=['fast_run'], exclude=exclude) OPT_STABILIZE.position_cutoff = 1.5000001 OPT_NONE.name = 'OPT_NONE' OPT_MERGE.name = 'OPT_MERGE' OPT_FAST_RUN.name = 'OPT_FAST_RUN' OPT_FAST_RUN_STABLE.name = 'OPT_FAST_RUN_STABLE' OPT_FAST_COMPILE.name = 'OPT_FAST_COMPILE' OPT_STABILIZE.name = 'OPT_STABILIZE' predefined_optimizers = { None: OPT_NONE, 'None': OPT_NONE, 'merge': OPT_MERGE, 'fast_run': OPT_FAST_RUN, 'fast_run_stable': OPT_FAST_RUN_STABLE, 'fast_compile': OPT_FAST_COMPILE, 'stabilize': OPT_STABILIZE} def register_optimizer(name, opt): """Add a `Optimizer` which can be referred to by `name` in `Mode`.""" if name in predefined_optimizers: raise ValueError('Optimizer name already taken: %s' % name) predefined_optimizers[name] = opt class AddDestroyHandler(gof.Optimizer): """ This optimizer performs two important functions: 1) It has a 'requirement' of the destroyhandler. This means that the fgraph will include it as a feature for this optimization, and keep this feature enabled for subsequent optimizations. All optimizations that work inplace on any of their inputs must run *after* this optimization to ensure that the DestroyHandler has been included in the fgraph. 2) It tries to replace each output with an Op that purports to destroy it (but it won't I promise). If this replacement succeeds it means that there is a bug in theano. It should not be possible to destroy outputs. """ def apply(self, fgraph): for o in fgraph.outputs: try: fgraph.replace_validate(o, _output_guard(o), reason='output_guard') _logger.info("Output variable %s required output_guard, " "how was this output left unprotected against " "destructive operations?" % o) except gof.InconsistencyError: # This output is already impossible to destroy. # No guard necessary pass def add_requirements(self, fgraph): super(AddDestroyHandler, self).add_requirements(fgraph) fgraph.attach_feature(gof.DestroyHandler()) class AddFeatureOptimizer(gof.Optimizer): """ This optimizer adds a provided feature to the function graph. """ def __init__(self, feature): self.feature = feature def add_requirements(self, fgraph): super(AddFeatureOptimizer, self).add_requirements(fgraph) fgraph.attach_feature(self.feature) class PrintCurrentFunctionGraph(gof.Optimizer): """ This optimizer is for debugging. Toss it into the optimization pipeline to see the state of things at any given point. """ def __init__(self, header): self.header = header def apply(self, fgraph): import theano.printing print("PrintCurrentFunctionGraph:", self.header) theano.printing.debugprint(fgraph.outputs) optdb = gof.SequenceDB() optdb.register('merge1', gof.MergeOptimizer(), 0, 'fast_run', 'fast_compile', 'merge') # After scan1 opt at 0.5 and before ShapeOpt at 1 # This should only remove nodes. # The opt should not do anything that need shape inference. # New nodes that don't have infer_shape need that the original node # also don't have infer_shape local_useless = gof.optdb.LocalGroupDB(apply_all_opts=True, profile=True) optdb.register( 'useless', gof.optdb.TopoDB(local_useless, failure_callback=gof.opt.NavigatorOptimizer.warn_inplace), 0.6, 'fast_run', 'fast_compile') optdb.register('merge1.1', gof.MergeOptimizer(), 0.65, 'fast_run', 'fast_compile', 'merge') # rearranges elemwise expressions optdb.register('canonicalize', gof.EquilibriumDB(ignore_newtrees=False), 1, 'fast_run', 'fast_compile', 'canonicalize_db') # Register in the canonizer Equilibrium as a clean up opt the merge opt. # Without this, as the equilibrium have ignore_newtrees=False, we # won't merge all nodes if it is set as a global optimizer with # final_opt=True. # We need a new instance of MergeOptimizer to don't have its name # changed by other usage of it. optdb['canonicalize'].register("merge", gof.opt.MergeOptimizer(), 'fast_run', "fast_compile", cleanup=True) optdb.register('merge1.2', gof.MergeOptimizer(), 1.2, 'fast_run', 'fast_compile', 'merge') optdb.register('Print1.21', PrintCurrentFunctionGraph('Post-canonicalize'), 1.21,) # 'fast_run', 'fast_compile') # replace unstable subgraphs optdb.register('stabilize', gof.EquilibriumDB(), 1.5, 'fast_run') optdb.register('Print1.51', PrintCurrentFunctionGraph('Post-stabilize'), 1.51,) # 'fast_run', 'fast_compile') # misc special cases for speed optdb.register('specialize', gof.EquilibriumDB(), 2, 'fast_run', 'fast_compile_gpu') # misc special cases for speed that break canonicalization optdb.register('uncanonicalize', gof.EquilibriumDB(), 3, 'fast_run') # misc special cases for speed that are dependent on the device. optdb.register('specialize_device', gof.EquilibriumDB(), 48.6, 'fast_compile', 'fast_run') # must be after gpu stuff at 48.5 # especially constant merge optdb.register('merge2', gof.MergeOptimizer(), 49, 'fast_run', 'merge') optdb.register('add_destroy_handler', AddDestroyHandler(), 49.5, 'fast_run', 'inplace') # final pass just to make sure optdb.register('merge3', gof.MergeOptimizer(), 100, 'fast_run', 'merge') class Mode(object): """ The Mode represents a way to optimize and then link a computation graph. Parameters ---------- optimizer : a structure of type Optimizer An Optimizer may simplify the math, put similar computations together, improve numerical stability and various other improvements. linker : a structure of type Linker A Linker decides which implementations to use (C or Python, for example) and how to string them together to perform the computation. See Also -------- predefined_linkers predefined_optimizers predefined_modes """ def __init__(self, linker=None, optimizer='default'): if linker is None: linker = config.linker if optimizer is 'default': optimizer = config.optimizer Mode.__setstate__(self, (linker, optimizer)) # self.provided_optimizer - typically the `optimizer` arg. # But if the `optimizer` arg is keyword corresponding to a predefined # Query, then this stores the query # self._optimizer - typically same as provided_optimizer?? # self.__get_optimizer - returns self._optimizer (possibly querying # optdb with self._optimizer) # self.optimizer - property that returns __get_optimizer() def __getstate__(self): return (self.provided_linker, self.provided_optimizer) def __setstate__(self, state): linker, optimizer = state self.provided_linker = linker self.provided_optimizer = optimizer if isinstance(linker, string_types) or linker is None: linker = predefined_linkers[linker] self.linker = linker if isinstance(optimizer, string_types) or optimizer is None: optimizer = predefined_optimizers[optimizer] if isinstance(optimizer, gof.Query): self.provided_optimizer = optimizer self._optimizer = optimizer self.call_time = 0 self.fn_time = 0 linker.mode = self # TODO: WHY IS THIS HERE? def __str__(self): return "%s(linker = %s, optimizer = %s)" % (self.__class__.__name__, self.provided_linker, self.provided_optimizer) def __get_optimizer(self): if isinstance(self._optimizer, gof.Query): return optdb.query(self._optimizer) else: return self._optimizer optimizer = property(__get_optimizer) def get_linker_optimizer(self, linker, optimizer): if isinstance(linker, string_types) or linker is None: linker = predefined_linkers[linker] if isinstance(optimizer, string_types) or optimizer is None: optimizer = predefined_optimizers[optimizer] return (linker, optimizer) def including(self, *tags): link, opt = self.get_linker_optimizer(self.provided_linker, self.provided_optimizer) # N.B. opt might be a Query instance, not sure what else it might be... # string? Optimizer? OptDB? who knows??? return self.clone(optimizer=opt.including(*tags)) def register(self, *optimizations): """Adds new optimization instances to a mode. This method adds new optimization instances to a compilation mode. It works like the `including()` method but takes as inputs optimization instances to add instead of tags. Parameters ---------- optimizations : Every element of `optimizations` is a tuple containing an optimization instance and a floating point value indicating the position at which to insert the optimization in the mode. Returns ------- Mode Copy of the current Mode which includes the provided optimizations. """ link, opt = self.get_linker_optimizer(self.provided_linker, self.provided_optimizer) return self.clone(optimizer=opt.register(*optimizations)) def excluding(self, *tags): link, opt = self.get_linker_optimizer(self.provided_linker, self.provided_optimizer) return self.clone(optimizer=opt.excluding(*tags)) def requiring(self, *tags): link, opt = self.get_linker_optimizer(self.provided_linker, self.provided_optimizer) return self.clone(optimizer=opt.requiring(*tags)) def clone(self, link_kwargs=None, optimizer="", **kwargs): """ Create a new instance of this Mode. Keyword arguments can be provided for the linker, in which case its `clone` method will be called with these arguments. """ if link_kwargs is None: link_kwargs = {} new_linker = self.linker.clone(**link_kwargs) if optimizer == "": optimizer = self.provided_optimizer new_mode = type(self)(linker=new_linker, optimizer=optimizer) return new_mode # If a string is passed as the mode argument in function or # FunctionMaker, the Mode will be taken from this dictionary using the # string as the key # Use VM_linker to allow lazy evaluation by default. FAST_COMPILE = Mode(theano.gof.vm.VM_Linker(use_cloop=False, c_thunks=False), 'fast_compile') if theano.config.cxx: FAST_RUN = Mode('cvm', 'fast_run') else: FAST_RUN = Mode('vm', 'fast_run') predefined_modes = {'FAST_COMPILE': FAST_COMPILE, 'FAST_RUN': FAST_RUN, } instantiated_default_mode = None def get_mode(orig_string): if orig_string is None: string = config.mode else: string = orig_string if not isinstance(string, string_types): return string # it is hopefully already a mode... global instantiated_default_mode # The default mode is cached. However, config.mode can change # If instantiated_default_mode has the right class, use it. if orig_string is None and instantiated_default_mode: if string in predefined_modes: default_mode_class = predefined_modes[string].__class__.__name__ else: default_mode_class = string if (instantiated_default_mode.__class__.__name__ == default_mode_class): return instantiated_default_mode if string in ['Mode', 'DebugMode', 'NanGuardMode']: if string == 'DebugMode': # need to import later to break circular dependency. from .debugmode import DebugMode # DebugMode use its own linker. ret = DebugMode(optimizer=config.optimizer) elif string == 'NanGuardMode': # need to import later to break circular dependency. from .nanguardmode import NanGuardMode # NanGuardMode use its own linker. ret = NanGuardMode(True, True, True, optimizer=config.optimizer) else: # TODO: Can't we look up the name and invoke it rather than using eval here? ret = eval(string + '(linker=config.linker, optimizer=config.optimizer)') elif string in predefined_modes: ret = predefined_modes[string] else: raise Exception("No predefined mode exist for string: %s" % string) if orig_string is None: # Build and cache the default mode if theano.config.optimizer_excluding: ret = ret.excluding(*theano.config.optimizer_excluding.split(':')) if theano.config.optimizer_including: ret = ret.including(*theano.config.optimizer_including.split(':')) if theano.config.optimizer_requiring: ret = ret.requiring(*theano.config.optimizer_requiring.split(':')) instantiated_default_mode = ret return ret def get_default_mode(): return get_mode(None) def register_mode(name, mode): """ Add a `Mode` which can be referred to by `name` in `function`. """ if name in predefined_modes: raise ValueError('Mode name already taken: %s' % name) predefined_modes[name] = mode
the-stack_0_2275
''' Written by Heng Fan 在ILSVRC_crops生成剪切之后的图片,成对,每一帧都有一个x和一个z。 如: 000000.00.crop.x.jpg 000000.00.crop.z.jpg ''' import numpy as np import os import glob import xml.etree.ElementTree as ET import cv2 import datetime ''' # default setting for cropping ''' examplar_size = 127.0 # 模板z的尺寸 # instance_size = 255.0 instance_size = 271.0 # 实例x的尺寸 context_amount = 0.5 # 数据放大的比例 (1/2)(w+h) def get_subwindow_avg(im, pos, model_sz, original_sz): ''' # obtain image patch, padding with avg channel if area goes outside of border ''' avg_chans = [np.mean(im[:, :, 0]), np.mean(im[:, :, 1]), np.mean(im[:, :, 2])] if original_sz is None: original_sz = model_sz sz = original_sz im_sz = im.shape # make sure the size is not too small assert (im_sz[0] > 2) & (im_sz[1] > 2), "The size of image is too small!" c = (sz + 1) / 2 # check out-of-bounds coordinates, and set them to black context_xmin = round(pos[1] - c) # floor(pos(2) - sz(2) / 2); context_xmax = context_xmin + sz - 1 context_ymin = round(pos[0] - c) # floor(pos(1) - sz(1) / 2); context_ymax = context_ymin + sz - 1 left_pad = max(0, 1 - context_xmin) # in python, index starts from 0 top_pad = max(0, 1 - context_ymin) right_pad = max(0, context_xmax - im_sz[1]) bottom_pad = max(0, context_ymax - im_sz[0]) context_xmin = context_xmin + left_pad context_xmax = context_xmax + left_pad context_ymin = context_ymin + top_pad context_ymax = context_ymax + top_pad im_R = im[:, :, 0] im_G = im[:, :, 1] im_B = im[:, :, 2] # padding if (top_pad != 0) | (bottom_pad != 0) | (left_pad != 0) | (right_pad != 0): im_R = np.pad(im_R, ((int(top_pad), int(bottom_pad)), (int(left_pad), int(right_pad))), 'constant', constant_values=avg_chans[0]) im_G = np.pad(im_G, ((int(top_pad), int(bottom_pad)), (int(left_pad), int(right_pad))), 'constant', constant_values=avg_chans[1]) im_B = np.pad(im_B, ((int(top_pad), int(bottom_pad)), (int(left_pad), int(right_pad))), 'constant', constant_values=avg_chans[2]) im = np.stack((im_R, im_G, im_B), axis=2) im_patch_original = im[int(context_ymin) - 1:int(context_ymax), int(context_xmin) - 1:int(context_xmax), :] if model_sz != original_sz: im_patch = cv2.resize(im_patch_original, (int(model_sz), int(model_sz)), interpolation=cv2.INTER_CUBIC) else: im_patch = im_patch_original return im_patch def get_crops(img, bbox, size_z, size_x, context_amount): ''' # get examplar and search region crops ''' cx = bbox[0] + bbox[2]/2 cy = bbox[1] + bbox[3]/2 w = bbox[2] h = bbox[3] # for examplar wc_z = w + context_amount * (w + h) hc_z = h + context_amount * (w + h) s_z = np.sqrt(wc_z * hc_z) scale_z = size_z / s_z im_crop_z = get_subwindow_avg(img, np.array([cy, cx]), size_z, round(s_z)) # for search region d_search = (size_x - size_z) / 2 pad = d_search / scale_z s_x = s_z + 2 * pad scale_x = size_x / s_x im_crop_x = get_subwindow_avg(img, np.array([cy, cx]), size_x, round(s_x)) return im_crop_z, im_crop_x def generate_image_crops(vid_root_path, vid_curated_path): ''' # save image crops to the vid_curated_path ''' anno_str = "Annotations/VID/train/" data_str = "Data/VID/train/" vid_anno_path = os.path.join(vid_root_path, anno_str) vid_data_path = os.path.join(vid_root_path, data_str) cur_procesed_fraem = 0 start_time = datetime.datetime.now() total_time = 0 # dirs of level1: e.g., a/, b/, ... all_dirs_level1 = os.listdir(vid_anno_path) for i in range(len(all_dirs_level1)): all_dirs_level2 = os.listdir(os.path.join(vid_anno_path, all_dirs_level1[i])) # dirs of level2: e.g., a/ILSVRC2015_train_00000000/, a/ILSVRC2015_train_00001000/, ... for j in range(len(all_dirs_level2)): frame_list = glob.glob(os.path.join(vid_anno_path, all_dirs_level1[i], all_dirs_level2[j], "*.xml")) frame_list.sort() # level3: frame level for k in range(len(frame_list)): frame_xml_name = os.path.join(vid_anno_path, all_dirs_level1[i], all_dirs_level2[j], frame_list[k]) frame_xml_tree = ET.parse(frame_xml_name) frame_xml_root = frame_xml_tree.getroot() # image file path frame_img_name = (frame_list[k].replace(".xml", ".JPEG")).replace(vid_anno_path, vid_data_path) img = cv2.imread(frame_img_name) if img is None: print("Cannot find %s!"%frame_img_name) exit(0) # image file name frame_filename = frame_xml_root.find('filename').text # process (all objects in) each frame for object in frame_xml_root.iter("object"): # get trackid id = object.find("trackid").text # get bounding box bbox_node = object.find("bndbox") xmax = float(bbox_node.find('xmax').text) xmin = float(bbox_node.find('xmin').text) ymax = float(bbox_node.find('ymax').text) ymin = float(bbox_node.find('ymin').text) width = xmax - xmin + 1 height = ymax - ymin + 1 bbox = np.array([xmin, ymin, width, height]) # print("processing %s, %s, %s, %s ..." % (all_dirs_level1[i], all_dirs_level2[j], frame_filename+".JPEG", id)) # get crops im_crop_z, im_crop_x = get_crops(img, bbox, examplar_size, instance_size, context_amount) # save crops save_path = os.path.join(vid_curated_path, data_str, all_dirs_level1[i], all_dirs_level2[j]) if not os.path.exists(save_path): os.makedirs(save_path) savename_crop_z = os.path.join(save_path, '{}.{:02d}.crop.z.jpg'.format(frame_filename, int(id))) savename_crop_x = os.path.join(save_path, '{}.{:02d}.crop.x.jpg'.format(frame_filename, int(id))) cv2.imwrite(savename_crop_z, im_crop_z, [int(cv2.IMWRITE_JPEG_QUALITY), 90]) cv2.imwrite(savename_crop_x, im_crop_x, [int(cv2.IMWRITE_JPEG_QUALITY), 90]) cur_procesed_fraem = cur_procesed_fraem + 1 if cur_procesed_fraem % 1000 == 0: end_time = datetime.datetime.now() total_time = total_time + int((end_time-start_time).seconds) print("finished processing %d frames in %d seconds (FPS: %d ) ..." % (cur_procesed_fraem, total_time, int(1000/(end_time-start_time).seconds))) start_time = datetime.datetime.now() def generate_image_crops4otb(vid_root_path, vid_curated_path): ''' # save image crops to the vid_curated_path ''' anno_str = "groundtruth_rect.txt" data_str = "img" vid_anno_path = os.path.join(vid_root_path, anno_str) vid_data_path = os.path.join(vid_root_path, data_str) cur_procesed_fraem = 0 start_time = datetime.datetime.now() total_time = 0 bboxs = [list(map(float,x.split(','))) for x in open(vid_anno_path, 'r').readlines()] img_list = glob.glob(os.path.join(vid_data_path,"*.jpg")) for i in range(len(img_list)): # image file path img_path = img_list[i] img = cv2.imread(img_path) if img is None: print("Cannot find %s!" % img_path) exit(0) img_name = img_path.split('\\')[-1] # get bounding box bbox = bboxs[i] xmax = bbox[0]+bbox[2] xmin = bbox[0] ymax = bbox[1]+bbox[3] ymin = bbox[1] width = bbox[2] height = bbox[3] new_bbox = np.array([xmin, ymin, width, height]) # print("processing %s, %s, %s, %s ..." % (all_dirs_level1[i], all_dirs_level2[j], frame_filename+".JPEG", id)) # get crops im_crop_z, im_crop_x = get_crops(img, new_bbox, examplar_size, instance_size, context_amount) # save crops save_path = os.path.join(vid_curated_path, data_str) if not os.path.exists(save_path): os.makedirs(save_path) savename_crop_z = os.path.join(save_path, '{}.crop.z.jpg'.format(img_name)) savename_crop_x = os.path.join(save_path, '{}.crop.x.jpg'.format(img_name)) cv2.imwrite(savename_crop_z, im_crop_z, [int(cv2.IMWRITE_JPEG_QUALITY), 90]) cv2.imwrite(savename_crop_x, im_crop_x, [int(cv2.IMWRITE_JPEG_QUALITY), 90]) cur_procesed_fraem = cur_procesed_fraem + 1 if cur_procesed_fraem % 1000 == 0: end_time = datetime.datetime.now() total_time = total_time + int((end_time-start_time).seconds) print("finished processing %d frames in %d seconds (FPS: %d ) ..." % (cur_procesed_fraem, total_time, int(1000/(end_time-start_time).seconds))) start_time = datetime.datetime.now() if __name__ == "__main__": # path to your VID dataset # vid_root_path = "/home/hfan/Dataset/ILSVRC2015" # vid_curated_path = "/home/hfan/Dataset/ILSVRC2015_crops" # Windows ILSVRC vid_root_path = r"D:\workspace\MachineLearning\asimo\ILSVRC" vid_curated_path = r"D:\workspace\MachineLearning\asimo\ILSVRC_crops" # Windows OTB vid_root_path = r"D:\workspace\MachineLearning\asimo\OTB_Train" vid_curated_path = r"D:\workspace\MachineLearning\asimo\OTB_Train_crops" # Linux # vid_root_path = r"/home/zzx/vot/VGG/ILSVRC" # vid_curated_path = r"/home/sjl/dataset/ILSVRC_crops" if not os.path.exists(vid_curated_path): os.mkdir(vid_curated_path) # generate_image_crops(vid_root_path, vid_curated_path) generate_image_crops4otb(vid_root_path, vid_curated_path)
the-stack_0_2276
''' Created on 22 Sep 2016 @author: andrew ''' DATA_DIR = '/home/andrew/workspace/BKData/' TESTS_DIR = DATA_DIR + 'tests/' CIRCUIT_TEST_DIR = TESTS_DIR + 'circuit/' CIRCUIT_ANGLE_TEST_DIR = CIRCUIT_TEST_DIR + 'angles/' DEFAULT_CUTOFF = 1e-14 from yaferp.analysis import analyser import cPickle import scipy.sparse import os def loadCircuitAngles(fileName,boolJWorBK,cutoff=DEFAULT_CUTOFF): if cutoff != None: if boolJWorBK: path = CIRCUIT_ANGLE_TEST_DIR + '/reduced/' + str(cutoff) + '/BK/' + fileName + '.angs' else: path = CIRCUIT_ANGLE_TEST_DIR + '/reduced/' + str(cutoff) +'/JW/' + fileName + '.angs' fred = loadDict(path) return fred def saveDict(thing,dictPath): with open(dictPath,'wb') as f: cPickle.dump(thing,f,cPickle.HIGHEST_PROTOCOL) def storeInDict(dictPath,theKey,theValue,rewrite=0): thing = loadDict(dictPath) if thing == None: thing = {} if(theKey in thing) and rewrite==0: return thing else: thing[theKey] = theValue saveDict(thing,dictPath) return thing def loadDict(dictPath): if not os.path.isfile(dictPath): return None else: with open(dictPath,'rb') as f: it = cPickle.load(f) return it def calculateCircuitAngle(filename,boolJWorBK,cutoff=DEFAULT_CUTOFF,circuitType='normal',overwrite=0): '''!!!this WILL FAIL if eigenvectors have not been previously generated!!! (also if cutoff ==None''' circ = analyser.generateCircuit(filename, boolJWorBK, cutoff, circuitType, overwrite) eigvec = analyser.readEigenvector(filename, boolJWorBK, cutoff) # print(eigvec) if circuitType in ['ancilla','ancillaOptimised']: testVec = scipy.sparse.kron([[1.],[0.]],eigvec) else: testVec = eigvec ang = circ.angle(testVec) return ang def generateCircuitAngle(filename,boolJWorBK,cutoff=DEFAULT_CUTOFF,circuitType='normal',overwrite=0): if cutoff != None: if boolJWorBK: outputPath = CIRCUIT_ANGLE_TEST_DIR + '/reduced/' + str(cutoff) + '/BK/' + filename + '.angs' else: outputPath = CIRCUIT_ANGLE_TEST_DIR + '/reduced/' + str(cutoff) +'/JW/' + filename + '.angs' ang = calculateCircuitAngle(filename,boolJWorBK,cutoff,circuitType,overwrite) storeInDict(outputPath,circuitType,ang,overwrite) return ang def generateManyCircuitAngles(filename,boolJWorBK,cutoff=DEFAULT_CUTOFF,listCircuitTypes='all',overwrite=0): ALL_CIRCUIT_TYPES=['normal', 'optimised', 'interior', 'interiorOptimised', 'ancilla', 'ancillaOptimised'] if listCircuitTypes == 'all': listCircuitTypes = ALL_CIRCUIT_TYPES angles = {} for circuitType in listCircuitTypes: thisAngle = generateCircuitAngle(filename,boolJWorBK,cutoff,circuitType,overwrite) angles[circuitType] = thisAngle return angles
the-stack_0_2277
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import random from numbers import Number from functools import partial from operator import methodcaller try: from collections.abc import Sequence except Exception: from collections import Sequence import numpy as np import cv2 import imghdr from PIL import Image import paddlers from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \ horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \ crop_rle, expand_poly, expand_rle, resize_poly, resize_rle, de_haze, pca, select_bands, \ to_intensity, to_uint8, img_flip, img_simple_rotate __all__ = [ "Compose", "ImgDecoder", "Resize", "RandomResize", "ResizeByShort", "RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip", "RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop", "RandomScaleAspect", "RandomExpand", "Padding", "MixupImage", "RandomDistort", "RandomBlur", "RandomSwap", "Defogging", "DimReducing", "BandSelecting", "ArrangeSegmenter", "ArrangeChangeDetector", "ArrangeClassifier", "ArrangeDetector", "RandomFlipOrRotation", ] interp_dict = { 'NEAREST': cv2.INTER_NEAREST, 'LINEAR': cv2.INTER_LINEAR, 'CUBIC': cv2.INTER_CUBIC, 'AREA': cv2.INTER_AREA, 'LANCZOS4': cv2.INTER_LANCZOS4 } class Transform(object): """ Parent class of all data augmentation operations """ def __init__(self): pass def apply_im(self, image): pass def apply_mask(self, mask): pass def apply_bbox(self, bbox): pass def apply_segm(self, segms): pass def apply(self, sample): if 'image' in sample: sample['image'] = self.apply_im(sample['image']) else: # image_tx sample['image'] = self.apply_im(sample['image_t1']) sample['image2'] = self.apply_im(sample['image_t2']) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask']) if 'gt_bbox' in sample: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox']) if 'aux_masks' in sample: sample['aux_masks'] = list( map(self.apply_mask, sample['aux_masks'])) return sample def __call__(self, sample): if isinstance(sample, Sequence): sample = [self.apply(s) for s in sample] else: sample = self.apply(sample) return sample class ImgDecoder(Transform): """ Decode image(s) in input. Args: to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True. """ def __init__(self, to_rgb=True, to_uint8=True): super(ImgDecoder, self).__init__() self.to_rgb = to_rgb self.to_uint8 = to_uint8 def read_img(self, img_path, input_channel=3): img_format = imghdr.what(img_path) name, ext = os.path.splitext(img_path) if img_format == 'tiff' or ext == '.img': try: import gdal except: try: from osgeo import gdal except: raise Exception( "Failed to import gdal! You can try use conda to install gdal" ) six.reraise(*sys.exc_info()) dataset = gdal.Open(img_path) if dataset == None: raise Exception('Can not open', img_path) im_data = dataset.ReadAsArray() if im_data.ndim == 2: im_data = to_intensity(im_data) # is read SAR im_data = im_data[:, :, np.newaxis] elif im_data.ndim == 3: im_data = im_data.transpose((1, 2, 0)) return im_data elif img_format in ['jpeg', 'bmp', 'png', 'jpg']: if input_channel == 3: return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR) else: return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR) elif ext == '.npy': return np.load(img_path) else: raise Exception('Image format {} is not supported!'.format(ext)) def apply_im(self, im_path): if isinstance(im_path, str): try: image = self.read_img(im_path) except: raise ValueError('Cannot read the image file {}!'.format( im_path)) else: image = im_path if self.to_rgb and image.shape[-1] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.to_uint8: image = to_uint8(image) return image def apply_mask(self, mask): try: mask = np.asarray(Image.open(mask)) except: raise ValueError("Cannot read the mask file {}!".format(mask)) if len(mask.shape) != 2: raise Exception( "Mask should be a 1-channel image, but recevied is a {}-channel image.". format(mask.shape[2])) return mask def apply(self, sample): """ Args: sample (dict): Input sample. Returns: dict: Decoded sample. """ if 'image' in sample: sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) if 'image_t1' in sample and not 'image' in sample: if not ('image_t2' in sample and 'image2' not in sample): raise ValueError sample['image'] = self.apply_im(sample['image_t1']) sample['image2'] = self.apply_im(sample['image_t2']) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask']) im_height, im_width, _ = sample['image'].shape se_height, se_width = sample['mask'].shape if im_height != se_height or im_width != se_width: raise Exception( "The height or width of the im is not same as the mask") if 'aux_masks' in sample: sample['aux_masks'] = list( map(self.apply_mask, sample['aux_masks'])) # TODO: check the shape of auxiliary masks sample['im_shape'] = np.array( sample['image'].shape[:2], dtype=np.float32) sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) return sample class Compose(Transform): """ Apply a series of data augmentation to the input. All input images are in Height-Width-Channel ([H, W, C]) format. Args: transforms (List[paddlers.transforms.Transform]): List of data preprocess or augmentations. Raises: TypeError: Invalid type of transforms. ValueError: Invalid length of transforms. """ def __init__(self, transforms): super(Compose, self).__init__() if not isinstance(transforms, list): raise TypeError( 'Type of transforms is invalid. Must be List, but received is {}' .format(type(transforms))) if len(transforms) < 1: raise ValueError( 'Length of transforms must not be less than 1, but received is {}' .format(len(transforms))) self.transforms = transforms self.decode_image = ImgDecoder() self.arrange_outputs = None self.apply_im_only = False def __call__(self, sample): if self.apply_im_only: if 'mask' in sample: mask_backup = copy.deepcopy(sample['mask']) del sample['mask'] if 'aux_masks' in sample: aux_masks = copy.deepcopy(sample['aux_masks']) sample = self.decode_image(sample) for op in self.transforms: # skip batch transforms amd mixup if isinstance(op, (paddlers.transforms.BatchRandomResize, paddlers.transforms.BatchRandomResizeByShort, MixupImage)): continue sample = op(sample) if self.arrange_outputs is not None: if self.apply_im_only: sample['mask'] = mask_backup if 'aux_masks' in locals(): sample['aux_masks'] = aux_masks sample = self.arrange_outputs(sample) return sample class Resize(Transform): """ Resize input. - If target_size is an int, resize the image(s) to (target_size, target_size). - If target_size is a list or tuple, resize the image(s) to target_size. Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. Args: target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size. Otherwise, target_size represents [target height, target width]. interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater than target width/height. Defaults to False. Raises: TypeError: Invalid type of target_size. ValueError: Invalid interpolation method. """ def __init__(self, target_size, interp='LINEAR', keep_ratio=False): super(Resize, self).__init__() if not (interp == "RANDOM" or interp in interp_dict): raise ValueError("interp should be one of {}".format( interp_dict.keys())) if isinstance(target_size, int): target_size = (target_size, target_size) else: if not (isinstance(target_size, (list, tuple)) and len(target_size) == 2): raise TypeError( "target_size should be an int or a list of length 2, but received {}". format(target_size)) # (height, width) self.target_size = target_size self.interp = interp self.keep_ratio = keep_ratio def apply_im(self, image, interp, target_size): flag = image.shape[2] == 1 image = cv2.resize(image, target_size, interpolation=interp) if flag: image = image[:, :, np.newaxis] return image def apply_mask(self, mask, target_size): mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST) return mask def apply_bbox(self, bbox, scale, target_size): im_scale_x, im_scale_y = scale bbox[:, 0::2] *= im_scale_x bbox[:, 1::2] *= im_scale_y bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0]) bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1]) return bbox def apply_segm(self, segms, im_size, scale): im_h, im_w = im_size im_scale_x, im_scale_y = scale resized_segms = [] for segm in segms: if is_poly(segm): # Polygon format resized_segms.append([ resize_poly(poly, im_scale_x, im_scale_y) for poly in segm ]) else: # RLE format resized_segms.append( resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y)) return resized_segms def apply(self, sample): if self.interp == "RANDOM": interp = random.choice(list(interp_dict.values())) else: interp = interp_dict[self.interp] im_h, im_w = sample['image'].shape[:2] im_scale_y = self.target_size[0] / im_h im_scale_x = self.target_size[1] / im_w target_size = (self.target_size[1], self.target_size[0]) if self.keep_ratio: scale = min(im_scale_y, im_scale_x) target_w = int(round(im_w * scale)) target_h = int(round(im_h * scale)) target_size = (target_w, target_h) im_scale_y = target_h / im_h im_scale_x = target_w / im_w sample['image'] = self.apply_im(sample['image'], interp, target_size) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2'], interp, target_size) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask'], target_size) if 'aux_masks' in sample: sample['aux_masks'] = list( map(partial( self.apply_mask, target_size=target_size), sample['aux_masks'])) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox( sample['gt_bbox'], [im_scale_x, im_scale_y], target_size) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm( sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y]) sample['im_shape'] = np.asarray( sample['image'].shape[:2], dtype=np.float32) if 'scale_factor' in sample: scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], dtype=np.float32) return sample class RandomResize(Transform): """ Resize input to random sizes. Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. Args: target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]): Multiple target sizes, each target size is an int or list/tuple. interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. Raises: TypeError: Invalid type of target_size. ValueError: Invalid interpolation method. See Also: Resize input to a specific size. """ def __init__(self, target_sizes, interp='LINEAR'): super(RandomResize, self).__init__() if not (interp == "RANDOM" or interp in interp_dict): raise ValueError("interp should be one of {}".format( interp_dict.keys())) self.interp = interp assert isinstance(target_sizes, list), \ "target_size must be List" for i, item in enumerate(target_sizes): if isinstance(item, int): target_sizes[i] = (item, item) self.target_size = target_sizes def apply(self, sample): height, width = random.choice(self.target_size) resizer = Resize((height, width), interp=self.interp) sample = resizer(sample) return sample class ResizeByShort(Transform): """ Resize input with keeping the aspect ratio. Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. Args: short_size (int): Target size of the shorter side of the image(s). max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1. interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. Raises: ValueError: Invalid interpolation method. """ def __init__(self, short_size=256, max_size=-1, interp='LINEAR'): if not (interp == "RANDOM" or interp in interp_dict): raise ValueError("interp should be one of {}".format( interp_dict.keys())) super(ResizeByShort, self).__init__() self.short_size = short_size self.max_size = max_size self.interp = interp def apply(self, sample): im_h, im_w = sample['image'].shape[:2] im_short_size = min(im_h, im_w) im_long_size = max(im_h, im_w) scale = float(self.short_size) / float(im_short_size) if 0 < self.max_size < np.round(scale * im_long_size): scale = float(self.max_size) / float(im_long_size) target_w = int(round(im_w * scale)) target_h = int(round(im_h * scale)) sample = Resize( target_size=(target_h, target_w), interp=self.interp)(sample) return sample class RandomResizeByShort(Transform): """ Resize input to random sizes with keeping the aspect ratio. Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. Args: short_sizes (List[int]): Target size of the shorter side of the image(s). max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1. interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. Raises: TypeError: Invalid type of target_size. ValueError: Invalid interpolation method. See Also: ResizeByShort: Resize image(s) in input with keeping the aspect ratio. """ def __init__(self, short_sizes, max_size=-1, interp='LINEAR'): super(RandomResizeByShort, self).__init__() if not (interp == "RANDOM" or interp in interp_dict): raise ValueError("interp should be one of {}".format( interp_dict.keys())) self.interp = interp assert isinstance(short_sizes, list), \ "short_sizes must be List" self.short_sizes = short_sizes self.max_size = max_size def apply(self, sample): short_size = random.choice(self.short_sizes) resizer = ResizeByShort( short_size=short_size, max_size=self.max_size, interp=self.interp) sample = resizer(sample) return sample class ResizeByLong(Transform): def __init__(self, long_size=256, interp='LINEAR'): super(ResizeByLong, self).__init__() self.long_size = long_size self.interp = interp def apply(self, sample): im_h, im_w = sample['image'].shape[:2] im_long_size = max(im_h, im_w) scale = float(self.long_size) / float(im_long_size) target_h = int(round(im_h * scale)) target_w = int(round(im_w * scale)) sample = Resize( target_size=(target_h, target_w), interp=self.interp)(sample) return sample class RandomFlipOrRotation(Transform): """ Flip or Rotate an image in different ways with a certain probability. Args: probs (list of float): Probabilities of flipping and rotation. Default: [0.35,0.25]. probsf (list of float): Probabilities of 5 flipping mode (horizontal, vertical, both horizontal diction and vertical, diagonal, anti-diagonal). Default: [0.3, 0.3, 0.2, 0.1, 0.1]. probsr (list of float): Probabilities of 3 rotation mode(90°, 180°, 270° clockwise). Default: [0.25,0.5,0.25]. Examples: from paddlers import transforms as T # 定义数据增强 train_transforms = T.Compose([ T.RandomFlipOrRotation( probs = [0.3, 0.2] # 进行flip增强的概率是0.3,进行rotate增强的概率是0.2,不变的概率是0.5 probsf = [0.3, 0.25, 0, 0, 0] # flip增强时,使用水平flip、垂直flip的概率分别是0.3、0.25,水平且垂直flip、对角线flip、反对角线flip概率均为0,不变的概率是0.45 probsr = [0, 0.65, 0]), # rotate增强时,顺时针旋转90度的概率是0,顺时针旋转180度的概率是0.65,顺时针旋转90度的概率是0,不变的概率是0.35 T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) """ def __init__(self, probs=[0.35, 0.25], probsf=[0.3, 0.3, 0.2, 0.1, 0.1], probsr=[0.25, 0.5, 0.25]): super(RandomFlipOrRotation, self).__init__() # Change various probabilities into probability intervals, to judge in which mode to flip or rotate self.probs = [probs[0], probs[0] + probs[1]] self.probsf = self.get_probs_range(probsf) self.probsr = self.get_probs_range(probsr) def apply_im(self, image, mode_id, flip_mode=True): if flip_mode: image = img_flip(image, mode_id) else: image = img_simple_rotate(image, mode_id) return image def apply_mask(self, mask, mode_id, flip_mode=True): if flip_mode: mask = img_flip(mask, mode_id) else: mask = img_simple_rotate(mask, mode_id) return mask def get_probs_range(self, probs): ''' Change various probabilities into cumulative probabilities Args: probs(list of float): probabilities of different mode, shape:[n] Returns: probability intervals(list of binary list): shape:[n, 2] ''' ps = [] last_prob = 0 for prob in probs: p_s = last_prob cur_prob = prob / sum(probs) last_prob += cur_prob p_e = last_prob ps.append([p_s, p_e]) return ps def judge_probs_range(self, p, probs): ''' Judge whether a probability value falls within the given probability interval Args: p(float): probability probs(list of binary list): probability intervals, shape:[n, 2] Returns: mode id(int):the probability interval number where the input probability falls, if return -1, the image will remain as it is and will not be processed ''' for id, id_range in enumerate(probs): if p > id_range[0] and p < id_range[1]: return id return -1 def apply(self, sample): p_m = random.random() if p_m < self.probs[0]: mode_p = random.random() mode_id = self.judge_probs_range(mode_p, self.probsf) sample['image'] = self.apply_im(sample['image'], mode_id, True) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask'], mode_id, True) elif p_m < self.probs[1]: mode_p = random.random() mode_id = self.judge_probs_range(mode_p, self.probsr) sample['image'] = self.apply_im(sample['image'], mode_id, False) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask'], mode_id, False) return sample class RandomHorizontalFlip(Transform): """ Randomly flip the input horizontally. Args: prob(float, optional): Probability of flipping the input. Defaults to .5. """ def __init__(self, prob=0.5): super(RandomHorizontalFlip, self).__init__() self.prob = prob def apply_im(self, image): image = horizontal_flip(image) return image def apply_mask(self, mask): mask = horizontal_flip(mask) return mask def apply_bbox(self, bbox, width): oldx1 = bbox[:, 0].copy() oldx2 = bbox[:, 2].copy() bbox[:, 0] = width - oldx2 bbox[:, 2] = width - oldx1 return bbox def apply_segm(self, segms, height, width): flipped_segms = [] for segm in segms: if is_poly(segm): # Polygon format flipped_segms.append( [horizontal_flip_poly(poly, width) for poly in segm]) else: # RLE format flipped_segms.append(horizontal_flip_rle(segm, height, width)) return flipped_segms def apply(self, sample): if random.random() < self.prob: im_h, im_w = sample['image'].shape[:2] sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask']) if 'aux_masks' in sample: sample['aux_masks'] = list( map(self.apply_mask, sample['aux_masks'])) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h, im_w) return sample class RandomVerticalFlip(Transform): """ Randomly flip the input vertically. Args: prob(float, optional): Probability of flipping the input. Defaults to .5. """ def __init__(self, prob=0.5): super(RandomVerticalFlip, self).__init__() self.prob = prob def apply_im(self, image): image = vertical_flip(image) return image def apply_mask(self, mask): mask = vertical_flip(mask) return mask def apply_bbox(self, bbox, height): oldy1 = bbox[:, 1].copy() oldy2 = bbox[:, 3].copy() bbox[:, 0] = height - oldy2 bbox[:, 2] = height - oldy1 return bbox def apply_segm(self, segms, height, width): flipped_segms = [] for segm in segms: if is_poly(segm): # Polygon format flipped_segms.append( [vertical_flip_poly(poly, height) for poly in segm]) else: # RLE format flipped_segms.append(vertical_flip_rle(segm, height, width)) return flipped_segms def apply(self, sample): if random.random() < self.prob: im_h, im_w = sample['image'].shape[:2] sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask']) if 'aux_masks' in sample: sample['aux_masks'] = list( map(self.apply_mask, sample['aux_masks'])) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h, im_w) return sample class Normalize(Transform): """ Apply min-max normalization to the image(s) in input. 1. im = (im - min_value) * 1 / (max_value - min_value) 2. im = im - mean 3. im = im / std Args: mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406]. std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225]. min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ]. max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.]. """ def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], min_val=None, max_val=None): super(Normalize, self).__init__() channel = len(mean) if min_val is None: min_val = [0] * channel if max_val is None: max_val = [255.] * channel from functools import reduce if reduce(lambda x, y: x * y, std) == 0: raise ValueError( 'Std should not contain 0, but received is {}.'.format(std)) if reduce(lambda x, y: x * y, [a - b for a, b in zip(max_val, min_val)]) == 0: raise ValueError( '(max_val - min_val) should not contain 0, but received is {}.'. format((np.asarray(max_val) - np.asarray(min_val)).tolist())) self.mean = mean self.std = std self.min_val = min_val self.max_val = max_val def apply_im(self, image): image = image.astype(np.float32) mean = np.asarray( self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :] std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :] image = normalize(image, mean, std, self.min_val, self.max_val) return image def apply(self, sample): sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) return sample class CenterCrop(Transform): """ Crop the input at the center. 1. Locate the center of the image. 2. Crop the sample. Args: crop_size(int, optional): target size of the cropped image(s). Defaults to 224. """ def __init__(self, crop_size=224): super(CenterCrop, self).__init__() self.crop_size = crop_size def apply_im(self, image): image = center_crop(image, self.crop_size) return image def apply_mask(self, mask): mask = center_crop(mask, self.crop_size) return mask def apply(self, sample): sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask']) if 'aux_masks' in sample: sample['aux_masks'] = list( map(self.apply_mask, sample['aux_masks'])) return sample class RandomCrop(Transform): """ Randomly crop the input. 1. Compute the height and width of cropped area according to aspect_ratio and scaling. 2. Locate the upper left corner of cropped area randomly. 3. Crop the image(s). 4. Resize the cropped area to crop_size by crop_size. Args: crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be resized. Defaults to None. aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.]. thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop. Defaults to [.0, .1, .3, .5, .7, .9]. scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format. Defaults to [.3, 1.]. num_attempts (int, optional): The number of tries before giving up. Defaults to 50. allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True. cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False. """ def __init__(self, crop_size=None, aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3, .5, .7, .9], scaling=[.3, 1.], num_attempts=50, allow_no_crop=True, cover_all_box=False): super(RandomCrop, self).__init__() self.crop_size = crop_size self.aspect_ratio = aspect_ratio self.thresholds = thresholds self.scaling = scaling self.num_attempts = num_attempts self.allow_no_crop = allow_no_crop self.cover_all_box = cover_all_box def _generate_crop_info(self, sample): im_h, im_w = sample['image'].shape[:2] if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: thresholds = self.thresholds if self.allow_no_crop: thresholds.append('no_crop') np.random.shuffle(thresholds) for thresh in thresholds: if thresh == 'no_crop': return None for i in range(self.num_attempts): crop_box = self._get_crop_box(im_h, im_w) if crop_box is None: continue iou = self._iou_matrix( sample['gt_bbox'], np.array( [crop_box], dtype=np.float32)) if iou.max() < thresh: continue if self.cover_all_box and iou.min() < thresh: continue cropped_box, valid_ids = self._crop_box_with_center_constraint( sample['gt_bbox'], np.array( crop_box, dtype=np.float32)) if valid_ids.size > 0: return crop_box, cropped_box, valid_ids else: for i in range(self.num_attempts): crop_box = self._get_crop_box(im_h, im_w) if crop_box is None: continue return crop_box, None, None return None def _get_crop_box(self, im_h, im_w): scale = np.random.uniform(*self.scaling) if self.aspect_ratio is not None: min_ar, max_ar = self.aspect_ratio aspect_ratio = np.random.uniform( max(min_ar, scale**2), min(max_ar, scale**-2)) h_scale = scale / np.sqrt(aspect_ratio) w_scale = scale * np.sqrt(aspect_ratio) else: h_scale = np.random.uniform(*self.scaling) w_scale = np.random.uniform(*self.scaling) crop_h = im_h * h_scale crop_w = im_w * w_scale if self.aspect_ratio is None: if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0: return None crop_h = int(crop_h) crop_w = int(crop_w) crop_y = np.random.randint(0, im_h - crop_h) crop_x = np.random.randint(0, im_w - crop_w) return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] def _iou_matrix(self, a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) area_o = (area_a[:, np.newaxis] + area_b - area_i) return area_i / (area_o + 1e-10) def _crop_box_with_center_constraint(self, box, crop): cropped_box = box.copy() cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2]) cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:]) cropped_box[:, :2] -= crop[:2] cropped_box[:, 2:] -= crop[:2] centers = (box[:, :2] + box[:, 2:]) / 2 valid = np.logical_and(crop[:2] <= centers, centers < crop[2:]).all(axis=1) valid = np.logical_and( valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1)) return cropped_box, np.where(valid)[0] def _crop_segm(self, segms, valid_ids, crop, height, width): crop_segms = [] for id in valid_ids: segm = segms[id] if is_poly(segm): # Polygon format crop_segms.append(crop_poly(segm, crop)) else: # RLE format crop_segms.append(crop_rle(segm, crop, height, width)) return crop_segms def apply_im(self, image, crop): x1, y1, x2, y2 = crop return image[y1:y2, x1:x2, :] def apply_mask(self, mask, crop): x1, y1, x2, y2 = crop return mask[y1:y2, x1:x2, ...] def apply(self, sample): crop_info = self._generate_crop_info(sample) if crop_info is not None: crop_box, cropped_box, valid_ids = crop_info im_h, im_w = sample['image'].shape[:2] sample['image'] = self.apply_im(sample['image'], crop_box) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2'], crop_box) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: crop_polys = self._crop_segm( sample['gt_poly'], valid_ids, np.array( crop_box, dtype=np.int64), im_h, im_w) if [] in crop_polys: delete_id = list() valid_polys = list() for idx, poly in enumerate(crop_polys): if not crop_poly: delete_id.append(idx) else: valid_polys.append(poly) valid_ids = np.delete(valid_ids, delete_id) if not valid_polys: return sample sample['gt_poly'] = valid_polys else: sample['gt_poly'] = crop_polys if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0) sample['gt_class'] = np.take( sample['gt_class'], valid_ids, axis=0) if 'gt_score' in sample: sample['gt_score'] = np.take( sample['gt_score'], valid_ids, axis=0) if 'is_crowd' in sample: sample['is_crowd'] = np.take( sample['is_crowd'], valid_ids, axis=0) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask'], crop_box) if 'aux_masks' in sample: sample['aux_masks'] = list( map(partial( self.apply_mask, crop=crop_box), sample['aux_masks'])) if self.crop_size is not None: sample = Resize(self.crop_size)(sample) return sample class RandomScaleAspect(Transform): """ Crop input image(s) and resize back to original sizes. Args: min_scale (float): Minimum ratio between the cropped region and the original image. If 0, image(s) will not be cropped. Defaults to .5. aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33. """ def __init__(self, min_scale=0.5, aspect_ratio=0.33): super(RandomScaleAspect, self).__init__() self.min_scale = min_scale self.aspect_ratio = aspect_ratio def apply(self, sample): if self.min_scale != 0 and self.aspect_ratio != 0: img_height, img_width = sample['image'].shape[:2] sample = RandomCrop( crop_size=(img_height, img_width), aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio], scaling=[self.min_scale, 1.], num_attempts=10, allow_no_crop=False)(sample) return sample class RandomExpand(Transform): """ Randomly expand the input by padding according to random offsets. Args: upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4.. prob(float, optional): The probability of apply expanding. Defaults to .5. im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5). label_padding_value(int, optional): Filling value for the mask. Defaults to 255. See Also: paddlers.transforms.Padding """ def __init__(self, upper_ratio=4., prob=.5, im_padding_value=127.5, label_padding_value=255): super(RandomExpand, self).__init__() assert upper_ratio > 1.01, "expand ratio must be larger than 1.01" self.upper_ratio = upper_ratio self.prob = prob assert isinstance(im_padding_value, (Number, Sequence)), \ "fill value must be either float or sequence" self.im_padding_value = im_padding_value self.label_padding_value = label_padding_value def apply(self, sample): if random.random() < self.prob: im_h, im_w = sample['image'].shape[:2] ratio = np.random.uniform(1., self.upper_ratio) h = int(im_h * ratio) w = int(im_w * ratio) if h > im_h and w > im_w: y = np.random.randint(0, h - im_h) x = np.random.randint(0, w - im_w) target_size = (h, w) offsets = (x, y) sample = Padding( target_size=target_size, pad_mode=-1, offsets=offsets, im_padding_value=self.im_padding_value, label_padding_value=self.label_padding_value)(sample) return sample class Padding(Transform): def __init__(self, target_size=None, pad_mode=0, offsets=None, im_padding_value=127.5, label_padding_value=255, size_divisor=32): """ Pad image to a specified size or multiple of size_divisor. Args: target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None. pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0. im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5). label_padding_value(int, optional): Filling value for the mask. Defaults to 255. size_divisor(int): Image width and height after padding is a multiple of coarsest_stride. """ super(Padding, self).__init__() if isinstance(target_size, (list, tuple)): if len(target_size) != 2: raise ValueError( '`target_size` should include 2 elements, but it is {}'. format(target_size)) if isinstance(target_size, int): target_size = [target_size] * 2 assert pad_mode in [ -1, 0, 1, 2 ], 'currently only supports four modes [-1, 0, 1, 2]' if pad_mode == -1: assert offsets, 'if pad_mode is -1, offsets should not be None' self.target_size = target_size self.size_divisor = size_divisor self.pad_mode = pad_mode self.offsets = offsets self.im_padding_value = im_padding_value self.label_padding_value = label_padding_value def apply_im(self, image, offsets, target_size): x, y = offsets h, w = target_size im_h, im_w, channel = image.shape[:3] canvas = np.ones((h, w, channel), dtype=np.float32) canvas *= np.array(self.im_padding_value, dtype=np.float32) canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32) return canvas def apply_mask(self, mask, offsets, target_size): x, y = offsets im_h, im_w = mask.shape[:2] h, w = target_size canvas = np.ones((h, w), dtype=np.float32) canvas *= np.array(self.label_padding_value, dtype=np.float32) canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32) return canvas def apply_bbox(self, bbox, offsets): return bbox + np.array(offsets * 2, dtype=np.float32) def apply_segm(self, segms, offsets, im_size, size): x, y = offsets height, width = im_size h, w = size expanded_segms = [] for segm in segms: if is_poly(segm): # Polygon format expanded_segms.append( [expand_poly(poly, x, y) for poly in segm]) else: # RLE format expanded_segms.append( expand_rle(segm, x, y, height, width, h, w)) return expanded_segms def apply(self, sample): im_h, im_w = sample['image'].shape[:2] if self.target_size: h, w = self.target_size assert ( im_h <= h and im_w <= w ), 'target size ({}, {}) cannot be less than image size ({}, {})'\ .format(h, w, im_h, im_w) else: h = (np.ceil(im_h / self.size_divisor) * self.size_divisor).astype(int) w = (np.ceil(im_w / self.size_divisor) * self.size_divisor).astype(int) if h == im_h and w == im_w: return sample if self.pad_mode == -1: offsets = self.offsets elif self.pad_mode == 0: offsets = [0, 0] elif self.pad_mode == 1: offsets = [(w - im_w) // 2, (h - im_h) // 2] else: offsets = [w - im_w, h - im_h] sample['image'] = self.apply_im(sample['image'], offsets, (h, w)) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2'], offsets, (h, w)) if 'mask' in sample: sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w)) if 'aux_masks' in sample: sample['aux_masks'] = list( map(partial( self.apply_mask, offsets=offsets, target_size=(h, w)), sample['aux_masks'])) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm( sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w]) return sample class MixupImage(Transform): def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1): """ Mixup two images and their gt_bbbox/gt_score. Args: alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5. beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5. """ super(MixupImage, self).__init__() if alpha <= 0.0: raise ValueError("alpha should be positive in {}".format(self)) if beta <= 0.0: raise ValueError("beta should be positive in {}".format(self)) self.alpha = alpha self.beta = beta self.mixup_epoch = mixup_epoch def apply_im(self, image1, image2, factor): h = max(image1.shape[0], image2.shape[0]) w = max(image1.shape[1], image2.shape[1]) img = np.zeros((h, w, image1.shape[2]), 'float32') img[:image1.shape[0], :image1.shape[1], :] = \ image1.astype('float32') * factor img[:image2.shape[0], :image2.shape[1], :] += \ image2.astype('float32') * (1.0 - factor) return img.astype('uint8') def __call__(self, sample): if not isinstance(sample, Sequence): return sample assert len(sample) == 2, 'mixup need two samples' factor = np.random.beta(self.alpha, self.beta) factor = max(0.0, min(1.0, factor)) if factor >= 1.0: return sample[0] if factor <= 0.0: return sample[1] image = self.apply_im(sample[0]['image'], sample[1]['image'], factor) result = copy.deepcopy(sample[0]) result['image'] = image # apply bbox and score if 'gt_bbox' in sample[0]: gt_bbox1 = sample[0]['gt_bbox'] gt_bbox2 = sample[1]['gt_bbox'] gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) result['gt_bbox'] = gt_bbox if 'gt_poly' in sample[0]: gt_poly1 = sample[0]['gt_poly'] gt_poly2 = sample[1]['gt_poly'] gt_poly = gt_poly1 + gt_poly2 result['gt_poly'] = gt_poly if 'gt_class' in sample[0]: gt_class1 = sample[0]['gt_class'] gt_class2 = sample[1]['gt_class'] gt_class = np.concatenate((gt_class1, gt_class2), axis=0) result['gt_class'] = gt_class gt_score1 = np.ones_like(sample[0]['gt_class']) gt_score2 = np.ones_like(sample[1]['gt_class']) gt_score = np.concatenate( (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) result['gt_score'] = gt_score if 'is_crowd' in sample[0]: is_crowd1 = sample[0]['is_crowd'] is_crowd2 = sample[1]['is_crowd'] is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) result['is_crowd'] = is_crowd if 'difficult' in sample[0]: is_difficult1 = sample[0]['difficult'] is_difficult2 = sample[1]['difficult'] is_difficult = np.concatenate( (is_difficult1, is_difficult2), axis=0) result['difficult'] = is_difficult return result class RandomDistort(Transform): """ Random color distortion. Args: brightness_range(float, optional): Range of brightness distortion. Defaults to .5. brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5. contrast_range(float, optional): Range of contrast distortion. Defaults to .5. contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5. saturation_range(float, optional): Range of saturation distortion. Defaults to .5. saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5. hue_range(float, optional): Range of hue distortion. Defaults to .5. hue_prob(float, optional): Probability of hue distortion. Defaults to .5. random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD) order. Defaults to True. count (int, optional): the number of doing distortion. Defaults to 4. shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False. """ def __init__(self, brightness_range=0.5, brightness_prob=0.5, contrast_range=0.5, contrast_prob=0.5, saturation_range=0.5, saturation_prob=0.5, hue_range=18, hue_prob=0.5, random_apply=True, count=4, shuffle_channel=False): super(RandomDistort, self).__init__() self.brightness_range = [1 - brightness_range, 1 + brightness_range] self.brightness_prob = brightness_prob self.contrast_range = [1 - contrast_range, 1 + contrast_range] self.contrast_prob = contrast_prob self.saturation_range = [1 - saturation_range, 1 + saturation_range] self.saturation_prob = saturation_prob self.hue_range = [1 - hue_range, 1 + hue_range] self.hue_prob = hue_prob self.random_apply = random_apply self.count = count self.shuffle_channel = shuffle_channel def apply_hue(self, image): low, high = self.hue_range if np.random.uniform(0., 1.) < self.hue_prob: return image # it works, but result differ from HSV version delta = np.random.uniform(low, high) u = np.cos(delta * np.pi) w = np.sin(delta * np.pi) bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]]) tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321], [0.211, -0.523, 0.311]]) ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647], [1.0, -1.107, 1.705]]) t = np.dot(np.dot(ityiq, bt), tyiq).T res_list = [] channel = image.shape[2] for i in range(channel // 3): sub_img = image[:, :, 3 * i:3 * (i + 1)] sub_img = sub_img.astype(np.float32) sub_img = np.dot(image, t) res_list.append(sub_img) if channel % 3 != 0: i = channel % 3 res_list.append(image[:, :, -i:]) return np.concatenate(res_list, axis=2) def apply_saturation(self, image): low, high = self.saturation_range delta = np.random.uniform(low, high) if np.random.uniform(0., 1.) < self.saturation_prob: return image res_list = [] channel = image.shape[2] for i in range(channel // 3): sub_img = image[:, :, 3 * i:3 * (i + 1)] sub_img = sub_img.astype(np.float32) # it works, but result differ from HSV version gray = sub_img * np.array( [[[0.299, 0.587, 0.114]]], dtype=np.float32) gray = gray.sum(axis=2, keepdims=True) gray *= (1.0 - delta) sub_img *= delta sub_img += gray res_list.append(sub_img) if channel % 3 != 0: i = channel % 3 res_list.append(image[:, :, -i:]) return np.concatenate(res_list, axis=2) def apply_contrast(self, image): low, high = self.contrast_range if np.random.uniform(0., 1.) < self.contrast_prob: return image delta = np.random.uniform(low, high) image = image.astype(np.float32) image *= delta return image def apply_brightness(self, image): low, high = self.brightness_range if np.random.uniform(0., 1.) < self.brightness_prob: return image delta = np.random.uniform(low, high) image = image.astype(np.float32) image += delta return image def apply(self, sample): if self.random_apply: functions = [ self.apply_brightness, self.apply_contrast, self.apply_saturation, self.apply_hue ] distortions = np.random.permutation(functions)[:self.count] for func in distortions: sample['image'] = func(sample['image']) if 'image2' in sample: sample['image2'] = func(sample['image2']) return sample sample['image'] = self.apply_brightness(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_brightness(sample['image2']) mode = np.random.randint(0, 2) if mode: sample['image'] = self.apply_contrast(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_contrast(sample['image2']) sample['image'] = self.apply_saturation(sample['image']) sample['image'] = self.apply_hue(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_saturation(sample['image2']) sample['image2'] = self.apply_hue(sample['image2']) if not mode: sample['image'] = self.apply_contrast(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_contrast(sample['image2']) if self.shuffle_channel: if np.random.randint(0, 2): sample['image'] = sample['image'][..., np.random.permutation(3)] if 'image2' in sample: sample['image2'] = sample['image2'][ ..., np.random.permutation(3)] return sample class RandomBlur(Transform): """ Randomly blur input image(s). Args: prob (float): Probability of blurring. """ def __init__(self, prob=0.1): super(RandomBlur, self).__init__() self.prob = prob def apply_im(self, image, radius): image = cv2.GaussianBlur(image, (radius, radius), 0, 0) return image def apply(self, sample): if self.prob <= 0: n = 0 elif self.prob >= 1: n = 1 else: n = int(1.0 / self.prob) if n > 0: if np.random.randint(0, n) == 0: radius = np.random.randint(3, 10) if radius % 2 != 1: radius = radius + 1 if radius > 9: radius = 9 sample['image'] = self.apply_im(sample['image'], radius) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2'], radius) return sample class Defogging(Transform): """ Defog input image(s). Args: gamma (bool, optional): Use gamma correction or not. Defaults to False. """ def __init__(self, gamma=False): super(Defogging, self).__init__() self.gamma = gamma def apply_im(self, image): image = de_haze(image, self.gamma) return image def apply(self, sample): sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) return sample class DimReducing(Transform): """ Use PCA to reduce input image(s) dimension. Args: dim (int, optional): Reserved dimensions. Defaults to 3. whiten (bool, optional): PCA whiten or not. Defaults to True. """ def __init__(self, dim=3, whiten=True): super(DimReducing, self).__init__() self.dim = dim self.whiten = whiten def apply_im(self, image): image = pca(image, self.dim, self.whiten) return image def apply(self, sample): sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) return sample class BandSelecting(Transform): """ Select the band of the input image(s). Args: band_list (list, optional): Bands of selected (Start with 1). Defaults to [1, 2, 3]. """ def __init__(self, band_list=[1, 2, 3]): super(BandSelecting, self).__init__() self.band_list = band_list def apply_im(self, image): image = select_bands(image, self.band_list) return image def apply(self, sample): sample['image'] = self.apply_im(sample['image']) if 'image2' in sample: sample['image2'] = self.apply_im(sample['image2']) return sample class _PadBox(Transform): def __init__(self, num_max_boxes=50): """ Pad zeros to bboxes if number of bboxes is less than num_max_boxes. Args: num_max_boxes (int, optional): the max number of bboxes. Defaults to 50. """ self.num_max_boxes = num_max_boxes super(_PadBox, self).__init__() def apply(self, sample): gt_num = min(self.num_max_boxes, len(sample['gt_bbox'])) num_max = self.num_max_boxes pad_bbox = np.zeros((num_max, 4), dtype=np.float32) if gt_num > 0: pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :] sample['gt_bbox'] = pad_bbox if 'gt_class' in sample: pad_class = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_class[:gt_num] = sample['gt_class'][:gt_num, 0] sample['gt_class'] = pad_class if 'gt_score' in sample: pad_score = np.zeros((num_max, ), dtype=np.float32) if gt_num > 0: pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] sample['gt_score'] = pad_score # in training, for example in op ExpandImage, # the bbox and gt_class is expanded, but the difficult is not, # so, judging by it's length if 'difficult' in sample: pad_diff = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] sample['difficult'] = pad_diff if 'is_crowd' in sample: pad_crowd = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0] sample['is_crowd'] = pad_crowd return sample class _NormalizeBox(Transform): def __init__(self): super(_NormalizeBox, self).__init__() def apply(self, sample): height, width = sample['image'].shape[:2] for i in range(sample['gt_bbox'].shape[0]): sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height return sample class _BboxXYXY2XYWH(Transform): """ Convert bbox XYXY format to XYWH format. """ def __init__(self): super(_BboxXYXY2XYWH, self).__init__() def apply(self, sample): bbox = sample['gt_bbox'] bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2] bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2. sample['gt_bbox'] = bbox return sample class _Permute(Transform): def __init__(self): super(_Permute, self).__init__() def apply(self, sample): sample['image'] = permute(sample['image'], False) if 'image2' in sample: sample['image2'] = permute(sample['image2'], False) return sample class RandomSwap(Transform): """ Randomly swap multi-temporal images. Args: prob (float, optional): Probability of swapping the input images. Default: 0.2. """ def __init__(self, prob=0.2): super(RandomSwap, self).__init__() self.prob = prob def apply(self, sample): if 'image2' not in sample: raise ValueError('image2 is not found in the sample.') if random.random() < self.prob: sample['image'], sample['image2'] = sample['image2'], sample[ 'image'] return sample class ArrangeSegmenter(Transform): def __init__(self, mode): super(ArrangeSegmenter, self).__init__() if mode not in ['train', 'eval', 'test', 'quant']: raise ValueError( "mode should be defined as one of ['train', 'eval', 'test', 'quant']!" ) self.mode = mode def apply(self, sample): if 'mask' in sample: mask = sample['mask'] image = permute(sample['image'], False) if self.mode == 'train': mask = mask.astype('int64') return image, mask if self.mode == 'eval': mask = np.asarray(Image.open(mask)) mask = mask[np.newaxis, :, :].astype('int64') return image, mask if self.mode == 'test': return image, class ArrangeChangeDetector(Transform): def __init__(self, mode): super(ArrangeChangeDetector, self).__init__() if mode not in ['train', 'eval', 'test', 'quant']: raise ValueError( "mode should be defined as one of ['train', 'eval', 'test', 'quant']!" ) self.mode = mode def apply(self, sample): if 'mask' in sample: mask = sample['mask'] image_t1 = permute(sample['image'], False) image_t2 = permute(sample['image2'], False) if self.mode == 'train': mask = mask.astype('int64') masks = [mask] if 'aux_masks' in sample: masks.extend( map(methodcaller('astype', 'int64'), sample['aux_masks'])) return ( image_t1, image_t2, ) + tuple(masks) if self.mode == 'eval': mask = np.asarray(Image.open(mask)) mask = mask[np.newaxis, :, :].astype('int64') return image_t1, image_t2, mask if self.mode == 'test': return image_t1, image_t2, class ArrangeClassifier(Transform): def __init__(self, mode): super(ArrangeClassifier, self).__init__() if mode not in ['train', 'eval', 'test', 'quant']: raise ValueError( "mode should be defined as one of ['train', 'eval', 'test', 'quant']!" ) self.mode = mode def apply(self, sample): image = permute(sample['image'], False) if self.mode in ['train', 'eval']: return image, sample['label'] else: return image class ArrangeDetector(Transform): def __init__(self, mode): super(ArrangeDetector, self).__init__() if mode not in ['train', 'eval', 'test', 'quant']: raise ValueError( "mode should be defined as one of ['train', 'eval', 'test', 'quant']!" ) self.mode = mode def apply(self, sample): if self.mode == 'eval' and 'gt_poly' in sample: del sample['gt_poly'] return sample
the-stack_0_2278
from datetime import datetime from enum import Enum from functools import wraps from typing import Union import json import pytz class DatetimeFormats(Enum): FULLDATETIME = '%Y-%m-%dT%H:%M:%S.%f%z' DATE = '%Y-%m-%d' YMDHMSmS = '%Y-%m-%dT%H:%M:%S.%f%z' YMDHMS = '%Y-%m-%dT%H:%M:%S%z' YMD = '%Y-%m-%d' def str_to_datetime(date: str, format_str: str) -> Union[datetime, None]: """Change date format to datetime, based on `format_str` provided. If `date` is already a datetime object, return it. Make the date aware.""" if date is None: return date if not isinstance(date, datetime): if format_str.find('%z') != -1: # Localization needed. Check if provided. if date[-1] == 'Z': date = date[:-1] format_str = format_str[:-2] elif date.find('+') == -1: format_str = format_str[:-2] date = datetime.strptime(date, format_str) try: # Localize to utc if not yet localized return pytz.utc.localize(date) except ValueError: # Already localized return date def _return_with_miliseconds(func): """If the date has milliseconds, return only 3 decimal places. Older servers need this to work. New can parse both 3 and 6 decimal places.""" @wraps(func) def inner(*args, **kwargs): res = func(*args, **kwargs) if isinstance(res, str) and res.find('.') != -1: plus_pos = res.find('+') res = f"{res[:res.find('.') + 4]}{res[plus_pos:] if plus_pos != -1 else ''}" return res return inner @_return_with_miliseconds def datetime_to_str(date: datetime, format_str: str) -> Union[str, None]: """Get date string from datetime, based on `format_str` provided. If `date` is already a string, return it. Make the date aware.""" if isinstance(date, str): return date try: # We need the date to be aware, or the string won't be accepted by API try: return pytz.utc.localize(date).strftime(format_str) except ValueError: # Already localized return date.strftime(format_str) except (TypeError, AttributeError): return None def _get_only_datetimeformat_map(string_to_date_map: dict) -> dict: """Return all entries that are of `DATETIMEFORMAT` enum type.""" return { key: value for (key, value) in string_to_date_map.items() if isinstance(value, DatetimeFormats) } def _solve_prefix_and_convert_date(func, name: str, date: str, string_to_date_map: dict, only_datetimefomat: bool = True): if only_datetimefomat: string_to_date_map = _get_only_datetimeformat_map(string_to_date_map) if f'_{name}' in string_to_date_map: date_format = string_to_date_map[f'_{name}'].value if isinstance( string_to_date_map[f'_{name}'], DatetimeFormats) else string_to_date_map[f'_{name}'] return func(date, date_format) elif name in string_to_date_map: date_format = string_to_date_map[name].value if isinstance( string_to_date_map[name], DatetimeFormats) else string_to_date_map[name] return func(date, date_format) return date def map_str_to_datetime(name: str, date: str, string_to_date_map: dict, only_datetimefomat: bool = True) -> datetime: """Change date format to datetime, based on `string_to_date_map` conversion dict. All occurrences of `DATETIMEFORMAT` Enum in `string_to_date_map` are converted to corresponding string values. If name is not found in `string_to_date_map`, returns date without changes. """ return _solve_prefix_and_convert_date(str_to_datetime, name, date, string_to_date_map, only_datetimefomat) def map_datetime_to_str(name: str, date: datetime, string_to_date_map: dict, only_datetimefomat: bool = True) -> str: """Change date format to string, based on `string_to_date_map` conversion dict. All occurrences of `DATETIMEFORMAT` Enum in `string_to_date_map` are converted to corresponding string values. If name is not found in `string_to_date_map`, returns date without changes. """ return _solve_prefix_and_convert_date(datetime_to_str, name, date, string_to_date_map, only_datetimefomat) def bulk_str_to_datetime(source: dict, string_to_date_map: dict, only_datetimefomat: bool = True) -> dict: """Change all dates from `source` found in `string_to_date_map` to datetime format. If parameter is not found in `string_to_date_map`, it is returned without changes.""" for key, val in source.items(): source[key] = map_str_to_datetime(key, val, string_to_date_map, only_datetimefomat) return source def bulk_datetime_to_str(source: dict, string_to_date_map: dict, only_datetimefomat: bool = True) -> dict: """Change all dates from `source` found in `string_to_date_map` to string format. If parameter is not found in `string_to_date_map`, it is returned without changes.""" for key, val in source.items(): source[key] = map_datetime_to_str(key, val, string_to_date_map, only_datetimefomat) return source def override_datetime_format(original_format: str, expected_format: str, fields: tuple, to_unpack=None): """A decorator designed to override the datetime format of some dates in responses from REST server as they can be a bit crazy sometimes (e.g. two different formats for one object) Args: original_format: original format of a datetime expected_format: the format you want to convert to fields: fields of the object - e.g. dateModified, dateCreated to_unpack: when response returns a list of objects probably they need to be unpacked """ def decorator_datetime(func): @wraps(func) def wrapped(*args, **kwargs): response = func(*args, **kwargs) response_json = response.json() try: iterable = response_json[to_unpack] if to_unpack else [response_json] except KeyError: iterable = [] for obj in iterable: for field in fields: datetime_obj = str_to_datetime(obj[field], original_format) obj[field] = datetime_to_str(datetime_obj, expected_format) response.encoding, response._content = 'utf-8', json.dumps(response_json).encode( 'utf-8') return response return wrapped return decorator_datetime
the-stack_0_2279
"""Support for Aurora Forecast sensor.""" from homeassistant.components.sensor import SensorEntity from homeassistant.const import PERCENTAGE from . import AuroraEntity from .const import COORDINATOR, DOMAIN async def async_setup_entry(hass, entry, async_add_entries): """Set up the sensor platform.""" coordinator = hass.data[DOMAIN][entry.entry_id][COORDINATOR] entity = AuroraSensor( coordinator=coordinator, name=f"{coordinator.name} Aurora Visibility %", icon="mdi:gauge", ) async_add_entries([entity]) class AuroraSensor(SensorEntity, AuroraEntity): """Implementation of an aurora sensor.""" @property def state(self): """Return % chance the aurora is visible.""" return self.coordinator.data @property def unit_of_measurement(self): """Return the unit of measure.""" return PERCENTAGE
the-stack_0_2280
import csv import os from statistics import mean, median, quantiles def process(fqp, resultsfile): # gather the max per line of file of round 1 prev_fqp = fqp.replace("Round2", "Round1") r1max = [] with open(prev_fqp, "r") as csvfile: datareader = csv.reader(csvfile, delimiter=',') titles = next(datareader) total_pos = [_ for _, y in enumerate(titles) if y == "Total"] for row in datareader: r1max.append(max([float(row[_]) for _ in total_pos])) print(r1max) # parse file of round 2 threads = -1 category = -1 senders = -1 totals = [] with open(fqp, "r") as csvfile: datareader = csv.reader(csvfile, delimiter=',') titles = next(datareader) total_pos = [_ for _, y in enumerate(titles) if y == "Total"] node_pos = [_ for _, y in enumerate(titles) if y.startswith("Node")] for row in datareader: if threads == -1: threads = int(row[1]) category = row[0][0] senders = [row[_] for _ in node_pos].count("sending") prev_max = r1max.pop(0) totals.extend([float(row[_])+prev_max for _ in total_pos]) nodes = len(node_pos) ## calculate statistics mind = min(totals) q1 = quantiles(totals)[0] medi = median(totals) avrg = mean(totals) q3 = quantiles(totals)[2] maxd = max(totals) ## write results if not DEBUG: with open(resultsfile, "a") as f: f.write(f"{category},{nodes},{threads},{senders},{mind},{q1},{medi},{avrg},{q3},{maxd}\n") with open(resultsfile.replace(".csv", "all_totals.csv"), "a") as f: f.write(f"{category},{nodes},{threads},{senders},"+",".join(map(str, totals))+"\n") print(f"{category},{nodes},{threads},{senders},{mind},{q1},{medi},{avrg},{q3},{maxd}") # values: # experiment = "threads" # experiment = "nodes" # experiment = "messages" experiment = "messages" ## file where to write the aggregation results ## all totals will be written to experiment+"all_totals.csv" based on this filename resultfile = experiment+".csv" ## basefolder where the experiment results can be found basefolder = "C:\\epc2a\\"+experiment ## output to console instead of writing to file DEBUG = False if not DEBUG: with open(resultfile, "w") as f: f.write("category,nodes,threads,senders,mind,q1,medi,avrg,q3,maxd\n") with open(resultfile.replace(".csv", "all_totals.csv"), "w") as f: f.write("category,nodes,threads,senders,totals...\n") for r, ds, fs in os.walk(basefolder): for fn in [_ for _ in fs if _.endswith("Round2.csv")]: fqp = r+"\\"+fn process(fqp, resultfile)
the-stack_0_2281
# Main differences in this ablation: # - there is no optimism # - the novelty Q is trained only between episodes # - the novelty Q is trained on _logged_ novelty rewards, not live ones import time import os import math import pickle import queue from typing import Any import numpy as np import matplotlib.pyplot as plt import jax from jax import numpy as jnp, random, lax import flax from flax import nn, optim, struct from dm_control import suite import dmcontrol_gridworld import replay_buffer import q_learning import tabular_density as density import utils from observation_domains import DOMAINS import jax_specs import point R_MAX = 100 @struct.dataclass class ExplorationState(): """The pure-JAX components that can be jitted/vmapped. """ novq_state: q_learning.QLearnerState target_novq_state: q_learning.QLearnerState density_state: density.DensityState temperature: float update_temperature: float prior_count: float optimistic_updates: bool target_network: bool # density_fns: Any @struct.dataclass class AgentState(): """A container for the entire state; not jittable. """ exploration_state: ExplorationState policy_state: Any = struct.field(pytree_node=False) replay: Any = struct.field(pytree_node=False) policy_replay: Any = struct.field(pytree_node=False) n_candidates: int n_update_candidates: int prioritized_update: bool update_target_every: int warmup_steps: int optimistic_actions: bool steps_since_tupdate: int = 0 # policy_fns: Any = struct.field(pytree_node=False) @jax.jit def compute_novelty_reward(exploration_state, states, actions): """Returns a novelty reward in [0, 1] for each (s, a) pair.""" counts = density.get_count_batch( exploration_state.density_state, states, actions) ones = jnp.ones(jnp.array(counts).shape) rewards = (counts + 1e-8) ** (-0.5) options = jnp.stack([ones, rewards], axis=1) # Clip rewards to be at most 1 (when count is 0) return jnp.min(options, axis=1) @jax.profiler.trace_function @jax.partial(jax.jit, static_argnums=(3, 4)) def train_step_candidates(exploration_state: ExplorationState, transitions, candidate_next_actions, use_target_network, use_optimistic_updates): """The jittable component of the exploration Q function training step.""" # these transitions come from agent_state.replay, not policy_replay, # so they contain *novelty* rewards states, actions, next_states, novelty_reward = transitions discount = exploration_state.novq_state.discount temp = exploration_state.update_temperature if use_optimistic_updates: next_values = predict_optimistic_values_batch( exploration_state.novq_state, exploration_state.density_state, exploration_state.prior_count, next_states, candidate_next_actions) next_values_target = predict_optimistic_values_batch( exploration_state.target_novq_state, exploration_state.density_state, exploration_state.prior_count, next_states, candidate_next_actions) else: next_values = q_learning.predict_action_values_batch( exploration_state.novq_state, next_states, candidate_next_actions) next_values_target = q_learning.predict_action_values_batch( exploration_state.target_novq_state, next_states, candidate_next_actions) # double DQN rule: # - select next action according to current Q # - evaluate it according to target Q next_value_probs = nn.softmax(next_values / temp, axis=1) next_value_elements = (next_value_probs * next_values_target) expected_next_values = next_value_elements.sum(axis=1) expected_next_values = expected_next_values.reshape(novelty_reward.shape) # compute targets and update q_targets = novelty_reward + discount * expected_next_values # clip targets to be within the feasible set q_targets = jnp.minimum(q_targets, R_MAX) novq_state, losses = q_functions.train_step( exploration_state.novq_state, states, actions, q_targets) return exploration_state.replace(novq_state=novq_state), losses @jax.profiler.trace_function def train_step(agent_state, transitions): """A full (optimistic) training step for the exploration Q function.""" states, actions, next_states, rewards = transitions # candidate actions should be (bsize x n_update_candidates x *action_shape) with jax.profiler.TraceContext("get candidates"): policy_state, candidate_next_actions = policy.action_fn( agent_state.policy_state, next_states, int(agent_state.n_update_candidates), True) agent_state = agent_state.replace(policy_state=policy_state) # somehow if I don't cast these to bool JAX will recompile the jitted # function train_step_candidates on every call... with jax.profiler.TraceContext("train_step_candidates"): exploration_state, losses = train_step_candidates( agent_state.exploration_state, transitions, candidate_next_actions, bool(agent_state.exploration_state.target_network), bool(agent_state.exploration_state.optimistic_updates)) agent_state = agent_state.replace(exploration_state=exploration_state) return agent_state, losses def update_target_q(agent_state: AgentState): exploration_state = agent_state.exploration_state.replace( target_novq_state=agent_state.exploration_state.novq_state) agent_state = agent_state.replace(exploration_state=exploration_state, steps_since_tupdate=0) return agent_state def uniform_update(agent_state, rng, n=10): for _ in range(n): transitions = tuple((jnp.array(el) for el in agent_state.replay.sample(128))) agent_state, losses = train_step(agent_state, transitions) agent_state = agent_state.replace( steps_since_tupdate=agent_state.steps_since_tupdate + 1) if agent_state.steps_since_tupdate >= agent_state.update_target_every: agent_state = update_target_q(agent_state) return agent_state @jax.profiler.trace_function def update_exploration(agent_state, rng, transition_id): s, a, sp, r = agent_state.replay.get_transitions(transition_id) # update density on new observations with jax.profiler.TraceContext("update density"): exploration_state = agent_state.exploration_state density_state = density.update_batch(exploration_state.density_state, jnp.expand_dims(s, axis=0), jnp.expand_dims(a, axis=0)) exploration_state = exploration_state.replace( density_state=density_state) agent_state = agent_state.replace(exploration_state=exploration_state) return agent_state def compute_weight(prior_count, count): root_real_count = count ** 0.5 # root_prior_count = prior_count ** 0.5 # return root_real_count / (root_real_count + root_prior_count) root_total_count = (count + prior_count) ** 0.5 return root_real_count / root_total_count @jax.profiler.trace_function @jax.jit def predict_optimistic_value(novq_state, density_state, prior_count, state, action): expanded_state = jnp.expand_dims(state, axis=0) expanded_action = jnp.expand_dims(action, axis=0) predicted_value = q_learning.predict_value(novq_state, expanded_state, expanded_action) predicted_value = predicted_value.reshape(tuple()) count = density.get_count(density_state, state, action) weight = compute_weight(prior_count, count) optimistic_value = weight * predicted_value + (1 - weight) * R_MAX return optimistic_value predict_optimistic_value_batch = jax.vmap( # noqa: E305 predict_optimistic_value, in_axes=(None, None, None, 0, 0)) predict_optimistic_values = jax.vmap( predict_optimistic_value, in_axes=(None, None, None, None, 0)) predict_optimistic_values_batch = jax.vmap( # noqa: E305 predict_optimistic_values, in_axes=(None, None, None, 0, 0)) @jax.profiler.trace_function @jax.jit def select_candidate_optimistic(exploration_state, rng, state, candidate_actions): optimistic_values = predict_optimistic_values( exploration_state.novq_state, exploration_state.density_state, exploration_state.prior_count, state, candidate_actions).reshape(-1) return q_learning.sample_boltzmann( rng, optimistic_values, candidate_actions, exploration_state.temperature) @jax.profiler.trace_function def sample_exploration_action(agent_state: AgentState, rng, s, train=True): # during test, take only one action sample from the task policy # -> will follow the task policy n = agent_state.n_candidates if train else 1 with jax.profiler.TraceContext("sample candidate actions"): s_batch = jnp.expand_dims(s, axis=0) policy_state, candidate_actions = policy.action_fn( agent_state.policy_state, s_batch, n, train) # policy.action_fn deals with batches and we only have one element candidate_actions = candidate_actions[0] agent_state = agent_state.replace(policy_state=policy_state) with jax.profiler.TraceContext("select from candidates"): if agent_state.optimistic_actions: a, h = select_candidate_optimistic(agent_state.exploration_state, rng, s, candidate_actions) else: a, _, h = q_learning.sample_action_boltzmann( agent_state.exploration_state.novq_state, rng, s, candidate_actions, agent_state.exploration_state.temperature) flag = 'train' if train else 'test' logger.update(f'{flag}/explore_entropy', h) return agent_state, a def update_agent(agent_state: AgentState, rng, transition): # add transition to replay transition_id = agent_state.replay.append(*transition) # update the density with the observed transition agent_state = update_exploration(agent_state, rng, transition_id) return agent_state def run_episode(agent_state: AgentState, rng, env, train=True, max_steps=None): timestep = env.reset() score, novelty_score = 0, 0 i = 0 while not timestep.last(): rng, action_rng = random.split(rng) s = utils.flatten_observation(timestep.observation) # put some random steps in the replay buffer if len(agent_state.replay) < agent_state.warmup_steps: action_spec = jax_specs.convert_dm_spec(env.action_spec()) a = utils.sample_uniform_actions(action_spec, action_rng, 1)[0] flag = 'train' if train else 'test' logger.update(f'{flag}/policy_entropy', 0) logger.update(f'{flag}/explore_entropy', 0) else: agent_state, a = sample_exploration_action( agent_state, action_rng, s, train) timestep = env.step(a) sp = utils.flatten_observation(timestep.observation) r = timestep.reward novelty_reward = compute_novelty_reward(agent_state.exploration_state, jnp.expand_dims(s, axis=0), jnp.expand_dims(a, axis=0)) score += r novelty_score += float(novelty_reward) if train: novelty_transition = (s, a, sp, novelty_reward) task_transition = (s, a, sp, r) agent_state.policy_replay.append(*task_transition) rng, update_rng = random.split(rng) agent_state = update_agent(agent_state, update_rng, novelty_transition) i += 1 if max_steps is not None and i >= max_steps: break return agent_state, env, score, novelty_score # ----- Visualizations for gridworld --------------------------------- def display_state(agent_state: AgentState, ospec, aspec, max_steps=100, bins=20, rendering='local', savedir=None, episode=None): exploration_state = agent_state.exploration_state policy_state = agent_state.policy_state # min_count_map = dmcontrol_gridworld.render_function( # jax.partial(density.get_count_batch, exploration_state.density_state), # env, reduction=jnp.min) count_map = utils.render_function( jax.partial(density.get_count_batch, exploration_state.density_state), agent_state.replay, ospec, aspec, reduction=jnp.max, bins=bins) novq_map = utils.render_function( jax.partial(q_learning.predict_value, exploration_state.novq_state), agent_state.replay, ospec, aspec, reduction=jnp.max, bins=bins) optimistic_novq_map = utils.render_function( jax.partial(predict_optimistic_value_batch, exploration_state.novq_state, exploration_state.density_state, exploration_state.prior_count), agent_state.replay, ospec, aspec, reduction=jnp.max, bins=bins) novelty_reward_map = utils.render_function( jax.partial(compute_novelty_reward, exploration_state), agent_state.replay, ospec, aspec, reduction=jnp.max, bins=bins) traj_map = replay_buffer.render_trajectory( agent_state.replay, max_steps, ospec, bins=bins) subfigs = [ # (min_count_map, "Visit count (min)"), (count_map, "Visit count (max)"), (novq_map, "Novelty value (max)"), (optimistic_novq_map, "Optimistic novelty value (max)"), (novelty_reward_map, "Novelty reward (max)"), (traj_map, "Last trajectory"), ] q_policies = ['policies.deep_q_policy', 'policies.tabular_q_policy'] if policy.__name__ in q_policies: taskq_map = utils.render_function( jax.partial(q_learning.predict_value, policy_state.q_state), agent_state.replay, ospec, aspec, reduction=jnp.max, bins=bins) subfigs.append((taskq_map, "Task value (max)")) # dump the raw data for later rendering raw_path = f"{savedir}/data/{episode}.pkl" os.makedirs(os.path.dirname(raw_path), exist_ok=True) with open(raw_path, 'wb') as f: pickle.dump(subfigs, f, protocol=4) fig, axs = plt.subplots(1, len(subfigs)) for ax, subfig in zip(axs, subfigs): render, title = subfig img = ax.imshow(render) fig.colorbar(img, ax=ax) ax.set_title(title) fig.set_size_inches(4 * len(subfigs), 3) fig_path = f"{savedir}/{episode}.png" utils.display_figure(fig, rendering, savepath=fig_path) # ------------------------------------------------------------------- def main(args): rng = random.PRNGKey(args.seed) if args.env == 'gridworld': env = dmcontrol_gridworld.GridWorld(args.env_size, args.max_steps) observation_spec = env.observation_spec() else: env = suite.load(args.env, args.task) observation_spec = DOMAINS[args.env][args.task] action_spec = env.action_spec() j_action_spec = jax_specs.convert_dm_spec(action_spec) j_observation_spec = jax_specs.convert_dm_spec(observation_spec) state_shape = utils.flatten_spec_shape(j_observation_spec) action_shape = action_spec.shape batch_size = 128 # drawing only one candidate action sample from the policy # will result in following the policy directly n_candidates = 64 if args.use_exploration else 1 novq_state = q_functions.init_fn(args.seed, observation_spec, action_spec, # env_size=env.size, discount=0.97, max_value=R_MAX) density_state = density.new(observation_spec, action_spec, state_bins=args.n_state_bins, action_bins=args.n_action_bins) replay = replay_buffer.LowPrecisionTracingReplay( state_shape, action_shape, min_s=0, max_s=1, n_bins=2) policy_replay = replay_buffer.LowPrecisionTracingReplay( state_shape, action_shape, min_s=0, max_s=1, n_bins=2) policy_state = policy.init_fn(observation_spec, action_spec, args.seed, lr=args.policy_lr, update_rule=args.policy_update) exploration_state = ExplorationState( novq_state=novq_state, target_novq_state=novq_state, density_state=density_state, temperature=args.temperature, update_temperature=args.update_temperature, prior_count=args.prior_count, optimistic_updates=args.optimistic_updates, target_network=args.target_network) agent_state = AgentState(exploration_state=exploration_state, policy_state=policy_state, replay=replay, policy_replay=policy_replay, n_candidates=n_candidates, n_update_candidates=args.n_update_candidates, prioritized_update=args.prioritized_update, update_target_every=args.update_target_every, warmup_steps=args.warmup_steps, optimistic_actions=args.optimistic_actions,) for episode in range(1, 1000): # run an episode rng, episode_rng = random.split(rng) agent_state, env, score, novelty_score = run_episode( agent_state, episode_rng, env, train=True, max_steps=args.max_steps) logger.update('train/episode', episode) logger.update('train/score', score) logger.update('train/novelty_score', novelty_score) # update the task policy # TODO: pull this loop inside the policy.update_fn n_updates = args.max_steps // 2 policy_state = agent_state.policy_state for _ in range(n_updates): transitions = agent_state.policy_replay.sample(batch_size) transitions = tuple((jnp.array(el) for el in transitions)) policy_state = policy.update_fn( policy_state, transitions) agent_state = agent_state.replace(policy_state=policy_state) rng, update_rng = random.split(rng) agent_state = uniform_update(agent_state, update_rng, n=n_updates) # output / visualize if episode % args.eval_every == 0: rng, episode_rng = random.split(rng) _, _, test_score, test_novelty_score = run_episode( agent_state, episode_rng, env, train=False, max_steps=args.max_steps) logger.update('test/episode', episode) logger.update('test/score', test_score) logger.update('test/novelty_score', test_novelty_score) logger.write_all() if args.vis != 'none': # savepath = f"{args.save_dir}/{episode}" display_state(agent_state, observation_spec, action_spec, max_steps=args.max_steps, bins=args.n_state_bins, rendering=args.vis, savedir=args.save_dir, episode=episode) if episode % args.save_replay_every == 0: replay_path = f"{args.save_dir}/replay.pkl" replay_buffer.save(agent_state.replay, replay_path) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--name', default='default') parser.add_argument('--env', default='gridworld') parser.add_argument('--task', default='default') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--env_size', type=int, default=20) parser.add_argument('--max_steps', type=int, default=1000) parser.add_argument('--debug', action='store_true', default=False) parser.add_argument('--vis', default='disk') parser.add_argument('--eval_every', type=int, default=10) parser.add_argument('--save_replay_every', type=int, default=10) parser.add_argument('--policy', type=str, default='deep') parser.add_argument('--policy_update', type=str, default='ddqn') parser.add_argument('--policy_lr', type=float, default=1e-3) parser.add_argument('--novelty_q_function', type=str, default='deep') parser.add_argument('--temperature', type=float, default=1e-1) parser.add_argument('--update_temperature', type=float, default=None) parser.add_argument('--prior_count', type=float, default=1e-3) parser.add_argument('--n_update_candidates', type=int, default=64) parser.add_argument('--n_state_bins', type=int, default=4) parser.add_argument('--n_action_bins', type=int, default=2) parser.add_argument('--optimistic_updates', dest='optimistic_updates', action='store_true', default=False) parser.add_argument('--optimistic_actions', dest='optimistic_actions', action='store_true', default=False) parser.add_argument('--target_network', action='store_true', default=True) parser.add_argument('--no_target_network', dest='target_network', action='store_false') parser.add_argument('--update_target_every', type=int, default=10) parser.add_argument('--warmup_steps', type=int, default=128) parser.add_argument('--no_exploration', dest='use_exploration', action='store_false', default=True) parser.add_argument('--prioritized_update', dest='prioritized_update', action='store_true', default=False) parser.add_argument('--no_prioritized_update', dest='prioritized_update', action='store_false') args = parser.parse_args() print(args) if args.update_temperature is None: print("Using --temperature as --update_temperature.") args.update_temperature = args.temperature args.save_dir = f"results/slow/{args.name}" os.makedirs(args.save_dir, exist_ok=True) import experiment_logging experiment_logging.setup_default_logger(args.save_dir) from experiment_logging import default_logger as logger import json with open(args.save_dir + '/args.json', 'w') as argfile: json.dump(args.__dict__, argfile, indent=4) if args.novelty_q_function == 'deep': import deep_q_functions as q_functions elif args.novelty_q_function == 'sigmoid': import sigmoid_q_functions as q_functions elif args.novelty_q_function == 'tabular': import tabular_q_functions as q_functions else: raise Exception("Argument --novelty_q_function was invalid.") if args.policy == 'deep': import policies.deep_q_policy as policy elif args.policy == 'uniform': import policies.uniform_policy as policy elif args.policy == 'tabular': import policies.tabular_q_policy as policy else: raise Exception("Argument --policy was invalid.") jit = not args.debug if jit: main(args) else: with jax.disable_jit(): main(args)
the-stack_0_2282
# # @lc app=leetcode id=445 lang=python # # [445] Add Two Numbers II # # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None # Definition for singly-linked list. from LeetCode.Python.BaseListNode import MakeListNodes, PrintListNode, ListNode class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: """ :type l1: ListNodeclass ListNode: def __init__(self, x): self.val = x self.next = None :type l2: ListNode :rtype: ListNode """ l1_list = list() l2_list = list() while l1 is not None or l2 is not None: if l1 is not None: l1_list.append(l1) l1 = l1.next if l2 is not None: l2_list.append(l2) l2 = l2.next carry = 0 result = None while l1_list or l2_list or carry: p = l1_list.pop().val if l1_list else 0 q = l2_list.pop().val if l2_list else 0 sum_tmp = p + q + carry carry = int(sum_tmp // 10) result_tmp = ListNode(sum_tmp % 10) result_tmp.next = result result = result_tmp return result if __name__ == '__main__': s = Solution() l_1 = MakeListNodes([2, 4, 3]) l_2 = MakeListNodes([5, 6, 4]) PrintListNode(s.addTwoNumbers(l_1, l_2)) PrintListNode(s.addTwoNumbers(ListNode(5), ListNode(5))) l_1 = MakeListNodes([2, 4]) l_2 = MakeListNodes([5]) PrintListNode(s.addTwoNumbers(l_1, l_2))
the-stack_0_2284
import pyglet, math from pyglet.window import key from . import bullet, physicalobject, resources class Player(physicalobject.PhysicalObject): """Physical object that responds to user input""" def __init__(self, *args, **kwargs): super(Player, self).__init__(img=resources.player_image, *args, **kwargs) # Create a child sprite to show when the ship is thrusting self.engine_sprite = pyglet.sprite.Sprite(img=resources.engine_image, *args, **kwargs) self.engine_sprite.visible = False # Set some easy-to-tweak constants self.thrust = 300.0 self.rotate_speed = 200.0 self.bullet_speed = 700.0 # Player should not collide with own bullets self.reacts_to_bullets = False # Tell the game handler about any event handlers self.key_handler = key.KeyStateHandler() self.event_handlers = [self, self.key_handler] def update(self, dt): # Do all the normal physics stuff super(Player, self).update(dt) if self.key_handler[key.LEFT]: self.rotation -= self.rotate_speed * dt if self.key_handler[key.RIGHT]: self.rotation += self.rotate_speed * dt if self.key_handler[key.UP]: # Note: pyglet's rotation attributes are in "negative degrees" angle_radians = -math.radians(self.rotation) force_x = math.cos(angle_radians) * self.thrust * dt force_y = math.sin(angle_radians) * self.thrust * dt self.velocity_x += force_x self.velocity_y += force_y # If thrusting, update the engine sprite self.engine_sprite.rotation = self.rotation self.engine_sprite.x = self.x self.engine_sprite.y = self.y self.engine_sprite.visible = True else: # Otherwise, hide it self.engine_sprite.visible = False def on_key_press(self, symbol, modifiers): if symbol == key.SPACE: self.fire() def fire(self): # Note: pyglet's rotation attributes are in "negative degrees" angle_radians = -math.radians(self.rotation) # Create a new bullet just in front of the player ship_radius = self.image.width / 2 bullet_x = self.x + math.cos(angle_radians) * ship_radius bullet_y = self.y + math.sin(angle_radians) * ship_radius new_bullet = bullet.Bullet(bullet_x, bullet_y, batch=self.batch) # Give it some speed bullet_vx = self.velocity_x + math.cos(angle_radians) * self.bullet_speed bullet_vy = self.velocity_y + math.sin(angle_radians) * self.bullet_speed new_bullet.velocity_x, new_bullet.velocity_y = bullet_vx, bullet_vy # Add it to the list of objects to be added to the game_objects list self.new_objects.append(new_bullet) # Play the bullet sound resources.bullet_sound.play() def delete(self): # We have a child sprite which must be deleted when this object # is deleted from batches, etc. self.engine_sprite.delete() super(Player, self).delete()
the-stack_0_2287
import numpy as np def predict_one_vs_all(all_theta, X): m = X.shape[0] num_labels = all_theta.shape[0] # You need to return the following variable correctly; p = np.zeros(m) # Add ones to the X data matrix X = np.c_[np.ones(m), X] # ===================== Your Code Here ===================== # Instructions : Complete the following code to make predictions using # your learned logistic regression parameters (one vs all). # You should set p to a vector of predictions (from 1 to # num_labels) # # Hint : This code can be done all vectorized using the max function # In particular, the max function can also return the index of the # max element, for more information see 'np.argmax' function. # results = np.dot(X, all_theta.T) p = np.argmax(results, axis=1) p = np.array([x if x != 0 else 10 for x in p]) print('p {}'.format(p)) return p
the-stack_0_2289
from typing import Dict, List, Optional, Tuple from blspy import AugSchemeMPL, G2Element, PrivateKey from kiwi.consensus.constants import ConsensusConstants from kiwi.util.hash import std_hash from kiwi.types.announcement import Announcement from kiwi.types.blockchain_format.coin import Coin from kiwi.types.blockchain_format.program import Program from kiwi.types.blockchain_format.sized_bytes import bytes32 from kiwi.types.coin_spend import CoinSpend from kiwi.types.condition_opcodes import ConditionOpcode from kiwi.types.condition_with_args import ConditionWithArgs from kiwi.types.spend_bundle import SpendBundle from kiwi.util.clvm import int_from_bytes, int_to_bytes from kiwi.util.condition_tools import conditions_by_opcode, conditions_for_solution, pkm_pairs_for_conditions_dict from kiwi.util.ints import uint32, uint64 from kiwi.wallet.derive_keys import master_sk_to_wallet_sk from kiwi.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import ( DEFAULT_HIDDEN_PUZZLE_HASH, calculate_synthetic_secret_key, puzzle_for_pk, solution_for_conditions, ) DEFAULT_SEED = b"seed" * 8 assert len(DEFAULT_SEED) == 32 class WalletTool: next_address = 0 pubkey_num_lookup: Dict[bytes, uint32] = {} def __init__(self, constants: ConsensusConstants, sk: Optional[PrivateKey] = None): self.constants = constants self.current_balance = 0 self.my_utxos: set = set() if sk is not None: self.private_key = sk else: self.private_key = AugSchemeMPL.key_gen(DEFAULT_SEED) self.generator_lookups: Dict = {} self.puzzle_pk_cache: Dict = {} self.get_new_puzzle() def get_next_address_index(self) -> uint32: self.next_address = uint32(self.next_address + 1) return self.next_address def get_private_key_for_puzzle_hash(self, puzzle_hash: bytes32) -> PrivateKey: if puzzle_hash in self.puzzle_pk_cache: child = self.puzzle_pk_cache[puzzle_hash] private = master_sk_to_wallet_sk(self.private_key, uint32(child)) # pubkey = private.get_g1() return private else: for child in range(self.next_address): pubkey = master_sk_to_wallet_sk(self.private_key, uint32(child)).get_g1() if puzzle_hash == puzzle_for_pk(bytes(pubkey)).get_tree_hash(): return master_sk_to_wallet_sk(self.private_key, uint32(child)) raise ValueError(f"Do not have the keys for puzzle hash {puzzle_hash}") def puzzle_for_pk(self, pubkey: bytes) -> Program: return puzzle_for_pk(pubkey) def get_new_puzzle(self) -> bytes32: next_address_index: uint32 = self.get_next_address_index() pubkey = master_sk_to_wallet_sk(self.private_key, next_address_index).get_g1() self.pubkey_num_lookup[bytes(pubkey)] = next_address_index puzzle = puzzle_for_pk(bytes(pubkey)) self.puzzle_pk_cache[puzzle.get_tree_hash()] = next_address_index return puzzle def get_new_puzzlehash(self) -> bytes32: puzzle = self.get_new_puzzle() return puzzle.get_tree_hash() def sign(self, value: bytes, pubkey: bytes) -> G2Element: privatekey: PrivateKey = master_sk_to_wallet_sk(self.private_key, self.pubkey_num_lookup[pubkey]) return AugSchemeMPL.sign(privatekey, value) def make_solution(self, condition_dic: Dict[ConditionOpcode, List[ConditionWithArgs]]) -> Program: ret = [] for con_list in condition_dic.values(): for cvp in con_list: ret.append([cvp.opcode.value] + cvp.vars) return solution_for_conditions(Program.to(ret)) def generate_unsigned_transaction( self, amount: uint64, new_puzzle_hash: bytes32, coins: List[Coin], condition_dic: Dict[ConditionOpcode, List[ConditionWithArgs]], fee: int = 0, secret_key: Optional[PrivateKey] = None, additional_outputs: Optional[List[Tuple[bytes32, int]]] = None, ) -> List[CoinSpend]: spends = [] spend_value = sum([c.amount for c in coins]) if ConditionOpcode.CREATE_COIN not in condition_dic: condition_dic[ConditionOpcode.CREATE_COIN] = [] if ConditionOpcode.CREATE_COIN_ANNOUNCEMENT not in condition_dic: condition_dic[ConditionOpcode.CREATE_COIN_ANNOUNCEMENT] = [] output = ConditionWithArgs(ConditionOpcode.CREATE_COIN, [new_puzzle_hash, int_to_bytes(amount)]) condition_dic[output.opcode].append(output) if additional_outputs is not None: for o in additional_outputs: out = ConditionWithArgs(ConditionOpcode.CREATE_COIN, [o[0], int_to_bytes(o[1])]) condition_dic[out.opcode].append(out) amount_total = sum(int_from_bytes(cvp.vars[1]) for cvp in condition_dic[ConditionOpcode.CREATE_COIN]) change = spend_value - amount_total - fee if change > 0: change_puzzle_hash = self.get_new_puzzlehash() change_output = ConditionWithArgs(ConditionOpcode.CREATE_COIN, [change_puzzle_hash, int_to_bytes(change)]) condition_dic[output.opcode].append(change_output) secondary_coins_cond_dic: Dict[ConditionOpcode, List[ConditionWithArgs]] = dict() secondary_coins_cond_dic[ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT] = [] for n, coin in enumerate(coins): puzzle_hash = coin.puzzle_hash if secret_key is None: secret_key = self.get_private_key_for_puzzle_hash(puzzle_hash) pubkey = secret_key.get_g1() puzzle = puzzle_for_pk(bytes(pubkey)) if n == 0: message_list = [c.name() for c in coins] for outputs in condition_dic[ConditionOpcode.CREATE_COIN]: message_list.append(Coin(coin.name(), outputs.vars[0], int_from_bytes(outputs.vars[1])).name()) message = std_hash(b"".join(message_list)) condition_dic[ConditionOpcode.CREATE_COIN_ANNOUNCEMENT].append( ConditionWithArgs(ConditionOpcode.CREATE_COIN_ANNOUNCEMENT, [message]) ) primary_announcement_hash = Announcement(coin.name(), message).name() secondary_coins_cond_dic[ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT].append( ConditionWithArgs(ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT, [primary_announcement_hash]) ) main_solution = self.make_solution(condition_dic) spends.append(CoinSpend(coin, puzzle, main_solution)) else: spends.append(CoinSpend(coin, puzzle, self.make_solution(secondary_coins_cond_dic))) return spends def sign_transaction(self, coin_spends: List[CoinSpend]) -> SpendBundle: signatures = [] solution: Program puzzle: Program for coin_spend in coin_spends: # type: ignore # noqa secret_key = self.get_private_key_for_puzzle_hash(coin_spend.coin.puzzle_hash) synthetic_secret_key = calculate_synthetic_secret_key(secret_key, DEFAULT_HIDDEN_PUZZLE_HASH) err, con, cost = conditions_for_solution( coin_spend.puzzle_reveal, coin_spend.solution, self.constants.MAX_BLOCK_COST_CLVM ) if not con: raise ValueError(err) conditions_dict = conditions_by_opcode(con) for _, msg in pkm_pairs_for_conditions_dict( conditions_dict, bytes(coin_spend.coin.name()), self.constants.AGG_SIG_ME_ADDITIONAL_DATA ): signature = AugSchemeMPL.sign(synthetic_secret_key, msg) signatures.append(signature) aggsig = AugSchemeMPL.aggregate(signatures) spend_bundle = SpendBundle(coin_spends, aggsig) return spend_bundle def generate_signed_transaction( self, amount: uint64, new_puzzle_hash: bytes32, coin: Coin, condition_dic: Dict[ConditionOpcode, List[ConditionWithArgs]] = None, fee: int = 0, additional_outputs: Optional[List[Tuple[bytes32, int]]] = None, ) -> SpendBundle: if condition_dic is None: condition_dic = {} transaction = self.generate_unsigned_transaction( amount, new_puzzle_hash, [coin], condition_dic, fee, additional_outputs=additional_outputs ) assert transaction is not None return self.sign_transaction(transaction) def generate_signed_transaction_multiple_coins( self, amount: uint64, new_puzzle_hash: bytes32, coins: List[Coin], condition_dic: Dict[ConditionOpcode, List[ConditionWithArgs]] = None, fee: int = 0, additional_outputs: Optional[List[Tuple[bytes32, int]]] = None, ) -> SpendBundle: if condition_dic is None: condition_dic = {} transaction = self.generate_unsigned_transaction( amount, new_puzzle_hash, coins, condition_dic, fee, additional_outputs=additional_outputs ) assert transaction is not None return self.sign_transaction(transaction)
the-stack_0_2293
import glob import sys import os import xml.etree.ElementTree as ET from random import random def main(filename): # ratio to divide up the images train = 0.7 val = 0.2 test = 0.1 if (train + test + val) != 1.0: print("probabilities must equal 1") exit() # get the labels labels = [] imgnames = [] annotations = {} with open(filename, 'r') as labelfile: label_string = "" for line in labelfile: label_string += line.rstrip() labels = label_string.split(',') labels = [elem.replace(" ", "") for elem in labels] # get image names for filename in os.listdir("./JPEGImages"): if filename.endswith(".jpg"): img = filename.rstrip('.jpg') imgnames.append(img) print("Labels:", labels, "imgcnt:", len(imgnames)) # initialise annotation list for label in labels: annotations[label] = [] # Scan the annotations for the labels for img in imgnames: annote = "Annotations/" + img + '.xml' if os.path.isfile(annote): tree = ET.parse(annote) root = tree.getroot() annote_labels = [] for labelname in root.findall('*/name'): labelname = labelname.text annote_labels.append(labelname) if labelname in labels: annotations[labelname].append(img) annotations[img] = annote_labels else: print("Missing annotation for ", annote) exit() # divvy up the images to the different sets sampler = imgnames.copy() train_list = [] val_list = [] test_list = [] while len(sampler) > 0: dice = random() elem = sampler.pop() if dice <= test: test_list.append(elem) elif dice <= (test + val): val_list.append(elem) else: train_list.append(elem) print("Training set:", len(train_list), "validation set:", len(val_list), "test set:", len(test_list)) # create the dataset files create_folder("./ImageSets/Main/") with open("./ImageSets/Main/train.txt", 'w') as outfile: for name in train_list: outfile.write(name + "\n") with open("./ImageSets/Main/val.txt", 'w') as outfile: for name in val_list: outfile.write(name + "\n") with open("./ImageSets/Main/trainval.txt", 'w') as outfile: for name in train_list: outfile.write(name + "\n") for name in val_list: outfile.write(name + "\n") with open("./ImageSets/Main/test.txt", 'w') as outfile: for name in test_list: outfile.write(name + "\n") # create the individiual files for each label for label in labels: with open("./ImageSets/Main/"+ label +"_train.txt", 'w') as outfile: for name in train_list: if label in annotations[name]: outfile.write(name + " 1\n") else: outfile.write(name + " -1\n") with open("./ImageSets/Main/"+ label +"_val.txt", 'w') as outfile: for name in val_list: if label in annotations[name]: outfile.write(name + " 1\n") else: outfile.write(name + " -1\n") with open("./ImageSets/Main/"+ label +"_test.txt", 'w') as outfile: for name in test_list: if label in annotations[name]: outfile.write(name + " 1\n") else: outfile.write(name + " -1\n") def create_folder(foldername): if os.path.exists(foldername): print('folder already exists:', foldername) else: os.makedirs(foldername) if __name__=='__main__': if len(sys.argv) < 2: print("usage: python generate_vocdata.py <labelfile>") exit() main(sys.argv[1])
the-stack_0_2296
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow.compiler.mlir.tfr.integration.node_expansion.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.compiler.mlir.tfr.resources import gen_composite_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import load_library from tensorflow.python.framework import ops from tensorflow.python.ops import gen_resource_variable_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import test _lib_dir = os.path.dirname(gen_composite_ops.__file__) _lib_name = os.path.basename(gen_composite_ops.__file__)[4:].replace( '.py', '.so') load_library.load_op_library(os.path.join(_lib_dir, _lib_name)) class NodeExpansionTest(test.TestCase): def testAddN(self): t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t3 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq1 = gen_composite_ops.my_add_n([t1]) sq2 = gen_composite_ops.my_add_n([t1, t2]) sq3 = gen_composite_ops.my_add_n([t1, t2, t3]) self.assertAllEqual(sq1.numpy().reshape(-1), [1, 2, 3, 4]) self.assertAllEqual(sq2.numpy().reshape(-1), [2, 4, 6, 8]) self.assertAllEqual(sq3.numpy().reshape(-1), [3, 6, 9, 12]) def testBiasedDense(self): t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t3 = constant_op.constant([[-10.0, -10.0], [-10.0, -10.0]]) sq = gen_composite_ops.my_biased_dense(t1, t2, t3) self.assertAllEqual(sq.numpy().reshape(-1), [-3, 0, 5, 12]) def testBiasedDenseRelu(self): t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t3 = constant_op.constant([[-10.0, -10.0], [-10.0, -10.0]]) sq = gen_composite_ops.my_biased_dense(t1, t2, t3, act='relu') self.assertAllEqual(sq.numpy().reshape(-1), [0, 0, 5, 12]) def testWithKnownKernel(self): def biasd_dense_elu(x, y, z): dot = gen_composite_ops.my_biased_dense(x, y, z) return nn_ops.elu(dot) # with known kernel, should not expand. t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t3 = constant_op.constant([[-10.0, -10.0], [-10.0, -10.0]]) sq = biasd_dense_elu(t1, t2, t3) self.assertAllClose(sq.numpy().reshape(-1), [-0.950213, 0, 5, 12]) # Regression test for an issue where VarHandleOp wasn't being properly # imported into MLIR for "no-op" node expansion. def testVarHandleOp(self): x = constant_op.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) # Note: we purposely make multiple calls to VarHandleOp to exercise the # cached kernal lookup path that was exhibiting the VarHandleOp import # issue. unused_ = gen_resource_variable_ops.VarHandleOp( dtype=dtypes.float32, shape=[3, 2]) handle = gen_resource_variable_ops.VarHandleOp( dtype=dtypes.float32, shape=[3, 2]) gen_resource_variable_ops.AssignVariableOp(resource=handle, value=x) self.assertAllEqual( x, gen_resource_variable_ops.ReadVariableOp( resource=handle, dtype=dtypes.float32)) if __name__ == '__main__': os.environ['TF_MLIR_TFR_LIB_DIR'] = 'tensorflow/compiler/mlir/tfr/resources' ops.enable_eager_execution() test.main()
the-stack_0_2297
import typing from typing import Optional, Any import gym import gym_minigrid.minigrid import numpy as np import torch from babyai.utils.format import InstructionsPreprocessor from gym_minigrid.minigrid import MiniGridEnv from core.base_abstractions.sensor import Sensor, prepare_locals_for_super from core.base_abstractions.task import Task, SubTaskType # fmt: off ALL_VOCAB_TOKENS = [ "a", "after", "and", "ball", "behind", "blue", "box", "door", "front", "go", "green", "grey", "in", "key", "left", "next", "of", "on", "open", "pick", "purple", "put", "red", "right", "the", "then", "to", "up", "yellow", "you", "your", ] # fmt: on class EgocentricMiniGridSensor(Sensor[MiniGridEnv, Task[MiniGridEnv]]): def __init__( self, agent_view_size: int, view_channels: int = 1, uuid: str = "minigrid_ego_image", **kwargs: Any ): self.agent_view_size = agent_view_size self.view_channels = view_channels self.num_objects = ( typing.cast( int, max(map(abs, gym_minigrid.minigrid.OBJECT_TO_IDX.values())) # type: ignore ) + 1 ) self.num_colors = ( typing.cast(int, max(map(abs, gym_minigrid.minigrid.COLOR_TO_IDX.values()))) # type: ignore + 1 ) self.num_states = ( typing.cast(int, max(map(abs, gym_minigrid.minigrid.STATE_TO_IDX.values()))) # type: ignore + 1 ) observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self) -> gym.Space: return gym.spaces.Box( low=0, high=max(self.num_objects, self.num_colors, self.num_states) - 1, shape=(self.agent_view_size, self.agent_view_size, self.view_channels), dtype=int, ) def get_observation( self, env: MiniGridEnv, task: Optional[SubTaskType], *args, minigrid_output_obs: Optional[np.ndarray] = None, **kwargs: Any ) -> Any: if minigrid_output_obs is not None and minigrid_output_obs["image"].shape == ( self.agent_view_size, self.agent_view_size, ): img = minigrid_output_obs["image"][:, :, : self.view_channels] else: env.agent_view_size = self.agent_view_size img = env.gen_obs()["image"][:, :, : self.view_channels] assert img.dtype == np.uint8 return img class MiniGridMissionSensor(Sensor[MiniGridEnv, Task[MiniGridEnv]]): def __init__(self, instr_len: int, uuid: str = "minigrid_mission", **kwargs: Any): self.instr_preprocessor = InstructionsPreprocessor( model_name="TMP_SENSOR", load_vocab_from=None ) # We initialize the vocabulary with a fixed collection of tokens # and then ensure that the size cannot exceed this number. This # guarantees that sensors on all processes will produce the same # values. for token in ALL_VOCAB_TOKENS: _ = self.instr_preprocessor.vocab[token] self.instr_preprocessor.vocab.max_size = len(ALL_VOCAB_TOKENS) self.instr_len = instr_len observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self) -> gym.Space: return gym.spaces.Box( low=0, high=self.instr_preprocessor.vocab.max_size, shape=(self.instr_len,), dtype=int, ) def get_observation( self, env: MiniGridEnv, task: Optional[SubTaskType], *args, minigrid_output_obs: Optional[np.ndarray] = None, **kwargs: Any ) -> Any: if minigrid_output_obs is None: minigrid_output_obs = env.gen_obs() out = self.instr_preprocessor([minigrid_output_obs]).view(-1) n: int = out.shape[0] if n > self.instr_len: out = out[: self.instr_len] elif n < self.instr_len: out = torch.nn.functional.pad( input=out, pad=[0, self.instr_len - n], value=0, ) return out.long().numpy()
the-stack_0_2298
from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/webhooks/stripe', methods=['POST']) def receive_stripe_webhook(): """Receives a webhook payload from Stripe. """ # Try to parse a webhook payload, get upset if we couldn't # parse any JSON in the body: stripe_payload = request.json if not stripe_payload: return jsonify(message="Could not parse webhook payload"), 400 event = stripe_payload.get('type') if not event: return jsonify(message="Could not determine event type"), 400 if event == 'charge.succeeded': # Pull fields out of payload: data_object = stripe_payload.get('data').get('object') customer_id = data_object.get('customer') amount = data_object.get('amount') # Here we just log the transaction, but at this point we can do # anything! (Provision accounts, push to a database, etc.) print(f'Customer {customer_id} made a purchase of {amount} cents!') return jsonify(message="Webhook received"), 200
the-stack_0_2299
import json import sys from wsgiref.simple_server import make_server from . import NAME, VERSION, Kaa, KaaServer from .openapi import OpenApi from .server import Server class Cli(): def __init__(self): self.host = '127.0.0.1' self.port = 8086 self.argv = sys.argv[:] def execute(self): try: subcommand = self.argv[1] except IndexError: subcommand = 'help' if subcommand == 'version': msg = self.__get_version() elif subcommand == 'help': msg = self.__get_help() elif subcommand == 'serve': self.__serve() return elif subcommand == 'openapi': server:KaaServer = Server().get_server() kaa:Kaa = server.get_kaa({ 'REQUEST_METHOD': '', 'PATH_INFO': '', 'REMOTE_ADDR': '', 'QUERY_STRING': '' }, None) msg = json.dumps(OpenApi().generate(kaa)) else: msg = 'Invalid command. Try help' sys.stdout.write(msg + '\n') def __get_name(self): return NAME def __get_version(self): return VERSION def __get_help(self): commands = [ ('version', 'Returns Kaa version'), ('serve', 'Starts a server for development'), ('openapi', 'Generates openapi json') ] return '\n'.join(['{}\t\t{}'.format(*cmd) for cmd in commands]) def __serve(self): self.__set_host_port() sys.stdout.write('{} version {}\n'.format(self.__get_name(), self.__get_version())) sys.stdout.write('Server started at {}:{}\n\n'.format(self.host, self.port)) server:KaaServer = Server().get_server() make_server( host=self.host, port=int(self.port), app=lambda env, start_response: server.get_kaa(env, start_response).serve() ).serve_forever() def __set_host_port(self): try: porthost = self.argv[2].split(':') if len(porthost) == 1: self.port = porthost[0] elif len(porthost) == 2: self.host = porthost[0] self.port = porthost[1] else: sys.stdout.write('Invalid host:port' + '\n') sys.exit(1) except IndexError: pass
the-stack_0_2303
from django.conf.urls import url from . import views app_name = 'twister' urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), url(r'^twist/$', views.TwistView.as_view(), name='twist'), url(r'^domain/(?P<pk>.+)/$', views.DomainView.as_view(), name='domain'), ]
the-stack_0_2305
from typing import List, NamedTuple, Tuple, Union import geopandas as gpd import gmsh import numpy as np import pandas as pd import shapely.geometry as sg from .common import FloatArray, IntArray, coord_dtype, flatten, separate Z_DEFAULT = 0.0 POINT_DIM = 0 LINE_DIM = 1 PLANE_DIM = 2 class PolygonInfo(NamedTuple): index: int size: int interior_indices: List[int] interior_sizes: List[int] polygon_id: int class LineStringInfo(NamedTuple): index: int size: int embedded_in: Union[int, None] def polygon_info( polygon: sg.Polygon, cellsize: float, index: int, polygon_id: int ) -> Tuple[PolygonInfo, FloatArray, FloatArray, int]: exterior_coords = np.array(polygon.exterior.coords)[:-1] size = len(exterior_coords) vertices = [exterior_coords] cellsizes = [np.full(size, cellsize)] info = PolygonInfo(index, size, [], [], polygon_id) index += size for interior in polygon.interiors: interior_coords = np.array(interior.coords)[:-1] vertices.append(interior_coords) size = len(interior_coords) cellsizes.append(np.full(size, cellsize)) info.interior_indices.append(index) info.interior_sizes.append(size) index += size return info, vertices, cellsizes, index def linestring_info( linestring: sg.LineString, cellsize: float, index: int, inside: Union[int, None] ) -> Tuple[LineStringInfo, FloatArray, FloatArray, int]: vertices = np.array(linestring.coords) size = len(vertices) cellsizes = np.full(size, cellsize) info = LineStringInfo(index, size, inside) index += size return info, vertices, cellsizes, index def add_vertices(vertices, cellsizes, tags) -> None: for (x, y), cellsize, tag in zip(vertices, cellsizes, tags): gmsh.model.geo.addPoint(x, y, Z_DEFAULT, cellsize, tag) def add_linestrings( features: List[LineStringInfo], tags: IntArray ) -> Tuple[IntArray, IntArray]: n_lines = sum(info.size - 1 for info in features) line_indices = np.empty(n_lines, dtype=np.int64) embedded_in = np.empty(n_lines, dtype=np.int64) i = 0 for info in features: point_tags = tags[info.index : info.index + info.size] first = point_tags[0] for second in point_tags[1:]: line_index = gmsh.model.geo.addLine(first, second) line_indices[i] = line_index embedded_in[i] = info.embedded_in first = second i += 1 return line_indices, embedded_in def add_curve_loop(point_tags: FloatArray) -> int: tags = [] first = point_tags[-1] for second in point_tags: line_tag = gmsh.model.geo.addLine(first, second) tags.append(line_tag) first = second curve_loop_tag = gmsh.model.geo.addCurveLoop(tags) return curve_loop_tag def add_polygons( features: List[PolygonInfo], tags: IntArray ) -> Tuple[List[int], List[int]]: plane_tags = [] for info in features: # Add the exterior loop first curve_loop_tags = [add_curve_loop(tags[info.index : info.index + info.size])] # Now add holes for start, size in zip(info.interior_indices, info.interior_sizes): loop_tag = add_curve_loop(tags[start : start + size]) curve_loop_tags.append(loop_tag) plane_tag = gmsh.model.geo.addPlaneSurface(curve_loop_tags, tag=info.polygon_id) plane_tags.append(plane_tag) return curve_loop_tags, plane_tags def add_points(points: gpd.GeoDataFrame) -> Tuple[IntArray, IntArray]: n_points = len(points) indices = np.empty(n_points, dtype=np.int64) embedded_in = points["__polygon_id"].values # We have to add points one by one due to the Gmsh addPoint API for i, row in enumerate(points.to_dict("records")): point = row["geometry"] # Rely on the automatic number of gmsh now to generate the indices point_index = gmsh.model.geo.addPoint( point.x, point.y, Z_DEFAULT, row["cellsize"] ) indices[i] = point_index return indices, embedded_in def collect_polygons( polygons: gpd.GeoDataFrame, index: int ) -> Tuple[int, FloatArray, IntArray, List[PolygonInfo]]: vertices = [] cellsizes = [] features = [] for row in polygons.to_dict("records"): info, coords, cells, index = polygon_info( row["geometry"], row["cellsize"], index, row["__polygon_id"] ) vertices.extend(coords) cellsizes.extend(cells) features.append(info) return index, vertices, cellsizes, features def collect_linestrings( linestrings: gpd.GeoDataFrame, index: int ) -> Tuple[int, FloatArray, IntArray, List[LineStringInfo]]: vertices = [] cellsizes = [] features = [] for row in linestrings.to_dict("records"): info, coords, cells, index = linestring_info( row["geometry"], row["cellsize"], index, row["__polygon_id"] ) vertices.append(coords) cellsizes.append(cells) features.append(info) return index, vertices, cellsizes, features def collect_points(points: gpd.GeoDataFrame) -> FloatArray: return np.stack((points["geometry"].x, points["geometry"].y), axis=1) def embed_where(gdf: gpd.GeoDataFrame, polygons: gpd.GeoDataFrame) -> gpd.GeoDataFrame: tmp = gpd.sjoin(gdf, polygons, predicate="within", how="inner") tmp["cellsize"] = tmp[["cellsize_left", "cellsize_right"]].min(axis=1) return tmp[["cellsize", "__polygon_id", "geometry"]] def add_geometry( polygons: gpd.GeoDataFrame, linestrings: gpd.GeoDataFrame, points: gpd.GeoDataFrame ): # Assign unique ids polygons["__polygon_id"] = np.arange(1, len(polygons) + 1) # Figure out in which polygon the points and linestrings will be embedded. linestrings = embed_where(linestrings, polygons) embedded_points = embed_where(points, polygons) # Collect all coordinates, and store the length and type of every element index, poly_vertices, poly_cellsizes, polygon_features = collect_polygons( polygons, index=0 ) index, line_vertices, line_cellsizes, linestring_features = collect_linestrings( linestrings, index ) vertices = np.concatenate(poly_vertices + line_vertices) cellsizes = np.concatenate(poly_cellsizes + line_cellsizes) # Get the unique vertices, and generate the array of indices pointing to # them for every feature vertices, indices = np.unique( vertices.reshape(-1).view(coord_dtype), return_inverse=True ) vertex_tags = np.arange(1, len(vertices) + 1) tags = vertex_tags[indices] # Get the smallest cellsize per vertex cellsizes = pd.Series(cellsizes).groupby(tags).min().values # Add all unique vertices. This includes vertices for linestrings and polygons. add_vertices(vertices, cellsizes, vertex_tags) # Add all geometries to gmsh add_polygons(polygon_features, tags) linestring_indices, linestring_embedded = add_linestrings(linestring_features, tags) gmsh.model.geo.synchronize() # Now embed the points and linestrings in the polygons for polygon_id, embed_indices in pd.Series(linestring_indices).groupby( linestring_embedded ): gmsh.model.mesh.embed(LINE_DIM, embed_indices, PLANE_DIM, polygon_id) if len(embedded_points) > 0: point_indices, point_embedded = add_points(embedded_points) gmsh.model.geo.synchronize() for polygon_id, embed_indices in pd.Series(point_indices).groupby( point_embedded ): gmsh.model.mesh.embed(POINT_DIM, embed_indices, PLANE_DIM, polygon_id) gmsh.model.geo.synchronize() def add_field_points(points: gpd.GeoSeries) -> IntArray: indices = np.empty(len(points), dtype=np.int64) xy_coords = np.stack((points.x, points.y), axis=1) for i, (x, y) in enumerate(xy_coords): indices[i] = gmsh.model.geo.addPoint(x, y, Z_DEFAULT) return indices def add_field_linestring( linestring: sg.LineString, minimum_cellsize: float ) -> IntArray: n_vertices = int(np.ceil(linestring.length / minimum_cellsize)) indices = np.empty(n_vertices, dtype=np.int64) for i, distance in enumerate(np.linspace(0.0, linestring.length, n_vertices)): point = linestring.interpolate(distance) indices[i] = gmsh.model.geo.addPoint(point.x, point.y, Z_DEFAULT) return indices def add_field_linestrings( linestrings: gpd.GeoSeries, minimum_cellsize: float ) -> IntArray: indices = [ add_field_linestring(linestring, minimum_cellsize) for linestring in linestrings ] return np.concatenate(indices) def add_field_polygons(polygons: gpd.GeoSeries, minimum_cellsize: float) -> IntArray: indices = [] for exterior in polygons.exteriors: indices.append(add_field_linestring(exterior, minimum_cellsize)) for interior in flatten(polygons.interiors): indices.append(add_field_linestring(interior, minimum_cellsize)) return np.concatenate(indices) def add_field_geometry(geometry: gpd.GeoSeries, minimum_cellsize: float) -> IntArray: polygons, linestrings, points = separate(geometry) point_nodes = add_field_points(points) linestring_nodes = add_field_linestrings(linestrings, minimum_cellsize) polygon_nodes = add_field_polygons(polygons, minimum_cellsize) return np.concatenate((point_nodes, linestring_nodes, polygon_nodes))
the-stack_0_2306
""" Download ACS data and parse for uploading """ import os.path import json import grequests import pandas as pd from ntd import update_dollars from carto import replace_data import settings def process_result(i, y, var, indexes, frames): """Transform downloaded result to data frame by year""" result = pd.DataFrame(i.json()) result.columns = result.iloc[0] result = result.reindex(result.index.drop(0)) if 'metropolitan statistical area/micropolitan statistical area' in result.columns: result.rename( columns={'metropolitan statistical area/micropolitan statistical area':'GEOID'}, inplace=True ) else: result['GEOID'] = pd.Series( result['state'] + result['county'] + result['tract'] ).astype(str) result['year'] = y out = result.set_index(indexes) df = out.groupby(level=out.index.names).last() data = pd.to_numeric(df[var]) frames.append(data[data >= 0]) return frames def combine_files(frame, geo, cols, index): """Merge downloaded ACS data with geo file""" return pd.concat(frame, axis=1).reset_index().merge( geo, on='GEOID', how='inner' ).drop( columns=cols ).dropna( subset=['pop'] ).set_index(index) def download_census(): """Download and parse ACS data as defined in acs.json""" geo = pd.read_csv('data/geojson/tracts/cbsa_crosswalk.csv', dtype={'GEOID': object}) counties = geo.drop_duplicates( ['STATEFP', 'COUNTYFP', 'msaid'] ) counties = counties.groupby('STATEFP')[['STATEFP', 'COUNTYFP', 'msaid']].apply( lambda x: x.set_index('COUNTYFP').to_dict(orient='index') ).to_dict() msa_geo = pd.read_csv('data/geojson/cbsa/cb_2017_us_cbsa_500k.csv', dtype={'GEOID': object}) indexes = ['GEOID', 'year'] msa_indexes = ['GEOID', 'year'] with open('data/census/acs.json', "r") as read_file: meta = json.load(read_file) acs = [] msa = [] for r in meta: if 'var' in r: filename = 'data/output/census/' + r['key'] + '.csv' if os.path.isfile(filename): csv = pd.read_csv( filename, dtype={'GEOID': object} ).set_index(indexes) df = csv.groupby(level=csv.index.names).last() acs.append(df) elif r['var'] != '99999999': frames = [] errors = [] for y in range(2010, 2019): for s in counties: urls = errors errors = [] for c in counties[s]: urls.append('https://api.census.gov/data/' + str(y) + \ '/acs/acs5?get=' + r['var'] + '&for=tract:*&in=state:' + \ str(s).zfill(2) + '%20county:' + str(c).zfill(3) + '&key=' + \ settings.CENSUS_API) rs = (grequests.get(u) for u in urls) res = grequests.map(rs) for i in res: try: frames = process_result(i, y, r['var'], indexes, frames) except: try: print(i.text) errors.append(i.url) except: pass print('Loaded:', r['name'], y, s) print('-----') if errors: print('Retrying', len(errors), 'errors') ind = pd.Series(pd.concat(frames), name=r['key']) ind.to_csv(filename, header=r['key']) acs.append(ind) filename = 'data/output/msa/' + r['key'] + '.csv' if os.path.isfile(filename): csv = pd.read_csv( filename, dtype={'GEOID': object} ).set_index(indexes) df = csv.groupby(level=csv.index.names).last() msa.append(df) elif r['var'] != '99999999': frames = [] for y in range(2010, 2019): urls = ['https://api.census.gov/data/' + str(y) + \ '/acs/acs5?get=' + r['var'] + \ '&for=metropolitan statistical area/micropolitan statistical area:*' + \ '&key=' + settings.CENSUS_API] rs = (grequests.get(u) for u in urls) res = grequests.map(rs) frames = process_result(res[0], y, r['var'], indexes, frames) ind = pd.Series(pd.concat(frames), name=r['key']) ind.to_csv(filename, header=r['key']) msa.append(ind) combined = combine_files( acs, geo, ['STATEFP', 'COUNTYFP', 'TRACTCE', 'AFFGEOID', 'NAME', 'AWATER', 'LSAD', 'CBSAFP'], indexes ) msa_combo = combine_files( msa, msa_geo, ['AFFGEOID', 'NAME', 'AWATER', 'LSAD', 'CBSAFP'], msa_indexes ) for d in meta: print(d['name']) if 'upload' in d and d['upload']: indexes.append(d['key']) if 'msa' in d and d['msa']: msa_indexes.append(d['key']) if 'inflation' in d: combined[d['key']] = update_dollars(pd.Series(combined[d['key']], name=d['key'])) msa_combo[d['key']] = update_dollars(pd.Series(msa_combo[d['key']], name=d['key'])) if 'var' not in d: if 'sum' in d: combined[d['key']] = 0 if 'msa' in d and d['msa']: msa_combo[d['key']] = 0 for s in d['sum']: combined[d['key']] = combined[d['key']] + combined[s] if 'msa' in d and d['msa']: msa_combo[d['key']] = msa_combo[d['key']] + msa_combo[s] else: combined[d['key']] = combined[d['numerator']].divide( combined[d['denominator']], fill_value=0 ) if 'msa' in d and d['msa']: msa_combo[d['key']] = msa_combo[d['numerator']].divide( msa_combo[d['denominator']], fill_value=0 ) if 'scale' in d: combined[d['key']] = combined[d['key']] * d['scale'] if 'msa' in d and d['msa']: msa_combo[d['key']] = msa_combo[d['key']] * d['scale'] export_msa = msa_combo.reset_index() export_msa_filtered = export_msa[ export_msa.GEOID.isin([str(i) for i in combined.msaid.unique().tolist()]) ] export_msa_filtered[msa_indexes].astype({'pop': 'int32'}).to_csv( 'data/output/census_msa.csv', index=False ) replace_data('census_msa', msa_indexes, 'census_msa.csv') indexes.append('msaid') export = combined.reset_index() export[indexes].to_csv('data/output/census.csv', index=False) replace_data('census', indexes, 'census.csv') if __name__ == "__main__": download_census()
the-stack_0_2307
import warnings from collections import namedtuple from contextlib import suppress import boto3 from botocore.exceptions import ClientError from dagster import Array, Field, Noneable, ScalarUnion, StringSource, check from dagster.core.events import EngineEventData, MetadataEntry from dagster.core.launcher.base import LaunchRunContext, RunLauncher from dagster.grpc.types import ExecuteRunArgs from dagster.serdes import ConfigurableClass from dagster.utils import merge_dicts from ..secretsmanager import get_secrets_from_arns, get_tagged_secrets from .tasks import default_ecs_task_definition, default_ecs_task_metadata from .utils import sanitize_family Tags = namedtuple("Tags", ["arn", "cluster", "cpu", "memory"]) class EcsRunLauncher(RunLauncher, ConfigurableClass): """RunLauncher that starts a task in ECS for each Dagster job run.""" def __init__( self, inst_data=None, task_definition=None, container_name="run", secrets=None, secrets_tag="dagster", include_sidecars=False, ): self._inst_data = inst_data self.ecs = boto3.client("ecs") self.ec2 = boto3.resource("ec2") self.secrets_manager = boto3.client("secretsmanager") self.task_definition = task_definition self.container_name = container_name self.secrets = secrets or [] if all(isinstance(secret, str) for secret in self.secrets): warnings.warn( "Setting secrets as a list of ARNs is deprecated. " "Secrets should instead follow the same structure as the ECS API: " "https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Secret.html", DeprecationWarning, ) self.secrets = get_secrets_from_arns(self.secrets_manager, self.secrets) else: self.secrets = {secret["name"]: secret["valueFrom"] for secret in self.secrets} self.secrets_tag = secrets_tag self.include_sidecars = include_sidecars if self.task_definition: task_definition = self.ecs.describe_task_definition(taskDefinition=task_definition) container_names = [ container.get("name") for container in task_definition["taskDefinition"]["containerDefinitions"] ] check.invariant( container_name in container_names, f"Cannot override container '{container_name}' in task definition " f"'{self.task_definition}' because the container is not defined.", ) self.task_definition = task_definition["taskDefinition"]["taskDefinitionArn"] @property def inst_data(self): return self._inst_data @classmethod def config_type(cls): return { "task_definition": Field( StringSource, is_required=False, description=( "The task definition to use when launching new tasks. " "If none is provided, each run will create its own task " "definition." ), ), "container_name": Field( StringSource, is_required=False, default_value="run", description=( "The container name to use when launching new tasks. Defaults to 'run'." ), ), "secrets": Field( Array( ScalarUnion( scalar_type=str, non_scalar_schema={"name": StringSource, "valueFrom": StringSource}, ) ), is_required=False, description=( "An array of AWS Secrets Manager secrets. These secrets will " "be mounted as environment variabls in the container. See " "https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Secret.html." ), ), "secrets_tag": Field( Noneable(StringSource), is_required=False, default_value="dagster", description=( "AWS Secrets Manager secrets with this tag will be mounted as " "environment variables in the container. Defaults to 'dagster'." ), ), "include_sidecars": Field( bool, is_required=False, default_value=False, description=( "Whether each run should use the same sidecars as the task that launches it. " "Defaults to False." ), ), } @staticmethod def from_config_value(inst_data, config_value): return EcsRunLauncher(inst_data=inst_data, **config_value) def _set_ecs_tags(self, run_id, task_arn): try: tags = [{"key": "dagster/run_id", "value": run_id}] self.ecs.tag_resource(resourceArn=task_arn, tags=tags) except ClientError: pass def _set_run_tags(self, run_id, task_arn): cluster = self._task_metadata().cluster tags = {"ecs/task_arn": task_arn, "ecs/cluster": cluster} self._instance.add_run_tags(run_id, tags) def _get_run_tags(self, run_id): run = self._instance.get_run_by_id(run_id) tags = run.tags if run else {} arn = tags.get("ecs/task_arn") cluster = tags.get("ecs/cluster") cpu = tags.get("ecs/cpu") memory = tags.get("ecs/memory") return Tags(arn, cluster, cpu, memory) def launch_run(self, context: LaunchRunContext) -> None: """ Launch a run in an ECS task. Currently, Fargate is the only supported launchType and awsvpc is the only supported networkMode. These are the defaults that are set up by docker-compose when you use the Dagster ECS reference deployment. """ run = context.pipeline_run family = sanitize_family( run.external_pipeline_origin.external_repository_origin.repository_location_origin.location_name ) metadata = self._task_metadata() pipeline_origin = context.pipeline_code_origin image = pipeline_origin.repository_origin.container_image task_definition = self._task_definition(family, metadata, image)["family"] args = ExecuteRunArgs( pipeline_origin=pipeline_origin, pipeline_run_id=run.run_id, instance_ref=self._instance.get_ref(), ) command = args.get_command_args() # Set cpu or memory overrides # https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html cpu_and_memory_overrides = {} tags = self._get_run_tags(run.run_id) if tags.cpu: cpu_and_memory_overrides["cpu"] = tags.cpu if tags.memory: cpu_and_memory_overrides["memory"] = tags.memory # Run a task using the same network configuration as this processes's # task. response = self.ecs.run_task( taskDefinition=task_definition, cluster=metadata.cluster, overrides={ "containerOverrides": [ { "name": self.container_name, "command": command, # containerOverrides expects cpu/memory as integers **{k: int(v) for k, v in cpu_and_memory_overrides.items()}, } ], # taskOverrides expects cpu/memory as strings **cpu_and_memory_overrides, }, networkConfiguration={ "awsvpcConfiguration": { "subnets": metadata.subnets, "assignPublicIp": metadata.assign_public_ip, "securityGroups": metadata.security_groups, } }, launchType="FARGATE", ) tasks = response["tasks"] if not tasks: failures = response["failures"] exceptions = [] for failure in failures: arn = failure.get("arn") reason = failure.get("reason") detail = failure.get("detail") exceptions.append(Exception(f"Task {arn} failed because {reason}: {detail}")) raise Exception(exceptions) arn = tasks[0]["taskArn"] self._set_run_tags(run.run_id, task_arn=arn) self._set_ecs_tags(run.run_id, task_arn=arn) self._instance.report_engine_event( message="Launching run in ECS task", pipeline_run=run, engine_event_data=EngineEventData( [ MetadataEntry("ECS Task ARN", value=arn), MetadataEntry("ECS Cluster", value=metadata.cluster), MetadataEntry("Run ID", value=run.run_id), ] ), cls=self.__class__, ) def can_terminate(self, run_id): tags = self._get_run_tags(run_id) if not (tags.arn and tags.cluster): return False tasks = self.ecs.describe_tasks(tasks=[tags.arn], cluster=tags.cluster).get("tasks") if not tasks: return False status = tasks[0].get("lastStatus") if status and status != "STOPPED": return True return False def terminate(self, run_id): tags = self._get_run_tags(run_id) if not (tags.arn and tags.cluster): return False tasks = self.ecs.describe_tasks(tasks=[tags.arn], cluster=tags.cluster).get("tasks") if not tasks: return False status = tasks[0].get("lastStatus") if status == "STOPPED": return False self.ecs.stop_task(task=tags.arn, cluster=tags.cluster) return True def _task_definition(self, family, metadata, image): """ Return the launcher's task definition if it's configured. Otherwise, a new task definition revision is registered for every run. First, the process that calls this method finds its own task definition. Next, it creates a new task definition based on its own but it overrides the image with the pipeline origin's image. """ if self.task_definition: task_definition = self.ecs.describe_task_definition(taskDefinition=self.task_definition) return task_definition["taskDefinition"] secrets = merge_dicts( ( get_tagged_secrets(self.secrets_manager, self.secrets_tag) if self.secrets_tag else {} ), self.secrets, ) secrets_dict = ( {"secrets": [{"name": key, "valueFrom": value} for key, value in secrets.items()]} if secrets else {} ) task_definition = {} with suppress(ClientError): task_definition = self.ecs.describe_task_definition(taskDefinition=family)[ "taskDefinition" ] container_definitions = task_definition.get("containerDefinitions", [{}]) for container_definition in container_definitions: if ( container_definition.get("image") == image and container_definition.get("name") == self.container_name and container_definition.get("secrets") == secrets_dict.get("secrets", []) ): return task_definition return default_ecs_task_definition( self.ecs, family, metadata, image, self.container_name, secrets=secrets_dict, include_sidecars=self.include_sidecars, ) def _task_metadata(self): return default_ecs_task_metadata(self.ec2, self.ecs)
the-stack_0_2308
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Provides endpoint and web page for simple search API.""" import os import json from typing import Iterable, Iterator from flask import Flask, render_template, abort, jsonify from webargs.flaskparser import use_kwargs from webargs import fields FIELD_NAMES = ['job_history', 'company', 'email', 'city', 'country', 'name'] app = Flask(__name__) def must_match_field_name(value): return value in FIELD_NAMES def prepare_data(data: Iterable[dict]) -> Iterator[dict]: """Make job_history list comma delimited for ease of processing/display. """ for datum in data: datum['job_history'] = ', '.join(datum['job_history']) yield datum def filtered_results(data: Iterable[dict], query: str, field: str) -> Iterator[dict]: if not query: yield from data return for datum in data: if field: # Case-insensitive for simplicity if query.lower() in datum[field].lower(): yield datum else: for field_name in FIELD_NAMES: if query.lower() in datum[field_name].lower(): yield datum break @app.route("/", methods=['get']) def search(): return render_template('search.html') @app.route("/search", methods=['get']) @use_kwargs({ 'query': fields.Str(missing=None), 'field': fields.Str(missing=None, validate=must_match_field_name), 'size': fields.Int(missing=20), 'offset': fields.Int(missing=0) }, location="query") def search_api(query, field, size, offset): # File used in this example instead of further API call # or database connection json_path = os.path.join(app.root_path, 'static/json', 'mock-contacts.json') data = json.load(open(json_path)) prepped_data = prepare_data(data) results = list(filtered_results(prepped_data, query, field)) index_start = size * offset if index_start > len(results): abort(400) index_stop = min(size + (size * offset), len(results)) body = { 'results': results[index_start:index_stop], 'total': len(results) } return jsonify(body) @app.route("/rowchanged", methods=['post']) @use_kwargs({ 'rowindex': fields.Int(missing=None), 'oldvalue': fields.Str(missing=None), 'newvalue': fields.Str(missing=None), 'data': fields.Dict(missing=None), }, location="json") def rowchanged(rowindex, oldvalue, newvalue, data): print(f"rowchanged(): row {rowindex}, '{oldvalue}' -> '{newvalue}'") result = { 'resultcode': 'OK' } return jsonify(result) if __name__ == '__main__': app.run()
the-stack_0_2309
from functools import partial import trw import torch.nn as nn import torch class Net(nn.Module): def __init__(self): super().__init__() self.encoder_decoder = trw.layers.AutoencoderConvolutional( 2, 1, [8, 16, 32], [32, 16, 8, 1], # make sure we are cropping the decoded output by adding another layer convolution_kernels=3, squash_function=torch.sigmoid, # make sure the output is [0..1] domain last_layer_is_output=True # do not apply the activation on the last layer ) def forward(self, batch): x = batch['images'] encoded_x, decoded_x = self.encoder_decoder.forward_with_intermediate(x) return { 'regression': trw.train.OutputRegression(decoded_x, x), } def per_epoch_fn(): callbacks = [ trw.callbacks.CallbackEpochSummary(), trw.callbacks.CallbackSkipEpoch( nb_epochs=1, callbacks=[trw.callbacks.CallbackReportingExportSamples(table_name='random_samples', max_samples=5, split_exclusions=['train'])]), ] return callbacks options = trw.train.Options(num_epochs=100) trainer = trw.train.TrainerV2( callbacks_per_epoch=per_epoch_fn(), callbacks_post_training=[trw.callbacks.CallbackReportingExportSamples(max_samples=2000)], ) results = trainer.fit( options, datasets=trw.datasets.create_mnist_dataset(normalize_0_1=True), log_path='mnist_autoencoder', model=Net(), optimizers_fn=partial(trw.train.create_sgd_optimizers_fn, learning_rate=0.25))
the-stack_0_2310
import time import hashlib import matplotlib.pyplot as plot from passlib.hash import b import random import argon # Random salt generation def ransalt(): ALPHABET = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" chars = [] for i in range(16): chars.append(random.choice(ALPHABET)) return "".join(chars) # Variables string = input('Enter the benchmarking string: ') key = b + input('Please specify a key between 4 and 56 bytes: ') algo = ['MD5', 'SHA-1', 'SHA-224', 'SHA-256', 'SHA-384', 'SHA-512', 'Scrpyt', 'Bcrypt', 'Argon2'] colors = ['b', 'c', 'y', 'm', 'r', 'k', 'l', 'm', 'f'] results = {} # Getting iterations and step iterations = int(raw_input("Iterations: ")) while iterations < 1 or iterations > 1000000: iterations = int(raw_input("Please enter a valid value for the number of iterations (1-1000000): ")) step = int(raw_input("Step: ")) while step < 1 or step > 1000000: step = int(raw_input("Please enter a valid value for the step (1-1000000): ")) print("\nbenchmarking...\n") # MD5 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.md5(string) results[0,(i+1)*step] = (time.time() - Start) print("\nMD5 benchmark done.\n") # SHA-1 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.sha1(string) results[1, (i+1)*step] = (time.time() - Start) print("\nSHA-1 benchmark done.\n") # SHA-224 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.sha224(string) results[2, (i+1)*step] = (time.time() - Start) print("\nSHA-224 benchmark done.\n") # SHA-256 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.sha256(string) results[3, (i+1)*step] = (time.time() - Start) print("\nSHA-256 benchmark done.\n") # SHA-384 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.sha384(string) results[4, (i+1)*step] = (time.time() - Start) print("\nSHA-384 benchmark done.\n") # SHA-512 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): hashlib.sha512(string) results[5, (i+1)*step] = (time.time() - Start) print("\nSHA-512 benchmark done.\n") # Bcrypt Start = time.time() tString = b + string for i in range (iterations): for j in range ((i+1)*step): bcrypt.hashpw(tString, bcrypt.gensalt()) #random salt results[6, (i+1)*step] = (time.time() - Start) print("\nBcrypt benchmark done.\n") # Scrypt Start = time.time() tString = b + string #redundant but for exhibition purposes for i in range (iterations): for j in range ((i+1)*step): hashlib.scrypt(key, ransalt()) results[7, (i+1)*step] = (time.time() - Start) print("\nScrypy benchmark done.\n") # Argon2 Start = time.time() for i in range (iterations): for j in range ((i+1)*step): argon2.argon2_hash(string, ransalt()) results[8, (i+1)*step] = (time.time() - Start) print("\nArgon2 benchmark done.\n") # Generate plot and print results print("\n---------- Report ----------\n") for i in range(9): print(algo[i]) for j in range (iterations): print((j+1)*step, 'iterations in', results[i,(j+1)*step]*pow(10,3), 'ms') plot.plot((j+1)*step, results[i,(j+1)*step]*pow(10,3),colors[i]+'o', label=str(algo[i]) if j == 0 else "") print('\n') plot.xlabel('Iterations') plot.ylabel('Execution time in milliseconds') plot.title('PyBenchHash', fontsize=40, color='white') plot.legend(loc=2) plot.grid(True) plot.show()
the-stack_0_2311
#!/usr/bin/env python3 import os import math from numbers import Number from cereal import car, log from common.numpy_fast import clip from common.realtime import sec_since_boot, config_realtime_process, Priority, Ratekeeper, DT_CTRL from common.profiler import Profiler from common.params import Params, put_nonblocking import cereal.messaging as messaging from selfdrive.config import Conversions as CV from selfdrive.swaglog import cloudlog from selfdrive.boardd.boardd import can_list_to_can_capnp from selfdrive.car.car_helpers import get_car, get_startup_event, get_one_can from selfdrive.controls.lib.lane_planner import CAMERA_OFFSET from selfdrive.controls.lib.drive_helpers import update_v_cruise, initialize_v_cruise from selfdrive.controls.lib.drive_helpers import get_lag_adjusted_curvature from selfdrive.controls.lib.longcontrol import LongControl from selfdrive.controls.lib.latcontrol_pid import LatControlPID from selfdrive.controls.lib.latcontrol_indi import LatControlINDI from selfdrive.controls.lib.latcontrol_lqr import LatControlLQR from selfdrive.controls.lib.latcontrol_angle import LatControlAngle from selfdrive.controls.lib.events import Events, ET from selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.locationd.calibrationd import Calibration from selfdrive.hardware import HARDWARE, TICI, EON from selfdrive.manager.process_config import managed_processes SOFT_DISABLE_TIME = 3 # seconds LDW_MIN_SPEED = 31 * CV.MPH_TO_MS LANE_DEPARTURE_THRESHOLD = 0.1 REPLAY = "REPLAY" in os.environ SIMULATION = "SIMULATION" in os.environ NOSENSOR = "NOSENSOR" in os.environ IGNORE_PROCESSES = {"rtshield", "uploader", "deleter", "loggerd", "logmessaged", "tombstoned", "logcatd", "proclogd", "clocksd", "updated", "timezoned", "manage_athenad", "statsd", "shutdownd"} | \ {k for k, v in managed_processes.items() if not v.enabled} ACTUATOR_FIELDS = set(car.CarControl.Actuators.schema.fields.keys()) ThermalStatus = log.DeviceState.ThermalStatus State = log.ControlsState.OpenpilotState PandaType = log.PandaState.PandaType Desire = log.LateralPlan.Desire LaneChangeState = log.LateralPlan.LaneChangeState LaneChangeDirection = log.LateralPlan.LaneChangeDirection EventName = car.CarEvent.EventName ButtonEvent = car.CarState.ButtonEvent SafetyModel = car.CarParams.SafetyModel IGNORED_SAFETY_MODES = [SafetyModel.silent, SafetyModel.noOutput] CSID_MAP = {"0": EventName.roadCameraError, "1": EventName.wideRoadCameraError, "2": EventName.driverCameraError} class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.camera_packets = ["roadCameraState", "driverCameraState"] if TICI: self.camera_packets.append("wideRoadCameraState") params = Params() self.joystick_mode = params.get_bool("JoystickDebugMode") joystick_packet = ['testJoystick'] if self.joystick_mode else [] self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState'] if SIMULATION else None self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState'] + self.camera_packets + joystick_packet, ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) if TICI: self.log_sock = messaging.sub_sock('androidLog') # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) # read params self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly self.read_only = not car_recognized or not controller_available or self.CP.dashcamOnly if self.read_only: safety_config = car.CarParams.SafetyConfig.new_message() safety_config.safetyModel = car.CarParams.SafetyModel.noOutput self.CP.safetyConfigs = [safety_config] # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP, self.CI) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.cruise_mismatch_counter = 0 self.can_rcv_error_counter = 0 self.last_blinker_frame = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.button_timers = {ButtonEvent.Type.decelCruise: 0, ButtonEvent.Type.accelCruise: 0} self.last_actuators = car.CarControl.Actuators.new_message() # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if len(self.CP.carFw) > 0: set_offroad_alert("Offroad_CarUnrecognized", True) else: set_offroad_alert("Offroad_NoFirmware", True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) elif self.joystick_mode: self.events.add(EventName.joystickDebug, static=True) self.startup_event = None # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() # Add startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Create events for battery, temperature, disk space, and memory if EON and (self.sm['peripheralState'].pandaType != PandaType.uno) and \ self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) # TODO: make tici threshold the same if self.sm['deviceState'].memoryUsagePercent > (90 if TICI else 65) and not SIMULATION: self.events.add(EventName.lowMemory) # TODO: enable this once loggerd CPU usage is more reasonable #cpus = list(self.sm['deviceState'].cpuUsagePercent)[:(-1 if EON else None)] #if max(cpus, default=0) > 95 and not SIMULATION: # self.events.add(EventName.highCpuUsage) # Alert if fan isn't spinning for 5 seconds if self.sm['peripheralState'].pandaType in (PandaType.uno, PandaType.dos): if self.sm['peripheralState'].fanSpeedRpm == 0 and self.sm['deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in (LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing): self.events.add(EventName.laneChange) if not CS.canValid: self.events.add(EventName.canError) for i, pandaState in enumerate(self.sm['pandaStates']): # All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput if i < len(self.CP.safetyConfigs): safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \ pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \ pandaState.unsafeMode != self.CP.unsafeMode else: safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES if safety_mismatch or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) # Check for HW or system issues if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) elif not self.sm.valid["pandaStates"]: self.events.add(EventName.usbError) elif not self.sm.all_alive_and_valid() or self.can_rcv_error: self.events.add(EventName.commIssue) if not self.logged_comm_issue: invalid = [s for s, valid in self.sm.valid.items() if not valid] not_alive = [s for s, alive in self.sm.alive.items() if not alive] cloudlog.event("commIssue", invalid=invalid, not_alive=not_alive, can_error=self.can_rcv_error, error=True) self.logged_comm_issue = True else: self.logged_comm_issue = False if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if not REPLAY: # Check for mismatch between openpilot and car's PCM cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0 if self.cruise_mismatch_counter > int(3. / DT_CTRL): self.events.add(EventName.cruiseMismatch) # Check for FCW stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.5 model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled if planner_fcw or model_fcw: self.events.add(EventName.fcw) if TICI: for m in messaging.drain_sock(self.log_sock, wait_for_one=False): try: msg = m.androidLog.message if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED")): csid = msg.split("CSID:")[-1].split(" ")[0] evt = CSID_MAP.get(csid, None) if evt is not None: self.events.add(evt) except UnicodeDecodeError: pass # TODO: fix simulator if not SIMULATION: if not NOSENSOR: if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes self.events.add(EventName.noGps) if not self.sm.all_alive(self.camera_packets): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) if self.sm['liveLocationKalman'].excessiveResets: self.events.add(EventName.localizerMalfunction) # Check if all manager processes are running not_running = {p.name for p in self.sm['managerState'].processes if not p.running} if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car speeds = self.sm['longitudinalPlan'].speeds if len(speeds) > 1: v_future = speeds[-1] else: v_future = 100.0 if CS.brakePressed and v_future >= self.CP.vEgoStarting \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) if not self.initialized: all_valid = CS.canValid and self.sm.all_alive_and_valid() if all_valid or self.sm.frame * DT_CTRL > 3.5 or SIMULATION: if not self.read_only: self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan']) self.initialized = True if REPLAY and self.sm['pandaStates'][0].controlsAllowed: self.state = State.enabled Params().put_bool("ControlsReady", True) # Check for CAN timeout if not can_strs: self.can_rcv_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 # All pandas not in silent mode must have controlsAllowed when openpilot is enabled if self.enabled and any(not ps.controlsAllowed for ps in self.sm['pandaStates'] if ps.safetyModel not in IGNORED_SAFETY_MODES): self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.pcmCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.button_timers, self.enabled, self.is_metric) elif CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH # decrement the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) sr = max(params.steerRatio, 0.1) self.VM.update_params(x, sr) lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] actuators = car.CarControl.Actuators.new_message() actuators.longControlState = self.LoC.long_control_state if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) if not self.joystick_mode: # accel PID loop pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_kph * CV.KPH_TO_MS) t_since_plan = (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) * DT_CTRL actuators.accel = self.LoC.update(self.active, CS, self.CP, long_plan, pid_accel_limits, t_since_plan) # Steering PID loop and lateral MPC lat_active = self.active and not CS.steerWarning and not CS.steerError and CS.vEgo > self.CP.minSteerSpeed desired_curvature, desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures, lat_plan.curvatureRates) actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(lat_active, CS, self.CP, self.VM, params, self.last_actuators, desired_curvature, desired_curvature_rate) else: lac_log = log.ControlsState.LateralDebugState.new_message() if self.sm.rcv_frame['testJoystick'] > 0 and self.active: actuators.accel = 4.0*clip(self.sm['testJoystick'].axes[0], -1, 1) steer = clip(self.sm['testJoystick'].axes[1], -1, 1) # max angle is 45 for angle-based cars actuators.steer, actuators.steeringAngleDeg = steer, steer * 45. lac_log.active = True lac_log.steeringAngleDeg = CS.steeringAngleDeg lac_log.output = steer lac_log.saturated = abs(steer) >= 0.9 # Send a "steering required alert" if saturation count has reached the limit if lac_log.active and lac_log.saturated and not CS.steeringPressed: dpath_points = lat_plan.dPathPoints if len(dpath_points): # Check if we deviated from the path # TODO use desired vs actual curvature left_deviation = actuators.steer > 0 and dpath_points[0] < -0.20 right_deviation = actuators.steer < 0 and dpath_points[0] > 0.20 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) # Ensure no NaNs/Infs for p in ACTUATOR_FIELDS: attr = getattr(actuators, p) if not isinstance(attr, Number): continue if not math.isfinite(attr): cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}") setattr(actuators, p, 0.0) return actuators, lac_log def update_button_timers(self, buttonEvents): # increment timer for buttons still pressed for k in self.button_timers: if self.button_timers[k] > 0: self.button_timers[k] += 1 for b in buttonEvents: if b.type.raw in self.button_timers: self.button_timers[b.type.raw] = 1 if b.pressed else 0 def publish_logs(self, CS, start_time, actuators, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.enabled = self.enabled CC.active = self.active CC.actuators = actuators orientation_value = self.sm['liveLocationKalman'].orientationNED.value if len(orientation_value) > 2: CC.roll = orientation_value[0] CC.pitch = orientation_value[1] CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) if self.joystick_mode and self.sm.rcv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]: CC.cruiseControl.cancel = True hudControl = CC.hudControl hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) hudControl.speedVisible = self.enabled hudControl.lanesVisible = self.enabled hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead hudControl.rightLaneVisible = True hudControl.leftLaneVisible = True recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED model_v2 = self.sm['modelV2'] desire_prediction = model_v2.meta.desirePrediction if len(desire_prediction) and ldw_allowed: right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 l_lane_change_prob = desire_prediction[Desire.laneChangeLeft - 1] r_lane_change_prob = desire_prediction[Desire.laneChangeRight - 1] lane_lines = model_v2.laneLines l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET)) r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET)) hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if hudControl.rightLaneDepart or hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event_types = set() if ET.WARNING not in self.current_alert_types: clear_event_types.add(ET.WARNING) if self.enabled: clear_event_types.add(ET.NO_ENTRY) alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric, self.soft_disable_timer]) self.AM.add_many(self.sm.frame, alerts) current_alert = self.AM.process_alerts(self.sm.frame, clear_event_types) if current_alert: hudControl.visualAlert = current_alert.visual_alert if not self.read_only and self.initialized: # send car controls over can self.last_actuators, can_sends = self.CI.apply(CC) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) CC.actuatorsOutput = self.last_actuators force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, params.roll) # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState if current_alert: controlsState.alertText1 = current_alert.alert_text_1 controlsState.alertText2 = current_alert.alert_text_2 controlsState.alertSize = current_alert.alert_size controlsState.alertStatus = current_alert.alert_status controlsState.alertBlinkingRate = current_alert.alert_rate controlsState.alertType = current_alert.alert_type controlsState.alertSound = current_alert.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_rcv_error_counter lat_tuning = self.CP.lateralTuning.which() if self.joystick_mode: controlsState.lateralControlState.debugState = lac_log elif self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif lat_tuning == 'pid': controlsState.lateralControlState.pidState = lac_log elif lat_tuning == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif lat_tuning == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only and self.initialized: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, lac_log) self.prof.checkpoint("Sent") self.update_button_timers(CS.buttonEvents) def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display() def main(sm=None, pm=None, logcan=None): controls = Controls(sm, pm, logcan) controls.controlsd_thread() if __name__ == "__main__": main()
the-stack_0_2313
""" Methods for computing confidence intervals. """ import scipy.special as special import numpy as np import pandas as pd import scipy.stats as stats def z_effect(ci_low, ci_high): """ Compute an effect score for a z-score. Parameters ---------- ci_low : Lower bound of the confidence interval ci_high : Upper bound of the confidence interval Returns ------- score : An effect score for a Z-score Notes ---- This is the absolute value of the lower bound of the confidence interval, or zero if the interval contains zero. """ if np.isnan(ci_low) or np.isnan(ci_high): return 0 return 0 if (ci_low * ci_high < 0) else min(abs(ci_low), abs(ci_high)) def ci_mi(g, dof, n, conf): """ Compute confidence interval for mutual information from the chi-squared distribution. Parameters ---------- g : the G-test score dof : the number of degrees of freedom n : the size of the data sample conf : the confidence level Returns ------- ci_low : The lower level of the confidence interval for MI ci_high : The upper level of the confidence interval for MI References ---------- Smithson, M. (Ed.). (2003). Confidence Intervals. (07/140). Thousand Oaks, CA: SAGE Publications, Inc. doi: http://dx.doi.org/10.4135/9781412983761 https://en.wikipedia.org/wiki/G-test """ p_low = 1-(1-conf)/2 p_high = (1-conf)/2 g_low = special.chndtrinc(g, dof, p_low) g_high = special.chndtrinc(g, dof, p_high) ci_low, ci_high = ((g_low+dof)/(2.0*n), (g_high+dof)/(2.0*n)) return ci_low, ci_high def ci_norm(conf, stat, sigma): """ Confidence interval for a normal approximation. Parameters ---------- conf : the confidence level stat : the asymptotically normal statistic sigma : the standard deviation of the statistic Returns ------- ci_low : The lower level of the confidence interval ci_high : The upper level of the confidence interval """ ci_low, ci_high = stats.norm.interval(conf, loc=stat, scale=sigma) return ci_low, ci_high def bootstrap_ci_ct(data, stat, num_samples=10000, conf=0.95): """ Bootstrap confidence interval computation on a contingency table Parameters ---------- data : Contingency table collected from independent samples stat : Statistic to bootstrap. Takes a contingency table as argument num_samples : Number of bootstrap samples to generate conf : Confidence level for the interval Returns ------- ci_low : The lower level of the confidence interval ci_high : The upper level of the confidence interval """ if isinstance(data, pd.DataFrame): data = data.values dim = data.shape data = data.flatten() data += 1 n = data.sum() # print 'Bootstrap on data of size {}'.format(n) probas = (1.0*data)/n # Obtain `num_samples' random samples of `n' multinomial values, sampled # with replacement from {0, 1, ..., n-1}. For each sample, rebuild a # contingency table and compute the stat. temp = np.random.multinomial(n, probas, size=num_samples) bs_stats = [row.reshape(dim) for row in temp] bs_stats = [stat(ct) for ct in bs_stats] alpha = 1-conf ci_low = np.percentile(bs_stats, 100*alpha/2) ci_high = np.percentile(bs_stats, 100*(1-alpha/2)) return ci_low, ci_high def bootstrap_ci_corr(x, y, stat, num_samples=10000, conf=0.95): """ Bootstrap confidence interval computation for correlation Parameters ---------- x : First dimension of the data y : Second dimension of the data stat : Statistic to bootstrap. Takes a two-dimensional array as input num_samples : Number of bootstrap samples to generate conf : Confidence level for the interval Returns ------- ci_low : The lower level of the confidence interval ci_high : The upper level of the confidence interval """ data = np.array(zip(x, y)) n = len(data) idxs = np.random.randint(0, n, (num_samples, n)) samples = [data[idx] for idx in idxs] bs_stats = [stat(sample[:, 0], sample[:, 1]) for sample in samples] alpha = 1-conf ci_low = np.percentile(bs_stats, 100*alpha/2) ci_high = np.percentile(bs_stats, 100*(1-alpha/2)) return ci_low, ci_high def bootstrap_ci_ct_cond(data, stat, num_samples=10000, conf=0.95): """ Bootstrap confidence interval computation on a 3-way contingency table Parameters ---------- data : Contingency table collected from independent samples stat : Statistic to bootstrap. Takes a 3-way contingency table as argument num_samples : Number of bootstrap samples to generate conf : Confidence level for the interval Returns ------- ci_low : The lower level of the confidence interval ci_high : The upper level of the confidence interval """ data = np.array([ct.values if isinstance(ct, pd.DataFrame) else ct for ct in data]) dim = data.shape data = [ct.flatten()+1 for ct in data] probas = [(1.0*ct)/ct.sum() for ct in data] # Resample for each explanatory group temp = np.dstack([np.random.multinomial(data[i].sum(), probas[i], size=num_samples) for i in range(dim[0])]) bs_stats = [row.T.reshape(dim) for row in temp] bs_stats = [stat(ct) for ct in bs_stats] alpha = 1-conf ci_low = np.percentile(bs_stats, 100*alpha/2) ci_high = np.percentile(bs_stats, 100*(1-alpha/2)) return ci_low, ci_high
the-stack_0_2314
from django.test import TestCase from mock import patch, MagicMock from model_mommy import mommy from dbaas.tests.helpers import DatabaseHelper from logical.models import Database from notification.tasks import check_database_is_alive @patch('logical.models.Database.update_status', new=MagicMock()) @patch('notification.tasks.get_worker_name', new=MagicMock()) @patch('notification.tasks.TaskHistory.register') class DatabaseStatusTestCase(TestCase): def setUp(self): self.task_history = mommy.make( 'TaskHistory', task_name='notification.tasks.database_status', ) def test_database_alive(self, task_register_mock): database = DatabaseHelper.create(name='test', status=Database.ALIVE) task_register_mock.return_value = self.task_history check_database_is_alive(database, wait=0) self.assertEqual(self.task_history.task_status, 'SUCCESS') self.assertIn('Database test is Alive', self.task_history.details) def test_database_initializing(self, task_register_mock): database = DatabaseHelper.create( name='test', status=Database.INITIALIZING ) task_register_mock.return_value = self.task_history check_database_is_alive(database, wait=0) self.assertEqual(self.task_history.task_status, 'SUCCESS') self.assertIn('Database test is Initializing', self.task_history.details ) def test_database_alert(self, task_register_mock): database = DatabaseHelper.create(name='test', status=Database.ALERT) task_register_mock.return_value = self.task_history check_database_is_alive(database, wait=0) self.assertEqual(self.task_history.task_status, 'ERROR') self.assertIn('Database test is Alert', self.task_history.details) def test_database_dead(self, task_register_mock): database = DatabaseHelper.create(name='test', status=Database.DEAD) task_register_mock.return_value = self.task_history check_database_is_alive(database, wait=0) self.assertEqual(self.task_history.task_status, 'ERROR') self.assertIn('Database test is Dead', self.task_history.details)
the-stack_0_2315
# -*- coding: utf-8 -*- """ Created on Tue Jan 15 12:48:54 2019 @author: James Kring @email: [email protected] """ import sys sys.path.insert(0, '/home/cth/cthgroup/Python/recon') from recon_input import InputClass import click # ============================================================================= # Example Commandline Use: python recon_runner.py shot 'times' # python recon_runner.py 14092626 '1.62 1.63 1.64' # # Input files will be saved in shot_number directory that is in the # working_directory set below. # ============================================================================= @click.command(context_settings=dict(ignore_unknown_options=True, allow_extra_args=True,)) @click.pass_context @click.argument('shotnumber') @click.argument('times') @click.option('--inputs', is_flag=True, help='Generates input files only') def cmd_line(ctx, shotnumber, times, inputs): d = dict() for item in ctx.args: d1 = [item.split('=')] d.update(d1) times = times.split() n_times = [] for time in times: n_times.append(float(time)) try: with open('v3config.txt', 'r') as file: lines = file.readlines() marker = True except: marker = False if marker: for i, line in enumerate(lines): if line.startswith('working_directory'): working_directory1 = line.rstrip().split('=')[1] elif line.startswith('vmec_template'): vmec_template1 = line.rstrip().split('=')[1] elif line.startswith('v3fit_template'): v3fit_template1 = line.rstrip().split('=')[1] elif line.startswith('v3fit_executable'): v3fit_executable1 = line.rstrip().split('=')[1] if 'v3fit_executable' not in d: d['v3fit_executable']=v3fit_executable1 if 'directory' not in d: d['directory']=working_directory1 if 'vmec_template' not in d: d['vmec_template']=vmec_template1 if 'v3fit_template' not in d: d['v3fit_template']=v3fit_template1 shot = InputClass(int(shotnumber), n_times, **d) else: shot = InputClass(int(shotnumber), n_times, **d) if inputs: shot.generate_input_files() else: shot.generate_and_run() if __name__ == '__main__': cmd_line()
the-stack_0_2316
from code_pipeline.tests_generation import RoadTestFactory from time import sleep from swat_gen.road_gen import RoadGen import logging as log from code_pipeline.validation import TestValidator from code_pipeline.tests_generation import RoadTestFactory from scipy.interpolate import splprep, splev, interp1d, splrep from shapely.geometry import LineString, Point, GeometryCollection from numpy.ma import arange class SwatTestGenerator: """ This simple test generator creates roads using affine tratsformations of vectors. To generate the sequences of action, e.g "go straight", "turn right", "turn left" a Markov chain used. This generator can quickly create a number of tests, however their fault revealing power isn't optimized and the roads can intersect. """ def __init__(self, time_budget=None, executor=None, map_size=None): self.map_size = map_size self.time_budget = time_budget self.executor = executor def start(self): road = RoadGen(self.map_size, 5, 30, 10, 80) while self.executor.get_remaining_time() > 0: # Some debugging log.info( "Starting test generation. Remaining time %s", self.executor.get_remaining_time(), ) # generate the road points. # class input values correspond to maximum distance to go stright and rotation angle road.test_case_generate() points = interpolate_road(road.road_points) points = remove_invalid_cases(points, self.map_size) the_test = RoadTestFactory.create_road_test(points) # Some more debugging log.info("Generated test using: %s", road.road_points) #the_test = RoadTestFactory.create_road_test(road.road_points) # Try to execute the test test_outcome, description, execution_data = self.executor.execute_test( the_test ) # Print the result from the test and continue log.info("test_outcome %s", test_outcome) log.info("description %s", description) if self.executor.road_visualizer: sleep(5) def interpolate_road(road): #road.sort() #print(road) test_road = LineString([(t[0], t[1]) for t in road]) length = test_road.length #print("Length", length) old_x_vals = [t[0] for t in road] old_y_vals = [t[1] for t in road] if len(old_x_vals) == 2: # With two points the only option is a straight segment k = 1 elif len(old_x_vals) == 3: # With three points we use an arc, using linear interpolation will result in invalid road tests k = 2 else: # Otheriwse, use cubic splines k = 3 f2, u = splprep([old_x_vals, old_y_vals], s=0, k=k) step_size = 1 / (length) * 10 xnew = arange(0, 1 + step_size, step_size) x2, y2 = splev(xnew, f2) nodes = list(zip(x2,y2)) return nodes def remove_invalid_cases(points, map_size): new_list = [] i = 0 while i < len(points): if point_in_range_2(points[i], map_size) == 1: new_list.append(points[i]) else: return new_list i+=1 return new_list def point_in_range_2(a, map_size): """check if point is in the acceptable range""" if ((0 + 4) < a[0] and a[0] < (map_size- 4)) and ((0 +4) < a[1] and a[1] < (map_size - 4)): return 1 else: return 0 if __name__ == "__main__": tests = SwatTestGenerator(time_budget=250000, executor="mock", map_size=200) tests.start()
the-stack_0_2318
from botocore.exceptions import ClientError # Stores found values to minimize AWS calls PARAM_CACHE = {} current_region = None def get_special_param(client, func, param): print('Getting info for func: {}, param: {}'.format(func, param)) if param in PARAM_CACHE: return PARAM_CACHE[param] if param == 'Bucket': PARAM_CACHE[param] = get_bucket(client) elif param == 'Attribute': # Return 'Attribute directly because it doesn't need to reach out to AWS return get_attribute(func) elif param == 'Key': PARAM_CACHE[param] = get_key(client) return PARAM_CACHE[param] def get_key(client, i=0): try: bucket = client.list_buckets()['Buckets'][i]['Name'] try: key = client.list_objects_v2( Bucket=bucket, MaxKeys=1 ).get('Contents', [{}])[0].get('Key') return key except KeyError: get_key(client, i+1) # If this bucket is empty try the next one except ClientError as error: if error.response['Error']['Code'] == 'AccessDeniedException': return None return None def get_bucket(client): try: return client.list_buckets()['Buckets'][0]['Name'] except ClientError as error: if error.response['Error']['Code'] == 'AccessDeniedException': return None return None def get_attribute(func): FUNC_ATTRIBUTES = { 'reset_image_attribute': 'launchPermission', 'reset_instance_attribute': 'kernel', 'reset_snapshot_attribute': 'createVolumePermission', 'describe_instance_attribute': 'instanceType', 'describe_image_attribute': 'description', 'describe_snapshot_attribute': 'productCodes', 'describe_vpc_attribute': 'enableDnsSupport', } return FUNC_ATTRIBUTES.get(func, None)
the-stack_0_2319
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Quantization define""" import mindspore as ms import mindspore.nn as nn from mindspore import Parameter, Tensor from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore.common.initializer import initializer #------weight symmetric, activation asymmetric------# class QuanConv(nn.Conv2d): r"""Conv for quantization""" def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=True): super(QuanConv, self).__init__(in_channels, out_channels, kernel_size, stride, pad_mode, padding, dilation, group, has_bias) self.floor = P.Floor() self.expand_dims = P.ExpandDims() self.x_lower_bound = Tensor(0, ms.float32) self.x_upper_bound = Tensor(2 ** 8 - 1, ms.float32) self.w_lower_bound = Tensor(-2 ** 7 - 1, ms.float32) self.w_upper_bound = Tensor(2 ** 7, ms.float32) self.scale_a = Parameter(initializer('ones', [1]), name='scale_a') self.scale_w = Parameter(initializer( 'ones', [out_channels]), name='scale_w') self.zp_a = Parameter(initializer('ones', [1]), name='zp_a') def construct(self, in_data): r"""construct of QuantConv""" x = self.floor(in_data / self.scale_a - self.zp_a + 0.5) x = C.clip_by_value(x, self.x_lower_bound, self.x_upper_bound) x = (x + self.zp_a) * self.scale_a exp_dim_scale_w = self.scale_w exp_dim_scale_w = self.expand_dims(exp_dim_scale_w, 1) exp_dim_scale_w = self.expand_dims(exp_dim_scale_w, 2) exp_dim_scale_w = self.expand_dims(exp_dim_scale_w, 3) w = self.floor(self.weight / exp_dim_scale_w + 0.5) w = C.clip_by_value(w, self.w_lower_bound, self.w_upper_bound) w = w * exp_dim_scale_w # forward output = self.conv2d(x, w) if self.has_bias: output = self.bias_add(output, self.bias) return output
the-stack_0_2320
from django.contrib.auth.models import User from image_loader.image.models import MainImage, Image from image_loader.plan.models import UserPlan, Plan from rest_framework.test import APITestCase from django.urls import reverse from django.core.files import File class TestAPI(APITestCase): @classmethod def setUpTestData(cls): """ Mock some objects """ enterprise_user = User.objects.create_user( username="enterprise", password="enterprise", ) enterprise_plan = Plan.objects.create( plan_name="Enterprise", allowed_sizes="200 400", acces_to_the_og=True, ability_to_generate_expiring_links=True, ) UserPlan.objects.create( user=enterprise_user, plan=enterprise_plan ) basic_user = User.objects.create_user( username="basic", password="basic", ) basic_plan = Plan.objects.create( plan_name="Basic", allowed_sizes="200", acces_to_the_og=False, ability_to_generate_expiring_links=False, ) UserPlan.objects.create( user=basic_user, plan=basic_plan ) def test_get_allowed_sizes(self): """ test if obj method returns correct data """ plan = Plan.objects.get(plan_name="Enterprise") self.assertEqual(plan.get_allowed_sizes(), ["200", "400"]) plan = Plan.objects.get(plan_name="Basic") self.assertEqual(plan.get_allowed_sizes(), ["200"]) def test_image_main_view_set_basic(self): """ image uploader, Basic Plan """ url = reverse("image:mainimage-list") response = self.client.get(url) self.assertEqual(response.status_code, 403) ## because of unauth user = User.objects.get(username="basic") self.client.force_authenticate(user) response = self.client.get(url) self.assertEqual(response.status_code, 200) ## auth, OK data = {} response = self.client.post(url, data) self.assertEqual(response.status_code, 400) ## beacuse of empty image data["image"] = File(open("media/test/test.jpg", "rb")) response = self.client.post(url, data) self.assertEqual(response.data["image_name"], "test") images = response.data["images"] self.assertEqual(len(images), 1) ## just image of size 200 data = {} data["image"] = File(open("media/test/test.bmp", "rb")) response = self.client.post(url, data) self.assertEqual(response.status_code, 400) ## because of the incorrect extension self.assertEqual(str(response.data["image"][0]), "Incorrect file!") data["image"] = File(open("media/test/test.jpg", "rb")) response = self.client.post(url, data) self.assertEqual(response.status_code, 400) ## same file already exists def test_image_main_views_set_and_detail_enterprise(self): """ image uploader, Enerprise Plan """ user = User.objects.get(username="enterprise") self.client.force_authenticate(user) url = reverse("image:mainimage-list") data = {} data["image"] = File(open("media/test/test.jpg", "rb")) response = self.client.post(url, data) self.assertEqual(len(response.data["images"]), 3) ## 200, 400 and original photo url = reverse("image:mainimage-detail", kwargs={"image_name": "test"}) response = self.client.get(url) self.assertEqual(response.data["image_name"], "test") self.assertEqual(len(response.data["images"]), 3) ## 200, 400 and original photo def test_generate_link_api_view(self): """ generating temporary links to images """ url = reverse("image:mainimage-list") data = {} data["image"] = File(open("media/test/test.jpg", "rb")) user = User.objects.get(username="enterprise") self.client.force_authenticate(user) response = self.client.post(url, data) self.assertEqual(response.status_code, 201) url = reverse("image:generate-link") data = { "expires_after": 1000, "size": 200, "image_name": "test" } response = self.client.post(url, data) self.assertEqual(response.status_code, 200) link = response.data["link"] response = self.client.get(link) self.assertEqual(response.status_code, 200)
the-stack_0_2321
from django.test import TestCase from django.test.client import Client from wagtail.wagtailredirects import models def get_default_site(): from wagtail.wagtailcore.models import Site return Site.objects.filter(is_default_site=True).first() def get_default_host(): return get_default_site().root_url.split('://')[1] class TestRedirects(TestCase): def test_path_normalisation(self): # Shortcut to normalise function (to keep things tidy) normalise_path = models.Redirect.normalise_path # Create a path path = normalise_path('/Hello/world.html?foo=Bar&Baz=quux2') # Test against equivilant paths self.assertEqual(path, normalise_path('/Hello/world.html?foo=Bar&Baz=quux2')) # The exact same URL self.assertEqual(path, normalise_path('Hello/world.html?foo=Bar&Baz=quux2')) # Leading slash can be omitted self.assertEqual(path, normalise_path('Hello/world.html/?foo=Bar&Baz=quux2')) # Trailing slashes are ignored self.assertEqual(path, normalise_path('/Hello/world.html?foo=Bar&Baz=quux2#cool')) # Fragments are ignored self.assertEqual(path, normalise_path('/Hello/world.html?Baz=quux2&foo=Bar')) # Order of query string paramters are ignored # Test against different paths self.assertNotEqual(path, normalise_path('/hello/world.html?foo=Bar&Baz=quux2')) # 'hello' is lowercase self.assertNotEqual(path, normalise_path('/Hello/world?foo=Bar&Baz=quux2')) # No '.html' self.assertNotEqual(path, normalise_path('/Hello/world.html?foo=bar&Baz=Quux2')) # Query string parameters have wrong case self.assertNotEqual(path, normalise_path('/Hello/world.html?foo=Bar&baz=quux2')) # ditto self.assertNotEqual(path, normalise_path('/Hello/WORLD.html?foo=Bar&Baz=quux2')) # 'WORLD' is uppercase self.assertNotEqual(path, normalise_path('/Hello/world.htm?foo=Bar&Baz=quux2')) # '.htm' is not the same as '.html' # Normalise some rubbish to make sure it doesn't crash normalise_path('This is not a URL') normalise_path('//////hello/world') normalise_path('!#@%$*') normalise_path('C:\\Program Files (x86)\\Some random program\\file.txt') def test_basic_redirect(self): # Get a client c = Client() # Create a redirect redirect = models.Redirect(old_path='/redirectme', redirect_link='/redirectto', site=get_default_site()) redirect.save() # Navigate to it r = c.get('/redirectme/', HTTP_HOST=get_default_host()) # Check that we were redirected self.assertEqual(r.status_code, 301) self.assertTrue(r.has_header('Location')) def test_temporary_redirect(self): # Get a client c = Client() # Create a redirect redirect = models.Redirect(old_path='/redirectme', redirect_link='/redirectto', site=get_default_site(), is_permanent=False) redirect.save() # Navigate to it r = c.get('/redirectme/', HTTP_HOST=get_default_host()) # Check that we were redirected temporarily self.assertEqual(r.status_code, 302) self.assertTrue(r.has_header('Location'))
the-stack_0_2323
import logging import pytest log = logging.getLogger("dexbot") log.setLevel(logging.DEBUG) @pytest.fixture() def worker(strategybase): return strategybase @pytest.mark.mandatory def test_init(worker): pass @pytest.mark.parametrize('asset', ['base', 'quote']) def test_get_operational_balance(asset, worker, monkeypatch): share = 0.1 def get_share(*args): return share symbol = worker.market[asset]['symbol'] balance = worker.balance(symbol) op_balance = worker.get_operational_balance() assert op_balance[asset] == balance['amount'] monkeypatch.setattr(worker, 'get_worker_share_for_asset', get_share) op_balance = worker.get_operational_balance() assert op_balance[asset] == balance['amount'] * share
the-stack_0_2324
""" Please see https://computationalmindset.com/en/neural-networks/ordinary-differential-equation-solvers.html#ode1 for details """ import numpy as np import matplotlib.pyplot as plt import torch from torchdiffeq import odeint ode_fn = lambda t, x: torch.sin(t) + 3. * torch.cos(2. * t) - x an_sol = lambda t : (1./2.) * np.sin(t) - (1./2.) * np.cos(t) + \ (3./5.) * np.cos(2.*t) + (6./5.) * np.sin(2.*t) - \ (1./10.) * np.exp(-t) t_begin=0. t_end=10. t_nsamples=100 t_space = np.linspace(t_begin, t_end, t_nsamples) x_init = torch.Tensor([0.]) x_an_sol = an_sol(t_space) x_num_sol = odeint(ode_fn, x_init, torch.Tensor(t_space)) plt.figure() plt.plot(t_space, x_an_sol, '--', linewidth=2, label='analytical') plt.plot(t_space, x_num_sol, linewidth=1, label='numerical') plt.title('ODE 1st order IVP solved by TorchDiffEq') plt.xlabel('t') plt.ylabel('x') plt.legend() plt.show()
the-stack_0_2325
#!/usr/bin/env python2 # coding: utf-8 import re from collections import defaultdict from pykit.dictutil import FixedKeysDict from .block_id import BlockID from .block_desc import BlockDesc from .block_group_id import BlockGroupID from .block_index import BlockIndex from .replication_config import ReplicationConfig class BlockGroupBaseError(Exception): pass class BlockNotFoundError(BlockGroupBaseError): pass class BlockExists(BlockGroupBaseError): pass class BlockTypeNotSupported(BlockGroupBaseError): pass class BlockTypeNotSupportReplica(BlockGroupBaseError): pass def _idcs(lst): return list(lst) def _blocks(blocks=None): if blocks is None: return {} for idx, blk in blocks.items(): blocks[idx] = BlockDesc(blk) return blocks class BlockGroup(FixedKeysDict): keys_default = dict( block_group_id=BlockGroupID, config=ReplicationConfig, idcs=_idcs, blocks=_blocks, ) ident_keys = ('block_group_id',) def __init__(self, *args, **kwargs): super(BlockGroup, self).__init__(*args, **kwargs) self.type_map = self.make_type_map() def get_block_type(self, block_index): mp = self.type_map bi = BlockIndex(block_index) try: return mp[bi.i][bi.j] except IndexError: raise BlockTypeNotSupported('invalid index at {bi}'.format(bi=bi)) def make_type_map(self): cnf = self['config'] nr_data, nr_parity = cnf['in_idc'] nr_in_idc, nr_xor_idc = cnf['cross_idc'] data_replica = cnf['data_replica'] rst = [] prefixes = ('d' * nr_in_idc + 'x' * nr_xor_idc) for pref in prefixes: o = [pref + '0'] * nr_data o += [pref + 'p'] * nr_parity for j in range(1, data_replica): o += ['%s%d' % (pref, j)] * nr_data rst.append(o) return rst def mark_delete_block(self, block_index): block = self.get_block(block_index, raise_error=True) block.rm_ref() if block.can_del(): block.mark_del() return block return None def mark_delete_block_byid(self, block_id): block = self.get_block_byid(block_id, raise_error=True) block.rm_ref() if block.can_del(): block.mark_del() return block return None def unlink_block(self, block_index): block = self.get_block(block_index, raise_error=True) if not block.is_mark_del(): block.rm_ref() if block.can_del(): del self['blocks'][str(block_index)] return block return None def unlink_block_byid(self, block_id): block = self.get_block_byid(block_id, raise_error=True) if not block.is_mark_del(): block.rm_ref() if block.can_del(): del self['blocks'][block_id.block_index] return block return None def delete_block(self, block_index): return self.unlink_block(block_index) def delete_block_byid(self, block_id): return self.unlink_block_byid(block_id) def has(self, block): bid = block['block_id'] bidx = bid.block_index existent = self['blocks'].get(bidx) return existent == block def link_block(self, block_index): block = self.get_block(block_index, raise_error=True) block.add_ref() return block def link_block_byid(self, block_id): block = self.get_block_byid(block_id, raise_error=True) block.add_ref() return block def add_block(self, new_block, replace=False, allow_exist=False): if self.has(new_block) and allow_exist: return new_block bid = new_block['block_id'] bidx = bid.block_index prev = self['blocks'].get(bidx) if not replace and prev is not None: raise BlockExists( 'there is already a block at {bid}'.format(bid=bid)) self['blocks'][bidx] = new_block if prev is None: return None else: return BlockDesc(prev) def get_free_block_indexes(self, block_type=None, get_all=False): free_block_index = defaultdict(list) cnf = self['config'] n = sum(cnf['cross_idc']) m = sum(cnf['in_idc']) for i in range(n): for j in range(m): bi = BlockIndex(i, j) typ = self.get_block_type(bi) idc = self.get_block_idc(bi) if get_all: # set the key 'idc' with default if key not set free_block_index[idc] if block_type is not None and typ != block_type: continue if self.get_block(bi, raise_error=False) is None: free_block_index[idc].append(str(bi)) return free_block_index def get_block(self, block_index, raise_error=True): bi = BlockIndex(block_index) b = self['blocks'].get(str(bi)) if raise_error and b is None: raise BlockNotFoundError( 'block_index:{bi}' ' not found in block_group:{block_group_id}'.format(bi=bi, **self)) return b def get_block_idc(self, block_index): bi = BlockIndex(block_index) return self['idcs'][bi.i] def get_primary_index(self, block_index): nr_data, nr_parity = self['config']['in_idc'] bi = BlockIndex(block_index) j = bi.j if j >= nr_data: j -= nr_parity j %= nr_data return BlockIndex(bi.i, j) def get_replica_indexes(self, block_index, include_me=True): nr_data, nr_parity = self['config']['in_idc'] data_replica = self['config']['data_replica'] bi = BlockIndex(block_index) typ = self.get_block_type(bi) if typ.endswith('p'): raise BlockTypeNotSupportReplica( 'block type {typ}' ' does not support replica'.format(typ=typ)) pbi = self.get_primary_index(block_index) rst = [str(pbi)] for j in range(1, data_replica): rbi = BlockIndex(pbi.i, pbi.j + nr_parity + j * nr_data) rst.append(str(rbi)) # if not include_me and str(block_index) in rst: if not include_me: rst.remove(str(block_index)) return rst def classify_blocks(self, idc_index, only_primary=True): nr_data, nr_parity = self['config']['in_idc'] ec = [] replica = [] mark_del = [] for i in range(0, nr_data): bi = BlockIndex(idc_index, i) blk = self.get_block(bi, raise_error=False) if blk is None: continue if blk.is_mark_del(): mark_del.append(blk) continue replica_idxes = self.get_replica_indexes(bi, include_me=False) rblks = self.indexes_to_blocks(replica_idxes) if None in rblks: ec.append(blk) continue replica.append(blk) if only_primary: continue replica.extend(rblks) return {'ec': ec, 'replica': replica, 'mark_del': mark_del} def indexes_to_blocks(self, indexes): blks = [] for idx in indexes: bi = BlockIndex(idx) blk = self.get_block(bi, raise_error=False) blks.append(blk) return blks def get_parity_indexes(self, idc_index): indexes = [] nr_data, nr_parity = self['config']['in_idc'] for i in range(nr_data, nr_data + nr_parity): bi = BlockIndex(idc_index, i) indexes.append(bi) return indexes def get_parities(self, idc_index): idxes = self.get_parity_indexes(idc_index) blks = self.indexes_to_blocks(idxes) return [blk for blk in blks if blk is not None] def is_ec_block(self, block_id): block_id = BlockID(block_id) blk = self.get_block(block_id.block_index, raise_error=False) if blk is None or blk['block_id'] != block_id: raise BlockNotFoundError( 'block_id:{bid}' ' not found in block_group:{block_group_id}'.format(bid=block_id, **self)) if block_id.type.endswith('p'): blk = self.get_block(block_id.block_index, raise_error=True) return True r_indexes = self.get_replica_indexes(block_id.block_index) r_blks = [self.get_block(x, raise_error=False) for x in r_indexes] return None in r_blks def get_blocks(self): blks = [] for idx in sorted(self['blocks'].keys()): blk = self['blocks'][idx] blks.append(blk) return blks def get_ec_blocks(self, idc_idx): nr_data, nr_parity = self['config']['in_idc'] blks = [] for i in range(0, nr_data + nr_parity): blk = self.get_block(BlockIndex(idc_idx, i), raise_error=False) if blk is None: continue if self.is_ec_block(blk['block_id']): blks.append(blk) return blks def get_ec_broken_blocks(self, idc_idx, broken_bids): broken_blks = [] for blk in self.get_ec_blocks(idc_idx): if blk['block_id'] in broken_bids: broken_blks.append(blk) return broken_blks def get_ec_block_ids(self, idc_idx): bids = [] for blk in self.get_ec_blocks(idc_idx): bids.append(blk['block_id']) return bids def get_replica_blocks(self, block_id, include_me=True, raise_error=True): block_id = BlockID(block_id) r_indexes = self.get_replica_indexes(block_id.block_index, True) is_exist = False blks = [] for idx in r_indexes: blk = self.get_block(idx, raise_error=False) if blk is None: continue if blk['block_id'] == block_id: is_exist = True if not include_me: continue blks.append(blk) if not is_exist: if raise_error: raise BlockNotFoundError(self['block_group_id'], block_id) else: return None return blks def get_block_byid(self, block_id, raise_error=True): block_id = BlockID(block_id) blk = self.get_block(block_id.block_index, raise_error=False) if blk is None or blk['block_id'] != block_id: if raise_error: raise BlockNotFoundError(self['block_group_id'], block_id) else: return None return blk def get_idc_blocks(self, idc_idx, is_del=None, types=None): blks = [] for idx in sorted(self['blocks'].keys()): blk = self['blocks'][idx] idx = BlockIndex(idx) typ = self.get_block_type(idx) if types is not None and typ not in types: continue if idx.i != idc_idx: continue if is_del is not None and blk['is_del'] != is_del: continue blks.append(blk) return blks def get_idc_blocks_no_replica(self, idc_idx, is_del=None): types = ['d0', 'dp', 'x0', 'xp'] return self.get_idc_blocks(idc_idx, is_del=is_del, types=types) def get_d0_idcs(self): cross_idc = self["config"]["cross_idc"] return self["idcs"][:cross_idc[0]] def get_dtype_by_idc(self, idc): cfg = self["config"] assert idc in self["idcs"] assert sum(cfg["cross_idc"]) == len(self["idcs"]) d0_idcs = self["idcs"][:cfg["cross_idc"][0]] if idc in d0_idcs: return "d0" else: return "x0" def get_idc_block_ids(self, idc_idx, is_del=None, types=None): blks = self.get_idc_blocks(idc_idx, is_del=is_del, types=types) return [BlockID(b['block_id']) for b in blks] def get_idc_block_ids_no_replica(self, idc_idx, is_del=None): types = ['d0', 'dp', 'x0', 'xp'] return self.get_idc_block_ids(idc_idx, is_del=is_del, types=types) @classmethod def is_data(cls, block_id): return block_id.type in ('d0', 'x0') @classmethod def is_replica(cls, block_id): return re.match(r'd[1-9]', block_id.type) is not None @classmethod def is_parity(cls, block_id): return block_id.type in ('dp', 'xp')
the-stack_0_2326
# Copyright 2010-2021, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Qt build rules.""" load( "//:build_defs.bzl", "cc_binary_mozc", "cc_library_mozc", "select_mozc", ) load( "//:config.bzl", "MACOS_BUNDLE_ID_PREFIX", "MACOS_MIN_OS_VER", "QT_BIN_PATH", ) load("@build_bazel_rules_apple//apple:macos.bzl", "macos_application") def cc_qt_library_mozc(name, deps = [], **kwargs): cc_library_mozc( name = name, deps = deps + select_mozc( default = ["//third_party/qt:qt_native"], oss_linux = ["@io_qt//:qt"], oss_macos = ["@io_qt//:qt_mac"], ), **kwargs ) def cc_qt_binary_mozc(name, deps = [], **kwargs): cc_binary_mozc( name = name, deps = deps + select_mozc( default = ["//third_party/qt:qt_native"], oss_linux = ["@io_qt//:qt"], oss_macos = ["@io_qt//:qt_mac"], ), **kwargs ) def qt_moc_mozc(name, srcs, outs): native.genrule( name = name, srcs = srcs, outs = outs, cmd = select_mozc( default = "$(location //third_party/qt:moc) -p $$(dirname $<) -o $@ $(SRCS)", oss = QT_BIN_PATH + "moc -p $$(dirname $<) -o $@ $(SRCS)", ), tools = select_mozc( default = ["//third_party/qt:moc"], oss = [], ), ) def qt_uic_mozc(name, srcs, outs): native.genrule( name = name, srcs = srcs, outs = outs, cmd = select_mozc( default = "$(location //third_party/qt:uic) -o $@ $(SRCS)", oss = QT_BIN_PATH + "uic -o $@ $(SRCS)", ), tools = select_mozc( default = ["//third_party/qt:uic"], oss = [], ), ) def qt_rcc_mozc(name, qrc_name, qrc_file, srcs, outs): native.genrule( name = name, srcs = [qrc_file] + srcs, outs = outs, cmd = select_mozc( default = "$(location //third_party/qt:rcc) -o $@ -name " + qrc_name + " " + qrc_file, oss = QT_BIN_PATH + "rcc -o $@ -name " + qrc_name + " $(location " + qrc_file + ")", ), tools = select_mozc( default = ["//third_party/qt:rcc"], oss = [], ), ) def macos_qt_application_mozc(name, bundle_name, deps): macos_application( name = name, tags = ["manual"], additional_contents = select_mozc( default = {}, oss = {"@io_qt//:libqcocoa": "Resources"}, ), app_icons = ["//data/images/mac:product_icon.icns"], bundle_id = MACOS_BUNDLE_ID_PREFIX + ".Tool." + bundle_name, bundle_name = bundle_name, infoplists = ["//gui:mozc_tool_info_plist"], minimum_os_version = MACOS_MIN_OS_VER, resources = [ "//data/images/mac:candidate_window_logo.tiff", "//gui:qt_conf", ], visibility = ["//:__subpackages__"], deps = deps + select_mozc( default = [], oss = [ "@io_qt//:QtCore_mac", "@io_qt//:QtGui_mac", "@io_qt//:QtPrintSupport_mac", "@io_qt//:QtWidgets_mac", ], ), )
the-stack_0_2327
from typing import Union from pyrogram.types import Message, Audio, Voice async def convert_count(count): if int(count) == 1: x = "First" elif int(count) == 2: x = "Second" elif int(count) == 3: x = "Third" elif int(count) == 4: x = "Fourth" elif int(count) == 5: x = "Fifth" elif int(count) == 6: x = "Sixth" elif int(count) == 7: x = "Seventh" elif int(count) == 8: x = "Eighth" elif int(count) == 9: x = "Ninth" elif int(count) == 10: x = "Tenth" elif int(count) == 11: x = "Eleventh" elif int(count) == 12: x = "Twelfth" elif int(count) == 13: x = "Thirteenth" elif int(count) == 14: x = "Fourteenth" elif int(count) == 15: x = "Fifteenth" elif str(count) == "all": x = "all" return x def get_url(message_1: Message) -> Union[str, None]: messages = [message_1] if message_1.reply_to_message: messages.append(message_1.reply_to_message) text = "" offset = None length = None for message in messages: if offset: break if message.entities: for entity in message.entities: if entity.type == "url": text = message.text or message.caption offset, length = entity.offset, entity.length break if offset in (None,): return None return text[offset:offset + length] random_assistant = ["5", "1", "2", "3", "4"] themes = ["LightBlue"] def bytes(size: float) -> str: """humanize size""" if not size: return "" power = 1024 t_n = 0 power_dict = {0: " ", 1: "Ki", 2: "Mi", 3: "Gi", 4: "Ti"} while size > power: size /= power t_n += 1 return "{:.2f} {}B".format(size, power_dict[t_n]) async def ass_det(assistant: int): print(" 𝓡𝓲𝓭𝓱𝓪𝓶 𝓶𝓾𝓼𝓲𝓬𝓬")
the-stack_0_2328
from absl import app, flags, logging from absl.flags import FLAGS import cv2 import os import numpy as np import tensorflow as tf from modules.evaluations import get_val_data, perform_val from modules.models import ArcFaceModel from modules.utils import set_memory_growth, load_yaml, l2_norm flags.DEFINE_string('cfg_path', './configs/arc_res50.yaml', 'config file path') flags.DEFINE_string('gpu', '0', 'which gpu to use') flags.DEFINE_string('img_path', '', 'path to input image') def main(_argv): gpus = tf.config.list_logical_devices('GPU') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = len(gpus) logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) cfg = load_yaml(FLAGS.cfg_path) gpus = tf.config.list_logical_devices('GPU') strategy = tf.distribute.MirroredStrategy(gpus) with strategy.scope(): model = ArcFaceModel(size=cfg['input_size'], backbone_type=cfg['backbone_type'], training=False) model.load_weights(cfg['pre_trained_model']) print(model.summary()) print("[*] Loading LFW, AgeDB30 and CFP-FP...") lfw, agedb_30, cfp_fp, lfw_issame, agedb_30_issame, cfp_fp_issame = \ get_val_data(cfg['test_dataset']) print("[*] Perform Evaluation on LFW...") acc_lfw, best_th = perform_val( cfg['embd_shape'], cfg['batch_size'], model, lfw, lfw_issame, is_ccrop=cfg['is_ccrop']) print(" acc {:.4f}, th: {:.2f}".format(acc_lfw, best_th)) print("[*] Perform Evaluation on AgeDB30...") acc_agedb30, best_th = perform_val( cfg['embd_shape'], cfg['batch_size'], model, agedb_30, agedb_30_issame, is_ccrop=cfg['is_ccrop']) print(" acc {:.4f}, th: {:.2f}".format(acc_agedb30, best_th)) print("[*] Perform Evaluation on CFP-FP...") acc_cfp_fp, best_th = perform_val( cfg['embd_shape'], cfg['batch_size'], model, cfp_fp, cfp_fp_issame, is_ccrop=cfg['is_ccrop']) print(" acc {:.4f}, th: {:.2f}".format(acc_cfp_fp, best_th)) if __name__ == '__main__': try: app.run(main) except SystemExit: pass
the-stack_0_2330
# This file is execfile()d with the current directory set to its containing dir. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import shutil # -- Path setup -------------------------------------------------------------- __location__ = os.path.dirname(__file__) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.join(__location__, "../src")) # -- Run sphinx-apidoc ------------------------------------------------------- # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/readthedocs/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. # Additionally it helps us to avoid running apidoc manually try: # for Sphinx >= 1.7 from sphinx.ext import apidoc except ImportError: from sphinx import apidoc output_dir = os.path.join(__location__, "api") module_dir = os.path.join(__location__, "../src/wai_data_tools") try: shutil.rmtree(output_dir) except FileNotFoundError: pass try: import sphinx cmd_line = f"sphinx-apidoc --implicit-namespaces -f -o {output_dir} {module_dir}" args = cmd_line.split(" ") if tuple(sphinx.__version__.split(".")) >= ("1", "7"): # This is a rudimentary parse_version to avoid external dependencies args = args[1:] apidoc.main(args) except Exception as e: print("Running `sphinx-apidoc` failed!\n{}".format(e)) # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.autosummary", "sphinx.ext.viewcode", "sphinx.ext.coverage", "sphinx.ext.doctest", "sphinx.ext.ifconfig", "sphinx.ext.mathjax", "sphinx.ext.napoleon", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "wai_data_tools" copyright = "2022, David Andersson" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # version: The short X.Y version. # release: The full version, including alpha/beta/rc tags. # If you don’t need the separation provided between version and release, # just set them both to the same value. try: from wai_data_tools import __version__ as version except ImportError: version = "" if not version or version.lower() == "unknown": version = os.getenv("READTHEDOCS_VERSION", "unknown") # automatically set by RTD release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", ".venv"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If this is True, todo emits a warning for each TODO entries. The default is False. todo_emit_warnings = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "sidebar_width": "300px", "page_width": "1200px" } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "wai_data_tools-doc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ("letterpaper" or "a4paper"). # "papersize": "letterpaper", # The font size ("10pt", "11pt" or "12pt"). # "pointsize": "10pt", # Additional stuff for the LaTeX preamble. # "preamble": "", } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ("index", "user_guide.tex", "wai_data_tools Documentation", "David Andersson", "manual") ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping -------------------------------------------------------- python_version = ".".join(map(str, sys.version_info[0:2])) intersphinx_mapping = { "sphinx": ("https://www.sphinx-doc.org/en/master", None), "python": ("https://docs.python.org/" + python_version, None), "matplotlib": ("https://matplotlib.org", None), "numpy": ("https://numpy.org/doc/stable", None), "sklearn": ("https://scikit-learn.org/stable", None), "pandas": ("https://pandas.pydata.org/pandas-docs/stable", None), "scipy": ("https://docs.scipy.org/doc/scipy/reference", None), "setuptools": ("https://setuptools.readthedocs.io/en/stable/", None), "pyscaffold": ("https://pyscaffold.org/en/stable", None), } print(f"loading configurations for {project} {version} ...", file=sys.stderr)
the-stack_0_2331
import json import urllib import aiohttp from aiocache import cached client_session = None @cached(ttl=3600) async def get_ios_cfw(): """Gets all apps on ios.cfw.guide Returns ------- dict "ios, jailbreaks, devices" """ async with client_session.get("https://api.appledb.dev/main.json") as resp: if resp.status == 200: data = await resp.json() return data @cached(ttl=3600) async def get_ipsw_firmware_info(version: str): """Gets all apps on ios.cfw.guide Returns ------- dict "ios, jailbreaks, devices" """ async with client_session.get(f"https://api.ipsw.me/v4/ipsw/{version}") as resp: if resp.status == 200: data = await resp.json() return data return [] @cached(ttl=600) async def get_dstatus_components(): async with client_session.get("https://discordstatus.com/api/v2/components.json") as resp: if resp.status == 200: components = await resp.json() return components @cached(ttl=600) async def get_dstatus_incidents(): async with client_session.get("https://discordstatus.com/api/v2/incidents.json") as resp: if resp.status == 200: incidents = await resp.json() return incidents async def canister_search_package(query): """Search for a tweak in Canister's catalogue Parameters ---------- query : str "Query to search for" Returns ------- list "List of packages that Canister found matching the query" """ async with client_session.get(f'https://api.canister.me/v1/community/packages/search?query={urllib.parse.quote(query)}&searchFields=identifier,name&responseFields=identifier,header,tintColor,name,price,description,packageIcon,repository.uri,repository.name,author,maintainer,latestVersion,nativeDepiction,depiction') as resp: if resp.status == 200: response = json.loads(await resp.text()) if response.get('status') == "Successful": return response.get('data') else: return None else: return None async def canister_search_repo(query): """Search for a repo in Canister's catalogue Parameters ---------- query : str "Query to search for" Returns ------- list "List of repos that Canister found matching the query" """ async with client_session.get(f'https://api.canister.me/v1/community/repositories/search?query={urllib.parse.quote(query)}') as resp: if resp.status == 200: response = json.loads(await resp.text()) if response.get('status') == "Successful": return response.get('data') else: return None else: return None @cached(ttl=3600) async def canister_fetch_repos(): async with client_session.get('https://api.canister.me/v1/community/repositories/search?ranking=1,2,3,4,5') as resp: if resp.status == 200: response = await resp.json(content_type=None) return response.get("data") return None @cached(ttl=3600) async def fetch_scam_urls(): async with client_session.get("https://raw.githubusercontent.com/SlimShadyIAm/Anti-Scam-Json-List/main/antiscam.json") as resp: if resp.status == 200: obj = json.loads(await resp.text()) return obj async def init_client_session(): global client_session client_session = aiohttp.ClientSession()
the-stack_0_2333
import uuid from django.db import models from core.models.base import StandardModel from core.models.base import CaseInsensitiveNamedModel from core.models import Material from core.models import Source from core.models import SampleType from core.models import Storage from core.models import Project from core.models import Note from django.contrib.auth.models import User from django.contrib.contenttypes import fields from django.core.urlresolvers import reverse from django.db import connection from core import constants from core import utils from polymorphic.models import PolymorphicModel import logging logger = logging.getLogger(__name__) class Sample(PolymorphicModel, CaseInsensitiveNamedModel): STATUSES = utils.self_zip(constants.STANDARD_STATUSES) sample_type = models.ForeignKey(SampleType) material = models.ForeignKey(Material) status = models.CharField(max_length=255,choices=STATUSES,default=constants.STATUS_ACTIVE) owner = models.ForeignKey(User,null=True,blank=True) source = models.ForeignKey(Source,null=True,blank=True) lot = models.CharField(max_length=255, null=True, blank=True) volume = models.CharField(max_length=255, null=True, blank=True) concentration = models.CharField(max_length=255, null=True, blank=True) concentration_units = models.CharField(max_length=255, null=True, blank=True) project = models.ManyToManyField(Project,blank=True) storage = models.ForeignKey(Storage,null=True, blank=True) unit_count = models.CharField(max_length=255, null=True, blank=True) notes = fields.GenericRelation(Note) sample_links = models.ManyToManyField( 'self', through='SampleToSample', symmetrical=False, related_name="linked_to", blank=True ) def _has_alert_note(self): logger.debug('looking for alert note') return self.notes.filter(note_type=constants.TYPE_ALERT).exists() has_alert_note = property(_has_alert_note) class Meta: app_label = "core" db_table = 'sample' verbose_name_plural = 'samples' unique_together = ("name",) ordering = ['-date_created'] def save(self, *args, **kwargs): if not self.name: self.name = Sample.name_generator() super(Sample, self).save(*args, **kwargs) def get_absolute_url(self): return reverse('samples-detail', kwargs={'pk': self.pk}) def __str__(self): return self.name def add_sample_link(self, sample, link_type): link, created = SampleToSample.objects.get_or_create( source_sample=self, target_sample=sample, type=link_type ) return link def remove_sample_link(self, sample, link_type): SampleToSample.objects.filter( source_sample=self, target_sample=sample, type=link_type ).delete() return def get_sample_links(self, link_type): return self.sample_links.filter( target_samples__type=link_type, target_samples__source_sample=self ) def get_related_to(self, link_type): return self.linked_to.filter( source_samples__type=link_type, source_samples__target_sample=self ) def get_children(self): logger.debug("in generic get children") link_type = SampleLink.objects.get(name=constants.LINK_TYPE_CHILD) return self.get_sample_links(link_type) def get_parents(self): logger.debug("in generic get parents") link_type = SampleLink.objects.get(name=constants.LINK_TYPE_PARENT) return self.get_related_to(link_type) @classmethod def name_generator(cls): return "S-{0}".format(uuid.uuid4()) # get the next value in the sequence based on the record name # record_1 would generate 2 # record_10 would generate 11 @staticmethod def get_operational_index(value): sql_string = """ select max( to_number( substring(name from char_length(%(value)s) + position(%(value)s in name)), '999' ) + 1 ) from sample where name ~ (%(value)s || '[0-9]+$'); """ index = 1 try: cursor = connection.cursor() cursor.execute(sql_string, {'value': value}) row = cursor.fetchone() logger.debug(row) index = row[0] if index is None: index = 1 except Exception as e: logger.debug(e) logger.debug("exception while looking up values") index = 1 logger.debug("returning the following index {0}".format(index)) return index Sample._meta.get_field('name').null = True Sample._meta.get_field('name').blank = True class SampleLink(StandardModel): class Meta: app_label = "core" db_table = 'sample_link' verbose_name_plural = 'sample links' def __str__(self): return self.name class SampleToSample(models.Model): source_sample = models.ForeignKey(Sample, related_name='source_samples') target_sample = models.ForeignKey(Sample, related_name='target_samples') type = models.ForeignKey(SampleLink) class Meta: app_label = "core" db_table = 'sample_to_sample' verbose_name_plural = 'sample to samples'
the-stack_0_2334
# improvement_meta.py # author: Ahmed Bin Zaman # since: 02/2021 """Module for improving the fitness of a conformation. This module provides functionalities like local search to improve the current fitness of a given conformation. The bookkeeping is for metamorphic proteins with four native structures. Available Classes: - Improvement: Encapsulates the operations to improve fitness of a conformation. """ import pyrosetta as pr import math class Improvement: """Encapsulates the operations to improve fitness of a conformation. Provides functionalities like local search to improve the current fitness of a given conformation. Public Attributes: - native_pose1: Contains the firts native pose provided in the constructor (pyrosetta Pose object). - native_pose2: Contains the firts native pose provided in the constructor (pyrosetta Pose object). - total_energy_evals: Total number of energy evaluations done in all the operations performed (integer). - last_op_energy_evals: Number of energy evaluations done in the last operation performed (integer). - min_ca_rmsd: Minimum Ca-RMSD value to the native conformation among all the conformations generated in all the operations (float) - last_op_min_ca_rmsd: Minimum Ca-RMSD value to the native conformation among all the conformations generated in the last operation performed (float). - min_ca_rmsd_pose: Conformation with minimum Ca-RMSD value to the native conformation among all the conformations generated in all the operations (pyrosetta Pose object). - last_op_min_ca_rmsd_pose: Conformation with minimum Ca-RMSD value to the native conformation among all the conformations generated in the last operation performed (pyrosetta Pose object). Available methods: - local_search: Performs greedy local search to improve fitness of a conformation. """ def __init__(self, native_pose1, native_pose2, native_pose3, native_pose4): """Constructor Args: native_pose: A pyrosetta Pose object containing the native conformation. This is used for minimum Ca-RMSD calculation. If you don't need this calculation, or don't have the native conformation, just provide a random Pose object. """ self.native_pose1 = pr.Pose() self.native_pose1.assign(native_pose1) self.native_pose2 = pr.Pose() self.native_pose2.assign(native_pose2) self.native_pose3 = pr.Pose() self.native_pose3.assign(native_pose3) self.native_pose4 = pr.Pose() self.native_pose4.assign(native_pose4) self.total_energy_evals = 0 self.last_op_energy_evals = 0 self.min_ca_rmsd1 = math.inf self.last_op_min_ca_rmsd1 = math.inf self.min_ca_rmsd_pose1 = pr.Pose() self.last_op_min_ca_rmsd_pose1 = pr.Pose() self.min_ca_rmsd2 = math.inf self.last_op_min_ca_rmsd2 = math.inf self.min_ca_rmsd_pose2 = pr.Pose() self.last_op_min_ca_rmsd_pose2 = pr.Pose() self.min_ca_rmsd3 = math.inf self.last_op_min_ca_rmsd3 = math.inf self.min_ca_rmsd_pose3 = pr.Pose() self.last_op_min_ca_rmsd_pose3 = pr.Pose() self.min_ca_rmsd4 = math.inf self.last_op_min_ca_rmsd4 = math.inf self.min_ca_rmsd_pose4 = pr.Pose() self.last_op_min_ca_rmsd_pose4 = pr.Pose() def local_search(self, pose, mover, score_function, successive_failures): """Performs greedy local search to improve fitness of a conformation. This local search performs specific moves to map a conformation to a nearby local minimum in the energy surface. The search is terminated when a specific number of moves fail to improve the score based on a specific fitness function. Args: pose: A pyrosetta Pose object containing initial conformation. mover: A pyrosetta Mover object derermining the moves in local search. score_function: A pyrosetta ScoreFunction object for scoring each move. successive_failures: An int indicating the threshold for consecutive number of failed moves in each trajectory. Returns: A pyrosetta Pose object containing the conformation with locally minimum fitness. """ local_minima = pr.Pose() local_minima.assign(pose) new_pose = pr.Pose() new_pose.assign(pose) self.last_op_min_ca_rmsd1 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose1, new_pose ) self.last_op_min_ca_rmsd2 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose2, new_pose ) self.last_op_min_ca_rmsd3 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose3, new_pose ) self.last_op_min_ca_rmsd4 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose4, new_pose ) local_minima_score = score_function(local_minima) self.last_op_energy_evals = 1 failed = 0 # Perform greedy local search while failed < successive_failures: mover.apply(new_pose) pose_ca_rmsd1 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose1, new_pose ) pose_ca_rmsd2 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose2, new_pose ) pose_ca_rmsd3 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose3, new_pose ) pose_ca_rmsd4 = pr.rosetta.core.scoring.CA_rmsd( self.native_pose4, new_pose ) if pose_ca_rmsd1 < self.last_op_min_ca_rmsd1: self.last_op_min_ca_rmsd1 = pose_ca_rmsd1 self.last_op_min_ca_rmsd_pose1.assign(new_pose) if pose_ca_rmsd2 < self.last_op_min_ca_rmsd2: self.last_op_min_ca_rmsd2 = pose_ca_rmsd2 self.last_op_min_ca_rmsd_pose2.assign(new_pose) if pose_ca_rmsd3 < self.last_op_min_ca_rmsd3: self.last_op_min_ca_rmsd3 = pose_ca_rmsd3 self.last_op_min_ca_rmsd_pose3.assign(new_pose) if pose_ca_rmsd4 < self.last_op_min_ca_rmsd4: self.last_op_min_ca_rmsd4 = pose_ca_rmsd4 self.last_op_min_ca_rmsd_pose4.assign(new_pose) current_score = score_function(new_pose) self.last_op_energy_evals += 1 if current_score < local_minima_score: local_minima.assign(new_pose) local_minima_score = current_score failed = 0 else: failed += 1 # Bookkeeping self.total_energy_evals += self.last_op_energy_evals if self.last_op_min_ca_rmsd1 < self.min_ca_rmsd1: self.min_ca_rmsd1 = self.last_op_min_ca_rmsd1 self.min_ca_rmsd_pose1.assign(self.last_op_min_ca_rmsd_pose1) if self.last_op_min_ca_rmsd2 < self.min_ca_rmsd2: self.min_ca_rmsd2 = self.last_op_min_ca_rmsd2 self.min_ca_rmsd_pose2.assign(self.last_op_min_ca_rmsd_pose2) if self.last_op_min_ca_rmsd3 < self.min_ca_rmsd3: self.min_ca_rmsd3 = self.last_op_min_ca_rmsd3 self.min_ca_rmsd_pose3.assign(self.last_op_min_ca_rmsd_pose3) if self.last_op_min_ca_rmsd4 < self.min_ca_rmsd4: self.min_ca_rmsd4 = self.last_op_min_ca_rmsd4 self.min_ca_rmsd_pose4.assign(self.last_op_min_ca_rmsd_pose4) return local_minima
the-stack_0_2335
import logging from datetime import datetime import xml.etree.ElementTree as ET from indra.statements import * from indra.statements.statements import Migration from indra.statements.context import MovementContext from indra.util import UnicodeXMLTreeBuilder as UTB logger = logging.getLogger(__name__) class CWMSError(Exception): pass POLARITY_DICT = {'CC': {'ONT::CAUSE': 1, 'ONT::INFLUENCE': 1}, 'EVENT': {'ONT::INCREASE': 1, 'ONT::MODULATE': None, 'ONT::DECREASE': -1, 'ONT::INHIBIT': -1, 'ONT::TRANSFORM': None, 'ONT::STIMULATE': 1, 'ONT::ARRIVE': None, 'ONT::DEPART': None, 'ONT::MOVE': None, 'ONT::BE': None}, 'EPI': {'ONT::ASSOCIATE': None}} class CWMSProcessor(object): """The CWMSProcessor currently extracts causal relationships between terms (nouns) in EKB. In the future, this processor can be extended to extract other types of relations, or to extract relations involving events. For more details on the TRIPS EKB XML format, see http://trips.ihmc.us/parser/cgi/drum Parameters ---------- xml_string : str A TRIPS extraction knowledge base (EKB) in XML format as a string. Attributes ---------- tree : xml.etree.ElementTree.Element An ElementTree object representation of the TRIPS EKB XML. doc_id: str Document ID statements : list[indra.statements.Statement] A list of INDRA Statements that were extracted from the EKB. sentences : dict[str: str] The list of all sentences in the EKB with their IDs paragraphs : dict[str: str] The list of all paragraphs in the EKB with their IDs par_to_sec : dict[str: str] A map from paragraph IDs to their associated section types """ def __init__(self, xml_string): self.statements = [] # Parse XML try: self.tree = ET.XML(xml_string, parser=UTB()) except ET.ParseError: logger.error('Could not parse XML string') self.tree = None return # Get the document ID from the EKB tag. self.doc_id = self.tree.attrib.get('id') # Store all paragraphs and store all sentences in a data structure paragraph_tags = self.tree.findall('input/paragraphs/paragraph') sentence_tags = self.tree.findall('input/sentences/sentence') self.paragraphs = {p.attrib['id']: p.text for p in paragraph_tags} self.sentences = {s.attrib['id']: s.text for s in sentence_tags} self.par_to_sec = {p.attrib['id']: p.attrib.get('sec-type') for p in paragraph_tags} # Keep a list of events that are part of relations and events # subsumed by other events self.relation_events = set() self.subsumed_events = set() # Keep a list of unhandled events for development purposes self._unhandled_events = set() self._preprocess_events() def _preprocess_events(self): events = self.tree.findall("EVENT/[type]") for event in events: affected = event.find("*[@role=':AFFECTED']") if affected is not None: affected_id = affected.attrib.get('id') if affected_id: self.subsumed_events.add(affected_id) def extract_causal_relations(self): """Extract Influence Statements from the EKB.""" relations = self.tree.findall("CC/[type]") for relation in relations: st = self.influence_from_relation(relation) if st: self.statements.append(st) events = self.tree.findall("EVENT/[type]") for event in events: st = self.influence_from_event(event) if st: self.statements.append(st) # In some EKBs we get two redundant relations over the same arguments, # we eliminate these self._remove_multi_extraction_artifacts() # Print unhandled event types logger.debug('Unhandled event types: %s' % (', '.join(sorted(self._unhandled_events)))) def extract_events(self): """Extract standalone Events from the EKB.""" events = [(1, self.tree.findall("EVENT/[type='ONT::INCREASE']")), (-1, self.tree.findall("EVENT/[type='ONT::DECREASE']"))] for polarity, event_list in events: for event_term in event_list: event_id = event_term.attrib.get('id') if event_id in self.subsumed_events or \ event_id in self.relation_events: continue event = self.event_from_event(event_term) if event: # Here we set the polarity based on the polarity implied by # the increase/decrease here event.delta.set_polarity(polarity) self.statements.append(event) self._remove_multi_extraction_artifacts() def extract_migrations(self, include_relation_arg=False): ev_types = ['ONT::MOVE', 'ONT::DEPART', 'ONT::ARRIVE'] events = [] for et in ev_types: evs = self.tree.findall("EVENT/[type='%s']" % et) events += evs for event_term in events: event_id = event_term.attrib.get('id') if event_id in self.subsumed_events or \ (not include_relation_arg and event_id in self.relation_events): continue event = self.migration_from_event(event_term) if event is not None: self.statements.append(event) self._remove_multi_extraction_artifacts() def extract_correlations(self): correlations = self.tree.findall("EPI/[type='ONT::ASSOCIATE']") for cor in correlations: st = self._association_from_element(cor, 'EPI', 'NEUTRAL1', 'NEUTRAL2', False) if st: self.statements.append(st) # self._remove_multi_extraction_artifacts() def _influence_from_element(self, element, element_type, subj_arg, obj_arg, is_arg): components = self._statement_components_from_element( element, element_type, subj_arg, obj_arg, is_arg) if components is None: return None subj, obj, evidence, rel_type = components # If the object polarity is not given explicitly, we set it # based on the one implied by the relation if obj.delta.polarity is None: obj.delta.set_polarity(POLARITY_DICT[element_type][rel_type]) st = Influence(subj, obj, evidence=[evidence]) return st def influence_from_relation(self, relation): """Return an Influence from a CC element in the EKB.""" return self._influence_from_element(relation, 'CC', 'FACTOR', 'OUTCOME', True) def influence_from_event(self, event): """Return an Influence from an EVENT element in the EKB.""" return self._influence_from_element(event, 'EVENT', 'AGENT', 'AFFECTED', False) def _statement_components_from_element(self, element, element_type, member1_arg, member2_arg, is_arg): element_id = element.attrib.get('id') rel_type = element.find('type').text if rel_type not in POLARITY_DICT[element_type]: self._unhandled_events.add(rel_type) return None member1_id, member1_term = self._get_term_by_role( element, member1_arg, is_arg) member2_id, member2_term = self._get_term_by_role( element, member2_arg, is_arg) if member1_term is None or member2_term is None: return None member1 = self.get_event_or_migration(member1_term) member2 = self.get_event_or_migration(member2_term) if member1 is None or member2 is None: return None self.relation_events |= {member1_id, member2_id, element_id} evidence = self._get_evidence(element) return member1, member2, evidence, rel_type def _association_from_element(self, element, element_type, member1_arg, member2_arg, is_arg): components = self._statement_components_from_element( element, element_type, member1_arg, member2_arg, is_arg) if components is None: return None member1, member2, evidence, _ = components st = Association([member1, member2], evidence=[evidence]) return st def event_from_event(self, event_term): """Return an Event from an EVENT element in the EKB.""" arg_id, arg_term = self._get_term_by_role(event_term, 'AFFECTED', False) if arg_term is None: return None # Make an Event statement if it is a standalone event evidence = self._get_evidence(event_term) event = self._get_event(arg_term, evidence=[evidence]) if event is None: return None event.context = self.get_context(event_term) return event def migration_from_event(self, event_term): """Return a Migration event from an EVENT element in the EKB.""" # First process at event level migration_grounding = ('wm/concept/causal_factor/' 'social_and_political/migration') concept_name = 'migration' concept_db_refs = {'WM': migration_grounding} # Get the element's text and use it to construct a Concept element_text_element = event_term.find('text') if element_text_element is not None: element_text = element_text_element.text concept_db_refs['TEXT'] = element_text concept_name = sanitize_name(element_text) concept = Concept(concept_name, db_refs=concept_db_refs) evidence = self._get_evidence(event_term) time = self._extract_time(event_term) # Locations can be at different levels, keep expanding the list locs = self._get_migration_locations(event_term) neutral_id, neutral_term = self._get_term_by_role(event_term, 'NEUTRAL', is_arg=False) if neutral_term is not None: locs = self._get_migration_locations(neutral_term, locs, 'origin') # Arguments can be under AGENT or AFFECTED agent_arg_id, agent_arg_term = self._get_term_by_role( event_term, 'AGENT', False) affected_arg_id, affected_arg_term = self._get_term_by_role( event_term, 'AFFECTED', False) if agent_arg_term is None and affected_arg_term is None: context = MovementContext(locations=locs, time=time) event = Migration(concept, context=context, evidence=[evidence]) return event # If there are argument terms, extract more data from them # Try to get the quantitative state associated with the event size = None for arg_term in [agent_arg_term, affected_arg_term]: if arg_term is not None: size_arg = arg_term.find('size') if size_arg is not None and size_arg.attrib.get('id'): size = self._get_size(size_arg.attrib['id']) break # Get more locations from arguments and inevents if agent_arg_term is not None: locs = self._get_migration_locations( agent_arg_term, locs, 'destination') inevent_term = self._get_inevent_term(agent_arg_term) if inevent_term is not None: locs = self._get_migration_locations(inevent_term, locs) if time is None: time = self._extract_time(inevent_term) if size is None: size = self._get_size_and_entity(inevent_term) other_event_term = self._get_other_event_term(agent_arg_term) if other_event_term is not None: locs = self._get_migration_locations(other_event_term, locs) if time is None: time = self._extract_time(other_event_term) if size is None: size = self._get_size_and_entity(other_event_term) if affected_arg_term is not None: locs = self._get_migration_locations( affected_arg_term, locs, 'destination') context = MovementContext(locations=locs, time=time) event = Migration( concept, delta=size, context=context, evidence=[evidence]) return event def _get_inevent_term(self, arg_term): refset_arg = arg_term.find('refset') if refset_arg is None: return None refset_id = refset_arg.attrib['id'] refset_term = self.tree.find("*[@id='%s']" % refset_id) if refset_term is None: return None features = refset_term.find('features') if features is None: return None inevent = features.find('inevent') if inevent is None: return None inevent_id = inevent.attrib['id'] self.subsumed_events.add(inevent_id) inevent_term = self.tree.find("*[@id='%s']" % inevent_id) return inevent_term def _get_other_event_term(self, arg_term): refset_arg = arg_term.find('refset') potential_events = self.tree.findall("EVENT/[type].//arg1/..") + \ self.tree.findall("EVENT/[type].//arg2/..") for ev in potential_events: arg1 = ev.find('arg1') arg2 = ev.find('arg2') for arg in [arg1, arg2]: if arg is not None: if refset_arg is not None: if arg.attrib.get('id') == refset_arg.attrib.get('id'): event_id = ev.attrib['id'] self.subsumed_events.add(event_id) event_term = self.tree.find("*[@id='%s']" % event_id) return event_term else: # Refset might be on a different level if arg.attrib.get('id'): term = self.tree.find("*[@id='%s']" % arg.attrib['id']) arg_refset_arg = term.find('refset') if arg_refset_arg is not None: if arg_refset_arg.attrib.get('id') == \ arg_term.attrib.get('id'): event_id = ev.attrib['id'] self.subsumed_events.add(event_id) event_term = self.tree.find("*[@id='%s']" % event_id) return event_term return None def _get_arg_event_term(self, term): potential_args = term.findall('arg1') + term.findall('arg2') for arg in potential_args: if arg.attrib.get('id'): new_term = self.tree.find("*[@id='%s']" % arg.attrib['id']) if new_term is not None: self.subsumed_events.add(new_term.attrib['id']) return new_term def _get_migration_locations(self, event_term, existing_locs=None, default_role='unknown'): if existing_locs is None: existing_locs = [] new_locs = [] loc = self._extract_geoloc(event_term, arg_link='location') if loc is not None: new_locs.append({'location': loc, 'role': default_role}) loc = self._extract_geoloc(event_term, arg_link='to-location') if loc is not None: new_locs.append({'location': loc, 'role': 'destination'}) loc = self._extract_geoloc(event_term, arg_link='from-location') if loc is not None: new_locs.append({'location': loc, 'role': 'origin'}) for loc in new_locs: if loc not in existing_locs: existing_locs.append(loc) return existing_locs def _get_size(self, size_term_id): size_term = self.tree.find("*[@id='%s']" % size_term_id) value = size_term.find('value') if value is None: value = size_term.find('amount') if value is not None: mod = value.attrib.get('mod') if mod and mod.lower() == 'almost': mod = 'less_than' value_txt = value.text if value_txt is not None: value_str = value.text.strip() if value_str and not value_str.startswith('ONT') and \ not value_str.startswith('W'): value = int(float(value_str)) else: value = None else: value = None unit = size_term.find('unit') if unit is not None: unit = unit.text.strip().lower() else: unit = 'absolute' text = size_term.find('text').text size = QuantitativeState(entity='person', value=value, unit=unit, modifier=mod, text=text) else: size = None return size def _get_size_and_entity(self, event_term): # For cases when entity (group) information and quantity are stored in # different arguments and we can overwrite default 'person' entity _, term1 = self._get_term_by_role(event_term, 'NEUTRAL', False) _, term2 = self._get_term_by_role(event_term, 'NEUTRAL1', False) size = None if term1 is not None: size_arg = term1.find('size') if size_arg is not None and size_arg.attrib.get('id'): size = self._get_size(size_arg.attrib['id']) if size is not None and term2 is not None: size.entity = term2.find('text').text return size def _get_term_by_role(self, term, role, is_arg): """Return the ID and the element corresponding to a role in a term.""" element = term.find("%s[@role=':%s']" % ('arg/' if is_arg else '*', role)) if element is None: return None, None element_id = element.attrib.get('id') if element_id is None: return None, None element_term = self.tree.find("*[@id='%s']" % element_id) if element_term is None: return None, None return element_id, element_term def _get_event(self, event_term, evidence=None): """Extract and Event from the given EKB element.""" # Now see if there is a modifier like assoc-with connected # to the main concept assoc_with = self._get_assoc_with_text(event_term) # Get the element's text and use it to construct a Concept element_text_element = event_term.find('text') if element_text_element is None: return None element_text = element_text_element.text if element_text is None: return None element_db_refs = {'TEXT': element_text.rstrip()} element_name = sanitize_name(element_text.rstrip()) element_type_element = event_term.find('type') if element_type_element is not None: element_db_refs['CWMS'] = element_type_element.text # If there's an assoc-with, we tack it on as extra grounding if assoc_with is not None: element_db_refs['CWMS'] += ('|%s' % assoc_with) concept = Concept(element_name, db_refs=element_db_refs) ev_type = event_term.find('type').text polarity = POLARITY_DICT['EVENT'].get(ev_type) delta = QualitativeDelta(polarity=polarity) context = self.get_context(event_term) event_obj = Event(concept, delta=delta, context=context, evidence=evidence) return event_obj def _get_wm_grounding(self, element): wm_gr = None wm_type_element = element.find('wm-type') if wm_type_element is not None: grounding_element = wm_type_element.find('grounding') if grounding_element is not None: wm_gr = (grounding_element.text, 0.7) return wm_gr def _add_start_end(self, term, starts, ends): start = term.attrib.get('start') end = term.attrib.get('end') if start: starts.append(int(start)) if end: ends.append(int(end)) return starts, ends def get_event_or_migration(self, event_term): #if event_term.find('type').text in [ # 'ONT::MOVE', 'ONT::DEPART', 'ONT::ARRIVE']: # return self.migration_from_event(event_term) #else: return self._get_event(event_term) def get_context(self, element): time = self._extract_time(element) geoloc = self._extract_geoloc(element) if time or geoloc: context = WorldContext(time=time, geo_location=geoloc) else: context = None return context def _extract_time(self, term): time = term.find('time') if time is None: time = term.find('features/time') if time is None: return None time_id = time.attrib.get('id') time_term = self.tree.find("*[@id='%s']" % time_id) if time_term is None: return None text = sanitize_name(time_term.findtext('text')) timex = time_term.find('timex') if timex is not None: start = self._process_timex(timex) if start is not None: time_context = TimeContext(text=text, start=start) else: time_context = TimeContext(text=text) else: start = None end = None from_time_el = time_term.find('from-time') to_time_el = time_term.find('to-time') if from_time_el is not None: from_time_id = from_time_el.attrib.get('id') from_time_term = self.tree.find("*[@id='%s']" % from_time_id) if time_term is not None: timex = from_time_term.find('timex') if timex is not None: start = self._process_timex(timex) if to_time_el is not None: to_time_id = to_time_el.attrib.get('id') to_time_term = self.tree.find("*[@id='%s']" % to_time_id) if to_time_term is not None: timex = to_time_term.find('timex') if timex is not None: end = self._process_timex(timex) if start and end: duration = int((end - start).total_seconds()) else: duration = None time_context = TimeContext( text=text, start=start, end=end, duration=duration) return time_context @staticmethod def _process_timex(timex): year = timex.findtext('year') month = timex.findtext('month') day = timex.findtext('day') if year or month or day: try: year = int(year) except Exception: year = None try: # Month can be represented either by name, short name or # number (October, Oct or 10) month = int(month) except Exception: try: month = datetime.strptime(month, '%B').month except Exception: try: month = datetime.strptime(month, '%b').month except Exception: month = 1 try: day = int(day) except Exception: day = 1 if year and month and day: time = datetime(year, month, day) return time return None def _extract_geoloc(self, term, arg_link='location'): """Get the location from a term (CC or TERM)""" loc = term.find(arg_link) if loc is None: return None loc_id = loc.attrib.get('id') loc_term = self.tree.find("*[@id='%s']" % loc_id) if loc_term is None: return None text = loc_term.findtext('text') grounding = loc_term.find('grounding') db_refs = {} if grounding is not None: places = grounding.findall('place') for place in places: nsid = place.attrib.get('id') db_ns, db_id = nsid.split(':') if db_ns == 'GNO': db_ns = 'GEOID' # TODO: name spaces are sometimes repeated in the EKB, here we # silently overwrite a key if it already exists db_refs[db_ns] = db_id # name = loc_term.findtext('name') geoloc_context = RefContext(name=text, db_refs=db_refs) return geoloc_context def _get_assoc_with_text(self, element_term): # NOTE: there could be multiple assoc-withs here that we may # want to handle assoc_with = element_term.find('assoc-with') if assoc_with is not None: # We first identify the ID of the assoc-with argument assoc_with_id = assoc_with.attrib.get('id') # In some cases the assoc-with has no ID but has a type # defined in place that we can get if assoc_with_id is None: assoc_with_grounding = assoc_with.find('type').text return assoc_with_grounding # If the assoc-with has an ID then find the TERM # corresponding to it assoc_with_term = self.tree.find("*[@id='%s']" % assoc_with_id) if assoc_with_term is not None: # We then get the grounding for the term assoc_with_grounding = assoc_with_term.find('type').text return assoc_with_grounding return None def _get_assoc_with_term(self, element_term): assoc_with = element_term.find('assoc-with') if assoc_with is not None: assoc_with_id = assoc_with.attrib.get('id') if assoc_with_id is not None: assoc_with_term = self.tree.find("*[@id='%s']" % assoc_with_id) return assoc_with_term def _get_evidence(self, event_tag): text = self._get_evidence_text(event_tag) sec = self._get_section(event_tag) epi = {'direct': False} if sec: epi['section_type'] = sec ev = Evidence(source_api='cwms', text=text, pmid=self.doc_id, epistemics=epi) return ev def _get_evidence_text(self, event_tag): """Extract the evidence for an event. Pieces of text linked to an EVENT are fragments of a sentence. The EVENT refers to the paragraph ID and the "uttnum", which corresponds to a sentence ID. Here we find and return the full sentence from which the event was taken. """ par_id = event_tag.attrib.get('paragraph') uttnum = event_tag.attrib.get('uttnum') event_text = event_tag.find('text') if self.sentences is not None and uttnum is not None: sentence = self.sentences[uttnum] elif event_text is not None: sentence = event_text.text else: sentence = None return sentence def _get_section(self, event_tag): par_id = event_tag.attrib.get('paragraph') sec = self.par_to_sec.get(par_id) return sec def _remove_multi_extraction_artifacts(self): # Build up a dict of evidence matches keys with statement UUIDs evmks = {} logger.debug('Starting with %d Statements.' % len(self.statements)) for stmt in self.statements: if isinstance(stmt, Event): evmk = stmt.evidence[0].matches_key() + \ stmt.concept.matches_key() elif isinstance(stmt, Influence): evmk = (stmt.evidence[0].matches_key() + stmt.subj.matches_key() + stmt.obj.matches_key()) elif isinstance(stmt, Association): evmk = (stmt.evidence[0].matches_key() + stmt.members[0].matches_key() + stmt.members[1].matches_key()) if evmk not in evmks: evmks[evmk] = [stmt.uuid] else: evmks[evmk].append(stmt.uuid) # This is a list of groups of statement UUIDs that are redundant multi_evmks = [v for k, v in evmks.items() if len(v) > 1] # We now figure out if anything needs to be removed to_remove = [] # Remove redundant statements for uuids in multi_evmks: # Influence statements to be removed infl_stmts = [s for s in self.statements if ( s.uuid in uuids and isinstance(s, Influence))] infl_stmts = sorted(infl_stmts, key=lambda x: x.polarity_count(), reverse=True) to_remove += [s.uuid for s in infl_stmts[1:]] # Association statements to be removed assn_stmts = [s for s in self.statements if ( s.uuid in uuids and isinstance(s, Association))] assn_stmts = sorted(assn_stmts, key=lambda x: x.polarity_count(), reverse=True) # Standalone events to be removed events = [s for s in self.statements if ( s.uuid in uuids and isinstance(s, Event))] events = sorted(events, key=lambda x: event_delta_score(x), reverse=True) to_remove += [e.uuid for e in events[1:]] # Remove all redundant statements if to_remove: logger.debug('Found %d Statements to remove' % len(to_remove)) self.statements = [s for s in self.statements if s.uuid not in to_remove] class CWMSProcessorCompositional(CWMSProcessor): def _get_event(self, event_term, evidence=None): """Extract and Event from the given EKB element.""" # Now see if there is a modifier like assoc-with connected # to the main concept assoc_with = self._get_assoc_with_text(event_term) # We're using a union of texts from multiple terms instead # Get the element's text and use it to construct a Concept # element_text_element = event_term.find('text') # if element_text_element is None: # return None # element_text = element_text_element.text # element_db_refs = {'TEXT': element_text} # element_name = sanitize_name(element_text) element_db_refs = {} par = event_term.attrib['paragraph'] starts, ends = self._add_start_end(event_term, [], []) element_type_element = event_term.find('type') if element_type_element is not None: element_db_refs['CWMS'] = element_type_element.text # If there's an assoc-with, we tack it on as extra grounding if assoc_with is not None: element_db_refs['CWMS'] += ('|%s' % assoc_with) theme_gr, theme_prop_gr, theme_proc_gr, theme_proc_prop_gr = \ None, None, None, None # Grounding can be provided on multiple levels theme_gr = self._get_wm_grounding(event_term) if not theme_gr: arg_term = self._get_arg_event_term(event_term) if arg_term is not None: starts, ends = self._add_start_end(arg_term, starts, ends) assoc_term = self._get_assoc_with_term(arg_term) if assoc_term is not None: starts, ends = self._add_start_end( assoc_term, starts, ends) new_arg_term = self._get_arg_event_term(assoc_term) # Theme grounding is usually at the "deepest" level if new_arg_term is not None: starts, ends = self._add_start_end( new_arg_term, starts, ends) theme_gr = self._get_wm_grounding(new_arg_term) theme_proc_gr = self._get_wm_grounding(assoc_term) theme_proc_prop_gr = self._get_wm_grounding(arg_term) else: theme_gr = self._get_wm_grounding(assoc_term) extra_gr = self._get_wm_grounding(arg_term) # This can be process or property, look at ontology if extra_gr: if 'process' in extra_gr[0]: theme_proc_gr = extra_gr else: theme_prop_gr = extra_gr # Get a union of all texts element_text = self.paragraphs[par][min(starts): max(ends)].rstrip() element_db_refs['TEXT'] = element_text element_name = sanitize_name(element_text) # Promote process grounding to theme if theme is missing if not theme_gr and theme_proc_gr: theme_gr = theme_proc_gr theme_proc_gr = None # Drop process property grounding in process is missing if not theme_proc_gr: theme_proc_prop_gr = None # Only add WM grounding if there's a theme grounding if theme_gr: element_db_refs['WM'] = [(theme_gr, theme_prop_gr, theme_proc_gr, theme_proc_prop_gr)] concept = Concept(element_name, db_refs=element_db_refs) ev_type = event_term.find('type').text polarity = POLARITY_DICT['EVENT'].get(ev_type) delta = QualitativeDelta(polarity=polarity) context = self.get_context(event_term) event_obj = Event(concept, delta=delta, context=context, evidence=evidence) return event_obj def sanitize_name(txt): name = txt.replace('\n', '') return name def event_delta_score(stmt): if stmt.delta is None: return 0 pol_score = 1 if stmt.delta.polarity is not None else 0 if isinstance(stmt.delta, QualitativeDelta): adj_score = len(stmt.delta.adjectives) return (pol_score + adj_score) if isinstance(stmt.delta, QuantitativeState): value_score = 1 if stmt.delta.value is not None else 0 return (pol_score + value_score)
the-stack_0_2337
import logging import re import typing as t import requests from . import const HOST = "https://{endpoint}.api.pvp.net" # Commonly used types (for type hints) Params = t.Dict[str, str] JSON = t.Dict[str, t.Any] l = logging.getLogger(__name__) api_key = None # type: str ################################################################################################### def _build_url(url_base: str, region: str, **kwargs: t.Any): if url_base.startswith("/"): url_base = HOST + url_base kwargs.setdefault('endpoint', region) kwargs.setdefault('region', region) kwargs.setdefault('platform', const.Platform[region]) return url_base.format(**kwargs) def _get_data(url: str, params: Params = None) -> JSON: if not params: params = {} params.setdefault('api_key', api_key) l.debug("Requesting '%s' with params: %s", url, params) r = requests.get(url, params=params) return r.json() def _staticdata(variant: str, params: Params = None, region="euw") -> JSON: url = _build_url("/api/lol/static-data/{region}/v1.2/{variant}", region=region, endpoint='global', variant=variant) return _get_data(url, params) def _standardize_summoner_name(summoner_name: str) -> str: # The standardized summoner name # is the summoner name in all lower case # and with spaces removed. return re.sub(r"\s", "", summoner_name.lower()) ################################################################################################### def set_key(key: str): global api_key api_key = key def format_status(data: JSON) -> str: return "Status code: {status_code}, message: {message}".format(**data['status']) def get_champions(params: Params = None) -> JSON: return _staticdata("champion", params) def get_versions() -> JSON: return _staticdata("versions") def get_summoner_id(region: str, summoner_name: str) -> t.Optional[int]: """Determine ID of a summoner by name. Returns None if summoner name is not found. """ standardized_name = _standardize_summoner_name(summoner_name) url = _build_url("/api/lol/{region}/v1.4/summoner/by-name/{summoner_name}", region=region, summoner_name=standardized_name) result = _get_data(url) if standardized_name not in result: return None else: return result[standardized_name]['id'] def get_current_game_info(region: str, summoner_id: int) -> t.Optional[JSON]: url = _build_url("/observer-mode/rest/consumer/getSpectatorGameInfo/{platform}/{summoner_id}", region=region, summoner_id=summoner_id) result = _get_data(url) if 'status' in result: if result['status']['status_code'] == 404: # not in-game return None else: l.error("Non-standard result! %s", format_status(result)) return None else: return result
the-stack_0_2338
#!/usr/bin/env python3 import random import os import asyncpg from quart import Quart, jsonify, make_response, request, render_template app = Quart(__name__) GET_WORLD = "select id,randomnumber from world where id = $1" UPDATE_WORLD = "update world set randomNumber = $2 where id = $1" @app.before_serving async def connect_to_db(): app.db = await asyncpg.create_pool( user=os.getenv("PGUSER", "benchmarkdbuser"), password=os.getenv("PGPASS", "benchmarkdbpass"), database="hello_world", host="tfb-database", port=5432, ) @app.after_serving async def disconnect_from_db(): await app.db.close() @app.route("/json") async def json(): return {"message": "Hello, World!"} @app.route("/plaintext") async def plaintext(): response = await make_response(b"Hello, World!") # Quart assumes string responses are 'text/html', so make a custom one response.mimetype = "text/plain" return response @app.route("/db") async def db(): async with app.db.acquire() as conn: key = random.randint(1, 10000) number = await conn.fetchval(GET_WORLD, key) return jsonify({"id": key, "randomNumber": number}) def get_query_count(args): qc = args.get("queries") if qc is None: return 1 try: qc = int(qc) except ValueError: return 1 qc = max(qc, 1) qc = min(qc, 500) return qc @app.route("/queries") async def queries(): queries = get_query_count(request.args) worlds = [] async with app.db.acquire() as conn: pst = await conn.prepare(GET_WORLD) for _ in range(queries): key = random.randint(1, 10000) number = await pst.fetchval(key) worlds.append({"id": key, "randomNumber": number}) return jsonify(worlds) @app.route("/updates") async def updates(): queries = get_query_count(request.args) new_worlds = [] async with app.db.acquire() as conn, conn.transaction(): pst = await conn.prepare(GET_WORLD) for _ in range(queries): key = random.randint(1, 10000) old_number = await pst.fetchval(key) new_number = random.randint(1, 10000) new_worlds.append((key, new_number)) await conn.executemany(UPDATE_WORLD, new_worlds) return jsonify( [{"id": key, "randomNumber": new_number} for key, new_number in new_worlds] ) @app.route("/fortunes") async def fortunes(): async with app.db.acquire() as conn: rows = await conn.fetch("select * from fortune") rows.append((0, "Additional fortune added at request time.")) rows.sort(key=lambda row: row[1]) return await render_template("fortunes.html", fortunes=rows) if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)
the-stack_0_2339
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib as ml import matplotlib.pyplot as plt import _settings import os.path from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import colors, ticker, cm from math import log10 def logspace_for(data, n=20): """log10-spaced bins for some data""" data = np.asarray(data) top = data.max() bot = data.min() logtop = log10(top) logbot = log10(bot) logspace = np.linspace(logbot, logtop, n, endpoint=True) space = 10.0 ** logspace space[0]=bot space[-1]=top return space def contour_cum_histo(x, y, title="", xlabel="", ylabel="", n_bins=50, n_levels=10, x_cap_pc=100.0, y_cap_pc=100.0, cmap=None): "histogram with approx equal-occupancy contour lines" if cmap is None: cmap = plt.cm.bone_r x_cap = np.percentile(x, x_cap_pc) y_cap = np.percentile(y, y_cap_pc) mask = (x<=x_cap) & (y<=y_cap) x_capped = x[mask] y_capped = y[mask] H, xedges, yedges = np.histogram2d( x_capped, y_capped, bins=(n_bins, n_bins), normed=True) H_sorted = np.sort(H.flatten()) H_cum = H_sorted.cumsum() # more precise version at https://gist.github.com/adrn/3993992 levels = H_sorted[H_cum.searchsorted(np.linspace(1.0/n_levels*H_cum[-1], H_cum[-1], n_levels, endpoint=True))] level_labels = np.linspace(0, 100.0*(1-1.0/n_levels), n_levels, endpoint=True) #lowest_bin = np.percentile(H[H>0].flatten(), 5.0) #Ignore bottom 5% #levels = np.power(10,np.arange(np.ceil(np.log(lowest_bin)),np.ceil(np.log(H.max())), 0.5)) #levels = np.concatenate([[0.0], levels]) #levels = np.percentile(H.flatten(), np.linspace(0.0, 100.0, n_levels, endpoint=True)) #extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]] extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] #axes transposed for histograms fig = plt.figure() ax = plt.gca() #points = plt.scatter( # y_capped, x_capped, # marker="x" #) cset = plt.contourf(H, levels=levels, cmap=cmap, #origin='lower', #colors=['black','green','blue','red'], #locator=ticker.LogLocator(), #linewidths=(1.9, 1.6, 1.5, 1.4), extent=extent ) fset = plt.contour(H, levels=levels, #origin='lower', colors=['red'], #locator=ticker.LogLocator(), #linewidths=(1.9, 1.6, 1.5, 1.4), extent=extent, hold='on' ) # Make a colorbar for the ContourSet returned by the contourf call. #cbar = plt.colorbar(cset) #cbar.ax.set_ylabel('verbosity coefficient') # Add the contour line levels to the colorbar #cbar.add_lines(fset) #plt.clabel(cset, inline=1, fontsize=10, fmt='%1.0i') #for c in cset.collections: # c.set_linestyle(‘solid’) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return fig, ax, cset, fset #, cbar def counts_for(timestamps): "small helper to create an index vector" return np.arange(1, timestamps.size+1) def plot_timestamps(timestamps, ax=None, **kwargs): ax = ax if ax else plt.gca() return plt.plot(timestamps, counts_for(timestamps), **kwargs) def plot_point_ts_series(tseries, ax=None, **kwargs): ax = ax if ax else plt.gca() return plt.plot(tseries.index, tseries, **kwargs) def plot_ts(ts_frame, ax=None, **kwargs): ax = ax if ax else plt.gca() return ax.plot(ts_frame.run_time, ts_frame.view_count, **kwargs) def multisave(basename, fig=None, dpi=300, **kwargs): basedir = getattr(_settings, 'FIGURES', None) fig = fig if fig else plt.gcf() if basedir: basename = os.path.join(basedir, basename) #Aggressively prevent file handle leakage with open(basename + ".png", "w") as h: fig.savefig(h, format="png", dpi=dpi) with open(basename + ".pdf", "w") as h: fig.savefig(h, format="pdf") with open(basename + ".svg", "w") as h: fig.savefig(h, format="svg") #return fig def plot_ts_rates(ts_frame, ax=None, title=None, scale=3600*24, **kwargs): ax = ax if ax else plt.gca() vid = ts_frame.iloc[0,0] if title is None: title = "Estimated rate for {!r}".format(vid) ax.step( pd.to_datetime(ts_frame.run_time[1:] * scale, unit='s'), ts_frame.rate[1:], **kwargs) #ax.set_xlabel('time') ax.set_ylabel('approx. intensity (views/day)') ax.set_title(title) ax.figure.autofmt_xdate() return ax def diagnose_ts(ts_frame, **kwargs): fig, axes = plt.subplots(nrows=1, ncols=2) ax = axes[0] ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout() return fig, axes
the-stack_0_2341
import pandas as pd import numpy as np import random import logging import cv2 import sys sys.path.append("../DataProcessing/") from ImageTransformer import ImageTransformer class DataProcessor: @staticmethod def ProcessTrainData(trainPath, image_height, image_width, isGray = False, isExtended=False): """Reads the .pickle file and converts it into a format suitable fot training Parameters ---------- trainPath : str The file location of the .pickle image_height : int Please... image_width : int Please... isGray : bool, optional True is the dataset is of 1-channel (gray) images, False if RGB isExtended : bool, optional True if the dataset contains both head and hand pose and you wish to retrieve both Returns ------- list list of video frames and list of labels (poses) """ train_set = pd.read_pickle(trainPath).values logging.info('[DataProcessor] train shape: ' + str(train_set.shape)) size = len(train_set[:, 0]) n_val = int(float(size) * 0.2) #n_val = 13000 np.random.seed(100) # split between train and test sets: x_train = train_set[:, 0] x_train = np.vstack(x_train[:]).astype(np.float32) if isGray == True: x_train = np.reshape(x_train, (-1, image_height, image_width, 1)) else: x_train = np.reshape(x_train, (-1, image_height, image_width, 3)) x_train= np.swapaxes(x_train, 1, 3) x_train = np.swapaxes(x_train, 2, 3) y_train = train_set[:, 1] y_train = np.vstack(y_train[:]).astype(np.float32) ix_val, ix_tr = np.split(np.random.permutation(train_set.shape[0]), [n_val]) x_validation = x_train[ix_val, :] x_train = x_train[ix_tr, :] y_validation = y_train[ix_val, :] y_train = y_train[ix_tr, :] shape_ = len(x_train) sel_idx = random.sample(range(0, shape_), k=(size-n_val)) #sel_idx = random.sample(range(0, shape_), k=50000) x_train = x_train[sel_idx, :] y_train = y_train[sel_idx, :] if isExtended == True: z_train = train_set[:, 2] z_train = np.vstack(z_train[:]).astype(np.float32) z_validation = z_train[ix_val, :] z_train = z_train[ix_tr, :] z_train = z_train[sel_idx, :] return [x_train, x_validation, y_train, y_validation, z_train, z_validation] return [x_train, x_validation, y_train, y_validation] @staticmethod def ProcessTestData(testPath, image_height, image_width, isGray = False, isExtended=False): """Reads the .pickle file and converts it into a format suitable fot testing Parameters ---------- testPath : str The file location of the .pickle image_height : int Please... image_width : int Please... isGray : bool, optional True is the dataset is of 1-channel (gray) images, False if RGB isExtended : bool, optional True if the dataset contains both head and hand pose and you wish to retrieve both Returns ------- list list of video frames and list of labels (poses) """ test_set = pd.read_pickle(testPath).values logging.info('[DataProcessor] test shape: ' + str(test_set.shape)) x_test = test_set[:, 0] x_test = np.vstack(x_test[:]).astype(np.float32) if isGray == True: x_test = np.reshape(x_test, (-1, image_height, image_width, 1)) else: x_test = np.reshape(x_test, (-1, image_height, image_width, 3)) x_test = np.swapaxes(x_test, 1, 3) x_test = np.swapaxes(x_test, 2, 3) y_test = test_set[:, 1] y_test = np.vstack(y_test[:]).astype(np.float32) if isExtended ==True: z_test = test_set[:, 2] z_test = np.vstack(z_test[:]).astype(np.float32) return [x_test, y_test, z_test] return [x_test, y_test] @staticmethod def ExtractValidationLabels(testPath, image_height, image_width, isGray = False): """Reads the .pickle file and converts it into a format suitable for testing on pulp You need to create a folder called test though Parameters ---------- testPath : str The file location of the .pickle image_height : int Please... image_width : int Please... isGray : bool, optional True is the dataset is of 1-channel (gray) images, False if RGB """ test_set = pd.read_pickle(testPath).values logging.info('[DataProcessor] test shape: ' + str(test_set.shape)) x_test = test_set[:, 0] x_test = np.vstack(x_test[:]).astype(np.float32) if isGray == True: x_test = np.reshape(x_test, (-1, image_height, image_width, 1)) else: x_test = np.reshape(x_test, (-1, image_height, image_width, 3)) x_test = np.swapaxes(x_test, 1, 3) x_test = np.swapaxes(x_test, 2, 3) y_test = test_set[:, 1] y_test = np.vstack(y_test[:]).astype(np.float32) f = open("test/labels.txt", "w") for i in range(0, len(x_test)): data = x_test[i] data = np.swapaxes(data, 0, 2) data = np.swapaxes(data, 0, 1) data = np.reshape(data, (60, 108)) img = np.zeros((244, 324), np.uint8) img[92:152, 108:216] = data cv2.imwrite("test/{}.pgm".format(i), img) label = y_test[i] f.write("{},{},{},{}\n".format(label[0], label[1],label[2],label[3])) f.close() @staticmethod def ProcessInferenceData(images, image_height, image_width, isGray=False): """Converts a list of images into a format suitable fot inference Parameters ---------- images : list list of images image_height : int Please... image_width : int Please... isGray : bool, optional True is the dataset is of 1-channel (gray) images, False if RGB Returns ------- list list of video frames and list of labels (poses, which are garbage) """ x_test = np.stack(images, axis=0).astype(np.float32) if isGray == True: x_test = np.reshape(x_test, (-1, image_height, image_width, 1)) else: x_test = np.reshape(x_test, (-1, image_height, image_width, 3)) x_test = np.swapaxes(x_test, 1, 3) x_test = np.swapaxes(x_test, 2, 3) y_test = [0, 0, 0, 0] * len(x_test) y_test = np.vstack(y_test[:]).astype(np.float32) y_test = np.reshape(y_test, (-1, 4)) return [x_test, y_test] @staticmethod def CreateGreyPickle(trainPath, image_height, image_width, file_name): """Converts Dario's RGB dataset to a gray + vignette dataset Parameters ---------- images : list list of images image_height : int Please... image_width : int Please... file_name : str name of the new .pickle """ train_set = pd.read_pickle(trainPath).values logging.info('[DataProcessor] train shape: ' + str(train_set.shape)) # split between train and test sets: x_train = train_set[:, 0] x_train = np.vstack(x_train[:]) x_train = np.reshape(x_train, (-1, image_height, image_width, 3)) it = ImageTransformer() x_train_grey = [] sigma = 50 mask = it.GetVignette(image_width, image_width, sigma) for i in range(len(x_train)): gray_image = cv2.cvtColor(x_train[i], cv2.COLOR_RGB2GRAY) gray_image = gray_image * mask[24:84, 0:108] gray_image = gray_image.astype(np.uint8) x_train_grey.append(gray_image) y_train = train_set[:, 1] df = pd.DataFrame(data={'x': x_train_grey, 'y': y_train}) df.to_pickle(file_name)
the-stack_0_2342
# engine/reflection.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Provides an abstraction for obtaining database schema information. Usage Notes: Here are some general conventions when accessing the low level inspector methods such as get_table_names, get_columns, etc. 1. Inspector methods return lists of dicts in most cases for the following reasons: * They're both standard types that can be serialized. * Using a dict instead of a tuple allows easy expansion of attributes. * Using a list for the outer structure maintains order and is easy to work with (e.g. list comprehension [d['name'] for d in cols]). 2. Records that contain a name, such as the column name in a column record use the key 'name'. So for most return values, each record will have a 'name' attribute.. """ import contextlib from .base import Connectable from .base import Connection from .base import Engine from .. import exc from .. import inspection from .. import sql from .. import util from ..sql import operators from ..sql import schema as sa_schema from ..sql.type_api import TypeEngine from ..util import topological @util.decorator def cache(fn, self, con, *args, **kw): info_cache = kw.get("info_cache", None) if info_cache is None: return fn(self, con, *args, **kw) key = ( fn.__name__, tuple(a for a in args if isinstance(a, util.string_types)), tuple((k, v) for k, v in kw.items() if k != "info_cache"), ) ret = info_cache.get(key) if ret is None: ret = fn(self, con, *args, **kw) info_cache[key] = ret return ret @inspection._self_inspects class Inspector(object): """Performs database schema inspection. The Inspector acts as a proxy to the reflection methods of the :class:`~sqlalchemy.engine.interfaces.Dialect`, providing a consistent interface as well as caching support for previously fetched metadata. A :class:`.Inspector` object is usually created via the :func:`.inspect` function, which may be passed an :class:`.Engine` or a :class:`.Connection`:: from sqlalchemy import inspect, create_engine engine = create_engine('...') insp = inspect(engine) Where above, the :class:`~sqlalchemy.engine.interfaces.Dialect` associated with the engine may opt to return an :class:`.Inspector` subclass that provides additional methods specific to the dialect's target database. """ @util.deprecated( "1.4", "The __init__() method on :class:`.Inspector` is deprecated and " "will be removed in a future release. Please use the " ":func:`.sqlalchemy.inspect` " "function on an :class:`.Engine` or :class:`.Connection` in order to " "acquire an :class:`.Inspector`.", ) def __init__(self, bind): """Initialize a new :class:`.Inspector`. :param bind: a :class:`~sqlalchemy.engine.Connectable`, which is typically an instance of :class:`~sqlalchemy.engine.Engine` or :class:`~sqlalchemy.engine.Connection`. For a dialect-specific instance of :class:`.Inspector`, see :meth:`.Inspector.from_engine` """ return self._init_legacy(bind) @classmethod def _construct(cls, init, bind): if hasattr(bind.dialect, "inspector"): cls = bind.dialect.inspector self = cls.__new__(cls) init(self, bind) return self def _init_legacy(self, bind): if hasattr(bind, "exec_driver_sql"): self._init_connection(bind) else: self._init_engine(bind) def _init_engine(self, engine): self.bind = self.engine = engine engine.connect().close() self._op_context_requires_connect = True self.dialect = self.engine.dialect self.info_cache = {} def _init_connection(self, connection): self.bind = connection self.engine = connection.engine self._op_context_requires_connect = False self.dialect = self.engine.dialect self.info_cache = {} @classmethod @util.deprecated( "1.4", "The from_engine() method on :class:`.Inspector` is deprecated and " "will be removed in a future release. Please use the " ":func:`.sqlalchemy.inspect` " "function on an :class:`.Engine` or :class:`.Connection` in order to " "acquire an :class:`.Inspector`.", ) def from_engine(cls, bind): """Construct a new dialect-specific Inspector object from the given engine or connection. :param bind: a :class:`~sqlalchemy.engine.Connectable`, which is typically an instance of :class:`~sqlalchemy.engine.Engine` or :class:`~sqlalchemy.engine.Connection`. This method differs from direct a direct constructor call of :class:`.Inspector` in that the :class:`~sqlalchemy.engine.interfaces.Dialect` is given a chance to provide a dialect-specific :class:`.Inspector` instance, which may provide additional methods. See the example at :class:`.Inspector`. """ return cls._construct(cls._init_legacy, bind) @inspection._inspects(Connectable) def _connectable_insp(bind): # this method should not be used unless some unusual case # has subclassed "Connectable" return Inspector._construct(Inspector._init_legacy, bind) @inspection._inspects(Engine) def _engine_insp(bind): return Inspector._construct(Inspector._init_engine, bind) @inspection._inspects(Connection) def _connection_insp(bind): return Inspector._construct(Inspector._init_connection, bind) @contextlib.contextmanager def _operation_context(self): """Return a context that optimizes for multiple operations on a single transaction. This essentially allows connect()/close() to be called if we detected that we're against an :class:`.Engine` and not a :class:`.Connection`. """ if self._op_context_requires_connect: conn = self.bind.connect() else: conn = self.bind try: yield conn finally: if self._op_context_requires_connect: conn.close() @contextlib.contextmanager def _inspection_context(self): """Return an :class:`.Inspector` from this one that will run all operations on a single connection. """ with self._operation_context() as conn: sub_insp = self._construct(self.__class__._init_connection, conn) sub_insp.info_cache = self.info_cache yield sub_insp @property def default_schema_name(self): """Return the default schema name presented by the dialect for the current engine's database user. E.g. this is typically ``public`` for PostgreSQL and ``dbo`` for SQL Server. """ return self.dialect.default_schema_name def get_schema_names(self): """Return all schema names. """ if hasattr(self.dialect, "get_schema_names"): with self._operation_context() as conn: return self.dialect.get_schema_names( conn, info_cache=self.info_cache ) return [] def get_table_names(self, schema=None): """Return all table names in referred to within a particular schema. The names are expected to be real tables only, not views. Views are instead returned using the :meth:`.Inspector.get_view_names` method. :param schema: Schema name. If ``schema`` is left at ``None``, the database's default schema is used, else the named schema is searched. If the database does not support named schemas, behavior is undefined if ``schema`` is not passed as ``None``. For special quoting, use :class:`.quoted_name`. :param order_by: Optional, may be the string "foreign_key" to sort the result on foreign key dependencies. Does not automatically resolve cycles, and will raise :class:`.CircularDependencyError` if cycles exist. .. seealso:: :meth:`.Inspector.get_sorted_table_and_fkc_names` :attr:`.MetaData.sorted_tables` """ with self._operation_context() as conn: return self.dialect.get_table_names( conn, schema, info_cache=self.info_cache ) def has_table(self, table_name, schema=None): """Return True if the backend has a table of the given name. .. versionadded:: 1.4 """ # TODO: info_cache? with self._operation_context() as conn: return self.dialect.has_table(conn, table_name, schema) def get_sorted_table_and_fkc_names(self, schema=None): """Return dependency-sorted table and foreign key constraint names in referred to within a particular schema. This will yield 2-tuples of ``(tablename, [(tname, fkname), (tname, fkname), ...])`` consisting of table names in CREATE order grouped with the foreign key constraint names that are not detected as belonging to a cycle. The final element will be ``(None, [(tname, fkname), (tname, fkname), ..])`` which will consist of remaining foreign key constraint names that would require a separate CREATE step after-the-fact, based on dependencies between tables. .. versionadded:: 1.0.- .. seealso:: :meth:`.Inspector.get_table_names` :func:`.sort_tables_and_constraints` - similar method which works with an already-given :class:`.MetaData`. """ with self._operation_context() as conn: tnames = self.dialect.get_table_names( conn, schema, info_cache=self.info_cache ) tuples = set() remaining_fkcs = set() fknames_for_table = {} for tname in tnames: fkeys = self.get_foreign_keys(tname, schema) fknames_for_table[tname] = set([fk["name"] for fk in fkeys]) for fkey in fkeys: if tname != fkey["referred_table"]: tuples.add((fkey["referred_table"], tname)) try: candidate_sort = list(topological.sort(tuples, tnames)) except exc.CircularDependencyError as err: for edge in err.edges: tuples.remove(edge) remaining_fkcs.update( (edge[1], fkc) for fkc in fknames_for_table[edge[1]] ) candidate_sort = list(topological.sort(tuples, tnames)) return [ (tname, fknames_for_table[tname].difference(remaining_fkcs)) for tname in candidate_sort ] + [(None, list(remaining_fkcs))] def get_temp_table_names(self): """return a list of temporary table names for the current bind. This method is unsupported by most dialects; currently only SQLite implements it. .. versionadded:: 1.0.0 """ with self._operation_context() as conn: return self.dialect.get_temp_table_names( conn, info_cache=self.info_cache ) def get_temp_view_names(self): """return a list of temporary view names for the current bind. This method is unsupported by most dialects; currently only SQLite implements it. .. versionadded:: 1.0.0 """ with self._operation_context() as conn: return self.dialect.get_temp_view_names( conn, info_cache=self.info_cache ) def get_table_options(self, table_name, schema=None, **kw): """Return a dictionary of options specified when the table of the given name was created. This currently includes some options that apply to MySQL tables. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ if hasattr(self.dialect, "get_table_options"): with self._operation_context() as conn: return self.dialect.get_table_options( conn, table_name, schema, info_cache=self.info_cache, **kw ) return {} def get_view_names(self, schema=None): """Return all view names in `schema`. :param schema: Optional, retrieve names from a non-default schema. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_view_names( conn, schema, info_cache=self.info_cache ) def get_view_definition(self, view_name, schema=None): """Return definition for `view_name`. :param schema: Optional, retrieve names from a non-default schema. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_view_definition( conn, view_name, schema, info_cache=self.info_cache ) def get_columns(self, table_name, schema=None, **kw): """Return information about columns in `table_name`. Given a string `table_name` and an optional string `schema`, return column information as a list of dicts with these keys: * ``name`` - the column's name * ``type`` - the type of this column; an instance of :class:`~sqlalchemy.types.TypeEngine` * ``nullable`` - boolean flag if the column is NULL or NOT NULL * ``default`` - the column's server default value - this is returned as a string SQL expression. * ``autoincrement`` - indicates that the column is auto incremented - this is returned as a boolean or 'auto' * ``comment`` - (optional) the commnet on the column. Only some dialects return this key * ``computed`` - (optional) when present it indicates that this column is computed by the database. Only some dialects return this key. Returned as a dict with the keys: * ``sqltext`` - the expression used to generate this column returned as a string SQL expression * ``persisted`` - (optional) boolean that indicates if the column is stored in the table .. versionadded:: 1.3.16 - added support for computed reflection. * ``dialect_options`` - (optional) a dict with dialect specific options :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. :return: list of dictionaries, each representing the definition of a database column. """ with self._operation_context() as conn: col_defs = self.dialect.get_columns( conn, table_name, schema, info_cache=self.info_cache, **kw ) for col_def in col_defs: # make this easy and only return instances for coltype coltype = col_def["type"] if not isinstance(coltype, TypeEngine): col_def["type"] = coltype() return col_defs def get_pk_constraint(self, table_name, schema=None, **kw): """Return information about primary key constraint on `table_name`. Given a string `table_name`, and an optional string `schema`, return primary key information as a dictionary with these keys: constrained_columns a list of column names that make up the primary key name optional name of the primary key constraint. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_pk_constraint( conn, table_name, schema, info_cache=self.info_cache, **kw ) def get_foreign_keys(self, table_name, schema=None, **kw): """Return information about foreign_keys in `table_name`. Given a string `table_name`, and an optional string `schema`, return foreign key information as a list of dicts with these keys: constrained_columns a list of column names that make up the foreign key referred_schema the name of the referred schema referred_table the name of the referred table referred_columns a list of column names in the referred table that correspond to constrained_columns name optional name of the foreign key constraint. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_foreign_keys( conn, table_name, schema, info_cache=self.info_cache, **kw ) def get_indexes(self, table_name, schema=None, **kw): """Return information about indexes in `table_name`. Given a string `table_name` and an optional string `schema`, return index information as a list of dicts with these keys: name the index's name column_names list of column names in order unique boolean column_sorting optional dict mapping column names to tuple of sort keywords, which may include ``asc``, ``desc``, ``nullsfirst``, ``nullslast``. .. versionadded:: 1.3.5 dialect_options dict of dialect-specific index options. May not be present for all dialects. .. versionadded:: 1.0.0 :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_indexes( conn, table_name, schema, info_cache=self.info_cache, **kw ) def get_unique_constraints(self, table_name, schema=None, **kw): """Return information about unique constraints in `table_name`. Given a string `table_name` and an optional string `schema`, return unique constraint information as a list of dicts with these keys: name the unique constraint's name column_names list of column names in order :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ with self._operation_context() as conn: return self.dialect.get_unique_constraints( conn, table_name, schema, info_cache=self.info_cache, **kw ) def get_table_comment(self, table_name, schema=None, **kw): """Return information about the table comment for ``table_name``. Given a string ``table_name`` and an optional string ``schema``, return table comment information as a dictionary with these keys: text text of the comment. Raises ``NotImplementedError`` for a dialect that does not support comments. .. versionadded:: 1.2 """ with self._operation_context() as conn: return self.dialect.get_table_comment( conn, table_name, schema, info_cache=self.info_cache, **kw ) def get_check_constraints(self, table_name, schema=None, **kw): """Return information about check constraints in `table_name`. Given a string `table_name` and an optional string `schema`, return check constraint information as a list of dicts with these keys: name the check constraint's name sqltext the check constraint's SQL expression dialect_options may or may not be present; a dictionary with additional dialect-specific options for this CHECK constraint .. versionadded:: 1.3.8 :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. .. versionadded:: 1.1.0 """ with self._operation_context() as conn: return self.dialect.get_check_constraints( conn, table_name, schema, info_cache=self.info_cache, **kw ) @util.deprecated_20( ":meth:`.Inspector.reflecttable`", "The :meth:`.Inspector.reflecttable` method was renamed to " ":meth:`.Inspector.reflect_table`. This deprecated alias " "will be removed in a future release.", ) def reflecttable(self, *args, **kwargs): "See reflect_table. This method name is deprecated" return self.reflect_table(*args, **kwargs) def reflect_table( self, table, include_columns, exclude_columns=(), resolve_fks=True, _extend_on=None, ): """Given a Table object, load its internal constructs based on introspection. This is the underlying method used by most dialects to produce table reflection. Direct usage is like:: from sqlalchemy import create_engine, MetaData, Table from sqlalchemy.engine.reflection import Inspector engine = create_engine('...') meta = MetaData() user_table = Table('user', meta) insp = Inspector.from_engine(engine) insp.reflect_table(user_table, None) .. versionchanged:: 1.4 Renamed from ``reflecttable`` to ``reflect_table`` :param table: a :class:`~sqlalchemy.schema.Table` instance. :param include_columns: a list of string column names to include in the reflection process. If ``None``, all columns are reflected. """ if _extend_on is not None: if table in _extend_on: return else: _extend_on.add(table) dialect = self.bind.dialect with self._operation_context() as conn: schema = conn.schema_for_object(table) table_name = table.name # get table-level arguments that are specifically # intended for reflection, e.g. oracle_resolve_synonyms. # these are unconditionally passed to related Table # objects reflection_options = dict( (k, table.dialect_kwargs.get(k)) for k in dialect.reflection_options if k in table.dialect_kwargs ) # reflect table options, like mysql_engine tbl_opts = self.get_table_options( table_name, schema, **table.dialect_kwargs ) if tbl_opts: # add additional kwargs to the Table if the dialect # returned them table._validate_dialect_kwargs(tbl_opts) if util.py2k: if isinstance(schema, str): schema = schema.decode(dialect.encoding) if isinstance(table_name, str): table_name = table_name.decode(dialect.encoding) found_table = False cols_by_orig_name = {} for col_d in self.get_columns( table_name, schema, **table.dialect_kwargs ): found_table = True self._reflect_column( table, col_d, include_columns, exclude_columns, cols_by_orig_name, ) if not found_table: raise exc.NoSuchTableError(table.name) self._reflect_pk( table_name, schema, table, cols_by_orig_name, exclude_columns ) self._reflect_fk( table_name, schema, table, cols_by_orig_name, exclude_columns, resolve_fks, _extend_on, reflection_options, ) self._reflect_indexes( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ) self._reflect_unique_constraints( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ) self._reflect_check_constraints( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ) self._reflect_table_comment( table_name, schema, table, reflection_options ) def _reflect_column( self, table, col_d, include_columns, exclude_columns, cols_by_orig_name ): orig_name = col_d["name"] table.dispatch.column_reflect(self, table, col_d) # fetch name again as column_reflect is allowed to # change it name = col_d["name"] if (include_columns and name not in include_columns) or ( exclude_columns and name in exclude_columns ): return coltype = col_d["type"] col_kw = dict( (k, col_d[k]) for k in [ "nullable", "autoincrement", "quote", "info", "key", "comment", ] if k in col_d ) if "dialect_options" in col_d: col_kw.update(col_d["dialect_options"]) colargs = [] if col_d.get("default") is not None: default = col_d["default"] if isinstance(default, sql.elements.TextClause): default = sa_schema.DefaultClause(default, _reflected=True) elif not isinstance(default, sa_schema.FetchedValue): default = sa_schema.DefaultClause( sql.text(col_d["default"]), _reflected=True ) colargs.append(default) if "computed" in col_d: computed = sa_schema.Computed(**col_d["computed"]) colargs.append(computed) if "sequence" in col_d: self._reflect_col_sequence(col_d, colargs) cols_by_orig_name[orig_name] = col = sa_schema.Column( name, coltype, *colargs, **col_kw ) if col.key in table.primary_key: col.primary_key = True table.append_column(col) def _reflect_col_sequence(self, col_d, colargs): if "sequence" in col_d: # TODO: mssql and sybase are using this. seq = col_d["sequence"] sequence = sa_schema.Sequence(seq["name"], 1, 1) if "start" in seq: sequence.start = seq["start"] if "increment" in seq: sequence.increment = seq["increment"] colargs.append(sequence) def _reflect_pk( self, table_name, schema, table, cols_by_orig_name, exclude_columns ): pk_cons = self.get_pk_constraint( table_name, schema, **table.dialect_kwargs ) if pk_cons: pk_cols = [ cols_by_orig_name[pk] for pk in pk_cons["constrained_columns"] if pk in cols_by_orig_name and pk not in exclude_columns ] # update pk constraint name table.primary_key.name = pk_cons.get("name") # tell the PKConstraint to re-initialize # its column collection table.primary_key._reload(pk_cols) def _reflect_fk( self, table_name, schema, table, cols_by_orig_name, exclude_columns, resolve_fks, _extend_on, reflection_options, ): fkeys = self.get_foreign_keys( table_name, schema, **table.dialect_kwargs ) for fkey_d in fkeys: conname = fkey_d["name"] # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback constrained_columns = [ cols_by_orig_name[c].key if c in cols_by_orig_name else c for c in fkey_d["constrained_columns"] ] if exclude_columns and set(constrained_columns).intersection( exclude_columns ): continue referred_schema = fkey_d["referred_schema"] referred_table = fkey_d["referred_table"] referred_columns = fkey_d["referred_columns"] refspec = [] if referred_schema is not None: if resolve_fks: sa_schema.Table( referred_table, table.metadata, autoload=True, schema=referred_schema, autoload_with=self.bind, _extend_on=_extend_on, **reflection_options ) for column in referred_columns: refspec.append( ".".join([referred_schema, referred_table, column]) ) else: if resolve_fks: sa_schema.Table( referred_table, table.metadata, autoload=True, autoload_with=self.bind, schema=sa_schema.BLANK_SCHEMA, _extend_on=_extend_on, **reflection_options ) for column in referred_columns: refspec.append(".".join([referred_table, column])) if "options" in fkey_d: options = fkey_d["options"] else: options = {} table.append_constraint( sa_schema.ForeignKeyConstraint( constrained_columns, refspec, conname, link_to_name=True, **options ) ) _index_sort_exprs = [ ("asc", operators.asc_op), ("desc", operators.desc_op), ("nullsfirst", operators.nullsfirst_op), ("nullslast", operators.nullslast_op), ] def _reflect_indexes( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ): # Indexes indexes = self.get_indexes(table_name, schema) for index_d in indexes: name = index_d["name"] columns = index_d["column_names"] column_sorting = index_d.get("column_sorting", {}) unique = index_d["unique"] flavor = index_d.get("type", "index") dialect_options = index_d.get("dialect_options", {}) duplicates = index_d.get("duplicates_constraint") if include_columns and not set(columns).issubset(include_columns): util.warn( "Omitting %s key for (%s), key covers omitted columns." % (flavor, ", ".join(columns)) ) continue if duplicates: continue # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback idx_cols = [] for c in columns: try: idx_col = ( cols_by_orig_name[c] if c in cols_by_orig_name else table.c[c] ) except KeyError: util.warn( "%s key '%s' was not located in " "columns for table '%s'" % (flavor, c, table_name) ) continue c_sorting = column_sorting.get(c, ()) for k, op in self._index_sort_exprs: if k in c_sorting: idx_col = op(idx_col) idx_cols.append(idx_col) sa_schema.Index( name, *idx_cols, _table=table, **dict(list(dialect_options.items()) + [("unique", unique)]) ) def _reflect_unique_constraints( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ): # Unique Constraints try: constraints = self.get_unique_constraints(table_name, schema) except NotImplementedError: # optional dialect feature return for const_d in constraints: conname = const_d["name"] columns = const_d["column_names"] duplicates = const_d.get("duplicates_index") if include_columns and not set(columns).issubset(include_columns): util.warn( "Omitting unique constraint key for (%s), " "key covers omitted columns." % ", ".join(columns) ) continue if duplicates: continue # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback constrained_cols = [] for c in columns: try: constrained_col = ( cols_by_orig_name[c] if c in cols_by_orig_name else table.c[c] ) except KeyError: util.warn( "unique constraint key '%s' was not located in " "columns for table '%s'" % (c, table_name) ) else: constrained_cols.append(constrained_col) table.append_constraint( sa_schema.UniqueConstraint(*constrained_cols, name=conname) ) def _reflect_check_constraints( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options, ): try: constraints = self.get_check_constraints(table_name, schema) except NotImplementedError: # optional dialect feature return for const_d in constraints: table.append_constraint(sa_schema.CheckConstraint(**const_d)) def _reflect_table_comment( self, table_name, schema, table, reflection_options ): try: comment_dict = self.get_table_comment(table_name, schema) except NotImplementedError: return else: table.comment = comment_dict.get("text", None)
the-stack_0_2345
# Copyright 2016 Raytheon BBN Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 __all__ = ['Averager'] import time import itertools import numpy as np from .filter import Filter from auspex.log import logger from auspex.parameter import Parameter, FloatParameter from auspex.stream import InputConnector, OutputConnector, DataStreamDescriptor, DataAxis def view_fields(a, names): """ `a` must be a numpy structured array. `names` is the collection of field names to keep. Returns a view of the array `a` (not a copy). http://stackoverflow.com/questions/37079175/how-to-remove-a-column-from-a-structured-numpy-array-without-copying-it """ dt = a.dtype formats = [dt.fields[name][0] for name in names] offsets = [dt.fields[name][1] for name in names] itemsize = a.dtype.itemsize newdt = np.dtype(dict(names=names, formats=formats, offsets=offsets, itemsize=itemsize)) b = a.view(newdt) return b def remove_fields(a, names): """ `a` must be a numpy structured array. `names` is the collection of field names to remove. Returns a view of the array `a` (not a copy). http://stackoverflow.com/questions/37079175/how-to-remove-a-column-from-a-structured-numpy-array-without-copying-it """ dt = a.dtype keep_names = [name for name in dt.names if name not in names] return view_fields(a, keep_names) class Averager(Filter): """Takes data and collapses along the specified axis.""" sink = InputConnector() partial_average = OutputConnector() source = OutputConnector() final_variance = OutputConnector() final_counts = OutputConnector() axis = Parameter() threshold = FloatParameter() def __init__(self, axis=None, threshold=0.5, **kwargs): super(Averager, self).__init__(**kwargs) self.axis.value = axis self.threshold.value = threshold self.points_before_final_average = None self.points_before_partial_average = None self.sum_so_far = None self.num_averages = None self.passthrough = False # Rate limiting for partial averages self.last_update = time.time() self.update_interval = 0.5 def update_descriptors(self): logger.debug('Updating averager "%s" descriptors based on input descriptor: %s.', self.filter_name, self.sink.descriptor) descriptor_in = self.sink.descriptor names = [a.name for a in descriptor_in.axes] self.axis.allowed_values = names if self.axis.value is None: self.axis.value = descriptor_in.axes[0].name # Convert named axes to an index if self.axis.value not in names: raise ValueError("Could not find axis {} within the DataStreamDescriptor {}".format(self.axis.value, descriptor_in)) self.axis_num = descriptor_in.axis_num(self.axis.value) logger.debug("Averaging over axis #%d: %s", self.axis_num, self.axis.value) self.data_dims = descriptor_in.data_dims() # If we only have a single point along this axis, then just pass the data straight through if self.data_dims[self.axis_num] == 1: logger.debug("Averaging over a singleton axis") self.passthrough = True if self.axis_num == len(descriptor_in.axes) - 1: logger.debug("Performing scalar average!") self.points_before_partial_average = 1 self.avg_dims = [1] else: self.points_before_partial_average = descriptor_in.num_points_through_axis(self.axis_num+1) self.avg_dims = self.data_dims[self.axis_num+1:] # If we get multiple final average simultaneously self.reshape_dims = self.data_dims[self.axis_num:] if self.axis_num > 0: self.reshape_dims = [-1] + self.reshape_dims self.mean_axis = self.axis_num - len(self.data_dims) self.points_before_final_average = descriptor_in.num_points_through_axis(self.axis_num) logger.debug("Points before partial average: %s.", self.points_before_partial_average) logger.debug("Points before final average: %s.", self.points_before_final_average) logger.debug("Data dimensions are %s", self.data_dims) logger.debug("Averaging dimensions are %s", self.avg_dims) # Define final axis descriptor descriptor = descriptor_in.copy() self.num_averages = descriptor.pop_axis(self.axis.value).num_points() logger.debug("Number of partial averages is %d", self.num_averages) if len(descriptor.axes) == 0: # We will be left with only a single point here! descriptor.add_axis(DataAxis("result", [0])) self.sum_so_far = np.zeros(self.avg_dims, dtype=descriptor.dtype) self.current_avg_frame = np.zeros(self.points_before_final_average, dtype=descriptor.dtype) self.partial_average.descriptor = descriptor self.source.descriptor = descriptor self.excited_counts = np.zeros(self.data_dims, dtype=np.int64) # We can update the visited_tuples upfront if none # of the sweeps are adaptive... desc_out_dtype = descriptor_in.axis_data_type(with_metadata=True, excluding_axis=self.axis.value) if not descriptor_in.is_adaptive(): vals = [a.points_with_metadata() for a in descriptor_in.axes if a.name != self.axis.value] nested_list = list(itertools.product(*vals)) flattened_list = [tuple((val for sublist in line for val in sublist)) for line in nested_list] descriptor.visited_tuples = np.core.records.fromrecords(flattened_list, dtype=desc_out_dtype) else: descriptor.visited_tuples = np.empty((0), dtype=desc_out_dtype) for stream in self.partial_average.output_streams: stream.set_descriptor(descriptor) stream.descriptor.buffer_mult_factor = 20 stream.end_connector.update_descriptors() for stream in self.source.output_streams: stream.set_descriptor(descriptor) stream.end_connector.update_descriptors() # Define variance axis descriptor descriptor_var = descriptor_in.copy() descriptor_var.data_name = "Variance" descriptor_var.pop_axis(self.axis.value) if descriptor_var.unit: descriptor_var.unit = descriptor_var.unit + "^2" descriptor_var.metadata["num_averages"] = self.num_averages self.final_variance.descriptor= descriptor_var # Define counts axis descriptor descriptor_count = descriptor_in.copy() descriptor_count.data_name = "Counts" descriptor_count.dtype = np.float64 descriptor_count.pop_axis(self.axis.value) descriptor_count.add_axis(DataAxis("state", [0,1]),position=0) if descriptor_count.unit: descriptor_count.unit = "counts" descriptor_count.metadata["num_counts"] = self.num_averages self.final_counts.descriptor = descriptor_count if not descriptor_in.is_adaptive(): descriptor_var.visited_tuples = np.core.records.fromrecords(flattened_list, dtype=desc_out_dtype) else: descriptor_var.visited_tuples = np.empty((0), dtype=desc_out_dtype) for stream in self.final_variance.output_streams: stream.set_descriptor(descriptor_var) stream.end_connector.update_descriptors() for stream in self.final_counts.output_streams: stream.set_descriptor(descriptor_count) stream.end_connector.update_descriptors() def final_init(self): if self.points_before_final_average is None: raise Exception("Average has not been initialized. Run 'update_descriptors'") self.completed_averages = 0 self.idx_frame = 0 self.idx_global = 0 # We only need to accumulate up to the averaging axis # BUT we may get something longer at any given time! self.carry = np.zeros(0, dtype=self.source.descriptor.dtype) def process_data(self, data): if self.passthrough: for os in self.source.output_streams: os.push(data) for os in self.final_variance.output_streams: os.push(data*0.0) for os in self.partial_average.output_streams: os.push(data) return # TODO: handle unflattened data separately if len(data.shape) > 1: data = data.flatten() #handle single points elif not isinstance(data, np.ndarray) and (data.size == 1): data = np.array([data]) if self.carry.size > 0: data = np.concatenate((self.carry, data)) self.carry = np.zeros(0, dtype=self.source.descriptor.dtype) idx = 0 while idx < data.size: #check whether we have enough data to fill an averaging frame if data.size - idx >= self.points_before_final_average: #logger.debug("Have {} points, enough for final avg.".format(data.size)) # How many chunks can we process at once? num_chunks = int((data.size - idx)/self.points_before_final_average) new_points = num_chunks*self.points_before_final_average reshaped = data[idx:idx+new_points].reshape(self.reshape_dims) averaged = reshaped.mean(axis=self.mean_axis) idx += new_points # do state assignment excited_states = (np.real(reshaped) > self.threshold.value).sum(axis=self.mean_axis) ground_states = self.num_averages - excited_states if self.sink.descriptor.is_adaptive(): new_tuples = self.sink.descriptor.tuples()[self.idx_global:self.idx_global + new_points] new_tuples_stripped = remove_fields(new_tuples, self.axis.value) take_axis = -1 if self.axis_num > 0 else 0 reduced_tuples = new_tuples_stripped.reshape(self.reshape_dims).take((0,), axis=take_axis) self.idx_global += new_points # Add to Visited tuples if self.sink.descriptor.is_adaptive(): for os in self.source.output_streams + self.final_variance.output_streams + self.partial_average.output_streams: os.descriptor.visited_tuples = np.append(os.descriptor.visited_tuples, reduced_tuples) for os in self.source.output_streams: os.push(averaged) for os in self.final_variance.output_streams: os.push(reshaped.var(axis=self.mean_axis, ddof=1)) # N-1 in the denominator for os in self.partial_average.output_streams: os.push(averaged) for os in self.final_counts.output_streams: os.push(ground_states) os.push(excited_states) # Maybe we can fill a partial frame elif data.size - idx >= self.points_before_partial_average: # logger.info("Have {} points, enough for partial avg.".format(data.size)) # How many chunks can we process at once? num_chunks = int((data.size - idx)/self.points_before_partial_average) new_points = num_chunks*self.points_before_partial_average # Find the appropriate dimensions for the partial partial_reshape_dims = self.reshape_dims[:] partial_reshape_dims[self.mean_axis] = -1 partial_reshape_dims = partial_reshape_dims[self.mean_axis:] reshaped = data[idx:idx+new_points].reshape(partial_reshape_dims) summed = reshaped.sum(axis=self.mean_axis) self.sum_so_far += summed self.current_avg_frame[self.idx_frame:self.idx_frame+new_points] = data[idx:idx+new_points] idx += new_points self.idx_frame += new_points self.completed_averages += num_chunks # If we now have enoough for the final average, push to both partial and final... if self.completed_averages == self.num_averages: reshaped = self.current_avg_frame.reshape(partial_reshape_dims) for os in self.source.output_streams + self.partial_average.output_streams: os.push(reshaped.mean(axis=self.mean_axis)) for os in self.final_variance.output_streams: os.push(np.real(reshaped).var(axis=self.mean_axis, ddof=1)+1j*np.imag(reshaped).var(axis=self.mean_axis, ddof=1)) # N-1 in the denominator # do state assignment excited_states = (np.real(reshaped) < self.threshold.value).sum(axis=self.mean_axis) ground_states = self.num_averages - excited_states for os in self.final_counts.output_streams: os.push(ground_states) os.push(excited_states) self.sum_so_far[:] = 0.0 self.current_avg_frame[:] = 0.0 self.completed_averages = 0 self.idx_frame = 0 else: # Emit a partial average since we've accumulated enough data if (time.time() - self.last_update >= self.update_interval): for os in self.partial_average.output_streams: os.push(self.sum_so_far/self.completed_averages) self.last_update = time.time() # otherwise just add it to the carry else: self.carry = data[idx:] break
the-stack_0_2346
import os import argparse import pandas as pd def combine_ftype(on_private): # Content_2_index = { # 0: "Empty", # 1: "Pasta", # 2: "Rice", # 3: "Water" # } if on_private: vggish_path = './filling_type/vggish/predictions/200903163404/ftype_private_test_agg_vggish.csv' rf_path = './filling_type/CORSMAL-pyAudioAnalysis/ftype-randomforest-final_result_private_test.csv' else: vggish_path = './filling_type/vggish/predictions/200903163404/ftype_public_test_agg_vggish.csv' rf_path = './filling_type/CORSMAL-pyAudioAnalysis/ftype-randomforest-final_result_public_test.csv' vggish = pd.read_csv(vggish_path) ftype_randomforest = pd.read_csv(rf_path) ftype_randomforest = ftype_randomforest.sort_values(['Object', 'Sequence']).reset_index(drop=True) random_forest_preds = ftype_randomforest[[ 'Filling type prob0', 'Filling type prob1', 'Filling type prob2', 'Filling type prob3' ]] vggish_preds = vggish[['ftype_prob_0', 'ftype_prob_1', 'ftype_prob_2', 'ftype_prob_3']] ftype_combined = (random_forest_preds.values + vggish_preds.values) / 2 # return pd.Series([Content_2_index[cls] for cls in ftype_combined.argmax(axis=1)]) return pd.Series([cls for cls in ftype_combined.argmax(axis=1)]) def combine_flvl(on_private): # filling_2_value = {0: 0, 1: 50, 2: 90} cols_with_probs_1 = ['flvl_prob_0', 'flvl_prob_1', 'flvl_prob_2'] if on_private: vggish_path = './filling_level/vggish/predictions/200903162117/flvl_private_test_agg_vggish.csv' r21d_path = './filling_level/r21d_rgb/predictions/200903214601/flvl_private_test_agg_r21d_rgb.csv' rf_path = './filling_level/CORSMAL-pyAudioAnalysis/flevel-randomforest-final_result_private_test.csv' else: vggish_path = './filling_level/vggish/predictions/200903162117/flvl_public_test_agg_vggish.csv' r21d_path = './filling_level/r21d_rgb/predictions/200903214601/flvl_public_test_agg_r21d_rgb.csv' rf_path = './filling_level/CORSMAL-pyAudioAnalysis/flevel-randomforest-final_result_public_test.csv' flvl_vggish = pd.read_csv(vggish_path) flvl_r21d = pd.read_csv(r21d_path) flvl_vggish = flvl_vggish[cols_with_probs_1] flvl_r21d = flvl_r21d[cols_with_probs_1] # flvl_combined = (flvl_vggish.values + flvl_r21d.values) / 2 # flvl_combined = flvl_vggish.values # we also observed that adding pyAudioAnalysis' random forest predictions, improves valid performance cols_with_probs_2 = ['Filling level [%] prob0', 'Filling level [%] prob1', 'Filling level [%] prob2'] flvl_rf = pd.read_csv(rf_path) flvl_rf = flvl_rf.sort_values(['Object', 'Sequence']).reset_index(drop=True) flvl_rf = flvl_rf[cols_with_probs_2] flvl_combined = (flvl_vggish.values + flvl_r21d.values + flvl_rf.values) / 3 # return pd.Series([int(filling_2_value[cls]) for cls in flvl_combined.argmax(axis=1)]) return pd.Series([int(cls) for cls in flvl_combined.argmax(axis=1)]) def capacity(on_private): if on_private: cap_path = './capacity/results/estimation_combination_private_test.csv' # cap_path = './capacity/results/estimation_combination_with_0_private_test.csv' # cap_path = './capacity/results/estimation_combination_with_1_private_test.csv' else: cap_path = './capacity/results/estimation_combination_public_test.csv' # cap_path = './capacity/results/estimation_combination_with_0_public_test.csv' # cap_path = './capacity/results/estimation_combination_with_1_public_test.csv' a = pd.read_csv(cap_path) return a['capacity[mL]'] # def estimate_fmass(submission): # Content_2_density = { # "Empty": 0.0, # "Empty" # 0: 0.0, # "Empty" # "Pasta": 0.41, # "Pasta" # 1: 0.41, # "Pasta" # "Rice": 0.85, # "Rice" # 2: 0.85, # "Rice" # "Water": 1.00, # "Water" # 3: 1.00, # "Water" # } # fmass_col = [] # for cont, seq, capacity, c_mass, ftype, flvl, fmass in submission.values: # fmass = Content_2_density[ftype] * flvl / 100 * capacity # fmass_col.append(fmass) # return pd.Series(fmass_col) def make_submission_form(data_path, on_private): columns = ['Container ID', 'Sequence', 'Filling type', 'Filling level', 'Container Capacity'] submission = pd.DataFrame(columns=columns) if on_private: container_ids = ['13', '14', '15'] else: container_ids = ['10', '11', '12'] # creating columns for container id and sequence using filenames from audio folder – 0053_audio.wav -> 53 object_list = [] sequence_list = [] for container_id in container_ids: path = os.path.join(data_path, container_id, 'audio') filenames = sorted(os.listdir(path)) seq_ids = [int(fname.replace('_audio.wav', '')) for fname in filenames] sequence_list.extend(seq_ids) object_list.extend([container_id] * len(seq_ids)) submission['Container ID'] = object_list submission['Sequence'] = sequence_list return submission if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--predict_on_private', dest='predict_on_private', action='store_true', default=False) parser.add_argument('--data_path', default='./dataset/') args = parser.parse_args() # Gather prediction for the public test set submission_public = make_submission_form(args.data_path, on_private=False) submission_public['Filling type'] = combine_ftype(on_private=False) submission_public['Filling level'] = combine_flvl(on_private=False) submission_public['Container Capacity'] = capacity(on_private=False) # submission_public['Filling mass'] = estimate_fmass(submission_public) submission_public.to_csv('./submission_public_test.csv', index=False) print('Formed predictions in ./submission_public_test.csv') # If specified, gather prediction for the public test set if args.predict_on_private: submission_private = make_submission_form(args.data_path, on_private=True) submission_private['Filling type'] = combine_ftype(on_private=True) submission_private['Filling level'] = combine_flvl(on_private=True) submission_private['Container Capacity'] = capacity(on_private=True) # submission_private['Filling mass'] = estimate_fmass(submission_private) submission_private.to_csv('./submission_private_test.csv', index=False) print('Formed predictions in ./submission_private_test.csv')
the-stack_0_2349
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.training.python.training import sampling_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl class StratifiedSampleTest(test.TestCase): def testGraphBuildAssertionFailures(self): val = [array_ops.zeros([1, 3]), array_ops.ones([1, 5])] label = constant_op.constant([1], shape=[1]) # must have batch dimension probs = [.2] * 5 init_probs = [.1, .3, .1, .3, .2] batch_size = 16 # Label must have only batch dimension if enqueue_many is True. with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, array_ops.zeros([]), probs, batch_size, init_probs, enqueue_many=True) with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, array_ops.zeros([1, 1]), probs, batch_size, init_probs, enqueue_many=True) # Label must not be one-hot. with self.assertRaises(ValueError): sampling_ops.stratified_sample(val, constant_op.constant([0, 1, 0, 0, 0]), probs, batch_size, init_probs) # Data must be list, not singleton tensor. with self.assertRaises(TypeError): sampling_ops.stratified_sample( array_ops.zeros([1, 3]), label, probs, batch_size, init_probs) # Data must have batch dimension if enqueue_many is True. with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, constant_op.constant(1), probs, batch_size, init_probs, enqueue_many=True) # Batch dimensions on data and labels should be equal. with self.assertRaises(ValueError): sampling_ops.stratified_sample( [array_ops.zeros([2, 1])], label, probs, batch_size, init_probs, enqueue_many=True) # Probabilities must be numpy array, python list, or tensor. with self.assertRaises(ValueError): sampling_ops.stratified_sample(val, label, 1, batch_size, init_probs) # Probabilities shape must be fully defined. with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, label, array_ops.placeholder( dtypes.float32, shape=[None]), batch_size, init_probs) # In the rejection sampling case, make sure that probability lengths are # the same. with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, label, [.1] * 10, batch_size, init_probs=[.2] * 5) # In the rejection sampling case, make sure that zero initial probability # classes also have zero target probability. with self.assertRaises(ValueError): sampling_ops.stratified_sample( val, label, [.2, .4, .4], batch_size, init_probs=[0, .5, .5]) def testRuntimeAssertionFailures(self): valid_probs = [.2] * 5 valid_labels = [1, 2, 3] vals = [array_ops.zeros([3, 1])] illegal_labels = [ [0, -1, 1], # classes must be nonnegative [5, 1, 1], # classes must be less than number of classes [2, 3], # data and label batch size must be the same ] illegal_probs = [ [.1] * 5, # probabilities must sum to one [-.5, .5, .5, .4, .1], # probabilities must be non-negative ] # Set up graph with illegal label vector. label_ph = array_ops.placeholder(dtypes.int32, shape=[None]) probs_ph = array_ops.placeholder( dtypes.float32, shape=[5]) # shape must be defined val_tf, lbl_tf, prob_tf = sampling_ops._verify_input( # pylint: disable=protected-access vals, label_ph, [probs_ph]) for illegal_label in illegal_labels: # Run session that should fail. with self.test_session() as sess: with self.assertRaises(errors_impl.InvalidArgumentError): sess.run([val_tf, lbl_tf], feed_dict={label_ph: illegal_label, probs_ph: valid_probs}) for illegal_prob in illegal_probs: # Run session that should fail. with self.test_session() as sess: with self.assertRaises(errors_impl.InvalidArgumentError): sess.run([prob_tf], feed_dict={label_ph: valid_labels, probs_ph: illegal_prob}) def testCanBeCalledMultipleTimes(self): batch_size = 20 val_input_batch = [array_ops.zeros([2, 3, 4])] lbl_input_batch = array_ops.ones([], dtype=dtypes.int32) probs = np.array([0, 1, 0, 0, 0]) batches = sampling_ops.stratified_sample( val_input_batch, lbl_input_batch, probs, batch_size, init_probs=probs) batches += sampling_ops.stratified_sample( val_input_batch, lbl_input_batch, probs, batch_size, init_probs=probs) summary_op = logging_ops.merge_summary( ops.get_collection(ops.GraphKeys.SUMMARIES)) with self.test_session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) sess.run(batches + (summary_op,)) coord.request_stop() coord.join(threads) def testRejectionBatchingBehavior(self): batch_size = 20 input_batch_size = 11 val_input_batch = [array_ops.zeros([input_batch_size, 2, 3, 4])] lbl_input_batch = control_flow_ops.cond( math_ops.greater(.5, random_ops.random_uniform([])), lambda: array_ops.ones([input_batch_size], dtype=dtypes.int32) * 1, lambda: array_ops.ones([input_batch_size], dtype=dtypes.int32) * 3) probs = np.array([0, .2, 0, .8, 0]) data_batch, labels = sampling_ops.stratified_sample( val_input_batch, lbl_input_batch, probs, batch_size, init_probs=[0, .3, 0, .7, 0], enqueue_many=True) with self.test_session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) sess.run([data_batch, labels]) coord.request_stop() coord.join(threads) def testBatchDimensionNotRequired(self): classes = 5 # Probs must be a tensor, since we pass it directly to _verify_input. probs = constant_op.constant([1.0 / classes] * classes) # Make sure that these vals/labels pairs don't throw any runtime exceptions. legal_input_pairs = [ (np.zeros([2, 3]), [x % classes for x in range(2)]), # batch dim 2 (np.zeros([4, 15]), [x % classes for x in range(4)]), # batch dim 4 (np.zeros([10, 1]), [x % classes for x in range(10)]), # batch dim 10 ] # Set up graph with placeholders. vals_ph = array_ops.placeholder( dtypes.float32) # completely undefined shape labels_ph = array_ops.placeholder( dtypes.int32) # completely undefined shape val_tf, labels_tf, _ = sampling_ops._verify_input( # pylint: disable=protected-access [vals_ph], labels_ph, [probs]) # Run graph to make sure there are no shape-related runtime errors. for vals, labels in legal_input_pairs: with self.test_session() as sess: sess.run([val_tf, labels_tf], feed_dict={vals_ph: vals, labels_ph: labels}) def testRejectionDataListInput(self): batch_size = 20 val_input_batch = [ array_ops.zeros([2, 3, 4]), array_ops.ones([2, 4]), array_ops.ones(2) * 3 ] lbl_input_batch = array_ops.ones([], dtype=dtypes.int32) probs = np.array([0, 1, 0, 0, 0]) val_list, lbls = sampling_ops.stratified_sample( val_input_batch, lbl_input_batch, probs, batch_size, init_probs=[0, 1, 0, 0, 0]) # Check output shapes. self.assertTrue(isinstance(val_list, list)) self.assertEqual(len(val_list), len(val_input_batch)) self.assertTrue(isinstance(lbls, ops.Tensor)) with self.test_session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) out = sess.run(val_list + [lbls]) coord.request_stop() coord.join(threads) # Check output shapes. self.assertEqual(len(out), len(val_input_batch) + 1) def normalBehaviorHelper(self, sampler): # Set up graph. random_seed.set_random_seed(1234) lbl1 = 0 lbl2 = 3 # This cond allows the necessary class queues to be populated. label = control_flow_ops.cond( math_ops.greater(.5, random_ops.random_uniform([])), lambda: constant_op.constant(lbl1), lambda: constant_op.constant(lbl2)) val = [np.array([1, 4]) * label] probs = np.array([.8, 0, 0, .2, 0]) batch_size = 16 data_batch, labels = sampler(val, label, probs, batch_size) # Run session and keep track of how frequently the labels and values appear. data_l = [] label_l = [] with self.test_session() as sess: # Need to initialize variables that keep running total of classes seen. variables.global_variables_initializer().run() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) for _ in range(20): [data], lbls = sess.run([data_batch, labels]) data_l.append(data) label_l.append(lbls) coord.request_stop() coord.join(threads) # First check that the data matches the labels. for lbl, data in zip(label_l, data_l): for i in range(batch_size): self.assertListEqual(list(np.array([1, 4]) * lbl[i]), list(data[i, :])) # Check that the labels are approximately correct. expected_label = probs[0] * lbl1 + probs[3] * lbl2 lbl_list = range(len(probs)) lbl_std_dev = np.sqrt(np.sum((np.square(lbl_list - expected_label)))) lbl_std_dev_of_mean = lbl_std_dev / np.sqrt(len(label_l)) # CLT actual_lbl = np.mean(label_l) # Tolerance is 3 standard deviations of the mean. According to the central # limit theorem, this should cover 99.7% of cases. Note that since the seed # is fixed, for a given implementation, this test will pass or fail 100% of # the time. This use of assertNear is to cover cases where someone changes # an implementation detail, which would cause the random behavior to differ. self.assertNear(actual_lbl, expected_label, 3 * lbl_std_dev_of_mean) def testRejectionNormalBehavior(self): initial_p = [.7, 0, 0, .3, 0] def curried_sampler(val, lbls, probs, batch, enqueue_many=False): return sampling_ops.stratified_sample( val, lbls, probs, batch, init_probs=initial_p, enqueue_many=enqueue_many) self.normalBehaviorHelper(curried_sampler) def testRejectionNormalBehaviorWithOnlineInitPEstimate(self): def curried_sampler(val, lbls, probs, batch, enqueue_many=False): return sampling_ops.stratified_sample( val, lbls, probs, batch, init_probs=None, enqueue_many=enqueue_many) self.normalBehaviorHelper(curried_sampler) class RejectionSampleTest(test.TestCase): def testGraphConstructionFailures(self): accept_prob_fn = lambda _: constant_op.constant(1.0) batch_size = 32 # Data must have batch dimension if `enqueue_many` is `True`. with self.assertRaises(ValueError): sampling_ops.rejection_sample( [array_ops.zeros([])], accept_prob_fn, batch_size, enqueue_many=True) # Batch dimensions should be equal if `enqueue_many` is `True`. with self.assertRaises(ValueError): sampling_ops.rejection_sample( [array_ops.zeros([5, 1]), array_ops.zeros([4, 1])], accept_prob_fn, batch_size, enqueue_many=True) def testRuntimeFailures(self): prob_ph = array_ops.placeholder(dtypes.float32, []) accept_prob_fn = lambda _: prob_ph batch_size = 32 # Set up graph. random_seed.set_random_seed(1234) sampling_ops.rejection_sample( [array_ops.zeros([])], accept_prob_fn, batch_size, runtime_checks=True, name='rejection_sample') prob_tensor = ops.get_default_graph().get_tensor_by_name( 'rejection_sample/prob_with_checks:0') # Run session that should fail. with self.test_session() as sess: for illegal_prob in [-0.1, 1.1]: with self.assertRaises(errors_impl.InvalidArgumentError): sess.run(prob_tensor, feed_dict={prob_ph: illegal_prob}) def testNormalBehavior(self): tensor_list = [ control_flow_ops.cond( math_ops.greater(.5, random_ops.random_uniform([])), lambda: constant_op.constant(1.0), lambda: constant_op.constant(2.0)) ] accept_prob_fn = lambda x: x[0] - 1.0 batch_size = 10 # Set up graph. sample = sampling_ops.rejection_sample(tensor_list, accept_prob_fn, batch_size) with self.test_session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) for _ in range(5): sample_np = sess.run(sample)[0] self.assertListEqual([2.0] * batch_size, list(sample_np)) coord.request_stop() coord.join(threads) class ConditionalBatchTest(test.TestCase): def testConditionallyEnqueueAndBatch(self): random_seed.set_random_seed(1234) tensor = control_flow_ops.cond( math_ops.greater(.5, random_ops.random_uniform([])), lambda: constant_op.constant(1.0), lambda: constant_op.constant(2.0)) keep_input = math_ops.equal(tensor, 2.0) batch_size = 4 # Set up the test graph. [batch] = sampling_ops._conditional_batch([tensor], keep_input, batch_size) # pylint: disable=protected-access # Check conditional operation. with self.test_session(): coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(coord=coord) batch_np = batch.eval() coord.request_stop() coord.join(threads) # Check that all elements in batch come from tensors with acceptance prob # 1, so that none come from acceptance prob 0. self.assertListEqual(list(batch_np), [2.0] * batch_size) def testConditionallyEnqueueAndBatchTypes(self): tensor = constant_op.constant(1.0) keep_input = constant_op.constant(True) batch_size = 4 # Check that output types are the same for 1 and 2-length input lists. output1 = sampling_ops._conditional_batch([tensor], keep_input, batch_size) # pylint: disable=protected-access output2 = sampling_ops._conditional_batch( # pylint: disable=protected-access [tensor, tensor], keep_input, batch_size) self.assertEqual(type(output1), type(output2)) if __name__ == '__main__': test.main()
the-stack_0_2350
import falcon import simplejson as json import mysql.connector import config from datetime import datetime, timedelta, timezone from core import utilities from decimal import Decimal import excelexporters.spacestatistics class Reporting: @staticmethod def __init__(): pass @staticmethod def on_options(req, resp): resp.status = falcon.HTTP_200 #################################################################################################################### # PROCEDURES # Step 1: valid parameters # Step 2: query the space # Step 3: query energy categories # Step 4: query associated sensors # Step 5: query associated points # Step 6: query base period energy input # Step 7: query reporting period energy input # Step 8: query tariff data # Step 9: query associated sensors and points data # Step 10: construct the report #################################################################################################################### @staticmethod def on_get(req, resp): print(req.params) space_id = req.params.get('spaceid') period_type = req.params.get('periodtype') base_start_datetime_local = req.params.get('baseperiodstartdatetime') base_end_datetime_local = req.params.get('baseperiodenddatetime') reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') ################################################################################################################ # Step 1: valid parameters ################################################################################################################ if space_id is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') else: space_id = str.strip(space_id) if not space_id.isdigit() or int(space_id) <= 0: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') if period_type is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') else: period_type = str.strip(period_type) if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) if config.utc_offset[0] == '-': timezone_offset = -timezone_offset base_start_datetime_utc = None if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: base_start_datetime_local = str.strip(base_start_datetime_local) try: base_start_datetime_utc = datetime.strptime(base_start_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_BASE_PERIOD_START_DATETIME") base_end_datetime_utc = None if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: base_end_datetime_local = str.strip(base_end_datetime_local) try: base_end_datetime_utc = datetime.strptime(base_end_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_BASE_PERIOD_END_DATETIME") if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ base_start_datetime_utc >= base_end_datetime_utc: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_BASE_PERIOD_END_DATETIME') if reporting_start_datetime_local is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_START_DATETIME") else: reporting_start_datetime_local = str.strip(reporting_start_datetime_local) try: reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_START_DATETIME") if reporting_end_datetime_local is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_END_DATETIME") else: reporting_end_datetime_local = str.strip(reporting_end_datetime_local) try: reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_END_DATETIME") if reporting_start_datetime_utc >= reporting_end_datetime_utc: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_REPORTING_PERIOD_END_DATETIME') ################################################################################################################ # Step 2: query the space ################################################################################################################ cnx_system = mysql.connector.connect(**config.myems_system_db) cursor_system = cnx_system.cursor() cnx_energy = mysql.connector.connect(**config.myems_energy_db) cursor_energy = cnx_energy.cursor() cnx_historical = mysql.connector.connect(**config.myems_historical_db) cursor_historical = cnx_historical.cursor() cursor_system.execute(" SELECT id, name, area, cost_center_id " " FROM tbl_spaces " " WHERE id = %s ", (space_id,)) row_space = cursor_system.fetchone() if row_space is None: if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() if cursor_energy: cursor_energy.close() if cnx_energy: cnx_energy.disconnect() if cnx_historical: cnx_historical.close() if cursor_historical: cursor_historical.disconnect() raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND') space = dict() space['id'] = row_space[0] space['name'] = row_space[1] space['area'] = row_space[2] space['cost_center_id'] = row_space[3] ################################################################################################################ # Step 3: query energy categories ################################################################################################################ energy_category_set = set() # query energy categories in base period cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s ", (space['id'], base_start_datetime_utc, base_end_datetime_utc)) rows_energy_categories = cursor_energy.fetchall() if rows_energy_categories is not None or len(rows_energy_categories) > 0: for row_energy_category in rows_energy_categories: energy_category_set.add(row_energy_category[0]) # query energy categories in reporting period cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s ", (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows_energy_categories = cursor_energy.fetchall() if rows_energy_categories is not None or len(rows_energy_categories) > 0: for row_energy_category in rows_energy_categories: energy_category_set.add(row_energy_category[0]) # query all energy categories in base period and reporting period cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " " FROM tbl_energy_categories " " ORDER BY id ", ) rows_energy_categories = cursor_system.fetchall() if rows_energy_categories is None or len(rows_energy_categories) == 0: if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() if cursor_energy: cursor_energy.close() if cnx_energy: cnx_energy.disconnect() if cnx_historical: cnx_historical.close() if cursor_historical: cursor_historical.disconnect() raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.ENERGY_CATEGORY_NOT_FOUND') energy_category_dict = dict() for row_energy_category in rows_energy_categories: if row_energy_category[0] in energy_category_set: energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], "unit_of_measure": row_energy_category[2], "kgce": row_energy_category[3], "kgco2e": row_energy_category[4]} ################################################################################################################ # Step 4: query associated sensors ################################################################################################################ point_list = list() cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, " " tbl_points po, tbl_sensors_points sepo " " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id " " AND se.id = sepo.sensor_id AND sepo.point_id = po.id " " ORDER BY po.id ", (space['id'], )) rows_points = cursor_system.fetchall() if rows_points is not None and len(rows_points) > 0: for row in rows_points: point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) ################################################################################################################ # Step 5: query associated points ################################################################################################################ cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po " " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id " " ORDER BY po.id ", (space['id'], )) rows_points = cursor_system.fetchall() if rows_points is not None and len(rows_points) > 0: for row in rows_points: point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) ################################################################################################################ # Step 6: query base period energy input ################################################################################################################ base = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: base[energy_category_id] = dict() base[energy_category_id]['timestamps'] = list() base[energy_category_id]['values'] = list() base[energy_category_id]['subtotal'] = Decimal(0.0) base[energy_category_id]['mean'] = None base[energy_category_id]['median'] = None base[energy_category_id]['minimum'] = None base[energy_category_id]['maximum'] = None base[energy_category_id]['stdev'] = None base[energy_category_id]['variance'] = None cursor_energy.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, base_start_datetime_utc, base_end_datetime_utc)) rows_space_hourly = cursor_energy.fetchall() rows_space_periodically, \ base[energy_category_id]['mean'], \ base[energy_category_id]['median'], \ base[energy_category_id]['minimum'], \ base[energy_category_id]['maximum'], \ base[energy_category_id]['stdev'], \ base[energy_category_id]['variance'] = \ utilities.statistics_hourly_data_by_period(rows_space_hourly, base_start_datetime_utc, base_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] base[energy_category_id]['timestamps'].append(current_datetime) base[energy_category_id]['values'].append(actual_value) base[energy_category_id]['subtotal'] += actual_value ################################################################################################################ # Step 7: query reporting period energy input ################################################################################################################ reporting = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: reporting[energy_category_id] = dict() reporting[energy_category_id]['timestamps'] = list() reporting[energy_category_id]['values'] = list() reporting[energy_category_id]['subtotal'] = Decimal(0.0) reporting[energy_category_id]['mean'] = None reporting[energy_category_id]['median'] = None reporting[energy_category_id]['minimum'] = None reporting[energy_category_id]['maximum'] = None reporting[energy_category_id]['stdev'] = None reporting[energy_category_id]['variance'] = None cursor_energy.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc)) rows_space_hourly = cursor_energy.fetchall() rows_space_periodically, \ reporting[energy_category_id]['mean'], \ reporting[energy_category_id]['median'], \ reporting[energy_category_id]['minimum'], \ reporting[energy_category_id]['maximum'], \ reporting[energy_category_id]['stdev'], \ reporting[energy_category_id]['variance'] = \ utilities.statistics_hourly_data_by_period(rows_space_hourly, reporting_start_datetime_utc, reporting_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] reporting[energy_category_id]['timestamps'].append(current_datetime) reporting[energy_category_id]['values'].append(actual_value) reporting[energy_category_id]['subtotal'] += actual_value ################################################################################################################ # Step 8: query tariff data ################################################################################################################ parameters_data = dict() parameters_data['names'] = list() parameters_data['timestamps'] = list() parameters_data['values'] = list() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc) tariff_timestamp_list = list() tariff_value_list = list() for k, v in energy_category_tariff_dict.items(): # convert k from utc to local k = k + timedelta(minutes=timezone_offset) tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) tariff_value_list.append(v) parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) parameters_data['timestamps'].append(tariff_timestamp_list) parameters_data['values'].append(tariff_value_list) ################################################################################################################ # Step 9: query associated sensors and points data ################################################################################################################ for point in point_list: point_values = [] point_timestamps = [] if point['object_type'] == 'ANALOG_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_analog_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s " " ORDER BY utc_date_time ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) elif point['object_type'] == 'ENERGY_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_energy_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s " " ORDER BY utc_date_time ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) elif point['object_type'] == 'DIGITAL_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_digital_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') parameters_data['timestamps'].append(point_timestamps) parameters_data['values'].append(point_values) ################################################################################################################ # Step 10: construct the report ################################################################################################################ if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() if cursor_energy: cursor_energy.close() if cnx_energy: cnx_energy.disconnect() result = dict() result['space'] = dict() result['space']['name'] = space['name'] result['space']['area'] = space['area'] result['base_period'] = dict() result['base_period']['names'] = list() result['base_period']['units'] = list() result['base_period']['timestamps'] = list() result['base_period']['values'] = list() result['base_period']['subtotals'] = list() result['base_period']['means'] = list() result['base_period']['medians'] = list() result['base_period']['minimums'] = list() result['base_period']['maximums'] = list() result['base_period']['stdevs'] = list() result['base_period']['variances'] = list() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) result['base_period']['values'].append(base[energy_category_id]['values']) result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) result['base_period']['means'].append(base[energy_category_id]['mean']) result['base_period']['medians'].append(base[energy_category_id]['median']) result['base_period']['minimums'].append(base[energy_category_id]['minimum']) result['base_period']['maximums'].append(base[energy_category_id]['maximum']) result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) result['base_period']['variances'].append(base[energy_category_id]['variance']) result['reporting_period'] = dict() result['reporting_period']['names'] = list() result['reporting_period']['energy_category_ids'] = list() result['reporting_period']['units'] = list() result['reporting_period']['timestamps'] = list() result['reporting_period']['values'] = list() result['reporting_period']['subtotals'] = list() result['reporting_period']['means'] = list() result['reporting_period']['means_per_unit_area'] = list() result['reporting_period']['means_increment_rate'] = list() result['reporting_period']['medians'] = list() result['reporting_period']['medians_per_unit_area'] = list() result['reporting_period']['medians_increment_rate'] = list() result['reporting_period']['minimums'] = list() result['reporting_period']['minimums_per_unit_area'] = list() result['reporting_period']['minimums_increment_rate'] = list() result['reporting_period']['maximums'] = list() result['reporting_period']['maximums_per_unit_area'] = list() result['reporting_period']['maximums_increment_rate'] = list() result['reporting_period']['stdevs'] = list() result['reporting_period']['stdevs_per_unit_area'] = list() result['reporting_period']['stdevs_increment_rate'] = list() result['reporting_period']['variances'] = list() result['reporting_period']['variances_per_unit_area'] = list() result['reporting_period']['variances_increment_rate'] = list() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) result['reporting_period']['energy_category_ids'].append(energy_category_id) result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) result['reporting_period']['values'].append(reporting[energy_category_id]['values']) result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) result['reporting_period']['means_per_unit_area'].append( reporting[energy_category_id]['mean'] / space['area'] if reporting[energy_category_id]['mean'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['means_increment_rate'].append( (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and base[energy_category_id]['mean'] > Decimal(0.0)) else None) result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) result['reporting_period']['medians_per_unit_area'].append( reporting[energy_category_id]['median'] / space['area'] if reporting[energy_category_id]['median'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['medians_increment_rate'].append( (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and base[energy_category_id]['median'] > Decimal(0.0)) else None) result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) result['reporting_period']['minimums_per_unit_area'].append( reporting[energy_category_id]['minimum'] / space['area'] if reporting[energy_category_id]['minimum'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['minimums_increment_rate'].append( (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and base[energy_category_id]['minimum'] > Decimal(0.0)) else None) result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) result['reporting_period']['maximums_per_unit_area'].append( reporting[energy_category_id]['maximum'] / space['area'] if reporting[energy_category_id]['maximum'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['maximums_increment_rate'].append( (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and base[energy_category_id]['maximum'] > Decimal(0.0)) else None) result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) result['reporting_period']['stdevs_per_unit_area'].append( reporting[energy_category_id]['stdev'] / space['area'] if reporting[energy_category_id]['stdev'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['stdevs_increment_rate'].append( (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and base[energy_category_id]['stdev'] > Decimal(0.0)) else None) result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) result['reporting_period']['variances_per_unit_area'].append( reporting[energy_category_id]['variance'] / space['area'] if reporting[energy_category_id]['variance'] is not None and space['area'] is not None and space['area'] > Decimal(0.0) else None) result['reporting_period']['variances_increment_rate'].append( (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and base[energy_category_id]['variance'] > Decimal(0.0)) else None) result['parameters'] = { "names": parameters_data['names'], "timestamps": parameters_data['timestamps'], "values": parameters_data['values'] } # export result to Excel file and then encode the file to base64 string result['excel_bytes_base64'] = excelexporters.spacestatistics.export(result, space['name'], reporting_start_datetime_local, reporting_end_datetime_local, period_type) resp.body = json.dumps(result)
the-stack_0_2352
import logging from boto3.resources.action import ServiceAction, WaiterAction from boto3.resources.params import create_request_parameters from botocore import xform_name from aioboto3.resources.response import AIOResourceHandler, AIORawHandler logger = logging.getLogger(__name__) class AIOServiceAction(ServiceAction): def __init__(self, action_model, factory=None, service_context=None): self._action_model = action_model # In the simplest case we just return the response, but if a # resource is defined, then we must create these before returning. resource_response_model = action_model.resource if resource_response_model: self._response_handler = AIOResourceHandler( search_path=resource_response_model.path, factory=factory, resource_model=resource_response_model, service_context=service_context, operation_name=action_model.request.operation ) else: self._response_handler = AIORawHandler(action_model.path) async def __call__(self, parent, *args, **kwargs): operation_name = xform_name(self._action_model.request.operation) # First, build predefined params and then update with the # user-supplied kwargs, which allows overriding the pre-built # params if needed. params = create_request_parameters(parent, self._action_model.request) params.update(kwargs) logger.debug('Calling %s:%s with %r', parent.meta.service_name, operation_name, params) response = await getattr(parent.meta.client, operation_name)(**params) logger.debug('Response: %r', response) return await self._response_handler(parent, params, response) class AioBatchAction(ServiceAction): async def __call__(self, parent, *args, **kwargs): service_name = None client = None responses = [] operation_name = xform_name(self._action_model.request.operation) # Unlike the simple action above, a batch action must operate # on batches (or pages) of items. So we get each page, construct # the necessary parameters and call the batch operation. async for page in parent.pages(): params = {} for index, resource in enumerate(page): # There is no public interface to get a service name # or low-level client from a collection, so we get # these from the first resource in the collection. if service_name is None: service_name = resource.meta.service_name if client is None: client = resource.meta.client create_request_parameters( resource, self._action_model.request, params=params, index=index) if not params: # There are no items, no need to make a call. break params.update(kwargs) logger.debug('Calling %s:%s with %r', service_name, operation_name, params) response = await (getattr(client, operation_name)(**params)) logger.debug('Response: %r', response) responses.append( self._response_handler(parent, params, response)) return responses class AIOWaiterAction(WaiterAction): async def __call__(self, parent, *args, **kwargs): """ Perform the wait operation after building operation parameters. :type parent: :py:class:`~boto3.resources.base.ServiceResource` :param parent: The resource instance to which this action is attached. """ client_waiter_name = xform_name(self._waiter_model.waiter_name) # First, build predefined params and then update with the # user-supplied kwargs, which allows overriding the pre-built # params if needed. params = create_request_parameters(parent, self._waiter_model) params.update(kwargs) logger.debug('Calling %s:%s with %r', parent.meta.service_name, self._waiter_resource_name, params) client = parent.meta.client waiter = client.get_waiter(client_waiter_name) response = await waiter.wait(**params) logger.debug('Response: %r', response)
the-stack_0_2353
"""The test provides the basic capabilities to run numerous property tests.""" from datetime import timedelta from datetime import datetime import functools import traceback import shutil import random import os import numpy as np from property_auxiliary import distribute_command_line_arguments from property_auxiliary import process_command_line_arguments from property_auxiliary import get_random_string from property_auxiliary import run_property_test from property_auxiliary import print_rslt_ext from property_auxiliary import collect_tests from property_auxiliary import finish def choose_module(inp_dict): """Chooses a module with probability proportional to number of stored tests.""" prob_dist = np.array([]) for module in inp_dict.keys(): prob_dist = np.append(prob_dist, len(inp_dict[module])) prob_dist = prob_dist / np.sum(prob_dist) return np.random.choice(list(inp_dict.keys()), p=prob_dist) def run(args): """This function runs the property test battery.""" args = distribute_command_line_arguments(args) test_dict = collect_tests() rslt = dict() for module in test_dict.keys(): rslt[module] = dict() for test in test_dict[module]: rslt[module][test] = [0, 0] if args["is_check"]: np.random.seed(args["seed"]) module = choose_module(test_dict) test = np.random.choice(test_dict[module]) run_property_test(module, test) else: err_msg = [] start, timeout = datetime.now(), timedelta(hours=args["hours"]) print_rslt = functools.partial(print_rslt_ext, start, timeout) print_rslt(rslt, err_msg) while True: seed = random.randrange(1, 100000) dirname = get_random_string() np.random.seed(seed) module = choose_module(test_dict) test = np.random.choice(test_dict[module]) try: run_property_test(module, test, dirname) rslt[module][test][0] += 1 except Exception: rslt[module][test][1] += 1 msg = traceback.format_exc() err_msg += [(module, test, seed, msg)] os.chdir("../") shutil.rmtree(dirname) print_rslt(rslt, err_msg) if timeout < datetime.now() - start: break finish(rslt) if __name__ == "__main__": args = process_command_line_arguments("property") run(args)
the-stack_0_2354
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('message', '0002_message_date'), ] operations = [ migrations.RemoveField( model_name='message', name='date', ), ]
the-stack_0_2356
"""Tests for chebyshev module. """ from __future__ import division, absolute_import, print_function import numpy as np import numpy.polynomial.chebyshev as cheb from numpy.polynomial.polynomial import polyval from numpy.testing import ( assert_almost_equal, assert_raises, assert_equal, assert_, run_module_suite ) def trim(x): return cheb.chebtrim(x, tol=1e-6) T0 = [1] T1 = [0, 1] T2 = [-1, 0, 2] T3 = [0, -3, 0, 4] T4 = [1, 0, -8, 0, 8] T5 = [0, 5, 0, -20, 0, 16] T6 = [-1, 0, 18, 0, -48, 0, 32] T7 = [0, -7, 0, 56, 0, -112, 0, 64] T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128] T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256] Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9] class TestPrivate(object): def test__cseries_to_zseries(self): for i in range(5): inp = np.array([2] + [1]*i, np.double) tgt = np.array([.5]*i + [2] + [.5]*i, np.double) res = cheb._cseries_to_zseries(inp) assert_equal(res, tgt) def test__zseries_to_cseries(self): for i in range(5): inp = np.array([.5]*i + [2] + [.5]*i, np.double) tgt = np.array([2] + [1]*i, np.double) res = cheb._zseries_to_cseries(inp) assert_equal(res, tgt) class TestConstants(object): def test_chebdomain(self): assert_equal(cheb.chebdomain, [-1, 1]) def test_chebzero(self): assert_equal(cheb.chebzero, [0]) def test_chebone(self): assert_equal(cheb.chebone, [1]) def test_chebx(self): assert_equal(cheb.chebx, [0, 1]) class TestArithmetic(object): def test_chebadd(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) tgt = np.zeros(max(i, j) + 1) tgt[i] += 1 tgt[j] += 1 res = cheb.chebadd([0]*i + [1], [0]*j + [1]) assert_equal(trim(res), trim(tgt), err_msg=msg) def test_chebsub(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) tgt = np.zeros(max(i, j) + 1) tgt[i] += 1 tgt[j] -= 1 res = cheb.chebsub([0]*i + [1], [0]*j + [1]) assert_equal(trim(res), trim(tgt), err_msg=msg) def test_chebmulx(self): assert_equal(cheb.chebmulx([0]), [0]) assert_equal(cheb.chebmulx([1]), [0, 1]) for i in range(1, 5): ser = [0]*i + [1] tgt = [0]*(i - 1) + [.5, 0, .5] assert_equal(cheb.chebmulx(ser), tgt) def test_chebmul(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) tgt = np.zeros(i + j + 1) tgt[i + j] += .5 tgt[abs(i - j)] += .5 res = cheb.chebmul([0]*i + [1], [0]*j + [1]) assert_equal(trim(res), trim(tgt), err_msg=msg) def test_chebdiv(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) ci = [0]*i + [1] cj = [0]*j + [1] tgt = cheb.chebadd(ci, cj) quo, rem = cheb.chebdiv(tgt, ci) res = cheb.chebadd(cheb.chebmul(quo, ci), rem) assert_equal(trim(res), trim(tgt), err_msg=msg) class TestEvaluation(object): # coefficients of 1 + 2*x + 3*x**2 c1d = np.array([2.5, 2., 1.5]) c2d = np.einsum('i,j->ij', c1d, c1d) c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) # some random values in [-1, 1) x = np.random.random((3, 5))*2 - 1 y = polyval(x, [1., 2., 3.]) def test_chebval(self): #check empty input assert_equal(cheb.chebval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [polyval(x, c) for c in Tlist] for i in range(10): msg = "At i=%d" % i tgt = y[i] res = cheb.chebval(x, [0]*i + [1]) assert_almost_equal(res, tgt, err_msg=msg) #check that shape is preserved for i in range(3): dims = [2]*i x = np.zeros(dims) assert_equal(cheb.chebval(x, [1]).shape, dims) assert_equal(cheb.chebval(x, [1, 0]).shape, dims) assert_equal(cheb.chebval(x, [1, 0, 0]).shape, dims) def test_chebval2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, cheb.chebval2d, x1, x2[:2], self.c2d) #test values tgt = y1*y2 res = cheb.chebval2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = cheb.chebval2d(z, z, self.c2d) assert_(res.shape == (2, 3)) def test_chebval3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, cheb.chebval3d, x1, x2, x3[:2], self.c3d) #test values tgt = y1*y2*y3 res = cheb.chebval3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = cheb.chebval3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)) def test_chebgrid2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j->ij', y1, y2) res = cheb.chebgrid2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = cheb.chebgrid2d(z, z, self.c2d) assert_(res.shape == (2, 3)*2) def test_chebgrid3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j,k->ijk', y1, y2, y3) res = cheb.chebgrid3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = cheb.chebgrid3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)*3) class TestIntegral(object): def test_chebint(self): # check exceptions assert_raises(ValueError, cheb.chebint, [0], .5) assert_raises(ValueError, cheb.chebint, [0], -1) assert_raises(ValueError, cheb.chebint, [0], 1, [0, 0]) # test integration of zero polynomial for i in range(2, 5): k = [0]*(i - 2) + [1] res = cheb.chebint([0], m=i, k=k) assert_almost_equal(res, [0, 1]) # check single integration with integration constant for i in range(5): scl = i + 1 pol = [0]*i + [1] tgt = [i] + [0]*i + [1/scl] chebpol = cheb.poly2cheb(pol) chebint = cheb.chebint(chebpol, m=1, k=[i]) res = cheb.cheb2poly(chebint) assert_almost_equal(trim(res), trim(tgt)) # check single integration with integration constant and lbnd for i in range(5): scl = i + 1 pol = [0]*i + [1] chebpol = cheb.poly2cheb(pol) chebint = cheb.chebint(chebpol, m=1, k=[i], lbnd=-1) assert_almost_equal(cheb.chebval(-1, chebint), i) # check single integration with integration constant and scaling for i in range(5): scl = i + 1 pol = [0]*i + [1] tgt = [i] + [0]*i + [2/scl] chebpol = cheb.poly2cheb(pol) chebint = cheb.chebint(chebpol, m=1, k=[i], scl=2) res = cheb.cheb2poly(chebint) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with default k for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = cheb.chebint(tgt, m=1) res = cheb.chebint(pol, m=j) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with defined k for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = cheb.chebint(tgt, m=1, k=[k]) res = cheb.chebint(pol, m=j, k=list(range(j))) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with lbnd for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = cheb.chebint(tgt, m=1, k=[k], lbnd=-1) res = cheb.chebint(pol, m=j, k=list(range(j)), lbnd=-1) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with scaling for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = cheb.chebint(tgt, m=1, k=[k], scl=2) res = cheb.chebint(pol, m=j, k=list(range(j)), scl=2) assert_almost_equal(trim(res), trim(tgt)) def test_chebint_axis(self): # check that axis keyword works c2d = np.random.random((3, 4)) tgt = np.vstack([cheb.chebint(c) for c in c2d.T]).T res = cheb.chebint(c2d, axis=0) assert_almost_equal(res, tgt) tgt = np.vstack([cheb.chebint(c) for c in c2d]) res = cheb.chebint(c2d, axis=1) assert_almost_equal(res, tgt) tgt = np.vstack([cheb.chebint(c, k=3) for c in c2d]) res = cheb.chebint(c2d, k=3, axis=1) assert_almost_equal(res, tgt) class TestDerivative(object): def test_chebder(self): # check exceptions assert_raises(ValueError, cheb.chebder, [0], .5) assert_raises(ValueError, cheb.chebder, [0], -1) # check that zeroth derivative does nothing for i in range(5): tgt = [0]*i + [1] res = cheb.chebder(tgt, m=0) assert_equal(trim(res), trim(tgt)) # check that derivation is the inverse of integration for i in range(5): for j in range(2, 5): tgt = [0]*i + [1] res = cheb.chebder(cheb.chebint(tgt, m=j), m=j) assert_almost_equal(trim(res), trim(tgt)) # check derivation with scaling for i in range(5): for j in range(2, 5): tgt = [0]*i + [1] res = cheb.chebder(cheb.chebint(tgt, m=j, scl=2), m=j, scl=.5) assert_almost_equal(trim(res), trim(tgt)) def test_chebder_axis(self): # check that axis keyword works c2d = np.random.random((3, 4)) tgt = np.vstack([cheb.chebder(c) for c in c2d.T]).T res = cheb.chebder(c2d, axis=0) assert_almost_equal(res, tgt) tgt = np.vstack([cheb.chebder(c) for c in c2d]) res = cheb.chebder(c2d, axis=1) assert_almost_equal(res, tgt) class TestVander(object): # some random values in [-1, 1) x = np.random.random((3, 5))*2 - 1 def test_chebvander(self): # check for 1d x x = np.arange(3) v = cheb.chebvander(x, 3) assert_(v.shape == (3, 4)) for i in range(4): coef = [0]*i + [1] assert_almost_equal(v[..., i], cheb.chebval(x, coef)) # check for 2d x x = np.array([[1, 2], [3, 4], [5, 6]]) v = cheb.chebvander(x, 3) assert_(v.shape == (3, 2, 4)) for i in range(4): coef = [0]*i + [1] assert_almost_equal(v[..., i], cheb.chebval(x, coef)) def test_chebvander2d(self): # also tests chebval2d for non-square coefficient array x1, x2, x3 = self.x c = np.random.random((2, 3)) van = cheb.chebvander2d(x1, x2, [1, 2]) tgt = cheb.chebval2d(x1, x2, c) res = np.dot(van, c.flat) assert_almost_equal(res, tgt) # check shape van = cheb.chebvander2d([x1], [x2], [1, 2]) assert_(van.shape == (1, 5, 6)) def test_chebvander3d(self): # also tests chebval3d for non-square coefficient array x1, x2, x3 = self.x c = np.random.random((2, 3, 4)) van = cheb.chebvander3d(x1, x2, x3, [1, 2, 3]) tgt = cheb.chebval3d(x1, x2, x3, c) res = np.dot(van, c.flat) assert_almost_equal(res, tgt) # check shape van = cheb.chebvander3d([x1], [x2], [x3], [1, 2, 3]) assert_(van.shape == (1, 5, 24)) class TestFitting(object): def test_chebfit(self): def f(x): return x*(x - 1)*(x - 2) def f2(x): return x**4 + x**2 + 1 # Test exceptions assert_raises(ValueError, cheb.chebfit, [1], [1], -1) assert_raises(TypeError, cheb.chebfit, [[1]], [1], 0) assert_raises(TypeError, cheb.chebfit, [], [1], 0) assert_raises(TypeError, cheb.chebfit, [1], [[[1]]], 0) assert_raises(TypeError, cheb.chebfit, [1, 2], [1], 0) assert_raises(TypeError, cheb.chebfit, [1], [1, 2], 0) assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[[1]]) assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[1, 1]) assert_raises(ValueError, cheb.chebfit, [1], [1], [-1,]) assert_raises(ValueError, cheb.chebfit, [1], [1], [2, -1, 6]) assert_raises(TypeError, cheb.chebfit, [1], [1], []) # Test fit x = np.linspace(0, 2) y = f(x) # coef3 = cheb.chebfit(x, y, 3) assert_equal(len(coef3), 4) assert_almost_equal(cheb.chebval(x, coef3), y) coef3 = cheb.chebfit(x, y, [0, 1, 2, 3]) assert_equal(len(coef3), 4) assert_almost_equal(cheb.chebval(x, coef3), y) # coef4 = cheb.chebfit(x, y, 4) assert_equal(len(coef4), 5) assert_almost_equal(cheb.chebval(x, coef4), y) coef4 = cheb.chebfit(x, y, [0, 1, 2, 3, 4]) assert_equal(len(coef4), 5) assert_almost_equal(cheb.chebval(x, coef4), y) # check things still work if deg is not in strict increasing coef4 = cheb.chebfit(x, y, [2, 3, 4, 1, 0]) assert_equal(len(coef4), 5) assert_almost_equal(cheb.chebval(x, coef4), y) # coef2d = cheb.chebfit(x, np.array([y, y]).T, 3) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) coef2d = cheb.chebfit(x, np.array([y, y]).T, [0, 1, 2, 3]) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) # test weighting w = np.zeros_like(x) yw = y.copy() w[1::2] = 1 y[0::2] = 0 wcoef3 = cheb.chebfit(x, yw, 3, w=w) assert_almost_equal(wcoef3, coef3) wcoef3 = cheb.chebfit(x, yw, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef3, coef3) # wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, 3, w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) # test scaling with complex values x points whose square # is zero when summed. x = [1, 1j, -1, -1j] assert_almost_equal(cheb.chebfit(x, x, 1), [0, 1]) assert_almost_equal(cheb.chebfit(x, x, [0, 1]), [0, 1]) # test fitting only even polynomials x = np.linspace(-1, 1) y = f2(x) coef1 = cheb.chebfit(x, y, 4) assert_almost_equal(cheb.chebval(x, coef1), y) coef2 = cheb.chebfit(x, y, [0, 2, 4]) assert_almost_equal(cheb.chebval(x, coef2), y) assert_almost_equal(coef1, coef2) class TestInterpolate(object): def f(self, x): return x * (x - 1) * (x - 2) def test_raises(self): assert_raises(ValueError, cheb.chebinterpolate, self.f, -1) assert_raises(TypeError, cheb.chebinterpolate, self.f, 10.) def test_dimensions(self): for deg in range(1, 5): assert_(cheb.chebinterpolate(self.f, deg).shape == (deg + 1,)) def test_approximation(self): def powx(x, p): return x**p x = np.linspace(-1, 1, 10) for deg in range(0, 10): for p in range(0, deg + 1): c = cheb.chebinterpolate(powx, deg, (p,)) assert_almost_equal(cheb.chebval(x, c), powx(x, p), decimal=12) class TestCompanion(object): def test_raises(self): assert_raises(ValueError, cheb.chebcompanion, []) assert_raises(ValueError, cheb.chebcompanion, [1]) def test_dimensions(self): for i in range(1, 5): coef = [0]*i + [1] assert_(cheb.chebcompanion(coef).shape == (i, i)) def test_linear_root(self): assert_(cheb.chebcompanion([1, 2])[0, 0] == -.5) class TestGauss(object): def test_100(self): x, w = cheb.chebgauss(100) # test orthogonality. Note that the results need to be normalized, # otherwise the huge values that can arise from fast growing # functions like Laguerre can be very confusing. v = cheb.chebvander(x, 99) vv = np.dot(v.T * w, v) vd = 1/np.sqrt(vv.diagonal()) vv = vd[:, None] * vv * vd assert_almost_equal(vv, np.eye(100)) # check that the integral of 1 is correct tgt = np.pi assert_almost_equal(w.sum(), tgt) class TestMisc(object): def test_chebfromroots(self): res = cheb.chebfromroots([]) assert_almost_equal(trim(res), [1]) for i in range(1, 5): roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2]) tgt = [0]*i + [1] res = cheb.chebfromroots(roots)*2**(i-1) assert_almost_equal(trim(res), trim(tgt)) def test_chebroots(self): assert_almost_equal(cheb.chebroots([1]), []) assert_almost_equal(cheb.chebroots([1, 2]), [-.5]) for i in range(2, 5): tgt = np.linspace(-1, 1, i) res = cheb.chebroots(cheb.chebfromroots(tgt)) assert_almost_equal(trim(res), trim(tgt)) def test_chebtrim(self): coef = [2, -1, 1, 0] # Test exceptions assert_raises(ValueError, cheb.chebtrim, coef, -1) # Test results assert_equal(cheb.chebtrim(coef), coef[:-1]) assert_equal(cheb.chebtrim(coef, 1), coef[:-3]) assert_equal(cheb.chebtrim(coef, 2), [0]) def test_chebline(self): assert_equal(cheb.chebline(3, 4), [3, 4]) def test_cheb2poly(self): for i in range(10): assert_almost_equal(cheb.cheb2poly([0]*i + [1]), Tlist[i]) def test_poly2cheb(self): for i in range(10): assert_almost_equal(cheb.poly2cheb(Tlist[i]), [0]*i + [1]) def test_weight(self): x = np.linspace(-1, 1, 11)[1:-1] tgt = 1./(np.sqrt(1 + x) * np.sqrt(1 - x)) res = cheb.chebweight(x) assert_almost_equal(res, tgt) def test_chebpts1(self): #test exceptions assert_raises(ValueError, cheb.chebpts1, 1.5) assert_raises(ValueError, cheb.chebpts1, 0) #test points tgt = [0] assert_almost_equal(cheb.chebpts1(1), tgt) tgt = [-0.70710678118654746, 0.70710678118654746] assert_almost_equal(cheb.chebpts1(2), tgt) tgt = [-0.86602540378443871, 0, 0.86602540378443871] assert_almost_equal(cheb.chebpts1(3), tgt) tgt = [-0.9238795325, -0.3826834323, 0.3826834323, 0.9238795325] assert_almost_equal(cheb.chebpts1(4), tgt) def test_chebpts2(self): #test exceptions assert_raises(ValueError, cheb.chebpts2, 1.5) assert_raises(ValueError, cheb.chebpts2, 1) #test points tgt = [-1, 1] assert_almost_equal(cheb.chebpts2(2), tgt) tgt = [-1, 0, 1] assert_almost_equal(cheb.chebpts2(3), tgt) tgt = [-1, -0.5, .5, 1] assert_almost_equal(cheb.chebpts2(4), tgt) tgt = [-1.0, -0.707106781187, 0, 0.707106781187, 1.0] assert_almost_equal(cheb.chebpts2(5), tgt) if __name__ == "__main__": run_module_suite()
the-stack_0_2357
# Copyright 2019 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import griddata class _CutPlane(): def __init__(self, flow_data, x1='x', x2='y', x3_value=None): """ Initialize CutPlane object. Used to extract a 2D plane from a 3D vectoral velocity field Args: flow_data (np.array): 3D vector field of velocity data x1 (str, optional): first dimension. Defaults to 'x'. x2 (str, optional): second dimension. Defaults to 'y'. x3_value (str, optional): third dimension. Defaults to None. """ # Assign the axis names self.x1_name = x1 self.x2_name = x2 #TODO: if it will be assumed that x3 is one of x, y, or z that is x1 and x2, # then we should verify that x1 and x2 are one of x, y, or z self.x3_name = [x3 for x3 in ['x', 'y', 'z'] if x3 not in [x1, x2]][0] # Get x1, x2 and x3 arrays x1_array = getattr(flow_data, self.x1_name) x2_array = getattr(flow_data, self.x2_name) x3_array = getattr(flow_data, self.x3_name) search_values = np.array(sorted(np.unique(x3_array))) nearest_idx = (np.abs(search_values - x3_value)).argmin() nearest_value = search_values[nearest_idx] print('Nearest value in %s to %.2f is %.2f' % (self.x3_name, x3_value, nearest_value)) # Select down the data x3_select_mask = x3_array == nearest_value # Store the un-interpolated input arrays at this slice self.x1_in = x1_array[x3_select_mask] self.x2_in = x2_array[x3_select_mask] self.u_in = flow_data.u[x3_select_mask] self.v_in = flow_data.v[x3_select_mask] self.w_in = flow_data.w[x3_select_mask] # Initially, x1_lin, x2_lin are unique values of input self.x1_lin = np.unique(self.x1_in) self.x2_lin = np.unique(self.x2_in) # Save the resolution as the number of unique points in x1 and x2 self.resolution = (len(np.unique(self.x1_lin)), len(np.unique(self.x2_lin))) # Make initial meshing self._remesh() def _remesh(self): # Mesh and interpolate u, v and w self.x1_mesh, self.x2_mesh = np.meshgrid(self.x1_lin, self.x2_lin) self.u_mesh = griddata( np.column_stack([self.x1_in, self.x2_in]), self.u_in, (self.x1_mesh.flatten(), self.x2_mesh.flatten()), method='cubic') self.v_mesh = griddata( np.column_stack([self.x1_in, self.x2_in]), self.v_in, (self.x1_mesh.flatten(), self.x2_mesh.flatten()), method='cubic') self.w_mesh = griddata( np.column_stack([self.x1_in, self.x2_in]), self.w_in, (self.x1_mesh.flatten(), self.x2_mesh.flatten()), method='cubic') # Save flat vectors self.x1_flat = self.x1_mesh.flatten() self.x2_flat = self.x2_mesh.flatten() # Save u-cubed self.u_cubed = self.u_mesh**3 # Define horizontal subclass class HorPlane(_CutPlane): """ Subclass of _CutPlane. Shortcut to extracting a horizontal plane. """ def __init__(self, flow_data, z_value): """ Initialize horizontal CutPlane Args: flow_data (np.array): 3D vector field of velocity data z_value (float): vertical position through which to slice """ # Set up call super super().__init__(flow_data, x1='x', x2='y', x3_value=z_value) # Define cross plane subclass class CrossPlane(_CutPlane): """ Subclass of _CutPlane. Shortcut to extracting a cross-stream plane. """ def __init__(self, flow_data, x_value): """ Initialize cross-stream CutPlane Args: flow_data (np.array): 3D vector field of velocity data x_value (float): streamwise position through which to slice """ # Set up call super super().__init__(flow_data, x1='y', x2='z', x3_value=x_value) # Define cross plane subclass class VertPlane(_CutPlane): """ Subclass of _CutPlane. Shortcut to extracting a streamwise-vertical plane. """ def __init__(self, flow_data, y_value): """ Initialize streamwise-vertical CutPlane Args: flow_data (np.array): 3D vector field of velocity data y_value (float): spanwise position through which to slice """ # Set up call super super().__init__(flow_data, x1='x', x2='z', x3_value=y_value) ## Modification functions def set_origin(cut_plane, center_x1=0.0, center_x2=0.0): """ Establish the origin of a CutPlane object. Args: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): plane of data. center_x1 (float, optional): x1-coordinate of orign. Defaults to 0.0. center_x2 (float, optional): x2-coordinate of orign. Defaults to 0.0. Returns: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): updated plane of data. """ # Store the un-interpolated input arrays at this slice cut_plane.x1_in = cut_plane.x1_in - center_x1 cut_plane.x2_in = cut_plane.x2_in - center_x2 cut_plane.x1_lin = cut_plane.x1_lin - center_x1 cut_plane.x2_lin = cut_plane.x2_lin - center_x2 # Remesh cut_plane._remesh() return cut_plane def change_resolution(cut_plane, resolution=(100, 100)): """ Modify default resolution of a CutPlane object. Args: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): plane of data. resolution (tuple, optional): Desired resolution in x1 and x2. Defaults to (100, 100). Returns: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): updated plane of data. """ # Grid the data cut_plane.x1_lin = np.linspace(min(cut_plane.x1_in), max(cut_plane.x1_in), resolution[0]) cut_plane.x2_lin = np.linspace(min(cut_plane.x2_in), max(cut_plane.x2_in), resolution[1]) # Save the new resolution cut_plane.resolution = resolution # Redo the mesh cut_plane._remesh() # Return the cutplane return cut_plane def interpolate_onto_array(cut_plane, x1_array, x2_array): """ Interpolate a CutPlane object onto specified coordinate arrays. Args: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): plane of data. x1_array (np.array): specified x1-coordinate. x2_array (np.array): specified x2-coordinate. Returns: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): updated plane of data. """ # Grid the data given array cut_plane.x1_lin = x1_array cut_plane.x2_lin = x2_array # Save the new resolution cut_plane.resolution = (len(np.unique(cut_plane.x1_lin)), len(np.unique(cut_plane.x2_lin))) # Redo the mesh cut_plane._remesh() # Return the cutplane return cut_plane def rescale_axis(cut_plane, x1_factor=1.0, x2_factor=1.0): """ Stretch or compress CutPlane coordinates. Args: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): plane of data. x1_factor (float): scaling factor for x1-coordinate. x2_factor (float): scaling factor for x2-coordinate. Returns: cut_plane (:py:class:`floris.tools.cut_plane._CutPlane`): updated plane of data. """ # Store the un-interpolated input arrays at this slice cut_plane.x1_in = cut_plane.x1_in / x1_factor cut_plane.x2_in = cut_plane.x2_in / x2_factor cut_plane.x1_lin = cut_plane.x1_lin / x1_factor cut_plane.x2_lin = cut_plane.x2_lin / x2_factor # Remesh cut_plane._remesh() return cut_plane def calculate_wind_speed(cross_plane, x1_loc, x2_loc, R): """ Calculate effective wind speed within specified range of a point. Args: cross_plane (:py:class:`floris.tools.cut_plane.CrossPlane`): plane of data. x1_loc (float): x1-coordinate of point of interst. x2_loc (float): x2-coordinate of point of interst. R (float): radius from point of interst to consider Returns: (float): effective wind speed """ # Make a distance column distance = np.sqrt((cross_plane.x1_flat - x1_loc)**2 + (cross_plane.x2_flat - x2_loc)**2) # Return the mean wind speed return np.cbrt(np.mean(cross_plane.u_cubed[distance < R])) def calculate_power(cross_plane, x1_loc, x2_loc, R, ws_array, cp_array, air_density=1.225): """ Calculate maximum power available in a given cross plane. Args: cross_plane (:py:class:`floris.tools.cut_plane.CrossPlane`): plane of data. x1_loc (float): x1-coordinate of point of interst. x2_loc (float): x2-coordinate of point of interst. R (float): Radius of wind turbine rotor. ws_array (np.array): reference wind speed for cp curve. cp_array (np.array): cp curve at reference wind speeds. air_density (float, optional): air density. Defaults to 1.225. Returns: float: Power! """ # Compute the ws ws = calculate_wind_speed(cross_plane, x1_loc, x2_loc, R) # Compute the cp cp_value = np.interp(ws, ws_array, cp_array) #Return the power return 0.5 * air_density * (np.pi * R**2) * cp_value * ws**3 # def get_profile(self, R, x2_loc, resolution=100, x1_locs=None): # if x1_locs is None: # x1_locs = np.linspace( # min(self.x1_flat), max(self.x1_flat), resolution) # v_array = np.array([self.calculate_wind_speed( # x1_loc, x2_loc, R) for x1_loc in x1_locs]) # return x1_locs, v_array) # def get_power_profile(self, ws_array, cp_array, rotor_radius, air_density=1.225, resolution=100, x1_locs=None): # # Get the wind speed profile # x1_locs, v_array = self.get_profile(resolution=resolution, x1_locs=x1_locs) # # Get Cp # cp_array = np.interp(v_array,ws_array,cp_array) # # Return power array # return x1_locs, 0.5 * air_density * (np.pi * rotor_radius**2) * cp_array * v_array**3
the-stack_0_2358
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # # Copyright 2009, Benjamin Kampmann <[email protected]> # Copyright 2014, Hartmut Goebel <[email protected]> # Copyright 2018, Pol Canelles <[email protected]> from twisted.internet import reactor from coherence.base import Coherence from coherence.upnp.core import DIDLLite # browse callback def process_media_server_browse(result, client): print(f"browsing root of: {client.device.get_friendly_name()}") print(f"result contains: {result['NumberReturned']}", end=' ') print(f"out of {result['TotalMatches']} total matches.") elt = DIDLLite.DIDLElement.fromString(result['Result']) for item in elt.getItems(): if item.upnp_class.startswith("object.container"): print(" container", item.title, f"({item.id})", end=' ') print("with", item.childCount, "items.") if item.upnp_class.startswith("object.item"): print(" item", item.title, f"({item.id}).") # called for each media server found def media_server_found(device): print(f"Media Server found: {device.get_friendly_name()}") d = device.client.content_directory.browse( 0, browse_flag='BrowseDirectChildren', process_result=False, backward_compatibility=False) d.addCallback(process_media_server_browse, device.client) # sadly they sometimes get removed as well :( def media_server_removed(*args): print(f'Media Server gone: {args}') def start(): # Initialize coherence and make sure that # at least we have one server to explore coherence = Coherence( {'logmode': 'warning', 'controlpoint': 'yes', 'plugin': [ {'backend': 'LolcatsStore', 'name': 'Cohen3 LolcatsStore', 'proxy': 'no', }, ] } ) coherence.bind(coherence_device_detection_completed=media_server_found) coherence.bind(coherence_device_removed=media_server_removed) if __name__ == "__main__": reactor.callWhenRunning(start) reactor.run()